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INFILTRATION AND EVAPORATION AT

INHOMOGENEOUS LAND SURFACES

Abstract

The local response of the land surface to atmospheric
forcing is determined by the surface parameters, the surface
state, and the forcing. Because these factors are highly vari-
able at length scales smaller than those of many hydrologic
analyses, and because they enter nonlinearly into the hydro-
logic response functions, the calculation of areal average
response in terms of real physical parameters is non-trivial.
Treating an inhomogeneous soil surface as a battery of inde-
pendent, parallel soil columns, we calculate the areal average
infiltration that results from a spatially variable storm
event. The spatial variability of soil and storm properties
turns out to be critical in shaping the infiltration function
for an inhomogeneous basin. A particular feature of the aver-
age response is that increased spatial variability of soil
type or of storm depth almost invariably leads to decreased
infiltration and increased surface runoff.

The calculation of the areal average evapotranspira-
tion rate is complicated by atmospheric advection, which pro-
vides a feedback mechanism whereby the downstream evaporation
is influenced by the upstream. The upstream influence may per-
sist over a fetch of hundreds of kilometers. A conceptual
model of the atmospheric boundary layer is developed and ap-
plied to the analysis of evapotranspiration from a surface
whose supply of water and energy may be characterized by
spatially variable canopy resistances and available energies
(net radiation minus heat flux into the ground). The surface
roughness is also considered to be variable in space. An ex-
plicit dependence of areal average evapotranspiration upon
the patch size -- the characteristic length of the variabil-
ity -- is derived. The effect of local advection is shown to
be most significant when there is a great variation of the
canopy resistance between patches. Otherwise, the individual
patches behave in a relatively independent manner. This points
to the importance of spatial variability of the water supply
in the analysis of areal average evapotranspiration.
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NOTATION

NOTE: Most of the symbols used are listed here. Some minor

symbols that are used infrequently are not listed. Occasion-

ally, a single symbol takes two meanings when confusion seems

unlikely.

Symbol Description

A a dimensionless A

A constant term in Philip's cumulative infiltration
0 equation

a Z wn(l-s )

a relative proportion of area having patch type i

B maximum water table depth

CV coefficient of variation of a

c dinK/dkns

c specific heat of air at constant pressure

D dimensionless soil storage capacity

d height in atmosphere above which u and K are
approximated as constants Z

d c-1-1/m

E evaporation rate

E evaporation rate at patch type i

El normalized E.

" average E over all patches

'E normalized E

e vapor pressure of water

ef free-stream vapor pressure, height h'

eh vapor pressure at height h
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Symbols Description

e vapor pressure in atmosphere, at ground level, above
patch type i.

em es (m)

"es saturation vapor pressure

esf e s( )

esh e s(h

ez vapor pressure at height z

* 0vapor pressure at evaporation source

*o es(oi)

F cumulative depth of infiltration

f. actual infiltration rate

*
f infiltration capacity

f s p.d.f. of s

f p.d.f. of a

F c.d.f. of u

F2  c.d.f. of u2

G heat flux into the ground

g acceleration of gravity

H sensible heat flux into atmosphere

H sensible heat flux from patch type i

h storm depth

h average height of internal boundary layer

h' average height of boundary layer associated with
length V'

h maximum storm depth

h height at whichK = K
0 z 2o

F average storm depth

I F.(t )/h
1 r
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Symbol

T

i

K(l)

K

K

K
y

Kz

K
0

L

Z I

m

N

n

q

R

R

R.

R
s

R
5

Rn

r

r

ra

PCup u (esf - ef)/AR

radius of area modeled for infiltration

Rn - G

Rn - G at patch type i

surface runoff rate

gas constant for water vapor

areal average of Rn - G

net radiation

distance from storm center

r/Zn(h0/h)

aerodynamic diffusion resistance
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Description

areal average of I

rainfall intensity

saturated hydraulic conductivity

K- 
2

turbulent diffusivity tensor

principal component of K in y direction

principal component of K in the vertical direction

maximum value of Kz

latent heat of vaporization of water

typical patch dimension in wind direction

streamwise length of modeled evaporation area

-(dtn$/dkns)~

number of patch types

porosity



Symbol Description

r ai aerodynamic diffusion resistance between patch type
i and height h

r c canopy resistance

rci r c at patch type i

N
r (Z a /r ai

r 2 aerodynamic diffusion resistance between heights h
and h'

S dimensionless sorptivity

S d(Rn - G)/dT0

S sorptivity

s initial soil moisture saturation for infiltration

T temperature

T temperature in free stream, height h'

T z temperature at height z

T temperature at evaporation source

t time

tr storm duration

to time at which surface saturates due to Horton
mechanism

t time at which surface saturates due to Dunne
mechanism

t' apparent start of storm when f. is in the falling
stage

U approximate windspeed above height d

u windspeed

ul h/h

u2 Z /B
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Symbol Description

U* friction velocity

U*j u* above patch type i

u *e effective u* of modeled area

u wind vector

Z wwater table depth

z height coordinate

z 0surface roughness height

z. z for patch type i

z effective z of modeled area
oe o

a soil scaling factor

y psychrometric constant

A slope of saturation vapor pressure curve

6 potential temperature

o 6 in free stream, height h'

oh e at height h

6 m typical temperature, for linearization of es

e o6 at patch type i

yn mean of logarithm of a

'ys mean of s0

y1 mean of cc

p density of air

n standard deviation of logarithm of a

nstandard deviation of

as standard deviation of a
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Symbol Description

(D advection decay function

$i dimensionless infiltration sorptivity

$1' ,2 functions used to approximate $

TP. -pcp Kz ii/ z

matric potential

$ y6 + e

$2 -A6 + e

ip(l) bubbling potential

) a$)
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Chapter 1

INTRODUCTION

1.1 An Overview

In many physically-based analyses of land surface

hydrology, it is expedient, and therefore common, to employ a

vertical, one-dimensional framework for modeling a finite ar-

ea. This is the approach taken, for instance, by Milly and

Eagleson (1982) in the development of a simple parameter-

ization of the ground hydrology for use in an atmospheric gen-

eral circualtion model (GCM). In the present work, we deal

with the spatial variability of infiltration and evaporation

within an inhomogeneous area, in particular with its effect

upon the mean response. Simplified frameworks for analysis

are adopted in order to obtain representative results without

resorting to complex simulation models. After a general dis-

cussion of spatial variability (this chapter), we consider the

problem of infiltration and surface runoff from a single

storm, where storm quantities and soil properties vary spa-

tially (Chapter 2). We then analyze the spatial variability

of evapotranspiration, when a canopy resistance model applies,

in Chapter 3. Chapter 4 is a summary of our conclusions.
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1.2 Spatial Variability of Atmospheric Forcing and of Land

Surface Parameters and States

The local response of the land surface to atmospher-

ic forcing is determined by the surface parameters and by the

forcing. Because these factors are highly variable at length

scales smaller than, for example, the GCM grid scale, and be-

cause land surface processes are nonlinear, the analysis of

the areal-average response is non-trivial.

The most non-uniform atmospheric forcing variable is

apparently precipitation, with horizontal length scales as

small as a few kilometers. Clearly, one inch of rain on ten

percent of a region will not have the same hydrologic effect

as one-tenth of an inch over the entire region. It is there-

fore necessary that information on the spatial (and possibly

temporal) structure of a given storm be available for the

parameterizations of land surface hydrology. Sensitivity

studies using realistic models of the land surface are neces-

sary in order to determine precisely what data are required.

A second inhomogeneity of atmospheric forcing re-

sults from the feedback effect of surface fluxes on downwind

conditions due to advection. Thus, even over a perfectly ho-

mogeneous surface receiving a constant radiative input, evapo-

ration and surface temperature would vary spatially downwind

of a discontinuity in surface properties (Yeh and Brutsaert,

1971). On the basis of a very simple conceptual model,

McNaughton (1976a,b) estimates a horizontal length scale of

the order of ten kilometers for the re-establishment of a

26



quasi-equilibrium Bowen ratio downwind of such a discontinui-

ty. As we shall see, a more realistic estimate would be sev-

eral hundred kilometers. Thus, although the driving force for

evaporation - solar radiation - is fairly uniform in space,

other convenient measures of atmospheric forcing, such as po-

tential evaporation, may be highly variable due to advection

and the variability of surface parameters.

The spatially variable atmospheric inputs are

modulated further by the large variety of surface soil, vege-

tal, and geomorphological types. For example, even on rela-

tively small, "homogeneous" plots of land, the hydraulic con-

ductivity of the soil, which is critical in dividing rainfall

into surface runoff and soil moisture storage, may range over

a few orders of magnitude (Nielsen et al., 1973).

Geomorphology exerts control locally over the varia-

tions in soil, vegetation, and depth to the water table. Veg-

etation is important not only directly in the surface heat and

water balances, but also indirectly through its influence on

the turbulent boundary layer and its transport characteris-

tics.

Due to the spatial variability of the water balance

that results from all of the effects mentioned above, the

amount of moisture stored in the soil at the beginning of an

infiltration or evaporation period is itself spatially vari-

able. Since infiltration and evaporation are sometimes sensi-

tive to the moisture content, this is another source of

inhomogeneity for them.
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1.3 Lateral Interactions at the Land Surface

An extensive, inhomogeneous land surface may be

viewed as a battery of parallel, vertical cells having varying

characteristics. The behavior of the battery is complicated

by the existence of several connections among the cells, which

prevent any individual cell from operating independently. The

cell corresponds to our one-dimensional soil system, and the

connections are the various pathways for horizontal water

flow.

Horizontal flow in the saturated zone averages the

spatial variations in recharge and forms a relatively smooth

water table. The depth to the water table at a given location

is thus dependent upon recharge at other locations. Water

flows laterally also in the unsaturated layers if there is a

pronounced anisotropy or layering of the soil, if the surface

slope is very steep, or if large lateral moisture gradients

exist.

The surface drainage network conveys any rejected

rainwater away from its point of impact. It therefore pro-

vides coupling between different locations by making the ex-

cess water available for infiltration elsewhere, either on the

hillslope or in a channel.

The final avenue for lateral interaction is atmo-

spheric advection, which was mentioned in the previous sec-

tion. Atmospheric advection links different locations on the

land surface by transporting air (with the contained heat and

28



water vapor) from one surface to another. Upwind evaporation

thus affects downwind evaporation.
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Chapter 2

SPATIAL VARIABILITY OF INFILTRATION AND OF STORM SURFACE RUNOFF

2.1 Available Methods of Analysis

In order to approach the question of spatial vari-

ability, we must work with some kind of an areally distributed

(as opposed to point) hydrologic model. Such a model will

serve as an experimental apparatus. The conditions of the

various experiments are defined by the specification of the

spatial and temporal distributions (or the statistics) of at-

mospheric forcing and of the internal system parameters. Ex-

perimental results are obtained as model outputs. In this

section we review a hierarchy of increasingly simplified

distributed modelling alternatives, arriving eventually at the

approach to be used later in this section. We consider here

only the response to rainfall and thus ignore the atmospheric

side of the problem that is important for evaporation. The

role of vegetation is also neglected.

The most general physically-based approach to the

analysis of spatial variability is by means of simulation, ac-

counting for the full three-dimensional equations of porous

media and pipe flow - flow through discrete subsurface chan-

nels, as described, for instance, by Atkinson (1978) - in the

saturated and unsaturated zones and including the dynamics of

overland and channel flow. Even if a computational model were

31



available for such a system, the problem of specifying how

soil properties and surface geometry vary and the problem of

analyzing the impact of those variations on the system behav-

ior would be immense.

One rather general alternative is the two-

dimensional cross-sectional model, which is capable of

simulating all of the processes mentioned above and has the

added advantage of decreased dimensionality. Already, howev-

er, there is a loss of the representation of topographic hol-

lows, which may be prime sites for the production of overland

flow (Chorley, 1978), and of other geometrical effects. A

computational model of this system, neglecting pipe flow, has

been presented recently by Zaslavsky and Sinai (1981), who

studied the effect of a surface transition layer of soil prop-

erties on the mechanism of lateral flow. Lateral variability

of soil properties was not addressed.

If the further simplification is made that lateral

flow in the unsaturated zone is negligible, the problem be-

comes more manageable computationally. The cross-sectional

problem of parallel, vertical moisture flow beneath a surface

experiencing overland sheet flow has been modeled by Smith and

Woolhiser (1971a,b) and by Hillel and Hornberger (1979). The

latter considered the sensitivity of storm surface runoff to

the relative areal proportions of clay and loam-soil and to

their relative locations on the slope. For the assumed topog-

raphy and storm, the first factor was more important, though

the second was also significant, demonstrating the ability of
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overland flow to transport excess runoff to more permeable ar-

eas. The neglect of lateral flow in the unsaturated zone lim-

its the generality of these results, although it could be

argued that the near-surface throughflow, important in many

catchments, is similar in character to overland flow.

In a similar study, Smith and Hebbert (1979) aban-

doned the one-dimensional partial differential equation gov-

erning moisture flow in favor of an infiltration equation.

They modeled the areal response of a catchment with spatially

variable soil properties during a storm event and found that

surface runoff was significantly affected by both random and

deterministic (i.e., having a trend) variations of soil prop-

erties. (Here, a "significant effect" means that the mean

soil properties fail to reproduce the response observed with

varying soil properties.)

The next step in conceptual simplification of the

watershed models is to ignore the feedback effect of overland

flow on infiltration. Precipitation that cannot infiltrate

where it falls is assumed to enter and remain in the surface

drainage network. Separate one-dimensional "soil columns"

then remain only weakly coupled by the relatively static water

table.

Sharma and Luxmoore (1979) used such a model, to-

gether with a vegetation parameterization, to study the effect

of soil spatial variability on the monthly water balance of a

small watershed. They found the effect to be most significant

during the months when runoff-producing rainfall was frequent.
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They speculate that the relatively small effect calculated for

the evapotranspiration component may be attributable to their

neglect of variation in vegetal type in the model.

In the same parallel, one-dimensional framework,

Freeze (1980) was able to carry out a fairly extensive study

of storm surface runoff from a hillslope, including an analy-

sis of the temporal distribution of storm runoff. Stochastic

fields for soil parameters, storm parameters, and topography

were employed. Various sensitivity runs demonstrated the

strong influence of spatial variability.

The last three analyses cited above employed

computationally burdensome Monte-Carlo simulation techniques.

It is reasonable to expect, however, that a similar, but

simpler, approach dealing directly with the statistics of pa-

rameters, states, and forcing would capture the essential fea-

tures of spatial variability and its effect on regional water

and heat balances. For instance, such an approach has been

applied successfully to the problem of averaging in time for

the long-term mean components of the water balance (Eagleson,

1978).

2.2 A One-Dimensional Model of Infiltration

We shall employ the simplest of the modelling alter-

natives described above - the decoupled battery of parallel

cells - in order to model spatial variability of infiltration

and surface runoff. Two distinct mechanisms are considered to

be active in preventing the infiltration of precipitation at a
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point (Freeze, 1980). The first, the so-called Horton mecha-

nism, is the gradual increase of surface soil moisture and de-

crease of infiltration capacity that would occur during a

storm when the water table is deep enough to have no influ-

ence. If the infiltration capacity decreases to less than the

rainfall intensity, surface runoff from that point on the sur-

face will occur. The second, the Dunne mechanism, is related

to the finite storage capacity of the soil column. Since dis-

charge from the saturated zone is slow relative to the storm

time scale, total infiltration into a column has an upper

bound given approximately by the initial air content of the

medium between the surface and either the water table or a

relatively impermeable soil layer. When this column becomes

saturated, infiltration virtually ceases and all precipitation

goes into surface runoff. Either or both of these mechanisms

may be active at a given location during the course of a sin-

gle storm. We shall proceed to quantify these mechanisms

using infiltration theory. This development is essentially an

extension of the work done by Eagleson (1978).

Philip (1957) has proposed a series approximation

for the time-varying infiltration rate that results when a

semi-infinite soil column at constant initial water content is

subjected to saturation at the surface. For many purposes, it

has been found that the first two terms of that series yield

an adequate representation of the process. Thus,

1

f (t) = s t + A (2.1)
0
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*
in which f. (t) is the infiltration rate, t is time elapsed,

S. is8tlie infiltration sorptivity, and A is another infiltra-

tion parameter. From Eagleson's (1978) work, we may express

the two infiltration parameters in terms of soil physical pa-

rameters and moisture content as

Si = 2 Sn K1) i(l) 1/2$1 (ds )(1 - so) (2.2)

and

A = (1 + SC) K(l) (2.3)0 0(

in which is the dimensionless infiltration diffusivity, n

is the effective porosity, K(1) is the value of hydraulic con-

ductivity at full water saturation, and s0 is the initial

moisture saturation of the soil. In the derivation of (2.2)

and (2.3), the hydraulic characteristics of the soil are

assumed to be given by the following expressions:

ip(s) = (1)s -1/m (2.4)

K(s) = K(l)sc (2.5)

In these equations, $ is the matric potential, K is hydraulic

conductivity, s is the saturation with respect to effective

porosity, and c and m are constants related to the soil type.
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The constant d in (2.2) is the exponent of s in the soil mois-

ture diffusivity. Through the dependence of soil moisture

diffusivity upon K and y, it is given by

d = c - 1 - 1/m (2.6)

The dimensionless infiltration diffusivity is

(Eagleson,1978)

S(1 - dd d + - -1 dos (2.7)j~, s) )(d + n) 17'___-S.
n=oI0

for integer values of d. In order to separate the influence

of s0 and d, we shall employ the following approximation to

this function:

(1 - s ) $ (d,s s) =(1 - s 4(d,s0 ) = $1(d) $2(s0 ) (2.8)

where

4 + 5/3
$1 (d) = d + 5/3 (2.9)

$2(s)= (1 - so) $3 (4,s 0 ) (2.10)

Figure 2.1 illustrates the error involved in this approxima-

tion. For small so, the approximation is good, while there is

considerable error for some d wher s0 is large. The overall

behavior of the function is fairly well represented, however.
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Furthermore, s0 will ordinarily have a small value at the end

of an interstorm evaporation period.

