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ABSTRACT

Reliability of water distribution systems is becoming of increasing concern to
water system designers and operators because of the increasing age of many
systems and the decreasing availability of public money for water system
construction and repair. This report is concerned with identifying, developing,
and applying methods for the calculation of probabilistic reliability measures for
water distribution systems. Methods are developed for assessing the reliability of
water distribution systems for moderately large systems (10 - 50 nodes) with
unreliable elements such as: pipe breaks, malfunctioning pumps, and out-of-
service transmission and treatment facilities.

A comprehensive literature review of reliability methods and measures from a
number of fields is presented. The objective of this review is to understand
previously used measures and the methods used to calculate them, to integrate
measures and methods from different fields, and to suggest other measures and
problems to be addressed in a reliability analysis.

The water distribution is modeled as a flow-carrying network, with reliable
supply and demand nodes and unreliable links. Link failures are assumed to be
statistically independent. Analytical methods are identified and/or developed to
assess the following measures on these networks: (1) the probability that all
demand points in a system are connected to a source; (2) the probability that a
given demand point in a system is connected to a source; and by assigning a
capacity limit to each link in the system (3) the probability that a system can
meet a specified level of flow at each demand point. Two sample systems are
analyzed with these methods.

A stochastic simulation program is developed which calculates a number of
reliability measures for networks with reliable supply and demand nodes,
unreliable links, and water storage tanks of finite volume. Link failures are
again assumed to be statistically independent. Different probability distributions
are postulated for the distributions of (1) time until failure and (2) time until
repair of individual elements. Three sample systems are analyzed with this
program.

Finally, an overview of a general methodology for the reliability assessment of an
existing water distribution is presented.
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1.0 INTRODUCTION

Most people, at least in developed countries, take it for granted that when they

turn on their faucets, water will come out. Yet the reliability of water

distribution systems is becoming of increasing concern to water system designers

and operators because of the decreasing availability of public money and the

increasing age of many systems. Reliability analyses of water distribution

systems involve much more than just cataloging failure events. Also of interest

are the occurrence of other water supply problems such as low pressure, the

amounts of water not supplied, the spatial and temporal distribution of reduction

or loss of service, and perhaps even the economic and other consequences of the

lack of water distribution supply reliability.

Traditionally, water systems are designed according to certain guidelines which

represent reliability considerations. For example, a common guideline is that

each demand point must be supplied from at least two directions. Additional

analyses may be performed to ensure that the system can operate under certain

contingencies, e.g. with one pump inoperative all demand nodes must have 40 psi

under conditions of average demand. These fixed criteria, however, treat

probabilistic phenomena of reliability deterministically. Usually only a few

contingencies can be examined in these analyses, and it may not be clear that the

contingencies picked for analysis are indeed the ones of most concern.

Contingency analysis is also unsatisfactory for choosing among proposals for

reliability improvements since alternative designs for the same system may all

meet the stated criteria.

This report is concerned with identifying, developing, and applying methods for

calculating probabilistic reliability measures for water distribution systems. Our
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contention is that the reliability of a system involves stochastic events, so

reliability can only be assessed by probabilistic (not deterministic) measures.

Thus we focus on reliability measures such as the probability that a given

demand point receives sufficient flow, or the probability that all demand nodes in

a given system are connected to a source. In contrast to deterministic methods,

probabilistic methods implicitly or explicitly account for the likelihood and

effects of each system contingency. These measures also allow for easy

comparison and ranking of similar systems on the basis of reliability.

This report will focus on the reliability of the distribution system only, not on

external causes of unreliability such as insufficient supply or catastrophic system

failure. Service losses will include pipe breaks, malfunctioning pumps, and out-

of-service transmission and treatment facilities. Some of the methods explored

will also include loss of service due to insufficient internal storage (e.g. water

tanks). Events external to the distribution system which can also cause service

losses, such as total power failure, drought, earthquakes, or enemy attacks, are

not within the scope of this report.

Another objective in this report is to identify methods suitable for calculating

reliability measures on moderately large systems - those of 10-25 demand and

transmission nodes and 10-50 links. Thus more attention will be paid to fast

methods for simple (and possibly approximate) models, than to very detailed

methods which can be applied to systems with only a very few components.

