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ABSTRACT

SIMULATION OF RANDOM FIELDS WITH THE TURNING BANDS METHOD

by

Aristotelis Mantoglou and John L. Wilson

This report presents and extends the.Turning Bands Method (TBM) for

the synthetic simulation of random fields. Originally introduced by

G. Matheron (1973) of the Ecole des Mines de Paris, the TBM can be

applied to stationary or non-stationary fields.

For two and three dimensional stationary isotropic fields the

general TBM equations are derived with particular emphasis on the two

dimensional case. In a new approach the unidimensional line process is

generated by a simple spectral method, a technique which can be

generally applied for any two dimensional covariance function and is

easily extended to anisotropic processes. In a second approach the line

process is generated as a moving average process for which corresponding

one dimensional equivalents are derived for special two dimensional

covariance functions. The convergence properties of the TBM with the

number of lines is described mathematically and by example, and guidelines

are presented for the selection of model parameters. The TBM is compared

to other methods in terms of cost and accuracy, demonstrating that the

TBM is as accurate and far less expensive than any other existing technique.

Using the unidimensional spectral method the TBM is extended to the

direct generation of stationary anisotropic processes. Examples of this

generation are given with a comparison between theoretical and sample
statistics.

Equations are derived giving the covariance function and the spectral

density function for the process of areal averages of stationary processes.

It is observed that reduced covariance between areas can damp out quickly,

relative to the size of the areas, suggesting the possibility of

approximating areal average covariance by point covariance in some

instances. The areal average process is, in general, anisotropic. Thus

the anisotropic TBM is applied for direct generation of the areal average

process. The comparison of the theoretical and sample statistics is

excellent.

The Turning bands method for the simulation of nonstationary random

fields (IRF) is presented, using a Wiener-Levy process for line generation

as suggested by Matheron (1973). Examples are given for IRF's of zero,

first and second order.
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CHAPTER 1

INTRODUCTION

The theory of random fields has been recently applied in mining

(e.g., Matheron, 1973; Journel, 1974; Delfiner, 1976; Chiles, 1977;

Journel and Huijbregts, 1978), groundwater hydrology (e.g., Delhomme,

1979; Wilson, 1979; Smith and Freeze, 1979 a,b; Dettinger and Wilson,

1980), surface water hydrology (e.g., Mejia and Rodriguez-Iturbe, 1974;

Renals and Rodriguez-Iturbe, 1974; Lenton and Rodriguez-Iturbe, 1974, 1977),

oceanogrophy (e.g., Shinozuka and Jan, 1972), goetechnical engineering

(e.g., Vanmarke, 1977) and other geophysical sciences. The theory is

used to account for uncertainties introduced by the unpredictable na-

ture of the process or by the scarceness of measurements. These many

types of application are usually treated in a similar way, although

some conceptual differences exist. For example rainfall is a spatial

and time process, while ore body or aquifer properties present only

spatial variations. From measurements of several realizations (e.g.,

yearly) of rainfall, or from measurements over space of ore body or

aquifer properties, we can calculate the statistics of the underlying

random field by means of statistical methods employing the ergodicity

assumption.

Two approaches can be taken:

(a) Estimation approach: from measurements of one realization of

the field (for example of the annual rainfall over an area in a

given year, or of the existing-ore body or aquifer realization)

14



we estimate the values of the same realization at unmeasured

points of the areas (using Best Linear Unbiased Estimator, Krig-

ing, etc.), such that we minimize some objective functions. This

approach is useful in groundwater hydrology for calculation of

the parameters used in deterministic groundwater models, and in

mining for the estimation of ore reserves.

(b) Simulation approach: in this approach we generate realizations

of the underlying random field. In the case of the rainfall mod-

el, these realizations represent possible rainfalls over the area

and can be used in a rainfall-runoff model to predict the statis-

tics of discharges, and other model outputs. In groundwater mod-

els, the realizations represent possible patterns of the aquifer

properties, and can be used as inputs in aquifer models to yield

the statistics of piezometric head, specific discharges and other

outputs. In the latter case, it might be appropriate, depending

on the number of the data points and the uncertainty in measure-

ments, to perform conditional simulations, that is simulations

which preserve the observed values at the data points. Condition-

al simulation of ore bodies is often performed in mining to test

alternative mining sequences and sampling programs.

In this report we focus on the simulation approach primarily in the case

of two dimensional fields.

1.1 Scope and objectives

The objective of this work is to present and extend a relatively

new simulation method, the "Turning Bands Method" (TBM), for generation

15



of hydrologic random fields, and to develop strategies for using it

efficiently in terms of accuracy and cost. The method is extended to

the direct generation of anisotropic random fields and the process of

areal averages. Finally a comparison of the existing simulation methods

versus the TBM in terms of accuracy and cost is given.

In Chapter 2 we give basic definitions and derivations appropriate

to random fields, and present some random field simulation methods from

the literature. In Chapter 3 we present the turning bands method for

the general case of stationary isotropic two or three dimensional fields.

This method is extended for the two dimensional case, using spectral

methods and moving average techniques for generation along the lines.

Examples of generations are given and compared with other methods in

terms of accuracy and cost. In Chapter 4 the turning bands method is

extended to the generation of stationary anisotropic random fields, and

and an example generation is given. In Chapter 5 we present areal av-

erages of stationary proces-ses, with an example of direct areal average

simulation by the TBM. In Chapter 6 we present the TBM for the simula-

tion of a category of non-stationary random fields, called intrinsic

random fields. Chapter 7 summarizes the results and conclusions of this

reprot, and gives recommendations for futher research.

16



CHAPTER 2

REVIEW OF THE PROPERTIES OF RANDOM FUNCTIONS AND
SIMULATION TECHNIQUES

2.1 Introduction

The concept of a random function is a generalization of the

concept of a random variable. If x represents a point in n dimension-

al space, R n, and Z(x) is a random variable corresponding to point x,

then we define a random function on R as the set {(x,Z(x))_xeR n}.

If the dimensionality n of the space Rn is 2 or 3 the random function

is usually called a random field. When n=l it is called a line process

or unidimensional process. A random function is also called a

stochastic process.

The theory of random fields has quite a few applications in

hydrology. An example is the annual rainfall depth over an area,or

the field of permeabilities in an aquifer system. In the latter

case,although the field is deterministic (only one true realization),

the theory of random functions is applied to account for imperfect

knowledge of the field of permeabilities as a function of space.

The statistical properties of a random field under consideration

can be estimated as averages over the ensemble of many realizations

of the random field. This, of course, is possible if many realiza-

tions are available (as in the case of annual rainfall over an area).

However, in many cases measurements of only one realization are

available (as for the field of permeabilities in an aquifer system),

17



and we cannot estimate ensemble averages. It is then often necessary

to assume that the random field is stationary and ergodic and that the

one existing true realization is a "representative realization" (Gelb, 1974),

i.e. it includes all the information of the random field. In this case

we can substitute the ensemble averages with the space averages taken

from the one available realization.

There are two problems of different type inherent with the above

assumptions. The first problem is that we really don't know if the

field is actually stationary and ergodic. One realization is simply

insufficient to evaluate the properties of the underlying random field.

As in the case of a random variable, one value of the variable is not

enough to say anything about the underlying distribution from which the

variable is drawn. Moreover we don't know if the available realization

is a representative one. The second problem is of a different type.

Even if the assumptions of stationarity, ergodicity and representative

realization hold, an error is introduced in the approximation of the

statistics of the random field taken from only one part of the

realization. The ergodicity assumption gives the statistics of the

underlying random field if the available realization is of infinite size.

In practical applications the available measurements of the realization

are within a region which is of small size, compared to some correlation

length, so that a large error is expected if we estimate the statistics

of the underlying random field from those data. To circumvert the

above problems (in cases when only one realization is available)

Matheron (1973) proposed a new theory introducing the concept of intrinsic

random functions, in order to model processes that are not stationary

18



and ergodic or processes for which the nature of the underlying random

field cannot be inferred from the available realization

limited size.

Throughout this work it is assumed that the statistical properties

of the random field are known. The calculation of those properties is

an estimation problem and is out of the scope of this report.

In the remainder of this chapter we review some basic definitions

and derivations pertinent to random fields and present briefly two

state-of-the-art simulation models for the generation of realizations

of random functions.

2.2 Second Order Stationary Random Fields

2.2.1 Basic definitions

In this section we are going to present some basic definitions

and derivations pertinent to the concept of a random function. It is

assumed that to each point x = (x1x2 ''' n) in Rn space, there

corresponds a random variable Z(x).

The mean function is defined as

m(x) = E[Z(x)] (2.1)

where E[ ] is the expectation operator. If E[Z2 (x)] is finite for

all x we can define the covariance function of the stochastic

process as

19



C(xl, 2 ) = E[{Z(x1 )-M x1 )}{Z(x 2)-m (X2)1

= E[Z(-X)Z(x2) ]-x1 )m(X2) (2.2)

where A ,x2eRn The correlation function of the process is defined

as:

R(x,x2 ) = 1/2 (2.3)

SC (-X1,3x) C(x2* ,2)

and the variance of the process at a point x is defined by:

var(x) - C(x,x) (2.4)

When x, = x2 (2.3) gives R(xl,x1 ) = 1.

A random process is called a "second-order stationary process"

if the following conditions are satisfied:

-The mean is independent of the position of each point in

n
space R:

E[Z(x)] = m(x) = m V xeR (2.5)

-The covariance function depends only on the vector difference

(3-x 2) .and not on each particular vector 21,92

C(x1 ,x2) = C(x1-x2) = C(h) (2.6)

where h = x -x

The terms second-order stationary, broad stationary, and wide sense

stationary are interchangable. In the cases where x is a space

parameter, the term broad homogeneity is often used instead.

20



A second order stationary process is called isotropic if the covariance

function does not depend on the direction h = x1 - 2 f the distance

vector, but only on the vector length IhI. Then we can write:

C(h) = C(r) (2.7)

where r =

2.2.2 Some common covariance functions

In order for a function to serve as a proper covariance function

certain specific properties should be satisfied (Veneziano, 1978).

The functions described here preserve these properties.

Two common one dimensional covariance models are mentioned here.

The exponential type model is given by

2 -bx
C(x) = a e 0 < x < o (2.8)

where x is the distance from the origin, a2 is the variance of the

process, and b is a parameter. The parameter b-1 has units of length

and is often called correlation distance. Another common one

dimensional model is given by the "hole type funciton" defined as:

C(x) = a2 1 - bx)e-bx 0 < x < o (2.9)

where b~1 is the value of x for which covariance is zero,

C(x) = C(b ) = 0. In this case for x < b~A correlation is positive,

while for x > b correlation is negative.

The simplest two dimensional isotropic covariance function used in

hydrology is of the exponential type written as:

21



2 -br
C(r) = ae r > 0 (2.10)

2
where r is the distance bewteen any two points in R Another type

of two dimensional isotropic covariance used in hydrology (Mejia and

Rodriguez-Iturbe, 1974) is of the Bessel type:

C(r) = 2br K1(br) r > 0 (2.11)

where K1 ('-) is a modified Bessel function of the second type of

order 1. Other isotropic covariance functions used in mining and

recently appl- ohdooy(ehme 98 r fplnma ye

A simple polynomial type covariance function is the so called

spherical model given by:

2 3r 1 r3
a( [=-- -) I r < a

C(r)= {2 a 2 a (2.12)
0 r > a

For completeness we mention here the double exponential type model which

has been used to model three dimensional covariance functions mainly,

but has been used as a two dimensional model as well. The covari-

ance function of this model is given by:

2 -b 2 2 0<
C(r) = a e r (2.13)

In three dimensional fields the above mentioned exponential and

spherical models have been used as well as the double exponential

model. Some other models exist in the literature (e.g., Veneziano, 1978;

Matern , 1960; Vanmarcke, 1977; Rhenals, 1974).
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2.2.3 Spectral analysis of a second order stationary

stochastic process

one dimensional process

If the covariance function C(r) of a unidimensional process is

decreasing rapidly such that the integral f C(r)Idr is bounded,

the covariance function C(r) can be represented by a Fourier inte-

gral as:

C(r) - eiSrS(w)dw (2.14)

The function S(w) is called the spectral density function of the process.

Correspondingly S(w) is written as:

S(W) e-iorC(r)dr (2.15)

The functions C(r) and S(w) form a Fourier transform pair.

For r=0 (2.14) gives:

C(O) = 2 = fs)dw (2.16)

If the process is real then both C(r) and S(w) are real and symmetric

functions. In addition S() > 0 for all w. Then we can write:

C(r) = 2 Jcos(wr)S(w)dw (2.17)

CO

S(W) = f cos(wr)C(r)dr (2.18)

0
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Two dimensional process (see Matern, 1960)

If the two dimensional covariance

function C(h) is continuous and tends to zero fast enough as Ihl+ ,

then C(h) can be expressed as a Fourier integral given by:

C(h) = fe ih- S()dw (2.19)

R

where w -w[vw 219

dw dw1 dw (2.20)
-1 2

and (h's) is the inner product of the vectors h and w_. The func-

tion S(w) = S(wi, 2) is called spectral density function of the

two dimensional process. For real fields C(h) = C(-h) and

SM = S(-W);equation (2.19) then gives:

C(h) f cos(h-w)S(w)dw (2.21)

R2

The function S(w) is a non-negative function and is given by the

inverse transform of C(h) as:

S(2) = ) 2 J C(h)e h-- dh (2.22)
(2rr) R2

For real fields again we get:

S(M) = 1 2 C(h)cos(h-w)dh (2.23)
(27r) R 2
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If the field is isotropic we have, from (2.7),

C(h) = C(r)

where r = Ihi, and from (2.23)

S(M) = S(M)

where w -= Lai In polar coordinates w,8 the differential in (2.21)

is written as:

dw = wdedw

and, since the field is isotropic, it is valid to write (using a

coordinate translation and rotation)

h = [hih2] = [r,O]

so that

(2.26)C(r) = [f cos(wr cosO)d6]S(w)wdw
0 0

The integral inside the brackets is given by (Gradshteyn and Ryzhik,

1965):

0
cos(wr cosO)dO = 2 1T J0(wr) (2.27)

where J is a Bessel function of first kind of order zero. Sub-
0

stituting (2.27) into (2.26) gives:

(2.28)C(r) = 2 w J (wr)S()wd
0
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We introduce here the concept of the radial spectral density function

f(w) of an isotropic process with spectral density function S(M).

In the two dimensional field define:

f(1) 1 (w)do = - S (w) f dw = 2rwS M) (2.29)
a C a ~ C a

where c is a circle of radius w and dw is the differential length

on circle c . Equation (2.28) then is written as (Shoenberg, 1938):

C(r) = a2 f J(wr)f(w)dw (2.30)
0

Taking the Hankel transform of the above integral gives

f(w) J C(r)J (wr)rdr (2.31)
a o

Determination of f(w) for some two dimensional isotropic covariance

functions (Matern, 1960)

If the two dimensional covariance function C(r) is known we can

use equation (2.31) to calculate the corresponding radial spectral

density function f(w):

2 -br
(a) Exponential type: C(r) = a e Gradshteyn and Ryzhik,

(1965):

f() = " 23 (2.32)

b2b [1 + E ] /
b
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(b) Bessel type: C(r) = a 2brK (br)

f(W) = 2w 2 (2.33)

b [1 + W /b2

2 2
(c) Double exponential: C(r) = a2 -b r

2
f(W) =- exp [- ] (2.34)

2b 4b

We note here that we can define the spectral density function

of random fields in higher dimension than 2, but the general formu-

las are not presented here because they are not used in this report.
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2.3 Non-stationary Random Fields

Often the assumption of stationarity may not be justified. An

example of a non-stationary random field is the field of precipitation

in an orographic region. In that case there is an obvious trend in the

mean of the process. Higher precipitation occurs (on the average of

many realizations of the field) at higher latitudes. In these cases

where many realizations of the field Z(x) are available the mean variance,

etc., can be evaluated at each point of the field. If the obtained

statistics show that the field is not stationary a new field Z'(x)

given by:

Z(X)- m (x)
Z'(x) = ~ (2.35)- a (x)

can be defined. The field Z'(x) is stationary in the mean and variance

and often the assumption of second order stationarity can be applied in

the new field Z'(x).

When only one realization is available, as in the case of ore body or

aquifer properties, it is then not possible to estimate the means,

variances, etc. at each point. Only one value of the field is available

at the points. The assumptions of second order stationarity and ergodicity

then is sometimes made in order to make it possible to calculate the

statistics of the underlying random field. This assumption cannot be

justified in most cases and other techniques for analyzing the properties

of the field have to be sought. One of these is to assume a functional

approximation for the mean m(x) obtained from the values of the field at

the data points, and from physical considerations of the process. In

this case with "known" mean a new process can be defined by:
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Z'(x) = Z(x) - m(x)

This new process has a constant mean and could be assumed to be

second order stationary, although the assumption of constant mean does

not guarantee this.

To circumvent the above mentioned problems in cases where one

only realization is available and the process is not (or we do not

know if it is) stationary and ergodic, G. Matheron and his group at the

Ecole des Mines de Paris developed the theory of Intrinsic Random

Functions (IRF). This theory is described in an excellent paper

published several years ago (Matheron, 1973). In this paper Matheron

proposes that for estimation and simulation problems we don't need to

actually know the mean. In the estimation problem (Kriging) the mean

is filtered out by taking appropriate differences (as in time

series analysis). In the simulation problem the mean is inherently

in the data points (condition simulation).

An intrinsic random function of order k (IRF-k) is a non-stationary

random function for which its k + 1 order differences (as defined in

Delfiner, 1976) produce a stationary field. A simple example os an IRF is

that of a random function of the form: Z(x) = Z (x) + Pk(x) where Z0(x)

is a zero mean stationary random function with covariance function

th
C(h), and P k(x) is a polynomial of k degree with random (unknown)

coefficients. The random function Z(x) is then in IRF or order k. A

function K(h), called a Generalized Covariance function of order k (GC - k),

can be defined on the random function Z(x) (Matheron, 1973). In the

example above, where the remaining field Z (x) is stationary with
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covariance C(h), then K(h) = C(h). However, the class of IRF as

defined in Matheron (1973) is larger than this simple example (which

was obtained by the superposition of a stationary process to a

polynomial function). Consequently the class of admissible generalized

covariance functions is larger than the class of covariance functions of

stationary processes. In fact polynomial covariance functions (with

certain limitations on the coefficients) are admissible as GC.

Polynomial GC functions are easily applied to estimation or

simulation problems, and so are commonly used in practice. The order,

2, of the polynomial GC-k function K(h) is a function of the order, k,

of the underlying polynomial Pk(x) [or the order of the differences

required to produce stationarity in the mean, k+l], and is given by

Z = 2k + 1. The general form of admissible polynomial isotropic

GC-k is given in Matheron (1973) as:

k r 2p+1
K r)=k ( 1 P a S r2  l

K (r) = p np (2.37)
n =(2p+l)!

where r = Ihi, n is the dimensionality of the field and

= p! r(n/2) (2.38)
np v r{p+ (1+n)}

r( ) is the gamma function. The coefficients a should satisfy the
p

inequality
k 2(k-p)

a X > 0 (2.39)
p=o 

for all real X-
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These models are not bounded in Rn Kn (r) -+ o as r -- co). By replacing

a = (2p+)! (2.40)

we get:

K (r) = (-) a p (2.41)

a form we will use latter in Chapter 6. In two diminstions, n=2 the para-

meter = 2p (2.38) reduces to

p!