Equation (2.1) applies to a fully saturated surface

and predicts an infinite infiltration rate at t=O. At early

times, the rate will actually be limited by the precipitation

rate. We thus modify (2.1) in the following way:

r
i 0 < t < t

f. (t) (2.11)

{f.(t -t') to < t <t0 r

in which f is the actual infiltration rate, i is the constant

precipitation rate during the storm of duration tr, to is the

time at which saturation of the surface occurs, and t' is the

equivalent time origin assuming saturation conditions from the

beginning. This model is pictured in Fig. 2.2. The approxi-

mate validity of (2.11) relies on the time-compression as-

sumption, which has been justified theoretically (Reeves and

Miller, 1975). The times t and t' may be calculated by im-

posing the conditions that the rate and cumulative depth of

infiltration given by (2.11) be continuous at time to:

i = f.(t - t') (2.12)
1 0

(t' *
it0 = 0f(t -t')dt (2.13)

Using the definition of f. given in (2.1), we may solve
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INFILTRATION RATE AS A FUNCTION OF TIME DURING A

PRECIPITATION EVENT. MODIFIED AFTER EAGLESON (1978).
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(2.12) and (2.13) for t0 and t'. The result is

S. F Af S1 + 0 i>A (2.14)

to = 2i(i-A OL 2(i-A0) 0

00 i<Ao

tt - Si (2.15)

0 4(i-A0)2

where to=0 c means that f is always greater than i, no matter

how large t is.

Equation (2.11) is based on the assumption that

moisture can infiltrate unimpeded by any subsurface obstacles.

If a relatively impervious layer or a water table is present

at some shallow depth, then the cumulative infiltration depth

cannot exceed the depth-integrated air content above the bar-

rier at the beginning of the event. We thus modify (2.11) to

the form

0 < t < min(to,titr)

f(t) = (t-t') to < t < min(ti,tr) (2.16)

0 Min(tt r) <t

in which t1 is the time at which the column becomes fully

saturated. Equation (2.16) is a correct modification of

(2.11) given the approximation that the surface infiltration

rate is not affected by the lower barrier until full satura-

tion occurs. This approximation seems reasonable when the wa-
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ter table is not too close to the surface. The errors

introduced by it are probably no greater than those associated

with the assumptions of constant initial saturation and time

compression. For any given event, the second or third stage

in (2.16), or both, may be absent, depending on the relative

magnitudes of to, t1 , and tr . The set of possibilities is de-

picted in Figure 2.3. In general, the value of t1 may be ex-

pressed implicitly as

0 1

n(l-s0 ) dz = f1 (t)dt (2.17)

W

in which Z w is the depth to the water table or to a relatively

impervious layer. For a uniform initial soil moisture satura-

tion, so,

t

Z n(l-s0 ) = f (t)dt (2.18)

Defining the cumulative infiltration, F., we have

F (t) = f1 (T)dT (2.19)

.0

or, applying (2.16),

Min(t o~tltr~t) max[t 0.min(t ,t ,.t)]

F (t) = i d-r + fi(T - t')dT

0 t
0
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= i min(t0 ,t, tr, t)

+ max[t )min(t t r t)]
+ (-t') + A ( ' 0IJS

0

Thus, (2.18) may be reformulated as

Zw n(1-so) = Fi(tj) = i min(tot 1 , tr)

+ [S (T-t'

The solution

1/2 + A (T-t')] max(t t )
) 0 to 0

of (2.21) for t is

a/i

t = L i
2S .

t' + Si
2A2

0

F1 + 2 A a
"4 f

t
0

4A as 1/2-
+ 0  ;t

S

> a/i

< a/i
(2.22)

in which

a = Z n(1-s 0 ) (2.23)

Rather than study the temporal distribution of in-

filtration (and, hence, of runoff), we shall instead concen-

trate on the behavior of total storm infiltration, as given by
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(2.21)
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This may be expressed as

F.(tr) =

+ [S.(r-t')

min a,

1/2

i min (t, 2tr)

T= max(toItr)
+ A (T-t')] 0' r0 Tt

0 }

F (t) =

min(a, itr)

min{a, it 0

+ A (tr- t ))} t r (2.25)

surface runoff, Rl

rRso the

2.3 Stochastic Models of the

, is given by

- Fr (t )

Factors Determining Total

tration

Equations (2.25) and (2.26), together with

(2.3), (2.6), (2.14), (2.15), and (2.23), specify to

tration and

t

(2.2),

al infil-

runoff as functions of the following variables:

i, tr, n, c,

45

M, $(), s 0,z w

F.(tr).

or

(2.24)

t < t

+ SiL(tr - t')1/2 (t0 - t') 1 /27

The total

(2.26)

Inf il-



The parameters m and (1) may be expressed as functions of the

other soil parameters using (Eagleson, 1978)

2
c -3 (2.27)

and

(1) = 10
.66 +. + .1 4  -1 /2

' m mn

in which a is surface tension, -p is viscosity, and Y is spe-

cific weight of water. Then the following seven parameters

remain:

storm . . . . . . . . .

soil type . . . . . . .

soil state........

water table/topography.

. . . i, tr

. . . K(1), n, c

. . . 590

0 0 . z w

Given that these parameters may all vary from point

to point within an area of interest, infiltration and runoff

will also be non-uniform. We shall study this non-uniformity

by applying (2.25) in conjunction with probability density

functions for the parameters.

2.3.1 Precipitation Parameters

The internal space-time structure of a precipitation

event is complex and dependent on storm type. In this study,
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we are concerned primarily with spatial variability, and have

therefore adopted the temporally constant intensity model em-

ployed in Section 2.2. In fact, the percentage mass curve

(cumulative rainfall percentage versus percentage duration) is

not a straight line and has a shape dependent on the storm

type (Eagleson, 1970). If we ignore temporal variations in

point intensity, then a storm is fully described by specifying

i and t . Our description of spatial variability will then be

embodied by the chosen spatial distributions for i and tre

At a given time during the storm, rainfall intensi-

ty varies widely in space. A discussion of the observed be-

havior is given by Gupta and Waymire (1979), and is briefly

summarized here. Figure 2.4 illustrates the hierarchichal

structure of a storm. Convective cells are the smallest rec-

ognizable features, typically 10 to 30 km2 in area, and pro-

duce the most intense rainfall. Convective cells usually oc-

cur in cell clusters and small mesoscale areas (SMSA's). In

the latter, the rainfall intensity outside, but close to, the

cells is greater than in the surrounding area. In the former,

there is no such region of intermediate intensity. Cell clus-

ters and SMSA's are embedded in larger areas (103 - 104 km2 )

called large mesoscale areas (LMSA's), in which the precipita-

tion rate is relatively low. The LMSA is considered to be the

largest common structural feature among a variety of storm

types. In the case of synoptic scale (>104 km2 ) storms, one

or more LMSA's may be imbedded in the synoptic area. Rainfall

intensities inside the LMSA's are higher than outside.
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Figure 2.4

INSTANTANEOUS SPATIAL STRUCTURE OF A SYNOPTIC RAINSTORM

(from Gupta and Waymire, 1979).
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Lifetimes of the various features range from several

minutes for convective cells, to a few hours for an SMSA or

LMSA, to a few days for a synoptic area. During their lives,

they travel not only with respect to the ground, but also rel-

ative to each other. The average intensity (or total depth)

at a point during a storm is thus determined by the chance

passage overhead of the various storm features. The hierar-

chical range of intensity described above is smoothed out by

the motion of the individual features.

A number of empirical studies indicate that total

storm depth tends to have a single maximum in space, and that

storm depth decreases uniformly with distance from this storm

center. Many of these studies have been reviewed by Court

(1961). A representative model is that of Boyer (1957). For

storms of circular shape, it may be written as

h = h0 exp(-r/r0 ) (2.29)

in which h is the local total storm depth, h0 is its maximum,

r is the distance from the storm center, and r0 is a charac-

teristic horizontal dimension of the storm. For simplicity,

we shall employ this model regardless of the lateral scale of

the storm. In fact, the reduction of h with distance in

convective storms is sharper than predicted by (2.29)

(Eagleson, 1970), which therefore underestimates the spatial

variability of depths generated by such events.

Using, (2.29), a distribution function for h can be
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defined over a specified area when the location of the storm

center is known. We consider here a circular region of radius

R whose center coincides with the storm center.

tive distribution function of storm depth is

F 1 (h) =

The cumula-

area with storm depth less than h
total area

a 2 - h 0n ) 2TT R -T ~(r 1ln-

R2 2

r 02 nh10 2

=l- 1 - In h e
0

0 < h < h (2.30)

The average storm depth within the modelled area is

h = 2 R -r/r
h =h e 0 rdrde

r 0 -R/r
=2h 0  - B - e

Defining a normalized storm depth,

Ul = h/h

we obtain an alternative to (2.30),

Fr(u ) = 1 - in 2
-l

+ R (2.31)

(2.32)

h 0 -R/r 0-eh h
< U 1 < -2(2.33)

h
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This function is plotted in Figure 2.5 for various values of

the relative storm radius, r0/R. For a GCM grid square, we

have R,,200 km. The large value of r0/R=1 then corresponds to

a relatively uniform, synoptic scale storm. A lower limit of

r /R=10-2 would correspond to a small, isolated convective

cell. For this case, the upper curve in Figure 2.5 reflects

-the concentration of most of the rainfall volume in a very

small proportion of the area.

The frequency distribution proposed here is useful

for characterizing the variability of h when the modelled area

is large relative to the storm size. When the area is rela-

tively small, this model incorrectly implies negligible vari-

ance of total storm depth. In fact, there will still be a

random component resulting from the stochastic, cellular na-

ture of true storms. The current model therefore underest-

imates the spatial variability of rainfall when the modelled

area is small relative to the storm size but large compared to

the square of the autocorrelation length of total rainfall

depth.

The storm depth is the product of the two storm pa-

rameters introduced earlier, i and t, both of which will vary

in space. We shall assume that tr is constant, so that all

variation of h is due to variation of i. This assumption is

consistent with our neglect of temporal variations of storm

intensity, since the latter allows us to "smear" the intensity

over its highs and lows in time. The smaller values of point

duration can thus be enlarged by adding on a zero-intensity
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CUMULATIVE DISTRIBUTION FUNCTION OF THE LOGARITHM

OF NORMALIZED STORM DEPTH.
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period of rainfall at the end of the storm. The constant tr

may be viewed as a mean point storm duration. Given this con-

stant value of tr, the cumulative distribution function of i

is determined directly by (2.32) and (2.33), with itr

substituted for h.

2.3.2 Soil Type

If we classify soils according to their hydraulic

characteristics - moisture retention curve, saturated and rel-

ative hydraulic conductivity - then we shall find that soil

type varies enormously even in small, apparently homogeneous,

plots. A theoretical concept that has provided a framework

for recent analyses of soil spatial variability is that of

similar media, introduced by Miller and Miller (1956). Two

similar media are geometrically similar and differ only in

their characteristic length scale (e.g., average grain diame-

ter). For practical purposes, the definition can be extended

to require only statistical similarity. Then the internal

pore geometries need not be exactly similar, but the pore size

distributions for representative elementary volumes of the

media must be identical, except for the scale factor. Miller

and Miller (1956) introduced dimensionless capillary pressure

and conductivity, defined as

P- A (2.34)
0 -p
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K0 = K (2.35)
X pg

where A is a local characteristic length of the medium. Equa-

tion (2.35) differs slightly from the original in that pg is

not incorporated into K, whose units here are consistent with

the current soil physics and groundwater literature. We are

also following the usual practice of expressing the soil mois-

ture pressure in terms of an equivalent water depth, so we

shall employ

- _ (2.36)0 a

instead of (2.34). We recognize in (2.35) the combination

pK/pg , which is the intrinsic permeability of the medium

(Bear, 1979, p. 67). In analogy, yW/a may be considered the

intrinsic matric potential (Eagleson, 1978). Thus,

k = K X2 (2.37)
0

= A- (2.38)

in which k is the intrinsic permeability and $' is the intrin-

sic matric potential. If we define a as the ratio of the lo-

cal value of A to its average over the family of similar

soils, 7,
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A/A (2.39)

we then obtain the relations

$(s)=a4 (s) (2.40)

K(s) = 2 K(s) (2.41)

where

(s) - O(s) (2.42)

2
K(s) -p1 K 0 (s) (2.43)

are the moisture characteristics associated with X; they are

not the average values of i or K. This representation and its

consequences for soil moisture dynamics have been verified

experimentally (Miller and Miller, 1955; Klute and Wilkinson,

1958; Wilkinson and Klute, 1959).

Recent analyses of field data have shown that much

of the variability in soil characteristics can be accounted

for by the scaling factor, a (Warrick et al., 1977; Keisling

et al., 1977; Sharma et al., 1980). Scaling theory has thus

become a powerful tool in the analysis of the field variabili-

ty of soils and in the modeling of spatially variable

hydrologic response.

Experimental evidence supports the use of the
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log-normal distribution to model the variability of a at field

scale (Sharma et al., 1980). The probability density function

of a can then be written

fa(c) = (/27 an a) exp[-(ln a - p) 2/2c 2] (2.44)

in which Pn is the mean and an the standard deviation of the

logarithm of a. The mean value,p , and standard deviation, 0,

of a itself are given by

2
Pa= exp(n/2 + (n) 2.45)

2a (expn - 1) (2.46)

Defining the reference curves $ (s) and K (s) as those
0 0

associated with the mean value of a (i.e., settingp a equal to

unity), and introducing the symbol CV to denote the coeffi-

cient of variation of a, we may use (2.45) and (2.46) to ob-

tain

a2 = ln(l + CV2  (2.47)

2
Pn= -% /2 (2.48)

which define the probability density function of a in terms of

a single parameter.

Calculated values of CV for small scale (several
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THE PROBABILITY DENSITY FUNCTION OF log1 0a., WHERE a. IS

THE SCALING PARAMETER, SHOWING RELATION TO HYDRAULIC

CONDUCTIVITY FOR K(1) = 10-4 cm s~ . HYDRAULIC CONDUCTIVITY

RANGES AFTER FREEZE AND CHERRY (1979) AND HILLEL (1980).
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hectares) field data range up to a maximum of less than 2

(Keisling et al., 1977). For areas of many square kilometers

and up, the pertinent data are not yet available. Either an

increase of CV or a breakdown of soil similarity might be

found at very large scales where regional variations in soil

genesis come into play. The normal probability density func-

tion of ln(a), corresponding to (2.44), is plotted in Figure

2.6 for large variability of a. We see that a value of

CV=1.3, typical of values already observed, corresponds to the

full range of variability of broad textural classes of soils.

If a range of different, but geometrically similar, soil types

is present in an area, values of CV significantly greater than

this would be found. Keeping the assumption of log-normality,

it appears that an upper limit of about CV=10 would be found,

since this approaches the global limit of soil variability.

Soil similarity implies constancy of the soil param-

eters c and n. Although these parameters do vary, we shall

work only with soil variability in the framework of similari-

ty. This approach is supported by the analyses of field data

cited earlier, which-found that similarity theory sould ac-

count for much of the hydrologic variability even in dissimi-

lar soils.

2.3.3 Initial Moisture Content

The moisture content of the soil exhibits random

variations in space that can be represented well by the normal

probability density function (Bell et al., 1980). Values of
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the standard deviation of the saturation ratio can be

estimated from the gravimetric data of Bell et al. (1980),

which yield a range from about 0.02 to 0.1.

Small-scale soil moisture variations may result

from variations in soil type. This can occur in two ways.

First, soil type controls infiltration, evaporation, drainage,

and, consequently, changes in moisture storage. Second, con-

sidering a field in which the parallel soil columns are in

equilibrium with each other, i is relatively constant. Equa-

tion (2.40) then implies variability of s0 resulting from

variability of (1, since the function T (s) is unique for the

entire family of similar soils.

In some cases, it appears that near-surface moisture

variations are strongly correlated with local topography

(Zaslavsky and Sinai, 1981).

A bivariate normal distribution, accounting for the

correlation between ln(a) and s0, would appear to be a realis-

tic model of the spatial variability of those parameters. In

the current analysis, whose goal is to isolate the most impor-

tant parameters, we shall ignore the correlation of ln(a) and

s01. Should the variability of both prove to be critical, then

further analysis would be justified. The probability density

function of s 0 may now be written as

f5  (s0) = ( ) exp[-(s - 1 ) 2/2a ] (2.49)
S00S 0 S S

where s and a s are the mean and variance of the soil moisture
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saturation.

