


77 Massachusetts Avenue
Cambridge, MA 02139
http://Ilibraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

MITLibrades



R82-43 
OSP 89965

INTERACTION OF THE SATURATED AND UNSATURATED SOIL MOISTURE ZONES

1. ANALYTICAL SOLUTION OF THE LINEARIZED RICHARDS EQUATION

2. THE ROLE OF CLIMATE IN SHAPING THE PHREATIC SURFACE

by

Scott Alan Miller

and

Peter S. Eagleson

RALPH M. PARSONS LABORATORY

HYDROLOGY AND WATER RESOURCE SYSTEMS

Report Number 284

Prepared under the support of the M.I.T. Technology Adaptation
Program, which is funded through a grant from the Agency for In-
ternational Development, United States Department of State.

August 1982

1



ABSTRACT

In Part I, dimensionless analytical expressions are derived describ-

ing the hydrologic processes and the moisture distribution of a high water

table unsaturated soil column, by linearizing Richards' equation. The fin-

ite Fourier transform method is used to solve for the moisture content,

which is the basis for the solutions for the depth-averaged moisture con-

tent, ponding time, boundary fluxes and their integral quantities. The

effects of transpiration are included through three models of soil-water

extraction by plants. Simplified, physically-based expressions for infil-

tration rate-and ponding time which include water table effects, are pro-

posed in the appendix.

Examples of the solutions are presented and several cases are com-

pared with a numerical finite-element model of the non-linear problem.

Fitted parameter estimates are compared with analytical expressions from

the literature. Comparisons are for average moisture content, ponding

time and cumulative infiltration. Good to excellent agreement is found

for all cases. The exfiltration solutions, with and without vegetation,

are untested.

In Part II, the dynamic relation between soil-moisture, water table

depth, and accretion to groundwater is studied. Derived relations be-

tween the moisture content, water table depth, and net accretion are com-

pared over a range of climate and soil types. These are used in a one-

dimensional non-linear finite-difference model for the water table shape

and the longer run influence of climate upon it. The boundaries are con-

stant potentials.

074501020745-1".l



The water table is shown to have an influence for depths from less

than one meter to over'one hundred meters, with the greater influence for

clay soils and larger potential evaporation rates. Climate-induced water

table depressions and swamplands are shown to be dependent upon the un-

saturated zone water balance and upon the hydraulic conductivity of the

soil. Case studies for the water table-water balance model use data from

the El-Gizera and Bahr-el-Ghazal regions of Sudan.

In both parts of this work, dimensionless parameters are developed to

describe when the water table influences the water balance of unsaturated

soil and when the climate influences the water table shape.
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PREFACE

This report is one of a series of publications which describe various

studies undertaken under the sponsorship of the Technology Adaptation Pro-

gram at the Massachusetts Institute of Technology,

The United States Department of State, through the Agency for Interna-

tional Development, awarded the Massachusetts Institute of Technology a con-

tract to provide support at M. I. T. for the development, in conjunction

with institutions in selected developing countries, of capabilities useful

in the adaptation of technologies and problem-solving techniques to the

needs of those countries. This particular study describes research conduc-

ted in conjunction with Cairo University, Cairo, Egypt.

In the process of making this TAP supported study some insight has been

gained into how appropriate technologies can be identified and adapted to the

needs of developing countries per se, and it is expected that the recommenda-

tions developed will serve as a guide to other developing countries for the

solution of similar problems which may be encountered there.

Fred Moavenzadeh

Program Director
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NOTATION

NOTE: 1. Symbols not included in the list are defined in the text

wherever they are used.

2. Multiple uses of the same symbol are distinguished by the

context of the usage.

3. Dimensions are indicated in parentheses by force (F), mass (M),

length (L), time (T), temperature (deg) and dimensionless (-).

4. Generally used subscripts and superscripts are listed at the

end of the notation. First, find the variable in the nota-

tion and if the subscript is not included, check the sub-

script section.

7' -l
a Kostiakov model parameter (LT )

a distance of well from x = 0 (L)

a2  linear model parameter (=k/D,) (L~)

A sinusoidal initial condition parameter (-)

A coefficient matrix

ABC boundary condition solution integral (-)

A1  Green-Ampt model parameter (L2 T )

A2  Philip model parameter (LT )

A moisture content solution coefficient

b Kostiakov model parameter (-)

b coefficient matrix (LT )

b 0 root sink model parameter (T~ )

b root sink model parameter (L2
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B coefficient matrix (-)

B coefficient term for capillary rise expression (-)

BI Green-Ampt model parameter (LT_)

B2  Philip model parameter (L)

B_ moisture content solution coefficient

c pore disconnectedness index (-)

c Thornthwaite model parameter (LT_ deg-)

C Green-Ampt model parameter (L)

C solution term incorporating boundary and depth-dependent
tran.spiration sink effects (-)

d deep seepage rate (LT )

d diffusivity index (-)

? -
L hydraulic diffusivity of soil moisture (LT )

D( M) normalizing coefficient for solution eigenfunction (L)

D hydraulic diffusivity for exfiltration (L2 T )

D. hydraulic diffusivity for infiltration (L2 T )

D* linearized (constant) hydraulic diffusivity (L2 T )

e potential bare soil evaporation rate (LT1 )

e potential vegetation transpiration rate (LT )

evT evapotranspiration rate (LT 1 )

eT evapotranspiration rate at land surface .(LT- )

eT evapotranspiration rate at water surface (LT )

eT potential evapotranspiration rate (LT )

P -l
eT evapotranspiration rate from soil moisture (LT )

e s constant vegetation transpiration rate (LT )
V
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* -l
e maximum transpiration rate (LT )v

E cumulative bare soil exfiltration (L)
s

E cumulative bare soil exfiltration for soil-controlled process
ss (L)

ET cumulative evapotranspiration (L)

ETA annual volume of evapotranspiration (L)

E cumulative transpiration (L)
v

E cumulative transpiration with climate-controlled surface
vc

process (L)

E cumulative transpiration with soil-controlled surface process
vs (L) ,

f accretion matrix (LT~)

-1
asymptotic infiltration rate (LT )

-1
exfiltration capacity (LT )

e

fe . initial exfiltration capacity (LT-)
e,i

f ess steady state exfiltration capacity (LT )
-1

f. infiltration rate (LT )

f. infiltration capacity or infiltration rate for soil-controlled
process (LT-1)

* -l
f initial infiltration capacity (LT )

* -l
f . steady state infiltration capacity (LT )

f initial constant flow rate in unsaturated zone (LT_)

-l
f initial infiltration rate (LT )

-l0
f 0initial drainage rate (LT_ )

F integral transform of initial condition (-)

g acceleration due to gravity (LT- 2

g boundary condition matrix (LT )
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gr vegetal extraction rate of soil moisture (T1)-1

gr,max maximum vegetal extraction rate of soil moisture (T-

gr,1 reduced maximum vegetal extraction rate (T~ )

G dimensionless vegetal extraction parameter

G integral transform of depth-dependent transpiration
sink term (-)

GR dimensionless vegetal extraction rate (-)

G dimensionless maximum vegetal extraction rate

G 2 transformed concentration-dependent vegetal sink
term (Eqn. 3.122)

G dimensionless root sink parameter (Eqn. 3.114)

G11 dimensionless root sink parameter (Eqn. 3.115)

G, dimensionless root sink parameter (Eqn. 3.117)
12

G22 dimensionless root sink parameter (Eqn. 3.118)

h height of water table above reference level (L)

h water table height matrix (L)

h average phreatic surface elevation (L)

h(o) initial moisture content at the landsurface (-)

hL height of river above datum at x = L (L)

h water table elevation above datum (L)

h height of river above datum at x = 0 (L)
0

h height of surface retention water (L)

H height of land surface above datum (L)

H land surface height above reference level halfway
c between two reservoirs (L)
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H L land surface height above reference level at x = L
(L)

H land surface height above reference leve at x = 0
0 (L)

H depth of ponded infiltration above land surface (L)

H1  land surface boundary condition linearized solution
parameter (-)

H 2 water table boundary condition linearized solution
parameter (-)

i uniform rainfall rate (LT- )

I cumulative infiltration (L)

I cumulative infiltration for soil-controlled process
(L)

general solution term for fluxes and contents

(-)

J 2 general solution term for cumulative quantities

(-)

k hydraulic nonductivity coefficient for linear
model (LT )

k. fitted parameter for linear ponding time model

(LT-1)

2
k.. saturated soil permeability to water (L2)

1.3

krw relative permeability with respect to saturation (L )

kv plant coefficient (-)

k 1time constant for infiltration/exfiltration rate

equation (T 1 )

K hydraulic conductivi.ty of soil moisture (LT1 )
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K "resaturated" hydraulic conductivity or gravity drainage
rate (LT~ 1 )

K temporal average hydraulic conductivity at the land surface
(LT 1)

K( m,z) eigenvalue of solution to linearized problem (-)

K(l) maximum or saturated hydraulic conductivity (LT )

K wo hydraulic conductivity at field capacity (LT )

K0 initial hydraulic conductivity (LT-)

K maximum hydraulic conductivity (LT )

L distance between rivers (L)

m pore size distribution indes (-)

m iteration number (-)

mH mean storm depth (L)

-l
m i mean storm intensity (LT )

mtb mean time between storms (T)

mt mean storm duration (T)
r

m mean number of storms (-)

m mean annual rainy season length (T)

m moisture concent solution coefficient

M vegetated fraction of land surface (-)

Md difference betweenmaximum and initial moisture contents (-)
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optimal vegetated fraction of land surface (-)

the total increase in moisture content from the initial to
the steady state during capillary rise (no evapotranspiration)

(-)

n soil porosity (-)

n effective porosity (-)

n moisture content solution coefficient

N(t) drainage rate through water table (LT~)

N atmospheric flux vector, positive into soil (LT )

p percolation rate to phreatic aquifer (LT1 )

-2
Pb bubbling pressure (Bear, 1979, p. 197) (FL-2

PC capillary pressure of air-water interface in unsaturated
soil (FL 2)

PL precipitation rate onto land surface (LT~ )

pN net percolation rate to saturated zone (LT~ )

pW water pressure (FL-2 )

-l
pO precipitation rate onto water surface (LT )

Aannual volume of precipitation (L)

P seasonal volume of precipitation (L)

q soil-moisture dQwnward flow rate or apparent velocity (LT~ )

q apparent velocity vector of the porous medium (LT )

Q volumetric flow rate between rivers (L 2

Q cumulative soil-moisture volume crossing a horizontal section
of the unsaturated zone (L)

QIN volumetric flow rate into a control volume (L2 T )

-l
QN net accretion rate into phreatic aquifer (LT )

QOUT volumetric flow rate out of a control volume (L2 T )
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2 -l1QP pumping rate of well (L2T )

QpI volumetric flow rate from reservoir of h = h0 to well (L 2 -)

QP volumetric flow rate from reservoir of h = hL to well (L 2T )

QV uniform, distributed water table accretion from all sources
(LT-1 )

r groundwater runoff rate (LT ~)

r surface runoff rate (LT )

RG annual volume of groundwater runoff (L)

R annual volume of surface runoff (L)

s degree of soil-moisture saturation (-)

s space and time averaged local soil moisture content (-)

S sorptivity (LT- 1/ 2

S AV average capillary suction at wetting front (L)

S exfiltration sorptivity (LT- 1/2)

S infiltration sorptivity (LT- 1/2

S specific yield of aquifer (-)

t time (T)

tc soil parameter, dividing short and long time events (T)

t contact time or time when z = z (T)c F c

td drying time (T)

tf duration of previous process (T)

tgrav time dividing dominance of capillary and gravity forces (T)

tL time when wetting front reaches the water table (T)

t storm duration (T)

t9 0ponding time (T)
* *
t time defined by I1(t ) = it, (T)
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t time at which. surface retention moisture has evaporated (T)

T transmissivity (L2 T )

T number of days per year of capillary rise (T)

T linearized transmissivity (L2 T )

Ta average ambient air temperature (deg)

v percolation rate (LT )

Vc percolation rate with climate-controlled surface process (LT_)

V percolation rate with soil-controlled surface process (LT )

VD cumulative drainage to water table (L)

VD C cumulative drainage to water table for climate-controll-ed

process (L)

VDS cumulative drainage to water table for soil-controlled process
(L)

V Dco total drainable volume of water in the unsaturated zone (L)

V stored volume of soil-moisture in unsaturated zone (L)
s

v stored volume of soil-moisture with climate-controlled surface
sc process (L)

V stored volume of soil-moisture with soil-controlled surface
ss

process (L)

V ssO initial volume of soil moisture in unsaturated zone (L)

V cumulative capillary rise from water table (L)
w

V cumulative capillary rise with climate-controlled surface
process (L)

V cumulative capillary rise with soil-controlled surface
process (L)

w capillary rise rate from water table (LT-)

w capillary rise rate with climate-controlled surface process

c (LT-1 )

-L
w capillary rise rate with soil-controlled surface process (LT )

5
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long-term average capillary rise rate (LT~-)

seasonal (annual) average capillary rise rate (LT~)

W relative transpiration rate (-)

x distance from reservoir of height, h (L)

x direction of moisture flow (L)

x. direction of pressure gradient (L)

xm distance from x = 0 to the extreme water table depth (L)

z depth from land surface (L)

z contact depth or depth to water table/intermediate zone
interface (L)

zF wetting front penetration depth over an event period (L)

F

Sax } maximum wetting front penetration depth (L)

0

Z water table depth from land surface (L)

Zr effective root zone depth (L)

Z depth to top of capillary fringe (Z = Z(pb)) (L)

M eigenvalue for moisture content solution to linear problem (-)

scaling factor for time step equation (-)

y index of water table influence (-)

Ymax maximum value for water table influence index (-)

6 vegetation transpiration sink model parameter (L)

e volumetric moisture content (L)

Ga moisture content when anaerobiosis occurs (-)

aAV depth-averaged moisture content (-)

e B moisture content at either land surface or water table boundary
(-)

eBC1 contribution of land surface boundary condition to moisture
content (-)
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eBC2 contribution 6f water table boundary condition to moisture
content (-)

e dmoisture content dividing soil- and climate-controlled
transpiration (-)

e effective soil-moisture content (-)
e

00 transformed moisture content (-)

e. initial moisture content at the land surface (-)

SIC contribution of initial condition to moisture content (-)

e minimum soil moisture content (-)

O removal of moisture content due to vegetal transpiration sink
s

ess maximum moisture content at land sur.face (-)

e wilting point soil-water content (-)

& irreducible water content or field capacity (-)
wo

e initial moisture content (-)

01 maximum moisture content (

e1,z maximum moisture content at the water table (

61,0 maximum moisture content at the land surface (

G time-average moisture content at land surface (-)

K parameter of water balance model (-)

A groundwater loss index (-)

Am maximum value of groundwater loss index (-)

-2
11 dynamic viscosity of water (FTL )

-3
P wisothermal water density (ML )

T characteristic residence time of water in aquifer (T)

Boltzmann similarity variable (LT-1 / 2)

$ similarity contact variable (LT 1 2 )C
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2 -1
$e desorption diffusivity (L T )

2 -l
sorption diffusivity (L T )

1matric potential (L)

Smaximum matric potential (L)

matric potential at saturation or bubbling pressure matric
potential (L)

Subscripts (except when explicitly indicated in the notation)

i pressure gradient index

e effective moisture content index (subtracting field capacity)

T transformed variable index for diffusion equation analogy

f solution index for flux (third type) surface boundary condition

C solution index for concentration (first type) surface boundary
condition

u solution index for uniform initial condition

s solution index for sinusoidal initial condition

h solution index for hydrostatic initial condition

,k solution index for linearly depth-dependent root sink

,e solution index for exponentially depth-dependent root sink

o index for initial moisture content solution

ss index for steady state process

Superscripts

o dimensionless
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Chapter 1

INTRODUCTION

The unsaturated soil moisture zone is the physical link

between the land surface and the saturated groundwater zone of the

soil-water system. The moisture dynamics of the unsaturated zone

determine the volume of water entering the groundwater regime and the

volume which is rejected in either overland flow or evaporation. The

distribution of soil moisture in the unsaturated zone, resulting from

the interactions of the climate-soil-vegetation-groundwater systems

determines, in part, the potential for vegetation growth. This is

critical when assessing the potential for regional agricultural develop-

ment. The dynamics of chemical transport in the unsaturated zone,

determined, in part, by soil moisture dynamics, influence the pollutant

level in the saturated regime.

At present, the saturated and unsaturated zones -are usually

treated by separate analyses. The contribution of the unsaturated zone

to the saturated one is often considered as an exogenous, lumped input,

called net accretion. The influence of the saturated zone on the

unsaturated zone, and ultimately on the hydrology and agricultural

output of a region, is usually ignored in.analyses of storm events and

is treated only in the steady state case for interstorm events. For

a more accurate assessment of the physical (and chemical) behavior of

each zone the dynamic interactions should be modelled, particularly in

cases of high water tables.
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Chapter 2

OBJECTIVES

2.1 Motivation

To simulate high water table fluctuations in swampy regions,

models of the dynamic soil moisture behavior are needed. Simulation

of the water table behavior involves a water balance of the region

around the swampland. A two-dimensional idealized water balance is

seen in Figure 2.1. In that figure

PL = precipitation rate onto land surface

p0 = precipitation rate onto water'surface

eT = evapotranspiration rate at land surface

eT = evapotranspiration rate at water surface
0

r = surface runoff rate
s

r = groundwater runoff rate
g

d = deep seepage rate

h = water table elevation above datum
s

Z = water table depth from land surface

p= net percolation to saturated zone

A water balance of the unsaturated zone determines the

volume of surface runoff and percolation which is generated from the

region around the swamp. These are inputs to a saturated zone and

swamp water balance used to calculate water table fluctuations. A

one-dimensional, vertical, idealized flux balance of the unsaturated
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zone is seen in Figure. 2.2, where

eT = evapotranspiration rate from soil moisture
S

f. (t) = infiltration rate

Z = depth to top of capillary fringe

To calculate surface runoff and net percolation, mathematical

expressions are needed for these fluxes. Such expressions need to

account for the effects of the high water table and vegetation. To

generate understanding of ransient swamp behavior, the relations should &

be theoretically, rather than empiricallymolivted.

For agricultural planning, it is also useful to know the

factors governing the shape and depth of the water table. One important

ciuestion is to what extent the climate, soil and vegetation influence

these features. In the El-Gizera region of Sudan, maximum water table

depths of over 100 meters are measured. The question posed is whether

this condition could be due to the climate-soil-vegetation system or

whether alternative explanations such as leakage, pumping or measure-

ment error must be sought.

2.2 Problem Formulation

Two specific objectives are sought in this work:

The first objective is to see if useful analytical expressions

for the flux terms, f.(t), eT (t), pN (t), shown in Figure 2.2, may be
s

derived from the simplified physics of moisture flow in the unsaturated

zone, incorporating both a high water table condition and vegetation.

The goal is to solve the linearized Fokker-Planck equation with land

surface and water table boundary conditions. The derived flux
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expressions are to be .compared with a numerical solution.

The second objective is to account for the effects of climate

on the phreatic surface shape in terms of parameters of the soil and

vegetation. The goal is to determine under what generalized conditions

the phreatic surface will be concave or convex and to ascertain the

amplitude of its displacement.. The two-dimensional, idealized basin

under study is shown in Figure 2.3, where

L = distance between rivers

h = height of river at x = 0, above datum (impermeable
0

aquifer bottom)

hL = height of river at x = L, above datum

x = horizontal distance

p = percolation to phreatic aquifer

w = capillary rise from phreatic aquifer

Q = volumetric flow rate from rivers

H = height of land surface above datum
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Chapter 3

SOIL MOISTURE MOVEMENT

3.1 Introduction

Motivated by our interest in swamp drainage, we wish to

account for the effects of the water table and vegetation on the soil

moisture volumes and fluxes. Certain processes must be modelled in

order to simulate catchment dynamics. These are (Dooge, 1973):

1. Infiltration

2. Percolation to the water table

3. Change in level of soil moisture zone storage

4. Exfiltration through bare soil

5. Transpiration by plants

i6 Loss of water from water table

These processes are discussed here both qualitatively and

mathematically. Expressions for their one-dimensional transient

behavior are derived from simplifications of the commonly accepted

mathematical model of soil physics, the Fokker-Planck equation. The

alternative to an analytical solution of the mathematical model is a

numerical one, which is costly in computer time and requires much

input data (Skaggs, 1978). For reasons of numerical stability, such

a model requires incremental time steps on the order of seconds for

processes lasting hours and days, and for simulations of periods of

several years (Skaggs, 1978). Though-the numerical solution'may
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incorporate many compl'exities of the soil physics, another drawback

is that "it still remains for the investigator to organize the results

and discern the pattern in them" (Philip, 1969b).

3.2 Literature Review

3.2.1 Boundary Fluxes

In general, expressions for moisture fluxes across the

boundaries of the unsaturated zone fit into one of four categories:

naive, intuitive, frankly empirical or physically-based (Childs, 1969).

Reviews of the most common flux expressions are plentiful (Chow, 1964),

(Whistler and Bouwer, 1970), (Dooge, 1973), (Hillel, 1980), (Kutilek,

1980). To see if an expression may be modified to account for a high

water table and a root sink, it is helpful to review the assumptions

and general method of some representative flux expressions. While most

expressions for these fluxes, in the literature, are for deep water

table systems, some of the methods used are applicable to shallow water

table cases.

Of interest in hydrological modelling are the time integrals

of the moisture fluxes, or cumulative volumes of moisture crossing the

boundaries, which are also presented below for some cases.

3.2.2 Infiltration Process

To calculate the total volume of moisture infiltrated into

a simple soil system in a storm period, two mathematical models are

A simple soil system is one with no surface retention, and which is
homogeneous and isotropic.
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needed:

(a) Before the landsurface is saturated, all the rainfall

is infiltrated, making the process climate-controlled. (This means the

moisture flux rate into the soil is the rainfall rate).

(b) At a characteristic ponding time, the landsurface is

assumed to be saturated. The soil no longer is able to infiltrate all

the rainfall, and surface runoff may be produced. Since the soil

properties determine the infiltration rate after surface saturation,

this is referred to as the soil-controlled process. A low intensity

rainstorm may never saturate the soil surface.

To account for the total volume of moisture infiltrated

during a storm, one must know

t = tI E it + I (t; t 0) (3.1)
r

where

(3.2)I (t; t) = f.(t') dt'
S 0

t
0

and

= total infiltrated volume of water during a storm

= infiltration rate for soil -controlled process

= infiltrated volume for soil-controlled process

= uniform rainfall rate

= ponding time

= storm duration

I

*
f.

0

I
s

i

t

t
r
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I (t) and f.-(t) are known as the 'Law of Infiltration's 1

(Childs, 1969). Most soil-moisture flux modelling research is devoted

to finding accurate 'Infiltration Laws' for a variety of conditions

(Philip, 1969a). Recent efforts are concerned with expressions for to

(Kutilek, 1980). Knowing to is equivalent to having knowledge of the

climate-controlled infiltrated moisture volume (Mein and Larson, 1973).

Figure 3.1 graphically presents the shape of an infiltration

law, typical for either deep or shallow water tables. It also shows

the volume of moisture infiltrated during the climate-controlled

process and soil-controlled process. A requirement for models bf f. (t)
1

*

is 'to account for the rapid decrease [of f.(t)] from initially very

high values and, for uniform soils, the asymptotic approach to an

ultimate constant value,' as seen in Figure 3.1 (Childs, 1969).

A commonly used infiltration law based on a naive model of

soil moisture movement is that of Green and Ampt (1911). In this

model, the soil moisture zone is conceived of as a bundle of parallel

*

capillary tubes. The expression, f. (t), is stated implicitly as
1

* *

f. (I (t)). The f. (I) expression is
1 5

*

f. = A/I + B(.)
i 1 s 1 (3.3)

where

A1, B1 = physically-based model parameters

I s(t) is implicitly expressed by

t = Is - C[Zn(l + Is /C)]}/B (3.4)
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where

C = physically-based model parameter.

Over the last several years, expressions (3.3) and (3.4) have

been derived from a more widely accepted and successfully tested con-

ception of soil moisture movement. The parameters may be independently

determined from soil properties if the soil-water system fulfills the

model's assumptions which are:

1. the infiltrated moisture front advances only by advection

2. the wetting front may be approximated by a step-wise

drop from maximum moisture content to the initial

moisture content

3. the soil column is effectively semi-infinite with an

approximately uniform initial condition

The assumed moisture distribution for this model is shown in

Figure 3.2. The correspondingly assumed moisture characteristic curve

is compared with the curves typical for two soil type extremes in

Figure 3.3. This model is more appropriate for sandy type soils than

clay soils.

The Green and Ampt model is applicable for the shallow

water table condition. Equation (3.4) may be expressed in series

form (Dooge, personal communication with P. S. Eagleson)

B2- 2 00 m B 2 3m
t = (-l) 1 S 35

C- m=2 m C
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For the semi-infinite domain, the series is highly convergent

for early time or when the initial hydraulic conductivity approaches

the maximum hydraulic conductivity. Only the first term of the series

is needed. The flux expression, Equation (3.3), becomes an explicit

function of time,

* C 1/2
f= f-J + K (3.6)

where

K = initial hydraulic conductivity

For the shallow water table case, or finite domain, an

expression for f (t) is found implicitly for early time using two terms

of Equation (3.5), and a replacement of assumption (3) by an assumption

and a boundary condition.

3a. the initial moisture flow rate in the soil column is

constant, either upward or downward

3b. at the water table the soil is saturated

The flux expression, f(Z (t)), is

K1(-f 0/K0 ) Z+ H(3.

f (zF(t)) = K z 7 K

where

K = hydraulic conductivity above wetting front

f = initial constant flow rate in unsaturated zone
0

H = depth of ponded infiltration above land surface

zF = depth from land surface to wetting front
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The wetting front is the advecting front of infiltrated water.

The expression for z F(t) involves the introduction of the

linearized Fokker-Planck equation as a simplified model of the soil-

moisture movement for the initial condition, in addition to the above

assumptions. The resulting relation is

1 z ]2 zF3 D~t

2 = (3.8)

where

D*= linearized hydraulic diffusivity

The time, tL' at which the wetting front reaches the water

table is calculated by this model to be

tL = (3.9)

If all the above assumptions are met by the soil-water system,

the model may be used with physically meaningful parameters. For most

cases, the parameters need to be fitted to the model using field data.

In this manner, the simplified equation (3.3) is used in the shallow

water table case, with the parameters estimated for each depth and rain-

fall rate, along with a variety of other physically realistic cases

(Skaggs, 1978), (Hillel and Gardner, 1969), (Childs and Bybordi, 1969),

(Bouwer, 1969).

This model also yields an expression for ponding time, for the

semi-infinite domain (Mein and Larson, 1973), (Kutilek, 1980), which is

t = S AM/[(f /K ) - 1]f f > K (3.10)
o Avd ol o o 1 (.0



42

where

md = (ei - 6e) (3.11)

and

S = average wetting front capillary suction

e = maximum moisture content

e = initial moisture content
0

Another frequently used infiltration law, of the intuitive

type, is Horton's Equation, based on a decay process analogy (Horton,

1939). For a simple soil system and a semi-infinite medium,

f. (t) = (f - f ) exp(-k 1 t) + f (3.12)
- 1 0 c

where

fc = asymptotic infiltration rate

f = initial infiltration rate
0

k = model parameter

This model assumes the rate of decay of the infiltration

rate is exponential and that there is a constant initial infiltration

rate. It may be applied to high water table soils using parameters

fitted for each depth and rainfall rate of interest. This model may be

derived from simplified soil moisture movement physics, assuming a

linearized diffusivity (Eagleson, 1970).

Unlike the parametric models motivated by physical reasoning,

frankly empirical models are developed solely to fit a curve (Ghosh,

1980). Kostiakov's equation is the most famous example (Kostiakov, 1932)
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f (t) = a/tb (3.13)

where

a, b = fitted model parameters

While Equation (3.13) fits data only in early time, a recent

empirical model, in dimensionless form, fits data over the entire time

range (Collis-George, 1977). For deep water tables and simple soil

systems, the parameters may be found independently from field measure-

ments. The model is

1 0 (t0 ) = (tanh to) 1/2 (3.14)

where

I = dimensionless quantity of infiltrated moisture

= (I(t) - Kt)/I (3.15)

to = dimensionless time

= t/t (3.16)
C

and

I = parameter of infiltration equation

K = temporal average hydraulic conductivity at the land

surface

t = soil parameter, dividing short and long time events

Explicit analysis of the physics of soil-water movement

results in several infiltration law expressions, the most famous of

which is that of Philip (Philip, 1957c), (Philip, 1969a), (Hillel, 1980).