2p = T (p+3/2) (2.42)

For this case the GC-k (2.37) is written as

K (r) p! r2P+l (2.43)
2  = (2p+l)! v7 Pp+3/2)

For k=0, 1, 2 we have the most useful models which wriiten in the form of

Equation (2.41) are:

k = 0 K2 (r) = -a0r (2.44a)

k = 1 K2 (r) = -a r + a1r3 (2.44b)

k = 2 K2 (r) = -a0r + a1 r3 - a2r (2.44c)

Because of inequality (2.39) the coefficients a P(2.40) becomes:

a9 > 0 ; a > - 10 vaa ; a > 0 (2.44d)
0-1 3 o 2 2-
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The function defined by Z (x) = Z(x) - Pk(x), where Pk(x) is the

mean function and Z(x) is a representation of the IRF-k, is stationary

only in the mean! The variance of Z (x) tends to infinity as

2.4 Simulation of Random Fields

We often wish to generate realizations of a random field. In the

case of rainfall the realizations might represent rainfall events over a

region or annual rainfall depths. In the case of an aquifer or mining

system the realizations may represent possible patterns of the aquifer

or ore body properties (hydraulic conductivity, transmissivity, porosity,

ore grade, etc). These realiztions or simulations should have the

statistical properties of the underlying random field, that is, for

the stationary case they should preserve the means, variances, and

covariances as well as the histogram of the underlying random field.

Otherwise, the realizations are biased. Sometimes we wish to generate

fields which also preserve observations at given points. We then talk

about conditional simulations which, for example, are useful for the

generation of aquifer (Delhomme, 1979), or ore body (Journel and

Huijbregts, 1978) properties. In the case of the simulation of future

rainfall events the unconditional simulation approach would be more

appropriate.

In the (second order) stationary case the problem of unconditional

simulation involves the construction of realizations which have a given

mean, variance, covariance function, and histogram. Quite often the

histogram of the process is of the normal or lognormal type. In the

latter case a logarithmic transformation could be made to yield a process
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with a normal pdf. If Z(x) is the original log-normal process then the

process Z'(x) = Zn[Z(x)] is normal. After realizations of this process

z'(x) are obtained by using the simulation model (subscript s represents
s-

simulation result), realizations of the original field can be obtained

through the inverse transformation: z (x) = exp(z' (x)). Care must be
5- 5

taken to insure that the covariance function of the field zs (x) preserves

the theoretical covariance function, because the simulation model

preserves only the covariance function of Z'(x).

The problem of unconditional simulations in the non-stationary case

with known mean and variance can be resolved easily if the process

Z'(x) = [Z(x)-m(x)] /(x) is stationary in the covariance (obviously

this process has zero mean and unit variance). In that case simulations

of the stationary field z'(x) are obtained and the simulated values
5 -

of the original field are given by: z s = ax) z'(x) + m (x).

In all the above mentioned cases the simulation problem is

transformed to the problem of simulation of a stationary random field

with a normal pdf. Existing spectral methods for generations of this

type are described in Section 2.5 of this chapter, while the turning

bands method for stationary fields is presented in Chapter 3.

We are sometimes interested in performing conditional simulations,

i.e. simulations that preserve observations at the data points. Those

simulations are intended to mimic the spatial variability of the real

phenomenon. Obviously, the mean of the simulated fields at the data

points is the measured values obtained from the real field, and the

variance at those points is zero (unless there is a nugget effect).

Conditional simulations can be obtained easily in this case by using Kriging.
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(Delfiner, 1975; Journel, 1974; Journel and Huijbregts, 1978;

Delhomme, 1979). The conditionally simulated values of the field are

given by

z (x) = z*(x) + z (x) - z*(x)] (2.45)
es - s -s

where z cs(x) is the conditional simulation of the field at point x,

z*(x) is the Kriged value of the field based on measurements at the

data points, z s(x) the unconditionally simulated value of the field and

z* (x) the Kriged value of the unconditionally simulated field taken at

the data points. The field defined above has the desired properties

(Delfiner, 1975). Obviously, conditional simulation involves as a

first step the unconditional simulation of the field.

In the case of only one available realization, and if the

stationarity and ergodicity properties are not justified, then the mean

and covariance functions cannot be obtained. In that case we can

estimate from the available realization a generalized covariance

function K(h) (usually polynomial) and then perform first unconditional

and then conditional simulations using this generalized covariance

function. Realizations of a zero mean IRF Z0 (x) can be easily obtained,

as will be illustrated later (Chapter 6) with the turning bands method.

A polynomial Pk(x) of order k with random coefficients can be added to

obtain other representations of the intrinsic random function Z(x).

Usually conditional simulations are performed, so the addition of Pk

becomes meaningless as it is subtracted during the conditioning step.

The mean of the process enters in the simulations through the Kriging

of the original data.
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2.5 Review of Two Simulation Models From the Stationary Case

In the simulation models it is assumed that the statistical

characteristics of the random field (such as mean, variance, covariance

function, etc.) are known. The simulation model uses those characteristics

and the obtained realizations should preserve those statistics. In

practice though, because of discretization or other reasons, a small error

is introduced which we call model error. A certain model becomes more

accurate as it becomes more expensive.

In the following, two simulation models are reviewed. In both

models the random function is simulated by a series of cosine functions.

In the first model (Mejia and Rodriguez-Iturbe, 1974)

the cosine functions have the same amplitude and random frequency vectors

are sampled from the spectral density function of the process (a type of

Monte-Carlo integration of the spectral density function), while in the

second model (Shinozuka and Jan, 1972), the cosine functions have

weighted amplitudes and evenly spaced frequencies (a type of numerical

integration).

Model of Mejia and Rodriguez-Iturbe (1972)

The simulated field is expressed by a series of cosine functions

of the same amplitude as:

N
zs a 2 1/2 1 cos(Wkx+4 $k) (2.46)
s Na(~) k=l

where the subscript s on zs indicates the simulated realizations of the

field, a2 is the variance of the process, $k is a random angle

uniformly distributed between 0 and 27T, and wk is an independent random

vector with probability density function equal to the normalized spectral
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density function S(w)/a . For one dimensional processes (2.46) is

written as:

z s = N 1/2 cos(0kx + (2.47)
k=l

where w k is an independent random variable with probability density

2
function S(w)/a2. In two dimensional isotropic random fields we use the

radial spectral density function instead and (2.46) is written as:

zs (1/2 N cos[Wk (xlcosk + x2 sin6 k) + (2.48)
s N ~k=1 k1 k 2 k k

where wk is an independent random variable with probability density

function equal to the radial spectral density function, and ek' Ok

are independent random vectors uniformly distributed between 0 and 27.

The fields defined by (2.46), (2.47) or (2.48) preserve the mean and

variance of theprocess, but are asymptotically ergodic only for N-Xx>.

The standard deviation of the model covariance function estimated as a

space average is given by:

S2a C(2r)-2C2 (r)+a4 (2.49)
EE 2N

This equation shows that the model covariance function tends to the

theoretical one vary slowly as (1/YN).

Model of Shinozuka and Jan (1972)

It is assumed S(w) is negligible outside the rectangle:

{w:-0 < -0. < &). < 0 . < + c ; i = 1,2...n}
- 1 1 1

where n is the dimension of the field and {Q1, 0' n } is a given
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22.
vector with positive elements. We denote Aw. = - as an interval

1 N.
1

along the ith frequency axis, where N is the number of intervals on that

axis. The nth dimensional process then can be simulated by the series:

N N N
1 2 n 1/2

zsx = v Z = k .. k [S(w lk 1 w2k ' ' ' * nk nW1 2'' ' n/

1 2=2 kl 1 2 n

.os(w k x + wk 2 + ... + Wk x + (2.50)
1 2 n 12 n

where:

$k,.k = an independent random angle uniformly distributed
Sn

between 0 and 2-r.

wik. = -Q + (k.-1/2)Aw ki = 1,2.. .N. ; i = 1,2,...,n
1k 1. 1

wi - i + Sw. k. = 1,2...N. ; i = 1,2,...,n
ik, ik. i
1 1

In the above 6w is a small random frequency added in order to avoid
i I

periodicities, and is uniformly distributed between -Aw!/2 and A& /2

with Awl << Aw
i

In one dimension (2.50) is written as

zs k 1/2 cos(W'x + k) (2.51)
k=1

This equation is used extensively for the generation of one dimensional

processes and was proposed by Rice (1954).
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The process defined by (2.50) is ergodic but has a covariance

function which is slightly different from the associated theoretical

one which we want to preserve. This model error (bias) tends to zero

as the number of harmonics used tends to infinity (N + co Vi), while

the discretization frequencies Ao. tend to zero.

Discussion

For n = 1 (one dimensional process) Shinozuka and Jan (1972) prove

that the process defined by (2.51) approaches the theoretical covariance

function as - while the process defined by (2.47) converges as -
N2

In practical applications the parameter N of Mejia's model is

finite. The same is true for parameters N of Shinozuka and Jan's

model; moreover, in this method Aw. is finite. That means that there is

some error in both methods and depends on the values N or N , Ao. that

are chosen. A more expensive model is more accurate. In an application

we should choose the parameters N or N., A&. of one model such that
1 1

we have sufficient accuracy and less cost.

In practical hydrologic or mining applications in two dimensional

fields, it should be sufficient in Shinozuka's method to take: N = N2 = 20

(400 harmonics). In Mejia's model we generate frequency vectors randomly

on the plane, and in order to describe the whole frequency spectrum

accurately, the number of harmonics should be quite large. For practical

purposes a number of harmonics N = 500 should give a good approximation.

In the next chapter the turning bands method is presented. The

advantage of this method over those mentioned above, as we will see, is

that for the same levels of accuracy its cost is much less, particularly

when the number of the simulated points is large.
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CHAPTER 3

THE TURNING BANDS METHOD FOR SIMULATION

OF STATIONARY ISOTROPIC RANDOM FIELDS

3.1 Introduction

In.Section 5 of the previous chapter we gave a brief review of

two multi-dimensional simulation methods proposed by Mejia and

Rodriguez-Iturbe (1974) and Shinozuka and Jan (1972). Both of those

methods are based on the representation of random process as a

weighted integral of the spectral density function of the process.

They differ in that the method of Mejia and Rodriguez-Iturbe is based

on random smapling from the spectral density function (Monte Carlo

integration), while the method of Shinozuka and Jan is based on the

discretization of the spectral density function (numerical integration).

In both of these methods each simulated point value of the field is

calculated as the sum of a large number of weighted cosine functions.

The cost of simulation is proportional to the number of generated

point values. In many applications it is necessary to describe the

entire field, which means that we must generate at many points. Conse-

quently, both of these simulation methods are very expensive, especially

when a large number of simulations are performed.

In this chapter we are going to present the turning bands method,

which is a relatively new simulation technique. This method was first

presented in a strict mathematical format by Matheron (1973) and was

applied by his colleagues at the Ecole des Mines de Paris:
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Journel (1974), Chiles (1977), Journel and Huijbregts (1978), and Delhomme

(1979). The originality of this method is that it transforms the two

or three dimensional simulation problem to a unidimensional one. The

results of several line simulations are added to generate the point

value of the two or three dimensional field. Through this transform-

ation the cost of simulation increases proportionally to the square

root of the number points in the field at which we generate. That

means that when the number of points of the field is significant (in

practice greater than 5-10) then the turning bands method is more

efficient than the other methods.

The turning bands method has been used during the last few years

in the simulation of three dimensional random fields in mining appli-

cations (Journel and Huijbregts, 1978) for different covariance functions.

In two dimensional fields this method in its original form has been ap-

plied only to very special types- of covariance functions (Chiles, 1977;

Delhomme, 1979), which are not commonly used in hydrologic models.

This chapter presents the turning bands method for the case of

generating point processes having second order stationary isotropic

covariance functions. Since the three dimensional simulation problem

has been treated sufficiently before our main focus will be on the two

dimensional simulation problem. The main original contributions of

this chapter are:

-A transformation of the two dimensional spectral density function

to a corresponding one dimensional spectral density function is

proposed for the first time. With this transformation we can
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generate the unidimensional line process very easily, using

spectral methods. The transformation is general and can be

applied to any two dimensional covariance function if the

corresponding spectral density function is known (Section 3.3).

-Some one dimensional covariance functions, corresponding to

common two dimensional models used in hydrology, are calculated.

Conversely, two dimensional covariance functions corresponding

to some simple one dimensional covariance models are also

calculated. Using these results we can generate the line process

as a moving average process (Section 3.4).

-The rate of convergence of the covariance function obtained by

the turning bands method towards the theoretical one is derived.

The model covariance function is calculated for different numbers

of lines and different sizes of the discretization length along

the lines. The figures presented can be used in order to design

the model we use in a particular case (Section 3.5).

-The turning bands method is compared to other simulation methods

in terms of accuracy and cost (Section 3.6).

In the next section the turning bands method is presented in a

general form for two or three dimensional fields. This presentation

can be found in a different format in Matheron (1973), or in the case

of three dimensional fields in Journel and Huijbregts (1978) and for

two dimensional fields in Chiles (1977).
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3.2 Transformation of the two or three dimensional simulation problem

to a unidimensional problem

Instead of simulating the two or three dimensional field directly,

in the turning bands method we perform simulations along lines in

space. Then at each point of the region Rn a weighted sum of the

corresponding values of the line processes is assigned.

It is assumed here that the process is second order stationary

and isotropic. Without loss of generality it is also assumed that at

each point the values of the field are normally distributed and have

zero mean. If this is not the case we can usually make a transforma-

tion to Gaussian and then subtract the mean. It is also assumed that

the covariance of the field we want to simulate is known.

First we are going to give a conceptual description of the turning

bands method. Then we'll derive the basic equations governing the

transformation of the two or three dimensional covariance functions to

a one dimensional covariance function.

Let P represent the two or three dimensional field we want to

simulate, by generating values at discrete points in space. A two

dimensional example is shown in Figure 3.1. Choose an arbitrary origin

and generate lines with random direction in two or three dimensions.

Let i be one of those lines, forming an angle 6 with the x axis. In

the two dimensional example, if x is a fixed axis, the randomness of

the direction of line i implies that the angle e is uniformly distri-

buted between 0 and 2n. Along each line i, generate a unidimensional

process having zero mean and covariance function C
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.,,region P

Ni line i

Ui

x ~0

Figure 3.1 Schematic representation of the field and the turning bands

lines.
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where is the coordinate along line i. We'll derive later C (C) as

a function of two dimensional covariance function. Orthogonally project

onto line i, those points in the field, where we want to generate values

and assign to them the corresponding values of the one dimensional pro-

cess. If N is a point of the region having location vector x, then

the assigned value from line i will be z . (C ) where c . is the pro-
i Ni Ni

jection of the vector x onto line i (see Figure 3.1). Let u. be the

unit vector on line i, giving zi (CNi) = z i(_xN-u) where xN-u represents

the inner product of the vectors xN and _u. Generate L lines such

as i. For each line generate an independent realization using C 1(0

as the covariance function. Then at every point N of the region,

there are L assigned values z (iNi) = z i(-u,), where i=1,...,L

from the line simulations. Finally, assign to the point N the value

zs () given by:

z ( 1 3l
zs .) z (-.ux ) (3.1)

as the realization of the two or three dimensional random field. The

subscript s represents the term "simulated" or "synthetic."

The field given by (3.1) has zero mean. The question that arises

is "what should be the unidimensional covariance function C 1 () so

that the field defined by (3.1) has the imposed two or three dimens-

ional covariance function C(r)?". In the following we are going to

derive the relation between the covariance functions C(r) and C ( .
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kth Band

N

tth line

z (k)

Figure 3.2 Definition of a band on a turning bands line.
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Before we do so please note that the line process is generated dis-

cretely. If we draw lines or planes perpendicular to the line at the

discrete ends of each discretized segment a set of bands is defined

(Figure 3.2). As the lines turn the bands defined above also turn.

Thus, the method was given the name "Turning bands method" (TBM) by

Matheron (1973).

Take two points of the field having location vectors x1 , x 2

respectively, as shown in Figure 3.3. The simulated values correspond-

ing to those points are given by (3.1) as:

L
z (xl E z.(x .) (3.2)

s =1 VTi=l

and
L

zsx2 z 2xu.) (3.3)
s- 2 1 il -2 -J

Because the unidimensional process Z. has zero mean, the process Z

has zero mean, too. Between two points -E and 2, the covariance

function of the simulation is given by

Cs 2) = E [( Z (x )-u Z Z ( -_s VT i =i=1 -:- rL j=1 (4*u

1 L L
. E E[Z.(x -u.) Z (x2 u.)]L i=l j=l -1 j

Because the unidimensional realizations along two different lines are

independent, their expected value E[Z.(x -u.)Z.(x -u.)] will be zero
i -l - -

unless i = j. Thus the equation for the covariance reduces to
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Fiugre 3.3 Projection of the vector h on a turning bands line.
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1 L
C s (-l 22 L .E E[Z (_l'*_ ) Z (X2-9_) ) (3.4)

i=l

The expected value E[Z i(x-u )Z.(x2-u .)] represents the covariance

of the one dimensional process in line i between points x-u. and

-E2 *ui and can be written,

E[Z .(11 'U.)Z (x2 -u)] = Cl(h-u ) (3.5)

where h = x2-x 1. This equation assumes that the unidimensional

processes are second order stationary. Substituting (3.5) into (3.4)

gives

C( 2 , (.) (3.6)-l4$42 = LZ C -h1.
i=l

Because the vector u. is uniformly distributed over the unit circle or

sphere, for two and three dimensions, respectively, the right-hand side

of (3.6) is only a function of Ihi for large L. This means that the

obtained process is wide sense stationary and isotropic, so that we

can write:

C ( 
L

s(-l '22) = Cs(h) = Cs(r) = Z Cl(h-u ) (3.7)
i=l

where r = hi. For L + o, using the law of large numbers, (3.7)

becomes

1L
C (r) = lim E Cl(h.u.) = E[Cl(h.u)] (3.8)
s L-) L i=l 1 -
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Defining f(u) as the probability density function of u we can write

E[C 1 (h-u))]= { C1 (h-u)f(u)du (3.9)

C

where c represents the unit circle or sphere and du is defined as the

differential length or area on c at the end of vector u. In the case

of a circle, in two dimensions, the probability density function f(u)

is given as

f(u) = - (3.10)
27

In the case of a sphere in three dimensions f(u) is given as:

f(u) = 1 (3.11)
47r

Combining equations (3.8), (3.9), (3.10) and (3.11) leads to the

following equations relating unidimensional and multidimensional

covariance functions. For the two dimensional field (n=2), the result

is

Cs(r) = C1 (h.u)du (3.12)

unit circle

while for the three dimensional field (n=3) we have

Cs(r) = 1 C (h.u)du (3.13)

unit circle

In the following, the cases of three and two dimensional fields are

examined separately.
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3.2.1 Three dimensional fields

Because of the second order stationarity and isotropy of the

process, without loss of generality, we can define orthogonal (x,y,z )

axes with origin at the point -E and with the z axis in the direction

of the vector h = x2-x1 , as shown in Figure 3.4. The unit sphere where

the vector u ends, is also shown. In spherical coordinates

h-u = r cos$, where r = Jhi, and

du = 1 2sin~d~dO = sin~d~de .