2.3.4 Depth to Water Table

In the present analysis, we shall model Z as the

water table depth, ignoring the possibility of relatively im-

pervious layers. Our results can be expected to apply quali-

tatively also to the latter case, however.

The water table depth may be viewed as the differ-

ence of two random fields - the land surface elevation and the

water table elevation (Freeze, 1980). Here we shall apply a

simpler deterministic model. A one-dimensional Dupuit model

of groundwater flow toward a stream in a topographic low

yields

b =B [1 - L 2 '(2.50)
1 1 LJ

where b1 is the difference between the elevation of the water

table and the elevation of the discharge area, x is the dis-

tance from the stream, and L is the distance from the stream

to the groundwater divide. The parameter B1 gives the maximum

height of the water table. Its value is

B NL2  (2.51)
1  2T

where N is the uniform rate of recharge from the unsaturated

zone and T is the transmissivity of the saturated zone.

The water table profile is often observed to be
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geometrically similar in cross section to the land surface,

with the local irregularities of the land surface filtered

out. As an approximation to the land surface profile, we

shall write

b2 = Bl2 [ [L Lx 2] (2.52)

where b2 is the land surface elevetion and B2 is its maximum

value. Then the normalized water table depth, u2 , is given by

Z b -b 1x2

2 B (2.53)

where

B = B2 - B1  (2.54)

is the maximum water table depth. Given that x is uniformly

distributed between 0 and L, we may derive the corresponding

deterministic frequency distribution for u2 . The result is

F2 (u2 ) = {Proportion of area with U2 < u2

x2u)
L2 2 0 < U2 < 1 (2.55)
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2.4 Areal Average Infiltration

At this point, we summarize in dimensionless form

the stochastic-dynamic infiltration model of the preceeding

sections. Defining I as the ratio of the local infiltration

depth to areal average rainfall, i.e.,

I = ) /h (2.56)

we have

min {D (1-s0 ) u2 , U1  l < T0

I = min {D(l-s) U 2 ' o u1 + Sa $2 (S0 ) (2.57)

1A 1-sC 2
-[(1-T') - (T 0 -T')V] + A(l+s ) (1-T)} T < 1

in which

2 r
[S$2 (s) ] a 1+

0 211 [U - A (1+s ) 2

an

and

0

(2.58)
C 2 2

A (1+s at Aa2 < U
0

2[u - A (l+SC) 2
U < Au

2

4 [ $u - A(1+SCa 22
0

(2.59)

In these equations, D, S, and A are constant dimensionless pa-
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They..are given by

D = dimensionless soil storage capacity-Bn
F7

S = dimensionless sorptivity = 21

1/2
5n K(1) (1) t1

L 37mh2

K(l) t
A = dimensionless hydraulic conductivity = (2.62

2F

and therefore depend jointly upon soil and storm characteris-

tics. The random variables are ul, u2 9 so, and at . Their

(assumed independent) distributions are defined as follows:

F (u1 ) = 1-(-r 0 [2 n h12

F2 (u2 ) = l-(l-u2)

h
; -2 -R/r h

h e < u <

0 < u2 < 1

S N (Ii a)

2

ln at N(0, ln(1+CV2))

These distributions introduce the following parameters

the problem:

rO/R = relative storm radius

1-s
= mean value of s0

ys = variance of so

CV = coefficient of variation of a

Including the soil parameter c, there are therefore eight in-
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dependent parameters.

The areal average value of I, which we shall term

the infiltration efficiency and denote by I, is found by

integrating over the probability density functions of the ran-

dom variables,

I(D,S,A,c, 0 Ps as ,CV) = I(u 1 ,u 2,s ,ca;D,S,A,c)

f1 (u ) f2 (u2) S (s0 ; Ps, as) a(c;CV)du1 du2 N0 da (2.67)

where

r dF1
f1 (u; ) = d 1  (2.68)

f(U dF 2  (2.69)
2

with F1 and F2 given by (2.33) and (2.55), respectively.

The results of numerical integration of (2.67) are

presented in this section. The computer program is listed in

Appendix A. Parameters for the various sensitivity runs are

given by the key in Table 2.1. Note that the solution is in-

dependent of c for s0 equal to zero, according to (2.57)

through (2.59).

2.4.1 Infiltration with Homogeneous Soil Type, Initial Satu-

ration, and Rainfall

We first examine the behavior of the infiltration

64



Figure No.
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Table 2.1

MODEL PARAMETERS USED IN THE SENSITIVITY ANALYSIS

TO GENERATE FIGURES 2.7 THROUGH 2.18
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model in the absence of spatial variability of soil type,

moisture content, and precipitation, i.e., CV=0, a s=0, and

r /R large. Variability of water table depth as required by

(2.55) is retained in the examples that use a finite value of

D. We first consider infinite D, then finite.

Figure 2.7 illustrates the dependence upon A and S

of the infiltration efficiency of an initially dry, homogene-

ous soil (s =0) with a deep water table (D= co ). When either

parameter is much larger than the other, infiltration is

insensitive to the smaller parameter. The upper left hand

corner of Figure 2.7 represents the sorptivity-controlled re-

sponse, while the lower right hand corner corresponds to con-

ductivity control. For either extreme, I is a monotonically

increasing function of the controlling variable up to the

point where I reaches and remains at unity. This discontinui-

ty is a threshold nonlinearity; no runoff occurs if A is

greater than unity or if S is greater than about eight.

We should keep in mind that A and S contain storm

parameters, so the dominance of sorptivity or conductivity for

a given area is storm-dependent. Referring to Figure 2.7, we

see that sorptivity dominates when A/S is less than about

0.03. Conductivity is the controlling factor for A/S greater

than about 0.3. In between, both effects contribute signifi-

cantly. From (2.61) and (2.62), the critical ratio may be

computed to be

A _3TrmK(1) d t (2.70)

n(1)
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This gives us a simple criterion for determining the relative

importance of conductivity and sorptivity, for a given area,

as a function of the storm duration, and independent of the

average storm depth. The numerical limits suggested above, of

course, apply only to the case of no spatial variability,

since they are taken from Figure 2.7. Similar limits on A/S

could be obtained for other situations in the same manner,

however, and translated to storm durations by means of (2.70).

The influence of ps, the mean initial soil moisture

saturation, on infiltration with a deep water table is shown

in Figure 2.8 for varying S, and A equal to zero. For the

three lower curves, the reduction of infiltration efficiency

due to non-zero initial saturation corresponds roughly to the

decrease in $2 0 ) with increasing s exhibited in Figure 2.1.

For fixed ps, the infiltration is proportional to S. For

large S, the infiltration efficiency is limited by its maximum

value of unity and is independent of Psexcept for large ps.

In general, there is little sensitivity to ps except when the

soil is initially near saturation.

The behavior of the conductivity-dominated system as

a function of Ps is shown in Figure 2.9 with the soil parame-

ter c equal to 4. The sensitivity to ps, which enters through

the s0 dependence of A given in (2.3), is somewhat smaller

than in the sorptivity-controlled case. In our analysis of

infiltration with spatially variable initial soil moisture in

Section 2.4.2, we shall concentrate on the latter system.
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A sufficiently small value of D, which measures the

available storage capacity, will decrease the average infil-

tration due to the shortage of vacant pore space able to re-

ceive water. Figures 2.10 and 2.11 illustrate this behavior

for sorptivity-dominated and conductivity-dominated systems,

respectively. Concentrating on Figure 2.10 and a single value

of S, we see that the infiltration efficiency, I, is propor-

tional to the storage depth available when D is small. At

this point, infiltration is everywhere limited absolutely by

Z . As D becomes larger, the storage limit is active only in
w

the portion of the area where the water table is relatively

shallow, so the growth of I with D is sub-linear. This is be-

cause the sorptivity becomes a limiting factor over an in-

creasingly large part of the area. For large D, the deep wa-

ter table solution is approached asymptotically. Similar be-

havior for the conductivity-controlled system can be seen in

Figure 2.11.

Since the available storage space is directly relat-

ed to s , we expect a significant sensitivity of I to s when

the water table is shallow. This is demonstrated in Figure

2.12 for the larger values of sorptivity or initial satura-

tion. (The value of D is unity.) The uppermost straight line

segment represents complete control of infiltration by the

available storage capacity. The nearly horizontal curves at

small S and Ps show the relative insensitivity of infiltration

to the initial moisture content, through $2(so), that was

observed for small Ps in Figure 2.8.
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2.4.2 Infiltration with Spatially Variable Soil Moisture

Figure 2.8 showed the sensitivity of I to Ps when aS

was zero. It thus represents also the sensitivity to s0 it-

self. We are interested in knowing the sensitivity of infil-

tration to us. If the relation between I and s0 were perfect-

ly linear, then there would be no sensitivity at all to as,

since the expected value of a linear function is obtained by

evaluating that function at the mean value of the argument.

Over ranges of s 0 corresponding to any fixed value of ps and

reasonable values of as(Section 6.3.3.3), the relationship is

approximately linear. The most significant curvature in Fig-

ure 2.8 appears around ps=0.7. We have thus calculated infil-

tration as a function of as for pS=0.7. The results are dis-

played in Figure 2.13, which suggests that soil moisture vari-

ations are unimportant for the prediction of infiltration,

since the average response is almost independent of as. An

areal mean value of s0 is therefore sufficient for prediction

of the hydrologic response to rainfall.

The corresponding calculations for a shallow water

table are plotted in Figure 2.14. The insensitivity to asis

not surprising in view of the weakness of the nonlinearities

displayed in Figure 2.11.

2.4.3 Infiltration with Spatially Variable Storm Depth

For r0/R much larger than unity, the storm is large
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relative to the modelled area, and h is almost constant. A

value of r /R much less than unity implies great variability

of rainfall, with most of the precipitation concentrated over

a small area. The importance of this parameter in determining

infiltration is shown clearly in Figures 2.15 and 2.16. The

individual curves in Figure 2.15 show the decrease of infil-

tration that results from increasing variability of storm

depth, i.e., decreasing relative storm radius, r /R. From

(2.26), we have

R - (2.71)
- =- I

i.e., a decrease in the normalized average infiltration is

balanced by an increase of the normalized average surface run-

off. The quantity R /h is given by the vertical distance

from the curves up to the unit ordinate. Figures 2.15 and

2.16 thus show the dramatic increase of surface runoff that

results from increasing variability of storm depth, the aver-

age depth (or total volume) of rain being held constant.

Current large-scale hydrology parameterizations in

use in atmospheric general circulation models specify the di-

vision of rainfall into infiltration and surface runoff by

considering only the total volume, or average depth, of pre-

cipitation over the entire grid square. This is equivalent to

using the large-r /R asymptotes of Figures 2.15 and 2.16 re-

gardless of the storm type. Depending on the particular value

of r0 /R for which a given parameterization has been cali-
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brated, these figures tell us that such a scheme will underes-

timate runoff from localized convective activity and/or

overestimate runoff from regional cyclonic storms. The errors

involved can apparently be very large.

Another interesting feature of the response to high-

ly variable precipitation is the much wider range of A and S

over which both infiltration and runoff are significantly dif-

ferent from zero. Perhaps this explains the often noted fail-

ure of lumped parameter (i.e., one-dimensional) rainfall-

runoff models to yield surface runoff comparable to observa-

tions.

2.4.4 Infiltration into a Heterogeneous Soil

Figure 2.17 shows the strong sensitivity of the in-

filtration efficiency to the coefficient of variation of the

soil scaling parameter when infiltration is gravity-dominated.

As was seen for precipitation, the effect of spatial variabil-

ity of soil properties is usually to decrease significantly

the proportion of precipitation that enters soil storage. For

A greater than or equal to unity, the average value of a is

too large to cause surface runoff (hydraulic conductivity

grows with a). Since increasing variability of a means a

growing tail in the probability density function of a at small

a, the infiltration efficiency decreases with growing CV. A

similar argument explains the relatively insignificant rever-

sal of this behavior for small A.

The same behavior, qualitatively speaking, is visi-
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ble in Figure 2.18, which applies to the sorption-dominated

infiltration process. The magnitude of this effect is consid-

erably smaller, however. The quantitative difference in the

effect of CV between Figures 2.17 and 2.18 results from the

different exponents of ca in the sorptivity and conductivity

terms.

Recall that the average value of a has been defined

as unity. If the "average" of a family of similar soils is

defined as the member of that family with a equal to unity,

then the response of that average soil is given by the inter-

sections of the curves in Figures 2.17 and 2.18 with the

y-axis. To average is thus to assign a value of CV=O for the

purpose of modelling. If the actual soil system in the area

of interest has a CV of, say, two, then the response of this

hypothetical average soil is clearly dissimilar to the average

response of the area for some values of A and S. In Figure

2.17, with CV=2 and A=10, the "average" soil yields no runoff,

while the actual runoff is 25 percent of the rainfall.

Notice also that the ranges of A and (to a certain ex-

tent) S over which runoff can occur grow with CV. This behav-

ior is similar to that observed earlier for spatially variable

rainfall.

2.5 Discussion

It is well known that physically-based models of ho-

mogeneous, or point, infiltration have threshold nonlineari-

ties of the type shown in Figure 2.7. Furthermore, such a
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model is very sensitive to the parameters, in this case A and

S, with only a narrow range of values allowing significant

runoff and infiltration from the same event. Results pres-

ented in the previous section demonstrate that the inherent

spatial variability of soil and storm properties is fundamen-

tal in shaping the infiltration function for an inhomogeneous

basin. Figures 2.15 and 2.16 show how the sensitivity of in-

filtration to A and S decreases as the variability of storm

depth increases. The similar result for soil variability can

be seen in Figure 2.17.

Another particular feature of the inhomogeneous sur-

face response is that increasing spatial variability, with

mean parameters held constant, almost invariably results in

decreased infiltration and increased surface runoff, as was

seen in Figures 2.15 through 2.18. Estimates of surface run-

off made using mean values of soil characteristics and storm

depth will usually be biased significantly downwards.

The results of the previous section suggest that the

spatial distribution of precipitation plays a major role in

determining the average areal hydrologic response to a storm.

This is especially true for large areas such as a GCM grid

square, within which precipitation may be highly variable, and

within which that variability is dependent upon storm type.

The role of soil variability appears no less criti-

cal for storms that generate gravity-dominated infiltration.

The soil is simpler to treat, however, in that it is a static

factor - CV does not vary from storm to storm.
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The sensitivity of infiltration to the mean moisure

saturation, shown in Figures 2.8, 2.9 and 2.12, is important

only when the soil is near saturation or when the water table

is shallow. Even then, the spatial variability of initial

saturation can be ignored, according to our model, as

demonstrated in Figures 2.13 and 2.14. Furthermore, Figures

2.8 and 2.9 suggest that the time variations of the areal av-

erage saturation are themselves only of secondary importance,

supporting the use of a space-time mean value for modelling

purposes when the system is not initially near saturation and

does not initially have a shallow water table. The commonly

observed sensitivity of infiltration to antecedent moisture

conditions suggests that these conditions often fail to be

met.
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Chapter 3

SPATIAL VARIABILITY OF EVAPOTRANSPIRATION

3.1 Introduction

The rate of evaporation or transpiration varies over

the land surface due to variations in net radiation, moisture

availability, vegetation, and soil type. Atmospheric

advection and diffusion are also factors. We begin our dis-

cussion of the spatial variability of evapotranspiration with

a look at the Penman-Monteith equation and its assumptions.

Tais provides some background for the remainder of the chap-

ter.

A wideiy used conceptual model for the evaporation

process is (Monteith, 1980)

LE = - (e - e ) (3.1)
yrV o z

in which L is the latent heat of vaporization of water, E is

the evaporation rate, p and cp are density and specific heat

of air, y is the psychrometric constant, e0 is the vapor pres-

sure at the evaporation source and ez is the vapor pressure at

height z. The resistance to vapor transfer, rv, is often con-

siaered to be a sum of plant (or canopy) and aerodynamic re-

sistances in series (Monteith, 1980),

r = r + r (3.2)
v c a
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so that the evaporation is considered to occur inside a leaf,

the additional resistance being imposed by the plant stomata

and cuticle. In the absence of canopy resistance (i.e., for

externally wet vegetation or for a bare, wet soil surface), rc

is equal to zero.

In the cases covered above, e0 is normally consid-

ered to take its saturation value, i.e.,

e = e (T ) (3.3)

where T is the temperature of the evaporating surface. How-

ever, if surface soil moisture becomes low in the bare soil

situation, then the vapor pressure is reduced by a factor that

depends on the surface soil moisture potential so that

(Edlefsen and Anderson, 1943)

e = e5 (T0 )exp($g/R T) (3.4)

where i is the soil moisture potential (negative), g is the

acceleration of gravity, and Rv is the gas constant for water

vapor. Although an identical relation holds inside the leaves

of a vegetal canopy, the magnitude of the leaf potential is

relatively small and (3.4) should then reduce to (3.3).

When (3.3) holds, it can be linearized and combined
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with both (3.1) and an expression for sensible heat flux,

pc
H = Pe (T - T ) (3.5)r h o z

in the surface heat balance equation,

Rn - G = H + LE (3.6)

to yield Monteith's modification of the Penman equation,

PC
A(Rn - G) + rP[es(T) e ]

LE = h(37)
A + y(rV/rh

In (3.5) through (3.7), H is the sensible heat flux upward

from the surface, Tz is the temperature at height z, and rh is

the atmospheric resistance to heat diffusion, usually equated

to ra; Rn is net radiation, G is the heat flux into the soil,

and A is the slope of the saturation vapor pressure curve,

assumed constant.