44

For early time, the volumetric infiltration expression is

Is (t) St1/2 + A2 (3.17)

and large time

Is(t) = B2 + K1t (3.18)

where

S = sorptivity, a soil parameter

A2' B2 = model parameters

For simple soils, a uniform initial condition and a semi-

infinite domain, A2, B2 and S are measurable soil parameters. The models

are derived from two solutions of the one-dimensional non-linear Fokker-

Planck equation, the generally accepted equation for soil moisture move-

ment in the unsaturated zone (Childs, 1969). This equation is

ae 9 dK e(
=t (D(I) z de a-(319

where

deD(6) = - K(G) di (3.20)

and

D(6) = soil moisture diffusivity function

K(6) = hydraulic conductivity function

= capillary potential
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The similarity solution method, used to derive the soil

sorptivity term, S, from the mathematics, cannot be applied to the

finite water table case. The key to the method involves a transforma-

tion of variables to reduce the problem from two variables to one vari-

able. The only valid transformation is the Boltzmann transformation

(Philip, 1969a), which is

= zt-1/ 2  (3.21)

When Equation (3.21) is applied to the lower boundary in the

semi-infinite case, $ + o as z + o, but for the finite domain case,

t > 0 z = Z 6 = 6 (3.22)

is transformed into

t > 0 = Zt-1/ 2 e = 6 (3.23)

preventing the reduction of the number of variables to one.

A second technique of the physically-based models not

applicable for the finite water table case is that of describing the

quantity of infiltrated water by
61

I (t) = K t + z(6, t) d6 (3.24)
s 0 f

6
0

where 6

z d6 = the change in soil-moisture storage due to

6o infiltration, for the semi-infinite domain
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For the finite domain case integrating from 6 to 6 includes0 1

not only infiltrated water but water from the capillary fringe which

leads to an overestimated amount of infiltrated water. It also assumes

that an initial uniform moisture content, 6, may be defined over part

of the soil column.

Linearizing Equation (3.19) permits the derivation of an

infiltration expression for the high water table case from the soil

physics, as the Boltzmann transformation is no longer needed. The

linearized equation of motion is

t D* 2 - k (3.25)
Oz

where we assume for the semi-infinite case

K - K
k = dK = 1 - 0 (3.26)

1 o

and

D= D(6)

k and D* are independent soil properties only where the assump-

tions are approximated by the real system. D* and the diffusivity assumed

by the Green and Ampt model are compared with the D(6) relation for a

representative real soil in Figure 3.4. In the figure, 6 o = irreducible

water content or field capacity (Bear, 1979). Note that the linearized

model is best suited for the lower moisture content range or small

changes in 6 over the entire range, while the other model is only valid

where the soil saturation is at the maximum value (Philip, 1969a).
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Estimating D*.and k, when the linearizing assumptions are not

adhered to, requires consideration of initial and boundary moisture

contents. For the semi-infinite case, explicit expressions for D* and k

are derived by matching D, to the known early time solution of the non-

linear problem and k to the large time solution (Philip, 1969a). For the

finite domain case, values of D, and k may be fitted for a variety of

initial and boundary conditions by matching the I s(t) curve generated

by the analytical solution to the linear problem either to data or to the

numerical solution for the non-linear problem.

Solutions for the linearized problem for the semi-infinite

domain are derived in different ways by various authors (Dooge, 1973),

(Eagleson, 1970), (Philip, 1969a), (Carslaw and Jaeger, 1959). The

Thort and long time expansion methods of Philip (1969b) are often useful

for simplifying the solution.

In the finite domain, expressions for the wetting front

location are useful as indicators for when the front meets the capillary

fringe. This characteristic time indicates when the domain effectively

becomes finite. Expressions for the wetting front in a semi-infinite

domain include (Eagleson, 1978cj,

z = 4(Dt)1/2 + n0- (3.27)
f n

e

where

= maximum wetting front penetration depth

n = effective porosity
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Another expression is (Braester, 1973)

Z F 1 - ) (3.28)

where

6 = time-averaged surface moisture content

Both expressions are derived from the linearized Fokker-Planck

equation, though Equation (3.27) is for a saturated surface moisture

content and Equation (3.28) is for a constant surface moisture flux

boundary condi-tion.

Infiltration equations are also derived from analytical

solutions for e(z, t). Solutions exist for e(z, t) using the non-linear

Fokker-Planck equation, Equation (3.19) and approximations of it, for

a variety of initial and boundary conditions (Babu, 1976), (Brutsaert,

1976), (Philip and Knight, 1974), (Braester, 1973), (Parlange, 1971b).

To estimate ponding time for the infiltration process, the

common, semi-empirical method is known as the "time-compression approxi-

mation" (Reeves and Miller, 1975). It consists of two steps:

1. The volume o.f water actually infiltrated at t = t must
0

equal the volume of infiltrated water predicted by the infiltration law

*

when f. (t) = i, the constant rainfall rate.

2. At t , f*(t - t*) = f*(t*) = i, where t* is the time when
O 11

f*(t*) = i, if the model, f*(t), were valid from the start of the rain-
1 1

storm.

The method may be applied to any infiltration law, f*(t),
1

including one derived for a shallow water table. Using a law for the
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semi-infinite domain, applicable for early time (Philip, 1957c),

f*(t) = - 11
S2

(3.29)

Condition (1) preserves the infiltrated volume,

f*(t) dt = it
0

(3.30)

0

Interpreting Equation (3.29) from O< t< t* results in Equation

(3.17),

St*1/2 + At* = it
0

(3.31)

Condition (1) relates the two characteristic times,

St*1/ 2 + At*
t =
0 i

(3.32)

Equation (3.29) states

*1 -1/2f (t*= St* + A

t* = 2
4(f*(t*) - A)

1

(3.29)

(3.33)

Condition (2) says f*(t*) = i at t = t . Substituting
1 0

Equation (3.33) into Equation (3.32) results in,

t = 1+ Ao 2i(i-A) 2(i-A) (3.34)

When i >> A, Equation (3.34) is simplified to

or
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S.
t ~(3.35)

0 2(i-A)2

Ponding time may also be estimated from the solution to the

Fokker-Planck equation subject to a flux boundary condition at the land

surface. Equation (3.35) is identical with the solution to the linear-

1. 7 2

ized diffusion equation, except the term f is replaced by y6 (Eagleson,

1978e).

3.2.3 Drainage Process

For gravity drainage of infiltrated water, a naive conceptual

model of soil moisture movement, similar to that of Green and Ampt (1911),

is used to develop a cumulative drainage expression for a semi-infinite

domain (Youngs, 1960). The expression is

VD(t) = VD,o [1 - exp(-f t/V Do)] (3.36)

where

VD = cumulative volume of water draining into water table

V D,o = total drainable volume of water in the unsaturated zone&-

f = initial drainage rate
0

A physically-based model is an approximation of a series

solution to the linearized Fokker-Planck equation for a finite domain

(Whistler and Bouwer, 1970), (Gardner, 1962), and is expressed by

8 Dp 2(
V (t) = VD, 2 4[ ]K_ (3.37)

D ,0[ T2 - D,

where
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K = "resaturated" hydraulic conductivity; for a drained and

rewet soil column

3.2.4 Exfiltration Process

Most work on the exfiltration process is for the steady-state

capillary rise phenomenon, where the moisture is taken from the saturated

zone (Gardner, 1958). An analysis of the linearized Fokker-Planck equa-

tion has yielded one transient capillary rise expression (Philip, 1969c).

In dimensionless notation

o 1 - -1/2 0l/2 -to 1 0/2 01/2V = [T t e + f erfct - t erfc t ] C3.38)

where

to k -I
t = t = 16M 2 t (3.39)

1
V + K t

vO = 4 (3.40)

and

616

M = J J ) de (3.41)

60

Here z is defined positive upward. We define

M = the increase in total moisture content from the initial

state to the steady state.

N may be computed from the equilibrium profile directly,

(Philip, 1969c). For the shallow water table case, it may also be used

as a parameter to match the linear and non-linear models in an integral

sense.
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Exfiltration from the soil column itself may be computed in

a manner analogous with that of Equation (3.17) (Eagleson, 1978d).

3.2.5 Transpiration Process

Analytical soil moisture movement models incorporating plant

transpiration, used mainly in analyses of agricultural development, are

relatively uncommon. The two basic approaches are accounting for trans-

piration separately, and explicitly accounting for vegetation in the

mathematical model (Molz, 1981), (Eagleson, 1978d), (Skaggs, 1978),

(Lomen and Warrick, 1976).

The most simplified model evaluates bare soil loss and

transpiration loss in a purely volumetric sense (Skaggs, 1978). The

model lumps the bare soil evaporation rate and transpiration rate

together. The potential rate is empirically determined from an elemen-

tary model (Thornthwaite, 1948),

e =cT (3.42)
T P a

where

e =e + k e (3.43)
T P v P

and

e = potential evapotranspiration rate
TP

ep = potential bare soil evaporation rate

kv = plant coefficient

T = average temperature per. period (e.g., hour, day)

C = fitted model parameter
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Referring to Figure 3.5, the evapotranspiration rate is

calculated by assuming

T if w(Z) = e where w(Z) is the rate of capillary

rise as a function of water table depth. w(Z) is calculated using an

approximate analytical steady state solution (Gardner, 1958).

2. eT T (for w < eT ) until 6(Zr) = 62.eT ep r 9.1k

e = w (for w < eT ) after e(Z ) = 8
T ,r 9.1

The model parameters are

Z = effective root zone depth per crop.r

6 = minimum moisture content, approximately equal to the

wilting point.

.A dry zone is created moving xverticallv downward until no

extractable moisture remains in the root zone. Then the moisture supply

is equal to the capillary rise. The dry zone is the first filled during

the storm event.

In the root zone, the deficit must be calculated against an

initial condition assumed in this model to be the "drained to equilibrium'

initial condition. Another feature of this model is that Z = Z (t)r r

may be used to simulate crop growth periods.

The advantage of this model is its simplicity, and the

drawback is that it is a purely steady-state model, where the soil limit-

ing condition is parameterically, not physically derived. The analysis

brings out some other general issues in evapotranspiration modelling,

notably what constitutes a shallow. water table, and over what space and

time domains may a water table be considered in equilibrium. In a local
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model, water table depth is a function of local infiltration/exfiltration

conditions, while in a regional study the lateral transmissivity contrib-

utes toward the maintenance of a smooth water table surface. The rate

at which the water table is fluctuating compared with the response time

of the capillary fringe partially determines whether the equilibrium

initial condition is appropriate. Considering it could take days for

equilibrium to be reached, both the equilibrium initial condition and

the steady state approach to evapotranspiration modelling may be inade-

quate.

Following Whistler et al (1968), a second exfiltration -iodel

accounting for vegetation is based on the one-dimensional Fokker-Planck

equation, with an added sink term. This model states

3r 3 3K(6)
= D() 1z A m _ gr(6, z, t) (3.44)

where

gr(e,z,t; parameters) = sink function due to moisture uptake

by plants

Simplifying assumptions leading to an analytical approximation

are (Eagleson, 1978d):

1. Water table depth z = Z is deeper than both root zone depth

z = Zr and penetration depth, z = z F delineating the soil-water zone

from the intermediate zone. The column is treated as effectively semi-

infinite.

2. Uniform initial condition. and constant concentration

boundary conditions.
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3. Plant roots are uniformly distributed over the root zone

depth and plants, covering a fraction, Mi, of the land surface, are

distributed uniformly over the surface. Further assuming that the ex-

traction rate is independent of depth and time, over an event's duration,

gr =r = const. (3.45)

It may be removed from the governing equation, (3.44), and more easily

handled in the surface boundary condition (Lomen and Warrick, 1978).

This results in an expression for the volume of moisture

exfiltrated similar to Equation (3.24),
e

E (t) = zd3 - [K0 + Me ]t (3.46)

61

where

E (t) = cumulative volume of exfiltrated water

M = vegetated fraction of land surface

e v = constant vegetation transpiration rate

and 0
0

J zdt = the change in soil moisture storage in the root zone

01 for the semi-infinite domain

Solving Equation (3.19) for z, the exfiltration rate equals,

* 1 1/2,
f (t) ~ -St - - [K1 + K] - Me (3.47)
e pe m1 v

Solving the linearized desorption problem for the semi-infinite
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domain, with a root sink of strength Me /Z for 0 < z < Z , EaglesonV r

(1978d) derived,

f (t) = 1 S - [2Me /Z ][D t/Tr]1 /2  (3.48)e 2 e v r e

where

S = 2(0 - 1 )(D /7T) 1 /2  (3.49)

Over a reasonable range of data, we may neglect the second

term of Equation (3.48), making f (t) due solely to desorption (Eagleson,

1978c).

In this model,

S = exfiltration sorptivity

D = exfiltration diffusivity

In Equation (3.47), K = 0 and for the range of average

interstorm durations, K1 << S t-1/ 2 (Eagleson, 1978c). We let Se be

defined by the linearized desorption parameter, Se, of Equation (3.49).

Finally adding a term for capillary rise from the water table by linear

superposition, an expressi.on for exfiltration is developed, involving

the processes of desorption, transpiration and capillary rise,

f1(t) = S t - Me + w t > td (3.50)e ~ et vd

where

t d = drying time, time at which the land surface is assumed

to become dry .
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This model accounts for the 'dry zone' of the previous model

with an explicit time dependent, physically derived term. This is not

applicable in the high water table system, though the approach may be

modified to do so as is done in this analysis.

Drying time may be explicitly derived in a similar manner to

ponding time, including vegetation effects, for the deep water table case

(Eagleson, 1978d). Starting from Equation (3.50), we let

e
=

W(e) - = k (3.51)

where -

W(6) = relative transpiration rate per area of vegetated

surface

ep = potential vegetation transpiration rate
v
kv = plant coefficient

The total evapotranspired volume of moisture in an interstorm period is

composed of that volume evaporated from bare soil and that volume trans-

pired,

E = (1-M)E + ME (3.52)T s v

where

ET = total volume of moisture lost to the atmosphere

Es = volume of moisture lost by bare soil evaporation

Ev = volume of moisture transpired by plants

Integrating (3.50) and substitutin'g this and Equation (3.51) into Equation

(3.52),
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+ 1/2 + t
E ={(1-M) S (t - t) + (w - k e )(t - t VP+ Mk e (t - tT e v p v P

for t - t < td (

where

td = time after surface retention moisture evaporates

As with the ponding time analysis, at tdi

*

fe(td) p (

Solving Equation (3.53) for td, and using Equation (3.50), we obtain

ts e
ed 21 - M+

2e (1+Mk - w/e)
p vp

M2k + (1-M) w/e P

2(1+k - w/e )
V p

The above method separates the effects of bare soil evaporation from

transpiration, unlike the previous model.

One analysis derives an explicit relationship for moisture

uptake by plants, accounting for the high water table in the steady state

(Lomen and Warrick, 1976). The root sink term is assumed to be

(3.56)g (e) = b + b D,(e - 0 )
r0 1 0

where

b0, b = model parameters

It is used in a linearized Fokker-Planck equation. The uptake is

defined by

3.53)

3.54)

(3.55)
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Z I

ev gr((z)) dz (3.57)

0

where

ev = plant transpiration rate

The solution for 0(z) is substituted in Equation (3.56) and

integrated as in Equation (3.57).

The result is of the form,

m Z n1Z
ev bI [(A3/m1 )(e - 1) + (B3/n 1)(e - 1)] (3.58)

where

A3,B 3,mnn = coefficients of the solution for 0(z)

with-

1mz n z
6(z) = 1 (DO + Ae + B e - b/b) (3.59)

D* 0 0 31o

Note that the level of solution complexity increases as more phenomena

are incorporated into the model (e.g., vegetation, high water table).

3 3 Qualitative Description

3.3.1 Zones of Soil Moisture Movement

Below the land surface, there are four regimes of soil

moisture movement, divided into two zones, as shown in Figure 3.6.

With our interest in the zone of aeration, we restrict the discussion

to vertical moisture movement, which predominates in this zone.

The soil water subzone is characterized by a fluctuating

wetting front induced by the sequence of storm and interstorm periods.
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This zone also contains.the root zone, where vegetation receives its

water supply. This is where the modelling of the transient soil moisture

behavior is of most interest.

The time scale of the remaining subzones is much longer than

that of the soil water zone. The intermediate zone passes moisture

between the soil moisture zone and aquifer system at a slowly varying

rate, determined by its relatively uniform moisture content. The capil-

lary zone acts as a mooth transition zone between the saturated zone

and zone of aeration, with a typically constant moisture distribution.

The thickness of these zones is very dependent on soil -type,

climate, geology and vegetation under natural conditions. For example,

the capillary zone or capillary fringe can range in thickness from

2-5 cm for coarse sand to 2-4 meters for clays (Bear, 1979).

Several combinations of factors may yield a narrow zone of

aeration bounded by a shallow water table and a partially-vegetated

landsurface. At some point, the boundary between the capillary fringe r

and the soil-water zone becomes indistinct, preventing the modelling of

the moisture fluxes in each zone separately, as was done with several of

the models in Section 3.2. The level of interaction between the zones

may be an annually varying phenomenon, particularly under non-steady

climate or modified hydrological conditions.

The root zone thickness and type of plants in a region are

affected by the shallow water table condition. Unlike the deep water

table case, where the vegetation characteristics are determined by the

soil-water zone activity, the proximity of the capillary fringe to the

landsurface allows roots to enter this zone. Root penetration will be
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limited by the anaerobic conditions of the lower capillary fringe. The

--ones of the shallow water table case are seen in Figure 3.7.

3.3.2 Processes of Soil Moisture Movement

The rate of drainage of infiltrated water differs between a

deep and a shallow water table due to the reduced or absent intermediate

zone in the latter case (see Figure 3.7). For a deep water table, the

drainage rate is a function of the soil moisture content of the inter-

mediate zone (Eagleson, 1978c). This content is often used as the

uniform initia1 condition for infiltration models (Philip, 1969a)-. When

the water table is high, the drainage rate is dependent on the fluctuat-

ing soil moisture content of the soil-water zone, which makes its tran-

sient behavior more important than in the other case. The distinction

is displayed in Figures 3.8 and 3.9, where

z = depth from land surface

Z = depth to water table

e = volumetric moisture content

e = moisture content of drained soil
0

e0 = moisture content at saturation

K(e) = hydraulic conductivity or gravity drainage rate.

While the drainage rate is higher for the shallow water table

case, it is somewhat affected by entrapped air (Morel-Seytoux and Ghanji,

1974).

The rate of infiltration. also. differs between the deep and

shallow water table cases. In the former case, infiltration is into a
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soil of uniform initial-moisture content, which may be viewed as

extending infinitely downward. In the latter case, the infiltration is

into a soil with an initially spatially distributed moisture content, as

seen by the dotted line in Figure 3.9. Infiltration into a soil where

moisture content increases with depth is reduced below that for a spatial-

ly uniform initial moisture content (Philip, 1969a). The shape of this

initial moisture distribution is determined by the moisture retention

characteristic of the soil (Bear, 1979). In this case, the column cannot

be assumed semi-infinite.

The exfiltration rate is also affected by the altered initial

moisture content. Here the increased initial content serves as a mois-

ture supply, yieldin higher exfiltration rates for the shallow water

table cases. The presence of the water table also delays or eliminates

the onset of the drying time.

The characteristic times of the infiltration process are

influenced by the water table depth, as seen in Figures 3.10 and 3.11.

Ponding time is reached sooner with a shallow water table, basically

because of the reduced available pore space. Ponding time is when

esurface is at point A.

The time at which the wetting front interacts with the

capillary fringe, effectively defining when the semi-infinite domain

assumption is invalid, is also a function of water table depth, along

with soil properties. It is meaningless in cases like that shown in

Figure 3.11, where the capillary zone reaches the land surface.
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Figures 3.10 and 3.11 show typical steps in an infiltration

process. In early steps moisture movement is primarily due to the

capillarity, or matric potential gradient. In later steps, after the

land surface is saturated, gravity plays the dominant role in moisture

movement. In the shallow water table case of Figure 3.11 capillarity

plays a relatively more important role as saturation is reached in early

time. As with drainage, entrapped air is a significant infiltration factor.

3.4 Derivation of the Mathematical Model

3.4.1 Governing Equation

Using the terminology of Bear (1979), we develop the equation

of moisture movement. The equation of continuity for the unsaturated

:one is

(ns)- X (q,) = 0 (3.60)

where

n = soil porosity

s = degree of moisture saturation

q = soil moisture flow rate

x. = direction of pressure gradient

i = flow direction index

The general expression of Darcy's law for the three-dimensional

flow of moisture in the unsaturated zone is
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k (s ) ap-w3
q. = k.. + Pg - (3.61)

1) w Ix3 'w 3

where

pW = water pressure

z = depth from landsurface

p = isothermal water densityw

k.. = saturated soil permeability to water
1J

krw = relative permeability with respect to saturation

I1w = dynamic viscosity of water

g =- acceleration due to gravity

j = pressure gradient index

Substituting Equation (3.61) into Equation (3.60) results in

the three-dimensional equation of motion for moisture flow in the

unsaturated porous medium,

(ns ) - r k.. k (s = 0 (3.62)
t W 3x. 1) yI x. 'W x.

i w j

Equation (3.62) is based on the assumptions that:

1. the porous medium is a continuum of representative

elementary volumes (REV) (Bear, 1979)

2. air and vapor transport are neglected

3. thermo-osmotic effects are neglected

4. the solid matrix is rigid and stable

5. moisture movement is due only to a piezometric head

gradient
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Equation (3.62) is simplified to

3t .- (K(e) -) = 0 (3.63)

by further assuming

6. an isotropic and homogeneous porous medium

7. p is constant

In Equation (3.63)

$= z - y (3.64)

where

= -p /Y = Pc/Y > 0 (3.65)

and

= matric potential

Pc = capillary pressure of air-water 
interface

K(G) is a highly nonlinear function and subject to hysteresis

effects. In this analysis, we neglect hysteresis by treating the wetting

and drying processes separately. Neglecting hysteresis permits e() to

be a unique function (Bear, 1979).

Substituting Equation (3.64) into (3.63) yields,

-+ [K(O) -5- K(6)] = 0 (3.66)

or
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t 3z [D(e) - K(e)] = 0 (3.19)3t (z 9

where

di$D(e) = -K(6) # (3.67)

In this analysis, Equation (3.19) is used because of its

similarity to the advection-diffusion equation and because K(e) is more

mathematically well-behaved compared with K(i), (Klute, 1952a), (Bear,

1979). The complete nonlinear model accounting for the effects of

capillarity, gravity and moisture uptake by plants is represented by

Equation (3.44).

3.4. Boundary Conditions

Since the one-dimensional governing equation is of the second

order in space and first order in time, we need two boundary conditions

and one initial condition to find a unique solution. Physically the

unsaturated zone is bounded by the land surface and the phreatic surface.

The boundaries of the model are those of the macroscopic continuum, not

those described by the dynamics of the fluid and the solid. This means

that the one-dimensional model is assumed to represent a finite hori-

zontal area, not just a point.

Mathematically, the surface boundary condition is derived

from Darcy's Law for the macroscopic porous medium. This is a valid

model if the flow velocities are sufficiently small. In the vertical

direction, for a horizontal land surface continuity requires
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N-lz = q-lz (3.68)

where
N = the atmospheric flux vector

q = the porous medium apparent velocity vector

lz = vertical directional vector

For a horizontal land surface, N = N(t), where N(t) is a

positive downward flux scalar. From the vertical one-dimensional

Darcy's Law,

q-lz = q = K(e) + K(6) (3-69)

and for a homogeneous soil, neglecting hysteresis,

q -D(e) + K(e) (3.70)

where positive is defined downward, and q is the scalar apparent

velocity of the soil moisture.

Substituting Equation (3.70) into Equation (3.68),

N = -D(6) - + K(6) (3.71)
z

When N > 0, the problem is one of infiltration. For N < 0,

the problem is one of exfiltration. And when N = 0, a drainage problem

is defined. For an infiltration problem, as the process proceeds -z

approaches zero. To match a climate determined constant rainfall rate,

N = i, K(6) and D(6) must increase. The corresponding increase in 6 is

bounded by 6, when all the surface layer pores are filled. At this

point N = N(t), determined by the soil characteristics. The surface
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boundary is more simply defined at this time by

e = e0 z = 0 (3.72)

The excess rainfall'in reality may accumulate through surface

ponding or leave as surface runoff. This model assumes the rainfall

excess is all surface runoff. If ponding were important, the model

would need to have 4 as the dependent variable.

For infiltration,

-D(e) > 0 (3.73)

thus, if N < K(e 9' Equation (3.71) is the boundary condition over the

storm duration.

For an exfiltration problem,

-D(e) < 0 (3.74)

3z

As approaches zero, K(e) must decrease to meet the climate demand.

The lower bound occurs at e o, the moisture field capacity, where

K(e ) = 0. At this time, the boundary condition is

e = e Z = 0 (3.75)wo

At the water table,

N(t) = -D(e) 'e + K(e) (3.76)
3Z

where

N(t) = drainage rate through the water table

and is not known before solving for a(z,t). We do know that the
3Z
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water table is defined-by

$=0 z =Z (3.77)

which corresponds with

e = 0 z = Z (3.78)

Expression (3.78) is the second boundary condition.

It may be more convenient to apply the bottom boundary

condition, not at the water table, but where 1 = bubbling. For i

dO
less than this, 0 ~ . For $ > bb , - differs more signifi-

V bubbling' d$

cantly from zero. This may be done if (4 = 0) - = $bubbling)

corresponds with a known distance from the water table.

3.4.3 Initial Condition

Since the aim of the analysis is to derive accurate analytical

expressions for moisture fluxes, not moisture distributions, the initial

condition need only preserve the properties important to the fluxes,

their rates and associated volumes. Separate initial conditions are

needed for the infiltration and exfiltration processes.

For the infiltration problem, if we assume the previous

exfiltration or drainage process continues until equilibrium is reached,

we may use the hydrostatic equilibrium initial condition. Assuming the

upward flow velocity is negligible, equilibrium results in a pressure

distribution linear with depth. It may be derived from Darcy's Law

that, in hydrostatic equilibrium,-
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Z - z (3.79)

where

Z = depth to the water table

This results in an initial distribution of G(z) depending on

the moisture characteristic curve, e(ip). The curve used depends on the

approximate model used to encode the soil physics or the data accessible

for the soil.

For both infiltration and exfiltration, we may use a two step

process which preserves both the volume of moisture in the soil column

and the moisture content at the boundaries. The initial volume of soil

moisture is calculated from the depth-averaged final soil moisture con-

tent of the previous time period, as

z

Vsso = f(z',tf) dz' (3.80)

0

where

t = duration of previous process

Vs5  = initial volume of soil moisture

This volume is used to fit a sinusoidal curve whose boundaries

are fixed by the given values of moisture content at the boundaries.

This initial condition is described functionally by,

h(z) = n_(o) z + h(o) + A sin (Tr( z + 1)) (3.81)

where
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* h(o) = initial moisture content at the land surface

= e(otf)

and

n = porosity

6(o, tf) = final soil moisture content at- the land surface

for the previous process

A = fitted parameter

The value of A is set to conserve the initial soil moisture

volume. The initial volume is equal to the depth integral of the

initial distribution

7n-h(o) + h(o) + A sin[-(, + 1)] dz = V (3.82)
( Z L ssO

0

Integrating the linear terms of the LHS yields,

z
f___ [1- o+h(o)n-h(o) z + h(o)] dz = 2 z C3.83)

Solving Equation (3.82) for A results in

V -n+h(o)
A =sso n)2 (3.84)

sin[Tr(}- +1)]dz

0

where (Gradshteyn and Ryzhik, 1980)

Z 2

sin[1(}+ 1)]dz = -Z (3.85)
Oi
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We may reduce Equation (3.84) to

A = [n + h(o) - 2eAV(tf)l (3.86)

where

6 = the average moisture content at the end of the previous

process

-v~ /Z= ss,o

For soil controlled exfiltration h(o) = e , the field

capacity. For soil-controlled infiltration, h(o) = n. h(o) varies

between those. two for the climate-controlled cases.

This initial condition may be compared with the simpler

uniform initial condition, eAV(t f), which preserves only the volume

of soil moisture. The sinusoidal initial condition accounts for the

fact that some process has occurred earlier and that the capillary

fringe exists. Of course, the more complex initial condition results

in a more complex solution.

3.4.4 Vegetal Transpiration Sink

The extraction of soil-water by plants must be accounted for

volumetrically and incorporated into the moisture flux expressions.

Assuming that plants transpire at a rate which is independent of mois-

ture potential, moisture content or time, two empirical extraction func-

tions express moisture uptake as a function of depth. The models differ

in how they model the decay of root density with depth. These models

assume that root depth, root density and the transpiration rate primarily

govern moisture uptake by plants. They assume also that the average
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root depth is approximately constant over an event period. Molz and

Remson (1971) model a linearly decaying root density with depth, con-

tained in the following sink term expression,

1.8 e 1.6 e

gv(Z) = v z 0 < z < Z (3.87)
r Z 2r

r Z
r

with

ev =k ve (3.88)

where

ev = transpiration rate per unit area of soil surface

kv = plant coefficient

Raats (1976) models an exponentially decaying root density

with depth by,

gr(Z) = (ev/6) exp(-z/6) (3.89)

where

6 = a parameter fitted to preserve the volume of moisture

transpired.

