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LARGE-SCALE MODELS OF TRANSIENT UNSATURATED FLOW AND CONTAMINANT
TRANSPORT USING STOCHASTIC METHODS

ABSTRACT

A new framework for modeling large-scale unsaturated flow and solute
transport systems in spatially variable soils is proposed. The large-
scale model structures are derived by averaging the local governing flow
and transport equations over the ensemble of realizations of the under-
lying soil property random fields. The resulting mean representations

are in the form of partial differential equations in which averaged or
effective model parameters occur. These effective model parameters, i.e.,
effective hydraulic conductivity, effective specific moisture capacity
and effective macro-dispersivity, are evaluated using a quasi-linearized

fluctuation equation and a spectral representation of stationary processes.
The large-scale model structures consider the large-scale effects of soil
variability and have relatively flw parameters identifiable from a realis-
tic data set.

The effective parameters are analytically evaluated in particular
cases of practical interest, and generic expressions showing explicitly

the dependence of the effective parameters on the different flow, trans-
port and soil property characteristics are derived.

General methods for testing the validity of the stochastic theory
and application of the large-scale models in practical situations are sug-
gested. The spectral turning bands method developed by Mantoglou and
Wilson (1981, 1982) is extended for digital generation of point values or
spatial averages of multiple, cross-correlated, stationary random fields.
Statistical inference methods are discussed and a new identification method
is presented.

The most important findings of this study are that spatial variabil-
ity of the hydraulic soil properties produces significant large-scale
effects. In particular, it was found that the effective hydraulic conduc-
tivity, the mean soil moisture content and the effective specific soil
moisture capacity show significant hysteresis, and that the effective
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hydraulic conductivity is anisotropic with a degree of anisotropy

depending on the mean flow conditions (wetting or drying). It was

also found that in the case of unsaturated flow, the effective macro-

dispersivities depend on the soil moisture content, the type of soil

stratification and the direction for the mean flow relative to strati-

fication and the direction for the mean flow relative to stratifica-

tion. The longitudinal macrodispersivity predicted from the stochas-

tic theory is found to be of the same order of magnitude as observed

in large-scale field experiments.

The transient unsaturated flow and steady transport results of

this study were previously unknown, have important practical implica-

tions, and should be considered in field applications such as waste

disposal control. The general stochastic modeling framework and the

simulation and identification methods developed here are applicable

not only to unsaturated flow and transport but also to other distribu-

ted parameter systems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of this Study

Disposal of radioactive wastes in surface or underground storage

facilities is now being designed. Uranium mill tailing disposal sites

will use unsaturated zone storage. Unsaturated zone storage is also

being seriously considered for high level wastes. The possibility of a

leak from such waste storage facilities and subsequent contamination of

water resources cannot be overlooked. Figures 1.1 and 1.2 illustrate

unsaturated zone contamination from a waste storage facility at Hanford,

Washington. Figure 1.1 outlines the setting of the waste disposal

facility. Figure 1.2 shows measurements of unsaturated zone conta-

mination several years after a contaminant leak from one of the tanks is

reported.

Potential contamination of water resources with harmful radioactive

wastes imposes serious hazards to the environment. For this reason

extensive research activity has been undertaken recently in order to

better understand and model the behavior of large-scale unsaturated zone

systems. Modeling unsaturated flow and contaminant transport is

important for evaluation of the proposed radioactive waste disposal

facilities. The importance of unsaturated zone modeling is emphasized by

the fact that the Nuclear Regulatory Commission and the National Water

Well Association have recently sponsored special symposia on unsaturated

flow and contaminant transport. The challenge is to obtain valid and
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practical models that realistically portray the complexity of large-scale

natural unsaturated flow systems and have relatively few and identifiable

parameters that can be estimated from a realistic data set.

Modeling natural large-scale unsaturated flow systems is a very

difficult problem. One of the major complications is that natural soil

formations exhibit a large degree of spatial variability of their

hydraulic soil properties (see Chapter 2). Vapor flow, temperature

dependence, etc., may further complicate the large-scale flow problem but

these effects are not considered in this study. Predicting soil moisture

and contaminant transport in natural soil formations, using numerical

solution of the classical governing flow and transport equations,

(physical models), requires dense discretization (e.g. a grid consisting

of 106 nodes) and knowledge of the local details of the soil hydraulic

properties. Due to the large degree of spatial soil variability,

identifying such local details is, at least today, a formidable task.

The data collection process would be extremely expensive and would

probably alter the physical characteristics and the waste isolation

capabilities of the site.

Waste disposal control applications usually require predictions of

the large-scale contamination characteristics rather than local details

of contamination. The objective then is to construct an approximate

model of the system that: (i) predicts the most important large-scale

features of contamination, (ii) has parameters that depend on a few and

identifiable characteristics of the soil property variability, and (iii)

evaluates the reliability of the approximate model predictions. In the

following developments such a model will be called "large-scale model"
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and its parameters "effective parameters".

In order to build valid large-scale unsaturated flow and transport

models two basic characteristics of the problem should be considered.

The first characteristic is that flow and transport in a local scale are

generally three-dimensional processes. This is due to the combined

effects of gravity and capillary forces and the complex nature of spatial

variability of the soil properties. Many field observations illustrate

this point (see e.g. Gelhar et al., 1984). The second characteristic of

the problem is that the local flow and transport characteristics (e.g.

capillary tension head and concentration), depend on the local soil

properties in a nonlinear fashion. This can be seen by inspection of the

governing local flow and transport equations. As will be seen in later

chapters the two characteristics of unsaturated flow and transport

discussed above are important and should be considered in a consistent

modeling study.

1.2 Past Modeling Approaches

Several approaches have been proposed for modeling unsaturated flow

and transport systems with spatially variable soil properties. One

approach is to assume that local models are valid on a field scale. The

effective parameters of such models are usually interpreted as spatial

averages of the local properties (see e.g. Biggar and Nielsen, 1976;

Van de Pol et al., 1977). A criticism of this approach is that it does

not consider the effects of spatial variability. As was discussed above,

the system is parametrically nonlinear and local variability produces

important large scale effects.
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Another modeling approach visualizes the unsaturated flow system to

be composed by a series of one-dimensional, non-interacting columns,

and assumes random, but uniform over depth, soil properties (e.g. Dagan

and Bresler, 1979, 1983; Bresler and Dagan, 1981, 1983; Milly, 1982).

This approach, at least in the applications of our interest, contradicts

reality. Numerous field observations show that soil properties are not

uniform over depth and lateral flow is often important (see Chapter 4,

Section 4.7).

The stochastic approach is a third approach proposed for analysis of

the effects of the spatial variability in unsaturated flow. This

approach is capable of realistically considering the three-dimensional

spatial structure of soil variability and the three-dimensionality of the

local flow. Stochastic analysis has been extensively used in the case of

saturated flow systems (Freeze, 1975; Bakr et al., 1978; Dagan 1979,

1982; Dettinger and Wilson, 1981; Gelhar and Axness, 1983, etc.). In the

unsaturated flow case however, only two applications have been reported.

Andersen and Shapiro (1983) examined the case of one-dimensional steady

unsaturated flow using a Monte-Carlo simulation and a linearized

perturbation method. Their approach is conceptually interesting but it

is not applicable in field situations where flow is generally

three-dimensional. Yeh et al., (1982), examined the three-dimensional

steady unsaturated flow using a stochastic approach and a linearized

perturbation method, and found that the effective hydraulic conductivity

in stratified unsaturated soils is anisotropic with a degree of

anisotropy being dependent on the mean soil moisture content. However,

in most practical problems flow is usually unsteady and the steady-state
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results of Yeh et al. are not applicable to these situations.

The stochastic literature discussed above investigates the flow

problem only. The solute transport problem in heterogeneous unsaturated

soils has not been investigated as yet in a realistic way. The models

proposed by Dagan and Bresler (1979, 1983) and Bresler and Dagan (1981,

1983) have adopted a simple one-dimensional transport model in which the

parameters are treated as spatially constant random variables. Such

models may be fitted to field observations but it is doubtful that they

can be extrapolated beyond the small scale of observations. The

assumption that the parameters are spatially constant is obviously not

correct; the key element of natural heterogeneity, its spatial structure,

is completely neglected. Jury et al. (1982) proposed a "transfer

function" model for modeling solute transport in spatially variable

soils. Such a model may be criticized in that it does not use any

physics about the processes involved; it is a black box model. Its

parameters do not correspond to any physical quantities and must be

calibrated based on available data for the particular setting under

consideration. Extrapolation of the predictions of such a model to

depths, settings or conditions other than the ones from which it was

derived is not possible (see discussion in Section 5.3.2).

In the case of saturated flow it is now widely recognized that the

dispersion process is strongly affected by scale; field scale

dispersivities are found to be several orders of magnitude larger than

laboratory parameters. Recent research (Gelhar et al., 1979; Gelhar and

Axness, 1983; Dagan, 1982) has established the relationship between

aquifer heterogeneity and the large dispersivities observed in the
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field. In the case'of unsaturated flow the possibility of scale

dependence of the dispersion process does not seem to be widely

recognized because large-scale measurements of unsaturated solute

transport are so limited. However, interpretation of some field

measurements (see Section 5.3.2) indicate such scale dependence. Another

question that needs to be answered in the case of dispersion in

unsaturated soils is the possible dependence of the large-scale

dispersion coefficients on the mean soil moisture content. The model of

Wilson (1974) predicts such dependence. Note however, that this work

uses a microscopic statistical pore scale model that cannot consider the

macroscopic soil heterogeneities of a scale larger than the pore scale.

The solute transport problem in unsaturated soils has not been

investigated yet using methods that realistically incorporate the natural

heterogeneity observed in a field scale.

1.3 Scope and Findings of this Study

This study proposes a new modeling framework for treating

large-scale unsaturated flow and transport systems. This framework

suggests using an approximate large-scale model structure in order to

describe the system rather than using the local physical model

structure. The objective is to provide large-scale unsaturated flow and

transport models that consider the heterogeneity of natural soil

formations and have relatively few and identifiable parameters that can

be estimated from a realistic data set.

A stochastic approach is followed. It is assumed that local soil

properties are realizations of three-dimensional random fields. The
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local governing flow and transport equations are averaged over the

ensemble of realizationsof the underlying soil property random fields.

The stochastic methodology considers the three-dimensionality of the

local flow and transport processes, and the nonlinear dependence of the

local outputs on the local soil properties, i.e. it predicts for the

large-scale effects of local property variability.

The stochastic approach is developed herein as follows. Chapter 2

discusses the problem of spatial variability of the unsaturated hydraulic

soil properties in natural soil formations, and proposes a stochastic

representation of such variability in terms of three-dimensional random

fields. In Chapter 3 a stochastic methodology is developed for

derivation of large-scale models and evaluation of effective parameters

of large-scale unsaturated flow and transport. Chapter 4 evaluates the

effective unsaturated flow parameters in the case of transient flow in

stratified soils. Chapter 5 evaluates effective macrodispersivities in

the steady state case. In Chapter 6 a Monte-Carlo simulation method that

can be used for testing the validity of the stochastic theory is

proposed, a spectral turning bands random field generator is developed,

and an .identification method that can be used for estimation of large

scale parameters is proposed.

The most important finding of this work is that the spatial

variability of the hydraulic soil properties produces significant

large-scale effects (hysteresis, anisotropy, etc.). These effects were

previously unknown and have important implications in practical

applications such as waste disposal management.

The general stochastic modeling framework, simulation and

20



identification methods developed here are new and are applicable not only

to unsaturated flow and contaminant transport but also to other

distributed parameter systems (e.g. saturated flow and transport,

geothermal, oil reservoir modeling, etc.).
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CHAPTER 2

STOCHASTIC REPRESENTATION OF SPATIAL VARIABILITY

OF UNSATURATED HYDRAULIC SOIL PROPERTIES

2.1 Introduction

Numerous observations of natural soil formations show that soil

materials are rather heterogenous. Visual inspection of the slopes of

excavations, for example, demonstrate this point. Because of such

heterogeneity the hydraulic properties of the soil exhibit a large degree

of spatial variability. Figure 2.1 shows observations of the saturated

hydraulic conductivity and porosity. These data are based on laboratory

analyses of cores collected from deep boreholes in the Mt. Simon aquifer

in central Illinois. These data show a large variation of hydraulic

conductivity with values ranging over four orders of magnitude. The

porosity also shows significant variability but much smaller than that of

hydraulic conductivity. Figure 2.1 also shows that the variation of the

hydraulic soil properties is not completely disordered in space but a

spatial structure (spatial correlation) exists. Many other observations

on different geologic formations show similar kinds of spatial

variability of the hydraulic soil properties.

Because of the large degree of spatial variability in natural soil

formations, it is practically impossible to represent the local soil

properties in terms of deterministic functions. If such representation

was attempted the number of the required unknown parameters would be

extremely large and impossible to estimate from a realistic data set. It

is a natural choice then to use a stochastic representation of the local
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variations of the hydraulic soil properties. It is assumed that the

small scale soil property variations are realizations of three-

dimensional spatially correlated random fields. The stochastic

representation is simply a useful tool of analysis which incorporates the

complex spatial variability of actual soil properties through a practical

framework requiring only a limited amount of information.

This chapter suggests a representation of the unsaturated hydraulic

soil properties in terms of stationary random fields. Section 2.2

discusses some field observations of the local unsaturated hydraulic soil

properties and proposes some simple and useful models for parametrization

of these properties. Section 2.3 suggests a stochastic representation of

these local hydraulic parameters and analyzes some real data for

estimation of basic stochastic parameters useful in later applications.

2.2 Unsaturated Hydraulic Soil Properties

The two basic hydraulic properties controlling unsaturated flow are

the unsaturated hydraulic conductivity K(p) and the moisture retention

curve 6(M) describing the dependence of the soil moisture content 6 on

the capillary tension head ip (see Chapter 3). In this analysis the

unsaturated flow equation is expressed in terms of 1p, so the dependence

of K on i rather than 0 is of interest here.

Figures 2.2 and 2.3 (from Yeh, 1982) show observations of the

unsaturated hydraulic conductivity K and its dependence on the capillary

tension head * in the Panoche silty clay loam (Nielsen et al., 1974) and

the Maddock sandy loam (Carvallo et al., 1974). Yeh (1982) discusses in

detail the data collection and analysis used for derivation of these
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curves. For the purposes of this presentation it is sufficient to

mention that the different curves shown in Figures 2.2 and 2.3 correspond

to the hydraulic conductivity at different spatial locations in the

fields under investigation. These figures indicate a large degree of

spatial variability of the unsaturated hydraulic conductivity (note the

logarithmic scale on the hydraulic conductivity axis).

Figures 2.4 and 2.5 show the dependence of the soil moisture content

o on the capillary tension head ' in the Panoche silty clay loam soil

(Nielsen et al., 1974) and at a site near Socorro, New Mexico (Waldrop at

al., 1984) Each of the curves in Figures 2.4 and 2.5 corresponds to a

different spatial location in the field under investigation and indicate

a spatial dependence of the 6(') curves. However, the spatial

variability of this property is not as large as the spatial variability

of the hydraulic conductivity K(*) demonstrated by Figures 2.2 and 2.3.

In order to simplify analysis it is convenient to parameterize the

two basic hydraulic properties K(p) and O(f) in terms of a small number

of parameters. The following parametrization is proposed for the

effective hydraulic conductivity:

1n K(OP) = ln Ks - a p . (2.1)

The parameter a may generally depend on ' but assuming small

variations of ' around a mean value H, it is possible to assume a(f)l

a(H). If local hysteresis exists, lnKs and a also depend on the time

history of * (i.e., wetting or drying conditions). A second important

unsaturated hydraulic soil property, is the specific soil moisture

capacity C(') defined as C(') = - 30/3p. Assuming small variations of 'p

around a mean value H, it is possible to write approximately
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Figure 2.2 Unsaturated hydraulic conductivity versus capillary tension
head for the Maddock sandy loam. Each curve corresponds
to a different spatial location.
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Figure 2.3 Unsaturated hydraulic conductivity K versus
head g) for the Panoche silty clay loam. Each
a different spatial location.
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Figure 2.4 Capillary tension head 4 versus soil moisture content e for
the Panoche silty clay loam. Each curve corresponds to
a different spatial location.
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Figure 2.5 Capillary tension head * versus soil moisture content 9 for
the soil at the New Mexico site. Each curve corresponds to
a different spatial location.
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e = (H) + I=H ($-H).

Taking the derivative of this equation with respect to * produces

or C(*) = C(H). Note that if local hysteresis exists C(H) also depends

on the time history of H.

For values of H not too small or too large (i.e., not a very wet or

very dry soil), and if local hysteresis is relatively small (see

discussion in Section 4.1), parameters lnKs, a and C may be assumed to

be independent of H. This assumption is a convenient one when estimating

the statistical parameters of lnKs, a and C from real data, but it is

not required in the stochastic methodology developed in later chapters.

The parametrization of the unsaturated hydraulic properties

discussed above, seems to describe real observations (e.g., Figures 2.2,

2.3, 2.4, 2.5) quite well and it is conveniently used in the stochastic

methodology developed in Chapter 3. Using this parametrization, the

unsaturated hydraulic properties have been expressed in terms of a

three-dimensional parameter vector p with elements lnKs, a and C.

These elements are local soil properties and they depend on the

three-dimensional spatial coordinate x. The next section discusses the

representation of these properties in terms of three-dimensional random

fields.
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2.3 Stochastic Representation of Spatial Variability of the Hydraulic

Soil Properties

It was discussed in the Introduction that, because of the large

degree of natural spatial variability, it is impossible to represent the

local hydraulic soil properties in terms of deterministic functions, and

that a stochastic representation seems more appropriate. Following this

discussion it is assumed that the local soil properties lnKs(x), a(x)

and C(x) are composed of two components as follows

ln Ks = F + f

a = A + a (2.2)

C =r+y

where F, A, r are large-scale components and f, a, y are small scale

components of lnKs, a and C respectively. It is assumed that the

large-scale components F, A and r are deterministic and slowly varying

functions of space and we call them "mean", while the small scale

components f, a, y are realizations of three-dimensional zero mean random

fields and we call them "fluctuations".

The stochastic theory developed in the following chapters assumes

that the mean properties F, A and r are- relatively constant compared to

the scale of the problem under consideration, while the local

fluctuations have a scale of variation much smaller than the scale of the

flow domain. This implies that the decomposition suggested by Equation

(2.2) depends on the scale of the problem. What is viewed as a mean in a

small laboratory scale model for example, may be viewed as a fluctuation

in a large field scale problem. A second assumption of the stochastic

theory is that fluctuations f, a and y are realizations of stationary
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random fields. For simplicity and consistency of the results in the

applications presented in Chapters 4 and 5, and since no sufficient

information for evaluation of these cross-covariances exists, it is

assumed that f, a and y follow exponential cross-covariance functions

with identical correlation lengths. Two particular cases are

investigated: (i) f, a, y being uncorrelated and (ii) f, a, y being

perfectly correlated. Of course, in reality it is expected that f, a, y

are only partially correlated. The above extreme cases of correlation

were selected in order to explicitly show the dependence of Gh 2 on the

type of correlation between f, a, y. It is possible then to express the

covariance of u, v (u, v = f, a, y) as: Cuv(r) = pCff(r) where P

depends on u, v and the type of correlation between u, v (see Section

4.3). Assuming an exponential covariance function for f, it holds:

C f() = E[f(x) f(E+x)] = a 2 ex-( + + ) 7 (2.3)
Sf 2

where E is the distance vector. Equation (2.3) is expressed in a system

of axes oriented in the directions of principal axes of anisotropy of

f(x) ; X1, X2, X3 are the corresponding correlation lengths and

af2 the variance of f(x). The spectral density function of f(x) is

defined as the Fourier transform of Cff(&), i.e.

S ff(k) = 3 f jk C (f)-df (2.4)
(27) -

where k is the wave number vector. Using (2.3), Equation (2.4) yields

2
ff X1 X2 X 3 (2.5)

f (k) = ,2(1 + X 2k I 2 k2
2  

3 k3
23 2  .32

32



It is desired in later chapters to apply the results of the

stochastic methodology to realistic field scale problems.

Unfortunately, the current data describing the spatial variability of the

soil properties lnKS, a and C in real field situations, is not

sufficient to evaluate the necessary statistical parameters. In the

following, some available data on lnKs, a and C, in the cases of the

Panoche clay loam, the Maddock sandy loam and the New Mexico soil, are

analyzed.

Using simple least squares curve fitting techniques, the reported

data were analyzed and parameters lnKs, a and C were evaluated. Using

simple averaging it was possible to estimate the mean and variance of

these parameters. These values are summarized in Table 2.1. Given

thislimited amount of data it is impossible to estimate reliable

correlation lengths for f, a, y (see discussion in Chapter 6). Using

existing information about soil variability in natural soil formations

(e.g., Gelhar and Axness, 1983) an approximate correlation length of X1

= 100 cm in a direction perpendicular to stratification was assumed.

The parameters shown in Table 2.1, with X1 = 100 cm and X2 ,

X3 >> X1, represent a realistic set of soil property variability

parameters and are used in several application examples in Chapters 4 and

5. Note that data on the spatial variability of the specific moisture

capacity C are not available in the case of the Maddock soil.

However, data on C in other soil types show a relatively small

coefficient of variation a./r. Chapter 4 shows that the effect of

spatial variability of C, for such small coefficients of variation, is

relatively small, at least compared to the effects of spatial variability
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TABLE 2.1 *

STOCHASTIC PARAMETERS OF HYDRAULIC SOIL PROPERTIES

Panoche Maddock New Mexico

A (cm- 1 )

r (cm- 1 )

af2

aa2 (cm- 2 )

ay 2 (cm- 2 )

0.0294

0.0052

2.48

0.000067

8.95x10-8

0.147

0.00098

7.45

0.0076

2. x10-7
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of inKs and a. Since C is not the most critical parameter, the data on

the variability of C for the Panoche soil are also used in the case of

the Maddock soil in later examples.

The data basis discussed above is very limited. A large-scale

experiment is proposed in the New Mexico desert area (Waldrop et al.,

1984). This experiment will collect a large amount of data sufficient

for estimation of the parameters required for application of the

stochastic theory developed in later chapters. Chapter 6 discusses

methods addressing the difficult problem of estimation of such parameters

in practical situations.
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CHAPTER 3

LARGE SCALE MODELS AND EFFECTIVE PARAMETERS OF UNSATURATED FLOW

AND SOLUTE TRANSPORT: A STOCHASTIC METHODOLOGY

3.1 Introduction

Chapter 1 discussed the need for obtaining large-scale models of

unsaturated flow and solute transport. Such models should realistically

portray the complexity of large-scale natural unsaturated flow systems

and have relatively few and identifiable parameters that can be estimated

from a realistic data set.

This chapter develops a general methodology for evaluating

large-scale models and effective parameters of unsteady unsaturated flow

and steady solute transport using a stochastic approach. Section

3.2 examines the transient unsaturated flow problem while Section 3.3

examines the steady transport problem. The stochastic approach assumes

that the local hydraulic soil properties are realizations of

three-dimensional, cross-correlated, stationary, random fields and

averages the local governing flow and transport equations over the

ensemble of soil property realizations in order to derive the large-scale

models. The method considers the three-dimensionality of the local flow

and transport processes and the nonlinear dependence of the local output

on the local soil properties. The stochastic methodology accounts for

the large-scale effects of local property variability and is capable of

predicting the statistical properties of the model error.

One of the objectives of this study is to provide analytical generic

relationships for the dependence of the effective large-scale parameters
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on the different soil property and flow characteristics. This is because

of the generality, simplicity and insight gained by such results.

Numerical (Monte Carlo) evaluations on the other hand are expensive, are

valid only for the particular setting considered, and do not offer much

insight for the dependence of the effective parameters on the different

soil property and flow characteristics. In order to make analytical

evaluations possible, several assumptions are required, (e.g., small

local property fluctuations, etc.). To keep each step of the stochastic

theory developed in this chapter as general as possible, the necessary

assumptions are introduced in the steps where they are required and not

in previous steps. These assumptions may restrict the validity of the

results. However, it is possible that, even in cases where the required

assumptions are not strictly valid, the stochastic results may give

relatively good quantitative and qualitative approximations of reality.

Since large-scale behavior of unsaturated flow and transport processes is

presently highly unknown, we believe that even qualitative information

about the system behavior is important.

This chapter develops the general methodology for evaluation of

large-scale models and effective parameters in a general format without

restricting it to any particular applications. This methodology is

applied in Chapters 4 and 5 in several cases of practical interest.
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3.2 Transient Unsaturated Flow

This section develops a general stochastic methodology for

derivation of large-scale unsaturated flow models. These large-scale

models are expressed in a partial differential equation form and are

capable of predicting the large-scale flow characteristics.

The stochastic method follows three basic steps. In the first step

(Section 3.2.1), the form of the large-scale model and its effective

parameters are established by averaging the local governing equation over

the ensemble of soil property realizations. Evaluation of the effective

flow parameters requires evaluation of cross-correlations between local

soil properties and output fluctuations. The second step of the

stochastic methodology (Section 3.2.2) derives simplified linearized

equations relating the output fluctuations to soil property

fluctuations. The last step of the analysis, (Section 3.2.3), uses the

linearized equations derived in the second step, and some spectral

representation properties for evaluation of the large-scale models and

the effective model parameters defined in the first step.

3.2.1 Derivation of Large-Scale Models and Effective Parameters

The form of the large-scale unsaturated flow model is derived below

by averaging the local governing flow equation over the ensemble of soil

property realizations. Ignoring vapor flow and sources or sinks, the law

of conservation of mass for soil moisture of constant density moving in

in a rigid soil matrix, simplifies to
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ao 3q.
- = i = 1, 2, 3 (3.1)

1

where:

6 the soil moisture content, (cm 3/cm 3 )

qj: the specific discharge in the direction xi, (cm/sec),

xl,x2,x3 is a Cartesian coordinate system and the standard

Cartesian summation convention of Einstein has been used. Note that

Equation (3.1) is valid on a local scale and 6 and qi correspond to

local quantities. It is further assumed that the local specific

discharge qi can be expressed by a Darcy equation

q. = K(p) a( + z) (3.2)
ax.i

where

4: the capillary tension head (cm)

K: the local unsaturated hydraulic conductivity, (cm/sec)

z: vertical position with z increasing downwards, (cm).

Note that the local hydraulic conductivity is assumed to be isotropic.

Substituting (3.2) into (3.1) yields the standard unsaturated flow equa-

tion:

_ a=C [ = K(*) '(* + Z)] (3.3)
1 1

where C = -a6/3* is the specific moisture capacity. The hydraulic soil

properties K and C are local properties, i.e., they depend on the spatial

coordinate x = (xj, x2, x3). These properties depend also on *.

Further analysis requires a model for the dependence of C and K on p.

Assuming small variations of * around a mean value H, it is possible,
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following the discusssion in Chapter 2, to approximate C(4) = C(H) and

in K(W) = in Ks - a ' . (3.4)

Note that the local parameters a and C may in general depend on H and its

time history. For values of H not too small or too large (i.e., not very

wet or very dry soils), and if local hysteresis is relatively small,

parameters a and C may be assumed to be independent of H (see Chapter

2). This -assumption is a convenient one when estimating the statistical

parameters of the soil properties from real data, (see Chapter 6), but it

is not required in the stochastic methodology developed in this chapter.

To simplify notation, possible dependence of a and C on H and its time

history will not be explicitly indicated in the following developments.

We note, however, that the theory is developed in a general format and

will be also valid if local parameters a and C depend on H and if local

hysteresis exists (as long as a model for these effects is provided).

It is assumed that the three local hydraulic soil properties lnKs>

a and C are realizations of three-dimensional, cross-correlated,

stationary, anisotropic random fields:

In Ks = F + f

a =A+ a (3.5a)

C =r +y

where F, A and r are the mean values of In Ks, a and C.and f, a, y the

fluctuations around the mean values. The local flow Equation (3.3) can

be viewed then as a partial differential equation with stochastic

parameters and therefore, stochastic output '. It is then possible to

express * as:

p =H+ h (3.5b)

where H is the mean of 'P and h the fluctuations around the mean. It is
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assumed that: (i) the fluctuations f, a, y and h are relatively small and

(ii) the scale of variations of the mean values F, A, r and H is much

larger than the scale of variations of the fluctuations f, a, y and h.

The large-scale model of transient unsaturated flow is obtained by

averaging the local governing Equation (3.1) over the ensemble of

possible realizations of stochastic processes f, a, and y. Taking the

expected value of (3.1) with respect to f, a, and y and using (3.2) and.

the linearity of the derivative operator, Equation (3.1) yields

- a{E[O)} -_ a {E[ ( + z) ]} (3.6)
at ax, i x

Equation (3.6) is the mean flow equation. In order to derive a more

useful form of this equation, the expected values within the brackets

should be evaluated and be expressed in terms of the mean soil property

and flow characteristics, and the statistical parameters of the soil

property variability f, a and -y.

The expected values on the right hand side of Equation (3.6) are

evaluated first. Assume that the system of axes (x1, x2, x3) is

oriented in the direction of the principal statistical anisotropy axes of

f, a and Y. Substituting (3.5) into (3.4) yields:

K =K ef - Ah - Ha - ah (3.7)m

where

Km =e F e-AH =KG e-AH (3.8)

Let:

3(* + z) 3 a(H + h + z) = . + a- (3.9)
ax1 ax i ax1
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where Ji = 3(H + z)/axi is the mean hydraulic gradient. Using (3.7)

and (3.9), the expected value in the right hand side of Equation (3.6) is

written as:

E[qi] = KG E[ef - Ah - Ha - ah ( + -) (3.10)E~~ G Ei ax.(10

In order to evaluate this expected value, expand the exponential in a

Taylor series

ef - Ah - Ha - ah = 1 + (f - Ah - Ha - ah) + 1 (f - Ah - Ha - ah) 2(3.11)

where, assuming that fluctuations f, a, y and h are small, third and

higher order terms have been neglected. Substituting (3.11), Equation

(3.10) yields:

E[qi] Km Ii( 1 + $ E[(f Ah - Ha)2

+ E[(f - Ah - Ha) ]} (3.12)

where the expected values of fluctuation products of third or higher

order have been neglected. Note that in the particular case of f, a, y

and h being jointly Gaussian random processes, the expected value in

Equation (3.10) can be evaluated without using the Taylor series

expansion. This approach uses the joint characteristic function of f, a,

y and h, (see Yeh et al., 1982).

As will be seen later, the expected values of Equation (3.12) depend

on the mean flow characteristics H, J1, J2, J3 and Jt = 3H/3t in

a complicated and nonlinear manner. The problem of defining an effective

hydraulic conductivity tensor Kij is now discussed. Such tensor should
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have the property: E[qiJ = KijJj, where Kij is a symmetric ten-

sor. Since E[qi] depends on the spatial gradients Jj in a nonlinear

fashion, in order to determine an effective symmetric hydraulic

conductivity tensor Kij an additional assumption is required.

Define:

E[q.]
K.. = (3.13)

while Kij = 0 for i * j, where xi are the principal statistical

anisotropy axes of f, a, -y. Note that since E[qi] depends on Jj in a

a nonlinear fashion, other definitions of an effective hydraulic

conductivity tensor are possible as long as the relationship E[qi] =AI
KijJj is valid and Kij is symmetric. The assumption that Kij has as

principal axes, the principal statistical anisotropy axes of f, a, y, was

made in order to be consistent with the saturated flow case where a

unique effective hydraulic conductivity tensor independent of Jj

exists, and having principal axes as defined above (Gelhar and Axness,

1983). The effective hydraulic conductivities Kij, generally depend on

J1, J2, J3, Jt and H, in a nonlinear fashion. As will be seen

later, the above definition of Kij, facilitates expressing the mean

flow equation (3.6) in a form similar to the local governing Equation

(3.2). Substituting (3.12), Equation (3.13) yields:
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2

K = Km [(1 + ) + (3.14)
m 73-1

where

CY = E[(f - Ah - Ha) 2] a2 + A 2 E h2] + H2 2

i f a

- 2A E[fh] - 2H E[fa] + 2AH E[ah] (3.15a)

T = E[(f - Ah - Ha) = E[ ] - H E[a h] (3.15b)

where, assuming that h is stationary, it holds that 2 E[h ah/axi] =

9{E[h 2]}/3xj = 0. Evaluation of the effective hydraulic

conductivities Kii has now been reduced to the evaluation of the

expected values E[h 2 ], E[fh], E[ah], E[f 9h/axi], and E[a 9h/3xi].

The left hand side of the mean flow Equation (3.6) is now examined.

The expected value E[e] specifies the mean soil moisture content 0 =

EDO]. Substituting 0 into Equation (3.6) yields a mean equation of the

same form as the local Equation (3.2). The mean soil moisture content

0 is evaluated as follows. For small fluctuations h, it holds:

6 = 8(*) = 6(H) - Ch, where C = -36/3* j1=H. Substituting (3.5) and

taking the expected value yields:

o = E[O (H)] - E[yh] . (3.16)

The effective specific moisture capacity is defined by

C = (3.17)

Evaluation of the mean soil moisture- content 0 and the effective specific

moisture capacity C has been reduced to the evaluation of the expected
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value E[Yh] where E[e(H)] is assumed to be a known characteristic of

spatial variability of 6(H). In the special case of a linear dependence

of 6 on ', it holds 6 = -C* + 0 and Equation (3.16) reduces to

E = (- rH + E[60o]) - E[yhj. Substituting (3.13) and (3.17) into (3.6)

yields the large-scale transient unsaturated flow model:

- ao a= a [K ] . (3.18)
71 -Cr ax. -i 1 ax i0(.8

Note that the large-scale transient unsaturated flow model is of the same

form as the local governing Equation (3.3). The effective parameters of

the mean flow model are given by Equations (3.14), (3.15), (3.16) and

(3.17). The remaining problem is to evaluate the cross-correlations

between the output fluctuations and the soil property fluctuations f,

a, y in Equations (3.15) and (3.16). Section 3.2.2 derives an

approximate linearized expression relating h to f, a, y. Section 3.2.3

uses this linearized expression for evaluation of the expected values in

Equation (3.15) and (3.16) and the corresponding effective parameters

Kii, 0 and C.

3.2.2 Linearized Fluctuation Equation

This section derives a linearized perturbation equation relating the

capillary tension head fluctuations h to the soil property fluctuations

f, a and y using the local flow Equation (3,3). Consider the flow at a

point located far away from the boundaries of the flow domain.

Substituting (3.4) into (3.3) and expanding derivatives yields

C exp(a) = (nKs -(* + z) + V . (3.19)
~ TT ax. ax.s 1 1
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Substituting (3.5), the left hand side of Equation (3.19) is written as:

C(r + y) eAH - F Ah + Ha - f + ah 3(H + h) (3.20)
1 

= xp at r+y at (.0 .s

A Taylor series expansion of the exponential in (3.20) yields

eAh + Ha - f + ah = 1 + (Ah + Ha - f + ah) + TH (3.21)

where TH are the remaining higher order terms. Substituting (3.21)

into (3.20) produces

L = e AH - F a + (Ar h + Hr a - r f + y) + r +[r at at

+ (r ah + A yh + H ya yf + yah) 3 +at

ah
+ (Ar h + Hr a - r f + r ah + y + A yh + H ya - yf + yah) a +

+ TH (r + y) 3(H + h)] (3.22)H at

The terms inside the brackets of (3.22) have been set in the following

order. The first term is independent of the fluctuations f, a, y, h,

(zero order term). The following five terms are linear in the

fluctuations, (first order terms). Lastly come the remaining second and

higher order terms. To simplify notation Equation (3.22) is written as:

L = LO + Ll + LH (3.23)

where LO, L1, and LH are the zero, first and higher order terms

respectively.

The first component of the first term in the right hand side of

(3.19) is written as follows:
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3(XnK - aip) 3(ZnK - AH - Ah - Ha - ah)
s s
ax ax.

af ah ah 3a 3(ah)
A A H (3.24)

where it is assumed that spatial variation of F and A is slow, and

3F/3xi and 3A/3xi are small. Substituting (3.5), and using (3.9),

the right hand side of Equation (3.19) is written as:

R (XnKs a) ( + z) 2
ax ax

=(- A H+ V2 H) +
.1

af ah 3H 3a A3H ah 2
+ ( i ax. - ax - ax. ax . ax. +

3(ah) 3f 3h Ah 2 3H ah
+-[ +- A( ) - a -

1 x i a i 1 ax1  ax -j--) ax.i11 11 1 1

3a 3h 3(ah) ah-H x - a (3.25)

The terms of (3.25) have been set in the following order. The first two

terms are independent of fluctuations, (zero order terms). The following

six terms are linear in the fluctuations, (first order terms). Lastly

come six higher order terms. To simplify notation (3.25) is written as:

R = R0 + R1 + RH (3.26)

Equation (3.19) can then be written as:

L + L + L H = R 0 + R1 + RH (3.27)
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where Lo, Li, LH, Ro, R1, RH are given by (3.22) and (3.25),

respectively. Taking the expected value of (3.27) with respect to f, a

and y yields

L + E[LH] = Ro + E[RH] (3.28)

where the expected value of the linear terms is zero. Subtracting (3.28)

from (3.27) produces

L 1 + LH - E[LH] = R + RH - E[RH] . (3.29)

Assuming that fluctuations f, a, y and h are relatively small, the

higher order terms can be approximated by their expected values, i.e.,

LH s E[LH] and RH - E[RHI . Equation (3.29) then yields Ll

=R1 or

eAH-F [(Ar h + Hr a- r f + Y) 9 + r ]=

af A h - aH Haa ADH ah 2hJ - iA - J a - H H - A + Vh . (3.30)

Define:

G 1 9H (3.31)
m

L= Ji + 3H (3.32)

where Km is given by (3.8). Substituting (3.31) and (3.32) into (3.30)

and rearranging terms yields

48



K
+ (-V 2 h + Ar G h + AL =

K a aM [ ( + rG f) - (J H 2a+ b a) - G y] (3.33)
-L' i x1 ax.

where:

b = J H + Hr G (3.34)
i ax.

