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PARAMETERIZATION OF MOISTURE AND HEAT FLUXES

ACROSS THE LAND SURFACE FOR USE IN

ATVIOSPHERIC GENERAL CIRCULATION MODELS

Abstract

The response of a bare soil surface to atmospheric
forcing -- rain, wind, sunshine, etc. -- may be expressed in
terms of the resultant evaporation rate and sensible and ra-
diant heat losses. Examining the earth-atmosphere interface
in an idealized one-dimensional framework, we evaluate a hier-
archy of mathematical models in terms of their ability to pre-
dict this land surface response. The evaluation is based on
simulation, using typical climatologic and soil parameters.
The reference model, against which the other models are test-
ed, is based on a numerical solution of a very detailed de-
scription of heat and moisture movement in porous media. The
alternative models are, to a greater or less extent, sim-
pler both conceptually and computationally than the reference
model. They include the following:

1. A family of models obtained by introducing various
sinplifying assumptions in the reference model. These
corcern the roles of water vapor, of soil moisture re-
tention hysteresis, and of a few other minor effects.

2. A set of models constructed by linking the force-
restore method of soil temperature prediction to each of
three soil moisture parameterizations -- a two-node fi-
nite element model, a conceptualization used by climate
modelers, and a nonlinear diffusion model.

Using the nominal soil and climatologic parameters, we deter-
mine the critical physical mechanisms affecting the surface
fluxes of water and heat. We find that an isothermal moisture
equation, with the hydraulic conductivity augmented by a va-
por conductivity, and accounting for hysteresis, is suffi-
cient. The nonlinear diffusion parameterization, which in-
cludes these effects, is extended to account for redistribu-
tion. In conjunction with the force-restore method, it suc-
cessfully predicts evaporation under various climatic and
soil conditions.
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NOTATION

NOTE: Most of the symbols used are listed here. Some minor

symbols that are used infrequently are not listed. Occasion-

ally, a single symbol takes two meanings when confusion seems

unlikely.

Symbol Description

A albedo of land surface

A time independent term in infiltration capacity
0

aI 1 _P
i$ 3T &

C volumetric heat capacity of soil

CH bulk transfer coefficient for heat

(CH N neutral value of CH

CM bulk transfer (drag) coefficient for momentum

(CM N neutral value of CM

C Wbulk transfer coefficient for water vapor

(C )N neutral value of C

* 9specific heat of liquid water

C specific heat of water vapor at constant pressure

D molecular diffusivity of water vapor in air

D Tv thermal vapor diffusion coefficient

D V isothermal vapor diffusion coefficient or vapor
conductivity
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Symbol Description

E evaporation rate

E, Ppotential evaporation rate

F cumulative depth of exfiltration since last slorm

F' apparent cumulative depth of exfiltration since last
e storm

F. cumulative depth of infiltration during storm

f exfiltration ratee

f * exfiltration capacity
e

f. infiltration rate

*
f. infiltration capacity

G heat flux into the ground

g acceleration of gravity

H sensible heat flux into the atmosphere

IZd incoming (sky) longwave radiation flux

Iu outgoing (ground) longwave radiation flux

Is incoming solar radiation flux

I' absorbed solar radiation flux
s

K hydraulic conductivity

K value of K when T = T and = 0
S 0U

K . effective value of K for. element i in the two-node
ei model

k von Karman constant

L latent heat of vaporization of water

P, , 2 depths of cells in two-node model

N proportion of sky observed by cloud
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Symbol Description

N fair-weather value of N
0

NL number of elements used in finite element model

n porosity

P precipitation rate

pF log 1(_

Sh' qh vector and vertical component of heat flux

Sm, q vector and vertical component of total moisture flux

R total runoff rate

R redistribution parameter

R groundwater runoff rate

R surface runoff rate
s

R v gas constant for water vapor

Rn net radiation received by surface

(Ri)B bulk Richardson number

S e desorptivity of soil mass

S. sorptivity of soil mass

T temperature (Celsius)

Ta air temperature

T temperature of ground surface

T an arbitrary reference temperature

T 1surface temperature in force-restore model

T 2deep soil temperature in force-restore model

TERR maximum allowable temperature change per time step
in finite element model

t time
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Symbol Description

tb time between storms

t storm duration

u a wind speed at screen height

W different heat of wetting

XERR maximum allowable change of 0 per time step in
finite element model

Z storage cell depth in moisture parameterizations

ZB depth of deepest finite element node

ZRAT ratio of top element size to average element size
in the finite element model

Z vertical distance coordinate

z screen height
a

z 0surface roughness height

a angle of the sun above the horizon

A. length of i'th element

E emissivity of the ground

a emissivity of the air

o volumetric liquid moisture content

o volumetric air content
a

e d value of 6 on main drying curve

e 0 value of 0 on first drying curve

0 H notation explicitly denoting hysteretic 0

0. initial moisture content

0 volumetric proportion of the i'th phase

value of 6 where liquid continuity fails
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Symbol Description

6 value of 0 upon re-wetting of a dry porous medium

ew value of e on main wetting curve

01 surface moisture content in two-node model

6 2 deeper moisture content in two-node model

lO average moisture content in one-cell models

x effective thermal conductivity of soil

thermal conductivity of air

.i thermal conductivity of i'th soil constituent

pa -density of air

P density of li quid water

Pv density of water vapor or absolute humidity

pva at screen height

pv p at ground surface~vg vg

pO saturation value of pv

a Stefan-Boltzmann constant

T surface shear stress

T period of one day

value of $ referenced to temperature T0

matric potential

Q tortuosity of air phase of the porous medium

23
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Chapter 1

INTRODUCTION

1.1 Objective

The goal of this research is to design and test a

cost-effective parameterization of moisture and heat transfer

between the atmosphere and the land surface for use in numer-

ical global climate models. The parameterization is to be

firmly based on the process physics and should be simple

enough for use with an atmospheric general circulation model

(GCM). Its development and validation is to be carried out

using a detailed finite element model of the soil as a truth

model. In recent years, many climate modelers have voiced

the need for an improved land surface parameterization.

Cost-effectiveness, in the present context, implies

ability to reproduce the release of heat and water from the

land surface to the atmosphere by means of an algorithm hav-

ing relatively modest computational requirements. Since a

GCM may have hundreds of grid cells corresponding to the

land surface, it is important that the surface state set be

kept to a minimum and that the predictive equations for

these states be numerically simple.

A physically-based approach is employed. As a

consequence, the parameters and states appearing in the

parameterization represent physically meaningful, measurable
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quantities. This can facilitate parameter and state

estimation by means of remote sensing, and it allows for

utilization of available mapped information, e.g., from

soil surveys.

The accuracy of the proposed parameterization is

to be defined in terms of its ability to mimic the behavior

of a highly-detailed simulation model of soil moisture and

heat. As an experimental apparatus, the latter model allows

us to simulate easily and quickly the response of any soil

to any series of atmospheric forcing, thereby providing

detailed data against which to test the parameterization.

In this analysis, only bare soil is considered.

The resulting parameterization is at a level consistent with,

and compatible with, existing parameterizations of the role

of vegetation in water and energy exchange.

1.2 Background and Justification

The general circulation of the atmosphere is

determined largely by the surface transfers of momentum,

heat, and moisture. These transfers are intimately coupled

one to another. Evapotranspiration from soil moisture is a

major term in both the water and energy balances at the

surface, returning 57 percent of continental precipitation

to the atmosphere (Budyko et al., 1962) and consuming a large

proportion of the radiation available at land surfaces
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(Monin, 1972, p. 7). It follows that the rate of

evapotranspiration may be limited by the availability of

either water or heat at the surface.

Other major couplings may be identified. The

available radiation is attenuated by the surface albedo,

which is sensitive to soil moisture. Transport across the

planetary boundary layer is dependent upon atmospheric sta-

bility, which is proportional to the vertical temperature

gradient near the ground. The thermal properties of soil

are sensitive to moisture content.

It is apparent that regional water balances (and

surface heat balances) are linked to climate -- not passive-

ly, but actively. Due primarily to the great sensitivity of

this coupling to soil moisture concentration, to surface

temperature, and to the parameters of land surfaces, it is

important to consider the spatial and temporal variations of

these quantities in the formulation of transfer relations at

the earth's surface. For example, Eagleson (1978) has shown

the critical importance of soil type and vegetal density in

determining the annual average state of soil moisture in a

given climatic situation, and has demonstrated their control

over the division of precipitation into its respective water

balance components.

Several recent studies have demonstrated the

sensitivity of weather and climate to land surface parameters

27



and states. Charney (1975) showed the potential role of

albedo change in desertification. Reck (1978) found surface

albedo to be one of the three largest sources of uncertainty

in calculating the surface temperature using the Manabe-

Wetherald radiative-convective atmospheric model. Surface

albedo is strongly dependent on the soil moisture content of

bare surfaces and on the extent and state of vegetal cover.

The influence of soil moisture on the atmosphere

is not confined to the albedo effect. Charney et al. (1977)

showed that local evaporation rates are as important as

albedo in determining precipitation in semi-arid regions.

Walker and Rowntree (1977) have illustrated the role of the

soil moisture state in shaping weather patterns, using a

numerical model with fixed surface albedo. Reck (1978)

identified surface relative humidity as another major source

of uncertainty in obtaining the surface temperature. Surface

relative humidity is directly related to surface soil

moisture content. Shukla and Mintz (1982) have demonstrated

graphically the great sensitivity of the global distributions

of rainfall, temperature, and air flow to the land surface

evapotranspiriation.

The GCM's currently in use employ variants of the

Budyko (1956) parameterization in which evaporation is

linearly proportional to soil moisture concentration, up to

a certain threshold value that is assumed constant everywhere.
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These GCM's calculate the changes of moisture content using

any of a variety of empirically-based runoff relations, which

are also assumed independent of soil type and vegetal cover.

In the report of the 1974 Global Atmospheric

Research Program (GARP) Climate Conference (GARP Publication

No. 16), this method of modeling the land-atmosphere inter-

action is outlined and discussed critically. It is urged

tiat the apparent sensitivity of climate models to the surface

parameterization be studied using existing models. Assuming

these tests to show that land surface characterization is a

significant limitation to the accuracy of climate models,

the GARP Climate Conference (1975, p. 51) recommends the

following improvements as first priority:

"more accurate and individual specification of the
GCM grid-point values of: soil water capacity;
the relation between actual and potential evapo-
ration as a function of soil water content; albedo

and

"the introduction of a 'multiple bucket' concept
at each grid point to take account of moisture
storage and all depletion processes..."

This need has also been stressed recently by Gates (1975),

who writes

"A fourth problem area which appears to be
critical for climate modeling is the treatment of
the land surface. In comparison to the detailed
attention given in GCM's to the representation of
atmospheric and oceanic processes, the attention
given to the earth's surface itself is almost
cavalier. Yet it may well be that climatic changes
on many time scales are primarily determined by
such effects as surface albedo, the amount of
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moisture and heat retained in the soil, the
surface roughness, and the character of the sur-
face vegetation."

Finally, the Joint Organizing Committee (JOC) of

GARP (1975) has singled out three elements of the hydrologic

cycle that needs "efforts ... with regard to improving our

knowledge of the hydrological cycle to be used for climate

modeling." These three elements are snow cover, soil mois-

ture, and runoff.

1.3 Outline of Research

The work documented in this report consists of

the following four steps:

1. Assemble a numerical model -- the reference

model -- based on the complete system of partial differential

equations governing vertical heat and water (liquid and vapor)

flow in the soil. Couple it to a parameterization of the

surface boundary layer of the atmosphere. Assemble data sets

describing two soils (a silt loam and a sand) and two cli-

mates (a hot, arid one and a cool, moist one).

2. Using the reference model with the various

data sets, determine numerical convergence and stability

criteria. Perform series of experiments to test the impor-

tance of several physical effects on model outputs and simpli-

fy the model accordingly.

3. Given the simplified physical description of

the system resulting from the last step, propose one or more
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parameterizations (computationally simplified models) that

are consistent with, or derived from, that description.

4. Test the parameterization(s) against the

reference model using the soil and climate data sets.

These steps are discussed in more detail in

Section 2.2.
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Chapter 2

DEFINITION OF THE SOIL SYSTEM

2.1 The Coupling between the Soil and the Atmosphere

For the sake of analysis, the soil and the

atmosphere may be viewed as a coupled pair of systems

(Figure 2.1). Both systems experience inputs, i.e., are

acted upon or forced externally, and both respond by

producing outputs. In the case of this simple coupling,

one system's output is the other's input. (Of course, the

atmosphere also interacts with the oceans, the sun, and

outer space, but these physical entities can arbitrarily

be incorporated into what we have called the atmosphere

system.)

The output of a system (e.g., the soil system)

is fully determined at any time by the forcing, the system

state, and the system parameters. Parameters are indepen-

dent of the forcing, while the states are not.

In order to study the behavior of the soil, we

wish to decouple it conceptually from the atmosphere. We

shall define precisely which physical properties are the

input (forcing), the output (response), the states, and the

parameters of the soil system. These definitions are some-

what arbitrary, being influenced both by our choice for the

location of the soil system boundary and by the purpose of
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our model.

Since we wish to study only the soil system, we

must ignore the feedback .of soil outputs through the atmos-

phere system and back to the soil. As an example, consider

the option of defining the boundary between the "soil" and

"atmosphere" (Figure 2.1) to be their actual interface,

the surface of the ground. Suppose further that the atmos-

pheric vapor pressure and temperature at this interface are

defined to be two of the inputs to the soil. If this selec-

tion is made, it can be shown to follow that the injection

of sensible heat and water vapor into the atmosphere is

determined by the soil system and forces the atmosphere as

an input. Now, due to the nature of the planetary boundary

layer of the atmosphere, the vapor pressure and temperature

at the surface are very strongly correlated with these

upward fluxes, i.e., the importance of feedback is exces-

sive.

In order to eliminate most of this feedback effect

from the modelling problem, it would be desirable to define

the system boundary in Figure 2.1 to be the top of the

planetary boundary layer. The planetary boundary layer,

which can be considered the layer of immediate influence

of the earth's surface, varies in thickness (especially

diurnally) from tens to thousands of meters. If we were

to employ the top of the planetary boundary layer as
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the boundary of our "soil" system, we would need to simulate

the extremely complex dynamics of that critical part of the

atmosphere. This is an area of ongoing research and is

beyond the scope of our study.

In this analysis, we choose a compromise between

these two alternatives. The boundary of the "soil" system

is placed within the surface boundary layer (SBL) of the

atmosphere at a height on the order of a couple meters above

ground level. One advantage of this choice is that much of

the turbulent diffusion resistance of the planetary boundary

layer is located very near the surface, where the intensity

of the turbulence is low. Atmospheric conditions two meters

above the surface are therefore much more similar to those

at the top of the planetary boundary. layer than they would

be if the turbulence were homogeneous. The error induced

by neglecting feedbacks, mentioned earlier, is thus reduced

significantly, though not entirely to zero, by this scheme.

A second advantage of this approach is that the transfer

relations for the SBL are very simple bulk transport equa-

tions, since this is a constant (i.e., no divergence) flux

layer. A final advantage is the ready availability of data

describing the state of the atmosphere at this height.

A system diagram of the coupled soil/SBL system

and its interaction with the atmosphere is shown in Figure

2.2. The soil receives forcing directly from the atmosphere
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DETAILS OF THE INTERACTION OF THE SOIL/SBL SYSTEM

WITH THE ATMOSPHERE
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in the form of shortwave radiation (Is), longwAve

atmospheric radiation (I9d), and precipitation (P). Other

forcing of the soil/SBL system consists of the air tempera-

ture (Ta), vapor density (pv(), and windspeed (ua) at the

so-called screen height. Together with the soil surface

temperature (T ) and vapor density (p vg), these three

quantities determine the rate of extraction of water (E)

and sensible heat (H) from the soil by the action of the

SBL. These outputs of the SBL system, E and H, are forcing

for both the soil and the atmosphere. The other outputs of

the soil/SBL system are the back longwave radiation (I ),

the reflected solar radiation (I'), and the total runoff

(R), or yield, of surface and ground water to the surface

drainage network and thence, eventually, to the ocean or

atmosphere. Of these, the reflected shortwave radiation

is lost to space and is unimportant for weather or climate,

while the runoff is of secondary importance and acts on a

longer time scale, possibly affecting oceanic salinity and

circulation. For climatic applications, we may usually be

confident that, correct prediction of evaporation will result

in correct prediction of runoff on these longer time scales,

since the storage capacity of the soil is finite. This

argument may (ail where the water table is very deep,

at lowing sign if' icant increases in stored groundwater.

The analysis of long-term interactions of groundwater and

38



climate are beyond the scope of this work.

For the purposes of climate dynamics, we shall

be more interested in the soil/SBL outputs E, H, and I

that result from the atmospheric forcing. Among these,

correct predictions of H and IZu rely on accurate simulation

of surface temperature. Since H is more sensitive than I

to surface temperature, we may concentrate on reproducing

H and E, confident that I will follow.
Zu

2.2 Elaboration of Goal and Methodology

The goal of this research is to identify simple

mathematical models of the soil system, as represented in

Figure 2.2, and to evaluate their performance by comparing

computed outputs to those obtained using a detailed numer-

ical model of the system. The analysis consists of the

following steps, already outlined in the first chapter,

discussed here in the light of Figure 2.2:

1. Construct a detailed numerical model - the

reference model - of a one-dimensional soil

system. The model should accept E, P, H, I,

and I d as part of its boundary conditions.

Computed distributions of soil moisture and

temperature yield the values of surface vapor

density, p vg, and surface temperature, T , as

well as the upward longwave radiation from
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the soil, I , and the runoff, R. Construct

a simple model of the SBL that yields E and

H as functions of vapor and temperature

differences across the layer and of the wind-

speed.

Identify and quantify parameter sets

describing (1) idealized periodic atmospheric

forcing of the soil/SBL system, (2) the SBL,

and (3) the soil.

2. Run experiments with the numerical model and

the specified parameter sets. Using the

parameter sets, determine convergence and

stability criteria for the numerical model

coupled to the SBL parameterization.

Through further experiments, analyze the

influence of various physical effects on

system outputs under realistic forcing.

Control simulations are run with the full set

of governing equations for the soil.

Corresponding simulations are run with the

same SBL model and atmospheric forcing, but

with various simplifications or reductions

of the physical description of the soil.

These reductions are the following:

- Neglect soil water in the vapor phase

- Neglect the heat of wetting
40



- Neglect the temperature dependences of

moisture retention and of hydraulic con-

ductivity

- Replace the hysteretic moisture retention

function with an approximate reversible one.

Compare computed evaporation, sensible

heat flux, and net radiation for the reference

model and the simplifications thereof.

Calculate mean errors and root-mean-square

errors of each flux and evaluate the validity,

with possible limitations, of each simplifica-

tion. Determine how much of the reference

model structure, and hence how much of the

process physics, is essential to the satis-

factory prediction of the surface fluxes.

3. Given the findings of Step 2, formulate

mathematically a few dynamic lumped-parameter

models of the soil system. Like the refer-

ence model, they must specify p vg, T , and

I as responses to forcing by P, E, H, Is'

and I9d (Figure 2.2).

4. Using the same (periodic) forcing parameter

sets and SBL parameterization as in the

previous experiments, calculate the hourly

response of the parameterizations. Compare
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the output to that of the reference model.

Calculate mean errors and root-mean-square

errors and evaluate the performance of the

parameterizat ions.

Repeat this step using more realistic

random forcing based on actual data for the

same sites.

In summary, the goal of this work is to simulate

the behavior of the soil/SBL system pictured in Figure 2.2,

using successively simpler, physically-based models to

represent the soil component of the system. The criterion

for evaluation of the models is their fidelity in reproduc-

ing the outputs of the most detailed model.

The remainder of this chapter is devoted

essentially to Step 1 above. It consists of

(1) the definition of the reference model of the

soil component and two soil parameter sets,

(2) the definition of the SBL parameterization

to be used throughout the analysis, and

(3) the definition of two parameter sets that

will also be used throughout the analysis

to generate the deterministic periodic atmos-

pheric forcing sequences.
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2.3 The Reference Model of the Soil System

2.3.1 Governing Partial Differential Equations

What we shall refer to as the reference model is

the system description of the soil based on the partial

differential equations of mass and energy conservation in

a partially-saturated, hysteretic porous medium under the

following assumptions:

1. The air phase is static with pressure

everywhere equal to atmospheric.