Another empirical extraction function assumes the plant

transpiration rate is a function of soil moisture content. Feddes et al

(1976) use a piecewise linear function,
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o o < e < e
g- - e

g , e < e < e
r,max dd- , w - d

rM r., max ed - an (.0

0 e a < e < el

and --
=r 2e*/Z (3.91)

,max v r

and-

a= maximum soil moisture vegetal extraction rate (t )

e* = maximum transpiration rate per unit area of soil
v

surface

e = soil water content at wilting

ed = moisture content dividing soil-water and climate

controlled transpiration processes

e = moisture content at which anaerobic soil-water-an

conditions occur (the anaerobiosis point).

The regions of validity are defined by the matric potentials

associated with each characteristic moisture content, which are plant

species dependent.

The model assumes that the moisture flux into the plant roots

is proportional to the soil-plant potential gradient, which is approxi-

mated by the linear moisture content gradient given by Equation (3.90).



81.

. Equation (3.91) for gr,max requires the assumption that for

shallow water tables under steady state and dry surface conditions the

maximum transpiration rate equals 50% of the climatic demand (Feddes

et al, 1976). This is calculated from typical steady state moisture

distributions and the associated gr () curve. This curve is approxi-

mated by a linear function. Wi-th this assumption
Z
r

e = g (6(z,t))dz - Z g (3.92)
v f r ,max 2 r r,max

0

where

g9 x(6) = the g (6) distribution yielding maximal

transpiration

Assuming transpiration is steady at the maximal value, Figure

3.12 shows a comparison of the above three root sink expressions,

gr (z), under exfiltration conditions. The primary difference between

the first two models and the third is that the first group emphasizes

root density and the latter the flow gradient into the roots.

The empirical nature of the above models requires that the

parameters be calibrated within the context of the soil moisture move-

ment model (Molz, 1981).

3.5 Linearizing the Model

3.5.1 Problem Presentation

We linearize the governing equation (3.44),
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e o, e dK(6) e
Tt-= -(n (e) tg -z de - z (,z, t)

by letting

D(e) ~ D* = constant

dK() ~ k = constant
de

The linearized equation is,

- 3 e D * 2 e k 9 e r (0 , z , t )

By integrating expression (3.26) for k, we find

K(e) = k(e - 6 ) + K

K 9 = hydraulic conductivity at 6 = e 9

Evaluating k at e = e defines k parametrically to be

K - K
1 wo

k=e1 - wo
(3.26b)

K = maximum hydraulic conductivity

According to Gardner (1958), Equation (3.26b) results also

from the assumption that

(3.44)

and (3. 26a)

where

(37.25)

(3.93)

where
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-K() = K exp(-a2?) (3.94)

Using Equation (3.20), we may solve for the assumed moisture

characteristic curve e(), where

D(e) = -K() (3.20)de

Substituting Equations (3.26) and (3.93) into Equation (3.20),

separating the variables and integrating e from 0.o to e and p from 0p

to i results in

D*(e- ) = [K(4) - K($ 0)]/a2 (3.95)

where

= maximum capillary potential

At e = n, $= and

K - K
a2  1 1 n WO = k/D, (3.96)

* e

where

n = w -o (3.97)

Substituting Equations (3.94) and (3.96) into Equation (3.95),

the resulting moisture characteristic for the model is

e = ne K - K [exp(-a2 $) - exp(-a2?o)] (3.98)
1 wo

where
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6 = effective moisture content

e - ee-e (3.99)

Assuming there is no flow at 6 = e 0, K(e ) = K( 0) = 0 and

K

e = n e exp(- n $)
*e

(3.100)

If the root sink term is expressed by either Equation (3.87)

or (3.89), no changes need be made for it, but if Equation (3.90) is

used, it must also be linearized. To do this, we assume

e ~w wo

A ~ 6
d an 1

(3.101)

(3.102)

With these assumptions, Equation (3.90) reduces to

g (6) = g 0r r,l e

g 1 =g /n = 2e*/Z n
r, r,max e v r e

gr, = vegetal extraction function parameter

The linearized flux boundary condition is

N - K = -D e + k e
wo * z e

(3.105)

The concentration boundary conditions are already linear.

In terms of e , they are

and

where

(3.103)

with

(3.104),
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S 6e = n (3.72)

and

e = 0 (3.75)

The sinusoidal and uniform initial conditions are also

acceptable for a linear model, where h(z) is replaced by h (z) and

aAV by ee,AV. The hydrostatic initial condition is readily found from

the derived moisture characteristic curve of the linear model.

Substituting Equation (3.79) into Equation (3.99) and using the relation

(3.96), the e-xpression is

h (z) = ne exp[-a2 (Z-z)] (3.106)

3.5.2 Dimensionless Parameterization

To simplify the problem, we define dimensionless space and

time parameters by

z = k (3.107)
5 *

2
t = kt (3.108)

. D*

These reduce Equation (3.25) to

e 3e
e _ e e G (3.109)

to 0 2 0z R

where

GR = dimensionless vegetal extraction function

and
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GR(z0 ) =

D 
(Z)

k 2

for the depth-dependent root-sink and

GR (Oe) = G 1

for the moisture-content dependent root sink. Here

G = dimensionless model parameter

2
= (D*/k n e) g

For. the root sink Equation (3.87)

GR(z0 ) = G - 12z

where the -dimensionless parameters are

G = 1.8 8fDev]

r

and

Dwey
G = 1 .6 k

r

For the root sink of Equation (3.89),

GR(Z ) = G 2 1 exp(-G 2 2 z 0

where the dimensionless parameters are

G21 = Dhev/k2 6

(3.110)

(3.111

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

and

(3.117)
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G12 = D*/k6 (3.118)

We may convert Equation (3.109) into a diffusion equation

using the following transformation of variables (Kirkham and Powers,

1972). For the concentration-dependent root sink,

eo = e exp[-z /2 + (1/4 + G )t (3.119)

where

e = transformed volumetric moisture content

For the depth-dependent moisture content, we may set G, = 0.

When substituting Expression (3.119) into Equation (3.109),

the problem is reduced to

o 9 2 (3.120)
t 0 o

for the concentration-dependent case and

3e0  32eoo
-eo 2 - G2 (z , t ) (3.121)
t 0 0

Cz

for the depth-dependent case, where

G2 (z0, t0 ) = transformed sink term

= GR(z0 ) exp(-z /2 + t0 /4) (3.122)

The dimensionless flux boundary condition from Equation

(3.105) is
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e
- + e No
0 e

(3. 123)

where dimensionless flux is defined by

0 1fN K 
N E (N-K) = n i,

k wo e K - K
(3.124)

Transforming this boundary condition by Equation (3.119)

results in

eoj* 1 o = a

-o + T 2 = NT
z0 = 0 (3.125)

N = N exp[(1/4 + G )t]
*T 1 (3.126)

The transformed concentration boundary condition at the water

table is

e0 = n exp[- ZO/2 + (1/4 + G )t0]
1,7 e

(3.127)

For infiltration at the land surface

0 1 0
01,0 = ne exp[(T + Gl) t ]

and for exfiltration

e0 = 0

The uniform initial condition is transformed into

h 0(Z) = e exp(-z 0 /2)
e,AV

where

(3.128)

(3.129)

(3.130)
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The sinusoidal initial condition using the dimensionless depth

variable is

h (z0 ) = he (0) + (ne -h (o)) (z0/Z0 ) + A sin(r(z /Z + 1))

(3.131)

Z0 = kZ/D,

The transformed sinusoidal initial condition is

h 0 (z0 ) = he (z0 ) exp (-z /2) (3.132)

The dimensionless hydrostatic initial condition is

h (z 0 ) = n
0 0exp (z - Z

Its transformed equivalent is

h (z ) = n exp(z /2 - Z )

where

(3.133)

(3.134)
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Chapter 4

SOLVING THE LINEAR PROBLEM

4.1 Solving for Moisture Content Distributions

4.1.1 General Solution Method

All of the several methods used for solving linear partial

differential equations make use of the superposition concept. This

permits one to separately account for the boundary conditions, the ini-

tial conditions and the sink term (Carslaw and Jaeger, 1959). The

Finite Fourier Transform (FFT) approach is adapted here because it is

relatively easy to use, clearly separating the effects of the various

imposed conditions, and because it is flexible enough to incorporate a

wide variety of conditions, including problems of two or three spatial

dimensions (O1cer, 1964), (1cer, 1965), (Ozisik, 1967), (Cleary and

Adrian, 1973).

For this analysis, we may describe the three transformed

governing equations, two boundary conditions and three initial conditions

with the following general problem statement. The governing equation

is

3e 0 326 o
-- = 2 - G2(z , to ) (4.1)

3zo

The boundary conditions are, for the flux surface boundary

- .+ 0 = N0t) (4.2)

zo 2 T
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and for the concentration boundary, either at the land surface or the

water table

eo = 6e (to) (4.3)

where e0(t) may differ at the two boundaries.

The initial conditions are generalized as

60 = h0 (z 0 ) (4.4)

The general solution to this problem, using the FFT method,

is given by (Cleary, 1977)

t0CO t

60 (: t ) = (K (S )/D( ))exp (-2 t) + e(xp3 to)A N, )dto]
mf=1

0
(4.5)

where, for the flux surface boundary condition

A (m ,t ) = K( ,zo) l= N (t0 )
z =0

- m 0 

= - G( 0m t )

dz z0 =Z0 46

(4.6)

and for the concentration surface boundary condition

A ( mt )
K 

d K ( 6 M Z .) 0

Ldzo z0=0 1,0

dK ( m,z9) 9 -

6 1

dz 0 z 0=Z 0- Z

- 0
- G(4,t )

(4.7)

G(6m,t) = integral transform of the depth-dependent root sink

Z 0

K( ,z0 ) [G2(z0 , to)] dz 0 (4. 8)
0

where
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and

F(s) = integral transform of the initial condition

= K( mz0) h'(z') dz0  (4.9)

0

When the sink term is a function only of soil moisture content

0

G( ) = 0 (4.10)

K( m Z0) is the eigenfunction for this problem defined

generally by -

K($ ,z0 ) = B cos3 z 0 + H sin' z0  (4.11)
m m m 1 m

and normalized by

D(m) = 1[(6 + H2)(Z0 2 2 2 + H] (4.12)
M) 2 m 1 2 + H2

m 2

where Sm is the eigenvalue corresponding to the eigenfunction, which

is defined implicitly by

S S (H + H
tan = m 1 2) (4.13)m 2 - HH

m 1 2

with H 1 and H2 determined from the boundary conditions.

For the flux surface boundary condition, Equation (4.2), and

the concentration bottom boundary condition, Equation (3.127), Ozisik

(1967) shows that Equation (4.11) may. be reduced to

K(SZ ) = sin Sm(Z 0 Z ) (4.14)
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and Equation (4.12) simplifies to

DZ (M + H2) + H1
DF m 2 2 +H2

H = 1/2

For this case, Equation (4.13) reduces to

(4.15)

(4.16)

(4.17)m cot Zo = - H1

For the concentration surface and water table boundary

conditions, expressed generally by Equation (4.3)

K(B ,z 0) = sin 8 Z

Dc (m) = Z /2

(4.20)

(4.21)

The eigenvalues are explicitly defined by

= mr/Z0 m = 1, 2, 3

The total transformed moisture content for the linear model,

which is the sum of the contributions from the initial and boundary

conditions and the loss from the moisture sink is expressed by

60 (zo,t ) = e (zo t) + eB (zo,to ) + 0BC(z't0 ) 0 0 0
000 BCl1~t BC2' - 0 zt )

(4.23)

where

and

(4.22)
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I ,t )

Bo (z0,t 0
6BC2(,t)

o (zo, to)

= the transformed moisture content

initial condition

= the transformed moisture content

surface boundary condition

= the transformed moisture content

water table condition

= the transformed moisture content

depth-dependent root sink

due to the

due to the

due to the

due to the

Tire advantage of separating the components like this is that

the effect of each on the total response may he separately studied.

4.1.2 Initial Condition

In general

C= 0 K( , z0) exp(- St) F() /D()
IM= m mm

(4.24)

which is dependent on the boundary conditions used. For the flux surface

boundary condition with the concentration water table boundary condition,

substituting Equation (4.14) for K(m, z0), using the uniform initial

condition of Equation (3.129)

zu

F GeAf sin (Z0 - z 0 ) exp(-z 0 /2) dz 0

0

= e,AV F1 (Z
0 )/p 1

(4.25)

where
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F(Z0).= Smexp(-Z /2) + sinS Zo
M.

p1 = 1/4 + 2

Using the transformed sinusoidal initial condition, Equation

(3.131)

Fsf 5m = M sinS M(Z0 - zo) [ (P2 + P-z
0

P2
= -- F (Z 0 ) +-

1 p1

F 2(Z )
A
2

+ Asin[7T(z 0/Z0 +

0 - 0
F 4 (Z ) - (1T(7 -

1/4 + ('T/Z0

m

1)]]exp(-z /2)dzo

m
2

(4.28)

F4 (Z
0 ) + (F/Z0 + $

1/4 + (T/Z0 + 2
in)

(4.29)

where

P2 = h e (o)

p 3 = (ne - h (o))/Zo

F (Z0) [ mexp(-Z 0 /2) (Z0 + 1/p 1 )

= [1/4 - 12]In
sinS Z0

+ F 3KZ0 /p1]

- S cosS Z
0

F4 (Z0 ) = I [exp(-Z0 /2) + 1] (4.33)

With the transformed hydrostatic initial condition of

Equation (3.133)

and

(4.26)

(4.27)

and

(4.30)

(4.31)

(4.32)

F3 (Z0 )
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0

F m) = e exp(-Z0 ) sin M(Zo - zo) exp(z0/2) dzohfm [ -j
0

=[n e~mexp(-Z 0 /2)]/pi

(4.34)

(4.35)

For the concentration surface boundary condition with the

concentration water table boundary condition, substituting Equation

(4.20) for K(S , z ), using the uniform initial condition of Equation

(3.129)

zo

F (mN 0) = e,AV $ sina mz 0 exp (-z 0 /2)

0

= e,AVmF5(Z )/p 1

F 5 (Z) 1 - (-1)m exp(7/2)

dz0

(4.36)

(4.37)

Using the transformed sinusoidal initial condition of

Equation (3.131)

zo

Fsc m) = sinmz [P2 + ZAsin[ 0(z/Z + 1)]]exp(-z0 /2)dzo

0

=- Pm FS(Z0 )/~P 1 + P (o/

I-0 0*
(m+l)F7 (Z ) (m-1)F 7 (Z j+TrAj 2 21

1/4 + m+1 1/4 + m2

(4.38)

where

F m o oF 6 (Zo) = 1/p1 -(1) exp(- Z / 2) (Z' + l/p 1 ) (.9

W:iere

O

(4.39)
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F (Z') = 1 + (-l) exp(-ZO/2)

With the transformed hydrostatic initial condition,

zo

h = n exp (-Z)
hc mn f e

0

sine z exp (z /2) dzo

= n emexp(-Z0 ) F8 (Z)/p1

F 8 ( ) m 0/2)

4.1.3 Boundary Conditions

The general expression for the contribution of the boundary

conditions to the transformed moisture content is

CO

e0C 0z ) exp(-S t ) A (, t)/D(Sm)
BC m=0 M BC m M

ABC = integral defined by the boundary condition

For the flux surface boundary condition
0

ABCF fm, ) = (K(am,z0 )) N dtO
z =0

0

N 
N0C,(to) sina MZo

to

C1 (t) = exp(p4 t )dto

0

=(exp(p 4t0) - )/P4

(4.43)

(4.44)

(4. 45)

(4.40)

where

(4.41)

(4.42)

where

where
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and

p4 =1/4 + G + i n (4.46)

For the contribution from the water table boundary condition,

with the flux surface boundary condition

ABC2,F m )

t(

=fexp( t)

0

dK(mz' =Z 0 (to

dz 0 z = z
) dto

= n em C (to) exp(-ZO/2)

dK(S ,z )

dz 0 =Z0

d 0
-- (sin M(Z -
dz0

With the surface concentration boundary condition, for

infiltration

ABC1,C im3t)

t0
t 2 d K ( m z ) ,= exp( ,t )_ d 0
0

eo ,(to )1. 0' dt0

z =0

= nem C (t0 )

dK(S ,z0 )

dz zo=0

and for exfiltration

d 0
- 0 (sine z )

dzo m z =0

ABC1,C , M o) = 0(

and

(4.47)

0
z )) oz = 

0 7

m
(4.48)

where

(4.49)

= a
m

(4.50)

(4.51)
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For the water table contribution with the surface

concentration boundary condition

ABC2,C (Mt 0 ) = exp( ,t") dK(,z0 ) z 0 Z 0 1 '

= - (-1)M n emCi (t o)exp(-ZO/2)

dK(S ,z0 )

dz 0 0 .0z =Z

= (-1),

4.1.4 Root Sink Terms

For the depth-dependent root sinks, we set G = 0 and

account for the vegetal moisture extraction by

e 0 = 0 K( , " )
s M=O

where

exp(- t )R(, t)/D(m (4.54)

0
t

R( , to) = exp( 2 ,to )G(U ,t0 ) dto (4.55)

0

For the flux surface boundary condition and the concentration

water table boundary condition, using the linear sink expression (3.113)

G(m,t0 ) is evaluated to be

zo

GL ,FN m, ) = sin Sm(Z0 - z0)[G

0

- G1 2z ]exp[-z 0/2 + to/4] dz0

= {G 11F 1 (Z) - G12F2 (Z0 )} exp(t0 /4)/p

where

(to ) dto

(4.52)

(4.53)

(4.56)
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and

RLFm~t0 ) = {G11F 1 (Z) - G12F2(Z
0 )} 1(t ) (4.57)

Using the exponential sink expression (3.116) with the same

boundary conditions results in

zo0

GEF (Sm t ) inmZ or0o') G p(-G 2z) ]exp(-z /2 + to/4) dzo
0

= G 21F9(ZO) exp (t0 /4) /p5
(4.58)

where

F (Zo) = Sm exp[-(1/2 + G2 2)Z
0] - (1 + G2 2) sinmZ

p5 = (1/2 + G22 ) + Sm

REF( m t) G2 1F 9 (Z0) C 1 (t0)/p5

(4.59)

(4.60)

(4.61)

With the concentration surface and water table boundary

conditions, the linear root sink results in

zo

GL,C(m't) =j sinSmz [G

0

- G 1 2 z 0 ] exp(-z0 /2 + t0 /4) dz0

= [G11 F5 (Z0 ) - G12F6 (Z0 ) mexp(t0 /4)/p1

and

and

(4.62)
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RLC@3 ,t 0) = [G 11 F5 (Z
0 ) - 1 2F6(Z)] C 1 (t )/p (4.63)

With the same boundary conditions and the exponential sink term

the expressions are

0 00

GEC(BM,to) = J sinaMz [G2 1 exp(-G 2 2 z )] exp(-z /2 + to/4) dz0
0

= G21 m F 10 (Z) exp(t /4)/p 5  (4.64)

where

F 10(Z ) 1 - (-1m exp[-(1/2 + G22)Z 0 (4.65)

and

REtC M ) = G21mF10 ( (4.66)

4.1.5 Moisture Content Distribution

Moisture content distributions from the linearized model

are calculated by substituting the above expressions for the transformed

moisture contents into Equation (4.23), and inserting that equation into

Equation (3.119) to yield

e(Z0 ,t) = (e C + BC + eB - e0) exp[z0/2 - (1/4 + G )t0 ] (4.67)
e ~ C BCI BC 00

With the flux surface boundary condition, concentration water

table boundary condition, and concentration-dependent sink term, the

solution for any initial condition is reducible to
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0 = exp (z0 /2) I(sin m(Z0 - zo)){exp(-p 4t) [F()

+ F 11 /DF M)

where

F uf M)
F (m)
Fsf m)

Fhf M)

= [Equation

= [Equation

= [Equation

(4.25)]

(4.29)]

(4.35)]

- F 1

(4.68)

I
F (Z') = Nosinm Z' + m n exp(-Z /2)

With the same boundary conditions and any

including the linear vegetal sink results in

CO

initial condition,

-(F 1 1 - (G 1 1 F 1 -G 1 2 F 2 /p 1 /p 4 ] + [F l-(G1lF-G1 2 F 2)]/P 4 }/DF( m)

(4.69)

Substituting the exponential vegetal sink for the linear one

results in

00

ef = exp(z/2) sin$m(Z0 - zo){exp(-pt0 ) [F(sm) - (F11 - G2 1F9 /p5)/P 4]0

+ [F 11 - G21F9 /PS]/P 4 }/DF M) (4.70)

With the concentration surface and water table boundary

conditions and the concentration-dependent sink term, the infiltration

solution for any initial condition is

and

(4.68 a)

(4.68b)
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e =exp (z /2) J(s inW z0) {exp (-p 4t) [F( )-n m F /P] + n S F /p4/DP )ec m em 4 em 5(4 c m

(4. 71)

where

Fuc m ) = [Equation (4.36)]

Fsc M ) = [Equation (4.38)] -

Fhc( m) = [Equation (4.41)]

(4.71a)

For exfiltration replace F 5 by F 1 2 where

F12 = 1)m exp(-7 0/2) (4.72)

With the same boundary conditions and any initial condition,

using the linear vegetal sink results in

c,
e B=exp(z /2)1(sinS z01){exp(-p 4t )[F(S M)-S (n e F 5 (G 11 F5 -G12 F6 )/p 1)/p4]

0

+ S m[n F5 - (G11F5 - G12F 6 )/p1]/p 4}/Dc (m) (4.73)

Using the exponential sink, rather than the linear, yields

CO
e0~ = exp (z 0 /2) 1(s in MZ'){exp (-p4 t

0)() - (n eFS - G 2Fl/p) /P]e~c e 5 1105

+ me[n F5 - G21F10/5 4 c m (4.74)

With these expressions for moisture content, we may derive

expressions for moisture fluxes, volumes and characteristic times.
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4.2 Deriving Dynamic Equations

4.2.1 General Method

Darcy's Law is used to derive expressions for moisture fluxes

across the unsaturated zone boundaries. The general dimensionless

expression for the linear model is

ae
qe + e (3.123a)

where

o 1

q - Ko

n ( q Kj (3.124)

and

q = dimensionless rate of downward flow

The corresponding cumulative quantity of moisture passing a

horizontal cross-section in a given time period is dimensionlessly

found by
t 2

Q qo(z0 , t0 ) dt (4.75)

t0

where

Q = dimensionless cumulative quantity of moisture passing

across a horizontal cross-section at elevation z during

the time (t - t?) -

and
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0 n eQ - K (t -t)

SK W-OK 2D1 K1
(4.76)

The volume of moisture in the unsaturated zone at a given time

is found from

Z0

6e (z0 ,t 0) dzo (4.77)

0

where

V = dimensionless stored quantity of moisture in unsaturated

zone.

The depth-averaged moisture content of a given time is

expressed by

e 0 (t) = 0 0 (4.78)
e,AV sL.(78

where

0 0
e,AV = depth-averaged moisture content at time, t

The volume of moisture transpired over a time period is

defined by

Ev

t r

0
0 0

t

GR(z0,t0)dzo dt0 (4.79)

1

E = dimensionless quantity of transpired moisture
v

For the concentration-dependent vegetation sink

where
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t 0

E2 G (z0,t ) dz0dt0  (4.80)
V 1 j e

t0 0
t

while for the depth-dependent sinks

E0 =e0 (t - t) (4.81)
v p v2

where

e 0= constant dimensionless vegetal transpiration rate

pv oPV z0

= G(z0,t ) dz0 (4.82)

*0

Ponding or drying time may be found from the flux surface

boundary condition solution for e. setting e = 0 for infiltration

and P = 0 for exfiltration and solving for to. Or else we may use
e

the time compression approximation discussed in Section 3.2.1.

4.2.2 Boundary Fluxes and Volumes

We may simplify the general flux and volume expressions,

(3.123a) and (4.75), for the flow at the boundaries by making use of

the known boundary conditions. For surface infiltration after ponding

time and at the water table over all time, the saturation condition is

e = n . Rearranging Equation (3.96), n may be defined as a dimension-
e ee

less flow parameter

n = (K- K)
e kl wo

K~ 0 (4.83)

where
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K = dimensionless saturated hydraulic conductivity.

Substituting K0 for e in the flow equation simplifies
1 e

Equation (3.96) to

q 0 - K -- e for e n (.4
o o e e

For surface exfiltration after drying time, the surface

boundary condition, e = 0, simplifies Equation (3.96) to

ee

q0 - e for e =0 (4.85)
z e

The right hand side (RHS) of Equations (4.84) and (4.85) may be

expanded by substituting Equation (3.119) for e . Differentiating with
e

respect to depth results in

90
e - exp(z /2 - (1/4 + G )t o + e /2 (4.86)

z01 z0 e

Applying the boundary conditions to Equation (4.86) and

substituting this equation both in Equations (4.84) and (4.85) yields,

for surface infiltration or flow across the water table

q - K /2 = -exp(z0 /2 - (1/4 + G )to) 3Z for e = n

(4.87)

where

z = 0 for surface infiltration

zo = Zo for the water table flux

and for surface exfiltration, with z = 0,
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De
q = -exp(z 0 /2 : (1/4 + G )t0 ) -1 0 for e = 0e

The general solution for the RHS of Equations (4.87) and (4.88)

is concisely represented by performing the substitution

exp[-(1/4 + G1)to]eo(z', t0 ) = J (M t ) K(S M, z 0
m=1

(4.89)

where

J, = time-dependent term of e (z ,t ) and q(z ,t )

= [(T - C) exp(-p 4 to) + f]/D( M) (4.90)

The transformed initial condition for the assumed initial

conditions of Section 3.4.3 is, for the flux surface boundary condition

f
= [Equations (4.68a)]

D = [Equation (4.15)]

(4.91)

(4.92)

and for the concentration surface boundary condition

f = [Equations (4.71a)]
c

D = ZO /2

(4.93)

(4.94)

C = transformed boundary. condition and root sink term

(4.88)

and

and

where
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For the surface flux boundary condition and concentration-

dependent root sink term

Cf,c = F (4.95)

For the same surface boundary condition and the linear root

sink term

Cf Z= (F 1 1
- (G F - G12F2) 4

With the exponential root sink term

C(F - (G21F/ 5))/P4

Using the surface concentration boundary condition and the

concentration-dependent root sink term, for infiltration

C'c = n SmFp5 4
(4.98)

For exfiltration

C = n SmF /Pc'c e m12 4

With the linear root sink, for infiltration

Cc, =Sm[n F5 - (G11 F5 - G12F6)/P/p4

(4.99)

(4.100)

and for exfiltration

Cc, 0m[ne F1 2 - (G11F5 - G412F16/ 4

(4.96)

(4.97)

(4.101)
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The exponential root sink results in

.C S(n F G GF /p)/p
c,e nm e 5 21 0 5 4

For exfiltration,

Cc,e = m(n eF 12 - G21F10 /P4

Substituting Equation (4.89) into the RHS of Equations (4.87)

and (4.88) results in simple general expressions for the boundary fluxes

valid for any of the initial condition, boundary condition at the other end

or root sink term used, provided the concentration boundary condition is

applied on the side of interest. The results in our cases are

- K /2 = -exp( 0/2) M J m,
m=l az

and for surface exfiltration

q = -exp(z /2) 1 J1 (to)[ K(mZ 0)]
m=l Oz

for e =ne e

(4.104)

for e = 0 (4.105)

When both boundary conditions are concentration type

K(6 ,z z) = 6 cosS z
3z0 m m m

and for the surface flux boundary condition

K(amz) = Cos6m(Z0 - z0

ZO min i

(4.102)

(4.103)

(4.106)

(4.107)
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The corresponding simplified quantity of moisture passing a

horizontal cross-section found by substituting Equations (4.104) and

(4.105) into Equation (4.25) is

Q0 (to) - Q(to) = K (t - t0)/2 - exp(z0/2) J2( t ) K( ,z0
- t1)M=1 e2 p 1 -M.

for 6 = n
e e

(4.108)

and for surface exfiltration

Q0(t,) - Q 0(t7) = -exp(z 0 /2) J2(t,; to) K( ,z )
m=l 2' 1 z m

for e = 0
e

(4-.109)

where, in both cases

Jn = [(F - C)(exp(-pgtS) - exp(-p 4 t / 4 + C(t t )]/D( mI

(4.110)

where the terms F, C and D are defined above.

4.2.3 Infiltration Equations

The dimensionless infiltration rate derived from the linear

model is defined at z = 0 and for all time by

f (to) = {
1

for

for

0 < to < t0
0

t0 < to
0

i = dimensionless uniform rainfall rate

I
T (i -KW)(.12

where

(4.111)

(4.112)
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and

to = dimensionless ponding time
0

= k~t /D* (4.113)

Since we assume a saturated land surface after ponding time,

we may use Equation (4.106) in Equation (4.107) to define

f 0*(t)= K 0/2 - I ( Cosa z) J (t 0) at z 0 = 0
i1 M= m m 1

The corresponding infiltrated quantity is

(4.114)

I (t) =

i t 0 + 10 (t o; t o)0 s 0

0 < t0 < t0
-0

(4.115)

for t0 < t0
0

10 (to; to) = dimensionless infiltrated quantity
s 0

period after ponding

= (k/D,)[I (to; to) - K (to - t 0 )]
s 0 wo 0

for the time

(4.116)

I = infiltrated volume from to until t > t0.