Equation (3.33) is a first order approximation describing the

capillary tension head fluctuations h in terms of the soil property

fluctuations f, a and y. This equation represents a three-dimensional

time varying linear system. The soil property fluctuations f, a, y are

viewed as system inputs while the capillary tension head fluctuations h

are viewed as the system output. Equation (3.33) was obtained by

linearizing the local governing Equation (3.2) around the mean soil

properties F, A, r and mean flow characteristics H, J1, J2, J3 and

Jt- These mean soil properties and flow characteristics are viewed as

system parameters in (3.33). Due to the dependence of the fluctuation

equation on the mean flow characteristics, the expected values of

Equations (3.15) and (3.16) and the corresponding effective parameters

Kii, 0 and C depend on the mean capillary tension head H and its

derivatives J1, J2, J3 and Jt. This results in a nonlinear mean

flow equation. In addition, because of the dependence of Kui, 0, and C

on Jt = 3H/3t, it is expected that these parameters will show

hysteresis. Note that although the fluctuation equation was linearized

around the mean soil properties and flow characteristics, the mean flow

equation, developed in Section 3.2.1, considers the basic nonlinearities

49



of the local flow equation. In fact, these local model nonlinearities

and the existence of local spatial variability are responsible for the

large-scale hysteresis effects discussed above.

In order to make further use of the linearized Equation (3.33)

possible, assume that the mean soil properties and the mean flow

characteristics vary slowly in space, compared to the correlation lengths

of the fluctuations f, a, y and h. It is also assumed that the

boundaries of the flow domain are at a relatively large distance compared

to the correlation lengths of the fluctuations. It is then possible to

assume that f, a, y and h are realizations of stationary random fields

and derive a wave number domain form of the linear fluctuation Equation

(3.33). Note that in the transient flow case, the mean flow

characteristics (H, etc.) are time varying. This implies that the

output h of (3.33) is generally time varying and ah/at * 0. In certain

cases, (see Chapter 4), it is possible to ignore term 3h/3t. In other

cases however, it is not possible to ignore this term. The following

analysis considers the general case of ah/at# 0.

The soil property fluctuations f, a, y were assumed to be

realizations of three-dimensional, stationary random fields. They may

then be expressed in the wave number domain as follows: (see, e.g.,

Lumley and Panofsky, 1964)

f(x) = fff e dZf(k)

a(x) = fff e dZa(k) (3.35)

y(x) = fJf e dZy(k)
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where j = V~T, x, the spatial coordinate, k, the wave number vector, and

dZf, dZa, dZy, the Fourier-Stieltjes spectral amplitudes of f, a

and y. At each time t, the output fluctuations h are stationary in

space. It is then possible to view h as a realization of a time varying,

but spatially stationary, random field and, using the spectral

representation, express h in the following form:

h(x, t) = fJf e dZh(k, t) (3.36)

where the Fourier-Stieltjes amplitudes dZh are time dependent.

Substituting (3.35) and (3.36) into (3.33) and recalling the uniqueness

of the spectral representation

K
+ (k + k2 + k + ArG + jAL k1) y =

K
r [(j k + rG) dZf - (jHJ1 k + b) dZa - G dZ ] (3.37)

where y = dZh(k, t). Equation (3.37) specifies a set of ordinary

differential equations with unknown variable y and parameter k. In order

to evaluate the effective parameters, defined in Section 3.2.1, using

spectral respresentations, (3.37) must be solved for y for each value of

parameter k. The general solution of (3.37) is given by:

t

t f gl(x) dx -f gl(T) dT

y(k, t) = [y(k, 0) + f g(t) e 0dT ] e 0 (3.38)
0

where

K2 2

g1 (t) = (k2 + k2 + k3 + ArG + jAL k1 ) (3.39a)
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K
g(t) = [(jd k + rG) dZf

- (jHJ k + J 'H + HrG) dZa - G dZ ] (3.39b)

In the transient case, functions g, gi depend on t, since the mean

flow properties H, etc., depend on t. Function g(t) may be written

as:

g(t) = gf(t) dZf + ga(t) dZa + gy (t) dZ (3.40)

where functions gf, ga and gy are defined by comparison to (3.39b).

Equation (3.38) may then be written as:

y(k, t) = W(k) y(k, 0) + W f(k) dZ f(k) + W (k) dZ (k) + W (k) dZ (k)
- - - a- a- y - y -(3.41)

where a dependence of W, Wf, Wa, Wy on t is implied and

t
-f g (T) dT

W(k, t) = e o (3.42)

00 t

t fg(x) dx -f g 1 (T) ci

W (k, t) = [ f gfy (T) e0  dT] e 0 (3.43)
f,a,y - fa,

0

It seems impossible to derive a general analytical closed form

solution of Equation (3.43). This is because of the complicated form of

the forcing functions gj and gf,a,y- In certain cases however, it is

possible to derive such solutions. Lets examine, for example, the case

of H relatively large (dry soil) and aH/at > 0 (drying) conditions.

Using (3.8) and (3.31), Equation (3.37) simplifies to

dZ

+ AJt y = (dZ - H dZa - (3.44)

52



where Jt = aH/at. Assume that Ji, J2, J3, Jt are practically

independent of time t and that H increases as a linear function of t,

i.e., H = H0 + Jt t. Equation (3.44) can then be written as:

+ AJ y =6 + 62 t (3.45)
t t 1

where dZ

1= Nt (dZf - H0 dZa Y
(3.46)

6
2  J dZa

Equation (3.45) can be solved analytically (see Appendix A). Its

solution is given by

dZ
dZf - H dZa - dZa

y(k, t) =[ A+--]+ A

6 6 -Ad t
+ [y(k, 0) 12 e I t t (3.47)

t (AJt)2

At large time t, the term multiplied by e-AJt t, (transient part of

the solution), is relatively small and Equation (3.47) simplifies to

dZ
dZf - HdZ - --. dZ

y(k) A a 7 + a (3.48)
AA

Note that if derivative 9y/9t was assumed to be zero in Equation

(3.44), the estimated y would be given by

dZ

y(k) dZf - H dZa r (3.49)A
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Comparison to (3.48) shows that the error due to assuming ay/at = 0 is

dZa/A 2 . For AH >> 1 (dry soil) term dZa/A2, in (3.48) is

insignificant compared to H dZa/A. For a wet soil however, term

dZa/A2 may be important and cannot be ignored. Chapter 4 uses a

similar but more general procedure for evaluating the solution of

Equation (3.37) in the case of a stratified soil. It is shown there that

the assumption ay/at = 0 is valid for large H (i.e., relatively dry

soils).

In the following developments it is assumed that (3.37) has been

solved, (analytically or numerically), and its solution, in the form of

(3.41), has been obtained. For simplicity, it is assumed that time t is

relatively large and W(k, t) in (3.42) is approximately zero. Equation

(3.41) then simplifies to:

y(k) = dZ h(k) = W f(k) dZ f(k) + W a(k) dZ a(k) + 1 (k) dZ (k) (3.50)
- h- f- - a a- Y - Y-

where Wf, Wa, Wy are three-dimensional system response functions,

and a time dependence of y, Wf, Wa and Wy is implied. Equation

(3.50) expresses the spectral amplitudes of the capillary tension head

fluctuations h as a linear function of the spectral amplitudes of the

soil property variations f, a and y. Section 3.2.3 develops a

methodology for evaluating the effective model parameters, defined in

Section 3.2.1, using the spectral Equation (3.50) and some properties of

spectral representation.
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3.2.3 Evaluation of Effective Parameters Using Spectral Representations

This section uses the linearized wave-number domain equation

developed in Section 3.3.2 and some spectral representation properties,

in order to evaluate the expected values in (3.15) and (3.16). After

evaluation of these expected values the effective unsaturated flow

parameters Kii, 0, C are easily assessed from (3.14), (3.16) and

(3.17). This section develops the general methodology without

restricting it to any particular application. Specific evaluations and

applications are given in Chapters 4 and 5.

Some spectral representation properties are now briefly discussed

since they are extensively used in this section. Consider two

cross-correlated stationary random fields u(x) and v(x). If dZu(k),

dZv(k) the corresponding random Fourier-Steltjes amplitudes of u(x) and

v(x), the following property holds: (Lumley and Panofsky, 1964)

S (k) dk ; if k = k = k
* uv - - -1 -2 -

E[dZu 1i) dZy(k 2)] = { (3.51)
0 ; otherwise

where Suv(k) is the cross-spectral density function of u and v. The

expected value of E[u(x) v(x)] can be evaluated as follows:

E[uv] = E[f ff eJL- dZ (k) fff e dZ (k)] =
-100 -0

= Uff Su ( dk . (3.52)

Evaluation of the effective parameters Ku, 0 and C requires

evaluation of the expected values: E[h 2 ], E[fh], E[ah], E[f ah/axi),
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E[a 3h/axi] and E[yh] using the general linearized Equation (3.50),

relating dZh to dZf, dZa, dZy, and the spectral representation

properties (3.51), (3.52). If the cross-spectral density functions of

soil property fluctuations are known, these evaluations reduce to

computation of several quite complicated three-dimensional integrals.

Analytical evaluation of the resulting integrals is not possible in

general. In certain cases however, (see e.g., Chapter 4), it is possible

to analytically evaluate these integrals and derive closed form

expressions for the effective parameters.

-(hti

The variance of h, ah 2, is given by (3.52) as

E[h21 = fff S (k) dk . (3.53)

Using (3.50) and (3.51) the spectral density function Shh is given by

Shh(k) = 1 E[(W dZ + Wa dZa + W dZ )(W dZ + W dZa + W dZ =
_h y f f a a YY f f a a

=- WfI2 Sff + Wa 2 Saa + JW1 2 S +

+ Wf Wa Sfa + Wf W S  + Wa Wf Saf +

* * *
+Wa W Say W W Sf + W W S (3.54)

where it is assumed that the cross-spectral density functions of the soil

property random fields f, a and -y are known.

The variance ah 2 can then be evaluated from the three-

dimensional integral (3.53).-
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E[f h]

Term E[fhJ is given by

E[fh] = E[hf] = fff Shf(k) dk (3.55)

where Shf is given by

Shf 1 I E[(W dZ + Wa dZa + W dZ ) dZf]

= Wf Sff + Wa Saf + WY S . (3.56)

Evaluation of E[fh] has been reduced to evaluation of the

three-dimensional integral (3.55), where it is assumed that the

cross-spectral density functions of f, a, and y are known.

E[ah]

It holds:

00

E[ahJ = E[hal = fff Sha(k) dk (3.57)

where Sha is given by

Sha 1 E[(W dZ + Wa dZa + W dZ ) dZ]

= Wf Sfa + Wa Saa + Wy S Ya . (3.58)
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E[f ' Hx
It holds:

ejkx (jk ) dZh

and E[f 3h/3xi] can be evaluated by

E[f

where Shf is given by

= E[ f]
1X

00

f 1ff
-00

(jk1 ) Shf(k) dk

(3.56).

E[a]E3hi. a

Similarly as above it holds:

E[a - ]
1x-

where Sha is given by

00

f ff
-CO

(3.58).

E[y h]

Term E[yh] is given by

00

E[yh] = fff
-00

S (k) dk

where
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00

= fff
-W0

(k) (3.59)

(3.60)

(jk ) Sha (k) dk (3.61)

(3.62)

e jxdZ h(k)]
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S = E[W dZ + W dZ + W dZ ) dZ]

= Wf Sf + W S + W S . (3.63)
f y a ay y yy

The effective properties Kii, E and C can now be evaluated using

(3.14), (3.15), (3.16) and (3.17). Note that Wf, Wa, Wy depend on

the mean soil properties F, A and r and the mean flow characteristics

J1, J2, J3 and Jt = aH/t. Evaluation of the effective

parameters requires knowledge of the mean soil properties F, A, r and the

cross-spectral density functions of f, a and y. The dependence of the

effective parameters on the mean flow characteristics suggests a

nonlinear large-scale flow model. In addition, it is expected that the

effective flow parameters Kji, e and C will show hysteresis. This is

because these parameters depend on the time history of the capillary

tension head through the time derivative Jt = 3H/at.
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3.3 Steady Solute Transport

This section develops a general stochastic method for derivation of

large-scale unsaturated solute transport models. Similarly to the

unsaturated flow case, the method follows three basic steps. In the first

step (Section 3.3.1), the form of the large-scale transport model and its

effective parameters (macrodispersion coefficients) are derived by

averaging the local governing transport equation over the ensemble of

soil property realizations. Evaluation of the effective transport

parameters requires evaluations of the cross-correlations between

concentration and specific discharge fluctuations. The second step of

the stochastic methodology (Section 3.3.2) derives simplified linearized

equations, relating concentration fluctuations to specific discharge

fluctuations and the specific discharge fluctuations to soil property

fluctuations. The last step of the analysis (Section 3.3.3) uses the

linearized equations derived in the second step and some spectral

representation properties for the evaluation of the large-scale transport

models and the effective macrodispersion coefficients defined in Section

3.3.1.

3.3.1 Derivation of Large-Scale Models and Macrodispersion Coefficients

This section derives the form of the large-scale transport model by

averaging the local governing transport equation over the ensemble of

soil property realizations. The analysis of this section closely follows

the analysis of Gelhar and Axness (1983) which was developed for the

saturated flow case. The general equation describing transport of an

ideal nonreactive conservative solute by unsaturated flow is given by:
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3(=c) a E. - cqi 1 , j = 1, 2, 3 (3.64)

where it is assumed that soil moisture is homogeneous (constant density

and viscosity) and

c concentration of transported solute

e soil moisture content

Eij: local bulk dispersion coefficient, equal to 6Dij

Dij: dispersion coefficient tensor (including hydrodynamic

dispersion and molecular diffusion).

Assuming steady state, Equation (3.64) simplifies to

3(cqi) [ ac 
(.5

ax = E ] .(3.65)

It is assumed that the local coefficient of bulk dispersion Eij is

constant. As will be seen in Chapter 5, in several cases of interest the

results are not very sensitive to parameter Eij.

Consider the concentration c as the output of (3.65). Due to spatial

variability of parameters f and a the local specific discharge qi is

spatially variable resulting in a spatially variable concentration c.

Similarly to Section 3.2.1, it is assumed that parameters f and a are

realizations of three-dimensional stationary random fields. The local

specific discharge qi and the concentration c are considered to be

realizations of stationary random fields as well.

Let:

q= q. + q! i = 1, 2, 3

c = c + c'
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where qi, c are the mean of qi, c and qi', c' the corresponding

fluctuations around the mean.

The large-scale model of steady solute transport in unsaturated

soils is derived by averaging the local governing Equation (3.65) over

the ensemble of realizations of the random fields f and a. Taking the

expected value of (3.65) with respect to f and a, yields

3{E[cq il} aE[c]
= -- {E.. } .x (3.67)3xax.g iL.a x.

The expected value in the right hand side of (3.67) represents

the mean c. Substituting (3.66), the expected value in the left hand

side of (3.67) is written as

E[cq.] = c q. + E[c'q] . (3.68)
1 1 1

Term c qi represents the convective flux associated with the mean flow

while term E[c'qi'] is a macroscopic dispersive flux due to the spatial

variation of qi.

Assuming that the macroscopic dispersive flux can be expressed in a

Fickian form, we may write

E[q1 c'] = - E - (3.69)

where Eij is an effective bulk macrodispersion coefficient tensor.

Define a macrodispersivity tensor

A.. = (3.70)
1A q

where generally Aij may depend on q. Equation (3.67) may then be
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written as

= c[(E + A.. q) a . (3.71)

This is the large-scale transport equation and it is of a similar form as

the local transport Equation (3.65). Note that the total large-scale

dispersion coefficient is: Eij + Aij q, where the bulk

macrodispersion coefficient Eij = Aij q accounts for the additional

dispersion due to the spatial variability of qi.

Evaluation of the macrodispersivity Aij and the bulk

macrodispersion coefficient Eij requires evaluation of the expected

value E[qi' c'] in (3.69). Section 3.3.2 derives linearized

expressions relating qi' and c' to f and a. These expressions are used

in Section 3.3.3 for the evaluation of the expected value of (3.69) and

the corresponding Eij and Aij. Note that the analysis in Section

3.3.3 will establish directly that the Fickian form assumed above,

(3.69), is correct.

3.3.2 Linearized Fluctuation Equations

This section derives linearized equations relating the specific

discharge and the concentration fluctuations to soil property

fluctuations. First, a- linearized perturbation equation, relating c' to

qi' is derived using the local governing equation of steady transport

(3.65). Following Gelhar and Axness, (1983), substituting (3.66) into

(3.65) and expanding products, yields.

2-

[qi Z + qi c' + qt E + q! c'] = E ( (3.72)
1X j xa
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where Eij is assumed to be a constant. Taking the expected value of

(3.72) produces the mean equation

- q c + E[q'. c']} = E (3.73)
1 1 Ia

Subtracting the mean Equation (3.73) from the local Equation (3.72)

produces

q c' + q' C + q' c' - E[q c']} = E . (3.74)
S1 a

Assuming that qi' and c' are small, the second order term qi'c' -

E[qi'c'] may be neglected. The first order approximation describing

the concentration fluctuations c' in terms of specific discharge

fluctuations qi' is then

a 2 C
g-- (qt c + q1 c') = Ej ax. (3.75)

1 i 3

It is assumed for convenience that the coordinate axis xi is aligned in

the direction of the mean fluid flow so that qi = q and q 2 = q3 =

0, (see Figure 3.1). Note that this orientation of axes is different

than the one in the flow case; the system of axes xi, x2, x3 is now

not aligned in the principal statistical anisotropy directions. The

local dispersion tensor may than be approximated in the form, (Naff

1978)

aLq 0 0

[E ] = 0 a Tq 0 (3.76)

L 0 0 a T q

where aL and aT are the local longitudinal and transverse

dispersivities. Expanding the left term of (3.75) and utilizing (3.76),
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'ii

X 2

4

Xl

Figure 3.1 Coordinate system xi', x2', x3' corresponds to the
principal anisotropy axes of f, a, -y . The ellipse
represents an equal covariance level. Axis xi of
coordinate system xi, x2, x3 is oriented in the
direction of the mean specific discharge q. Note that
the direction of the mean specific discharge is different
than the direction of the mean head gradient J
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(3.75) reduces to:

- 2 , 2
q + q = q [ + C + )] (3.77)

1 1 ax 1x2 3

where the conservation of mass equation 3qi/3xi = 0 has been used.

Equation (3.77) is an approximate linearized partial differential

equation relating concentration fluctuations c' produced as a result of

specific discharge fluctuations qi'. The mean specific discharge q is

a parameter to this equation.

Assuming that qi ' and c' are realizations of three-dimensional

stationary random fields, it is possible to express qi', c' in the wave

number domain as follows:

q' =fff e dZ (k)
0q - (3.78)

c= ff e dZC (k)
_-c-

Substituting into (3.77) and recalling the uniqueness of the spectral

representation gives

a~_ dZ

dZ =7- ' ' (3.79)
c q [jk1 + aL k + aT (k2 + k )]

where index j corresponds to repeated summation.

Next, a linearized equation relating qi' to f and a is derived.

The specific discharge is given by
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qj = K() a(*+ z) = K(*) [J + ] (3.80)

where from (3.7)

K(4) = K ef - Ah - Ha - ha (3.81)
m

with Km given by (3.8). Expanding the exponential and assuming

products of fluctuations are small, (3.81) gives

K(4) K m (1 + f - Ah - Ha) . (3.82)

Using (3.82), (3.80) gives

q. = K (J. + J f - J A h - J.H a + a + f h- A h - Ha -)
1 m 1 1 1 1 TRx. ax. ax. axi(.831 1 1 (3.83)

Taking the expected value of (3.83), subtracting the mean equation from

(3.83). and assuming products of fluctuations are equal to their mean

values, yields the following linearized equation

q = q - E[qi] = Km JiA h) + J. (f - Ha)] . (3.84)1 [axKm ~ -

Equation (3.84) relates the specific discharge fluctuations to the

capillary tension head and soil property fluctuations. Using spectral

representations, (3.84) yields

dZ = Km [(jk - A J+) dZh +i(dZ - H dZ . (3.85)

The Fourier-Stieltjes amplitudes dZh are related to dZf and dZa

by (3.37). In the steady state case aH/at and G are zero and (3.37)

simplifies to

(dZf - H dZa) j k - ( dZa

dZh 2 (3.86)
k + jAL1 k1
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Substituting (3.86) into (3.85) gives:

dZq = W. dZ f+ V.i dZ a(3.87)
q 1 f 1 (387

where

J. (6.. k2 - k k.) + jAJ (L. - kJ.) k.
W. =K d a3 1313 3 (3.88)

1 mk + jAL k

V. = K
1 m

-HJk - k. k.) - jAHJ (L. - J.) k. - (j k. - AJ.) (. H)
3 13 1 3 1 3 3 3 1 3 3x

k + jAL k (3.89)

Equations (3.79) and (3.87) relate fluctuations c' and qi' to soil

property fluctuations f and a. These equations are used in Section 3.3.3

for evaluation of E[c'qi] and the corresponding Aij.

3.3.3 Evaluation of Effective Macrodispersion Coefficients Using Spectral

Representations

A methodology for evaluation of E[c'qi'] and the

macrodispersivities Aij is developed in this section. The methodology

utilizes the steady-state linearized equations derived in Section 3.3.2.

Using the spectral representation theorem, term E[c'qi'] is given by

E[c'q'.] = Jff S (k) dk = - A. (3.90)
1 E3do c d *

where from (3.79) and Scqi = EI~dZc dZqi*
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S c

S q =. a (3.91) cq. - q [jk1 + aLk2 + T (k2 + k )]

From (3.91) in (3.90) it is evident that the macrodispersive flux is

Fickian, i.e. proportional to the mean concentration gradient; the

resulting macrodispersivity is then

S (k) dk

ij q j~t 22 2-
A o [j k + kI + a T(k2 + k3)]

S (k) [-j k + k + 
+ T (k2  + k 9) Go~2 qjiLI T 2 3

=+ aT ( + 2)]2  dk (3.92)
q -c k + [ k + aT (k + k )

Note that (3.92) is identical to the result for the saturated flow case

(Gelhar and Axness, 1983, Eq. 28'). However, the mean specific discharge

and the spectrum of the specific discharge fluctuations is different in

the unsaturated flow case as discussed below.

Using (3.87) and (3.51) the cross-spectral density function

Sqjqi is given by:

S = E[(W dZf + V dZa )(Wi dZ + V. dZa
qjqi -

* *
= W w S + V V Saa +

* *
+ W V Sfa + V. W. Saf (3.93)

Note that the spectral density function in (3.93) should be expressed in

coordinate system kj, k2, k3, (see Figure 3.1), which is generally

different than system kl', k 2 ', k3 ' aligned in the direction of
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the principal anisotropy axes. Let S(kI', k2 , k3 ') be the

expressions for the spectral density functions in (3.93) in the system of

principal anisotropy axes kj', k2', k3 '. The corresponding

spectral density function in an arbitrary system of axes kj, k 2 , k 3

is given by S(aij kj, a2j kj, a3j kj), where aij are the

directional cosines aij = cos (xi', xj) and ki' = aij kj,

(see, Gelhar and Axness, 1983).

The mean flow model (3.18) is capable of predicting the mean

capillary tension head H and its spatial derivatives J1', J2', J3'

in the principal anisotropy directions xj', x2', x3', (see Figure

3.1). In order to be able to evaluate Aij from (3.92) and use the

large-scale dispersion model (3.71), the mean specific discharge +, the

directional cosines aij, and the components of the gradient on the

x1, x2, x3 axes, must be evaluated as a function of H and J1',

J2', J3'. Note that in the general anisotropic case the direction of

the mean specific discharge E[q] = (q6, q2, q3) is in general

different than the direction of the mean gradient J = (J1', J21,

J3'), (see Figure 3.1). It is thus necessary to evaluate both the

magnitude and direction of q for a given set of H, Ji', J2', J3'

values. Assume for simplicity that X2 = X3 and, without loss of

generality, that J3 = 0. The mean specific discharge q3 in the

principal anisotropy direction x3' then is zero. The specific

discharge qi in the directions xi' and x2' is given by

(3.13) where Kii are given by (3.14) and (3.15). The magnitude of E[q]

is then given by
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q = (K1')2 + (K22 p 2  (3.94)

and the direction of E[q] is given by

K X'
= arctg ( 222) (3.95)

where 1 defines the direction of the axes xi, x2, x3 with respect

to axes x1 ', x2', x3', (see Figure 3.1). The directional cosines

aij, (ki' = aij kj), are then given by

coso -sin 0

[a1 j] = sin cos 0 . (3.96)

0 0 1

The effective hydraulic conductivities K11, K22 can be evaluated as a

special case of the general theory developed in Section 3.2 for 3H/at =

0. The components of the gradient J on axes xi, x2, x3 are

evaluated from (3.93), (3.94), (3.95), and (3.96). Assuming that the

cross-spectral density functions of the soil property fluctuations f and

a are known, the macrodispersivities Aij can be evaluated from (3.92).

Note that the integral in (3.92) is of a very complicated form which in

general, will require numerical evaluation. In certain cases,(see

Chapter 5), it is possible to analytically evaluate this integral and

derive relatively simple closed form expressions for the

macrodispersivities Aij.
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3.4 Summary and Discussion

This chapter developed a general methodology for derivation of

large-scale models of transient unsaturated flow and steady contaminant

transport, and evaluation of the effective model parameters. Section 3.2

examined the transient unsaturated flow problem while Section 3.3

examined the steady transport problem. A stochastic methodology that

accounts for the local soil property variability and the basic

nonlinearities of the local governing equations was developed. It was

assumed that the local soil properties are realizations, of

three-dimensional stationary random fields with known means and

cross-spectral density.functions. The stochastic approach followed three

steps. In the first step, (Sections, 3.2.1, 3.3.1), the form of the

large-scale models and the effective model parameters were derived. The

second step, (Section 3.2.2, 3.3.2), related the output fluctuations h,

qi' and c' to the soil property fluctuations f, a and y, through

three-dimensional, linearized, partial differential equations. The third

step, (Section 3.2.3, 3.3.3), evaluated the effective parameters, defined

in the first step, using the linearized equations derived in the second

step and some spectral representation properties.

The large-scale models derived in this chapter are expressed in a

partial differential equation form and are capable of predicting the

large-scale flow and transport characteristics (mean behavior) rather

than local details. The effective parameters of the large-scale models do

not depend on the actual realization of the local soil properties but

they rather depend on a few parameters describing the statistics of local

variability, (e.g. mean, variances, correlation scales, etc.). As it is
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discussed in Chapter 6, these parameters can be estimated from a finite

data set and/or prior information about soil property variability. Note

that since the large-scale model predicts large-scale characteristics of

flow and transport, rather than local details, a prediction error (model

error) is introduced. The stochastic methodology is capable of evaluating

the statistical properties of this error which provides a measure of

reliability of model predictions. The effective parameters also depend on

the mean flow parameters H, J1, J2> J3 and Jt.

The purpose of this chapter was to present the general methodology

without focusing on specific evaluations and applications. Thus the

conclusions are of qualitative rather than quantitative nature. It was

found, that in the unsaturated flow case, a unique effective hydraulic

conductivity tensor does not generally exist and that the effective

parameters Kii, e, and C depend on the mean flow parameters H, Jj,

J2, J3 and 3H/3t. The dependence of the effective parameters on the

model output suggests a nonlinear mean flow model, while the dependence

on the time history of H (through 3H/3t) suggests a hysteresis of the

effective parameters. The effective macrodispersivities Aij depend on

the mean capillary tension head H and on the specific discharge q. These

effects are due to local spatial variability and the parametric

nonlinearity of the local governing equations. Note that these effects

are not predicted by traditional models since these models do not

realistically consider the spatial variability of the local soil

properties, the three-dimensionality of the flow and transport processes

and the parametric nonlinearity of the local governing flow and transport

equations.
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Application of the general methodology developed in this chapter

generally requires numerical evaluations. In some cases of practical

interest however, analytical evaluations are possible. Analytical results

are highly attractive because of their simplicity, flexibility and the

insight they provide. Chapters 4 and 5 derive analytical generic expres-

sions for the effective parameters in such cases. Chapter 4 examines

unsteady flow in stratified formations, while Chapter 5 examines steady

transport in statistically isotropic or stratified formations.
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CHAPTER 4

TRANSIENT UNSATURATED FLOW IN STRATIFIED SOILS

4.1 Introduction

In order to evaluate the effective flow parameters using the general

stochastic theory developed in Chapter 3, several three-dimensional

integrals must be evaluated. These integrals are quite complex and are

not generally analytically tractable. Natural soil formations are often

stratified. The hydraulic soil properties of stratified soil formations

may be visualized as realizations of three-dimensional, statistically

anisotropic random fields with correlation lengths in directions parallel

to stratification being significantly larger than the correlation length

in the direction perpendicular to stratification. This chapter examines

the case of transient unsaturated flow in such stratified soil forma-

tions. The stratified soil assumption allows analytical evaluation of

the three-dimensional integrals of Section 3.2.3 and allows derivation of

relatively simple generic expressions for the effective large-scale model

parameters and the variance of model errors. These expressions are use-

ful since they explicitly indicate the dependence of the effective para-

meters on the various soil property and flow characteristics.

The outline of this chapter is as follows. Section 4.2 derives a

simplified expression relating the capillary tension head fluctuations to

the soil property fluctuations using the disparity of the correlation

scales in a stratified soil. Sections 4.3, 4.4 and 4.5 derive closed

form expressions for the effective parameters and the variance of the

model errors. Simple asymptotic expressions which are valid in particu-
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lar ranges of the soil property and the mean flow characteristics, are

also derived. In addition, several examples investigating the dependence

of the variance of the model errors and the effective large-scale model

parameters on the mean flow properties are given for the cases of a

Panoche clay loam and a Maddock sandy loam soil.

The most important findings of Sections 4.3, 4.4 and 4.5 are:

(M) The effective hydraulic conductivities, the mean soil moisture

content and the effective specific moisture capacity show

significant hysteresis.

(ii) The effective hydraulic conductivity is anisotropic with a

degree of anisotropy depending on the mean flow conditions

(wetting, drying).

These effects are due to the spatial variability of the local soil pro-

perties and they are not due to local hysteresis and anisotropy.

Section 4.6 shows that the quasi-steady assumptions introduced in

Section 4.2 are valid if the soil matrix remains relativey dry. If the

soil is wet and the water addition is rapid, unsaturated flow may not be

governed by diffusion type laws. Section 4.7 gives a physical

interpretation of the large-scale hysteresis and anisotropy, compares the

results of the stochastic theory to a series of field observations, and

discusses the implications of these results on waste disposal

applications.
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4.2 Stratified Soil Simplifications

This section derives a simplified spectral equation relating the

capillary tension head fluctuations to the soil property fluctuations

using the disparity of the correlation scales in a stratified soil.

The general linearized spectral Equation (3.37) is simplified as

follows. The solution of (3.37) is given by (3.38) where functions

gl(t), g(t) depend on k and are given by (3.39). Using the transfor-

mation ul = Xi ki, u2 = X2 k2, u3 = X3 u3, where X1 ,

X2, X3 the correlation lengths with X2, X3 >x1, Equations

(3.39) are written as:

g (t) = K 4[ 1 (u2 + 62 u2 + 62 u2) + ArG +
xl

+ JA u + L u2 + 6 L (4.1)x- 7L1  62 L2  63 L3 u)]1

K.
g(t) 4 = [J (di u1 + 2 2 u2 + 63 J3 u3) + rG] dZ

-[ (J u + 2 u2 + 63 3 u + j H+HrG)] dZa~
1 11 33 ia

- G dZy (4.2)

where 62 = X1/X2, 63 = x1/x 3. For a stratified soil with

stratification parallel to x2, X3, 62, 63 - 0. Functions gj

and g are well behaved functions of ul, u2, u3. Taking the limit

of (3.38) for 62, 63 + 0, gives
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t T

fg(x) dx - f gj(T) dt

y(k, t) = [y(k, o) + f g'(T) e 1 dT] e 0 (4.3)
0

where gi', gl' are the limit expressions of g(t) , gl(t) for 62,

63 + 0, i.e.,

K
gj(t) = lim [gl(t)] = 2 [k, + ArG + jAkj] (4.4)

62,6 3 O

. K
g'(t) = 2r3 [g(t)] = [(jJ k + rG)dZf -6 2963 +0 11f

- (jH Ji k + i + HrrG) dZa - G dZ . (4.5)

Substituting (4.4) and (4.5) into (4.3), it is easy to see that (4.3) is

the solution of the following ordinary differential equation.

K
+ K (k2 + ArG + j A L k) =

K

INik1 + rG) dZf - (j H J1 k I+ b)dZ - G dZ ] (4.6)

where b = Ji H/xi + HrG. Let

g'(t) = gf'(t) dZf + g' (t) dZa + g' dZY (4.7)

where ge', 9a', gy ' are functions of ki and they are independent

of k2, k3 and are given by comparison of (4.7) to (4.5). Assuming

that time t is relatively large and the effect of the initial conditions
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y(k, 0) in (4.3) is relatively small, Equation (4.3) can be* written as

y(k) = dZ (k) = W' (k ) dZ (k) + W'(k,) dZ (k) + W'(kl) dZ (k) (4.8)
h f - a1 a - Y 1 Y-

where a time dependence of y(k), dZh(k), Wf', Wa', WY' is implied

and Wf', Wa', WY' are given by

T t

t f gi(x)dx -f g (t)dt

W'f ,ay (k1, t) = [ g',a e dt] e . (4.9)

The conclusion of the above analysis is that in the case of a stratified

soil the spectral amplitudes of the capillary tension head fluctuations

can be evaluated from Equation (4.6). The solution of (4.6) is in the

form of (4.8), where Wf', Wa', Wy' are functions of ki and are

independent of k2, k3.

As will be seen in Sections 4.3, 4.4 and 4.5, because functions

Wf', Wa', WY' in Equation (4.8) are independent of k2 and k 3 ,

the integrals in Section 3.2.3 can be integrated with respect to k 2 and

k3 and are thus reduced to one-dimensional integrals. In order to

perform the remaining integrations with respect to k1, functions Wf',

Wa', WY' of (4.8) must be determined. Since functions gl' and

gf,a,y of (4.9) are of a complex form, it seems impossible to

derive simple and general closed form solutions for Wf', Wa', Wy'.

Since our objective is to obtain analytical results, we must seek an

approximate solution to (4.9). To obtain such an approximate solution,

assume that 3y/3t in (4.6) is very small compared to the other terms.

Equation (4.6) then yields
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j J Ik 1+ rG j H J 1k I+ b
y = dZ = , dZ+-J k b dZ -

k + ArG + j A L k k + ArG + j A L k

- G dZ . (4.10)
k + ArG + j A L k

Sections 4.3, 4.4, and 4.5 evaluate the variance of the capillary tension

head and the effective parameters of the large-scale unsaturated flow

model using the general theory developed in Chapter 3 and the simplified

spectral Equation (4.10).

Note that the assumption of ay/3t being small introduces some error.

The significance of this error is evaluated in Section 4.5. It is found

there that in the transient case and at large mean capillary tension head

H (relatively dry soils), the assumption ay/at s 0 is justified. For H

small however, (relatively wet soils), the assumption ay/at - 0 may not

be appropriate. It is discussed in Section 4.5 that flow in such cases

is usually rapid and highly unpredictable (particularly in coarser soil

layers) and it may not be governed by diffusion type laws. It is

possible that the whole idea of using a diffusion type mean flow model

(such as Equation 3.18) may not be suitable in such cases. In view of

this discussion the results of the next sections should be taken as

strictly valid only in the cases when the soil is relatively dry, (i.e. H

is large). Note that the case of flow in dry soils is of practical

significance in many applications, such as waste disposal in arid

environments.
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4.3 Variance of the Capillary Tension Head Fluctuations

This section evaluates the variance of the capillary tension head

fluctuations h in the case of a stratified soil using the general theory

developed in Chapter 3, and the simplifications discussed in Section 4.2

2
Section 4.3.1 evaluates the variance ah analytically. The derived

expressions however, are of a quite complex form. Section

2
4.3.2 derives some simplified asymptotic expressions for ah, valid at

particular ranges of the mean flow characteristics. These asymptotic

expressions are quite simple and they explicitly indicate the dependence

of the variance on the different soil property and flow characteristics.

Section 4.3.3 applies the results of the stochastic theory to the Panoche

silty clay loam and the Maddock sandy loam soils.

Note that the fluctuations h are defined as the difference between

the local capillary tension head 4 and the predictions of the

large-scale model H. Thus the variance of h gives an estimate of the

reliability of the large-scale model predictions.

4.3.1 Evaluation of the Capillary Tension Head Variance

2.-The variance ah is given by (3.53) where Shh(k) is given by

(3.54). In the case of a stratified soil the spectral amplitudes dZh

are approximately given by (4.8), where the response functions Wf',

Wa', Wy ' depend on kj and are independent of k2 and k3 ,

Replacing Wf, Wa, Wy in (3.54) by Wf', Wa', Wy' substituting

(3.54) into (3.53) and integrating the resulting equation with respect to

k2 and k3 gives

h S6 S.(kj) dk 1 (4.11)
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where

2hh 5 + IW;I2 Sa + 1W412 S' +

+W W S + WW + W W S' + (4.12)

* * *
+ W' W' S' + W' W S' + W' W' S'

a y ay y f Yf y a ya

The primed functions S'uv (u,v = f,a,y) in (4.12) are given by

Suv(ki) = ff S(k) dk 2 dk 3  (4.13)

for u and v following an exponential cross-covariance function, (4.13)

simplifies to

Co a2 1 2 X3
Sy (k1) -- f uv 1k k

22(1+ X k 2+ k + X2 k 2
ir2(~x1 k1  2 k2 + 3k 3

a2
= uv 1 (4.14)

1 + X1 k1

2
Evaluation of ah, using Equations (4.11), (4.12) and (4.13), re-

quires knowledge of the cross-covariance functions of the soil property

fluctuations f, a and y. Since no sufficient information about the form

of these cross-covariances presently exists, it is assumed that f, a and

y follow exponential cross-covariance functions with identical correla-

tion lengths. Two particular cases are investigated: (i) f, a, y being

uncorrelated and (ii) f, a, y being perfectly correlated. In reality, of

course, it is expected that f, a, y are only partially correlated. 'The
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above extreme cases were selected in order to better illustrate the

dependence of a2 on the type of correlation between f, a, y. Let C2,

n 2 be the ratios of the variances of a and y to the variance of f,

i.e.,

2
2 . a

(4.15)
2

2 Y

The cross-spectral density functions

spectral density function of f by

(i) f, a, y uncorrelated

Saa = C2 Sff

SYY = n2 Sff

S fa
= 0

of f, a, y are then related to the

(4.16)

Say = 0

Sya = 0

(ii) f, a, y perfectly correlated

Saa = C2 Sff

S-YY= n2 Sff

(4.17)S ff

- Ci Sff

- n Sff
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i.e., in general it holds: Suv(k) = vi Sff(k), where i = c2, n 2 ,

0, C, in, or n depending on u, v and the type of correlation between f,

a, y. Substituting into (4.13) and assuming an exponential covariance

for f, (4.13) and (4.14) yield

a
2

fi1Suv(k 1) = y Sg(k) = 1 , (4.18)
(1 + X k 1 )

where p are given from (4.16) or (4.17).