2. The soil is non-deformable and isotropic.

3. Moistu1re does not freeze.

4. There is local hydraulic and thermal

equilibrium among the solid particles, the

air, and the water.

5. There is no uptake of water by plants.

Under these conditions, the mass and heat conservation

equations are (Milly and Eagleson, 1980)

e ~P

+ ~~ a v p 9(1 1 )

P DT T Dt _

(2.1)

and
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C+ (L+c V + [p ,cT - pkW - pv (L+cZT)] 11

+ (L+c T)6 v + [p cT - pkW - pv(L+cjT)] }

- V - h (2.2)

where the moisture and heat fluxes q and q are given by

q /pZ =-(K + D )V$ - D V T -Kk (2.3)

and

= - X V T - p LD v V$ + c ZT q (2.4)

In (2.1) and (2.3), $ is the matric potential of water, T

is temperature (we use Celsius), 6 is the volumetric frac-

tion of liquid water and 6 the fraction of air, p is thea 91.

constant density of liquid water, pV is the density of

water vapor in the air phase, t is time, V is the divergence

operator, and k is the unit vector opposing gravity. K is

the hydraulic conductivity for liquid flow and D is the

conductivity for vapor flow due to head gradients. DTV is

the diffusion coefficient for vapor transport due to tem-

perature gradients.

In (2.2) and (2.4), C is the volumetric bulk heat

capacity of the soil, L is the latent heat of vaporization

of water, c is the heat capacity of liquid water, W is the
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differential heat of wetting, and X is the effective thermal

conductivity.

In the derivation of (2.2) and (2.4), the

reference temperature for zero heat content is arbitrarily

taken to be 0*C.

At a given point in the medium, all of the

coefficients in (2.1) through (2.4) can be expressed as

functions of time-invariant parameters and of the soil

variables $) and T, which therefore can be used to represent

the state of the soil system. In addition, hysteretic soils

require a third state variable - the wetting history - in

order to complete the state set. This variable is the T'

introduced in the next section. It arises there in the

statement of the diagnostic relation for moisture retention.

2.3.2 Boundary Conditions

The boundary conditions on (2.1) and (2.2) for

a one-dimensional vertical system are the following:

1. Surface Condition on Moisture. The atmospheric source/

sink of moisture, P-E, is equal and opposite in sign to the

surface moisture flux as long as the surface is not

saturated,

dO
-(q /p = = P-E , d 0 (2.5a)

m Z Z=O z=0
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Otherwise, the infiltration rate (negative moisture flux)

equals the current infiltration capacity of the soil. The

boundary condition can then be written

z = h , l = 0 (2.5b)
z=0 dTz=0

where h is the depth of ponded water on the surface. The

rate of change of the new state h is given by the balance

equation

dh_dt P-E + (qz=) - R (2.6)dt kz=0 s

in which Rs, the surface runoff, is given by

P-E + (q m z=0 , h=h and P-E + (q m/z=0 >0

R =

0 otherwise (2.7)

where hmax is the depth of the surface retention "reservoir."

When (2.5a) is the active boundary condition, h is zero;

otherwise the surface would be saturated. Then (2.7) says

that Rs is zero and (2.6) says h remains zero. When the

surface becomes saturated, (2.5b) applies. In that case,

the fully determined solution of (2.1) and (2.3) yields a

value for (q /p ) by means of (2.3). This value deter-m 91z=
dh

mines d and R through (2.6) and (2.7).

2. Condition on Moisture at Depth. A second boundary

condition on the moisture distribution must be applied at
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the bottom of the column. For a relatively static water

table, this condition could be expressed as

$ = 0 (2.8)

z=-Zww

where Z wis the water table depth. If the water table is

sufficiently deep, we can identify the lower end of our

column as any depth (above the water table) below the point

where matric head gradients induced by surface forcing

become negligible. Then, using (2.3),

(q/ z - -K - (DTV + D )T (2.9)
M z=-ZB Z=-ZB 

zTa z Z=-ZB

In this work, we shall concentrate only on (2.9).

3. Surface Condition on Heat. Considering the possible

presence of ponded water (h 0), the heat balance of the

surface can be written as

h = -(l-A)Is -Ed + Iu + P [L +c T ]E
z=0 5 d+~4 'z=o

- p c T P + H + p c T R + p cc h T
P91a H , 9c z=0 s + T z=0

(2.10)

Equation (2.10) is the energy balance for the layer of water

(potentially of zero thickness) in depression storage.

Assuming that the water has the same temperature as the soil

surface, this equation is derived by equating the change in
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heat storage (the last term) to the net sum of all.radiative,

sensible, and latent heat fluxes. The soil heat flux (sens-

ible plus latent) is given by q = s is incoming solar

radiation and A is the albedo of the surface. I d is the

downward longwave radiation from the sky. The longwave

absorptivity of the surface is taken to be equal to its

emissivity, c (Deardorff, 1978). Back longwave radiation

upward from the surface, I tu, is given by

I = ea(T + 273) (2.11)
Eu z=O

where a is the Stefan-Boltzman constant. Both A and c

depend on the surface soil moisture content, as discussed in

the following section. Latent and a little sensible heat

are carried away by evaporation. Precipitation at air

temperature delivers sensible heat, while runoff and turbu-

lent diffusion in the atmosphere (Ii) carry it away. In the

absence of precipitation, with h = 0, (2.10) is the familiar

expression that net radiation minus heat flow into the

ground is equal to the sum of latent and sensible heat

diffusion away from the surface.

4. Conditions on Heat at Depth

Annual fluctuations of ground surface temperatures

are attenuated with depth, but persist up to a depth of ten

to twenty meters. If the bottom boundary of the system is

deeper than this, then with both Vp and VT equal to zero,
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the heat flux out the bottom is

q h ZN= R (T qm m-7 (2.12)

z=ZB 1

which allows heat to exit the column only by advection in

the water phase. We shall apply this condition at the bot-

tom of our column, with ZB equal to only five meters. For

our relatively short-term analyses, the neglected fluxes

across the bottom boundary are small enough to be unimpor-

tant.

2.3.3 Initial Conditions

To begin a simulation, the initial state of the

system must be specified. Depth distributions of $, T, and

the wetting history are needed. Given the time of the year,

the air temperature data, and typical values of the soil

thermal parameters for our scenarios, we estimated the soil

temperature at a depth of one meter, which is just below

the depth of the diurnal fluctuations. This value was then

applied as the initial temperature over the entire column

depth. This approximation results in some error in the

rates of heat _onduction at depths of more than a meter,

but the magnitude of these deep fluxes is small anyway.

The initial moisture content is also assumed to

be constant in depth. For preliminary analyses in Section

3.1, its value is chosen so that the corresponding hydraulic

conductivity (and thus the groundwater recharge rate) is
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Matric Potential

sand/Winslow

silt loam/Winslow

sand/Dulles

silt loam/Dulles

240 C -167 cm

24

14

14

-388

- 71

-129

Table 2.1

INITIAL CONDITIONS FOR THE FOUR SCENARIOS.

MATRIC POTENTIAL VALUES ARE USED ONLY IN SECTION 3.1.

REVISED VALUES ARE DETERMINED IN SECTION 3.2.
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20% of the annual precipitation rate. This choice is

arbitrary and the system response is quite sensitive to the

initial value chosen. A more useful method for specifying

an initial moisture content is introduced and applied in

Section 3.2.

Specification of the wetting history is

accomplished by assuming that the soil is on the main

drying curve (Section 2.3.4.1) initially.

The initial conditions applied are listed in

Table 2.1.

Together with the p.d.e.'s (2.1) and (2.2), the

flux equations (2.3) and (2.4), and the diagnostic descrip-

tions of the parameters to follow, the boundary conditions

(2.5ab)/(2.6)/(2.7), (2.9), (2.10)/(2.11) and (2.12) allow

us to determine the evolution of the system states, given

any initial states, and to find the soil outputs. This

set of equations is thus a complete description of the soil

system drawn in Figure 2.2.

2.3.4 Soil Properties and Soil System Parameters

Variables appearing in the p.d.e.'s, flux equations,

boundary conditions, and auxiliary equations of the previous

section include the st.ate variables, $(z,t), T(z,t), h(t),

and the input variables, P, E, IS' Id, H, Ta. All other

variables can be expressed as functions of the soil state.
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In this section, we present these equations of state. As

we shall see,.the.diagnostic relations introduce constants

that reflect- the physical nature of the soil system. These

are the system parameters. We present typical values of

these parameters for two hypothetical bare soil systems -

a silt loam and a sand.

2.3.4.1 Parameters relating to moisture storage

Moisture is present in two forms - liquid and

vapor. Vapor is stored in the air of the medium, whose

volumetric fraction is

6 = n - 6 (2.13)

where n is the porosity. The vapor density is (Edlefsen

and Anderson, 1943, p. 145)

P = PO(T) exp[g/Rv(T + 273)] (2.14)

in which p0 is the saturation vapor density, g is the

acceleration of gravity, andR V is the gas constant for

water vapor.

The proportion of the medium occupied by liquid

water is a hysteretic function of i and T, mainly the

former. Using an approximation of a theory proposed by

Mualem (1977), Milly and Eagleson (1980) have expressed 6

for an isothermal system as a function of (1) the present

value of i and (2) the last value of p at which a wetting
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reversal occurred. They also generalized this theory to

account for non-isothermality by introducing the variable

a'(T-T )
T e 0 (2.15)

where

' E -I 6 (2.16)
Dj T e

is assumed to be a constant. We take T arbitrarily to be

the initial soil temperature of the time period of interest.

There is considerable uncertainty as to the value of a'

(see Milly and Eagleson, 1980, pp. 90-93); here we have

adopted a value of 6.8x10- 3 oK-, which is over three times

the value predicted by the surface tension model (Philip and

de Vries, 1957).

In terms of V, the moisture content is given by

6 (T) + G (Y u d'>

{ P=)- (2.17)

1 6 (') - 6wI dP<
w(T)L + 0< 0

w eu -t

in which

S [0 - (Y )][e - (T )]-1 > 0u w 1 ulw dt

.e w (0) = -

Ow(Po {(TP1 + 6[0 (TP)- - 1] 0
(V) + (u 8w -

(2.18)
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where e and TP are the values of 0 and T when the most

recent wetting reversal occurred. The parameter 0 is the
U

proportion of the medium occupied by water upon re-wetting

to $ = 0. It is less than the porosity due to air entrap-

ment. The value of 0 u/n may be taken as 0.9 (Mualem, 1974).

The function 0w (T) is identical to the main wetting curve

at temperature T .

Two useful relations derived by Mualem (1977) for

his model are the following (expressed here in terms of T):

(Y)= 2 - wP Ow(T) (2.19)
- u -

a0d(T) n 6d(T) (2.20)d ~0 d
u

in which 6 (T) is the main drying function and e0 is thed d

first drying (from total saturation) function.

We have converted moisture desorption data for

Geary silt loam (Hanks and Bowers, 1962) and for Plainfield

sand (Jury and Miller, 1974) to wetting data using (2.19)

and fitted smooth curves to them. The resulting main wet-

ting functions are expressed in the form

0w(T) = min , a (c + d[7 - log(-P)] + e (2.21)

The fitted parameters for the silt loam and the sand are

listed in Table 2.2.
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Parameter

0.46

0.414

4 -1cm s

0.210

-495.

-0.147

Sand

0.35

0.315

2x10-3 cm s

0.171

-15.7

-1.77

0.0 0.00343

-0.0489

0.16

0.33

0.05

0.11

105 cm~

0.20

0.10

0.5 cm

0.0

0.65

0.0

0.0

0.025

102 cm~

0.35

0.25

0.5 cm

Table 2.2

REPRESENTATIVE VALUES OF THE SOIL PARAMETERS

FOR A SILT LOAM AND A MEDIUM SAND
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Main branches of the hysteretic retention

functions are plotted in Figures 2.3 and 2.4. Figures 2.3a

and 2.4a show the main wetting and drying curves and the

first drying curve of the silt loam and the sand, respec-

tively. There is a wide range of pF over which significant

moisture release/storage.occurs in the silt loam, in con-

trast to the storage of most water in the sand at pF between

1 and 2 (-100 cm < * < -10 cm). The main hysteresis loop

is much more open for the silt loam than for the sand. The

relatively small influence of temperature on moisture reten-

tion can be seen in Figs. 2.3b and 2.4b.

2.3.4.2 Parameters relating to moisture transport

The hydraulic conductivity may be expressed as

(Milly and Eagleson, 1980)

K = Ks K (0) KT(T) (2.22)

where Ks is the value of K at saturation and temperature T ,

KT(T) is a viscosity correction given by

K (T) = p(T0 ) (2.23)
T yj(T)

where p is viscosity, and the dependence upon 0 is given

by Mualem (1976) as

sl/2 f dS - 2 -[f dS -2( .
K0 (a) =e L $ (S (2.24)

0 0
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e - 6

S = - _ e r(2 .25)
u r

We take 6r to be zero. With higher values, K, falls off

more sharply at low 6 and vapor conductivity dominates over

an increasingly wide range of moisture contents. We found

that even with e r 0, this range was overestimated relative

to the experimental findings of Rose (1963).

The values of n and the approximate values of K
s

for Geary silt loam and Plainfield sand are given in Table

2.2. Hysteresis of K with respect to 6 will be neglected.

The vapor conductivity, D , is given by (Milly

and Eagleson, 1980)

D = p~aD aO (2.26)$v ia a 3
T

where Da is the molecular diffusivity of water vapor in air

(Kimball et al., 1976)

Da = 0.229 1 + 2T3 1.75 , Cm2 s-1 (2.27)

The parameter Q represents the tortuosity of the air-filled

pore domain. Its dependence on air content will be ex-

pressed for both soils as (Lai et al., 1976)

= e2/3 (2.28)
a

The final factor in (2.26) can be computed from (2.14).
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The vapor conductivity is plotted with the liquid

conductivity for both soils in Figure 2.5. For the purpose

of these plots, 0 and P are assumed to be related by 00(P)

(Eq. 2.23). This procedure will also be used in the other

plots of soil properties. The liquid conductivity of the

sand is high for most 0, whereas that of the silt loam

decreases steadily with 0. The range in each case is about

ten orders of magnitude. There is a small temperature

effect due to the viscosity. The vapor conductivity becomes

dominant in the silt loam around 0 = 0.10 and in the sand

around 0 = 0.02.

The diffusion coefficient for vapor transport due

to temperature gradients is

D P- D f (2.29)
Tv k a 3T

where (de Vries, 1958)

n 6 < 0- k

f0 (2.30)

a n-ek k

in which 0k is the moisture content at which liquid flow

becomes negligible (D is an order of magnitude greater4v

than K). This is estimated for both soils at 20*C from

Figure 2.5. The values are given in Table 2.2. The param-

eter is the ratio of the average temperature gradient in
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the air to the overall average (i.e., macroscopic)

temperature gradient,

(VT)

VT= (2.31)

This thermal gradient ratio is a function of the moisture

content and the temperature. Its calculation is detailed

in Section 2.3.4.4, in the discussion of the effective

thermal conductivity. Figure 2.6 contains plots of DTv'

We see that DTv is fairly sensitive to temperature and

insensitive to e, except near total dryness and saturation.

2.3.4.3 Parameters relating to heat storage

The volumetric heat capacity of a soil is a

weighted average of the capacities of its components

(de Vries, 1966),

5
C = C 1 (2.32)

where e. and C. are the volumetric fraction and the volu-
1 1

metric heat capacity of the i'th soil constituent. The

five components are (1) water, (2) air, (3) quartz particles,

(4) other minerals, and (5) organic matter. The heat capa-

cities suggested by de Vries (1966) are listed in Table 2.3.

Reasonable volumetric fractions for a silt loam and a clean

quartz sand are given in Table 2.2. The silt loam figures

are based on those of Buckman and Brady (1969, p. 10) and
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Constituent

liquid water

i

1

C.

1.0 1.37x10 3

2 3x10 -4 6X10tO +LD a 1air see text
14)

quartz

other minerals

org. matter

3

4

5

0.46

0.46

0.6

2. 1x10-2

7x10-3

0.125

0.125

6x10-4 0.5

Table 2.3

PROPERTIES OF SOIL CONSTITUENTS.

C IN cal cm-3 oK~ , A IN cal cm- s OK
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Wierenga et al. (1969), adjusted for the porosity of our

soil. The sand is assumed to contain only quartz.

The heat of wetting, W, is given by Groenevelt

and Kay (1974) as

H
W = (2.33)

p j 6

where E is the water film thickness on the soil particles

and the conversion factor j is 4.18 x 10 erg cal~ . Values

of H and 6 are 10 3erg cm-2 and 10 cm, respectively.

We can approximate by 6/S, where S is specific surface,

because

film thickness volume of water per unit bulk volume
surface area per unit bulk volume

(2.34)

Then (2.33) becomes

H
W w e-0/6S (2.35)

Values of S are given in Table 2.2.

2.3.4.4 Parameters relating to heat transport

The effective thermal conductivity of a moist

soil is given by de Vries (1966) as

5
Y k.6. .

= 5=1 (2.36)5
. k 0

i=l1
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where X. is the thermal conductivity of the i'th constituent

(Table 2.3), and k is the ratio of the average temperature

gradient in the i'th constituent to the average temperature

gradient of the bulk medium. A conceptual model yields

-k. - -2 -1 + . -g ).3IL + [xi- I g] + [ + - lj(l - 2gi)

(2.37)

where the liquid phase is considered continuous and g is

the "shape factor" of the i'th constituent. For the solid

particles, constant values as given in Table 2.2 are assumed.

No value is needed for g1 , since its coefficient is zero.

The value of g2 is considered a function of moisture content

as follows (Kimball et al., 1976):

.013 + .022 + . 0 < 6 (pF=4.2)
(0w (pF=4.2) n w

g 2

.035 + .298 ew (pF=4.2) < 0

(2.38)

The effective thermal conductivity of the air-

filled pores, enhanced by vapor distillation (de Vries,

1958), is given by

x2 a + DaL -T (2.39)

where Xa is the conductivity of the dry air alone.

Values of X obtained using this model are good

down to a moisture content approximately equal to 0k, at
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which the theory breaks down due to loss of continuity in

the liquid phase. At total dryness, the same theory may

be applied by substituting X2 for X in (2.37), i.e., by

taking air as the continuous phase. In this case, a correc-

tion factor for A of 1.25 is required. Between 0 = 0 and

0 = 6k, values of A are usually estimated by an interpolza-

tion scheme. In our scheme, we first evaluate A at 0 k in

the usual manner, except that we use X2 = X2 (6) t X2 (ek)

as given by (2.39), and then we use the known value of A

for 6 = 0 to find A at 6 by means of linear interpolation.

This scheme happens to be convenient computationally and

produces a more realistic A(O) curve than simple linear

interpolation.

The computed thermal conductivity functions for

our two soils are plotted in Figure 2.7. All curves are

qualitatively similar, reflecting the rapid increase of

A with 0 near dryness that results when contacts between

soil grains - the bottlenecks of heat flow - are bridged

by added moisture. The rate of increase in efficiency of

heat conduction with e decreases significantly once these

gaps are closed. There is a moderate influence of temper-

ature, which enters through (2.39). The thermal conductiv-

ity of the sand is roughly twice that of the silt loam at

a given saturation.

67



0 0.1 0.2
Molsture

0.3 0.4
Content

Figure 2.7

EFFECTIVE THERMAL CONDUCTIVITY
Left : SILT LOAM.

AS A FUNCTION OF e AND T.
Right: SAND.