A critical assumption in the derivation of (3.7) is

that eo and T0 pertain to the same surface, i.e., that the

virtual sources of vapor and heat are identical, and that sat-

uration conditions hold at this surface. The latter condition

can be relaxed for dry, bare soil by introducing (3.4) in-

stead of (3.3) to relate e0 and To, but then further assump-

tions have to be made about the feedback of E on V. This mod-

el thus has limited usefulness for a bare soil after the sur-
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face dries. At that time, evaporation goes from atmosphere

control to soil control.

A relatively dry vegetated surface will actively

strive to reduce evaporation by increasing its r c as the soil

moisture becomes low (Monteith, 1980). Inasmuch as the

increasing canopy resistance is a response to reduced soil

moisture potential, this can also be considered a transfer of

control from atmosphere to soil. Again, the modelling problem

requires knowledge of the feedback of E on 4), because of the

dependence of rc on i. The dry, vegetated surface, like the

dry, bare soil surface, is thus not easily analyzed using the

atmosphere-based Penman-Monteith approach.

Equation (3.7) is a diagnostic relation giving evap-

oration as a function of measured meteorologic variables in

the turoulent planetary boundary layer. It fails to account

for the feedback effect of evaporation on these variables.

More globally-oriented analyses of evaporation based on the

theory of atmospheric diffusion and advection have dealt with

this problem. The most general surface boundary condition

for moisture considered in such an analysis (MoNaughton,

19y6a,b) uses the above-mentioned concept of saturated vapor

pressure inside a leaf or canopy of specified constant resis-

tance, and is thus applicable to many vegetated or bare soil

surfaces with sufficient soil moisture. The bare soil situa-

tion is ootained by allowing rc to go to zero.

In this chapter, we shall examine the problem of

areal average evaporation when the soil is sufficiently wet
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for (3.3) to be used. Although this includes virtually all

vegetated surfaces, our results will be most applicable to

situations in which soil moisture is well above the point at

which the plants become severely stressed. Under stress, the

canopy resistances become increasingly sensitive to soil mois-

ture, a feedback mechanism that we shall not address.

3.2 Mathematicai Formulation

One approach to the analysis of evaporation is

through turbulent transport theory. The lower layer of the

atmosphere is treated as a turbulent fluid and the conserva-

tion equation for a given constituent is a partial differen-

tial equation. Thus, for water vapor,

e + u - Ve = V - (K Ve) (3.8)at

in which e is the water vapor pressure, u is the

three-dimensional wind field, and K is the turbulent

diffusivity tensor. If we assume the existence of a

unidirectional wind field (i.e., neglect the Ekman spiral), we

may align the x coordinate in the direction of the wind.

Tnen, invoxing the boundary layer approximation that

longitudinal dispersion is unimportant, (3.8) may be written

+ U e(K9) +-(Kz(3-9)
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The steady state version is

u = (K ) + (K e) (3.10)

which says that the increase in advected moisture along the

wind is equal to the vertical and lateral diffusive convergen-

ce of moisture.

Most important evaporation problems can be

characterized by one of the following three surface boundary

conditions:

1. Specified vapor pressure.

e
jz=0

= F(x, y) (3.11)

For instance, this would be applied to a wet surface, for

which

F(x, y) = e (T )
s z=0

(3.12)

where es Tlz=0 ) is the saturation vapor pressure and

TIz=0 is the surface temperature.

2. Specified vapor flux.

-K Z z=0
= q(x, y)

where q(x,y) is the surface flux of vapor.
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be the case when evaporation is known a priori, indepen-

dently of atmospheric conditions. For us, it is not an

interesting problem, since we hope to determine q(x,y)

itself. When we know q(x,y) a priori, there is no need

to solve the atmospheric diffusion problem.

3. Saturation vapor pressure and a resistant canopy. The

vapor pressure is considered fixed at saturation inside

the leaves of a vegetal canopy. The flux of vapor through

the leaf is resisted by the leaf stomata. Equating the

vertical vapor flux at the bottom of the atmosphere to

the flux through the canopy, we obtain

-K = [e (TI ) - e ] (3.14)

in which rc is the canopy resistance. Mathematically,

this is a mixed-type boundary condition, involving both e

and its derivative normal to the boundary. In general,

the canopy resistance varies dynamically in space and

time as different plant species respond to such environ-

mental factors as soil moisture and solar radiation. In

the present analysis, we shall treat rc as an indepen-

dently specified parameter field.

As rc goes to zero, (3.14) reduces to the com-

bination of (3.11) and (3.12). We shall thus use (3.14)

in the following discussion of the first and third case.
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Equation (3.14) requires knowledge of the surface

temperature. Since temperature is so strongly influenced by

evaporation, a useful analysis must incorporate its determina-

tion as part of the solution. We thus introduce a second

diffusion equation,

M y (K De) + -- (K D-) (3.15)
U x 9y y Dy 3z Z

where we have assumed similarity of diffusion for moisture and

heat. This equation is written in terms of e, the potential

temperature, which accounts for the adiabatic changes in tem-

perature of air subjected to varying pressures. It is given

by

R /c

e = T(- ) (3.16)
p

where T is the actual temperature, p is pressure, p0 is sur-

face pressure, Ra is the gas constant for air and c is the

specific heat of air. At the surface, e and T are identical.

The second surface boundary condition is the re-

quirement of energy balance at the surface. It is

Rn - G = H + LE (3.17)

in which Rn is the net radiation, G is heat conduction into

the ground, L is the latent heat of vaporization of water, and
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E and H are the surface moisture and heat fluxes, given by

(3.18)pc~

LE = - PC-P K 3e
Sz 3z z=o

H = -pc Kp z z z=O
(3.19)

Depending upon the situation, Rn and G may be sig-

nificantly intluenced by the surface temperature. To first

order, that dependence may be expressed as

Rn - G = R + S(6I
z=O

- em) (3.20)

where em is a typical temperature, around which Rn-G is

linearized, and R and S are constants. Similarly, es(T) in

(3.14) is linearized as

es(TI z=0 es(6 z=) em + A(61z=Oj

em e (6 )ms m

- ) (3.21)

(3.22)

de
s

A dT IT =

95

and

where

and

(3.23)



Using (3.18) through (3.21), the surface boundary conditions

(3.14) and (3.17) can be re-written as

- le - A6 - el
rC m m Iz=0

+ AG
z=0

R + S( I - 6 ) - pc K zm p z 1Z z=0
- K -e

y z zI=0

A complete mathematical statement of the steady

evaporation and heat balance problem for a surface on which

the canopy resistance model is valid consists of the conserva-

tion equations (3.10) and (3.15), the boundary conditions

(3.24) and (3.25), and the specification of upwind or "ini-

tial" conditions,

e x=O

x=O

(3.26)= e (y, z)

= ea(y' z) (3.27)

In addition, the vertical profiles of u, Ky, and Kz, and the

surface variation of rc, R and S must be given.

3.3 Crosswind Variability

The distributions of e and 6 may depend on y, the

crosswind coordinate, due to y-dependence of the upwind condi-
96
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tions or of the surface parameters rc, R, or S. Since we are

interested in areal average evaporation rates, we are willing

to tolerate the loss of information induced by integrating our

problem across the wind. Equation (3.10), integrated with re-

spect to y, becomes

- K 3 2
u = T (K -) + (3.28)

in which

Y2
e = 1 e dy (3.29)

Y1

and y, and y2 are the limits of the integration. If the lat-

eral variations of the upwind conditions and the surface pa-

rameters are periodic, a symmetry argument can be invoked to

justify dropping the lateral flux terms in (3.28) by choosing

(y2-y1 ) large relative to the period,

u = (K 3e) (3.30)

A similar integration converts the boundary condi-

tion (3.24) to

-K = (e - AO - y f (ej -A 6 )dy (3.31)
Sz=0 rC2 1 rC z=0 z= y
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where

Y2

YY ~(3.32)
r Y2_ f . CC Y

The final integral in (3.31) cannot be directly expressed as a

linear combination of e and 6 or their derivatives. In or-

der to proceed along this line of analysis, we shall assume

that rc is independent of y; the more general case will be

treated in Section 3.5 using a simpler model. Equation (3.31)

becomes

-K e - Am - e + AG (3.33)z z=m C z=O z=0

The same approach, applied to the heat equation and

to (3.25) yields

S = (Kz ) (3.34)

and

R + S( z= - em) =-peP Kz -lz= , Kz z=O (3.35)

where

f R dy (3.36)
Y2~Y -

and, as with rc, S is not a function of y. Upwind conditions
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wind

aUe= (K ti)ax 3z z az

e=, e(z) d x az (Kz--Tz

T=Ta(z)

U=U(z)

K= Kz(z)

O K = m + A (T-Tm)e]

R + S (T-Tm)= -PcpK KzpZaLz ) Z

Figure 3.1

DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS FOR

TWO-DIMENSIONAL, STEADY-STATE, TURBULENT DIFFUSION

AND ADVECTION OF VAPOR AND HEAT IN THE ATMOSPHERE.
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are

e = ea(z) (3.37)

x=O = a(z) (3.38)

where ea and ea are lateral averages.

In summary, we have removed the y-coordinate from

our original system of equations by restricting the canopy re-

sistance and the temperature derivative of available energy to

vary only in the direction of the wind. The two-dimensional

formulation that has been obtained is the starting point for

most partial differential equation analyses of advection ef-

fects on evaporation. It is illustrated in Figure 3.1. In

the following sections, the overbars will be dropped.

3.4 Equilibrium Evaporation

Our goal is to determine areal average values of E,

as given by (3.18), as a function of the distributions of rc,

R, and S, and the upwind conditions. A convenient approach to

the problem of a surface discontinuity of one of these parame-

ters relies on the concept of equilibrium humidity and temper-

ature profiles (Laikhtman, 1964; Yeh and Brutsaert, 1971).

It is hypothesized that the upwind conditions (3.37) and

(3.38) satisfy the upwind surface boundary conditions and that

they satisiy the conservation equations in such a way that the

vertical flux divergences are zero. This assumption makes the
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problem analytically tractable. McNaughton (1976a) challenges

this assumption and demonstrates that, strictly speaking, such

equilibrium profiles never occur. Non-zero evaporation re-

sults in a continuous accumulation of water in the air. His

further analysis or this problem is illuminating, so we shall

consider it here.

It is possible to introduce two linear combinations

of e and e, each of which then satisfies the same diffusion

equation. More significantly, if the combinations are proper-

ly chosen, the surface boundary conditions may be expressed

independently in terms of the new variables, i.e., the two

quantities are not coupled. McNaughton (1976a)., who takes S

as zero, shows that these new variables are

j ye + e (3.39)

and

2 = -AO + e (3.40)

Then the surface boundary conditions can be put in the form

-pcp K yR (3.41)
z=0

and

-pc K 2 = -AR + A+ ( - - ) (3.42)
P z 3z 1z=0 A r (esm M 21z=
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Defining

fr. b-pc K
1 p ZD

for both i, we have also

H = (A+y)-1 (Y 1 z=O -

LE = A-1(A+y) (A Y z=

2 z=O

+ Y z=0

)

(3.43)

(3.44)

) (3.45)

Thus, evaporation can be computed when the surface values of

T 1 and 2 are known. From (3.41) and (3.43), we know T

a priori, without solving the new diffusion equation. It is

z=0
= -yR (3.46)

and therefore

LE = --L R + 1 'TA+-y A+-y 2 1 =
(3 .47)

McNaughton (1976a) shows that, if Kz increases

sublinearly or not at all for large z (a situation which holds

generally in the free atmosphere), then Y2 must approach zero

for large x over a homogeneous surface. Assuming that such an
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equilibrium has been reached upwind of a surface discontinuity

at x=O, the upwind condition on ip2  may be written, using

(3.42), as

r
x= = e - AG - - C R' (3.48)21X=0 SM m A+Y P

in which rc' and R' are associated with the upwind surface.

The problem of approach to equilibrium with a new

surface then reduces to the solution of the conservation equa-

tion

$2 3 32
DX= (Kz 3z )(3.49)

subject to (3.42) and (3.48). The solution yields T2 z=O as a

function of x. The distance in x required for this flux to

decay to a small proportion of its initial value just downwind

of the discontinuity is a characteristic length defining the

horizontal range over which advection is important. We shall

now estimate the order of magnitude of this distance. Several

models will be considered, as no single one can give a defini-

tive answer.

McNaughton (1976b) solves (3.42), (3.48), and (3.49)

for u and Kz given by the power law expressions

u = a u*(z/z) M (3.50)
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Kz = bu*z0 (z/z0 ) 1-m 
(3.51)

in which u* is the friction velocity, z0 is the surface rough-

ness, and a, b, and m are constants having reasonable values

as follows:

m = 1/7

a = 6.2

b = 1.1

His solution, expressed as

21(x) - (/= 2 z= ) (3.52)

is reproduced in Figure 3.2 for m equal to 1/6 and 1/8. As he

notes, (3.50) and (3.51) are valid only in the lowest 100 me-

ters of the atmosphere. We may convert this height to a fetch

by means of an approximate boundary layer growth model (Equa-

tion 3.111). For a surface roughness of one meter, the corre-

spondin6 fetch is about 300 meters. For a surface roughness

of one centimeter, it is one kilometer. Choosing typical val-

ues (Table 3.1) of the parameters yrc u*/(A+Y)=10 and zc=0.l m,

4 goes to about 0.4 for a fetch of 500 meters, the approximate

limit of validity of the solution imposed by the use of (3.50)

and (3.51). Farther downwind, the model predicts D as large

as 0.2 for a distance of ten thousand kilometers. In order to

look at the large-fetch behavior, we shall use two other mod-
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Figure 3.2

DECAY OF D DOWNWIND OF A SURFACE DISCONTINUITY FOR

POWER LAW DIFFUSIVITY AND WINDSPEED.

FROM MacNAUGHTON (1976).
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els.

McNaughton (1976b) proposed a second model, in which

a fully mixed layer existed beneath an inversion layer at

height h. It predicted that D would decay exponentially in x

with a distance constant of Yr cuh/(A+Y), where u is a constant

veiocity. For h equal to one kilometer and yr u/(A+Y) equal

to 10, McNaughton obtains a distance constant of 10 kilome-

ters. A more typical value of the latter parameter equal to

100 would yield a distance constant of 100 kilometers. This

model is quite limited due to its assumption of instantaneous

verticai mixing and an inversion barrier. In general, we

would expect it to underestimate the equilibrium distance.

Sizce neither of McNaughton's models is directly ap-

plicable to the problem of evaporation into a free atmosphere

at large fetch, we propose a third model. At a height d in

the planetary boundary layer above which u and Kz do not vary

strongly with altitude (say d=50 m), u and Kz in (3.49) are

taken to be constants, U and K0 . Although these quantities do

vary, we shall select typical values in order to obtain an

order-of-magnitude estimate of the equilibrium evaporation

distance. We may take U as the geostrophic wind. K0 is

evaluated in Section 3.5.3.

The inhomogeneous surface layer is represented as a

resistance to vertical diffusion, and its storage capacity is

neglected. This view is consistent with the expected behavior
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at large fetch. The flux through this layer is given by

PC

T p d ~2z (3.53)
2 ra 21~ 1z=O

in which r a is the aerodynamic resistance to flow through the

layer, and d is its thickness. Elimination of $21 between
z=Q

(3.42) and (3.53) yields

- + K + r 2
C z=d C z=d

-A(e A ~ AR (3.54)
r C SM M (A+Y)Pc P

The "initial" condition is given by (3.48). This is a stan-

dard heat diffusion problem for a semi-infinite domain with a

mixed-type boundary condition. The solution, obtained by

using a Fourier transform, is

+ V {erfc [K_; _71
2 = o + 0 K:::er:

2

-exp w(z-d) + K erfc -+2 + -

in which $ is given by (3.48), and the other parameters are

A (r' R' - r R) (3.56)00 (A+y) PC ) K C

W A [A y r c + r a) K 01] (3.57)

107



The value of 4 is given by (3.52), (3.43), and (3.55) as

2

D(x) = exp U0 erfc .-- (3.58)

which is plotted in Figure 3.3. We can define a decay con-

stant

X = 20(3.59)

0

for this function. Typical values of the relevant parameters,

listed in Table 3.1, yield a value of about two thousand kilo-

meters for X.