2
Using (4.12), (4.16) or (4.17) and (4.18), the variance ah may be

evaluated from the one-dimensional integral (4.11). In order to deter-

mine Shh' in (4.12), knowledge of functions Wf', Wa', Wy' is

required. As it was discussed in Section 4.2, it is impossible to obtain

simple analytical expressions for Wf', Wa', Wy' in the general

case. In certain cases however, (see Section 4.5), it is possible to

neglect term 3y/3t in (4.6) and obtain relatively simple expressions for

Wf', Wa', Wy' given by (4.10). It will be seen below that for

these cases it is possible to analytically evaluate the variance.

Substituting the values of Wf', Wa' and WY' given by (4.10)

into (4.12) and using (4.16), (4.17) and (4.18), (4.12) yields:

(i) f, a, y uncorrelated

S (kl) = (1 + H2) j 1  k + [(r2 + n2) G2 + 2 b 2 fi
"'h (k 1 2 2 2 (4.19)

(k + ArG) + A L k2 1T(1 + x2 k1)
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(ii) f, a, y perfectly correlated

2 22 2(l-cH) J, k, + (rG - cb - nG)

(k' + ArG) + A L k2
(4.20)

1T + X k1)

Note that (4.19) and (4.20) are of the following general

S2 x

S4h(k ) = 1
a k + a21 

k4 + k+ ak1 +a 3 1 4

where

a
3

a
4

a
5

= 2ArG + A2 L

=A2 r 2 G 2

X A12

and al, ai are given by

(i) f, a, y uncorrelated

a = (1 + C2 H 2) j
I

a
2

2 + n2

I

G2+ i 2 b 2

(ii) f, a, y perfectly correlated

a = (1 - c H2)

a
2

= (rG - b - nG)
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1

1+ a 5k 12
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2.
Substituting (4.21) into (4.11), the variance ah is given by

a2
a 2 = 2 f I Ih 7T 1

where

S a k + a2  1
I -2- dk 1

o k1 + a3 kI+ a2 1+ a5 k1

(4.26)

(4.27)

Integral Il is evaluated in Appendix C for positive or negative values

=2 2 2
of the determinate A a - 4a4 = A Lj + 4ArG. Substituting Ii

(4.26) yields, for A > 0

2 a / V + a aa5 - / a2 a5 + a 2 -a a3 a5

(ArG) V4ArG + A L2 (1 + a a2 - a3 a)

- a5
-a 1- a 2a5a1 a 2 a5

(1 + a4 a2 - a 3 a5 >1

I (4.28)

while for A < 0

2 2 -a -a aa5 + 74 a - a2 + a2 a3 a5
h f 1 (ArG) (A L) (1 + a - a3 a5I

a- a a

+5 1 2 a 5 1
(1+ a 4 a 5 - a 3 a 5 1

I (4.29)

where al, a2 are given by (4.23) or (4.24) and a3, a4, a5 are
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given by (4.22).

The linearized equations relating h to f, a, y were derived in Chap-

ter 3 using linearization around the mean soil properties and the mean

flow characteristics. In response, this produces functions Wf', Wa',

Wy' which depend on the mean characteristics F, A, r, J1 , J2 J3,

2
and Jt (Jt = 3H/3t). The variance ah determined above depends on

these characteristics but it also depends on the statistical parameters

2 2 2
of local soil property variability i.e., the variances a f, aa, ay

and the correlation length X1 in the direction perpendicular to strati-

fication. We may then write:

2 2  F 2 2 2 H , J, J) (4.30)
h h A, ,aaa 2' 3

Section 4.3.3 aives some examples iflustratinq the dependence of a

on several of these parameters.

Note that although the expressions for the variance (4.28), (4.29)

are of a closed form, it is difficult, because of the complex form of

these expressions, to visualize the dependence of ah on each of the

parameters of Equation (4.30). Next section derives some asymptotic

expressions for a2 that are valid at particular ranges of the flow

conditions H and 3H/at. These expressions are very simple and explicitly

2indicate the dependence of ah on the different parameters of (4.30).
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4.3.2 Asymptotic Expressions

This section derives some simplified asymptotic expressions for the

2
variance ah. These expressions are derived by examining the magnitude

of variable G in (4.28) and (4.29). Variable G is defined by (3.31).

Substituting Km from (3.8), (3.31) gives

-F AH aHG = e e . (4.31)

Note that G is proportional to the exponential eAH and the time deriva-

tive 3H/3t. In the transient case 3H/3t * 0 and when H is large, (rela-

tively dry soil), eAH tends to +1o and parameter G tends to oo, depend-

ing on the sign of 9H/3t. In the case of aH/3t > 0 (drying conditions)

G + +w, while in the case of 3H/9t < 0 (wetting conditions) G + -co. In

the steady state case or in the case of H small (wet soil) and 3H/3 t

small (almost steady state) parameter G + 0. In other words, for

transient flow in a dry soil G + o, while in the steady case or

transient flow in a relatively wet soil G + 0. Since these cases are of

interest in practical situations, it is important to investigate the

2
form of the variance ah for G + w and G + 0.

For G + +4o the determinate A = A L + 4ArG is positive and the

variance fh is given by (4.28), where ai, a2 are given by (4.23) or

(4.24) and a3, a4., a5 are given by (4.22). Substituting al,

a2 , a3, a4, a5 into (4.28) and taking the limit G + -co yields

(i) f, a, y uncorrelated

a2  2 r2(1 + C2 H2) + n2 (4.32)
h f A2 r2
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(ii) f, a, y perfectly correlated

.2 2 r2 (1 + 2 H2) + n2 nr (4.33)
h f A r

For G + 0, A > 0 and (4.28) yields:

(i) f, a, Y uncorrelated

a2
=[J, (1 + c2H2)+ 2i aH 2 ) +

A L1(1 + A L I )

2 2 (1 + A L XI)
+ 1 (4.34)

(ii) f, a, y perfectly correlated

a2
12[ ( - H2 + 2  H 2 +

A LI(1 + A L  ) )

C2 a )2 (1 + A Li X1 )
+ i .ArG (4.35)

2
Equations (4.34), (4.35) suggest that the variance ah tends to infinity

as G + 0. Note however, that Ji 3H/3xi generally depends on 3H/3 t,

i.e., it depends on G. For a soil moisture -plume moving in a stratified

soil for example, the condition G + 0 (or 3H/;t + 0) corresponds to the

central part (core) of the plume. Near the core of the plume it is

expected that the spatial gradients of the capillary tension head H are
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relatively small so that Ji 3H/3xi - 0. In the cases when the

square (Ji aH/3xi) 2 tends to zero faster than 3H/3tJ, (4.34) and

(4.35) simplify to

(i) f, a, y uncorrelated

a2 2 (1+2H2
a2  fX 1 J 1 + H2 (4.36)
h A L (1 + A L1X1 )

(ii) f, a, y perfectly correlated

a2 x12 (1- )2
2 =f 1 J 1 - CH) (4.37)

ah A L (1 + A L 1 x 1)

Note also that it is possible to avoid the infinite variance for G + 0,

by selecting a different spectrum for f, a, y which does not include

certain large-scale spectral components. For G + -co, A < 0 and (4.29)

gives:

(i) f, a, y uncorrelated

2 = r 2(1 + 2 H 2) + n2 [1 + (4.38)
h fA Zr AL1 x1

(ii) f, a, y perfectly correlated

2 2 r 2(1 + 2 +2 - 2nr [1 + 1 (4.39)a fa 2 2 AL
A r 11

Note that the variance for G + -w is equal to the variance for G + +w

multiplied by the factor 1 + 1/A L, X1. Note also that the expres-
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sions (4.36) and (4.37), obtained here as a particular case of the

general transient results for G + 0, were also obtained by Yeh et al.,

(1982),using a less general steady state analysis.

Let us now discuss the implications of the above results. The

condition G + -f+c occurs when 3H/3t is positive and large (drying), A

and/or H are large (coarse and/or dry soil) and F is small (small KG)-

For G + +o the variance is given by (4.32) and (4.33). Note that in

these cases ah is independent of the mean soil property F, the

correlation length X1, the flow gradients J1, J2, J3 and the

2 2
magnitude of 3H/3t. If it is further assumed that ax/P is small,

(which is usually the case, see Chapter 2) and CH is relatively large,

(dry soil), (4.32) and (4.33) simplify to

2 2 2 H2
2 2 H2 a (4.40)

. h f 2f Ah A A

2
We conclude that in this particular case ah is also independent of r,

a2 and on the type of correlation between f, a and y. The variance

2 2 2 2
ah depends on A , aa and H only, through (4.40). Note that for a

given soil (aa 2 and A constant) ah 2 increases as H 2 so that the

coefficient of variation of * is constant under these conditions.

The condition G + 0 occurs when 3H/at is small (steady state), A

and/or H are relatively small (fine textured and wet soil) and/or f is

large (large KG). For G + 0 and (Ji 3H/3xi) 2 + 0 faster than G,

2.
the variance ah is given by (4.36) or (4.37). Note that in this case

2 s d 2
Oh is independent of F, r;a, J2s J3 and the magnitude of 3H-/at.

91



If it is further assumed that CH is large (dry soil), Equations (4.36),

(4.37) simplify to

2 2 1 2 H2  (4.41a)
Ch " f A L (I + A Li 77)1 + 1 x1

while for H small (wet soil) (4.36) and (4.37) simplify to

X12
2 2 1 1 (4.41b)
h = a f -A L (1 + A L1 77)

The condition G + -co occurs when 3H/ t is negative and has a rela-

tively large magnitude, (wetting), A and/or H are large, (coarse and/or

2
dry soil), and F is small, (small KG). For G + -c the variance ah

2
is given by (4.38), (4.39). Note that in these cases ah is independent

of F, J2, J3 and the magnitude of 3H/3t. Contrary to the G + -c

case ah for G + -co depends on the gradient JI and the correlation

2.
length X1. If we further assume that ay is small and cH relatively

large, Equations (4.38) and (4.39) simplify to

a2 H
2

2 a + 1 (4.42)
h AL 11 A

2. 2

In this particular case, ah is independent of r, a- and of the type

of correlation between f, a, -y.

The asymptotic expressions developed in this section are very useful

2
because they offer valuable insight about the dependence of ah on the

11 parameters F, A, r, af2 a2, ay2, X1, J1, ., J3, Jt and
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on the type of correlation of f, a, y. This is important since evalua-

2
tion of the dependence of ah on each of these parameters would require

sensitivity analysis with respect to 11 different variables. The asymp-

totic results derived in this section show that the variance of h is

generally larger in the case of wetting conditions than it is in the case

of drying conditions. Because of this, the vertical hydraulic conductiv-

ity is smaller in the case of wetting than it is in the case of drying,

(see, Sections 4.4 and 4.7.1).

The next section shows that these asymptotic expressions are very

close to the exact results at the appropriate ranges of H and 3H/at.

4.3.3 Application and Discussion

This section gives several examples for the dependence of the vari-

ance on different soil and flow characteristics and compares the values

derived using the approximate expressions of Section 4.3.2 to the exact

values. Since ah depends on a large number of variables, (12 varia-

bles), only a particular set of parameter values is considered. In order

for these examples to be as realistic as possible, we have chosen to use

combinations of soil parameters that have been observed in the field,

instead of using arbitrary parameter values. Two types of soil were

selected for illustration: the Panoche clay loam and the Maddock sandy

loam soils (see, Chapter 2). It is assumed that parameters F, A, r,

2 , 0a' a2 and X1 are independent of H and they do not show

hysteresis. For illustration, only the case of f, a, y being

uncorrelated is examined.

Following the discussion in Section 4.3.2 the most important flow
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characteristics that affect the variance, particularly at large H (dry
2

soils), are H and Jt. For this reason, the dependence of ah on H

and Jt is investigated. The values of the spatial derivatives are

fixed to Ji = 1, J2 = J3 = 0. These conditions are approximately

valid near the central part (core) of a soil moisture plume moving in a

2
horizontally stratified formation. The dependence of ah on H and Jt

is shown in Figures 4.1, 4.2, 4.3 and 4.4. Figures 4.1 and 4.2

correspond to drying and wetting in the Panoche soil while Figures 4.3,

4.4 correspond to drying and wetting in the Maddock soil respectively.

2
These figures plot ch as a function of H for a set of discrete values

2
of Jt. The values of ah predicted using the asymptotic expressions

of Section 4.3.2, for G + oo and G + 0 are also plotted for comparison.

Note that the asymptotic curves depend on H and the sign of Jt but they

are independent of the magnitude of Jt.

2
Examination of Figures 4.1, 4.2, 4.3, 4.4 shows that ah depends on

2
H and Jt (especially its sign). For H and/or Jt small ah follows

closely the asymptotic curve predicted for G + 0. This curve is practi-

cally independent of the magnitude and sign of Jt but it depends on H.

2
As H increases however, the value of ah diverges from the G + 0

2
asymptote. The variance ah then depends on both the magnitude and the

sign of Jt. For a fixed H, aincreases as JH/3t increases. In

addition ah tends to be larger for 3H/3t < 0. As H continues to

2
increase, ah approaches the G + - or G + -<o asymptotes, depending on

the sign of Jt. These asymptotes are independent of the magnitude of

Jt but they depend on the sign of Jt. The variance for H/t < 0 is

1 + 1/ALI X1 times the variance for 3H/3t > 0. Note that the value
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Figure 4. 1 Variance of the capillary tension head ah 2 versus the
mean capillary tension H for the Panoche silty clay loam soil
in the case of drying. The curves correspond to different
values of Jt in cm/sec. The asymptotic curves for G + 0
and G + -k~ are also shown.
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2.
of H where ah diverges from the G + 0 asymptote and converges to the

G + o asymptotes increases with decreasing IaH/t I.

2
Comparing Figures 4.1 and 4.2 to 4.3. and 4.4 shows that ah is

much larger for the Maddock soil than it is for the Panoche soil. This

may be explained by the fact that the Maddock soil has a larger variety

2
of textures than the Panoche soil (larger aa). Note also that the G +

+, G + 0 and the G + -- asymptotes lie close to each other in the

Maddock than they do in the Panoche soil. This is in accordance with the

asymptotic Equations (4.32), (4.36) and (4.38) since in the case of a

Maddock soil parameter A is relatively large and AL 1 X1 z 1 + AL1

X1. Parameter A is larger and AL1 XI + 1 is closer to AL1 A1

in the Maddock than it is in the Panoche soil.
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4.4 Effective Hydraulic Conductivities

This section evaluates the effective hydraulic conductivities in the

case of a stratified soil in directions perpendicular to stratification

(xj) and parallel to stratification (x2, x3). The general theory

developed in Chapter 3 and the simplifications discussed in Section 4.2

are used. Section 4.4.1 analytically evaluates the expected values of

(3.15) and the effective hydraulic conductivities Kii; i = 1, 2, 3

given by (3.14). The expressions derived for Kii are of a quite

complex form. Section 4.4.2 derives asymptotic relationships for Kii

when G + c* and G + 0. These expressions are of a simple form and show

the dependence of the hydraulic conductivity on the different soil

property and flow characteristics. Section 4.4.3 applies the results of

the stochastic theory to the Panoche silty clay loam and the Maddock

sandy loam soils.

4.4.1 Evaluation of the Effective Hydraulic Conductivities

Similarly to Section 4.3 it is assumed that f, a, y follow exponen-

tial cross-covariance functions with identical correlation lengths. The

two cases of (i) f, a, y being uncorrelated and (ii) f, a, y being per-

fectly correlated are investigated. The cross-spectral density functions

of f, a, y are then related to the spectral density function of f through

(4.16) or (4.17), where parameters ;2 and n 2 are defined by (4.15).

In order to evaluate the effective hydraulic conductivites, using

(3.14) and (3.15), the expected values E[fh], E[fa], E[ahj, E[f ah/axi]

and E[a ah/3xi] are evaluated as follows.
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Effh]

Using the approximations discussed in Section 4.2 for a stratified

soil, the spectral amplitudes dZh are given by Equation (4.8), where

the response functions W'f, W'a, W'y depend on ki and are inde-

pendent of k2, k3. Replacing Wf, Wa, Wy in Equation (3.56) by

W'f, Wa, W'y, substituting (3.56) into (3.55), and integrating the

resulting equation with respect to k 2 and k 3 gives:

ECfh] = fSf(kj) d k (4.44)

where

S = W S + W' 5 + W' ' (4.45)
hf f ff a af y yf

The primed functions S'uv (u = f, a, y; v = f, a, y) in (4.45) are

given by (4.13). Substituting the expressions for W'f, Wa, W'y

given by (4.10) into (4.45,) and using (4.16), (4.17) and (4.18), (4.45)

yields

(i) f, a, y uncorrelated

S' (k ) = -1  -S .(k,)
k + ArG + j AL 1 k 1

Sk+Ar2G 2 J k ArG(L(PG +AL 1 1 2 2 rG 1 k- -i Sf )(.6

(k2 + ArG)2 + AL 2 k + (k + Ark S (k) (4.46)

1 1 1corr 1e 1

(ii) f, a. y perfectly correlated
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j(1 - H) J1 k + b1
)= 2 1 1(k1) = kl 1

[b
{

+ ArGU)j + j A L 1

+ AL1 il(i - cH)k + b ArG

k4 + ArG) 2 + A2L2 k 2
1 1 1

+

j(- H) k2 + [ArG (1 - CH) J - AL1 b1]
I S (kl)

k + ArG)2 + A L k2

b = rG - c(J + HrG) - n

and for f, a, y following an exponential

G = (r - I) G - cb

covariance function Sff'

given by (4.18). Substituting (4.47), (4.48) into (4.44) and because the

integral of the term multiplying j kl is zero (odd term),

written in the following general form

2 a 2
E[fh] = 1

7T

00 a k + a2

f k4 2 
1 k + o k1+ a3k1+a4

1

1 + a5 k1

where a3, a4, a5 are given by (4.22) and al, a2 are

(i) f, a, y uncorrelated

a = rG + AL1 1

a2
= Ar 2 G 2

(ii) f, a, y perfectly correlated

102

Sf (k
( K 1

+ j k1

(4.47)

where

(4.48)

is

(4.44) is

dk
1

(4.49)

given by

(4.50)



al = rG - ( 3H/axi + HrG) - nG + ALl Ji (1 - CH)

a2 = [rG -c(Ji 3H/3xi + HPG) - nG]ArG

Equation (4.49) is written as follows:

2 a  X
E[fh] = f 7T

(4.51)

(4.52)

Integral Il is evaluated in Appendix C for positive or negative values

of the determinate A = a3 4a 4 = A L + 4r G. Substituting Ii,

(4.52) yields, for A > 0

E[fh] =a2

- 1

a5 ( l

a1/4 + a a a - / a aa + a2 -a2 a a

(ArG) V4ArG + A L1 (1 + a4 a2 - a3 a5

a1 - a a
2 5

+ a3 5 1

(4.53)]

while for A < 0

E[fh] = a2 X,
-a .+ a a a + /V a a - a + a a a
1 4 1 45 425 2 2 35

(ArG) (AL,) (1+ a4 a? - a3 a5)

- a 5
5(1 +

aI - a2 a5

a4 a5 - a3 a5>1

]

where a1, a2 are given by (4.50) or (4.51) and a3, a4, a5 are

given by (4.22).
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E[ah]

Similarly as above, substituting (3.58) into (3.57) and integrating

the resulting equation with respect to k 2 , k3, yields

00

E[ah =f S (k1 ) dk1
(4.55)

where

Sha = W Sfa + Wa Saa + W' Sya
(4.56)

Substituting Wf', Wa' WY' given by (4.10) and using (4.16), (4.17),

and (4.18). (4.56) yields

(i) f, a, y uncorrelated

Sah(k1) = -C2
j H J k + b

(k' + ArG) + j AL1 k
1 1

] Sf (kj) =

2 (b + ALS H) k2 + b ArG

( 2 + A 12 2 L Tk(k,+Ar Gj + A L 1k 1

+ j k
H J k2 + (H J ArG - AL b)

k+2 2 2
(k( + ArG) + A L1 k1

Sf(k1 ) (4.57)

(ii) f, a, y perfectly correlated

(4.58)
Sia (kj) = c S (k1 )

where Shf'(kl) is given by (4.46) or (4.47). Substituting (4.57),

(4.58) and (4.18) into (4.55) and because the integral of the the multi-
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plying j kI is zero, (4.55) is written as:

2 a 2 CO a k + a
E[ah] = 1 +a

0 k + a3 k + a

1 2 dk11 + a5 k 1

where a 3 , a4, a5 are as in (4.22) and ai, a2 are givenby

(i) f, a, Y uncorrelated

ai = -c2 (b + ALI Ji H) (4.60)

a 2  = -C2 b ArG

(ii) f, a, y perfectly correlated

ai = [b + ALi Ji (1 - CH)]

a2  = cb ArG

Equation (4.59) can be written as follows

2 a2
E[ah] = I

(4.61)

I

where integral Il is evaluated in Appendix C. For A > 0, E[ahj is

given by

2 a /a + a a a5 - a2 a + a2 - a2 a3 a5
E[ah] =a.g x1 [ 1[5 2 2

(ArG) 4ArG + A2L (1 + a a5 - a3 a)

a a - a2 a5
+a a -a

5 ( 4 + a4 a5 - a3 a5 1

while for A < 0
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E~ah] a 2 X -al / 4 - a1 a4 a5 + V4 a2 a5 - a2 + a2 a3 a5
(ArG) (A L1) (1 + a4 a - a3 a5)

a1 - a2 a 5
-a5  2

(1 + a4 a5 -a 3 a5) 1

where ai, a2 are now given by (4.60) or (4.61) and a3, a4, a5

are given by (4.22)

E[f ]
31

For a stratified soil, (3.60) simplifies to

E[f = Ji(j k1 ) S f(k) dkj

where Shf' is given by (4.46) or (4.47). It holds:

(i) f, a, y uncorrelated

Ji k( - ArG( L - 11)
(i k ) S (kj) = [- k k. 1 2 1  2 2 2

(k1 + ArG) + A LI k1
+

(rG + ALJ iJ) k2 + Ar 2G 2
+ j k. I I - ] S' (k )k (k 2+ ArG)2 + A2L2 k2  f I

1~ 1 1

(ii) f,a, y perfectly correlated
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(j k ) S f(kj) = [- k, k1
J1 (1 - cH) k2 + [ArG(1 - cH) J - AL b

(k' + ArG)2 + A'L1 k'

b + AL J (1 - CH)] k + b1ArG

(k2 + ArG) 2 + A2L2 k2
] S.f(kj) (4.67)

Substituting (4.66), (4.67) and (4.18) into (4.65) and dropping integrals

of odd terms, (4.65) gives for i = 1,

E[f ~--] = 22 o

1 0

(a, k2 + a2) k

4 1 22k 1 2 dkk I+ a 3 k 1 + a 5 1 + a 5 k I

where a3, a4, a5 are as in (4.22) and ai, a2 are given by

(i) f, a, y uncorrelated

a1  = -Jj (4.69)

a2 = ArG (Li - Jj)

(ii) f, a, y perfectly correlated

a1  = -Ji (1 - H) (4.70)

a2  = -[ArG (1 - cH)Jl - ALI b 1 ]

Equation (4.68) is written as

2 a2
E[f .] = 12 (4.71)

1

where integral 12 is evaluated in Appendix D. For A > 0, (4.71) gives
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E [f ]

2 [a 2
f 1

/4 + a2 a4 a5 +a a a - a3 / -a a 4

(ArG) /4ArG + A L

a - a a
+ 2 5
(1+ a a5 -a aj4 5 3 51

while for A < 0

E[f ] =
1

(1 + a4 a2 - a3 a5)

I (4.72)

2 -a2 V -a a a5 - a a a5 / +a a3 /4 + a a4
f (ArG) (AL,) (1 + a4 az - a a5

a1 -

(1 + a4 a5

a a

- a 3 a5) 1

] (4.73)

where a1 , a2 are now given by (4.69) or (4.70) and a3, a4., a5

are given by (4.22).

For i = 2, 3, substituting (i ki) Shf'(kl) into (4.65) yields

E[f ] =
1

0 (4.74)

108

+



E 3IHa
For a stratified soil (3.61) simplifies to

-00E[a D] = (j k ) S a(kj) dk

where Sha' is given by (4.57) or (4.58). It holds

(i) f, a, y uncorrelated

(j k) S a(k ) = -c2[-k k.Ci k. = 1 k

H J k2 + (H J ArG - AL b)

(k + ArG) + A2 L k2

+ j k.

2(b + AL 1 J1 H) k, + b ArG

(k + ArG) + A L k
] S (kj)

(ii) f, a, -y perfectly correlated

(i k ) Sha(k ) = c (j k ) Sf (k 1 )

Substituting (4.76), (4.77) and (4.18) into (4.75) and dropping integrals

of odd terms, (4.75) gives for i = 1,

E[a ;h 2 a) f oo (a1 k, + a2) k,
Ea f 4 2X1 o k1 + a3 k 1 + a

2 dk1  (4.78)
1+ a5 k

where a3, a4, a5 are as in (4.22) and al, a2 are given by

(i) f, a, y uncorrelated

ai = J1 c2 H

A2 = C2(H J ArG - AL1 b)
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(ii) f, a, y perfectly correlated

ai = - CJi(1 - H)

a 2 = - C[ArG (1 - CH)Jj - ALj bi] (4.80)

Equation (4.78) is written as

2 a2 X
E[a h = I2 (4.81)

where integral 12 is evaluated in Appendix D. For A > 0, (4.81) gives

E[a ] =

2 a2 / + a2 a a + a ag a5 / - a - a a2 X1 2r 4 1 3 4 1 4+
f1'

(ArG) V4ArG + A"L" (1 + a4 a25- a3 a5

a1 - a2 a5
+

(1+ a4 a5 - a3 a5)

while for A < 0

E[a =

2 -a2 / - a2 a4 a5 - a, a4
1 (ArG) (A LI)

+
aI - a2 a5

+ a a2 - a2 a5 1

a/5 / + a a / + a a4

(1 + a4 a5 - a3 a5)

I
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where al, a2 are now given by (4.79) or (4.80) and a3, a4, a5

are given by (4.18)

For i = 2, 3 (4.75) yields

E[a ] = 0 (4.84)

Given the expressions for E[fh], E[ah], E[f ah/axi] and

E[a 3h/3xi] evaluated above, and the expressions for the variance

E[h 2 ] evaluated in Section 4.3.1, terms c and tri of (3.16) can be
A

evaluated. The effective hydraulic conductivities Kii can then

determined from (3.14).

Similarly to the variance, the effective hydraulic conductivities
A

Kii depend on the following soil property and mean flow characteris-

tics:

^2 2 2K = K (F, A, r, 2 a Y 1; H, J3, J2 13$ Jt). (4.85)

Section 4.4.3 gives illustrative examples for the dependence of Kii on

some of these parameters. Note that although a closed form expression,
A

has been derived for Kii because of the complex form of this expression

it is difficult to visualize the dependence of Kii on each of these

parameters. The next section derives some asymptotic expressions for

Kii that are valid at particular ranges of H and 3H/at. These

expressions are very simple and explictly show the dependence of Kii on

each of the parameters of Equation (4.85). In addition, these

expressions suggest a modification of the effective hydraulic
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conductivities evaluated using (3.14).

4.4.2 Asymptotic Expressions, Modification of the Effective Hydraulic

Conductivities

This section derives some simplified asymptotic expressions for

G + 00 and G + 0. These expressions explicitly show the dependence of

Kii on the different variables of (4.85). Because of their simplicity,

these asymptotic expressions make analyses, comparisons, etc., very

easy. In fact, as will be seen later in this section, the asymptotic

results show that the effective hydraulic conductivities evaluated, using

the approximate (4.14), are a first order approximation of the exact

results. This suggests a modification of (3.14) (exponential

generalization), in order to account for the error due to neglecting

higher order terms. Since the evaluations are quite lengthy for economy

of space, only the case of f, a, y being uncorrelated is examined.

Similar results can be easily obtained for f, a, y being perfectly

correlated.

Similarly to Section 4.3.2, simplified asymptotic expressions for

Kii are derived by letting variable G, given by (3.31) tend to C0 or 0,

(see discussion in Section 4.3.2). This requires evaluating asymptotic

expressions for E[fh], E[ah], E[f 9h/xi] and E[a 3h/3xi] G + 0 for

G + 0.

E[fh]

Asymptotic expressions for E[fh] are derived first. For G +

A= 2L + 4ArG is positive and E[fh] is given by (4.53) where al,
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a2 are given by (4.50) and a3, a4, a5 are given by (4.22). Sub-

stituting a1 , a2, a3, a4, a5 into (4.53) and taking the limit

for G + +w yields 2

E[fh] = . (4.86)

For G + 0, (4.53) yields

2 JX
E[fh] = (4.87)

1 + AL

For G + -- , A is negative and (4.54) yields

2

E[fh] = .f(4.88)

E[ah]

Asymptotic expressions for E[ahJ are now derived. For G +w, A is

positive and E[ah] is given by (4.63) where a1 , a2, a3, a4 , a5

are given by (4.60) and (4.22). Substituting al, a2, a3, a4 ,

a 5 into (4.63) and taking the limit for G + +m yields

2
E[ah) = -2 H (4.89)f -

For G + 0, (4.63) gives

2 2 ( 3 + AL Ji H)
a f 1( i 3H 11f (4.90)

E[ahj = - [ 1+ + J -] . (4
AL I AL 1 1 1
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For the case of Ji 3H/3xi 0, which is expected to be valid near the

core of a soil moisture plume, (see discussion in Section 4.3.2),

Equation (4.90) simplifies to

2 X 2

E[ah] = - 1 AL X (4.91)

For G + -w, A is negative and (4.64) yields

2
E[ah] = 2 . (4.92)

E[f ]
x1

Similar asymptotic expressions are derived for [f 3h/3x] . For

G + +e, A is positive and E[f 3h/3xl] is given by (4.72) where al,

a2, a3, a4, a5 are given by (4.69) and (4.22). Substituting

al, a2, a3, a4, a5 into (4.72) and taking the limit for G +

gives

E[ f ] = 0 .(4.93)

For G + 0, (4.72) gives

a 2
E[f h = - (4.94)

1 1 + AL1 X

For G + -A, A is negative and (4.73) gives
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2

E[f ] = f1. (4.95)

As was discussed in Section 4.4.1 the expected values E[f ah/3xj] ; i =

2, 3 is always zero.

Ei a ]hLE7a

Asymptotic expressions for the term E[a ah/3xi] are now derived.

For G +oo, A is positive and E[a 3h/3xi] is given by (4.82), where

al, a2, a3, a4, a5 are given by (4.79) and (4.22). Substitut-

ing ai, a2, a3, a4, a5 into (4.82) and taking the limit for G +

+= produces

(4.96)

For G + 0, (4.82) gives

E[a ] =
1

E[a ]= 01

2 2
f 

1 1
(4.97)i H

For Ji WH/axi z 0, this equation simplifies to

2 2
E~a 3; H

E[a ] 1 + AL

For G + -co, A is negative (4.83) gives
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2 2

E[a ] = H499
1 1

As was discussed in Section 4.4.1, the expected value E[a 3h/3xi] ;

i = 2, 3, is always zero.

Using the above asymptotic results, simplified expressions for Kii

are derived. The case of Ji 3H/3xi = 0 is examined for illustra-

2
tion. The term a,:, given by (3.15a), is evaluated first. Substituting

for E[h 2 ], E[fh], and E[ah], (3.15a) yields, for

G+ +.

a2 = 2  . (4.100)af 7
r

For G 0 (Case of ;H/3xi 0)

2 (1 + C2 H2
2 = f + E H (4.101)

1 + AL IX

while for G +

2 2 2 H2 2a[ =+ H + . (4.102)

Term Ti, given by (3.15b), is now evaluated. Substituting

E[f 3h/ xi], E[a 3h/3xi], (3.15b) gives, for G +

= 0 . (4.103)

For G + 0
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23

Ta f- (1 + C2 H2

1 + AL1 X 1

while for G + -co

ar- 3f1 22
y -- (1 + c H2)

AL I

The variables 2 , T 3 are always zero.

2Substituting the above expressions for ac, Tji into (3.14), the

following asymptotic expressions for the effective hydraulic

conductivities are obtained, for G + +

K11

For G + 0

K1

2 2

= Km[1 + 2
2r

(4.106)

a2 'n2

22 = Km[1 + 2 '2r

2
af 1 + H

= Km 7- 1 + AL1X

(4.107)

a2 2 2
K = K [1 + Hf1 + <1
22T 1+

while for G + -w
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K 11 = Klm -

2 2 22 1
f 1+2 H + f f

LT + (1 + + L

K2 2 = Km[1 +

2 
+f I1+ H2

T AL,11 +

2 2
rn 1

+ 1+ -AL X7
+A

Note that for 3H/3xi u 0, the lateral hydraulic conductivity K3 3 is

equal to K22.

The coefficient of variation of the specific moisture capacity

22= 2 22
C = r + Y is usually small, i.e., ayI =2_f Ir 1 <. Equations

(4.106) are then further simplified to

K = Km
(4.109)

22 = Km

while (4.108) simplifies to:

K 11 = Km [

2
-f
T

1 + c2 H 2
AL X

(4.110)
2
A + 2 2

K = [1 + f I+ H
i i K[ IF ALX

These simplified asymptotic expressions for Kii have been derived for G

absolutely large or G small. A physical interpretation of this assump-

tion is given in Section 4.3.2. As a reminder, it is mentioned that

G + +o corresponds to drying in relatively dry soils, G + -w corresponds

to wetting in relatively dry soils, and G + 0 corresponds to the steady
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state case. Note that the expressions (4.107), derived here as a parti-

cular case of the general transient results for G + 0, were also obtained

by Yeh, et al., (1982) using a less general steady state analysis. Note

also that for AL1 X1 large, the hydraulic conductivities in the case

of wetting, given by (4.110), tend to the steady state hydraulic conduc-

tivites (4.107).

The above expressions for the effective hydraulic conductivities

were derived using (3.14). This equation was obtained by expanding

(3.10) in a Taylor series and retaining only the first and second order

terms. Note that the exponents in (3.10) and (3.11) depend on the mean

capillary tension head H. For H relatively small, it is expected that

(3.11) is approximately valid. For H large, however, the higher order

terms, in (3.11) could be important since they depend on powers of H

(H3, H4 , .0.). It is thus expected that the expressions derived

previously for the effective hydraulic conductivities, using (3.14), will

be valid only for H relatively small while for H relatively large these

expressions will not be valid. In the case of a perfectly stratified

formation and if f, a, y are assumed to follow normal probability density

functions and J2, J3 m 0, the effective hydraulic conductivities can

be directly evaluated with no need to expand the exponential in (3.10).

Such expressions are derived below and are compared to the effective

hydraulic conductivity expressions derived previously.

For J2, J3 ' 0, assume that the flux of water parallel to

stratification is small. The specific discharge in a direction

perpendicular to stratification is given by
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q, = K(Mp) 3 Z) (4.111)

Because the lateral flux is small, the law of conservation of mass sug-

gests that q1 is approximately constant over xi. Dividing (4.111) by

K(p) and taking the expected value of the resulting equation yields

E[q K (*)] - a(H + z) = 1 (4.112)

For q1 constant, using Equation (3.13) we get

A 
1

K 11 = q /J = 1  (4.113)
11 1 E WK

i.e., the effective hydraulic conductivity K11 is equal to the harmonic

mean of the unsaturated hydraulic conductivity. Substituting (3.5), the

expected value E[K-1(*)] is given by

2

E[K~(-1)] = E[ef - Ha - Ah - ah e 414
M m

2
where Km is given by (3.8), aE is the variance of 6 = f - Ha - Ah

given by (3.15a), fluctuation products of an order higher than second
2

are ignored and the relationship E[ec] = e a6/2 (Gaussian s ) is used.

Substituting (4.114) into (4.113) yields the effective hydraulic

conductivity K11

2

A -
K =K e (4.115)

11 m
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where aE is given by (3.15a).

The lateral effective hydraulic conductivity K22 is now

evaluated. For J2 z 0, it can be assumed that D(H + h)/3x2 z

3H/ax2 . Then

E[q2] = E[K()E[K()] J2 (4.116)
x2

A E[q2]K22  J = E[K(*)] (4.117)
2

i.e., the lateral hydraulic conductivity is equal to the arithmetic mean

of the unsaturated hydraulic conductivity. Substituting (3.5) and taking

the expected value, Equation (4.117) gives

2

K22 = Km e (4.118)

2.
where ae is as defined above. For J3  0 the lateral effective

hydraulic conductivity K33 is also given by (4.118).

Asymptotic expressions for the effective hydraulic conductivities

predicted by the second approach are now derived for G + = and G + 0.

2
Substituting the previously derived expressions for as, given by

(4.100), (4.101) and (4.102), into (4.115), (4.118) and assuming

that ay22 < 1 yields, for G + +*
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2 2
f n

K11 = Km exp- 2 Km2r
(4.119)

2 2a n
K22 = Km exp 2 2  ~ Km

2r

For G + 0

A 
2  2 2

11 = K [ 1 + AL 1 X 1

(4.120)

a2 2 2
K22 =K Mexp 1 + A XA1

while for G + -c

2
2 A2 2

11 = Km [AL X

(4.121)

Aa
2  2 2

22 =Km 7 A

Comparing the above equations to (4.109), (4.107) and (4.110), we

see that (4.109), (4.107) and (4.110) are equal to the first two terms of

a Taylor series expansion of the exponential in (4.119), (4.120) and

2(4.121). Note that for af and cH relatively small, the two

2
sets of equations approach each other. For af and /or CH large how-

ever, the discrepancy between the two sets of equations is significant.

