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VALUE OF CATEGORICAL AND PROBABILISTIC
TEMPERATURE FORECASTS

FOR SCHEDULING OF POWER GENERATION

Mark G. Alexandridis and Roman Krzysztofowicz

ABSTRACT

Bayesian decision models are formulated for the use and evaluation of
categorical and probabilistic forecasts of continuous variables. The models
are applied to the problem of short-term scheduling of power generation in
an electric system on the basis of a single-period temperature forecast.
Likelihood functions are constructed using results of experiments conducted
at the National Weather Service. The probabilistic forecasting scheme is
of the type wherein the forecaster quantifies his degree of uncertainty in
terms of variable-width, fixed-probability credible intervals. Each fore-
casting scheme, categorical and probabilistic, is evaluated in a coupling
with two decision procedures: (1) an optimal (Bayesian) procedure which
accounts for forecast uncertainty, and (2) a more conventional, nonoptimal,
procedure which disregards forecast uncertainty, but which would be optimal
if the forecasts were perfect. Numerical examples are presented to illus-
trate the economic values of both types of forecasts, gains from probabil-
istic forecasts, and expected opportunity losses to be incurred by decision
makers who ignore forecast uncertainty.

Key words; Bayesian decision theory, value of information, meteorologic
forecasts, probabilistic forecasts, electric power generation,
power load forecasting.
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CHAPTER 1

INTRODUCTION

1.1 Methodological Framework

The potential value of disseminating probabilistic meteorologic

forecasts has long been recognized in the literature (Thompson, 1952;

Glahn, 1964; Murphy, 1966; Winkler and Murphy, 1979) as, to quote Murphy

(1980, p.247),

... a probabilistic mode of expression provides forecasters
with a means of quantitatively describing the uncertainty
inherent in their forecasts... (and) ...probabilistic fore-
casts provide potential users of forecasts with information
needed to make rational decisions in uncertain situations.

Probabilistic forecasts of binary events (such as rain/no rain

tomorrow) are issued routinely by the National Weather Service, and deci-

sion models for their optimal use and evaluation have been widely investi-

gated. We review these efforts in Chapter 2.

In this study, decision models are formulated for the use and evalua-

tion of categorical and probabilistic forecasts of continuous variables.

The models are cast in the framework of Bayesian decision theory (Raiffa

and Schlaifer, 1961; DeGroot, 1970; Davis et al., 1972). The decision

context is the short-term scheduling of power generation in an electric

system on the basis of a single-period power load forecast. This forecast

results from a deterministic transformation of a temperature forecast.

Numerical examples are presented wherein the decision concerns the daily

average power generation and a forecast of the daily average temperature is

available with the lead time of 12-24 hours.
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Forecast evaluations are often classified as either ex post or

ex ante studies (Winkler and Murphy, 1979). In ex post studies, the value

of a set of forecasts is determined from the actual losses measured after

the relevant forecasts have been issued, decisions have been made, and

events have been observed. In ex ante studies, the value of a forecast is

determined from the expected losses under the joint distribution of events

and their forecasts. The distribution may pertain to an existing forecast

system or to a system being designed; in the former case the distribution

can be estimated from a historical record of forecasts and events, whereas

in the latter case it must be hypothesized. The ex ante perspective is

employed herein.

1.2 Temperature Forecasts

The study is predicated on the results of forecasting experiments

conducted by Murphy and Winkler (1974, 1975) in the operational setting

of the National Weather Service Offices in Denver, Colorado, and Milwaukee,

Wisconsin. These experiments were designed to test the ability of the

forecasters to quantify the uncertainty in their short-term (12-36 hours)

forecasts of minimum and maximum temperature. Two techniques for encoding

distribution functions of continuous variates were tested: (1) fixed-width,

variable-probability credible intervals technique and (2) variable-width,

fixed-probability credible intervals technique.

The fixed-width, variable-probability forecasts are created by

first eliciting the median and then assigning probabilities to the events

that the true state of nature will fall within two specified intervals

centered at the median. Given these three responses, five points on the

distribution function of the state variable are obtained.
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The variable-width, fixed-probability forecasts are constructed by

eliciting the median and four percentiles (25, 12-1/2, 75, 87-1/2, in that

order). In this way two intervals about the median are determined within

which the forecaster expects the state of nature to fall with probabili-

ties .50 and .75. Again, these five points can be used to forge a distri-

bution function of the state variable.

A measure of performance of probabilistic forecasts is their reli-

ability (or calibration) which is determined by the degree of correspondence

betweed the relative frequencies of observed events and their forecast prob-

abilities. Murphy and Winkler (1975, p.12) found the variable-width,

fixed-probability forecasts to be more reliable than the fixed-width,

variable-probability forecasts. Therefore, further references to probabil-

istic forecasts concern only those encoded via the variable-width, fixed-

probability technique although the theoretical development is general.

Categorical forecasts are defined as the medians of the probabilistic fore-

casts. A measure of their performance is an error defined as the difference

between the forecasted and observed state values. The reliability and error

statistics reported by Murphy and Winkler (1974, 1975) serve us to construct

the likelihood functions for the numerical examples presented in Chapters 3

and 4.

1.3 Decision Procedures

Forecasts of hydrometeorologic phenomena are seldom perfect:

categorical forecasts may be in error; probabilistic forecasts may be

unreliable. Under optimal (Bayesian) decision procedures the uncertainty

inherent in a forecast is explicitly accounted for. This, however, is

rarely the case in practice. Behavioral studies (e.g., White, 1973;

3



Slovic et al., 1974; Slovic, 1981) consistently reveal that, more often than

not, decision makers are unaware of the normative guides to optimal inte-

gration of probabilistic information and decision making. Typically, they

exhibit strong tendencies to ignore uncertainty or to employ simple, sub-

optimal, heuristics to synthesize probabilistic information before it is

integrated with the decision consequences. Also, more conventional deci-

sion procedures (e.g., based on mathematical programming techniques) do

not take forecast uncertainty explicitly into account but utilize forecasts

as if they were error-free. Therefore, a question of utmost practical

relevance arises: What is the value of an uncertain forecast when the

decision maker ignores the uncertainty? In this study we investigate

several aspects of this question.

1.4 Forecast-Decision System

Generally speaking, the economic value of a forecast depends upon

(1) the accuracy and timeliness of the forecast and (2) the degree of

optimality of the decision made on the basis of the forecast. Hence, the

system to be modeled must be defined so as to encompass both activities:

forecasting and decision making. This issue is never brought to bear in

classical applications of decision theory for it is presupposed that the

decision maker unequivocally employs an optimal decision procedure. Under

this premise, the ex ante value of a forecast is always nonnegative and

maximum for a given system since the optimal decision prescribed by the

theory minimizes the expected opportunity loss due to an imperfect forecast.

In this study we relax this classical assumption, and, following

earlier investigations (Davis et al., 1979; Krzysztofowicz et al., 1980;

Krzysztofowicz and Davis, 1982), we consider a cascaded forecast-decision

system (Figure 1.1) wherein the value of a forecast explicitly depends upon

4
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Figure 1.1 Forecast-Decision System

both the forecasting scheme (which is not necessarily perfect) and the

decision procedure (which is not necessarily optimal). This decomposition

affords us the ability to measure the performance of each system component

as well as the total system. Thus, we can examine the effect of both the

accuracy of forecasts and the optimality of decisions on the economic value

of forecasts, and determine the expected opportunity losses incurred due

to nonoptimal decisions.

Subject to our investigation are three types of forecasts: naive

(or climatological) forecasts, categorical forecasts, and probabilistic

forecasts, and two decision procedures: an optimal (Bayesian) procedure

which accounts for forecast uncertainty, and a nonoptimal procedure which

ignores forecast uncertainty but which would be optimal if forecasts were

perfect. Therefrom, five distinct forecast-decision systems are defined:

1) categorical forecast - optimal decision,

2) categorical forecast - nonoptimal decision,

3) naive forecast - nonoptimal decision,
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4) probabilistic forecast - optimal decision,

5) probabilistic forecast - nonoptimal decision.

The performance of each of these systems is evaluated in relation to the

bounds established by the performance of systems composed of (a) a naive

forecast - optimal decision (lower bound) and (b) a perfect forecast -

optimal decision (upper bound).

1.5 Outline-of the Report

In Chapter 2, the literature on the economics of weather is reviewed.

In Chapter 3, the decision model for scheduling of daily average power

generation in an electric system on the basis of a temperature forecast

is formulated, measures of performance of a forecast-decision system are

defined, and categorical temperature forecasts are evaluated for both

optimal and nonoptimal decision procedures. In Chapter 4, the developments

of Chapter 3 are extended to probabilistic temperature forecasts, and a com-

parison between the values of both types of forecasts is made. A summary of

the results and conclusions comprise Chapter 5.
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CHAPTER 2

REVIEW OF STUDIES ON THE ECONOMICS OF WEATHER

2.1 A Perspective

There is an ever increasing public awareness that although we may

not be able to modify the weather to suit our needs, we can usually miti-

gate the inconvenience imposed by adverse weather events through a priori

preparation and efficacious response to weather service forecasts. Un-

fortunately, we have only a partial understanding of the atmosphere and,

therefore, forecasts are seldom perfect. The response to forecasts is,

more often than not, determined via subjective, unaided processing of

information which is known to be biased, often severely (Slovic, 1981).

As a result, suboptimal decisions are frequently made by decision makers.

Sometimes these decisions result in economic consequences that are less

desirable than those which would result had the decision maker made his

decision independent of the weather forecast. The effort, therefore, to

understand and analyze the entire process of "dissemination, use and evalua-

tion" (Nelson and Winter, 1964, p.421) of weather information has emerged

as a discipline in its own right, known as the "economics of weather"

(McQuigg, 1970).

According to a decision-theoretic perspective that prevails in the

literature, information has value only if it improves one's ability to

make decisions, the improvement being measured by a reduction of the

expected loss - hence the economic connotation.

The research to date has focused mainly on static, finite state, and

finite action problems, under the assumption that the forecasts are used

optimally by the decision maker. We arbitrarily bifurcate the

studies into those that employ a simple cost-loss ratio model and
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those that rely on more general statistical decision-theoretic models.

These two approaches are not philosophically different - the cost-loss

ratio formulation is merely a special case of a general decision-theoretic

formulation.

2.2 Cost-Loss Ratio Formulations

The most prevalent decision model for the use and evaluation of

weather forecasts is the cost-loss ratio formulation pioneered by Thompson

(1952). The decision maker "must decide whether or not to take protective

action in the face of uncertainty as to whether or not adverse weather will

occur" (Murphy, 1977, p.803). Typically, a cost, c, is associated with

taking protective action and an economic loss, k, is incurred if no action

is taken and adverse weather occurs (Table 2.1). With Pr(w) the prob-

ability of adverse weather and Pr(w) the probability of favorable weather

(Pr(w) + Pr(w) = 1.0), the expected expenses of protection and no pro-

tection are c and Pr(w), respectively. Thus, the decision rule under

the Bayes risk criterion is

to protect if Pr(w) > c/k ,
not to protect if Pr(w) < c/k ,

to protect or not to protect if Pr(w) = c/.

Table 2.1 Payoff Matrix for the Cost-Loss Ratio Formulation

ACTION

PROTECT DO NOT
PROTECT

S ADVERSE c
T WEATHER (w)

A

T FAVORABLE
WEATHER (c 0
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This representation of a decision problem has been employed to

study: i) the worth of precipitation forecasts to the raisin industry

(Thompson and Brier, 1955; Kolb and Rapp, 1962) and the trucking, motion

picture, and construction industries (Nelson and Winter, 1960; 1964),

ii) the worth of tropical storm warnings to the City of Miami and the

Florida Power and Light Company (Demsetz, 1962), iii) the scheduling of

irrigation applications (Allen and Lambert, 1971a,b), iv) the effec-

tiveness of air pollution forecasts in California (Kernan, 1975).

Most studies concluded that it is economically advantageous to use

forecasts to make weather dependent decisions. For example, Thompson

(1962, 1971) found that the average potential gains from improved atmos-

pheric and operational forecasting constitute 5-10% of the avoidable weather

losses. Murphy (1966) and Shorr (1966) reported techniques for transform-

ing the cost-loss ratio into utilities. Murphy (1966), furthermore, de-

rived an analytical expression for the ex post utility of probabilistic

forecasts, in terms of the Brier probability score (Brier, 1950), under

the assumption that the decision maker's utilities of outcomes are not

known with certainty but conform to a uniform distribution. Murphy (1969)

generalized the analysis to the evaluation of probabilistic forecasts when

knowledge of the cost-loss ratio is incomplete (described by a probability

density function) and developed measures for comparative forecast

evaluation.

Ordinal relations between the values of probabilistic, categorical,

and climatological forecasts were studied by Murphy (1977). He concluded

that, in an ex post sense, probabilistic forecasts are unequivocally more

valuable than either categorical or climatological prognostications if

9



the forecasts are perfectly reliable (i.e., their calibration curve is

a straight line). He also suggested that this relation holds for

"moderately" unreliable probabilistic forecasts. Using the Brier score

as a measure of probabilistic forecast accuracy, Murphy and Thompson (1977)

demonstrated, again via an ex post analysis, that for a static, three state,

three action decision problem more accurate forecasts do not necessarily

ensure further mitigation of economic loss.

More recently, Winkler and Murphy (1979) indicated that, in an ex ante

sense, perfect forecasts are more valuable than probabilistic forecasts,

probabilistic forecasts more valuable than categorical, and categorical

forecasts more valuable than climatological, if the categorical forecast

is derived from the probabilistic forecast.

2.3 Statistical Decision-Theoretic Formulations

A general decision-theoretic treatment of categorical weather fore-

cast evaluation was first introduced to the meteorologic literature by

Gringorten (1958, 1959). In his first paper, Gringorten demonstrated that

two sets of equally accurate forecasts could yield different expected

gains when used operationally and suggested that users select forecasting

systems that best suit their operational needs. In the second paper, he

asserted that conditional forecast probabilities (conditioned on initial

observations) should serve to "estimate operational gains through several

courses of action with a minimum of error" and proposed an objective

technique to accomplish this task.