From Equation (4.106) in Equation (4.108), the solution from

the linear model is

o 0(t;to) = KO(to - to)/2 - I ( cosm z0) J2 (t
0 , t 0 )

Istt) 0 1 0 m= 1 m m 0
for z = 0

(4.117)

where

where
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4.2.4 Ponding Time

4.2.4.1 Ponding time: method one

Ponding time is defined to occur when the soil surface first

saturates during infiltration. Using the surface flux boundary condition

expression for moisture content, we may solve for to by setting e = n
0 e e

at z = 0. Using the general solution for e
e,f

n e sinm Z[(F - C) exp(-p4 t) + C]/DF (m) (4.118)
M=1

To solve for time, which appears only in the exponential term,

we rearrange the equation to

n - 0 = m sin mZ [(F - C) exp(-p 4t)]/DF( M) (4.119)
m=lm

where

6ss = surface steady state moisture content, if the saturation

limit were not imposed

= lim e

= (sin 6mZ O) /DF 0M) (4.120)
m=1

where

e = surface moisture content, under the surface flux boundary

condition

To solve for time explicitly, we assume the series converges

approximately at some finite series length, m , and that
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exp(-p4 t ~ exp(-p4 t ) for m < mmax
1 m

(4.121)

0 for m > mmax

where

exp (-p 4 t) = mth exponential term in series
m

Using Equation (4.121) in Equation (4.119), we may remove the

term exp(-p4 t
0 ) from the series, divide by the series term and take the

natural logarithm of both sides of the equation to find an approximate

ponding time expression to be

0 -[ .1s (4.122)o K6. - 4- ei ess)j 1

where

e. = initial moisture content at the soil surface1O

I (sin mZ0 ) F/DF( M) (4.123)
m=1

4.2.4.2 Ponding time: method two

Ponding time is also calculated using the time-compression

approximation discussed in Section 3.2.1. First we preserve the

infiltrated quantity of moisture by setting

I0(to; 0) = iot0  (4.124)
s 0

where

0*
t = dimensionless time when

f0* (t0) = io (4.125)f.(
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To solve for t0 = t o(t ) we modify approximation (4.121) and0 0 0

assume

exp (-p 4 t0) /p
I

exp(-p4 t0 )/p 4
1

We then substitute Equation (4.117) into Equation (4.124) and

find

1 1 0* 0* 0* 0* 0*
t= - {f t +(f . - f )[1 - exp(-p 4 t )]/p 4 } (47.127)0 .0 1,55 1,1 1,ss4

where

0 = lim f0 (t )
1,5s 1

= K /2 - I( cos Zo)C/D (S )
m=1 m m c m

and

0* 0
f .=*lim f (t0)
1,1 1

K /2 - (S cosS Z0)F/D (S )
m=1 m m c m

o*
Next we invert Equation (4.114) to solve for t

using approximation (4.126) and relation (4.125).

* Z- 0. * /

tf . - .[
-1,1 1,55-'

0* 0*
= t (f. ),

The result is

(4.130)

The ponding time expression, t (io, Z ) found by substituting
0

Equation (4.130) into Equation (4.127) is

for

for

m < m
- max

m > m max

(4.126)

(4.128)

(4.129)
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-
-' i0 - 0 -

to = i .-.i --n i~ss 0 0*
0 .0 j,). o iss k f * 0* f <4  f

1, 1 S 
P (4.131)

The primary advantage of the second method is that it guarantees

continuity of flux rate and infiltrated volume over all time. Its major

disadvantage is its added complexity.

4.2.5 Exfiltration Equations

The dimensionless bare soil exfiltration rate at z = 0 is

defined over all time by

0 0 0
e for o < t < t

(t) = p(4.132)f~ 
0~o) 

0
e . t* < t
e d

where

e = dimensionless uniform evaporation rate
p

1 (e - K ) (4.133)
k p wo

and

t= dimensionless drying time
d

=2 td/D, (4.134)

The exfiltration capacity occurring for a dry soil at the land

surface (defined to be positive outward), is obtained by substituting

Equation (4.106) into Equation (4.105), as

f -(t q (t) = 1 ( cos z ) J (t ) at z0 = 0
e m=( m m 1

(4.135)
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The bare soil.exfiltrated volume corresponding to the above

fluxes is

e 0t 00 < to < to
p d00

E (t)={d

e t + E (to; td) for t0 < to

(4.136)

where

Ess (t ; td) = dimensionless exfiltrated quantity after drying

time

(k/D*)[E (to; to) - K (t - t (4.137)
-ss ~ d) wo d

where

E (to; td) = bare soil exfiltrated volume from t untilss dd

t > td

Using Equation (4.106) in Equation (4.109)

CO
E0 (to; td) I Ncos z0 ) J (tt) for z = 0ss d Mlm m 2 

2 d(418
m= 1 (4.138)

defined positive for flow -out of the column.

4.2.6 Drying Time

4.2.6.1 Drying time: method one

Drying time is defined to occur when the soil surface first

dries. An expression for the drying time is found in a manner equivalent

to that for ponding time from the flux surface boundary condition

moisture content expression when
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6 0 at z= 0 (4.139)
e

Substituting the general moisture content expression for 6ef

from Section 4.1.5 (Equation (4.162)) into Equation (4.139) and solving

for to yields

to ~ -[n ss /P4  (4.140)

where the parameters are defined as in Section 4.2.4.1 and approximation

(4.121) is invoked.

4.2.6.2 Drying time: method two

We apply the time-compression approximation to the drying time

problem in the same manner as for the infiltration problem. First,

matching the actual amount of moisture exfiltrated to that predicted by

the model results in

E (to ; 0)= e td (4.141)
ss p d

where we assume

0* (t0) 0 (4.142)
e p

Adopting approximation (4.126) and solving for td = td(t )

by substituting Equation (4.138) into Equation (4.141), we find

0 = {fO* t + (f0 * - f0* )[1 - exp(-p t 0*)]/p 4 } (4.143)
d = e,ss e,i e,ss 44

e
p

where, for fluxes defined positive out of the soil column
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0* 0 0
f = 1 (s cos z ) C/D (6 ) z = 0 (4.144)e,ss M=1 m m c m

and

000
f =* (s cos z 0) F/D (Z )0 0 (4.145)
e,1 M=1 M m c M

Solving for to (e ) by substituting Equation (4.135) into
p

Equation (4.142) and using approximation (4.121), we see that

0* ~ e 0- f 0
0*p e ess1

t - n -e* /p4  (4.146)

- .,ss e,ss-

After substituting Equation (4.146) into Equation (4.143) and

simplifying the result, the drying time expression is

0 1 F* re - f*
t0 1 f.-e -f n p e'ss / 417td o f e,i e f e p e,ss '* (4.147)

p - e,1 e,jss

4.2.7 Percolation

Percolation of soil water through the water table is assumed

to occur at the inception of infiltration. Unlike percolation into a

deep phreatic aquifer, the shallow water table percolation rate is a

function of surface boundary condition and time. The dimensionless

percolation rate is

v 0 (to) for !0 < t < t0
C 0

v (to) = (4.148)

v0(to) for t0 < to

h 0

where

v = dimensionless percolation rate
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v = dimensionless percolation rate under climate-controlled
c

infiltration

and

v = dimensionless percolation rate under soil-controlled

infiltration

There is no mechanism to insure continuity of v0 (t0 ) at to = to
0

other than matching v 0 (t0 ) = v0 (t 0). For very large t , we approximate
0 0 0 0 0)

v by v c, and for very early t0, we approximate v by v .
0 0

For the flux surface boundary condition, at z0 = Z , we have

the percolation rate from Equation (4.107) in Equation (4.104) which is

v0(t) = K 0/2 + exp(Z0 /2) [mcoss (Z0 - z0)] J (t0) at z0 0
C_ 1 m== m m

(4.149)

With the concentration surface boundary condition assumed valid

from t0 = 0, the percolation rate, from Equation (4.106) in Equation

(4.104), is

v (to) = KO/2 - exp(ZO/2) I ( cosz zO) J (to)s 1 m= m m 1
m= 1

The steady state percolation rate is defined by

v = K0/2 + exp(ZO/2) { [.cosBm(Z - z )]C/DF )
c~ss 1 1Fm= m

(4.150)

for z0 = Z0

(4.151)

for the flux surface boundary condition and

v ,s =K /2 - exp(ZO/2) ( cos z )C/DCB)
S~ 1 - m= 1 I. M. m

for z0 = Z0

(4.152)
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for the concentration boundary condition.

The corresponding dimensionless quantity of percolating water

at z = Z0 is

I V 0(t0 )
tV0  (t,) + V (t ; ;.to)Dc o Ds '0

for

for

0 < t0 < t0
-0

t < t0
0

(4.153)

where

V = dimensionless quantity of percolating water at the water
Dc

table under climate-controlled infiltration

k D ) -
- D ( ) [XD (to) - Kw (to) (4.154)

From Equation (4.107) in Equation (4.108),

CO

vDc = K1(t0 )/2 - exp(ZO/2) [mcos m(Z0 - z0 )]J,(t0 ; 0)
m= 1

(4.155)

and

V 0  = dimensionless quantity of percolating water at the water
Ds

table under soil-controlled infiltration

= (k/D*)(V 0 5 (to) - K (to))Ds wo

From Equation (4.106) in Equation (4.108)

00

v = K0(t0 - t0 )/2 - exp(Z /2) 1 ( cos zO) J2 (t,; 0)Ds 1 0 m= m m

(4.156)

z0 = Z0

(4.157)

4.2.8 Capillary rise

Capillary rise is assumed to start at the inception of an

V (t) =
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interstorm period. The. rates calculated from the linear model vary

depending on the surface boundary condition. The dimensionless capillary

rise rate at z = Z is

w (t') for o < t0 < td
c d

W (to) = (4.158)

w {(t) for t d < t0

where

wO = dimensionless capillary rise rate

WO = dimensionless capillary rise rate for climate-controlled
c-

exfiltration

and

w = dimensionless capillary rise rate for soil-controlled
s

exfiltration

For the flux surface boundary condition, the capillary rise

rate at z = Z is represented by substituting Equation (4.107) into

Equation (4.105). If the evaporation rate is low enough, capillary rise

may not occur in the interstorm period.

For the concentration-surface boundary condition, the capillary

rise rate is represented by using Equation (4.106) in Equation (4.105).

The steady state capillary rise rates are expressed by Equations

(4.151) and (4.152) with the differences being in the sign of the flux

in Equation (4.151) and in a slightly different C in Equation (4.152).

The dimensionless quantities of capillary rise water at

z = Z are
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'V (t() for 0 < to < t0

%7 (to) = (4.159)

' t(t d + V (to; td) for t d < t 0

where

V = dimensionless quantity of capillary rise under climate-wc

controlled exfiltration

= (k)(V (t0) - K t ) (4.160)
D* Wc wo

= [Equation (4.109)] (4.161)

and

V = dimensionless quantity of capillary rise under soil

controlled exfiltration

k o o
= ()(V (t ) - K 9(t )) (4.162)

= [Equation (4.109)]

4.2.9 Depth-Averaged Moisture Content

The depth-averaged moisture content is used to calculate

changes in soil moisture storage and to calculate initial condition

parameters. Expressed in terms of quantity of moisture stored in the

soil moisture zone it is

V0 (to) for 0 < t0 < to
s,c - 0

V0 (ta) = (4.163)

V 0 (to) t 0 < to
0Ss0

where
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V = dimensionless quantity of moisture stored in the
s,c

unsaturated zone for the climate-controlled surface flux

V0  = dimensionless volume of moisture stored in the
Ss

unsaturated zone for the soil-controlled surface flux

and

V0 = kV /D, (4.164)
s s

Expressing the moisture content solutions, presented in Section

4.1.5, generally by

e = exp(z 0 /2) 1 K(Pp, z0 ) J1 (t ) (4.165)
m=1

and substituting this into Equation (4.77), we calculate the average

moisture contents in the soil water zone.

Under the flux surface boundary condition

s (t ) = { exp(Z /2)W [(F - C)exp(-p t ) + U]/p (4.166)
sc m=1 m 4

and under the concentration surface boundary condition

V (t0 ) = [1 - (-1)mexp(Zo/2)][(F- C)exp(-pt) +
m=1 m

(4.167)

As with percolation, no mechanism assures V 0  (t ) = V (t )sJc 0 5,5 0

other than by arbitrarily setting them equal.

The above expressions are valid for both infiltration and

exfiltration processes.

Depth-averaged moisture content is

6 = V 0 (to/ (4.78)
e,AV s
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4.2.10 Vegetal Moisture Uptake

The only time-dependent moisture uptake rate considered here

is for the concentration-dependent root sink. The dimensionless quantity

of moisture uptake by plants over the entire time domain is represented

by

E 0(t) for 0 < t0 < toV{ c -d

E0 (t0 ) = (4.168)

v,c(t) + E (to; to) for t < t0

where

E0 = dimensionless moisture uptake for flux surface boundaryV, c

condition

E s = dimensionless moisture uptake for concentration surface

boundary condition

and

E0 = (k/D*)E (t0 ) (4.169)
v v

Integrating V (to) over dimensionless time and multiplying by
5

G yields the uptake quantities predicted by the linear model. These

are, for the flux surface boundary condition

0 000
E ,c(to) = G, I exp(ZO/ 2)m J2 (t )/p1  (4.170)

and, for the concentration surface boundary condition

E 0 (to; td) = G I [l - (-1)me-Xp(7o/2)]J (to; t )/p (4.171)
V'S d ~m=1 1
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Chapter 5

RESULTS

5.1 Introduction

A linearized model of soil moisture movement in the unsaturated

zone has been developed which incorporates the effects of the water table.

From the basic solution for moisture content, expressions have been

derived for the dynamics of the moisture fluxes. The result is a compre-

hensive set of equations which accounts for all of the processes of

Section 3.1.

Presentation of the solutions and results in dimensionless

format is a direct benefit of analytical solutions. It also aids under-

standing of the process and the model by showing similar relations among

parameters (i.e., the solution is independent of soil type).

5.2 Summary of Dimensionless Groupings

The dimensionless parameters of these solutions are summarized

here for convenient reference in presentation of the results:

zO = depth (3.107)

Z= kZ depth to water table

to t= time (3.108)

2
k t

to = 0 ponding time (drying time =
o D*

t ) (4.113)
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GR r(-) -k
SD~e

Gy =-- 12 V
1 e ~k Zr

r

G= 1.8L2

r

(D e
G= 1 . 6 2 V

k r

21 2 6

D,

22 k= S

N =1N 0
=- (N - K O)

N= i

=e
p

Vc

= WQ

Q = _QD*

where

Q= Is

S

= VD

w
k V

V = s

vegetal extraction rate (3.110)

maximum concentration-dependent
vegetal extraction rate (3.112)

uniform vegetal extraction
parameter (3.114)

linear vegetal extraction
parameter (3.115)

Raat's uniform vegetal
extraction parameter (3.117)

vegetal extraction decay
rate (3.118)

vertical flux (3.124)

infiltration

exfiltration

percolation

capillary rise

volumetric flux rate

infiltration

exfiltration

percolation

capillary rise

(4.76)

volume of moisture in soil column

where
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60 = Vs/Z average soil moisture content in soil
e,AV s column

k E
E = v volume of transpired moisture

v D,

K = n asymptotic flow rate (4.83)
1 e

5.3 Finite Domain Determination

5.3.1 Introduction

Before we explore the response of the derived quantities to the

water table depth, we will examine the dimensionless region where the

water table in-fluences the soil moisture zone processes. Over what dimen-

sionless depths should the region be viewed as finite and what range of

physical depths do these correspond to? We may find an expression for

these depths indirectly by considering the relation between the penetra-

tion depth (or wetting front location) and the water table depth, for

infiltration into a semi-infinite medium.

5.3.2 Dimensionless Wetting Front Depth

We assume a medium may be treated as semi-infinite if zmax «

where z max is the maximum penetration depth of the wetting front over the

event duration of interest, and Z is the depth to the water table. Where

this does not hold we may say the region is finite.

Derived from the same linearization procedure adopted here are

two expressions for z max for infiltration into a semi-infinite medium,

described in Section 3.2.1. One developed by Braester (1973) for the

constant surface flux boundary condition is

max t/(6 -6) 
(32(3.28)
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where

N = rainfall rate

0 = time-averaged surface moisture content

and

e = initial uniform moisture content
0

For infiltration of a step change in surface moisture content

(constant surface concentration), Eagleson (1970, 1978d) derived the

expression

K(0 )t
z = 4(D~t) +1/ (3-.27)
max n

e

where

K(0 ) = initial hydraulic conductivity in soil moisture zone

The main difference in the two model forms is that the Braester

model is an implicit function of soil parameters through e0 and the

Eagleson model is an explicit function of them.

The surface flux expression (3.28) says that moisture will

infiltrate deeper into the soil column with heavier rainfall and with

time. The denominator is an index of the volume of available pore space

in the column. The less initial moisture there is per unit depth the

less deep a given moisture volume will infiltrate.

The surface concentration expression (3.27) says that the

penetration depth is a function of a 'diffusion' component, 4(Dt) 1/2

and a gravitational seepage component, K(0 )t/n . This model has the
o e

penetration depth increasing with diffusivity, time and hydraulic
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conductivity. Available pore space is accounted for by effective porosity,

n . Expressing the Equations (3.27) and (3.28) in dimensionless terms
e

allows us to free the expressions from a particular climate or soil type.

The Braester model may be expressed in dimensionless terms.

Multiplying both sides of Equation (3.28) by k/D, and the right side also

by k/k and substituting Equations (3.107), (3.124) and (3.108) into the

result, we find

Z >> N0 t /( 1 - 6 ) (5.1)

For the Eagleson model, we also multiply both sides by k/D,

use the assumed relation K(O) = ke and substitute Equations (3.107) and

(3.108) into the result to produce

Z >> 4t 0 + t0 ( /n ) (5.2)

5.3.3 Capillary Fringe Depth

We may be more exact in defining how much deeper the water

table should be for the soil water zone to be considered semi-infinite.

The basic criterion is that the infiltrated water not penetrate 'into the

capillary fringe. Using the linearizing assumptions of Section 3.5.1,

the capillary fringe is described by

6e (z) = n exp(z0 - Zt) (3.133)

At the interface between the capillary fringe and the

intermediate zone in the soil column (e.g., see Figure 3.8), we assume

the influence of the capillary fringe ends when the moisture content
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is within one percent of field capacity (e.g., the gravity-drained

moisture content). With field capacity given by e0 = 0 and describing

the capillary fringe by Equation (3.133), the influence of the capillary

fringe may be neglected for dimensionless depths in the soil column

above

0 0
zc = Z -5 (5.3)

where

z = dimensionless depth to the capillary fringe/intermediatec

zone interface (point B on Figure 3.10)

= kz /D*

with

zc = depth to the interface (or contact depth)

= Z - 5D,/k

and where e equals 0.7% of the effective porosity, n .

This result states that the capillary fringe influence is

negligible for depths in the soil column which are 5D*/k units above the

water table, or dimensionless depths which are more than five dimension-

less units above the dimensionless water table. For example, for an

average diffusivity, D, = 4000 cm 2/day, saturated hydraulic conductivity,

K(l) = 21 cm/day and effective porosity, n = 0.35, we calculate k =

60 cm/day and D,/k = 66.7 cm. If the water table depth, Z = 5 meters,

the contact depth is calculated from Equation (5.3) to be zc = 1.67

meters.
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5.3.4 Effectively Semi-Infinite Soil Column

If the maximum penetration depth of the infiltrating soil

moisture wetting front is less than z c, we may treat the soil column as

semi-infinite. For this case, surface-induced processes (e.g., infil-

tration) may be analyzed separately from processes occurring at the

water table (e.g., drainage) and their effects may be linearly super-

imposed (cf. Eagleson, 1978c).

Combining the dimensionless contact depth Equation (5.3) with

Equations (5.1) and (5.2), we may more concisely define when we may not

assume the soil column is effectively semi-infinite. When the climate

controls the infiltration rate (e.g., flux surface boundary condition),

we use Equation (5.3) in (5.1) to specify that the column may be assumed

semi-infinite when

000
Z - 5 > N0t /(el - e0 ) (5.4)

When soil controls the infiltration rate (e.g., surface

concentration boundary condition), we assume a semi-infinite soil column

when

1/2
Z - 5 > 4t0  + t0 (o /n ) (5.5)

e,o e

where

6 = initial effective moisture content in soil-water zone
e,o

(see Figure 3.8)
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For dimensionless time, to < 1, the diffusion-term of Equation

01/2
(5.5), 4t , dominates. For smaller initial moisture contents, eo

e,o

the gravity term of Equation (5.5), to ( (ne)), is smaller and the

diffusion term dominates for even longer dimensionless time.

5.3.5 Contact Parameters

Defining the diffusion-dominated process by to < 1, a single

parameter may be used to distinguish when the soil column cannot be

assumed to be semi-infinite. Specifying the Boltzmann similarity vari-

able (see Equation (3.21)) in dimensionless notation by

0 0 
/o= Z /tl/

we may evaluate it at the dimensionless water table depth z = Zo or

at z0 , the dimensionless contact depth, defined by Equation (5.3). For
c

the latter case, the dimensionless similarity contact parameter, $ , is

expressed by

0= Z0/t1/2 (5.6)
c c

-

= z1/2
or by using Equation (5.3) in (5.6) it is written

0= (Z0 - 5)/t 2 (5.7)

where

Z = dimensionless depth to water table

0 = dimensionless similarity contact parameter
c
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For a diffusi6n-dominated soil moisture process (to < 1), the

soil column may be assumed to be semi-infinite when

(=$c I1/2 ) < 4 (5.8)

or

$c(=z c/t 1/2) < 4D,1/2

where

S= similarity contact parameter [units: (length) (time) l/ 2

For dimensionless times t0 < 1, the dimensionless contact

parameter has the value $0 = 4 at the moment when the wetting front
c

depth of the infiltration process, zF, reaches the contact depth, zC'

At this moment, the soil column may no longer be assumed to be semi-

infinite. The time when zF = Zc occurs (e.g., Figure 3.10, point B)

is in dimensionless notation

2
t0 = Z /16 t0 < 1 5 < Z0 < 9

C C C

= (Z0 - 5)2/16 (5.9)

where

t0 = dimensionless contact time
C

Dimensionally, contact time is expressed by

t = 0 /16D* = Z2 /16D, (5.10)
c C * max

where
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tc = contact time, when zF (or z max) = zc

Equation (5.9) requires the assumption that the infiltration

process is diffusion-dominated. This restricts the dimensionless time

to approximately to < 1. Substituting to = 1 into Equation (5.9) andc c

solving for Z0 results in Z0 = 9. This is the upper limit to the dimen-

sionless water table depth for the diffusion-dominated infiltration

process. The limit is larger for average soil-moisture contents less

than the effective porosity. In dimensional terms, this limit is

70 0
= 9D,/k. F-or Z > 9, we may find t implicitly through Equation (5.5).c

It must be noted again that the above analysis is for the

surface concentration boundary condition.

For the surface flux boundary condition, we define the

dimensionless contact time using Equation (5.4) by

0 0 - 0 (.1tc = (Z - 5)(61 - )/N (5.11)

If dimensionless ponding time, to, is less than t0, we may use0 c

the climate-controlled infiltration models developed for the semi-

infinite domain.

5.3.6 Parameter Modifications for Exfiltration

Though Equations (3.27) and (3.28), describing the penetration

depth, zmax, must be modified to account for vegetation, they are

applicable for bare soil exfiltration. In this case, zmax represents

the drying front penetration depth. For the surface flux induced pene-

tration depth of Equation (3.28), the flux term N represents the

evaporation rate. Since N is defined to be positive into the soil
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column, it is negative'for exfiltration. The term (;l - e0) is also

negative since the moisture content at the land surface is reduced by

evaporation. The result is a positive penetration depth.

The diffusive term for the drying front is the same as for the

wetting front in Equation (3.27). Gravity also acts in the same direc-

tion as it acts on the moisture., e0, in the column at the start of the

event, causing motion of moisture toward the capillary fringe. The only

difference between infiltration and exfiltration here is the evaluation

of D, and the characteristic time, t.

5.3.7 Sample Problem

An example of the domain determination method for an

infiltration problem will give a sense of the dimensions involved. For

soil we use the Yolo light clay data of Moore (1939). We use the

Clinton, MA, climate data of Eagleson (1978f). From Philip (1966a),

-2 -1/2..o = 0.238, n = e = .495, S = 1.25x10 cm sec (sorptivity, a soil
o 1

parameter). We find D, from the expression derived for a semi-infinite

domain by Philip (1966a) relating D, to S for infiltration which is

D,= Tr S/2 - 0)2 (3.29)

Also from Philip (1966a), we have

K(l) - K
k= 0 (3.26b)

6 -- 5

where we assume K ~ 0. For Clinton, MA, K(l) = 2x10-5 cm/sec, and we

use the characteristic time mt = 0.32 day, where mt is the mean storm

r r

duration. Assuming the water table depth at Clinton, MA, is five meters,
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the parameters are D, = 161 cm 2/day and k = 6.72 cm/day and the

dimensionless parameters are

0  kZ
Z = - = 20.9

D,

k 2m
t

t _ r = 0.090

From Equation (5.5) for the concentration surface boundary

condition

15.9 > 1.2 + 0.04 = 1.24

and the domain may be treated as semi-infinite. Since the diffusive

component clearly dominates (to = 0.09), we may use Equations (5.7) to

calculate 0 = 70. Since 70 >> 4, the semi-infinite domain assumption
c

is supported by Equation (5.8). Using Equation (3.28) in (5.10), we

see that the domain is considered finite only for times, t >

56 days (=t d.

Using the mean storm intensity, m. 2.69 cm/day for Boston,

MA (near Clinton, MA) from Eagleson (1978b), we calculate N = m./k

from Equation (3.124) to be

N = 0.4

For ne = e - e (-e ) = .257, m./K(l) = 1.56, which means
e 1 o wo 1

ponding may occur for the mean intensity storm, because m. exceeds the

minimum infiltration capacity of the soil, K(l).
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The dimensionless contact time with the surface flux boundary

condition, assuming 6 = 0.4 is, from Equation (5.11),

t0 = 6.44 >> 0.09
C

This means that the domain for climate-controlled infiltration

may also be assumed to be semi-infinite.

The above results do not exclude the use of a finite domain

solution, but instead they allow the use of the simpler, extensively-

tested analytical solutions for the semi-infinite domain.

5.3.8 Dominant Forces

The quantities to and Z also contain information about when

'diffusion' and advection dominate in the finite domain. For t0 > 1

and > 1, k2t > D, and kZ > D*. With t >> 1 advective moisture move-

ment (represented by k) clearly dominates. The constant (gravity-

induced) advective flow rate only occurs with a fixed soil moisture

profile for the finite domain problem. Therefore, steady state condi-

tions for all the processes modelled in Chapter 4 will occur for dimen-

sionless times greater than to ~ 1, except where transpiration is

accounted for. Also, we see that 'diffusive' transport dominates for

z < 1 (D, > kZ) in the finite soil column.

We see how far into the finite column the surface moisture
2 -2

conditions have penetrated from the relations t0/Z0  (=40 ) and

t0/Zo. These translate into the dimensional terms D~t/Z and kt/. For

-2
$0 and tL/Z. greater than unity. moisture flow induced by the surface

conditions occurs throughout the soil column.
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5.4 Convergence

5.4.1 Series Convergence

Since the solution to the linear problem in the finite domain

is in infinite series form, the solution is only exact for an infinite

number of terms. For practical purposes, we use enough terms so that

the calculated 'approximate' solution has converged arbitrarily close to

the true solution. The necessary number of terms depends on the degree

of accuracy desired and varies with the type of solution.

The two general convergence criteria employed are reproduction

of the exact solution and preservation of the solution form. In-general,

the exact solution is reproduced for one hundred series terms for all

solutions except the soil moisture distribution, where two hundred terms

are sufficient in most cases. Where the solution parameters are fitted

to data, it is sufficient to preserve the shape of the solution.

Figure 5.1, a plot of depth-averaged moisture content versus

dimensionless time for a drainage problem, shows that the solution form

is sufficiently preserved using from one to five series terms. This is

generally the case for the average moisture content and the exfiltration

capacity rate solutions. Fifty series terms are needed for the infil-

tration capacity rate solution for reasons discussed momentarily.

Volumetric quantities require one hundred series terms because the solu-

tion is reached through integration which also sums the errors.

The series solution converges faster for shallower dimensionless

water table depths. Convergence is the result of higher order harmonics

in the series solution which approach zero as the eigenvalue [m, (Eqn.

(4.13))] increase in value with each series term. As the eigenvalues are
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inversely proportional.to the dimensionless column length, the larger

column requires more eigenvalues to achieve the same consequences as

the shorter column. For dimensionless column lengths Z0 > 15, soil

moisture profile solutions require over 1000 series terms for conver-

gence. The flux solutions are still accurate at large depths using 100

series terms. For larger depths, the semi-infinite equations are

preferable.

As seen in Figure 5.2, the dimensionless ponding time expression

diverges for dimensionless depths greater than 15. This is the result

of the invalidity of the assumption of Equation (4.121), which applies

only with the faster convergences (fewer series terms) associated with

smaller values of Z0. For values of D* = 4000 cm2/day, k = 40 cm/day

(k/D, = 0.01), the dimensionless water table depth, Z0 = 14 corresponds

to a 14 meter deep water table.