I1
E

Ult#
0

'V

1J

00

(T)

CM

*0
L)

E
L-

In

E c)

00
CD)

0

J

0

0

0 0 0.1

MoIst
0.2

ure Co

25 C

0'C

0.3
ntent

-1
0.4

500
50C

25C



Given the ratios k., we may now compute C in

(2.29) and (2.31). Calculating the bulk thermal gradient

as the volumetrically weighted average of the gradients in

the various soil components, we obtain (Philip & de Vries,

1957)

(VT) a
5 (2.40)

(VT). 0.

i=l ' '

where (VT)a is the thermal gradient in the air and (VT).

is the thermal gradient in the i'th constituent. Applying

the definition of the k. 's, we transform this to

k
k 2 

(2.41)
~k.6.k1 6

This value of is valid for e down to 6k* For 6 = 0,

may be calculated using air as the continuous phase, and

C may be interpolated for 0 between 0 and 0k using the

scheme discussed earlier.

2.3.4.5 Soil surface and deep soil parameters

In Sections 2.3.4.1 through 2.3.4.4, we have

specified the variables in the partial differential equa-

tions as functions of state, defining the necessary soil

parameters and assigning typical values to them. Here we

treat the additional variables and parameters that arise

in the boundary conditions. These are hm , A, E, and ZB-
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The maximum ponding depth h ma represents the sum

of the storage capacity of surface depressions and the de-

tention of surface runoff in transit. We shall assign it

a value of 0.5 cm for both soil types.

The bare soil albedo, A, is known to be very

sensitive to the surface moisture content. There is also

a small dependence on the solar zenith angle, which we

shall ignore. Sellers (1965) and Eagleson (1970) give data

for wet and dry, sand and non-sand soils. The dry soil

always has the higher albedo. The variation of A with

moisture content was analyzed by Idso et al. (1975) for

Avondale loam. They discovered a perfectly linear decrease

of A for 6 from 0 to about .20 and relatively little

decrease for wetter soil. We shall assume a linear variation

of albedo from the dry value to the wet value at half-

saturation of the soil and above,

A + (A- A )26 2
d w Ad n

A = (2.42)

A 26 > n

The wet (w) and dry (d) values, estimated for our hypo-

thetical silt loam and sand from the sources mentioned

above, are listed in Table 2.2.

Sellers (1965) suggests that the emissivity of

a soil surface decreases slightly from wet to dry condi-

tions. We shall employ a linear dependence on 6 between

dryness and full saturation, with Ed = 0.9 and cw = 0.95,
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independent of soil type.

The depth of the lower boundary of the soil

systen represented explicitly by the reference model will

be assigned a nominal value of 5 meters. This value is

sufficiently deep to be beyond the range of diurnal temper-

ature variations and is probably usually greater than the

depth o" penetration of the storm/interstorm moisture waves.

Table 2.2 summarizes the parameter values for the

two soils. Of the sixteen listed, twelve are independent,

given the assumptions discussed in the previous sections.

The value 6 is a fixed fraction of n, and one of the five
u

parame-ers of the main wetting curve is determined by the

other Four and by the condition that 6 = 0 at pF = 7. The

parameter 65 is porosity minus 03 and 64. The 6k value

is estimated as described in Section 2.3.4.2. Further

considerations could be applied to reduce the parameter set

farther.

2.4 The Parameterization of Fluxes in the Surface Boundary

Layer

As illustrated in Figure 2.2, we shall express

the evaporation rate, E, and the atmospheric sensible heat

flux, H, in terms of T , T , p , p , and u . In order
a' g va vg a

to do this, we borrow the relations used by Anderson (1976),

which in turn are based heavily on Deardorff's (1968)

application of the similarity theory of' Monin and Obukhov
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(1954).

The transfers of momentum, heat, and water in

the atmospheric surface boundary layer (SBL) are given by

T = 2 2 (2.43) ~a M ua

H = -p c C u (T - T ) (2.44)
a p H a a g

p E - C U (pva pvg) (2.45)

where T is the shear stress, Pa is the density of air, and

C , C and C are bulk transfer coefficients.M' H W

Under conditions of neutral stability, these

coefficients are given by

k2

(CM N = (CH N W N (2.46)

(kn z 2
0

where the N subscript denotes neutral conditions, k is

von Karman's constant (=0.4), za is the screen height, and

z is the surface roughness length.
0

Under unstable conditions, the bulk transfer

coefficients are related to their neutral values through

CM (CM) 1/2 - +x 2 ++x

1 2 t + + 2 n2.
(C ON k 1 21 2

-2 tan-~1(X) + (2.47)
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and

CH C - C)/ 1/2 9 1+x2 -1

H N W N 1 M 1N 1 1 -N (_n2
(2.48)

in which x is a function of stability,

x = (1 - 16 z a/L)1 /4  (2.49)

where L is the Monin-Obukhov length. It is related to the

bulk Richardson number,

2g z (T - T )
(Ri)B 2 a a g (2.50)

(T + T ) u
a g a

by the expression

CH

S k (CH)N
za __ _ __ _ _ __ _ __ _ _

(- C - 3/2 (Ri)B (2.51)
L ( )1/2 CM3/B

(M N _(CM)I-

Knowing (CM N and (Ri)B, we can solve (2.47), (2.48),

(2.49) and (2.51) for CM and CH = C .

For stable conditions, assuming equality of the

stability functions, (Ri) 2

C C C 1 Ri J , (Ri)B < Ricr
M _ H _ W _ cr

(C ON HC ON (C )N
0 , (Ri)B > Rier

(2.52)
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where Ri is the critical Richardson number, above which
cr

there is no turbulence. We employ the value Ri cr = 0.2.

In all of our simulations, we shall take za

200 cm. Oke (1978) gives z for soils in the range 0.1 to

1 cm and for "desert" as 0.03 cm. Van Bavel (1966) gives

0.02 cm for a wet soil. We shall employ a fixed valte of

z = 0.1 cm for all computations. From (2.46), we then
0

obtain

(CM N = (CH N = (C )N = 0.00277 (2.53)

2.5 Deterministic Sequences of Atmospheric Forcing

As depicted in Figure 2.2 and demonstrated in the

last two sections, the soil/SBL system is forced by six

atmospheric variables - Is' I 9 , T a, a and p va. In

this work, these inputs are provided in two ways. The first

is by defining a deterministic and periodic structure for

these time series and fixing the parameters for two charac-

teristic weather patterns - a relatively cool, moist one

and a hot, arid one. This class of sequences is documented

here. The parameters for the two deterministic patterns

are nominal ones based on the data for a particular month

of the year at each of two sites in the U.S. - the month

of May at Dulles International Airport in norihern Virginia

and the month of July at the Municipal Airpor in Winslow,
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Arizona. Data is available in the "Local Climatological

Data" and other publications of the Environmental Science

Serxicea Administration - Environmental Data Service of the

U.S. Department of Commerce.

The random sequences are hourly interpolations

of the 3-hourly meteorological data for Winslow in July

1968 and for Dulles in May 1972. These data are available

as "Local Climatological Data." Average rainfall intensity

is available there on an hourly basis for Winslow and

6-hourly for Dulles.

2.5.1 Reduction to Primary Forcing Variables

Of the six input variables, we shall express two -

the radiation terms - as functions of fixed climatic param-

eters and the other four variables. The sequences of the

other four variables will then be defined.

The intensity of shortwave radiation reaching

the soil surface is given by (Eagleson, 1970; Curtis, 1982)

WBO sina e-na m (1 - 0.65N ) sina > 0

s 0 sine < 0

(2.54)

-2 .- l
where WBO is the solar constant (2 cal cm min ), a is

the angle of the sun above the horizon, a is the molecular

scattering coefficient, n'is a turbidity factor, m is the

relative thickness of the atmosphere through which the light
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travels, and N is the proportion of sky covered by cloud&.

The angle a can be expressed as

sin a = sin 6' sin $ + cos 6 c$s) " (t - 12) (2.55)

where 6' is the solar declination, 4 is latitude, and t is

time in hours since midnight. The molecular scattering

coefficient is

a 0.128 - 0.054 log m (2.56)

and

m = (sin o)l (2.57)

Climate parameters for Dulles and Winslow are

listed in Table 2.4. At Dulles the annual mean temperatu -e,

T, is 12.1*C and the annual mean precipitation rate, P, is

-l -l-
102 cm yr . For Winslow, T = 12.9*C and P = 9.3 cm yr

Dulles is located at about 390 N latitude and Winslow at

35*N. According to Eagleson (1970), values of the turbidity

factor ordinarily range from 2 for clear mountain air to

4 to 5 for smoggy urban areas. We assign values of 2.5 at

Winslow and 3,5 at Dulles. The solar declination averages

about 190 in May and 21.50 in July.

The cloud cover ratio, N, required for use in

(2.54), is taken as
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Parameter

n'

N
0

tb

tr

t.

i

F(-)

Tm

Tdi

tT

Um

Udi

tu

Dulles/May

12. 10 C

102 cm yr

380 57'

190 0'

3.5

0.50

57 hours

15 hours

22 hours

0.061 cm hr-

SEE TEXT

16.70 C

5.6 *C

14.5 hours

360 cm s

100 cm s-

13 hours

10-5 g em-pva

25. 8 *C

7. 8*C

15 hours

360 cm s~

180 cm s-1

18.5 hours

7x10-6 g cm--3
3

Table 2.4

REPRESENTATIVE VALUES OF THE FORCING PARAMETERS

FOR DULLES IN MAY AND WINSLOW IN JULY
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Winslow/July

12.90 C

18.6 cm yr

350 01'

210 30'

2.5

0.45

94 hours

2 hours

20 hours

0.193 cm hr~1



N P = 0

N (2.58)

1 P > 0

i.e. , total cover during rain events and a constant fair-

weather value in between. Values of N for Dulles in May

and Winslow in July, chosen to make the average cloudiness

over the month equal its observed value, are 0.50 and

0.45, respectively.

The atmospheric longwave radiation incident upon

the surface, Id, is expressed as (Curtis, 1982)

4 2
I = E a(T + 273) (1 + 0.17N ) (2.59)Zd a a

where the atmospheric emissivity is

Ea = 9.37 x 10-5 (Ta + 273)2 (2.60)

By means of (2.54) through (2.60), we h:.ve reduced

the variations of I and I to variations of P and Ta

which are two of our primary forcing variables.

2.5.2 Sequences of Primary Forcing Variables

We express the primary forcing variables as sim)le

periodic functions of time. The period of P is the storn

inter-arrival time, and the period of T and u is one day.a a

The vapor density has a relatively small diurnal variation

component and is thus considered constant here.
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The precipitation rate is given by

0 t- tb +k(tb + t r) < t< t.+k(t + t r

p =.

iF I. b r) t. + k(t + t )< t< t. + k(t + t )+ tt I b r b r r

(2.61)

where F gives the normalized storm intensity as a function

of normalized time, i representing the average intensity of

the entire storm, tb the time between storms, tr the storm

duration, t. the starting time of the first storm, and k

is any integer. The average storm intensity is computed

as the average storm depth divided by the average storm

duration.

Values of the various parameters in (2.61) appear

in Table 2.4. For Winslow, t. is set as 20 hours and tr +

t is made an integral number of days in order to reproduce
b

the typical occurrence of rain in the evening. The esti-

mates of tb and tr for Dulles are based on 6-hourly, rather

than hourly, records, so they may be somewhat too large.

The function F(T) is constant at unity for

Winslow. For Dulles, it is

I0.25 0 < T < .4

F(T) = 2.0 .4 < T < .8 (2.62)

0.5 .8 < T < 1

These hypothesized forms, the second taken from Eagleson

and Shack (1966), appear generally consistent with the
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observed data. For any given storm, of course, the temporal

intensity variations are not so smooth. The large fluctua-

tions in intensity that occur over relatively short time

periods may be important for surface runoff productuion.

Monthly averages of the 3-hourly, diurnally-

varying temperature and windspeed at each site are fitted

to cosine curves,

T = T + Tdi cos (t - t )]

a m di 2 tu

(2.63)

(2.64)

where t and t are
T u

and u achieve thei

these occur between

Values of

times in hours of the day at which T

r maxima. For both stations (Table 2.4),

noon and early evening.

pva, assumed constant, are listed in

Table 2.4.
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Chapter 3

EXPERIMENTS WITH THE REFERENCE MODEL

3.1 Model Convergence

3.1.1 Introduction

The reference model equations are solved by means

of a numerical (finite element) algorithm called SPLaSHWaTr

(Simulation Program for Land Surface Heat and Water Trans-

port), which is described elsewhere (Milly and Eagleson, 1980;

Milly, 1982). Convergence is the uniform approach of the

SPLaSHWaTr solution to the exact solution that results from

successive refinement of the computational grid in space

and time. The discretization in space and time is con-

trolled by four parameters. In this section, we shall

examine the sensitivity of the computed solutions to these

parameters, determining the most economical set that will

yield sufficient accuracy for our purposes.

Two parameters specify the spatial discretization.

The first of these is NL, the number of elements. The

second parameter, ZRAT, quantifies the concentration of the

node points near the land surface. It is defined by

NL-(AZ)0
ZRAT = - (3.1)

ZB

where (AZ) is the length of the top element in the column

and Z Bis the total column length. For ZRAT = 1, the top
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element thus has length ZB/NL. Smaller values of ZRAT

indicate smaller elements near the surface. Given the

values of NL and ZRAT, the node coordinates are calculated

by a procedure that spaces them in a logarithmic fashion.

Sample grids are shown in Figure 3.1.

The other two discretization parameters are

employed in the specification of the time step duration.

At the end of each time step, an upper limit.on the new

time step duration is computed by

At<min XERR TERR (3.2)ati lnd8. dT.(.)

x dt dt

where 0. and T. denote moisture content and temperature at
1 1

node i. The derivatives are estimated from the previous

time step. Equation (3.2) says that the anticipated change

in moisture content during the next time step shall not

exceed XERR at any node. Similarly, TERR is the maximum

allowable change in temperature.

The most accurate solutions would use large NL,

small XERR and TERR, and, as we shall see, ZRAT considerably

less than unity. On the other hand, the least expensive

solutions would minimize NL and maximize XERR and TERR. In

the following sections, we analyze this tradeoff for each

of the four combinations of the two soils and the two forc-

ing sequences described in Chapter 2.
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3.1.2 Spatial Discretization Parameters

We vary both NL (=5, 10, 20, 40) and ZRAT (=1, .1,

.01, .001) in search of an optimal pair. The time step

parameters are kept at very small values (XERR = 0.0005,

TERR = 0.1). These values were determined to be more than

sufficient for convergence in preliminary simulations.

Given that there are four different physical

problems, each to be simulated with 16 different combina-

tions of NL and ZRAT, it is desirable to isolate only a

few critical pieces of the solution on which to base the

convergence analysis. We shall employ the total changes

in stored (1) water and (2) heat that are calculated (1)

between the start of the simulation (t=0) and the first

rainfall (t=20 hours at both Dulles and Winslow) and (2)

from the start of the rainfall until shortly after it ends

(t=36 hours for Dulles and t=24 hours for Winslow). The

first time span is essentially one of storage depletion by

evaporation while the second is one of recharge by infil-

tration. More detailed analyses of the fluxes and states

of the system verified that these storage changes are

sufficient indicators of convergence.

Table 3.1 summarizes the results for a sand with

Winslow forcing. As an indicator of relative computational

effort, the execution time is given for each simulation.

The first column of results from Table 3.1 is plotted in
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NL ZRAT

MASS STORAGE
CHANGE
(cm)

t=0 to t=20 to
t=24 hr t=24 hr

HEAT STORAGE
CHANGE 2
(cal/cm2

t=0 to t=20 to
t=20 hr t=24 hr

EXECUTION
TI ME

(min.)

5 1 -. 774 .231 -68.4 -64. 0.9

5 0.1 -. 526 .254 - 2.7 -42.9 1.9

5 0.01 -. 402 .245 32.2 -50.7 2.9

5 0.001 -.486 .233 29.6 -61.4 2.6

10 1 -.753 .256 -54.2 -42.1 2.2

10 0.1 -.448 .252 16.4 -45.3 4.8

10 0.01 -. 378 .245 37.0 -50.1 5.9

10 0.001 -.386 .244 36.9 -50.9 6.2

20 1 -.613 .250 -20.8 -48.2 5.4

20 0.1 -.401 .249 28.5 -47.5 10.6

20 0.01 -. 366 .245 39.0 -50.2 12.0

20 0.001 -.368 .245 38.9 -50.5 12.5

40 1 -. 516 .256 - 3.4 -41.7 13.5

40 0.1 -.379 .248 34.7 -48.8 22.3

40 0.01 -. 363 .245 39.3 -50.1 24.5

40 0.001 -.363 .246 39.5 -50.3 25.6

Table 3.1

CONVERGENCE RESULTS WITH RESPECT TO NL

AND ZRAT FOR SAND/WINSLOW
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CONVERGENCE OF TOTAL STORAGE CHANGE AT t =20 hr FOR

SAND/WINSLOW AS FUNCTION OF NL AND ZRAT
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Figure 3.2. From this figure and the other data in the

table, several observations can be made. First, for fixed

ZRAT, the solution approaches an asymptote uniformly as the

number of elements increases. Second, for fixed NL, con-

vergence is more closely approached for the smaller values

of ZRAT. In particular, with ZRAT = 1 (which corresponds

to constant node spacing), the solution is far from converg-

ence. Third, Table 3.1 shows that convergence of the evapo-

ration results (t=0 to t=20 hr) requires many more elements

than does convergence of infiltration (t=20 to t=24 hr).

The former requires accurate simulation of the surface

temperature, while the latter does not. In fact, since the

surface never becomes saturated during this particular rain-

fall, the infiltration rate is simply equal to the rainfall

rate minus relatively small concurrent losses to evaporation.

Figure 3.3 depicts the tradeoff between total CPU

time and mass storage change error at t=20 hours for the

sand/Winslow example. The storage error is estimated by

assuming that the value -.363 cm, achieved with 40 elements

and ZRAT = 10- 2 or 10- 3 is exact. At fixed NL, the

increased cost of a small ZRAT is more than offset by

improved predictions.

Tables 3.2, 3.3, and 3.4 list the corresponding

results for the other soil/forcing combinations. The general

behavior is similar, but some significant differences are
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NL ZRAT

MASS STORAGE
CHANGE
(cm)

t=0 to t=20 to
t=20 hr t=24 hr

HEAT STORAGE
CHANGE 2
(cal/cm

t=0 to t=20 to
t=20 hr t=24 hr

EXECUTION
TIME

(min.)

5 1 -.889 .186 -42.8 -101. 0.9

5 0.1 -.905 .271 -40.2 -26.3 2.2

5 0.01 -.812 .259 -19.7 -37.6 4.8

5 0.001 -. 716 .250 10.5 -45.3 5.4

10 1 -.926 .241 -64.5 -54. 2.4

10 0.1 -.882 .273 -35.9 -26.1 5.9

10 0.01 -. 669 .254 10.2 -42.1 10.7

10 0.001 -.638 .251 15.8 -44.7 12.8

20 1 -.928 .270 -58.7 -27.6 6.2

20 0.1 -. 830 .268 -25.7 -29.6 16.3

20 0.01 -.623 .253 17.1 -43.0 22.4

20 0.001 -.616 .252 18.0 -43.5 29.3

40 1 -.912 .274 -44.5 -23.8 14.7

40 0.1 -. 749 .261 - 6.6 -36.2 37.9

40 0.01 -.615 .253 18.2 -43.3 47.6

40 0.001 -.607 .252 19.2 -43.6 68.9

Table 3.2

CONVERGENCE RESULTS WITH RESPECT TO NL

AND ZRAT FOR SILT LOAM/WINSLOW
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NL ZRAT

MASS STORAGE
CHANGE
(cm)

t=0 to t=20 to
t=20 hr t=24 hr

HEAT STORAGE
CHANGE

2(cal/cm )
t=0 to t=20 to
t=20 hr t=24 hr

EXECUTION
TIME

(min.)