Reliability methods in the literature fall into two broad categories, namely those

for the assessment of the reliability of existing systems, and those for the design

of new (reliable) systems. The focus of this report will be on methods for

reliability assessment. Part of the rationale for this choice is that reliability

problems are
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likely to occur in older systems, with demands exceeding their original design

specifications and with the individual component reliabilities changing due to

aging. Design rules which will ensure a maximally reliable network for a certain

reliability measure on a certain class of network are of little help to a system

operator with a system unlike this class of network. Our final audience for this

work is water system operators and analysts with the need to explicitly identify

the extent of problems they have, or fear they will soon have, in an existing

system. Also, approximate methods of reliability assessment are a necessary first

step for the design of reliability-optimal systems.

In summary the objective of this report is to present:

* methods to assess the reliability of water distribution systems,
* using probabilistic measures,

* for moderately large systems,
* with unreliable system components.

A comprehensive literature review on the subject of reliability of water

distribution systems is presented in Chapter 2. This review is organized around

the many different measures of reliability employed, both in the field of water

system design and operation and in other fields such as Operations Research,

Communications, Safety Engineering, and Electrical Engineering. Special

attention is paid to methods from other fields which may be applicable to water

distribution systems.

The definition of reliability measures is a crucial issue in the assessment process.

Methods exist to calculate a number of reliability measures, but these measures

may not be sufficient to characterize the reliability of the system in question. On

the other hand, many interesting measures can be defined which can not be

calculated, or which can not be calculated without a great deal of time and

- 12 -



expense. Throughout this report an attempt is made to "'walk the fine line"

between these two extremes, that is, to identify useful measures which can be

computed with reasonable effort.

In Chapter 3, analytical methods are identified and/or developed for assessing the

following measures:

* the probability that all demand points in a system are connected to a
source,

* the probability that a given demand point in a system is connected to a
source, and

* the probability that a system can meet a specified level of flow at each
demand point.

The water distribution system is modeled as a flow-carrying network, allowing

the use of network analysis methods and the calculation of these measures for

moderately large-sized systems. Following the discussion of these analytical

methods is a discussion of stochastic simulation methods in Chapter 4.

Simulation methods, although generally more complicated and requiring more

computer resources than analytical methods, allow greater flexibility in the

detail of the system model and in the measures of reliability employed. Both

Chapters 3 and 4 contain the analysis of sample water distribution systems with

the methods discussed. In conclusion, Chapter 5 presents an overview of a

methodology for using the previously identified techniques to perform a

reliability analysis of an existing water distribution system. Suggestions for

further work on reliability assessment of water distribution systems are also

included in this conclusion.
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2.0 DISCUSSION AND LITERATURE REVIEW OF RELIABILITY
MEASURES AND METHODS

2.1 INTRODUCTION

Reliability is a word used in many fields. Reliability calculations have been

performed for systems ranging from a 2 cent fuse to nuclear power plants and the

Apollo space missions. However, like many words with both common and

technical uses, the meaning of "reliability" can change from application to

application. The statement "my spouse is reliable" is understandable in general

conversation, however the statement "my spouse is 95.2% reliable" is so

nonsensical it conveys little information. Unfortunately, the statement "this

water distribution system is 95.2% reliable" conveys little more information,

without knowing in detail how the reliability was measured, from what data, by

what method, and with what model.

A reliable system is one which performs consistently as expected or required; in

this sense reliability is a system objective. To measure the extent or degree to

which the system does perform consistently, reliability performance measures

are needed. For any particular project the choice of measure or the design of a

new measure is, however, not always a a straightforward process.

The first consideration for measuring reliability involves defining when the

system is performing and when it isn't. Desired performance can vary both

spatially and temporally. Perhaps it does not matter if there is a 10 minute period

of no water supplied if it occurs at 3:00AM, but a 10 minute period of water loss at

noon may be extremely annoying to the customers. Water loss may also be of

more concern when it occurs randomly, than when planned for in advance.

Additionally intermittent loss of water for short periods may not be of great

concern in the parts of the system supplying mostly residential users, where even
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short unplanned outages to the part of the system providing cooling water to a

refinery may be disastrous. System performance measures may also need to

account for the occurrence of reduced service periods, when water is still supplied

but at a flow rate or pressure less than normal and/or desired by the users. Thus it

is desirable for the reliability performance measures chosen for an application

account for the important spatial, temporal, and use variations in the system.