Note also from Figure 5.2 that the ponding time solution series

converges with about one hundred terms.

Some solutions converge with fewer terms for larger

dimensionless times. This is simply the result of the reduced influence

of the initial condition at these times and the smoothing of the

moisture content distribution due to the diffusion-type governing equa-

tion. The uniform initial condition requires many series terms for

convergence, as straight lines are difficult to represent by sine and

cosine series.

5.4.2 Boundary Convergence

A second limitation of some of the solutions is that they are
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not valid at or very close to the boundary. This is the case for the

moisture content solution at the boundaries where moisture content is

fixed at saturation. It is also true for most of the moisture fluxes

and volumes at the same boundaries. The dimensionless distance from

these boundaries at which the solutions are again valid depends on the

number of series terms. For one hundred series terms, the dimensionless

distance from the boundary for a reasonable solution is found to be two

percent of the dimensionless column length.

Some solutions are invalid at the boundaries because the

finite Fourier transform method sets the constant moisture content

boundary conditions to zero when solving for the eigenvalues and eigen-

functions of the problem. This solution artifice affects the moisture

content distribution and also the boundary fluxes, which are derivatives

of the moisture content, and the moisture volumes crossing the bounda-

ries, which are time integrals of the fluxes.

The solutions for exfiltration with the constant surface

moisture content are unaffected by the artifice because the surface

boundary condition is supposed to be set to zero. Thus the artificial

surface boundary condition value equals that used in the actual problem

statement. The result is that the series solutions converge much

faster for the exfiltration problem than for infiltration. Also, the

exfiltration solutions for moisture content, exfiltration capacity and

exfiltrated moisture volume are valid at the surface boundary.

In the time domain, the constant concentration boundary flow

solutions are undefined at very small dimensionless times. This is due
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to the discontinuity at these boundaries between the initial and boundary

conditions at to = 0. The effects of the initial discontinuity disappear

at dimensionless times between to = 0.001 and to = 0.01.

5.5 Numerical Examples

5.5.1 Soil-Water Depletion

The plots of Figure 5.3 are demonstrations of how the finite

soil column may decrease its average water content according to the

linear model of soil moisture movement. The processes shown are drainage

from the bare- surfaced soil column, with no surface moisture loss (-curve

1), drainage plus vegetal transpiration (curves 2-4) and drainage plus

bare soil evaporation (curve 5). The transpiration plots are for dif-

ferent assumptions of how plants extract soil moisture. The lines

plotted are analytical depth-averaged moisture content solutions pre-

sented in Section 4.2.7, for the flux surface boundary condition.

5.5.1.1 Drainage

Drainage from a bare surfaced soil column (curve 1) is the

simplest moisture removal mechanism, both physically and as an analytical

solution (e0 = 0). Gravity drains moisture from the soil column, with
p

no moisture loss at the land surface, or through vegetation. In the

example, the column is initially 85% saturated, draining to hydrostatic

equilibrium (64% saturated for dimensionless water table depth, Z0 = 1)

in dimensionless time, to = 1. For an average diffusivity D, = 2000 cm2

dK
day and k(= dK) = 60 cm/day (e.g., K(l) = 21 cm/day and ne = .35), we

find Zo = 1 and to = 1 correspond to Z(=Dz 0/k) = 0.33 meters and
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t (=Dto/k2) = 0.56 days.

5.5.1.2 Drainage plus transpiration by plants

The analytical solution for the depth-averaged moisture content

with moisture extraction by vegetation along with drainage (but no bare

soil loss) is plotted versus dimensionless time in Figure 5.3, curves 2

through 4 (for the flux surface' boundary condition, e0 = 0). In com-
p

parison with gravity drainage alone (curve 1), the major difference is

the reduction in moisture content in the column when plant transpiration

is incorporat-ed into the solution (compare curve 1 with curves 2-4).

It is expected that if transpiring plants are extracting soil moisture

in addition to gravity drainage (but with no bare soil surface extrac-

tion), that a greater moisture loss occurs than from gravity drainage

alone.

The three curves of drainage plus transpiration (Figure 5.3,

curves 2-4) are analytical solutions for the average moisture content

where the vegetal extraction mechanism is represented by a different

model for each plot. Curve 2 uses the Feddes (1976) vegetal extraction

function (extraction is proportional to moisture content). Curve 3

incorporates' vegetal extraction the strength of which decreases linearly

from the land surface to the water table. Curve 4 involves the assump-

tion of a uniform moisture extraction over the depth to the water table.

All the models assume the plant roots are uniformly distributed hori-

zontally in space. All the extraction rates (dimensional and dimension-

less) must be scaled by the fraction, M, of the land surface covered by

vegetation.
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By comparing the average moisture content with drainage plus

concentration-dependent moisture transpiration (curve 2) with that for

drainage plus transpiration decreasing linearly with depth (curve 3)

for nearly the same total transpiration rate (the concentration-

dependent transpiration rate varies with the average moisture content).

We may see how each vegetal extraction model affects the shape of the

average moisture content solution. We see that curves 2 and 3 are almost

overlapping. Curve 2 has a sharper initial moisture drop and a higher

steady state value than curve 3. This is the result of the initially

higher transpiration rate for the concentration-dependent vegetal extrac-

tion model with an initially greater average moisture content, and the

reduced rate for the lower steady state moisture contents. The depth-

dependent transpiration rate is constant over time for a given event

and water table height.

The transpiration rate may be compared between vegetal

extraction models by numerically relating the parameters of the models.

The dimensionless parameter (G ) of the concentration-dependent vegetal

extraction model is related to the two dimensionless parameters (G1 ,

G12) of the depth-dependent model as follows:

G, = (1.11/n )G = (1.25/n )G12

where

G12 110.89G1

G = .- .
11 k2

and
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e =k e
v v p

where

n = effective soil porosity

zr = root zone depth

ev = maximum vegetal extraction rate

kv = plant transpiration effectiveness coefficient

ep = potential evaporation of bare soil

For D, = 200 cm2/day, k = 6 cm/day, kv = 1, M = 1 (completely

vegetated land surface), ep = 1.05 cm/day, n = 0.35 and Zr ~ Z = 0.33

meters, we find G 0.318, G = 0.28 and G = 1.0. The relation

G12 = 0.32 G is used in curve 3 of Figure 5.3 (with G = 0.315) in

order to match the quantity of moisture lost in curve 2 for dimension-

less event duration, t0 = 1. This is done to allow the aforementioned

comparison of the shape of the curves of the analytical solutions for

the average moisture content.

5.5.1.3 A comparison of drainage and transpiration with drainage

and bare soil evaporation

Curves 4 and 5 in Figure 5.3 compare the decaying average soil

moisture content analytical solution (flux surface boundary condition)

due to drainage and bare soil evaporation (curve 5, no transpiration,

M = 0, e > 0) with that due to drainage and vegetal transpiration
p

(curve 4, no bare soil evaporation, M = 1, e 0 = 0). The transpiration
p

model assumes the constant transpiratiQn rate is supported by moisture

extracted uniformly over the entire column depth, to the water table,
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and that the land surface is completely vegetated (M = 1). For Z= 1,

the dimensionless transpiration rate is e = G 1 Z 0 = G . The dimension-

less bare soil evaporation rate for the flux surface boundary condition

is e , the dimensionless potential evaporation rate (climate-controlled
p

evaporation). In curves 4 and 5, we equate the dimensionless extraction

rates (1-M) e0 = Me0 = .315.
p v

The result is that there is less soil moisture for the bare

soil evaporation-drainage process (curve 5) than for the transpiration-

drainage process (curve 4), with identical moisture extraction rates for

the evaporation and transpiration processes. The natural conclusion is

that less drainage of the soil column occurs under the vegetated land

surface than the bare soil land surface; for the same rate of moisture

loss to the atmosphere.

The difference in the average moisture content between curves

4 and 5 may result from the different way the soil moisture is redistrib-

uted under surface extraction than under a vertically uniform extraction

mechanism. Near the water table, the water content is reduced less than

near the land surface under surface evaporation. There is no difference

in the moisture content reduction between any two depths just consider-

ing the uniform vegetal extraction mechanism. But gravity drainage is a

function of the moisture content near the water table. Since this is

likely to be greater with surface evaporation (curve 5) than with uniform

extraction (curve 4), and since the extraction rates are equal, the lower

moisture content of curve 5 is very possibly due to the increased

gravity drainage.
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5.5.2 Infiltration

Of primary interest for the infiltration process are how the

ponding time and the infiltration capacity are influenced by the water

table.

5.5.2.1 Ponding time

The presence of both the water table and the capillary fringe

decreases the ponding time. They limit the volume of pore space into

which water may infiltrate. The result is that the zone above the high

water table attains a higher moisture content faster than with the deep

water table. This means the surface moisture content reaches saturation

faster than for the deeper water table, and hence ponding time is

shortened.

The ponding time equation (4.122) developed in Section 4.2.4

is consistent with the above analysis, providing an increased ponding

time for deeper water tables. Figure 5.2 displays the logarithmically

increasing ponding time (n = 1000) with the water table depth, asymp-

totically approaching a value which may be interpreted as the point

where the water table is no longer influential. If the water table may

be neglected for Z > 16 (e -e = 0.15, i0 = 3) and to0 = 0.32, using
1 0

D, = 4000 cm 2/day and k = 40 cm/day, this corresponds to Z > 16 meters

and t = 0.8 day.

When considering the problem dimensionally, the t - Z

relations will vary depending on how one estimates D* and k.

How the water table decreases.the ponding time is seen in

Figure 5.4. This moisture distribution is only for the linearized
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model, and does not resemble the non-linear solution. But this

idealization shows the capillary fringe slowing the downward moisture

movement (by reducing the moisture content/capillary pressure gradient

and by its own volume occupying pore space) with the result that the

surface pores fill up faster.

Figure 5.5 shows how the ponding equation (4.122) with the

approximation (4.121) deviates increasingly with the dimensionless water

table depth from the ponding time calculated using the linear model,

solving e(0, t ) = n . Though the approximation is not very accurate,0 e'

it still preserves the essential shape of the relation of ponding time

to the water table depth. This facilitates physically-based parameter

estimation.

5.5.2.2 Infiltration capacity

The influence of the water table on the infiltration capacity

for the linear soil moisture movement model is depicted in dimensionless

format in Figure 5.6. One distinctive feature (not shown) is that the

initial infiltration rate is higher for the shallow dimensionless water

table (Z = 1) than for the deep dimensionless water table (Z0 = 10).

A part of the reason for this is that the infiltration capacity, accord-

ing to this model, decreases at a rate inversely proportional to the

square of the water table depth (see Appendix A, Equation A.3, for the

decay rate expression). Thus, the shallower depth column has a much

faster infiltration capacity decay over time than does the deeper

column. The other important feature is that this model produces a

larger steady state infiltration capacity for the deep dimensionless
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water table than for the shallow one. Since steady state infiltration

occurs for a saturated soil column in the finite domain, accounting only

for liquid moisture movement, the steady state infiltration capacity

should be the same for all water table depths and equal to the saturated

hydraulic conductivity.

According to the assumptions of this model, the steady state

dimensionless flux for the completely saturated column should be equal

to the value of the effective porosity. This is apparent from Equation

(3.123a), valid over the column length, which states

e
q e = 6 e (3.123a)

e =z

For a saturated soil column, it is obvious that 26 / = 0,e

-:hich leaves q = 6 = n . That this is nearly true for large dimension-
e e . frlredmnin

less depth is seen in Figure 5.6, where the value of the porosity, n is
e

indicated by a dashed line.

The difference between the steady state solutions for different

z is attributed to a problem inherent in the Fourier series solution.

The original problem solved is for the moisture content. It has already

been shown that the solution for converges most slowly when the

Fourier series must approximate a straight line (see Section 5.4.1).

It has also been shown that taking the derivative of this solution

causes problems at the boundaries and at very early time (see Section

5.4.2). This is a case where the inexact replication of a line (com-

pletely saturated column) is reflected in an inexact derivative of that

solution to cause a physically inconsistent steady state solution. The
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slightly positive steady state value for 3e/ z results in a lower than

predicted value for q 0, as seen in Figure 5.6. This problem is appa-

rently worse for shallower dimensionless depths.

Recognizing that this is not a problem affecting the shape of

the time-dependency of the flux solution, we may either set the steady

state value to ne, known to be the dimensionless steady state flux rate

for the linear model of infiltration, or we may set it to the measured

value for each particular soil type, after reducing this value to dimen-

sionless form. The latter method is discussed further in Appendix A.

The series solution for infiltration capacity converges-to

different solutions depending on whether the number of series terms is

even or odd. Only an even number of series terms should be used for

this solution. An odd number of terms produces negative values for

infiltration capacity.

5.5.3 Water Loss at the Soil Surface; Exfiltration

5.5.3.1 Drying time

Vegetation plays an important role in drying time estimation.

Depending on the fraction of vegetated land surface and the mechanism

of vegetal extraction of soil moisture, the drying time could be either

increased or decreased. Also, as with ponding time, drying time

increases logarithmically with the depth to the water table.

For the drying process, the uniform initial condition more

realistically models reality than does the hydrostatic initial condition

(which is the result of the soil having already been dried).
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5.5.3.2 Exfiltration capacity

The analytical equation for bare soil exfiltration capacity

(Equation (4.135), dry surface and uniform initial condition) is plotted

for two dimensionless water table depths (Z = 1, ZO = 10) in Figure

5.7. It shows a greater rate of decay of the exfiltration capacity and

a larger steady state value for the shallow water table. As with infil-

tration capacity (Section 5.5.2.2), the decay rate is inversely propor-

tional to the square of the dimensionless water table depth, causing a

sharper exfiltration capacity decay rate for the shallower water table.

The steady state value is the linear model equivalent to the capillary

rise versus depth relation of Gardner (1958). It is a result of the

moisture content gradient near the land surface for the linear model.

The steady state gradient approaches zero for the deeper column as the

water table influence becomes negligible.

In general, the exfiltration capacity solution behaves better

mathematically than the infiltration capacity solution. It is applic-

able exactly at the land surface boundary. It converges with fewer

series terms and the steady state solution is consistent with the cor-

responding moisture content distribution. Aside from the explanation

of Section 5.4.2, the other cause is that the moisture content distribu-

tion is exponential in shape as the solution approaches steady state.

This is easier to model with the Fourier series than the linear steady

state solution for the infiltration capacity. Still, the solution should

only be calculated using an odd number of series terms, which is a

property of the type of function characterizing the solution.
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5.5.4 Two Period Process: Simulation Prototype

Figure 5.8 depicts the depth-average soil moisture content for

a storm-interstorm sequence under climate-control (pre-ponding time

and pre-drying time, respectively). The moisture content climbs during

the dimensionless rainfall period and falls during the dimensionless

bare soil evaporation period. A sequence of these storm-interstorm

periods may be generated by the continual input of rainfall and evapora-

tion intensities and event durations. For each event period, a new

average diffusivity (D,) and a new k must be calculated, to account for

hysteresis and for the new initial moisture content. The result-is that

for each event period a given value of t 0(=k 2t/D,) would represent a

different value of real time. The simulation could also account for

vegetation, using one of the vegetal extraction models discussed in

Section 3.2.5.
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5.6 Comparisons with a.Numerical Solution

5.6.1 Introduction

We are interested in seeing for a shallow water table soil how

well the linear analytical solutions of Section 4.2 compare with non-

linear solutions generated from a numerical model, which more accurately

describes the highly non-linear soil-water movement process. The

numerical finite-element code, developed by P.D.C. Milly, is a simplified

version of the code presented in Milly and Eagleson (1980). The non-

linear governing equation is (3.66), with the matric potential, $, as

the dependent variable.

The essential features of the numerical model are the assumed

relationships between moisture content (e ), matric potential ($) and

hydraulic conductivity (K(e)). This model neglects hysteresis, vapor

transport and temperature effects though the comprehensive model of Milly

and Eagleson (1980) includes them. Relationships suggested by Brooks

and Corey (1966) and used in the numerical model for e(i) and K(6) are

(Eagleson, 1978c)

. =(5.12)

and

K(O) = K1 (e/n)c (5.13)

where

n = effective porosity

m = pore size distribution index
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c = pore disconnectedness index

= matrix potential at effective saturation, s(=6/n)=1

= bubbling pressure head

K = saturated hydraulic conductivity

The expression for soil-moisture diffusivity implied by this

is found from the definition of diffusivity, which is

D(6) = K(e)/(de/diP) (5.14)

where

de/d = specific moisture capacity

Using the analytical expression for the moisture retention

curve, Equation (5.12), we find

de 
_ (5.15)

and, from Equations (5.13) and (5.15) in (5.14), diffusivity is described

by

D(e) = 41 1 (e/n)d
nm

where

d = c - 1/M - 1

= diffusivity index

and

m = 2/(c - 3)

(5.16)
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The constant diffusivity D, is thus more reasonable for small

moisture content perturbations, larger values of e and soils where d is

smaller (e.g., sandy soils).

The relations (5.12), (5.13) and (5.16) are used as the

'reality' against which the analytical, linearized model is measured.

However, the analytical expressions are based on laboratory studies of

soil properties. Recent evidence suggests that the diffusivity of soils

in the field may be much less variable than that measured using the

repacked soils of the laboratory. Clothier, et al (1981) have found that

'at wetter water contents, the diffusivity (of the field tested

Bungendore fine sand) was indeed the "linear" diffusivity of Philip

(1969)'.

5.6.2 Ponded Infiltration into Yolo Light Clay for Two Water Table Depths

5.6.2.1 Parameter estimation

For the linear model of soil moisture movement, we need to

evaluate the parameters D, and k in order to convert the problem from

dimensional into dimensionless form. Philip (1966) has developed expres-

sions for these parameters requiring four soil parameters and the average

initial moisture content. His expressions are developed by matching the

linear and non-linear solutions to the soil-moisture movement equation

for large and small times, for the semi-infinite domain. We use these

estimates as first guesses for the parameter values for the finite

domain problem.

For infiltration we have.
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2
- D, =TS' 2( 3. 249)

4(61 - 6) (329
1 0

where

S = sorptivity (soil parameter)

61 = effective saturated moisture content

60 = initial depth-averaged moisture content

and we estimate k by

K - K
k = 0 (3.26)

where

K, = saturated hydraulic conductivity (or asymptotic

infiltration rate)

K = initial column-averaged hydraulic conductivity

Philip used the field capacity for 60, where K (6 ) = 0. Here

we use 6 to conserve the initial volume of soil moisture in the column.
0

These estimates of D, and k do not account for the initial distribution

of moisture content. We also assume that K0 << K and set K = 0, though

we could also estimate it from equations such as (5.13). Neglecting K0

is reasonable for soils closer to clay types and for lower initial

moisture contents.

A second model for the average infiltration diffusivity, D*,

developed by Eagleson (1978c) for the semi-infinite domain, using the

Brooks and Corey (1966) models for i(6) and K(6) and the Crank (1956)

scheme for the weighted average diffusivity,
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SK 1 11 $ (d,s 
(o)D* = 3mn (5.17)

5k $ $ (ds 0)

3m

where

s = depth-averaged initial degree of effective saturation

=e6 /n,e,o /ne

= sorption diffusivity

and may be approximated by the empirical fit

$ = [d(l - s )1 .425-O.0375d + 1.67] (5.18)

Both models for D* are only valid for the infiltration process.

The basic differences between them are that (3.29) requires two parameters

and directly measures the soil sorption through S = f(D(e)) while (5.17)

requires five parameters and assumes an analytical D(e) relation.

Equation (3.29) will equal (5.17) if S(D(6)) uses the same D(e) relation.

As neither model is derived for the finite domain, it is hard

to predict which is better in advance. Relation (5.17) is developed

using the same assumed curves for K(O) and $(O) as the numerical model

uses to characterize the 'real soil', which suggests it might be a more

appropriate parameter choice for this comparison.

5.6.2.2 Soil data

For both the numerical model and to calculate D, and k, we are

using data for Yolo light clay (MoDre, 1939), called a 'linear soil' by

Philip (1969). From the curve of D(8) (independent of water table depth),
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Philip (1957a) calculated

S = 1.254x10-2 cm sec-1/2

The other data from Moore (1939) are el = .4950, ewo = .2574

-5 -1
and K = 1.229x10 cm sec . For similar type clay soils, we find from

Eagleson (1978e) that = 26 cm and c = 12. We calculate n(=6e - 6 )wo

to be 0.26.

We assume for this example that the average initial moisture

content is e = 0.13.
e,o

For the same conditions that he developed the diffusivi-ty

expression (5.17), Philip (1966) suggested a soil parameter character-

ization of early time defined by

Stgrav =(K-K

where

t-rav = time dividing dominance of capillary and gravity

forces

For the above soil data, we calculate tgrav to be twelve days.

Thus the Yolo light clay soil is dominated by capillary forces for the

time frame of interest.

5.6.2.3 Dimensionless parameters

To make time and water table depth dimensionless, we need

values for k 2/D, and k/D,.

From the Philip expressions, D* = 631.41 cm2 day- and
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-l -1 2 -k = 8.17 cm day~. Thus, k/D* = 0.0129 cm and k /D, = 0.1057 day

Thus, for normal rainfall durations of less than one day, we are in

early time (to < 0.11). A typical shallow depth is around 1 meter

(Z' = 1.3).

Using the Eagleson model for comparison, we calculate d = 6.5,

$ (d, s ) = $.(6.5, 0.5) = 0.220, k(=K 1 /n) = 8.17 cm day- (Philip

expression for k) and D* = 350.84 cm2 day- (=44% of D* from Philip).

We have k/D* = 0.0233 cm~ and k 2/D* = 0.190 day- . For a 1-day rain-

fall event, we find t0 = .19, and for a water table depth of one meter,

dimensionless Z0 = 2.3.

5.6.2.4 Volume of infiltrated moisture

In Figure 5.9, we have the analytical, linearized solution

[Equation (4.117)] for the infiltrated moisture volume versus time for

water table depths of one and two meters. On the same figure are the

results of the numerical simulation of the associated non-linear problem.

The diffusivity, D,., and k are estimated from the Philip expressions

(3.29) and (3.26). That this is a finite domain case is clear from the

sensitivity to the infiltrated volume of moisture to the water table

depth.

The analytical linearized solution agrees with the non-linear

one in showing less infiltration for the 1 meter water table than the

2 meter one. In fact, the linearized solution reasonably approximates

the non-linear one in both cases for times less than 40 hours (1.67

days). In that time period, the largest percent difference for the
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2 meter case is 18% and for the 1 meter case it is 33%. The linear

solution for Z = 2m actually improves between 40 and 60 hours, when

at 60 hours the two solutions agree exactly. Ultimately, for very large

times, greater than 60 hours, the linear and non-linear solutions

diverge.

The soil column is calculated to saturate in 2.4 days for the

lm deep column and in 4.3 days for the 2m deep column. Thus, the linear

solutions are reasonable before saturation occurs.

The overprediction of the infiltrated volume in early time

(t < 10 hours) using Philip's D is minimized using D, from Eaglieson

as seen in Figure 5.10. Agreement between the linear and non-linear

models for times less than 40 hours (1.7 days) is excellent with the

maximum percent difference being 9%. For times greater than this, the

solutions diverge.

One main difference exists between the solutions in Figures

5.9 and 5.10. The analytical solutions using the larger D (Figure 5.9)

diverge much more quickly than those of Figure 5.10. The latter main-

tains quite well the small difference in the cumulative infiltrated

moisture occurring in the non-linear case between the two water table

depths.

A problem, shown in Figure 5.10, is that the infiltration rate

for the analytical solutions is larger for z = lm than for z = 2m in

early time and switches for times, t < 10 hours. In dimensionless terms,

this occurs for to(=k2t/D*) < 0.0001, with Z0 (=kZ/D,) = 0(1). This is

due to the initial surface moisture gradient being higher for the
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shallower water table. It does not happen with the non-linear solution

over any time period.

The two estimates of D* and the one for k need not be the only

ones used. We may use these as initial estimates and find the 'best

fit' using a criterion such as least squares. We would like to avoid

having to fit new values of D, and k for each water table depth. The

estimates used are conveniently independent of the water table depth.

The linearized solution, though detailed and slowly convergent,

still is advantageous (compared to the numerical solution) in that it

is analytical and dimensionless. The solution form explicitly shows

how the water table boundary influences the moisture flow dynamics. In

Appendix A, a simplified equation for the infiltration capacity is

presented, which is extracted from the form of the complete solution aPd

includes the effect of water table depth.

An important aspect of the linearized model input is that the

initial moisture content for the model itself is assumed to be hydro-

statically distributed. The depth-averaged value is used to evaluate

D* and k.

5.6.2.5 Average moisture content

Figures 5.11 and 5.12 are the depth averaged moisture contents

corresponding to the cumulative infiltration volumes of Figures 5.9

and 5.10. The only difference is that the initial condition for the

linear model here is one of uniform moisture content, rather than a

hydrostatic distribution. The reasbn fot this difference is that the
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initial volume of moisture in the column is exactly preserved in this

case, while the hydrostatic initial condition is more suitable for model-

ling boundary dynamics. The dynamics are more sensitive to the initial

moisture distribution and the average content is more sensitive to the

initial volume of moisture in the column.

For the average moisture content, the Philip diffusivity

(Figure 5.11) provides a better fit to the numerical solution than does

the Eagleson diffusivity (Figure 5.12). The Philip estimate consistently

underestimates the content less than does the Eagleson estimate. Using

the Philip estimator, the percent difference between the linear and non-

linear solutions is less than 12% for times less than 20 hours. This

is quite surprising since the change in the moisture content for Z = lm

is 34% of the total content (from e = .13 to 6 = .215). The model is

supposed to be more valid for small changes in moisture content.

Both estimates for D, underestimate the average moisture

content. But for times less than 50 hours, Figure 5.11 shows that the

difference between moisture content values for the two water table

depths at a given time is almost identical between the linear and non-

linear models. For example, at t = 30 hours, the difference between

the moisture contents for the two water table depths is 0.055 for both

the linear and non-linear models. Since the linear model approximates

the non-linear one better for the larger value of D, it is likely a

larger, fitted value of D, may do even better.

Fitting the value of D, to the numerical data for Z = lm

results in an excellent matching of the depth-averaged moisture content
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both for Z = 1 meter and Z = 2 meters, as shown in Figure 5.13. The

maximum percent error between the analytical and numerical models is only

5% for Z = 2 meters after more than 60 hours of infiltration and less

for Z = 1. Also the time the column saturates is accurately predicted

for Z = 1 meter. All this strongly suggests that the analytical average

moisture content solution to the linearized model contains some essential

structure of the relation between water table depth and the soil moisture

dynamics. The key point is that the diffusivity is fitted only for the

one meter water table depth case, yet the same diffusivity yields quite

an adequate prediction of average moisture content for the two meter

water table depth case. This is not to say another value of D, would

not produce a better fit for Z = 2 meters, but we need not rely solely

on fitting D, to model the effects of the water table.

The fitted value of D* is twice that of the Philip value. This

is very close considering how D* may vary over several orders of magni-

tude. This lends further support to the method of starting with D,

from Philip or Eagleson and using a best fit value near to the calcu-

lated one. What is interesting about this is that the fitting is for

one parameter only. We keep k at its calculated value. This supports

the suggestion that the process is diffusion (or capillarity) dominated

as indicated by tgrav in Section 5.6.2.2.

The benefit of all this is that we may study the linearized

solution for the depth-averaged moisture content for ponded infiltration

into a finite soil column [Equations (4.167) and (4.78)] to better

understand the influence of the water table in the unsaturated zone

dynamics. Since the average moisture content solutions converge fairly
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quickly (n < 10) we may even be able to extract a useful simplified

expression for e directly from the series solution. This also will

help in the understanding of the related dynamic equations such as the

cumulative infiltration. The fact that this solution is depth-integrated

makes it less dependent on moisture distribution than those for the

surface and water table fluxes. Since it is much easier to preserve

volume rather than moisture distribution with the linear model, it is

understandable that this solution gives the most accurate results.

5.6.3 Infiltration of Rainfall (Pre-Ponded) into Yolo Light Clay

5.6.3.1 Ponding time preliminaries

We use the soil data from Section 5.6.2.2 for Yolo Light Clay.

Initial estimates for D are again from Eagleson and Philip,

as discussed in Section 5.6.2.1. Also there is an expression from

Braester (1973) for D* developed for preponded infiltration. It is

-a2Z -a2Z
D* = i(l - e 2 )/a [(6 - e ) - e 2)]

where

k
a2  D.

= parameter fitted for analytical K($) expression from

Gardner (1958)

e = maximum moisture content at soil surface
ss

i= rainfall intensity

Z = depth to water table

The Braester expression is derived for i/K(i) < 1 (e.g., when

ponding time is at infinity). It will not be used here for the
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following reasons. First, its depth-dependence requires recalculation

for every water table depth. Secondly, it is parameter-intensive,

requiring six parameters. Thirdly, we must estimate a2 such that it

is consistent with the relation a2 = k/D,, making the estimate of D,

somewhat dependent upon itself. Fourth, it is developed by matching

the exact and analytical moisture contents in the steady state which

is when diffusion is least important in the process. On the other

hand, it is the only expression for D derived for pre-ponded infil-

tration into a finite domain. The Philip and Eagleson estimates are

more removed from the conditions of their derivation since now we have

replaced the surface concentration boundary condition by the third type

flux boundary condition.