5 1 -. 398 .682 61.7 - 4.6 0.9

5 0.1 -.434 .683 21.8 13.9 1.8

5 0.01 -.432 .682 22.7 13.5 2.2

5 0.001 -. 419 .673 33.9 0.8 2.1

10 1 -.434 .703 22.9 32.2 2.3

10 0.1 -.435 .681 20.8 12.2 3.9

10 0.01 -. 434 .681 21.5 11.2 4.5

10 0.001 -. 433 .681 22.1 11.2 4.6

20 1 -.441 .696 16.8 27.2 5.4

20 0.1 -.435 .681 20.6 11.6 8.4

20 0.01 -. 434 .680 20.8 11.3 9.1

20 0.01 -. 434 .680 21.0 11.3 9.2

40 1 -. 437 .685 19.3 16.6 12.5

40 0.1 -. 435 .681 20.6 11.4 17.5

40 0.01 -. 435 .681 20.7 11.3 13.1

40 0.001 -. 435 .681 20.7 11.3 18.3

Table 3.3

CONVERGENCE RESULTS WITH RESPECT TO NL

AND ZRAT FOR SAND/DULLES
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MASS STORAGE
CHANGE
(cm)

t=0 to t=20 to
t=20 hr t=24 hr

HEAT STORAGE
CHANGE

2(cal/cm )
t=0 to t=20 to
t=20 hr t=24 hr

EXECUTION
TIME
(min.)

5 1 -. 411 .615 130. -41.6 0.8

5 0.1 -. 525 .662 31.0 18.3 1.9

5 0.01 -. 520 .657 34.1 14.0 2.3

5 0.001 -. 504 .645 47.9 0.1 2.2

10 1 -.497 .672 54.7 23.3 2.4

10 0.1 -.526 .657 29.3 14.9 4.0

10 0.01 -.525 .656 30.4 12.7 4.6

10 0.001 -.523 .655 31.7 12.4 4.7

20 1 -.533 .687 25.1 42.6 6.0

20 0.1 -.526 .656 29.1 13.4 8.5

20 0.01 -.526 .656 29.4 12.8 9.3

20 0.001 -.525 .655 29.7 12.7 9.4

40 1 -.532 .669 25.6 26.4 13.4

40 0.1 -.526 .655 29.1 13.0 17.6

40 0.01 -.526 .655 29.2 12.8 18.6

40 0.001 -.526 .655 29.2 12.8 18.7

Table 3.4

CONVERGENCE RESULTS WITH RESPECT TO NL AND ZRAT

FOR SILT LOAM/DULLES
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apparent. The silt loam and the sand at Dulles converge

rapidly, ten elements being sufficient for fairly accurate

predictions. The greater number of elements required at

Winslow appears to be due to the necessity there for accu-

rate simulation of the moisture field in addition to the

temperature field. Whereas evaporation and heat storage

changes at Dulles are governed by energy availability,

the evaporative demand at Winslow is so great that the

surface dries out and evaporation comes under the control

of the soil moisture supply. Accurate simulation of mois-

ture availability apparently requires more elements than

for energy supply.

On the basis of the data presented here, we shall

use 20 elements and ZRAT = 10-2 in the remainder of this

report, unless otherwise noted.

3.1.3 Time Discretization Parameters

Using the fixed values of NL and ZRAT determined

in the previous section, we vary XERR and TERR, looking for

a satisfactory pair. Each problem is run for all combina-

tions of XERR = .0005, .001, .002 with TERR = .1, .3, 1.

and of XERR = .002, .004, .008 with TERR = 1., 3., 9.

The results for all four problems with certain

pairs of XERR and TERR are summarized in Tables 3.5 through

3.8. The "balance errors" in those tables are the differ-

ences between computed net inputs and computed storage
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MASS (cm) HEAT (cal/cm2 )

STORAGE
XERR TERR CHANGE

BALANCE STORAGE
ERROR CHANGE

BALANCE EXECUTION
ERROR TIME

(min.)

9 UNSTABLE

3 UNSTABLE

1 -. 124 -9x10~ 4

.3 -. 122

.1 -. 121

6x10-5

2x10-6

-11.4 5x10-2

-11.3 3x10-2

-11.2 1x10-2

2.8

5.4

12.0

Table 3.5

CONVERGENCE AND BALANCE DATA AS FUNCTIONS OF XERR

AND TERR FOR SAND/WINSLOW. VALUES ARE FOR THE

ENTIRE 24-HOUR SIMULATION.

MASS (cm) HEAT (cal/cm2 )

STORAGE BALANCE STORAGE
XERR TERR CHANGE ERROR CHANGE

BALANCE EXECUTION
ERROR TIME

(min.)

-. 379 -4x10-2

3 -. 371 -5x10-3

-. 370 -3x10~ 4

-. 370 -2x10- 5

.1 -. 370 -6x10 7

-18.1 2x10 1

-25.0 3x10- 2

-25.7 2x10-2

-25.9 2x10- 2

-25.9 9x10-3

Table 3.6

CONVERGENCE AND BALANCE DATA AS FUNCTIONS OF XERR

AND TERR FOR SILT LOAM/WINSLOW. VALUES ARE FOR THE

ENTIRE 24-HOUR SIMULATION.
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.008

.004

.002

.001

.0005

9.008

.004

.002

.001

.0005

1

.3

1.8

2.9

5.3

10.5

21.9



MASS (cm) 2HEAT (cal/cm)

STORAGE
XERR TERR CHANGE

BALANCE STORAGE BALANCE
ERROR CHANGE ERROR

EXECUTION
TIME
(min.)

.242 -2x10- 2

.242

.245

.246

5x10~ 4

3x10~ 4

-3x10 5

.246 -6x10- 6

34.8 4x10-

31.3 2x10-

31.8 lxlO'1

32.1 4x10-2

32.1 2x10- 2

Table 3.7

CONVERGENCE AND BALANCE DATA AS FUNCTIONS OF XERR

AND TERR FOR SAND/DULLES. VALUES ARE FOR THE

ENTIRE 36-HOUR SIMULATION.

MASS (cm) HEAT (cal/cm2

STORAGE BALANCE STORAGE BALANCE
XERR TERR CHANGE ERROR CHANGE ERROR

EXECUTIO4
TIME
(min.)

.134 -3x10- 2

.125

.129

.129

.130

4x10- 3

1x10- 3

1x10-4

2x10-5

46.6 4x10~'

41.0 3x10'-1

41.9 2x10'

42.1 8x10-2

42.2 3x10-2

Table 3.8

CONVERGENCE AND BALANCE DATA AS FUNCTIONS OF XERR

AND TERR FOR SILT LOAM/DULLES. VALUES ARE FOR

THE ENTIRE 36-HOUR SIMULATION.
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.008

.004

.002

.001

.0005

9

3

1

.3

.9

1.2

1.6

2.5

4.5

9.1

.008

.004

.002

.001

.0005

9

3

1

.3

.1

1.3

1.6

2.4

4.4

9.3



changes. The sensitivity of the computed solution to XERR

and TERR is very similar for all the problems. Convergence

of storage changes within about 1% is achieved with XERR =

0.002 and TERR = 1.0. Mass and heat balance errors increase

with the larger time steps. On the sand/Winslow problem

(Table 3.5), the solution was unstable (error grew unbounded)

for the larger time step parameters.

On the basis of computational cost, convergence,

stability, and balance properties, the values XERR = .002

and TERR = 1. appear to be appropriate ones for use in our

applications. They will be employed henceforth unless

otherwise noted.

3.2 Identification of Consistent Initial Conditions

For the purpose of the convergence analyses in

Section 3.1, we employed initial conditions on moisture

that allowed a fixed proportion of the average annual pre-

cipitation to drain from the bottom of the soil column.

That proportion was arbitrarily chosen to be 20%.

Consider now what happens if, for example, we

overestimate the column drainage rate. Then the initial

moisture content assigned will be excessive. The system

will be in disequilibrium and will approach a long-term

equilibrium through net storage losses to evaporation and

drainage. Eventually, the soil will become drier, thereby
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reducing the sum of average evaporation and drainage losses

to the average rate of soil moisture replenishment by rain-

fall. This equilibration process may require several months.

Given our constraints on computational time and

our primary interest in studying the soil moisture dynamics

at time scales on the order of days, we shall first need

to identify the initial moisture conditions that are con-

sistent with the forcing. Otherwise, our system behavior

may be dominated by transient adjustment to atmospheric

conditions. Having determined these new initial conditions,

we can then re-check the convergence results of Section 3.1.

Figure 3.4 illustrates the transient behavior

caused by an inconsistent initial condition. The results

of three simulations of the sand with Dulles forcing are

presented there. The only difference among the simulations

is the initial matric potential, which takes values of -100

(too dry), -70 (about right), and -60 (too wet). In each

plot, the vertical line at the bottom identifies the initial

condition. Near the surface, alternate precipitation and

evaporation periods result in wide fluctuations of moisture

content on short time scales. With the dry initial condi-

tion, a persistent wetting of the soil at about 1 meter

depth is discernible. On the average, the surface is welter

than the initial condition, and this results in diffusior

of moisture downward. The opposite effect is seen with 1he
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wet initial condition, where total water stored ir the

column decreases with time. The equilibrium initial condi-

tion shows negligible persistent diffusion of moisture

between the surface and deeper levels.

A convenient way to quantify the results presented

visually in Figure 3.4 is to tabulate the total water

storage changes during a sequence of repeated periods of

identical forcing. For the current problem, the period of

the forcing is three days (Section 2.5.2). Thus, in Table

3.9 we record these storage changes for several periods

and for each of the initial conditions of Figure 3.4.

Initial system response displays a transient behavior repre-

senting adjustment of the near-surface moisture distribution.

After two periods (six days), the storage rates stabilize.

For an initial potential of -60 cm, the excess moisture is

then lost at a rate of about (.74 cm/3 days) or .25 cm/d.

With an excess moisture content of about 0.01 (Figure 3.4)

and a total column depth of 500 cm, we can estimate an

equilibration time of (0.Olx500 cm)/(.25 cm/d) or 20 days.

In fact, the required time will be longer , as the rate will

decrease with time. The significant magnitude of this

storage rate is apparent upon comparison with the rainfa 1

at Dulles in May, which averages about 0.3 cm/d. An ini ial

matric head of -70 cm appears to meet our goal of elimin, t-

ing long-term storage effects in this example.

98



Initial
Matric

Head

Water Storage Change (cm) during Specified 3-day
Period

1 2 3 4 5 6

-30 -15.0 -8.4 -4.2 * * *

-60 -. 553 -. 300 -. 74 * * *

-70 -.406 .189 0 -0.14 * *

-80 -.0805 .1704 .152 .138 .131 .124

-100 .0553 .302 .282 * * *

Table 3.9

PERSISTENT DRYING OR WETTING OF THE SAND AT DULLES

RESULTING FROM DISEQUILIBRIUM INITIAL CONDITIONS.

THE VALUE -70 IS IN APPROXIMATE EQUILIBRIUM, AS EVIDENCED

BY THE SMALL STORAGE RATES AFTER THE INITIAL TRANSIENTS.

*Not computed.
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An analysis similar to that represented by Figure

3.4 and Table 3.9 was performed for each of the other three

simulation scenarios. The intial conditions determined are

tabulated in Table 3.10.

Also listed in Table 3.10 are the corresponding

moisture contents, the resultant rates of drainage to ground-

water, and the calculated values of the Bowen ratio, which

is defined by

H (3.3)

the ratio of sensible heat flux to latent heat flux. The

tabulated values of 3 are based on fluxes averaged over one

period of forcing, after the initial transient has disap-

peared. The values for Winslow are reasonable ones for a

semi-arid location, where evaporation is almost equal to

precipitation. Values for Dulles might be expected to lie

between 0.4 and 0.8 (Oke, 1978, p. 59). It is possible

that the somewhat excessive evaporation calculated for

Dulles is due to the absence in the model of vegetation and

its resistance to evapotranspiration.

The validity of the convergence results of Section

3.1 was verified with the new initial conditions by repeat-

ing selected simulations.
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Initial
Matric
Potential

Silt loam/Winslow

Sand/Winslow

Silt loam/Dulles

Sand/Dulles

-106 cm

-330

-500

-70

Moisture
Content

0.038

0.032

0.26

0.057

Drainage
Rate

0. cm/yr

1.9

4.3

51.0

Table 3.10

EQUILIBRIUM VALUES OF THE INITIAL MATRIC

POTENTIAL, WITH ASSOCIATED MOISTURE CONTENTS,

DEEP PERCOLATION RATES, AND BOWEN RATIOS.
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3.3 Model Simplifications. and Their Effects on Surface

Fluxes

3.3.1 Introduction

In this section, we analyze the significance of

various physical modes of moisture and heat transport and

storage. This is done by eliMinating some effect in the

reference model and comparing the resulting fluxes to those

calculated with the effect present. The effects considered

are listed below:

1. Heat of wetting

2. Temperature coefficient of matric potential

3. Temperature coefficient of hydraulic conductiv-

ity

4. Water vapor

5. Hysteresis

For each effect, a simulation is performed with each of the

soil/forcing combinations, The duration of these test simu-

lations is four days. This is approximately the period of

the deterministic forcing sequences. Although this may lie

entirely within the initial period of transience associated

with the specification of a constant initial moisture poten-

tial, it was found to be sufficiently long to exhibit any

differences that occurred in longer tests. Conclusions will

later be checked using longer random forcing sequences.

The philosophy underlying this section is that-

negligibility of physical effects cannot necessarily be
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inferred directly by inspection of the dynamic and

diagnostic equations of the system, but that it may be

demonstrable through simulation. The former approach is

difficult to apply rigorously. For instance, by inspection

of the equations, one may conclude that vapor transport

effects are negligible when the soil is not too dry. Since

a dry boundary layer will often develop at the bare soil

surface, even in a humid climate, the qualification that

the soil must not be too dry is quite a restriction on

generality. The question of interest for many purposes is

really the following: "Even given the possibility that a

certain mechanism (mathematically, perhaps a term in the

equations) may be significant locally at some times, what

is its overall impact on the system behavior as evidenced

by the sensitivity, say, of system outputs to it?" Through

comparative simulations of typical combinations of soil

and weather, we may determine the importance of soil vapor

to evaporation, for instance.

3.3.2 Heat of Wetting

It can be shown using (2.35) and the data in Table

2.2 that the magnitude of the heat of wetting should almost

always be negligible. The possible exception occurs for

soils of large specific surface or high clay content when

the magnitude of i is very large, on the order of its air-

dry value.
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Table 3.11 gives data on the main components of

the surface heat balance for silt loam/Winslow. The latent

heat term is essentially proportional to evaporation, so

the most important (for our application) and most sensitive

term in the water balance is also represented. Mean values

from the complete reference model are tabulated, along with

values of the mean error and root-mean-square error of the

reduction, relative to the reference model. It is apparent

that the heat of wetting is negligible, as the results are

almost identical. The silt loam at Winslow, which has a

large specific surface and a very negative initial matric

potential, is the combination that would most likely have

been affected by the heat of wetting. This is confirmed

by the data for the other combinations, which show mean

and RMS errors of less than 0.05 ly/day.

3.3.3 Temperature Coefficient of Matric Potential

Due to the dependence of the (O) relation on

temperature, matric potential gradients will be affected

by the temperature distribution for a given distribution

of moisture in the soil. This leads to what may be viewed

as thermally-induced liquid flow. By using typical values

of the variables, one can show that the magnitude of this

flow term may be significant with respect to the isothermal

liquid flow component. The question of whether or not the
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H LE

Reference Mean 285.7 20.8 202.0 62.8

Reduction ME -0.1 0.0 0.2 0.0

Reduction RMSE 0.3 0.4 0.8 0.5

Table 3.11

EFFECTS ON SIMULATED FLUXES OF THE REDUCTION ELIMINATING

THE HEAT OF WETTING. DATA ARE FOR SILT LOAM/WINSLOW.

ME = MEAN ERROR, RMSE = ROOT-MEAN-SQUARE ERROR.

UNITS ARE ly/day.
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net fluxes are significantly altered by this effect remains

unanswered by such an analysis, however, as there is the

possibility that a compensating reverse flow due to moisture

content gradients will be established. Here again we are

arguing that local, instantaneous system behavior is not

necessarily representative of the global, dynamic system

response. We therefore examine the latter to study the

importance of the temperature coefficient of matric poten-

tial..

The specific reduction made in this section is to

set the constant a' , defined by (2.16), to zero. Hysteretic

moisture retention is then a temperature-independent pro-

cess. This reduction eliminates the liquid water storage

coefficients of temperature in the conservation equations

(2.1) and (2.2). In addition, moisture retention calcula-

tions are more straightforward without the temperature

factor in (2.15).

The results of this reduction are tabulated in

Table 3.12. Tabulated means of fluxes and errors are based

on the 96 hourly values. In general, the errors of largest

absolute magnitude are those associated with evaporation.

These values are quite small, however, equalling less than

2% of actual evaporation. The small values of the root-

mean-square error (RMSE) indicate that the small mean errors

are not merely a result of averaging over the 96 periods.

Rather, good agreement between reference model and reduction
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G H LE

Silt loam/Winslow

Sand/Winslow

Silt/loam/Dulles

Sand/Dulles

0
-1

Reference Mean

Reduction ME

Reduction RMSE

Reference Mean

Reduction ME

Reduction RMSE

Reference Mean

Reduction ME

Reduction RMSE

Reference Mean

Reduction ME

Reduction RMSE

Table 3.12

EFFECTS ON SIMULATED FLUXES OF THE REDUCTION ELIMINATING THE TEMPERATURE

COEFFICIENT OF MATRIC POTENTIAL. ME = MEAN ERROR, RMSE = ROOT-MEAN-SQUARE ERROR.

UNITS ARE ly/day.

285.7

0.4

0.6

231.1

0.4

0.8

225.1

1.0

2.3

150.7

0.4

0.8

20.8

0.1

2.0

31.4

0.0

1.4

18.9

-0.3

2.6

21.6

-0.3

1.7

202.0

0.5

1.1

104.1

-0. 8

1.9

14.6

-1. 3

3.0

7.9

-0.9

2.0

62.8

-0.2

2.4

95.6

1.3

3.4

191.6

2.7

7.2

121.2

1.6

4.0

Rn



is observed throughout.

These results demonstrate the negligibility of the

temperature effect on matric potential, at least in the simu-

lations examined. Should these results be confirmed in fur-

ther simulations with more general random forcing, they would

provide justification for neglecting this effect in soil

moisture simulations. This would be a useful result, elimin-

ating one of the theoretical couplings between moisture and

heat fluxes in soils. It would also allow one to avoid the

necessity of quantifying the temperature dependence of

matric potential, a subject on which there seems to be

little agreement, either experimentally (Milly and Eagleson,

1980) or theoretically (Milly, 1982).

3.3.4 Temperature Coefficient of Hydraulic Conductivity

Another effect that couples the moisture and heat

fields in soil is the temperature dependence of the hydrau-

lic conductivity. This dependence enters through the vis-

cosity of water, as seen in (2.23). Hydraulic conductivity

increases by a factor of two between 10*C and 40*C. In

assessing the significance of this sensitivity, it is impor-

tant to realize that a bare soil surface is often subjected

to large diurnal variations in temperature, as the surface

is the major site of conversion of radiant to thermal energy

and vice versa.
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In a first reduction eliminating the temperature

dependence of hydraulic conductivity, we evaluate the tem-

perature factor only once, at the start of the simulation,

using the initial soil temperature (14 0 C at Dulles, 240 C at

Winslow). A comparison of this reduction with the reference

simulations is presented in Table 3.13. As we saw in Sec-

tion 3.3.3, the largest errors are in the evaporation term.

In each case, evaporation is underpredicted. The largest

mean error is a little over 5% of the total evaporation for

the sand/Winslow case. The fairly low RMSE values suggest

that this average bias is not much smaller than the typical

hourly error. This is confirmed by Figure 3.5, which shows

how the reduction.underpredicts evaporation during the day-

time of the first two days. This, of course, is when the

reduction underpredicts the hydraulic conductivity.