On the other hand, if the reliability measures chosen are too complex they may be

impossible to calculate. Additionally, reliability is a probabilistic phenomena. It

is simply not possible to pinpoint where every pipe break within the next year is

going to occur. Thus some aggregation of events, over space and/or time, must be

done for these measures to have any meaning. As stated in the introduction, we

must "walk the fine line" between simple measures which may be easily

calculated and more complex measures which better reflect the expected

performance and variation of the system but are more difficult to calculate.

The purpose of this chapter is to identify reliability performance measures (also

called reliability definitions or reliability indices) that have been used for the

analysis of water distribution systems. Additionally, applicable measures from

other fields, such as Operations Research, Electrical Engineering and

Communications, Electrical Power Systems Engineering, and Nuclear

Engineering, will be discussed. Available methods for the calculation of these

measures will also be summarized.

Focusing on reliability measures serves a number of purposes. First, the initial

step in using any published method is to determine the measure being calculated.

Emphasizing reliability measures provides a way to understand the reliability

literature. Second, a careful examination of methods used in different fields
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reveals that some seemingly dissimilar methods are, in fact, calculating the same

reliability performance measure.

Taking an example from Electrical Engineering, a number of sophisticated

techniques have been developed to calculate reliability for "multi-state systems".

Multi-state systems are those which have intermediate states between failure

and full operation. In Electrical Power Systems Engineering, several methods

exist for calculating the reliability of electrical power generating systems (or

grids), composed of a number of connected generating plants. Upon reflection it

becomes clear that in terms of generating capacity, an electric grid is also a

multi-state system, although the term as such is not used in the field of Electrical

Power Engineering. Examining reliability measures allows the integration of

methods from a number of different fields.

Third, looking at a number of methods from differing contexts highlights the

range of issues that may be involved in a reliability analysis. Thus even for

practitioners more interested in applying the methods discussed in the later

chapters than in the background of these methods, a fast reading of this chapter

may suggest other measures that should be used for their particular problem or

other concerns to be addressed in the analysis.

One last note of caution however. The focus on measures and methods previously

used for reliability analyses is in no way meant to imply that these measures are

all that can or should be developed. The temptation must be avoided to accept

what we can compute as what we should compute. As computational power

increases, from both increased computer power and better algorithms, more

complicated and less aggregated measures should be developed and employed.

Equally crucial to a good reliability analysis, is remembering that important
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reliability issues, even if not easily quantified, can not be ignored. Currently

computable reliability measures must not become a "way of life" based on our

ability to compute instead of on our satisfaction with these measures.

2.2 SYSTEM AGGREGATION AND RELIABILITY MEASURE
CALCULATIONS

As mentioned in the last section, reliability measures must aggregate events over

space and/or time for these measures to have any meaning. The level of

aggregation of a particular measure also provides a useful way of categorizing

these measures and the methods for their computation.

In general, the more highly aggregated the system, the simpler the analysis and

the more detailed the information obtainable. For example, for a highly

aggregated system with one source directly connected to a few demand nodes it is

often possible to calculate the full probability distribution of some reliability

measures. For a detailed water distribution network however, it may only be

possible to calculate the mean of this measure. Three commonly used levels of

aggregation are:

(1) lumped supply, lumped demand,

(2) delineated supply and transmission, lumped demand, and

(3) both supply and demand delineated (networks).

Even for most network measures, state-of-the-art methods usually deal with a

maximum of 10 to 100 nodes. Thus for most applications individual water

consumers must still be aggregated into a moderate number of "demand nodes".

Within each category a number of different performance measures have been

defined. Generally, for a given level of aggregation the applicable measures differ

in the detail to which the processes of failure and repair of individual components

- 17 -



are modeled. Again, in general, more assumptions imply easier computations,

but less detailed reliability information.