Nelson and Winter (1960) eloquently described the two steps of

decision analysis, i.e., making the decision and evaluating the decision,

for categorical forecasts, yet constrained their hypothetical examples to

cost-loss ratio situations. A strict mathematical exposition is presented

10



in their later paper (Nelson and Winter, 1964). Gleeson (1960) compared

two decision procedures, a classical decision-theoretic approach and a

game-theoretic approach, to determine which was preferable when only

discrete probability forecasts and upper and lower confidence limits on

the forecast are available for an m state, n action situation. A Bayesian

interpretation was brought to bear on Gleeson's problem by Epstein (1962),

who considered the effect of using three different prior distributions of

the forecast and evaluated three different decision procedures. This

evaluation represents the first attempt to numerically compute the ex-

pected utility of the decision, as proposed by Nelson and Winter (1960).

The first author to address the value of categorical precipitation

occurrence forecasts (rain/no rain) for a sequential decision problem

under uncertainty was Lave (1963). He investigated the value of multiple

lead time forecasts to California raisin growers, who can either pick their

grapes for drying or allow them to ripen further at any 10-day interval

during the months of September and October. He found that 10-day perfect

forecasts were worth $18.40/acre and the worth of 30-day perfect forecasts

was roughly $91/acre. Upon the premise that all the raisin farmers make

optimal use of the rainfall forecasts, and maintain the same level of

output, he concluded that weather information has negative worth since the

demand for raisins is inelastic and "the inelasticity of the demand curve

implies lower profit when supply increases." Hashemi and Decker (1968)

reported a novel approach to the scheduling of irrigation using 12 hour

probability of precipitation (POP) forecasts as the basis for decision.

They developed conditional distributions of rainfall amount over the

12 hour forecast period given a set of POP forecasts. They determined,

via an ex post analysis, that the incorporation of POP forecasts into the

11



decision procedure substantially lessened the frequency and quantity of

irrigation when compared with climatologically based decisions. A simple

Markov chain (contingency matrix of the probability of a future condition

given the present condition, or forecast) representation was offered by

Crawford et al. (1971) to evaluate the worth of weather information,

specifically wind direction change for various lag times, to a contractor

who wishes to paint a house near "a factory which emits potentially damag-

ing smoke."

Howe and Cochrane (1976) enhanced the general decision model for

using categorical forecasts, as presented by Nelson and Winter (1960,

1964), to include long and short-run responses for adjusting to natural

hazard events. In an application to urban snow removal, they determined

that the total expected cost to the town of Rockford, Illinois, could be

reduced by 50% annually if perfect forecasts were available. One further

application of Nelson and Winter's (1960, 1964) model to the value of

frost forecasts to pear orchardists was developed by Baquet et al. (1976).

In an ex ante study, they estimated the sensitivity of the decision and

opportunity loss to perturbations in the prior information, forecast ac-

curacy and orchardist's utility function.

Perhaps the most complex study of the value of categorical forecasts

is that by Krzysztofowicz and Davis (1982). They developed a decision-

theoretic methodology for evaluation of the performance of flood forecast-

response systems. During every flood event, a sequence of forecasts of

the flood crest is issued. Floodplain dwellers respond to these forecasts

by taking p:otective action such as evacuation, flood proofing, or the

shutdown of a facility. This forecast-response process is modeled as. a

random duration Markovian decision process. The response strategy

12



followed by floodplain dwellers is quantified via a human response model

(Ferrell and Krzysztofowicz, 1982). The value of the system is measured

by the expected annual reduction of the loss (cost of response plus flood

damage sustained) and it depends upon both the accuracy and lead time

of the forecasts and the quality of the response.

2.4 Summary

Many theoretical and applied issues pertinent to the economics of

weather have been studied within the simple cost-loss ratio formulation.

But there exist numerous weather sensitive decision problems that cannot

readily be cast within this formulation, e.g., real-time reservoir control,

irrigation scheduling, flight path determination, and power generation.

More sophisticated uses of statistical decision theory in economics of

weather have essentially been limited to the model of Nelson and Winter

(1960, 1964), the analysis of Hashemi and Decker (1968) and the method-

ology of Krzysztofowicz and Davis (1982). There exist no studies on

the evaluation of probabilistic forecasts of continuous predictands.
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CHAPTER 3

VALUE OF CATEGORICAL FORECASTS

3.1 Decision Model

The decision problem is as follows. Every day the operator of an

electric utility makes a decision as to the average power (in megawatts,

MW) to be generated on the following day. The decision is made on the

basis of a categorical forecast of daily average temperature. The utility

suffers economic losses for either generating more or less power than that

which is actually demanded. Excessive generation is undesirable because the

difference between the generated and demanded power is dissipated (assuming

no storage capability), while insufficient generation requires the utility

to invoke more costly sources of energy to meet the excess demand on

short notice.

The decision model is comprised of the following elements.

Information space (O,Q). t c 0 = (-co) and v e 0 = [0,AM], where

t represents the categorical forecast of the daily average temperature

(in degrees Farenheit, 0F), and v is the corresponding categorical fore-

cast of the daily average power load [MW]. AM is the maximum daily

average power load that can occur in a given system.

State space (O, Q). e E 0 = (-oo,oo) and w 6 0 = [0,AM], where e

is the actual daily average temperature [0F],and w is the actual daily

average power load [MW].

Decision space A . a E A = [0,AM], where a is the planned average

power [MW] to be generated on the following day to meet the average load.

Load operator T . The forecast temperature, t, is transformed into

the forecast load, v, and the actual temperature, 0, into the actual load,

14



W , by an operator:

v = P(t)

Specifically,

AM if t < t
a

B + a (t - t ) if t < t < t
h b a - b

v = B if t < t < t
b- - c

B + a (t - t) if t < t < td
C C C -d

AM if td <t

where

AM - B
ch t - t '

a b

AM - B
c t - td c

B - weather insensitive daily base load [MW], aha c -heating and cooling

coefficients [MW/0F], ta tb t ct td - reference temperatures [ F].

Typically, B, ah, ac and reference temperatures t a,tb' c,td are

dependent upon the day of the week, season, year, and whether or not the

day is a holiday for a fixed location. The operator T is a simple repre-

sentation that has actually been used in practice (Schweppe, 1981). We

harbor the assumption that the operator is exact, i.e., if we know per-

fectly ti-n temperature we know the load without error. More sophisticated

load foiecasting models are described by Galiana (1971, 1972).
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Loss function k. The loss function is defined on 0 X A. Z(w,a)

is the total loss incurred by the utility as a result of generating

a e A [MW] when the actual load is w e Q [MW]. The structure of the

loss is

2c (w - a) if w < a,
{c~hJa))i = 2

(wa) ( - a) if W > a

where c and c u are over and under generation cost coefficients with

units [$/MW2].

Prior information g0 . Information about the state 6 from sources

other than real-time forecasts is encoded in a prior density g0 of 0.

For example, g0 may be a climatological density estimated on the basis

of observations taken over a period much longer than the period over

which categorical forecasts have been provided.

Forecasting scheme D. A forecasting scheme is characterized by a

family of densities D = {f t (-|e) : e c}, where ft (-10) is a density of

the categorical forecast t conditional upon the actual daily average

temperature 0 e 0. For any t c 0, ft(tI.) represents the likelihood

function of 0. 0 provides a probabilistic description of the errors of

the categorical forecasts, and it may be viewed as a characterization of

a given forecast system. 0 is to be estimated from a historical record

of the forecasted and observed temperatures.

Bayesian information processor. For any categorical forecast t s 0

produced by a known forecasting scheme 0, the prior density ge of 6 can

be revised to obtain a posterior density fa(-It) of 0. The optimal

revision is via Bayes theorem

16



ft(tie) ge()

0 9t (t)

where

g9(t) = ft (e) ge() dO

This Bayesian information processor (Sheridan and Ferrell, 1974) is shown

in Figure 3.1.

3.2 Evaluation Model

3.2.1 Forecast-Decision System

The process of forecasting and decision making can be conceptuali-

zed as a system (Krzysztofowicz and Davis, 1982). The forecast-decision

system is defined as a cascade coupling of two components, namely the

forecast system and the decision system, as is shown in Figure 3.1. The

performance of the forecast-decision system depends upon both the accuracy

of the forecasts and the optimality of the decisions. This interplay

between the system components is examined herein, first, theoretically and

next experimentally.

Determination of the value of categorical forecasts requires meaning-

ful measures for comparison. Perfect forecasts provide a lower bound on the

Bayes risk, and naive (or climatological) forecasts provide an upper bound.

The naive forecasting scheme is one which for each day specifies the same

temperature equal to an estimate of e based on the climatological (prior)

density g of 6. The naive forecasts are made without regard to current

synoptic information. Therefore, if a real-time categorical forecasting

scheme utilizing current synoptic information is to be worthwhile, it must

provide forecasts whose Bayes risk is smaller than that of the naive forecasts.

17
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In reality, the forecasts, both categorical and naive, are often

used in a nonoptimal manner. We suggest examining such cases as well,

in order to compare the value of forecasts for optimal and nonoptimal

decision making. The nonoptimal decision procedure selected, and by no

means the only one in popular use, is one that overlooks the intrinsic

uncertainty in the forecasts, i.e., decisions are made as if the forecasts

were perfect.

Table 3.1 shows the risks associated with five forecast-decision

systems. To determine a risk two essential steps must be considered:

making the decision and evaluating the decision. In the first step, the

decision maker selects the decision or decision function that minimizes

the loss or expected loss depending upon the decision procedure. In the

second step, the decision maker evaluates the decision or decision function

in terms of risk.

3.2.2 Nonoptimal Decision Procedures

Naive forecasting scheme. For a naive forecast of the temperature,

t c 0, namely the climatological mean of the daily average temperature, the

minimum loss, when natural uncertainty is not accounted for, is

LN = min 2AY(),a)
a

Let a E A be the decision minimizing the loss. Since v = T(t)

and a are elements of the same space [0,AM], a = v = (t) given the loss

function delineated in Section 3.1. The risk of the decision a is specified

by
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Table 3.1 Risks of Forecasting Schemes and
Decision Procedures

DECISION

OPTIMAL NONOPTIMAL

F PERFECT RF
0
R
E CATEGORICAL RC RC
C
A
S -
T NAIVE RN RN
T

(read RC as RC conjugate)

Notation

RF - Risk associated with a perfect forecast and an optimal
decision procedure

RC - Risk associated with a categorical forecast and an optimal
decision procedure

RC - Risk associated with a categorical forecast and a non-

optimal decision procedure

RN - Risk associated with a naive forecast and an optimal decision
procedure

RN - Risk associated with a naive forecast and a nonoptimal
decision procedure
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RN ={9(T(O),a&) g 6(() dO

.0

where g0 is the climatological density of the daily average temperature 0.

Categorical forecasting scheme. For categorical forecasts t s 0,

the minimum loss function is given by

LC(t) = min Z(P(t), 6(t))

The solution is the decision function 6 whose risk is defined by the

equation

RC = k(T() 6(t)) f60t) g( t (t) d6 dt

3.2.3 Optimal Decision Procedures

The following procedures are deemed optimal as the forecast un-

certainty is accounted for in the decision making step.

Naive forecasting scheme. The Bayes risk associated with naive

forecasts is given by

LN = min {(T(6),a) ge () dO

a

21



*
The minimizer of this expression, a e A, is the Bayes decision against

the natural uncertainty in the daily average temperature. The risk of

this decision is RN = LN.

Categorical forecasting scheme. In order to optimally account

for uncertainty of a categorical forecast, the decision should be made

against the posterior density obtained from the Bayesian information pro-

cessor. Thus, the Bayes risk function for categorical forecasts, t e 0,

is

LC(t) = min {(Y(6), 6(t)) f (6 It) d.

0

*

An optimal solution to this decision problem is a decision function 6

specifying for every forecast temperature t E 0 the planned generation

* * *
a = 6 (t) s A which minimizes the expected loss. 6 is termed a Bayes

decision function (DeGroot, 1970, p.138) against the forecast uncertainty.

The risk of this decision function is given by

(I. *
RC = J ('), 6 (t)) fa(Olt) g t(t) d6 dt

or

RC = LC(t) gt(t) dt

0
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It is apparent from the above development that the incorporation

of a Bayesian information processor into the decision model results in an

adaptive decision procedure. This procedure is especially attractive

*
for real-time applications because the Bayes decision function 6 can

be found prior to decision making. Then, every day the decision maker

*
receives the forecast t E 0, he can make the Bayes decision 6 (t) E A

without further calculations. If the operators , Z, g, and (D are not

stationary, but vary periodically (e.g., from month to month), then

the Bayes decision function has to be found for each period. Also, if

in the course of events, the knowledge about the physical phenomenon

changes and/or the forecast system undergoes a modification (e.g., by

expanding the data network, introducing a novel predictive model, or

hiring a new forecaster) that may affect the errors of the forecasts, then

the prior distribution and/or the family of the likelihood functions

should be updated and the decision function recomputed. Ultimately, the

prior distribution can be updated by every new observation of the state,

while the likelihood family can be updated by every new pair of the fore-

casted and observed state values.

Perfect forecasting scheme. The minimum loss function for perfect

forecasts, t e 0, is given by

LF(t) = min 9(T(t), 6(t))
6

**

The function 6 that minimizes this expression is the optimal

decision function against perfect forecasts. Its risk is given by
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RF = k(T(6), 6 (6)) g0 (e) dO

e
**

Notice that 6 = 6 and LF = LC, but the difference is that the decision

maker using 6 acts in a nonoptimal manner: he believes the forecasts are

perfect when, in fact, they are not. This distinction is reflected in the

**
evaluation of the decision: RF< RC . Moreover, we note that 6 (6) = T(e)

for all 0 e 0 and RF = 0 given the quadratic loss function we have chosen.