This analysis, as well as our interpretation of

McNaughton's (1976b) work, support the conclusion that an

equilibrium evaporation rate, as defined by McNaughton (i.e.,

T 21z=0 goes to zero), is unlikely to occur over the earth's

land surface wnen the availability of water is characterized

by a non-zero canopy resistance. This conclusion is consis-

tent with a number of studies that have found that the first

term on the right hand side of (3.47) underestimates actual

evapotranspiration from extensive surfaces (Brutsaert and

Stricker, 1979).
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DECAY OF 4 DOWNWIND OF A SURFACE DISCONTINUITY
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SYMBOL DESCRIPTION

U

k

h
0

K
0

A/y

z
0

0

r (z , h )

f

De

geostropic wind

von Karman constant

friction velocity

parameter in (3.95)

asymptotic value of Kz in (3.95)

A: slope of saturation vapor pressure curve

y: psychrometric constant

surface roughness height

short grass

brush, tall crops

forest

aerodynamic resistance between surface and

height h in (3.53)

z = .01 m
0

z =.1 m
0

z =m
0

Coriolis parameter

depth of Ekman layer

TYPICAL VALUE(S)

10 m s~1 (Holton, 1979,
p. 36)

0.4

%U/30 (Jensen, 1978)

50 m (Section 3.5.3)

5 m2 s (using (3.103))

2 at 19 0 C

(Eagleson, 1970, p. 228)

.01 m

.1 m (Eaglison, 1970,

1 m Jp. 230)

-1m

240 sm

130 sm (Using (3.99))

50 sm J
-4 -

10 s

103 m

Table 3.1

NOMINAL ATMOSPHERIC AND SURFACE PARAMETERS USED IN THIS CHAPTER

(continued on next page)



TYPICAL VALUE(S)

rc canopy resistance

wet vegetation or surface

crops, short grass

forests

any dry surface

0

*30-70 s m~ Oke (1978)
-1 and-*100-150 s m Eagleson

(1970)

)-

*These represent minimum values, thus implying sufficient soil moisture availability.

Table 3.1
(cont.d)

NOMINAL ATMOSPHERIC AND SURFACE PARAMETERS USED IN THIS CHAPTER

SYMBOL DESCRIPTION



3.5 A Conceptual Model of Evaporation from a Surface of

Varying Roughness, Canopy Resistance, and Available Energy

3-5.1 Introduction

The results of the previous section imply that the

internal boundary layers associated with changes of surface

properties or states ordinarily do not grow so large as to

permit us to neglect advection. Over a homogeneous surface,

evaporation and sensible heat flux will vary slowly. Varia-

tions are so slow, in fact, that they may often be negligible.

Referring to Figure 3.3, for X=100 km, we see that 4 does not

vary by more than 10 percent of its value at x=100 km over a

range of 130 km. i.e., from x=50 km to x=180 km. A useful

rule of thumb is that the distance over which evaporation can

be considered constant is of the order of the fetch of the re-

gion downwind of the discontinuity.

Consider now the simple case of evaporation from a

surface whose available energy alternates periodically with

fetch in the direction of the wind, all other factors being

constant. The high energy surfaces will be associated with

higher evaporation rates than will the low energy surfaces.

Internal moisture boundary layers associated with the differ-

ent surfaces will grow with fetch. At a sufficient height,

the individual internal boundary layers merge and the moisture

profile becomes almost independent of fetch, in the sense of

the situation discussed in the paragraph above. This situa-

tion is depicted in Figure 3.4, which shows a locally constant
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vapor pressure profile, and hence vapor flux, for large z

The logarithmic profile changes slope for small z, implying a

variable surface flux. The dashed line in the upper graph

gives the evaporation rate corresponding to the large-z,

constant-flux profile, while the solid line shows actual evap-

oration. By continuity, the dashed line thus gives the aver-

age height of the solid lines. The depth of influence of a

new surface grows with fetch, as indicated by the traces of

the growing boundary layers in the x-z plane of Figure 3-4.

The sensible heat flux and temperature profiles

would exhibit variability similar to those discussed above for

vapor. Whereas the evaporation rate is continuous in x due to

the presence of a constant canopy resistance and a continuous

e field, the available radiation discontinuities will be re-

flected in the surface heat fluxes.

In natural situations, there would also be varia-

tions of surface roughness and canopy resistance, probably

correlated with the variations of energy availability, since

all of these are due mainly to differences in the vegetal can-

opy.

In this section, we shall present a very simple con-

ceptual model of evaporation from such heterogeneous surfaces.

Although several limiting assumptions are made, the results

should nevertheless reflect reality qualitatively. We shall

sacrifice precision and generality in the interest of simplic-

ity and physical insight for a specific set of assumptions.
1.13
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Figure 3.4

THE DEVELOPMENT OF INTERNAL BOUNDARY LAYERS AND THE

ASSOCIATED EVAPORATION RATES OVER A REGULAR,

INHOMOGENEOUS SURFACE. INHOMOGENEITY IS WITH RESPECT

TO AVAILABLE ENERGY ONLY.
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The problem under consideration is the computation

of the areal average evapotranspiration rate and its

distribution, given an inhomogeneous area of length 1' in the

direction of the wind. The inhomogeneous area is a mosaic of

homogeneous patches. Within a patch the available radiation,

the canopy resistance, and the surface roughness are constant.

Patches with the same values of this parameter set belong to

the same patch type. Between patch types any or all of these

quantities may differ. The number of patch types is given by

N, and the actual number of patches may be considerably

larger. Relative proportions of area covered by each patch

type are specified. The scale of the inhomogeneity is defined

by 1, the characteristic patch size.

Also specified are upwind or free-stream conditions

on vapor pressure and potential temperature, and the effective

friction velocity.

The overall behavior of the atmosphere and the land

surface is represented in Figure 3.5 as a system composed of

two components - the momentum balance and the combined vapor

and heat balance. The system is characterized by a set of pa-

rameters describing the heterogeneous land surface and is

forced by inputs from the free atmosphere. The distributions

of evaporation and sensible heat flux from the surface are the

system outputs. The momentum balance (Figure 3.5) determines

the resistances to turbulent diffusion of vapor and heat. We

ignore the influence of heat fluxes on the state of turbulence

and hence on the momentum balance (dashed line in Figure 3.5).
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The boundary layer is neutrally stable. The feedback of the

system outputs. the E 's and H 's, on free stream conditions

(ef and Tf) is not considered. Its importance is minimized by

choosing the free stream height to be approximately at the top

of the layer of influence of the modelled area. Thus, the

height at which ef and T are defined increases with the maxi-

mum fetch of the land surface under consideration.

The momentum, heat, and vapor balances are based on

resistance networks whose common structure is defined by the

surface heterogeneities. The inhomogeneous surface is com-

posed of homogeneous patches of average length 1, the patch

size. Associated with each patch is what we shall loosely

term an internal boundary layer - its area of influence - of

average depth h (Figure 3.5), characterized by a resistance to

turbulent diffusion. At and above the height h, we assume

that there are no areal variations in the windspeed, temDera-

ture or vapor profiles. The system of parallel resistances is

then in series with a single resistance between heights h and

h', the free stream height. In analogy to h, h' is defined as

the top of the layer of influence of the entire modelled area,

the set of surface patches (Figure 3.6). The heights h and h'

are on the order of the depth to which an internal boundary

layer would grow at fetches 1 and 1', the lengths of the homo-

geneous patches and of the entire area, respectively. In this

conceptual model, we shall define them as such identically

(Figure 3.6). The growth of an internal boundary layer is

governed at short fetch by the surface roughness and at larger
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Figure 3.6

THE GROWTH OF THE DEPTH OF INFLUENCE OF THE PATCHES

AND THE ENTIRE AREA WILL FETCH. THE DISTANCES k AND h

ARE AVERAGES. TOP: ACTUAL SITUATION. BOTTOM: CONSTANT-

FETCH, CONSTANT-DEPTH IDEALIZATION FOR THE RESISTANCE

NETWORK.
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Figure 3.7

FLOWS OF VAPOR (CROSS-HATCHED ARROWS) AND HEAT (WHITE ARROWS)

IMPLIED BY THE MODEL STRUCTURE. CONSTANT-IN-HEIGHT FLUXES,

EXCEPT FOR DISCONTINUITIES AT HEIGHT h, IMPLY NET ADVECTIVE

DIVERGENCES OF THE TRANSPORTED QUANTITIES.
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fetch by the intensity of turbulence at higher levels.

The momentum, heat, and vapor balances are modelled

by assuming that there are constant vertical fluxes through

each internal boundary layer and through the homogeneous upper

layer. We shall thus not include explicitly the local

advective enhancement of evaporation that results from the

passage of hot, dry air (from above a dry patch) over a wet

patch. There is, nevertheless, a concentrated advective flux

divergence at height h implicit in the model formulation.

Weighted average evaporation per unit area from all the sur-

face patches is equal to the constant vertical vapor flux per

unit area in the upper layer. Since the flux rates through

various internal boundary layers differ, this results in ver-

tical flux discontinuities at the height h. These discontinu-

ities imply a net advective divergence of vapor (and of heat)

between patches (Figure 3.7). This effect is active also in

the momentum balance when surface roughness is variable. Al-

though the advective divergence is lumped at the top of the

surface layers, rather than being distributed through the en-

tire depth, its influence is nevertheless qualitatively cor-

rect. In order to include advective divergence over the en-

tire depth h explicitly, it would be necessary to define in

detail the geometric connections among the various patch

types. The resulting set of equations cannot be so easily

analyzed as the formulation proposed here.

120



An outline of the solution procedure follows:

1. The turbulent diffusion equations for vapor and heat

are written in terms of bulk diffusion resistances. These

equations, combined with the appropriate surface boundary con-

ditions of energy conservation and canopy resistance, yield an

explicit expression for the evaporation rate from each patch

type. It is of the form

A+Y LE R. -(3.60)
f , q, u r2 ; (a u r, uercii=1NI

A R RL' R

where the subscript i denotes the i'th patch type and the

overbar means an areal average. The parameter q defines the

importance of regional advection, u*e is the friction velocity

associated with the areal average momentum flux, r ai is the

aerodynamic resistance between the surface and height h, rci

is the canopy resistance, and r2 is the resistance between

heights h and h'. The areal average evaporation is derived

from the same model as

A+v Lq R
f2q, ur2; (a, -, U *a, Urci)I=1,N (3.61)

2. The vertical turbulent diffusivity is assumed to have

the form

K =K( z) (3.62)
z o z+h

where h is a constant. By identifying the aerodynamic resis-
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tance as the height integral of the reciprocal of Kz, we de-

rive the expressions

U r = f3 (h, z 0 ) (3.63)

u*e r2  f 4 (h, h') (3.64)

where u1. is the friction velocity and z the surface rough-

ness of the i'th patch type. The requirement of continuity of

the wind field at height h gives a relation describing the mo-

mentum flux discontinuity there,

= f5 (h, z z 
(3.65)

U.*e 5 e O

where z oe is an effective surface roughness. We then have

u* r = f6 (h, z oe z ) (3.66)

The solution now rests on the definition of h, h', and zo .

3. The requirement that areal average momentum flux be

continuous at height h gives us an equation of the form

f 7 [h, z , (z .) i=1N =.O (3.67)

A proposed boundary layer growth model yields

h = f8(z , (3.68)
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and

h' = f8 (z, ') (3.69)

Equations (3.67) and (3.68) give zoe and h as functions of the

z *Is and 1, and then (3.69) yields the value of h' in terms

of 1'. We can then compute u*e r and u*er2 and evaluate the

evaporation rates in terms of the problem parameters.

A+YLE i ERi
A - q 1

R R

A+-y LE f1~,k ; aRi r (-1
A ~ 10 'Z;(a R U*e ci' Zoi i=l,'NI(.1R

The major assumptions in the analysis are listed be-

low:

GENERAL

1. Steady state conditions apply.

2. The canopy resistance model is applicable and rc can

be specified exogenously-

R. Turbulent transport of vapor, heat, and momentum are

similar so that the same diffusivities apply, and the virtual

source/sink for each entity is at the same height, the surface

roughness height. These assumptions are for convenience and

are not essential.

4. The advective divergences are lumped at a single
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height, h.

5. There is no radiative flux divergence at any height.

6. The constant-thickness conceptual model of the inter-

nal boundary layer is valid.

MOMENTUM BALANCF

1. The momentum flux divergence associated with the

Coriolis force is unimportant.

2. Atmospheric boundary layer is neutrally stable, inde-

pendent of heat fluxes.

3. A specific functional form for K is assumed.z

4. Internal boundary layer depth is governed by surface

roughness up to a certain fetch, after which further growth is

controlled by conditions in the free atmosphere.

3.5.2 Vapor and Heat Balance of an Inhomogeneous Surface

In this section, we describe the simple resistance

diffusion model as it is applied to the coupled vapor and heat

balances. It will allow us to account for surface variations

of surface roughness, canopy resistance, and available radia-

tion. We shall temporarily treat the resistances as given.

They will later be derived from the momentum balance

The proposed model is depicted schematically in Fig-

ure 3.8. There are N distinct surface types, each

characterized by a unique set of values of available energy,

canopy resistance and surface roughness. The subscript i is

used to denote the i'th surface, e.g., R., rai, z o . The
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variables are defined as follows:

6 o potential temperature of patch type i

r ai aerodynamic resistance between surface and height h

for patch type i

H surface heat flux per unit area of surface i

6 h potential temperature at height h

r2  aerodynamic resistance between heights h and h'

N areal average sensible heat flux rate

6 potential temperature at height h', in the free stream
f

e oi saturation vapor pressure at temperature T0o

rci canopy resistance of surface type i

e i effective surface vapor pressure at surface type i

E evaporation rate per unit area of surface type i

e h vapor pressure at height h

E areal average evaporation rate

e vapor pressure at height h'

a. proportion of area represented by type i surface

z surface roughness of type i surface

R (Rn-G)., available energy of type i surface

In Figure (3.8), sensible heat diffuses from the

different surfaces, through the corresponding internal bounda-

ry layers, to a height h, at which there is no lateral varia-

tion of potential temperature. From this height, heat dif-

fuses up to h', a height at which the potential temperature,

ef, is independent of the surface evaporation. The resis-

tances to heat diffusion are assumed to be equal to those for
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RESISTANCE NETWORKS FOR EVAPORATION AND SENSIBLE

HEAT DIFFUSION FROM A HETEROGENEOUS SURFACE.
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momentum. These aerodynamic resistances will be expressed in

terms of surface roughness and characteristic lengths of the

inhomogeneous surface.

A similar resistance network for vapor is also

pictured in Figure 3.8. At each surface, a canopy resistance

to vapor diffusion is added, in analogy to Monteith's modifi-

cation of the Penman equation.

On the basis of Figure 3.8, we write the following

equations:

PC

H. = (e - I = 1, ... , N (3.72)
i r . iai

N
R = a. H. (3.73)

i=1

PC= (3.74)
r 2 h f

LE. = P (e . - e.) i = 1, .. , N (3.75)
i yr ci 01 1

LE. = pP (e. - e) i = 1, ... , N (3.76)
i yr i hai

N
LB = 1 a. LE. (3.77)

1=1

Lf = d(e - ef) (3.78)
yr2 h

In addition, we approximate the relation between e0 and e0 at
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the surface as a linear one,

e9 = em + A(G. - 6 M)

The surface heat balance is

R. = H. + LE.
1 1 1

i = 1, ... , N

i = 1, . .. , N

We have above 5N+4 equations - (3.72) through (3.80) - in 5N+4

unknowns - 6 , H , e o, e., E.; eh, H, eh' '

Elimination of e. between (3.75) and (3.76) yields

LE = y(r + r .) Oi
aiCl

- eh) i = 1, ... , N

Substitution of (3.79) for e ~, using (3.72) and (3.80) to

evaluate Toi, yields

pc
AR. + -- (e - e)

1 r . sh h
LE. =al

1 A + y(1 + r ./r .)ci ai

i= 1, ..., N (3.82)

in which

(3.83)e s e + A( - 6)s h :: mm

Equation (3.82) is essentially the Penman-Monteith equation

for patch type i, expressing evaporation as a function of e

and 6 at height h. In the current problem, these values are

unknowns.
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Equations (3.73). (3.74), (3.77), (3.78), (3.80),

(3.82). and (3.8) can be combined to obtain an expression for

the areal average evaporation rate. It is

PC r2
R. + P (e - e ) + AR

N r i f f ra
ai A + y(l + rCi/r )

- 1 ci ai (.84
LE = + N (A+y)r2 /rai

+ ai A+ y(1 + rci/r )1

in which

esf em + A(ef - 6 (3.85)

This can be normalized by AR/(A+y) which is the evaporative

energy consumption rate when e f=e and rci=r2=0, and written

as

(A+y) LE

AN

R.

N u rai +N r 2a/r a
a. +qiia{ + 2

=1 + (+ rci/r + = (1 + r /ra

N r/A 2 al3.i
A+y i= 1 (1 + rCi/r (3.86)

A cia1

in which

q = Ppu*e(esf - ef)/AR (3.87)
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is a measure of the importance of advective enhancement of

evaporation. Thus.

E'= f[q, u er2 ; (a~ , , u, l,, N" r(3.=8,)
R

Note that when r2 is set to zero, the second terms in both the

numerator and the denominator of (3.86) vanish, leaving a sim-

ple weighted-average of the individual Penman-Monteith expres-

sions for the different surfaces.

In a similar manner, we define E ' as

LE.
E'- (3.89)

R

which can be written, using (3.74), (3.78), (3.82), and

(3.83). as

R.i q r+
r .+ -(1 - E')

E= R *e ai rai (3.90)
+ rci/rai

1 + 1 + A/y

and which can thus also be expressed as a function of the ar-

guments in (3.88).

In order to proceed with the analysis, we need a

model for the aerodynamic resistances, r ai and r2. These will

be derived next.
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3.5.3 Aerodynamic Resistances - The Momentum Balance

The aerodynamic resistances are related to the tur-

bulent diffusivity introduced earlier in this chapter. Equa-

tion (3.18), written as a boundary condition, is also true for

all z when there is no vapor flux divergence in the vertical,

so

LE=- P K ze (3.91)Y Za

Equation (3.91) can be integrated between any two heights to

obtain

z
2

yLE dz = e - e (3.92)
pc J K 2 1
p z

In comparison with (3.76) or (3.78), we see

z
2

r(z, Z) fdz (3.93)

ziz

so the aerodynamic resistance between two heights is a func-

tion of the turbulent diffusivity profile between those lev-

els.