Equations (4.115) and (4.118) and the corresponding asymptotic
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expressions (4.119), (4.120) and (4.121) were obtained without expanding

the exponential in (3.10). It is thus expected that these equations are

closer to reality, at least in the particular case of a stratified soil,

than the corresponding results (3.14) and (4.109), (4.107), (4.110),

obtained using a Taylor series expansion in (3.10). For this reason

(4.115), (4.118) and their asymptotic expressions (4.119), (4.120) and

2
(4.121) are used in further analysis. Note that the variance cc is

evaluated from (3.15a) and the results of Section 3.4.1.

The effective hydraulic conductivities Kii are generally given by

some quite complicated expressions (see Section 4.4.1). The asymptotic

expressions (4.119), (4.120) and (4.121) are useful since they are very

simple and they explicitly show the dependence of Kii on the different

soil property and flow characteristics at different ranges of H an 3H/3t.

The implications of the asymptotic results are now discussed. The

condition G + += occurs when DH/3t is positive and relatively large (dry-

ing), A and/or H are large (coarse and/or dry soil) and F is small (small

KG). For G + the effective hydraulic conductivities are given by

(4.119). Note that if ay/r2 < 1, it holds K11 z K22 Km, where

Km = eF eAH. This implies that, in this case, the effective

hydraulic conductivities can be evaluated by an expression similar to the

local hydraulic conductivities. The "effective" saturated hydraulic

conductivity KG = eF, is equal to the geometric mean of the local

saturated hydraulic conductivity Ks and the "effective" pore size

distribution parameter A is equal to the arithmetic mean of the local

pore size distribution parameter a. Note that Kii, in this case, is

2 2 2 2
independent of r , cf, 0a, ay, X1, J1, J2, J3 and Jt and
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depends only on F, A, and H.

The condition G + -co occurs when 3H/at is negative and has a rela-

tively large magnitude (wetting), A and/or H are large, (coarse and/

or dry sol), and F is small, (small KG). For G + -co and a 2/r 2 1,

the effective hydraulic conductivities are given by (4.121). Note that

in this case Kii is different than the corresponding Kii in the

drying case. Here Kii is given by a product of Km by an

exponential term. This term is due to local soil property variability

and is predicted by the stochastic theory since this theory takes into

account the existence of local variability. Traditional approaches do

not predict this term and the necessary adjustments of Kii in the case

of wetting. This is because these approaches do not realistically ac-

count for the existence of variability of the local soil properties. Note

that in the case of wetting and large H (dry soil) Kii depends on F, A,

2 2 2 2
af, ca, X1, H and Ji and it is independent of r , Jy J2,

J3 and Jt. It is further observed that, in this case, Kii is

anisotropic with a degree of anisotropy given by

^22 2 2
K22  2 1+ 2H af +aa H

= exp [af AL - - = exp E-ALx-] . (4.122)
K11  1 1 1 1

2 2
The degree of anisotropy increases as Of and ca increase and

ALI X1 decreases. The degree of anisotropy depends on the mean

capillary tension head H and it increases as H increases (dry soil). A

physical explanation of this effect is given in Section 4.7.

Note that in the above case, the effective hydraulic conductivities
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depend on the mean flow gradient Ji perpendicular to stratification.

Because Kii depends on J1, it is generally impossible to define an

effective hydraulic conductivity tensor independent of J1. If J,

does not vary significantly around a constant value 3j (e.g., j1  1)

however, it is possible to approximate Kii(Ji) with the value of
A A

Kii at 31. To see this, expand Kui in a Taylor series as follows:

A

A A 3K
KiiW1 i ii 1) + a~F 1 1

0i a2 1 + 2 H 2
K. .(51 f- W 1- )

A X 1(2 J1 - 1)

where it is assumed that soil is horizontally stratified i.e.,

Ll = Ji + 3H/3xj = 2 J1 - 1.

This equation shows that if J1 does not vary significantly around 3J

2
and/or af is small, X1 large (i.e., soil tends to be homogeneous) and

A is large (coarse soil), it is possible to write Kii _ Kii(01).

Since Kii is independent of spatial gradients Ji, J2, J3, we may

conclude that, in this particular case, an effective hydraulic

conductivity tensor independent of spatial gradients, exists.

The condition G + 0 occurs when 3H/3at is small (steady state), A

and/or H are small (fine textured and/or wet soil), and/or F is large

(large KG). For G + 0 the effective hydraulic conductivites are given

by (4.120). Here Kii is given by a product of Km by an exponential

term as well. As was discussed in the G + -co case, this term is due to
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the existence of local variability and it is not predicted by traditional

2
approaches. Similarly to the wetting case, Kii depend on F, A, af,

2 20a, X1, H and J1, but are independent of r, ay, J2, J3 and

Jt. Note that for ALI X1 large (coarse and/or spatially smoothly

varying soil) these hydraulic conductivities tend to the hydraulic

conductivities (4.121) corresponding to the wetting case. The effective

hydraulic conductivities are anisotropic in this case as well. The

degree of anisotropy is given by

2 2 2
K22 2 1 2 H2 a + H-- = exp [of AL X i = e AL . (4.123)
K 1 1 1 1

The degree of anisotropy also increases as H increases (drying), but it

is smaller than that in the wetting case, particularly for small ALI

Xi (i.e., fine and of small scale variable soil). Equation (4.122),

derived here as a particular case of the general transient results for

G + 0, was also obtained by Yeh, et al., (1982), using a steady state

analysis.

Similarly to the wetting case, the effective hydraulic

conductivities Kii depend on LI in the case of G + 0 as well. It is

thus generally impossible to define an effective hydraulic conductivity

tensor which is independent of Ji. If J1 -14, however, it is

possible to approximate Kii(Ji) z Kii(Jj). In this particular

case, such an approximate hydraulic conductivity tensor exists.

The simplified asymptotic expressions developed in this section

proved very useful. Using these expressions, it was possible to compare
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the approximate effective hydraulic conductivities for a stratified soil

obtained using the expansion of the exponential in (3.10), to the exact

effective hydraulic conductivities. In addition, the simplified asymp

totic expressions offered valuable insight about the dependence of Ku

2 2
on parameters F, A, r, af, aa, X1, H, J1, J2, J3 and Jt.

This is important since evaluation of the dependence of Kui on each of

the above parameters would require sensitivity analysis with respect to

12 variables. The asymptotic results derived in this section show that

the effective hydraulic conductivities depend on the flow conditions

(wetting, drying), which suggests a hysteresis of the effective hydraulic

conductivities. In addition, the anisotropy ratio of the effective

hydraulic conductivities depends on the flow conditions (wetting, drying)

and on the mean capillary tension head.

Section 4.4.3 applies the results of Section 4.4.1 and 4.4.2 to the

Panoche clay loam and the Maddock sandy loam soils.

4.4.3 Applications and Discussion

This section gives several examples for the dependence of the effec-

tive hydraulic conductivities on the different soil and flow characteris-

tics, and compares the values derived using the approximate expressions

of Section 4.4.2 to the exact values. Since the effective conductivities

depend on a large number of variables (12 variables), only a particular

set of parameter values is considered. In order for these examples to be

as realistic as possible, we have choosen to use combinations of soil

parameters that have been observed in the field, instead of using

arbitrary parameter values. The Panoche clay loam and the Maddock sandy
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loam soils are selected for illustration. It is assumed that parameters

2 2 2
F, A, r, af, aa, 11Y and X1 are independent of H. For

illustration only the case of f, a, y being uncorrelated is examined.

Note that Kii generally depends on the mean flow characteristics H,

Ji, J2, J3, Jt. Because of the dependence of Kii on the term G

x eAH jt., the dependence of Kii on H and Jt is stronger and more

important than the dependence on J1, J2, J3, particularly at large

H (dry soils). For this reason, this section investigates the dependence

of Kii on H and Jt. The values of the spatial derivatives are fixed

to J1 = 1, J2 = J3 = 0. This is approximately valid near the

central part (core) of a soil moisture plume, moving in a horizontally

stratified formation. Evaluation of Kii for other soil parameters or

mean flow conditions is straightforward, using the general equations

developed in Section 4.4.1.

Following the discussion in Section 4.4.2, the effective hydraulic

conductivities K11, K22 are given by (4.115) and (4.118)

2where a is given by (3.15a), and the expected values of (3.15a) are

evaluated in Section 4.4.1. Since K11, K22 are both directly related

2 2 2
to aE the variance ae is evaluated first. The dependence of as on

H and Jt is shown in Figures 4.5 and 4.6. Figure 4.5 corresponds to

the Panoche soilwhile Figure 4.6 corresponds to the Maddock soil. These

figures plot a2 as a function of H for a set of discrete values of

2
Jt. The values of as predicted, using the asymptotic expressions of

Section 4.4.2, for G + 4o, G + 0, are also plotted for comparison. Note

that these curves depend on H and the sign of Jt but they are indepen-

dent of the magnitude of Jt-

2Examination of Figures 4.5 and 4.6 shows that a. generally
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depends on H and Jt, (especially its sign). For H and/or Jt small

a follows closely the asymptotic curve

curve is practically independent of the

depends on H. As H increases however,

2
asymptote. The variance ac then depend

2sign of Jt. For Jt < 0, ac tends to be

2asymptote. For a fixed H, ac decreases

2continues to increase as approaches the

the sign of Jt. Note that the value of

predicted for G + 0. This

magnitude and sign of Jt but it

2
ac diverges from the G + 0

s on both the magnitude and the

larger than the G + 0

with increasing Jt- As H

G + -co asymptote, depending on

2H where ah diverges from the

G + 0 asymptote and convergences to the G + oo asymptotes increase with

increasing IH/a t Note also that for at < 0, a generally increases

for increasing Hwhile for Jt>o, 2c reaches a maximum and then starts

to decrease to the G + + asymptote which is independent of Jt and H.

Comparing Figure 4.5 to Figure 4.6 shows that 2. is much larger

for the Maddock soil than it is for Panoche soil. This may be explained

by the fact that the Maddock soil has a larger variety of textures than

the Panoche soil. Note also that the G + -co and G + 0 asymptotes lie

closer to each other in the Maddock than in the Panoche soil. In fact,

2in the Maddock soil ac is practically independent of Jt for Jt < 0.

This is in accordance to the asymptotic Equations (4.120), (4.121) since

in the Maddock soil case parameter A is relatively large and AL1 Xi

1 + AL1 X1. In the case of the Panoche soil however, AL1 X1 is

relatively small and the two asymptotes are significantly different.

2 2Note also, that the asymptotic value of a for G + +, given by os =

a2a/F 2, is relatively small, particularly in the Maddock soil case.

This justifies the approximation K11  K22 % Km (see 4.126, 4.127).

2Given the values of a. evaluated above, the natural logarithms of
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Figure 4.5 Variance of T- = f - Ah - Ha versus the mean capillary ten-
sion head H for the Panoche soil. The curves correspond to
different values of Jt- The asymptotic curves for G + 0,
G + +*x , and G + --m are al so s hown.
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Figure 4.6 Variance of e = h - Ah - Ha versus the mean capillary ten-
sion head H for the Maddock soil. The curves correspond to
different values of Jt- The asymptotic curves for G + 0,
G + +c , and G + - are also shown.
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the corresponding effective hydraulic conductivities K11, K22 can be

evaluated using (4.115) and (4.116). Substituting Km from (3.8),

(3.118) and (3.119) yield

2

inK11 = F - AH -
(4. 123)"

2

lnK 22 =F - AH +

Using (4.123) lnKii, lnK22 are evaluated and they are plotted in

Figures 4.7 and 4.8. Figure 4.7 corresponds to the Panoche soil while

Figure 4.8 corresponds to the Maddock soil. Since lnKij and lnK22
2

are directly proportional to a, the previous discussion for the

2dependence of ac on H and Jt provides useful information for the

dependence of lnKii, lnK22 on H and Jt. Figures 4.7, 4.8 show that

K11, K22 depend on H but they also depend on Jt and particularly on

the sign of Jt (i.e., wetting or drying conditions). The dependence of

Kii on Jt suggests a hysteresis of the effective hydraulic conductiv-

ities. Figures 4.7, 4.8 also show that K22 is generally larger than

K11, particularly in the case or wetting (Jt <_ 0). In the case of

drying, K22 - K11 z Km.

In order to better illustrate the hysteresis and anisotropy of the

effective hydraulic conductivities, lnKii and lnK22 are plotted as a

function of H for Jt = 0.01 cm/sec in Figures 4.9, 4.10. These

figures show that K11, K22 generally depend on the sign of Jt,

(i.e., wetting or drying conditions). The effective hydraulic conducti-

vity perpendicular to stra-tification K11, is smaller for decreasing H
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in Figure 4.6.
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Vertical and lateral effective hydraulic conductivities
versus the mean capillary tension head H for the Panoche
soil, with Jt = + 0.01 cm/sec, illustrating hysteresis
and anisotropy of the effective hydraulic conductivities.
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(wetting), than it is for increasing H (drying). The lateral effective

hydraulic conductivity K22 however, is larger for decreasing H

(wetting) than it is for increasing H (drying). It is further observed

that K22 is generally larger than K11 . The anisotropy ratio

K 22 1Kll, in the case of wetting, is relatively large, particularly at

large H (dry soil). In the case of drying however, K22 is

approximately equal to K11 (K 22 ' K11 s Km) which implies that

the soil dries out isotropically.

The effective hydraulic conductivities Kii, in the above examples,

were evaluated and plotted for different sets of values of H and Jt.

These values were selected for illustration purposes and they do not

correspond to any particular real problem. In order to further

illustrate the hysteresis and anisotropy of the effective hydraulic

conductivities, it is desired to evaluate Kii for a set of H and Jt

values corresponding to a real problem. In a real situation, H, Jt,

etc., should be determined by iterative solution of the governing

large-scale (mean) flow equation, given the initial and boundary

conditions of the specific problem. This requires numerical solution of

the large-scale equation and it is out of the scope of the present work.

In some cases however, it is possible to obtain simple approximate

analytical solutions of the mean flow equation.

Let us consider, for example, the case of a water input pulse at the

soil surface. It is assumed that the initial mean capillary tension head

in the soil matrix is uniform with depth. It is also assumed that the

flow is approximately vertical, and the vertical hydraulic conductivity

is K11 = Km, independent of the flow conditions. It is then possible
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to analytically evaluate H and Jt, using the approximate perturbation

method described in Wilson (1974), (see Appendix D).

The case of a Maddock soil with f, a, y being uncorrelated is

considered for illustration. Two different water pulse depths at the

soil surface are examined, i.e., water depths of 50 cm and 30 cm. The

mean flow parameters H and Jt are evaluated as a function of time at a

depth of 10 m. The initial capillary tension head is assumed to be Ho

= 300 cm. Figures 4.11 and 4.12 plot H as a function of time as the soil

moisture plume passes the 10 m depth. Given the calculated values of H

and Jt and Equations (4.123), the corresponding effective hydraulic

conductivities are determined and are plotted in Figures 4.13 and 4.14 as

a function of H at the depth of 10 m as the soil moisture pulse moves

past this depth. The sign of Jt is also illustrated by the directional

arrows in these figures. For the 50 cm water input depth, H decreases

from Ho = 300 cm to a relatively small value where the effective

hydraulic conductivities approach the limiting curve G + 0, independent

of the sign of Jt, (see Figure 4.13). However, for the lower water

input depth, the minimum value of H is relatively large and the effective

hydraulic conductivities do not approach the asymptote G + 0. As a

matter of fact, for the range of H, values in this case eAH is always

relatively large and K11, K22 remain close to the G + +k or G + -

curves, depending on the sign of Jt- Since for H large these curves

are far from each other, the values of K11, K22 jump for the G +

to the G + +w curve as H reaches its minimum value and Jt changes sign

(see Figure 4.14). Figures 4.13 and 4.14 show similar hysteresis and

anisotropy effects as Figures 4.-1, 4.10. Note that the effective
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Figure 4.11 Mean capillary tension head versus time at a depth of 10 m
for a water pulse of 50 cm at the soil surface.
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for a water pulse of 30 cm at the soil surface.
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Figure 4.13 Vertical and lateral effective hydraulic conductivities
versus mean capillary tension head at a depth of 10 m for a
water pulse of 50 cm at the soil surface (Maddock soil).
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hydraulic conductivity at the wetting front of the soil moisture plume is

generally smaller than the one in the drying front. Since the

approximate perturbation method assumes equal values of the effective

hydraulic conductivity at both fronts, the estimated values of H and Jt

may not be very realistic. In order to obtain more realistic estimates

of H, Jt, the mean flow equation should take into account the

hysteresis of K11. Nevertheless, even approximated, the above example

shows similar hysteresis and anisotropy effects for the effective

hydraulic conductivities, as did the examples in Figures 4.11, 4.12.

It is of interest to note that the local soil properties were

assumed to be nonhysteretic and isotropic. This implies that the hyster-

esis and anisotropy of the large-scale effective hydraulic conductivities

are not due to local hysteresis and anisotropy but they are due to the

the spatial variability of the local soil properties. The fact that

spatial variability on soil properties introduces hysteresis of the

effective hydraulic conductivities is a previously unkown and important

result since it cannot be predicted by traditional models. Section 4.7

gives an interpretation of the large-scale hysteresis and anisotropy,

predicted by the stochastic theory, and discusses a series of field

observations showing agreement with these results.
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4.5 Mean Soil Moisture Content and Effective Specific Moisture Capacity

This section evaluates the mean soil moisture content and the

effective specific moisture capacity in the case of a stratified soil

using the general theory developed in Chapter 3 and the simplifications

discussed in Section 4.2. Section 4.5.1 analytically evaluates the

expected value E[yh] in (3.16) and the corresponding mean soil

moisture content ® and the specific moisture capacity C, using Equations

(3.16) and (3.17). The expressions for 0 and C, derived in Section

4.5.1, are of a quite complex form. Section 4.5.2 derives asymptotic

relationships for E and C when G + -' and G + 0. These expressions are

quite simple and they explicitly indicate the dependence of 0 and C on

the different soil property and flow characteristics. Section 4.5.3

gives examples applying the results of the stochastic theory.

4.5.1 Evaluation of the Mean Soil Moisture Content and the Effective

Specific Moisture Capacity

The mean soil moisture 0 and the effective specific moisture

capacity C require evaluation of the expected value E[yh]. Similarly to

Sections 4.3 and 4.4 it is assumed that f, a, y follow exponential

cross-covariance functions with identical correlation lengths. The two

cases of (i) f, a, y uncorrelated and (ii) f, a, y perfectly correlated

are investigated. The cross-spectral density functions of f, a, y are

then related to the spectral density function of f through (4.16) or

(4.17), where parameters C2 and n2 are given by (4.15).

Using the approximations for a stratified soil discussed in Section

4.2, the spectral amplitudes dZh are given by (4.8), where the
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response functions Wf', Wa', W' depend on ki and are

independent of k2, k3. Replacing Wf, Wa, WY in (3.63) by

Wf', Wa', Wy', substituting (3.63) into (3.62) and integrating the

resulting equation with respect to k 2 , k 3 yields

E[yh] = f S (kj) dk1

I I I I I

Shy = Wf Sfy + Wa S ay + W S
Y YY

(4.124)

(4.125)

The primed functions Suv' (u, v = f, a, y) in (4.125) are given by

(4.13). Substituting the expressions for-Wf', Wa', Wy given by

(4.10) into (4.125) and using (4.16), (4.17) and (4.18), (4.125) yields

(i) f, a, y uncorrelated

2
2 nG(k1 + ArG) + jAL k1

-n2Gk 2 _ n2ArG2

(k 2+ A G) 2+ A2 L 1 2k 2

S f (k1) -

2G AL k

2 2 2L 2 2 S (
(k1 + ArG) + A2L 1 k 21 f~ 1

(ii) f, a y perfectly correlated

Shy (k1) = S h (k)
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where Shf' is given by (4.47) and for f, a, y following exponential

covariance functions, Sff' is given by (4.18). Substituting (4.126),

(4.127) into (4.124) and because the integral of the term multiplying

jk1 is zero (odd term), (4.124) can be written in the following general

form

2k 2
E[h] f 1 1 2 1 dk1  (4.128) ETyhf 4 +a 2 +ak

o k1 + a3k1 + a4  1 + a5k1

where a3, a4, a5 are given by (4.22) and al, a2 are given by

(i) f, a, y uncorrelated

ai = -n 2 G

(4.129)

a2 = -n2ArG 2

(ii) f, a, y perfectly correlated

a = n[rG - c(J + HrG) - n G + AL J (1-CH)]

3H (4.130)
a2 = n[rG - (J + HrG) - nG] ArG

Equation (4.128) is written as follows

2a 2 I
E[-yh] f 1 1 (4.131)1T
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Integral Il is evaluated in Appendix C. For A = a 3
2 - 4a4 > 0,

E[yh] is given by

f2 X1[a/ + a 1a4a5 - V a2a5 + a 2- a2 a 3a5
E[yh] = __ _ __ _ _ __ _ __ _ _ __ _ __ _ _ _-_ _

(ArG) V4ArG+ A 2 (1 + a a 5- a 3a5 )

a1 -a2a5
- a 5 12 ] (4.132)

(1 + a4a5 - a3a5)X( 1

while for A < 0

-aVW -ala4a + / a2a5 -a2 + a2 a3a5
E[yh] = 14 4 223

(ArG) ( AL1 ) (1 + a a5  - a3a5

a1 -a2a5
-a  2 (4.133)

5 (1 + a4a5 -a 3a5) 1

where al, a2, are given by (4.129) or (4.130) and a3, a4, a5

are given by (4.22).

Given E[yh], the mean soil moisture content E can be evaluated from

(3.16) where it is assumed that the soil characteristic E[O(H)] is

known. The expected value E[yh] depends on the same soil property and

mean flow characteristics as the effective hydraulic conductivity.

Equation (3.16) then gives

E = E[e(H)] - g(F, A, r, af 2 a 2,a y ; H, J , J2' 13' 1t) (4.134)

where g = E[yh]. Given the above expression for the mean soil moisture

content, the effective specific moisture capacity C can be evaluated from
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C = - . (4.135)

In the special case of e being linearly dependent on 4 (3.16)

reduces to 0 = (-rH + E[9 0 ]) - E[yh] and C reduces to C = r +

9(E[yh])/3H, where 60 the soil moisture content at saturation.

Section 4.5.2 derives asymptotic expressions for 0 and C when G + -+

and G + 0. These expressions are very simple and they explicitly

indicate the dependence of 0 and C on the different parameters of

(4.134). Section 4.5.3 gives examples for the dependence of 0

and C on H and Jt.

4.5.2 Asymptotic Expressions

This section derives asymptotic expressions for E[yh], e and C when

parameter G + -_+ or G + 0. For discussion on the meaning of these limits

of parameter G see Sections 4.3.2 and 4.4.2. The cases of f, a, y being

uncorrelated or perfectly correlated are considered.

Asymptotic expressions for E[yh] are derived first. For G + -c, A =

a32 - 4a4 > 0 and E[yh] is given by (4.132). Substituting ai,

a2, a3, a4 and a5, given by (4.129) or (4.130) and (4.22), into

(4.132) and taking the limit for G + -c gives

(i) f, a, y uncorrelated

2 2

E[yh] = - (4.136)
Ar

148

a C)



(ii) f, a, y perfectly correlated

2

E[yh] = [nr (1-
Ar

For G + 0 Equation (4.132) yields

(1) f, a, y uncorrelated

E[yh] = 0

(ii) f, a, y perfectly correlated

2
af 2 1 1n(1-cH)

E[yh] = 1+AL 7

For G + -- , A is negative and E[yh] is given by (4.133). Substituting

al, a2, a3 , a4 and a5 and taking the limit for G +

produces.

(i) f, a, y uncorrelated

2 2

E[yh] = - n
Ar

(ii) f, a, y perfectly correlated

2

E[yh] f [rI(1-H) - 2
Ar
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(4.139)
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Asymptotic expressions for 0 and C are easily obtained by

substitution of the asymptotic expressions for E[yh]

(4.134) and (4.135).

derived above, into

Asymptotic expressions for C for example, are given

as follows, for G + +a>

(I) f, a, y uncorrelated

= a(E[(H)])

(ii) f, a, y perfectly correlated

2

C= - (E[(H)]) _ f

while for G +

(4.142)

(4.143)

0

(i) f, a, y uncorrelated

^C =a( E[6 (H)]) (4.144)

(ii) f, a, y perfectly c

A 3(E[6(H)])
C =- 3H

In the special case of e

orrelated

f 1
1 + AL IX

being linearly dependent on * it holds
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Asymptotic expressions for 0 can be easily obtained using (4.134)

and (4.136)-(4.141). Note that for f, a, y uncorrelated and

aY2/Ar<<1, E[yh]~O and e=E[O(H)] for G++w or G+O. In this case the

effects of spatial variability on the mean soil moisture

content and the effective specific moisture capacity C are small. In the

case of f, a, -y being perfectly correlated however, E[yh] depends on H

and E[yh] can be significant. Spatial variability in this case can have

a significant effect on 0 and C. Since f, a, y are expected to be, at

least partially, correlated, we may

infer that spatial variability produces a large-scale effect on

parameters 0 and C.

The above simplified asymptotic expressions are useful since they

show the type of dependence of 0 and C on each of the following

parameters F, A, r, af 2, Oa2, ay 2, Xj, H, Ji, J2, J3,

Jt and E[O(H)].

4.5.3 Applications and Discussion

This section gives examples for the dependence of the mean soil

moisture content 0 on the mean capillary tension head H, in the Maddock

soil. Section 4.5.1, showed that 0 not only depends on H, but it also

depends on its time derivative Jt, i.e. 0 depends on the flow

conditions (wetting or drying). Because of this dependence it is

expected that 0 will show hysteresis similarly to the effective hydraulic

conductivity. In order to demonstrate this effect, 0 should be evaluated

for a set of pairs of values of H and Jt that correspond to a real

problem. As was discussed in Section 4.4.3, obtaining H and Jt for a
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real problem requires a solution of the large-scale flow equation subject

to the initial and boundary conditions of the problem. This is a

difficult problem of numerical analysis and its solution is out of the

scope of this work. Nevertheless, it is possible to select a realistic

time history for H and Jt based on physical arguments, past field

observations, etc. This approach is followed here.

Consider the case of a leak from a waste disposal tank at a time

later than the time when the leak ended. The soil moisture plume

generated from the leak tends to move vertically due to gravity forces

and diffuses in all directions due to capillary forces. Because there is

an asymmetry in the directions of the gravity and capillary forces in the

wetting and drying fronts of the plume, (gravity and capillary forces act

in the same direction in the wetting front, but they act in opposing

directions in the drying front), it is expected that the magnitude of the

time gradient of H in the wetting front will be larger than that in the

drying front. Although in typical cases Jt depends on H as well,

assume for simplicity that Jt depends only on the wetting or drying

conditions. Taking into account the above discussion a value of Jt =

-10- 2cm/sec was selected for the wetting front while a value of Jt =

10- 15cm/sec was selected for the drying front.

The mean soil moisture content 0 is evaluated in the case of f, a, y

being perfectly correlated and is plotted as a function of H in Figure

4.15. This figure also plots the mean soil moisture content that would

have been predicted by a simple model which assumes C = r. Figure 4.15
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Figure 4.15 Mean soil moisture content versus mean capillary tension
head for the Maddock soil for Jt = 10-15 cm/sec and
Jt = -10-2 cm/sec, illustrating hysteresis of the mean
soil moisture content.
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shows that e is generally smaller than what it is predicted by

deterministic models and that 0 and C depend on H but they also depend on

Jt, i.e., they show a hysteresis effect. In the case of wetting 0 is

smaller than the corresponding 0 in the case of drying. If f, a, y are

partially correlated a smaller hysteresis is expected.

It is of interest to note that the local parameters were assumed to

be nonhysteretic. This suggests that the hysteresis of the mean soil

moisture content 0 and the effective specific moisture capacity C, are

not due to local hysteresis but they are due to spatial variability of

the local soil properties. The fact that spatial variability introduces

hysteresis on 0 and C was previously unknown since it cannot be predicted

by traditional models. Section 4.7 gives a possible physical

interpretation of such hysteresis.
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4.6 Evaluation of Assumption ah/at = 0

One objective of this report is to provide simple generic

expressions for the large-scale effective parameters. In order to make

analytical evaluations feasible several assumptions were necessary in the

different steps of the analysis (see Chapter 3). The effective

parameters evaluated in previous sections assumed that 3h/3t in (4.6) is

small (see Section 4.2). The conditions when the assumption 3h/9t is

appropriate are now investigated. A trial and error procedure is used.

It is first assumed that the true value of dZh is approximately given

by (4.10). Using (4.10) an estimate of the variance of ah/3t is

obtained. If this estimate is relatively small it is expected that ah/at

0 and (4.10) is a good approximation of dZh- If the variance of

ah/at is relatively large however, it is not possible to assume ah/at - 0

and (4.10) is not a good approximation of dZh-

Section 4.5.1 evaluates the variance of ah/3t and investigates its

relative magnitude. Section 4.6.2 derives some simplified asymptotic

expressions and investigates the conditions when the expressions

developed in previous sections are appropriate.

4.6.1 Evaluation of the Variance of ah/at

Let yI = dZhi the value of dZh estimated from Equation

(4.10). Assume that dZh1 is approximately equal to the true value of

dZh. Taking the derivative of (4.10) with respect to time, (see

Appendix E), assuming that second order derivatives of H and the squares

(3H/3t) 2 and [exp(-AH)] 2 are relatively small, the derivative ay/3t

simplifies to
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j J1A k1
k 12+ ArG + jAL1 k1 d

- A(NJ- ) + rGiax.

k1 + ArG + j AL kI

(aH ) dZ
aT a

= V dZ + V dZ

where Vf' and Va' are defined by comparison to

correspond to y = dZh-

(4.146).

It holds

h = fff e3 . dZ h

and taking the derivative of h with respect to

(4.148)

t yields

3h= f0 j k-x (dZh

Taking the complex conjugate of (4.149), multiplying by (4.149) and using

the spectral representation property (3.51), gives the variance of ah/at

= fff Sdd(k)dk

where
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3 (dZh)

or

(4. 146)

(4.147)

Let h

(4.149)

E[( )2] (4.150)

ji (1-HA) k 1



1 3 (dZ h 3 (dZ *
Sdd W 1 E[(. ) (h)] =

2Vfl Sff + S 2aa + Vf V Sfa + Vf V Saf (4.151)

Similarly to Sections 4.3, 4.4, 4.5 it is assumed that f, a, y follow

exponential covariance functions with identical correlation lengths. The

two cases of (i) f, a, y being uncorrelated and (ii) f, a, y being

perfectly correlated are investigated. The cross-spectral density

functions of f, a, y are then related to the spectral density function of

f through Equations (4.16) or (4.17), where parameters c2 and n 2 are

defined in (4.15).

Substituting (4.151) into (4.150) and integrating with respect to

k2, k3 yields

E[( )2 f Sd (k ) dk 1  (4.152)

where

' ' ' -2 ' ' * ' '* '
5dd = f S + a aa + + Vf Va Saf. (4.153)

The primed functions Suv' (u'v = f, a, y) in (4.153) are given by

(4.13). Substituting the expressions for Vf', Va' given by (4.146)

into (4.153) and using (4.16), (4.17) and (4.18), (4.153) yields
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(i) f, a, y uncorrelated

Sdd(k) =
[Ji2A2+ c2 J2(1-HA)2] k12+ c2[A(J. .) - r G] 2

2 2 2 2 2
(k1 + ArG) + A L1 k2

3H2
C ) S f(kj)

(4.154)

(ii) f, a, y perfectly correlated

[31A + CJ1 (1-HA)]2k 2+ c
2[A(J ~7) - rG]2

2 2 2 2H(k + ArG) + A L 2 k 2

3H)2 s
3t) ff(k )

For f, a, y following exponential covariance functions, Sff' is given

by (4.18). Substituting (4.154), (4.155) into (4.152), gives

2a 2A oa k 2+
E[( h)21 = 2a 1 H2 1 1 2 1 dk (4.

o ko + a3kI + a 1 + a5k 1

where a1 , a4, a5 are given by (4.22) and al, a2 are given by

(i) f, a, y uncorrelated

a =J A 2+ 2 12(1-HA)2

a2 = 2 [A(J ) -rG]2 
(4.

2 i 'N 1
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Sdd(kl) 1
(4.155)
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(ii) f, a, y perfectly correlated

al = [ 1A + cJ (1-HA)] 2

a2 = 2 [A(J a) -rG] 2  (4.158)

Equation (4.156) is written as follows

2

E=[()2 2cf 1 (3H2 . (4.159)

Integral Il is evaluated in Appendix C as a function of al, a2,

a3, a4, a5.

Let us now examine the relative magnitude of term ah/3t, compared to

the term KmAGh = A (aH/3t) h at the left hand side of (3.33). We have

chosen to compare ah/at to this term because this term has certain things

in common to ah/ t, i.e. it is independent of spatial derivatives and it

is proportional to 3H/3t as is 3h/3t (see Equations 4.149, 4.146). The

relative significance of each of these terms depends on the ratio of

their variances given by

E[3h) 21
2 E( -)2

P = D(4.160)
A ( ) E[h ]

and using (4.159) and (4.26) yields

P2 1 (4.161)
A I
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where Ii' is evaluated for the ai, a2 given by (4.157), (4.158),

while Ii is evaluated for al, a2 given by (4.23), (4.24). If

p2 << 1, it may be assumed that term @h/3t is not important and can be

ignored compared to the other terms of (3.33). If p 2 is significant

however, it is not possible to ignore this term.

Next section derives simplified asymptotic expressions for p2, and

discusses the implications of these results.

4.6.2 Asymptotic Expressions, Comparisons and Discussion

This section derives some simplified expressions for the ratio

p2, examines the magnitude of p 2 relative to one and discusses the

implications of the results.

Asymptotic results for p 2 are derived when parameter G+ co or G+O.

For G+ c, A = a3
2 - 4a 4>0 and E[(3h/3t) 2] is given by

3h 21 2 a / + a1a4a5 - 4 a + a2 - a aa5
~f X 1[142222235

(ArG) /4ArG + A L (1 + a - a3a5)

a - a 2a5-32
aa H 2 . (4.162)
a5(1 + aga52 - a3a5)X I

Substituting a1 , a2, a3, a4 and a5 given by (4.157) or (4.158)

and (4.22) into (4.162) and taking the limit for G++co yields
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(i) f, a, y uncorrelated

2 2

E[(h 2 _ f H 2
E ) a TA

a, y perfectly correlated

2 2

E[ (h) 21 = f
A

)

For G+O Equation (4.162) yields (in the case of

9a 0)

i)f, a, y uncorrelated

E[ (3h)21
af2 X 2 A 2 + c2 1 2 (1-HA) 2f 1IJ

(ii) f, a, y perfectly correlated

a f2 [JI A

AL1 (1 + AL 1X 1 )

For G + -w, A is negative and E[(3h/3t) 2 ] is given by

-a / - aaa + /4 a2a, -a 2 + a2a3a,

(Ar G) (AL 1 ) (1 + a4 a 5 - a 3a 5)

161

(ii) f,

(4.163)

(4. 164)

H 2 (4.165)

+ rJ
1(1-HA)] 2

) . (4.166)

ah 2 2 x
E[ (f 1 I

E [(" )21



a1 -a2a5 H 2

(1 + a4a5 - a3a5)X 1

Substituting al, a2, a3, a4, a5 and taking the limit for G +

(4.167) produces

(i) f, a, y uncorrelated

2 2

E[ (h)2] [= + AL X

(ii) f, a, y perfectly correlated

2 2

E[ (3 )2 = [1 + AL X

Using (4.160) and the asymptotic expressions for E[h2]

Section 4.2.2,

derived in

produces the following asymptotic expressions for p 2 ,

for G + +co

(i) f, a, y uncorrelated

p
2.

2 2

A 2 [ r2 (1 + c H2 ) + n 2 1

(ii) f, a, y perfectly correlated

p
2

2 2

A2 [r 2(1 + C2H 2) + n 2- 2nr]

For G + 0
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-a
5

(4.167)

0,

H 2 (4.168)

I H 2C) (4.169)

(4.170)

(4.171)



(1) f, a, y uncorrelated

P2 _ A2 + 2(1 - HA)2 (4.172)
A (1 + c H )

(ii) f, a, y perfectly correlated

P2 _ [A + 2(1 - HA)J 2  (4.173)
A (1 - CH)'

while for G + --

(M) f, a, y uncorrelated

2 2 2

P 2 +r (4.174)
A[P (1+ H) + r ]

(ii) f, a, y perfectly correlated

2 2

P22 2 2 2 . (4.175)
A2L[.(1 + c2H2) + ii - 2nrj

Let us now discuss the implications of the above results. First

note that for Jt + 0 we have steady state conditions and it is thus

expected that 3h/3t in (3.33) tends to zero. For Jt # 0 (transient

conditions) Equations (4.170) - (4.175) show that p2 depends in general

on H. For Jt * 0 and H large (dry soil), it holds G + o and p2 is

given by (4.170), (4.171), (4.174), (4.175). Note that in this case

p2 is independent of the magnitude and sign of Jt, but it depends on

H. For large H, (4.170), (4.171), (4.174) and (4.175) simplify even

further
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P 2 1 (4.176)
A H

and since H is large p2 << 1. For a Maddock soil, for example, and

H>100 cm, then p2 < 0.0046 << 1. This implies that for H relatively

large (dry soils) term ah/3t is much smaller than term Km AGh in

Equation (3.33) and it can be ignored. For small H, (wet soils), G is

relatively small. In this case p2 is given by (4.172), (4.173). For H

small, these terms are of the order of one. This implies that in the

transient case and small H (wet soils) term h/at is of the same order of

magnitude as term KmfAGh in Equation (3.33), i.e. 3h/3t is important and

cannot be ignored in this case.