The results of this section, which show a minor

importance for the temperature factor, can be improved by

evaluating this factor at a temperature closer to an average

surface soil temperature. The average should be weighted

more heavily during the daytime, when most evaporation

occurs. Keeping in mind that soil surface temperatures

usually exceed air temperatures in the heat of the day, we

repeated the above analysis using the maximum air tempera-

ture to evaluate the conductivity. Temperature is refer-

enced to the air since the soil temperature is not known
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Rn G

Silt loam/Winslow

Sand/Winslow

Silt loam/Dulles

Sand/Dulles

Reference Mean

Reduction ME

Reduction RMSE

Reference Mean

Reduction ME

Reduction RMSE

Reference Mean

Reduction ME

Reduction RMSE

Reference Mean

Reduction ME

Reduction RMSE

EFFECTS ON SIMULATED FLUXES OF

285.7

-0.1 (-0.1)

0.6 (0.9)

231.1

-1.4 (0.1)

2.8 (1.8)

255.1

-2.6 (-0.8)

5.8 (3.0)

150.7

-0.6 (-0.7)

1.0 (1.2)

Table 3.13

THE REDUCTION

20.8-

0.0 (0.0)
1.3 (1.7)

31.4

0.3 (-0.1)

5.8 (5.7)

18.9

1.0 (0.3)

8.4 (5.2)

21.6

0.4 (0.3)

2.5 (2.5)

202.0

0.0 (0.1)

1.0 (1.4)

104.1

3.5 (-0.1)

6.7 (3.4)

14.6

4.0 (1.6)

9.4 (6.1)

7.9

1.3 (1.4)

2.9 (3.4)

62.8

-0.1 (-0.2)

2.7 (3.5)

95.6

-5.4 (0.3)

12.1 (9.6)

191.6

-7.6 (-2.7)

21.6 (13.1)

121.2

-2.4 (-2.4)

5.8 (6.2)

THAT EVALUATES THE HYDRAULIC

CONDUCTIVITY AT A CONSTANT TEMPERATURE. VALUES OUTSIDE PARENTHESES USE INITIAL

SOIL TEMPERATURE, WHILE VALUES INSIDE USE MAXIMUM AIR TEMPERATURE.

ME = MEAN ERROR, RMSE = ROOT-MEAN-SQUARE ERROR. UNITS ARE ly/day.

0

H LE



D Cl imat e: WINSLOW So i I: SAND

Reference o.Reduction
NCD

Xc:

x C

U-

(0 C

CJ

N I I I I I
6.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (days)
Figure 3.5

EVAPORATION CALCULATED FOR SAND/WINSLOW WITH HYDRAULIC CONDUCTIVITY
EVALUATED AT THE INITIAL CONDITION ("REDUCTION').



a priori. The effects of this change on the flux

predictions are shown in parentheses in Table 3.13. With

the new approximation, the evaporation bias is reduced to

less than two percent for all simulations. The time varia-

tion of the temperature factor is therefore negligible,

provided an average soil surface temperature, or an appro-

priate surrogate, is used.

3.3.5 Water Vapor

Water vapor accounts for several of the transport

and storage terms in the conservation and flux equations,

(2.1)-(2.4). If the vapor phase could be ignored, this

would lead to considerable simplifications. For instance,

aside from the slight thermal influences on liquid moisture

retention and hydraulic conductivity, the vapor provides

the only mechanism by which the temperature distribution

can directly enter the moisture conservation equation.

As our first reduction of the governing equations

with respect to vapor, we set the humidity equal to zero

everywhere in the soil. To calculate evaporation, we employ

(2.45), with p vg evaluated using (2.14) with the initial

value of temperature and the time-varying value of $ at the

surface.

The results of the comparison are summarized in

Table 3.14. As usual, the largest error is in the evapora-

tion _t is cs Cstl 1y2 uderpr.dit, muci as
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H LE

Silt loam/Winslow

Sand/Winslow

Silt loam/Dulles

Silt loam/Winslow

Reference Mean

Reduction ME

Reduction RMSE

Reference Mean

Reduction ME

Reduction RMSE

Reference Mean

Reduction ME

Reduction RMSE

Reference Mean

Reduction ME

Reduction RMSE

285.7

-5.3 (0.0)

13.1 (5.3)

231.1

-5.4 (-1.0)

12.4 (6.1)

225.1

-6.6 (-0.2)

15.3 (1.5)

150.7

-1.4 (-0.2)

4.4 (2.8)

20.8

1.1 (-0.4)

33.9 (7.6)

31.4

-2.6 (-6.1)
22.9 (28.7)

18.9

3.8 (-0.1)
38.7 (4.1)

21.6

-1.5 (-2.6)

13.2 (13.5)

202.0

16.3 (0.5)

35.5 (13.1)

104.1

16.7 (5.2)
32.8 (15.6)

14.6

17.9 (1.0)

39.9 (4.6)

7.9

5.3 (2.0)
13.8 (8.5)

62.8

-22.6 (-0.2)

49.6 (19.2)

95.6

-19.5 (-0.1)
41.9 (14.1)

191.6

-28.3 (-1.1)

87.5 (8.9)

121.2

-5.2 (0.4)

19.2 (7.4)

Table 3.14

EFFECTS ON SIMULATED FLUXES OF THE REDUCTION ELIMINATING VAPOR.

VALUES OUTSIDE PARENTHESES FOR STRAIGHT REDUCTION. VALUES INSIDE

COMPUTED WITH VAPOR ENTERING ONLY THROUGH D v. ME = MEAN ERROR,
RMSE = ROOT-MEAN-SQUARE ERROR. UNITS ARE ly/day.
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36 percent at Winslow with the silt loam. Clearly, the

ability of water to evaporate beneath the soil surface is

important, especially in the dry scenarios. Figure 3.6

illustrates the time variation of the error in calculated

evaporation induced by neglecting vapor.

Given the various ways in which vapor enters the

governing equations, it is logical to ask if any particular

effect can be isolated as the most important, and, if such

a dominant effect exists, how it can be parameterized. We

hypothesize that the vapor analog of hydraulic conductivity,

D V in (2.3) and (2.26), is the most important. Figure 2.5

shows that D v greatly exceeds K when either soil is dry.

In order to test the aforementioned hypothesis, we

keep p v equal to zero everywhere in the governing equations

except in (2.26). Furthermore, we shall evaluate D with

(2.26) using a typical temperature, the initial temperature,

instead of the actual time- and space-varying temperature.

This latter decoupling of moisture and heat is analogous to

the reduction applied to hydraulic conductivity in Section

3.3.4.

The improved results obtained with this D

parameterization appear in the parentheses in Table 3.14.

As far as the means are concerned, the results are greatly

improved. A comparison of the time variation of evaporation

is presented in Figure 3.7 for all four scenarios.

Improvement over Figure 3.6 is evident. The most significant
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errors are in the two Winslow sequences. In the silt loam,

evaporation is slightly underpredicted during day 2 and

slightly cverpredicted during the next two days. In the

sand, the low evaporation during the dry days is out of

phase wit the reference model. In the reference model,

downward temperature gradients during the day suppress

evaporation through the thermal vapor effect. In the reduc-

tion, no such opposing force exists and evaporation reaches

a maximum near noon. As far as total evaporation is con-

cerned, the thermal effect does not appear to be crucial.

It appears that the isothermal vapor conductivity, D 9 is

indeed the dominant mechanism by which vapor in the soil

affects surface fluxes and that its temperature dependence

is not crucial.

3.3.6 Hysteresis

Given the magnitude of the hysteresis loop usually

observed in soils (Figures 2.3 and 2.4), the application

of a single O($) curve to a process involving both wetting

and drying may lead to significant errors. However, when

such errors can be shown to be negligible, the resultant

simplifications in the relation between 0 and i facilitate

calculations in mathematical analyses, either analytic or

numerical.

In an attempt to assess the importance of

hysteresis in a soil undergoing repeated wetting and drying,

1.19



we perform another reduction experiment. In the reduction,

an average moisture retention curve is defined by

6(-) =(-) + ed(-) (3.4)

where ew(-) and 6 d - are the main wetting and drying

curves, given by (2.19) and (2.21). Since the initial con-

dition for the reference simulations has been specified to

lie on the main drying curve, and not on e(-), it is impos-

sible to assign identical initial $ and 6 to the reference

model and to the reduction. Since the hydraulic conductiv-

ity, which is the main controller of moisture flow in the

soil, depends uniquely on 6, rather than on $, we shall

apply to the reduction that value of $ that produces the

same initial 6 as in the reference model. Then

e( )red) = 6 d ref) (3.5)

where red is the initial matric potential applied to the

reduction and ' ref is the initial value assigned in the

reference model, given already in Table 3.10. In Table

3.15, the values of $red are presented for each scenario,

together with the {r f values. In each case, .ied s

smaller in magnitude than ref, as should be expect d on

the basis of Figures 2.3 and 2.4.

Because the initial conditions are not precisely

equivalent (i.e., 6, but not l, is matched), there is an

initial discrepancy in the simulations that is due more to
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Silt loam/Winslow

Sand/Winslow

Silt loam/Dulles

Sand/Dulles

Reduction

-5.4x105 cm

Reference

-10 cm

-121

-128

-51

-330

500

-70

Table 3.15

INITIAL MATRIC POTENTIAL APPLIED IN THE

HYSTERESIS REDUCTION. CORRESPONDING REFERENCE

VALUES ARE ALSO LISTED.
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the initial condition than to the dynamics of hysteresis.

This period is one to two days in duration. In order to

get beyond this initial transient, we run these simulations

for ten.days instead of the four days used up until now for

the reduction tests.

Comparisons of the calculated evaporative heat

fluxes are presented in Figure 3.8 for each scenario. For

both soils at Winslow, the calculated fluxes differ somewhat

during daytime evaporation from a wet surface, but are other-

wise quite similar. Differences are much more pronounced

in the humid Dulles climate, especially for the sand. Peak

evaporation from a drying surface is significantly overpre-

dicted in each case.

Table 3.16 is a summary of the average errors in

surface fluxes. The first 48 hours are excluded from the

calculations, because of the discrepancy discussed earlier.

Evaporation is usually overpredicted, and the largest bias

is 31.5 ly/day, over 35 percent of the average evaporation

calculated by the reference model, for the sand at Dulles.

It is apparent from the foregoing analysis that

moisture retention hysteresis is a physically significant

process, directly affecting the average water and heat

balances on time scales up to at least several days, parti-

cularly in the sand.
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H LE

Silt loam/Winslow

Sand/Winslow

H
iN,

Silt loam/Dulles

Sand/Dulles

Reference Mean

Reduction ME

Reduction RMSE

Reference Mean

Reduction ME

Reduction RMSE

Reference Mean

Reduction ME

Reduction RMSE

Reduction Mean

Reduction ME

Reduction RMSE

Table 3.16

EFFECTS ON SIMULATED FLUXES OF THE REDUCTION ELIMINATING HYSTERESIS.

DAYS 3 THROUGH 10. ME = MEAN ERROR, RMSE = ROOT-MEAN-SQUARE ERROR.

UNITS ARE ly/day..

280.9

-0.9

8.1

214.9

2.4

5.6

214.4

1.4

10.4

139.1

-4.5

26.1

10.3

0.1

12.1

19.3

-2.4

14.5

13.2
-1.0

16.4

17.6

-4.5

26.1

211.3

0.7

11.1

138.5

-5.5

13.6

30.8

-2.7

17.6

32.7

-19.4

31.5

59.2

-1.8

26.4

57.1

10.3

14.5

170.4

5.1

38.9

88.9

31.8

63.5
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3.3.7 Verification of Reductions using Random Forcing

In the preceding sections, we studied various

simplifications of the equations governing moisture and heat

in a soil. The validation of these reductions was performed

using short, periodic sequences of forcing, and only one

simplification at a time was tested. In order to verify our

findings under longer, random forcing, a final set of experi-

ments is presented.

As before, four scenarios are considered. The

difference here is that the forcing sequences for Winslow

and Dulles are based directly on the three-hourly observa-

tions reported in "Local Climatological Data" for those sta-

tions during July 1968 and May 1972. For Winslow, hourly pre-

cipitation reports are used together with interpolated hour-

ly values of 3-hourly reports of other meteorological vari-

ables. For Dulles, 6-hourly rainfall amounts were reported.

The intensity is assumed constant during these 6-hour

periods in order to specify hourly values of rainfall. For

the other variables, interpolation of 3-hourly values is

again used to obtain hourly forcing. Both sequences are

744 hours (31 days) long.

All simplifications considered in earlier sections,

except the hysteresis one, are applied jointly. The heat

of wetting and the temperature dependence of moisture reten-

tion are ignored, The temperature factor in the hydraulic
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H LE

Silt loam/Winslow

Sand/Winslow

Silt loam/Dulles

Sand/Dulles

Reference

Reduction

Reduction

Reference

Reduction

Reduction

Reference

Reduction

Reduction

Reference

Reduction

Reduction

Mean

ME

RMSE

Mean

ME

RMSE

Mean

ME

RMSE

Mean

ME

RMSE

273.3

-0.1

4.9

209.0

0.2

5.1

182.0

-0.3

4.0

109.1

-0.4

3.4

5.3

0.0

11.9

9.0

-1.8

18.4

9.4

-0.1

7.7

13.7

-1.3

11.4

Table 3.17

EFFECTS ON SIMULATED FLUXES OF THE JOINT REDUCTION DESCRIBED

SECTION 3.3.7 FOR 31-DAY SIMULATIONS. ME = MEAN ERROR,
RMSE = ROOT-MEAN-SQUARE ERROR. UNITS ARE ly/day.

226.6

-0.2

12.4

152.4

1.6

12.1

41.4

0.1

15.9

47.5

0.4

16.1

172.4

-1.0

17.1

76.1

-1.3

9.6

0.2

0.8

7.5

19.3

2.2

9.5

IN
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conductivity is evaluated using the average daily maximum

air temperature, an approach that was shown to yield good

results in Section 3.3.4. Water vapor is ignored in the

soil, except for its effect on isothermal vapor flow

through D , as in Section 3.3.5. The reference simulation4v'

involves none of these simplifications.

Results of the comparisons of the joint reductions

with the reference model using one month of random forcing

are presented in Table 3.17. The reduced model performs

very well. Maximum average heat flux errors are on the

order of one ly/day. The RMS values of hourly errors are

in the range of 3 to 20 ly/day, indicating very good agree-

ment of hourly values.

3.4 Summary and Discussion

In this chapter, we have performed various

experiments using a detailed numerical simulation model of

soil moisture and heat dynamics under atmospheric excitation.

The first section was devoted to the practical problem of

determining the degree of discretization in time and space

necessary for an accurate solution. For the scenarios con-

sidered here, it is sufficient to use 20 elements to repre-

sent the soil moisture zone, with most of those elements

concentrated within the top 50 cm of the soil. A suffi-

ciently small time step size is one that prevents the
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moisture content (and temperature) at any node from

changing by more than 0.002 (lC) during any step.

Due to the very long time constants (% months)

governing moisture storage within the top meters of the

soil, we find it necessary to specify initial conditions

that are consistent (i.e., in dynamic equilibrium) with the

forcing. Otherwise, system behavior will be dominated by

long-term storage effects. Equilibrium rates of deep perco-

lation to groundwater were presented in Table 3.10 for the

four scenarios. These values may be underestimated, espe-

cially in silt loam, because the numerical model does not

take into account the existence of cracks and other macro-

pores that allow rapid, deep infiltration of water during

storms. A complementary overestimate of evaporation would

accompany this effect.

The final part of this chapter demonstrates how

the moisture flow equations (2.1) and (2.3) may be simpli-

fied greatly without causing significant changes in pre-

dicted evaporation, sensible heat flux, etc. Our results

provide rigorous justification for the use of an isothermal

flow equation to model evaporation from a bare soil. On

the other hand, it appears that soil moisture retention.

hysteresis is generally not negligible. Neglecting it leads

to serious overestimation of average evaporation from sands

in our examples.
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Chapter 4

PARAMETERIZATIONS OF SOIL MOISTURE AND HEAT

4.1 Introduction

Chapter 3 provides the basis for simplification of

the equations governing soil moisture dynamics originally

presented in Chapter 2. In particular, it supports the appli-

cation of isothermal moisture flow theory in the prediction

o the surface moisture and heat fluxes. The validated sim-

p ified theory for moisture dynamics forms the basis for

f irther analysis in this chapter.

Whereas the goal of Section 3.3 was to simplify the

reference model with respect to physical processes, the aim

here can be viewed as an attempt to simplify the mathematical

(more specifically, the computational) representation of a

given set of physical laws. The finite element method applied

so far generally requires a large number of states and small

computational time increments, leading to heavy demands for

computer time. Improved economy, with reasonable accuracy,

can come only with a reduction of the state set and/or an

increase in the allowable time step size.

In this chapter, we are primarily concerned with

simplified models of the moisture dynamics. The corresponding

problem of soil temperature prediction has been dealt with by
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Deardorff (1978), whose parameterization using the force-

restore method, described in Section 4.4, will be coupled here

with three proposed moisture parameterizations. Deardorff

showed that a simple two-state temperature model can provide

efficient and accurate prediction of the ground surface tem-

perature when the forcing is dominated by a deterministic,

periodic component (e.g., the diurnal cycle). It is our goal

to develop an efficient scheme of similar complexity to repre-

sent the soil moisture dynamics, which, unlike the heat

dynamics, are governed by extreme nonlinearities.

The parameterizations outlined in this chapter will

be evaluated in Chapter 5. As a result of that analysis, a

modified version of the most promising moisture model will be

proposed and tested.

4.2 A Two-Node Model of Soil Moisture Dynamics

Our parameterizations of the soil moisture dynamics

are to be based on the physical theory introduced in Chapter

2 and simplified in Chapter 3. Given the reductions that were

validated in Section 3.3, we may reduce (2.1) and (2.3) to

dO - D {[K(O) + D ($,6)] + K(e)} (4.1)
di Dt z $v Z

where

6 = 0H( (4.2)
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in which the H subscript indicates that 6 is a hysteretic

function of $, as prescribed in Section 2.3.4.1. Examples of

the functional forms of K(6) and D V(6) have also been pre-

sented in Chapter 2 and are used here. Their temperature

dependences are eliminated as described in Section 3.3.

The value of D can be significant relative to K

only when is much greater than unity. This justifies re-

writing (4.1) as

de = D_ [K(6) + D (i ,6)] L + 1 (4.3)

since the added term is always negligible.

As a starting point for our parameterizations, we

shall apply Galerkin's finite element method to (4.3). In

contrast to the previous application that yielded the refer-

ence model, however, we shall employ only two elements (and

eventually only one). We shall thereby preserve the funda-

mental physics of the process. The numerical accuracy of

the scheme will not be immediately guaranteed, though, due to

the extreme coarseness of the grid. By judicious selection

of the element lengths, we shall attempt to reproduce the

predictions of the reference model.

Details of the application of finite elements to

(4.1) are not presented here. Milly and Eagleson (1980)

describe the approach used here and derive a finite element
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description of (2.1) through (2.4), which are a generalization

of (4.1). We can therefore apply our reductions directly to

their finite element equations. For two elements, this yields

A ldej 0 0 d

2T d$ dt

A1 + 2 d'Pd2

2 d2 dt

A 2  dO1 di 3
2 diP3J dt

~K KKel Kel
A- 0 K f

K K K K
-e+ - $l + K-K - =

Al A1 4 A2  A2  2 + Ke2 -Kel0

K K
0 Ke2  e2 -K  -R

A 2  A2 3 e2 g

(4.4)

In this system of equations, i 1 , $2 , and $3 are the values

of matric potential at the surface, at some shallow depth,

and at a greater depth, in that order. (We have reversed the

ordering used by Milly and Eagleson.) The subscript of is
dip

the same depth index. The length of the top element is A

and that of the second is A2. Nodes 2 and 3 are thus at

depths A and A ,A respectively. The variables f and -R

are fluxes of water into the system across its top and bottom.

Physically, f is infiltration (or minus exfiltration), and

R is the deep percolation rate. Although we shall not speci-

fy the functional forms of these fluxes at this point, it
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should be noted that they are dependent upon the state at the

surface node.

The K ei in (4.4) refers to an effective value of

the sum of K and D over element i. While strict application
14v

of the finite element method would require

K . - [K(6(z)) + D (6(z), 4(z))]dz (4.5)
el A. $v

element i

which can be approximated as

2
K ei (K + D ) (4.6)

1 n=1

where n denotes the element endpoints, experiments with the

reference model have demonstrated improved rates of conver-

gence using

K . = [(K + D ) (K + D ) ]1/2 (4.7)
ei vl $v 2

which is a geometric mean. Haverkamp et al. (1977) have also

found this to be an optimal weighting procedure.