Values for D, and k are those of Section 5.6.2.3. We have k =

-l1 2 -l1
8.17 cm day. From Philip, D = 631.41 cm day and from Eagleson

2 -l1 2
D* = 350.84 cm day~. The same values of k/D, and k /D, result. These

are k/D, = 0.0129 cm~ and k 2/D, = 0.1057 day- from Philip, and

k/D, = 0.0233 cm~ 1 and k2 /D* = 0.1900 day~ 1 from Eagleson.

An important feature of the numerical model is that we use a

third type (flux) surface boundary condition and input the rainfall

rate; we input an event duration much larger than the expected ponding

time to ensure that the ponding time will be reached. The analytical

solution uses a hydrostatic initial condition as the uniform initial

condition produces unrealistically large values for t0. The hydrostatic

initial condition is also more physically reasonable since ponding time
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is sensitive to the value of the surface moisture content and to the

shape of the moisture distribution.

5.6.3.2 Ponding time results

By fitting a single parameter to the "data" (i.e., numerical

results), a good agreement between the numerical model and the analyti-

cal, linear ponding time expression [Equation (4.122), method 1] has

been achieved over a wide range of water table depths, as depicted in

Figure 5.14. When i/K1 = 2, by setting i (=i/k) = 3.5, and using the

Philip expressions for k and D*, we find the percent difference between

the numerical and analytical solutions ranges from 63% for the smaller

water table depths (Z < 1.0m) to 2% for depths around 9 meters. In

essence, this is using k as a separate fitted parameter, distinct from

its use in D,/k and D,/k 2, where we define k. k = .025 cm hr- .

0
If the value of i is not fitted to the non-linear data, values

of the linear ponding time five times greater than the non-linear ones

are predicted if the same i/K1 is used for both the linear and non-

linear models. Also, the ponding time expression is sensitive to D*

and k. Using the Eagleson D* estimate produces larger ponding time

estimates than when the Philip estimate is used.

Having fit the parameter i = i (i) for a specific value of

rainfall intensity, i, we test to see if it must be adjusted for each

separate value of i. Using the previously fitted k. (=.025 cm hr 1 ) and

i/Kl = 10 or i = .4428 cm/hour, we calculate i0 ~ 17.5 and input it

into the linear model. The resul.t, also shown in Figure 5.14, gives
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reasonable agreement between the numerical and analytical models. The

range of error is from 8% near Z = lm to 41% near Z = 10m. We con-

clude that using D* and k estimates from Philip and fitting k. over a

range of water table depths we may vary the value of i somewhat without

needing to readjust the value of k . Thus, the parameters D, k and k.

are independent of water table -depth and of rainfall intensity.

The reason we need the third parameter, k., for the ponding

time expression is that the approximations involved in deriving t

result in the equation preserving the solution form, if not the ponding

time actually predicted by the linear model. The difference is seen in

Figure 5.5 for very shallow tables and increases for deeper ones. That

the approximate model matches the non-linear reality reasonably well

indicates that the approximate solution contains some of the essential

structure of the relation between water table depth, rainfall intensity

and the ponding time.

The ponding time expression tested here (4.122) is derived from

the constant surface flux infiltration model. Ponding occurs when the

soil surface first saturates. Surface saturation never occurs when

i/K < 1. This approximate ponding time solution also indicates this

phenomenon. When i/K < 1, the argument of the logarithm in the solu-

tion dips below zero preventing a solutions from being calculated.

The ponding time expression (4.131) developed from the time

compression approximation (method 2) does not produce realistic ponding

times. The reason is that the solution for the surface infiltration

rate does not converge as t -+ 0 (see Section 5.4.2), and the ponding
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time expression is a function of the initial surface flux. However,

the form of the solution is useful in that it expresses ponding time

using parameters of the Horton infiltration capacity model. As these

parameters are functions of water table depth in the finite domain solu-

tion we may explore their structure in order to develop simplified pond-

ing time expressions which include water table effects. This is

attempted in Appendix A.

5.6.3.3 Average moisture content for rainfall infiltration

where i/K < 1
1

We can produce a very good agreement between the analytical,

linearized solution and the numerical non-linear solution for the average

moisture content under rainfall infiltration [Equation (4.166), (4.78)],

as seen in Figure 5.15. However we still must use the third, fitting

parameter, k. Using a rainfall rate of i/K1 = 1/2 for the numerical

model, we get a near perfect fit for the linear solution with i0 = 0.4

for Z = 1 meter. This corresponds to a fitted value of k. = 0.055

cm hr . Using the Philip D, for Z = 1 meter, the maximum percent

difference between the linear and non-linear solutions in a 100 hour

infiltration period is 5%. For Z = 2m, same parameters produce a fit

with a maximum percent difference at 21% in 100 hours and of 10% for

the first 50 hours. As with the ponded infiltration average moisture

content, the ability of the linear model to predict the average water

content for Z = 2 meters with the same parameters as for Z = 1 meter

indicates the linear solution structure contains some important aspects

of the dynamic relationship between the water table depth and the
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average moisture content.

It is both convenient and interesting that the analytical

solution fitted the non-linear one so well using physically-based

parameter expressions for D. and k. This is somewhat surprising since

the expressions for D, and k are not only derived for the semi-infinite

domain, but also for ponded infiltration.
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Chapter 6

CLIMATE-WATER TABLE COUPLING

6.1 Introduction

In addition to affecting the hydrologic budget, the saturated

and unsaturated soil moisture zones also interact to determine the water

table response to regional climatic conditions. Three questions of

interest are:

1. How and when does the climate affect the phreatic surface

(water table) shape?

2. How and when does the phreatic surface affect the hydrologic

budget of the soil moisture zone?

3. How and when do environmental changes affect the water

table and hydrologic balance?

This study is concerned with the development of long-term

steady-state conditions where the soil moisture zone is distinct from

the capillary fringe, unlike the case of the previous chapters. It is

also limited to flow in the liquid phase.

One way to determine if the climate is governing the phreatic

surface is to derive the water table shape that develops from climatic

forcing and compare it to the measured surface. For example, if the

climate forcing yields a recharge mound and the observed water table is

concave upward, a leaky aquifer or significant pumping may be the cause.

This analysis uses models of the unsaturated and saturated

zones with relatively few data requirements and with small computational
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costs. The analysis is.useful as a preliminary tool to assess long-term

results from local climate or project-related changes in the environment

such as large drainage or pumping schemes.

6.2 Literature Review

The interactions between climate and the water table are of

interest to a wide range of researchers in hydrology. These include the

groundwater hydrologist interested in the groundwater quantity available

for pumping; the hydrologist interested in surface runoff, and surface

water quantity; the agricultural and drainage engineers interested in

soil moisture levels and water tables near the land surface; the regional

water planner interested in annual and long-term water abstractions; and

those involved with groundwater quality, who are interested in the filter-

ing of recharge water in the unsaturated zone (Freeze and Cherry, 1979),

(Rushton and Ward, 1979). There are also those investigating the hydro-

logic impact of non-stationary climates.

All these researchers have different criteria for whether the

climate is having an impact on the water table elevation. The criteria

are concerned first with what constitutes a change in the water table

elevation. This involves both the magnitude of the change and the time

scale over which the change occurs. It also concerns whether the change

is measured with respect to the land surface or the aquiclude. For

example, the agricultural engineer is concerned with the daily small

fluctuations of the water table compared with its depth from the land

surface. The groundwater resource. long..range planner is concerned with

changes in the long run water supply. Water table changes of concern to
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to him must be significant in comparison with the aquifer thickness

(Hillel, 1980), (Rennolls et al, 1980), (Vandenberg, 1980), (Metzger

and Eagleson, 1980).

The influence of the climate on the water table is evaluated

with respect to all the sources of water supplying the aquifer and to

the sinks removing water. This involves establishing clear boundaries

for the problem between which we measure the water table depth. Next

we assess the relative contribution of moisture to or from the water

table from each source or sink. These include vertical boundaries such

as rivers and contiguous aquifers, and horizontal boundaries including

leakage at the bottom and pumping out net recharge at the top (Bear,

1979). Exactly how the climate affects the groundwater table depends

on the local topography, geology and soil properties.

The local climate affects the water table in two ways. Local

runoff contributes to the river water levels. In a humid climate at

least, fluctuations in these levels affect the water table shape. Lical

climate directly interacts with the water table through net recharge

and capillary rise. Where, the contributions to the groundwater regime

from these sources are significant, they must be reflected in models

of the system.

A variety of methods have been used to estimate net recharge

to and capillary rise from the water table, but few other than the most

complex models have considered the feedback between the groundwater

tabje and the recharge and capillary rise (Kovacs, 1969). The standard

method of estimating recharge is through the water balance of the soil
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moisture zone (Freeze, 1979). Few models account for the capillary rise

(Hillel, 1980), and in most of these models recharge is estimated from a

water balance that does not consider the soil moisture content. That is,

they are empirically, rather than physically based (Kovacs, 1969)(Chow,

1963). The equation used is

pN : P -eT - rs (6.1)

where

p = precipitation rate

eT = evapotranspiration rate

PN = recharge rate

r = surface runoff
s.

and where p, eT and r are all estimated. Because of the absence of

change in soil moisture storage, these models are limited to average

annual or long-term estimates. At the other extreme are three-

dimensional models of the coupled saturated-unsaturated zones including

storage change, with hydraulic head and moisture content as dependent

variables and where every change in the climate boundary is felt (Freeze,

1971). This method, while informative about the exact dynamics of soil

moisture movement, is expensive to implement and requires much data and

costly verification.

For regional groundwater studies or regional studies including

the effects of the water table on soil moisture content, a simplified

physically-based model of the soil- moisture zone dynamics coupled with

a simple groundwater model could be a useful middle ground. A physically-
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based model may reduce some of the uncertainty associated with recharge

rates and phreatic surface levels (Dettinger, 1979). A detailed,

physically-based water balance model developed by Eagleson (1978a) provides

estimates of average soil moisture levels, either annually or long-term,

assuming a stationary climate and no annual storage carryover in either

the soil moisture zone, or the groundwater zone. Using the estimated

soil moisture content drainage rates are estimated. This model -

rectly ccounts for the water table level through the capillary rise

function. This, in turn, affects the soil moisture content and recharge

rate. The model is expanded by Metzger and Eagleson (1980) to ac-count

for seasonal and annual storage changes.

The model of Metzger and Eagleson explicitly considers the

feedback between groundwater table elevation and the soil water balance.

Since its primary concern is with the vertical moisture balance of the

unsaturated zone, the groundwater regime is modelled as a linear

reservoir.

The goal of the present analysis is to study the feedback

effects in more detail, with the primary emphasis on the groundwater

zone.

6.3 Problem Formulation and Assumptions

6.3.1 Problem Statement

The problem is to couple a horizontal groundwater flow model

with a vertical soil moisture model to assess the effects of their inter-

actions. The horizontal groundwater flow model is derived from Darcy's

Law and the continuity equation, as was done for the soil moisture flow
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model of the previous analysis.

With an interest in the climate-groundwater interactions, we

posit a simple groundwater model, with flow only in the x-direction,

bounded by two rivers and recharged from the soil water zone, as shown

in Figure 2.3. Using this model, the consequences of changing river

levels over time and net accretion from the soil water zone may be

studied.

The time-varying non-linear governing equation is

- h h
(K(l)h x) + Q h(s, h(x)) = S - (6.2)

where

QN = net accretion rate into the aquifer

K(l) = saturated hydraulic conductivity

h = height of water table above reference level

x = distance from boundary where head is h

S = specific yield of aquifer

s = space and time average local soil moisture content

6.3.2 Groundwater Model Assumptions

This model assumes

1. Essentially horizontal flow (Dupuit assumption); valid in

the regions

2h < x < L - 2hL (6.3)

excluding the regions around the local minimum or maximum water table
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levels where

h , h = boundary heads (river surface elevations) above
a' L

reference level

2. Isotropic aquifer

. Constant specific yield (in time)

A linearized version of this model solved analytically for an

infinite domain has been used by Polubarinova-Kochina (1962) to study

the growth and damping of a groundwater mound. The model does not

consider climate-water table interactions.

The boundary conditions are two potentials which represent

rivers assumed fully penetrating to the aquiclude. They are described

mathematically by

h(o) = h O(t) (6.4)

h(L) = hL(t) (6.5)

The initial condition is the assumed initial phreatic surface

elevation,

h(x, 0) = h (x) (6.6)

The model implicitly assumes that' the specific yield is

independent of the water table depth. This assumption is decreasingly

accurate as the water table approaches the land surface (Hillel, 1980).

The model of net accreti.on over the duration of a year is

written
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QNO, Z) = mT pN - T1w (6.7)

where

m = mean annual rainy season length

T = number of days per year capillary rise occurs

6.3.3 Capillary Rise Model

The steady state capillary rise is derived from Gardner's

(1958) solution to the (steady state) diffusion equation for a fixed

water table and a dry land surface. The expression is

w = K(l)[1 + 1.5(mc-1) I][(l)/Z]mc, w/e < 1 (6.8)
p

where

m = pore size distribution index

c = pore disconnectedness index

We extend the use of the solution to unsteady cases where

steady state capillary rise occurs much sooner than the aquifer response

time. Typically capillary rise reaches steady state over a period of

days or months while we are interested in annual and longer term water

table trends (Skaggs, 1978), (Bear, 1979). For annual or seasonal water

table fluctuations when storage changes in the aquifer are significant,

we may use the modification of Metzger and Eagleson (1980) which is

w= [1 + mc(Z)] w, AZ << 1 (6.9)0 Z

where

w = seasonal (annual) average capillary rise rate

w0 = long-term average capillary rise rate
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AZ = water table fluctuations from the long-term mean

Z = long-term average water table depth

6.3.4 Percolation Rate Model

The percolation rate model, derived from the Brooks and Corey

(1964) model of the effective intrinsic permeability, states

pN o = K(c)s (6.10)

The space and time average soil moisture content, s , is

computed from a statistical-dynamic formulation of the water budget for

an arbitrary hydrologic system (Eagleson, 1978a-f). It is a dimension-

less, analytical representation of the one-dimensional annual water

balance based on simplified models of the various interacting hydrologic

subprocesses.

The model assumptions are the following (Eagleson, 1978a):

1. General

+~ a. One-dimensional analysis (only vertical processes) is used

b. No consideration is given to snow or ice.

+~ c. All processes are stationary in the long-term average.

2. Precipitation

a. Storm series is represented by Poisson arrivals of

independent and identically distributed rectangular pulses.

b. Average interstorm period is much greater than average

storm duration.

c. Interstorm period and storm duration are statistically

independent.
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3. Soils

+* a. Soils are homogeneous.

+ b. Movement of water vapor is not considered.

+ c. Column is effectively semi-infinite as far as surface

processes are concerned.

+ d. Infiltration, exfiltration, percolation, and capillary

rise from water table are formulated separately and

their fluxes are linearly superimposed.

4 L\.) Carryover moisture storage (or deficit) from storm to

interstorm period (and vice versa) is neglected with

internal moisture at the start of every period being s ,

the space and time average in the surface boundary layer.

4. Vegetation (natural systems only)

a. Transpiration occurs at the potential rate.

b. Rate of soil moisture extraction by the root system is a

constant throughout the soil volume above the maximum

root depth.

c. Canopy density seeks a short-term equilibrium state at

which soil moisture is a maximum.

d. In water-limited systems, species evolve in the long term

toward maximum water use.

S. Infiltration and surface runoff

+ a. No surface inflows from outside the region are considered.

b. Storm intensity and duration are statistically independent.
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6. Evapotranspiration

a. Vegetation transpires at the potential rate.

b. Potential rate of evaporation averaged over the interstorm

period has a negligible coefficient of variation during

the rainy season.

7. Percolation to water table

+ a. Percolation is steady throughout rainy season at a rate

determined by the average soil moisture, s .

+~ b. Percolation is zero during dry season.

8. Capillary rise from the water table

a. Potential rate of evaporation is much greater than rate

of capillary rise from water table.

b. Dry surface matrix potential is much greater than saturated

matrix potential.

9. Miscellaneous

a. Water table is constant (no carryover groundwater storage

from year-to-year).

b. Relation among annual water balance components is given to

the first order by the relation among the average annual

quantities.

The basic soil moisture zone water balance is

PA = ET A(s9, w, M) + R sA(s , w) + R A(s , w) (6.11)

where

+

+
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PA = annual precipitation volume

R = annual surface runoff volume
TA

ETA = annual evapotranspiration volume

R A = annual groundwater runoff volume

Here

R A = m pN ( - T w(Z) (6.12)

6.4 Analytical Solutions

6.4.1 Steady State Flow with Accretion

To check the finite difference model. for numerical convergence,

a solution is developed for the case of steady state flow in a phreatic

aquifer with accretion. Using Darcy's Law in the continuity equation,

the governing equation for a homogeneous, isotropic medium is

d dh
K(l) dh h) + Q= 0 (6.13)

where

Qv = uniform, distributed accretion rate

and the boundary conditions are stated in Equations (6.4) and (6.5).

Q may include percolation, capillary rise, pumping and leakage, 
provided

they are constant and uniformly distributed in space.

The solution to Equation (6.13) subject to Equations (6.4)

and (6.5) is

2 Ev x 2 2 2
h = x(x - L) - - (h - h ) + h (6.14)

K(l) T L 0
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When h = h L.Equation (6.15) reduces to

?2
K(1)(h - h ) - Q x(x - L) = 0

0 (6.15)

In this case, one of the boundary conditions may be replaced

by

dh
dx - x = L/2 (6.16)

From Equation (6.14) in Darcy's Law, the volumetric flow

rate is

Q(x) = 2) (h2 - h ) + Q L/2 - x)2L 0 L )

w.here the dimensions of Q(x) are (1ength) (time)

Equation (6.17) preserves mass balance which is

(6.17)

Q(o) - Q(L) = QVL (6.18)

The extreme water table height between the boundaries is found

from the condition

Q(x) e 0 at x = xm (6.19)

where

x = distance from x = 0 to the location of extreme water table

height

The solution is

= K(l) 2 2
m 2QNL ( )0 L (6.20)
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which is substituted into Equation (6.15) to find h . When h = h ,m o L'

x = L/2.x

6.4.2 Steady State Flow with Accretion and Point Pumping

Solution (6.14) may be modified to include the effect of pumping

from a point source. To do this, a boundary condition is added at the

pumping or recharging well location. This condition is

h(a) = h 0 < a < L (6.21)

where

a = well location

h = water table height at the well
a

The value of h is found by solving the continuity equation at
a

x = a, which is

Qp = Qp (ha-Q PI (ha) (6.22)

where

Q, = volumetric flow rate contribution from reservoir h to

the well

QP I= volumetric flow rate contribution from reservoir hL

QP = pumping rate at the well

For the region 0 < x < a, Q = Q(a) which is evaluated from
PI

Equation (6.1), replacing.h by ha. For the region a < x < L, the

volumetric flow rate is
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Q h h'~
Q (X) = 7 (a + L - 2x) -2 - aa (6.23)

Substituting Equations (6.17) and (6.23) into Equation (6.22),

we find

2 2
SK h h2 Q L

2 2 2 L _ K ( ) 1 1
ha 2 + Ta) 2 - Q 2 a T-)] (6.24)

The condition h > 0 restricts Q to

2 2
K(1) h2 hL QvL

Q 2 a L-) 2 (6.25)

The phreatic surface is described by Equation (6.14) fdr the

region o < x < a and by

2 x V 2 2 L(-xx +
h(X) = K (1) (x-a)(x-L) +(h L- h )(La+ L (6.26)

for a < x < L.

6.4.3 Transient Flow with Accretion

We linearize Equation (6.2) to permit an analytical solution,

reducing the governing equation to

2 Q,~ h Q

where

= S (6.27)

S = specific yield

ne

and

T = linearized transmis-sivit.y

= K(I)h ( (6.28)
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where

h = average phreatic surface elevation

For this model, we assume the water table fluctuations are small

compared with h.

With boundary conditions (6.4) and (6.5) and a uniform phreatic

surface initial condition described by

h (x, 0) /h0  + (_ - 1) (.1 )
0

(6.29)

the solution (by finite Fourier transforms: Section 4.1.1) is

h(x, t) = h [i + (h + h (x, t)
0 h L)(t)

0

(6.30)

where

00 t

h (x,t)= t K( z) exp(-a 2t)[F(S) + exp(a 2t') A( ,t') dt']
m= 0

0

K(S' z) 1/2 sinem L m
L

F = (2)1/2 sin x[h + (hL

0
L

A = [ 1/2 1Qv(sinamz)/T]
0

- h )x/L] dx

dx

a = T/S

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

An alternative solution is found in Carslaw and Jaeger (1959,

ch. 3).

with

and
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6.5 Finite Difference Model

6.5.1 Discretization Procedure

We discretize the governing equation (6.2) for the groundwater

system using an implicit finite difference form. Starting at time, k,

and block-centered node, i, the time derivative is represented by

h _ 1
t At [hi,k+1 - hi,k] (6.35)

where

t =. time step between times k and k+l

The space-derivative evaluated at time k+1/2 and location i+1/2

is represented by

(T h) Ti+1 ,k+1/2 '
(T x i+1/2,k+1/2 i+1/2,k+1/2 Ax

hi k+1/
2

' -) (6. 36)

T = transmissivity

= Kh

and

Ax = distance between locations i and i+1

We let hi,k+1/2 be the arithmetic average of the water table

elevation at times k and k+l, which is for node i+1

hi+1,k+1/2 2 (hi+l,k+l* + hi+l,k) (6.38)

where

(6.37)
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The outer spatial derivative is represented by a central

difference approximation, which is for location i and time k+1/2

(T3h (T3h
3 3h T ~)i+1/2,k+1/2 - T )i-/,+/

3 (T 9x i-k+1/2/,x (6.39)

We approximate the accretion rate, QN(soh) at location i by

QN N (6.40)

Substituting Equations (6.38) and (6.36) into Equation (6.39)

and Equations (6.35), (6.39) and (6.40) into Equation (6.2), the result-

ing discretized governing equation for node i and time k+1/2 is

2 [T i+1/2,k+1/2 (hi+1 ,k+l + i+l,k) - (Ti+ 1/2,k+1/2

+ Ti-1/ 2 ,k+1/2)(hi,k+l+hi k) +Ti-1/2,k+1/2 (hi-lk+l+hi-1,k

+ QN. 2  [S(hi,k+l - hi,k)] (6.41)
+ Qik+1/2=f i kl k

i = 1, 2, ... , N; k = 1, 2, .

We use the harmonic average for the transmissivity in the

space domain to insure continuity between nodes (Bear, 1979), which is

i(1/2,k+1/2 x./T + x i/Tiillk+1/2 (6.42)

In general, since both the transmissivity and the accretion

rate are functions of the dependent variable, h, we must solve iterative-

ly for the water table level at each time step to check for convergence.
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We first assume

Tik+1/2 = T i,k(h i,k) (6.43)

and

QN N ,k(h k) (6.44)

We solve for hi,k+l and update T iik+1/2 and QN.k+/2 using the

arithmetic time average,

T. T +) (6.45)
i,k+1/2 - 2 (Ti,k i,k+l

and

Q (Q + Q ) (6.46)
Nik+1/2 N i,k i,k+l

We solve again for h i,k+ using the updated values for T and

QN and iterate until

i,k+l,m i,k+l,m+l (6.47)

within an acceptable error level. Here

m = iteration number

Very few, if any, iterations should be required because the

time-step should be small compared with the time domain of interest and

the water balance model assumes the water table is unchanging or

changing very slowly over the time period of interest.

The implicit scheme is used for the governing equation because

it is unconditionally stable, mean-ing as At goes to zero the F-D solution

converges to the true solution.
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The boundary conditions, Equations (6.4) and (6.5) are assigned

to fictitious nodes and represented by

h (t) ho,k
(6.48)

hL(t) hN+1,k

We now have one governing equation per location node 1 through

N and fixed water levels at nodes 0 and N+l. This set of N equations

and N unknowns is solved by matrix methods. In matrix notation, the

phreatic surface elevation at time k is written

[h] k =

ho,k

h 1,k

h N~

hN ,k

hN+1,k

(6.49)

where

[h]k = (N+2)xl matrix of phreatic surface elevations including

boundaries

The governing equation for N+2 nodes is represented in matrix

notation by

[A] ([h]k+l - [h1k) = [B] k+12([h]k+ + [h]k) + f]k+1/2

(6.50)
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where

[A] = (N+2)x(N+2) diagonal coefficient matrix

and

= (N+2)x(N+2) tridiagonal coefficient matrix

(St/At) 0

(S /At) 0

(S /At)N

(S/y N+l
0

i+1/2 +2Ti-1/2)

2(Ax)2

T.
i-1/2

2
2(Ax)

0

T2 +1/2

2 (Ax)~2
0

(6.51)

(6.52)

The net accretion values are stored in the following matrix:

[B]

where

[A] 1/2

and
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QN,0 1

N,1

-k+1/2

N

QN+l
L

(6.53)

where

[f]' = (N+2) x 1 matrix of net accretion values

We use our knowledge of the boundary conditions and matrix

manipulation techniques to reduce the (N+2)x(N+2) matrices to NxN

matrices and the (N+2) x 1 matrices to Nxl matrices. In the process

two new matrices are created to account for the boundary conditions.

The resulting governing equation is

- k+1/2 - k+l k - k+1/2 - k+l + [hik) + [f]k+1/2 + [gk+ + [91k

(6.54)

where

[] = /At)

L 0

(6.55)

'(S /At)Nj
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B B,
2 3

B1

0
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0

B
3

B B2

B1 = Ti-1/2/2(Ax)2

B2 =-(Ti-1/2 + T i+1/2)/2(Ax) 2

B3 = T i+1/2/2(Ax)2

f.k+1/2

1

i

QN,

QN,

QN.

and

[_] = Nxl boundary condition matrix

B h
1,0

= I

-B3, N+l hN+i-

B 1, = Kh /2(Ax)
2

B3 ,N+l = Kh L/2(Ax)2

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

where

(6.61)

and

(6.62)
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To use a standard matrix solver on the governing equation, we

need it in the form

[c][x] = [b] (6.63)

Equation (6.54) may be rewritten in this form as

([] - [B])k+1/2 [hk+1 = ([A) + *[B]) k+1/2 [h]k + 1- k+1/2 ' k+l + 91k

(6.64)

which means we may use a matrix solver such as the Thomas algorithm to

forecast future phreatic surfaces, h k+. To do so, we let

[C] = ([A] - [BI)k+1/2 (6.65)

([A + [g]) (666

(k+l/2[ hk + [f]k+1/2 + -lk+ k (6.66)

[x] = [khk+l (6.67)

The problem is completely formulated with the assignment of

the initial condition and landform shape. Their matrix forms are

[h] = initial water table elevation

and

[H) = landform elevation

The landform elevation is needed to calculate the water table

depths necessary to solve for the capillary rise.

The formulation of the model permits variable distances

between nodes and time steps. It also permits the aquifer properties

to be inhomogeneous. Pumping and leakage may be included by modifying

the accretion matrix.
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The model assumes the water balance of the soil water zone is

performed over the distance Ax and per unit width of the aquifer.

6.5.2 Iteration Procedure

The procedure for calculating successive water table elevation

contains the steps:

1. calculate the soil moisture content over a range of water

table depths. Either interpolate values of the content

for depths not calculated or fit a curve to the data for

-use in the groundwater model.

2. input the landsurface shape function, H(x)

3. assign an initial water table elevation, h (x)

4. calculate the water table depth from Equation (6.3)

S. calculate matrices [f], [g] and [A] from the water balance

results, the boundary conditions, parameters and space and

time steps

6. calculate [B] from [h]

7. solve for [h] 1 sequentially until the steady state [h]ss i

reached, using the matrix solver and the previous

[h]. as the known phreatic surface elevation.

s

s

Any parameter or boundary condition, including H(x), may change

its value at any time to simulate changing conditions. Step one elimi-

nates the need to recalculate s from the water balance for each Z at
0

each time step.



209

The solution procedure is simplified by compacting the [A] and

[B] matrices by using their symmetric natures (Milly and Eagleson, 1980,

p. 115). Matrix [A] is condensed into

S /At 0

[A]. (6.68)

S /At 0

and matrix [B] into

B2 ,1  B1,2

B*=(6.69)

B
. l,N

,B
2,N 0

where

B2,i = B2 for the ith node

and

B .= B
1,i 3,i-l

= B for the ith node

6.5.3 Convergence Requirement

While the implicit finite-difference scheme is unconditionally

stable, it would only converge to the true solution as At -+ 0. A

physically-based time-step specification reduces the guesswork in

choosing one which is small enough to prevent large water table changes

per time-step and large enough to minimize computational costs.