The above results have a reasonable physical interpretation. In the

transient case in a relatively wet soil, a soil moisture plume tends to

move rapidly, especially in the coarser soil layers, due to gravity

forces. Because of such rapid movement, the local values of the

capillary tension head p and its fluctuations h = *-H tend to change

rapidly with time and 3h/3t is generally not zero. In order to develop

models in the case of a relatively wet soil, term @h/at must be

considered in (4.6). It is possible however, that in such cases of rapid

water movement, the whole idea of using a large scale diffusion type mean

flow model, similar to the one in (3.18) is not possible. Field

observations show that flow in such cases is highly unpredictable and it

is possible that even approximate predictive models do not exist in these

cases. Nevertheless, most waste disposal situations involve dry soil

formations, significant depths to the water table and small rates of

leakage. In these cases, it is expected that the vadose zone remains

164



relatively dry and the movement of the soil moisture plume can be

predicted using a diffusion type mean flow model similar to (3.18). The

effective parameters of such a model are evaluated in Sections 4.4, 4.5.
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4.7 Interpretation of Results

The stochastic theory of transient unsaturated flow in stratified

soils produced the following results: (i) the large-scale effective

hydraulic conductivities Kiu, the mean soil moisture content 6 , and

the large-scale effective moisture capacity C show significant

hysteresis, i.e. their values depend on the mean flow conditions

(wetting, drying) and (ii) the effective hydraulic conductivity Kui is

anisotropic with a degree of anisotropy being dependent on the mean flow

conditions.

This section discusses the origin and implications of these results

and reviews several field observations for comparison. Section 4.7.1

gives a physical interpretation of the hysteresis and anisotropy of the

large-scale parameters. Section 4.7.2 discusses a series of pertinent

field observations and compares them to the stochastic theory

predictions. Section 4.7.3 discusses the implications of the results of

the stochastic theory on practical waste disposal control applications.

4.7.1 Interpretation of Hysteresis and Anisotropy of Large-Scale

Unsaturated Flow Parameters

The stochastic theory developed in Chapters 3 and 4 and the

expressions derived in Section 4.4 and 4.5 predict that the effective

large-scale parameters show hysteresis and anisotropy effects. These

large-scale effects were obtained using nonhysteretic and isotropic local

parameters. This implies that the predicted large-scale hysteresis and

anisotropy are not due to hysteresis and anisotropy of the local

parameters but they are due to the existence of spatial variability of
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the local soil properties. Note that the stochastic theory developed in

Chapter 3 can take into account hysteresis and anisotropy of local

parameters if such hysteresis and anisotropy exist and can be described

mathematically. However, Chapter 4 did not consider such local effects

for three reasons: (i) existing mathematical models of local hysteresis

are often oversimplified and of unknown reliability, (ii) if local

hysteresis and anisotropy were assumed it would be impossible to know

whether the predicted large-scale hysteresis and anisotropy are due to

spatial variability of soil properties, or to local hysteresis and

anisotropy. Also the relative significance of each factor, i.e. local

hysteresis and anisotropy and spatial variability, would be unknown and

(iii) the soils in the experiments where typical observations of

hysteresis and anisotropy are obtained, usually show spatial variability,

(e.g. stratification of sand due to gravity forces). Since spatial

variability produces hysteresis and anisotropy, it is possible that the

hysteresis and anisotropy observed in these experiments are (at least

partly) due to spatial soil variability within the experimental

apparatus and may not be due to hysteresis and anisotropy of the local

parameters (generated from pore scale effects).

The hysteresis and anisotropy results were predicted using the local

governing flow equation and a realistic representation of the spatial

variability of a stratified soil in terms of three-dimensional

statistically anisotropic random fields. A possible physical

interpretation of the large-scale hysteresis and anisotropy is given

below. Although highly qualitative, such physical interpretation is

useful since it gives a physical justification and a useful intuitive
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interpretation of the mathematical results of the stochastic theory.

Visualize the soil matrix as being composed of many discrete soil

layers (i.e. silt, clay, sand, gravel, etc.). The hydraulic soil

properties of such a medium vary discretely with depth. This is an

approximation to the continuous variability assumption used by the

stochastic theory. Consider the movement of the soil moisture plume,

generated from a leak from a waste disposal tank (see, e.g. Figures 1.1,

1.2), at times after the leak stops. Assume that the initial soil

moisture content is relatively low (high H) and that the leak rate is

relatively small, so that it does not saturate the soil matrix. Under

the effect of gravity forces the soil moisture plume tends to move

vertically, while under the effect of the capillary forces, depending on

the capillary tension head gradients, the soil moisture tends to diffuse

in all directions. Note that as the plume moves vertically, wetting

conditions (H/at < 0) prevail at the front part of the soil moisture

plume while drying conditions ( H/at > 0) prevail at the top part of the

plume. As will be discussed below such a stratified soil can show a

large-scale hysteresis and anisotropy.

The hysteresis and anisotropy of the effective hydraulic

conductivities is discussed first. Let us examine the movement of the

wetting front of the plume. As the wetting front moves vertically, it

encounters a series of dry coarse soil layers. Water meets a relatively

large resistance in entering these dry coarse soil layers because at

high capillary tensions heads H (dry soils) the unsaturated hydraulic

conductivity of coarse layers is very small (see, Figure 4.16). As a

result, even when significant vertical gravity and capillary forces
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exist, the coarse soil layers inhibit the vertical movement of the

plume. Because of inhibition of the vertical movement, the soil moisture

content in the plume front increases and produces high lateral

gradients. Water then tends to spread laterally in the fine soil layers

since the unsaturated hydraulic conductivity of fine layers is relatively

large even at high H (dry soils), (Figure 4.16). Looking at the overall

mean behavior of the system we may conclude that vertical movement is

generally inhibited while lateral movement is pronounced at the wetting

front of a soil moisture plume. This implies that at the wetting front

(H/at < 0), the vertical effective hydraulic conductivity K11 is

small while the lateral effective hydraulic conductivity K22 is large.

Let us now examine the movement of the drying part of the plume. As

the drying part of the plume moves vertically, the coarse layers it

encounters are not as dry as in the wetting front (at a given mean

capillary tension head), but they are rather wet since the core (i.e. the

wettest part) of the plume was previously there. It is expected that

these layers do not inhibit vertical movement in this case and water

moves with ease vertically through the soil matrix. In addition, since

vertical flow is not inhibited, no concentration of the soil moisture,

producing large lateral gradients, is expected in the drying part of the

plume. Looking at the overall mean behavior of the system, we may conclude

that water moves with ease vertically and there is no reason for

pronounced lateral movement at the drying part of a soil moisture plume.

This suggests that in the drying part of the plume, the vertical

effective hydraulic conductivity is large while the lateral effective
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hydraulic conductivity is relatively small.

The above discussion implies that the effective hydraulic

conductivities of a stratified soil do not only depend on the capillary

tension head but they also depend on the wetting or drying conditions,

i.e. they show hysteresis. In addition the effective hydraulic

conductivity is anisotropic with a degree of anisotropy depending on the

mean flow conditions (wetting or drying). In the case of wetting, the

degree of anisotropy is large while in the case of drying, the degree of

anisotropy is small. This behavior of the hydraulic conductivities of a

stratified soil is in agreement with the stochastic theory results (see,

Figures 4.9, 4.10).

A physical interpretation of the hysteresis of the mean soil

moisture content and the effective specific soil moisture capacity is now

given. It was discussed earlier that the large-scale hysteresis is due

to local soil variability and is not due to pore scale effects. It is

possible however, to explain this large scale hysteresis by analogy to

the ink bottle effect occurring in a pore scale. Figure 4.17 shows an

analogy of the large-scale stratified system to a pore having diameters

of variable size. As water in the wetting front of the soil moisture

plume moves vertically, it encounters difficulty in entering the coarse

soil layers, or, by analogy, the large diameter part of the pore model.

As a result, the soil moisture content at the wetting front of the plume

is relatively small for a given H. In the drying part of the plume

however, as water moves vertically it tends to stay in the finer soil

layers, or, by analogy, in the small diameter parts of the pore model,

and requires additional tension in order to leave these finer soil
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layers. This results in a relatively large soil moisture content at the

drying part of the plume for a given H. The above discussion suggests

that, because of soil property variability, the O(H) curve shows

hysteresis. Such large-scale hysteresis and the direction of the

hysteresis loop are in agreement with the predictions of the stochastic

theory (see Figure 4.15).

The above discussion may provide a physical justification of the

stochastic theory. Another point illustrating the existence of

large-scale hysteresis is now discussed. The hysteresis observed in a

local scale is usually attributed to pore size variations (e.g. ink

bottle effect, etc., see, e.g. Bear, 1972, 1979). These variations are a

form of microscopic scale spatial variability. Since these microscopic

scale variations produce hysteresis of local parameters, it is reasonable

to expect that soil property variations in a larger scale also produce a

large-scale hysteresis. Since spatial variability is the rule rather

than the exception, it is expected that such large-scale hysteresis could

be important. It is also possible that the hysteresis observed in the

laboratory or in the field, or at least a major part of it, is due to

spatial variability of local properties and it is not due to pore scale

effects. If this is the case, the stochastic model provides a physically

and mathematically justified model for predicting hysteresis. This is

important since past models of hysteresis are, to a large degree,

arbitrary.

4.7.2 Discussion of Field Observations of Unsaturated Flow

Section 4.7.1 gave a physical interpretation of the large-scale
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hysteresis and anisotropy. In order to further investigate the validity

of the stochastic theory predictions it is of interest to examine some

pertinent large-scale (field) observations. Unfortunately, only few and

incomplete field scale observations of unsaturated flow exist. It is

thus impossible to quantitatively compare the results of the stochastic

theory to real field observations. It is possible however, to perform

qualitative comparisons. This section discusses a series of field

observations which are qualitatively in agreement with the predictions of

the stochastic theory. A large experiment is proposed in the New Mexico

desert in order to collect data for validation of the stochastic theory

results (see, Waldrop, 1984).

An important result of the stochastic theory is that in stratified

soils the vertical effective hydraulic conductivity is small while the

lateral effective hydraulic conductivity is large in the wetting front.

The degree of anisotropy of the effective hydraulic conductivities

increases as the capillary tension head increases (i.e. the soil dries

out). This result has important implications in waste disposal control

applications since it implies a relatively small vertical movement and a

large lateral spread of contamination. A series of field observations

discussed below are in agreement with this result.

Routson, et al., (1979) investigated the time history of leakage

beneath a radioactive waste storage tank at Hanford, Washington. The

soil formation consists of glaciofluvial deposits with principal units

consisting of pebbly and medium sand. The deposits are bedded, and sharp

boundaries often exist between sediment types. Bedding consists of thin,

nearly horizontal, discontinuous laminations and cross-stratified
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sedimentary units. The climate where the tank is located is arid and the

sediments have a low soil moisture content. In 1973, a leak from a

storage tank was observed. Measurements of unsaturated zone

contamination, using gamma radiation logs in wells around the tank,

indicated significant lateral movement of wastes in the sediment layers,

at least at the initial stages of the leak (between 1973-1974). At later

stages of the leak, flow is so slow that lateral movement cannot be

detected, given that the radioactive decay of tracers is relatively rapid

(106 Ru has a half life of approximately one year). Plotted isopleths

of 106 Ru (the main radioactive component of the waste liquid) also

show lateral movement. Lateral spread is much larger than the diameter

of the tank, while vertical movement is restricted to on the order of ten

meters (see Figure 12). The report assumed that the lateral spread is

due to unsaturated flow and sediment layering but no physical explanation

that leads to such phenomenon was given. Lateral movement is probably

due to the relatively high tensions occurring in such dry soil

materials. Horizontal stratification enhances such movement, since at

high tension hydraulic conductivities of fine textured materials are

relatively high and water may prefer to spread laterally in fine beds

than to move vertically through coarser ones. These observations are in

accordance with the result of the stochastic theory that in dry soils

(large H) the lateral hydraulic conductivity is much larger than the

vertical effective hydraulic conductivity.

The papers of Crosby et al., (1968, 1971) discussed observations of

soil moisture and pollutants below a septic tank drain field area in the

Spokane Valley in Washington. The sediments below the drain field
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consist of glacial outwash deposits and are probably highly stratified.

The environment is also arid. Moisture data in the unsaturated zone

below the drain field indicated unexpectedly high tension conditions

below a depth of 7-10 m. Under such high tensions, gravitational

movement of water cannot be expected. Since water is continuously added

in the drain field the law of conservation of mass requires an accounting

for the lost moisture. The authors assumed that water must be moving

laterally away from the drain field and be removed to the atmosphere by

evapotranspiration. If the assumption about lateral flow is correct,

these field observations also suggest a large lateral effective hydraulic

conductivity compared to the vertical, at high moisture tensions.

Price et al., (1979) reported on the movement of wastes in the

unsaturated zone below a waste disposal crib at Hanford, Washington. The

sedimentary units below the crib are stratified and consist of layers of

medium to very fine sand, pebbly very coarse to medium sand and sandy

silt. The crib is located in an arid environment and the initial soil

moisture of the sediments is relatively low. Sediment samples were

analyzed for radioactivity and isopleths of Pu and Am were plotted.

These data show a lateral movement of wastes in the unsaturated zone

below the crib extending to a width of 10m, encompassing the crib

perimeter. The waste liquid was more prone to spread laterally in the

medium to very fine sand unit than to move deeper into the pebbly very

coarse to medium sand unit. This observation also shows that at

relatively dry stratified soils a high lateral and small vertical

hydraulic conductivity is to be expected.

Knoll and Nelson (1962), described soil moisture movement beneath a
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six inch square crib. The soil of the study area consisted of a

relatively homogeneous fine sand, except for some thin irregularly placed

lenses of a material of slightly different porosity. The soil matrix was

initially relatively dry. Water application was controlled so that

ponding was always maintained in the crib. The lateral spread of soil

moisture was quite significant and was more pronounced at the 2m depth.

The authors suggested that this is probably due to the existence of a

lens of a slightly more permeable material at this depth. This

experiment indicated that for initially relatively dry soil and small

size of application area, relative to the observed depth of the

unsaturated zone, dry soil conditions below the soil surface enhance the

lateral spread of soil moisture. This indicates a large lateral

effective hydraulic conductivity at high moisture tensions.

Prill (1977), discussed moisture movement in the unsaturated zone

below four artificial groundwater recharge ponds. The alluvial deposits

below the ponds consisted of layers of sand and gravel interbedded with

clay, silty clay and loam layers. The ponds are circular with 15 m

diameters. Before the start of ponding, the soil moisture content in the

sediments below the pond was relatively high (with a 70 percent degree of

saturation). Measurements of soil moisture content beneath and around

the pond (to a depth of 10 m) indicated vertical movement of the moisture

front but no significant lateral spread. Wetting front patterns

suggested that a major part of the applied water (estimated to be around

90 percent) moved downward beneath the pond. Lateral movement was very

slow and was restricted to a short distance even in the finer texture

layers. This is probably due to the fact that at high soil moisture
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contents, gravitational forces may be more important than capillarity

forces. This experiment suggests that when the initial soil moisture is

high, the water application rate is rapid and the application area is

large, relative to the depth of observed unsaturated zone the soil

moisture content below the application surface can be large and lateral

spread may not be important even in stratified soils. This observation

is in agreement with the stochastic theory since for increasing soil

moisture content the effective hydraulic conductivity anisotropy ratio is

expected to decrease.

The observations by Trautwein and Daniel (1983) are particularly

interesting since they sample a very large unsaturated flow system which

extends to a depth of 120m below the ground surface. The leakage of

waste water in the unsaturated zone beneath a waste disposal evaporation

pond was studied. The soil formation consists of alternating layers of

sand and clay. Borings in the vicinity of the pond revealed that 20

years after pond construction pond water moved to a depth of 94 m. The

authors attempted to model unsaturated flow beneath the pond using a

one-dimensional finite element unsaturated flow mode. Functional

relationships were assumed for soil moisture characteristic curves and

hydraulic conductivity curves at each soil layer, depending on the soil

type. These relationships were adjusted so that the results of the model

would fit the mean soil moisture data well. Comparing the adjusted model

values of saturated hydraulic conductivity Ks to measured laboratory

values shows a large discrepancy. Field values are one or two orders of

magnitude larger than laboratory values. This suggests that seepage from

the pond occurred at a much faster rate than would have been predicted
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using the laboratory measurements of Ks. Using the laboratory

measurements, the model would have predicted that the contaminant front

would have moved only a few feet in 20 years, while in actuality the

front moved approximately 100m. The large differences between laboratory

and field values of Ks are probably due to macroscopic features and

natural soil heterogeneity not accounted for in laboratory experiments.

The authors have based their one-dimensional flow assumption on the

fact that the dimensions of the pond (500 m x 100 m) are much greater

than the thickness of the unsaturated zone (approximately 100 m).

However, field investigations of the site (Kent, et al., 1982), show an

extremely large lateral spread of water in the unsaturated zone. The

contamination plume extends laterally to a distance of about 2000 m

around the pond! Some of the lateral spreading at this site may be due

to the formation of saturated perched water zones above the water table.

Obviously, the one-dimensional assumption does not seem justified. A

three-dimensional model is required for a more realistic treatment of the

flow in the unsaturated zone of this setting.

In order to complete this discussion some pertinent laboratory

experiments are reviewed. Crosby et al. (1968), reported a series of

laboratory experiments performed in order to investigate the conditions

for lateral movement in stratified soils. Fine, medium and coarse sands

were bedded in a sand box model. Water was added to a square inch

surface area. Under high water application rates, water essentially

moved as saturated masses or ribbons to the bottom of the model. This is

in accordance with the observations of Prill et al., (1977), discussed

above. Under low water application rates however, capillary dispersion
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of water in the finest layers was able to keep in pace with water

additions before the lateral boundaries of the laboratory model affected

the flow. These observations are also in accordance with the stochastic

result of an increasing effective hydraulic conductivity ratio with

increasing soil moisture tension H.

Palmquist, et al. (1962), described a laboratory experiment which

contains some pertinent observations. A tank model was filled with glass

beads forming a porous matrix. Water was applied through a small crib at

the upper surface of the porous matrix. A first model consisted of

initially dry glass beads of 0.47 mm diameter (corresponding to medium

sand size). After water application started the wetted area was confined

to a relatively narrow vertical column. A second model consisted of

three layers of 0.036 mm diameter glass beads (silt size) separated by

two layers of 0.47 mm beads. After water application started, water in

the small diameter bead layer initially moved away from the crib at

nearby equal vertical and horizontal velocities, until it reached the top

of the higher diameter bead layer. Water then tended to move laterally

in the fine bead layer instead of moving into the coarser layer. After

pressure built up, water eventually moved in the coarser layer. These

observations show that soil stratification enhances lateral flow.

The field observations discussed above are in agreement with the

predictions of the stochastic theory for anisotropic effective hydraulic

conductivities in the case of wetting, with a degree of anisotropy

increasing as the mean capillary tension head increases (i.e. soil dries

out). These field observations correspond to relatively short times of

observations and the movement of the drying part of the soil moisture
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plume is not observed. It is thus impossible to compare the hysteresis

predicted by the stochastic theory to these field observations.

Comparison of the hysteresis predicted by the stochastic theory to the

hysteresis observed in small field scale and laboratory experiments (see,

e.g. Bear, 1979), shows that the hysteresis loops for the vertical

hydraulic conductivity and the mean soil moisture content have the same

direction as observed ones. Note that hysteresis in such experiments is

usually attributed to pore scale effects. Since spatial variability is

the rule rather than the exception it is possible that the observed

hysteresis, or at least part of it, is due to spatial variability (e.g.

sand stratification).

The fact that the hysteresis loops predicted from the stochastic

theory are similar to observed ones, strengthens the validity of the

stochastic theory and it may suggest that hysteresis observed in

experiments may, at least partly, be due to spatial variability and not

due to pore scale effects which it is now attributed to (see, e.g. Bear,

1972, 1979).

It was suggested in Section 4.6 that flow in the case of a

relatively wet soil can be very rapid and it may not be possible to

describe it by a diffusion type equation. Some field observations

seem to indicate such behavior. Starr, et al. (1972) provided

experimental evidence for the existence of fast flow moving in discrete

fingers in a coarse layer of a stratified soil. The soil consisted of a

60 cm layer of sandy loam over a layer of coarse sand. Two exp-eriments

were performed. In the first experiment, a steel cylinder 1.8 m in

diameter was driven into the soil to a depth of 3.6 m. A depth of 45 cm
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of water containing a green dye was infiltrated into the column. After

infiltration ended, successive layers of soil were removed from the

cylinder and the dye pattern of each newly exposed surface was

photographed. In layers near the soil surface a general green hue was

observed. Over the cross-sectional areas below 1 m, 12 discrete fingers

of flow were observed. The fingers ranged from 5 to 20 cm in diameter

and occupied only 5 percent of the total cross-sectional area of the

cylinder. These observations suggest that in the case of ponding in this

layered, fine over coarse soil, water moves in discrete three-dimensional

fingers in the coarse subsoil, rather than as a one-dimensional front.

The locations of such fingers may be controlled by natural

heterogeneities of the soil, i.e., they may tend to occur in the coarser

regions which offer less resistance to flow under wet conditions. Simple

calculations show that the flow in such fingers is very rapid. In a

second experiment the solute movement under four 4.6 by 6.1 m ponded

plots adjacent to the first experiment, was studied. It was observed

that several salt pulses reached depths of 120 cm and 180 cm very soon

after they had reached the 60 cm depth. Such rapid movement may be due

to fast flow in the coarse layer in discrete fingers of flow similar to

the ones observed in the first experiment. The paper concludes

that water moving through layered field soils may move rapidly in fingers

of rapid flow through coarse subsoils. The assumption of a

one-dimensional front type flow under these field conditions may lead to

gross errors if it is used to estimate the time the solutes arrive at the

water table. A similar type of flow moving in discrete fingers in coarse

layers of stratified soils were observed in the laboratory experiments
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discussed in Palmquist, et al. (1982).

Quisenberry and Phillips (1976) studied percolation of rapidly

surface-applied water in field soils with strong structure. Several 2.13

by 2.13 m plots were established in two types of soil, Maury silty loam

and Huntington silty clay loam. The experiments show that water movement

through the profile is characterized by an initial rapid movement of

water into the soil and subsequent movement to a depth depending, to a

large extent, on the initial water content. The relative increase of

water content throughout the profile corresponds very well with the

increase in chloride concentration. This suggests that water moved

through the profile without displacing much of the initial water. It was

assumed that water moved primarily in soil structures called macropores.

The amount of displacement that occurs depends on the rate of water

movement on the macropores as compared to the soil matrix.

Johnston, et al. (1983) reported preferential flow in pipe-like

channels associated with root channels, in lateritic profiles in Western

Australia. A 4.4 m by 2.3 m plot was established, and a tracer solution

containing Rhodamine and NaCl replaced natural rainfall in the plot. The

soil profile underlying the plot consisted of a humus-rich sandy topsoil

grading into sandy gravels that, in turn, overlay a weathering profile,

developed on both granite and doleritic parent rocks, granitic on the

west and doleritic on the east side of the plot. Granite saprolite was

coarser grained than the dolerite, and included deep descending roots.

Bright Rhodamine WT staining was found around the root channels of the

granite saprolite, indicating preferential flow of water in these

channels. The tracer solution also moved deeper in the coarser grained
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granite saprolite, but lateral dispersion was more pronounced in the

finer grained dolerite. The lack of evidence of vertical flow in the

dolerite is most likely associated with its finer texture. Large

continuous voids observed in the dolerite saprolite probably do not

conduct water, since these voids would only transmit water if their

uppermost extension intersects a saturated layer. The paper concluded

that the physical and hydraulic properties of both the clay rich matrix

and the more permeable inclusions, the areal frequency of preferential

flow paths and their connection with an overlying source of free water,

are of paramount importance to their role as structures bypassing the

relatively impermeable unsaturated clays.

Thomas and Phillips (1979) also discussed the significance of water

movement in macropores. They concluded that water movement in macropores

is influenced by the rate of water addition, soil structure, relative

sizes of pores, clay orientation, soil water content and tillage. They

further discussed the most important consequences of water movement in

such macropores. They suggested that recharge of groundwater can begin

long before soil reaches field capacity. Also some of the salts in the

surface of a soil will be moved to a much greater depth by rain or

irrigation, and because of this it is not likely that water will carry a

surge of contaminants to groundwater at some time predictable by Darcian

flow theory.

Buma (1981) and Beven and German (1982) provided further discussion

and evidence of the significance of macropores in vadose zone flow and

transport. These papers suggest that rapid flow through macropores

depends on moisture content and rate of water application. Large
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continuous voids will be filled and conduct water only at suctions close

to zero (i.e., near saturation). In low moisture conditions these voids

are empty and do not contribute to water flow.

The above papers show that when soil is well structured, (i.e.,

large aa 2) and relatively wet, fast gravity flow may be significant.

As was discussed in Section 4.6, flow in these cases is probably not

characterized by diffusion type laws and it may be impossible to model it

using a mean equation of the form of 3.18.

4.7.3 Implications of the Stochastic Theory Results on Waste Disposal

Applications

Harmful wastes are presently disposed in facilities near the surface

of dry stratified soil formations (see, e.g., Figures 1.1, 1.2). The

possibility of leakage from such facilities cannot be overlooked since a

high risk to the environment is involved. For a risk assessment

evaluation, it is necessary to be able to predict the movement of a

contaminant plume if such a leak occurs. Sections 4.7.1 and 4.7.2

discussed the general movement of a soil moisture plume, produced by a

leak from a waste disposal tank, as would have been predicted by the

stochastic theory developed in this section. Such movement is now

compared to the movement that would have been predicted by a classical

deterministic model that uses a simple average of local properties as

effective parameters.

Consider for example, the waste disposal tank of Figure 4.18. It is

assumed that the stratified soil matrix below the tank is initially

dry. It is also assumed that the leak rate is relatively small so it
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does not saturate the soil matrix, and that the rainfall rate is

insignificant. The leak generates a soil moisture plume that moves

vertically and laterally under the influence of gravity and capillary

forces.

At the initial stages of the leak the soil moisture content, in the

soil matrix, increases, particularly at the front part of the plume.

This implies wetting conditions and a negative H/3t. Under wetting

conditions the stochastic theory predicts a small vertical and a large

lateral effective hydraulic conductivity, particularly at a large H (dry

soils). It is expected that the vertical movement of the soil moisture

plume is relatively small and that the plume spreads laterally at

considerable distances. A traditional deterministic model, using as

effective hydraulic conductivities an average of the local properties, on

the other hand, would have predicted a significant vertical movement

(under gravity forces) and a relatively small lateral movement. This

situation is depicted in Figure 4.18. This figure shows the shape of the

central part (core) of the plume at times t1 , t2 (t1 < t2 ) as

predicted by the stochastic theory and as predicted by a simple

deterministic model.

Let us now examine the movement of the plume at times after the leak

stops. Assume that the soil moisture front has not yet arrived at the

water table by the time the leak stops. Under the influence of

gravitational forces the soil moisture plume tends to continue moving

vertically. At locations at the front part of the plume, soil moisture

content tends to increase with time, as the core moves vertically. This

suggests wetting conditions (3H/at < 0) at the front. At locations at
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Figure 4.18 Schematic graph showing the movement of a moisture plume
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have been predicted by the stochastic theory developed in
this chapter and a classical deterministic theory. The
curves correspond to equal soil moisture levels near the
core part of the plume and time t2 is larger than t1 .
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the top part of the plume however, soil moisture content is expected to

decrease with time as the core moves vertically. This suggests drying

conditions (Jt > 0). At the central part of the plume, soil moisture

content remains relatively constant which implies steady-state

conditions. Since wetting conditions prevail at the front part of the

plume, it is expected, based on the results of the stochastic theory,

that vertical movement of this front is still slow and the plume

continues to spread laterally. In the, drying part of the plume however,

vertical hydraulic conductivities are large. It is thus expected that

the top part of the plume (particularly the one near the core where

capillary diffusion towards the soil surface is relatively small) moves

faster than the wetting part. This situation is depicted in Figure

4.19. This figure shows the movement of the central part (core) of the

plume at times t3, t4 (t3 < t4) after the leak has stopped, as

would have been predicted by the stochastic theory and by a classical

model.

Note that the vertical flow gradient is smaller in the drying part

of the plume than it is in the wetting part of the plume. This is

because the capillary tension forces oppose gravity forces. Because of

the capillary forces, acting in an opposite direction to the direction of

flow, part of the soil moisture in the drying part of the plume does not

move with the core of the plume but lags behind. This situation is

depicted in Figure 4.20. This results in a gradient of Jt being

absolutely larger in the wetting front than it is in the drying front

(see also discussion in Section 4.5.3).

The general movement of a soil moisture plume described above, based
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core part of the plume and time t3 > t2 -

o 9

Waste Disposal Tank

t 2



Waste Disposal Tank

Figure 4.20 Schematic graph showing equal soil moisture levels of the
soil moisture plume after the leak stops as would have been
predicted by the stochastic theory.
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on the results of the stochastic theory, seems plausible based on

physical and intuitive arguments (see, Section 4.7.2). We may conclude

that a contamination leak in such arid stratified sediments spreads

laterally while vertical movement is relatively slow. As a result,

contamination may arrive at the water table much later than what would

have been predicted by a classical one-dimensional model and areally

extensive contamination may occur. Since evaporation rates in arid

climates can be high, it is possible that the contaminated water is

removed to the atmosphere by evaporation before reaching the water

table. The field data discussed in Section 4.7.2 (e.g., Corsby et al.,

1969) suggest such a possibility.

4.8 Summary and Conclusion

This chapter derived effective parameters of large-scale transient

unsaturated flow in stratified soils and evaluated the variance of the

large-scale model predictions. Such models are required for modeling the

unsaturated flow in waste disposal and other applications in the fields

of hydrology, agriculture, etc.

The theory of the chapter is developed by six sections. Section 4.2

derived a simplified expression relating the capillary tension head

fluctuations to the soil property fluctuations, using the disparity of

the correlation scales in stratified soils. Sections 4.3, 4.4 and 4.5

derived closed form expressions for the effective parameters and the

variance. Several simplified asymptotic expressions were also derived

which are valid at particular ranges of the soil property and the mean

flow characteristics. These expressions are useful since they explicitly
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illustrate the dependence of the effective parameters and the variance on

the different soil properties and the mean flow characteristics.

Sections 4.3, 4.4 and 4.5 also give several examples for the dependence

of the effective parameters and the variance on the mean capillary

tension head and its time derivative for two types of soil: the Panoche

silty clay loam and the Maddock sandy loam soil. The main findings of

Sections 4.3, 4.4 and 4.5 are

(i) the effective hydraulic conductivity, the mean soil moisture

content and the effective specific soil moisture capacity show

significant hysteresis. The hysteresis loops of the vertical and

the lateral hydraulic conductivities have opposite directions

The vertical hydraulic conductivity is smaller for

wetting than it is for drying conditions. Howeverthe lateral

hydraulic conductivity, is larger for wetting than it is for drying

conditions. The mean soil moisture content is smaller for wetting

than it is for drying conditions.

(ii) The effective hydraulic conductivity is anisotropic with a degree of

anisotropy depending on the mean capillary tension head and the mean

flow conditions. In the case of wetting the degree of anisotropy is

large and increases as the mean capillary tension head increases.

In the case of drying however, the degree of anisotropy is

relatively small (i.e. soil dries out isotropically).

Note that the local parameters used in the stochastic theory are assumed

to be nonhysteretic and isotropic. This implies that the predicted

hysteresis and anisotropy are due to spatial variability of the local

soil properties and they are not due to pore scale effects.
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Section 4.6 evaluated the errors due to neglecting term 3h/3t in

Section 4.2. It was found that in the transient flow case, term 3h/3t is

small when the soil is relatively dry. In the case of a wet soil

however, this term cannot be ignored. Since hazardous wastes are usually

disposed in relatively dry soils we may infer that the stochastic theory,

based on the assumption that 3h/ t is small, is appropriate in these

cases. However, in the cases of a relatively wet soil it may be

impossible to model the mean flow by a diffusion type mean flow model.

Flow in such cases can be very rapid and highly unpredictable (especially

in the coarser layers) and may not be governed by a gradient transport

relationship. Several field observations suggest such a possibility.

Section 4.7 gave a possible physical interpretation of the

large-scale hysteresis and anisotropy, examined a series of field

observations showing agreement with the results of the stochastic theory,

and discussed the implication of these results on waste disposal control

applications. This section showed that the large-scale hysteresis and

anisotropy, predicted by the stochastic theory, are physically and

intuitively plausible and are in agreement with field observations.

Hysteresis is usually attributed to microscopic pore scale

variability (i.e. ink bottle effect, etc.). This chapter has shown that

soil property variability also produces hysteresis of the large-scale

parameters. The hysteresis loops for the vertical hydraulic conductivity

and the soil moisture content observed in experiments, have the same

direction as the hysteresis loops predicted from the stochastic theory.

The fact that large-scale hysteresis is physically and intuitively

plausible might suggest that the hysteresis observed in experiments is at
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least partly due to soil variability and not due to pore scale effects.

This effect could be anticipated since spatial variability exists even in

small scale experiments. If the above implication is true, the

stochastic theory provides a mathematically and physically justified

model for predicting hysteresis. This is important since models of

hysteresis are, to a large degree, arbitrary.

The results of the stochastic theory have important implications on

waste disposal control. For example, the stochastic theory predicts that

in dry soils a contamination plume tends to spread laterally while

vertical movement is slow. As a result, contamination may arrive at the

water table much later than is predicted by classical one-dimensional

models, and areally extensive contamination could occur.

The large-scale hysteresis and anisotropy results of this chapter

are new and were previously unknown in the field. They have important

practical implications and they should be considered in the numerical

modeling of large-scale unsaturated flow systems.
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CHAPTER 5

MACRODISPERSION IN UNSATURATED SOILS

5.1 Introduction

This chapter evaluates effective macrodispersivities in unsaturated

soils in the steady state case, using the general theory developed in

Chapter 3 and certain simplifications that allow analytical evaluation of

the corresponding three-dimensional integrals. Section 5.2 derives some

relatively simple expressions for the macrodispersivities in terms of the

local dispersivities, the soil property and the mean flow characteris-

tics. The cases of a statistically isotropic or statistically anisotrop-

ic soil are examined. Section 5.3 applies the results of the stochastic

theory for evaluation of the macrodispersivities corresponding to the

Panoche clay loam and the Maddock sandy loam soils, and discusses the

implications of the results. Several field observations are also

analyzed and are compared to the predictions of the stochastic theory.
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5.2 Evaluation of Macrodispersivities

This section evaluates the macrodispersivities Aij in three cases

of interest. Section 5.2.1 examines macrodispersion in the case of one

dimensional steady vertical infiltration in a statistically isotropic

soil, Section 5.2.2 examines macrodispersion in a horizontally stratified

soil when the mean flow is perpendicular to stratification while Section

5.2.3 discusses the more general case when a lateral flow gradient

exists. These sections provide generic analytical expressions for the

macrodispersivities Aij. Analytical evaluation was possible using the

fact that the local longitudinal and transverse dispersivities aL and

aT are relatively small compared to the correlation lengths of the soil

properties. The disparity of the correlation scales is also used in the

analysis of a stratified soil (Section 5.2.2) to simplify the

evaluations.

5.2.1 Statistically Isotropic Soil

This section evaluates the macrodispersivities Aij in the case of

a statistically isotropic soil formation, i.e. X,1=X 2=X 3=X, using

the general theory developed in Chapter 3. Note that the expression for

Aij in (3.92) was derived assuming that the coordinate axis

xi is oriented towards the direction of the mean flow vector q. The

mean flow equation (3.17) predicts the components Ji', J 2 ', J3' of

the head gradient I in a spatially fixed set of axes xl', x2',

x3 '- In order to evaluate Aij and be able to use the mean transport

model (3.71), the magnitude and direction of +q must be determined as a

function of J1', J2', J3'. In the case of a one-dimensional steady
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vertical infiltration, ,H/3xj is relatively small. The assumption

9H/Dxj ~ 0 implies small lateral mean gradients. In a statistically

isotropic formation, it is expected that under small lateral gradients,

lateral flow is relatively small. (This is not true for a statistically

anisotropic soil; see Section 5.2.3.) This implies that vector q is

oriented in the vertical direction, i.e. axis xj is oriented towards

the vertical direction and that J1 is approximately equal to the

magnitude of J which is known.

For DH/9xj small it holds Lj - Jj and Jj 9H/xj = 0.

Equations (3.87), (3.88) and (3.89) then simplify to

dZ =K
qi m

J k2 - k ki)

k + jAL 1k1
(dZf -H dZa)

Using the spectral representation property (3.51), the cross-spectral

density function Sqjq, is given by

S 1 E dZ dZ J =qjqi =qj qjq

K2  (6 ki - k k1 )(6j k2 - kjkl)

SKm 4 2 2 2k + AL k

2
S Sft~k)

where an exponential cross-covariance function for f and a, with

identical correlation length, is assumed. Parameter 2 is given by

(see discussion in Section 4.3),
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(i) f, a uncorrelated

a2 = 1 + 2H2  (5.3a)

(ii) f, a perfectly correlated

2 = (1- H) 2  (5.3b)

where C2 = ca 2/Of2 . Substituting (5.2) into (3.92) gives

K m 21 22 O ( 2-k k ) (6 k2-k k 1)
Aij = - f 4  2 2 2

q -CO k + A L k

f-jkI + Lk 2 + aT(k 22+k 32 (5.4)

-+ + 2 2 Sff(k) d
k + [+Lk 2 + aT(k2 +k3  dk

The product in the numerator of the first term is expanded to

Sil~jlk4 - 6ilk 2kjkl - 6jlk 2kikl + kikjki 2.

Since Sff is an even function of k, the terms multiplying jkl, in

(5.4) are odd in k1 , k 2 or k3 and produce a zero contribution to

the integral. Note also that for i*j term 6i1 6jlk 4 = 0, while

terms 6ilk2kjki, 6jik2kiki and kikjkl 2 are

either zero or odd in kl, k 2 or k3. This implies that Aij = 0

for i~j, i.e. in the isotropic case one of the principal axes of the

macrodispersivity tensor is oriented in the direction of the mean flow.