Near the surface (up to tens of meters), the magni-

tude of Kz is linearly proportional to the height, while

higher up it can be taken as a constant (Holton, 1979, p.

107). At a sufficient height above the Ekman layer, which is

on the order of a kilometer deep, Kz goes to zero. Ignoring

this large-z behavior, we shall hypothesize the following form
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for Kz

K =K z (3.94)z o z+h90

where h is the approximate height separating the linear-Kz

and constant-Kz regimes, and K is the value above the surface

layer. In order to estimate h0 , we can use the fact that the

mixing length, X , is proportional to K . Thus

z

X= Xo z+ (3.95)
0

For small z,

X = kz = 0.4z (3.96)

where k is the von Karman constant. Then

h = 2.5X (3.97)
0 0

The value of X0 may be estimated as (Holton, 1979, p. 107)

X0 fDe3 1/2 (3.98)

where De is the depth of the Ekman layer, f is the Coriolis

parameter, and U is the geostrophic wind speed. Typical val-

ues of these parameters (Table 3.1) yield a value for X0 of

twenty meters. By (3.97), this gives h0 equal to fifty me-
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ters.

Substitution of (3.94) into (3.93) yields

ra(z1 , z2 ) = K L(z2 -z ) + h z2nJ(3.99)

With our assumption of a height-independent momentum

flux (T=constant). the wind profile can be calculated from

-r= pu*2= pKz DU(3.100)

and (3.94) to be

2

UL= (z - z ) + h Zn J(3.101)

where the integration constant is determined by letting u go

to zero at z=z0 . For small z, (3.101) is equivalent to the

familiar logarithmic profile,

u = u n (3.102)
0

and we see that

K = ku h (3.103)
0 *0o

and the resistance to transport is thus inversely proportional

to the friction velocity, which in turn goes like the square

root of the vertical momentum flux.
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Since the momentum fluxes, like the vapor and heat

fluxes, will vary laterally due to surface inhomogeneity, we

shall have to extend our simple advection model to cover these

momentum fluxes. In order to describe the momentum transport,

we shall use the same conceptual model already described for

evaporation. This model will thus ignore the vertical varia-

tions in momentum fluxes that are related to the Coriolis

force and are important in the Ekman layer (from tens of me-

ters above the ground to the top of the PBL). It seems that

the error propagated out of the momentum analysis and into the

analysis of moisture and heat should be small, since the

transport parameters are not so strongly sensitive to the wind

field.

With the assumption of a total momentum flux inde-

pendent of height, and a conceptual mixing model like that

proposed for moisture and heat, the problem may be schematized

as in Figure 3.9. Associated with each surface type is a

friction velocity, ug1 . that defines the local momentum flux.

U = uh/ra (3-104)

Equation (3.101), written for the height h above the i'th

patch type, yields, using (3.103),

U*' h
Uh = (h + h 9n ) (3.105)

h kh 00 Z.0o 01

where we have recognized that z is small compared to h. The
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THE RESISTANCE NETWORK FOR MOMENTUM FLUXES.
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resistance of the i'th internal boundary layer is given by

(3.99), using (3.103), as

r = (ku~.)- + - n 5-] (3.106)
0 01

where the virtual momentum sink is at height z ,i the surface

roughness height, and h is the top of the layer.

We assume that, above the height h, the wind profile

(like the vapor and temperature profiles) is a unique function

of z. Hypothesizing a form similar to (3.105) we have

U *e + kn (3.107)k Ih 0oo oe

where u*e is the effective friction velocity and z oe is the

effective surface roughness. Requiring continuity of the wind

field at height h, we obtain, from (3.105) and (3.107)

u,. h/h + Zn(h/z )

U*e h/h + Zn(h/z 0) (18

The condition of momentum conservation at height h

gives us a relation among the various friction velocities.

Equating the vertical flux of momentum above the height h to

the weighted average of the fluxes below that height, we ob-

tain

U2 N u 2 (3.109)
*e . a *l
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Substituting (3.108) into (3.109), we finally arrive at

+ + 9n h a. ( + n h3(3.110)
ho z a h5- z0oe 0oo

which can be solved for z oe if the height h is either known or

given as a function of z oe

Tn this conceptual model, recall that h is the

height at which the internal boundary layers of the individual

surface variations lose their identity and merge to produce a

laterally homogeneous vertical profile. We have chosen here

to identify h as a typical thickness of the internal boundary

layers above the homogeneous surface patches. Specifically,

it is the height to which the internal boundary layer of the

average surface patch grows at the downwind end of the patch.

In the atmospheric surface (i.e., constant-stress)

layer, a convenient formula for the growth of the internal

boundary layer is (Jensen, 1978)

h 4/5 (3.111)
zo zo0 0

Here, 1 is the average patch length. Since we desire an ap-

proximate, unique value of h, we shall apply (3.111) using the

effective surface roughness, zoe.

Equation (3.111) is valid for 1 small enough that h

is not greater than the order of h . In order to derive an

alternative boundary layer growth law for large fetch, we con-

sider the advection model of the free atmosphere, presented
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earlier, that results in (3.55). We define the thickness of

the boundary layer as that height at which the effect of the

upstream discontinuity is small compared to its effect at the

surface. Algebraically,

2(k, h) - = 0.1 (3.112)

2(k, 0) - $(

where we have arbitrarily chosen a ten percent cutoff value

to define the boundary layer. This criterion is used with

(3.55) to solve for 1 as a function of x. The result is

plotted in Figure 3.10 in terms of the dimensionless variables

S KZ/U (3.113)

= (h - d) (3.114)

Solution for cutoff values of 0-5 and 0.01 are also plotted.

To a good approximation we can take

2 
= 1/2 (3.115)

or

h = h + 2(K 0/U)1/2  (3-116)

where we have assumed that the d in (3.5q) through (3.5i) is

the same as h0 . This describes the growth after the boundary
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layer reaches height h . We shall assume that h grows accord-

ing to (3.111) in the surface layer and then follows (3.116).

Thus,

z1/5 4/5 Z < h5/4 Z1/4
oe - o oe

h = - (3.117)

h + K 01/2 ( - h5/4 z )1/2 1 > 5/4Z
0 U- 0 oe 0 oe

The value of h' is given by the same formula, with 1'

substituted for 1.

Together, (3.110) and (3.117) yield an implicit

equation for zoe as a function of the z o's and the a 's, h ,

K0 , and 1. With the effective roughness height determined, we

can find h by (3.117). The resistances rai are then given-by

(3.106) and (3.108) as

r = (ku ) 1 h 1 2 + h (3.118)
alo *1 h i]2i oe

The resistance r2 between heights h and hl is, using (3.99)

and (3-103).

r= (ku )1 h-h + 9n (3.119)

Finally, the effective resistance r1 between the surface and

height h is given by (3.109). We have thus defined the

aerodynamic resistances in (3.84) as functions of the z o's

and a 's, h , 1, 1', K 0 , and u*e.

As an example of the application of this conceptual
140



resistance model, we consider a checkerboard Dattern of

squares having alternating values of surface roughness, i.e.,

the red squares have zo=z0 1 while the black have zo=z o. Then

N=2 and a.=0.5. The side of an individual square has length

1, while the overall streamwise dimension of the area is l'.

Taking 1' as 100 km, we plot in Figure 3.11 the effective

roughness as a function of 1. calculated for z 0=10 cm and

zo2= 1 cm using (3-110) and (3.117). The effective surface

roughness decreases first rapidly, then more gradually, with

the logarithm of 1.

Figure 3.12 shows the corresponding normalized

aerodynamic resistances for this problem. Equations (3.118)

and (3.119) give r2 and the rai's,and r1 is defined by

N a.
1= a.Y(3.120)

r1 i=l r ai

With increasing 1, the height h separating the surface from

the homogeneous upper flow grows, so the r ai and r1 increase

while r2 decreases. The total resistance, r1+r 2 , remains ap-

proximately constant. While the r ai and r1 are independent of

l', r2 is not. The dependence of r2 on 1 for a value of

l'=103 m has also been plotted for comparison. The bumps in

the curves around 1=300 m are due to the change in the growth

rate of h at about that fetch, as prescribed by (3.117).

One of the striking features of Figure 3.12 is the

relatively constant difference between r al and r a2* The re-

sult is that, for small 1, ral is several times smaller than
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ra2, while the difference is less significant at larger 1.

According to (3.104), this means that the distribution of sur-

face stress will be sensitive to 1. As we shall see, the same

effect is active in the evaporation process.

3.5-4 Model Results

Using (3.88), (3.110), (3.117), (3.118), and

(3.119), we can write

R.
= f[q, E, 2'; (a., -i, U rei, z (3.121)

R

and E' is also determined by these same parameters.
1

In.this section. we shall examine the behavior of E'

and the individual Ei for some simple situations in which N=2

and the two surface types have equal areal coverage, i.e.,

a =0.5. In a final example, we will consider the effect of

varying the a 's. We shall take 1' to be 10 km. As in the

example for aerodynamic resistances, we shall plot results as

a function of 1, the distance scale of the inhomogeneity. A

summary of the parameters used to obtain these results is giv-

en in Table 3.2. A computer program used to calculate the re-

sistances and evaporation rates is listed in an appendix.

We consider first the case of constant R. and r ci,1 c

with differing surface roughnesses. Patch type 1 is smoother

than patch tyDe 2. The middle curve in Figure 3.13 is ob-

tained for zero vapor pressure deficit and canopy resistance.

It can be shown that the existence of a zero vapor pressure
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Figure No. Z Zo2 R1 /R R2 /p u rc1 u *rc2 q

0.1 m I m 1 1 0 0 0 0.5 0.5

3.13 0.1 m 1 m 1 1 30 30 0 0.5 0.5

0.1 m I m 1 1 0 0 10 0.5 0.5

0.1 m 0.1 m 1.1 0.9 0 0 0 0.5 0.5

3.14 0.1 m 0.1 m 1.1 0.9 30 30 0 0.5 0.5

0.1 m 0.1 m 1.1 0.9 0 0 10 0.5 0.5

0.1 m 0.1 m 1 1 0 300 0 0.5 0.5

3.15 0.1 m 0.1 m 1 1 30 300 0 0.5 0.5

0.1 m 0.1 m 1 1 0 300 10 0.5 0.5

3.16 1 m 0.01 m 1.1 0.9 30 15 10 0.5 0.5

1 m 0.01 m 1.1 0.9 30 c 10 0.5 0.5

1 m 0.01 m 1.1 0.9 30 c 10 1 0

3.17 1 m 0.01 m 1.1 0.9 30 o 10 0.5 0.5

1 m 0.01 m 1.1 0.9 30 o 10 0.1 0.9

Table 3.2

SUMMARY OF PARAMETERS USED IN THE SENSITIVITY ANALYSIS

OF THE EVAPORATION MODEL

H
4
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Figure 3.13

PATCH EVAPORATION (E') AND THE AREAL AVERAGE (E')
1

AS FUNCTIONS OF k FOR TWO PATCH TYPES THAT DIFFER

ONLY IN SURFACE ROUGHNESS; zo = 0.1 m, zo2 1 m.
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deficit at height h' and at the surface (the latter since

r c=0) forces the vapor pressure deficit to zero also in be-

tween. We can then see from (3.82) that, with rci=0 and R =R.

the evaporation must be the same from both surfaces.

The lower set of curves in Figure 3.13 corresponds

to the same problem with a normalized canopy resistance of 30.

Given the increased resistance to vapor transport, the evapo-

ration rates will be lower, in general, than in the first

case. At the right ends of the curves, 1 goes to 1', so r2

goes to zero and the surfaces are independent. Variations in

the height of a curve for smaller 1 thus reflect the interac-

tions of individual surfaces. The insensitivity of E' to 1 is

clear. The rougher surface has less evaporation than the oth-

er because its smaller value of r a favors sensible heat trans-

port over evaporation as a means of transferring the given

amount of available energy away from the surface. This can be

seen, for example. from the radiation term in (3.82). This

effect is strongest at small 1, where there is the greatest

relative difference between r al and ra2. (Recall the discus-

sion of Figure 3.12.)

The upper curves in Figure 3.13 give the evaporation

rates when there is significant advective enhancement of evap-

oration and the canopy resistance is zero. As in the previous

case, the average evaporation is almost independent of 1,

though its distribution clearly is not. In this situation,

the rough surface experiences greater evaporation than the

smooth one, a reversal of the behavior for the
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radiation-dominated, canopy-controlled case discussed above.

Evaporation is enhanced by the vertical diffusion of both va-

por and heat, since the downward sensible heat flux (or reduc-

tion in upward sensible heat flux) that results from the

advection term is complementary, rather than competitive, to

evaporation. Here again, the difference in evaporation is

greatest for small 1 since that is when the contrast in

aerodynamic resistances is greatest.

Figure 3.14 contains three sets of curves analogous

to those in Figure 3.13. Surface roughness and canopy resis-

tance are considered constant, while the available radiation

takes two values, ten percent above and below the mean. Such

a variation could result from differing surface albedoes- For

no canopy control (r c=0) and no advective enhancement (q=0),

the evaporation is independent of 1 and proportional to R..

As before, this behavior can be understood in terms of (3.82).

In the lower set of curves, E' is reduced due to the

action of canopy control. At the 1=1' end of the curves, E '

goes like R as it should for independent surfaces without

advective enhancement. Since r =r a2 =r1 and rc= =r c we

can use (3.90) to write

- E'= 1 + /r (3.122)
1 2 i 1+A/]

which predicts the decreasing contrast in evaporation rates

for small r1 and thus for small 1.

The upper three curves in Figure 3.14, representing
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FUNCTIONS OF PATCH SIZE. PATCHES DIFFER ONLY IN

AVAILABLE ENERGY; RI/q = 1.1, R20 9

149



advectively-enhanced free evaporation, are the same as the

middle set of curves with an added constant shift due to the

advection term. The constant difference between E ' and E2

even with the advection term, is predicted by (3.122) with

r c=0.

In Figure 3.15 are plotted the evaporation results

for a surface that has constant R and z , but two different

values of canopy resistance. The dotted-dashed lines repre-

sent an advection-free system with rc 1 =0 and u*erc 2 =
3 0 0 . The

latter is meant to represent a relatively dry surface, while

the former corresponds to a wet surface. Consequently, evapo-

ration from the first surface type greatly exceeds that from

the second, while the mean is approximately one-half of the

wet surface rate. Evaporation from the wet surface increases

with the increasing interaction between patches that results

from smaller 1. Loosely speaking, small values of 1 allow a

portion of the sensible heat, and hence the vapor pressure

deficit, released from the dry surfaces to diffuse back down

to the wet surfaces and thereby to increase evaporation. In

the present example, the evaporation from the wet surface is

40 percent higher for 1=10 m than for completely independent

surfaces (1=104 m).

The other two sets of curves in Figure 3.15 exhibit

the similar behavior of advectively-enhanced evaporation and

evaporation with more canopy control.

In the foregoing analysis we have considered

inhomogeneity with respect to only one of the three surface
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parameters at a time. In reality, of course, variations of

all three parameters will occur together. All three may be

correlated due to their dependence on a common underlying fac-

tor. e.g-, vegetation. Consider. for example, a savanna-like

vegetal cover with two dominant types of vegetation - trees

and grasses - that tend to be grouped in patches of size 1.

The trees will have a large surface roughness - perhaps 1 m -

while a short grass could go down to 1 cm. The tree cover

would tend to have a lower albedo and a lower temperature

(thus less backwave radiation) than a relatively bare and dry

grassy surface, so R /R might be 1.1 for the trees and 0.9 for

the grass. Assuming sufficient soil moisture in the tree root

zone, the moisture availability could be characterized using

the canopy resistance model, with a normalized canopy resis-

tance of 30 (Tables 3.1 and 3.2). When the grass has a suffi-

cient supply of moisture at its disposal, it may have a

normalized resistance of 15. The shallow grass root zone may

dry out, at which point the canopy resistance model does not

apply. Nevertheless, the condition of relative dryness, or

negligible evaporation, can be imposed by setting the grass

resistance to infinity.

A set of parameters similar to those outlined above

would also apply to alternately fallow and irrigated, cropped

fields in an agricultural setting.

The evaporation rates plotted in Figure 3.16 are

based on the parameters suggested above. The full set of pa-

rameters is given in Table 3.2. Wet conditions are modelled
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Figure 3.16

PATCH AND AREAL AVERAGE EVAPORATION AS A FUNCTION OF PATCH

SIZE FOR TWO PATCH TYPES DIFFERING IN SURFACE ROUGHNESS,

AVAILABLE ENERGY, AND CANOPY RESISTANCE (SEE TABLE 3.2).