3.2.4 Ordinal Relations Between Risks

A priori, it can be shown that there exist ordinal relations among

the risks for both the optimal and nonoptimal decision procedures as well

as between the two sets of risks. Most obviously,

RF < RC < RN

This relation is a consequence of the fact that, under optimal deci-

sion procedures, perfect forecasts are always at least as valuable as

categorical or naive forecasts, and categorical forecasts are always at

least as valuable as naive forecasts. These facts are demonstrated in

Appendix B.

The orderings between the risks of the optimal and nonoptimal de-

cision procedures are

RC < RC , RN < RN

They derive from the fact that the nonoptimal decision procedures ignore

the errors of the forecasts, i.e., decisions are made as if the forecasts
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were perfect, whereas the optimal procedures account for the forecast

errors in an optimal manner, by definition. Nothing, however, can be said

as to the relations between RN and RC, and between RN and RC. The lack

of an a priori ordering between RN and RC is consequential. Suppose a de-

cision maker who follows a nonoptimal decision procedure and who has been

using a naive forecasting scheme ponders employing categorical forecasts.

If RC > RN, the decision maker will realize negative value of forecast in-

formation. In Appendix C, we derive conditions under which this occurs.

3.2.5 Performance Measures

Krzysztofowicz et al. (1980) have developed an approach to system

performance measurement. This approach will be followed herein. The suf-

ficient statistic of system performance is a vector of values from which the

efficiencies and expected opportunity losses for each of the system compo-

nents as well as the total system are derived.

We propose to evaluate three forecast-decision systems:

System 1: categorical forecast - optimal decision,

System 2: categorical forecast - nonoptimal decision,

System 3: naive forecast - nonoptimal decision.

As a reference for comparing the performance of these systems, we take the

case of naive forecast - optimal decision. This is the case wherein no

categorical forecasts are provided and the decision maker makes the best

use of the climatological record of temperature. That is, he makes a

Bayes decision against the climatological distribution of the daily average

temperatL and his risk is RN. The systems and their values are defined

as follows

System 1. The decision maker uses the categorical forecast and

accounts for the forecast uncertainty. This procedure is both adaptive
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and optimal. The potential value of the system is

PVl = RN - RF = RN .

The actual value, AV1, which in this system equals the optimal value, OVi,

since the decision procedure is optimal, is given by

AVI = OVi = RN - RC .

System 2. The decision maker uses the categorical forecast but

neglects the forecast uncertainty. This procedure is adaptive but non-

optimal. It would be optimal if the forecasts were perfect. The potential

(PV2), optimal (V2), and actual (AV2) values of the system are given

by

PV2 = RN - RF = RN

OV2 = RN - RC

AV2 = RN - RC

The actual value, AV2, which may be either nonnegative or negative, differs

from the optimal value, OV2, since a nonoptimal decision procedure is

employed.

System 3. The decision maker does not use the categorical forecast,

nor does he account for the natural uncertainty in the daily average tem-

perature. Instead, he uses a naive forecast (climatological estimate) as

if it were a perfect forecast. This procedure is neither adaptive nor

optimal. The potential (PV3), optimal (OV3), and actual (AV3) values are
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given by

PV3 = RN - RF = RN

OV3 = RN - RN

AV3 = RN - RN

We see that the actual value, AV3, is always nonpositive since RN < RN

The second measure of system performance introduced by

Krzysztofowicz et al. (1980) is efficiency. The generic definitions of

forecast (FE), decision (DE), and total (TE) system efficiencies are given

by

FE =- DE - AV TE = AV FE - DE.
PV 'OV 'PV

For all systems FE, DE, TE < 1. The forecast efficiency, FE, is an indi-

cator as to how skillful the actual forecasting scheme is relative to a

perfect scheme. Since the potential and optimal values are identical for

Systems 1 and 2, the forecast efficiency, FE, is the same for both systems.

The optimal value of System 3 is zero because if only a naive forecast is

available, the optimal performance we can expect is RN. The decision

efficiency, DE, is a measure of how inept is the given decision procedure

when compared to the optimal (Bayesian) procedure. Analogously, the total

efficiency, TE, is a composite yardstick of the actual total system per-

formance relative to potential performance. Thus, we are now equipped
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with a mathematically cogent framework within which we can quantitatively

examine the relative efficiency of three forecast-decision systems and

their components.

The third measure of system performance is the expected opportunity

loss. We define the generic forecast (FOL), decision (DOL), and total (TOL)

expected opportunity losses as follows:

FOL = PV - OV

DOL = OV - AV

TOL = PV - AV = FOL + DOL

FOL represents the value of replacing the actual forecasting scheme by a

perfect one. It is thus an upper bound on the daily cost of investments

towards improving the actual forecasts. Similarly, DOL represents the

value of replacing the actual decision procedure by an optimal one.

It is thus an upper bound on the daily expenditures towards improving the

actual decisions. Finally, TOL represents the value of replacing the

actual forecast-decision system by a system in which forecasts are perfect

and decisions optimal.

Armed with these measures, we can appraise the efficacy of an

improvement in the forecast-decision system in dollars. Moreover, a pre-

posterior analysis can be conducted to discriminate between alternative

improvements of each system component.
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3.3 Distribution of the Forecasting Scheme

Murphy and Winkler (1974, 1975) report statistics of the subjective

temperature forecasts (categorical, variable-width, and fixed-width fore-

casts) from experiments conducted in Denver, Colorado, and Milwaukee,

Wisconsin. The experiments were undertaken to evaluate the local fore-

casters' skill in constructing probabilistic forecasts of temperature for

lead times from 12 to 36 hours.

Murphy and Winkler (1974, 1975) define the categorical forecast,

t, to be the median of the probabilistic forecast. The statistics of the

categorical forecast temperatures, t, for Denver are compared with the

actual temperatures, e, in Table 3.2. Let

E =t - 0

denote the forecast error and h denote its density. Assuming c is
E

independent of 6, we have

ft(te) = h (t - 0)

Given the statistics of e (columns 2 and 3 of Table 3.2) and two

points on the distribution H of 6 (columns 4, 5 and 6), we can construct

h by postulating the underlying probability law. We postulate h to be

a mixed density (Benjamin and Cornell, 1970):

h (E) = (1 - p) h (E) + p y (E)

2
where p = Ir(c = 0), h is a normal density with parameters m and s ,

n n n
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Table 3.2 A Comparison of Forecast Median Temperature t and

Actual Temperature 6 from Experiment in Denver

STANDARD NUMBER
SET OF MEAN DEVIATION Pr( < t) Pr(6 = t) Pr(O > t) OF

FORECASTS [F] o FORECASTS
S s [ F]

1 2 3 4 5 6 7

ALL -0.5 4.9 .394 .126 .480 254

VARIABLE WIDTH -0.1 5.2 .447 .121 .432 132

FIXED WIDTH -0.8 4.6 .336 .131 .533 122

MAXIMUM 0.6 4.8 .472 .134 .394 127

MINIMUM -1.5 4.8 .315 .118 .567 127

12-HOUR -0.2 4.7 .409 .134 .457 127

24-HOUR -0.7 5.1 .378 .118 .504 127

FORECASTER 1 0.0 5.3 .453 .109 .438 64

FORECASTER 2 -0.3 5.1 .442 .132 .426 68

FORECASTER 3 -0.1 4.6 .416 .117 .467 60

FORECASTER 4 -1.5 4.4 .258 .145 .597 62

Table 1, p.4, 1975)

C

and Winkler.,(Source: Murphy



2
which are necessarily different from m and s , and p is the Dirac

delta function.

We shall now express the parameters of the normal density h in

terms of the statistics of c. By definition

m = E h (E) dc ,

= (1- p) hn(c) de + p J y(s) de

= (- p)m

Thus,

m
mn - p

Similarly,

2
s
5- I. 2

(s -in5 ) h5 (s) ds

(1- p) J( - ) h (s) dc + p
n I 2

(s -in) y(s) ds

2 2 2
=(l-p) [s2 + mn - 2m m+ m ] +

n n E n 5

2
p m .

After expressing m in terms of m , we obtain
n E

2
sn

1 [2 p 2
1- p [s - p ]
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3.4 Hypothetical Case Study

3.4.1 Input Data

Prior information g.. Nine years of daily average temperature data

for the month of April in Boston, Massachusetts, (see Table 3.3) are used

to construct the prior density g . The sample data are found to be

normally distributed at the 1% significance level using a Kolmogorov-

Smirnov test (Benjamin and Cornell, 1970). The sample mean, variance, and

precision are

m = 48.95 ['F]

s = 65.29 ['F]2

1 o -2
S = -j= . 015 [OF]

s

The resulting distribution function G is shown in Figure 3.2.

2
Forecasting scheme D. The mean m., variance s. , precision T of

the error e = t - 0, and the reliability p of the forecasts are assumed to

be equal to the values for the "ALL" set of forecasts from Table 3.2:

m -.5 [0F],

s2 = 24.01 [OF]2

t = .042 [0F]-2

p = .126

Using the above parameter values, the density h is constructed via

the method described in Section 3.3; the resulting distribution H is shown

in Figure 3.3. The likelihood function is then specified by f t(tJO) = h (t-0)

so that
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Table 3.3 Daily Average Temperature in [OF] for the
Month of April in Boston, Massachusetts

YEAR
DAY

1969 1971 1972 1973 1974 1975 1977 1978 1981

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

___________

(Source: National Weather Service)
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45
44
43
41
40
42
33
33
41

44
40
42
40
44
40
49
51
55
56
40
46
49
44
52
45
41
44
51
58
59

44
46
40
40
43
48
53
43
44
48
38
40
39
39
49
62
63
65
62
46
54
67
70
61
54
47
46
59
48
49

47
43
56
59
60
44
46
43
34

33
47
46
43
51
56
53
54
59
44
43
59
70
61
46
42
47
50
62
70
63

38
40
44
35
36
41
41
39
40
43
42
40
42
48
44
48
52
54
61
53
45
47
51
54
52
45
44
44
43
54

34
44
39
50
54
44
50
46
45

58
51
42
48
53
61
62
68
58
42
41
45
47
52
45
55
57
61
71
56
50

43
54
48
47
38
38
40
40
46

54
40
41
54
44
40
38
41
43
49
51
55
49
49
50
44
47
46
45
40
50

47
42
57
43
43
46
38
37
34

44
44
64
67
58
53
56
54
57
52
56
68
73
60
45
44
50
53
58
47
59

54
42
35
40
50
49
41
44
44

49
49
52
60
49
44
45
49
49
46
52
52
52
53
58
52
53
48
49
60
50

46
50
57
59
59
45
49
57
61

59
59
51
42
45
41
46
53
65
54
46
40
45
48
45
42
54
60
60
61
58
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m = m + me = 48.45 ['F]

Tt le = TE = .042 ['F]-2

The family of posterior densities {f6 (- It) : t e 0} and the predictive

density gt are then computed as described in Section 3.1. The predictive

distribution Gt is shown in Figure 3.4. All normal distributions are

computed numerically using a polynomial approximation (Abramowitz and

Stegun, 1972).

Load operator T. The load operator is defined by the variables

ta, tb, tC, td and AM-B. Schweppe (1981) indicates that AM-B ranges any-

where from 5% to 30% of the base load B, and approximate values of the

reference temperatures are

ta = 20 [0F],

tb = 50 [OF]

t = 70 [ 0F]
c

td = 90 ['F]

We assume AM-B = 300 MW. The operator T is displayed in Figure 3.5.

Loss function Z. The values of the cost coefficients are assumed

to be

c = 10 [$/MW 2

C = 20 [$/MW 2 ] .
u
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c is greater than c as excessive generation is wont to be less costly in

comparison to insufficient generation. This supposition derives from the

observation that insufficient generation would impel the utility to resort

to less efficient, short-term power sources to close the gap between the

actual power load and that which was planned for. Figure 3.6 illustrates

the loss function. It is worth noting that the loss as a function of the

state 0, k(T(-),a), is not at all quadratic (see Figure 3.7).

3.4.2 Basic Evaluation

The risks for the three forecasting schemes and two decision pro-

cedures are compared in Table 3.4. Note that the risks are in $/day. The

ordinal relations between the risks suggested earlier are also confirmed

in Table 3.4.

Table 3.4 Risks for the Case Study

DECISION

OPTIMAL NONOPTIMAL

F PERFECT RF = $0
0
R
E CATEGORICAL RC = $12327 RC = $22318
C
A

S NAIVE RN = $38889 RN = $61294
T

Table 3.5 presents a comparative evaluation of Systems 1, 2, and 3

with respect to all performance measures. In Systems 1 and 2, the optimal
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Table 3.5 Comparative Evaluation of Three Forecast-Decision Systems

SYSTEM 1 SYSTEM 2 SYSTEM 3

PERFORMANCE MEASURE CATEGORICAL FORECAST CATEGORICAL FORECAST NAIVE FORECAST

OPTIMAL DECISION NONOPTIMAL DECISION NONOPTIMAL DECISION

EXPECTED DAILY LOSS [$] RC = 12327 RC = 22318 RN = 61294

VALUES [$]

potential value PV 38889 38889 38889

optimal value OV 26562 26562 0

actual value AV 26562 16571 -22405

EFFICIENCIES

forecast efficiency FE .683 .683 0.0

decision efficiency DE 1.0 .624 -0

total efficiency TE .683 .426 -.576

EXPECTED OPPORTUNITY LOSSES [$]

forecast system FOL 12327 12327 38889

decision system DOL 0 9991 22405

total system TOL 12327 22318 61294

4-
0



value of categorical forecasts is OV1 = 26562 $/day, which is approximately

9.7 million dollars per year. If the forecasts were perfect, they would

be worth PVl = 38889 $/day, or roughly 14.2 million dollars per year. The

difference equal to FOLl = 12327 $/day, or 4.5 million dollars per year,

constitutes an upper bound on the economically justified investments to-

wards improving the quality of the forecasts, whose current efficiency

FEl = 68.3%. We can indisputably conclude that categorical temperature

forecasts are of economic consequence.