The longitudinal macrodispersivity Al1 is given by

F2 2 2 2 2 2
A 00 (k2 +k3 ) aLk 2 T(k 2 +k32)A = -y 4 2 2 2 2  2  2 2 2  Sff(k) dk (5.5)

--co k +A Liki k 1 + [a Lk I +a T(k2 +k 3
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where parameter Y 2 is given by

22 q2

Km 1

and is evaluated later. Using the transformation ui=xki this

equation gives

A =2 2
y X -C

2 2 2
(u2 +u3 )

u +A 2L 2X 2u12
u 12 W22 2+ 2)1

1 2 1 (W2 +3 1

* S ff(u1 , u2, u3) du du2 du3 (5.7)

where e = aL/X and v = aT/aL. An exact analytical evaluation

of this integral does not seem possible. However, it is possible

to obtain an approximate solution using the fact that e << 1 (see the

discussion in Gelhar and Axness, 1983). Note that for u12 # 0 the

integrand in (5.7) is proportional to e and for 6 << 1 it has a

negligible contribution. The main contribution to the integral comes

from ui t 0. Letting ul = ev, (5.7) is then written as

1A1 = -- 72

C (u2 2+u 3 2) 2 2v2+ (u22+u32)

f [f 2 v+u2 +u322 +AL 2aL ] {v + [2v ,+ (u2 +u3 2

- Sff (Ev, u2, u3 ) dv du 2 du3 (5.8)
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Taking the limit for c + 0 produces

1 0 (u22+ U32) 2
A =1 (u2 22 2 2 2 2

Y X 00 (u~ + u ) + A L 1a V

- W 2 + U3 2 Sff(0,u2 ,u3 ) dv du2 du3
v + 1(u22+ u3C23

Substituting for Sff corresponding to an exponential covariance

function gives

2

1-2

v2 +((u 2 + 2 2

2 2 3u2 + U3)

U3 2) + A2L1 2 aL22

(+u 2 1+ 2 )2 dv du 2du .
(1+u2 + 32)23

This integral is evaluated in Appendix G. The longitudinal

macrodispersivity All is given by

2

f 1A = 2 1 + AL aT

(5.10)

(5.11)

Note that for Aa T -+ 0 this equation is of the same form as Equation

(33) of Gelhar and Axness (1983). In this case All is proportional to

X, i.e. it is connectively controlled.

The longitudinal macrodispersivity A22 is given by
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A k 1r kk2
A22 k4 +AL 2k 2

Y COL1

a k 2 + k2 +k2
. 2L 1 + T 2  3  S (k) dk)
k + [aLk 2 + aT(k 2 2+ k 3

and using uj = Xki, F- = aL/ and i = aT/aL gives

2 2
aL 00 u1 u 2

A22 2 3 f 4 2 2 222 X .0 u + AL 1X u

u 1
2 + 1(u 2 + u 3

2)

1 2 [u1 + PW2 2+ u 3
S 

Sf(u lu2,U3)

du1 du2 du 3

Taking the limit for E + 0, and substituting for Sff gives

a 2

A _y f aL
2 2  ~ f2 Lir y

f f
-CO

u 2[u1 2+ 1 (U2  + U 2

2 2 2
1  2 3

u + A2L 1 >12 

1 du 1du 2du 3 .
(1+u27

This integral is analytically evaluated in Appendix H.

transverse macrodispersivity A 22 is given by

2

A af aL aT)
22 - T (g1+ g2 ac~L

where gi,

The resulting

(5.15)

92 are functions of ALiX and they are given by
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2 3 2
g1 (x) =1 - - + + ( ln(1+x)

x X x X X X

(5.16)
5 12 6 12 12 16 4

2 = - -- + -- + - +) ln(1+x)
x x x x x x x

where x = ALiX. Functions gj and g2 are plotted in Figure 5.1.

Note that for x + 0, g1, g2 tend to gj = 1/15, 92 = 4/15. In

this case (5.15) is of the same form as equation (36) of Gelhar and

Axness (1983). Note that A 22 depends on the local dispersivities aL,

aT but it is independent of the correlation length X. We conclude that

the transverse macrodispersivity in this case is not convection

controlled but it is controlled by local dispersion.

In order to be able to evaluate Aii, parameter y 2 , given by

(5.6), must be determined. Using (3.13), (5.6) gives

Y = (5.17)
m

where K11 the effective vertical hydraulic conductivity given by (3.14)

and (3.15). Using Equation (3.5.13) of Yeh (1982) and taking into

account variability of the pore side distribution parameter a, gives

K 11= Km[1+g af 2 2  (5.18)

where

g(x) = ln(1+x) _ 1 + 3 _ 1 41n(1+x) + 1 (5.19)
9 2(1+x) 2)(1+x)
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and x = AL1X1 . Function g(x) is plotted in Figure 5.2. Note that

for x = AL 1X 1 + 0, g + 1/6. It is possible to use the exponential

modification of the effective hydraulic conductivity discussed in Chapter

4. This modification is physically justified in the stratified soil

case. We preferred not to use this generalization in the isotropic case,

since no physical justification for using such generalization in the

isotropic case exists. Substituting (5.18) Equation (5.17) gives

y = gaf (5.20)

where a is given by (5.3) or (5.4). Using (5.10), (5.15) and (5.20) it

is now possible to evaluate the macrodispersivities Aii. Section 5.3

gives examples for the dependence of Aii on H and q for the Panoche

clay loam and the Maddock sandy loam soils.

5.2.2 Statistically Anisotropic Soil with the Mean Flow Perpendicular to

Stratification

This section evaluates the macrodispersivities Aii in the case of

a stratified soil and mean flow perpendicular to stratification. The

case of horizontal stratification with isotropy in the plane of

stratification, zero lateral mean hydraulic gradients and unity vertical

gradient are examined. This case corresponds to steady vertical mean

infiltration where gravity forces dominate. Since a lateral gradient does

not exist the mean specific discharge q is oriented in the downward

vertical direction x1, and the anal $ of Figure 3.1 is zero (see
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Section 3.3.3).

Similarly to Section 5.2, the macrodispersivity Aii, in the case

of 3H/3xj= 0, is given by (5.4). For axes xi, x2, x3 being

oriented in the principal directions of statistical anisotropy, the

spectral density function S(k) in (5.4) is even with respect to kl,

k2, k3. Following the discussion in Section 5.2, (5.4) gives Aij =

0 for i # j, while All, A 22 are given by (5.5), (5.11), and Y2 is

defined by (5.6). Using the transformation ui = Xlk1 , u2 =

Xk 2 , u 3 = Xk 3 , where Xj and X are the correlation lengths in

directions perpendicular and parallel to stratification, (5.5) and (5.10)

give 2 2 2 2
f 4 00 (u 2 + u 3)

A = - 6 X f 2 + 2 2 2 3 2222

r y [uI+ 6 (u 2 +u 3  + A L1 X u 1

u1 +2  (u2  u + U3 2 ) 2du du2du (5.21)

u + E 2[u 2+ ' 2(u2 + u2
2)] (1 + u )

and

2 2 2
f 2 u u

22 T7 aL ff + 62 2~ 2]2 2 22 2
IA r ~u + 62( 2 + u 3 )+ A L Xu 1

2 2( 2 2)

2 1 2 3 1 du du du (5.22)
u+s u 1 + 116 (u2 2+ u3 )] (1 + u7) 1 2 3

where 6 = Xl/X, 6 = aL/Xl, P = aT/aL-
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It is generally impossible to analytically evaluate the integrals in

(5.21), (5.22). Using the fact that E << 1, these integrals are further

simplified, and it is possible to evaluate analytically. Two cases are

examined: (i) 6 >> e z 0 (mild stratification) and (ii) 6 % 0 (strong

stratification).

Let 6 >> F. This implies that the anisotropy ratio 6 = Xj/X

cannot be assumed to be zero. Integrals (5.21),

be evaluated similarly

Let ul = ev.

a2
A = -

11  - 27r y

(5.22) in this case

to the isotropic case using the fact that e

Equation (5.21) then gives

6411 ff-Cc

Cu 2 + U 2) 2
2 3

[ e2 V2 + +- 2u u3
2] 2 + A2L 12aL 2v2

e2v2 + I2 2 + U32)

V2 + [e 2v2+ P6 2 (u2 2+ u3 2)]

1

(1+ 2+ U 2+ U 3c):

Taking the limit for E + 0 gives

2

A = 6
1 7 T 111

1
v2 + P2 4 (u2+u 2)2

v+~i5 C 2 u3

( u 22+ U32 3

U2 + u3 ) + AL1 Lv

1

Cl+ u 22+ 327
dvdu

2du 3

This integral is evaluated in Appendix I.

gives

Substituting from Appendix I

f X1  1
A = 1 + ALIaT
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This equation is similar to (5.10), which corresponds to a statistically

isotropic soil. Note however, that y2 in (5.25) is different than -y2

in (5.10). The longitudinal macrodispersivity Al1 is convection

controlled in this case as well. The transverse macrodispersivity for 6

>> 0 is evaluated as follows. Taking the limit for e + 0, (5.22)

simplifies to

2
A f 2

22 =
Ty

+u 2 )2

00

a L f

du du 2du3

u22 [u 2+ P6 2 (u2 +

[u 2+ 62(u2 2+ u3 2)]2 + A L 1 u

(5.26)

Substituting aL

to the integral

= Xl., and

comes from

given that E << 1, the

U12 s 0. Substituting

main contribution

ul = ev gives

2

A2 2 2 2
2 C 

2 fff
6 --CO

u22[2v2+ 2(u 22+ u32]

2v2+ 62(2 2 + u3 )1 + A2L 2xE v2

(1 + e v + U2 +

or

(5.27)
2 7 dv du 2du3

u3)

2 0 u2
2[ 2v 2 C+ P 2( 22+ u32

f1 f 22 +u 2 +u2 ) 2  2 12 12242r.* [ v + (24+ u32)2]2+ A2L 1 2 s -6 4v

C + 1 2
2 2 dv du 2 du 3
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where S = e/s. Taking the limit of (5.28) for e + 0 gives

2 2 2

2 2f 2 2 U 2 (u2 + U 3
22 77~Y~2 r 2,2 + (u2 u2 )3

S2+3 dvdu2du3
(1 + U 22+ U 3

2)2

The integral in (5.29)

Appendix J gives

is evaluated in Appendix J. Substituting from

2

22 8 ~2

The transverse macrodispersivity in this c

controlled but it is determined by local d

The macrodispersivities Aij are now e

small, (i.e. perfectly stratified soil).

macrodispersivity All is evaluated first.

second term of the integrand in (5.21) for

denominator of this term for p 2 + 0, gives

2

A1 2A11 -~7

ase is not convectively

ispersion.

valuated for 6 being ve

The longitudinal

Taking the limit of th

62 + 0, and the limit

2 2 2
4 0 (u2 + u3
6 F- f [ + 62 2 + 3 ) + 2 2 2 2= [ u12+ C u 2 +u 3) +Aj X 1

-2 2 du du2 du3(1 + u )

209

(5.29)

6 aT
(5.30)
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e

of the
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given that E 2 and 62 - 0 the main contribution to this integral comes

from u12  0. Substituting u1 = Ev gives

2 2 2 2
A00a (u2 + u3

A11 2 2-~ LffJ a22 2 212 A2L 2 2222
A T -Y v [ 2 + (u2 + u3 2 + A L 2 2 2 v

S 2 2 2 2+ U 2)2  dv du2du3 (5.32)

where a2 = E2/62 and taking the limit of the integrand for E + 0
produces

2 2 2 2
a 00 (u2 + U3)

A1 =T c L ff a 2
11 =IT y -O L 2v2+ (u22+ u3

(11+ u2 + u 2 2 dvdu2du3 .
(5.33)

This integral is evaluated in Appendix K. The longitudinal

macrodispersivity in this case is given by

2

A = -a 1 (5.34)
11 4y2 1

Note that Al1 + 0 as 6 + 0. The longitudinal macrodispersivity is

convection controlled in this case as well. The transverse

macrodispersivity A 22 in the case of 6 being small is now evaluated.

Taking the limit of the second term of the integrand in (5.22) for 62 +

0, and the limit of the denominator of this term for E2 + 0, (5.22)

simplifies to
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2 2 2
5CL f 2( 20 2 22u

A22  ~u 2 2+ 6 + u3 )] + A L X 1 u1

- 2 2 du du2du3
(1 + u 2 1)

This integral is evaluated in Appendix L. The transverse

macrodispersivity for 82 + 0 is given by

2

A2 L 62 ln(1+ ) (5.35)
22 2 Ly n12y ALy 1^

Note that 62 Zn(1+1/6 2 ) + 0 as 62 + 0. The transverse

macrodispersivity is controlled by local dispersion in this case.

Parameter y2, in the case of a stratified soil, is evaluated as

follows. Using (5.17) and substituting K11 given by (4.120), which

corresponds to the steady state case, yields

2

exp [- T M-
Y11 (5.36)

where is given by (5.3) or (5.4). Section 5.3 gives examples for the

dependence of Aij on H and q in the case of a Pannoche clay loam and a

Maddock sandy loam soil.

5.2.3 Statistically Anisotropic Soil with Arbitrary Orientation of Mean

Flow

This section evaluates the macrodispersivities Aij in the general

case when a lateral gradient exists and the mean flow is not
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perpendicular to stratification (see Figure 3.1). In this general case,

Aij is given by (3.92), where Sqjqi are given by (3.87), (3.88)

and (3.89), q is given by (3.94), and the directional cosines aij are

given by (3.95) and (3.96). This section evaluates Aij in the

particular case of a horizontally stratified soil and 3H/3xj being

relatively small. The assumption 3H/3xj small implies small lateral

gradients. In a statistically anisotropic formation however, due to the

large lateral hydraulic conductivities, even small lateral gradients may

produce significant lateral flow (see Chapter 4). We may then conclude

that in this case, the mean specific discharge vector q is not oriented

towards the vertical direction xi' but it is inclined to the vertical

direction with an angle (see Figure 3.1). Note that the mean flow

model (3.17) predicts the components Ji', J2', J3' of the mean

gradient vector I in the principal axes of statistical anisotropy. In

order to evaluate Aij (from 3.92) and be able to use the mean transport

model (3.71), the magnitude and direction of q must be determined as a

function of J', J2', J3'. In this section, Aij is evaluated in

two steps. First, Aij is evaluated assuming that q is known. Then

vector q is evaluated in terms of the gradients Ji', J2', J3'.

Assuming that 3H/3 xj is small, it holds that Lj w Jj and Jj

3H/3xj - 0. Equations (3.87), (3.88) and (3.89) then simplify to

J.(6. .k2- kgk.)
dZ = K ' 1 S (dZ -H dZ) (5.37)

qi m k 2+ jAL .k. f a

Using the spectral representation property (3.51), the cross-spectral
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density function Sqjqi is evaluated

S (k) = E[dZ dZ )] =
q - d- q

J J (6. k2-kk )(6.k2 k.k )2 m n im i m ( n k j n
m k + A (L k )

2 Sff (k) (5.38)

where S is given by (5.3) or (5.4).

Equation (5.38) is expressed in the system of axes xi, x2, x3

which are not necessarily identical to the principal statistical

anisotropy axes xi', x2', x3'. Assuming an exponential covariance

function for f and a, and using the transformation ki'= aij kj

where aij are the directional cosines: aij = cos(xj', xj),

Sff(k) in (5.38) is given by

S ff(ki k2, k3) =
23

+ X 

2 
2 1 (2  + 3 .k ( 5 .3 9 )

IT2[1+X1 2 ( a ik ) + X 22 ( a2j k ) + X 3 2( a3jkj )2

Substituting (5.38) into (3.92) and noting that the term multiplying

jkl is odd and therefore has zero contribution to the integral,

(3.92) simplifies to

2 2
K =0

q .00

m n (6 k2 - k k M)( k2 - k kn

4 2 .k 2k + A (L ik .)2

a k 2 + aT(k22 + k2

i2 T 2  3  2 ff(k) dk
k 1 + [aLKi aT(k 2 + k 3
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Expanding the product in the numerator of the first term,

equation is written as

A - 2
Y11

i ~ jnQin ~ imjiQjm + JmnR ijmn]

where y2 is given by (5.6) and

00 4
= f f 4 2-00 k + A (L k )

00 kkg k .

k4+ A (L k.)

O k k .k k

R.m k j+ A 2 kijn= 0J k% +A(L ik.)

Integrals

I = fff
-CO

(5.42) are all

C(k)

k 4+ A 2(L k )

ak 2 + a (k 2 + k, 2
L I T 2 2

kL + [~k + a(k+ k12 L+ 3,1

1 aLk 2+ aT 
(k22+ k3

2 2

k Z Lk Tk2 + k32 2W

Lki2+ a T(k22+ k3 
2

k 2+ [aLk12+ aT(k 2 + k32 )2

of the folowing general form

a 2+ a (k 2+ k3 2)
Li1 T2

Sff(k) dk

2 t.

S ff(k) dk

Sff(k) dk

k) dk

(5.42)

.

(5.43)

k1 aLkl'+ aT(k 2 + k3

where C(k) is obtained by comparison to (5.42). Using the fact that F =

aL/X1 < 1, the above integrals can be further simplified.

transformation ul = Xjkj

Using the

(5.43) becomes
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1C ( ,

k 22+ k32

k2, k3)

2+ A2 L ul

k3)
C [u 2+ ) ] 2(k22+ k 32

2 2 2 2 2 212 Sff([ , k 2,
U 1 + C [U1 + PX 1 (k 2 + k 3

where it is assumed that L3 = J3 = 0. For ui 2 *

du 1dk 2dk3

0 the integrand

in (5.44) is proportional to e and has a negligible contribution.

main contribution comes from ui2 % 0. Let u1 = ev. Equation

(5.44) then is written as

Go C (v, k 2 , k3
1

i ji
-- W

x2

+ k +kzz+A2L1e +Lk2+k +k 2+ A2 L +L 2
2 3 ) (.L+ 2 2)

The

2 2 2+ 2 2 2 2

V2+ v X1 2 (k2 + k3

Sf
1f

k2, k3 ) dvdk 2dk 3

and taking

CO

I = ff
-W0

the limit for E + 0

C(0, k 2, k3)

(k2 + k3 2 ) 2 + A 2L22k22
2 P

v + P
S(2, k 32 k3) dvdk2 dk 3 (5.46)

where

p = X2 (k2 2+ k)3 )

00

I = ff
-00 U1

xl

+Lk) 2+L2 k2)

(5.44)

(5.45)

. Using
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(5.47)2 2 dv = 7r

-CO V + p

Equation (5.46) simplifies to

00 C(Osk ,k )
(5.48)I~2 = 7 if 2 ( 2 3 kk) dk dk3

-.0 (k 2 L7k-- -
2 3 2

The spectral density function S(0,k 2 ,k 3 ) is given by (5.39) where now

ki = 0. Using (3.96), (5.48) is written as

a 2 2
1=

00 C(0,k 2,k3)

-.W (k2+ k3z)z+ AzL2 k3

2 2 dk dk
[1+X1 2sin k22+ X2 cos 2k2 +X 2k 32 2 2 3

a 2 2 C(ok2,k3  1 (5.49)
CTfX1 20 22, 29 k , 3) 1222 2

2 ff dk dk
-W (k2 + k 3 ) + A2L2 k2 (1 + b k2 + X2k32 2

where

b2 =12sin2 + 2cos 2 (5.50)

and is the angle between axes x ' and x1 (see Figure 3.1).

Using the transformation u 2 = bk2, u3 = Xk3 the above integral is

expressed as

2XX 0b 4 C .u 2 %u 31=a 2A A b4C(0,.4, ) ud

I = 1 2 2 2 2 2 22 2 2 2 du3-CO (u22+ u3 ) + A L2 b u2 (1+ u )
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where

2 2
s 2in Cos

Note that in general 2 and A2L22b2 are not zero. Using (5.41)

and (5.51) the macrodispersivities Aij are evaluated as follows:

A = 2
1y b

a 21
A fix

A22 2 b

1r b
a

A33 
=

iry b

A= a 2
12 T2 b'Tr b

2 4
T22+ 2E T2+ T 33 )

2 4
( 3

(5.53)

4
( 2

1

1
2 (T 2 3 + E2 T 3 3 )

and A 2 1 = A 1 2 , A13 = A3 1 = A23 = A 3 2 = 0, where

4

T = 
b2 1+

22 ( 2 + E u 3 ) + A2L 2 b2u 2 (1+u3 )

T23 =

-= H

T 33 =f

2 2

2 22 2 2
(u 2  u3 ) + A L2 b u 2

4u
3

22 22 2 2 2 2
u2 + U u3 ) + A L2 bu2
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( 1

( 1+u22

du du2 3

du 2du3

du2du 3

(5.52)
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In Appendix M, integrals T 22 , T 23 , T33 are reduced to one

dimensional integrals, which require further numerical integration. Note

that the mean flow (3.17), predicts the components of the

gradient J in the axes of statistical anisotropy x11, x2 1

x 3' In order to be able to use Equations (5.53) and the mean

transport model (3.71), parameters y, E and the components of J on axes

xi, x2 s x3 must be evaluated. This requires evaluation of

the direction and magnitude of the mean flow vector q.

Using Equation (3.13), the mean flow in the direction of the axes

xa' and x2' can be expressed as follows

q = K. (5.55)

where Kii must be evaluated for Ji', J2', J3'. Assuming that

J11 1, J2' v 0 and J3' = 0, it is possible to approximate these

effective hydraulic conductivities to the effective hydraulic

conductivities corresponding to Ji' = 1, J2' = 0 and J3 ' = 0. The

effective hydraulic conductivities in the case of a stratified soil have

been evaluated in Section 3.4. Using (4.120), which corresponds to the

steady state and substituting , given by (5.3) or (5.4) we obtain

2 2

q1= K p . ~ 4 +AL 1 = Km 1J1

q 2 2 1 (5.56)

2 Km e 7- T+A L 1 X1 2 Km P'2 2

where the definition of pl, P2 in (5.56) is obvious. The mean

specific discharge then is given by
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q = Km 12 12 + p2 ) 1/2  (5.57)

while the directional angle cP, between axes x1 , x,' (see Figure

3.1) is given by

arctg (h) = argtg { expla 72 I } = arctg [ ] . (5.58)
-f 1+AL X 17

Given the values of $ and Jl', J2', the components of J in the axes

x1, x2, x3 can be evaluated using Ji = aji Jj', or

Ji- 1 cos d + J 2sin $

J2 =-J sin + J cos 
(5.59)

Substituting (5.57) and (5.59), (5.6) gives

2 Pi j12 + P2 2
2 2 2 2 2 (5.60)
a ( cos p + J2 sin f)

Parameter E is given by (5.52). In conclusion, if Ji', J2' and H are

known, the effective macrodispersivities Aij are evaluated from

(5.52) where parameters E, y2, U1, J2 are given by (5.52), (5.60),

(5.59) and q and are given by (5.57) and (5.58).

In the case of J2 ' + 0, it holds q = ql, and p = 0. Equation

(5.52) then yields Al = af2 Xl/y 2 and A22 = A33 = A1 2 =

0. A similar result was derived in Section 5.3 (see Equation 5.25).

Note that in the general case of J2 ' * 0, the lateral macro-
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dispersivities A22 , A33 , A 12 , evaluated using (5.52), are non

zero. We conclude that in this case the transverse hydraulic gradient

J2 ' may cause a relatively large convectively controlled transverse

dispersion.
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5.3 Applications, Discussion and Comparisons to Field Observations

This section gives examples of application of the stochastic theory,

and compares the results to field observations. Section 5.3.1 evaluates

the macrodispersivities corresponding to the Panoche clay loam and the

Maddock sandy loam soil using the theory developed in Section 5.2, and

gives an interpretation of these results. Section 5.3.2 discusses and

analyzes several field observations and compares them to the predictions

of the stochastic theory.

5.3.1 Applications and Discussion of Results

The macrodispersivities Aii and the bulk macrodispersion

coefficient Eui, are evaluated as a function of the mean capillary

tension head and the mean specific discharge for the Panoche clay loam

and a Maddock sandy loam soil (see Chapter 2). The cases of a

statistically isotropic and a stratified soil, with flow perpendicular to

bedding, are examined. It is assumed that the soil property fluctuations

f and a are uncorrelated.

Figure 5.3 plots the longitudinal macrodispersivity Al as a

function of the mean capillary tension head H using (5.11), (5.20) and

(5.3), assuming that aL = aT = 1 cm, and X = 100 cm. Figure 5.4

plots the transverse macrodispersivity A22 as a function of H using

(5.15), (5.16), (5.20) and (5.3). These plots correspond to an isotropic

soil formation. These figures show that as H increases, (i.e., soil

desaturates), Al1 and A22 initially increase. After reaching a

maximum value, Al and A22 start to monoto-nically decrease for

increasing H. This behavior can be explained as follows.

221



a
a
CV

0
o0 0

C; Maddock

a

C

C

a

I- W

0

..J

a

c.00 50.00 100.00 1A0.00 200.00 20.00 300.00

MEAN CAPILLARY TENSION HEAD H (cm)

Figure 5.3 Longitudinal macrodispersivities All versus mean capillary
tension head H for an isotropic soil with X = 100 cm and
aL = aT = 1 cm.
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Figure 5.4 Transverse macrodispersivities A 22 versus mean capillary
tension head H for an isotropic soil with X = 100 cm and
aL = aT = 1 cm.
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Assume that the soil matrix is initially saturated (H = 0). When H

increases, the coarser volumes of the soil start to desaturate and the

flow goes around them through the finer soil paths. In this case, flow

has to follow a more tortuous path than the one in the saturated case.

This results in an Aui which initially increases as H increases. As

the soil matrix continues to desaturate however, the finer soil volumes

begin to desaturate. It is then possible that the continuity of the flow

paths is interrupted, i.e. volumes of fine soil may contain stagnant

water masses which cannot move since they are impeded by a relatively

coarse soil. It is expected then that, at large H, the macro-

dispersivities Aui decrease for increasing H. Wilson (1974), Predicted

a similar type of dependence of Aii on the soil moisture content using

a microscopic statistical pore scale model. The dependence of Aij on

H, in our model, is due to spatial variability and not to pore scale

effects, since such effects were not considered. We may then conclude

(similarly to Chapter 4) that spatial variability and microscopic (pore

scale) variability produce similar effects.

Figure 5.3 shows that for H small, the longitudinal macro-

dispersivity for the Maddock soil is larger 'than the one for Panoche

soil. This is probably due to the larger variability of the saturated

hydraulic conductivity in the Maddock soil. As H increases however,

Al1 in the Maddock soil drops relatively fast while the All

corresponding to the Pannoche soil remains more constant. This is

probably due to the fact that the Maddock soil has a larger variety of

textures than the Panoche soil. Because of this, it is expected that as

the Maddock soil desaturates the coarser volumes of soil empty quickly.
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This generates immobile water masses in the finer soil volumes. This may

explain the fast decrease of Aui for increasing H in this soil. In the

relatively uniform Panoche soil however, the soil desaturates almost

uniformly throughout the soil formation and immobile soil water volumes

are not generated. This could explain the insensitivity of Aui on H,

shown in Figures 5.3, 5.4.

Comparison of Figure 5.3 to 5.4 shows that the longitudinal

macrodispersivity Aii is much larger than the transverse

macrodispersivity A 22. As (5.11) shows, Al is proportional to X1

and it is governed by convective flow. The transverse macrodispersivity

A22 however, given by (5.15), is proportional to the local

dispersivities. This implies that the transverse macrodispersivity in

this case, is governed by local dispersion. This explains the fact that

Al is significantly larger than A22.

In the one-dimensional steady state infiltration case examined in

Sections 5.2.2, 5.2.3, there is a one to one dependence of the mean

specific discharge q = K11 to the mean capillary tension head H. It is

of interest to evaluate the dependence of the macrodispersivities Aui

to the mean specific discharge q. For the set of values of H shown in

Figure 5.3, 5.4, Aii are evaluated from (5.18), (5.11) and (5.15).

Figure 5.5 and 5.6 plot the longitudinal and transverse

macrodispersivities as a function of q. These figures show that at large

q, Ai are practically independent of q. For q small however, Aui

depend on q. To further illustrate a point, Figures 5.7 and 5.8

plot the bulk macrodispersion coefficients Eii = Ajiq as a function

of q. These curves resemble a linear dependence of Eii on q. Note
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Figure 5.5 Longitudinal macrodispersivities All versus mean specific
discharge q for an isotropic soil with X = 100 cm and
aL = aT = 1 cm.
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Figure 5.6 Transverse macrodispersivities A 22 versus mean specific
discharge q for an isotropic soil with X = 100 cm and
aL = aT = 1 cm.
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Figure 5.7 Longitudinal bulk macrodispersion coefficients Ell versus
mean specific discharge q for an isotropic soil with
X = 100cm and aL = aT = acm.
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Figure 5.8 Transverse bulk macrodispersion coefficients E22 versus
mean specific discharge for an isotropic soil with
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that the slope of these curves for q being relatively small depends on q,

(see also Figure 5.5, 5.6). The Eui corresponding to such small values

of q however, is relatively small and it may be possible to assume that

Eii is proportional to q without a significant overall error. We may

then conclude that the bulk macrodispersion coefficient is given by

Eii = A q (5.61)

where the macrodispersivities Aui are practically independent of the

specific discharge q.

Figure 5.9 plots the longitudinal macrodispersivity Al using

Equations (5.25), (5.36) and (5.3). This case corresponds to a

statistically anisotropic soil formation with the mean flow perpendicular

to stratification and 6 >> E. These figures show that Al increases

monotonically for increasing H. This is because as H increases y + 0

(see (5.36)). This result may not be very realistic since evaluation of

Sqjqi in (3.92) required expansion of the exponential in (3.81),

(3.82), which for H relatively large may not be appropriate.

Figures 5.10 and 5.11 plot Al and Ell as a function of q in this

case. Figure 5.10 shows that Al depends on q at small q (large H).

Figure 5.11 however, suggests that Ell is approximately proportional to

q.

The transverse macrodispersivity A22 in this case (6 >> 0) is

given by Equation (5.30). Comparison to (5.25) shows that A22 ~ 0.004
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Figure 5.9 Longitudinal
tension head
Xi = 100 cm,

macrodispersivities All versus mean capillary
H for a statistically anisotropic soil with
X2 = X3 = 1000 cm and aL = aT = 1 cm.
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Figure 5.10 Longitudinal macrodispersivities Al1 versus mean specific
discharge q for a statistically anisotropic soil with
X1 = 100 cm, X2 = X3 = 1000 cm and aL = aT 1 cm.
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6A11 . For 6 = 0.1 for example, A22 = 0.0004 Al, where All is

plotted in Figures 5.9, 5.10.

The longitudinal and transverse macrodispersivities All', A22',

in the case of 6 -* 0, are given by (5.34) and (5.35). Comparing (5.34)

and (5.35) to (5.25) gives: All' = 0.786 Al in either soil, while

A22' = 0.0017 62 ln(1+1/62) Al in the Panoche soil and A22' =

0.00034 62 ln(1+1/6 2 ) Al in the Maddock soil.

Table 5.1 summarizes the values of macrodispersivities Aii when q

is large. This table shows that for.dLcreasing 6 = Xl/X, the macro-

dispersivities Aui decrease. It is also seen that generally A22 <

Al. This is because the longitudinal macrodispersivity Al is

governed by convective flow while the transverse macrodispersivity A22

is determined by local dispersion. Note however, that in the more

general case discussed in Section 5.2.3, when lateral flow in a

stratified soil exists, the transverse macrodispersivity could be

significant due to convective transport.

5.3.2 Discussion of Field Observations and Methods of Analysis

Unfortunately, only a few field scale macrodispersivities have been

reported and the analytical methods used in their derivation are often

questionable. Nevertheless, it may be useful to analyze reported

parameters and compare them to the ones predicted by the stochastic

theory. This section reviews several pertinent field observations and

discusses the methods used for analysis of the observations.
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TABLE 5.1

Macrodispersivities Al (cm)

Panoche soil Maddock soil
Soil Type Longitudinal Transverse Longitudinal Iransverse

All A22 All A22

Isotropic
X=100cm 123.0 0.32 218.0 0.33

Statistically
anisotropic
s large (&=0.1) 5.0 0.002 12.0 0.005

Statistically
anisotropic
6 small (6=0.01) 0.039 1.6x10-6 0.093 3.0x10-7
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Biggar and Nielsen (1976) described experiments conducted in an

agricultural setting. Breakthrough curves were obtained at six depths at

the centers of twenty 6.5 m-square plots, following a pulse of Cl and

NO 3 solution. Then, a simple one-dimensional transport model with

constant parameters, an apparent diffusion coefficient, D, and an

apparent pore water velocity, vs, was fitted to each breakthrough

curve. A possible criticism of such parameter estimation procedure is

that since the parameters D and vs have been assumed to be uniform over

depth they should be fitted simultaneously with the breakthrough curves

at all depths (at each location). Fitting a model with different D and

vs at each depth, contradicts the assumption of constant D and vs.

The paper suggests that fitted values of D and vs follow a lognormal

distribution. D is correlated with vs through an almost linear

relationship (D = 0.6 + 2.93 vs-*l; D in cm 2/day, vs in

cm/day). Using the data of their Figure 7, we determined an average

value of Al1 = 5 cm for the longitudinal macrodispersivity. The paper

further discussed the number of samples required in order to obtain a

reliable estimate for the mean values of D and vs. This is another

weak point of the paper since it implies that the mean values of D and

vs are the effective parameters that should be used in the mean models

for estimation of mean concentrations. Such an assumption does not seem

to be justified since the system is nonlinear in the parameters, and

local variability has a large-scale effect.

The experiments and methods for calibrating for D and vs reported

in Van de Pol, et al. (1977) and Kies (1982), are similar to Biggar and

Nielsen (1976). Thus the criticism on the fitting for D and vs also
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applies. The fitted values again seem to follow a lognormal

distribution. Kies' data also show that D is related to vs through an

almost linear relationship. The data of Van de Pol, et al. (1977)

suggest a value of the longitudinal macrodispersivity Al = 9.41 cm,

while the data of Kies (1982) suggest a value Al = 16.8 cm. These

papers also imply that the mean values of D and vs should be used in

models predicting the mean concentration. Again, this assumption does

not seem justified. Kies' data show an increase in the mean values of D

with depth below the soil surface. He also observed that the average

solute velocities, vs, calculated by fitting vs to the breakthrough

curves, is larger than the mean pore water velocities vm. This is

probably due to the fact that most of the water may be moving in larger

structures with higher velocities than the average pore water velocity

(calculated by dividing the average infiltration rate by the average soil

moisture content). He also observed that the ratio vs/vm increases

with depth, and that Cl travels faster and disperses more than NO 3.

Warrick, et al. (1971) reported on a field experiment in a 6.1 m by

6.1 m plot in the Panoche clay loam soil. A solute pulse was applied on

the surface of the soil and was observed as it moved through the soil

profile. Experimental data and a numerical soil moisture flow model

showed that the infiltration rate approached steady state in a relatively

short time. A one-dimensional governing equation for the solute

concentration was solved analytically. Using this solution and value of

the velocity found from the infiltration rate, the maximum concentration

was determined as a function of time and dispersion coefficient D.

Comparing this model to experimental data, a value of D = 0.07 cm2/min

237



(All = 2.7 cm) gave the best fit. They observed that a value of D

close to 0.05 cm 2 /min better described the data at small times, whereas

D = 0.1 cm 2 /min was more nearly correct at large times. This suggests

that D may increase with the time or distance the solute has travelled.

The approach used in this paper for evaluating D is fundamentally

different than the one used in Biggar and Nielsen (1976), Van de Pol, et

al. (1977) and Kies (1981). The velocity here is estimated from

infiltration data, and the parameter D is fitted to the maximum observed

concentrations only, and not to the whole breakthrough curves. A

possible criticism of this approach is that information available

regarding the shape of the breakthrough curves is not used in the

estimation procedure, so the estimated parameters are possibly not

optimal.

Warrick, et al. (1971) observed that the calculated distribution

curves do not penetrate the soil profile as deeply as the measured ones.

A similar phenomenon was observed in Kies (1982). This may be a

reflection of preferential flow paths with most of the water moving

through the larger water-filled pore sequences. Warrick et al. also

observed that solute was not present in the advancing moisture front but

lagged behind nearer the soil surface. This phenomenon has been observed

elsewhere (e.g., see Andersen and Sevel, 1968). It is called the

solute-lag effect (Gelhar, 1977). A probable explanation is that a

pressure wave generates displacement of old capillary water at

successively increasing depths. Simple calculations (Gelhar, 1977) show

that the moisture front travels with speed vw ~ dK/d8 while the solute

travels with speed vs K/O. For typical soils, then vw >> vs
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(e.g. vw A 20vs)..

Foster (1975) and Oakes (1977) present another possible explanation

of the solute-lag effect in the English Chalk, based on fracture flow

with matrix diffusion. For the data of Young, et al. (1976), Oakes

(1977) reports a dispersivity value of 20 cm.

The paper of Andersen and Sevel (1968) is interesting since they

made an effort to evaluate an effective dispersion coefficient on a large

scale (20 m deep) system. Environmental tritium data was taken in a

group of four boreholes which had been augered at time intervals of about

two years. Soil moisture profiles had been measured regularly by the

neutron method in the boreholes. A simple displacement with dispersion

model, assuming constant travel velocity, constant dispersion coefficient

and constant soil-moisture content throughout the profile, was tested. A

dispersion coefficient of D = 10- 7 m 2 /sec yielded a good fit for the

tritium profiles. This corresponds to a longitudinal dispersivity Al1

= D/v ~ 70 cm. Soil moisture profiles indicated a propagation velocity

of the moisture front of about 3 to 3.5 m/month. The actual flow

velocity estimated by environmental tritium profiles however, seems to be

only 4.5m year. This solute lag effect is similar to the one observed by

Warrick, et al. (1971) and discussed above.

Jury, et al. (1982) describe a series of field experiments made in

order to test a transfer function model. This model may be criticized in

that it does not use any physics about the processes involved; it is a

black-box model. Its parameters do not correspond to any physical

quantities and must be calibrated based on available data for the

particular setting under consideration. Extrapolation of the predictions
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of such a model to depths, settings or conditions other than the ones

from which it was derived, is not possible. The data presented in the

paper in order to validate the model clearly demonstrates our point. For

example, Figure 5.12 presents measured breakthrough curves and predicted

ones, obtained from the transfer function model of Jury, et al. (1982).