THE THREE CURVES NEAR UNITY ARE FOR WET CONDITIONS

(u*erc2 = 15), WHILE THE OTHERS ARE FOR RELATIVELY DRY

CONDITIONS (u*erc2 = oo). IN BOTH CASES, u *ercl 30,

z 0 1 0.0m, zo2 = 1 m, R/R = 1.1, R2 /R = 0.9, q = 10.
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using a normalized grass resistance of 15. Under these condi-

tions, there is virtually no difference in the evaporation

rates from the two different types of surfaces and no depen-

dence of evaporation on 1. With this arbitrarily selected

problem, the excess radiation to the trees is balanced by the

lower canopy resistance and higher aerodynamic resistance (due

to lower roughness) of the grass to produce equal evaporation

rates. The normalized evaporation rates happen to be near

unity because of a chance balance of the vapor pressure defi-

cit and the canopy resistance.

Relatively dry soil conditions are represented by

the other curves in Figure 3.16 using an infinite grass canopy

resistance. Evaporation from the grass is thus zero. Tree

evaporation, and consequently the areal mean, increases with

decreasing patch size in a manner similar to that already seen

in Figure 3.15.

As a final application of the proposed model, we

consider the effect of the a 's, which define the relative

frequencies of the surface types. We use the parameters of

the last case, for dry soil, but consider two additional sets

of a 's. For equal cover of trees and grass (a =a2 =0.5; solid

lines), the solution from Figure 3.16 has been replotted in

Figure 3.17. For comparison we also plot the results for

small tree cover (a1=0.1, a2 =0.9; dashed lines) and for total

tree cover (a1 =1.0, a2 =0.0; dotted-dashed lines). Upper lines

represent tree evaporation, while lower lines give the areal

average. Grass evaporation is zero. Note that decreasing
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areal coverage by the transpiring trees is accompanied by

increased evaporation therefrom. The increase is not suffi-

cient, however, to keep the areal average evaporation rate

from decreasing almost in proportion to a1 .

3.6 Summary and Discussion

Spatial variability of evaporation and transpiration

from the land surface is intimately connected to advection of

water vapor in the atmosphere. We have explored this connec-

tion using a highly idealized conceptualization of advection,

turbulent diffusion, and water availability at the land sur-

face, The emphasis here has been on local variability due to

patchiness of the surface, rather than on regional trends in

average evapotranspiration that result from large-scale

advection. The many gross assumptions regarding boundary lay-

er growth, similarity of turbulent diffusivities and

'roughness' heights, geometry, atmospheric stability, etc.,

may all be expected to affect our findings, certainly quanti-

tatively, less likely qualitatively. Our conceptualization

should therefore be viewed as an analogue from which physical

generalizations can be drawn, not as a tool for precise pre-

dictions of evapotranspiration.

We assume that spatial variability of the surface

can be adequately characterized in terms of the relative pro-

portions of area having given combinations of available ener-

gy, aerodynamic roughness, and canopy resistance, and in terms

of the characteristic scale of that variability -- the patch
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size. The proposed mathematical model expresses mean areal

average and patch average evapotranspiration as functions of

these characteristics and of the atmospheric conditions out-

side the surface internal boundary layers.

Several examples illustrate the effects of land sur-

face spatial variability on evapotranspiration. In general,

advection above the patches leads to adjustments in otherwise

independent evapotranspiration rates. In many, but not all,

cases these adjustments are negligible. As one example. Fig-

ure 3.13 shows the barely perceptible influence of patch size

(an indirect measure of advective connectivity of patches) on

the areal average. Only in one case depicted there does

advection have a significant effect on the areal distribution.

Even these effects are virtually absent when the variability

of the surface is mainly one of available energy (Figure

3.14).

Advective feedback appears to be most important when

patches have greatly differing canopy resistance (Figure

3.15). In these cases the assumption of lateral independence

leads to significant underestimation of the areal average

evapotranspiration rate, due to the underestimation of the

component from the less resistant ('wetter') canopies.

Advection provides a route by which excess sensible heat

generated from radiation at the drier surfaces can be trans-

ported to the wetter surfaces, where it fuels additional evap-

oration.

Since the most significant effect of advection
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observed in our analysis is with somewhat extreme values of

the canopy resistance, it may well be that factors other than

advection will always be in control. This is because a very

large canopy resistance is indicative of a serious limitation

of water supply at the land surface. In such a situation, it

is likely that the soil has a fixed maximum rate at which it

can supply water) regardless of atmospheric conditions. Then

rc, in effect, adjusts itself accordingly, and atmospheric

conditions, advectively-modified or otherwise, can have no ef-

fect on the evapotranspiration rate.

The foregoing suggests that many problems in

spatially-variable evapotranspiration could be analyzed more

effectively by concentrating on the supply side -- soil mois-

ture dynamics -- and less on the atmospheric demand side.

Certainly this is the case for relatively scarce water at the

land surface. An analysis of the sort presented for infiltra-

tion in Chapter 2 can be applied to study transient evapora-

tion from a bare soil surface.
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Chapter 4

SUMMARY AND CONCLUSIONS

4.1 Summary

We have employed simplified descriptions of

moisture movement in soil and in the atmosphere in order

to study some of the effects of spatial variability on in-

filtration and evapotranspiration.

In order to calculate areal average infiltration

from an inhomogeneous surface, we treat the soil mass as a

battery of independent, parallel soil columns, ignoring the

possible effects of lateral interactions. Spatial vari-

ability of soil properties, storm depth, and initial satur-

ation is considered.

The problem of advection in the atmosphere and its

effect on spatially variable evapotranspiration under canopy

control is addressed. The inhomogeneous land surface is

characterized as a mosaic of patches within which the avail-

able energy, the canopy resistance, and the surface roughness

are constant, but between which these quantities may vary.

A simplified flux network model based on the concept of aero-

dynamic resistances is proposed. It allows the calculation

of patch evaporation and areal average evaporation.

4.2 Conclusions

The spatial variability of land surface hydrology

results in a dissimilarity between point and areal average
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response. For storm surface infiltration and for evapo-

transpiration, this scale effect is a result of the spatial

variability of the physical parameters of the surface. For

evapotranspiration it also reflects the interaction between

different locations on the land surface that occurs due to

atmospheric advection.

A few particular effects of spatial variability on

the areal average division between infiltration and storm

surface runoff have been noted (Chapter 2). The integration

of infiltration over a finite area, in which forcing and

parameters are variable, yields a mean infiltration that is

much less sensitive to the mean forcing and soil parameters

than is the point infiltration (Sections 2.4.3 and 2.4.4).

Spatial variability of either rainfall or soil type ordin-

arily causes an increase in surface runoff over the value

yielded by the mean rain (Section 2.4.3) or by the average

soil characteristics (Section 2.4.4). In particular, it

appears that information on the distribution of storm depth

(perhaps parameterized by storm type) within the grid square

of a general circulation model would be useful for improved

representation of the land surface hydrology in climate

simulations, provided an appropriate hydrologic parameteri-

zation accounting for spatial variability were employed.

Physically plausible effects of lateral advection

and land surface variability on the areal mean evapotranspi-

ration rate and its distribution under conditions of canopy
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control can be obtained using a relatively simple conceptual

model (Section 3.5). According to this model, local advection

affects the areal average evapotranspiration rate only slightly

in most cases (Section 3.5.4). The most significant influence

of advection occurs when the canopy resistance to transpiration

is highly variable, with large values occurring over signi-

ficant portions of the area (Section 3.5.4). Since a large

canopy resistance is indicative of soil control of evaporation,

this result suggests that soil moisture dynamics should be

considered in future analyses of advection and its influence

on evapotranspiration (Section 3.6).

4.3 Recommendations for Future Research

In this work we have only looked at two limited

topics in spatial variability - laterally-independent

infiltration and advection-affected, steady-state evapo-

transpiration under canopy control. Further work is required

in observation and quantification of spatial variability,

in analysis of specific problems such as those dealt with

here, and in the integration of all of the results into a

coherent accounting scheme for spatially variable areas.

Some specific research problems related to the

present work can be identified:

1. The importance of lateral flows during

infiltration must be assessed. Both surface and subsurface

flows should be considered. These would be analyzed at the

161



hillslope scale, with due consideration of soil profile

layering. The spatially and temporally variable "partial

source area" deserves special attention.

2. Further modeling of evapotranspiration without

consideration of local advective feedback appears justified,

given the complexity of the spatial variability problem and

the relative insensitivity of our findings to advection.

3. Regional advection effects, spatial variability

of soil moisture supply, and vegetal control of r c all

deserve attention in the evapotranspiration problem.
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Appendix A

COMPUTER PROGRAM USED TO CALCULATE

AREAL AVERAGE INFILTRATION
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C
C ANALYSIS OF SENSITIVITY OF AREAL-AVERAGE INFILTRATION
C TO SPATIAL VARIABILITY OF SOIL AND RAINFALL PARAMETERS.
C USES CALCOMP SOFTWARE IF PLOTTING IS SELECTED.
C

EXTERNAL AXIS2(DESCRIPTORS)
EXTERNAL SYMBOL(DESCRIPTORS)
CHARACTER*40 IX
DIMENSION X(20),Y(20)
DIMENSION ICHAR(1O),IX(6),NIX(6),NSIG(6)
DATA ICHAR /0,1,2,5,12,0,1,2,5,12/
DATA IX /'MEAN MOISTURE SATURATION',.'STD. DEV. OF SATURATION',

d 'COEFFICIENT OF VARIATION OF ALPHA','LOG10 OF NORMALIZED STORM
d RADIUS','NORMALIZED AIR DEPTH','S'/
DATA NIX/24,23,33,32,20,1/
DATA NSIG/2,2,1,1,1,2/
PRINT,'PLOTTED OUTPUT? (1-YES O=NO)'
READ(5,) IPLOT
IF(IPLOT.EQ.1) CALL SET_- DIMENSION(13.)

C****d***d*d*d****************************d****************ii***************
C-

INITIALIZE PARAMETERS WITH NOMINAL VALUES.
THE PARAMETERS D,S.A, AND CV ARE AS DEFINED IN PART B.
RZERO IS LITTLE-R-SUB-ZERO DIVIDED BY BIG-R. THE RELATIVE
STORM RADIUS. SMEAN IS MU-SUB-S AND SIGS IS SIGMA-SUB-S.

D=I.E4
S=0.
A=0.
RZERO=100.
SMEAN=0.0
SIGS=O.
CV=O.

C
C PRINT CURRENT PARAMETER VALUES AND CHANGE IF REOUESTED
C
40 WRITE(6,1010) A.S,D

1010 FORMAT(1X.'A = ',FIO.4,5X,'S = ',FIO.4,5X.'D a ',FIO.4)
PRINT,'WOULD YOU LIKE TO CHANGE ANY OF THESE VALUES?'
PRINT,' ( 1=YES O-NO )'
READ(5,) IKOD
IF(IKOD.NE.1) GO TO 30
PRINT,'ENTER A, S, D'
READ(5,) A,S.D
GO TO 40

30 WRITE(6,1020) RZEROSMEAN,SIGS,CV
1020 FORMAT(IX,'RZERO =',FIO.4,5X.'SMEAN s',FIO.4,5X.'SIGS -',FiO.4.

d 5X,'CV = ',Fl0.4)
PRINT,'WOULD YOU LIKE TO CHANGE ANY OF THESE VALUES?'
READ(5,) IKOD
IF(IKOD.NE.1) GO TO 60
PRINT,'ENTER RZERO, SMEAN, SIGS. CV'
READ(5,) RZERO,SMEAN,SIGS,CV
GO TO 30

60 CONTINUE

C
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C DEFINE PARAMETERS FOR SENSITIVITY ANALYSIS.
C THE 'PRIMARY INDEPENDENT VARIABLE' WILL BE USED AS THE X-COORDINATE
C IN THE SENSITIVITY PLOTS. THE 'SECOND INDEPENDENT VARIABLE' WILL BE
C USED AS THE PARAMETER FOR DIFFERENT CURVES IN THE SENSITIVITY PLOTS.
C

PRINT,'CHOOSE PRIMARY INDEPENDENT VARIABLE'
PRINT.'. I MEAN VALUE OF S'
PRINT,' 2 STANDARD DEVIATION OF S'
PRINT.' 3 CV OF ALPHA'
PRINT,' 4 LOGiO OF NORMALIZED STORM RADIUS'
PRINT,' 5 NORMALIZED AIR DEPTH'
PRINT.' 6 DIMENSIONLESS SORPTIVITY'
READ(5,) IP
NP=13
PRINT.'ENTER SMALLEST VALUE OF PRIMARY VARIABLE'
READ(5,) FV
PRINT,'ENTER THE INCREMENT'
READ(5,) DV
PRINT,'CHOOSE SECONDARY INDEPENDENT VARIABLE'
PRINT,' I -HYDRAULIC CONDUCTIVITY'
PRINT,' 2 SORPTIVITY'
PRINT,' 3 STORAGE DEPTH'
READ(5,) IS
PRINT,'ENTER THE NUMBER OF VALUES OF THE SECONDARY VARIABLE'
READ(5,) NS
PRINT,'ENTER THE SMALLEST EXPONENT OF SECONDARY VARIABLE'
READ(5.) FE
PRINT,'ENTER THE INCREMENT OF THE EXPONENT'
READ(5,) DE
C-1.0
IF(IP.GT.2.AND.SMEAN.LT..0001.AND.SIGS.LT..0001) GO TO 66
PRINT,'ENTER PORE DISCONNECTEDNESS INDEX, C'
READ(5.) C

66 CONTINUE
C **** ***** ** ***** *** *** *** ********* ** ** **** ***** ************ **** *********** ** *

C
C DEFINE PLOT SIZE PARAMETERS AND SET UP PLOT.
C

IF(IPLOT.NE.1) GO TO 70
X(NP+.1)=FV
X(NP+2)-DV*2.
Y(NP+1)=0.
Y(NP+2)=.2
CALL PLOTS
CALL PLOT(1.,4.5,-3)
CALL AXIS2(0.,0.IX(IP),NIX(IP),6.,0.,FVDV*2.,NSIG(IP),0,I.,

* .15,.15)
CALL AXIS2(0.,O.,'NORMALIZED INFILTRATION',23.5..90.,0...2.1,0,1.

* .15..15)

C
C INFILTRATION CALCULATION LOOPS. OUTER LOOP GETS DATA FOR NS CURVES.
C INNER LOOP GETS DATA FOR NP POINTS ON EACH CURVE.
C

70 DO 10 I1,NS
IF(IS.EQ.1) A=10.**(FE+(I-1)*DE)
IF(IS.EO.2) S=10.**(FE+(I-I)*DE) -
IF(IS.EO.3) D=10.**(FE+(I-1)*DE)
DO 20 J-1,NP
IF(IP.EQ.1) SMEAN=FV+(J-1)*DV
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IF(IP.EQ.l) X(J)=SMEAN
IF(IP.EQ.2) SIGS=FV+(J-1)*DV
IF(IP.EQ.2) X(J)=SIGS
IF(IP.EO.3) CV=FV+(J-1)*DV
IF(IP.EQ.3) X(J)=CV
IF(IP.EO.4) RZERO=10.**(FV+(d-1)*DV)
IF(IP.EQ.4) X(J)=FV+(J- )*DV
IF(IP.EQ.6) S=FV+(J-1)*DV
IF(IP.EQ.6) X(d)=S
IF(IP.EQ.5) D=FV+(J-l)*DV
IF(IP.EQ.5) X(U)=D

C
C SUBROUTINE INFILT RETURNS THE NORMALIZED AVERAGE INFILTRATION IN Y(J).
C

20 CALL INFILT(A.S,D,RZERO,SMEAN,SIGS.CVY(J),C)
IF(IPLOT.NE.1) GO TO 10

C
C PLOT THE LINE.
C

CALL MYLINE(XYNP,1,O,1)
10 CONTINUE

IF(IPLOT.EO.1) CALL PLOT(O.,O.,33)
PRINT,'FINISHED?'
READ(5,) IFIN
IF(IFIN.NE.1) GO TO 40
IF(IPLOT.NE.1) STOP
CALL PLOTS
CALL ENDPLT(10.,2.,999)
STOP
END

C******************************************* ******************

C
SUBROUTINE INFILT(A,S,D,RZERO.SMEAN,SIGSCV,FIL,C)

C
C CALCULATES THE AREAL AVERAGE NORMALIZED INFILTRATION DEPTH. 'FIL'.
C THE ARRAYS ALPHA, SO, AND U2 CONTAIN EOUAL PROBABILITY VALUES OF THE
C SOIL SCALING FACTOR, THE INITIAL SATURATION, AND THE NORMALIZED WATER
C TABLE DEPTH. ARRAYS UI AND F1 CONTAIN DISCRETE VALUES OF THE
C NORMALIZED STORM DEPTH AND THE ASSOCIATED FINITE PROBABILITIES.
C ARRAY PHI2 CONTAINS VALUES OF THE APPROXIMATING FUNCTION PHI-SUB-2
C EVALUATED AT THE SO VALUES IN SO.
C

DIMENSION ALPHA(100),SO(100),Ui(100),U2(100),FI(100),PHI2(100)
C
C CALCULATE THE AVERAGE STORM DEPTH, FAC.
C

FAC=RZERO*RZERO
IF(RZERO.LT..02) GO TO 33
FAC=2.*RZERO*RZERO*(1.-EXP(-1./RZERO)*(1.+1./RZERO))

33 CONTINUE
C
C DISCRETIZE THE DISTRIBUTION OF Ul (NORMALIZED STORM DEPTH)
C INTO EQUAL RADIUS INTERVALS. N1 IS THE NUMBER OF INTERVALS.
C