Inspection of Table 3.5 reveals that System 3 is quite inferior to

Systems 2 and 1, and System 2 is inferior to System 1. In System 2, the

use of a nonoptimal decision procedure which neglects forecast uncertainty

costs the utility, on the average, DOL2 = 9991 $/day, which is approxi-

mately 3.6 million dollars annually. In System 3, the use of a nonoptimal

decision procedure which neglects natural uncertainty in the daily average

temperature costs the utility DOL3 = 22405 $/day, or 8.1 million dollars

per year. Clearly, in both systems there are expected opportunity losses

due to suboptimal decisions. Categorical forecasts, however, mitigate

these losses substantially. That is, if a utility employing naive fore-

casts and making nonoptimal decisions (System 3) were provided categorical

forecasts and began to use them, although in a nonoptimal manner (System 2),

then the utility would realize a benefit equal to AV2-AV3 = 16571 + 22405 =

38976 $/day, or 14.2 million dollars annually. Interestingly, the value

of categorical forecasts, in relation to naive forecasts, is higher for

nonoptimal decision procedures (38976 $/day) than for optimal decision

procedures (26562 $/day).

Analysis of the Bayes risk and decision functions for System 1 aids

our understanding as to the effect each element of the decision model has
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upon the results. The effect of the mixed density, ft, and the asym-

metrical load operator is reflected in a plot of the Bayes risk function,

LC, shown in Figure 3.8. For numerical computations, the range of cate-

gorical forecasts is constrained to be from 5 to 100 [OF] since the

maximum and minimum actual daily average temperatures range between

25 and 80 [0 F] and the error is constrained to lie within + 20 [ 0F].

It is easy then to intuit that local minima occur at t equal to 5 and

100 [OF] as these forecasts are quite improbable. The local minimum

at approximately 63.5 [0F] is attributed to the fact that when t = 63.5

[0F] the probability that the actual temperature is less than tb or

greater than t is quite small and thus the actual load w = P(O) is

virtually always 0 MW; a decision a = 0 MW incurs losses only during

the infrequent events 0 < tb or 0 > t . Interestingly, the local
b c

minimum is not at (t -t b)/2 = 60. This asymmetry is due mainly to the

Bayesian processing of forecasts: the likelihood function (which is

only slightly skewed about t and has a spike at t) is weighted by the

climatological prior whose mean is m. = 48.95. As a result, the posterior

density is decisively skewed about t in the direction of m. We see this

in a comparison of f lt=60 and fo 8t=65 (Figure 3.9) where more of the

posterior density lies outside 50 to 70 [0 F] interval when t = 60 than

when t = 65. This bears witness to the fact that LC(t= 60) > LC(t= 65).

An asymmetry of similar nature is exhibited by the two local

maxima at 31.5 and 83 [0 F] (the median temperatures of the sloping

portions of the load operator are (tb-ta)/2 = 35 and (td-tc)/2 = 80).

The two discontinuities at approximately 26 and 81 [ F] are

ascribed to the inclusion and exclusion of the spike, p, in the calculation

of LC. This is purely a numerical phenomenon due to the truncation of the
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space 0 for the purpose of numerical execution of Bayes theorem and

numerical integration.

*
Figure 3.10 illustrates the Bayes decision function 6 ;

given a categorical forecast of the daily average temperature, t,

* *
a = 6 (t) is the decision minimizing the risk. Although the function

appears to be symmetric about 63.5 [0F], careful examination reveals that

the left-hand side ascends more precipitously than the right-hand side.

This again is due to the fact that the climatological density is

symmetric about 48.95 [0F]; this causes the optimal decisions to be closer

to the load operator when t is near m and more gently sloped when t

is much greater or less than m. Figure 3.10 provides the operator

with a relatively simple, yet optimal, decision rule.

3.5 Sensitivity Analyses

We seek now to perturb the precision, Ttie, and the reliability,

p, of ft, the loss function, Z, and the load operator, T, to obviate the

need for speculation as to the system behavior under various and sundry

conditions.

3.5.1 Precision of the Forecasts

Variation of the precision of ft affords explicit quantification

of the performance of the forecast-decision system as a function of the

skill of the forecaster. Logically, the skill or precision should be

positively correlated with the forecast reliability, but since there is no

data to confirm this assertion, we vary the precision Ttie while holding

the reliability p constant.
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We expect that as Ttie decreases, the total efficiencies of

Systems 1 and 2 will decrease via the argument expounded in Appendix D.

This phenomenon is demonstrated in Figure 3.11. System 1 always outperforms

Systems 2 and 3, whereas it appears that System 2 dominates System 3 for

T tie , .a Figure 3.12 shows that as T tie increases,it becomes less and

less important to use an optimal decision procedure (DE2 approaches 1 as

Ttie increases). The decision efficiency of System 3 is not shown as it

is always negatively infinite.

Note that the forecast efficiency of Systems 1 and 2 is repre-

sented exactly by the total efficiency of System 1.

A graph of the total expected opportunity loss, TOL, versus fore-

cast precision, Tt6, (Figure 3.13) is informative in that the efficien-

cies are converted into dollars and thus proposals to increase the pre-

cision of the forecasts at a given cost, C, can be compared against the

difference between the total expected opportunity losses of the de facto

system and the improved system. If C is greater than this difference,

the proposal should be rejected. We can conclude that System 3 is

preferable to System 2 when Ttie < To by a wide margin. Figure 3.14

depicts the decision expected opportunity loss for all three systems.

Figure 3.15 shows a plot of the Bayes risk function LC for

[0 -2t = .01, .042 [ F] . As t increases, all the maxima and minima
tie t|e

of LC, save the discontinuities at roughly 26 and 81 [0F], are negatively

shifted when t < me and positively shifted when t > me. Given the observa-

tion that when t < t < t or t < t < td , it is more difficult to

make decisions than when t < ta or t > td, it is apparent that for large

T t e the maxima lie within the sloping portions of the load operator.
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The left-hand side of the Bayes risk function when Ttie = .01 dwarfs

the Bayes risk function when Ttie | .042 because of the subtle interaction

between the load operator and the posterior density. Intuitively, one

would argue that the left-hand side of LC should be less peaked than the

right-hand side as ch< Icj , but it must also be heeded that the prior

density ga is symmetric about 48.95 [0F], thereby lending more weight to

forecasts from 20 to 50 [F0 than from 70 to 90 [0F]. This effect vanishes,

however, as Ttie goes to infinity since perfect forecasts imply LC(t) = 0

for every t e 0.

Figure 3.16 evinces some interesting properties of the Bayes decision

*
function, 6 , as a function of the forecast precision Tt| 6. First, the

decision function for a perfect forecast, t, is precisely the load operator

v = P(t), which is quite logical under the assumption that the load operator,

is exact. Second, the values of the optimal decisions for forecasts of

extreme temperatures decrease as the precision decreases; in other words,

the more uncertain the forecasts of extremes, the more "cautious" the de-

*
cisions. Third, the minimum of 6 is translated to the right as Ttle de-

creases for the same reason the maxima and minima of LC shift with decreas-

*
ing Ttie" As -tie goes to zero, 6 becomes more and more horizontal and

*
centered about a , the decision that is the minimizer of LN.

3.5.2 Reliability of the Forecasts

The reliability, p, is here defined as the probability that e = t.

In the basic evaluation p = .126. While perturbing the reliability we

[0F-2maintain a constant precision, T tie =042 [F]- . This analysis is,
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then, tantamount to examining the luck of a forecaster with invariant

skill.

The assertion that the reliability was the cause of the dis-

continuity in the Bayes risk function (see Section 3.4.2) is corroborated

in Figure 3.17, a plot of LC when p = 0, as the function is quite smooth.

There are not, however, any other discernible distinctions between the

two functions.

One would expect, a priori, that the forecast efficiency (equal

to the total efficiency of System 1) would increase with p. But since

2
Tt6 was unaltered, sn was necessarily increased; consequently, the in-

crease in forecast reliability was offset by a very dispersed normal

density h . As a result, the forecast efficiency increases very slowly

with p, as is shown in Figure 3.18. Not unexpectedly, the decision

efficiency of System 2 monotonically decreases as p increases up to

.75 (Figure 3.19). Thus, a nonoptimal user of forecasts would certainly

prefer his forecaster to be unlucky but skillful rather than lucky and

unskillful, unless his luck would be so great as to result in reliability

exceeding .9. Similarly, for an optimal user we see that of the two

properties of categorical forecasts, reliability and precision, it is

far more valuable to be precise than to be reliable, up to a point.

This assessment is validated when comparing the total expected

opportunity loss (Figures 3.13 and 3.20). In System 1, we see that as

p increases the total expected opportunity loss decreases very slowly,

whereas it summarily decreases as Ttie increases. Of course, in the

limit, the two properties converge, i.e., a perfectly reliable forecast has
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infinite precision.

Examination of the decision expected opportunity loss (Figure 3.21)

reveals that as p increases from 0 to .75, DOL2 increases, as it does when

Ttie decreases. Thus given a fixed precision of the forecasts, a non-

optimal user minimizes his opportunity loss when the forecasts are less

reliable, i.e., when the mixed density ft becomes more continuous.

3.5.3 Loss Ratio of Over to Under Generation

The sensitivity analysis with respect to the ratio c /cu serves

to elucidate the importance of exact quantification of these parameters,

which is universally a difficult task. In the experiment, we fixed

cu = 20 [$/MW 2] and varied c from 0 to 20 [$/14W2]. Figure 3.22 portrays

the total efficiency versus c0/cu

At c0/cu = 0, the total efficiency of System 1 is not defined since

RN = RC = 0, and

RN - RC 1 RC
RN - RF RN

The total efficiencies of Systems 2 and 3 go to negative infinity since

RN - RC RC
RN - RF RN 
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and

RN - RN RN
RN - RF RN'

where RC and RN are both greater than zero. Otherwise, as c /c increases
0 U

from zero to one, TEl decreases slightly because losses are generally higher.

TE2 and TE3 increase because as the loss function approaches a symmetric

form, decision making becomes "easier." As c /c approaches 1 the vitality
0 U

of accounting for the forecast errors diminishes (Figure 3.23).

The total expected opportunity loss of System 1, which is also the

forecast expected opportunity loss for Systems 1 and 2, represents the

value of a perfect forecast; we observe that as c /c approaches 1, the
o u

value of a perfect forecast increases (Figure 3.24). Improvements in the

forecasting scheme should then be emphasized when k is relatively symmetric

in lieu of improvements in the decision procedure. This result is qualified

in Figure 3.25, a plot of the decision expected opportunity loss versus

c 0 C U

3.5.4 Heating/Cooling Gap of the Load Operator

Finally, we seek to examine the effect of lessening the difference

of (t c - tb) in the load operator, T. A comparison of LC between the

basic evaluation when t - t = 20 and the case when t - t = 0 is madec b c b

in Figure 3.26. The total efficiencies are shown in Figure 3.27. As

(tC - t b) increases, one would expect TEl and TE2 to increase because,

simply, the range of the temperature insensitive to the load is longer.

But then lahI and JacI become larger (i.e., the sloping portions are

steeper) and this has a counterbalancing effect. It is this effect that
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apparently dominates the behavior of System 3.

The value of a perfect forecast, TOLl = FOLl, is at a minimum when

the heating/cooling gap is either 0 or 20 [ F] (Figure 3.28).

3.6 Summary

A simple decision model for scheduling daily average power generation

on the basis of a categorical temperature forecast has been developed. A

set of measures (including values, efficiencies, and expected opportunity

losses) has been defined for evaluation of the performance of a forecast-

ing scheme, a decision procedure, and a total forecast-decision system.

It has been demonstrated that categorical forecasts of the daily

average temperature are, indeed, more valuable than naive (climatological)

forecasts when used optimally, i.e., when the forecast uncertainty is

accounted for via a Bayesian method. On the other hand, if the same

categorical forecasts are used nonoptimally, i.e., under the false

assumption that they are error-free, then large opportunity losses are

likely to be incurred. Consequently, the value of the categorical

forecasts may be negative.
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CHAPTER 4

VALUE OF PROBABILISTIC FORECASTS

4.1 Decision Model

An economic evaluation of and comparison between probabilistic,

categorical, and naive forecasts will be made in the context of the

electric power generation problem described in Section 3.1. Some

modifications of the decision model are, however, necessary in order to

supplant the categorical forecasts with the probabilistic forecasts: two

elements, the parameter space, M, and the information scheme, R , need to

be added to the model,and the forecasting scheme, 0, must be redefined.

The information now available to the decision maker is a subjective fore-

cast density defined by a vector of parameters; the posterior density of

the actual temperature is conditioned upon this forecast density. For-

mally, the changes in the decision model are as follows.

Parameter space M. p e M is a vector of statistics. Typically,

y consists of the meteorologist's responses to the queries specific to the

encoding technique used to construct the subjective probabilistic forecast.

p may also be a function of the meteorologist's responses, and, in parti-

cular, this function may constitute a sufficient statistic of fixed dimen-

sion (DeGroot, 1970, p. 155) for a family of densities R .

Information scheme R . R = {Pe(-Ip) : p e MI, where p0(-jvy) is

the subjective forecast density of the actual daily average temperature, 0,

constructed on the basis of a vector of statistics p e M. The exact nature

of this construction is dependent upon the probability elicitation tech-

nique. The procedure used to construct p0(- I) on the basis of the

variable-width, fixed-probability elicitation technique is described in

Section 4.3.
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Forecasting scheme D. A forecasting scheme is characterized by

a family of densities D = { 1 (-10) : 0 e 01, where P (-je) is a condi-

tional density of the statistic p, given the actual daily average temper-

ature 0 6 0. For any p e M, P (pI-) represents the likelihood function of

6. P is to be estimated from a record of probabilistic forecasts,

Pe (-p), and actual temperatures, 0. The source and construction of

$ is described in Section 4.3.