Comparison between these curves indicates that the model overestimates

the solute concentrations near the surface, yields a good fit at 90 cm,

and underestimates them at larger depths. It appears that the model was

calibrated so that it fits the data at the 90 cm depth. The differences

between theory and experiment are statistically significant; the model

predictions fall above the 95 percent confidence interval of the data at

30 cm and below it at 180 cm.

The reason for this discrepancy, we believe, is that the transfer

function model, or any other one-dimensional convective transport model,

yields predictions that correspond to a linear increase of dispersivity

with depth. It is possible that at small depths the dispersivity

increases with the depth but it could approach a constant value as the

depth increases. In that case, the predicted breakthrough curves of

Figure 5.14 would show less spread and greater maximum values at larger

depths, i.e., they would trend toward agreement with the measured data.

Gelhar et al., (1984), evaluated a value of the longitudinal

macrodispersivity Al = 9.45 cm, using the data reported by Jury et

al., (1982), and spatial moment methods.

Table 5.2 summarizes the values of the longitudinal

macrodispersivities discussed above along with the longitudinal scale of

the experiment. Some laboratory observations are also included for
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TABLE 5.2

FIELD DISPERSIVITIES, A11

Longitudinal
Type of Vertical scales dispersivity

Author Experiment of experiment (m). ALI(m)
Yule and
Gardner,
(1978) Laboratory 0.23 0.0022
Hildebrand and
Himmelblau,
(1977) Laboratory 0.79 0.0018
Kirda, et al.,
(1973) Laboratory 0.60 0.004
Gaudet, et al.,
(1977) Laboratory 0.94 0.01
Brissaud,
et al. 0.0011,
(1983) Field 1.00 0.002
Warrick, et al.
(1971) Field 1.20 0.027
Van de Pol,
et al.
(1977) Field 1.50 0.0941
Biggar and
Nielsen,
(1976) Field 1.83 0.05
Kies,
(1981) Field 2.00 0.168
Jury, et al.
(1982) Field 2.00 0.0945
Andersen, et al.
(1968) Field 20.00 0.70
Oakes,
(1977) Field 20.00 0.20
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comparison. In order to quantitatively compare the observed

macrodispersivities to the ones predicted by the stochastic theory, the

statistical properties of soil variability, the mean flow conditions,

etc., should be known in the particular settings where Aui were

observed. Since such parameters are not known we must restrict ourselves

to qualitative comparisons only. Comparison of Table 5.2 to Table 5.1

shows that the longitudinal macrodispersivities predicted by the

stochastic theory are of the same order of magnitude as the observed ones

at large scales of observation.

In the case of saturated flow, it has been observed that

dispersivity shows an apparent increase as the scale of the experiment

increases, (see Gelhar et al., 1983). A possible theoretical explanation

of this behavior is given in Gelhar et al. (1979). Figure (5.13) plots

the unsaturated longitudinal macrodispersivities, given in Table 5.2, as

a function of the scale of the experiment. Although the data at larger

scales are limited, the few existing data points show an increase of

Al with the scale of the experiment, in analogy to the saturated flow

case. The stochastic theory predicts that the longitudinal dispersivity

may depend on other factors, such as soil type, soil heterogeneity and

moisture content; however, it is not possible to recognize any dependence

of Al on these factors, due to the dearth of data.
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5.4 Summary and Conclusion

This chapter evaluated effective macrodispersivities in unsaturated

soils, using the general theory developed in Chapter 3. Certain

simplifications allowed analytical evaluation of the corresponding

three-dimensional integrals.

Section 5.2 derived expressions for the macrodispersivities in terms

of the local dispersivities, the soil property, and the mean flow

characteristics. Section 5.2.1 examined the case of a statistically

isotropic soil formation. Using the fact that E = aL/X « 1., the

corresponding integrals were simplified and were analytically evaluated.

It was found that the longitudinal macrodispersivity is proportional to

the correlation length X3 , i.e. longitudinal dispersion process is

controlled by convective transport. However, the transverse

macrodispersivity is proportional to the local dispersivities and

independent of the correlation scale, i.e. in this case the transverse

dispersion is governed by local dispersion.

Section 5.2.2 examined the case of a statistically anisotropic soil

when the mean flow is perpendicular to stratification. Two cases were

examined: (i) 6 = X1 /X being relatively large (mild stratification)

and (ii) 6 ~ 0, (strong stratification). Similarly to the isotropic

case, longitudinal dispersion is governed by convective transport while

transverse dispersion is governed by local dispersion. Note that in the

case of mild stratification, All is independent of 5 but A22 is

proportional to 6, i.e. A22 decreases as the degree of stratification

increases. In the case of strong stratification however, All and A22

depend on 6, Al1 is proportional to 5, while A22 is proportional to
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62 ln(1+1/6 2 ) - 62. This implies that in the case of strong

stratification, All and A22 decrease as stratification increases.

For 6 + 0 (perfectly stratified soil), All, A22 + 0, i.e. in this

case only local dispersion exists.

Section 5.2.3 discussed the more general case of macrodispersion in

a stratified soil formation when a lateral flow gradient exists. In this

case, even a small lateral gradient can produce significant lateral

flow. This flow may generate a significant convectively controlled

transverse dispersion.

Section 5.3 applied the results of the stochastic theory, ana

compared these results to field observations. Section 5.3.1 evaluated

the macrodispersivities corresponding to the Panoche clay loam soil and

the Maddock sandy loam soil. It was found that in the case of a

statistically isotropic soil, the macrodispersivities Al1 and A22

generally depend on the mean capillary tension head H. As soil

desaturates, Al and A22 initially increase but after reaching a

maximum value they tend to decrease monotonically. This phenomenon is

probably due to spatial variability of the soil properties. A similar

type of dependence is predicted by the statistical pore scale model of

Wilson (1974). This suggests that spatial variability produces effects

similar to microscopic variability (compare to the hysteresis effect

discussed in Chapter 4). Plotting the bulk macrodispersion coefficient

Eii against the mean specific discharge q, showed that Eii is

practically proportional to q. This result of the stochastic theory

is in accordance with several field observations discussed in Section

5.3.2. In the case of a statistically anisotropic soil, the stochastic
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theory predicted that Aui increases monotonically as H increases. This

result could be due to ignoring higher order terms in the stochastic

analysis. Plots of Eii versus q, showed that Eii is practically

proportional to q in this case as well.

Section 5.3.2 reviewed a series of reported field observations and

discussed the methods used for analysis of the observations in the

corresponding publications. It was found that the reported field scale

dispersivities are very few and that the analytical methods used in their

derivation are often questionable. Nevertheless, qualitative comparisons

of these macrodispersivity values to the ones predicted by the stochastic

theory showed them to be of the same order of magnitude. The few

existing field observations indicated that the longitudinal dispersivity

All may increase with the scale of experiment. Due to the dearth of

data it was not possible to recognize any dependence of experimentally

observed All on other factors such as soil type, soil heterogeneity and

moisture content.

247



CHAPTER 6

METHODS FOR TESTING THE VALIDITY OF THE STOCHASTIC THEORY

AND APPLICATION OF LARGE-SCALE MODELS

6.1 Introduction

This chapter discusses methods that could be used for testing the

validity of the stochastic theory and applying the large-scale models to

real field problems. Section 6.2 suggests a Monte-Carlo approach for

testing the validity of the stochastic approach and extends the spectral

turning bands method, developed by Mantoglou and Wilson (1982), for digi-

tal generation of point values or spatial averages of multiple, cross

correlated, statistically anisotropic, stationary random fields. Section

6.3 discusses the important application problem of estimating the

parameters required in large-scale models. Statistical inference methods

are discussed and a new parameter identification method is developed.

This chapter assumes that numerical codes capable of solving the

governing unsaturated flow and transport equations exist. Of course,

accuracy and cost may restrict the applicability of such codes.

However, it is' felt that these problems will soon be solved since

computer capabilities are increasing very rapidly today.
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6.2 Testing the Validity of the Stochastic Theory Using Monte-Carlo

Simulation

In order to obtain analytical expressions for the dependence of the

effective parameters on the different soil property and flow char-

acteristics, several assumptions were required in the analysis of the

previous chapters (e.g., stationarity, smallness of fluctuations, etc.).

It is thus of interest to investigate the validity of the quantitative

and qualitative predictions of the stochastic theory in more general

cases when the assumptions used in their derivation do not strictly

hold. Section 6.2.1 proposes a five step Monte-Carlo procedure for

testing the validity of the stochastic theory. This procedure requires

computer generation of multiple (vector), three-dimensional statistically

anisotropic random fields. Section 6.2.2 extends the spectral turning

bands method for generation of such fields. This method may be used for

computer generation of realizations of soil property fluctuations, as

required by the Monte-Carlo procedure.

6.2.1 Monte-Carlo Procedure

This section proposes a Monte-Carlo procedure that can be used for

testing the validity of the stochastic theory. The procedure follows

five steps. First a model for the mean and the covariance functions of

the local soil properties 2nKs, a and C is selected. The selected

statistical parameters should take realistic values and should consider

the statistical anisotropy (stratification) usually observed in the

field.

In the second step, realizations of the cross-correlated soil pro-
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perty random fields f, a and y, that conserve the theoretical statistics

selected in the first step, are generated. The spectral turning bands

method, developed in the next section, can be used in this step.

In the third step, the flow and concentration outputs i and c,

corresponding to each soil property realization generated in the second

step, are evaluated. This step requires numerical solution of the

governing flow and transport equations. Numerical approximation errors

and high cost are important considerations in this step.

The fourth step, involves analysis of the output realizations 1P and

c. Given the series of realizations of 11 and c obtained in the third

step, the ensemble mean HMC and cMC are easily evaluated using

ensemble averaging. In addition, the effective parameters can be

estimated from (3.10), (3.13) and (3.16) where the cross-correlations in

these equations can be evaluated using ensemble averaging.

The fifth and last step of the Monte-Carlo procedure involves com

parison between the predictions of the stochastic theory and the Monte-

Carlo simulation results. Two different types of comparison are sug-

gested. First, given the theoretical statistics of the soil properties,

selected in the first step, and the "true" mean HMC and cMC, the

stochastic theory developed in Chapters 3, 4 and 5, is used in order to

derive estimates of the effective parameters. These parameters are

compared to the "true" effective parameters evaluated in the fourth step

using Monte-Carlo simulation. A second comparison consists of "running"

a numerical model using the effective parameters estimated by the
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stochastic theory and comparing these large-scale model outputs

HST, CST, to the "true" mean values HMIC, cMC predicted from the

Monte-Carlo simulations in the fourth step. Such comparisons involve

testing of significance for the errors HST-HMC and cST-cMC.

6.2.2 Extensions of the Spectral Turning Bands Method

The turning bands method for simulation of isotropic random fields

was originally proposed by Matheron (1973) and was applied for simulation

of certain types of random fields having particular forms of covariance

function using a Moving Average unidimensional process generation

(see Journel, 1974; Chiles, 1977). Mantoglou and Wilson (1981, 1982),

developed a much more flexible spectral turning bands method where the

unidimensional processes are simulated using a spectral generator. This

method is capable of directly simulating point values or spatial averages

of statistically isotropic or anisotropic two dimensional random fields.

This section extends the spectral turning bands method for computer

generation of multiple, (vector), cross-correlated random fields. The

proposed methodology is very general and it can generate point values or

spatial averages of two or three-dimensional, isotropic or anisotropic

multiple random fields.

Let Yi(x); i = 1, k, represent a set of two or three-dimensional,

cross-correlated, zero mean, stationary anisotropic random fields, having

known cross-covariance and cross-spectral density functions Cij(r),

Sij(k) where Cij(r) = E[Yi(x) Yj(x+r)] and x, r represent spatial

and k represent wave number coordinates. The objective is to generate
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(using a digital computer) realizations of random fields Yi(x) that

preserve the known cross-covariance and cross-spectral density functions

Cij(r), Sij(k). Functions Cij(r) and Sij(k) form a Fourier

Transform pair, so that following properties hold.

C (r) = Rnejk'r S (k) dk (6.1)

R n

S (k) = Rn-n Ci (r) dr (6.2)

where n is the dimensionality of the field (n=2 or 3). It is convenient

to use a vector-matrix notation in the following developments. Define

the vector random field

-Y 1

Z (x) = Y2 x) (6.3)

a K c

and its cross-covariance function matrix
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C(r) = E[Z(x) ZT(x+r)] =

E[Y 2 (x) Y 1(x+r)] E[Y 2 (x) Y 2(x+r)] ... E[Y2(x) Y (x+r)]

E[Y (x Y (x+r)] E[Y (x Y (x+r)] . E[Y (x) Y (x+r)]- 2- 1- 'K - 2 -- 2- K --

C 11 (r) C12 (r) C K(r)

= C 21(r) C 22 (r) C 2K(r) (6.4)

C K(r) C K2 (r) C KK(r)

where T represents matrix transpose. Define a cross-spectral density

function matrix S(k) having as elements the cross-spectral density

functions Sij(k). Equations (6.1) and (6.2) then can be expressed in

the following matrix form

C(r) = f e r irS(k) dk (6.5)

Rn -

S(k) 1 e -k-C(r) dr (6.6)
(2,)n Rn

where the integral of a matrix is defined as the matrix of the integrals

of its elements.

Instead of generating the three-dimensional field directly, the

turning bands method generates unidimensional processes on several lines,

using a unidimensional covariance function matrix that corresponds to the

known two- or three-dimensional one. Then at each point of the two- or
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three-dimensional space a weighted sum of the corresponding values of the

one-dimensional processes is assigned.

Assume that we want to generate point values of the two or

three-dimensional random field at the discrete nodes (i, j, k) in region

P of Figure 6.1. Choose an arbitrary origin 0 in the two- or

three-dimensional space and generate lines so that their corresponding

direction vectors u are uniformly distributed on the unit circle or

sphere. Along each line i, generate stationary unidimensional discrete

processes having zero mean and covariance function matrix ( )

where c is the coordinate on line i. The correspondence between )

and the given two- or three-dimensional covariance matrix C(r) will

be derived later. Note that in the general anisotropic case C

depends on the direction of line i. Onto line i, orthogonally project

the points of the field where we want to generate values, and assign them

the corresponding values of the one-dimensional discrete processes. If

N(i, j, k) is a point of the region having location vector x, then the

assigned value from line i will be Z1 (CNi) where CNi =

xN'ui is the projection of vector xN onto line i (see Figure 6.1),

ui is the unit vector on line i, and xN*.ui represents the inner

product of vectors xN and ui. Take L lines as i. For each line

generate an independent unidimensional realization using C ( ) as

covariance function matrix. Then at every point N of the region, there

are L assigned values Z(N) = Z1 xN-ui), where

i = 1, ... , L, from the unidimensional simulations. Finally, assign the

following value, to point N
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(6.7)
=( .L Z( 1) Ni

/E i=1

as the realization of the two or three-dimensional random field.

The realizations generated using (6.7) have a zero mean. The objec-

(1)tive is to choose a proper unidimensional covariance C (;) (or spec-

tral density function S1 (k)) so that Zs defined in (6.7) has the

proper two- or three-dimensional covariance or spectral density function

matrix C(r), S(k). Take two points xi, x2 in the two- or three-

dimensional space. The covariance function matrix of the simulated field

is

_1

T
( , = E[Z(x ) .s 2x

=1 L L 1 u)z(1)T
I I E[Z (X -u ) Z ( x 2 U
i=1 J=1 -i -j -2  =

L (1) L

. E[Zi (x -U ))( 2(ug)
i=1 i=1 -

(6.8)

where unidimensional processes along two different lines are assumed to

be uncorrelated and r = x2 - xj. The expected value

E[Z (xi-u) Z Tx2- ui)] represents the covariance

function matrix of the one-dimensional processes on line i between points

xl-ui and x2-ui, which, since unidimensional processes are

(1)stationary, is written as C,' (r-ui). For uniformly distributed

lines in the two- or three-dimensional space, vector ui is uniformly

distributed on the unit circle or on the unit sphere, and the right-hand

side of (6.8) is only a function of r for large L. This implies that

process Zs is stationary and we can write

,256



L 1
C(r) = C (r- u . (6.9)

For L + c, using the law of large numbers Equation (6.9) becomes

C (r) = lim { 1 C. (r-u4)} = E[C (r- u)
_s L+ r i=1 - -1 u

= C 1 )(r.u) p(u) du (6.10)
c =W.

where subscript u implies dependence of C on direction u, c represents

the unit circle or sphere and p(u) is the probability density function of

u which becomes 1/27T or 1/4T in the two- and three-dimensional cases,

respectively and du represents a differential length or area on the unit

circle or sphere at the end of vector u.

The three-dimensional case is examined first. Because of station-

arity of the processes, without loss of generality, we define orthogonal

x1, x2, X3 axes with origin point xi and with x3 axis in the

direction of vector r = x 2 - x1, as shown in Figure 6.2. The unit

sphere where the vector u ends is also shown. Using spherical coordi-

nates r- u = r cos, where r = jrj and du = sinp d de. Integral (6.10)

then gives

Cs(r)= 1 T (1 (r cos$) sin4 d4 d8 (6.11)

(subscripts $, 0 of C , imply dependence of C on direction p, 0). Let

S $,e(k) the spectral density function matrix corresponding to the
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(1)covariance function C 4,o. It holds

C (r cos = jk r COS (1) (k)dk . (6.12)
- 2 --ce cos J ee

Substituting into (6.11) and using the symmetry of the spectral densities

yields:

Cs(r) = 1 j e jk r cosp S(1) (k) sin dk d$ dO .(6.13)

- 0 0

Define orthogonal coordinates k1 , k2, k3 in the wave number space.

The differential volume dkldk2dk3 is given in spherical coordinates

by: dkldk 2dk 3 = k2 sin4 dkdde where k =

/k + k2 + k , k =ksin sine, k =k sinp cose, k3 = k sinp. Note
1 2 3, k1  2 k3i~sie

that the limits of the integral in (6.13) cover the whole

three-dimensional space R3. Using orthogonal coordinates (6.13) is

expressed as

0 fe . SI (1) (k)
Cs(r) = e -r =, dk1 dk 2 dk3  . (6.14)

=S -00 27T k

To preserve the given three-dimensional covariance function matrix, C(r),

substitute Cs(r) = C(r). Comparing then (6.14) to (6.5) and using the

uniqueness of the Fourier transform yields:

S ( (k) = 27 k2 S(k)

= 2n k2 S(k sinp sine, k sinj cose, k sinf) (6.15)

This equation relates the spectral density function matrix of the one-
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dimensional processes Z (1) to the spectral density function matrix

of the three-dimensional process. Note that S(1) depends on the

direction $, e of the corresponding line where the unidimensional process

(1) (1)
is generated. Since S .,e are known, the one-dimensional processes Z

can now be generated using a one-dimensional generator as will be

discussed later.

The two-dimensional case is now investigated. Because of stationar-

ity of the processes, without loss of generality, we define orthogonal

axes xi, x2 with origin point xi and with x2 axis in the direc-

tion of vector r = x2 - xi, as shown in Figure 6.3. The unit circle

where the vector u ends is also shown. Using polar coordinates r-u = r

sine and du = de. Integral (6.10) then gives

C (r) = 1 f C( (r sine) de (6.16)
=s -7ff f - 6

where the subscript e implies dependence of on e. Let S k) the

spectral density function matrix corresponding to the covariance

function matrix It then holds

C (r sine ) = ejk r sine S(1)(k)dk . (6.17)

Substituting into (6.16) and using the symmetry of the spectral densities

gives

C (r) = f ejk r sine S (k) dk de . (6.18)
0 0 _

Define orthogonal coordinates k1, k 2 in the wave number space. The

differential volume dkldk 2 is given by dkldk2 = kdkde where
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k 1 + k2 k = k cose and k = k sine. Note that the limits of

the integral in (6.18) cover the whole two-dimensional space R 2 . Using

orthogonal coordinates (6.18) is expressed as

00 .1) (k)
C (r) = f ei k - ) k) dk1 dk 2  . (6.19)

In order to preserve the given two-dimensional covariance function

matrix, substitute Cs(r) = C(r). Comparing the (6.19) to (6.5) and

using the uniqueness of the Fourier transform gives

S()(k) = wk S(k) =

= Trk S(k cose, k sine) . (6.20)

This equation relates the spectral density function matrix of the one-

dimensional processes Z to the spectral density function matrix of

of the two-dimensional process S. Note that S(1) depends on the

direction e of the corresponding line where the unidimensional process

is generated. Given S 6, the one-dimensional processes can be

generated as will be discussed below.

The method proposed by Shinozuka and Jan (1972) is briefly discus-

sed for generation of the one-dimensional vector processes Zfl ) on

line i of direction 6 or c, Oin the two- and three-dimensional case

respectively. Let cos (k . c + , )

Z-() 2 M Q.(k ) Ak1/2 cos (k c + (6.21)
Sj=1 - 2

cos (k . + c . )

262



where Qi(k) is obtained by decomposition of matrix Sifl)(k), given

by (6.15) or (6.20) in the two- and three-dimensional case respectively,

i.e.,

Q (k). QT(k) = .(k) (6.22)

$j, are independent random angles uniformly distributed between 0 and

2rr, kj = (j - 1/2) Ak and kj kj + 6k for j=1, ..., M. It

has been assumed that the spectral density function Sj1 k) is

insignificant outside the region [- 2, + ]. The discretization frequency

Ak is defined as Ak = Q/M, where M is the number of harmonics used. The

frequency Sk is a small random frequency added in order to avoid

periodicities and is uniformly distributed between -Ak'/2 and Ak'/2 where

Ak' is a small frequency Ak' < Ak. The magnitude of the errors due to

using a finite number of harmonics in the one-dimensional process is

discussed in Mantoglou and Wilson, (1982).

Equation (6.10) is obtained in the limit as the number of lines L

tends to infinity. Of course only a finite number of lines can be used

in application thus an error is introduced (see Mantoglou and Wilson,

1982). The lines in (6.10) are assumed to be randomly oriented on the

two- or three-dimensional space. The same TBM equations are also

obtained by spacing the lines evenly on the unit sphere or circle with

prescribed directions. Mantoglou and Wilson (1982) show that the

simulated covariance obtained using the even line spacing approach

converges to the theoretical covariance much faster than the random line

approach.

Spacing a number of lines evenly on the unit circle is a trivial
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problem. However, spacing a number of lines evenly on the unit sphere is

only possible for a specific set of number of lines (e.g., 3, 15, ... ).

In two-dimensions Mantoglou and Wilson (1982) show that a number of 8-16

lines is generally a satisfactory choice. In three-dimensions,

experience has shown (Journel and Huijbregts, 1978) that a group of 15

lines, joining the midpoints of the opposite edges of a regular

icosahedron, is adequate for practical applications in the isotropic

case. In the anisotropic case however, a larger number of lines might be

required. Spacing of a number of lines in the unit sphere then could be

accomplished by dividing the unit sphere into regions of approximately

the same size and shape.

The method developed above is very general and is capable of simula-

ting anisotropic fields having any type of anisotopy. In certain cases

(e.g., point processes) it is possible to generate the anisotropic field

by generation of an isotropic field followed by a linear transformation

of the coordinate system. In other cases however, (e.g., areal average

processes) it is not possible to use such transformation and it is

necessary to use the general anisotropic method described above.

The problem of direct generation of spatial averages of vector

process Z (x) is now discussed. A spatial average process is generally

defined as

Z (x) = f h(x-s) Z(s) ds (6.23)
-A- A

where A is the support (averaging) region in the two- or

three-dimensional space and h(x) is a weighting function. Using a wave
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number representation of (6.23) and the properties of convolution yields

dZ (k) = H(k) dZZ(k) (6.24)
-ZA

where H(k) is the Fourier transform of h(x). Using the property

S(k) = E[dZ(k) dZ*(k)T] produces

SA(k) = JH(k) 2  S(k) . (6.25)

For a known spectral density function matrix S(k) the corresponding spec-

tral density function matrix SA of the spatial process ZA can be

evaluated from (6.25). Given SA(k) the general TBM developed earlier

can be used for direct generation of the areal average process.

The wave number response H(k) of spatial filter h(x) is evaluated as

follows

H(k) = f j e--jh- h(x) dx (6.26)
(21) Rn

In the three-dimensional case and for a rectangular block average process

for example it holds

x inside block
L 1 L 2 L 3

h(x) = { (6.27)
0 x outside block

where L1, L2, L3 the block dimensions. Assuming that the block is

oriented in the direction of the axes xi, x2, x3, substituting

(6.27) and evaluating (6.26) yields
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8 k 1L 1 (k 2L 2k 3L3
H(k) = sin (.2 i n ( 2  . (6.28)

1 2 3 1 2 3

In the two-dimensional case for rectangular areal average process it

holds

- ; Lx inside the rectangle

h(x) = 1 2 (6.29)

0 ; x outside the rectangle

where L1, L2 the dimensions of the rectangle in the xi and x2

directions, respectively. Mantoglou and Wilson (1981) evaluate the

corresponding two-dimensional wave number response function as

1 k L1  k2L2H(k) = sin (-2 --) sin (-7--) . (6.30)

Given (6.28) and (6.30) the spectral density function of the averaged

three- or two-dimensional process is evaluated from (6.25). Using

(6.15) or (6.20), the spectral density function of the corresponding

one-dimensional process is evaluated. The one-dimensional processes are

generated using the generator described by (6.21) or any other

one-dimensional generator (e.g., by matrix decomposition).

Consider for illustration the case of a single three-dimensional

point process (i.e. K = 1) having an exponential covariance function

(Equation 2.3). Then from (6.15) the corresponding one-dimensional

processes have covariance functions given by
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2a2 k 2x1x23
(1) M

S4, e ( ) =
(6.31)

,2 (1 + x k sin 2 sin e + x2 k2sin 2 $ cos 2 e + X2 k2sin212* 2 si3

and they can be generated by (6.21), where in the single random field

case (k=1), Equation (6.22) gives:

(1) 11 2
Q ,e (k) = S , ()
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6.3 Estimation of Large-Scale Model Parameters Using Statistical

Inference and System Identification Methods

The effective parameters derived in the previous chapters depend on

the large-scale trends (means) of the soil property variability and on

the stochastic properties of local soil property variability (variances,

correlation lengths, etc.). In order to be able to use the large-scale

flow and transport models in applications, these soil property character-

istics should be evaluated using available information. Three types of

information can be available depending on the particular application.

The first type includes direct observations of the local soil properties

at a finite number of observation points. The second type of information

includes observations of the local capillary tension head and/or concen-

tration outputs. Such observations will be available only after the real

system has been excited with water and tracer inputs. The last type of

information includes prior knowledge about the soil variability. Such

knowledge may be based on geologic information, an expert's judgment,

etc. Although often qualitative, this information can be very important

since it could suggest an appropriate parametric model for the mean soil

properties (e.g., constant, linear, polynomial trend, etc.) the form of

the covariance function for the local soil properties (exponential ,

etc.) a prior mean and covariance for the unknown parameters, etc.

Section 6.3.1 discusses the problem of estimating the soil parame-

ters, required by the large scale models, when observations of the local

soil properties are available. Section 6.3.2 discusses the more general

system identification problem when observations of the system output
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and any other observations or prior information are available, and

develops a new identification method.

6.3.1 Statistical Inference Methods

This section discusses the problem of inferring the stochastic para-

meters of soil property variability, when point measurements of the local

soil properties are available. The stochastic parameters include the

mean, variances, spectral density functions, etc. and are required for

specification of the large-scale models. Since statistical inference is

an important topic of the parameter estimation literature, the following

presentation is by no means complete. The intention is to discuss some

inherent problems and to mention the existence of some new methods that

might be useful in this problem.

Estimation of the statistical parameters of a soil property random

field is associated with two inherent problems. The first problem comes

from the fact that only one realization of the random field can be

observed (i.e., the existing realization). As it is impossible to esti-

mate an underlying probability density function of a random variable from

a single observation of the variable, it is impossible to estimate the

statistical properties of a random field from only one of its realiza-

tions. In order to get this theoretical difficulty across two approaches

could be followed. In the first approach it might be assumed that simi-

lar soil formations (e.g., glaciofluvial deposits at different settings

in the New Mexico Desert area) are different realizations of the same

underlying random field. This is similar to assuming that the generating

power at the time of formation of these sediments did not arbitrarily
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generate them but generated them according to some probability law,

depending on what materials existed in the area, laws of physics, etc.

This approach of assuming that similar soil formations are realizations

of one random field will be particularly useful in the future when

sufficient information characterizing the nature of variability of

different types of soil formations has been collected and analyzed.

A second approach for estimating the stochastic properties of a

random field from one only realization, requires an ergodic hypothesis.

Because this hypothesis often generates conceptual difficulties in the

field of hydrology, a simple and intuitive interpretation is given below.

The ergodic hypothesis assumes that space averages of a single realiza-

tion of a random field are equal to the ensemble statistics. In other

words, even only one realization carries sufficient information about the

statistical properties of the underlying random field. This assumption

cannot be proved or disproved, since one realization is available.

Nevertheless, this assumption helps in (i) removing large-scale varia-

tions that their exact form is of importance in the problem under consid-

eration and we may not want to model them as random and (ii) identifying

the properties' of a random. field that produces realizations that look

like the observed reality. The ergodicity assumption is simply a

convenient tool of analysis. Its appropriateness in a particular problem

depends on whether the final product is useful or not.

A second difficulty associated with the practical problem of esti-

mating the statistical parameters of a random field, is the fact that

even the one existing realization of the random field is not known at
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each point in space. It is only known at a few sampling locations and

the sampling domain is of a finite size.

Despite the above theoretical and practical difficulties, estimation

of the statistical parameters of a random field, can be feasible if

sufficient data exist and the estimation method is appropriately designed

and used. The remainder of this section discusses several approaches

that have been proposed for inference of stochastic parameters of random

fields. Since the literature on the subject is extensive, the following

discussion is brief and by no reans complete. The objective is to point

out some important aspects that should be considered and give some basic

references.

The first step of the statistical inference of random fields problem

is to evaluate the mean (trend) of the underlying process. Usually a

parametric mean model is assumed (e.g., constant, linear, polynomial,

etc.). The form of the mean model selected depends on how the data

look, the judgment of the modeler, the type of required application,

etc. If a constant mean model is assumed, the mean can be easily evalu-

ated as a spatial average of the local measurements. If a spatially

varying mean model is assumed, the model coefficients can be estimated

using a least squares or a parameter estimation method (e.g., kriging,

see Journel and Huijbregts, 1978; Delfiner, 1976; Chauvet et al., 1982;

David, 1977, etc).

The residual process is obtained by subtracting the mean from the

local measurements. The residuals are assumed to be zero mean stationary

and ergodic. The second and most difficult step of the statistical

inference problem is estimation of the stochastic properties of the
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residuals (i.e., covariance, spectral density function, etc.). Note that

the stochastic theory developed in previous chapters requires evaluation

of the spectral density functions of the residuals rather than the covar-

iance function.

Two basic approaches could be followed for estimation of the spec-

tral density functions of the residual processes. The first approach

follows three steps. In the first step the local measurements are

processed and the sample covariance function C(ri) at discrete separa-

tion distances ri are obtained. If the measurements are obtained in a

regular sampling lattice, estimates of the covariance can be obtained as

a spatial average of the products of point measurements lying on same

distances, (see, e.g., Davis, 1973). If measurements are irregularly

spaced, it is possible to discretize distances in several intervals and

take a spatial average of products of measurements that fall into parti-

cular intervals, (see, e.g., Journel and Huijbregts, 1978; Agterberg,

1970; David, 1977). The second step of this approach consists of fitting

a covariance function model C(r) to the discrete sample values of the

covariance function C(ri) obtained in the first step (see, e.g.,

Agterberg, 1970). Parametric models having a few parameters (e.g.,

exponential, spherical, etc., covariance models) are particularly useful

and very popular. The third step of the analysis consists of evaluation

of the spectral density function S(k) by taking the Fourier transform of

the covariance function C(r) estimated in the second step.

The second approach follows two steps only. The first step consists

of obtaining estimates of the covariance function C(ri) at discrete

separation distances, similarly to the first approach. The second step
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consists of direct estimation of the spectral density function S(k) with-

out intermediate evaluation of the covariance function.

Although both approaches are seemingly similar, the second approach

seems more attractive for two reasons. First one usually knows more on

the spectrum side than on the covariance side and may take into account

such knowledge in the estimation procedure. In our problem for example,

we know that different components of the spectrum have different contri-

butions to the output (see, e.g., Equation 3.37), so an appropriate

weighting could be chosen for a better estimation of the more important

components of the spectrum. When estimating the covariance function

however, this is not possible since the effects of the different separa-

tion distances of the soil properties on the output are not known. A

second property that makes spectral estimation more attractive is that

the spectral estimates tend to be uncorrelated while covariance estimates

are usually correlated. As a result statistical confidence limits are

easily established for spectra but not for the covariance.

The spectral estimation problem is now briefly discussed. There

seems to exist a large number of methods and their effectiveness largely

depents on the particular application. Fourier transform methods have

been extensively used in the past. However, several recent methods such

as the maximum likelihood method and the maximum entropy method are gain-

ing increasing interest in the multidimensional case and are the subject

of current research activity in this field (McGlellan, 1982). Since some

of these methods are very promising and unknown in the field of hydrol-

ogy, they are briefly discussed below mainly for reference purposes.
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The Fourier transform methods consist of taking the Fourier trans-

form of the covariance function estimated at a discrete number of separa-

tion distances. At small separation distances the covariance function is

estimated from a large number of pairs of points. At large separation

distances however, only a few number of pairs of points are available and

significant errors in the estimated discrete values of the covariance

function are expected. In order to make the method more robust, a

smoothing (windowing) procedure is usually used (see, e.g., Jenkins and

Watts, 1968). There are three problems associated with using these

methods in the multidimensional case. First, the sampled data should be

available in a uniform grid. Second, in the multidimensional case there

are only a few windows to choose from (McClellan, 1982). The third

problem is that these methods do not produce a high resolution estimate.

The maximum likelihood method (e.g., Cason, 1969; Larimore, 1977)

does not require regular sampling or windowing and yields a high resolu-

tion estimate of the spectral density function. The objective of the

method is to evaluate the spectral density function by maximizing the

probability of occurence of the measurements. The maximum likelihood

method is of particular interest since it is relatively simple and very

flexible.

The maximum entropy method proposed by Burg (1968), can provide good

resolution on lower frequency estimates. In the one-dimensional case

this estimate can be computed from a linear autoregressive type equa-

tion. The maximum entropy estimate provides a good resolution even when

the sampled part of the random field is of a limited size. It seems
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that this method is particularly suited in our applications, where only a

limited part of the realization is observed and high resolution at lower

frequencies is important. This method, requires solution of a nonlinear

optimization problem which might be computationally involved. The

efficiency of this algorithm should be demonstrated using real data.

6.3.2 System Identification

In the context of this study system identification is defined as the

derivation of a predictive model of a system using any available informa-

tion, including observations of the system output. This section

discusses the problem of the identification of unsaturated flow systems.

The theory of this section can be easily extended to the saturated flow

case and to the contaminant transport problem.

Two basic steps of system identification are model structure selec-

tion and parameter estimation. Selecting an appropriate model structure

is of paramount importance in most problems of identification of complex

systems (see, Mantoglou, 1983 and Mantoglou and Schweppe, 1983). Several

factors guide the model structure selection process such as model struc-

ture validity and accuracy (from a physical perspective),parameter iden-

tifiability, requirements of the parameter estimation method in terms of

cost and accuracy (i.e., linearizations, iterative minimization, cover-

gence, etc., see, Mantoglou and Schweppe, 1983). Successful identifica-

tion often depends on selecting an appropriate model structure. Recent

identification studies have not realized the importance of this problem

and consequently results produced are often questionable.
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In the unsaturated flow case for example, the model of the system

derived using physical arguments (i.e., the local governing flow Equation

(3.3)) is theoretically the most valid and accurate model of the system.

As was discussed earlier however, this model is not very useful in appli-

cations since the model parameters correspond to the highly variable

local properties which cannot be estimated from a finite data set.

Another more pragmatic approach, which essentially represents current

hydrologic practice, is to assume that the local model is valid on a

larger scale and that the parameters of such a large-scale model are some

smooth estimates (mean) of the local highly variable soil properties. It

is possible then to estimate the model parameters from a realistic data

set, since these parameters are not the local properties but they are

large-scale trends. This approach has been extensively used for identi-

fication of aquifer flow systems (see, Townley, 1983; Clifton and Newman,

1982; Cooley, 1982; Newman and Yakowitz, 1979; Shah et al., 1978, etc).

The large-scale flow equation (usually selected without justification to

be of the same form as the local governing equation) is discretized and

the unknown parameter values are evaluated at the numerical discretiza-

tion nodes or blocks. Since the number of parameters is usually large

compared to the available information, additional constraints concerning

the variability of the node or block parameters are often imposed (e.g.,

zonation, parameterization, Bayesian estimation). Since the large-scale

model parameters and their relationship to physical characteristics are

not well defined in these applications, the imposed constraints are often

arbitrary and are usually selected for mathematical convenience.
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Besides the above critique it is possible that the identification

approach discussed above may be well suited for identification of aquifer

flow systems since the aquifer flow systems are almost linear in the

parameters and it is possible that the small-scale property fluctuations

may not have significant large-scale effects (see, Mizel et al., 1980;

Dagan, 1982). In the unsaturated flow case however, this approach is

definitely not appropriate. The unsaturated flow system is highly non-

linear in the parameters and, as was seen earlier, the local soil

property variability has important large-scale effects (hysteresis,

anisotropy, etc). A valid large-scale model structure of the unsaturated

flow system should consider the large-scale effects of local soil

property variability.

The stochastic methodology developed in Chapters 3 and 4 provides a

means for deriving a valid large-scale model structure that takes into

account the large-scale effects of local soil property variability. The

large-scale model structure obtained using the stochastic theory,

provides a theoretically justified, not an arbitrary, approximation of

the large-scale processes involved and should be able to capture these

large-scale flow processes. The large-scale model parameters depend on a

few variables (large-scale trends, variances, correlation lengths, etc.)

which can hopefully be estimated using prior knowledge about soil

property variability, measurements of the local soil properties and the

system output, etc. Note that the large-scale model predicts large-scale

flow characteristics rather than local outputs. Because of this a model

error is introduced and the statistical properties of this error should

be taken into account in the parameter estimation procedure and during

model use.
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After the important step of model structure selection, the model

parameters must be estimated using available information. A parameter

estimation method, based on a maximum likelihood criterion, is developed

below. The method is very general and flexible, and it can consider both

soil property, capillary tension head measurements, and prior information

about the model parameters. In addition the method is physically consis-

tent and can take into account the effects of the model error.

