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ABSTRACT

The study of towing operations in a random seaway is undertaken with the purpose
of predicting extreme values for the towline tension. In a statistical sense, such
extremes are tension values that have a given probability of occurrence during a
certain period of time.

This statistical study takes into account the non-linear dependence of towline
tension and ship motions. On a quasi-static basis, the tension-extension relationship
presents two distinct regimes: one in which large extensions are accommodated by
the cable catenary producing small tension variations; and a second one where small
extensions, being accommodated by the cable stretch, cause very large tensions.
Dynamically, as the cable oscillates in the water, the transverse hydrodynamic drag
on the cable causes even more non-linearity. Making extensive use of time domain
simulations, a polynomial expression for the towline tension in terms of the end
motions is determined. This relationship is then used in the non-linear statistical
calculations.

The tug and tow ships connected by the hawser constitute a twelve degree of
freedom dynamic system, which is solved for the ships motions under the scope of
linear seakeeping theory. For that purpose, the hawser forces are linearized using
the method of equivalent linearization. The resulting motions combine to make
up the cable extension which is the input to the non-linear statistical analysis of
extremes.

Two methods are developed for evaluating the tension extremes. The first one
consists of systematic development for an approximate probability density function
(pdf) for the extremes. It is based on the bivariate Gram-Charlier Series obtained
with the joint cumulants of the tension and its time derivative. The second one is
fully non-linear. Starting with the known triple joint pdf of the cable extension and
its first two time derivatives, a non-linear mapping is developed using a mathemat-
ical model relating tension to motion, and the probability for extremes determined
numerically.

Thesis Advisor: Jerome H. Milgram
Professor, Department of Ocean Engineering
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Chapter 1

Introduction

This thesis intends to provide the necessary tools for the prediction of extreme
tensions in a towline during actual tow operations in the seaway.

The current practice of towing operations [1] consists of a simple static analysis.
The hawser geometry is defined by the cable catenary configuration with only one
load considered: the maximum static pull in the towline, which is accounted for
through estimates of the tow’s resistance and then a safety factor is applied to it.
The resulting number is compared to the towline’s breaking strength. It is the
safety factor, in fact, that takes into account the dynamic loading.

This approach is too simplistic, and clearly is not sufficient to assure the safety
and efficiency of offshore towing operations. Since the tow can be subject to a
variety of combinations of speed and angles to the waves, each of them resulting in

different dynamic loads; it is clear that a single factor of safety is inadequate.
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To be able to include in the analysis the dynamic component of the towline
tension, other variables pertinent to the problem like the seakeeping qualities of
the tug and tow vessels, the length of the towline, its weight and elastic behavior,
need to be considered. For that purpose the towing problem has to be studied as a
dynamic system where the individual dynamic characteristics of each element: the
tug, the hawser, the towed vessel and their interactions are accounted for.

Previous works on the dynamics of towing systems by Abkowitz (2], Bernitsas
[3], Miller [5] dealt more with the maneuvering motions of the ships and the quasi-
static low frequency stretch of the towline. The seakeeping, i.e. the fast motions of
the vessels and their influence on the dynamic tension were not considered.

More recently, studies in the area of cable dynamics had been developed by
Triantalyllou [6], Shin [7], Burgess [8] and Bliek [9]. They provided a big step to
the understanding of the dynamic behavior of cables and systems with cables. These
studies indicate that the dynamic tension in a towline is a factor too important to
be left out in the analysis, and also that it is heavily influenced by the seakeeping
motions of the tug and the tow. Therefore, the dynamic effects of these motions
on the hawser and their interactions with the line itself are to be considered for a
more accurate prediction of the maximum loads a towing hawser can undergo in
the seaway.

The main purpose of this thesis is the stochastic analysis of such dynamic system

to determine extreme tensions on the hawser. In a statistical sense the extreme load
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is some tension level with a probability value associated to it. Actually, it is defined
as extreme tension, the magnitude of the tension that has a pre-defined probability
of occurrence during a given period of time.

The basis for the analysis of the probability of extremes in linear dynamic sys-
tems was introduced by Rice (28], and applied in ocean engineering and naval ar-
chitecture by Longett-Higgings [10], and Ochi [11]. In Ochi’s work, the analysis of
extremes for the linear seakeeping motions of a single body is complete. However,
his results cannot be directly applied to the towing problem because of the need to
consider both the tug and the tow acting together on the towline, which consists of
a twelve degree of freedom problem, and also because of the fact that the towline
can present a highly non-linear behavior.

There are basically two strong non-linearities in this problem. One is the hydro-
dynamic drag acting transverse to the cable due to its oscillations in response to the
exciting motions at the ends. The second one is the towing hawser tension-extension
relationship; in the range of amplitudes of the tug and tow motions, the cable can
undergo a substantial change in span going from a completely slack condition to a
completely taut one.

Chapter 2 in this work deals with the towing dynamics problem, which is solved
under the scope of linear seakeeping theory. The main hypothesis there is that al-
though the towline tension depends non-linearly on the vessels’ motions its influence

on the motions themselves is small. Therefore, the towline force can be linearized,
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using the equivalent linearization method, and the motions determined through the
solution of the linearized twelve degree of freedom problem. The towline elongation
Response Amplitude Operator (RAO) is obtained and the prediction of the ‘linear’
extreme tensions according to Rice’s theory [28] is introduced in Chapter 3. The
effects of the non-linearities and the errors in the extreme values obtained within
the linear theory are discussed.

In Chapter 4 one non-linear statistical analysis for the hawser is undertaken.
It is developed from the Gram-Charlier method for the statistical analysis of the
tension. It consists of a series representation of the joint probability function (pdf)
of the tension and its time derivative, in terms of Hermite Polynomials. This pdf is
then applied to determine the statistical distribution of the extremes. The method
proved successful for slightly non-linear cables but as the non-linear behavior is
accentuated it fails to predict the extreme tensions satisfactorily.

In chapter 5 the non-linear statistical problem is dealt with by means of an
alternative approach. Using time domain simulations of the hawser dynamic equa-
tions, a polynomial representation for the tension is obtained in terms of the hawser
extension and the extension rate of change (Appendix A). This polynomial repre-
sentation is treated as a mapping function for the tension in the plane defined by
the extension and the extension derivative. Because the vessels’ motions combine
linearly to make up the hawser extension, the extension and its time derivatives are

jointly Gaussian distributed. Thus, the probability distribution of the non-linear
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tension extremes is determined through the direct integration of this polynomial
mapping function together with the joint pdf of the extension and its first and
second time derivatives. This approach resulted in more accurate predictions of ex-
treme tensions, even for the case when the towline presents very strong non-linear

characteristics.
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Chapter 2

Towing Dynamics

2.1 Introduction

In this chapter the dynamical aspects of the towing problem are introduced.
The objective is to determine the motions at both erds of the hawser that combine
to make up the cable extension. The block diagram in Figure 2.1 illustrates the
procedures adopted to solve this problem.

As Figure 2.1 suggests, both vessels are excited by the sea waves, which are the
main force input to the problem. The wave forces excite the ships which respond
to these forces and those of the hawser. Therefore, the hawser acts as a restoring

force on the ships, thus affecting the motions themselves.
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SEA WAVES

TOW TUG
HAWSER
Non-Linear Statistics Equivalent Linearization
—
EXTREME Linearized Cable’s
TENSION Damping & Spring

Figure 2.1: Block Diagram for the Dynamic Problem

The solution to the problem is complicated by the non-linear dependence be-
tween hawser force and motions. To be able to determine the ship motions the
cable tension is “linearized” using the equivalent linearization approach such that

linear seakeeping theory can be applied.

16



The methodology is justified on the basis that the motions amplitudes obtained
this way are conservative. Due to the nature of the equivalent linearization method,
the extreme “linearized force” is smaller that the true non-linear one, therefore
the extreme motion amplitudes are larger than they would be otherwise. This
happens because the cable extensior is mostly determined by the surge motion,
which is largely dependent on the inertial forces and the the hawser action is the
only restoring force present. For all the other motions the hawser restoring force is
small when compared to the hydrostatic ones.

Once the forces are identified, the tug and tow motions are determined under
the scope of linear seakeeping theory. The final step is the evaluation of the cable

extension to be used in the non-linear statistical calculations of the extreme tension.

2.2 'Tension Linearization

As discussed in Appendix A, to determine the tension end-motion realtion-
ship, a least minimum squares fit is performed on tension time histories obtained
with simulations of the ca:ble non-linear dynamic equations. The input to these
simulations are sinusoidal end motions with known amplitude and frequency. It
is necessary to consider enough data to cover the whole range of frequencies and

elongation amplitudes present in realistic towing operations.
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It is concluded that a third order polynomial on the cable’s end point elonga-

tion z(t) and elongation time derivative (t) = % represent the cable tension

adequately:

3 3 m+n <3

T(z,2)= Y. Y. amaz™(t) Z*(t) , with: (2.1)
m=0 n=0
For the linear case, the tension is assumed to be related to the end-point exten-

sion and extension derivative in the following way:

T(z, ) = keg z(t) + beg £(2) (2.2)

such that the coefficients k., and b., represent the linearized effects of the cable’s
restoring and damping forces, respectively.

Given the non-linear system, equation (2.1), and the linear approximation,
(2.2) , the method of equivalent linearization consists of equating the crosscorrela-
tion functions, between input and output, for both realizations in order to determine
the “best” linear representation [15].

The resulting linear system is “optimum” in a mean square sense. Le., when
responding to a stochastic input, the equivalent linearized version is the one that

presents the minimum root mean square deviation with respect to the response of
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the actual non-linear system it is approximating. (Figure 2.2)
Defining R,,(r) as the autocorrelation function for the extension z(t) at the

ends of the cable; then, since z(t) is a Gaussian distributed random variable, the

following holds:

Elz(t)) =  Rz(0) = mo
Eee) = 2| = o
a0 = - = m,
Ea@a) = | = -m 23)

where mg, and m,, are the spectral moments of zero and second order, respec-

tively; and also [16]:

1 §2n!! §2m!! 2n 29m _ _
2ntm n! m! Mg, M3, p= 2n, ¢= 2m

E[z? &%) = (2.4)
0 p, q otherwise.

Ryyp(7) is the crosscorrelation function between non-linear tension and extension;
and Ry(7) is the crosscorrelation function between the linearized tension and the

extension:

Ryi(t) = E [Tn(t) z(t + 7)) Ry(r) = E[TL() z(t + 7)) (2.5)
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z(t)

NON-LINEAR HAWSER

T(z,2) = 3. 3 amn z™(t) £"(t)

m=0 n=0

Tni(t)

|

“LINEARIZED” HAWSER

TyL(t)

T(z, &) = keg z(t) + beq £(2)

Figure 2.2: Equivalent Linearization

Given the coefficients @, , we wish to determine k,, and b,, such that the two

crosscorrelations Ry (0) and R.(0) are equal. The result is:

kg = @+ 3azmo, + ajzms,

b.,; = ao1 + 3agsmy, + az; Mo,

20
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2.3 Dynamic Equations

In the frequency domain the equations of motion for each of the vessels can be
written:

— for the tug:

[—we? (My+ As(we)) + iw, Ba(we) + C1] Xy ™! = Fi(we) €™ + Fy, (2.8)

— for the tow:
[~ we? (M + Ag(w)) + iwe By(we) + Co] Xz e = Fy(we) €4 1 Fy, (29)

where:

M, ; - generalized mass matrix for tug and tow

A, - added mass matrix for tug and tow

B, - damping coefficient matrix for tug and tow

C1,2 - hydrostatic restoring force matrix for tug and tow

Fi - unit amplitude waves exciting force vector for tug and tow
X1,2 - motions response vector for tug and tow

Fy,, - cable force vector acting on the tug and tow

21



w, - waves encounter frequency

0 - phase difference between tug and tow

Regular strip theory [17] computations are applied to both vessels to determine
the frequency dependent hydrodynamic coefficients and the wave exciting forces.
For that purpose, the MIT five degrees of freedom seakeeping program [18] is used
for the motions: sway, heave, pitch, roll and yaw.