The integral (3.13) is then written as

C (r) = C (r cos4) sin~d~dO

unit
sphere

or

C Cr) = 9- d C 1 (r cosq) sin~dq =

o o

= C (r coso) sinod4

Because of the symmetry of the unidimensional covariance function this

equation becomes

Cs(r) = C 1 (r coso) sinodo (3.14)

0

The projection of r along the line is

= r coso :. dr = -r sinod$
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Figure 3.4 Definition sketch in the three dimensional case.
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Substituting into (3.14) we get

Cs (r) r r c1f .o{ ~d

or
r

rC (r) = (C)dC

Using Leibnitz' rule and differentiating, this becomes

d
- (rC (r)) = C1 (r) (3.15)dr s

By changing notation the above equation is written as

C = d
C1 () = - (cc (c)) (3.16)

which relates the three dimensional covariance function to the uni-

dimensional one.

In practice the three dimensional covariance is known and we

want to preserve it during the simulation. So we set C () = C()s

and get

C = (CC(c)) (3.17)

This equation gives the unidimensional covariance function C (1) as

a function of the three dimensional C()

Some examples of unidimensional equivalents to typical three

dimensional covariance functions are:
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Exponential model

For a 3-D exponential covariance function of the form

2 -br
C(r) = a e 0 < r < w

the corresponding one dimensional covariance function is given by

(3.17) as

(c) = a2 1-b)e-b 

Double exponential model

Expressed by the formula,

C(r) = a2 e-b r

0 < O (3.18a)

0 < r < o

the corresponding unidimensional covariance function is given by:

C1() = a2 (1-2b2 2-b 2 0 < c < CO (3.18b)

SphericaL model

Given by:

2

C(r) =

3r 1r3

a
, 0 < r < a

a < r

the corresponding one dimensional covariance function is

2 3~ 3
2[1 3 + 0 a

C 1c) = 10 a a 3
0 < c < a

(3.18c)
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As the remainder of this chapter will demonstrate, it is not possible

to find equivalent simple relationships for two dimensional fields.

3.2.2 Two dimensional fields

Define the origin of the orthogonal axes (x,y), in the plane of

the field, with origin at point x1 and the y axis in the direction of

the vector h = x -x as shown in Figure 3.5. In polar coordinates we

can write h-u = r sine and du = de. Equation (3.12) then becomes

1 (21
C (r) = - 7 C (r sine) de

- 'o

Because the covariance function C is an even function, the integral

simplifies to:

C (r) = f- Cl(r sine) de (3.19)
0

We define

C = r sine (3.20)

so that

dC = r cosede

Then since for 0 < e < 7/2:

/22/ .2 c l /2 2
cosO = 1-sin C = - ---C

2 r
r

we get

de = dC (3.21)
/ 22

r -C
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Figure 3.5 Definition sketch in the two dimensional case.
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Substituting (3.20) and (3.21) into (3.19) leads to

C(r) C d (3.22)
s 7T f o 2 2

r -C

or C~
1 dc = C (r) (3.23)

o 2 2 2 s
r -c

In practice we know the two dimensional covariance function C(r)

which we waht to preserve. So we substitute C s(r) = C(r) and the

C&LX',W V W- - l Mt &JLL .LO W. -L I.. #-VLL C&

{r 1  dr = C(r) (3.24)

r -1

This equation relates the two dimensional covariance function C(r)

and the corresponding unidimensional one CI(C) along the turning

bands lines. It is an integral equation, in which we cannot directly

express C () as a function of C(r), as we can in the three dimensional

case. Nevertheless, particular solutions can be found in some cases,

as shown in Section 3.4 for a few common two dimensional covariance

models. In Section 3.3 an expression for the spectral density

function of the one dimensional processes, as a function of the radial

spectral density function of the two dimensional process, is derived.

The line process then can be generated using a spectral method (such

as Rice,1954 or Shinozuka and Jan, 1972). This result makes the

generation of the line process easy and we don't need to actually

solve (3.24) for C(c) as we do in the case of other unidimensional
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generation procedures. In either case, the unidimensional pro-

cess is generated discretely along the turning bands lines, al-

though this is not an a priori requirement for the spectral method

unidimensional gnerator.

3.2.3 Discussion

Equations (3.8)-, (3.12),.and (3.13) are obtained in the

limit as the number of lines goes to infinity. The lines are as-

sumed to be randomly oriented, as taken form a uniform distribu-

tion on the unit circle or sphere. It can be easily shown that

these TBM equations are also obtained with the less costly option

of spacing the lines evenly on the unit circle or sphere with pre-

scribed directions. More importantly, although the first approach

preserves the statistics of th field over the ensemble, a large

error is introduced in the spacial statistics of each generated

realization. This process is not ergodic unless the number of

lines is very large. in the second approach (utilizing evenly

spaced lines) the genrated process is ergodic, even for a limited

number of lines, as long as the unidimensional process used in

the turning bands is ergodic.

The relative errors of the second, even spacing, ap-

proach as a function of the number of lines is discussed in
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Section 3.6. A similar discussion for the first approach, of ran-

dom spacing, is given in Mantoglou and Wilson (1981). The second,

even spacing, approach is preferred because the simulated covar-

iance function converges to the theoretical one much faster, and

the generated process is ergodic. It is the approach used here

after. In three dimensions exprience has shown that 15 lines,

joining the mid-points of the opposite edges of a regular

icosahedron, are adequate (Journel and Huijbregts, 1978)- For

two dimensional fiedls in hydrologic applications, 4-16 lines

should be sufficient, depending on the accuracy desired (see

Section 3.3 and 3.6).

We note that if C(r) is a proper two or three dim-

ensional covariance function, then the funciton C( ) given by

Equation (3.17) or (3.24) is a positive definite function in

one dimension and can be used as a unidimensional covariance

funciton.

3.3 Two dimensional fields: generation of the unidimensional

process using a spectral method

In this section we derive, for the first time, a sim-

ple expression for the one dimensional spectral density function

SS 1 )as a function of the radial spectral density function f(w) of the

two dimensional process. Then using this expression the I-D spectral
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density function S1 (w) is calculated for some common two dimensional

covariance models (Section 3.3.1). We use the above derived 1-D

expressions and a spectral method in order to generate the one

dimensional line processes (Section 3.3.2). Finally we discuss

questions as to the accuracy of the method, as a function of the

different parameters and approximations involved, and give some

examples comparing the imposed theoretical statistics and those

obtained from the model using a finite number of simulations.

3.3.1 Spectral representation of the unidimensional process

It was shown in Section 2.2.3 that a two dimensional isotropic

covariance function can be written as (Eq. 2.30)

C(r) = a2 fJo (r)f(w)dw (3.25)

0

where:

C(r) is the two dimensional covariance function,

f(w) is the radial spectral density function of the two

dimensional process,

a2 is the variance of the process, and

J is a Bessel function of order 0.
0

Applying a 1hnkel transform to this equation gives (Eq. 2.31):

f(w) = W 2 C(r)J0(wr)rdr (3.26)

0
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The relationship between the two dimensional covariance function C(r)

and the corresponding unidimensional covariance function C (C),

along the turning bands lines, is given by (3.19) or (3.24). For

Cs (r) = C(r) equation (3.19) is written as

2 f T/2
C(r) = C1 (r sin 0) dO (3.27)

0

Let S (w) be the spectral density function of the line process

corresponding to the covariance function C (). Using (2.17) we can

write

C = 2 cos(aC) S () dw (3.28)

For C = r sin 6 this becomes

C1 (r sin 8) = 2 { cos(wr sin 6) S () dw (3.29)

Substituting (3.29) into (3.27) gives

C(r) = 2 f{2 { cos(wr sin 6) S (W) dw} d6
o o

Changing the order of integration this becomes

00 7r/2
C(r) = - S (W) { cos(w r sin 0) dO} dw (3.30)

o 0

From Gradshteyn-Ryzhik(P. 952, 1965) we get, for the integral inside

the brackets,

cos(wr sin 6) dO = J (r) (3.31)
0 6
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Substituting (3.31) into (3.30) leaves

C(r) = S ( J(wr) dw

or 00
C(r) = 2 J0(wr) S ( dw (3.32)

Applying a Hankel transform to this equation leads to

S 1 jM) = f { C(r) J0 (wr) r dr (3.33)
0

Comparing equations (3.33) and (3.26) we obtain:

2

S M)= f(w) (3.34)

This means that the spectral density function of the unidimensional

process along the turning bands lines is given by one-half of the

radial spectral density function of the two dimensional process

multiplied by the variance!

We can use (3.34) to derive the spectral density function of the

unidimensional process for various two dimensional covariance func-

tions. For example:

Exponential Type Given: C(r) = a2 -br r > 0

Then using (2.32) and (3.34) we get:

2ar W
S 1 (W) 2 2 2 2 3/2 (3.35)

b [1 + w /b ]
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Bessel type Given: C(r) = a2brK1 (br) r > 0

Then using (2.33)and (3.34) we get:

S 1 (W) = a2 2  2 2 2 (3.36)

Double exponential Given: C(r) = a2 exp -b 2123 r > 0

Then using (2.34)and (3.34) we get:

2 2
aS 1 (W) = exp [- -7-2] (3.37)
4b 4b

3.3.2 Generation of the line process

After obtaining the spectral density function of the unidimen-

sional process we can easily generate the process along the turning

bands lines using any spectral method. Here we use the classical

method proposed by S.O. Rice (1954) and modified by Shinozuka and Jan

(1972). For unidimensional processes it is proven in the above

references that this method is superior to the corresponding method of

Mejia and Rodriguez-Iturbe (1974) in terms of accuracy and cost. A

brief review of this method was given in Chapter 2. In particular,

please note that this method is ergodic; thus, this resulting multi-

dimensional field is ergodic.

If the unidimensional covariance function C 1 () and the corre-

sponding spectral density function, obtained in Section 3.3.1, is

S1(W), then the unidimensional process can be generated by
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M 1/2
z (C) = 2 E [S(Wkk)AW] Cos(wkc + (3.38)

k=l1

where: $k = independent random angles uniformly distributed

between 0 and 27r

Wk = (k-1/2)Aw k=1,. ..M

1 = k + 6W k=1, .. MWk Wk+

where it has been assumed that the spectral density function S M

is insignificant outside the region [-Q, + 0]. The discretization

frequency Aw is defined as: Aw = M, where M is the number of har-

monics used. The frequency 6w is a small random frequency added in

order to avoid periodicities and is. uniformly distributed between

- and + , where Aw' is a small frequency, Aw' << Aw. (3.38)
2 2

is obtained from (2.51) if we recall the symmetry of the spectral

density function S1 (w). It can be proven (Shinozuka and Jan, 1972)

that the process given by (3.38) has zero mean and covariance func-

tion C (c), as MN-*, 0- co and Aw-*O. In practical applications we have

M<00, 2<co and Aw>0, so that a small error is introduced. It is also

noted that this process is Gaussian.

In the turning bands method, (3.38) is used to generate values

at discrete points. These points are chosen to be the middle points

of the segments defined by the bands along each line. The same value

is assigned to the entire segment or band as' shown in Figure 3.6.

We note that using the above described spectral method we could

generate directly values on the turning bands lines at the projections
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Figure 3.7 Points of the field where values are generated.
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of the points of the field. This approach would eliminate the error

introduced by the generation of the line process discretely in "bands".

However, the cost increases rapidly since the number of points gener-

ated along the lines is equal to the number of points of the field.

Although we tested this approach, it was abandoned because of its high

cost.

3.3.3 Examples and Discussion

A series of examples illustrating the simulation of random fields

using the turning bands methods (TBM) with the undimensional spectral

process is given in this section. The statistics of the random field

to be simulated (i.e., mean, variance, covariance) are assumed to be

known.

A sample realization

Figure 3.8 is a contur map of a realization of an isotropic, station-

ary random field generated with the TBM. The random field has zero mean,

unit variance a2 = 1, and a covariance function of the exponential type

with scale parameter b = 1. The dimensions of the simulated area in the

figure are: Xmax = 1.2 and Ymax = 0.96. Simulations take place at the

discrete points of the grid shown. The number of columns in the grid is:

NX = 100 and the number of rows NY = 80, giving a total of N = 8000 simula-

ted points. These points were interpolated using a linear function in the

contouring program (Kafritsas, 1980). The number of lines used in the turn-

ing bands' model was L = 16 and the discretization along the lines was

= 0.012. The number of harmonics in the generation of the unidimensional

process was set equal to M = 100 and the maximum frequency Q = 40.
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How well does a single realization like this or a sequence of many

realizations generated with the TBM, preserve the statistics of the un-

derlying random field? Some further examples will help demonstate, but

first let us look at error sources.

Simulation error

There are three major sources of error in the use of simulation.

The first is due to estimation of the statistics of the underlying ran-

dom field from a limited data set. We are ignoring this error here, al-

though it is undoubtably important. The second error concerns the sim-

ulation method. Model error is introduced due to the discretizations or

approximations used in the TBM such as the finite number of lines, the

discretization along lines, the discretization of the spectrum of the

line process, and the finite number of harmonics used in the generation

of the unidimensional process. These errors and their convergence as a

function of these different -model parameters is described in Section 3.6

of this report. The final source of error is the estimation error in-

troduced by the use of a finite number of simulations. As the number of

realizations increases, this estimation error tends to zero.

Ensemble statistics of a finite sample of realizations-

An experiment was performed to illustrate the covergence of the en-

semble statistics, toward the theoretical values is the number of simula-

tions increase. In this experiment values of realizations of a two dimen-

2
sional field with a zero mean (m=O), unit variance (a7 =1), and exponential

covariance were generated at a series of N = 11 points lying along a straight

ling in two dimensional space each point separated from the other by a dis-
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tance Ax = 0.20/b. The number of lines in the TBM method was L = 16,

with A4 = 0.075/b discretization of the line process. The number of har-

monics used was M = 75 with spectrum discretization Aw = 0.40b (E2 = 30b).

Two thousand simulations were performed with the statistics calculated

after every one hundred simulations. These statistics were found for

the number of simulations NS = 100, 200, 300... 2000; the results for

several of these are given in Table 3.1. Comparison of these values to

the theoretical statistics also shown in Table, demonstrates that the

ensemble statistics approach the theoretical values as NS increases.

Figure 3.9 presents this information graphically for the mean (m=0) and

covariance, at NS = 100, 500, and 1500 realizations. The differences be-

tween the simulated ad theoretical values is mainly due to estimation

error, which tends to zero with large NS, and model error.

In order to obtain some idea of the magnitude of the estimation

errors, we note that the standard deviations of the estimated means

z NS from NS independent simulations is given by

ar- ar
z NS (3.39)

NSS

In our case a = 1 and we get for different number of simulating NS:

a- = 0.10 (3.40)
zl100

a- = 0.045 (3.41)
z 500

a- = 0.026 (3.42)
zl1500
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SIMULATED VALUES FOR NS SIXULATIONS

STATISTICAL PROPERTIES
NS =
100 200 500 1000 1500 2000

THEORETICAL

VALUES

MEAN -0.099204 0.0936193 0.019788 -0.012051 -0.001087 -0.011165 0.00

STANDARD DEVIATION 0.928536 0.982405 0.982405 0.979543 0.975490 0.987686 1.00

VARIANCE 0.862179 0.876458 0.965120 0.959505 0.951581 0.975524 1.00

C(1) 0.652918 0.700064 0.806222 0.829815 0.824170 0.849715 0.81871

C(2) 0.586860 0.591288 0.684934 0.716814 0.697518 0.727950 0.670320

C(3) 0.455875 0.490171 0.553011 0.572730 0.561206 0.592301 0.548812

C(4) 0.402377 0.401577 0.449401 0.463462 0.442771 0.472535 0.449329

C(5) 0.361473 0.329773 0.388515 0.397108 0.379382 0.418981 0.367879

C(6) 0.253728 0.287987 0.328116 0.322939 0.300225 0.321414 0.301194

*H 0
C(7) 0.113112 0.200176 0.246632 0.253247 0.247608 0.265874 0.246597

C(8) 0.055712 0.142944 0.183683 0.199640 0.205055 0.221617 0.201897

C(9) 0.019040 0.110630 0.095955 0.135741 0.141510 0.154022 0.165299

C(10) 0.046938 0.103012 0.065695 0.107287 0.115567 0.127946 0.135335

TABLE 3.1

Simulated and Theoretical Statistics

for Different Numbers of Simulation

C'

2
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These standard deriations may be used to define confidence limits in

Figure 3.9. They demonstrate that the observable deviation in each case

is mainly due to estimation error.

This experiment demonstrates that the TBM preserves well the en-

semble statistics (mean and covariance) of the process. However, the

experiment also reveals a problem: a large number of simulations are

needed to reduce the estimation error to the degree at which the gener-

ated exponential covariance can be discriminated from, say, a Bessel

type covariance. This indicates that if the number of data realizations

from which the statistics of the underlying random field were estimated

is small (less than a few hundred) then the type of covariance function

to be fitted is not important. A Bessel or exponential model will fit

equaly well (Mantoglou and Wilson, 1982). Moreover, in cases were the

theoretical covariance function is assumed to be known exactly, a large

number of realization should be performed in order to preserve it fairly

well. This point is of great concern to those attempting Monte Carlo

simulation of groundwater flow and mass tranport.

Additional examples of generation for the same field but with dif-

ferent values of the TBM parameters and with a limited number of sim-

ulations are presented in Figure 3.10, 3.11, and 3.12. In all these

simulations, the values of the TBM, parameters were: L = 16, AC = 0.12/b,

M = 80, Q = 40b. Figure 3.10 shows a result for NS = 100 simulations while

figures 3.11 and 3.12 are the results of NS = 200 simulations having a dif-

ferent seed number. Though in those simulations the parameters of the simu-

lation model used and the number of realizations are the same, the statistics
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of the simulations are different becasue a different seed number is

used. This result further illustrates the error introduced in the

estimation of statistics from a finite ensemble sample.

Spatial statistics of one realization

The process generated by the TBM is ergodic (see Section 3.2.3).

An example will demonstrate this. Consider a square area with dimen-

sions Xmax = Ymax = 9.0/b. The field was simulated at N = 8100 points

in a 90 x 90 grid (NX = NY = 90). The underlying process has zero

2
mean, unit variance (a = 1) and exponential covariance. The TBM

parameters were L = 16, A = 0.09/b, M = 100, and Aw = 0.40b (Q = 40b).

Only are realization was generated, and the statistics of this real-

ization as obtained by spatial averaging are shown in Table 3.2.