During initial testing of the model described in

this section, we discovered that (4.7) was unworkable as a

formula for the effective hydraulic conductivity between the

two nodes. It yields an excessive K el and therefore exces-

sive evaporation, when the difference in moisture content

between the two nodes is great. (Of course, (4.6) would be
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even worse, as the arithmetic mean is larger than the

geometric mean.) Apparently, the coarse lumping of this

system requires that the effective hydraulic conductivity

be parameterized more carefully.

Consider a steady, unsaturated, vertical flow

between two points. The flux is given by

q = -K{* + 1 (4.8)

Rearrangement, using the fact that q is constant, and inte-

gration between levels 2 and 1, separated by distance A1 ,

yields

2

A 1 f l+q/K (4.9)
1q/

In order to obtain a simple formula for an effective hydraulic

conductivity, we now drop the gravity term (unity) in the

denominator, and assume that K and i are related through

(Eagleson, 1978)

K = K ($Of/$)mc (4.10)

Although this is inconsistent with our representation of soil

properties and does not allow for hysteresis, it should even-

tually yield a better estimate of K than (4.6) or (4.7).

With these assumptions, (4.9) becomes
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qA _ __ -- mc+_ ( 2 '-mc+l

K m [-c ~ J (4.11)

or

qA me-i (i 1K - $ 2K2 ) (4.12)

where K and K2 are values of K at nodes 1 and 2. Defining

the effective hydraulic conductivity as the "apparent" con-

stant value for the interval A1 , we can write

K = q (4.13)

Cancellation of the flux between (4.12) and (4.13) yields

K = [(mc-l)(" 2 - l ( 1K1 - $2K2) (4.14)

The factor mc varies with soil texture. For our soils, mc %3,

a value which is used here. The simulation results are insen-

sitive to this quantity. In the results reported for this

model, (4.14) is used together with a restriction that K be

bounded by K1 and K2.

In our parameterizations, we. shall deal with the

same physical situation considered in defining the lower

moisture boundary condition of the reference model in Section

2.3.2. That is, the water table is deep and water flux at

the bottom of the model is equal to the hydraulic conductivity,

tle matric potential gradient being zero. We therefore set
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2 =3 and disregard the third line in (4.4).

lines of (4.4) then become

A lfdO d0 dt 1

2 dd p 2 dt K 1

The first two

:2

(4.15)

The rate of moisture supply, f, to the soil at the

surface is equal to the precipitation rate minus the evapora-

tion rate, except when the infiltration capacity (f*) is ex-

ceeded, at which times it equals the latter, i.e.,

Cu
f = min P - C po(Tl)exp($ g/RTl) - pva, f i

(4.16)

where T is the land surface temperature.

Let us now summarize the proposed two-node model

of soil moisture dynamics. The expansion of the time deriva-

tive with respect to 1 is unnecessary. We re-write (4.15) as

dO Kd01 K el (
dt2- ( 1 2

21
+ 2k )

1 Cwua *
+ min P - pw a (T)exp($g/RT1 ) - pva f1}

k Pk ( -

(4. 17d)
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and

d62 _ K 1  1

dt2 2. z2 ( 1 ~ 2+ 2Z1 ) - K 2  (4.18)
d 2k1912 2'2 e

where

- (4.19)A +

2 1 2 (4.20)2 2

Equations of state are, from (4.2),

6 = 6H i) (4.21)

(4.14) for K , and

Ke2 = K(62 ) + Dv ( 2 '(0 2 ) (4.22)

Finally, f* is the quantity that satisfies (4.16) with P
1

large, 6 constant in time, and $, equal to zero,

_K 1
* 2 + 291 ) (4.23)

Knowing the initial conditions, the atmospheric forcing (ua

and pva ), the forms of 6H( -), K(-), and D V(-,-), the param-

eters 2 and 92, and the surface temperature, T1 , we can inte-

grate the system (4.17)/(4.18) in time.

The surface temperature, of course, cannot be

predicted independently, since the evaporation rate enters

into the surface heat balance. For this reason, the system
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of equations presented above must be solved simultaneously

with a heat balance equation. In this work, the force-

restore method of soil temperature prediction (Section 4.4)

will be used.

Equations (4.17) and (4.18) have direct physical

interpretations. The first equates the depth-averaged storage

change in a reservoir of depth k to the loss of water by

drainage to a lower layer (which is proportional to total head

difference between layers) plus a gain or loss due to rain or

evaporation. The second equation states that drainage from

the upper layer will tend to increase the depth-averaged

moisture content in the lower layer of depth Z 2, while gravity

drainage out the bottom will tend to lower it.

The performance of this moisture parameterization,

and of the others, is discussed in Chapter 5. In that chapter,

we shall discuss the sensitivity of this model to the as-yet-

undefined parameters k 1 and P2'

4.3 One-Node Models of Soil Moisture Dynamics

4.3.1 General Framework

We can introduce a family of one-node, or one-cell,

moisture accounting models by following the entire line of

logic that led to (4.17) and (4.18), and then taking it one

step further. We multiply (4.17) by k , (4.18) by k 2, and

add the two, obtaining
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(k+Z 2 ) = min P- Cw a[ (T )exp(ipg/RT1 ) - pva], f} - Ke2

(4.24)

where

1 e I +1 22 2
(4.25)

is a depth-averaged moisture content. With no explicit rela-

tLon between $K (a surface value) and 6, we must replace

(4.24) by

Zdt = in[P -E, f.] - K()dti e (4.26)

where we have estimated the drainage rate using 0, and in which

Z E 9 + 2
(4.27)

In analogy to the treatment of infiltration as the

lesser of the precipitation rate and a soil-controlled infil-

tration capacity, we may express the actual evaporation rate

between storms as

*
E = min[E , f ] (4.28)

where Ep is the potential evaporation rate,

C u
E E w a[p (T ) - p

p P o 1 va
(4.29)

*
and f is the exfiltration capacity of the soil, a function of

e

the soil state.
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Using (4.28), and assuming that E = E during rain
p

events, we can re-write (4.26) as

Z d- = - min(E , f*) - K (e) P = 0 (4.30a)dt p e e

and

de*-
Z = min(P - E , f.) - K (6) P > 0 (4.30b)dt p 1 e

We must add to (4.30a) the explicit restriction that E goes

to zero when 6 goes to zero. This condition is otherwise not

*
satisfied by the f parameterization given in (4.3.2), because

it is based on a semi-infinite medium.

Given EP, which is determined through simultaneous

solution of a heat balance equation, we can solve (4.30) if

* *
the dynamic values of f and f are known. There is no simple

way to calculate these variables exactly, as that would

require continuous integration of (4.1). The problem of soil

moisture accounting within the framework of any one-cell model

* *-
hinges upon the specification of f and f in terms of 6 and

the model forcing. The following subsections present two

distinctly different approaches to this problem.

4.3.2 Surface Fluxes Based on Nonlinear Diffusion and the

Time Compression Assumption

*
Here we shall specify parameterizations for f. and

1
*
f by applying existing idealized nonlinear diffusion solutions
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to our problem. Our first assumption is that the flux capacity

at a given time is a unique function of the cumulative surface

flux since the start of the current event (infiltration or

exfiltration). Then

* *
f. = f.(F.) (4.31)

* *
f = f (F ) (4.32)
e e e

where

t

F.(t) = f.(T)dT (4.33)

ti

t

F e(t) J f e(T)dT (4.34)

t
2

ir which F (t) is the cumulative infiltration, at time t,

since the start of the most recent rain at time t1 , Fe(t) is

the cumulative exfiltration since the end of the most recent

rain at time t and f. and f are the actual rates of infil-2' 1 e

tration and exfiltration. These correspond to the "minimum"

operators in (4.30). The statements of (4.31) and (4.32) that

uidque relations exist between soil-limited flux rates and

cumulative fluxes are variations of the time compression

assumption (Reeves and Miller, 1975).

Eagleson (1978) has applied (4.31) and (4.32)

implicitly for the cases of constant precipitation and
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constant potential evaporation. He uses for (4.31) and (4.32)

a particular pair of solutions of the appropriate nonlinear

diffusion equation (4.1) with constant initial conditions,

and with step changes (to saturation for infiltration, to dry-

ness for exfiltration) in surface moisture content. These

solutions can be expressed, in the form of (4.31) and (4.32),

as

*F4A F. 1/21 -l
fi = A +{+ + +12 (4.35)
1 L

and

* 2
f S /2F (4.36)e e e

in which A is a hydraulic conductivity term and S. and S

are the infiltration sorptivity and the exfiltration desorp-

tivity. These parameters are dependent upon the initial

(constant in space) moisture content, the moisture content

applied as a boundary condition, and the soil properties.

Eagleson (1978) uses

A (6 ,6 ) = [K(6O) + K(6)] (4.37)o o0 b 0 b

and

S (0 ,6 ) = 2(6 - 6 )(D./T) 1 /2  (4.38)i o'b b 0 1

for infiltration with 6 being the initial condition, 6b the

boundary condition, and D an effective diffusion coefficient
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for the infiltration process. In terms of the nonlinear soil

moisture diffusion coefficient, defined in the absence of

hysteresis and vapor flow as

D(6) = K(0) d$() (4.39)dO

the effective diffusion coefficient is approximated using the

weighted-average (Crank, 1956, p. 256)

6 b

D (, e) (6 - e)-5/3 J( - 2/3 D(0)de (4.40)

We have seen in Sections 3.3.5 and 3.3.6 that it is

sometimes important to account also for the effects of vapor

flow and hysteresis. Accordingly, we propose that (4.40) be

modified for these effects. Substituting (4.39) into (4.40),

and adding an isothermal vapor flow conductivity to the hydrau-

lic conductivity, we arrive at

b

D.(e5 0) -5/3 2/3
i o, b 3 (6b 0 ) [6 H 0

K[0H(lP)] + Dv [ 0 H() I] d$ (4.41)

In (4.41), we assume that not only 0, but also the wetting

history (and hence $ = ' 0) is constant initially. Then the

wetting process proceeds along the same scanning curve at all

depths. On this particular scanning curve, 0 is a unique

function of ', so (4.41) can be evaluated. The limits of
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the integral in (4.41) are given by

6H(l ) = 6 (4.42)

6H=b) 6b (4.43)

We must still specify how the particular scanning

curve for integration of (4.41) is to be chosen. One approach

would be to keep track of the history of 0, the depth-averaged

moisture content, and to use the appropriate scanning curve,

with 60 = 6, to evaluate (4.41) at the start of an evaporation

period. Noting the insensitivity of D. to 6 near dryness and
1 0

the likelihood of an initially dry near-surface soil zone, we

shall evaluate (4.41) using 60 = 0 (and 6b = 6 ), integrating

along the main wetting curve. This integration path is illus-

trated schematically in Figure 4.1 as r . This procedure will

yield a unique value of Di, applicable to all storms, and

therefore represents a considerable computational simplifict -

tion. To be consistent, we use these same values of 6 and
0

ab in (4.37) and in (4.38), obtaining unique infiltration

parameters for a given soil.

We note here that, although the vapor term has been

included in (4.41), its contribution is actually negligible

during wetting, when the conductivity at high 6 dominates the

integral in (4.41). For exfiltration, however, it will be

important. With the various assumptions set forth above, we

146



pF

0 ee
MOISTURE CONTENT, e

Figure 4.1

BRANCHES OF THE MOISTURE RETENTION FUNCTION USED TO EVALUATE

SORPTIVITY (CURVE F1 ), AND DESORPTIVITY (CURVE r3).

CURVE F2 OVERESTIMATES THE DESORPTIVITY.
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obtain, from (4.37),

S (0,6) =

20'

A (0,6u)
A0 1/3 U

A 1/3 0
U

3Tv S

=1 K(6)

21/2

[0 ($)]2/3 K[6 w(f)]d 1/

- oo

For exfiltration < 6 ), Eagleson (1978) uses

S (6, 6b) = 2(6 - 6b )(De /w)1/2

where D
e

is the effective desorption diffusivity, given by

(Crank, 1956, p. 256)

De (60, 6b) = 1.85(60 - 6 b-1.85 f

6

(06 0.85

1

D( 6)d6

(4.47)

we change the integration variable' and introduce

hysteresis and vapor. Setting 6b equal to zero and

to 6, we arrive at

D (6) = 1.85 6
- 1.85 HM 0.85

K[6H( )] + Dv[ 6H ($), $] d

where

(4.49)
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(4.45)

(4.46)

6
0

Again,

6
0

equal

(4.48)

(4.38), and (4.41),

0 H(T =



We must identify the branch of 0H to be used for

evaluation of (4.48). Initial experiments using the main

drying curve, with 0 equal to 0 at the start of the inter-
0

storm period (r2 in Figure 4.1), resulted in excessive evapo-

ration due to overestimation of D . A method that is physi-

cally more realistic is to integrate (4.48) using a primary

drying scanning curve (1'3 in Figure 4.1). This approach is

used to obtain the results presented in the next chapter.

Along the primary drying scanning curve, we have (Milly and

Eaglenon, 1980)

a () = ($){l + [e - 0 ($)]0 -1 (4.50)
H w rev w u

where 0 is the value of 0 at which the wetting reversal
rev

occurs, equal to ; at the end of the rain.

If 0 were to change during an interstorm period

only as a result of evaporation, then the proper approach

would be to evaluate (4.48) and (4.46) at the end of a storm

and to use the resulting desorptivity throughout the period.

However, immediately after the storm, the process of redis-

tribution -- gravity drainage and capillary diffusion of

water to lower levels -- begins. In the absence of evapora-

tion, it would result in a fairly uniform decrease in moisture

content near the surface. As a result, we expect that the

desorptivity also will decrease following a storm. In this

first parameterization, we shall incorporate this
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Figure 4.2.

SQUARE-WAVE REPRESENTATION OF WETTED SOIL MASS FOLLOWING

RAINFALL, AND SUBSEQUENT LOSSE S OF MOISTURE (Fei AND Fe2)

TO EVAPORATION AT TWO LATER TIMES.
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redistribution implicitly by the choice of Z, the storage

cell depth. We assume that the optimal value of Z determined

in the next chapter automatically smears the moisture content

after a storm to a value that might occur following the ini-

tial rapid phase of redistribution. We use at the start of

tme interstorm period to evaluate Se once for the entire

period. In the second version of this parameterization,

presented later, we shall explicitly track S . Figure 4.2

depicts our conceptualization of the moisture distribution

following rainfall.

Our statement of this one-cell parameterization of

the water balance is now complete. The average moisture

content, 6, within the surface soil layer of depth Z, varies

in time according to (4.30). The infiltration and exfiltra-

tion capacities have been defined in (4.35) and (4.36), whose

parameters are evaluated, accounting for hysteresis, by (4.44),

(4.45), and the combination of (4.46), (4.48) and (4.50).

All basic parameters, except for Z, have been defined in

physical terms, unambiguously, in Chapter 2.

It may be expected that Z, if it can be uniquely

defined, is a measure of the depth over which dynamic storage

of soil moisture is important. It will therefore be soil-

and climate-dependent. We shall examine this dependence

further in the next chapter.
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4.3.3 Surface Fluxes Based on a Simple Conceptual Model --

GFDL Hydrology

The ground hydrology parameterization used in the

GCM of the Geophysical Fluid Dynamics Laboratory (Manabe,

1969) has the form of (4.30). Here we define the functions

* *
f. and f implicit in that model.

1 e

Runoff (combined surface and ground water) occurs

when the "field capacity" of the soil, Ofc, is reached.

Therefore,

00 < 0 fc
fi = (4.51)

fc

Since groundwater runoff is viewed as rejected infiltration

in this parameterization, the final drainage term in (4.30)

is set to zero.

The exfiltration capacity of the soil is expressed

using a Budyko-type supply function of the form

f =E min , 1 (4.5')e p 36fc

One structural shortcoming of (4.52) is that it is scaled by

*
E , even though we would expect f to be totally under soil

control when the soil nears dryness.

We shall express the conceptual parameter 6 first

in terms of the physical soil characteristics using
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efc 2 Ld [ f) + ewf) (4.53a)

in which fc has a value of -350 cm (Buckman and Brady, 1969,

p. 166). It should be kept in mind, however, that the concept

of field capacity is a very approximate one. In fact the

field capacity is a dynamic result of the interaction of soil

aid climate. We shall thus try also a second estimate for it,

given by

fc = 0. (4.53b)

where the initial condition, 0., is the same one that has been

shown to be in dynamic equilibrium with the forcing for each

scenario in Section 3.2.

The GFDL hydrology model specifies a fixed value of

Zefc of 15 cm. We shall not specify Z a priori.

4.4 The Force-Restore Method of Soil Temperature Prediction

4.4.1 General Formulation

Deardorff (1978) has shown that the force-restore

method is an efficient means of parameterization of the

ground surface temperature. Because of its firm physical

basis, its accuracy, and its simplicity, we shall employ it

in conjunction with each of the moisture parameterizations.

Consider a homogeneous semi-infinite medium sub-

jected to a simple sinusoidal input of heat,
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G = B sin(2rt/T + 7/4)

If we impose the condition that

T + T2 , x - (4.55)

where x is the distance into the medium, then the well-known

analytic solution to the heat diffusion equation yields the

surface temperature, TI, after any initial transient has died

away,

fT1/2
T = T + B T sin(27rt/T) (4.56)1 2 B 2TrGj

The essence of the force-restore method is the

replacement of the linear partial differential equation of

diffusion by an equivalent linear ordinary differential equa-

tion of the form

dT1

dt = cG - c ( T (4.57)

This is the simplest dynamic equation for surface temperature

that includes both heat input from the atmosphere (G, which

forces T ) and a diffusion-like conduction of heat into the

underlying soil (which tends to restore T to the deep tem-

perature, T 2 ). Furthermore, the constants c and c2 can be

chosen so that (4.57) yields the exact solution, (4.56), to

the heat diffusion equation, given the forcing (4.54). This
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means (4.57) can be tuned to the forcing period T. The values

of c and c2 are (Deardorff, 1978)

=2( , 31/2 (4.58)

c2 =2n/T (4.59)

where X and C are the thermal conductivity and the volumetric

heat capacity of the homogeneous medium.

When G is not sinusoidal, or A or C are not constant

in time and space, (4.57)-(4.59) will no longer yield the

exact solution for surface temperature, but they will still be

a good approximation if the forcing is dominated by a particu-

lar frequency and if A and C vary little. This is in fact

the case for a soil subjected to natural diurnal forcing by

solar radiation and other variables. The period, T, is one

day. We therefore use (4.57) to predict the surface tempera-

ture, T1, which is required by each of our moisture parameter-

izations in order to calculate E or E
p

The heat flux G can be expressed, using the surface

heat balance equation, (2.10), as

G = (1-A)Is + I d - u - P (L + c T ) E

-H + p c TaP - P c T R - c d (hT1 ) (4.60)

Recall that A is the surface albedo, Is the incoming shortwave

radiation, E the emissivity, I the downward longwave
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radiation, I u the upward longwave radiation, E the evaporation

rate, p. and c the density and specific heat of water, H the

sensible heat loss to the atmosphere by turbulent diffusion,

T the air temperature, P the precipitation, R the surfacea s

runoff, and h the depth of detention storage on the surface.

Using several of the relations given in Chapter 2, we can

write (4.60) as

G = f , 17 E) (4.61)

where only the unknown system states and the evaporation rate

are explicitly indicated. The surface temperature enters

through I and H; the surface moisture content affects A and

E; and the evaporation rate appears explicitly.

In general, T2 will vary slowly due to the annual

cycle of forcing. We model this with a simple linear forcing

equation (Deardorff, 1978)

dT2  N -1/2
dt = (X d T) G (4.62)

Deardorff suggests Nd should equal 365, the number of days

(recall T = 1 day) in the annual cycle. However, our simula-

tions are relatively short (10 or 31 days) and begin from a

constant initial condition. At early time, the analytic solu-

tion for a constant initial temperature and a step change, AT,

at the boundary yields a heat flux
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G = 1 AT (4.63)

Then the total heat flux between the initial time, t = 0, and

any later time t0 is
t Ct1/2

Gdt = 2 Ct AT (4.64)

0

An integration of (4.62) yields
t
0

AT2 = (XCNdT) -1/2 f Gdt (4.65)

0

If we equate AT to AT2 , we obtain

4t
Nd (4.66)d '7T T

This value of Nd can be used for simulations (such as ours)

starting from a constant initial condition and having a total

duration to significantly less than ayear. For all of our

simulations, we have to equal to either 10 or 31 days. Since

results are not overly sensitive to Nd we fix it at 20.