The surge problem is solved separately, and included afterwards to complete
the six degrees of freedom equations for each ship. The basic simplifications and

hypothesis considered are as follows:

Surge added 1nass — The added masses for both vessels are taken as constants:

5% of the mass.

Surge damping coefficients — The surge damping coefficients are considered fre-
quency independent constants. For the towed vessel it is taken as the slope
of the calm water resistance curve with a locked propeller as appendage. For
the tug, it is assumed a constant torque propulsion plant, and the damping
calculated as the change in trust per unit change in velocity at the propeller

point of operation.

Surge exciting force — The exciting force is obtained through the Froude-Krylov
approximation, i.e., integrating of the wave pressure field on the ships’ surface,

assuming no disturbance due to the ships’ presence.
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Further details on the surge motion analysis can be found in references [19,32]

and in the appendix B.

2.4 The Coupled Equation of Motion

The individual equations of motion (2.8) and (2.9), for the tug and the tow,
can be coupled together when the hawser effects are accounted for.

Because of the forces transmitted by the hawser, motions of one vessel influence
the hawser forces not only on itself, but also on the ship at the other end of the
towline. Therefore, the coupling effects can be represented by influence matrices
that translate the hawser force acting on the ships due to unit change of motions
and velocities at both extremities of the line.

Considering:
K,; — Hawser force on the tug due to unit motions at the tug,
K2 — Hawser force on the tug due to unit motions at the tow,
K,, — Hawser force on the tow due to unit motions at the tow,
K,, — Hawser force on the tow due to unit motions at the tug;
D;; - Similarly, hawser forces on the tug and tow due to unit velocities

at the tug or tow.

Then, for the hawser forces on the tug and the tow:

23



Fg=Knu X, + Ki2 X2 + Dy X, + D Xs

and

Fy,=Kp Xy + KyuXo + Dy Xy + Dy, X,

or in matrix form:

K +tw.Dyy Ky +1w.Dy2 Xi
Fy =

Ky +1w.Dyy Kag + 1tw,.Doy X

Thus, the (12 x 12) coupled equations of motion be written':

[—wf M(w.) + iw, B(w,) + C] X et = F(w,) et

where:

M1 + Al(w,) 0

M(w,) =
0 M, + Az (w,)
12x12
C: — Kn —Ki2

C =

—Ky  C: — Ky

12x12

1The coupling or influence matrices K;; aud D;j, are described in the Appendix B.
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B(w,) =
—'D21 B2(we) - D22
12x12
Xl Fl(w,)
X = and Fw,) =
Xz Fz(w,) 8'0
12x1 12x1

2.5 The Cable Elongation

For the tension calculations, according to the equations (2.2) and (2.1) it is
necessary to compute the total cable elongation (or extension) z caused by the
ship motions.

The motion vector X is determined through the solution of the coupled equation
of motion (2.13). Knowing also the attitude of the tow relative to the tug, and the
static configuration the hawser presents; the cable extension at each end is computed
as the projection of the motion vectors X; or X, in the direction tangent to the
cable at that extremity. It is along this direction that the dynamic tension is mostly
influenced by the ship motions. The total elongation z in then assumed to be the

sum of both extensions thus determined.
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The total elongation the hawser undergoes due to the motions of tug and tow, is

then:
or in matrix form:
. Xy
z = [s; : s;] (2.15)
X2

where Sj, are influence row vectors for hawser extension due to unit motions at
the tug and tow ends respectively.?

The wave exciting force vector (for unit wave amplitude) is:
F(w,) = | F(w,) | &“* (2.16)

and the motion vector is:

X(we) = | X | &%t (2.17)

The frequency domain solution of the equation of motions, equation (2.13), gives

the ship motions amplitude vector for every frequency w, :

X(we) = [-w?M(w,) + iw, B(w) + C]™ | F(w,)

(2.18)

2The row vector S’ =[S} : 85| is described in the Appendix B.
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The 12 degree of freedom motions transfer function can be identified as the (12x12)

matrix:

H(w) = [-w?M(w,) + iw. B(w) + C]” (2.19)

The scalar elongation can be written as:
z(t) = §' H(w,) X &vet (2.20)

where the cable elongation response amplitude operator, i.e. the elongation per

unit wave amplitude, is identified as:
G:(w.) = S Hw,) X (2.21)

Figure 2.3 presents the elongation RAO for a 1200ft long, 2 in diameter steel
hawser when an ARS-50 class tug is towing a Frigate in 30 knots wind and speed
of advance of 3 knots. The oscillations in the curve are due to the phase differences
between the wave exciting forces at the tug and tow.

Given the sea wave power density spectrum, Sy (w.), according to linear sys-
tems theory [20], the elongation power spectrum density, or simply the “elongation

spectrum” is given by:

Sa(we) = |Galws) | Sw(w.) (2.22)
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Figure 2.3: Towline Elongation RAO
Hawser Length: 1200 ft — Diameter: 2 in
Static Tension: 20.0 kips
Tug ARS-50 towing a Frigate at 3 knots
Wind Velocity: 30 knots.
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and the elongation spectral moments can be evaluated:

My = /0 w" S, (w.) dw, (2.23)
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Chapter 3

The Linear Statistics

of Extremes

The goal in this chapter is the introduction of the theory for the analysis of
extreme tension within the scope of linear systems theory.

Considering the cable elongation z(t) as a stationary and Gaussian distributed
random process, the theory of linear time-invariant systems assures that the re-
sulting equivalent linearized tension TL(t), given by equation (2.2), will also be
stationary and Gaussian distributed.

For the elongation, the joint Gaussian pdf - probability density function of the

elongation and its first and second time-derivatives is given by:

1 A .
exp [~ o (ma, &% + —— & + mo, &° + 2my, 2E) | (3.1)

(27!') V 2: M2z

P;(-’E, z, 5)
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with A = mg, my, — m,,? and the spectral moments m, ,mz, , My, given by
equation (2.23).
Similarly, the joint Gaussian pdf for the linearized tension and its time deriva-

tives, pr(T,T,T), could be determined using equation (2.2) with (2.23).

3.1 The Number of Local Maxima

In the analysis of extreme values we shall look for conditions for local positive
maxima to occur. At these local peaks, the tension T(t) is positive, its first
derivative is zero and the second derivative is negative. As first considered by
Rice [28], given the joint pdf pr(T, T, f‘) , for the tension and its first and second
derivatives; the expected number of peaks per unit time, above the specified level

Ty, is given by:
M(To) = /T °° dT /_ (; | 7| pr(T, 0, T) dF (3.2)

where T = Ti(t), as in equation (2.2).
Considering the expected value for the total number of peaks as given by the

number of all local maxima above the level Top =0 :

M(0) = /0 > dT /_ ow || pr(T, 0, T) df (3.3)
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Then, the ratio M(T;) / M(0) can be interpreted as the probability for one local
maxima to be larger or above the reference level Ty; thus determining the PDF -

probability distribution function, for Ty to be exceeded once:

Fu(T > To) = (3.4)

In equation (3.4) above, an important implicit assumption is that every zero
up-crossing generates a local maxima. This hypothesis is not as restrictive as it
may seem. It translates that probability values are assigned to the peaks neglecting
those rare instances, when a local maxima is followed by another one without the
occurrence of a zero crossing event. Its adoption is justified on the basis that the
extreme tension, we want to determine, is a fairly large tension level, for which
the occurrences of these “double peaks” are unlike to happen. Furthermore, the
linear tension results from a narrow-band process; the sea spectrum with the cable
elongation RAO, which in a certain way guarantees the unlikelihood of these peaks
to occur.

Actually, once it is assumed that every level crossing generates one local maxima,
this hypothesis can be carried further on, and the probability distribution of peaks
determined directly from the frequency of crossings. The classical result obtained by
Rice [28] is the formula for the average number of up-crossing events of an arbitrary

level in a stationary random process. In the present case, let pr(T, T) be the joint
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probability distribution function of the linearized tension and its time derivative;
then, for an arbitrary tension level T, the average number of up-crossings or

simply the “frequency” of crossings is:
oo, . .
N(To) = /; T pp(T,T) dT (3.5)

The expression (3.5) above is much simpler than equation for the frequency
of peaks, (3.2), due to the fact that it involves the joint pdf pr(T, T) of the
tension and its first time derivative instead of the joint pdf pT(T,T,f’) , for the
tension and its first and second derivatives. This simplification, although not nec-
essary for the extreme linear tension analysis in the present section, since both
pr(T, T) and pT(T,T,f‘) are known; facilitates the subsequent non-linear tension
extremes problem. There, it would be much more difficult to evaluate the joint pdf
of the non-linear tensions and its derivatives, f (T,T,f‘) , in a systematic way;

although it can be done for f(T, T) , as introduced in Chapters 4 and 5.
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3.2 The Probability for the Extremes

As mentioned in the previous section, the PDF for the peaks can be evaluated

M;lirectly with the fretiﬁénéj} of crossings. Thus, the probability that the tension Ty

be exceeded, given that the zero crossing event happened (and before it is exceeded

again) is:
N(To)
> = .
P(T > To) 0 (3.6)
or for the tension to be below the level Tj :
N(T,
PT<T)=1 — 'ivi(ﬁ(‘))l (3.7)

Differentiating equation (3.7) above, the pdf - probability density function for
the tension to be below the reference value is:

1 d

<T) = -5 2 V) (38)

Rice (28] and Longett-Higgings [10] had shown that for a narrow-banded Gaus-
sian random process, this pdf for the maxima converge to a Rayleigh distribution,

which is exact when the process is infinitely narrow, i.e.:

2
To eXP["'l" d: ]

T <T,) =
p( 0) mo, 2mg,

(3.9)
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where my, is the mean square value of the linearized tension, which can be related

to the elongation spectral moments:

Mo, = kezq mo, + bzq ma, (310)

It is important to note that when narrow-bandness is assumed, the Rayleigh
distribution for the maxima in equation (3.9) is obtained using either the number
of peaks or the number of crossings, i.e. equation (3.2) or (3.5) , as shown in Rice’s

work [28].

3.3 The Linear Extreme Tension

For practical purposes it is worth considering the extreme tension, T, as the
tension level which has a given probability, «, of not being exceeded in a given
period of time, At.

Assuming T'(t) a stationary random process for the prescribed period of time,

the total number of peaks (or up-crossings) is:

M = At N(0) (3.11)

Assuming that the extreme tension is adequately large such that its occurrences

are infrequent enough to be considered independent; the total probability that the
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level T, is not exceeded during the time period At, is:

N(To) M

PA(T <T) = [1 ~N)

(3.12)

The assumption of independence among local peaks leads to somewhat larger
probabilities of any arbitrary tension level be exceeded. Therefore, the analysis
indicates that extremes are more probable then they would actually be, thus on the
conservative side. This fact can be proven heuristically using elementary algebra of
sets and conditional probability arguments [21], and was verified for narrow-band
processes by Naess [22], where the peak values were subject to a Markov chain

condition.

Therefore, using (3.12) with PA(T < Tont) = a :

[1 —~ %{‘)")‘)]M = « (3.13)

the extreme tension is determined solving numerically equation (3.13) above, for

T'czt .

3.3.1 Linear Extreme Tension Results

This section presents the prediction of the extreme tension for a US Navy ARS-
50 class tug towing the US Navy Frigate Page at a speed of advance of 3 knots.

The characteristics of these vessels are given in Table 3.1.
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The towline hawser is a 1200 ft long fiber-core wire hope with 2 in diameter.

ARS50 | PAGE
Length (ft) 240 390
Beam (ft) 50 43
Draft (ft) 155 | 14.5
Displacement (l.tons) 2881 | 3840

Table 3.1: Tug and Tow characteristics

According to the adopted definition for the extreme tension, in these calculations

it is considered:

At = 24.0 hours = 86400 sec and a = 0.001

Le., T,z is the tension level which has 09.9% probability of not being exceeded in
24 hours.