VARIANCE
MEAN (STD. DEV.) C() C(2) C(3) C(4) C(5)

SPACIAL
STATISTICS 1.021
FROM ONE -0.0059 (1.010) 0.862 0.704 0.569 0.458 0.366

REALIZATION

THEORETICAL 0.0 1.00 0.813 0.670 0.549 0.449 0.368STATISTICS _______ ________

TABLE 3.2 Spacial statistics of a single realization.
(L = 16, A = 0.09/b, M = 100, 0 = 40b;' N = 8100)

75

C(6) C(7) C(8) C(9) C(10)

0.282 0.214 0.173 0.139 0.111

0.301 0.247 0.202 0.165 0.135



The theoretical and simulated statistics are very close. It

should be noted that there is an estimation error due to the finite

dimensions of the field and the finite number of points generated.

This spacial estimation error tends to zero as the dimendions of

the field, and the number of simulated points increase. The remain-

ing error is the turning bands model error.

We also note that because of the areal correlation, the esti-

mated spacial statistics from finite areas will have consis-

tently smaller variance than the theoretical ones. This is easily

seen when the dimension of the area being simulated is small com-

pared to the correlation length. For example, the field of

Figure 3.8 with maximum distance Xmax = 1.2/b b~ has a sample

2 . 2
variance s = 0.747, while the theoretical variance is a = 1. From

Table 3.2 we see that the variance of the realizations taken over

-1 2 ~ 2a much larger area, with Xmax = 9.0/b >> b , is s = 1.021 = a = 1.

This shows that the theoretical covariance is approached as the

relative dimensions of the field are increased.
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3.4 Derivation of the unidimensional covariance functions:

generation along the turning bands lines using a moving average

process

In this section we -analytically calculate unidimensional

covariance functions that correspond to conmon two dimensional co-

variance functions, by solving the integral equation (3.24). After

obtaining these unidimensional covariance functions any method based

on the generation of a line process directly from the covariance func-

tion can be used: for example, an autoregressive (AR) type process

or a matrix inversion method. If the unidimensional covariance func-

tion can be written as a convolution product of a function f(u) and

its transpose f(-u) then a moving average (MA) process can be used.

To easily generate the line process as a MA process, a slight modifi-

cation of the original covariance is proposed. First, however, we need

a brief review of the moving average process (Journel and Huijbregts, 1978).

3.4.1 Unidimensional moving average process

In Figure 3.13 let the line D represent a turning bands line

on which we want to generate the unidimensional process at discrete

points (midpoints of the bands). The process has specified covariance

C1(c). Let the discretization length be AC. Generate another discrete

process T on a line parallel to D, as a realization of a random

process with a uniform one dimensional distribution function having

zero mean, unit variance and with no correlation. Let the discretiza-

tion length of this process be a. Choose a such that AC/a = y, where
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weighting function f (w)

f (ka)

w

PI 'i IT line)

i-l i i+1

Figure 3.13 Schematic representation of the MA process.
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p is an integer, so that each of the discrete points on line D

corresponds to one point on line T, as illustrated in Figure 3.13. Let

the point I on line D correspond to point i1 on line T. Define

a MA process on line D given by

y. = E f(ka) t. +k (3.43)

k=-o 1

where the t.+k are realizations of the random variable T and f(ka)

is a weighting function. The question is: "what should the weighting

function f(ka) be in order that y1 has the specified unidimensional

covariance function C 0?

Take two points i and i+ on line D. The discrete covariance

d
C1 of the line process yi is defined as:

d
C (C) =E[yy ]=
1

= EE t+k f(ka) Z t , f(k'a)}
k=-o 1 k' -0 1

where Cl = (i1 + yC). Define k = (yC + k') and the above equation is

written as:

C () = E { E E t. t f(ka) f(-PC)aT} (3.44)

k=-00 Z=-00 1 1

Because the process T is uncorrelated and has unit variance this

sum becomes:
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d
C1( ) = E f(ka) f(ka-ica) (3.45)

k=-co

As ac+O the sum is replaced by the integral

C1 () = f(w)f(w-C)dw

If we define

f(w) = f(-w)

C = f(w) f(C-w)dw (3.46)
_-O

This means that if the unidimensional covariance function C1(r) can

be written as a convolution product of a function f by its transpose

f, then we can generate the underlying process as a moving average

process. A technique for the calculation of the function f(w) in the

general case of C1 (G) is proposed in Mantoglou and Wilson (1982)

The discrete approximation given by (3.45) of the covariance function

(3.46) involves some error which increases as the discretizatfon:length,

a, increases. This error can be calculated (Journel and Huijbregts, 1978)

and corrected. In practice, for common f(w) functions, a multiplicative

correction is enough to ensure the equality of the variances: Cd(0) = C (0).

Also, as will be-shown later, the function f for some common models has the

property that f(w)+O as w-+0. So instead of using an infinite number of

elements in the summation (3.43) we use only a finite number, k
max

80



3.4.2 Generation of the line process as a MA process for some

three dimensional models

In this section we derive the weighting function f(w) for some

three dimensional covariance models.

Exponential model

For the three dimensional covariance function C(r) given by:

C(r) = a 2-br 0 < r < oo

The corresponding one dimensional covariance function is given by

(3.18a)

C = a2  (bC _ 2 (1-bC)eb 0 < C < 0 (3.47)

This one dimensional covariance function C (C) is the well-known

"hole function," and has been used extensively to model one dimensional

processes. It is shown in Figure 3.14. This covariance function can

be expressed as a convolution product of the type given by (3.46).

The weighting function f(w) is found to be (Journel and Huijbregts, 1978).

f(w) 2a/ti (1-bw)e-bw w > 0 (3.48)

0 w < 0

which approaches zero asymptotically as wm-, and has the same shape as

the hole function. In practice the function f(w) is significantly

non-zero only in the interval [0,4/b]. If the discretization interval

on line T is a, the number of the summation elements in (3.43) is

given by:
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k = +1 = +1
max a ba

The density of the discrete approximation should be large, which means

that (ba) should be small, in order to reproduce the asymptotic

tendency of the covariance C (i) towards zero. If we choose ba < 0.125

then we get kmax > 161.

Double exponential model

For
2 2

C(r) = a 2e rr > 0

we get from (3.18b):

2 2 2 -b2 2 > 0
C 2 (1 - 2b 2 -be (3.49)

This covariance function is expressed as a convolution product

C (0) = f*f (Journel and Huijbregts, 1978) where f given by:

2 3 2 2
16a 2b 3 -2bZw 

f(w) = we -00 < w < +C0 (3.50)

In practice this function is significant in the interval [-2/b, 2/b].

Spherical model

For completeness we note that the one dimensional covariance

function C(c) corresponding to the spherical type model is given by

(3.18c):

3
a 2[1- 3s + 2 , < < a

C = { a 3 (3.51)
0 a< 
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and the weighting function f(w) is given by:

/2/3 aa
a 12/a W - < W - (3.52)

f(w) = { 2- -(.2
0 , otherwise

3.4.3 Derivation of the unidimensional covariance functions

for some two dimensional models: generation of the

unidimensional process as a MA process

In Section 3.3.1 we derived a formula which relates the spectral

density function of the unidimensional process in the turning bands

lines to the radial spectral density function of the two dimensional

isotropic process. Based on that formula we calculated the uni-

dimensional spectral density function for some common two dimensional

covariance models. Here we are going to use those equations to derive

expressions for one dimensional covariance functions. Then we'll

modify the original covariance functions, so that we can generate the

corresponding one dimensional processes as moving average process.

Furthermore, we are going to derive some new two dimensional models

such that the corresponding one dimensional processes are simple and

easy to simulate by moving averages. The procedure is illustrated

through examples.

Exponential covariance in two dimensions

First assume that the two dimensional model has covariance of

exponential type given by

2 -br
c(r) = a e (3.53)

84



Then, as was shown in Section 3.3.1, the corresponding one dimensional

process has a spectral density function given by

2

S 2 2 2 (3.54)

b 2[1 + w 3/2
b

The covariance function corresponding to the above spectral density

function is given by

C 1(C)= 2 cos(WO) S () dw =

200

cos(WO) 2 2 3/2 dw (3.55)
b o [l + W /b ]

In Appendix A this integral is calculated, leading to:

2 7T
C ( = a {l - f bc[I 0 (bC)-L 0 (bc)]} (3.56)

where I0 is a Bessel function of order zero, and L0 is a modified

Struve function of order zero (Abramowitz and Stegun, 1964). It was

not possible to calculate the weigting function f(w) of equation 3.46

analyticaly in that case. However, -the technique-proposed by Mantoglou

and Wilson (1982) based on a numerical integration can be applied for the

calculation of the function f(w). The unidimensional process can be sim-

ulated as a MA process then. Another approach will be presented latter.

In Figure 3.15 the exponential covariance function of the two dim-

ensional process is shown, as well as the corresponding one dimensional

covariance function given by (3.56). It is assumed that G2
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-C (b r)

C (bC)-

0ba

oo~ ~ o'sr, b

Figure 3.15. Two dimensional exponential type covariance function
C(br) and the corresponding unidimensional covariance
function C1 (bC)
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BesseZ type two dimensional covariance

If the two dimensional covariance function is of Bessel type, then

the corresponding one dimensional process has a spectral density func-

tion given by (3.36)

2 _ _ _ _

S 1M - 2 2 22 (3.57)
b Il + W /b]

The covariance function is given by

C (0 2 2 Ecos(C) 2 dw (3.58)
b [1 + w /b ]

This integral is calculated in Appendix A, resulting in:

C ( 2 -b Ei(bC) -e Ei(-b?)]} (3.59)

where Ei is the exponential integral function. It was not possible

again to calculate f(w) analyticaly and a numerical integration should

be performed (Mantoglou and Wilson 1982).

Figure 3.16 plots the unidimensional covariance function given by

(3.59) and the corresponding two dimensional covariance function given

by a Bessel function as

(3.60)

C(r) = a2brK (br) (3.60)

where it is assumed that a 2

Comparison with the one dimensional "hole function"

If we compare Figures 3.15 and 3.16 to Figure 3.14, we see that the

shape of the one dimensional covariance functions obtained above for the

exponential and Bessel type models are similar to the shape of the hole

covariance function given by

C h() = 2 (1-ai)e-a
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C(br)

C (b)

0.oo 0.80 1'.60 2.40 '.20 %'.00 '.30 s.80 6. 40 7. '00

br, b

Figure 3.16. Two dimensional Bessel type covariance function C(br)
and the corresponding unidimensional covariance function

C (b )
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The hole covariance function has been used extensively to model one

dimensional processes, as noted in Section 3.4.2. It also has the

important property that it can be written as a convolution product of

a function with its transpose, which makes possible generation along

the lines using the MA process. These properties lead to a comparison

of the covariances given by (3.56) and (3.59) with the hole type co-

variance function given by (3.47) or (3.61). The result is given in

Figure 3.17a), revealing that the shape of all these covariance func-

tions is similar.

The next step is to find the two dimensional covariance function

corresponding to the hole type unidimensional covariance function, and

compare it to the exponential and Bessel type models. The derivation

primarily concerns the calculation of the integral in (3.24), and is

given in Appendix B. It is found there that the two dimensional co-

variance function corresponding to the hole type unidimensional co-

variance function is given by

C(r) = a {I (ar)-L (ar) + ar[I (ar)-L (ar) - 2 (3.61)0 0 1 1 1T

where I and L are Bessel and Struve functions of order 1 and are

defined in Appendix B.

We next compare the two dimensional covariance function given by

(3.61) to the exponential and Bessel type models. The result is shown

in Figure 3.17b. The comparison reveals that the covariance function

given by (3.61) is similar to the exponential and Bessel type models.

Because it has been found that many two dimensional processes follow
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(2)

(3)

.00 0.80 '.60 'P 40 '.20 %' '.OQ a0 S'.60 S'.4n ' o

Figure 3.17a. Comparison of the unidimensional covariance functions,
corresponding to the exponential type (curve 1) and

Bessel type (curve 2) two dimensional covariances, to

the hole function (curve 3) .
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(1)

(3)

~.00 860 1.50 240 S2
r

'1.80 '.6 go j. C 7-20 --. V00

Figure 3.17b. Comparison of the exponential (curve 1) and Bessel
(curve 2) models to the two dimensional covariance
function corresponding to the hole function (curve 3).
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covariance functions close to exponential or Bessel type, we can infer

that the covariance function given by (3.61) will also fit two dimen-

sional processes. This is especially evident when one considers the

estimation error in the covariance function.

The above discussion leads to the conclusion that we can fit a

model of the type in (3.61) to the two dimensional covariance function.

The corresponding unidimensional process then will have a hole type

covariance function. Then we can use a MA process to generate the

unidimensional process. The benefit of this procedure is reduction

in cost by generating the line process as MA process, instead of using

the spectral method, which in general should be more expensive.

We note here that Chiles (1974) has proposed a much more compli-

cated 2D covariance function such that the corresponding unidimensional

function can be written in the form of Equation (3.46) where the func-

tion f(w) is of polynomial type.

Simulation using the unidimensional MA process and the hole function

In order to test the proposed method we re-examined the example

presented in Section 3.3.3 and in Figure 3.10 - 3.12. Here we assumed

that the two dimensional covariance function is given by (3.61) with a = 1

and a2 = 1. The band width was specified as AC = 0.12. The length.ci

of discretization of the uniform process T (Figure 3.13) was chosen

to be a = 0.024. The number of the summation elements was set to

k = 168 and the range of the function f() was w = 4. The
max max

number of lines was set to 16. We performed two runs with the number

92



of simulations set to 100 and 200 respectively. The results of the

comparison between the theoretical covariance and those obtained from

the sample statistics are shown in Figures 3.18-3.19.

3.5 Generation along turning band lines using an autogressive (AR)

process

For the sake of completeness we derive in Appendix B the two

dimensional covariance function corresponding to one dimensional

covariance function of exponential type, that is

C() = 2e-aC (3.62)

The corresponding two dimensional covariance function is given by

2
C(r) = a [I (ar)-L (ar)] (3.63)

In this case the unidimensional process is generated very easily

as a simple bidirectional autoregressive (AR) process of order 1, and

is much cheaper to implement than all the other processes we dis-

cussed before. However, the simulated two dimensional covariance

function has a long tail, and is of relatively little interest in

hydrology. Consequently we will present no further analysis of this

approach.
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Figure 3.18. Theoretical and sample covariances and means. NS = 100,
L = 16, Ac = 0.12, a = 0.024
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3.6 Accuracy of the turning bands method

As stated previously the turning bands method (TBM) exactly pre-

serves the mean of the process, but some error is introduced in the co-

variance function due to the finite number of lines (L), the discretiza-

tion along the lines (Ac) and the discretization of the spectrum of the

line process (M, Q).

There is a tradeoff between accuracy and cost. A more accurate model

will be more expensive. In practical hydrologic applications, the imposed

(theoretical) statistics are very often obtained from a limited set of

data points in the field and a limited number of realizations (very often

only one). So it is expected that the errors in the estimation of the

covariance function, etc., are quite significant and the true covariance

function is different from the one we fit with a model. Consequently,

in the simulation of the process, we may not always be justified in

using a very exact (and thus more expensive) generation model, by in-

creasing the number of lines, etc. How well should we preserve the model

covariance function, when it does not represent exactly the reality? It

would be wiser to choose the parameters of the model such that there is

consistency between these input data estimation errors and the simulation

model errors.

As will be shown later in this section, the errors due to discreti-

zation along the lines and discretization of the spectrum are not impor-

tant for adequately small discretization length (Ac), and a large number

of harmonics (M). The main source of error then is due to the finite num-

ber of lines.

In Mantoglou and Wilson (1981) the convergence properties of the TBM

model covariance function tothe theoretical one are derived for the case
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when the lines are randomly distributed over the unit circle. It is

proven there that the standard deviation of the error in the covariance

function is given by

ar (r) = (r)

when A(r) a function of the distance r. This equation shows that for

randomly spaced lines the TBM model covariance function converges to the

theoretical one very slowly (1/F), as the number of lines increases.

As will be shown in the next subsection when the lines are evenly spaced,

the TMB covariance function tends is the theoretical one very fast (as

1LF).

In this section we will first derive an equation giving the rate of

convergence of the turning bands model covariance function to the theo-

rectical one, as a function of the number of lines (L). Then we will pro-

vide examples which illustrate the errors between :the theoretical and the

model covariance functions for different numbers of lines and discretiza-

tion lengths along the lines. Finally, we will compare the theoretical

one dimensional covariance functions to those obtained from a finite num-

ber of harmonics. The discussion and the associated graphs are useful in

the selection of model parameters.

3.6.1 Convergence of the TBM with the number of lines

The convergence of the TBM covariance function to the true covar-

iance function, can be calculated as follows. Define the true covariance

fucntion C(r) as (3.19)

2 J 'r/2
C(r) = - C (r sine) de (3.64)9 1
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or, because C1 ( ) is symmetric

C(r) = I C (r sine) dO (3.65)
0

For finite L, (3.7) with h-u = r sine, gives the TBM simulated covari-

ance function:

L

Cs(r) L E C1 (r sine ) (3.66)
i=1

which converges to C(r) as L-*-.

An error in the covariance function is introduced due to finite number

of lines and can be defined by:

E = Cs(r)-C(r)

= E C (r s - - C1 (r sine) de (3.67)
i=1 11 7

As described in Section 3.2.3 the lines are evenly spaced along the unit

circle. Let's assume that L is an even number. Also, for the moment,

assume that the points at distance r, where the covariance function is

calculated, lie on one of the turning bands lines. Let i and i + 1

be two adjacent TBM lines. The angle formed between these two lines is

AG = /L. By replacing:

g(G) = C (r sine) (3.68)

We get from (3.65)

i f, 1 L O-e+Ae L
C(r) = {g(e) d =7 E g(6) d6 = - E I (3.69)

0 i=l e i=l
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where 6 = 0, 0 = (i-1) A6 and:

I= {+A0 g(e) de (3.70)
6.