The following sections discuss reliability methods applicable to water

distribution systems, for each of the three categories of aggregation. Each section

is organized around reliability performance measures, in order of increasing

complexity. Methods for the calculation of each performance measure are

sketched, and sources for more detailed explanations are reviewed. Guided by the

reasons for focusing on reliability measures, each section is intended to help a

reader understand available measures and methods at this level of aggregation,

integrate the methods from different fields, and suggest further measures and

concerns to be addressed in a reliability analysis of a specific system.

2.3 SYSTEMS WITH LUMPED SUPPLY, LUMPED DEMAND

For a general investigation of unreliability, due only to lack of sufficient system

water supply, the water distribution system can be modeled as an area of "total

supply" connected to "total demand" (Figure 2-1). Models of this sort have been

widely used in the field of Electric Power Engineering to determine the required

amount of system generating capacity needed to meet electrical demand in an

area.

Supply Demand

Figure 2-1 System with Lumped Supply, Lumped
Demand
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Electrical power generating systems, sometimes called electric power grids,

consist of a number of connected electrical generating units. These units may be

modeled as operating (on-line) or not operating (off-line). Some units may also

have intermediate states, namely they may be able to generate power at number

of levels. Outage of individual units may be planned or random occurrences.

Random failure of individual generating units is usually assumed to occur

independently. Thus over time the system will exhibit a range of generating

capacities. Depending on the demand occurring during each period, the system

will or will not have sufficient generating capacity in that period.

Reliability Evaluation ofPower Systems, by Billinton and Allan (1984], contains a

comprehensive review of a number of methods for the calculation of reliability

performance measures for power generating systems. Relevant measures include:

* loss of load expectation (LOLE) - the expected number of days in a
specified period on which the load will exceed the available capacity,

* loss of energy expectation (LOEE) - the expected amount of energy in a
specified period demanded but not supplied,

* frequency of load (or energy) loss - the expected number of occurrences per
unit time of a load (or energy) loss,
* expected cycle time - expected duration between occurrences of a given
capacity, and
* average duration of a given capacity.

These measures can be readily generalized to water systems by substituting

water demand for electrical load, and the total volume of water supplied for total

amount of energy supplied.

For LOLE and LOEE each generating unit in the system is assigned one or a

number of generating capacities, and a probability of operation at each capacity.

The demand on the system (load) is assumed to vary according to some

- 19 -



probability distribution. The methods proceed by convolving the capacity outage

probability distribution with the load duration distribution.

The capacity outage distributions can be compiled by fairly straightforward

methods. For every possible combination of fully operating, partially operating,

and failed units, the capacity of this combination and the probability of its

occurrence is calculated. Summing up the probabilities for all combinations with

equal generating capacity, the probability of occurrence for each possible capacity

level is found. From this distribution, the cumulative probability distribution of

capacity (the probability of having a capacity equal to or greater than a given

capacity) is also easily calculated (Figure 2-2). For systems with many generating

units, recursive and transform methods exist for the calculation of these

distributions.

System demand distributions can be constructed from a variety of data,

depending upon the desired analysis. A daily peak load curve is obtained by

arranging the observed daily peak load values for a period of time in descending

order, and calculating the cumulative percentage of loads that exceed given

values. A load duration curve is similarly obtained using hourly load data.

(Figure 2-2)

For a given available capacity the percent of time the demand exceeds this

capacity can be taken directly from the load duration curve (demand

distribution). Thus by convolving the two curves, the expected loss of load can be

calculated. For a given available capacity the total amount of energy not supplied

is given by integrating the demand distribution between the actual demand

satisfied and the demand required. Thus the loss of energy expectation can also

be found from these two curves. These LOLE and LOEE methods have great
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flexibility and can also be extended to account for outages due to planned down

time for maintenance, power storage, outages due to limited energy to produce

the electricity, and other complex circumstances.

Hobbs [1985a] presents a LOLE reliability analysis of water system capacity for a

small system that can be easily collapsed into areas of lumped supply and lumped

demand. Hobbs also continues the analysis to calculate the frequency and

average duration of the failures of this system. Shamir and Howard [1981] also

present similar methods developed specifically for water distribution systems.

They define three reliability factors (i.e. measures) as follows:

* discharge reliability factor: RC = 1 - (lost capacity/total required capacity)'
(n a user-supplied constant),
* volume reliability factor: RV = 1- (lost volume/total required volume), and
* overall reliability factor: RF = (RC + RV) 2.