Bayesian information processor. For any probabilistic

forecast p0 (-p) of 0 produced by a known forecasting scheme 1, the prior

density g. of 6 can be revised to obtain a posterior density p0(*1p) =

$g|p,(-jp)) of 6. The optimal revision is via Bayes theorem

1 (pjo) g W

g(0p) = 0
y -

where

0) = $(pie) g (e) dO

If the probabilistic forecasts are perfectly calibrated, then

Given all remaining elements of the decision model unaltered, the

optimal and nonoptimal decision procedures will be formulated in parallel

to those for categorical forecasts.
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4.2 Evaluation Model

An evaluation model for the probabilistic forecast-decision system

is constructed to examine the performance of both optimal and nonoptimal

decision procedures using the subjective probabilistic forecasts.

For the sake of consistency, we choose a nonoptimal procedure that spurns

the innate uncertainty in the forecast - i.e., the probabilistic forecast

is presumed to be perfectly calibrated (reliable) and, consequently, the

decision is made against p0 instead of against $ '

Table 4.1 displays the risks vital to the evaluation of the probab-

ilistic forecast-decision systems. These risks are the expected losses

of the decisions or the decision functions prescribed in the first step

of the decision analysis.

4.2.1 Nonoptimal Decision Procedure

Under this procedure, the decision maker assumes, incorrectly, that

the probabilistic forecast, p0 (- 1), is perfectly calibrated. The minimum

expected loss function is defined as

LP(p) = min ,('(e), 6(p)) p (6|p) d6

The solution is the decision function 6 whose risk is

RP =(6), 6(p)) 0 (O6y) g_ (p) dO d'

M e
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Table 4.1 Risks of Forecasting Schemes and Decision Procedures for
Evaluation of Probabilistic Forecast-Decision Systems

DECISION

OPTIMAL NONOPTIMAL

PERFECT RF
F

0
R PROBABILISTIC RP RP
E
C
A CATEGORICAL RC RC
S
T

NAIVE RN RN

Notation

RP = Risk associated with a subjective probabilistic forecast and
an optimal decision procedure

RIP = Risk associated with a subjective probabilistic forecast and
a nonoptimal decision procedure

Remaining notation is defined in Table 3.1
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4.2.2 Optimal Decision Procedure

We ensure optimality by accounting, in the decision making step,

for the imperfect calibration of the probabilistic forecast. The Bayes

risk function is defined by the equation

LPQg) = min [((6), 6 (p)) # (o|) d.
6)6

The function 6 that minimizes this expression is the Bayes decision

function against 4g. The risk of this decision function is defined as

RP = [[ ((), 6(p)) (E) g P() dO dii

MON

or equivalently,

RP = LP(y) g (P) dy.i

M

4.2.3 Ordinal Relations Between Risks

In the order

RF < RP < RC < RN

the suborders RF < RP < RN and RF < RC < RN hold always; the order

RP < RC holds if the probabilistic forecast is sufficient for the

categorical forecast in the sense of Blackwell's (1953) definition of

sufficient experiments. A special case of sufficiency arises when the
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categorical forecast t appears as a parameter of the probabilistic

forecast pe (-Ip), i.e., p = (t,v). For the proof in this case see

Appendix B, and for more elaborate discussions of the general notion

of sufficiency see DeGroot (1970, p.433), Hilton (1981), and Appendix A.

The orders

RP<RP RC < RC , RN<RN

are obvious. No order can be established a priori among RP, RC, and

RN, between RC and RP, between RN and RC, and between RN and RP.

4.2.4 Performance Measures

We propose to evaluate two probabilistic forecast-decision systems,

in addition to the three systems evaluated in Chapter 3, one optimal and

one nonoptimal. The reference system is one in which the Bayes decision

is made against the climatological distribution, as in Chapter 3.

System 4. The decision maker uses the probabilistic forecast,

P a('-p), and makes the Bayes decision against e(- I p). He, there-

fore, accounts for the imperfect calibration of the probabilistic fore-

cast. This procedure is both adaptive and optimal. The potential value

of the system is

PV4 = RN - RF = RN

The actual value, AV4, which is equal to the optimal value, OV4, because

of the optimality of the decision procedure, is given by the equation

AV4 = OV4 = RN - RP
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System 5. The decision maker uses the probabilistic forecast,

Pe (-), as if it were perfectly calibrated. Therefore, this procedure

is adaptive but nonoptimal. The system values are given by

PV5 = RN - RF = RN

OV5 = RN - RP

AV5 = RN - RP

The system efficiencies and expected opportunity losses are given

by the equations in Section 3.2.5.

4.3 Distributions of the Information and Forecasting Schemes

Under the assumption that the variable-width, fixed-probability

technique is used to encode the forecast density p (-1v), the vector

parameter L = (t,t5 0 ,t75), where t is the median, t5 0 is the width of the

50% credible interval, and t75 is the width of the 75% credible interval.

Let

e = t-O

denote the error of the median and k denote its forecasted density.
ejt 5 0 t 7 5

Assuming e is independent of 6, we have

Pe(6t,t50 t 75 ) = kElt t50t75(t-t 509,t 7 5 )
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Murphy and Winkler (1974, p.2 8 ) indicate that "... only 51% of the 50%

intervals and 32% of the 75% intervals were symmetric... and the asymmetries

appeared to be equally likely in either direction," but the results they

report are insufficient for explicit modeling of this asymmetry. Thus, to

construct the distribution K it is necessary to assume that the
e 50,t75

credible intervals are symmetric about the median. Because the intervals

.are, by definition, symmetric about the median in terms of probability,

the ordinates of the distribution KEIt t are

Pr(e < -t /2) = .125 ,
-75

Pr(E < -t /2) = .25 ,
- 50

Pr(e < 0) = .5

Pr(E < t50/2) = .75

Pr(e < t /2) = .875
-75

Let h lt denote the conditional density of the error 6 given
e t50,t75

the probabilistic forecast p0 (-Jt,t 50 ,t75). Again, assuming that e is

independent of 0, we have

ft(tit50,t 75 ,6) = he t50,t75(t-It 50,t 7 5)

1/This assumption will, most likely, result in the underestimation of the

value of probabilistic forecasts.
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By definition,

4 (pIe) = $ (t,t50,t75 10)

t (tt 5 0 t 7 5 ) t 50t75(t50 t7 516)

Assuming (t5 0 "t7 5 ) to be independent of 6,

t50' 75(t5 0 t751e) = gt50Pt75(t5 0 ,t 7 5)

and hence

P (pie) = he t ,t (t- t 50,t7 5) t t (t5 0 ,t7 5 )

Six ordinates of the distribution HEtt50,t75 can be extracted from the

data reported by Murphy and Winkler (1974, 1975). The "ALL" set of fore-

casts from Denver (Table 4.2) yields

Pr(E < -t7 5 /2)

Pr(s < -t 5 0 /2)

Pr(E < t50/2)

Pr(E < t 75 /2)

= .159 ,

= .288 ,

= .288 + .455 = .743 ,

= .159 + .735 = .894
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Table 4.2 Relative Frequency of Actual Temperature Below Interval (BI),

in Interval (II), and Above Interval (AI) and Average Interval

Width for Variable-Width Forecasts Issued in Denver

PROBABILITY OF ACTUAL TEMPERATURE AVERAGE WIDTH

(STANDARD DEVIATION

SET OF NUMBER 50% INTERVALS 75% INTERVALS OF WIDTH) [0F]

FOREORECASTSFORECASTS II A BI II A 50% 75%
INTERVALS INTERVALS

1 2 3 4 5 6 7 8 9 10

ALL 132 .258 .455 .288 .106 .735 .159 6.2(1.3) 11.7(2.2)

MAXIMUM
TEMPERATURE 66 .288 .515 .197 .152 .758 .090 6.3(1.2) 11.7(2.1)

MINIMUM
TEMPERATURE 66 .227 .394 .379 .061 .712 .227 6.2(1.3) 11.6(2.3)

12-HOUR
LEAD TIME 66 .227 .515 .258 .091 .803 .106 6.1(1.2) 11.4(2.0)

24-HOUR
LEAD TIME 66 .288 .394 .318 .121 .667 .212 6.4(1.3) 11.9(2.4)

FORECASTER 1 64 .297 .375 .328 .093 .766 .141 5.8(1.3) 11.3(2.6)

FORECASTER 2 68 .221 .520 .259 .118 .706 .176 6.7(1.1) 12.0(1.7)

(Source: Murphy and Winkler, Table 3, p.7, 1975)
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Moreover, from Table 3.2

Pr(E < 0) = .480 ,

Pr(e = 0) = .126

It is not at all apparent, though, how the users can directly

transform the credible interval forecasts into the continuous distribution

functions, KIlt and Hlt , requisite to perform the decision

analysis suggested herein. An interpolating procedure is, therefore,

proposed to construct an approximation to the aforementioned distribution

functions. The interpolating procedure suggested is a one-dimensional

quasi-cubic hermite polynomial technique described by Akima (1970). The

objective of this procedure is to mimic a curve drawn manually. The pro-

cedure, however, necessitates the specification of the 100% interval width,

which renders two ordinates of K Et50 t75 and HEI t50 75. They are

Pr(E < -t1 0 0 /2) = 0 ,

Pr(E < t /2) = 1.0

Consequently, we submit that the 100% interval width ought to be

encoded when using the variable-width elicitation technique. One could

obtain this parameter estimate from the forecaster by asking the following

two queries:

1) What is the temperature which you are certain tomorrow's daily average

will not fall below?

2) What is the temperature which you are certain tomorrow's daily average

will not exceed?

Since there is no data to support other relationships, we assume

that
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t100 w t7 5 "

where w > 1. w is assigned a value that gives the best fit of the marginal

density function

h (-) = h I t50, t 75 (E t 50t75) gt 50,t75 (t5 0 , t 75 ) dt5 0 dt 75

to that determined for categorical forecasts in Section 3.3.

Murphy and Winkler (1974, p.26) declare that they "... expect the

width of the 75% intervals to be an increasing function of the width of

the 50% intervals, and the results... indicate that, on the average, such

a relationship does indeed exist." Therefore, let

t7 5  a t5 0 + b ,

where a and b are determined from the equations of moments:

mt a mt + b,
75 50

2 2 2
s =a s

t75 t50

The simultaneous solution yields:

t
75a = s

t
5 0

5

t75b = m~ - .

t75 st50 t50

The mean and standard deviation of t50 and t75 are given in Columns 9 and

10 of Table 4.2.

Henceforth, t75 is no longer considered a random variable, and it is

dropped from the distributions KEI t50t75 , Helt50,t 75, and Gt50,t75 so that
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we are left with Ket,50 Hejl t50, and Gt.50 Consequently, the density g

is expressed as

g (P) = f (l) ge(e) dO

= helt50 (t-e|t5 0) t50(t5 0 ) g(6) dO ,

t 50 (t 5 0 ) h l t50 (t-e|t5 0) g (e) de

Finally, the posterior density of the actual temperature given the prob-

abilistic forecast is given by

0(_) g (6)

he t50(t-0jt 5 0) g)(O)

h Elt 50(t-t50) g (E) dO

The density gt50 is assumed to be Gaussian with parameter values

given by the statistics in Column 9 of Table 4.2. For numerical computa-

tions all distribution functions are quantized into .5 [ 0F] intervals.

2
Let m t d s denote the mean and variance of eit50 under

E:It50 a :It50 2 5
the density h , and M t and S denote the mean and variance ofe50 s~5 It50
Eit5 0 under the density k nt50. Under the assumption that the distributions

H and K . are piecewise linear, expressions for statistics of
E t50 .Eit 50
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c it50 are derived. Specifically, the statistics are given by

= I h lt50 (-t 50) dE:

2

I t
5 0

= (E - m )2 h 5(Et 5 0) dE.
e~t5 e'50 5

To facilitate the discussion, we denote

-t100 /2 =x(1)

-t 75/2 = x(2)

-t50/2 = x(3)

-0 = x(4)

+0 = x(5)

t 50/2 = x(6) ,

t 75/2 = x(7) ,

t100/2 = x(8) ,

and y(i) =

given by

He I t50(x(i) It 5 0 ) , i =1,...,8. With the differentials

dHE(i)|t
50

- y(i+l) - y(i) _ 7
x(i+1) - x(i) '

the expression for the mean is

m _ x(i+1)2 x(i)2 dH
e50 i=f th ai)ct50

and the expression for the variance is
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s2 [ x(i+1) - x(i)3 + (X(i)2 _ X(,+1)2) m +
et 5 0  i= - 3  +x+50

22
Elt 50 E(i)lt 50

A parallel set of expressions can be found for M and Set with the
it50 50

proper redefinition of x(i) and y(i).

4.4 Hypothetical Case Study

A numerical example using probabilistic temperature forecasts

constructed from the data reported by Murphy and Winkler (1974, 1975) is

presented herein. The value of probabilistic forecasts is compared against

the value of categorical and naive forecasts. Furthermore, sensitivity

analyses are performed on the expected value of t5 0 , E[t5 0 ], the loss

function, Z, and the load operator, '.

4.4.1 Input Data

The mean and variance of the forecast parameters t5 0 and t75 are

mt50 = 6.2 [ F]

s 2 = 1.69 [0F] 2
t
5 0

2 o2
s = 1.69 [ F],
t75

s = 4.84 [0 F]
t75
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Note that these are the statistics from the "ALL" forecasts in Denver,

vide Table 4.2. The coefficients of the equation describing the deter-

ministic relationship between t5 0 and t75 are

a = 1.69 ,

b = 1.22 [ 0F]

The coefficient of the relationship between t7 5 and t10 0 is

w = 1.5 .