NI=20
IF(RZERO.GT.50.) NiuI.
DO 10 N=1,Ni
ARG=(N-.5)/Ni/RZERO
IF (ARG.GT.30.) ARG=30.
Ui(N)=EXP(-ARG)/FAC
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10 FI(N)=(FLOAT(N)/FLOAT(NI))**2.
DO 15 N-1,Ni
IF(N.EQ.NI) GO TO 15
FI(NI+1-N)-Fi(N+1-N)-FI(NI-'N)

15 CONTINUE
C
C
C COMPUTE PARAMETERS OF THE LOG-NORMAL DIST. OF ALPHA
C

VARN-ALOG( I .+CV*CV)
ALPHAMN=-0.5*VARN
SIGN-SORT(VARN)

C
C DISCRETIZE ALPHA INTO EQUALLY LIKELY VALUES. NA IS THE NUMBER
C OF ALPHA VALUES. MDNRIS IS THE INVERSE CDF OF THE STANDARD
C NORMAL DEVIATE. AN IMSL SUBROUTINE.
C

NA=20
IF(CV.LT.1.-8) NA-1
DO 20 NI.NA
P=(N-0.5)/NA
CALL MDNRIS(P,ALPHA(N),IER)

20 ALPHA(N)-EXP(ALPHAMN+SIGN*ALPHA(N))
C
C
C NORMALIZE THE DISCRETIZED VALUES OF ALPHA TO INSURE UNIT MEAN.
C

AM=0.
DO 25 N=1,NA

25 AM=AM+ALPHA(N)
AMUAM/NA
DO 26 N=1,NA

26 ALPHA(N)=ALPHA(N)/AM
C
C DISCRETIZE NORMALIZED STORAGE DEPTH. N2 IS THE NUMBER OF VALUES
C OF U2.
C

N2=20
IF(D.GT.100.) N2=1
DO 30 NwiN2
X=(N-.5)/N2

30 U2(N)aX*(2.-X)
C
C
C DISCRETIZE 'SO' IN EQUAL PROBABILITY INTERVALS. NS IS THE NUMBER
C OF SO VALUES.
C

NS-20
IF(SIGS.LE.1.E-10) NS=1
00 40 NWINS

, Pn(N-0.5)/NS
CALL MDNRIS(PSO(N).IER)
SO(N)=SMEAN+SO(N)*SIGS
IF(SO(N).LT.O.) SO(N)=0.
IF(SO(N).GE.O.999) SO(N)mO.999
G'SO(N)/(1.-SO(N))

40 PHI2 (N)n ( 1. -SO(N)) * *5. * (0. 176+0.857*G+1. 64*G*G+1. 5*G*G*G
* +0.6*G*G*G*G)

C
C
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C
C CALCULATE AVERAGE INFILTRATION DEPTH. NORMALIZED BY AVERAGE STORM DEPTH.
C

FIL=O.
DO 100 I=1.NA
TERM3P=A*ALPHA(I)*ALPHA(I)
TERM2P=S*SORT(ALPHA(I))
DO 100 d=1,NS
TERM2=TERM2P*PH2(J)
TERM2SO=TERM2*TERM2
TERM3=TERM3P*(1.+SO(d)**C)
TERMlP=D*(1.-SO(J))
DO 100 K-1.N2
TERMI=TERMIP*U2(K)
DO 100 L=1,N1

C
C SUBPROGRAM FILT RETURNS THE VLAUE OF THE NORMALIZED INFILTRATION
C DEPTH, GIVEN THE SPECIFIED PARAMETERS.
C

FILTT=FILT(TERMI.TERM2,TERM2SO.TERM3,U1(L)U2(K)SO(J).
* ALPHA(I))

100 FIL=FIL+FILTT*F1(L)
FIL=FIL/(NS*NA*N2)
RETURN
END

C** ***.*** ** * ***** * *** ** **** * *** ***** ** ** **** ** *** * *** ** ** *** ****** * ** ***

C
FUNCTION FILT(TERMITERM2,TERM2SQ.TERM3.UI,U2.SOALPHA)
IF(TERM3.GE.UI) GO TO 10
TZERO=0.5*TERM2SO/(U1*(Ul-TERM3))*(1.+0.5*TERM3/(UI-TERM3))
GO TO 20

10 TZERO=1.E+20
20 IF(TZERO.LT.1.) GO TO 30

FILT=AMINI(UITERMI)
RETURN

30 TPRIME=TZERO-0.25*TERM2SO/((UI-TERM3)*(UI-TERM3))
FILT=TZERO*UI+TERM2*(SORT(1.-TPRIME)-SORT(TZERO-TPRIME))

* +TERM3*(1.-TZERO)
FILT=AMINI(FILTTERMI)
RETURN
END

C*** ****** * * *** ** ****** ** * ** *** **** ** * ***** * * ** *e*** * ****** ** ** * ** ** * ** *** ***

C
SUBROUTINE MYLINE(X,Y,NNI11,2,13)

C
C PLOTS A LINE.
C

EXTERNAL SYMBOL (DESCRIPTORS)
DIMENSION X(i),Y(i)
XP-(X(1)-X(NN+1))/X(NN+2)
YP=(Y(1)-Y(NN+1))/Y(NN+2)
CALL PLOT(XP.YP,3)
IF(I2.NE.0) CALL SYMBOL(XPYP,.08,13.0..-1)
KODE=2
IF(I2.LT.0) KODE=3
DO 10 1=2.NN
XP=(X(I)-X(NN+1))/X(NN+2)
YP-(Y(I)-Y(NN+1))/Y(NN+2)
CALL PLOT(XPYP,KODE)
DIST=SORT((XP-XPOLD)*(XP-XPOLD)+(YP-YPOLD)*(YP-YPOLD))
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IF(DIST.LT.O.2) GO TO 10
IF(12.NE.0) CALL SYMBOL(XP,YP,.08.13.O..,-1)
XPOLD=XP
YPOLD-YP

10 CONTINUE
RETURN
END

C
SUBROUTINE AXIS2( X , Y BCD , NO , SIZE , THETA , YMIN , DY , 00000010
*ND , K'.FM.,Hi . H2)

C
C PLOTS AN AXIS.
C
C MODIFICATION OF
C CALCOMP ROUTINE -AXISI- MIT-SUPPLIED SUBROUTINE INCLUDED 00000050
C FOR USE BY MIT USERS WITH 905 STANDARD CALCOMP PACKAGE 00000060
C BECAUSE IT CONTAINS 3 ARGUMENTS MORE THAN STANDARD AXIS ROUTINE 00000070
C AND THUS ALLOWS MORE FLEXIBILITY IN DRAWING AXES. E.G., IT 00000080
C ALLOWS TIC MARKS TO BE SPACED BY USER. 00000090
C JULY 1974 00000100
C MODIFIED BY PAM NORTHRIDGE 12/10/74 00000110
C 00000120
C
C 00000150

EXTERNAL SYMBOL (DESCRIPTORS)
LOGICAL*1 LOG
CHARACTER*25 BCD

C INITIALIZE 00000280
86 TH=THETA*.1745329E-1 00000290

C *CHANGE FROM NC TO NO IN IABS CALL 00000300
NC=IABS(NO) 00000310
KOD1-
KODE=1
IF (NO.LT.0) KODS-1
IF (THETA.GT.45.) KODEW-1.

76 SWw0. 00000320
84 SS=H2
85 YB=SIN(TH) 00000340

S-ABS(SIZE) 00000350
XA a X - KOD * 0.1 * YB
XBwCOS(TH) 00000370
XC-X 00000380
YA = Y - KOD * 0.1 * XB
YCUY 00000400
ST-X*XB+Y*YB 00000410
HS-S/2. 00000420
LOG-.FALSE. 00000430
IF(SIZE.LT.O.)LOGn.TRUE. 00000440
BASE=10. 00000450
IF(K)60,61,60 00000460

60 E-.36*H2/.14
GO TO 63 00000480

61 E-0. 00000490
63 13=3 00000500

C DRAW AXIS FROM LEFT TO RIGHT 00000510
C MOVE TO TIP OF TIC MARK 00000520
C 16 CALL PLOTI(XAYA,13) 00000530

16 CALL PLOT (XA,YA,I3) 00000540
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C MOVE TO BASE OF TIC MARK 00000550
C CALL PLOTi(XC,YC,2) 00000560

CALL PLOT (XC.YC,2) 00000570
XC=XC+XB*FM 00000580
YC=YC+YB*FM 00000590
XA-XA+XB*FM
YA=YA+YB*FM 00000610

C MOVE TO BASE OF NEXT TIC MARK 00000620
C CALL PLOTi(XCYC,2) 00000630

CALL PLOT (XCYC,2) 00000640
20 13=2 00000650

C END OF AXIS TEST 00000660
IF((XC*XB+YC*YB)-S+.00001)16,80,80 00000670

C 80 CALL PLOTI(XA,YA,2) 00000680
80 CALL PLOT (XA,YA,2) 00000690

C WRITE NUMBERS UNDER AXIS MOVING FROM RIGHT TO LEFT 00000700
DIST=.05*FM+HI*0.5*(I.+KOD*KODE)
XA=XA-KOD*DIST*YB
YA=YA-KOD*DIST*XB
XC=(XC-X)*XB
YC=(YC-Y)*YB

C USE POSITION ON AXIS TO COMPUTE NUMBER TO BE 00000750
C WRITTEN. 00000760

VALUE=((XC+YC)*(DY/FM)*10.**(-K))+(YMIN*10.**(-K))
91. NQ=ND 00000780

IF(.NOT.LOG)GO TO 92 00000790
CALL NUMBRI(XAYA,-.10,BASE,THETA,0) 00000800
XEXP=999. 00000810
YEXP=YA+.05 00000820
IF(THETA.GT.45.)XEXP=XA-.05 00000830
IF(THETA.GT.45.)YEXP=999. 00000840

CALL NUMBRI(XEXP.YEXP..07,VALUE,THETANQ) 00000850
GO TO 93 00000860

C WRITE NUMBER 00000870
92 XAI.=XA-XB*Hi*(NQ+2)*0.5

YAI=YA-YB*Hi*(NO+2)*0.5
CALL NUMBR1(XAi,YAI,-Hi,VALUETHETA,NQ)

93 TEST=XC+YC 00000890
C TEST IF TIME TO WRITE LABEL 00000900

IF(TEST-HS-ST/2.)55,55,54 00000910
54 XA=XA-XB*FM 00000920

YA=YA-YB*FM 00000930
XC=XC-FM*ABS(XB) 00000940
YC=YC-FM*ABS(YB) 00000950

C DECREASE VALUE TO BE WRITTEN BY I UNIT 00000960
81 VALUE=VALUE-DY*10.**(-K) 00000970

TEST=XC+YC 00000980
C TEST IF PAST STARTING POINT OF AXIS 00000990

IF(TEST +.00005)30.91,91
30 RETURN 00001010

C IS LABEL WRITTEN 00001020
55 IF(SW)70,70,54 00001030

C WRITE LABEL 00001040
70 SW=1. 00001050

VAL=NC/2 00001060
CP=HS-ST/2.-SS*VAL-E
XD=X+XB*CP-KQD*(DIST+2.2*SS*FM)*YB
YD=Y+YB*CP-KOD*(DIST+2.2*SS*FM)*XB

NW=NC 00001100
CALL SYMBOL(XDYD.SS,BCD,THETA,NW) 00001110
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C IS
IF(K)53,54,53

C WRITE 10 TO XX

EXPONENT TO BE WRITTEN AFTER LABEL

53 FNCwNC
CP-H*(FNC+1.)
XD=XD+CP*XB
YD=YD+CP*YB
TEN=10.001

CALL NUMBRI (XDYD,H1.TENTHETA,0)
HEXP=.7*Hi
XD=XD+2.*HI*XB-HEXP*YB
YD=YD+2.*H1*YB+HEXP*XB
CAY=K
CALL NUMBRI(XDYD,HEXPCAY,THETA,0)
GO TO 54
END
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Appendix B

COMPUTER PROGRAM USED TO CALCULATE

AREAL AVERAGE EVAPOTRANSPIRATION
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C********************************** *****************************************

C
C Program to calculate patch and areal average evapotranspiration given
C patch values of surface- roughness (ZO). normalized available energy
C (R), and canopy resistance (RC), as well as the proportions of area
C covered by each patch type (ALPHA). Also input are the dimensionless
C factor for regional advection (FAC, 'q' in the paper) and the overall
C length of the modeled area (ELPP, 1' in the paper). Dimensions are
C in meters.
C

DIMENSION RA(10),RC(10),R(10),E(10)
COMMON Z0(10),ALPHA(10),HO,D.H,N
GD=O.5

C*********'************************************************************* ****
C
C Read the problem parameters. Currently programmed to read information
C for two patch types only. N is the number of patch types.

PRINT,'ENTER ALPHA(1), ALPHA(2)'
READ(5,) ALPHA(1), ALPHA(2)
PRINT.'ENTER RC(1), RC(2)'
READ(5,) RC(1),RC(2)
PRINT,'ENTER R(1), R(2)'
READ(5,) R(i),R(2)
PRINT,'ENTER ZO(i), ZO(2)'
READ(5,) ZOI,ZO2
PRINT,'ENTER FAC'
READ(5.) FAC
N=2
PRINT.'ENTER L-PRIME IN METERS'
READ(5,) ELPP

C NI is the number of EL (1) values used.
NI=ALOGIO(ELPP)*2.+1.

C********************* ******** *** ****** ********* ********* **************** *** **

C
C Loop to calculate evaporation for different values of the patch size.
C

DO 100 I-1,NI
ZO(1)=ZO1
ZO(2)=ZO2
HO50.
ELLOG=-.5+0.5*I
EL=10.**ELLOG

C
C Non-dimensionalize the parameters.
C

DO 20 J=1,N
20 ZO(J)=ZO(J)/EL

HO=HO/EL
ELP-ELPP/EL
D=1./EL

C
C Find the effective surface roughness, ZOE.
C

CALL EFRUF(ZOE)
C
C Find dimensionless aerodynamic resistances, RA, R1, and R2.
C

CALL RESIST(ZOE,ELP,RA.R1.R2)
C
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C Calculate the mean (EVAP) and the patch (E) evaporation, normalized.
C

S1=0.
S2=0.
DO 30 1 =1,N
Ai=1./(i.+GD*(i.+RC(U)/RA(d)))
Si=S1+ALPHA(d)*A1*(R(J)+FAC/RA(J))

30 S2=S2+ALPHA(d)*A1*R2/RA(d)
EVAP=(S1+S2)/(1./(1.+GD)+S2)
DO 40 =1,N

40 E(J)=(R(J)+FAC/(RA(0))+(R2/RA(J))*(1.-EVAP))/
* (1.+RC(J)/(RA(j)*(i.+1./GD)))
PRINT, 'L=',EL,' EVAP=',EVAP
PRINT, (E(J),J=iN).

100 CONTINUE
STOP
END

C***.******************************************** *****************************

C
SUBROUTINE EFRUF(ZOE)

C
C Calculate the effective surface roughness.
C

EXTERNAL F
COMMON ZO(10),ALPHA(10),HO,DH,N
ZMIN=I .EIO
ZMAX=O.-
DO 10 I=1,N
ZMIN=AMIN1(ZMIN,ZO(I))

10 ZMAX=AMAXI(ZMAX,ZO(I))
MAXFN 100

C
C ZBRENT is an IMSL subroutine to find the root of a user-supplied
C function 'F' and return it in ZMAX. Initially, ZMIN and ZMAX are
C user-supplied bounds on the root.
C

CALL ZBRENT(F.1.E-6,20,ZMINZMAXMAXFN.IER)
ZOE=ZMAX
RETURN
END

C***** ****** ******************** ************ **** ***** ***************** *******

C
FUNCTION F(Z)

C
C Return the residual in the equation for the effective surface roughness.
C

COMMON ZO(1o),ALPHA(10),HO.D.H,N
H=HH(HOZ,D)
ARGI=ALOG(H)
ARG2=ARGt+H/HO
ARG=ARG2-ALOG(Z)
F=1./(ARG*ARG)
DO 10 I=1,N
ARG=ARG2-ALOG(zo(I))

10 F-F-ALPHA(I)/(ARG*ARG)
RETURN
END

C
SUBROUTINE RESIST(ZOE,ELP.RA.Ri,R2)
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G 1995

C
C Calculate normalized aerodynamic resistances.
C

COMMON ZO(10).ALPHA(10),HO.DH.N
DIM NSION RA(10)
C-2.5
ARGI=ALOG(H)+H/HO
DO 10 I-1,N
ARG-ARGI-ALOG(ZO(I))

10 RA(I)=C*ARG*ARG/(ARGi-ALOG(ZOE))
RI=C*(ARG1-ALOG(ZOE))
HPC=HO** 1. 25*ZOE**-0. 25
IF(HPC.GE.ELP) HP=ZOE**O.2*ELP**O.8
IF(HPC.LT.ELP) HP=HO+SQRT(D*(ELP-HPC))
R2-C*(HP/HO+ALOG(HP)-ALOG(ZOE))-RI
RETURN
END

C
FUNCTION HH(HOZ,D)

C
C Calculate the height of a boundary layer at a given fetch.
C

HC=HO**1.25*Z**-0.25
IF(HO.GE.1.) HH Z**0.2
IF(HC.LT.1.) HH=HO+SQRT(D*(1.-HC))
RETURN
END
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