The equation of motion, (2.13), is solved for the 12 degrees of freedom problem
and considering a Pierson-Moskowitz sea spectrum |27} for 30.0 knots wind, for the

elongation moments are determined:

myo, = 19.203 ft? m,, = 8.716 ft* m,, = 4.823 ft8

Which results for the coefficients of the linearized tension model:

k., = 1.937 kips/ft and b, = 4.003 kips - sec/ft

The pdf for the extreme tension, obtained numerically with equation (3.8) is shown
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in Figure 3.1.

The resulting extreme values for the linear statistical analysis are:

Extreme Elongation: z., = 24.82 ft

Extreme Tension: T... = 84.50 kips.
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Extreme Tension — T,.¢ (kips)

Figure 3.1: Probability Density Function - p(T < T.z)
Hawser Length: 1200 ft — Diameter: 2 in
Static Tension: 20.0 kips
ARS-50 Towing Frigate PAGE at 3 knots

120.0

Wind Speed: 30 knots.
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3.3.2 Comments on The Linear Extremes

The extreme tension obtained with linear theory is completely unreasonable. Ac-
cording to Figure 3.2, the resulting extreme elongation: 24.82 ft, which results in
a change in span of approximately 23.5 ft, should give at least 280.0 kips for the
extreme tension, which is much greater than this linear analysis result.

The reason for such a small calculated extreme tension value resides in the
fact that the cable’s elastic properties are being approximated by the equivalent
linearized spring constant k.,. While the actual hawser, for large elongations,
behaves elastically on the steep slope of the static curve, the equivalent linearized
relation follows the tension-elongation according to k., which is much smaller.
This happens because of the nature of the equivalent linearization process, where
the linear coefficients are determined to approximate well the non-linear tension for
elongations of the order /m_.

To retrieve in the statistical analysis, the fully non-linear behavior of the hawser
tension-elongation characteristic, as well as the effects of the non-linear hydrody-
namic cross flow drag, thé cable tension model obtained through the equivalent
linearization method is not appropriate. In the following chapters, the third order
polynomial tension model, introduced in Chapter 2 and Appendix B, is considered

and the fully non-linear statistical analysis is undertaken.
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Figure 3.2: Static Curve - Tension x Change in Span
Length: 1200 ft — Diameter: 2 in
Fiber Core Wire Hawser.
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Chapter 4

Gram-Charlier Series

4.1 Preliminaries

We want to write the joint probability density function - pdf, f(T, T) of the ten-
sion T'(t) and its derivative T(t) = 1%'1 such that the number of up-crossings per

unit time, or average frequency of crossings, at certain level Ty can be determined:
N(T) = jo T(To, T) dT. (4.1)

This joint pdf f(T, T) can be written in terms of the Fourier Transform of its

characteristic function M (ivy, tv,) :

—
VS
[

~—

f(T, T) = -(-511—52-/_0:0 f_: M (iv,, ivgje T e~ T dy, dv, .
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Therefore, if the characteristic function is known, the number of crossings can
be evaluated by performing the T' integration in equation (4.1). This can be ac-

complished, at least theoretically, by either one of the two methods:

1. Writing M (tv1,1v;) in terms of the moments of the joint distribution of T'(t)

and T'(t) and performing the integration in (4.1).

2. Writing M (dvy,1v;) in terms of the cumulants of the joint distribution of T(t)

and T'(t) and performing the integration in (4.1).

Using method 1 we would write:

M (tv;,4v,) -—E f: Mpq

gl ' (tv1)® (1v7)? (4.3)
p=0 g¢=0

where M,, is the joint moment of T and T of order pq, i.e. M,, = E[T?T9] .
Combining the above expansion of the characteristic function with (4.2), we get

for the joint pdf:

o L euiT ® i\ —ivgT
f(T,T) = (2“)2 p—o 2 p'q'/ dvl./_m (1v2)%e dvy. (4.4)

This expression shows why the moments expansion of the characteristic function is
not convenient. One cannot guarantee the existence of these integrals in a usual
sense, since v} and v are not bounded functions.

This pitfall can be avoided when applying Method 2, i.e. writing the character-
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istic function in terms of its cumulants expansion:

M (tvy,1v;) = exp [}: Z

> 2 p' ' (1v1)" (1v2)?]. (4.5)

where K,, are the bi-variate cumulants of order p ¢.
This expansion allows the representation of the joint pdf in a series of Hermite
polynomials, which leads to a result very similar to a bi-variate Gram-Charlier series

of type-A.

4.2 Methoed Outline

The starting point for the method presented in this section is the cumulants
series expansion of the characteristic function. From this representation, another
series is developed which has the coefficients as functions of the cumulants.

Previous attempts by Longett-Higgins [13,14] and by Vinje [24,26] to apply the
present method to determine the probability distribution of non-linear stochas-
tic variables resulted basically in the same series representation. However, their
methodology to evaluate the coefficients in the resulting series was very cumber-
some, i.e. not practical, and could not be automated in a computer program.

In the case of a bi-variate Gaussian distribution, the characteristic function in
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terms of the cumulants, is simply:

. K K o
M,(wl,wg) = exp[ --% vf - % ‘U% - Ku Kzo Koz Uy Vg ] . (4.6)
Because we want to relate the joint pdf f(T,T) of the non-linear tension to the

Gaussian distribution, we can rewrite equation (4.5) factoring out the cumulants

K20 and Kos :

M(ivy, iva) = exp| —20 2 —@vﬁl exp[ Y- >

101 202)q ] (4.7)
2 =0 ¢=0

lq'

where the pairs (p, g) = (0, 2)&(2,0) are excluded in the p and ¢ summations above.

Applying the series expansion for the exponential:
f: -
_I
5 J!
we get:

00 1 oo co
M (ivy, 1v;) —exp[—EE 2 K°’§ Z—, Z Z ;!'%(Wl)p('”z)qy

P
(pag) # (0,2)8&(0.2)

(4.8)

The expansion of the exponential (j-summation) can be carried out and common
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powers v v grouped such that:

o 00

M (ivy,1v,) =eXp[—-£"19. 2 KO? 2] [z Z U, (1v1)* (1v2)° | (4.9)

2 t=0 s=0

Then, performing a Fourier Transform, term by term, in the expression above the
joint pdf f(T, T) can be determined, as suggested in (4.2). The key element in the
development is the description of the coefficients ¥,, in terms of the cumulants.
The next steps to be described are:

1 - Evaluation of the coefficients ¥,, .

i1 - Integration of equation (4.9) to determine f(T, T) .

4.3 Evaluation of the Coefficients ¥,

When performing the series expansion of the exponential in equation (4.8) that

results in the equation (4.9) we have:

g g Uy, (1v1)! (1v)° ,20.% i Z If’;" (2v1)" (1v2)? ]j (4.10)

(P.q) # (0, 2)1‘(0 13)

Rewriting in a more convenient way, let:

1. 2 & . . ; . K
T; —“[ Z }: C'lrm("’l)p("’z)q]J with Cpq:;’—!}i]q—!'

p= g=0
(p.q) # (0,2)&(0,2)

(4.11)
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Then, according to (4.8):

i T; =§ i:% Wy, (101)* (1v;)°. (4.12)

To determine the coefficients ¥,, in terms of the Chpq» i-e. the cumulants, common
powers (1v;)*(1v2)* that exist in every term T; for j =1,2,3,... need to be grouped.
The method goes as follows:

STEP 1.

Restrict the j-sum to certain order: m:

J.[ > ¥ Culm) i)l (4.13)

9=
(p q) # (0.'3)&(0 2)

STEP 2.
Reorder the coefficients C,, in some new ordering such that the double sum in p

and ¢ can be reduced to one:

1 (m+1)? )
T; = 37 Z Crrar (tvy)P (iv2)“ ]J (4'14)
k=1

.

STEP 3.

To raise the k-sum inside the brackets to the j*»-powers one can make use of the
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multinomial expansion formula:

n! re, re re
Ty Ty 4 3" = E AN MR
(=1 + 22 ) grh!rg,!...r,k! v ¢
where the sum-£ is over all possible sets {r,} = {r, rs, ... r,} such that
This results in:
Ty= 5 3 — T ] Cpa (0a)P (iva)s (4.15)
7! relre! ..oy
In T; above, carrying out the product and defining:
t2 Zp,rg' and s = Zq‘rg
=1 =1
we get the reduced expression for Tj:
1 o Tt e \E (o s
T.‘f = Z ' 1 ] [H CP-‘G-‘] (2‘!)1) (tvz) (4'16)
P r¢l.r¢,. e re,‘. i=1

Comparing (4.16) above with the equation (4.12) and making j = 1,2,... m

we get the final expression for the coefficients ¥,,:

T = L TIcs (4.17)

¢ r¢l!r¢2!. k i=1
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where the sum is over all possible sets {r,,} = {r, ,rs,, ..., rs,} such that:
- :‘___lre_.=jandj=1,2,...(t+s),beingl<:=(m-i—1)2
with the additional constraints:

- Ef:lpift.- =1 - 25:14;"‘:; = S.

Following these steps, a computer program can be coded to generate automati-
cally the coefficients ¥,, .
It is structured as follows:
Given a certain order N up to which we want to represent the characteristic function

M (ivy,1v,) :

Y

1. Declare two vectors ' = {--- p; ---} and ¢ = {--- ¢ -} to store the
indices of the coefficients Cp,,. In other words, the elements p; and ¢; are
the order of the cumulants. The dimension of these vectors - k& is chosen to
accommodate all cumulants considered in the M (iv,,1v;) series given by the

equation (4.5).

2. Determine all possible pairs ¢,s such that t+s < N. This is achieved by

an algorithm to evaluate the compositions of N in two elements.

3. For each pair ¢,s determine all possible ! compositions of the integer j =
1,2,...,t+s into k elements to define the vectors 7, = r,, ..., 1y, .

The elements of 7, automatically satisfies 3 r,, = 7.
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4. Among all vectors 7, generated by the composition algorithm save only the

ones that satisfy both p- 7, =t and ¢-7;, = s.

5. Collect the products Cpr; which, according to the equation (4.17) represent

the wanted coefficients V¥,,.

A typical output of this program for N =6 and (t,s) = (4,2) would be:

1
Viz = Catg

1 1
C10C11 Co1 + 5 Clzo Caz + Co1 C11Cs0 + Co1 C10 C31 + E 031 Cypo +

C% + C12Cs0+ C11Csy + C10Cs2 + Co1 Cax +
1 o2 1 3 2 1 2 ~2 , 1 2
2 ChCin+ 6 CioCiz t+ 2 Co1CipCo + 2 Co1 C10Cso +

1 1
5 Co1 Cio Cun + 2 Cg, Clo -

4.4 The Hermite Polynomials Series for f(7T, T)

In the previous section it was shown that the equation (4.9) can express the
characteristic function of the joint distribution up to any desired order N .
The joint pdf f(T, T) , is then determined by a two-dimensional Fourier Trans-
form operation on the characteristic function, as shown in the equation (4.2).