Following Bear (1979, ch. 10), we 'start with a water balance for an
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incremental slice of the aquifer domain. The water balance per unit width

of aquifer is

t+At tAt[QIN - UT.+ QN. y Ax(h - h ) (6.70)
1 1 1 ~ 1

where

QIN. = volumetric flow rate into increment i

QOUT. = volumetric flow rate out of increment i

QV = volumetric accretion, pumping and leakage rates

t
h. = water table height for increment i and time t
1

The dimensions of Q are (length) 2(time)~-.

Assuming T = Kh ~ const., Ax. = const. = Ax, S = const. and

using Darcy's Law in Equation (6.70), we may restate Equation (6.70) as

At[T(h. - 2h. + h. )/Ax + Qv] = S Ax(ht+At - h ) (6.71)
i+1 1 1-1 y i

We restrict the one time-step change in water table elevation to

the initial depth to the water table by setting h = h. = 0 and
i+1 i-1

h = -Z.. (Z. = initial water table depth.) This sets the limits
1 1 1

-Z < h +At < 0. Substituting these values and limits into Equation

(6.71) results in

0 <_ At (Ax) + 2Z.S Q x (6.72)

Letting Q =Q + Q where Q = x and Q is thev N QP QNx

distributed pumping rate, and substituting Equation (6.10) for QN' we

have an upper bound on the time step which is
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T - K 1 -1
At < (6/2) [- (Ax) -+ K ( . (6.73)

where

= arbitrary scaling factor

6.6 Results

6.6.1 Similarity Parameters

Certain parameters of the water balance model and the groundwater

flow model simplify the analysis and evaluation of the results. For the

water balance from the Eagleson model (1978a-f), the parameter describing

the sensitivity of the percolation rate to the soil moisture content is

K(s )/K(l) = sc (6.74)
0 0

where

c = pore disconnectedness index

The parameter is derived from the Brooks and Corey (1966) model

of the hydraulic conductivity.

The index of water table influence, a parameter of the climate

and soil, indicates when the water table is too high for its effects to

be superimposable in the water balance. When

y = w/K(l) > 0(1) (6.75)

the water balance model is no longer valid. We define

y = index of water table influence

The relation for w assumes a dry land surface which is invalid

for w/e > 1. The resultant water balance for w/ep > 1 is also invalid.
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Thus we restrict y to

- max

where

Ymax = e /K(l)

e = potential evapotranspiration

w = capillary rise rate

The potential influence of the water table on the volume of

groundwater recharge is measured by

A = T 1w/m K(l) (6.77)

where

A = groundwater loss index

m = average rainy season length

T = number of days/year capillary rise occurs

The actual volumetric contribution of the water table to the

water balance is measured by

A(s0, Z) = T w(Z)/m K(s0)

= T w/m K(1)sc1 T 0

(6.78)

(6.79)

which may vary considerably from A depending on s and c.
0

The maximum value of this parameter is defined by

and

(6.76)
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A (s ) = T e /m K(l)sC 6.80)
m 0 lp T (

The primary parameter of the groundwater system, derived from

a mass balance of a cross-section of the phreatic aquifer, is t/T

where

T = characteristic residence time of water in aquifer

= S yL/K(l) (6.81)

and

S = specific yield of the aquifer

L length of aquifer

This parameter is also a measure of the time scale over which

the boundaries of the aquifer interact. When

t/T > 0(1) (6.82)

the boundaries are completely interacting.

The parameter (h0 - hL)/L provides a measure of the average

hydraulic gradient of the groundwater system. If

(h - h L)/L > 0(.01) (6.83)

the Dupuit approximation of essentially horizontal flow may be invalid.

The parameter x/L is a convenient measure of distance where

x = distance from reservoir of height, h0

6.6.2 Water Balance Results

6.6.2.1 Climate-induced water table shape

Examination of the value of the net accretion to a water table,
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represented by A(s ) or A m(s ), produces much information about the shape

of the water table and the influence of climate on its shape. We define

A m(s) as the index of potential climate-induced water table shape, a

climate-soil-vegetation parameter, where s is the long-term steady state

soil moisture. With A (s ) expressed by Equation (6.80), only when
m o

Am(s 0) > 1 is a climate-induced steady state water table depression

possible. Conversely, only when A m(s ) < 1 is a climate-induced steady

state swamp possible. A climate-induced water table depression is formed

when the capillary rise rate exceeds the percolation rate.

The index of climate-induced local water table shape, N(s ),

a climate-soil-vegetation parameter defined by Equation (6.79), indicates

whether a region (in which the water table is shaped by climate rather

than aquifer properties) actually has a recharge mound, or a water table

depression. When

A(s ) > 1 climate-induced water table depression (6.84)

A(s ) < 1 climate-induced recharge mound (6.85)

The special case. of A(s ) = 1 indicates the location of the

maximum climate-induced water table depression or mound. The local

extremum is defined by

3h(x) = 0 (6.86)
5x

Equation (6.86) states that no horizontal flow crosses the extremum

section, as was also noted by Equations (6.16) and (6.19). For a long-

term steady state water table, shaped solely by the local climate,
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neglecting pumping and leakage, the water balance at the extremum section

also restricts vertical flow to

= 0 (6.87)

where

QN = vertical recharge and capillary rise rates

Substituting Equation (6.7) for QN in Equation (6.87) results

in

(6.88)T w = m pN

or

A(s ) = 1 (6.89)

Substituting Equations (6.8) and (6.10) into Equation (6.88)

yields a useful s (Z) relation. First we have

TK(l) B(i (l)/Z]M = M K (1) s
1/c 1/0

which is rewritten as

where

S = (T1/M )1/c B/c [ ZM

B = 1 + 1.5(mc - 1)~

This s (Z) relation for A(s )-= 1 is a function of the soil

type through m, c, (l) where c = c(m). It is a function of climate

(6.90)

(6.91)

(6.92)
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through m 7 (and through e when i.(s ) = A (s )). This relation assumes
p o max o

a fixed water table.

Equation (6.91) is plotted in Figures 6.1 and 6.2 for the four

representative soils of Table 6.1. In Figure 6.1, we use m = T and in

Figure 6.2, we use mT = T1 /2. These cover the range of most rainy season

lengths. Since s = s (w), a maximum value of s occurs for w = e . To

eliminate this climate dependence, we set e (in each case) such that the

maximum soil moisture is s0 = 1. For mT = T, the plotted equations are,

for the soil data of Table 6.1 and w < e
p

s0 = 0.74 7 -.222 Clay (6.93)

s = 0.66 Z_-.286 Clay loam (6.94)

s = 1.50 Z-. 6 6 7  Silt loam (6.95)
0

s = 4.24 2 Sandy loam (6.96)

Each relation, s (Z) for a given soil type, m and e is
o p

referred to as a chart. Care must be made in using these to define the

s at which w = e . Values of s for water table depths from the land

surface where w > e are invalid. The cutoff minimum valid water table
p

depth is defined by

e -1/mc
z = $(1) BK 1 (6.97)

The most appropriate use of these charts is to ascertain

whether a measured water table depression is climate-induced. For a

given soil type, e m T and the measured maximum water table depression,
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the corresponding long-term average soil moisture content is as given by

Figure 6.1 and Equations (6.93) to (6.96). This is associated with the

type of climate-soil-vegetation system (CSVS) necessary to drive the

water table to that depth from climate forcing alone. To the extent that

the s calculated from the water balance is greater than the value from

this chart, alternative mechanisms, such as pumping or leakage are

responsible for the depression. When Am(s0) > 1, the climate plays at

least some role in the depression formation, however. When the s calcu-
0

lated from the water balance is less than that from the chart, either the

water table has not reached its climate-induced maximum depth or the

hydraulic conductivity of the aquifer is large so that equilibrium between

the flow from the boundaries and net water loss is reached before Q= 0.

The charts (Figure 6.1) are also useful to determine whether

a recharge mound is climate-controlled or transmissivity controlled.

When A m(s ) < 1, the recharge mound is limited by the hydraulic conduc-

tivity of the soil. When A (s ) > 1, the water table will rise untilm 0

A(s ) = 1 unless steady state has not yet been reached or recharge is in

equilibrium with the flow to the boundaries (as in the water table depres-

sion case). The charts are used in the same way for recharge mounds as

for the water table depressions.

The charts may also be used to deduce s9 in some cases.

Knowing Z, e and m , if we suspect the depression or mound is climate-
p

controlled and A m(s ) > 1, we may find the corresponding s. from the

chart.
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Clay

m .222(12)

Clay Loam

.286(10)

Silty Loam

.667(6)

Sandy Loam

2(4)

p(1) (cm)

K(1) (cm/s)

ne

25

8. 28x10-6

.45

19

2.32x10-5

.35

166

9.94x10-5

.35

200

2. 08x10~ 4

- .25

Table 6.1

SOIL PARAMETERS

[Eagleson, 1978c]
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An example of. this method is taken from the El-Gizera (EG)

region of Sudan (between the White and Blue Niles south of Khartoum), a

region of irrigated agriculture. A maximum water table depression of

100 meters has been measured. Available data for the actual soil are

given in Table 6.2 and lie between the clay-loam and the silty-loam of

Table 6.1. For the listed m T, the condition A(s ) = 1 is fulfilled by

the relation

s = 3.88Z'8  w < e
0 p

From Figure 6.3, a climate-induced water table depression of

100 meters requires a soil moisture content of 0.2 or less. The calcu-

lated El-Gizera water balance using the data from Table 6.2 and Z = 100

gives s = 0.4. This indicates that the climate could account for only

a 15 meter steady state depression and we must look to another mechanism

to account for the bulk of the depression. We must also note that liquid

moisture capillary rise may not be sustainable for such large water table

depressions anyway.

For this example, the restriction w/e < 1 limits Z < 3.92 m
p-

and s0 < 0.695, using Equation (6.97).

6.6.2.3 Water table-dependent quantities for CSV systems

Each climate-soil-vegetal system (CSVS) has curves of s (Z),

pN(Z) and w(Z) from which are derived curves of QN ) = P- w which

indicate the sensitivity of the water balance and the accretion rate to

the water table depth. These curves answer the questions of when the

water balance may neglect the water table and when net accretion into the
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groundwater system may be assumed uniformly distributed in space. They

also show the maximum water table depth for which a climate-controlled

steady state water table depression or recharge mound will occur.

Curves of s0 (Z), pN (Z), w(Z) and QN(Z) are presented in

Figures 6.4 to 6.11 for a wide range of CSVS. The data used are listed

in Table 6.2. The Bahr el Ghazal region and the Machar Marshes are large

swamplands in the south of Sudan. The Bahr el Ghazal data are averaged

for six catchments surrounding the central swampland using the physical

parameters given by Chan and Eagleson (1980). The Machar data are

averaged from five catchments (El-Hemry, 1980).

Figures 6.4 to 6.8 show how the steady state water balance,

represented by s0, varies with the water table depth. The moisture

content decreases with lower water tables because the soil moisture

supplies the evaporation demand not supplied by the deeper water table.

The steady state soil moisture content is bounded by a maximum

lim s (w) = s (e ) Z = Z . for s <1
ZZ o o,max p m o

min

and a minimum

lim s (w) = s . (0) Z < Z
Z 0 o,mmnmx-

where Z . may be exactly calculated from Equation (6.97) and the asso-

ciated s is found from the water balance with Z = Zmin.
0min

A comparison of s (Z) for a sub-humid climate and an arid one

reveals trends in the sensitivity of the water balance to the water table

depth. Figures 6.4 and 6.5 show that s varies over a wider range of



S4.50.

ii 4.00.

CD 3.50.

3. 00.

6 2.50-

~ 2. 00 .
0
1- 1.50-

i-- 1.00.

C 0.50.

0.00-

0.65 0.67
AVERAGE

223

0.69 0.71 0.73 0.75 0.77 0.79 0.81 0.83 0.85
EFFECTIVE SOIL MOISTURE CONCENTRATION, So

Figure 6.4

WATER TABLE-DEPENDENT WATER BALANCE, CLINTON, MA

20..2

15

cr13-

S10-

0.

I-T I I II I i I 1 I

0.45 0.47 0.49 0.51 0.53 0.55 0.57 0.59 0.61 0.63 0.65
AVERAGE EFFECTIVE SOIL MOISTURE CONCENTRATION, So

Figure 6.5

WATER TABLE-DEPENDENT WATER BALANCE, SANTA PAULA, CA



224

values and is dependent on Z for deeper water tables with an arid climate.

For the arid climate (Santa Paula, CA), 0.47 < s0 < 0.62 and Z is influen-

tial for about 10 meters. For the sub-humid climate (Clinton, MA),

0.72 < s < 0.8 and Z is important for the first two meters.

These results are physically reasonable. One expects higher

s values with more precipitation and moisture contributions from deeper
0

water tables with larger potential evaporation rates. The influence of

deeper water tables for Santa Paula is also due to the larger value of

(l), a soil property.

The effects of an unusual CSVS are seen in the s (Z) relation

for the Bahr el Ghazal region plotted in Figure 6.6. The result of

a large evaporation rate and an unusual soil type is a water balance that

is sensitive to water table depths of over 100 meters.

The very arid climate of the El-Gizera CSVS demonstrates a

great sensitivity of the water balance to the water table depth but

negligible sensitivity to the quantity of vegetal cover, M. Figure 6.7

shows that the s (Z) relation is identical regardless of whether the

vegetal cover has a fixed value or an "optimal" value chosen (Eagleson,

1978) to maximize soil moisture, M . This observation is only valid for

values of M close to M . Figure 6.8 is the plotted s (Z) relation with

the optimal vegetal cover for each s9 as noted on the graph.

The water table depths used in the steady state water balance

to generate Figures 6.4 to 6.8 are themselves the result of an equilibrium

achieved between the climatic conditions, local geometries, and the

properties of the soil, particularly the aquifer conductivity.
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Santa Paula, CA Machar Marshes
Climate

P (cm) 41.61

m 49.1

m (cm) .85

mt (days) .063

m r (days) 3.2
tb

m b (days) 157

m (cm/hr) .565

K 1.16

e (cm/hr) .018

h (cm) .15

T ( 0C). 29.74

Soil

n .35
e

m(c) .388

K(1) (cm/sec) 2.32x

$(1) (cm) 100

Vegetation (initial values)

k 1.02
v

M .3

3

(8.2)

10 4

53.4

15.7

3.4

1.43

10.42

212

.100

.25

.0114

.10

13.8

.35

.20(13)

1. x10~ 4

166

1.

.4

90

75

1.21

.05

2.61

197

1.01

.47

.013

1.13

27.5

.35

.286(10)

1. x10 4

6S

1.

.4

94.1

109

.86

.32

3

365

.084

.50

.0063

.10

8.4

.35

.667(6)

2. x10~

19

1.

.8

118.1

81.4

1.44

.05

3.08

255

1.20

.97

.0175

.30

26.3

.35

.28(10.1)

4. 5x10 4

129

1.

.78

Table 6.2

WATER BALANCE DATA

Source: El-Gizera (Cairo U., Dept. of Hydrology); Santa Paula, CA and Clinton, MA (Eagleson, 1978e,f);

Machar Marshes (El-lemry and Eagleson, 1980); Bahr el Ghazal (Chan and Eagleson, 1980)

El-Gizera Clinton, MA Bahr el Ghazal
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.The basic question when analyzing Q N(Z) is when may we assume

N( to be independent of water table depth. Comparing Figures 6.9 and

6.4 for a sub-humid climate shows as expected that QN is dependent on

water table depth over the same depth range as is s (Z). We may assume

QN = const. for Z > 4 meters for the sub-humid Clinton, MA, CSVS and for

Z > 18 meters for the arid Santa -Paula, CA, CSVS.

Figures 6.9 and 6.10 show that the accretion rate, QN'
increases with Z because the capillary rise decreases faster than does

the percolation rate with increasing depth to the water table.

Figures 6.11 and 6.12 are for a case where A (s ) > 1, them 0

El-Gizera CSVS. For elevations above that at which A(s ) = 1 (Figure 6.11)

there is a net water loss. Below this depth (Figure 6.12), there is a

net water table recharge. For the net water loss case, QN follows the

shape of the capillary rise (Figure 6.11).

The water balance data for the above curves are generated from

a computer program written in FORTRAN by Chan (1980) and modified to vary

the water table depth and allow for negative groundwater runoff.

6.6.3 Results of Coupled Groundwater-Water Balance Models

6.6.3.1 Methodology

The water balance model generates a file of water table depths

and accretion rates to or from the water table. This is input into the

groundwater finite-difference model.
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6.3.3.2 Results .

Tests of the coupled groundwater-water balance model show the

dependence of the shape and depth of a steady state water table depression

on the distance between the lateral boundaries (rivers in this case) and

on the aquifer hydraulic conductivity. A comparison of Figures 6.13 and

6.14 using the El-Gizera CSVS data of Table 6.2 and the aquifer data of

Table 6.3 shows that the water table is flatter and deeper for the larger

distance between the rivers. Comparing Figures 6.14 and 6.15 for the

same distance between rivers but different K(l) shows that the steady

state water table is deeper for the smaller K(l).

These results are sensible when considering what mechanisms

result in steady state water table configurations. In this example, the

only water sources are the rivers and aquifer storage and the only water

demand is from the climate.

Starting from a horizontal phreatic surface at t = 0, the

water table falls initially at a rate which is uniform everywhere except

close to the rivers where a gradient is formed. This gradient causes

flow from the rivers toward the center. Until this flow (and accompany-

ing gradient) reaches any interior section, climate demand at that section

can only be met through extractions from aquifer storage which produce

a falling local water table. Depending upon the dimensions and conduc-

tivities involved, the falling water table may reduce climate demand to

zero (i.e., pN = w) before the encroaching gradient-induced river flow

reaches the section. Such a case is climate-controlled and there will

be a section of horizontal phreatic surface in the steady state (see for

example Figure 6.13).
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If flow from the two rivers reaches the center of the aquifer

then the entire phreatic surface is curved. Such a case is called

gradient-controlled. The steady state maximum depression is less than

in the climate-controlled case, and at the section of maximum depth w > pN'

When K(l) is large, the flow supplies the entire aquifer length more

quickly than when K(l) is small. Also, when the aquifer length is smaller

the water flow from the rivers supplies the entire aquifer sooner.

A comparison of Figures 6.13 and 6.14 also shows that the

variability of QN with water table depth is more important with shorter

aquifer lengths. For shorter lengths, there is much more variability of

Z with respect to x.

In all three cases, it takes about 500 years for the new steady

state water table to develop.

The shape of the steady state water table is also dependent

on the land surface shape and on the initial water table slope. The

steady state water table shape in Figure 6.16 follows that of the land

surface. The result is a central mound in a generally-depressed water

table. The effect of the sloped initial water table is the shift of

the extreme water table depths in the direction of the initial water flow.

The question of what causes a 100 meter water table depression

in the El-Gizera region of Sudan is possibly, answered if pumping is added

to the water demands on the aquifer. It. is shown in Figure 6.17 that a

5 2
pumping rate of lxlO m /yr applied over a 42-year period for the 100 km

distance between the Blue and White Niles produces a water table drop of

about 100 m starting from an initially shallow water table and a gentle
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land surface grade. For such a short duration of pumping and such a large

distance between rivers, the pumping primarily removes water directly from

aquifer storage.

Including both climate and pumping effects results in a larger

water table depression than if just pumping is applied, since it was shown

in Section 6.6.2.3 that climate demand alone produces a 15 m water table

depression.

For a narrower aquifer, the given pumping rate may reach

steady state with the river water supply over the 42-year duration. For

a five kilometer long aquifer, the steady state maximum water table

depression is 90 meters, as seen in Figure 6.18.

For aquifers with recharge mounds, the shape and height of

the recharge mound are partially determined by the distance between the

boundaries and the hydraulic conductivity. A comparison of Figures 6.19

and 6.20 shows how a swampland may form when lateral hydraulic conductivity

is small. This occurs when the climate water supply rate exceeds the

aquifer's capability to remove the water to the river. In general, the

recharge mound rises until either the recharge rate equals the lateral

flow rate or the swampland forms and excess water runs off across the

surface.

6.6.3.3 Convergence

To test the model for numerical convergence, we compare the

finite-difference solution with an analytical steady state solution from

Section 6.4. The comparison between-Equation (3.14) and the finite-

difference solution as shown in Figure (6.21) indicates the model
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Figure: 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21

K(1) (m/yr) 73 73 365 73 73 73 142 71 126.1

S .35 .35 .35 .35 .35 .35 .35 .35 .35
y*

e (m/yr) 1.6 1.6 1.6 1.6 0 0 1.53 0 0

B 1.69 1.69 1.69 1-.69 0 0 1.82 0 0

$(1) (m) 1.0 1.0 1.0 1.0 0 0 1.29 0 0

mc 3.16 3.16 3.16 3.16 0 0 2.83 0 0

L (km) 100 2 2 100 100 4.5 6 6 100

h (m) 95 95 95 100 400 400 180 180 500

hL (m) 95 95 95 90 400 400 160 160 500

S1 1 1 1 1 1 1 1 1

t (yr) 1000 1000 1000 1000 1000 1000 1000 1000 1000

nn 31 31 31 31 41 41 41 31 31

H (i) 100 100 100 100 405 405 185 180 600

H (m) 100 100 100 110 410 410 200 200 600

HL (m) 100 100 100 90 405 405 165 165 600

Qp (m/yr) 0 0 0 0 1 1 0 0 0

QN (m/yr) 0 0 0 0 0 0 0 0 .01

Table 6.3

GROUNDWATER MODEL INPUTS



243.

convergences to the true solution for time steps on the order of the

physically-based time step used.
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Chapter 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

The specific objectives of Section 2.2 were fulfilled in the

context of a larger objective; the understanding of the interactions

between the water table and the unsaturated zone. In part one of this

work (Chapters 3-5), the program consisted of three steps.

1. There are comments on the applicability of the hydrologic

equations of the soil-water zone developed for semi-infinite soil

columns, and for finite columns (Sections 3.1-3.3).

2. There is the deduction and the solution of the linearized

soil-water movement problem (Sections 3.4 to 4.2) for high water tables

and including some effects of vegetation.

3. Solutions for the infiltration case were examined and

compared with the non-linear approximation of reality. Additionally,

dimensionless expressions were derived to indicate when a finite domain

analysis is needed.

The second aspect of this work (Chapter 6) includes the

development of quantitative relationships between soil-water content

(s ), water table depth (Z) and the net acpretion to the groundwater
0

(QN (Section 6.6.2) for a wide range of soil types and climates. 
We

have shown when the soil water balance influences the phreatic surface

shape and under what conditions that shape will be convex or concave.

We have demonstrated. how lateral transmissivity may dominate groundwater

flow and force the creation of a swampland.
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Several parameters of the groundwater-unsaturated zone regions

were developed and shown to simplify the definition of when and to what

effect climate governs the phreatic surface shape.

7.2 Conclusions

The linearization of the soil-water movement equation is

productive in terms of generating dimensionless expressions for the

hydrologic aspects of the soil-water zone. The dimensionless parameters

have been particularly useful in expressing the relationship between

the water table and the hydrologic processes (see Section 5.2).

In comparison with a numerical model, the linear analytical

expressions for infiltrated volume, ponding time and particularly for

average moisture content are reasonable representations of the non-linear

solutions. This demonstrates the theoretical utility of the linearizing

process because of the analytical representation of the soil physics.

The equations for the average moisture content are shown to be adequate

substitutes for the numerical non-linear solution in problems of prac-

tical interest (e.g., drainage and agricultural studies).

Limitations on the analytical models are due to the

linearization, and the convergence of the series solution. One must

be careful not to use the linear solution in domains where its validity

has not been substantiated (e.g., ponding time for Z0 > 16, or for large

changes in moisture content).

The expressions indicating the validity of the assumption of

the semi-infinite domain are promising-indices of when a domain is not

realistically semi-infinite.
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Much of the work of part one is an extension of the literature

which uses linearization to handle problems of high water tables and to

analytically account for the influence of vegetation. The solution tech-

nique used (and rarely referred to in the soil physics literature) has

been shown to be productive in terms of generating analytical solutions

to a wide range of problems.

Concerning direct application of the equations of Chapter 4

or Appendix A in water balance models, only the average soil moisture

model for infiltration seems reasonable at this time. Analysis of the

high water table is a relatively undeveloped field of study and more

comparisons with field studies is advisable, particularly with respect

to the effects of entrapped air. However, many of the equations developed

are likely to be appropriate based on the results presented in Chapter 5.

The equations of Chapter 6 coupling water table, average soil-

water content and the accretion rate are useful on the annual or larger

time scale. They are based on realistic physics of non-linear soil-

moisture movement.

The basic conclusion for Chapter 6 is that the water table

plays a significant role in many water balance problems and should not

be immediately assumed negligible. Convenient equations, presented in

Chapters 5 and 6, permit ready assessment of when the water table may

safely be neglected.

7.3 Recommendations for Future Research

1. The incorporation of-water table effects on the unsaturated

zone hydrology and soil-moisture dynamics is a ripe field for future work,
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including field studies. and theory. More analytical expressions need

to be developed for cases of interest in agriculture and drainage (includ-

ing 2D and 3D).

2. The equations developed herein need to be compared with

data from field studies and numerical studies for the cases not consid-

ered in Chapter 5 (especially exfiltration and the solutions for vege-

tated soils).

3. Computer cpu time comparisons between the slowly converging

analytical solutions and the non-linear numerical solutions should be

undertaken.

4. Effort should be directed at developing and testing

simplified expressions for the hydrologic processes, such as are

suggested in Appendix A.

. The analysis of Chapter 6 should be modified for annual,

seasonal and daily water table fluctuations for use in short term agri-

cultural and drainage studies.

6. The essence of this work has been to replace empirical

hy4ralogical expressions with physically-based ones. This spirit should

continue in future investigations of the high water table case. Accurate

modelling of the high water table condition is theoretically satisfying

and could result in better drainage schemes for greater agricultural

output and environmental safety.
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Appendix A

SIMPLIFIED INFILTRATION EQUATIONS FOR HIGH WATER TABLE

The goal here is to incorporate the influence of the water

table on the infiltration rate and ponding time using simpler expressions

motivated by the series solutions of Sections 4.2.3 and 4.2.4.

A.1 Similarity to Horton's Infiltration Law

The expressions for infiltration capacity derived in Section

4.2.3 are of the form of the Horton infiltration equation, (1939), which

is

-k t
f.(t) = (f - iss)e + f (A.1)

where, for the uniform initial condition

lim lim f = 2D 2 cos mz 0  -e1 2
t-+ 0 0 o12 z e 1/ 12ZTO

(A.2)

lim lim f 1 - 2 2 cos mrz 3 1- e /2 2
t-+<O Z -xx> 0 o z 0 z

(A.3)

ki = (mTr/Z)2 + 1/4 (A.4)

with

f . = initial infiltration rate

*

f. = ultimate infiltration rate

ki = rate of infiltration decay

The expressions are only valid in the limits of time and space
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because of the convergeice problems mentioned in Sections (5.4.1),

(5.4.2) and (5.5.3).

We may simplify Equations (A.2), (A.3) and (A.4) for small
2

dimensionless depths, when >> 1/4 or Z < 2Tr , to

K1  2D * o 0 ro n -Z /2
lim lim f. . = cos 0- 1 ( eZ /2] (A.5)
t-+O z 0*0 i 2 Z 0 zo ] eoi

K 1 2D0 ell - (-1) n eZ0/2]
lim lim f. = Cos zn-Z/

t o0+0 iss 2 Z I o ] 1
(A.6)

and

k = (mnr/Z0)21i=(7/o 2 (A.7)

Horton's infiltration law does not appear to have been derived

previously (including gravity) from the basic equation of soil physics.

Instead, it was proposed as an analogy to the decay process. This

analysis relates the Horton parameters to those of the soil, the soil

moisture state and the water table depth based on the linearized soil

moisture movement equation solved for the finite one-dimensional domain.

The relations are

f. = f.(KiDZ 9 5

f = f (K, D,, Z, e1)ss ss 1

an d

ki = k1(Ki, D,, Z, el)
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Showing the similarity between the Horton equation and the

linearized solution aids in understanding both models of infiltration.

Research on the Horton equation has shown the Horton model to decay to

the steady state more slowly than the actual process and resultingly to

overpredict the surface runoff (Collis-George, 1977). This is to be

expected of the linear model solution. On the other hand, knowledge of

the composition of the Horton parameters and the assumptions underlying

the derivation of them for the finite domain, linear model (Sections 3.4

and 3.5) places the Horton equation on a sounder physical basis. The

connection between the two suggests that the Horton equation might be

a good model for the infiltration capacity in a shallow water table situa-

tion.

A.2 Infiltration Law for Shallow Water Table Conditions

To use the Horton model, we may either fit the parameters for

the range of water table depths or explicitly account for the depth-

dependence. In the latter case, we consider the following, based on the

results of tests using the numerical model of Milly (Section 5.6).

1. fi. occurs at soil column saturation. It is thus the

depth-independent saturated column vertical flow rate (e.g., saturated

hydraulic conductivity).

2. The initial infiltration rate is larger for deeper soil

columns.