- 2

0
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The discharge reliability factor (for n = 1) is the random variable used to calculate

the expected loss of load above, and the volume reliability factor is the random

variable used to calculate the expected loss of energy. Howard and Shamir

however, determine the entire probability distributions for these measures, using

derived distribution methods from applied probability. In their analysis, demand

is assumed constant and loss of capacity is assumed to be due only to pump

failure. Howard and Shamir also consider the factors of storage, pumping

capacity, and repair times on the reliability distributions for a lumped system. In

a later paper, Shamir and Howard [1985] use a method similar to LOLE to

determine the expected reliability (defined as the ratio of supply over demand)

over the next 50 years for Seattle, Washington.

Reliability measures of capacity frequencies, durations, and cycle times are

calculated by methods called, logically enough, frequency and duration (or F & D)

methods. These methods rely on the theory of discrete state, continuous time

Markov processes. For these models, a "'state" is defined for each distinct

combination of operational generating units. The time spent in each state i is

usually assumed to be independent of all other states and events, and

exponentially distributed with transition rate A,. For an exponential process, the

reciprocal of the transition rate for a state gives the mean occupancy time of that

state (mean time spent in a visit to the state). Transition rates are usually

modeled as remaining constant over time. Solutions to these Markov models

provide values for capacity frequencies, durations, and cycle times. Markov

models are usually applied to less aggregated systems, so some further discussion

of this topic and related references will be saved for the next section.

These highly aggregated models are probably of more use in power system

capacity reliability studies than in water system reliability analyses. Because of

- 22 -



the facts that (1) most local electrical systems are highly interconnected, (2)

electric transmission line losses (both of power and voltage) are often negligible

over moderate distances, and (3) electricity travels at the speed of light, to a good

approximation supply anywhere in the system can reach demand anywhere else

in the system. Thus aggregate analyses are useful since the exact physical

location of the generating plants and the electric consumers is of little concern.

However for water systems, (1) interconnections are relatively sparse, (2)

significant volume and pressure losses do occur along water pipelines, and (3)

water in pipes does not travel at the speed of light, thus the spatial distribution of

a water system is usually of prime importance to any reliability analysis.

However, these methods for aggregated systems could be of interest to water

system analysts for a first analysis of water system reliability or as part of a

larger analysis.

Other, more complicated, reliability measures could be developed for water

distribution systems with lumped supply and demand, particularly by focusing

on measures less aggregated in time. However, for most analyses it would more

important to look at models less aggregated over space, as in the following

sections.

Further information about these methods is available in an earlier book by

Billinton and Allan, not restricted to power system reliability, called Reliability

Evaluation of Engineering Systems [1983]. Another often quoted comprehensive

text in this area is Reliability Modeling in Electric Power Systems by J. Endrenyi

[1978]. Additionally, as a guide to the journal literature two comprehensive

bibliographies concerning probability methods in power engineering, compiled in

1972 and 1978, can be found in the IEEE Transactions, Power Apparatus
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and Systems (PAS) [Billinton, 1972; IEEE Subcommittee on the Application of

Probability Methods, 1978].

2.4 SYSTEMS WITH DELINEATED SUPPLY AND TRANSMISSION,
LUMPED DEMAND

One step in analyzing a water distribution system in more detail than in the

previous section is to focus on the bulk transmission system. Typically, such

studies involve models with separate elements for each water source (e.g.

reservoir, aquifer, well), treatment plant, connecting pipeline, and only one large

demand area. Figure 2-3 shows such a model, taken from the water supply system

of Dordrecht, The Netherlands, and analyzed by Tangena and Koster [1983].

Many reliability methods can be (perhaps loosely) categorized as intended for

systems at this level of aggregation. At this level of aggregation it is still possible

to use analytical methods, either exact or approximate. Several studies of water

systems (described later in this section) have been done for such systems, mostly

using derived distribution methods from applied probability. Many of the

methods from Electrical and Systems Engineering can also be classified into this

category, since an electrical component can be thought of as carrying electricity

from one point ("'the source") to another ("the demand area") through a delineated

sub-circuit ("the transmission system"). Analyses of electric power generating

systems for which all elements have not been aggregated into one large supply

node and one large demand node (as in the previous section) have also been

performed. Methods for these analyses of electrical power systems are often called

transmission reliability methods.
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Figure 2-3 Bulk Transmission System

(taken from Tangena and Koster [1983])

At this level of modeling each component is usually described as either

operational or failed. The state of each component is represented by a binary

random variable xi such that:

x = 0 if the component is failed,

1 if the component is operational.