Given these parameters, we find that when t = m t50, the statistics of

sit50 under the distribution H1 t50 are

M Et t50 = -. 369 ['F] ,

s2 = 21.07 [0F]2
E 5 t 5 0

and the statistics of eit5 0 under the distribution Kit are

Me t50 = 0 [0F] ,

2 o2
S:lt 50 = 20.34 [ F]

The load operator, T, the loss function, 2, and the prior density,

gV are identical to those used in Chapter 3.

4.4.2 Test of the Numerical Models

To ensure that the decision models have been programmed correctly,

the following test has been devised. The optimal decision against naive

*
forecasts, a , as defined in Section 3.2.3, is employed in the probabil-

istic forecast-decision model, i.e., the risk is computed as
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RP' = {J( (6),a) $ (61E) g (y) dO dp

M e

which is equivalent to

RP = f6(1),aP) [ $ (ojy) gV(p) dy] de

0 M

= f(T(O),a ) g6(E) d.

Clearly, RPI is equivalent to RN.

*
In addition, the optimal decision function, 6 , against the posterior

density, f, as defined in Section 3.2.3, is employed in the probabilistic

forecast-decision model, i.e., the risk is computed as

RP"' = f[ ('()6(t)) $e(01E) g (14) dO dyi

A b

= ffY((),6(t)) [J $ 0(Ot,t50) g(t,t)5 0  dt5 0 ] dO dt

= {f(P(),6*(t)) f0 (81t) gt(t) dO dt

Hence RP" is identical to RC.

The results shown in Table 4.3 support the correctness of the

numerical models.
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Table 4.3 Accuracy of the Probabilistic Numerical Model

4.4.3 Basic Evaluation

The risks incurred daily by the utility as a consequence of using

a naive, categorical, probabilistic, or perfect forecast in an optimal or

nonoptimal decision procedure are summarized in Table 4.4.

Table 4.4 Risks for the Case Study

DECISION

OPTIMAL NONOPTIMAL

PERFECT RF = $0
F
0
R PROBABILISTIC RP = $11663 RP = $16600
E
C
A CATEGORICAL RC = $12327 RC = $22318
S
T

NAIVE RN = $38889 RN = $61294

The optimal use of the probabilistic forecast results in the Bayes risk RP

which is lower than the Bayes risk RC associated with the categorical fore-

cast by 5.4% on a daily basis, or approximately 240 thousand dollars per year.

Furthermore, there appears to be a significant difference between the opti-

mal (RP) and nonoptimal (RIP) use of the probabilistic forecast: 4937 $/day
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CATEGORICAL RC = $12327 RP" = $12005
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or approximately 1.8 million dollars annually. This indicates that the

probabilistic forecasts are not perfectly calibrated. In Figure 4.1 we see

that while R is symmetric about t, D is skewed towards m0 and has a spike

at t, thereby lending less probability to positive errors in the median

forecast than R Since most of the time the symmetry of R is due to our

modeling assumption (vide Section 4.3), the risks RP and RP are, most likely,

overestimated. If the data in Table 4.2 were given a nonBayesian inter-

pretation wherein the likelihood is interpreted as a "posterior,"

P (t,t 50 ) = h Ft (t -Ot 50 ), and the decision is made against V , then the

closeness of D and R (Figure 4.2) implies that the risk of such a deci-
1y 0

sion procedure would be similar to RP.

*
Figure 4.3 displays the Bayes decision function, 6 . For example,

given a probabilistic forecast with median t = 28 0F and a 50% credible

interval t5 0 = 3 0F, the optimal decision is to generate 6 (28,3) = 210 MW

above the base load B. The influence of the credible interval t5 0 on the

optimal decision 6 (t,t5 0 ) is nil at about t = 46 F and increases non-

linearly as t tends towards the extremes. In other words, the quantifica-

tion of uncertainty in forecasts indicating extreme values is much more

consequential for optimal decision making than the quantification of un-

certainty in forecasts indicating about-average values. (Recall that the

climatological mean is m, = 48.95 0 F.) The wide band of zero values is due

to the heating/cooling gap of the load operator. The band narrows and

shifts as the forecast uncertainty increases, thus reflecting the subtle

interplay between the load operator T, loss function k, and posterior density

Plotted in Figure 4.3 is also the trace of the Bayes decision function,

*
6 , for categorical forecasts. For instance, given a categorical forecast

t = 280F, the optimal decision is 6 (28) = 170 MW. The ordinate of this

point is t5 0 = 7.10F; it may be viewed as the implied 50% credible interval

of the categorical forecast. Note that the range of optimal decisions in
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response to probabilistic forecasts indicating t = 280F is from 220 MW for

very certain forecasts to 130 MW for very uncertain forecasts. This

example illustrates best how much adaptivity can be built into the Bayes

decision function by providing forecasts which encode the forecaster's

degree of uncertainty even in such a simple form as a single credible

interval.

Figure 4.4 depicts posterior distributions, %D, constructed for
three different values of t5 0, which result in three Bayes decision func-

tions, 6 (-,t5 0 ), extracted from Figure 4.3 (vide Figure 4.6). The as-

sociated Bayes risk functions, LP(-,t5 0), are shown in Figure 4.5. As Figure

4.6 indicates, when the precision of the forecast increases (t50 + 0) the

*
Bayes decision function, 6 , approaches the shape of the load operator, Y.

The asymmetry of the Bayes decision functions and asymmetry, bimodality,

and discontinuities of the Bayes risk functions are, again, attributed to the

subtle interaction between the load operator T, loss function Z, and

posterior density $., as explicated in Section 3.4.2.

Table 4.5 presents values of the performance measures for Systems

1, 4, and 5. When both categorical and probabilistic forecasts are used

optimally (Systems 1 and 4), their values are AV = 26562 and AV4 = 27226

$/day. If the forecasts were perfect, they would be worth PV = 38889

$/day, or roughly 14.2 million dollars per year. The forecast expected

opportunity loss, FOL, constitutes an upper bound on the economically justi-

fied investments towards improving the quality of the forecasts. Thus, a

decision maker already receiving probabilistic forecasts should spend no

more than FOL4 = 11663 $/day, equivalent to 4.3 million dollars annually,

for a prospective forecast enhancement.
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Table 4.5 Comparative Evaluation of Three Forecast-Decision Systems

SYSTEM 1 SYSTEM 4 SYSTEM 5

PERFORMANCE MEASURE CATEGORICAL FORECAST PROBABILISTIC FORECAST PROBABILISTIC FORECAST
OPTIMAL DECISION OPTIMAL DECISION NONOPTIMAL DECISION

EXPECTED DAILY LOSS [$] RC = 12327 RP = 11663 RP = 16600

VALUES [$]

potential value PV 38889 38889 38889

optimal value OV 26562 27226 27226

actual value AV 26562 27226 22289

EFFICIENCIES

forecast efficiency FE .683 .700 .700

decision efficiency DE 1.0 1.0 .819

total efficiency TE .683 .700 .573

EXPECTED OPPORTUNITY LOSSES [$1

forecast system FOL 12327 11663 11663

decision system DOL 0 0 4937

total system TOL 12327 11663 16600



High efficiencies, FEl = 68.3% and FE4 = 70.0%, indicate that both

types of forecasts are of good quality and are much more valuable than

naive forecasts which are based solely on a climatological record (effi-

ciency of a naive forecast is zero).

Higher efficiency of probabilistic forecasts, by FE4 - FEl = 1.7%,

indicates that the forecasters were able to quantify uncertainty in their

forecasts with a degree of reliability that has economic impact. The ex-

pected gain from using probabilistic forecasts instead of categorical

forecasts is AV4 - AV = 664 $/day, or about 240 thousand dollars annually.

Considering the fact that the issuance of subjective probabilistic fore-

casts does not require any new hardware but only additional skill and

effort on the part of a forecaster, the expected net gain would be positive

(even after subtracting an extra remuneration for a forecaster).

When the probabilistic forecasts are used nonoptimally (System 5),

their value is AV5 = 22289 $/day. The efficiency of the nonoptimal decision

procedure is DE5 = 81.9%, while the expected opportunity loss incurred by

the decision maker due to the nonoptimal use of the forecast is DOL5 = 4937

$/day, or 1.8 million dollars per year. The decision maker could economi-

cally justify investments up to this amount for improving his decision

procedure.

The value of the optimally used categorical forecasts, AV, is larger

than the value of the nonoptimally used probabilistic forecasts, AV5. This

belies the prevailing sentiment that more information is necessarily

better than less. Obviously, this is only true when the information is

processed and used optimally.

When both types of forecasts are used nonoptimally, then probabil-

istic forecasts are TE5 - TE2 = 14.7% more valuable than categorical fore-

casts (compare Table 4.5 with Table 3.5). The corresponding expected
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gain from using probabilistic instead of categorical forecasts is

AV5 - AV2 = 5718 $/day, or roughly 2.1 million dollars annually. That is,

even if the decision maker does not account for the possible imperfect

calibration of probabilistic forecasts, he is much better off using prob-

abilistic forecasts than using categorical forecasts under the (false) pre-

sumption that they are error-free.

4.5 Sensitivity Analyses

In this section, we evaluate the performance of probabilistic

forecast-decision systems under conditions different than those of the

basic evaluation. The consequences of modifying the expected value of

the 50% credible interval, E[t50 ], the loss function, Z, and the load

operator, T, are critically examined.

4.5.1 Expected Value of the 50% Credible Interval

The expected value of the 50% credible interval, E[t5 0 ], is one of

the parameters that reflect the forecaster's ability to construct precise

forecasts. This parameter is wont to closely affect the variance s2

2
of the likelihood function H and the variance S of the forecast

Et50  Sit50

distribution K t50. Using the approximations derived in Section 4.3,

the variances are computed as a function of E[t 5 0 ] in Table 4.6.

Table 4.6 Relationship Between the Expected Value of the
50% Credible Interval and the
Variance of H.it50 and Ki t50
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E[t ] [0F] s2 oF]2 2 0F]2

50 Et50 [t 50

5.0 19.98 19.18

6.2 21.07 20.34

7.0 21.81 21.16

8.0 22.85 22.37



The effect of changing E[t50] on the posterior distribution D is
50 0

illustrated in Figure 4.7. The total efficiency of both Systems 4 and 5

decreases with increasing E[t5 0] (Figure 4.8). However, the effect of

E[t5 0] is significantly more pronounced on System 5 than on System 4. It,

thus, becomes more important to employ an optimal decision procedure when

the precision of the forecast decreases; this observation parallels the

result observed for categorical forecasts (Section 3.5.1).

Close examination of Figure 4.9 reveals that the decision expected

opportunity loss of System 5, DOL5 = TOL5 - TOL4, increases from roughly

4,500 $/day to 5,777 $/day as E[t5 0] increases from just 5 to 8 [
0F].

4.5.2 Loss Ratio of Over to Under Generation

We anticipate that as the ratio c 0/cu approaches 1, the Bayes risk

functions, LP, will attain higher peaks and the Bayes decision functions,

*
6 , will become broader. These properties are validated in Figures 4.10 and

4.11.

The Bayes risk function when c /c = 0, of course, coincides with the
0 u

t axis. The associated decision function is a horizontal line at 300 MW

since this structure of the loss function implies that there is no penalty

for generating too much power.

The effect of the asymmetry of the loss function on the total effi-

ciency of Systems 1, 4, and 5 is shown in Figure 4.12. As co/cu approaches

1, the efficiency of System 5 declines at a faster rate than the efficien-

cies of Systems 1 or 4. This phenomenon is more noticeable when one con-

siders the total expected opportunity losses (Figure 4.13). Precise

knowledge, therefore, of the shape of the loss function is critical to the

choice of a forecast-decision system.
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4.5.3 Heating/Cooling Gap of the Load Operator

The interplay between the heating/cooling gap and the total effi-

ciencies of Systems 1, 4, and 5 is shown in Figure 4.14. Again, all

systems have peak efficiency at (t - t ) = 100F for the reasons given in
c b

Section 3.5.4. The relative differences between the systems are almost

invariant with (t - t ). Therefore, uncertain knowledge of the heating/c b

cooling gap may affect ultimate system performance but will not affect

the decision maker's choice as to which is the appropriate forecast to

employ and should it be used optimally or not. The total expected oppor-

tunity losses are displayed in Figure 4.15.

4.6 Gains from Probabilistic Forecasts

An economic gain expected by a decision maker utilizing probabilistic

forecasts instead of categorical forecasts is defined as the difference

between the risks: RC - RP for optimal decision procedures, and RC - RP

for nonoptimal decision procedures. We investigate the sensitivity of

these gains to the precision of the categorical forecast Ttie . Such a

sensitivity analysis is possible because the categorical forecast is de-

fined as the median of the probabilistic forecast. Thus, the precision

Ttie = T of the likelihood function in the categorical forecasting

scheme (as defined in Section 3.3) is equal to the precision T of the

marginal distribution of errors of the medians in the probabilistic fore-

casting scheme (as defined in Section 4.3). The precision T is varied

by perturbing the four ordinates of the distribution function H t

extracted from Table 4.2. We maintain the spike at e = 0, however, to

parallel the analysis of the categorical forecast precision presented in

Section 3.5.1.
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The results shown in Figure 4.16 indicate that the quantification

of forecast uncertainty is increasingly valuable as the precision of

categorical forecasts decreases. For example, given T t| .016 [0F]-2

the economic gain from using probabilistic forecasts amounts to 2479 $/day,

or roughly .9 million dollars per year. There is, however, little economic

impetus to use probabilistic forecasts when the state variable is very

predictable, i.e., as Tti+

Decision makers who ignore uncertainty of categorical forecasts have

much more to gain from probabilistic forecasts as is shown in Figure 4.17.

The trend of gains as a function of the precision is virtually the same as

in Figure 4.16, but the gains are substantially higher.