This process results in the following integral:

o 1 00 00 0o K :i . 00 . P ﬁ . T
f(T,T) = (—27)-2- ZZ \I,” / (ivl)'e’ 20 3 e—w;Tdvl[ (wg)‘e_ 02 3 ot¥2 dv,

t=0 8=0 -0 —oo

(4.18)
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In the above, the integrals in the variables v; and v, can be related to Hermite

polynomials He,(z) generated by [29]:

»

(—1)"%043;) = He(s)alz) with a(s) = oo % (4.19)

Defining:

00 o2 . . 00 02 . .
Ig(T) é '/; (ivl)‘e—xzo_; e'—wle‘Ul and I,(T) é ‘/; (ivl)‘ e-—Koz-,z e—ngdvz

(4.20)
the equation for the joint pdf (4.18) can be rewritten as:
) 1 & = ]
f(T,T) = =3 > > ¥, L(T) L(T) (4.21)
(2”) t=0 =0

To perform the integrals I,(T) and I,(T) the following change of variables is

convenient:

m A
Iy = Kzo v and T =

T (4.22)
T

A = A
o= \VKpavs and T =

Vi (4.23)

such that:

3 0o 23 o
WD) = () [ et T
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and

I (T) (——-)—t/ (1z2) e":zz gt T dz, (4.24)

Knowing that:
2

oo »2 , w
/ e T e ™Mdr=V2re 7 (4.25)

—00

and using the derivative property of Fourier Transforms:

/oo (iz)" e % e dr = /21 (-1)" :w" e (4.26)
The integrals (4.24) , give results for I(T) and I,(%) as
T 1 e E
L(T) = ( ) e He,(T) and I, (T) (=) 7% e He,(T) . (4.27)
Kao Koz

Substituting the above into the equation (4.21), the final expression for f (T, T) is

obtained, as a Hermite polynomials series very similar to the Gram-Charlier result:

1 (L, 1 |t

f(T,7) = — fj f; ., (EZ) : (K—M) " % He(T) e & He,( "), (4.28)

2m t=0

(4.29)
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This equation can be rewritten in a more convenient form to allow a direct

comparison with the Gaussian bi-variate distribution:

ol
N
[y
p
L
—~
[
N
»
g
—
N
A
=
[N
—
~
p

1 00 [ ¢} —;‘_q _._
Z‘I’ue 2 e

TT) = ———
/T, T) 27/ K20Ko2 g =0 v Kao

4.5 The Number of Crossings at Tension Level T

The equation (4.28) or (4.30) can be used with equation (4.1) to determine the
expression for N(Tp) .
Defining:

oo — 2 - 3"
L2 / T e He,(T) dT (4.31)
0

(4.32)

V Kazo* Koz®

Under the present approach, the number of crossings is given by:

N(To) = %\/% e Y. Y W, He(To) 1. (4.33)

t=0 =0

where the integrals I, are constants that can be evaluated using properties of the
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Hermite polynomials:

1 ifs=0

ifs=1 (4.34)

o
Il
™

HC,_z (0) if s Z 2

4.6 The Probability of Extremes

Given the number of crossings at certain level Ty , the probability of having

one extreme T, bellow this level can be given by:

N(T:
Pr(T<T) =1 — N((O")) (4.35)
The probability density function is then:
1 d
< = .
According to the equation (4.33) we have for the number of zero-crossings:
N(0) = ?" 3 Z ,, He,(0) I, (4.37)
02 t=0 »=0
Also, the derivative 5 N(T) gives:
d Koz — 172 -~ = 7
e —_V 3 ¥,, I, He,o(T 4.38
7 N(T) 27Ka Z—% ago ¢ er1(T) (4.38)
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Such that, for the probability density function of the extremes:

-iT, Do Laeo ¥, I, He¢+1(To)

pr(T <Ty) = —=ce == 4.39
( o) v Kzo Yeo oo Vs I, Hey(0) (4.39)
Restricting the sum in (4.39) above to the order N :
N N TO
V,, I, He,
1 .1 Z; ago t € +l( m)
pr(T<T) = e 2% (4.40)

\/_z;(; i f: -‘Fg, I, Heg(O)

=0 =0

Taking into account that Wy, = 1, the pdf for the maxima can be rewritten

(to order N):

N N . TO
> Y Y, 1, HeH—l(\/K_)

Ty, 1% 2 (00) *
PT(T S To) = ‘k; e 2Kz [ 1+ N N ] (441)
Z Z —‘I—in I, He,(O)
Cm#00

In the above the multiplying factor outside the brackets:
72
To 425

is recognized as the Rayleigh pdf, obtained in the linear analysis of extremes (section
3.2). Therefore, the non-linear statistics of extremes under the Gram-Charlier series

approach, shows how much the pdf for the maxima departs from the linear results,
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with this amount given by term inside the brackets in equation (4.41).

4.7 Numerical Results

In this section numerical results for extreme tensions determined by the Grara-
Charlier approach are presented.

The input to these calculations are the cable elongations which are determined
by the equivalent linearization of the twelve degrees of freedom dynamic problem,
as outlined in Chapter 2. The ships are the Tug ARS50 and the Frigate PAGE with
main characteristics given in Table 3.1. The towing speed is 3 knots and the wind
speed is 30 knots.

The two cases presented in this section differ by the towline connecting the
ships. In Case I the hawser is the same studied under the linear theory of extremes
(section 3.3); it represents a relatively short wire hawser, but in the usual length
range applied during actual tow orerations. In Case II the hawser is longer and
heavier, therefore “softer” than the previous one, which causes less restriction to

the ships’ motions and thus giving larger cable elcngations.

HAWSER I | HAWSER 11
Diameter (in) 2.0 2.25
Length (ft) | 1200 1800
Weight (Ibs/ft) 6.0 3.4
Static Tension  (kips) 20.0 20.0

Table 4.1: Characteristics of Hawser I and Hawser II
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The numerical calculations consist in:

¢ The joint moments of the tension and its time derivative are evaluated using
either the polynomial tension representation or a random input simulation

with the cable dynamics program:;

e Once the moments are evaluated, the joint cumulants are obtained through a

computer coded look-up table, as given in David, Kendall and Barton [23];

o The procedure outlined in section 4.3 is then applied to the evaluation of
the coefficients ¥,, and the probability density function for the extremes,

pr(T < Text) , is determined according to (4.41);

o The extreme tension, T,.;;, which is the tension level that has a probability
of 0.1% of being exceeded in 24 hours (o = 0.001 and At = 24 hs), is then
calculated using the above pdf, with the same numerical method described in

section 3.3 for the linear analysis.

4.7.1 Results for Hawser I

To order N = 6, the moments are evaluated for (m,n) = {0, --- 6} and

(m + n) < 6. The resulting matrix, obtained from a 30.0 minutes long random

57



input simulation with the cable dynamics program is:

Mpm =

4.87
6.42E+02
3.12E+04
2.53E+06

2.11E+08

1.96E+10

0.025
0.95
1.66E+01
1.43E+03
9.61E+04

8.93E+06

5.81E+02
4.23E+03
4.23E+05
0.23E4-07

1.77E+09

6.36E+03
—-2.57E+056
~3.37E+06

—3.37E+08

1.10E+07
—-7.91E+07

2.33E+09

-

1.47E+09 8.56E+11

-1.71E+10

The cumulants matrix obtained by the “computerized” look-up table is:

Kom =

The matrix of the coefficients W, for the pdf series representation (to order 6):

Vs =

0.0
4.87
6.17E+03
2.21E404
8.64E4056
1.92E+07

-2.15E+09

1.00
4.87
11.88
8.70E+03
5.39E+04

38.79E+-05

5.07E+06

2.47E-02
8.27E-01
-8.21
-8.14E4-02
-2.22E+04

1.60E+06

2.47E-02
9.48E-01
2.16E-01
—54.41
2.76E+03

4.60E+4-04

5.82E+02
1.40E+03
3.58E+04
1.67E+-08

—-5.03E+07

6.10E-04
6.99E+02
1.24E+04
1.91E+05

2.33E+08

—4.31E+04

-5.96E4-05

6.32E+03
~2.89E+05
—4.68E+406

8.73E+07

1.05E+408

3.88E+06
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—3.70E+-06

9.96E+06
~1.87E+08

—3.56E+09

4.15E+05

-9.17E+07

—1.30E+08

1.43E4+-09 7.65E+11

-2.27E+10

1.19E407 1.06E+09




For the shorter hawser, the resultant extreme tension, T, is:

Teztee = 173.0 kips

In Figure 4.1 the Gram-Charlier pdf for the extreme tension with N=6 is shown
together with the linear one (Figure 3.1) for comparison. It can be seen they are far
apart, explaining the different values obtained for the extreme tension: 84.5 kips in
the linear analysis and 173.0 kips here.

Figure 4.2 shows the same curves in a log-scale such that the behavior of the

these pdf’s for larger tensions can be observed.
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4.7.2 Results for Hawser 11

In this case the joint moments of the tensions and its derivative, Mp,,, are
determined from the coefficients of the tension polynomial approximation, equation

(2.1), which for HAWSER II are:

Q1o = 249.55 Qa0 = —0.738 azg = —0.591
ap; = 1064.71 ag; = 59.24 aps = 2.49

ayy = 59.43 Qg1 = 3.07 a2 = 6.47

where these coefficients have proper dimensions considering the units for tension in
lbs, elongation in ft and elongation time derivative in ft/sec.
The cable elongation spectral moments, resulting from the solution of the equa-

tions of motion, are:
mo, = 24.726 ft? m,, = 11.090 ft? /sec? my, = 5.804 ft*/sec?

Once the elongation spectral moments are determined and the polynomial ten-

sion model is known, a computer program evaluates the joint moments for the
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tension and its derivative. The resulting moments matrix is (to order N =6):

0.00 156E+01 -3.05E4+01 9.85E+02 -5.87E+03 1.09E+05
3.05E-01 1.91E-21 3.54E+01 —5.23E401 3.72E+03 —1.36E+04
2.86E+01 2.13E-15 5.78E+02 -1.09E+03 4.18E+04
Mam = | 1.05E402 6.23E-14 4.84E4+03 —5.48E+03
2.94E+03 8.24E-13 7.26E+04

2.90E+04 2.19E-11

| 5.89E+05

The look-up table program evaluates the cumulants matrix from these moments:

0.00 0.00 1.56E4+01 -3.05E4+01 2.58E+02 -1.13E+03 -1.77E+04 W
3.05E-01 1.91E-21 3.07E+01 -4.30E+01 5.57E+02 4.19E+403
2.85E4+05 2.13E-15 1.14E4+02 -1.95E+02 -4.74E+03
om = 7.87E+01 6.03E-14 4.78E+02 1.58E+03
3.95E4+02 3.85E-13 -—6.24E+03
2.15E4+03 1.87E-12

—3.79E+04

Finally, the matrix of the coefficients ¥,, for the Gram-Charlier Series is obtained

according to the procedure outlined in Section 4.3.

1.00 0.00 0.00 —5.08 1.08E+01 —-9.41 1.28
3.06E-01 1.91E-21 1.53E+01 -3.71 2.65E+01 —4.59E+01
4.64E-02 1.07E-15 3.32E+01 -1.89E4+0 1.45E+02
Wis = 1.31E+01 1.04E-14 4.86E+01 -—2.82E+01
2.04E+01 1.92E-14 8.47E+01

2.36E4+01 3.49E-14---

3.97E+01
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In the present case, the extreme tension, T, , determined by the Gram-Charlier
series is:

Teztge = 55.0 kips

while the linear analysis procedure gives:

T..:, = 44.2 kips

In Figure 4.3 both extreme tension pdf’s are shown in a log-scale plot. The Gram-
Charlier pdf is for N=6 and the linear one is a Rayleigh pdf given by equation

(3.9) with mo,, = 18.76 Ibs’.
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4.7.3 Comments on Gram-Charlier Extremes

The table 4.2 summarizes the results obtained thus far for hawsers I and IL
The extreme tensions designated as “linear,” are determined by the linear statistical
theory (Chapter 3), where the hawser is approximated by the equivalent linearized
coefficients. The ones designated as “Gram-Charlier” are determined according
to the procedures introduced in this chapter. Also included in the table are the
extreme values for the cable elongation, which are the result of the linear extreme
statistics applied to the elongation spectra.

To be able to analyze the effectiveness of the present method, these results are
marked on the static tension curves (tension x change in span) for Hawsers I and
II, Figures 4.4 and 4.5, respectively. The zero span in these curves represent the
static configurations of the hawsers, i.e. the span for the static tension of 20 kips.

The fourth entry in table 4.2, labeled “static,” is the tension value obtained from

the static curves with the change in span caused by the extreme elongations.