Let represent the vector of unknown parameters having elements: F,

2 2 2A, r, Of, 0a, , y 1, 12, X3, etc. Define vectors *i,

_2, ---. N representing the capillary tension head observations,

where 4i include observations at a set of measurement points distri-

buted throughout the flow domain at times i = 1, ... , N. Similarly as

above define vectors Hi(a), H 2(0), ... HN(C) to include the capil-

lary tension head predicted by the large-scale model having parameters S,

at the locations where measurements of ip were obtained at times i = 1,

0.., N. These model predictions can be obtained using a numerical three-

dimensional unsaturated flow code. Vectors i are related to Hi

through

j. = H.( ) + h. (6.32)

where hi; i = 1, ... , N, are the large-scale model errors at the meas-

urement locations and times i = 1, ... , N. If measurement errors are

present they should be added to hi. Defining
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H h,

= ; H = H2  ; = 12 (6.33)

N N -N

(6.32) is written as:

' = H(s) + h (6.34)

where ' now includes the output measurements at all locations and all

times. In the case when direct observations of the local soil properties

2nKs, a and C exist, define vector s to include these observations. Let

P and p represent the mean and fluctuations of the soil properties at M

measurement points. Vector P depends on the unknown parameter vector f

and in particular on the mean properties F, A and r. We may then write

s = P(s) + p . (6.35)

Note that functions H(O) and P(8) in (3.34) and (3.35) depend on 8

directly. The random vectors h and p however, do not directly depend on

8 but their corresponding covariances Ehh and Lp depend on B. Let

us further assume that prior information about parameters 8 is available,

in terms of a prior mean _ and a prior covariance . Such informa-

tion may be available if the type and characteristics of the geologic

unit are available, or by using the modeler's judgment, etc. In this

case $ can be expressed as follows.
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B=5 + b (6.36)

where B and _bb are the prior mean and prior covariance which are

assumed to be known. Combining (6.34), (6.35) and (6.36) yields

z = c(S) + v (6.37)

where

H(_) h

Z s ; fl) = P(s) ; v = p . (6.38)

B b

The covariance matrix of v is given by

I (hS.) h (s) 0-00 _hpW -
( (s) ( ) 0 (6.39)

=V - -ph- -pp -
0 0 4b

where it is assumed that parameters 5 (which include F, A, , etc.) are

not correlated to the actual local property fluctuations (f, a, y, etc.).

Equation (6.37) corresponds to a general nonlinear parameter esti-

mation problem. Assuming that v is a Gaussian vector the maximum likeli-

hood estimate of 5 is obtained by minimizing the following cost

functional

J(5) = n + [z - (5)] w (a) [z - (w) (6.40)
- vv =VV -
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(see, e.g, Schweppe, 1973). Note that even when v is not Gaussian the

estimate obtained by minimizing (6.40) is a useful estimate since it has

some attractive asymptotic properties (see, e.g., Goodwin and Payne,

1977). Using (6.39), (6.40) simplifies to

J( ) Xn ZT -1+
J(8) = Zn Z (a) + [y - R(Z)] - (8)[y - R(8)] +

...yy- - - - yy - - -

+ [B - 8 ]T Z [B - ] (6.41)
- -=bb 1B- -

where

H(a)
y = ; R(8) = ~ (6.42)

s P(W)

Lhh(_ .hp~a)
() = (6.43)

yy - Lp(a) E (a)
-ph =pp -

and term XnIbbI has been dropped from the objective function (6.41),

since it is assumed to be a constant.

In order to minimize (6.41) it must be possible to evaluate the

corresponding values of R(s) and yy() given a value of a. R() may be

obtained by numerical solution of the mean flow equation. The covariance

matrix yy can be evaluated using the stochastic theory developed in

Chapters 3 and 4 as follows.

Matrix y includes elements of the form E[h(xi,tm)

h(xj,tn)], E[h(xi, tm) f(xj)], E[h(xi, tm) a(xj)],

E[h(xi, tm) Y(xj)], where i, j = 1, ... , N and m, n = 1, ... ,M for

a given value of S these cross-correlations can be evaluated using the
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general theory developed in Chapter 3. In order to be able to evaluate

these cross-correlations, the differential Equation (3.45) must be solved

as a function of time (numerical solution seems necessary). In certain

cases however, (e.g., dry soils and relatively large times) it may be

possible to use the steady state appproximation for dZh, discussed in

Chapters 3 and 4. This approach is similar to the steady-state Kalman

Filter assumption often used in system identification studies.

The value of a that minimizes J() can be obtained by using an iter-

ative minimization algorithm (e.g., a gradient search method). Questions

of convergence, accuracy and cost of the iterative procedure are of

importance and should be considered (see, Mantoglou, 1983; and Mantoglou

and Schweppe, 1983).

The identification method described above is very general and flex-

ible and can be used in a large variety of flow identification problems.

The particular cases when prior information and/or measurements of local

soil properties are not available can be easily treated using simple

modifications of the general method. The case of a spatially variable

mean (trend), can also be treated using a parameterization of the mean in

terms of a basis function vector (e.g., linear, polynomial, etc.). The

identification procedure has been developed in a general format and the

suggestions for its application are very general. For each particular

application, the method should be modified, simplified, etc., depending

on the nature and requirements of the problem. In some cases it may be

useful to use other techniques as well, for example, interpolation (using

kriging, etc.) of the measurements of * between the measurement points,

before parameter estimation. In other cases it may be appropriate to
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assume a completely unknown or completely known covariance matrix for the

model errors instead of trying to evaluate them using a quite involved

procedure. Another question, which is important in applications, is

whether the assumed parametric model (e.g., constant mean, exponential

covariance, etc.) is appropriate. Hypothesis testing methods could be

used in order to address such questions.

Figure 6.4 illustrates the steps of the identification method

discussed above. The intermediate step, where the effective parameters of

the large-scale model structure are evaluated is also shown.
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6.4 Summary and Discussion

This chapter proposed and developed theoretical methods that can be

used in order to test the validity of the stochastic theory and apply the

large-scale models in real field problems. The suggested methods are very

general and can be used directly or with conceptually simple modifica-

tions in the saturated flow and transport, oil reservoir modeling and

other distributed parameter problems.

Section 6.2 proposed a five step Monte-Carlo procedure for testing

the validity of the stochastic method. The spectral turning bands method

is extended for digital generation of point values or spatial averages of

multiple, cross-correlated stationary random fields. This method is very

general, flexible and highly efficient and should have several applica-

tions in hydrology and in other fields of geophysics.

Section 6.3 investigated the problem of estimating the parameters

required for definition of a large-scale model of the system. The problem

of estimating these parameters using the measurements of local soil

properties (statistical inference problem) and some inherent problems and

methods of analysis are briefly discussed. Then a new identification

method is proposed. This method suggests selecting for identification a

large-scale model structure of the form derived in previous chapters. It

was discussed that this structure is physically justified because it

takes into account the large-scale effects of local soil variability

(such as hysteresis, anisotropy etc.) and it has a few parameters only

that can be hopefully estimated from a limited data set. It is expected

that such large-scale model structure describes the large-scale processes

better than traditional models which ignore the existence and effects of
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spatial soil variability. In addition, since the unknown parameters are

relatively few, it is expected that these parameters will be identifiable

if sufficient information is available and it is properly used. Past

approaches, used in the unsaturated flow case, are based on the assump-

tion that the large-scale model structure is of the same form as the

local governing equations where the model parameters are smooth functions

of space. This approach does not take into account the large-scale

effects of local soil variability and it is not recommended for the

unsaturated flow case where such effects (e.g., hysteresis, anisotropy

etc.) are important. Note also that if a very dense discretization, which

can take into account the local soil variability details, was used, the

number of unknown parameters would be extremely large and not identifi-

able.

Next, Section 6.3 outlined a very general and flexible parameter

estimation methodology that can take into account local capillary tension

head and soil property measurements as well as prior information about

the unknown model parameters. The methodology is based on a maximum like-

lihood criterion which considers the statistical properties of the model

error. The proposed methodology can be easily extended to the saturated

flow and the contaminant transport case.
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CHAPTER 7

SUMMARY CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary and Conclusions

This study developed a new framework for modeling large-scale,

naturally heterogeneous unsaturated flow and transport systems. Due to

natural soil variability the large-scale system behavior cannot be

adequately described by the local physical models. A general methodology

was developed for derivation of realistic large-scale models which are

capable of predicting the behavior of real unsaturated flow and transport

systems. These models consider the effects of spatial variability of the

hydraulic soil properties and have relatively few and identifiable

parameters that can be estimated from a realistic data set. A stochastic

approach was followed. It was assumed that the local hydraulic soil

properties are realizations of three-dimensional, stationary random

fields. The local governing flow and transport equations were averaged

over the ensemble of realizations of the underlying soil property random

fields. The stochastic methodology considers the three-dimensionality of

the local flow and transport processes and the nonlinear dependence of

the local capillary tension head and concentration outputs on the local

soil properties. The so derived large-scale models thus account for the

large-scale effects of spatial soil variability.

Chapter 2 discussed the problem of spatial variability of the

hydraulic properties of natural soil formations and proposed a

representation of such variability in terms of three-dimensional
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stationary random fields.

Chapter 3 developed a general stochastic methodology for derivation

of large-scale models of unsaturated flow and transport and evaluation of

effective parameters for these models. The stochastic approach used the

following three steps. First, the local governing flow and transport

equations were averaged over the ensemble of the soil property

realizations and the form of the large-scale models was constructed. In

the second step, the local fluctuations of the capillary tension head or

concentration ouputs were related to the local fluctuations of the

hydraulic soil properties through a set of linearized stochastic partial

differential equations. In the last step of the stochastic methodology,

the effective large-scale parameters were evaluated using the linearized

fluctuation equations derived in the second step and a spectral

representation of stationary processes. The large-scale models derived

using this methodology, are expressed in a partial differential equation

form and are capable of predicting the mean capillary tension head and

the mean concentration outputs. The effective model parameters depend on

the mean soil properties and the statistical properties of soil property

fluctuations (variances, correlation lengths), but they also depend on

the mean capillary tension head and its spatial and time derivatives.

In Chapter 4 the general stochastic theory of Chapter 3 was used to

evaluate the effective unsaturated flow parameters in the case of

transient flow in stratified soil formations. It was found that the

effective hydraulic conductivity, the mean soil moisture content and the

effective specific soil moisture capacity show significant hysteresis.

It was also found that the effective hydraulic conductivity is
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anisotropic with a degree of anisotropy depending on the mean capillary

tension head and the mean flow conditions. In the case of wetting, the

degree of anisotropy is large, while in the case of drying it is

relatively small. These effects are due to the spatial variability of

soil properties rather than to pore scale effects, since the latter were

not considered in the analysis. This chapter also gave a physical

interpretation of the results of the stochastic theory, examined a series

of field observations that are in agreement with these results and

discussed the implications of the stochastic theory results on practical

applications such as waste disposal control.

In Chapter 5 the macrodispersivities were evaluated in the cases of

a statistically isotropic and a statistically anisotropic (stratified)

soil formation, using the general theory developed in Chapter 3. It was

found that the effective macrodispersivity depends on the mean capillary

tension head. This phenomenon is probably due to the fact that the

spatial variability of the soil properties may introduce a dependence of

tortuosity of the unsaturated flow paths on the soil moisture content.

The results of this chapter indicated that longitudinal macrodispersion

is generally governed by convective transport. In the cases of an

isotropic soil or a stratified soil with mean flow perpendicular to

stratification, transverse macrodispersion is governed by local

dispersion and it is relatively small. However, in the case of a

stratified soil with mean flow at an angle to stratification (Section

5.2.3) transverse macrodispersion is convectively controlled and could be

significant. Chapter 5 also discussed a series of field observations and

compared them to the predictions of the stochastic theory.
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Chapters 4 and 5 derived relatively simple generic relationships

showing the dependence of the effective large-scale parameters on the

different soil property and flow characteristics. Such relationships are

extremely useful because of the generality, simplicity and insight they

provide. In order to make analytical evaluations possible, several

assumptions were required (e.g. stationarity, smallness of fluctuations,

etc.). These assumptions may restrict the validity of the results of the

stochastic theory in the cases where the assumptions are strictly valid.

It is expected however, that these results will be at least qualitatively

valid in a wider variety of situations. For example, it is expected that

the effective unsaturated flow parameters will show hysteresis and

anisotropy in finite domain problems as well, even though the

stationarity assumptions required by the stochastic theory are not

strictly valid in such cases. Since large-scale behavior of unsaturated

flow and transport is presently highly unknown, we believe that even

qualitative information is important since it may indicate important

characteristics of the problem, thereby suggesting directions that future

research should follow.

The validity of the stochastic theory developed in this thesis

should be tested with appropriately designed experiments in order to gain

confidence in using it in applications such as waste disposal management.

Chapter 6 suggested testing the stochastic theory using a Monte-Carlo

simulation method. The spectral Turning Band Method was developed for

direct synthetic generation of point values or block averages of

multiple, statistically anisotropic, two or three-dimensional, stationary

random fields. This method is very general and has other geophysical
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applications as well. Chapter 6 also discussed the practical problem of

estimating the stochastic parameters required by the large-scale

unsaturated flow and transport models. Statistical inference methods

were briefly discussed and a new identification method was proposed. The

main idea of the identification method is to use the large-scale model

structure, derived using the stochastic approach, rather than the

physical model structure. It is expected that the large-scale model

structure will be capable of capturing the basic large-scale flow and

transport characteristics and will be suitable in applications because

this model requires only a few parameters that can be estimated

systematically from a realistic data set.

The results of the stochastic theory developed herein have important

implications on practical problems such as waste disposal control. For

example, the stochastic theory predicts that, in relatively dry soils, a

contamination plume tends to spread laterally while vertical movement is

relatively slow. As a result, contamination may arrive at the water

table much later than predicted by classical one dimensional models and

the horizontal extent of contamination may be much larger than

traditionally predicted (see Chapter 4). Such effects should be

considered in future modeling studies of large-scale unsaturated flow and

transport systems.

The general modeling framework proposed in this thesis is new and is

not only applicable to unsaturated flow and contaminated transport but

also to other distributed parameter problems (e.g. saturated flow and

contaminant transport, oil, geothermal reservoir modeling, etc.).
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7.2 Recommendations for Further Research

The most important conclusion of this study is that, due to the

spatial variability and parametric nonlinearity of local governing flow

and transport equations, unsaturated flow and transport in field settings

behave differently than was previously thought. Thus an important

recommendation is that future research on this topic, regardless of the

methods used, should not ignore the large-scale effects of spatial

variability.

Other more specific recommendations are related to validation,

application and extensions of the stochastic theory developed in here.

Chapter 6 provides several detailed recommendations in these directions.

It is also of interest to use a numerical solution for dZh in the case

of a wet soil and to investigate whether flow in such cases is of a

diffusion type. Other possible extensions of this work include treating

the unsteady transport case, and evaluation of the variance of

concentration c. It also seems promising to try to extend the general

ideas to other distributed parameter systems such as aquifers or oil

reservoirs.
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APPENDIX A

This Appendix evaluates the solution of Equation (3.45), where

61, 62 are given by (3.46) and Jt = WH/9t > 0. The general solution

of (3.45) is given by (3.38) where now

( T) = 61 + 62 (t)
(A.1)

g(T) = AJt

It holds

t

f (-) d = A Jt t
0

(A.2)

t
f(6 + 62 T) e
0

A J t
dT =

61 AJtt AJtt t 1 1
= ,7 e + 62 ITT t7)2

Equation (3.38) then gives

6 AJtt AJtt t
y(k, t) = {y(k, o) + le + 62 e(J )2

t

6 6 -AJ t
[1 2 t

Jt ~ At)

and using (3.46), A.4 yields
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(A.4)

- a2
(AJ t)2



dZ
dZ f- H dZa - dZa

y(k, t) = [ A + A

+ [y(k, 0) -
1 6 2 -AJ tt

1+ (A 2 e (A.5)
t t

300



APPENDIX B

In this Appendix the integral

00 a k + a2
a 

-1  2  2 dk 1

1 k1+ a3 k 2+ a 1+ a 5 k1

is evaluated. The above integral is written as

I = R + R2

R =

R 2 _ 0
0

B k 2+ B2

S + k1  + 2  dk
1 3 1

B
3

1 + a k5 1

dk 1

a - a2 a5
B - 2

1 + a a - a a4 5 3 5

B2 =a2 + a a5 B 1

B = -a5 B

(B.1)

(B.2)

(B.3)

(B. 4)

(B.5)

Integral R1 is evalutaed first. The type of integration depends

2_
on the sign of A = a3 - 4a4. For A > 0, the denominator of the

integrand in B.3 has two real and negative roots: p1 = -f, P2 = -9

where f, g are given by
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with



3 + 1 - (B. 6)
f, g = a3 - 4a (

and f, g, > 0. Then

B k2 + B2 B k2 + B2  C1  C2

+a1 2 + a 2 1= 2 (B.7)
k + a3 k + a (k + f)(k1 + g) k2 + f k2 + g

B2 - B f

= 21
(B.8)

C B 1g - B2
2 B g - T2

Integral B.3 is now easily evaluated.

(B.9)
R= C --- + C 2-

2/T 2V

Substituting B.8 and using 8.6 yields

R (ArG) B + B2 (B.10)

(ArG) V4ArG + A2L

For A < 0, the denominator of the integrand in B.3 has no real

roots. In this case a different type of integration is required. Since

A = a3 - 4a4 < 0 it holds a31/2 < /. Let p =V4 ArG. It

is possible then to express a3 as a3 = 2p cos-r . Using the

2
transformation of variables t = k1, B.3 yields
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o B t1/2+ B t-1/2

R =7 1 2 21 t + 2p(cosr)t + p
(B.11)

Using Equation No. 3.252.12 of Gradshteyn and Ryzhik (1980), for p = 3/2,

yields.

1/2

o t + 2p(cost )t + p

= -r p -1/2 (cosec-) cosec(3r) sin = sin (T/2)
2 sin T

p

Using the identity sinT = 2sin(T/2) cos(T/2) yields

T -s 1
1 2V~ cos(-u/2)

Substituting

2p + a 3

(B.12)

(B.13)

cos (T /2) = (B.14)(1 + cosT) =

Equation B.13 gives

T 1

V 2p + a 3

Note that

a = a 3 - 4a = (2ArG + A2 L2 - 4 A2 r2 G2 = A 2(A 2L + 4 ArG).
e A4

Since A Li > 0 for A < 0 it is APG < 0, and IjArGj -ArG.
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Equation B.14 then

T T

1

Equation No. 3.252.12 of Gradshteyn and Ryzhik, (1980) for Pi = 1/2 yields

t-
1/2

t + 2 (cost ) t + p2

- TP-3/2 (cosect) cosec (T ) sin ( - ) I=T

-

2pVT

sin(T/2)
sinT

1
COS(T/2)

Substituting B.14 and form ArG and for ArG < 0, Equation B.16 simplifies

to

(Ar G) (AL7)

Substituting B.15 and B.17, Equation B.11 yields

(Ar G)B - B

1 (ArG)AL 1)2

Integral R2 is easily evaluated from Gradshteyn and Ryzhik,

(1980)
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T = f
0

(B.16)

(B.17)

(B.18)

simplies to



1T

R 2 =XB3 (B.19)

Given the above expressions for RI and R2 integral Il is

evaluated form B.2. For A > 0, substituting B.10 and B.19 Equation B.2

gives.

(ArG) B + B B3  (.20)
I - t 1 2 + ]( . 0

1(ArG) /4APG + A L1 1

Substituting B1, B2, B3 from B.5, Equation B.20 yields

a / + a a a - V a a + a -a a a
1i [ 4 1 45 42 5 2 2 35

(ArG) V4ArG + A L (1 + a a - a a)

a 1- a2 a5 (B.21)

a5 ( + a - a3 a5 ) 1

while for A < 0, substituting B.18 and B.19, Equation B.2 gives

(Ar G) 1 - B2 + B3.22)
I (Ar G) (AL 1) + 1 B 2

Substituting B1 , B2, B3 from B.5, Equation B.22 gives

-a1 /1 - a a4 a5 + / V a2 a -a2 +a a3 a5

(ArG) (AL 1 ) (1 + a4 a5 - a3 a5

a1 -a 3
-a 5  1 2 5 - (B.23)

(1 + a4 a5 - a3 a5 )1
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APPENDIX C

In this Appendix the integral

0 2 2
S(a 1k 1  + a) 1  1

12 0 4 2 +ak kk4 + a3 k + a- 1 + a5 k

is evaluated. This integral is written as

12 = R 2+ R2

where

co
R = f

0

o

R 2 _
=

B k 2 + B2
4 1 2

kg +a3 kg +2

B3

3 21 dk1 + a 5 k1

dk 1

with

a2 + a -a a5 a a3
B -- 2 245 1

1 + a5 a4 - a 3a5

B2 -a 4 (a 1 - a5 B 1 )

B3 a1 - a5 B
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(C.1)

(C.2)

(C.3)

(C.4)

(C.5)



Integrals R1 and R 2 have been evaluated in Appendix B. Substituting

B1, B2, B3 given by C.5 into B.20 of Appendix B gives for A > 0

a2 /4 + a2a+a aga5 / 4-a a3 V - a a4
22 7 2

(ArG) /4 ArG + A2L1 (1 + a4a5 - a3a5)

+
a1 -a aa1 a 2 a a5 )

(1+ a 4a 5 2- a3 a5 )X 1

+

I (C.6)

while B.22 gives for A < 0

-a2 /T - a2a4 a5 - a1 a4 a5 V + aa 1 -aa4
I2 ~ 7 (ArG) (AL1) (1 + a4a52- a3 a 5

a1 - a 2 a5
+

(1 + a4 a5 - a2 a5) 1
I (C. 7)
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APPENDIX D

This Appendix derives an approximate solution to the one dimensional

unsaturated flow equation, when a soil moisture pulse is placed at the

soil surface. This solution is similar to the one given by Wilson (1974)

but here we estimate the mean capillary tension head H rather than the

soil moisture content.

It is assumed that the initial mean capillary tension head H0 is

constant throughout the soil depth. It is also assumed that the vertical

hydraulic conductivity is given by K11 = KGe-AH and that the mean

soil moisture content is given by 0 = -r H+E[e 0 ] and it is independent

of the mean flow conditions. The moisture pulse input at the soil

surface generates a soil moisture wave. An approximate solution

predicting the movement of this wave is obtained as follows.

The governing one-dimensional mean flow equation is given by

^3H a 3 (H + x) 3H 11(H
C = [K (H) x) = [KI(H) + (D.1)

x1 111 1 31 a 1

Let
H = H + H (D.2)

where H0 the initial capillary tension head and H* the fluctuation of

H around H0 due to the generated soil moisture wave. If the

fluctuation H* is relatively small it is possible to approximate K11

in Equation D.1 by
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A

AK

K G (H) K., (HD) -

Using K11 = KGe-A and D.2, D.3 gives

I H =H

K1 H) - K1 (H0 ) - A K11(H

Substituting D.2 and D.4 into D.1 gives

^ 3 H
C = t

3 2*K (H0 ) 2
x11

A K 11(H 0 )
2

Assuming that the square of H*

3 H*
a t

*
+H

or

A K 11 (H 0 )

C

*

v 3ax

3 H
a

is relatively small D.5 simplifies to

- 11 (H0) a 2 H
(D.6)

C a x1

2 *
xD 3 2
ax12

(D.7)

where v = A K11(HO)/C and D = Kjj(Ho)/C.

dimensional

This is a simple one

diffusion equation. Solving D.7 for H* and substituting

into D.2 gives the following approximation for the mean capillary tension

head,
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(H - H0 ) (D.3)

(D.4)H

A K1 (H0 )
3 H
3 x (D.5)2 -*

Sx1 2



dC x1 - vt)2

H = H0 - dC exp [- 4t- (D.8)

where d the depth of water added in the pulse. Equation D.8 predicts H

as function of time at a given depth. Taking the time derivative of D.8

with respect to time gives

(x v)2 2 2 t2
3H d/C 1 - vt)2 1 + 1  - vt (.9)

4 Dt

The pair of equations D.8, D.9 defines the values of H and Jt as a

function of time t at any depth xi as the soil moisture pulse moves

vertically through the soil matrix past this depth. Equations D.8 and

D.9 have been used for generating values H and Jt and the corresponding

effective hydraulic conductivities in Figures 4.13, 4.14, 4.15, 4.16.
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APPENDIX E

This appendix evaluates the derivative 9y/ t of Equation (4.10). In

this evaluation it is assumed for simplicity that the second order

derivatives 3 2H/3 t2 and 2H/1 xi t are relatively small. It is

also assumed that the squares [3H/;tj 2 and [exp (-AH)J 2 are

relatively small. Substituting the expression for G given by (3.31),

Equation (4.10) is written as

[JiJ(dZ -HdZ ) k1 - JH dZa KG
1 -

xi a G AH+

KG(kl2 + jALk)e-AH + M +

(rdZ - r HdZ - dZ )
+ f a Y 9_H- (E.1)

KG(kl2 + j AL k e-AH + Ar E3 t

Let y = p1 + P2 where pl and P2 the first and second terms of

E.1. Taking the derivative of pi with respect to t gives

a p1  -j J - dZa k

S _ 1 t a 1 kG e-AH +
KG(k2 + j AL k )eAH + r G

j J (dZ -HdZa) k - (J a) dZH j KG

-Ae-AHKG(k 2 + jL1 k 1)e-AH+ -e-H -AKG(k 2 + jAL k )e-AH+ A H

K (k 2+ j AL k )e-AH+ Ar HJ 2 a t

(E.2)
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Using the assumption 32H/3t2 0 0 and [exp(-AH)2 - 0, E.2 simplifies

to

3p1 =

71-

j k (dZa + AdZ - AH dZa)-A(J a )dZa

K (k + j AL k )e AH+ Ar-
G 1 1 1 a t

-AH aH
KGe a

Dividing the numerator and denominator of E.3 by KG e-AH gives

p1
j 3 k (dZ + AdZ - HAdZ) - A(J -) dZ

1 (1 a a 1 k ) + A
(k1 2+ j AL 1k) + AP Gat

The second term of E.1 yields

3p2
at

3H
t dZa 3H +

KG(k + j AL k )e-AH+ +

-AKG(k 2+ j AL k )e-AH+ AH2

+(rdZ - rH dZ1 - dZ ) H - 2 . 1 at 2  3H
f(rdZ a Y dZ - [KG(k + j AL k )e +AH Ar3H] 2 t

Assuming that 3 2H/at2 ~ 0 and dividing numerator and denominator by

KG e-AH, E.5 gives

ap2  rG dZa 3H

(k 2+ j AL1 k 1 ) + ArG

A(r dZf - rH dZa- dZ )(k 1 2+ i AL k ) aH 2

[(k12+ j AL1 k 1 ) + ArG] 2 at

(E.6)
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Assuming that the square (3H/;t) 2 - 0, this equation simplifies to

9P2 rG dZa 9H

(k 2+ j AL 1 k) + ArG

The derivative 3y/;t is given by

3y 3p1  ap2= + . (E.8)
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APPENDIX F

This appendix evaluates the integral

(u22+ u32 )3
if ff 2 2 2 22 222 2 2 22 1 + 2 2 2dd 2du 3-I O (u2 + u3 ) + A L1 aL v v + 11 (u2 + U 3  + U2 + U3)

(F.1)

Using cylindrical coordinates

v =v

u2 = r cos 6
u3 r sin 6

and integrating with respect to 8 gives

__ __ __ __11

I 4 f f 4 2 2 2 2 2 2 2 2 dr dv
o o r + A L 1aL v V + r (1+ r)

Let

I =f 1 1

r + A L1 aL v v + pi r

(F.2)

(F.3)

(F.4)

using Equation (3.264.2) of Gradshteyn and Ryzhik (1980), for ji = 1 gives

IT 1
1 v i r 6(1 + ALPLa

Substituting into F.3 gives

2 CO2

~ 1 + AL Ia 2 r = P 1 + AL aST o(1 + r) 1iT

(F.5)

(F.6)
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APPENDIX G

This appendix evaluates the integral

u22[u 12+ 1 (u22+ 1

(1 + u )
du du2 du3

Using spherical coordinates

u = u cosp

u = u sin$ sin4

U3 = u sin$ cose

and integrating with respect to e, G.1 becomes

IT

I IT f
0

I -
0

CO

f
0

u4 .i3 2 2
u sin ( cos $ + sin 2

u 2+A 2L 12X 2Cos 2

4
U

u2 +A2 2 12 2o
1

(1 + u )

1

(1+ u )

du

and using Equation B.2 of Yeh (1982), G.4 gives

1 + 2 AL X cosp

(1 = A2
- (1 + AL X cos4)
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00

I = fff
-.0

u32I
(G.1)

(G.2)

(G.3)

Let

du d4

(G.4)

(G.5)

u4 +A2 L12 X 2 



Substituting into G.3 gives

(1 + 2 AL X 2 P 2cos$p) (cos I5+ y sin $p)

(1 + AL1 X cos)

= t then: -sin l d $ = dt. Then

(1 + 2 AL1x t)[t2+ P(i -

(1 + AL X

t 2)] (1-t2 )

t) z

2
I + AL 1 t

1 Z]
(1 + AL 1X t)

[( 1-1)t4 + (1-2p)t 2+ u]dt

(G.7)

Expanding the product in G.7 gives

2
I = 7- [2(p-1) + 2(1-211) T2 + 2P T 1

- (P-1) P 3 - (1- 2u ) P 2 - 1

2
= [(-2 T3+ 2 T2 - P 3 - 2) + (2 T3 - 4 T2 + T 1 - P 3 + 2 P 2 - 1I]

(G.8)

1 + 1xt dt = ln(1

dt = - 7
x

+ x)

+ 1 1 
x

2 1T/2
f

Let cosj

sin ' k,

2 1
f
0

(G.6)

1
f
0

dt =

where 1
T2=

0

0

t2
S+ xt

+ x)
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1
T 3 =f

0

_+_t dt = + 1
I1+ Xt 7 3x 2 2x3

1 1- + ln(1+x)
x x

1 1 dt
P f - dt = + x

o (1 + xt)

( t )2 dt = + - - 2 n(1+x)7 +- 1 + x - n(+x

t 2 dt = 1 1 + 42 + 

(1+ xt) 3 x x x[

- 1n(1+x)
x

and x = ALiX. The above integrals were evaluated using the recursive

formulas (2.111.2) and (2.111.3) of Gradshteyn and Ryzhik (1980).

Substituting these expressions, G.8 gives

I [= .'2 92 + g2P] (G.10)

where

g1 = - 4 - + + ( 1 + ) ln(1+x)
x x 2 x3 x 4 x 5 x3

(G.11)
_ + 12 + 6 _12 + (12 16

g2 x ~7 ~~7 ~~ ~~ -7
x x x X x

+4) ln(1+x)
x

Note that for x + 0, ln(1+x) + 0 and gi, 92 tend to gj = 1/15,

and g2 = 4/15.
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0

1
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APPENDIX H

This appendix evaluates the integral

00
I = ff1

(u2 + u32)2

u4 2 2 )2 2 2 22

(H.1)
1

2 2 47-2 2 2 2 dv du2 du 3V + 1 6 (u 2 + U 3 ) (1 + u2 + u3 )

using cylindrical coordinates, as in F.2, and integrating with respect to

0 gives

c 0 cr 71 1
I = 47 f f 4 4 2 2 2 2 2 4 42 dr dv (H.2)

o o 6 r + A L 1aL v v + a r (1+ r )

11= 1
.= 2 2 A L 1a L 0

1 1
4 4 1 4 4 dv

V2+ 6 r v2+2 6 r

A L a L

using Equation (3.264.2) of Gradshteyn and Ryzhik (1980) for p = 1 gives

1

1166 r 6(1 +AL aI)

Substituting into H.2 and integrating with respect to r, gives

2
I= 1

P6 1+ AL aT
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Le t

(H.3)

(H.4)

1

I IT"-



APPENDIX I

This appendix evaluates the integral

2 u2~ u 2)
O u2 2 2 2 + u3

I = j[f2 2 2
-c 6v + (U2+

1

(1 + u2 + u32

Using cylindrical coordinates, as in F.2, and integrating with respect to

e gives

I = 21T f
0

0

f
0

5
r

2 v + r ]

2 2 2 2 dv
0v + r )

1

(1 + r )

=T

-w

dr dv

1

(1.2)

(I.3)

(1.4)

Substituting into 1.2 and integrating with respect to r yields

3
i = 1
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Let
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APPENDIX J

This appendix evaluates the integral

( u2 2+ u3 2 ) 2

[a 2V 2 U2 232 2

1 d
2 2 2 dv

(1 + u 2 + u 3 )

Using cylindrical coordi nates, as in F.2, and integrating with respect to

e gives

CO

I = 0
10

00 5
f 2 2 412
0 [a v + r ]1

(S v + r )

2 2 dv dr
(1 + r)

V = T77

Substituting into J.2 and integrating with respect to r gives

3
I =T
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00
I = fff

-CO
du 2 du 3

(3. 1)

I = 47r f

Let

(J.2)

(J 3)

(J.4)



APPENDIX K

This appendix evaluates the integral

2 2

2 2  2 222
[u + 6 1 (u22+ u3 )] + A 1 2 u1

Using spherical

1

(1 + u
du1 du 2 du 3

(K.1)

coordinates k, p and e and integrating with respect to 8 ,

K.1 gives

u4 Cos 2(1-cos 2)

u2 [cos 2$ + 6 2 (1-cos 2 ) ] 2 +

Using the transformation

sin$
A2L 2X 1

1

cos2$ (1 + u )

t = cos$ , K.2 becomes

U4 t (1 - t2 )

u 2[t2 + 62(1 - t2 2 + A2 L 1X2 t2
1 + 2 dt du

4
U

u2[t2+ 6 2 (1-t 2 )] 2 + A2L 2 12t2

Using Equation B.2 of Yeh (1982),

1

(1+ u2)2
du

K.4 gives

t2+ a 2(1-t2) + 2 AL 1X1 t

1 " ~4 [t2+ 6 2(1-t 2)][ t2+ 6 (1-t 2) + AL 1X 1] 2

321

I = fff-CO

I = 27r
/2

0 0

1
I = 27 fr

0

d4 du

(K.2)

0

Let

(K.3)

o
Ii = I

0 o

(K.4)

(K.5)



Substituting into K.3 gives

1
f
0

[(1-62 )t2 + 62 + 2 AL x1 t] t2 (1-t2 )
22+ 22 2 dt

[(1-s )t2 + 2][ (1-5)t2 + S + AL1X t]2

For 62 + 0 this equation simplifies to

1 (t + 2AL1  ) t

f 2+2o (t + 6 )(t +

(1 - t2

AL 1x1 )
dt

(t + 2 AL 1 ) t (1 - t2)

(t2 + 02)(t + AL x

B t + B2
-B+ 1 2

o t+ 2
+ 3

t + AL x

B,
+ 4

(t + AL 1 )2

(K.8)

where (after a few calculations)

B
0

= -1

B1 = 2a 3(1+ 62 )
B = (a2+ 62 2

B = (1+ 62 )2 + 3a2
2  (a 2+ 622

3 2
B- 2a (1 + 5 )

B3  (a2+ )

B = a 2(a 21
4 (a2+ 62
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2
I T (K.6)

2
I =

Writing

(K.7)

(K.9)



where a = ALIX1. It is

2
I= (B T + B T + B 2 + B3 T3 + 84 T

To fdt = 1
0

T 1 = 2rL2dt
o t + 6

= $ ln(1 + )
61

T 1 dx = - arctg(1) 72 ~
o t + 6

1 1 + AL X

T3 t + ALii ln AL

(K.11)

1 1 1 d
T4= f dt =o (t + AL 1X) AL 1X (1 + AL 1)

Substituting the above expression into K.11 and taking the limit for 6+0

gives

I = T A 12 ln(1 + 1

1 1
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APPENDIX L

This appendix reduces the two-dimensional integrals (5.54)

dimensional integrals. Take, for example integral T22. Using

cylindrical coordinates it holds

n/2

T22 o

00
f
0

3 4r cos +

r (Cos 4,+ 6'sin'fl) + A2L2 b cos 

(L.1)

Let

I=f
0

3r
2 2 + 2

a r + d

2 2
where a = cos 4, +

12 2 d
(1 + r )

2.2 2 2 22 2
6 sin 4,, d = A L2 b cos ,.

Using r2 = x gives

I1= f
0

Let

x
a x + d

x

a x + d

1 x
(1 + x)

1

(1+ x)

B 1

a x + d

dx

B 2
+ 2

1+ x

where
B = -d
1 a -d

B2 =
a -d
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to one

1

(1+ r)2
drd4

(L.2)

(L.3)

(L.4)

(L.5)

(L.6)



1
Z 

-(B 11I1 + B 21 2)

I = f
0

12 f0

1

(a 2x + d 2)(1 + x)

2 dx
(1 + x)

(L.7)

dx

(L.8)

Using Equation (3.223.1) of Gradshteyn and Ryzhik, (1980) for p = 1 gives

d2 u-1
7)-1

I1= Z -d a n(Ij a -d
(L.9)

Note that for p + 1, the numerator and denominator of the above equation

tends to zero. Then

= - nl
1 a2 -d2 ij+1

[ (d / 2)"-l -1]
av a

(sin yr )

(d / 2)
S2_n a
a2 -d2

Equation L.6 then gives

82 Z d2
1 = 21 r 28d d 2]d 2 )

8(a -d) a 2- d 2a
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then

where

and

and
I

(L.10)

(L.11)

(L.12)



Substituting into L.1 gives

T /2
T22 = 4 f I(p) cos5 d

0

where I(p) is given by L.12 and L.3. Integral L.13 cannot be

analytically evaluated and it requires numerical evaluation.
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A

(L.13)

where a2, d2 are given by L.3.