It appears, thus, that potential economic benefits to be derived

from probabilistic forecasts of atmospheric variables that are less pre-

dictable than temperature (e.g., wind speed, cloud cover, precipitation)

could be substantial.

4.7 Summary

A model for the use and evaluation of probabilistic forecasts has been

developed. The applicability of the model has been illustrated in the con-

text of scheduling of power generation based on daily average temperature

forecasts. The probabilistic forecasts have been of the type wherein the

forecaster quantifies his degree of uncertainty in terms of variable-width,

fixed-probability credible intervals.

It has been found that (1) probabilistic forecasts are more valuable

than categorical forecasts when used in the same (optimal or nonoptimal)

decision procedure; (2) the gains from probabilistic forecasts are

relatively greater for nonoptimal decision procedures (which ignore forecast
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uncertainty) than for the optimal ones (which account for forecast

uncertainty); (3) categorical forecasts used in an optimal decision pro-

cedure are more valuable than probabilistic forecasts used in a non-

optimal decision procedure; (4) the gains from probabilistic forecasts

increase dramatically as the precision of categorical forecasts decreases

for both optimal and nonoptimal decision procedures.

Though solution of the probabilistic forecast-decision model re-

quires an order of magnitude more CPU time than solution of the categorical

forecast-decision model, this fact is deemed irrelevant in view of the

expected gains and adaptive formulation of the model due to which most

users will only have to compute decision functions once a month, season,

or year.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary

Decision models, cast in a Bayesian framework, have been formulated

to determine optimal decisions on the basis of real-time categorical and

probabilistic forecasts of a continuous state variable. The solution pro-

vided by a model is in the form of a decision function specifying for every

forecast the optimal decision. For evaluation purposes, a forecast-decision

system has been defined as a cascade coupling of a forecasting scheme and a

decision procedure. This conceptualization enabled explicit quantitative

evaluation of the performance of each system component as well as the total

system using a set of decision-theoretic measures: values, efficiencies, and

expected opportunity losses. Categorical and probabilistic forecasts have

been evaluated in relation to naive (climatological) and perfect forecasts.

For each type of forecast, two decision procedures have been evaluated: an

optimal (Bayesian) procedure which accounts for forecast uncertainty and a

more conventional, nonoptimal, procedure which disregards forecast un-

certainty and prescribes decisions as if the forecasts were perfect.

The probabilistic forecasts have been of the type wherein the fore-

caster quantifies his degree of uncertainty in terms of variable-width,

fixed-probability credible intervals. A technique for transforming the

credible intervals into continuous forecast distributions has been

suggested. The experimental results reported by Murphy and Winkler

(1974, 1975), on both categorical and probabilistic subjective daily

temperature forecasts, have served as a guide for constructing the likeli-

hood functions.

99



A hypothetical case study concerning the short-term scheduling of

power generation in an electric system on the basis of a single-period

temperature forecast has been developed to illustrate the applicability of

the models. Quantitative comparisons have been made between the risks

incurred using the categorical and probabilistic daily average temperature

forecasts in both optimal and nonoptimal decision procedures.

Ordinal relations which hold, in general, among the ex ante risks

of perfect, probabilistic, categorical, and naive forecasts, when used in

an optimal (Bayesian) decision procedure, have been confirmed experimentally.

5.2 Conclusions

* The following general facts have been demonstrated theoretically and

experimentally.

1. When forecasts are used in an optimal (Bayesian) decision pro-

cedure, then, under certain well defined conditions, probabilistic fore-

casts are at least as valuable as categorical forecasts, and categorical

forecasts are always at least as valuable as naive (climatological) forecasts.

2. When forecasts are used in a nonoptimal decision procedure which

ignores forecast uncertainty, opportunity losses are always incurred;

furthermore, categorical forecasts may be less valuable than naive fore-

casts, and probabilistic forecasts may be less valuable than either cate-

gorical or naive forecasts.

* The following conclusions are predicated on the structure of the

model for short-term scheduling of power generation.

3. The gains from using probabilistic forecasts instead of cate-

gorical forecasts are greater for decision makers who employ nonoptimal

decision procedures (which ignore forecast uncertainty) than for those
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who already employ optimal decision procedures (which account for forecast

uncertainty).

4. The gains from using probabilistic forecasts instead of cate-

gorical forecasts increase as the predictability of the state of nature

diminishes; this holds for both optimal and nonoptimal decision procedures.

e The following results are specific to the hypothetical case study.

5. Optimally used probabilistic forecasts are 2% and 70% more

valuable than optimally used categorical and naive forecasts, respectively.

6. Nonoptimally used probabilistic forecasts are 15% and 115% more

valuable than nonoptimally used categorical and naive forecasts,

respectively.

7. Optimally used categorical forecasts are 11% more valuable than

nonoptimally used probabilistic forecasts.

* The above results provide strong economic arguments for the following

general recommendations.

8. Concerning forecasting. More theoretical and experimental

research should be directed towards developing probabilistic forecasting

schemes, particularly for phenomena with moderate and low predictability

since these are the cases wherein most economic gains from quantification

of uncertainty can be accrued.

9. Concerning decision making. More attention should be given to

Bayesian decision procedures since they are the cornerstone of optimal

decision making based on uncertain forecasts.

101



APPENDIX A

BLACKWELL's THEOREM APPLIED TO FORECASTS

The following development is a restatement and interpretation of

Blackwell's (1953) theorem in the context of a forecast-decision problem.

For further discussions of the theorem see DeGroot (1970, p.433-439) and

Hilton (1981).

Let x e X denote a forecast of the state w e 0. In the case of

a categorical forecasting scheme, X = Q so that x - w represents the fore-

cast error. In the case of a probabilistic forecasting scheme, x is a

parameter, or a vector of parameters, for a family of probability density

functions R = {p(-Ix) : x e X} on the space 0. The probabilistic fore-

cast of w is a density p(-x) 6 R. Since the specification of x E X

uniquely determines the forecast density p c R, we shall use the term

"probabilistic forecast" in reference to both x and p.

Suppose there are two forecasting schemes, categorical or probabil-

istic, issuing forecasts x1 E X and x2 E X2 of the state w e 0. Let their

likelihood families be D= {F. (-1w) : w E 0}, where $ (-tw) is a

probability density function on X. (i=1,2).

Definition 1. Forecast x2 is sufficient for forecast x

if there exists a nonnegative function h on the product space X 1 XX2

satisfying the following three relations:

$1 (xlIw) = h(xlx 2) 2 (x 2 w) dx2

2

h(x~x 2 ) dx, 1

for w e and x e X,

for x2 E X
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0 < h(x1 ,x2 ) dx 2 < for x I E: . (3)

2

A nonnegative function h satisfying (2) is called a stochastic

transformation from X2 o X . For every x2 X , the function h(*,x2)

represents a probability density on X

Insight into the notion of sufficiency can be obtained by con-

sidering the task of simulation of forecasts (DeGroot, 1970, p.434). For

any fixed value of the state w e 2 , forecast x2 can be generated from

the density $2(.-Iw). Forecast x1 can be generated either in one step

from the density $1(-lw) or, according to the relation (1), in two steps.

First, forecast x2 is generated from 4 2 (-1w), and next, given this

x2, forecast x1 is generated from h(-,x2). Thus, in comparison to the

generator of x2, the two-step generator of x1 involves an auxiliary random-

ization. An intuitively obvious implication is that having a choice between

the two forecasts, the decision maker should never choose x1 because choos-

ing x1 is equivalent to choosing x2 and then subjecting it to a stochastic

transformation h(-,x2). Since such a transformation only adds "noise" to

the information contained in x2, it is logical to expect forecast x1

to be no more valuable than forecast x2. We shall now state this fact

formally.

Let g be a prior density on Q. The posterior density is defined by

(Wlx.) = - (il)gtw for i=1,2
g.(x.)

where the predictive density is
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g.(x.) = $ (x jw)g(w) dw for i=1,2.

For any set of decisions A = {a} and for any real-valued loss function k

defined on the product space Q X A, the Bayes risk is given by

R = [min 2(w,a) w (wjx.) dw]g (x ) dx for i=1,2

x.

Theorem 1 (Blackwell, 1953). If forecast x2 is sufficient for

forecast x,, then R2 < R.

The significance of Blackwell's theorem lies in that it enables one

to rank two, or more, forecast systems in terms of their economic values

without the necessity of performing the entire decision analysis, i.e.,

without explicitly specifying the set of decisions A, the loss function Z,

and the prior density g. A straightforward implication of the theorem is

that if forecast x2 issued by one forecast system is sufficient for

forecast x issued by another forecast system, then the economic value of

forecast x2 is at least as great as the economic value of forecast x1 . The

forecasts x1 and x2 may be both categorical, or both probabilistic, or one

categorical and another probabilistic. The key behavioral assumption, of

course, is that both forecasts are, or would be, used in an optimal

(Bayesian) decision procedure. Let us now consider four examples.

Example 1. Let the state w e {O,1} describe a binary event such

as the occurrence of rain (w = 1) or no rain (w = 0) tomorrow. A categorical

forecast v of w indicates either that rain will occur (v= 1) or that it

will not occur (v= 0). A probabilistic forecast p (0 < p < 1) of w indi-

cates the probability of the event {w= 1}, i.e., p = Pr{o=l}. The
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probability p encodes the forecaster's degree of belief in the

statement "it will rain tomorrow."

Now suppose that the forecaster prepares a probabilistic forecast

p, and that a categorical forecast v is obtained from the probabilistic

forecast as follows:

*
1 if p > p

V *

0 if p < p

*
where p E (0,1) is a fixed parameter. It is easy to verify that the

probabilistic forecast is sufficient for the categorical forecast. Specifi-

cally, the stochastic transformation h takes the form

*
1 if p > p

h(v=1,p) =
0 if p < p

h(v= 0,p) = 1 - h(v= l,p) for p F [0,1].

Via Theorem 1, we conclude that no matter the decision problem (as defined

by A, 9, and g), the decision maker is always better off by using a prob-

abilistic forecast p rather than a categorical forecast v provided, of

course, that he employs an optimal decision procedure. Decision procedures

for the use of categorical and probabilistic forecasts of binary events

can be found in Winkler and Murphy (1979).

Example 2 (DeGroot, 1970, p.438). As in Example 1, let the state

w e {0,1} describe the occurrence of a binary event, and y c {0,1} and

z e {0,1} denote two categorical forecasts of the state w issued by two

distinct forecast systems. Suppose that on the basis of records of past

forecasts and actual values of the state, the likelihood functions have
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been estimated as follows. For System Y:

y(y=llw= 0)

y(y= llw= 1)

=1 - (y=Ojw=0) = 1
y 3'

Y 2'

and for System Z:

z(z= l1w= 0)

$z (z= l1w = 1)

= 1 - Z(z o= 0) = 5

= 1- $(z= Olw= 1) = 1

To demonstrate that forecast z is sufficient for forecast y , and hence

System Z is superior in terms of the economic value to System Y , we must

show that there exists a stochastic transformation h such that

y(ylw=0) = h(y,z= 0)$Z(z=Olw=0) + h(y,z=l)4Z(z= llw= 0)

y(ylw=l) = h(y,z= 0)$Z(z=OIw=l) + h(y,z=l)$Z(z= l1w= 1)

for y = 0,1. This system of four equations has to be solved for four

numbers h(y,z) , y = 0,1 and z = 0,1. But since relation (2) requires

h(0,0) + h(1,0) = h(0,1) + h(1,1) = 1, it is sufficient to solve the pair

of equations by letting y = 1. Thus we obtain

= 2 h(1,0) + 3 h(1,1) ,

= h(1,0) + h(l,1).

7 5
The solution is h(1,0) = and h(l,l) = . Whence, h(0,0) = and

5
h(0,1) = - Since h satisfies the properties stated in Definition 1,6r

forecast z is sufficient for forecast y , and, by virtue of Theorem 1,
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the economic value of System Z is equal to or greater than the economic

value of System Y.

It is possible that the reader finds the above conclusion in con-

tradiction to his or her intuitive inference on the basis of the likelihood

functions 4Y and $ . They indicate that the proportion of correct fore-

casts is larger in System Y than in System Z:

2 2$ (y= 01W=0) = 1> Z(z= 01W=0) =2

$ (y = 1W= 1) = -1> Zz=Ilj=1) =

But the proportion of correct forecasts is a misleading measure of the

forecast value. What is important is the detectability; that is, the

ability of the forecaster to discriminate between the hydrometeorologic

conditions leading to rain (w=1) or no rain (w= 0). For example, the

likelihood function

$X(x 1Io=0) = 1 - X(x= O"=O) = 0 ,

X (xl 1Wl= ) = 1 - X(x= 01W =1) = 1

indicates perfect detectability, and so does the likelihood function

x(xlwO) = 1 -%(x= olw=0) = 1$X X

X(x= lW= I) = 1- jx=Olw=l) = 0

although the forecasts are never "correct." The latter example is, of

course, an extreme case wherein the forecaster perfectly discriminates

between the two events, {w=0} and {w=l}, but "mislabels" them. This

mislabeling, or lack of correctness, is of no detrimental consequence if

the decision maker interprets forecast x = 1 as being indicative of no rain
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while forecast x = 0 as being indicative of rain. In a Bayesian decision

framework, the forecast is treated as an observation, or a signal, to be

used for revising the decision maker's prior knowledge about the state.

The "interpretation" is performed via Bayes theorem. It should be apparent,

therefore, that regardless of which of the above likelihood functions

represents the forecast System X , the posterior probability function of w

conditional upon x represents perfect information about w for any prior

probability function. Thus in both cases, forecast x is sufficient for,

and, therefore, at least as valuable as forecast z .

Example 3. Let v be a categorical forecast of the state

w E: c Re , and let v = (v,v) be a vector of parameters of a probabilistic

forecast which is given in the form of a density function p(-1) of w, with

p being a member of a family R = {p (P) : all P} . It is easy to verify

that since the parameter vector p includes as one of its components the

categorical forecast v , the probabilistic forecast is sufficient for the

categorical forecast. This is precisely the relationship assumed between

categorical and probabilistic forecasts in Chapter 4 and in Appendix B.