The function g(0) is expanded in a Taylor series with center at 0.:

(0-0 )2
g(0) = g(0.) + (e-6 )g'(O ) + 2! g (0.) + 0[(0-0 ) ] (3.71)

where the prime indicates derivative. Defining -= -0 the integral

in (3.70) can be evaluated term by term:

2

I= {g(Q ) + $g'(o) + 4  g"(O.) + 0f{$3}d~
0

= g(0 )A8 + g'(O.) 2+ g"(0 ) Ae3+ 0 [Ae 4]] (3.72)

Equation (3.65) is evaluated from (3.68), (3.69) and (3.72), where

terms of 0[AO ] and higher are neglected:

, L*I.2
C(r) = { C (r sine) Ae + E [C (r sine.)]'A2

+r 1 11 2 031

+6 [C 1 (r sine )]" } (3.73)

i=l

Since A0 = -r/L the first term of this series cancels out the first term

of the right-hand side of the error term (3.67), leaving

L L 1AS- E [C 1(r sine )]' - E [C 1 (r sine )]" (3.74)
i=l 6L i=l
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Redefining the function g(6 ) = [C 1 (r sine )]', the first term of this

error estimate can be approximated using the integral series approxima-

tion (3.69) and the Taylor series expansion (3.72):

(7 L
[C1(r sine)]' do E [C 1 (r sine )]' A'

0 i=1

+ L 2
2 E [C 1 (r sine)]" Ae (3.75)

i=1

where higher order terms have been neglected. Since

f C ( 
C 1 ( rT

o [C1(r sine)]' do = C (r sine) 0 = 0 (3.76)

(3.75) can be rearranged to give

L Lr
E [C 1 (r sine )]' Ae - -2 E [C1(r sine)]" AG (3.77)

i=l 2 =1
iil

Substituting into (3.74) we get:

L
'x., 7r

E = 2 E [C 1 (r sinG )]" AG (3.78)
12L i=l

The summation can be approximated as

L

E [C 1 (r sine )]" AG [C1(r sinG)]" de = I (3.79)
i=l 0

where

f dC (r sine) 7T

1 = [C,(r sine)]' = d1 Ll =o dO=0
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Defining c = r sine, the derivative becomes

dC1 (r sine) _ dC1 (O di - dC()

dO = - (r cose)de dC dO dC

or
dC () e=n,C= 0 dC 1G)

Il = (r cosO) 1 dC 0?=0 --2r dc

The derivative, evaluated at c = 0, is the slope of the unidimensional

2
covariance function at the origin, where C () = C1 (0)= a is the

variance of the unidimensional process equal to the variance of

the corresponding two dimensional process. Define constant K

K-- 2 (3.80)
a 2b d c1=O

where a is the standard deviation of the two dimensional process, and

b~1 is the correlation length, then the error is given by (3.78) with

substitutions (3.79) and (3.80) is:

2
n a Kbr (3.81)

6L2

This estimation for the error has been derived with the assumptions

that the number of lines is even and the points where the covariance

is calculated lie on one of the turning bands lines. If these points

lie on the bisector between two adjacent lines the error is given by:

2

= -Tra Kbr (3.82)

12L2
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For any other direction of the line connecting the points the error

will lie within these bounds:

2 2
-wa Kbr < < a Kbr (3.83)

12L2 6L2

For uniformly distributed angle of the line connecting the simulated

points, the expected covariance error lies halfway between the bounds

of (3.81) and (3.82);

2
E[e_] = a Kbr (3.84a)

T. 24

and the standard deviation of the error is

3 2  2

a = 3 r2 = 0.227 a Kbr (3.84b)
12 L2  L2

The square root of the moment of the error about the theoretical co-

variance is given by:

2 2
7Tra 2KbraKb

a = -6L K = 0.231 L b (3.84c)
S 36L2  L

The coefficient K depends on the type of the covariance function.

If, for example, C1 ( ) is a hole function (2.9), then K can be

calculated from (3.80) to be K=2/a 2b. For a two dimensional exponen-

tial covariance function (2.10), the corresponding one dimensional co-

variance function (3.56) yields K = 1.6/a2 b.

The error estimates show that the simulated covariance asymptoti-

2
cally converges to the true covariance as l/L .They also indicate
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that the error increases linearly with distance r, at least for

small r. For large r the higher order terms neglected in (3.81) are

important and the error has a finite limit as r-)-. For a fixed number

of lines L this error can be easily shown to be:

02 /L ; for points on a TBM line
liME: = {
re = 0 ; for points on bisector between two lines

so that the error is always between

2
0 < C < as r- (3.85)

- - L

For small distances r compared to the correlation length,

equation (3.81) gives the maximum error. If the accepted error is

known in a particular problem, we can find the minimum number of lines

necessary to meet this criterion, using for r the largest distance

between the simulated points of the field. In the case of an expon-

ential two dimensional covariance function (2.10) for example, we have

2 -dC (O1
a bK= [ ]C= 1.6. (3.86)

so that from (3.81) the error is

2
E 2 0.84 c br (3.87)

If the maximum distance of the field is r = 2/b (two correlation
max
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lengths), and for L = 8, this error estimate becomes 1e1 < 0.026cr 2

or 2.6% of the point variance.

3.6.2 Examples of covariance convergence with number of lines

In order to find the error in the covariance function we can use

(3.66) directly for the calculation of C s(r), where C1 (r) is the uni-

dimensional covariance function calculated in Section 3.4. For this

example, we took a covariance function of the exponential type (2.10)

and variance a2 = 1. The points of distance r where the covariance

function is calculated were selected to lie on one of the turning

bands lines or on the bisector between two lines, in order to obtain

the limits of the error. Figures 3.20 - 3.22 show the theoretical

covariance function and the bands within which the simulated covariance

function lie, for different numbers of lines. In those figures the

top curves give the simulated covariance when the points lie on one

of the turning bands lines and the bottom curves give the simulated

covariance function when the points lie on the bisector between two

lines. We see from these curves that the simulated covariance approaches

the theoretical covariance very rapidly as L increases. These

figures provide a useful guideline in the selection of the number of

lines for a particular problem.

The process generated by the proposed TBM is ergodic, even for a

finite number of lines, as long as the line process is itself ergodic

(the process generated by Rice's (1954) and Shinozuka and Jan's (1972)

methods are ergodic). Thus the Figures 3.20 - 3.22 represent ensemble
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a
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br

Figure 3.20 Limits of error in the covariance function due to finite

number of lines.
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br

a

(b) L =8
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Figure 3.21 Limits of error in the covariance function due to finite
number of lines.
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br

(b) L =16
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br

Figure 3.22 Limits of error in the covariance function due to finite

number of lines.
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as well as space averages. In this procedure the turning bands lines

have been evenly spaced on the unit circle, the angle 61 of the first

line specified (0 = 0). Suppose instead that the angle of the first

line for each realization, was uniformly distributed between 0 and

ff/L. Then the resulting process would preserve the covariance over

the ensemble better, but it would no longer be ergodic. That is,

space and ensemble covariances would be the same only for large L.

In another approach the lines could be randomly uniformly distributed

over the unit circle. We then obtain a process which over the ensemble

of realiz-ations exactly preserves the theoretical covariance, but has

a large error in the spatial average. This error decreases very

slowly is L increases, so once again we have a process which is

ergodic only for very large L. Thus it seems that the approach

with evenly spaced lines on the unit circle and with prespecified line

angles, is preferred (see also discussion in Section 3.2.3).

3.6.3 Effect of discretization along the lines

Another potentially important source of error is the discretiza-

tion along the lines. In order to test how the discretization length

AC affects the accuracy of the model we use equation (3.66) where now

the argument in the function C1 ( ) is:

s= Hr sin8 i/AC-AC (3.88)

where represents the greatest integer such that:

If the number of lines in our example is L = 16, then the error due to
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finite number of lines should be very small, as we've already seen in

Figure 3.22. So we can assume that any additional error in the experi-

ment is due to discretization. Once again an unit exponential covariance

function was used. The points where the simulated covariance function

was calculated lie on one of the turning bands lines. The origin of

the turning bands lines was taken at mid point between two simulated

points, as shown in Figure 3.23.

ith line

Ax

simulated points

Figure 3.23 Origin of the turning bands lines in respect to the

simulated points.

109



(a) 0.05/b

. 0.20 0.110 0.00 0.80 1.00 1.20 1.,40 1.80 1.80 pi.00
br

(b) A= 0.10/b
0

.l 00 0.20 0'.40 0.60 0'.80 1.00 1.20 1.401 0 1.80 .00

br

Figure 3.24 Error in the covariance function due to discretization
along the turning bands lines .
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(a) Ac = 0.20/b

a

C*

.
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Q
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br

Figure 3.25 Error in the covariance function due to discretization

along the turning bands lines.
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Figures 3.24 and 3.25 present a comparison of the theoretical

covariance and the one obtained by the simulation model for discretiza-

tion lengths from Ac = 0.05/b to 0.40/b (1/b represents the correlation

length). The distance between two adjacent simulated points was

Ax = 0.10/b, thus Ac/Ax varied from 0.5 to 4. From the figures we see

that for A = 0.05/b or 0.1/b we have very good accuracy; for

Ac = 0.20/b the accuracy is adequate, while for Ac = 0.40/b the

accuracy is significantly reduced. We can use these figures as guide-

lines for selecting Ac to provide the level of desired accuracy.

In practical applications when we generate a rectangular grid of

grid spacing Ax,Ay for example, it is wise to take AC < min (Ax,Ay) so

we avoid problems such as where to take the origin of the turning bands

lines.

3.6.4 Effect of spectral method line generation process

approximations

The accuracy of the turning bands method finally depends on the

accuracy of the method used in the generation of the line process. We

examine here the spectral method proposed in Section 3.3.2. The

accuracy of this method depends on the maximum frequency at which the

spectrum is truncated (Q), and the number of harmonics (M). The model

covariance function is given by:

N
C = 2 E Sl(W )cos(wkc) (3.89)

k=l1

where wk = (k-1/2)2/M. Again take the case of two dimensional exponen-
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Figure 3.26 Error in the unidimensional covariance function due to

spectral method approximations.
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Figure 3.27 Error in the unidimensional covariance function
spectral method approximations.
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tial type covariance function. The corresponding unidimensional co-

variance function C1 ( ) is given by (3.56).

Figures 3.26 - 3.27 compare the theoretical unidimensional co-

variance function (solid curves) to the covariance function given by

the spectralmodel. In Figures 3.26a, 3.26b and 3.27a the number of

harmonics is kept constant equal to M = 50 while the maximum frequency

Q increases from Q = 10b to Q = 40b. For small Q's (small Aw = Q/M)

we have very good accuracy for large distances, but we have some error

for small distances (especially for the variance). Figures 3.27a and

3.27b compare the cases with constant Q = 40b and M varying from

50 to 100. While the accuracy in Figure 3.27a (M = 50) is not very

good at large distances, the accuracy shown in Figure 3.27b (M = 100)

improves rapidly. The last case shown in Figure 3.27b (Q = 40b,

M = 100) preserves both the variance and the correlation at large

distances very well. Those curves provide useful guidelines for

choosing the maximum frequency (Q) and the number of harmonics (M).

3.6.5 Summary

We have examined all the sources of error introduced in the

turning bands method. These are: the number of lines (L), the dis-

cretization along the lines (Ac), the maximum cutoff frequency of the

spectrum (Q) and the number of harmonics used (M). For the case of

exponential covariance functions, for example, and L = 8, AC = 010/b,

0 = 40b, M = 100 and r = 2/b, the maximum error in the covariance

function is less than 3% of the square root of the variance (a 2) or:

E < 0.03a2 (3.90)
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The cost of the turning bands method is practically proportional

to the number of lines (L) and the number of harmonics (M) used in

the generation of the line process and inversely proportional to the

discretization length (Ac). Or:

cost = L.M (3.91)

In the next section we compare the turning bands method with

other simulation methods in terms of accuracy and cost.

3.7 Comparison of the turning bands method to other simulation

methods in terms of accuracy and cost

In this section we will compare the turning bands method with

other methods used in the generation of two dimensional random fields,

in terms of accuracy and cost. The well-known methods based on the

generation of the field using the spectrum, presented in Section 2.5.

are examined.

3.7.1 Error and convergence

In the turning bands method (TBM), with the lines evenly spaced

on the unit circle, there is some error in the covariance function

which tends to zero very rapidly (as /L2 ) as the number of lines

increases, but the process generated by this approach is ergodic for

a finite number of lines.

The method proposed by Mejia and Rodriguez-Iturbe (1974) has

certain problems. For a finite number of harmonics (N) this method

gives no error in the estimation of the covariance function as an

116



ensemble average, but the error in the spatial average estimation of

the covariance function is large. Thus, this process is not ergodic

unless N-oo. The square root of the variance of the covariance function

estimated as a space average is given by Mejia and Rodriguez-Iturbe

(1974) as:

2 2 4
a ='Var [ C(r)] a C(2r)-2C (r) + a (3.92)

v 2N

This equation shows that the covariance function slowly tends to the

theoretical one as i/ N,

Let's now compare the two methods in terms of an example. Let's

take the two dimensional covariance function to be of exponential

type, with a maximum distance in the field of 2/b, with L = 8 lines,

with discretization along the lines of AC = 0.10/b, a maximum frequency

of Q = 40b and M = 100 harmonics used for the generation of the line

process using the spectral method. For these values of the parameters

L, AC, Q and M, only the error due to the finite number of lines is

significant. From (3.87) or Figure 3.21 we find the maximum error to

o 2
be: E = 0.026a . As a criterion of equivalent accuracy of TBM to

the method of Mejia and Rdoriguez-Iturbe (1974) we have chosen to

equate the maximum TBM error c to the standard deviation of the method

of Mejia and Rodriguez-Iturbe. Let's now calculate N such that

a = s. From (3.92) for r = 2/b we get:

a = 0.7034G2 /A =

Thus N = 723 harmonics, a significant number.
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If for the criterion of equivalent accuracy we had instead decided to

equate the moments of the errors around the theoretical covariance,

we have for the TBM error standard deviation (3.84c), a ,TBM = .' 2

and for a =ETBM we would require N = 4900! This example illus-

trates the slow convergence of the method of Mejia and Rodriguez-

Iturbe.

The method of Shinozuka and Jan (1972) has the advantage over

the method of Mejia and Rodriguez-Iturbe (1974) in that it is strictly

ergodic and converges rapidly as the number of harmonics increases,

but the cost of the method increases rapidly, too. Taking into account

that for the one dimensional process we use a number of harmonics

M = 100, for the same levels of accuracy in the generation of the two

dimensional process, we should approximately (depending on the shape

of the spectral density function) use a number of N = N1 x N2 = (100)2

harmonics. Using the symmetry properties of the two dimensional spec-

tral density function in the isotropic case this number is reduced to:

N = x (-0 ) = 1250 harmonics. A more comprehensive calculation of

the errors is necessary though for a thorough-comparison.

3.7.2 Cost

The cost (cT) of the turning bands method is essentially propor-

tional to the number of lines (L), to the number of harmonics used in

the generation of the line process (M), to the main diagonal (or

largest distance) across the simulated field (R ), and the number of
xy

simulations performed NS, while it is inversely proportional to the
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discretization length along the lines (AC). We can write this rela-

tionship as:

CT O (NS) (L) (M) (R )/Ac (3.95)
T xy

For a given accuracy (constant L, M, AC) the cost of the method is

proportional to the distance (R ) across the field. This means that

increasing the size of the area, but keeping it similar in shape to

the original one and keeping the discretization distances of the

generated points constant, the cost of the TBM increases as the square

root of the number of generated points n.

cT = Vn (3.96)

Note also that (3.95) implies that the cost is shape dependent. The

TBM is most efficient for square shapes.

The cost of the methods of Mejia and Rodriguez-Iturbe (1974) and

Shinozuka and Jan (1972), are proportional to the number of harmonics

(N), to the number of simulations performed (NS) and to the number of

points generated (n) or:

cMS c .(NS) (N) (n) (3.97)

This shows that the cost of those methods is proportional to the number

of points generated,

c c n (3.98)
M,S

while in the turning bands method the cost is only proportional to the
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square root of the number of generated points (3.96)! This property

makes the turning bands method much cheaper than the other methods,

particularly when we generate a large number of points of the field.

We present here an example comparing the relative cost (measured

in CPU time on a IBM 370/168 CMS system) of the different methods.

For the same number of harmonics (but better accuracy) the method

of Shinozuka and Jan has approximately the same cost as the method of

Mejia and Rodriguez-Iturbe. We have chosen to test the cost for the

methods of Mejia and Rodriguez-Iturbe and Shinozuka and Jan with N = 200

harmniULL, versUs a turning bands model with spectral line process and

L = 8, M = 100, Q = 40b and Aw = 0.40b, and AC = 0.025/b the maximum

distance R is 2/b. Following the discussion in Section 3.7.1 thexy

accuracy at the turning bands model with these parameters is much better

than the other models.

This example employs the two dimensional gridded field of Figure

3.28. The generated values of the field at each grid point could be

used, for example, in a contour plot program, or in a conditional

simulation or as input to some physcial model. The number of rows NX

and columns NY in the grid are identical, with a total of

n = NX-NY grid points. The grid spacing is Ax = Ay = 0.025/b. The field

has a zero mean with a unit variance (a2 = 1) exponential covariance

function (2.10) with unit correlation length (b = 1) In the experiment

the grid spacing was kept constant while the grid domain and the number

of simulated points was increased. For each size grid we generated one

realization of the field at the n points using both the method of

2 The run cost is independent of these parameters for both the spec-
tral method and TBM, thus this information is superfluous.
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Figure 3.28 Grid of generated field for cost comparison.
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Mejia and Rodriguez (1974) and the TBM with spectral line process,

observing the CPU time. Figure 3.29 is a plot of CPU cost as a func-

tion of the number of points.

The figure clearly demonstrates that the TBM with spectral line

process is superior in terms of cost to the method of Mejia and

Rodriguez-Iturbe (1974), or by inference Shinozuka and Jan (1972).

The cost of their model increases according to cT c n, as expected

from (3.98), while the TBM increases at cT c n 1/2, as in (3.96). For

n = 400 points in a 20 x 20 grid, their cost is 12 times higher. For

n = 2500 points, in a 5O x 50 grid, their cost is 32 times higher!

The TBM was also run using the moving average (MA) unidimensional

line process of Section 3.4.3. In this case we assumed that the two

dimensional covariance function was given by (3.61) with parameter

2 3
a = 1 and unit variance, a = 1. The MA process was generated using

k = 161, and the experiment repeated. These results are alsomax

plotted on Figure 3.29. This method is about 20% less expensive for

the parameters chosen than using TBM with the spectral generation of

the line process. Nevertheless, the spectral line method has the

advantages of handling any properly posed covariance function as well

as anisotropic fields (see Chapter 4). The MA line process is more

restrictive in its admissible covariance functions and can handle

anisotropy only via coordinate transformation (also, see Chapter 4).

3 The cost is independent of these parameters.
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3.8 Summary and conclusions

In this chapter we have presented the turning bands method (TBM)

for generating realizations of multi-dimensional random fields, with

particular reference to the two-dimensional case. We introduced an

equation relating the'spectral density function of the unidimensional

line process to the radial spectral density function of the two

dimensional process. The line process can now be generated using a

spectral method, so that the TBM can be used to simulate any well

posed covariance function. The method was demonstrated through a

series of examples.

We also developed a moving average line process generator. By

deriving the one-dimensional equivalents to various two dimensional

covariance functions, we noted that they resemble the "hole" type

covariance function. In turn, the two dimensional equivalent to

the one dimensional "hole" function resembles common two dimensional

covariance models. Thus we found that the "hole" function can be

used for the moving average line generation.

We investigated the accuracy of the turning bands method. The

process is ergodic, while the covariance quickly converges

with l/L 2, where L is the number of lines, as demonstrated both

theoretically and by example. We also developed guidelines for

choosing model parameters in order to strictly limit model error.

With judicious parameter selection, the TBM simulation method is both

inexpensive and accurate.
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We compared the turning bands method with two dimensional spectral

generation models. The TBM is considerably less expensive than the 2-D

spectral methods for the same levels of accuracy, with a cost propor-

tional to the square root of the number of points simulated, while the

other methods have a cost linearly proportional to the number of points.