4.4.2 Coupling to the Soil Moisture Parameterizations

The coupling between the moisture parameterizations

and the force-restore equations has been shown explicitly in

the theoretical development. Certain aspects of their inter-

action require special mention here, however. These involve

the moisture content, which enters into the albedo, the

emissivity, the thermal conductivity, and the heat capacity.

Not all of the moisture parameterizations explicitly predict
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61, and none predict the subsurface distribution of 6.

Furthermore, it is not clear what value of 6 should be used

to evaluate the product of the thermal parameters appearing

in (4.58) and (4.62). In this section, we briefly describe

how these problems are handled.

The first moisture parameterization, the two-node

model, explicitly predicts 61, the surface moil-ture content,

so A and c can be evaluated directly. The procuct AC is

evaluated, using the expressions for A and C appearing in

Chapter 2 (but neglecting vapor effects), at the initial

moisture content for use in (4.62),

(AC) 2 = A(6 ) C(6 ) (4.67)

where 6. is the initial moisture content and the subscript "2"

refers to the prediction equation for T We know that the

value of 6 at which (AC) 2 should be evaluated is an average

value over the depth of the annual temperature wave. For our

relatively short experiments, this will not depart far from

the initial condition. In order to evaluate AC for use in

(4.58), it is more important to account for the time-varying

surface moisture content. We use

(AC)1/ 2 = 0.3[A(6) C(6 )]1/ 2 + 0.7(AC)1/ 2  (4.68)

which is a slight simplification of a procedure proposed by

Deardorff (1978).
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In order to evaluate A, c, and (by means of (4.68))

(XC) 1 using the one-node moisture models, we need to estimate

6l, since it is not explicitly predicted. In the nonlinear

*
diffusion model, we know that 0 becomes zero when fe drops

below E p. At other times, we shall approximate 61 by the

depth-averaged moisture content. Thus, for the nonlinear

diffusion model, we have

*
0 f < E

e- p
e>= (4.69)

e p

The same approximation is used in the GFDL hydrology model.

4.5 Numerical Solution of Proposed Models

Each of the moisture parameterizations is coupled

to the force-restore temperature model, with which it is solved

simultaneously. The time derivatives of T., el, and 6 are

finite-differenced using a fully implicit procedure, while T2

and 62 are treated explicitly, since they vary much more

slowly. The time step of integration is one hour in all cases.

The details of the algorithm used for the one-node models,

coupled to the force-restore procedure, are presented by

Milly and Eagleson (1982).
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Chapter 5

EVALUATION OF PROPOSED PARAMETERIZATIONS

5.1 Introduction

In this chapter, we shall describe the results

of simulations of soil moisture and heat obtained using the

parameterizations set forth in Chapter 4. In particular,

we shall focus on the ability of each parameterization to

predict evaporation, as this is the variable that is most

sensitive to the parameterization and that is usually the

most poorly predicted.

Each of the parameterizations has been defined in

terms of a storage cell depth, whose value has been left

undefined. We would expect this conceptual parameter to be

dependent upon the soil type and the climate, if its defi-

nition is even valid at all. A good parameterization would

be one, first, that predicts evaporation well for some value

of the cell depth. Second, the cell depth must be iden-

tifiable for a given soil/climate combination, preferably

through physical reasoning. Failing that, the cell depth

can be fitted to a particular sequence of data, but it must

then yield satisfactory predictions for other inputs. In

this chapter, we concentrate on the latter approach. In the

following chapter, we propose, essentially, to calculate a

dynamic cell depth, using physical theory in the framework
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of the one-cell nonlinear diffusion model.

For each of the three parameterizations, we follow

the same general course in the presentation of the results.

First we look at the sensitivity of the mean error and the

RMSE of LE to the cell depth. This is done using the per-

iodic weather sequences. An optimal cell size is chosen

for each scenario by forcing the error in total evaporation

to zero. Representative plots of the resulting evaporation

series are presented and errors are summarized. Finally,

the predetermined optimal cell depths are used to simulate

evaporation during the 31-day sequences of actual hotrly

meteorologic data, and the results are compared to those

of the reference model. Identical soil data and initial

conditions are used in all models.

5.2 The Two-Node Model

There is a basic difference between the two-node

model and the others in that the former is defined in terms

of two cell depths, rather than one. To simplify our ana-

lysis here, we present results only for a fixed value of

one meter for the lower cell depth. Numerous sensitivity

runs indicated that the top cell size was much more important

in determining the response of the model to atmospheric

excitation. For example, the results presented in this

section are changed little if a value of ten centimeters

is used instead of one meter for the lower cell depth.
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Figure 5.1 illustrates the sensitivity of the mean

Error and the RMSE of hourly LE to the top cell depth.

(These and other.error data presented in this chapter are all

)ased on comparisons beginning at the end of day 2. In most

)f the plots of evaporation against time, an initial tran-

sient error, due to non-equivalence of initial conditions,

is visible. It usually decays within two days.) The mean

error at Winslow is rather insensitive to the cell depth.

Decreasing cell depth then leads to increased surface mois-

ture content during storms and hence to increased percolation

to the lower cell. As the top cell becomes very small, there

is a decrease in its resistance to flow from below during

evaporation periods, and evaporation begins to increase

again. The latter effect can be seen for the silt loam at

Winslow. The RMSE has a minimum at a cell depth significant-

ly lower than the one that gives zero average error.

For Dulles, the total evaporation and the RMSE

are very sensitive to the cell depth. As for Winslow, the

minimum-RMSE cell depth gives average evaporation rates

biased downwards.

Table 5.1 (first three columns) gives the cell

depth and RMSE associated with zero mean error for each

scenario, along with actual average evaporative heat fluxes

for reference. The cell depths are in the range of 0.8 to

10 cm. The RMSE values give a rough idea as to how well the
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Periodic Forcing

Actual
Average

LE

(ly/d)

Fitted
Cell

Depth

(cm)

RMSE

(ly/d)

Actual
Average

LE

(ly/d)

Actual Forcing

Mean
Error

(ly/d)

Silt loam/Winslow 59 0.8 70 43 1

Sand/Winslow 57 10 86 42 0

Silt loam/Dulles 170 3.5 103 171 -35

Sand/Dulles 189 5 100 70 26

Table 5.1

SUMMARY OF ERRORS IN LE ASSOCIATED WITH THE TWO-NODE PARAMETERIZATION

(z2 = 100 cm)

C.;'

RMSE

(ly/d)

66

79

76

126



time distribution of evaporation matches that of the reference

model.

The calculated major components of the surface heat

balance are shown as functions of time in Figures 5.2 and

5.3 for the sand at Winslow. Vertical bars at the bottom of

each picture indicate the occurrence of rain. Relatively

speaking, the calculations of net radiation, heat flux into

the ground, and sensible heat flux into the atmosphere, all

dependent mainly on surface temperature, are simulated well,

in contrast to the evaporation, which is controlled by the

soil moisture supply. (In fact, evaporation is also predicted

well while under atmospheric control, i.e., on the falling

curves shortly after the rains on days 1, 5, and 9.) This

implies that the force-restore procedure is doing a good job

predicting surface temperature, while the moisture parameter-

ization is less accurate. This result was observed consis-

tently with all of the models. Henceforth, we shall present

plots only of the critical evaporative heat fluxes.

Before leaving the sand/Winslow example, we note

(Fig. 5.3) the behavior of the error in predicted cvaporation

as a function of time. With the parameterization, the sur-

face dries later than in the reference model, as evidenced

by the higher peak evaporation during days 2, 6, and 10

after the rain. Once it dries, however, evaporation rates

calculated by the parameterization fall much more rapidly,
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yielding lower evaporation on the dry days. This transition

from high to low evaporation corresponds to a change from

free evaporation from the top cell to soil-controlled exfil-

traticn by diffusion from the lower cell. The out-of-phase

behavior of LE during the dry periods has already been noted

in Chapter 3, where it was shown to result from our neglect

of the flow of water due to thermal gradients.

The time variation of evaporation for another

scenario, the silt loam at Dulles, is shown in Figure 5.4.

During the second day after the rain, evaporation becomes

soil-limited in the reference model, and the peak rate is

halved op the third day. In the parameterization, the tran-

sition from atmosphere- to soil-control is more abrupt, as

seen in the falling curves on days 4, 7, and 10. This rapid

decline is similar to that observed in the sand/Winslow case.

On the hourly time scale, this appears to be a consistent

feature of this parameterization.

Using the cell depths determined to fit the

periodic forcing sequences with zero mean error, we have

simulated the moisture and heat balances of the two soils

given the month of actual hourly weather data at both sites.

The resulting errors are tabulated in columns 4 through 6

of Table 5.1, together with the actual average LE.

Significant errors in the mean are apparent. This suggests

that a single cell depth cannot be consistently defined,
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even for a given soil/climate pair.

The time variation of evaporation for the 31-day

sequences are shown in Figure 5.5. The data have been

snoothed by applying a 25-point (ru 1 day) moving average to

the hourly values. As a consequence, the short-term discrep-

ancies noted in Figures 5.3 and 5.4 are not apparent, though

they are still there. At Winslow the evaporation after the

second (and deepest) storm is underpredicted for the silt

loam and overpredicted for the sand. For the silt loam at

Dulles, evaporation, which is mostly at the potential rate,

is well estimated until it comes under soil-control during

the dry period at the end of the month, at which time the

parameterization underpredicts evaporation. For the sand at

Dulles, the availability of moisture for evaporation is

grossly overestimated.

In its present form, this moisture parameterization,

essentially a super-coarse-grid finite difference model, has

little predictive value. Furthermore, even when a given

data sequence is fitted to the model, the fit is imperfect,

as illustrated in Figures 5.3 and 5.4.

5.3 The One-Cell Model with Nonlinear Diffusion

Figure 5.6 illustrates the sensitivity of the

mean evaporation and the RMSE of hourly LE to the cell depth.

In all cases, the total evaporation first increases with

increasing cell size, indicating increased capacity of the
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cell to hold rainwater for later evaporation. As the cell

size is increases further, the capacity becomes more than

sufficient to hold the water. Rain then results in smaller

increased of moisture content, so desorptivities and total

evaporation decrease.

In general, then, there are two cell sizes at which

the mean LE is correctly predicted. The smaller corresponds

to a situation where the evaporation is limited by the

physical depth of the cell, while the larger corresponds to

a limit due to desorptivity. The larger is therefore the one

corresponding to physical reality.

Table 5.2 lists the larger cell depths for which

the mean error in LE is zero. Physically, these should

approximate the depth to which water redistributes itself

within, say, one day after a storm. The values appear to be

in agreement with this. The greater storm depth at Dulles

causes deeper distribution for both soils, as does the higher

permeability of the sand for both climates.

The fit of this parameterization to the reference

model is remarkably better than the fit of the two-node param-

eterization, as can be seen by comparing RMSE's in the third

columns of Tables 5.1 and 5.2.

Figure 5.7 shows the evaporation for the sand/

Winslow scenario. Overall, the parameterization performs

well. The structure of the error is significant, however.
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Periodic Forcing

Silt loam/Winslow

Sand/Winslow

Silt loam/Dulles

Sand/Dulles

Table 5.2

SUMMARY OF ERRORS IN LE ASSOCIATED WITH THE ONE-CELL NONLINEAR

DIFFUSION PARAMETERIZATION

Actual
Average

LE

(ly/d)

C."

Fitted
Cell

Depth

(cm)

3.5

15

20

100

RMSE

(ly/d)

60

37

68

35

59

57

170

89

Actual
Average

LE

(ly/d)

43

42

171

70

Actual Forcing

Me an
Error

(ly/d)

1

0

-1

23

RMSE

(ly/d)

64

55

64

50
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After a storm, the exfiltration capacity decreases more

rapidly than the actual at first, and then more slowly. This

may be due to our assumption that desorptivity is a constant

throughout an evaporation period. In fact, the near-surface

moisture content decreases over time due to redistribution,

even in the absence of evaporation. This causes a decrease

in the exfiltration capacity that is faster than the F_
e

behavior of the present model.

Evaporation as a function of time for the silt lam/

Dulles scenario is depicted in Figure 5.8. Behavior similir

to that just described for Figure 5.7 is seen. Evaporation

falls below the potential (and the reference) too early, but

then does not fall as fast, say, during the afternoons before

the second and third storms. The consistent, though minor,

error in the results of this parameterization add support to

the argument for a decreasing sorptivity.

Despite the discrepancy in the decay of the

exfiltration capacity, this model appears to perform quite

well on the whole. In the next chapter, one of our goals will

be to parameterize the desorptivity variation in order to

improve on this model.

Using the optimized cell depths from the periodic

forcing sequences, we calculate evaporation using the month-

long weather sequences. The results are tabulated in Table

5.2 and plotted in Figure 5.9. Mean and root-mean-square
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errors show marked improvement over the two-node model. The

mean evaporation from the sand at Dulles, however, is under-

predicted by one-third. This is due to the fact that the

cell depth which tunes the model to one storm is not the best

depth to use for any sequence of forcing. In fact, the opti-

mal depth will vary from storm to storm in a given sequence

due to several factors in the forcing, chiefly the rainfall

depth and the subsequent time between storms. To account for

this variability automatically will be another goal of the

next chapter.

5.4 The One-Cell Model with GFDL Hydrology

In Chapter 4, we proposed two methods by which to

evaluate the field capacity for use in the GFDL parameteriza-

tion. Our computations revealed that the better predictions

were obtained if the field capacity was considered to be the

initial condition determined in Chapter 3. This moisture

content is approximately a time-space mean resulting from the

interaction of soil and climate. We use that value for the

field capacity in this section.

The sensitivity of the LE errors to the cell depth

is shown in Figure 5.10 for all periodic scenarios. For

Winslow, there is little difference in the initial conditions

for the two soils and hence little difference in evaporation.

(Recall that no soil properties other than field capacity
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enter the GFDL parameterization explicitly.) The ledges in

the mean error curves at zero error occur where total evapo-

ration approximately equals total precipitation. For smaller

cell sizes, runoff occurs when the cell fills, and evapora-

tion then decreases. The increase in evaporation at higher

cell sizes is due to an increase in the initial amount of

water stored. For the dry Winslow situations, this does not

become important until the size becomes large, hence the

ledge. For Dulles, the curves are continuous, as the two

effects ove-rlap.

The fit of the tuned model to the reference model

is uneven. For the Dulles sequences it is good, while it is

bad for Winslow. This is reflected by the RMSE values for

periodic forcing in Table 5.3, and can be seen also in Figures

5.11 and 5.12. In contrast to the two previous parameteriza-

tions, there appears to be no systematic structure to the

errors here.

The tuned parameterization is employed to predict

evaporation during the months of actual data. The results

appear in Table 5.3 and in Figure 5.13. In each case, the

evaporation is underpredicted (from 9 to 43 percent). This

appears to be a result of tuning the model using an average

storm depth. Larger storms then cause excess runoff due to

the limited space in the cell, and evaporation is reduced.
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Periodic Forcing

Actual
Average

LE

(ly/d)

Fitted
Cell

Depth

(cm)

RMSE

(ly/d)

Actual
Average

LE

(ly/d)

Actual Forcing

Me an
Error

(ly/d)

Silt loam/Winslow 59 20 120 43

Sand/Winslow 57 13 132 42 -

Silt loam/Dulles 170 3 58 171 -

Sand/Dulles 89 6.5 65 70

Table 5.3

SUMMARY OF ERRORS IN LE ASSOCIATED WITH THE ONE-CELL GFDL

-5

11

73

-6

HYDROLOGY PARAMETERIZATION

RMSE

(ly/d)

75

80

148

54
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5.5 Summary and Conclusions

Three models of soil moisture have been tested, in

conjunction with the force-restore temperature scheme, against

the reference model. In the first stage of evaluation, the

parameterizations are tuned by variation of a storage cell

depth in order to match total evaporation. With the two-node

model, the resulting time variation of evaporation differs

consis-ently in structure from the actual series. The vir-

tual neglect of the depth variability of soil moisture con-

tent lads to an initial period of drying of the surface

cell at the potential rate, followed by a period of minimal

flow from below to the surface. The model does not allow for

a gradual transition between the two.

The tuned evaporation sequences from the one-cell

nonlinear diffusion model give improved fits to the reference

data. This is because the basic diffusion solution underly-

ing the parameterization is realistically based on the

physics. A second-order error appears in the tuned sequences,

however, apparently resulting from the neglect of soil mois-

ture redistribution between storms. An interesting feature

of this parameterization is that the mean evaporation can be

fitted by two distinct cell sizes, of which only the larger

is arguably realistic physically.

Evaporation predictions for the tuned sequences of

the GFDL parameterization are uneven in quality. There seems
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to be no simple structure to the errors. The optimal cell

depth for the tuned sequences ranges from 3 to 20 cm, signi-

ficantly less than the value of one meter currently applied

in that parameterization for climate predictions.

A common problem affects all three parameterizations

when we attempt to use the cell depth obtained from one set

of data to predict evaporation for another set. Apparently,

the cell depth is sufficiently sensitive to the forcing, and

the forcing is sufficiently variable, to make such a param-

eterization, using a fixed cell depth, inaccurate. The

results of the nonlinear diffusion model showed this the

least. Due to the structure of the GFDL model, evaporation

under random forcing is underpredicted using a cell depth

corresponding to the average forcing. In the next chapter,

a modification of the nonlinear diffusion model is proposed

in an attempt to get around the problem of defining the cell

depth. The nonlinear diffusion model will be chosen, not

only because its predictions so far are the best, but also

because its physical formulation provides a sound framework

for the estimation of a dynamic cell depth.

The force-restore parameterization of ground

surface temperature performed well in conjunction with all

of the moisture parameterizations. Clearly, its level of

accuracy equals or exceeds that of any of the moisture models.

This justifies a focus of attention on the hydrology, whose
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mathematical complexity requires a more sophisticated model

in order to achieve the same level of accuracy as for heat.
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Chapter 6

INCORPORATION OF REDISTRIBUTION IN THE ONE-CELL

NONLINEAR DIFFUSION MODEL

6.1 Introduction

In the previous chapter, we found that even the best

of the three proposed moisture parameterizations, the nonlin-

ear diffusion model, has the drawback that it must be tuned

through optimization of the cell depth. Furthermore, the op-

timal cell depth undoubtedly varies from storm to storm, even

for a given soil in a given climate. Another minor, yet

consistent, idiosyncracy of that parameterization is the slow

decay of the exfiltration capacity computed by it, relative

to the reference model. This has been seen in Figures 5.8

and 5.9. In this chapter, we incorporate a sub-

parameterization of the soil moisture redistribution process

into this model, explicitly addressing both of the above-

mentioned issues.

6.2 Theoretical Formulation

We employ here the basic theoretical framework of

the nonlinear diffusion parameterization outlined in Section

4.3.2. The exception is that we employ a new procedure for

the calculation of 0, the near-surface soil moisture content,

instead of using (4.30). Let us suppose that a storm has

just ended. We have calculated the total infiltration, F.,
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during that storm using (4.31), (4.33), and (4.35). We

hypothesize that 0, immediately following the storm, has the

value that would have caused the total infiltration to equal

F if the surface moisture content were held at throughout

the storm. The solution of the gravity-affected nonlinear

diffusion equation for infiltration into a dry medium, with

surface moisture content 0, is approximated by (Eagleson,

1978)

dF 1

dt= A (0,0) + S.(Oe) t 1 /2  (6.1)

or

F.(t ) = A (0,0) t + S.(0,) t1/ 2  (6.2)
1 r o r i r

where A and S. have already been defined in (4.37) and (4.38),0 1

and t is the storm duration. Given F. and t , we can solve

(6.2) to obtain 0, the near-surface soil moisture content.

If wished only to avoid the specification of a cell

depth, we might stop at this point, since we have obtained

a value for 6 without using a prediction equation involving Z.