Depending upon which components are operational and which are failed, the

system is then classified as operational or failed. Then the state of the system can
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also be represented by a binary random variable y, which is a function of the

states of the components. Again:

y = 0 if the system is failed,

1 if the system is operational.

Most of the methods for reliability analysis of this type require the systems to be

coherent, that is the failure of an additional component can not cause a failed

system to become operational.

Within this model, there is considerable flexibility in the definition of an

operational system. For example, a system may be operational if the full demand

of the demand area is met, if 90% of the maximum demand is met, or if the

demand area is still connected to some source (disregarding the amount of water

or electricity supplied). As long as coherence, as defined above, is maintained the

analyst may chose any definition of an operating system. The choice should be

based on the needs of the problem, and on the ease to which a given combination

of failed and operating elements can, according to the definition, be identified as

providing an operating or failed system. Since the methods to be described in this

section will work for almost any definition of an operational system, the generic

term of an "operational system" will be used without further clarification.

The reliability of this system is measured as:

* the probability that the system is operational (Pr [ y = 1]).

Many of the reliability analysis methods for this model were developed originally

for electrical circuits. In much of the Electrical Engineering literature this

definition of reliability as the probability that a system operates is used

implicitly. (For a nice discussion of the history of this field see Barlow [1984].) A

summary of reliability methods in Electrical Engineering up until the
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mid-seventies and the starting point for almost all work in this area since then is

the text "Statistical Theory of Reliability and Life Testing: Probability Models"

by Barlow and Proschan [1975]. Most of these methods are directly applicable to

water distribution systems at this level of aggregation. Additionally, for bulk

water supply systems Hobbs [1985b] provides a qualitative discussion of

reliability models and measures.

Methods for reliability, as defined above, vary in how the individual component

reliabilities are described. At the simplest level, the probability that each

component operates is given as a constant pi, with the probability of failure qi = 1

- pi. These values may represent, for example, the percentage of time over a long

period a repairable component operates, or they may represent the probability a

component will last for a specified period of time. An additional assumption is

usually made that individual components fail independently. Thus reliability

measures based on a system with component reliabilities as just described are

highly aggregated over time. Methods for calculating the probability that the

system is operational include:

* enumeration of all possible combinations of component states,
* recognition of systems composed of special structure, such as systems
connected with only series and parallel connections (see Figure 2-4), and

* decomposition.

Series Connection Parallel Connection

Figure 2-4 Series and Parallel Connections
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Decomposition is an application of conditional probability. For example, let:

a be a system component,

pa be the probability of operation of component a,

qa be the probability of failure of component a,
y be the probability of operation of the system (or system reliability),

y(a) be the system reliability with a operational, and

y(a) be the system reliability with a failed.

Then y = y(a)-pa + y(a).q,. If the system can be decomposed into systems with

simple or special structure, decomposition can save considerable computational

effort.

Many methods, based on the above model, have been developed to design

"optimally" reliable systems. Tillman, Hwang, and Kuo in "Optimization of

Systems Reliability" [1980] present a review of these methods. In Chapter 2, they

identify three reliability optimization problems, namely:

(1) allocating reliability among the components of a system so as to maximize
the overall system reliability (with or without cost constraints),

(2) allocating redundancy to maximize system reliability (usually by adding
components in parallel), and

(3) minimizing system cost subject to reliability constraints.