This relative cost was amply demonstrated through a case study grid gen-

eration,

125



CHAPTER 4

SIMULATION OF TWO DIMENSIONAL STATIONARY ANISOTROPIC RANDOM FIELDS

4.1 Introduction

Throughout Chapter 3 we assumed that the field is isotropic, and

based the proposed simulation method on that assumption. However,

there are situations for which we have to simulate anisotropic random

fields. In these cases the covariance function between two points of

the field depends on the angle orientation of a line connecting the

points, relative to the coordinate system. In some cases a transformation

of the coordinate system can lead to an isotropic field in the

transformed system. Then we can use spectral methods or the isotropic

turning bands method to simulate the transformed isotropic field,

applying the inverse transformation to the results to get back to the

original anisotropic field (Journel and Huijbregts, 1978). In other

situations the transformation does not work, and we must use other methods

for the direct simulation of the anisotropic field. As an example of this

type of anisotropic field we mention here the field of areal averages

which is treated in Chapter 5.

In this chapter we are going to extend, for the first time, the

turning bands method (TBM) to the direct simulation of two dimensional

anisotropic random fields. This method is applied for an anisotropic

two dimensional covariance function of exponential type. In Chapter 5

we present an example of the application of this method to the areal

average process.
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4.2 Mathematical development

The derivation of equations for this situation is similar to the

isotropic case. We again generate randomly distributed lines in the

plane with the origin at (0,0). On those lines independent unidimen-

sional processes are generated having zero mean. Here, in contrast

to the isotropic case, we allow the unidimensional covariance func-

tions to depend on the direction of the lines and write them as C . (0)

where the subscript i indicates the direction of the line along which

the unidimensional realization is generated. At each point in the

plane the corresponding values of the unidimensional processes are

assigned, as in the isotropic case. For L independent realizations

along each of L turning bands lines, the simulated value of the field

at point N is

L
zs(-xN .- z (-u) (4.1)

VK i=l

where is the vector distance of the point N, u. is the unit vector
-w

along line i, and z (x . u ) is the corresponding value of the uni-

dimensional process along line i for point N.

The key question is ."what is the appropriate unidimensional

covariance function for each turning bands line, as a function of the

direction of the lines?" Let's take two points of the field E1 , E2

as shown in Figure 3.3. The covariance function between the simulated

values at those points is given by:

L L
C(x,x2) = 1 E z (x U.)} E z.(x2 u.)}]s~~~~~~~ z-V22 (x {- ~ - 1 Lj= 2
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After the multiplications, and taking into account that the realiza-

tions along two different lines are independent, this becomes

L

C( ) = C (h) = E C (h.u.) (4.2)
i=l

where h = x1-x2 and C . is the unidimensional covariance function

along line i. Taking the limit L-+oo in (4.2), and applying the central

limit theorem, we get:

C (h) = E[C (h-.u)] (4.3)
s - l,u --

Because the probability density function of the unit vector is

f(u) = 1/27 the expected value in the equation can be written as

C (h) = - C (h.u) du (4.4)
s - 27r f 1,u

unit circle

This equation is similar to (3.12), with the difference that here the

unidimensional covariance function depends on the direction u of the

line, and is written as C1,u

Let's define a system of axes x,y with origin (0,0)(Figure 4.1).

at the end of vect6r . Note that the field given by (4.1) is wide

sense stationary, so that this definition is not restrictive. Let $

and 6 be the angles between the x axis and the vectors h and u ,

respectively, as shown in Figure 4.1. In polar coordinates we have

h-u = r cos(4-O), where r = IhI and du = do. Thus 4.4 becomes

C~~ (h if27r
Cs5 h_) = {C 1 ,[r cos($-e)] do

0
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Because the covariance function is an even function, and because

C 1,7+6( ), the integral can be simplified:

1
C (h) = 3 C 1 0 [r cos($-6)] de (4.5)s - r f 1,

This equation corresponds to (3.19) in the isotropic case, but here

the unidimensional covariance function is a function of the angle of

the turning bands line.

Let S1  (w) be the spectral density function of the unidimensional

process, having covariance function C (W), corresponding to a turning

bands line forming angle e with the x axis. The covariance function

on that line can be written as:

C (c) = S (w) e1WC dw

or, for C = r cos($-6),

C 1 [r cos($-0)] = S1  (W) eiwr cosI(-e) dw (4.6)

Substituting (4.6) into (4.5) we get:

C (h) = S (W) eiwr cos(p-O) dwde (4.7)
s T- f r 1,

0

In Figure 4.2 the axes wl, W2 of the frequency domain are shown,

which are assumed to be parallel to the x,y axes. On this plane we

define a vector w with length jw = w, forming angle 0 with w axis.
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The inner product of the vectors w and h is given by:

w-h = wr cos($-O) (4.8)

In polar 'coordinates

dw = wdwd6 (4.9)

Looking at the limits of the integral (4.7) we see that w ranges

from -- to +o while 0 ranges from 0 to ff. This means that the vector

W is moving over the entire R2 plane. Substituting (4.8) and (4.9)

into (4.7) gives

C (h) = S (w) e1 dw

R

or,

S 
.(1) 

.
Cs(h) = 2 (_ -e-- dw (4.10)

R

Taking the inverse Fourier transform of this equation we get:

1- 1() C (h) ei w *dh (4.11)
(27T) 2

In practice, the two dimensional covariance function C(h) that we want

to preserve is known. So we set C s(h) = C(h), with the result

1 ( - 2 J C(h) e dh (4.12)
7rW (27r)2 2

R

Comparing with (2.22) we see that the right-hand side of the above
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equation is equal to the spectral density function S(w) of the two

dimensional process. Thus, we finally get:

S 0 (W) = ffwS(w) (4.13)

This equation relates the spectral density function S ( ) of

the unidimensional process to the spectral density function S(w) of

the two dimensional process. The vector w can be written as

W = (W1 , w2 ) = (w cose, w sine) and (4.13) becomes

S (w) = ffwS(w cosO, w sine) (4.14)

If we find the spectral density function of the two dimensional

process, then we can also find the spectral density function of the

unidimensional process along the turning bands lines. As in the

isotropic case, the line process is generated using a spectral method.

We note here that the above result has been established with the

assumption that the direction vectors of lines are uniformly distribu-

ted on the unit circle. That means that the lines should be equally

spaced around the circle, as they were in the isotropic case. In

general more lines should be used than in the isotropic case in order

to describe the differences in each direction due to anisotropy.

4.3 Example

In order to test the proposed method a simple example was examined.

The two dimensional anisotropic covariance function was assumed to be

of the exponential type given by:
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C(h) = C(x,y) = 2 exp[(h2x + h 2 y 2 (4.15)

where x,y are the coordinates of the vector h, and hi, h2 are param-

eters. Obviously when h =h2 the covariance function given by (4.15)

is isotropic.

We could have simulated the field having the above covariance

by making a transformation in the axes, such that the field in the

new axes was isotropic, then generated the isotropic field, and

finally made an inverse transformation in the axes to get back to the

oriLgJin aLnA.trpic Ld. Isead, we used Lhe direct TB for

anisotropic fields, proposed above, in order to test the method. In

the next chapter we apply this method to a more complex anisotropic

field: the field of the areal averages.

In order to apply the turning bands method we first calculated

the spectral density function of the two dimensional field. This is

presented in Appendix C, with the result given by:

2 1
S(W1 ,W2) = 2 2 (4.16)

2 W 2 2 3/2
h h2(1 + 1 + 2)

h h
1 2

Writing

W, = W cosO W2 wsinO

and using (4.14) this becomes:

133



2
S,(w) = TrwS(w cose, w sinO) = 2 2 2 3/2

hIh[l + 2'cos 6 + sin 2e
h h
1 2

(4.17)

Along each of the turning bands lines the above spectral density func-

tion was used for the generation of the unidimensional process, where

o was the angle of the turning bands line with the x axis. The uni-

dimensional process was generated again, as in the isotropic case,

with the method of Rice (1954) and Shinozuka and Jan (1972).

We generated points along both the x and y axes, as shown in

Figure 4.3. The distance between the points along both axes was

AX = AY = 0.24. The parameters of the anisotropic covariance function

were: hi = 0.2 h2 = 0.6. The number of lines was 16 and the dis-

cretization along the lines was Ac = 0.12. The discretization of the

spectrum for the generation of the line processes varied, depending

on the direction of the lines, but the number of harmonics was fixed

at M = 50. The number of simulations was set to NS = 200.

Figure 4.4 plots the theoretical covariance functions along the

x and y axes, compared to the sample covariance obtained from the 200

simulation at the discrete points of Figure 4.3.. As we can see from

this figure, the proposed method well preserves the theoretical covari-

ance function. The errors observed are mainly due to sampling error

(see Section 3.3.3), because of the finite sample (NS = 200). Another

example application of this method is given in Section 5.3 in the next

chapter.
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CHAPTER 5

SIMULATION OF AREAL AVERAGE PROCESSES IN THE STATIONARY CASE

5.1 Introduction

There are situations in both hydrology and mining for which we

are interested in the areal averages of the stationary point process.

In surface hydrology, for example, we may wish to simulate average

rainfall over a given area. In groundwater simulation models, aquifer

properties are usually averaged over the areas defined by the cells or

elements of a finite difference or finite element grid. In ore bodies

we may want to simulate average ore grade under a given area.

Several methods have been proposed for the simulation of the

process of areal averages. One very simple technique is based on the

weighted average of point values generated at several locations within

the area. Another method, proposed by Lenton and Rodriguez-Iturbe

(1975), directly simulates the process of the areal averages. This

method is similar to the one proposed by Mejia and Rodriguez-Iturbe

(1974) for the generation of point processes. Wilson (1979) proposed

a method which is based on the direct simulation of the field by

decomposing the covariance matrix of the areal averages. All of these

methods should be more expensive than the method proposed here, which

is based on the direct simulation of the anisotropic field of areal

averages using the analysis of the previous chapter.

In Section 5.2 we will derive some formulas for the covariance

function and the spectrum of the areal average process. In Section 5.3

we will give some examples of generating the areal average process

136



directly based on the turning bands method for anisotropic processes,

and in Section 5.4 we will review some of the simulation methods

proposed for generation of areal average processes.

5.2 Correlation and spectrum of the process of areal averages1

Let Z(x) represent the continuous, wide sense stationary point

process of a two dimensional random field. Let A be some region of

the field as shown in Figure 5.1, having in general any shape. We can

then define a new process ZA(x) called the process of the areal averages

given by:

ZA f Z x')dx' (5.1)ZA(x) =A 
TA _ (51

In this formula x represents the coordinate vector of a characteristic

point within the region A. It is usually convenient to reference x

to the centroid of A. The meaning of the process defined by (5.1) is

that we allow the area A to translate without rotation on the x,y

plane. For each position of the area (or the characteristic point x

of the area) we define the new process given by (5.1) as the areal average

process.

Because the integration in (5.1) takes place over the region A,

which depends on x, it is more consistent to write (5.1) as

ZA(x) = A Z(x')dx' (5.2)

where A represents the area and is not a function of x, and A(x)

A somewhat different representation of the properties of the field of
the areal averages can be found 'in Mattern (1960) or Lenton and
Rodriguez-Iturbe (1974).
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represents a particular region of area A and depends on the character-

istic vector x. The mean of this process is given by

E[Z E[ Z ) dx' E[Z(x')]dx' = 0

A(x) A(x)

where it is assumed that the point process has zero mean.

Covariance function variance reduction

Let's now analyze the covariance function of the process defined

by (5.2). Let u, and u2 be two points of the two dimensional field,

and h be the vector distance between those points, or h = u2-u1 as

shown in Figure (5.2). The areal average process for these two points

is defined by:

ZA(ul) = f
A(u1 )

ZA (U2)

A(u2)

Z (x 1)dx 1

Z(x2)dx2Z Cx) =-2

The covariance function of the areal average process between points U 1

and 2 will be given by:

CA :'P2) = E[ {f Z(x )dx}{ .f Z(x2)dx2}] =

A(u2

p 
i)f 

f
A A(u1 ) A(R2 )

E [Z (x1 ) Z x ] dx2
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but:

E [Z (x1 ) Z(x92] = C(x2,x1

where C(x2, 1 ) represents the covariance function of the point process,

which is assumed to be wide sense stationary. Then we can write

C( 2 ,x1) C Cfx--1) = C(v)

where v = x2-x1 . Equation (5.3) is now written as:

CA (12) = L f f C(v)dx dx 2
A(u1 ) A(u2)

(5.4)

From this we can infer that CA (ul, 2) is a function only of the vector

h =. -u , i.e., the process of areal averages is wide sense stationary.

So we can write

AI A
A (.1 1 ) A (u 2

C (v) dx dx2

We define now the probability density function of a vector x

which is uniformly distributed on the region A(u). This probability

density function is given by

f (x) =
i- 0

if x c A(u)

elsewhere

and the integral (5.5) becomes

CA(h) = f

A(u1 ) A(a2)

(5.6)C (V)f 41 u f-2 -2)d dl X2
-1 -2
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Because f (x) = 0 unless x e A(u) we have
u_

CA~h) = C(v)f (x )f (x )dx d2 (5.7)

2 2 -1 1 R 2 -2 -1 -2
R R

Based on (5.7) we can write C A(h) as an expected value given by:

CA.(h) = E[C(v)] (5.8)

where v = x2~E nd x1 ,a2 are uniformly distributed in the regions

A(a1 ) and A(u2), respectively.

This formula using the central limit theorem can be used to

calculate the two dimensional covariance function of the areal average

process via Monte Carlo simulation:

=1N
CA(h) = - C(v) (5.9)

i=l

where N is a large number and v. = x2 .-xl with -2.' xl uniformly

1 1 ]1 1

and independently distributed over the regions A(u2 ) and A(ul),

respectively. Some examples of calculation of the covariance function

using equation (5.9) are given in Section 5.3.

Spectral representation

Let S(w) be the spectral density function of the point process.

Using (2.19) we can write

C(v) = e eiW S(w)dw (5.10)

2
R
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where C(v)

into (5.7)

is the covariance function of the point process. Substituting

gives

CA( _ x 2) { e S(w)d] d dx2
= { S~w) { e' j u m- dxdx]d =

2 2 -A 2
R R R

= S(W) a e hf (xl 2 1 2

R2 RR

= S a ( )dR

R2

where the function a h(w) is given by

(5.12)ah(W) = J { e fu 1 2 x2 )dxldx2

RR

The subscript h denotes that the characteristic points in the two areas,

where the above integral is taken, are at vector distance h = u2-u1 .

Substituting v = 2 1 into (5.12) results in

a h(W) = [ e 2 f (x)f (x2 )dx dx2

h- 2 -2 -2
R R

= f e f(x)dx1 { e:

R R

-2 (5.13)
u (x 2-2
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We define the function a (w) as follows:
U

a (w) = e -- f (x)dx (5.14)

R2 f u dR2

The complex conjugate of a () is:

a ( = e f (x)dx (5.15)

R2

Thus (5.13) is written as:

*
ah~G) =a () a () (5.16)
- al 2

Let P be the characteristic point of the region, as shown in

Figure 5.3. The vector x of a point in A(u) can be written as:

x = u +W (5.17)

where w is a vector with origin at P, and end at the end of the

vector x. Let f 0(w) be the probability density function of w, then

the probability density function of x is

f (x) = f (w) (5.18)

Differentiating gives dx = dw, so that (5.14) can be written as:

a (W) = e'-- f (w)dw =

R 2

= e -- e -- f (w)dw (5.19)
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The integral in this equation is only a function of the vector w and

the geometry of the region A(u), and not of the relative position of

A(u) as defined by u. Define geometric parameter H(w),

H(_) = {e 1 - f(w)dw (5.20)

R2

and (5.19) becomes:

-iwu
a (M) = e -- H(w) (5.21)U-

The complex conjugate of a () is

a (_) = [(e -H(w)]* = e H () (5.22)
U-A

Substituting (5.21) and (5.22) into (5.16) gives

ah( ) = e I-- H() 2 (5.23)

where IH(w)I is the absolute value of H(_).

The function H(w) depends on both the geometry of the area, and

the relative rotation of the area with respect to the x,y axes (angle 6

in Figure 5.4). We can calculate the function H(w) for any rotation 6,

say, a = 0. The zero rotation of the area is defined arbitrarily, but

is taken for convenience such that the integration of (5.20) is easiest.

(For the example of the rectangle of Figure 5.4 it is convenient to

define the zero rotation when AB is parallel to the x axis. In

Appendix D we derive the relation between the function H(w) for an

area rotated at an angle , and the function H (w) corresponding to

the zero rotation area:
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H() = e H (we (5.24)
0 -

or:

H(w)12 = H (we )1 2 (5.25)

In Appendix E we derive characteristic functions IH(w) 12 for some

typical geometries (rectangles and triangles).

Substitute (5.23) into (5.11) to give the areal average covariance

function:

CA(h) = {e [IH(w_) 12 S _)]dy (5.26)

R

Taking the inverse Fourier transform of this equation we get:

IH(w)l2 () = 1 2 { CA-h) e~ --dh (5.27)
(27) 2

The right-hand side represents the spectral density function S Aw)

of the areal average process, as given by (2.22), so that:

SA(_) = 2H(_) 2S w) 
(5.28)

If the point process is isotropic having radial spectral density func-

tion f(w) we can write

2

S(M) = S = ) -= f(W)

where w = _wl and (5.28) becomes:
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SA f 2 (5.29)

We note here that although the point process may be isotropic, the

areal average process will not be isotropic, unless the area is a

circle. This can be inferred from equations (5.20) and (5.29)

easily.

After the spectral density function of the areal average process

is obtained, we can use the turning bands method for the generation

of anisotropic processes (see Chapter 4) in order to directly simulate

the field of the areal averages. In the next section we give some

examples of direct simulation of the areal average process using the

turning bands method.

5.3 An example of calculation of the theoretical covariance

and simulation of the areal average process

The theoretical covariance function of the areal average process

can be calculated by numerical integration or by Monte Carlo simulation

(Matern, 1960). The Monte Carlo simulation procedure via (5.9) is used

here in the case of rectangular averaging regions. Then the Turning

Bands Method (TBM) for generation of areal average processes described

in the previous section is used to generate realizations of the averaged

process for the same rectangular areas. The obtained covariance func-

tions are compared to the theoretical ones.

Figure 5.5 shows the theoretical covariance functions for differ-

ent sized square shapes (with side lengths L = L ) when the line
x y

connecting the centroids of the squares is parallel to the sides of the
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squares. The point covariance function in this example is of the

exponential type (2.10). The symbol r represents the distance

between the centroids of the regions, b is the parameter of the

point covariance function,. anid br represents a normalized distance.

This figure shows the point covariance function (top curve) and the

covariance functions for normalized areas of sizes b 2L L = 0.04,x y

0.25, 1.0, 4.0. When the shape changes to a rectangle with one side

four times longer than the other (L = 4L ) the covariance function
x y

of the areal average process is shown in Figures 5.6 and 5.7. In

Figure 5.6 the axis is taken parallel to the long side, L , while in

Figure 5.7 the axis is taken parallel to the short side, L . These-

figures show that the covariance function is different for each direc-

tion, and illustrate the anisotropy of the areal average process.