HAWSER I | HAWSER II
Linear T,z (kips) 84.5 44.2
Gram-Charlier T, (kips) 173.0 55.0
Elongation z.. (ft) 24.82 28.22
Static Ty, (kips) | ~ 280. ~ 36.

Table 4.2: Extreme Values for Hawser I and Hawser II

The “static” extreme tension, T, , can be interpreted as a physical measure

for the accuracy of the extreme tension calculations. This is so, because when the
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span changes, to accommodate the cable’s extreme elongation, the tension should

increase at least the amount given by the static curve. Any other effect that would

contribute to the tension build up, like the dynamics of the hawser motion, would
add to this minimum extreme tension value.

For the Hawser II, the extreme tension results seem reasonable under this consid-
eration. The Gram-Charlier series gives a slightly higher extreme tension compaied
to the linear analysis result, and both methods retrieve some dynamic effects (of
the hawser motion) in the extreme tension since they are larger than the “static”
extreme value (see Figure 4.5).

For Hawser I this does not happen. Although the extreme determined with the
Gram-Charlier series represents a large improvement over the linear analysis result,
it is still too small when compared with the “static” extreme tension (see Figure
4.4).

According to equation (4.41), the first term in the Gram-Charlier series repre-
sents the Rayleigh probability density function, which is the resultant pdf for the
extremes in the linear statistical theory. All the other terms in the series can be
reduced to a single factor that modifies this linear result in order to conform the pdf
with the non-linearities inherent to the process being analyzed, which are embedded
in the moments.

Figure 4.6 presents two probability density functions. The first one is the mul-

tiplying factor outside the brackets in equation (4.41), which is the Rayleigh pdf
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with mg, = Mg, ie. the Gram-Charlier series with N=0. The second one is
the complete Gram-Charlier series to order N= 6. As shown in this Figure, the
effect of all additional terms on the first one is the small shift to right. These terms
skew the Rayleigh pdf but not largely enough to account for the severe non-linearity
presented by this hawser static curve.

The static curve of wire hawsers present a very strong non-linear behavior. In
general, these curves show two dominant slones. In the small slope region, large
changes in span cause small changes in the tension; in this case the static tension
increases to accommodate the geometric changes on the hawser catenarv configu-
ration. In the steep slope region, small changes in span produce large increases in
tension; which happens because the catenary configuration is already very shallow,
and any increase in span is accommodated by the stretching of the cable.

The fact that the Gram-Charlier Series represents well the probability struc-
ture of slightly non-linear random variables is well established in the literature
[16,10,13,24,26]. This conclusion is reinforced by the results obtained thus far. In
the case of Hawser II, the extreme elongation is such that it does not go very far in
the high slope {stretching) region of the static curve, therefore the results obtained
are reasonable. For Hawser I the same does not happen. The extreme elongation
goes well into this stretching region and the predicted extreme tensions are not

accurate enough.

70



p (T S Tezt)

GRAM-CHARLIER (N = 6)

______ GRAM-CHARLIER (N = 0)
RAYLEIGH PDF

s~

T T T —m————
20.0 40.0 60.0 80.0 100.0

Extreme Tension — T,;, (kips)

Figure 4.6: HAWSER I - Gram Charlier Series pdf
N=0 and N=6

120.0



Even with the automated method to evaluate the coefficients of the series, it is
not practical to consider very large order series. It is worth noting that increasing
the order of the series does not guarantee a better representation of the statistical
properties of the non-linear tension. As pointed out by Wallace {30], the conver-
gence property of the Gram-Charlier series means that for a sufficiently large N
the addition of one more term to the series will improve the approximation. How-
ever this is not necessarily true for small N as considered here. In this case, only
the first few terms can be improvements. This fact was confirmed in the course
of extreme tension calculations for several different hawsers. In some instances,
the Gram-Charlier series with N= 3 was reasonable, but when higher order series
N=4, 5, 6 were considered the resulting pdf presented negative probabilities in the
tail region, therefore being inconsistent.

The main conclusion of this chapter is the fact, leaving all possible dynamic
gffects aside, the relationship between static tension and change in span (cable elon-
gation) represents a very strong non-linearity, which in some cases is too non-linear
to be practically analyzed under the Gram-Charlier series approach. Although the
joint moments of the tension and its time derivative bring this static curve non-
linearity into the analysis, when the extreme elongation is large enough to go into
the steep slope region of the static curve, the Gram-Charlier series either does not
converge with a reasonable number of terms or it is not able to represent well the

probability structure of such hawsers, thus underestimating the extreme tensions.

72



Chapter 5

Direct Integration Approach

5.1 Method Outline

In this chapter a second method to evaluate the number of crossings of certain
level Tp is developed. This method proved more appropriate for the predictions of
extreme towline tension.

It consists of performing the integration for N(T;) directly, using the concepts
of calculus of expectations.

For the frequency of crossings, as in (4.1) we have:
N(Ty) = / T (T, T) dT (5.1)
0

This integral can be interpreted as an expectation operation. For this purpose,
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the following singularity functions are used:

— the delta function:

1 ift=0
5(t) = (5.2)

0 if otherwise.

— the unit step function:

1 ift>0
u(t) = (5.3)
0 ift<O
Equation (4.1) can be rewritten as:
N(Ty) = [ |° T u(@) 6T - T) £(T,T) dT i (5.4)

In the equation above N(Tp) is an expectation. It represents the expected value

of the function ¢(T,T) =T u(T) §(To — T), i.e.:
N(To) = E [T u(T) §(To - T) ]. (5.5)

The tension on the cable is directly related to the extension at the ends, which
has a known probability distribution. Therefore, the above integral can then be
evaluated in the extension domain instead of in the (T ,T) -plane as the equation
(5.4) suggests.

Assuming the tension to be a function of the extension and extension rate of

change at the ends of the hawser, the time derivative of the tension would also be
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dependent on the extension second time derivative (extension “acceleration”), i.e.:
T=T(z,£) and T =T(z,z,%)

Using these relationships in (5.4) , the resulting expression for the number of cross-

ings is:

NE) = [T 7 (58,3 o(f(54,3)) §(To - T(=,4,2))

f(T(z,4,%), T(z,%,%))dT dT (5.6)
which can be carried out in the (z, £, £) domain as:

N(Ty) = / ” / ” / ® Tz, 5,5) w(T(z, 5,5)) 6(To—T(z, £, 5)) p(z, 5, ) dz di di
(5.7)
In this work, p(z,%,Z) is the joint Gaussian pdf of the cable’s end point elongation

and its derivatives, given by:

:i:z + Mo, 522 + 2 mao, .'E:B) ] (58)

with A = mg, my, — my,*

and g, ,ms, ,my, are respectively the expected values E|[z?], E[z?|, E[£?].

In the next sections the following steps are described:

75



t - The tension end-motion relationship
i1 - The transformation of the N(T) integral to the “extensions” domain

i1t - The scheme for numerical integration.

5.2 The Tension-Extension Relationship

The main idea behind the present approach is to assume that the tension end-
motion relationship is known.

As discussed in the Appendix A and section 2.2, through time simulations of the
cable non-linear dynamic equations, it is found that the cable dynamic tension can
be well represented by a third order polynomial in the cable’s end-point elongation
and elongation rate of change. Thus, according to equation (2.1) the following

model for the dynamic cable tension is adopted:

T(z,%) = Y. D Gmnz™ 2" (5.9)

m=0 n=0

Taking the time derivative, we obtain for T :
T(z,2,8) = Y. Y amn (mz™ 2" + nz™ "' £) (5.10)

where, z, £, £ are respectively, the elongation, the elongation velocity and the

elongation acceleration at the cable’s end.
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5.2.1 The Constant Tension Curves

Performing the integrals in the equation (5.6) will be facilitaded by defining
curves T'(z,%) = Ty (a constant), in the (z,z)-plane, with T(z,z) given by the
polynomial model in equation (5.9).

To determine these curves, a new function G(z,z) is introduced:

Gz, i) = T(z,3) — To (5.11)

G(z,%) =0 represents the constant tension curve T(z,z) = Ty .

—

Defining the unit vectors 7,3 ,l? along the coordinates z,z,T respectively,

the tangent vector to the curves T'(z,Z) =T, is given by:

<u

G

F=kx —
VG|

(5.12)

Therefore, solving G(z,z) = 0 numerically, at least one point in the curve T = T}
can be determined. Knowing the direction of the tangent ¢ given by (5.12) the
next point on the curve can be inferred, such that these curves are determined for

each tension level T, as shown in figure 5.1 for Hawser I.
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5.3 The evaluation of N(T})

Once the model for the tension is established, as given by (5.9), the integral
for the number of crossings, equation (5.6), can be evaluated.
According to the equation (5.6) the number of crossings N(T,) can be inter-

preted as:
N(T,) = E [ T(s,2,%) v(T(z,5,3)) 6(To — T(z, 4, %)) ] (5.13)

Considering equation (5.7) , and the tension mathematical model (shown in
Appendix A and described in section 5.2) which gives T as a function of z and %

(not £) only:

N(Tp) = /_ : /_ : /_ : T(z, %, %) w(T(z, £,%)) 6(To — T(z, %)) p(z, 4,3) de d& d&

(5.14)

5.3.1 The Integration Scheme

In equation (5.14) the effect of the delta function is to preserve only the points
(zo, Zo) in the (z,z) plane for which T'(z,z) = Tp, i.e. the points on the constant
tension curves.

For a prescribed T, the integrand in equation (5.14) is zero in the (z,z)-

plane, except along the constant tension curve for that value of T . Thus the z,z
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integration can be carried out as a line integral in this plane.
Defining a coordinate s along these paths (the constant tension curves), locally

at the points s £ (zo,£o) the equation (5.14) can be written as:

Na,(so) = f_ _ T(@o, g0, 2) w(T(z0, 20, 2)) p(z0, 40, %) I (s0) d (5.15)
where:
+Azo f+Aza
In(so) = /Azo /Azo T(:c z) To) dz dz (5.16)

and  (+Azo,+A%;) define a small neighborhood about the point (zo, o) .

In (5.16) above, the double integral of the delta function can be easily evaluated
with a change of variables. Instead of integrating in the (z,Z) coordinates, the
integral can be carried out in the variables (T),s), as follows:

Let (AT,+As) be a small region around a point on the path (To , s0) :

To(sq) = /+AT /+Aa §(T(z,) - To) lgé;’,i’“d:r ds (5.17)

9z2)| s the determinant of the Jacobian of ‘he transformation

The term 3(T.0)

(z,£) <= (T,s), given by:

dz Jdz

d(z, z) aT 3
»Z) _ (5.18)

9(T, s) 8% 3z

aT s
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Actually, for any point on the constant tension curve, the transformation
(z,2) <= (T,s) represents a rotation by an angle 6(s).

Using ﬁT(s) , the gradient of tension in the (z, z) plane, the Jacobian can be

evaluated:
cosd!s! o
Béx,x; _ | 1979 sin 8(s) (5.19)
a(T,s ; .
’ 8in 4(s .
_up?T(a) j —cos o(s)
Such that:
d(z, z) 1
: - 5.20
ld(T, s) , |VT(s)| (520

Using this result in the equation (5.17) the contribution of every point on the

path of integration to the number of crossings is given by:

1
ID (80) = m As (5.21)

Summing up the contributions of all points in the path to the number of crossings:

N(To) = / g, (s0) dso (5.22)

The final expression for the number of crossings at the level Tp, under the current

approach is given by:

N (To) = /, [ T0s,3) u(t(s, ) ps,2) W:rl(sn di ds (5.23)
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where s <= (zo,Zo) are the points along the constant tension curve T = Tp,

and s;,s; indicate the initial and final value to be considered in the integration.

5.4 Numerical Calculations

In this section some computations of extreme tensions with the direct integra-
tion approach are presented.

The ships included in the towing dynamic calculations are the same introduced
in earlier Chapters: the Tug ARS50 and the Frigate PAGE (Table 3.1). The towing
speed is 3 knots and the sea conditions determined by 30 knots wind.