3. The infiltration rate of a soil column is independent of

the water table depth for a sufficiently deep column.
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The component'of Equations (A.2) and (A.3) which fulfills the

70/2
above criteria is the first series term (n=O) expression 1-e . To

generalize the expression, we replace Z0 /2 by P Z, where we have replaced

k/2D, by a fitting parameter, P . The modified Horton expression proposed

is

-P Z -k t
* 1 * * -k t *

f.(t) = (1 + e )(f. - f. )e + f. (A.8)

where

P = model parameter

Z = water table depth

The linearized model suggests other modifications of the

Horton equation which may be added if this proves inadequate.

A.3 Ponding Time Using Horton's Law

Instead of using the Philip infiltration law in the time-

compression approximation to derive a ponding time expression, we may

use Horton's infiltration law. The cumulative infiltration expression

corresponding to the rate expression (A.1) is

* *

fi,i -fi~ss -k1 t) + f. (A.9)
I(t) = k (1 - e i,ss

Matching the actual cumulative infiltration at ponding time,

t o with that derived from this model at time, t*, we express t0 (t*) by

* *

(f. .-f. ) -k t* *
t o 1 1 ( 1 - e ) + f. t* (A.10)o i k1,ss
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where

i = rainfall rate

*

Assuming f.t*) = i, we invert Equation (A.1) to write
1

* *

f1 - f.

1 i - f
. i ,ss

A. 11)

Substituting Equation (A.l) into (A.10) results in the ponding

time expression for the Horton infiltration law which is

*

*

t = - + f Zn1 /k i
0 i 1,1 i,ss * 1

1,ss

t > 0 -
0 -

(A. 12)

For i = f. > f. , ponding time occurs instantaneously from

* *

this model. For f > i > f ., ponding time is negative. This is

interpreted to mean that saturation of the soil surface occurs very quick-

*

ly as i approaches f. . and is assumed to occur instantaneously for

heavier rainstorms.

A.4 Ponding Time for Shallow Water Table Conditions

We incorporate the water table influence with the

modification as in Section A.2. The result is

same

-P Z

*-P 1Z (f -. )1- e )* 1 . i, i- i,ss e
t = f. .(-e )-i + f. Zn , /k1i

1,ss
(A.13)

Both the expression for ponding time and for the infiltration

capacity need to be tested against real .soil data or a numerical model.

They are both functions of four parameters: P1, f , ss and k .
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Appendix B

Listing of Computer Code
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCccCCCCCCC
C
C LINRESWT1
C.
C
C
C LINEARIZED RICHARDS' EQUATION FOR SHALLOW WATER TABLES.
C EDITION 1.
C
C 10 APRIL 1982
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 1.0
C THIS PROGRAM CALCULATES SOIL MOISTURE DISTRIBUTION, AVERAGE
C SOIL MOISTURE CONTENT, MOISTURE FLUXES AND CUMULATIVE QUANTITIES
C AT THE LAND SURFACE AND WATER TABLE FOR A SHALLOW WATER TABLE SOIL
C USING ANALYTICAL SOLUTIONS DERIVED BY THE FINITE FOURIER
C TRANSFORM METHOD. THE SOLUTIONS CORRESPOND TO THOSE IN CHAPTER 4
C OF S.A. MILLER, ' THE INTERACTIONS OF THE UNSATURATED AND SATUR-
C ATED ZONES.' S.M. THESIS, M.I.T. DEPARTMENT OF CIVIL ENGIN-
C EERING, 1982. SOME GENERATED RESULTS OF THIS PROGRAM ARE
C CONTAINED IN CHAPTER 5. ALL SOLUTIONS ARE DIMENSIONLESS.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C -
C 2.0
C TYPE DECLARATION
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C VARIABLE DEFINITIONS
C (ALL VARIABLES ARE DIMENSIONLESS UNLESS INDICATED)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C NAME DESCRIPTION
C
C ACAP SINUSOIDAL INITIAL CONDITION PARAMETER
C BN EIGENVALUE OF SOLUTION
C D HYDRAULIC DIFFUSIVITY (CM*CM/HR)
C Gi CONCENTRATION DEPENDENT VEGETATION MODEL PARAMETER
C Gil LINEAR DEPTH DEPENDENT VEGETATION MODEL PARAMETER
C G12 LINEAR DEPTH DEPENDENT VEGETATION MODEL PARAMETER
C G21 EXPONENTIAL DEPTH DEPENDENT VEGETATION MODEL PARAMETER
C G22 EXPONENTIAL DEPTH DEPENDENT VEGETATION MODEL PARAMETER
C IBC INDEX FOR BOUNDARY CONDITION TYPE
C ICHU INDEX -FOR UNIFORM INITIAL CONDITION AFTER HYDROSTATIC
C IDS INDEX FOR CALCULATING MOISTURE CONTENT DISTRIBUTION
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C I IBC INDEX FOR ZERO BOUNDARY CONDITION VALUE
C IlC INDEX FOR INITIAL CONDITION TYPE
C IS INDEX. FOR EVENT TYPE
C IPLT INDEX FOR PLOTTED OUTPUT (MULTICS SOFTWARE SYSTEM)
C ITAB INDEX FOR TABULATED OUTPUT
C IVEG INDEX FOR VEGETATION MODEL TYPE
C IP__ INDEX OF PLOT TYPE
C.-
C, FS SURFACE FLUX
C VS SURFACE IN/EXFILTRATION VOLUME
C VW MOISTURE QUANTITY CROSSING WATER TABLE
C V'S VOLUME OF SOIL MOISTURE STORAGE
C EV VOLUME OF TRANSPIRED MOISTURE
C TO PONDING TIME
C KTH LINEAR HYDRAULIC CONDUCTIVITY COEFFICIENT (K(1)/N; CM/HR)
C N INDEX FOR NUMBER OF SIMULATIONS VARYING PARAMETER
C NL__ INDEX FOR LOGARITHMIC (=2) OR INCREMENTAL (=1) SCALE
C NN__ INDEX FOR POWER OF LOGlO
C ZN__ INDEX FOR MULTIPLICATION FACTOR OF INCREMENTAL SCALE
C -=
C ZL DEPTH TO WATER TABLE
C FL RAINFALL OR EVAPORATION RATE
C IC INDEX FOR AVERAGE INITIAL MOISTURE CONTENT
C TS TIME STEP INDEX
C VG INDEX FOR CONC. DEPENDENT VEGETATION MODEL PARAMETER
C NLT SCALE INDEX (2=LOG10,1=INCREMENTAL)
C NNT MULTIPLICATION FACTOR OR LOG10 POWER INDEX
C NOT INDEX FOR NO. OF SIMULATIONS VARYING NO. OF SERIES TERMS
C NZT INDEX FOR NUMBER OF CALCULATED DEPTHS
C PL PERCENT OF WATER TABLE DEPTH FROM BOUNDARIES TO
C EVALUATE FLUXES
C THO INITIAL AVERAGE MOISTURE CONTENT
C TH1 SURFACE CONCENTRATION BOUNDARY CONTDITION VALUE
C ZHO SINUSOIDAL INITIAL CONDITION PARAMETER
C ZiIC STARTING VALUE FOR UNIFORM INITIAL CONDITION
C ZNE EFFECTIVE POROSITY
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C TYPE DECLARATION
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

REAL THETA(100,100),ZTHETA(100),ZZ(100),KTH,D,ZL,G,DIST,TIME(100),
&FB(1000) ,F14(1000) ,F15(1000) ,ZJ1 (1000) ,ZJ2 (1000) ,FS(100) ,VS(100),
&DF (1000) ,F11(1000) ,CF(1000) ,TO(1000) ,F8(1000) ,CZT(1000) ,CZB(1000),
&QI 1(1000) ,QSS1 (1000) ,THAV(100) ,ATO(100) ,SUM,FW(100) ,VW(100),
&VSS(100),EV(100) ,LEN(100)
INTEGER IZIT
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COMMON EIGB (4000) ,P1,IBC
EXTERNAL PLOT_ (DESCRIPTORS) ,PLOT_$SETUP (DESCRIPTORS) ,PLOT_$SCALE

&(DESCRIPTORS) ,F
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 3.0
C DEFINE OUTPUT DATA FILE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

PRINT, ' INPUT IXX'

READ(5,*) IXX
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C INPUT PARAMETERS OF PHYSICAL SYSTEM.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

WRITE(6,10)
10 FORMAT(' INPUT ZNED,K')

READ(5,) ZNE,DKTH
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C INPUT GEOMETRICAL PARAMETERS
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

PRINT, ' INPUT NO. DEPTH STEPS;SCALE TYPE(LN=2) '
READ(5,) NZLNLZL
PRINT, ' INPUT SCALE'
IF(NLZL.EQ.2) READ(5,) NNZL
IF(NLZL.NE.2) READ(5,) ZNZL

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C INPUT INITIAL CONDITIONS
C (UNIFORM=1,SINUSOIDAL=2,HYDROSTATIC=3)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

NIC=1
WRITE (6,52)

52 FORMAT(' UNIF=1,SIN=2,EXP=3')
READ(5,) IIC
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C SET ALL CONCENTRATION BOUNDARY CONDITIONS TO ZERO?

C (YES=1)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

PRINT, ' NO BC=1'
READ(5,) IIBC
PRINT, ' INPUT NO. FLUX STEPS;SCALE TYPE'
READ(5,) NFL,NLFL
PRINT, ' INPUT SCALE'

IF(NLFL.EQ.2) READ(5,) NNFL
IF(NLFL.NE.2) READ(5,) ZNFL

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C INPUT VEGETATION PARAMETERS
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 3.0 -
C TO NEGLECT VEGETATION LET IVEG=1,NVG=1,NLVG=1,ZNVG=O.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

NVG=1
WRITE (6,32)

32 FORMAT(' CONC-RS=1,L1N=2,EXP=3')
READ(5,) IVEG
IF(IVEG.NE.1) G1=0.
IF(IVEG.NE.1) GO TO 36
PRINT, ' INPUT NO. VEG. STEPS,SCALE TYPE'
READ(5,) NVG,NLVG
PRINT, ' INPUT SCALE'

IF(NLVG.EQ.2) READ(5,) NNVG
IF(NLVG.NE.2) READ(5,) ZNVG

36 CONTINUE
IF(IVEG.NE.2) GO TO 40
WRITE(6,38)

38 FORMAT(' INPUT G11,G12')
READ(5,) G11,G12

40 CONTINUE
IF(IVEG.NE.3) GO TO 44
WRITE.(6,42)

42 FORMAT(' INPUT G21,G22')
READ(5,) G21,G22

44 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C



271

C 3.0
C SET IVCE=1 IF COMPARISON OF TWO VEGETATION MODELS IS DESIRED.
C MODELS COMPARED.ARE CONC. DEPENDENT AND EXPONENTIAL DEPTH
C DEPENDENT.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

PRINT, ' CONC. AFTER EXP VEG=1'
READ (5,) IVCE
IF(IVCE.NE.1) GO TO 47
PRINT, ' INPUT Gi'
READ(5,) ZG1

47 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C INPUT EVENT DURATION
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

PRINT, ' INPUT NO. TIME STEPSSCALE TYPE'
READ(5,*) NTSNLTS
PRINT, ' INPUT SCALE'
IF(NLTS.EQ.2) READ(5,) NNTS
IF{NLTS.NE.2) READ(5,) ZNTS

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C INPUT NO. OF SERIES TERMS
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

PRINT, ' INPUT NO. SERIES STEPSSCALE TYPE'
READ(5,) NOTNLT
PRINT, ' SCALE'
READ(5,) NNT
PRINT, ' INPUT PL'
READ(5,) PL
PRINT, ' TABLES=1'
READ(5,) ITAB
PRINT, ' PLOTS=1'
READ(5,) IPLT
IF(IPLT.NE.1) GO TO 1
PRINT, ' FSVSVWVSSEVTO'
READ(5,) IPFSIPVSIPVWIPVSSIPEV,IPTO

1 CONTINUE
C
CC CCCCCCCCCCCCC CCCC CCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCC CCC CCCCCCCCCCCCC
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C
C 3.0
C TO CALCULATE ONLY PONDING TIME SET ITO=1'AND TO NEGLECT PONDING
C TIME SET ITO=2
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

WRITE (6,29)
29 FORMAT(' TO ONLY=1,NOT TO=2')

READ(5,) ITO
IF(ITO.EQ.1) GO TO 35

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 3.0
C CALCULATE MOISTURE DISTRIBUTiON?
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

WRITE (6,33)
33 FORMAT (' DISTRIBUTION=1')

READ(5,) IDS
IF(IDS.NE.1) GO TO 35

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 3.0
C INPUT THE NUMBER OF NODES AT WHICH THE CONTINUOUS SOLUTION IS
C TO BE EVALUATED OVER THE UNSATURATED ZONE DEPTH
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

WRITE (6,37)
37 FORMAT(' INPUT NO.NODES')

READ(5,) NZT

35 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C VARY NUMBER OF SERIES TERMS,SURFACE FLUX RATEWATER TABLE DEPTH,

C INITIAL CONDITION VALUE,VEGETATION COEFFICIENT VALUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

DO 55 IN=1,NOT
IF (NLT.EQ.2) NT=10**(IN-NNT)
IF (NLT.NE.2) NT=NNT*IN
DO 50 IFL=1,NFL
IF (NLFL.EQ.2) FL=10.**(IFL-NNFL)
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C 2.0
C CALCULATE THE EIGENVALUES OF THE PROBLEM
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

CALL EIGVAL(NT,PIZL)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C INITIALIZE EIGENVALUE RELATED VECTORS
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

ATT=O.
THI=O.
THSS=0.
SQl =0..
SQSS=O.
Q I=0.
QSS=0.

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CALCULATE THE EIGENVALUE DEPENDENT TERMS
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

DO 100 N=1,NT
BN=EIGB (N)
BN2=BN*BN
Zl= (-1.) **N
A 1=BN2+0 .25
A3=A1+G1
IF(IBC.EQ.1) DF(N)=0.5*(ZL*AI+0.5)/Al
F1=BN*E1+SIN(BN*ZL)
F3=A1*SIN(BN*ZL)-BN*COS(BN*ZL)
F2=BN*E1*(ZL+1/A1)+F3/A1
F5=1-Z1*E1
F6=1/A1-Z1*E1*(ZL+1/A1)
CZT(N)=COS(BN*Z2)
CZB (N) =COS (BN* (ZL-Z2))

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CALCULATE THE TRANSFORMED INITIAL CONDITION
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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C 2.0
C CALCULATE THE PONDING/DRYING TIME
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CALCULATE P/D TIME PARAMETER FOR FLUX BC
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IF(IBC.NE.1) GO TO 98
SD=SIN (BN*ZL) /DF (N)
THI=THI+SD*FB(N)
THSS=THSS+SD*CF (N)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CALCULATE P/D TIME PARAMETER FOR CONC BC
C (CAUTLON: NEEDS FURTHER TESTING)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
98 IF(IBC.EQ.1) GO TO 99

T=.01
A4=A3*T
IF(A4.GT.60.) A4=60.
E4=EXP (-A4)
QI1(N)=BN*CZT(N)*E4*FB(N)/P1
QSS 1 (N) =BN*CZT (N) *CF (N) /P I
QI=QI+Ql 1 (N)
QSS=QSS+QSS1 (N)

99 CONTINUE
100 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CALCULATE PONDING/DRYING TIME FOR FLUX BC
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

P41=EIGB(1)*EIGB(1)+.25+Gl
IF(IBC.NE.1) GO TO 104
IF(ITO.EQ.2) GO TO 104
ATT= (TH1-THSS) / (TH I -THSS)
ATO(IZL)=-ALOG(ATT)/P41

104 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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SVSC=0.
SEF=0.
SEC=O.
DO 350 N=1,NT
BN=E IGB (N)
BN2=BN'BN
Zl=(-l.)**N
A3=BN2+0.25+G1
A4=A3*T
IF(A4.GT.60.) A4=60.
E4=EXP (-A4)
C2= (1.-E4) /A3

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CALCULATE COEFFICIENTS Ji AND J2
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C -

ZJ1 (N) =E4* (FB (N) -CF (N))+CF (N)
ZJ2(N)=C2*(FB(N)-CF (N))+CF (N)*T

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CALCULATE MASS BALANCE TERMS' COEFFICIENTS
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C SURFACE FLUX
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IF(IBC.EQ.2) SJC=SJC+BN*ZJ1(N)*CZT(N)/P1
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C SURFACE VOLUME
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IF (I BC.EQ.2) SVC=SVC+BN*ZJ2 (N) *CZT (N) /P1
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C WATER TABLE FLUX
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C
ccccccccccccccccccCCccccCCcccCCcccCCcccCCcccCCccccCccCCCCccccccCccccCCC
C

IF(IBC.EQ.1) SBF=SBF+BN -ZJ1(N)/DF(N)
IF (IBC.EQ.2) SBC=SBC+Z1*BN*ZJ1 (N) *CZB (N)/P1

C
CCCCcCCCcCCCCCccccCccCccCCCCCCCcCCCCCccCCCCCCCCccCCCCcCCcccccCCccccCCcccc
C
C 2.0
C WATER TABLE VOLUME
C
CCCCcCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IF(IBC.EQ.1) SBBF=SBBF+BN*ZJ2(N)/DF(N)
IF(IBC.EQ.2) SBBC=SBBC+ZI*BN*ZJ2(N)*CZB(N)/P1

C
ccccccccCCCCCCccccccCcccCccccccCcCCCCCcccCCCCccccccCCCCCCCCCcCCcccCccccCCC
C
C 2.0
C SOIL MOISTURE STORAGE
C
cccccccCccccccccccccccCcccccCCcccCCCcccccccccccCCCCCCCcccccCccccCCccccCCC
C

IF(IBC.EQ.1) SVSF=SVSF+F14(N)*ZJ1(N)/DF(N)
IF(IBC.NE.1) SVSC=SVSC+F15(N)*ZJ1(N)/Pl

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C VEGETAL TRANSPIRATION RATE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IF(IBC.EQ.1) SEF=SEF+F14(N)*ZJ2(N)/DF(N)
IF(IBC.NE.1) SEC=SEC+F15(N)*ZJ2(N)/P1

350 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CALCULATE MASS BALANCE TERMS
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C SURFACE FLUXES
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IF(IBC.EQ.1) FS(IT)=FL
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IF(IBC.EQ.2) FS(IT)=THI/2.-SJC
C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C

C 2.0
C SURFACE VOLUMES

C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

IF(IBC.EQ.1) VS(IT)=FL*T
IF(IBC.EQ.2) VS(IT)=THI*T/2.-SVC

c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c 2.0
C WATER TABLE FLUXES

C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C

IF(IBC.EQ.1) FW(IT)=ZNE/2.+E3*SBF
IF(IBC.EQ.2) FW(IT)=ZNE/2.-E3*SBC

C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C

C 2.0
C WATER TABLE VOLUMES

C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C

IF(IBC.EQ.1) VW(IT)=ZNE*T/2.+E3*SBBF
I F (I BC. EQ. 2) VW (IT) =ZNE*T/2. -E3*SBBC

c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c 2.0
c SOIL MOISTURE STORAGE

c
ccccccccccccccccccccccc.ccccccccccccccccccccccccccccccccccccccccccccccccc
c

IF(IBC.EQ.1) VSS(IT)=SVSF
IF(IBC.EQ.2) VSS(IT)=SVSC
THAV(IT)=VSS(IT)/ZL

c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

c 2.0
C VEGETAL TRANSPIRATION

c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
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IF(IBC.EQ.1) EV(IT)=GI*SEF
IF (IBC.EQ.2) EV (IT)=G1*SEC

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CALCULATE THE SPACE AND TIME DEPENDENT TERMS
C FOR SOIL MOISTURE CONTENT
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IF(IDS.NE.1) GO TO 310
DO 300 IZ=1,NZT
Z= (IZ-1.) *ZL/(NZT-1.)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CALCULATE THE SERIES TERM FOR THE SOIL MOISTURE CONTENT
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

SUM=O.
DO 200 N=1,NT
BN=E IGB (N)
BN2=BN 'BN
IF (IBC.EQ.1) SUM=SUM+ZJ1 (N)*SIN(BN*(ZL-Z))/DF (N)
IF (IBC.EQ.2) SUM=SUM+ZJ1 (N)i*SIN(BN*Z)/P1

200 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CALCULATE THE SOIL MOISTURE CONTENT
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

THETA (IZ, IT) =EXP (0.5*Z) *SUM
300 CONTINUE
310 CONTINUE
400 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C TABULAR DIMENSIONLESS DATA DISPLAY FOR BOUNDARY
C AND AVERAGED QUANTITIES
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
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C
-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IF(IPLT.NE.1) GO TO 800
IF(IDS.NE.1) GO TO 705
DK=D/KTH
DK2=D/(KTH*KTH)
ZL=DK*ZL
DO 700 IT=1,NTS
DO 690 IZ=1,NZT
Z= (IZ-1 .) *ZL/ (NZT-1.)
ZTHETA(IZ)=THETA(lZ,IT)
ZZ(IZ)=Z

690 CONTINUE
IF(IIBC.NE.1) ZTHETA(NZT)=ZNE
IF(IIBC.EQ.1) GO TO 91
IF(IBC.EQ.1) GO TO 91
IF(IS.EQ.1) ZTHETA(1)=ZNE

91 CONTINUE
IF(IT.NE.1) GO TO 680
CALL PLOT_$SETUP(' SOIL MOISTURE DISTRIBUTION','DEPTH','
&MOISTURE CONTENT',1,OEO,0,O)
CALL PLOT_$SCALE(0.,ZL,O.,ZNE)

680 CONTINUE
CALL PLOT_(ZZZTHETANZT,1, '
DO -701 IZ=1,NZT
ZZ(IZ)=ZZ(IZ)/DK
WRITE(IXX,*) ZZ(IZ),ZTHETA(IZ)

701 CONTINUE
700 CONTINUE
705 CONTINUE

IF(IPLT.NE.1) GO TO 800
DK2=D/(KTH*KTH)
DK=D/KTH
DO 710 IT=1,NTS
TIME (IT) =ZNTS*(IT-1.)
IF(IPVSS.EQ.1) TIME(IT)=DK2*TIME(IT)
IF(IPVS.EQ.1) TIME(IT)=DK2*TIME(IT)
VS (IT) =DK*VS (IT)

710 CONTINUE
IF(IPFS.EQ.1) GO TO 712
GO TO 714

712 CONTINUE
DO 716 IT=1,NTS
IF(IT.EQ.1) GO TO 716
FS (IT-1) =FS (IT)
IF (IS.EQ.2) FS(IT-1)=-FS(IT-1)
TIME (IT-1) =ZNTS* (IT-1.)
WRITE(IXX,*) TIME(IT-1),FS(IT-1)

716 CONTINUE
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714 CONTINUE
IF(IPFS.NE.1) GO TO 720
IF(IN.NE.1) GO TO 715
IF(IZL.NE.1) GO TO 715
IF(IFL.NE.1) GO TO 715
IF(IVG.NE.1) GO TO 715
IF(IJC.NE.1) GO TO 715
CALL PLOT_$SETUP(' FLUX ', 'TIME', 'FLUX',1,OE0,0,O)
CALL PLOT_$SCALE(O.,TIME(NTS),0.,FS(1)+.25)

715 CONTINUE
CALL PLOT_(TIMEFS, (NTS-1),2,'+')

720 CONTINUE
IF(IPVS.NE.1) GO TO 730
IF(IN.NE.1) GO TO 725
IF(IZL.NE.1) GO TO 725
IF(IFL.NE.1) GO TO 725
IF(IVG.NE.1) GO TO 725
IF(IJC.NE.1) GO TO 725
CALL PLOT_$SETUP(' ','TIME (HOURS) ', 'VOLUME (CM) ',1,OEO,0,0)

725 CONTINUE
CALL PLOT_(TIMEVSNTSO, '+')

730 CONTINUE
IF(IPVS.NE.1) GO TO 734
DO 731 IT=1,NTS
WRITE(IXX,*) TIME(IT),VS(IT)

731 CONTINUE
734 CONTINUE

IF(IPVSS.NE.1) GO TO 740
IF(IN.NE.1) GO TO 735
IF(IZL.NE.1) GO TO 735
IF(IFL.NE.1) GO TO 735
IF(IVG.NE.1) GO TO 735
IF(IJC.NE.1) GO TO 735
CALL PLOT_$SETUP(' ','TIME (HOURS) ', ',1,OEOOO)
CALL PLOT_$SCALE(O.,TIME(NTS),0.,ZNE)

735 CONTINUE
CALL PLOT_(TIMETHAVNTS,0,'+')
IF(IPVSS.NE.1) GO TO 744
DO 741 IT=1,NTS
WRITE(IXX,*) TIME(IT),THAV(IT)

741 CONTINUE
744 CONTINUE
740 CONTINUE

IF(IPVW.NE.1) GO TO 750
IF(IN.NE.1) GO TO 745
IF(IZL.NE.1) GO TO 745
IF(IFL.NE.1) GO TO 745
IF(IVG.NE.1) GO TO 745
IF(IJC.NE.1) GO TO 745
CALL PLOT_$SETUP(' WATER TABLE VOLUME', 'TIME', 'VOLUME',1,OEO,1,0)
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745 CONTINUE
CALL PLOT_ (TIME,VW,NTSO, '+').

750 CONTINUE
IF(IPEV.NE.1) GO TO 760
IF(IN.NE.1) GO TO 755
IF(IZL.NE.1) GO TO 755
IF(IFL.NE.1) GO TO 755
.IF(IVG.NE.1) GO TO- 755
IF(IJC.NE.1) GO TO 755
CALL PLOT_$SETUP(' TRANSP.RATE', 'TIME ','VOLUME ',1,OEO,1,0)

755 CONTINUE
CALL PLOT_(TIMEEVNZLO,'+')

760 CONTINUE
800 CONTINUE
34 CONTINUE
54 CONTINUE
20 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C GRAPHICALLY DISPLAY AND STORE DIMENSIONAL PONDING TIME DATA
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IF(IPLT.NE.1) GO TO 50
IF(IPTO.NE.1) GO TO 50
DK=D/KTH
DK2=D/ (KTH*KTH)
DO 910 IZL=1,NZL
LEN (IZL)=ZNZL*IZL
LEN(IZL)=DK*LEN(IZL)
ATO(IZL)=DK2*ATO(IZL)

910 CONTINUE
IF(IFL.NE.1) GO TO 915
IF(IN.NE.1) GO TO 915
CALL PLOT_$SETUP(' ','WATER TABLE DEPTH (CM) ', ' TO (HRS) ,

&1,0EOO,0)
CALL PLOT_$SCALE (0.,LEN(NZL) ,0.,ATO(NZL))

915 CONTINUE
CALL PLOT_ (LEN, ATO,NZL,2, '+')
DO 1001 IZL=1,NZL
LEN(IZL)=LEN(IZL)/DK
ATO(IZL)=ATO(IZL)/DK2
WRITE(IXX,*) LEN(IZL) ,ATO(IZL)

1001 CONTINUE
50 CONTINUE
55 CONTINUE

READ(5,)
1000 CONTINUE
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STOP
END

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C THIS SUBROUTINE CALCULATES THE EIGENVALUES FOR THE FINITE DOMAIN
C SOLUTIONS TO THE RICHARDS' EQUATION FOR EACH WATER TABLE DEPTH
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

SUBROUTINE EIGVAL(NTPI,ZL)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C TYPE DECLARATION
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

REAL EIGB
COMMON EIGB(4000),P1,IBC
EXTERNAL F

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 3.0
C DETERMINE BOUNDARY CONDITION TYPE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IF(IBC.EQ.2) GO TO 500
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C FLUX CASE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C 2.0
C SOLVE FOR ROOTS OF THE FOLLOWING EQUATION:
C (BN*L) COT (BN*L) + (KL/2D) =0
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCtCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 3.0
C INPUT CONVERGENCE CRITERIA
C.
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
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EPS=O.
NSIG=4
MAXFN=20

100 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 3.0
C DEFINE SEARCH LIMITS
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

DO 200 N=1,NT
A=(2*N-1) *PI/2
B=N*P I

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CALL ROOT FINDER IMSL ROUTINE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

AEIG=EIGB(N-2)+PI/ZL
IF(AEIG.NE.EIGB(N-1)) GO TO 110
EIGB (N) =EIGB (N-1)+PI/ZL
GO TO 200

110 CALL ZBRENT(F,EPS,NSIG,A,B,MAXFNIER)
EIGB (N) =B/ZL
IF(IER.EQ.129) EIGB(N)=EIGB(N-1)+PI/ZL

200 CONTINUE
GO TO 1000

500 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C CONCENTRATION CASE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

DO 700 N=1,NT

700 EIGB(N)=N*PI/ZL
1000 CONTINUE

RETURN
END

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 1.0
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C THIS FUNCTION'S ROOTS ARE THE EIGENVALUES FOR THE RICHARDS'
C EQUATION SOLUTIONS IN THE FINITE DOMAIN
C
CCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

FUNCTION F(X)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C TYPE DECLARATION
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

REAL EIGB
COMMON EIGB(4000),PlIBC

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 2.0
C EIGENVALUE GENERATING FUNCTION FOR SURFACE FLUX BOUNDARY CONDITION
C
CCCC CCC CC CCC CCC CCCCCCC CCCCCCCCCC CCCCCCCCCCCCC CCCCCCCCCCCC CC CCC CCCCCC CCCC
C

F=X*( /TAN (X) )+PI
RETURN
END

I.

I