The figures also demonstrate the property that the areal averaged

covariance function asymptotically approaches the point covariance

function for large distances. In fact, for the square these distances

are not very large when compared to the length of the sides of the

averaging areas. For example, if two squares are adjacent to each

other, such that bL = bL = br, then Figure 5.5 indicates a lag onex y

covariance reduction of less than 5% for all lengths bL . In contrast

the lag zero variance reduction along the ordinate is significant,

especially for large b-L . This property can be used to simplify the

estimation of the theoretical areal average covariance function when

needed (see, e.g., Section 5.4.2; Wilson, 1979; and Dettinger and

Wilson, 1979), and greatly reduce its computational expense. However,
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for rectangles, as one side becomes much longer than the other, this

property converges much slower, as illustrated in Figures 5.6 and 5.7.

When the rectangles are stacked "vertically" adjacent to each other

(see Figure 5.7), such that bL = bt, then the significant covariance

reduction persists through 3 or 4 lags, not just one. Thus this

property, although still useful for reducing computational effort,

must be carefully considered for each areal pattern of shape, orienta-

tion and centroidal distance.

In order to apply the TBM to the direct generation of the areal

average process we have chosen square areas (L = L ), separated
x y

from each other by a normalized distance br between the centroids:

br = 0, 0.2, 0.4, 0.6,.. .1.6, 1.8, 2.0. Experiments were per-

formed for squares with normalized side length bL = 0.5 and bL = 2.0;x x

that is, one-half and twice the correlation length of the point co-

variance function, which was of the exponential type with a = 1. Thus

we simulated the theoretical curves of Figure 5.5 labeled bL = 0.5

and bL = 2.0.
x

In Appendices D and E we derive the function H(w)l 2 for rectangular

areas. The spectral density function of the unidimensional line process,

on a TB line oriented at angle 0, for the areal average process is given

by (4.13), (5.29) and (E.4).

(1) 2 8f() s 2 L w cose 2 L w sine
S ()a 224 2 2 2 ]sin [-2
1, L L wcos Osin 6

x y

where f(w) is the radial spectral density function of the point process
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(2.32). In the simulations the line process was generated with a

discretization interval AC = 0.10, M = 50 harmonics, and a frequency

discretization Aw = 0.80. We used 16 lines, and NS = 200 experiments

were performed. The comparison between the theoretical covariance

and the sample values taken from the 200 direct simulations are com-

pared in Figures 5.8 and 5.9, for bL = bL = 0.5 and bL = bL = 2.0,x y x y
respectively.

These figures show that the sample statistics are very close to

the theoretical ones. Generally there is less scatter than found for

the point process with an equivalent sample size (Figures 3.9 - 3.12),

because of the reduction in the variance of the areal average process.

The cost, in CPU time, for the generation of the areal average

process via TBM is equivalent to the cost of the generation of the

point process. Each area corresponds in cost to one point--with a

multiplier only a fraction above one to account for the slightly more

complicated algorithm used.

5.4 Review of some other areal average simulation methods

Two other methods proposed for the direct simulation of the

process of areal averages are reviewed in this section. The methods

were proposed by Lenton and Rodriguez-Iturbe (1977) and Wilson (1979).

The method of Lenton and Rodriguez is simular to Mejia and Rodriguez's

method for the generation of isotropic point processes (see Section 2.4).

The method proposed by Wilson consists of two steps: first, calcula-

tion of the covariance matrix of the areal average process between the
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areas to be simulated; and second, decomposition of this matrix

for generation of the process. A brief review of these models is

given here.

5.4.1 Spectral method (Lenton and Rodriguez-Iturbe, 1977)

The simulated field at point x, is given by an equation of the

type:

zs(x)= a/'i IH(wk)Ios(W x + k (5.30)
s N k=l k

where H(w) is the characteristic function of the area defined by (5.20),

is a random vector having probability density function given by the

spectral density function of the point process, W k is a random angle

uniformly distributed between 0 and 27r, and a2 is the variance of the

point process. It is assumed that the process has zero mean and the

spectral density function of the point process is known. The random

vector can be written as:

= (Wkcoseks Wksinek)

where wk is a random variable having probability density function

equal to the radial spectral density function of the point process,

and ek is a random angle uniformly distributed between 0 and 2n.

The process defined by (5.30) is ergodic only as N - o. In this

model, as in Mejia and Rodriguez' model we generate randomly on the

plane frequency vectors. In order to describe the frequency spectrum

accurately the number of harmonics, N, chosen should be quite large.

In practical applications the number of harmonics N = 500 or greater

should give a satisfactory approximation.
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5.4.2 Matrix decomposition method (Wilson, 1979)

A modification of the model proposed by Wilson (1979) is given

here. In this model we assumed that the covariance matrix of the areal

average process between the areas of the field we want to simulate is

known. This covariance matrix can be calculated as an expected value

using (5.9). Let z define the vector of the areal average process,

which is assumed to be a zero mean process, and P the corresponding-z z

theoretical covariance matrix which we want to preserve.

We define a process described by:

z, = B w (5.31)

In the above equation z is a column vector of the values of the areal

average process for the areas we simulate. w is an uncorrelated column

vector of white noise having zero mean and covariance matrix given by:

PE[ = E w'] = 1 (5.32)

where w' is the transpose of vector w, and I is the identity matrix.

Multiplying (5.31) by z' gives

z z' = B w z'

Taking expected values we get: E [z'] = E[B w z'], or:

P = B P (5.33)-zz - -wz

where Pz is the covariance matrix between x and z. Multiplying (5.31)

by w' yields:

z w' = B w-w'
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which, taking expected values, gives the cross-covariance matrix

P = B P = B (5.34)

This can be written as

P' =B1 (5.35)
-zw -

Using the property P' = P , equation (5.33) leads to
zw -Wz

P =B P' (5.36)
zz zw

From (5.35) we get

P =B B'
-zz --

From this equation, where P is the known theoretical covariance

matrix of the areal average process, we can calculate matrix B by

decomposition. Then equation (5.31) is used for the generation of the

process.

With this model we first have to calculate the covariance matrix

P of the areal average process. As is seen in Figures 5.5 to 5.7,
-zz

as the distance between two blocks increase then the areal average

covariance tends to the point covariance function. This is a useful

property as it is sufficient to calculate only the variance of the

process and the covariances between the nearest areas. For areas

further apart the approximation of the areal covariance function with

the point covariance should be quite good.
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5.5 Discussion

In this section we discuss questions as the accuracy and the cost

of the different simulation methods for the generation of the areal

average process.

Both the turning bands method (TBM) and the method of Lenton and

Rodriguez-Iturbe (1977) preserve the theoretical covariance function

as a limit when the number of lines, etc., or the number of harmonics

tend to infinity. In practice though, it should be enough to take

6-16 lines in the turning bands method or 200-500 harmonics in Lenton

and Rodriguez' method (see Section 3.6). In the matrix decomposition

method the theoretical and the model covariance function are the same,

but in this method we have to calculate the variance and covariances

of the process of areal averages and depending on the method used for

this calculation some errors may be introduced.

As in the isotropic point case, the cost of the turning bands

method increases approximately proportionally to the square root of

the number of simulated areas in the field. The cost of Lenton and

Rodriguez' method is linearly proportional to the number of areas,

while the cost of the decomposition method is proportional to at least

the square of the number of areas. This means that as the number of

areas in the field at which we generate increases, the turning bands

method becomes more efficient in comparison to the other methods.

5.6 Summary and Conclusions

A brief summary of this chapter is in order. In Section 5.2 we
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derived some formulas for the calculation of the covariance function

as well as the spectral density function of the areal average process.

In Appendix E we calculated this spectral density function for some

useful geometries. In Section 5.3 we found the covariance function

of the areal average process in the case of rectangular regions, and

give some examples of the direct simulation of this process using the

turning bands method for generation of anisotropic processes. Finally

we presented two other direct methods, along with discussion of compari-

son, in terms of accuracy and cost.

We conclude that the turning bands method well preserves the

theoretical covariance function of the areal average process and in

terms of cost will be cheaper than the other methods particularly for

a large number of generated areal values.
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CHAPTER 6

SIMULATION OF TWO DIMENSIONAL NON-STATIONARY INTRINSIC RANDOM FIELDS

6.1 Introduction

Intrinsic random fields described by a polynomial generalized

covariance function (GC-k, see Section 2.3) can be easily simulated by

the turning bands method (Matheron, 1973). Recall that if we differentiate

an Intrinsic Random Function of order k(IRF-k), k + 1 times we produce

a stationary process (Delfiner, 1976). Then, two IRF's Y(x) and Z(x) are

regarded as equivalent (same GC) if Z(x) = Y(x) + P k(x) where Pk W

th
is a k order polynomial. To simulate an IRF-k, a realization is

generated of the zero mean function Y(x) with a given GC-k. Then the

polynomial P k(x) with random coefficients is added. In practice we

usually perform conditional simulations, so that the addition of Pk W

becomes meaningless, as it is subtracted during the conditioning step.

Thus it suffices at this point to generate realizations of fields Y(x)

with a given GC-k having zero mean.

The turnings band method (TBM) is easily adopted for the generation

of random fields with a given isotropic GC-k function of polynomial type

K(r). On the turning bands lines a corresponding GC-k function K1 () is

found which is also of polynomial type (Matheron, 1973). Then simple

techniques for the generation of polynomial type unidimensional intrinsic

processes can be used. In the following we present the basic derivation

for the procedure, along with several examples of simulation of

non-stationary random fields with a polynomial GC-k function. Our attention

is focused on two-dimensional simulation. Three dimensional fields are

simulated in an analogous way.
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6.2 Derivation of the Unidimensional GC Function

If we perform line simulations with GC-k K (C), then the corresponding

two dimensional GC-k K(r) is given by (3.24), where the covariances

are replaced by generalized covariances (Matheron, 1973):

2 r K1W
K(r) = - d (6.1)

o r2_2

Take the special case of K (C) = C2p+1, and find the equivalent K(r):

2 rr 2p+l

T o r2_ 2

r2p+l r rip dn
o 1-TI

r2p+l
= r B(p+1, 1/2) (6.2)

B(-,-) is a Beta function:

B(p+l , 1/2) = r(p+l) r(1/2) v p! 6.3)
' (p+3/2) r(p+3/2)

This, for this special case K(r) becomes

Y(r p! r2p+l (6.4)
Ar- F(p+3/2)

162



Comparing this special K(r) to the polynomial R2 GC-k of (2.43) leads

to the general relationship for undimensional GC-k:

k
K ( Y =

=
p=o

k

=O
p=o

k

P=O

(1) ctlp 2p+l
(2p+l)+

a
(+1 P)C 2p+1

2p

(-l)p+l b PC2p+1

(6.5a)

(6.5b)

(6.5c)

where, invoking (2.42), new coefficient b is defined by

b =a = r(p+3/2)
p (2p+1)! S2p

(6.6)a
p

For a polynomial GC model with k = 0, 1 and 2 given by (2.44) the

corresponding polynomial K1 (C) is:

k = 0 Kl(r) = -b 0 (6.7a)

k = 1 K () = -b + b 13 (6.7b)
1 o 1

k =3 Ky(C) =-C+b 3-b25(6.7c)

where

b =-a
0 2 o

b = 3 a ; b2  = 12
bl=Ta2 16
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The restrictions on the coefficients in R2 are taken from (2.44d). Thus

given a polynomial GC-k in R 2, of the form of (2.43), we have derived

equivalent GK-k's along the turning bands lines in (6.7).

6.3 Generation of the Unidimensional Intrinsic Process

Matheron (1973) proposed a simple simulation model for the intrinsic

line process. The unidimensional process Y( ) on line i is described by:

C C k-1
Y() = c W() + c W(E) dE + .... + c J W(E) dE

0 1 fok j0(k-1).

(6.9)

where c are real coefficients and W() is an intrinsic random function
p

of order zero having GC-0 of K (h) = -h, where h is the increment

(always taken positive).

The Wiener process, also called the Brownian motion process, is an

intrinsic process of order zero that can be used to generate W(4).

The first order differences of this process are stationary. The discrete

version of the Wiener process is given by:

W(C + h) = W(C) + g U(C) (6.10)

in which h is the increment and U(C) is a uniformly distributed number

between [-0.5 , + 0.5]. The variance of the difference [W(C + h) - W(C)] is:

var[W(C + h) - W(C)] = g 2/12 (6.11)

The generalized covariance K (h) for this zero order process, or

any higher order instrinsic process, must satisfy the

relationship (Delfiner, 1976):
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N N N

var I x. W(C ) = Y I x. x. K (. - C.) (6.12)
i=1 i=1 j=1

where N is the number of discretized points i, j = 1,N along the lines.
N

For k = 0 the X. obey I X. = 0 (see Delfiner, 1976). One possible set
1=1

of X's meeting this criterion is X = +1 for C = C + h , = -1 for
N

C = C , and X = 0 for 4m C +h or C. Then X = 0 and (6.12)
V m mi=l

simplifies to:

var[W(C + h) - W(C)] = -2 K1 (h) (6.13)

Comparing (6.13) and (6.11) leads to

2
g = -24 K (h) (6.14)

for K1 (h) = -h we get

g =/-4h (6.15)

The Weiner process is generated from (6.10) with this value for g, where

h is the increment AC of the discretized line process (i.e., width of

the turning bands).

For higher order intrinsic processes Matheron's (1973) representation

(6.9) is used. The coefficients c0, c , .....ck are related to b0, b1, ...bk

on page 467(watch out forchange in notation!). For k = 2 equation (6.9)

gives

Y(4) = c0 W() + (c1 + c2) W(E) dE - c2 J EW(E) dE

o o (6.16)

In order to calculate the integrals we discretize the segments between

the points i where values are generated (see Figure 6.1). The
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trapezoidal rule is used to numerically calculate the integrals:

i-l i i+1
I if

Figure 6.1

I )= 1

I() = 12

Schematic representation of numerical
integration of unidimensional polynomial process

w+ 1)-+ ) - + )2

+ (-1) w( -1) + w()
2

fI w(E) dE

I 2(0) fo w(E) dE
0

I
I

(6.26)

(6.27)

Obviously the approximation of the integrals will be better as A becomes

smaller or A = becomes large. It is noted that A should be a positive
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integral. The simulated values ys( ) are calculated only at the

discrete points, i-1, i, i+l at discretization distances AC = X AE.

Chiles (1977) proposed another technique which uses many lines (of

the order of 180) but a far less accurate model for the stimulation of the

unidimensional processes Y(C), than the one proposed above. The comparison

in accuracy and cost between those models though is still an open question.

6.4 Examples and discussion

Some examples of generation of IRF or orders k = 0, 1, and 2 having

zero mean are given in Figures 6.2, 6.3, and 6.4. The dimensions of the

simulated area are KXiax = 3.0 and Ymax = 2.4. The number of columns is

NX = 50 the number of rows NY = 40 making N = 2000 simulated points. The

number of lines was L = 12 the discretization along the lines AC = 0.02

and the parameter X was set X = 1. Figure 6.2 shows a realization of an

IRF - 0 with K(r)= -r. The interpretation is that first order differences

of this field will yield a stationary process. Figure 6.3 shows a

3
realization of a field with GC-1 of K(r) = r3. Second order differences of

this field will yield a stationary process. Finally in Figure 6.4 a

realization of a field with GC-2 given by K(r) = -r5 is shown. Third

order differences of this field will produce stationarity. Obviously if in

the above realizations we had added one polynomial of k thdegree with

arbitrary coefficients this polynomial would be filtered out by taking

k+l order differences and the remaining would be a stationary field.

Conditional simulations of IRF are obtained as in the case of

stationary fields (see Chapter 2).
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Figure 6.-2 An example realization of an IRF-0 with K(r) = -r
generated with the TBM.
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Orfeuil (1972; see examples in Matheron, 1973) was the first to

generate IRF's using the turning bands method. The techniques described

in this chapter are essentially the same as those used by him and Matheron.

Anisotropic intrinsic fields are not explicitly handled in this

approach. Matheron (1973) argues that in practical cases of natural

anisotropy the polynomial GC can adequately take it into account.

Anisotropy introduced by spatial averaging is another matter.

Spatial averages of intrinsic fields can be simulated by taking the

weighted average of point values (see Journel and Huijbregts, 1978).

The direct use generation of these averaged intrinsic fields, say using a

TBM-anistropic spectral line process, has not been previously attempted.

We attempted to do this, following an approach similar to Chapters 4 and 5

for stationary processes, but found the calculations intractible. Further

effort along these lines is warranted.
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CHAPTER 7

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

7.1 Summary and Conclusions

In this report we have presented the turning bands method (TBM) for

the simulation of-random fields, with special emphasis on two dimensional

processes. In hydrology the turning bands method can be applied to the

synthetic generation of a field of hydraulic conductivities or other

aquifer properties or for the simulation of the rainfall depth over an

area. In mining TBM can be used to simulate ore or energy resource

deposits. It also has applications in the fields of ocean engineering,

structural engineering, geotechnical engineering, etc.

In Chapter 2 we presented basic denfinitions and developed the equ-

ations describing a random function or random field of both stationary

and intrinsic type. Then, we briefly reviewed existing stationary field

simulation models from the literature.

In Chapter 3 the turning bands method for simulation of stationary

two or three dimensional isotropic random fields was presented. In the

two dimensional case, two different new approaches were proposed. One

approach is based on the simulation of the line process using a spectral

method, while in the other approach the line process is generated direct-

ly from the unidimensional covariance function as a moving average (MA)

process. The unidimensional spectral method permits, for the first time,

the TBM simulation of any properly posed covariance function, and as shown

later in Chapter.4, is easily extended to the direct generation of aniso-

tropic fields. The moving average unidimensional process is slightly
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less expensive to use, but only certain covariance functions can be mod-

eled. Examples of the TBM generation were given, comparing theoretical

and sample statistics and demonstrating the accuracy of the method. A

theoretical error analysis of the TBM was performed, backed up with ex-

amples, that illustrated the rapid covergence of the TBM with the number

of lines. Sensitivity analyses were performed for the discretization of

the unidimensional spectral generation, resulting in guidelines for the

selection of model parameters. Finally, we compared the turning bands

method to the other simulation methods in terms of cost and accuracy. We

found that the cost of the TBM increases with the square root of the number

of points simulated, while with the other uieLhuds, the cost increases lin-

early with the number of points. Consequently, the TBM offers very signi--

ficant cost reductions for the generation of random field. The TBM is

ergodic and converges rapidly; it is as accurate as the best available al-

ternative and considerably less expensive!

In Chapter 4 we proposed a new technique for the generation of

a two dimensional stationary anisotropic processes, using a modification

of the turning bands method. In this case, we allowed the unidimensional

covariance function, as well as the corresponding line process spectral

density function, to depend on the direction of the line. After the math-

ematical development, an example of simulation of a two dimensional process

having anisotropic exponential covariance function was given. By comparing

the theoretical and sample statistics, we demonstrated the utility of this

new technique.
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In Chapter 5 we reviewed the basic definitions applying the areal

average processes, in which the underlying continuous field is station-

ary. We discussed variance and covariance reduction due to averaging

and presented graphs showing the theoretical covariances for several aver-

aging geometries. We observed that the reduced covariance between areas

can damp out quickly, relative to the size of the areas, suggesting the

possibility of approximating areal average covariance by point covariance

in some instances. A formula was derived for the claculation of the spec-

tral density function of areal average processes. It was applied to par-

ticular geometries in Appendix E. The areal averages process was then

simulated using Chapter 4's TBM for generation of anisotropic process.