Three hawsers are considered: Hawser [ and II which were introduced in Chapter
4, and Hawser III which is a longer version of Hawser II. Their main characteristics
are summarized in Table 5.1.

The coefficients of the polynomial tension model (5.9) for these three hawsers
are given in Table 5.2.

The main results from the linearized dynamic towing problem, which gives the
cable clongation statistical properties that are input to the extreme tension calcu-

lation under the direct integration approach are presented in table 5.3.
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HAWSER I | HAWSER II | HAWSER III
Diameter (in) 2.0 2.25 2.25
Length (ft) 1200 1800 2100
Weight (Ibs/ft) 6.0 8.4 8.4
Static Tension  (kips) 20.0 20.0 20.0

Table 5.1: Characteristics of Hawsers I, II and III

Coefficients | HAWSER I | HAWSER 11 | HAWSER III Units
aio 785.54 249.55 165.92 lbs/ft
a 145.29 —0.74 -1.07 Ibs /ft?
asg 13.47 —0.59 —-0.43 lbs/ft3
ag 4079.8 1064.7 837.06 Ibs-sec / ft
ao2 49.99 59.24 51.29 Ibs-sec?/ft?
ao3 —16.11 2.49 2.94 Ibs-sec®/ft?
aj; 478.46 59.43 35.78 Ibs-sec /ft?
as 17.96 3.07 2.19 Ibs-sec /ft3
a2 47.91 6.47 4.43 Ibs-sec?/ft®

Table 5.2: Polynomial Tension Model Coefficients
| HAWSER I | HAWSER II | HAWSER III
Elongation Moments
mo, ft? 19.203 24.726 26.984
my,  {t?/sec? 8.716 11.090 11.787
my,  ft?/sect 4.823 5.804 5.893
Linearized Tension Coefficients
k. lbs/ft 1937.3 277.52 183.18
b, Ibs-sec/ft 4003.4 1223.4 999.88
Extreme Cable Elongation
Teat ft|] 248 | 2816 | 2941

Table 5.3: Results from Towing Dynamics
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in:

The extreme tension calculations, under the direct integration approach, consist

Evaluation of the curves of constant tension, based on the polynomial tension

model: equation (5.9);

Numerical integration of equation (5.23) along these constant tension curves

to determine the number of level crossings;

According to equation (3.8), the probability density function for the tension

extremes, T,;;, can be expressed as:

1 d

p(T < Tors) = —'N.—(O—) Ef—:

N(T..) (5.24)

thus, through the numerical differentiation of the number of level crossings,

the probability density function for the tension extremes is evaluated.

o The extreme tension, defined as the tension level which has the probability of

0.1% of being exceeded in 24 hours, is then calculated numerically, according

to the procedure suggested in section 3.3.

5.4.1 Validation of the Numerical Scheme

In order to verify the accuracy of the integration scheme proposed in section

5.3.1, the number of crossings and the extreme tension pdf are evaluated for the
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linear hawser presented in section 3.3.1. This hawser constitutes the equivalent
linearized version of Hawser I, where the tension elongation relationship is given by
equation (2.2):

T(z,2) = ko 2(t) + be, 5(t)

with: k., = 1.937 kips/ft and b,, = 4.003 kips - sec/ft, as given in Table 5.3.
Under the scope of linear theory the number of crossings and thus the pdf for

the extremes can be evaluated analytically. As shown in section 3.2, for Gaussian

distributed random variables, as the linearized hawser tension, the extremes are

Rayleigh distributed (equation 3.9):

T., 1 T2
p(T <T.)= ;,;oi eXP[—igoi] (5.25)
T T

where my, , given by equation (3.10}, is 211.7 Kips?.

The constant tension curves  for this linearized hawser are shown in Figure
5.2. The numerical integration of equation (5.23) is performed and the number of
crossings differentiated, as in equation (5.24), in order to determine the pdf for the
extremes.

The resulting probability density function for the extremes is compared to the
analytic solution, given by the Rayleigh pdf, in Figure 5.3. As shown, the numerical

scheme proves very accurate.
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5.4.2 Extreme Tensions Results

The numerical calculations for the extreme tensions under the present approach,

T.ztp, » result for Hawsers I, II and III:

HAWSERTI ................... 369 kips,
HAWSERII .................. 101 kips,
HAWSERIIT ................. 99 kips

In order to compare this results to the values obtained previously, according to
the linear theory and to the Gram-Charlier approach, Table 5.4 presents all tension
extremes obtained thus far, which are also plotted in Figures 5.4, 5.5 and 5.6 on

the static curves (static tension x change in span) of hiawsers I, II and IIL.

EXTREME TENSION (kips) | HAWSER I | HAWSER II | HAWSER III
Linear Tezt,, 84.5 44.2 40.1
Gram-Charlier Tertoo 173.0 55.0 44.3
Direct Integration Teztp, 369.0 101.0 99.0
Static Tote, ~ 320. ~ 36. ~ 30.

Table 5.4: Extreme Tensions for Hawsers I, II and III

5.4.3 Comments on the D.I. Extremes

As shown in Table 5.4, as well as in Figures 5.4, 5.5 and 5.6, the Direct Inte-

gration approach is able to retrieve the complete non-linear behavior of the static
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tension curve and the hawser dynamics, even for Hawser I, that presents the extreme
change in span well into the steep slope region.

Numerically, these extreme tension predictions are justified by the behavior of
the extremes’ probability density function for large tensions (tails). The direct
integration extremes are larger than the previous ones, because the probabilities
determined by this approach exceed the others in that region. This is shown in
Figures 5.7, 5.8 and 5.9 where the pdfs are plotted in log-scale for the three hawsers.

Physically, these results are explained by the dynamic effects of the cable motion
in water, caused by the cross-flow hydrodynamic drag. As shown by Bliek [9] and
Burgess (8], when the hawser oscillates in water, excited by the motions of the
ships, the drag force increases with the frequency of the exciting end motion. At
some point the balance of forces is such that the average horizontal and vertical
(drag + weight) forces along the length “lock” the hawser into a new geometric
configuration, and any excitation at the ends is accommodated by the cable stretch.

Therefore, due to the dynamic effects of the hydrodynamic drag on motion of the
cable in water, the steep slope of the static curve is applied to smaller elongations
than it would be otherwise, when the end motion is quasi-static (low-frequency).
In other words, if a curve for dynamic tension x change in span were drawn, it
would present the steep slope for smaller elongations that the static one. However,
since this kind of plot cannot be drawn in a straight forward manner, because of

the frequency dependence embedded into it, the static curve is used as the basis
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reference.

Hawsers II and III present larger elongations, as shown by the elongation statis-
tics in Table 5.3. In these circumstances the effects of the cross-flow drag are accen-
tuated because these hawsers oscillate more. Thus, extreme tensions should show
the influences of these cables operating in theirs elastic regime (when stretching

occurs), which is obtained with the direct integration approach.
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Chapter 6

Conclusions

6.1 Summary

Significant advances in the study of towing systems were accomplished within
this work. The analysis of the towing problem as a twelve degrees of freedom
dynamic system, formed by the tug and tow vessels connected with the hawser,
allows the explicit consideration of the dynamic loads when predicting extreme
towline tensions. With it, towing operations can be undertaken with increased
safety and confidence under a whole range of conditions.

The understanding of the hawser forces, and their effects on the motion of the
ships are important elements in the present analysis. The hawser, as the dynamic
coupling element between the two vessels, presents a particularly non-linear behav-

ior. Just on a quasi-static basis, the mechanical properties (tension vs. elongation)
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of a wire rope towline is highly non-linear. Therefore, at low frequencies small
elongations (caused by the ship motions) are accommodated by the cable catenary
becoming shallower, which generates small dynamic tensions. For larger motion
amplitudes, the resulting cable extension is accommodated by stretching the cable
itself, which causes very large tensions. Dynamically, as the cable catenary changes
its shape in the water, the transverse hydrodynamic drag force causes even more
non-linearity. In fact, at intermediate and high frequencies, the drag force can be
large enough to nearly immobilize the cable, causing stretching of the cable even for
small extensions. Besides all this, the cable attains more tension during extension
and actually can become slack when the distance between vessels is reduced, which
is another strong non-linearity.

A computer program for computing time simulations of the cable tension, for
dynamic excitations at the ends, plays a major role in this work. To gain confidence
in this time-domain model several experiments were compared with its results.

Although central to this work, the time domain simulations are not practical
for determining statistics of extreme tensions due to the computer time required.
Typically, for specified vessels, towline geometry and sea state; the extreme tension
is determined as the tension that has a probability of occurrence of 0.1% in one day

of towing. To determine this tension, simulations would need to be done for at least

1000 days actual time. Since the simulations take about 50 times the real time in

a medium power computer, the computing time required is clearly prohibitive.
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To do the problem, a non-linear mathematical model for the cable tension is
developed. It consists in a polynomial relationship between the tension and the
cable elongation (or extension) and the elongation time-derivative. The coefficients
of this polynomial model are determined by fitting it to time simulations, with
weights adjusted, such that tensicn is accurate for high loads.

The next step in the developed methodology is the evaluation of the ship motions
at the ends of the towline, which cause the cable elongation. This is done under
the scope of linear seakeeping theory considering the linearized hawser forces on the
vessels, which are determined with the equivalent linearization method.

Once the motions are determined, the cable elongation RAO is computed and
used as the input to the polynomial tension relation for the non-linear statistical
prediction of extreme tensions. The extremes thus obtained are conservative. The
dominant contribution to the elongation comes from the ships’ surge motion, for
which the hawser forces are the only restoring forces present. Therefore, using
the equivalent linearized forces leads to somewhat larger extreme elongations, thus
conservative extreme tension estimates.

Two methods are developed for the non-linear statistical calculations of the
extreme tensions. In the first one, the frequency of crossings at a certain tension
level is determined using an approximate joint probability density function of the
tension and its time derivative, p(T, T) , obtained from its Gram-Charlier Series.

It was found that the towline characteristics were so non-linear that the series did
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not give a good approximation with a reasonable number of terms.

The second method is fully non-linear. There, the polynomial tension model
is integrated with the known (from the equivalently linearized analysis of the ship
motions) joint probability density function of the elongation and its first two time-
derivatives. The integration results in a non-linear mapping from tension values
to the frequency of crossings, such that the probability density function for the
extremes is obtained. This method proved successful, and the results include the

complete non-linear behavior of the towline.

6.2 Conclusions on the Extremes Calculations

The statistical analysis of extreme tensions in cable systems is not a simple task
because of its extremely non-linear dynamic behavior.

The hawser dynamic response to the exciting ship motions at the ends is a
strongly non-linear phenomenon. Since the motions are assumed linear, they are
Gaussian distributed and so is the cable elongation. Therefore, the extreme elonga-
tion can be obtained by the conventional methods of the linear statics of extremes.
This extreme elongation determines in the static characteristic of the hawser (ten-
sion vs. elongation curve), a minimum estimate for the extreme tension that consti-
tutes a “physical measure” for the accuracy of the extreme tension predictions by

any other method. This is so because, besides any dynamic effect, when the cable
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elongates a certain amount the tension should increase at least to the value given

in the static curve for that elongation.

The results obtained with the Gram-Charlier series do not follow this physical
property of the hawsers. In some cases, the extreme tensions are much smaller
tha.n‘t’he mentioned “static” extreme. In other circumstances, when the extreme is
reasonable under this criteria, the estimate obtained does not differ much from the
one determined linearly, with the equivalent linearized hawser model, Thus, the
method does not accurately reflect the non-linear dynamic behavior of hawsers due
to the hydrodynamic cross-flow drag.

Ali‘l:hough the Gram-Charlier series was not appropriate for the statistical analy-
sis of extreme tensions, because towing hawsers are too non-linear, the methodology
developed for its application in Chapter 4 constitutes an important contribution.
The procedures introduced systematize and automate the evaluation of the coef-
ficients in the series, making its application much more straight forward. It is
the author’s belief that this method is useful for the analysis of slightly non-linear
phenomena.