However, if we wish to parameterize the redistribution process,

it is useful to re-introduce Z. We view Z as the depth of

soil wetted to moisture content 0 as a result of infiltration

during the preceding storm. If we view the wetting front as

a square wave advancing into a dry medium, then
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Z = F./0 (6.3)

In fact, the wetting front will not always be so sharp, but

this assumption is probably adequate. Also, there may be

moisture already in storage at the surface, in which case Z

will be greater than predicted by (6.3). Tests of the param-

eterization, using reasonable alternatives to (6.3), revealed

that Z the parameterization is not sensitive to the assumption

regarding initial moisture content.

We have re-introduced Z so that it may be used to

scale a new prediction equation for 6, this one based on the

concept of soil moisture redistribution. Given the initial

values of 0 and Z immediately following a storm, we model

their subsequent evolution over time by

Z dO - g(e) (6.4)
dt

where g(G) is some function to be defined, in conjunction

with (6.3). This formulation accounts for the persistence

of the square-wave shape, the attenuation of its magnitude,

and the consequent deepening of its penetration depth.

The function g(6) should parameterize the effects

of gravity and of capillary diffusion in transporting water

downward following a rain. A truly physically-based formula-

tion of g(e) in terms of nonlinear diffusion is difficult

because both sorption and desorption are occurring simulta-

neously and because the boundary separating these two
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processes is moving. We shall therefore adopt an alternative

conceptual sub-parameterization. Noting the predominant role

of the hydraulic conductivity in both diffusion and gravity

drainage of soil moisture, we scale the redistribution func-

tion g(e) by the hydraulic conductivity,

g(O) = RK(6) (6.5)

where R is assumed to be a constant. We shall call ii the

redistribution parameter. The value of (6.5) will depend on

the degree of constancy of R for various forcing and soil

types. In essence, we have substituted one conceptual param-

eter -R- for another - the Z used in Section 4.3 - with the

expectation that the former will prove to be more stable than

the latter. Ideally, a single, "universal" value for R would

exist, and it would thereby cease to be a true "parameter."

Substitution of (6.3) and (6.5) into (6.4) yields

dO ROK(e)d (6.6)
dt F.

1

In order to estimate 6, then, throughout an interstorm period,

we calculate an initial value using (6.2) and then update it

periodically (we use a one-hour time step) by integrating

(6.6). Figure 6.1 depicts the interstorm dynamics of I and Z.

Our interest in a dynamic 6 stemmed from the need

for a desorptivity that decreases over time. Each time step,
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we update S using the new (smaller) value of 0. In order

that our time compression procedure yield a continuously

*
decreasing value for f e we must modify (4.36) to allow the

new discontinuity in S . We introduce a new variable, F',e e

the apparent cumulative exfiltration, and write

f* = S2/2F' (6.7)e e e

Whenever the value of S is updated, F' is changed, accordinge e

to

(F') = [(S )e/(S ) d] 2 (F') (6.8)e new e new e oldl e old

thereby maintaining continuity of f . During a time step,e

F' is increased (in analogy to the actual exfiltration depth,e

F ) according to

dF'
d E (6.9)

In previous parameterizations, we employed a

restriction that exfiltration could not exceed the amount of

water stored in the cell at the start of an interstorm period.

Here we introduce an analogous limitation that evaporation not

exceed F from the previous storm. Both of these restrictions

are necessary in order to apply the diffusion solution for a

semi-infinite medium to a problem where the virtual depth of

moisture storage is finite. Clearly, however, the restriction
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that the cumulative evaporation following a storm be bounded

by the infiltration depth of that storm is physically unrea-

listic. Such an assumption prevents evaporation from occur-

ring when a long, soaking storm is followed by a brief shower.

Several improvements to this procedure could be adopted.

These include the following:

1. The forcing data could be pre-processed in order

to lump the small showers with the more signi-

ficant storms.

2. The values of 0 and Z at the end of an inter-

storm period could be stored in memory. On

the occasion when cumulative evaporation reached

previous cumulative values, 6 and Z could be

re-set to their earlier values and calculations

resumed.

3. Equations (6.2) and/or (6.3) could be modified

to include information on conditions before the

storm, especially if the most recent storm was

a small one.

In preliminary testing of this parameterization with

t le actual weather data for Dulles and Winslow, we found that

none of the modifications suggested above was needed, because

there was sufficient time between storms and sufficient

evaporative potential relative to the maximum storm depth.

For Dulles, using the six-hourly records of precipitation,
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Sequence
Number

1

2

3

4

5

6

7

8

9

10

Time between
Storms
(hrs)

54

90

6

90

6

48

18

42

186

6

Storm
Duration

(hrs)

42

30

6

30

6

24

30

6

18

6

Storm
Depth

(inches)

1.20

1.21

0.04

0.25

0.30

0.18

0.93

0.08

0.21

0.12

Ratio of Storm
Depth to Previoas

Storm Depth

0

03

3

2

6

2

09

6

6

Table 6.1

RAINFALL DATA FOR DULLES, VA; MAY 1972
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the anticipated problem did arise. The rainfall data for

Dulles appears in Table 6.1. The two smallest storms, numbers

3 and 8, resulted in subsequent underprediction of evaporation.

Note that both of these follow two of the deepest storms of

the month, numbers 2 and 7. Number 3 follows number 2 by only

six hours. Both pairs of storms (2/3 and 7/8) stand out when

the ratios of consecutive storm depths are calculated, as

shown in Table 6.1.

For the calculations to be reported in the next

section, we have lumped together the abovementioned pairs of

storms. This is the first approach suggested earlier. We

also tried the second approach which yielded similar results.

6.3 Evaluation of the Parameterization

We began the evaluation of the earlier parameteriza-

tions by showing their sensitivity to the cell depth and by

determining an optimal cell depth. Here we perform the analo-

gous exercise for the redistribution parameter, R. The

results are plotted in Figure 6.2 and tabulated in Table 6.2.

The mean evaporation is predicted well for all scenarios with

a value of R near 2. For Winslow, the mean evaporation is

insensitive to R (except for the sand with large R) because

all precipitation evaporates sooner or later, no matter how

deeply the water redistributes itself. For Dulles, increasing

redistribution reduces the availability of water at the surface
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Actual Forcing (R = 2)

Fitted RMSE
R with

Fitted R
(ly/d)

Mean
Error RMSE
with with
R = 2 R = 2
(ly/d) (ly/d)

Actual
Average

LE
(ly/d)

Mean RMSE
Error

(ly/d) (ly/d)

Silt loam/
Winslow

Sand/
t Winslow
0

Silt loam/
Dulles

Sand/
Dulles

59

57

170

89

45

8

2

1.6

32

18

55

-l

3

0

20 -2

so

22

43

42

58 171

25 70

Table 6.2

SUMMARY OF ERRORS IN LE ASSOCIATED WITH THE PARAMETERIZATION

PROPOSED IN THIS CHAPTER

Actual
Average

LE
(ly/d)

0

0

-24

69

38

100

266

Periodic Forcing



and thereby decreases evaporation.

The values of R that yield zero mean error for each

scenario are given in Table 6.2. They range from 1.6 and 2

at humid Dulles to 8 and 45 at Winslow. The larger values in

each pair correspond to the silt loam, in which we might ex-

pect that diffusive redistribution is more important than in

the sand. The difference between soils is larger at Winslow,

where the drier average initial moisture content before rain

should significantly enhance sorption at lower levels.

The RMSE values associated with the optimal R values

are all smaller than any of the corresponding RMSE values from

the earlier parameterizations (Tables 5.1, 5.2, and 5.3).

Previously, the best values were obtained for the nonlinear

diffusion model with fixed cell size. The new parameteriza-

tion, with a dynamic cell size, almost halves the RMSE values

for three of the four cases, indicating a very significant

improvement in model structure.

The fitted sequences of evaporation are depicted

in Figures 6.3 through 6.6. The parameterization clearly

performs well in all cases. The results for the sand appear

to be slightly better than for the silt loam. At Winslow,

evaporation from the silt loam (Figure 6.4) falls off somewhat

too slowly during days 2, 6, and 10, then goes to zero rather

abruptly. This occurs when the calculated sorptivity is still

large enough to allow evaporation, but all of the water frcm

202



the last rain has evaporated, so there is no available water

left. (Recall our restriction that evaporation not exceed

the previous infiltration depth.) In the silt loam at Dulles

(Figure 6.5 ), the evaporation rate becomes soil-limited a

little too early, as seen in the lower peaks of the parameter-

ization on days 6 and 9, and does not fall quite so rapidly

as the reference data on days 7 and 10. These differences

are small, however. The predictions for sand (Figures 6.3

and 6.6) are very good.

We saw in Figure 6.2 and Table 6.2 that there is

a wide range in the optimal value of R, the redistribution

parameter. Although these differences can be explained, at

least qualitatively, in terms of the soil type and climate,

a quantitative description of them must account for simul-

taneous sorption and desorption, and will not be attempted

here.

In the interest of maintaining the simplicity of

the model structure, it is informative to examine the

predictions of the model when a constant, "universal" value

of R is used. We choose a value of R that approximately

minimizes the mean errors of the four scenarios in a least-

squares sense. This value is 2, dictated mainly by the Dulles

scenarios, whose mean errors are much more sensitive to R than

are the Winslow errors. In Table 6.2 we see that the result-

ing mean errors are all very small. More interesting is the

fact that three of the RMSE values are practically unchanged,
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indicating that the time distribution of evaporation is still

predicted very well. The exception is the silt loam at

Winslow, for which the RMSE rises from 32 to 80 ly/day. The

corresponding evaporation series is plotted in Figure 6.7.

The decrease of R from 45 to 2 clearly causes an underestimate

of the extent of redistribution in this heavy, dry soil,

resulting in excessively rapid evaporation.

Despite its failure to capture the time distribution

of evaporation in one example, the redistribution sub-

parameterization, with constant R, is successful overall in

allowing predictions of the mean evaporation. The ability

of this parameterization to calculate a cell depth internally

is a significant advantage.

One final step in this analysis is to apply the

parameterization, with R = 2, to predict evaporation during

the month-long sequences of actual random weather data. The

errors are summarized in Table 6.2, and are much lower, on

average, than the corresponding statistics for both the two-

node and the GFDL parameterization. The predictions are also

as good as those of the nonlinear diffusion model with fixed

cell depths that had been optimized individually. Mean errors

at precipitation-limited Winslow are negligible. At Dulles,

evaporation from the silt loam is underpredicted by 14%, ani

from the sand it is overpredicted by 9%.
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The time distributions of the evaporative heat flux

are plotted in Figure 6.8 for all four scenarios. For both

soils, there is some failure to capture the shape of the

curve following the second storm at Winslow, but the overall

behavior is predicted well. Predictions at Dulles are also

good, although there appears to be insufficient evaporation

following two of the storms. On the whole, the set of predic-

tions in Figure 6.8 is superior to the sets in Figures 5.5,

5.9, and 5.13.

6.4 Summary

The physically-based one-cell diffusion

parameterization of Chapter 4 has been extended to allow

automatic calculation of the cell size, Z, following each

storm. Furthermore, a conceptual model of redistribution

has been added to account for the progressive lengthening of

Z that follows a storm. The redistribution rate is scaled

by the hydraulic conductivity, with a constant of proportion-

ality R, the redistribution parameter, being introduced.

The new parameterization compares favorably with

the other parameterizations, even when the value of R is

taken as a contant (R = 2) for both soils and for both

climates. In particular, the problem noted with regard to

the earlier diffusion model - incorrect decay of the exfil-

tration capacity - has been ameliorated. The idiosyncracy

of the earlier model that allowed two distinct cell sizes to
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fit the mean evaporation is avoided by the new model, which

automatically calculates the correct one using a physically-

based algorithm.

Two areas of research could lead to further

improvement of this model. The first involves the redistribu-

tion parameterization. A more physically oriented approach,

explicitly including capillary diffusion, could be used to

calculate the redistribution rate or to arrive at a new

expression for R in terms of the soil type and the initial

moisture content. A second problem would be to account for

carryover storage of water from one evaporation period to the

next by formalizing one of the three approaches suggested in

Section 6.2.
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Chapter 7

SUMMARY AND CONCLUSIONS

7.1 Summary

We have developed a simple, physically-based para-

meterization of moisture and heat storage in soil. It is

capable of faithfully reproducing the time variations of

evaporation, sensible heat flux, and longwave radiation to

-he atmosphere. The development of the parameterization has

been facilitated through the use of a complex simulation model

as an experimental apparatus. This reference model served both

to isolate the critical physical mechanisms to be parameterized

and to provide data against which to test the parameterization.

In its final form, the proposed parameterization

consists of a simplified square-wave model of the vertical

moisture distribution, coupled to the force-restore procedure

for determination of soil temperature at the surface. In the

following paragraphs, the parameterization is briefly summarized.

Equations presented previously are given their original numbers.

During a rain event, infiltration is calculated

continuously according to

f. = min(P - E, f') (7.1)
1 1

where f. is the actual rate of infiltration and f' is the

infiltration capacity. P and E are the precipitation and
p

213



potential evapotranspiration rates. The infiltration capacity

is given as a function of cumulative infiltration, F., by

f = A0 1 + - + 1 + 4 Ai/ 2 (4.35)i S
1

where A and S. are constant infiltration parameters, given by
0 1

(4.44) and (4.45).

Following a rain event, the moisture content near

the surface, 0, is estimated by solving the implicit equation

Fi(tr) = AO(0,6) tr + Si(0,6) tr1 /2  (6.2)

in which t is the total storm duration. A and S. are now
r 0 1

evaluated using (4.44) and (4.45), with 6u replaced by 6 and

with the upper limit of the integral in (4.45) replaced by

the value of $ for which 6w equals 0.

The moisture distribution following the storm is

conceptualized as a square wave (Figure 6.1) of magnitude

0 and depth Z, where

Z = F /0 (6.3)

The process of moisture redistribution following a storm is

parameterized as an attenuation of the magnitude (6) and ;a

deepening of the length (Z) of the square wave (Figure 6. L)

according to
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dO RK(O)

1
(6.6)

where R is a constant called the redistribution parameter.

During the interstorm period, evaporation is cal-

culated according to

E =

min Ep f e

0

F < F.
e F

F = F.e 1

(7.2)

in which F is the cumulative exfiltration. The exfiltratione

capacity, f , is given as a function of F', the apparent cumu-

lative exfiltration, by

f * = S 2 /2F'
e e e

(6.7)

The desorptivity, Se, which is a function of 6, is calculated

using (4.46), (4.48), (4.49), and (4.50). Since 6 is

changing with time, we re-evaluate S each time step (i.e.,

hourly), and then correct F' according toe

(F') nw= (S ) /(Se)olj(F')d
e new e new e oldi e old

(6.8)

in order to assure continuity of f* as given by (6.7).

D'
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dF'e = E (6.9)cit

The potential evaporation rate appears in (7.2).

It is calculated using the surface temperature, T1 , and the

assumption of a wet surface. The force-restore method is used

to predict the soil surface temperature according to

diT

dt = c G - c2(T - T( 4.57)

where c1 and c2 are given by (4.58), (4.59), (4.68), and (4.69).

G is the heat flux into the ground, given by a balance equation

of the form

G = f1 (T1 , 6 1 , E) (4.61)

The deep soil temperature, T 2 , is predicted using

dt (XCNd -1/2 G (4.62)

7.2 Conclusions

Our conclusions fall into two major categories.

The first is concerned with the importance or negligibility

of various physical effects in the prediction of surface eva-

poration and heat fluxes. The second set pertains to

mathematical parameterization of the important physical effects

in simplified models.
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The complex system of equations governing coupled

water and heat flow in soil can be simplified considerably

without significant loss of accuracy in the calculation of

fluxes across the land surface (Section 3.3). The influence

of temperature on moisture retention (e.g., through the tem-

perature dependence of surface tension) is unimportant to

surface flux predictions, even though the thermally-induced

liquid flow may be of the same order of magnitude as the iso-

thermal diffusive liquid flow (Section 3.3.3). The heat of

wetting is also negligible (Section 3.3.2). The variations of

hydraulic conductivity that results from wide diurnal

fluctuations of temperature near the soil surface can be

ignored, but the temperature factor should be evaluated at

the maximum air temperature (or at some other surrogate for

the average daytime soil surface temperature) in order to

obtain the best predictions (Section 3.3.4).

Water in the vapor phase below the surface provides

an essential mechanism for moisture transport (Section 3.3.5).

When water vapor is neglected, evaporation is underpredicted

by as much as 36% in our scenarios. If the water vapor is

re-introduced into the governing equations only in the term

corresponding to isothermal vapor diffusion, then the evapor-

ation errors become negligible. We conclude that the other

vapor terms, including the thermal diffusion term, can be

neglected.
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Moisture retention hysteresis, in our scenarios,

was not negligible in the sand, though it was negligible in

the silt loam (Section 3.3.6).

The consequence of the physical simplifications

mentioned above is the validation of considerably simpler

conservation equations for soil moisture and heat. Soil

moisture flow can be modelled using the isothermal flow

equation (Section 4.2), with all parameters evaluated at

constant characteristic temperatures. The flow of heat is

governed by a simple diffusion equation. The only signifi-

cant coupling remaining between moisture and heat fields

beneath the soil surface is the dependence of the soil

thermal parameters on moisture content. Even this connection

can be parameterized simply, as we did successfully in the

force-restore procedure (Sections 4.4.2 and 5.2).

Three moisture parameterizations requiring the

specification of a storage cell size were proposed and

evaluated. The best fits to the data from the reference

model were achieved using a model in which the exfiltration

and infiltration capacities are computed using idealized

nonlinear diffusion solutions in conjunction with the time

compression assumption (Section 5.3). With this parameter-

ization, the larger of two distinct cell sizes that reproduce

the mean evaporation correctly yields a desorptivity limi-

tation on evaporation.

The nonlinear diffusion model required the speci-
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fication of a soil- and event-dependent cell size. In order

to compute this depth automatically in the parameterization,

the model was extended. The nonlinear diffusion theory can

be used to estimate the cell depth and average moisture

content following a storm (Section 6.2), and a conceptual

model of redistribution correctly accounts for the rate of

decline of evaporation under soil control by updating those

values periodically (Section 6.3). With the automatic cell

depth calculations, this parameterization predicts evapor-

ation well and requires only the physical properties of the

soil; no conceptual parameters are needed. Improved results

could be achieved by employing a more physically-based

subparameterization of redistribution.

The force-restore method of ground surface

temperature prediction performs very well (Section 5.2).

This justifies a focus of attention on the hydrology, whose

nonlinear physics require a more sophisticated model in order

to achieve the same level of accuracy.

7.3 Recommendations for Future Research

Worthwhile improvement of the proposed

parameterization could possibly result from two areas of

work:

1. Incorporation of more memory into the model

through one of the steps suggested in Section 6.2.
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2. Improvement in the representation of

redistribution, either through a different equation than

(6.5) or through a physically-based definition of R depen-

dent upon soil type and initial moisture content.

It appears that the proposed parameterization

could easily be extended to include vegetation by coupling

it to an existing vegetal canopy model.

Another extension would be to account for the

immobilization of soil moisture brought on by freezing.

Coupling with a snowpack parameterization is feasible, but

would require a reassessment of the applicability of the

force-restore procedure, which assumes strong diurnal forc-

ing at the soil surface.

The simplified parameterization developed here can

be applied to model the land surface in an atmospheric GCM.

A reasonable first experiment would be designed to test the

sensitivity of the GCM to this parameterization in comparison

with current methods. Beyond that, this more physically-

based parameterization might be more easily coupled to

models of biomass production, etc., to study various land

surface processes (e.g., CO2 consumption, desertification,

drought, deforestation) in the context of a GCM.

There is potential to estimate the effective soil

properties for use in this model by application of the

ecological optimality theory of Eagleson (1982), which
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requires observation only of the climate characteristics and

an estimate of the effective porosity. Conversely, this

parameterization, in conjunction with a vegetation model,

could provide a means for testing Eagleson's theory in the

framework of a dynamic simulation model of an actual basin.

The simplicity and physical basis of this

parameterization make it an excellent candidate for use in

conjunction with remote sensing of surface soil moisture and

temperature in a real-time soil moisture monitoring scheme.

Applications for such a scheme can be found in agriculture,

hydrology, and weather prediction.

The problem of spatial variability of hydrologic

processes is one that often requires simplified models of

point processes, since large batteries of simple models can

be linked easily. The parameterization proposed here is

such a model.
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