Thus by virtue of Theorem 1, the relationship between the risks is:

RP < RC . In other words, probabilistic forecasts are at least as valuable

as categorical forecasts. For proof of Theorem 1 in this special case

see Appendix B.

Example 4 (DeGroot, 1970, p.348). Let w E Q c Re denote a state,

and y and z denote two categorical forecasts of the state w issued by

two distinct forecast systems. These systems are characterized by their

likelihood functions as follows. For any given value w e 0 , #Y(-jW) is

normal with mean w and precision , while Z(-1w) is also normal with
3 3

mean w and precision 1. Since the precision of forecast z is higher than

the precision of forecast y , one would intuitively expect System Z to be
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more valuable than System Y. This is indeed the case and the formal

argument proceeds as follows. Define a variate x , independent of z and w

having a normal distribution with mean 0 and precision- . Then, for any

given w c 2 , the variate x + z has the same distribution as y . That is,

y can be obtained from z by an auxiliary randomization. Hence, z is

sufficient for y , and, consequently, the value of the forecast System Z is

as least as great as the value of the forecast System Y.
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APPENDIX B

ORDINAL RELATIONS BETWEEN BAYES RISKS

Consider a statistical decision problem defined by the following

elements: w - state of nature, a - decision, k(w,a) - loss function,

g(w) - prior density, v - categorical forecast of w, f(vlw) - likelihood

function of categorical forecasts, p = (v,v) - vector of statistics of

a probabilistic forecast, p(wlp) - forecast density (probabilistic

forecast of w), (pjw) - likelihood function of probabilistic forecasts.

The posterior density of w given a forecast is given by Bayes

theorem. For a categorical forecast v, the posterior density

f(WIV) f(vlw) g(w)

g(v)

where the predictive density

g(v) = (vIw) g(w) dw

For a probabilistic forecast p(wlp), the posterior density

4(w~~(11 =QW) g M)
gQ0)

where the predictive density

g (p) =(p I ) g (w) dw
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The Bayes risks of optimal decisions or decision functions are

defined as follows. For a naive forecast

RN = min Ji(wa) g(w) dw

for a categorical forecast

RC = [min {(wa) f(wlv) dw] g(v) dv

a,

for a probabilistic forecast

RP = [min {(wa) $(wjp) dw] g(p) dh

and for a perfect forecast

RF= min k (w, a) g (w) dw
. a

Theorem 1. RF < RP < RC < RN always.

Proof. We begin by demonstrating the first inequality.

RF = min 9.(w,a) g(w) dw

= min min k(wa)[ J(wjy) g(y) dp] dw
a a

= [min min k(w,a) $(wjE) g(y) dw] dE
a a
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[min min (w,a) (wj) dw]
a a

< [min J(w,a) (wjp) dw] g(p)

g(p) du

dp = RP .

The second inequality is obtained as follows.

RP= [min J(,a) (wjy) dw] g(y) du

= min [min J(wa) (wjv,v) dw] g(vlv) g(v) dv dv

a a(v

< {min [ (w,a) (wjv,v) dw] g(viv) dv} g(v) dv

< {min J(wa)[ $(jv,v) g(viv) dv]

< [min J(wa) f(wiv) dw] g(v) dv =

The third inequality is obtained as follows.

RC = [min J(wa) f(wlv) dw]

= min [min J(wa) f(wiv)

a av

< min P.(w,a) f(w jv) g(v)

dw} g(v) dv

RC

g(v) dv

dw] g(v) dv

dv dw
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" min V(wa)[ f(wlv) g(v) dv] dw

" min J(wa) g(M) dw = RN
a

Discussion. If probabilistic forecasts demonstrate no improvement,

in the statistical sense, over categorical forecasts, i.e., the vector of

statistics v has no predictive power whatsoever, then $(wlv,v) = f(w v)

and g(v,v) = g(v) g(v). Consequently RP = RC:

RP = [min p(w,a) $(jv,v) dw] g(v,v) dv dv
.a

J{J[min J(wa) f(wlv) dw] g(v) dv} g(v) dv

= [min J(wa) f(wiv) dw] g(v) dv = RC
a

If categorical forecasts have no predictive power whatsoever,

then the variates w and v are independent so that f(wIv) = g(w). In

such a case RC = RN:

RC = [min }(wa) f(wlv) dw] g(v) dv

= [min 2(wa) g(w) dw] g(v) dv

= min J(wa) g(w) dw = RN
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APPENDIX C

VALUE OF FORECASTS FOR A QUADRATIC DECISION PROBLEM

Cl. Preliminaries

Consider a statistical decision problem defined in Appendix B

wherein

2(w,a) = (w- a)2

We shall, first, derive the expressions for all risks defined in Chapters

and 4, and then state the concluding theorems and discuss their implica-

tions from the viewpoint of both a forecaster and a decision maker.

The following notation will be used throughout, in addition to the

notation of Appendix B:

2
M , S

2
mivn, swIv

2m s WP

2
n 1 , a

2
M , S 2

v v

r
Wv

3

- prior mean and variance of w (computed from the prior

density g(w)),

- posterior mean and variance of w given a categorical

forecast v of w (computed from the posterior density

f(w!v)),

- posterior mean and variance of w given a probabilistic

forecast p(wlp) of w (computed from the posterior
density (wol)),

- forecast mean and variance of w (computed from the

forecast density p(whp)),

- mean and variance of v (computed from the predictive

density g(v)),

- correlation between w and v.

C2. Risks

Naive forecast - optimal decision. For any decision a, the prior

risk
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LN(a) = E[(w- a) ]

= S2 +M - 2a M + a2
WA W W

2 2S + (M - a)

So

dLN(a) -2 (M -a)
da W

*
wherefrom the Bayes decision minimizing LN(a) is found to be a = N , and

the associated Bayes risk

*
RN = LN(a )

= 2 = S .(1)

That is, the Bayes risk is equal to the prior variance of the state of

nature.

Naive forecast - nonoptimal decision. Let v denote a naive forecast

of w , so that the minimum loss

-- - 2
LN = min (v- a) =0

a

where the solution is a = v . The risk of the decision a is

A2
RN= E[(w-v)2

= 2 + (-

S2
= RN + (M -V) (2)

Clearly RN > RN unless the naive forecast is taken to be the prior mean

of the state of nature, in which case RN = RN .
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Categorical forecast - optimal decision. For any decision function 6

and a given categorical forecast v , the posterior risk function

LC(v,6) = E[(w - 6(v)) 2 1v]

2 2= S Wv + (m - 6(v))

and

dLC(v,6) = -2(m
d6(v) = wv - 6(v))

*
Thus, LC(v,6) is minimized by a Bayes decision function 6 (v) = m , and

the associated Bayes risk

*
RC = E[LC(v,6 )]

= E[s 2 ]
WIV
2 2

= E[Ebi Iv] -E [wivi]

= E[ 2 ] - E[m 2 1

= E[ 2 ] - E2 [W] - E[m 2 ] + E 2 [m ]

since E[w] = E[m 1 V]. Finally,

RC = S - S 2 (3)
W m1 y

Thus the Bayes risk depends on the state of nature w only through the

difference between the prior variance of w and the predictive variance of the

posterior mean of w. Note that if the categorical forecasts are perfect,

2 2i.e., w = v, then mlv = W and S 2 S2 implying RC = 0 , as

expected.
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Categorical forecast - nonoptimal decision. The minimum loss

function

LC(v) = min (v - 6(v)) 2 = 0
6

where the solution is 6(v) = v. The risk of the decision function 6 is

-- 2
RC = E[(w - v) ]

E[s 2 I + (MIV - V)22 2

= E[s 2 1 ] + E[(m 1  - v) 2]2 2

and recalling the expression for RC, we obtain

-- 2 2 2)
RC = S 2 + E[(m - 2

W m WV -V

= RC + E[(m IV - v) (4)

It is apparent that RC > RC unless the categorical forecast is Bayesian,

i.e., it is equal to the posterior mean of the state of nature.

For further discussion, it is convenient to derive an alternative

expression for RC:

RC = E[(w-v) 2

= E[w2] - 2E[vw] + E[v ]

2 2 2
= S -2r S S + S + (M - M). (5)

Probabilistic forecast - optimal decision. Following a development

similar to that for categorical forecasts, we find a Bayes decision function
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*
6 (W) = m 1 whose risk (the Bayes risk) is given by

RP = S2 _ 2 (6)
W m

Again, the Bayes risk depends on the state of nature w only through the

prior variance of w and the predictive variance of the posterior mean of

w Observe that if the posterior mean m 1  is a perfect prediction of w

i.e., W = m , then S = S2 , and consequently RP = 0.
I M W I W

Probabilistic forecast - nonoptimal decision. For any decision

function 6 and a given probabilistic forecast p(wly), the risk function

L(p,6) = E[(w - 6(p)) 2y1]

22= r + (n - 2

attains its minimum at 6(0) = nW . The risk of the decision function

6 is

RP = E[(w-n P) 2

= E[s2 + (m - n ) ]

2 2 2
= S - S + E[(m - ni) ]

W m y II y

= RP + E[(m - nI) 2] (7)

This result is identical to the result for categorical forecasts:

RP > RP unless the probabilistic forecast is Bayesian (i.e., the mean of

the forecast density is equal to the posterior mean of the state of nature),

in which case RP = RP.
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Perfect forecast. A forecast is perfect if it indicates the actual

value of the state of nature w with probability one. Under such circum-

*
stances, the decision function minimizing the loss is clearly 6 (w) = w

and the associated risk RF = 0.

The above results are summarized in Tables 1C and 2C.

C3. Ordinal Relations Between Risks

From Appendices A and B, it is known that

RF < RP < RC < RN , (8)

where the suborders RF < RP < RN and RF < RC < RN hold always; the

order RP < RC holds if the probabilistic forecast is sufficient for the

categorical forecast. The order (8) assures a positive value of every

type of forecast and the following order: the value of a perfect forecast

(RN - RF) is always at least as great as the value of a probabilistic fore-

cast (RN - RP) which, in turn, is always at least as great as the value of

a categorical forecast (RN - RC).

It is advantageous to know when a similar order holds for the nonoptimal

decision procedures. We shall now state the appropriate conditions.

Theorem 1. RP < RC if

- E[(m - n) ] > S n I - m
- E[(mj - v) 2] .

Proof. The proof follows immediately from (4) and (7). We note

that whenever the categorical forecast v is defined as the mean of the prob-

abilistic forecast p(Ol), that is v = n , then the condition becomes
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Table 1C Decisions and Decision Functions for
a Quadratic Problem

DECISION

OPTIMAL NONOPTIMAL

*
PERFECT 6 (W) = w

F
0
R PROBABILISTIC 6 ( m) = m( =n
E
C
A CATEGORICAL 6 (v) = m 6(v) = v
S _ _ _
T

NAIVE a = M a = v
(J.

Table 2C

PERFECT

Risks of the Decisions and Decision
Functions for a Quadratic Problem

DECISION

OPTIMAL

RF = 0

NONOPTIMAL

PROBABILISTIC RP = S - S 2 = RP + E[(m; - 2

2 2 -- =R 2
CATEGORICAL RC = S - S RC = RC + E[(m 1  v) ]

w mo wi

NAIVE RN = S2
"3

RN = RN + (M -v)
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2 2
S > S , which is the same condition that assures RP < RC.
m -m

Theorem 2. RC < RN if

S
(a) r> .5 V

whenever v M; if

S1
(b) r > .5 - + .5 1 (M M )

Wv - S S S W vSW W

whenever v = M
W

Proof. From (2) and (5), RC < RN if

2 2 2
-2r S S + S + (M - M ) < (M - v)

WVWV y V W V - (1

The final result follows upon substitution of the appropriate mean for v

Discussion. Suppose the marginal densities of w and v are identi-

cal so that M = M and S = S . Hence, RC < RN if r > .5. It is

enlightening to interpret this result. Suppose a decision maker who

follows a nonoptimal decision procedure and who has been using a naive

forecasting scheme ponders employing categorical forecasts. If these

forecasts are not informative enough so that r v < .5, then the decision

maker's gain from changing the forecasting scheme is negative: RN - RC < 0.

In other words, the categorical forecasts have negative value. On the

contrary, if an optimal decision procedure were followed, then the cate-

gorical forecasts would never have negative value, no matter how low the

correlation r
Wv
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APPENDIX D

LIMITING BEHAVIOR OF TWO POSTERIOR DENSITIES

Case 1: uniform likelihood. Let the likelihood function be given

by

f(v1W) =

where b > 0 and -- < w < o.

1/b if w-b/2 < v < w+b/2

0 otherwise ,

Its mean and precision are

m w

12

The predictive density is given by

g(v) = f(vw) g(w) dw =

v+b /2

1 g(w) dw = [G(v+b/2) - G(v-b/2)] ,

v-b /2

where -< < v < o. The posterior density is given by

f(Wlv) =f(vW) g(W)
g(v)

g(W)
G(v+b/2) - G(v-b/2)

0

if v-b/2 < w < v+b/2

otherwise .
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Therefore as b + - and TI W + 0, [G(v + b/2) - G(v - b/2)] + 1 and

consequently f(wlv) + g(w).

Case 2: normal likelihood and prior. Let g(w) be a normal density

with mean m and precision T ([ > 0), and f(viw) be a normal density with

mean m 1  and precision T1  (T, > 0). Then the posterior density f(wlv)

is normal with statistics (vide, Raiffa and Schlaifer, 1961, p.54)

T m + T 1 m1

and

= T + T 1

Thus, the precision of the posterior density is always greater than or

equal to the precision of the prior density. Furthermore, as the precision

of the likelihood T + 0 ,the precision of the posterior Tv - T '

the precision of the prior.
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