The extreme tension estimates with the Direct Integration approach were much
more accurate. Because the method is fully non-linear, the static and dynamic non-
linear tension behavior are completely embedded in it. Therefore the methodology
gives results for extreme tensions, that translates all non-linearities of the hawser

tension, not only the static curve non-linearity, but also the drag force effects.
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6.3 Further Studies

The analysis done so far constitutes a large step in the study of towing dynamics.
Nevertheless some important points could be studied more deeply or extended into
new developments.

In this work, the motions were determined from linear seakeeping theory, con-
sidering the equivalent linearized hawser forces acting on the ships. One immediate
further development could be the inclusion of the non-linear motions in the analysis,
specifically the non-linear surge, since this is the motion that most contributes to
the cable elongation. Gains in accuracy of the extreme tension predictions could
be achieved by determining the surge motion response due to the actual non-linear
towline forces. This is so, because for the surge motions the hawser forces are the
only restoring force present and a significant damping contribution. For the other
motions, the equivalently linearized hawser force already does a good job in deter-
mining them, mainly because the hawser forces are small when compared to the
hydrostatic ones.

Although the hawser forces are highly non-linear; due to the fact that the inertial
forces are dominant, the resulting surge motion is oniy slightly non-linear. There-
fore, there is a good chance that the probability density function for non-linear the
surge (and thus the cable elongation) and its time derivatives, can be well approxi-

mated by a tri-variate Gram-Charlier Series. Extending the analysis in Chapter 4
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to three variables, the joint pdf of the elongation and its first and secénd derivatives
could be determined taking into account the non-linear surge. This pdf could then
be used in the Direct Integration approach for the extreme tension predictions.

In the present study only wire ropes towlines were considered. Further devei-
opments, mainly applications of these methodologies for fiber rope towlines could
be undertaken. Fiber rope towlines are much lighter and softer than their wire
counterparts, and the tension-extention hehavior should be much less non-linear
than the one presented by wire ropes. In this case, the Gram-Charlier Series may
well give adequate accuracy in the extreme tension predictions. Besides that, the
procedures developed are also useful for determining the complete probability dis-
tribution of extremes which is necessary for fatigue analysis; very important for

fiber rope towlines.
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Appendix A

Cable Models

In this appendix, the procedures applied to obtain the cable model used in the
statistical analyses are described.

The theoretical model is the time domain differential equations that represent
the cable’s dynamic equations. These equations are integrated to provide the time
domain simulations.

Model tests were carried out to verify the validity and accuracy of this dynamic
model [33].

Finally, a numerical fit using a least minimum square error technique is applied
to a wide range of time simulations in order to determine the relationship between

the dynamic tension and the motions at the end of the cable.
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A.1 The Time Simulation Model

The towing hawser, according to developments made by Triantafyllou [31],
Burgess (8] and Shin [7], is a cable system to which some simplifying hypothesis
apply:

e The hawser is assumed to be uniform with negligible bending stiffness,

e Only in-plane motions i.e., motions of the cable in the vertical plane are

considered with excitation coming from one of its ends,

o The cable is assumed to be shallow sag, which means that the static tension
is much larger that the hawser weight, and that the static tension and the

curvature are constant along the cable.

Additionally, because the exciting frequencies are much lower than the first
ellastic eigenfrequency of the cable (ellastic wave speed: /E/p¢), the longidutinal
dynamics are not excited and can be neglected. The cable’s dynamic equations can

be written as [31]:
(A1)

with

T =pa[R - % [Tgas v o [0 (50)as] (A.2)

where:
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M : cable mass per unit length
w : cable weigth »er unit length
s : coordinate along the cable

g : q(s) - normal motions along the cable

p : p(s) - tangential motion along the cable
T : static tension
T : dynamic tension

Cp : cable sectional drag coeflicient
cable diameter

L : cable length

pw : water density

b : ;—,pw Cpd - sectional drag force

o -"‘TL’ — catenary stiffness

The simplifying assumptions in the previous page does not restrict the cable
model in any sense. It includes the important non-linearities to be considered for
modelling the towing hawser:

— the water drag:

dq |0q
p 2|2 A3
ot ' ot (4.3)
— the non-linear geometric stiffness:
EA L 9qy\2
— — A4
2L Jo (63) ds (A.4)
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— the “clipping” model, for non-negative total tension:

if T+T <0 then T+T issetto O. (A.5)

The differential equation is integrated numerically using the Galerkin’s

Method with sinusoids. Examples of time simulations are shown elsewhere in this

appendix.

A.2 Model Tests

Model tests were preformed in a ship model basin to verify the validity and
accuracy of the cable dynamic model presented in the previous section {33].

The tests consisted of exciting one end of the cable (live end) sinusoidally with
known amplitude and frequency, and measuring the tension at both ends.

The experimental arrangement is shown in the Figure A.1.

The cable used in these experiments had the characteristics, presented in Table
A.1 which corresponds approximately to a 1/ 6'h model of an actual towing hawser,
except for the stiffness (Young’s Modulus), which was not scaled in the cable model
material.

In order to reduce the stiffness of the hawser model a spring was connected in

series with it at the dead end (K = 564.7lbs/ft), giving an equivalent average
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Young’s Modulus:

IS
1

EA7?
E[1+K_L}

= 0.68 x 10° Ibs/in*

Three series of tests were carried out. In the first one, the static tension (Tp)
was 130 lbs and no spring was used. For the second series, the static tension was
maintained at 130 lbs and the spring was attached. Finally, in the third series the
static tension was increased to 180 lbs and the spring remained attached. Table
A.2 summarizes the exciting end-motion amplitudes (non-dimensionalized with the
cable diameter) and frequencies (Hz) applied in each test.

Figures A.2, A.3 and A.4 present the maximum and minimum values of the
dynamic tension in each one of the tests. For comparison, the simulated values
from a numerical integration of equation A.1 are also presented in these Figures.
The agreement is quite good, specially at low frequencies (0-0.6 Hz), which when
scaled to the actual hawser (with \/a, a— the geometric scale) corresponds to the
range of excitations in actual tow operations (0-1.6 rad/sec).

Figures A.5 and A.6 show time-histories of the simulated tension and the test

results.
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Diameter — D in 0.375
Length — L ft 220.0
Weight — w lbs/ft 0.29
Young Modulus - E  lbs/in® | 6.97 x 10°

Table A.1: Characteristics of Test Hawser

TEST I TEST II TEST III

no spring with spring | with spring
To = 130 lbs To = 130 lbs To = 180 lbs
s/D f s/D f s/D f
13.0 0.1 13.3 0.1 11.3 0.1
12.5 0.3 26.3 0.1 13.8 0.3
13.1 0.6 26.7 0.3 27.0 0.3
11.3 1.0 25.3 1.0 26.2 0.6
23.9 0.1 25.6 14 26.0 1.0
26.3 0.3 54.4 0.3 24.5 1.4
25.6 0.6 51.2 0.6 49.9 0.6
49.0 0.3 - - 52.5 1.0

Table A.2: End-Motion Amplitudes and Frequencies
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Figure A.2: Maximum and Minimum Dynamic Tension — TEST I
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A.3 The polynomial Tension Model

As introduced in Chapter 2 a polynomial model for the cable tension in terms of
the end-point elongation, z(t), and elongation time-derivative, z(t), was developed.

This model was applied in the statistical analyses of extremes.

3 3 m+n <3
T(z,2) = D Y. Gpmp z™(t) £"(t) with : (A.6)
m=0 n=0 (m,n) # (0,0)

The coefficients of this model are determined using a least minimum squares
fit procedure applied to simulated data points, which are obtained from the time-
domain solution of the cable dynamic equations presented in Section A.1.

For several different non-dimensional elongation amplitudes ~ (s/D), and fre-

quencies — (w), data points are collected from the tension time-history and the

linear system formed:

3 3

(o ] Z Z Amn I:n .’E:‘ = Oy T(t.') (A7)

m=0 n=0

where: z; = s/D sinwt;, are the elongations; and o; = ;m % , are weights
applied to the simulated data in order to assure that the resulting model is most
accurate for larger tensions which are of consequence for ship motions and cable

safety.
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Some resulting coefficients were presented in Chapter 5, Table 5.2, and examples
of simulated tension compared to the polynomial model are shown in Figures A.7

and A.8 for Hawser 1.
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Appendix B

Towing Dynamics Addendum

In this appendix, ;che geometry of the towing problem is introduced and the
procedures for determining the cable elongation in terms of the ships motions are
described. The hawser forces on each vessel are then determined, and the coupling
matrices K;; and D;; presented.

In the second part, the developments for the surge motion computations are
introduced especially: the surge Froude-Krylov force and the surge damping coeffi-

cients.
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B.1 The Cable Elongation

Figure B.1 presents the geometry of the towing problem and the variables
involved. Two inertial reference frames are defined: O;z,y;2; at the tug and
O: T2 y2 22 at the towed vessel, with the origins O; and O, at the static equilibrium
position of the vessels’ center of mass. The angular motions: ¢ ~ roll, 8 — pitch
and 1 - yaw, are defined positive as indicated.

The cable extension, or elongation, due to the motions of the ships are deter-
mined by computing vectorially the cable end-point displacements at both ships
when they move. First the tow is imagined fixed, and the end-point displacement
vector evaluated displacing the tug vessel a small amount from its original position.
Then, the tug is held fixed and the displacement of the tow point evaluated for a
small motion of the tow ship.

From numerical simulations it was found that the hawser dynamic tension was
most affected when the exciting end-motion was applied along the tangential di-
rection at the extremities of the cable. Therefore, the displacement vectors are
projected in this direction at both ends, and are summed up to determine tha cable
elongation.

The undisturbed cable end-point positions: ¢, at the tug and ¢, at the tow,
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in the tug’s reference frame O, z,y; 2 are:

l- —D1 l- —P1 — 8§ COs 7Y
t, = 0 t2 = —8 oS 7y (B.1)
fl J i f2 ]

where f, and f, are the vertical cable end-point positions.
Keeping the tow fixed, and disturbing the tug a small amount (in comparison to

the cable lenght) given by the motion vector ! X :

X; = [-731 Y1 21 6, 0, ¢’1] (B.2)

Making use of the rotation matrix for small motions [2] R :

1 -9 6
R, = 1 ¢y (B.3)
i =0, —¢ 1 J

1 X} indicates the transpose of vector X .
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The motion of the cable end-point at the tug can be expressed as:

1 - 6 -p1 zy
tip = 1 & 0 + n (B.4)
i -6, -4 1 ] | N | 21

Thus, subtracting vectorially the original end-point position from the disturbed one,
the cable end-point displacement due to small motions of tug, with the tow fixed is

(in the fixed tug’s frame O z;y; 21 ):

T+ fi0,

Al = |y —pti + fith (B.5)

L zy+pi 6y

Finally, the cable elongation due to small motions of the tug is determined projecting
the displacement Al; in the tangential direction to the cable. For that purpose
the rotation matrix R, is introduced. Defining: ~ - the offset angle of the towed

vessel and «; - the angle of the cable at the tug end - point, then:

cosa; 0 sing cosy siny O
Ray = 0 1 0 —siny cosy O (B.6)
|~ sina; 0 cosay 0 0 1
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The cable extension, in this new rotated frame is given by the product:
Ae; = R, - Al (B.7)

Since we are concerned with the displacement component in the tangential direction
of the cable, the first line in the above matrix product gives the desired cable

elongation, 6;:

6 = cosm [cos'y(zl + f10) +siny (y1 — prtr + f1 1) ]+

sin o [(zl + p1 6,) ] (B.8)

The second contribution for the elongation is obtained displacing the tow ves-
sel from its original position while the tow is fixed. As in the first part of these
calculations, the small displacement is given by the tow’s motion vector X;. The
disturbed cable end-point position is determined as before, expressed in the tow’s

fixed reference frame (O, z,y; 22):

1

Al = | o+ Pty + fad2 (B-9)

zy + fycosl;

23 — P2t

Again, the above vector is rotated by the angles (v + o) and oz which yields for
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the component in the tangential direction to the cable:

b6 = —cosay [(zz + f202) cos(v + o) — (v2 + P22 + f2¢2) sin(y + ¢o)] +

sin oy [(zz - pgﬂz)]

(B.10)

The total elongation, the scalar z, can thus be determined by z = 6; + 6,.