An example of the application of the proposed method for the case of square

and rectangular areas was given, with a very favorable comparison between

the theoretical and sample statistics.

In Chapter 6 we presented the TBM method for the simulation of non-

stationary random fields of intrinsic type, having polynomial generalized

covariance functions. The unidimensional simulations were generated by

a Weiner (Brownian Motion) process. The procedure described is basic-

ally the same one proposed by Matheron [1973] and implemented by Orfeil

[1972]. Examples were given for intrinsic random functions of order

k = 0, 1, 2.
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In conclusion, the turning bands method is an accurate, cost-

effective and versatile method for the simulation of random fields.

It is at least as accurate as other existing methods, and far less ex-

pensive. It can be directly extended, as we have shown, to the genera-

tion of anisotropic process, areal average processes, and particular

cases of non-stationary processes. Using the spectral method for the

line method for the line process, it can model any properly posed covar-

iance function in the stationary case. For these reasons we expect that,

in the future, the TBM will become a commobly used random field simula-

tion method in hydrology and other fields.

Note: All of the simulations described in this report were coded
in FORTRAN-IV and run on an IBM 360-168 at MIT. The code
is described in Mantoglou and Wilson (1981).

7.2 Recommendations for future research

During the development of this work, a number of attractive adeas

came up, but were not pursued due to time and space limitations. We give a

brief description of some of these in the following paragraphs.

1. It would be interesting for us to apply the proposed method

to the stochastic modeling of a real field problem. We would

then follow the steps described below.

(a) Obtain the theoretical statistics from field data (meas-

urements).

(b) Perform unconditional simulations.

175



(c) Condition the simulations such that simulation values

at the points of measurements are the measured value.

(d) For problems such as groundwater flow, apply these con-

ditioned parameters to a numerical model (for example;

AQUIFEM, Townely and Wilson, 1980) to otain system out-

puts such as piezometric head, flow etc.

(e) Repeat steps b to c (or d) several times. We can then

calculate the statistics of the output..

This has already been done for some cases by the Fon-

tainbleau group [e.g., Journel and Huijbreghts, 1978;

Delhomme, 1979], but others need this experience.

2. An extension of the proposed anisotropic method (Chapter 4)

could be made for the generation of three dimensional anisO-

tropic fields. This extended method then could be applied

for generation of block values in three dimensional fields;

mining deposits, petroleum reservoirs, aquifers, etc.

3. A more thorough comparison of the TBM to the method of Shinozuka

and Jan (1972) in terms of accuracy and cost would be useful.

4. It would be interesting to apply and compare Wilson's (1979)

model for areal average generation, and as a prerequisite, to,

solve the problem of variance covariance reduction, etc.

5. Although we encountered little success in doing so, it is prob-

ably worth some added effort to develop a direct simulator for

areal averages of an intrinsic random field. This requires the

consideration of anisotropic intrinsic fields.
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APPENDIX A

In this appendix we calculate the one dimensional covariance

functions C1 (l) corresponding to two dimensional covariance models of

the exponential and Bessel type.

A.l Exponential model: C(r) = a2 .-br

The spectral density function of the unidimensional process is

given by (3.35) as

2

S (o) = 2(A.l)
b 2[1 + 23/2

b

The corresponding covariance function is given by (3.55) as

2 
20

C1 () = 02 f cos(WO) W2 dw (A.2)
b o [+ ]3/2

b

By recognizing that

1 W -d 1
b-2 w2 3/2 dW 21)2
b[l + ]/2 (U + )b 2)

b b

The integral (A.2) becomes

C, Wi = -a2 csW d 1 d
1yc { a cos(wc){- [I 2 ]}dw = fo dw +W 211/2

[ + 2
b
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2 1
= -a {cos(w) 2 +

1[1 + 1/2 o

b

+ c sin(wc) 2 dw} =

0 [1 + W]l/2

b

= - 2 -1 + bg sin(wO) 2 1 1/2 dw] (A.3)

o [b +wo]

The integral

I =0 sin(wO 2 1 2 1/2 dw

0 [b + ]

is given in Gradshteyn and Ryzhik (1965, p. 419) as:

I =-1 [I (bc) -L (b )]
2 0 0

where I is a Bessel function of order zero, and t0 is a modified

Struve function of order zero. Thus (A.3) can be written as

C = a2 {l - [I (b?) -L (bc)]} (A.4)

The functions I (x) and L 0(x) are given by the following series:

I W( )1 
x 2k

0 k=O (kI )

L (x) 1 2 2k+l
0 k=O [r(k + 3/2)]
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4.2 Bessel model: C(r) = a2br K,(br)

From (3.36) we have:

2a
2 rc

C1(C) = 2 0

= -a2b2 [c

cos(WO) Wcos~[1) 2 2 2 do =[l + W /b ]

2sW + sin(wc) w
os( )W 21 J s22 d] =

[b +wo] o o [b +wo]

= - 2 [-b 2+ sin(WO) dw] (A.5
o [b + W ]

The integral

I = [f'sn(WO dw

o [b 2+ w 2]

is given in Gradshteyn and Ryzhik (1965, pg. 406) as:

S=1 [e-bcEi (bc)-bEi(-bc)]

so that (A.5) becomes

C = a 2 [e-bC Ei(bC)-eb Ei(-bc)]} (A.6

where Ei is the exponential integral function. The exponential inte-

gral has the following series representation:

CO k
Ei(x) = y + knlxJ + E

k=l klk

where y = 0.577215..... is Euler's constant.
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APPENDIX B

In this appendix we calculate the two dimensional covariance

functions C(r) corresponding to unidimensional covariance functions of

the hole or the exponential type.

B.1 Hole type: C,(C) = a2 (1-aC)e-aC

The two dimensional covariance function will be given by:

r r

C(r) = 2 1 d = 2a_ (1-aC) -a1 dC
IT) 2 2 7T 2 2

0 / r - 0 -

2 r -cr _
=_ { e di-a e dC} (B.1)

SVr2 2 O/ r2_ 2

These integrals are evaluated in Gradshteyn and Ryzhik (1965) as:

r _

= { e dC = - [I (ar)-L (ar)] (B.2a)

r _r

2 - d = r - 2 r [I1 (ar)-L1 (ar)] (B.2b)
o 2 2

r -1

so that (B.1) becomes

C(r) = a 2{I (ar)-L (ar) + ar[I (ar)-L (ar) - 2]} (B.3)
0 0 1 1

where I0, I are Bessel functions of order zero and one respectively,

and L0 , L1 are Struve functions of order zero and one respectively.
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The functions I and L are given by the following series:

S(x22k+l
I(x) = k (kx +)!

k=O

x2 0 (x/2) 2k
L1 (x) = k r (k + 3/2)r (k + 5/2)

The series representations of functions

B.2 Exponential type C.(C) = a2 -aC

In this case we have:

I9 L are given in Appendix A.

C 2a 2
C(r) = --- TTr

r -a?
e

0 V r-

2a 2
-- I

2
=y [1 [I (ar) -L 0(ar)]

where II is given by (B.2a) and 1 , L are defined above.
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APPENDIX C

In this appendix we derive the spectral density function of an

anisotropic two dimensional field having exponential covariance func-

tion given by:

C(h) = C(x,y) = a 2 exp[-(h2x2 + h2y2 ) 1 ] (C.1)
1 2

where a2 is the variance of the process and hi, h2 are positive param-

eters.

The spectral density function of the two dimensional process is

given by:

S() = 1 2 f C(h)e.'w dh (C.2)
(27r) 2

where h = (xy), w = (W1, W2) and dh = dxdy. Equation (C.2) is then

written as:

2
S(2= exp[-(h +h2 ]exp-i(wx+Wy)]dxdy

a2 0 e lkhx 2 22 2 /

= exp(-iw X){ exp[-(h22 +h22 1 ]exp(~ 2y)dyldx (C.3)

242 2 2

Because the function exp[-(h2x +h2y )] is an even function with respect

to y, the integral inside the brackets { } becomes:
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= exp -(h1x +h2y2 22 1/2

exp -(h 22+h 2 21/2 cos(W y)dy =ex ( 1x 2 2

h 2
exp [-h 1 x2 2 1/2

h 2
]cos (W2y)dy

From Gradshteyn and Ryzhik(1965, pg. 482)

h
2h2 1x h

)2 1 h 22I = 2 K (-x h2+w2
2 2 2
2 2

so that (C.3) becomes:

a 2h1  + exp(iw 1 X)

27r2 1hx)
21r2 :22 -00

h
x K ~~i 2+w2x K ( h w2 x)dx

2

Because the Bessel function K is an odd function, the function

x K1 (ax) should be even. Thus (C.5) can be written as:

S(Wla)= 2 x cos(Wx) K ( h

II h +2 oJ 2
2 2

h + x) dx

From Gradshteyn and Ryzhik(1965, pg. 749) we get, for this integral:
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00=2 
f

= 2
0

(C.4)

(C.5)

(C.6)

ep( w2 y) dy =



x cos(W1x)

h2

[h 2
h2

h 2 2hh
K ( h+

1h2 2 2

2 23/2
(h2 + +

Simplifying the relationship expressed in (C.6):

2

S(lw2 2
2Tr

1
2 2

h1  + w2 3/2
( + + )
h h

For wi = W cosa , W2 = w sinO , and because S ,(w)= iwS(M), we finally

obtain:

2
S1 () 2

h +22 Cos
h1h2 [l + 2 2

1y

2 3/2
+sin 09

h 2
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r
2 -

Sh2  2
2 2

(C.7)

(C.8)
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APPENDIX D

In this appendix we derive the relationship between the geometric

function H(w) of an area A, for a rotation of the area with angle 5,

and the function H (w), which corresponds to zero rotation. The

definition of the axis of zero rotation is arbitrary and is conveniently

chosen such that the evaluation of the integral (5.20) defining the

characteristic function is easy.

In the case of the triangle at Figure D.1 for example, it is

convenient to define the x axis of zero rotation parallel to side AB

of the triangle. Then the Cartesian system x 0 , y will be oriented

at an angle S to the original x,y system (see Figure D.2). For a

triangle we can define the angle of rotation 5 as:

5 = arctan B A (D.1)
x B-xAB A

where xA, yA and xB' YB are the coordinates of the points A and B of

the triangle in the original system. We note that the corners A,B,C

of the triangle are taken such that they form a counterclockwise set.

The point P is an arbitrary but specific point inside the area. It

might be convenient to take P as the centroid of the area.

We derive now the relation between H(w) corresponding to rotation

angle 5 and H0 () corresponding to zero rotation. For example, let

the region be the triangle defined in Figure D.2. If we make the

transformation:

z = we (D.2)
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B ( B

Figure D.l Definition sketch of triangle ABC in (x0y )
coordinate system.

y

C (xC C

P

A(xA2 A

B(xB'yB)
x

Figure D.2 Triangle ABC in (x,y) coordinate system.
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where w,= (x,y) is in the original domain and z = (x ,y 0) is in the

transformed domain, the triangle ABC will be mapped into another

triangle A B C of the same geometry but having side A B taken as

a vector parallel to the x axis. The triangle A B 0C is defined to

have zero rotation = 0, so that it then corresponds to the character-

istic function H (w).

Let H(w) be the characteristic function for the triangle ABC.

We get from (5.20)

H(M) = e - f0 (w)dw (D.3)

R2

The probability density function of w is given by:

f (w) = 1 (D.4)

where A is the area of the region. Substituting (D.4) and (D.2)

into (D.3) we get:

H(w) = e e d. (D.5)

R2

The characteristic function H (M is defined as:

H O) = e '-dz (D.6)

R2

Thus (D.5) becomes:
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H(w) = e H (we ) (D.7)

or

|H(w)2= 2 H0(we )2 (D.8)

This equation relates the characteristic functions between two areas

of the same geometry and relative rotation of angle $.

Using this relation we need to calculate the function H (o) only
0 -

once. Then if the area rotates we use (D.8) to calculate H() for the

rotated areas. This would be useful, for example, in generating areal

averages over triangular finite elements of the field of permeabilities

in groundwater models.

We note here that (D.8) is valid for any geometry of averaging

region. The example of the triangle was taken only for illustration

purposes.
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APPENDIX E

In this appendix we are going to derive expressions for the

characteristic function H_ (W)j2 for some useful geometries: squares,

rectangles and triangles.

Rectangles (and squares)1

We derive first IH (_) in the case of a rectangular (or square)

region with sides L and L , respectively (see Figure E.1). The
xy

point P is chosen as the centroid of the area. The characteristic

function H (w) is given by (5.20):

(E.1)H (M) = (' f (w)dw
0 - J 0 -

where:

- if w in region A
f (w) ={A
0 0 elsewhere

Equation (E.1) then is written as:

L /2 L /2

( = {e iWWdw =
0- A - A

A -L /2 -L /2
y x

dxdy =

L /2
x

e -iw 2 dy

-L /2
x

-iw 1x d1 dxe

1 A different derivation can be found in Matheron (1960) or in

Lenton (1974; with some errors).

191

L /2
y

= -f

Af

-L /2
y

-i(w 1X+W 2y)
e 1 2



L L

D(- 2 2

A
L L
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Figure E.1 Rectangular (ABCD) in coordiante system (x0 y 0 ).
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1 1 -i 2L /2 iw2L2y/2 1 iw1L /2 iw L /2

A iw 2 (eW

SwL x L
A sin( -) sin(- 2y) (E.2)
Aw12 2 2

but A = L 'L , so that

4xwy

H ( = - Liw x s ) 2 y (E.3)
OM- L L w 1 2 2 2x y 1 22

The function IH(w) then is given by

2 16 2 "lx 2 L
H(_)12 16=2 2 sin ( 2 ) sin( 2 ) (E.4)

LL 2 2
x y 2

for a rectangle. For a square L = L .
x y

Triangles

We derive now the function JH 0(w) 2 in the case of a triangle

region (Figure E.2). It is assumed that the side AB is taken as a

vector is parallel to x0 axis and the point P represents a character-

istic point inside the region (for example the centroid of the

triangle). For axes x0 , y passing through P the characteristic

function H0 (w) is given by:

H( _) = w fW (w)dw (E.5)

R 

-
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Figure E.2 Triangle ABC in coordinate system (x 0 y0 ).
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Figure E.3 Triangle ABC in coordinate system (x',y').
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where w is the vector distance from origin P. If we define a new

origin P' to coincide with the corner A of the triangle, and a new

system of orthogonal axes x' y' parallel to original axes x 0 y , we

can write (Figure E.3):

w = u -x. (E.6)
-ZP

where x is the vector with origin P' ending at point P, and u is

a vector with origin P', corresponding to the point w in the original

coordinate system. (E.6) gives:

dw = du (E.7)

We also know that f (w) = f'(u) where:
0- 0-

- if u

f'(u) = A
0 - 0 elsewhere

In the new system with origin at P' = A and axes x'y', see Figure E.3,

(E.5) becomes:

-io(u-xg) - -o
H = e f'(u)du = - e e --w du (E.8)

R2 A

The coordinates of the corner A=P' in the new axes are (0,0). Let

the coordinates of B and C be (a,0) and (b,0) respectively. The inte-

gral on the right-hand side of (E.8) is
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I=1f
A

=A
A

e -du

[cos(W1xI+W2y')-i sin(w 1x+w2y')]dx'dy'

(E.9)

(E.10)

We define:

IR
A

T

IMJ
A

cos(w1x?+W 2y
T )dx'dy'

s ,W 1 &#W 2y')dx' dy'

So that (E.10) can be simply written as:

I = I R 

v 
Mi

The limits of integration are given in Figure E.3, so that:

(E.lla)

(E. ib)

(E.12)

a-(

C

I= { I
o ,

-b
-)yC

'

cos(w1xI+W2y') dx'}dy' (E.13)

We call the integral inside the brackets R and we get:

sin(w1 ' +w2y')

R W

a- a-b

,t ycc

= {sin[w (a- a-b y') + W2y']- sin[(w 1 + W y ?P
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Thus (E.1 3 ) becomes

c

I = R dy' = 1 [

0

cos W (a- y') + w2
+

a-b
W 1 -*2

cos[(W b + w2)y c

1 c 2

I

c cos[bw1 + cW2]- cos(aw 1)

~ 1 (a-b)w1 -cW 2

aw

1 {cos(b1 + cW2 [(a-b)w -c

cos(aw 1

(a-b)w -cW2 ~ 1 +cW2

IM is calculated similarly:

c

IM {
0 b

cos[bw1 + cW2]-1
bw1 + cW2

1)2] [bwl+CW2]-

(E.14)

a-b
c

sin(w 1 x + W 2y') dx'}dy' (E.15)

Define the integral inside the brackets as HM , we get then:

a-b
a -- y'

H - cos(W 1x + W2y') c

1 
1 c

1 {cos[w (a - y') + W y'] -cos[(- W +W )Y,
W1 1 c c1
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Equation E.15

1

(C) b

( c 2

1i + W 2

sin[ w(a - y?) + W2 y

a-b
1 c)'

- 0

sin bw1 + cW2
t , x

- sin(aw1 )

( a-D) W-C1i o2

{sin bw1 + cW2

sin(aw 1 )

(a-b) 2-cw
2

sin bw1 + cW1
+ bw + cW2

aw 1

t(a-b)w1 -cw 2 ] [bw 1+cw 2]

(E.16)

Using (E.8), (E.9), (E.13), (E.14) and (E.16) we get

H (W) = {cos(W + y) -i sin( 0 + W2y) (I RiM)

Then:

!H (W)j2 = {[cos(w x0 + W y0 ) -sin(w x0 + W2 0 2 +
0 A 211 21R11 2PM

+ [Cos (W x + W2 y0IM + sin(ow 1 + W2y1) }
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c

IM fT
0

sin[
+ b

C

+

W=-

CL)

C
=

(E.17)

then becomes



In (E.14) and (E.16) we substitute:

0 0
a = x 2

b = x 0 -x 0

3 1

C = y-y

We have then:

0 0
I Y3yl,{cos [(x O-x 0) Y0Y0)

R 3 1 1+ 3 1 2 

(x O-x 0)w
(2 1 1

[(XO -x 0)w w- (Y 0-Y 0)w 1%](x3 Ox 0) w + (yo-YO) "2
2( 32 1 3 1 2 3 1+ - 121

cos[(x2 -x )w1
-~ } (E.18)

(2 3 1 3 1 2 3 1)wl(Y3-yol42

= {sin [(x3 x)wi + (Y -Y )w2

[(M 3 1 3 2 1 1 3 1 2
(x O-x 0) W1

2(x 3 )w-(y3-yl)w 21 [(x3~~W + 12

sin (x O-x 0)w9
2 1 1 i (E.19)

(x 2~" 3 )w1 1~ 2

From (E.17), (E.18) and (E.19) we calculate JH o(w 1, W 2 12 easily.
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