According to the nomenclature introduced in Chapter 2,

61 = S{‘Xl and

62=S£'X2

(B.11)

the influence vectors S, ., for determining the cable elongation from the ship mo-

tions, can be identified in equations (B.8) and (B.10):

COS () COS 7y
cos «; sin~y
sin oy
fi cosa; siny
—f1 cosay cosy — p; sinay

—p; COS & sinvy
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— cos oy cos(y + o)
— cos o sin(y + %)
sin az cos(7y + o)
f2 cos g sin(y + o)
—fy cos a; cos(y + ¥o) — p2 sina;

p2 cos o sin{y + ¥o)
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B.2 Evaluation of The Coupling Matrices

As introduced in Chapter 2, the dynamic part of the hawser reaction forces
acting on the ships, Fpy, can be written:

K, K, ¢ Dy, Dy, X,
Fpy = + (B.l4)

Ky Ko X D2y Dy X,
The objective is the evaluation of the coupling matrices K;; and D;; that
translates the hawser forces on vessel - 1 at one end of the towline, due to the
motions of the vessel - 2 at the other end. This development follows closely the

ideas presented in Burgess [32].

B.2.1 The Hawser Forces

The total hawser tension acting on each one of the ships, Ty, ,, can be written
in terms of the cable’s change in span, As, and its time derivative 2, A$:

Tloﬁ = 1’0l + kl As + bl As
(B.15)

(4
Ty,

To, + k2 As + by A

2The index 1 refer to the tug and 2 to the tow
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which expressed in the inertial reference frames, fixed to ships’ static equilibrium

position, have the components:

o
Ty,

o
Ty,

—k

ZQJ

(B.16)

T, is the static tension on the cable k. and b, are the spring and damping

coefficients introduced ir. Chapter 2. The elements of the matrices in equation

(B.16) above, are (according to Figure B.1 nomenclature):

H; , =Tjcosa;, cosy
H, , =T, cosey siny
V1,2 = To sin a2
kz,, = keq cosayz cosvy
ky,, = keq cosay g siny
kzx.z = kcq sin 1,2
bz,, = beg cosay s cosy

b

via = beg COS 2 siny

by s = begsiney
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The hawser forces, as given in equation (B.16), act on the ships while they move.
For the equations of motion, these forces need to be described on the coordinate
frames fixed to the moving ships. The transformation is accomplished using the

rotation matrices R, equation (B.3), and performing the matrix products [2):

_ 0
THLQ - Rl,2 * Hya (B’17)
which results in:
-H;, 0 -vi H, —ks, —bs,
Ty, = -H,, | + (Oaxs : —v; 0 —H, |Xe+ | -k, [As+ | _p, [4s
—Vl Hyl Hzl 1] —'kll "bxg
H,, 0 -Va  -H,, ke, bay
TH2 = Hy, + [0]sxa : -V 0 H,, X2 + kya As + by, As
-Va —-Hy, -H., 0 ke =t
(B.18)

According to the nomenclature introduced in Figure B.1, the cable end-point

position vectors, at the tug ship and towed vessel are:

=P1 P2
L, = 0 and t, = 0 (B.19)
N Ja

The moments can be obtained by multiplying vectorially the cable end-point

position vectors, given by equation (B.19) above, and the tension vectors, equation
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(B.18), for each one of the ships:

]‘([}11_2 = tl.z X TH;,: (B.20)

such that the hawser action on the ships can be written in terms of their force and

moment components:
Fy,, = ' (B.21)

Performing the vector products for the moments (to first order) and using equation

(B.18), the resulting expression for the components of the hawser reaction vectors

at the tug and tow, according to (B.21) above, are:

(3] -V Hy,
-V 0 -H,,
: H H, 0 .
FH; = .F()l + [0]5)(3. " ! X1+k1'A3+bl'AS
M /R 41 0 J1Hgy

L pHy, -HVi+pHs, f1Hy,

- TR 41 0 P1H:, |
0 -V2 -Hy,
-V, 0 H.,
—Hy, ~-Hg, o .
FHQ = Foz + [0]6x3‘ Xo+ky-As+by-As
. faVa 0 -f2H;,
P2 Hy: ~faVa +p2 H,, -fa Hy,
-paVa ¢ p2Hzy |

(B.22)
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Fy,, are the vectors with the components of the hawser static force and moment

on the tug and tow in their own reference frames:

-H,,
~Hy,
-V,
S1Hy,
- H:yy —p1 Vi

p1Hy,

and Fo,

~JaHy,
JaHzy +p2Va

p2Hy,

(B.23)

In equation (B.22) the vectors k,2 and b, represent the components of the spring

and damping forces (for unit changes in span and its rate of change), in the tug and

tow reference frames, respectively:

—kz,
~ky,
~kg,
Jiky,
~f1ksy ~prks,

P1ky,

~bs,

—by,

—byy

N bn
~f1bz; —p1by

P1by,

and k;

and b;
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ks,
kys
—key
~faky,
Jakz; —p2be,

—paky,

bay
by,
—by,
=f2by,
Jabzy — p2bsy

P2 byg

(B.24)

(B.25)



B.2.2 The Change in Span

The change in span can be written in terms of influence row vectors, which are
linear transformations from the motions vectors to the scalar change in span:

—_ [ ! Xl
As = | E] : E] (B.26)

X2
The vectors E,2 are evaluated in a similar manner as were the elongation influ-
ence vectors in section B.1. The distance between the cable end-points is calculated
for small displacements of tug or tow vessels, from the static equilibrium position,
while one of them is held fixed. According to the nomenclature introduced in Figure

B.1, to first order, these vectors are [32]:

2 cosy [ —8 cos(7 + ¥o) 1
2 siny —8 sin(v + ¥o)
=g | Br= 4 - (B.27)
s f1 sing —8 f2 sin(y + o)
pLASf+8f1 cosy p3Af — 5 fz cos(7 + ¥o)
i sp) siny ] I ~8pa sin(y + ¥o)

where dp = \/ s?+ (f2 — f1)? is the distance between the two vessels at the static

equilibrium position, and Af = f; — f,.
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B.2.3 The matrices K;; and D;;

The expression for the hawser reaction forces and moments, equation (B.22),

can be rewritten considering the relationship between motions and change in span,

equation (B.26). Then, eliminating the static reaction forces and moments, Fp, ,,

gives the dynamic hawser forces and moments, Fpy, , , which, when compared to

equation (B.14), allows the identification of the coupling matrices:

Ku

K32

K2

KZI

k - B +

[0]exs

[ 0 ]st
L Vs

p2 Hy,

L -pzV2
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~-hVi+pi Hs,y

0

-V,
0
-H.,
0
—faVa+paHz,

0

|

-H,,
0

N1 Hz,

fl"h

P: Hzl

P2 H!,

(B.28)



B.3 The Surge Exciting Force

The wave exciting force for the surge motion is computed by means of the
Froude-Krylov approximation, i.e. through the integration of the wave pressures on

the hull surface, assuming that the ship does not affect the wave potential:

FFK=//Spﬁds

Closing the hull surface with the horizontal water plane, the Gauss Theorem can
be applied, and the force determined by the integration of the pressure gradient in

the ship’s immersed volume:

pr=///; VpdV

In the case of the surge force, since there is no horizontal force cormaponent on the

water plane surface, the Gauss Theorem can be applied to the sectional force:

F(z) = [opnid (B.29)

[fs §2dS

where, C = C(z) and § = S(z) are the section contour and area, respectively.

Considering these contours as given by the section half beams in terms of the vertical
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z - coordinate, i.e.: C(z) = b,(z) then:
dS = 2b,(z) dz
and the sectional surge force is given by:

F(a:)—2/ %P b, (2)

The waves pressure field is:
p=pgAe* Re{ exp| —t ko (zcos B + ysin B) +iw,t | }

where:
A : wave amplitude,
ko : wave number,
B : wave angle w.r.t. ship’s longitudinal axis,
w, : wave encounter frequency,
z : longitudinal coordinate along the ship,

y : lateral coordinate, y = b,(z) (half beams).

141

(B.30)

(B.31)

(B.32)



Evaluating gﬁ and using it with equation (B.31), the sectional surge force is
obtained.

For long waves it is difficult to do the numerical integration in equation (B.31)
accurately. This can be remedied by the following procedure. For large wave lengths

compared to the beam, sinkob(2) ~ ko b(2), then (leaving e™<* aside):
F(z) = —2pgAko cos 8 sin(ko z cos 3) / b () e"* dz (B.33)

A further simplification can be applied for the case of the low frequency surge.
Assuming: exp[koz] ~ {1+ koz] , the z - integral can be performed analytically,

resulting in:
F(z) ko %o —2pgAky cos B sin(ko x cos 3) S(z) [ 1 + kozc(z) ] (B.34)

where 2z¢(z) is the vertical center of the sectional area S(z). The total surge

force is determined by integrating F(z) along the ship’s length:

L
Frk ko 2o —2pgAko cosf3 fl sin(ko z cos B) S(z) [1 + ko zc(z)] dz  (B.35)
T3
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B.4 The Surge Damping Coefficients

For the towed vessel, the surge damping coefficient is evaluated as the slope of

the resistance curve at the towing speed. Ry is the total resistance,

1
RT = -2- p gSw CT Vz (B.36)

where:

Cr : total resistance coefficient,
Sw : hull’s wetted surface,
V : towing speed

The damping coefficient is then given by:

bp = 4z
(B.37)
= pgSwCrV
For the tug, besides bgp, given by (B.37) above, one must also consider the
propeller effects on the damping through the evaluation of the change in thrust, T,

due to charges in velocity, V. For a constant torque (Diesel Engine) propulsion

plant, the analysis that follows determines this coefficient:

aT

bT::iV

(B.38)
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Considering the open water characteristic curve for the tug propeller, and the

thrust, torque and advance coefficients:

K, = ;’-]%—5; K, = p—ﬁ%—)—s J= Y'(lfv':ﬁﬂ (B.39)
where:
Q : torque at the propeller shaft,
N : propeller speed (RPS),
D : propeller diameter,
w : wake fraction coefficient.
The propeller thrust can be expressed in terms of the torque as:
T = % < (B.40)

For a constant torque plant, differentiating this expression with respect to the speed

V, yields:
dT 2y dK, K. dK,
v - PND [dv K, dv (B41)
The right hand side derivatives are:
dK, dJ dK,  dJ
W = & 7 and v oty (B.42)
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dK. dK;
. — G8ftg
where: g = a7 and oy = a7

and K; x J in the open-water propeller diagram.

Therefore, using the relationships (B.42) above, in equation (B.41):

av PP [“‘ a"Kq] v

Wi

s aJ . . pDSK, 1~
To determine &7, write N =: [———10 ]

o .,%7["“,;‘”’ (po;x,)%]
(p‘Dc:_K“)% (1-w) + IV(1-w) (5_1%)% a
also:
(%&)% = 575 and (%)% — enpt

which, substituted in (B.44) gives:

o _J . J dK
dv V2K, dV

Using equation (B.42) in above,

dJ J 1
N7 74 Ja
av Vl“z'z?:
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, and consider the following:

are respectively, the slopes of the curves K, x J

(B.43)

(B.44)

(B.45)

(B.46)

(B.47)



Thus, substituting % , as given in equation (B.47) above, into equation (B.43),

gives after some algebraic simplification:

dir _, oV

aT o Ky — ag K
L | B

2K, —Ja

which constitutes the propeller surge damping coefficient for the tug, that can be

determined once the propeller operation point is known.
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