More detailed but more complicated models can be developed by representing the

time until failure of a component as a probability distribution. These "'lifetime"

distributions can then be used to obtain values for the pi's above, as the

probabilities that the individual components will last for a specified period of

time. Then in addition to the overall probability that the system will operate,

time-related reliability measures can be calculated such as:

* mean time to (system) failure (MTTF),
* variance of system failure times, or even
* system lifetime probability distribution.
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For many systems, components can be repaired after they have failed. For such

systems both the time until failure and the time until repair can be treated as

random variables. Systems can also be inoperative due to planned maintenance,

and these outages also can be included in reliability measures. In the context of

"repairable and maintainable systems" measures of the reliability of the system

are often called availability measures. Such measures include:

* mean time between failures (MTBF) or cycle time,
* mean time to repair (MTTR),
* mean time between maintenance (MTBM),

* instantaneous availability (Pr [system operates at random time t]),

* time-averaged availability,
* steady state availability,
* availability for an interval (0,T),

* frequency of failure events - the expected number of failures per unit time.

Although methods from different fields for calculating availability measures may

employ very different terminologies, most of the methods are based on similar

underlying concepts. As touched upon in the last section, these methods rely on

the theory of discrete state, continuous time Markov processes. At each point in

time the system can be in one of two discrete states: operational or failed. It is

usually assumed the time spent in each state is independent of all other states

and events, and exponentially distributed. The transition rate from operational

to failed is usually denoted as A, and the rate from failed to operational as u.

Figure 2-5 presents the transition rate diagram for this continuous time Markov

process. Again, for an exponential process, the reciprocal of the transition rate for

a state gives the mean occupancy time of that state (mean time spent in a visit to

the state). Thus the system spends on average 1/A time units before breaking, and

1/u time units in repair. Because the theory of such two state continuous time

Markov processes has already been done, and many of the formulas for the above
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defined reliability measures tabulated, the major effort for many such analyses is

the calculation of the failure and repair time distributions.

Operational Failed

U

Figure 2-5 Markov Model for System
Availability

For simple failure and repair distributions many availability measures may also

be calculated from simple derived distribution methods from applied probability.

Tangena and Koster [1983] illustrate this approach for the reliability analysis of

the system in Figure 2-3. In this analysis, both the failure and the repair

distribution times are assumed to be distributed exponentially. Some of the

frequency and duration (F & D) measures discussed in Billinton and Allan [1983

and 1984] are also based on this approach. Additional methods for more

complicated distributions, as well as for more complicated dependences going

beyond traditional Markov model systems, are also discussed in Billinton and

Allan as well as in the text by Barlow and Proschan [1975], and a bibliography by

Lie, Hwang, and Tillman [1973].

Another step can be taken to increase the detail of these analyses, by allowing the

systems to have numerous operational states. For water and electric power

systems these states would usually represent current system capacity in terms of

amount water (or electricity) supplied per unit time. Many of the previously
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defined reliability and availability measures can be generalized to the multi-

state case, to define measures such as:

* probability that the system is in state i (supplies capacity i),

* frequency of occurrence of state i, and
* cycle time between occurrences of state i.

In addition, capacity related measures can be calculated such as:

* volume shortfall - total amount of water (energy) demanded but not
supplied,

* time-averaged capacity shortfall - average level of capacity demanded but
not supplied,

* Pr [demand exceeds supply in interval (0,T)],

* Pr [demand exceeds supply at any time t], and

* Pr [demand is exceeded for more time than a given value t].

Methods for calculating these multi-state measures are discussed in the

previously mentioned sources. Shamir and Howard [1985] use derived

distribution methods, to calculate the complete probability distribution of the

volume shortfall for a small bulk water transmission system.

There are a number of more complicated reliability measures that could be

developed for systems at this level of aggregation. One obvious extension is to tie

these reliability measures to economic consequences. At this level it should then

be possible to develop analytical methods for calculating such quantities as

expected cost of water losses. Such methods could then be used to perform

cost/benefit analyses on possible improvements to the system. Also availability

calculations which account for planned outages could be used to develop optimal

maintenance schedules for the elements in the water transmission system.

Currently available methods for systems with lumped demand are have been

shown by several papers mentioned above to be useful for water distribution

system reliability analysis. At this level of aggregation a number of fairly
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complex measures can still be calculated analytically. Many of these methods

could be extended to systems with 2 or 3 demand areas with minimal difficulty.

However for a system with fully delineated demand, other methods become

necessary.

2.5 SYSTEMS WITH DELINEATED SUPPLY AND DEMAND - NETWORKS

A water distribution system can usually be described in detail as a network of

supply and demand points connected by pipes and pumps. Borrowing from graph

theory, the supply and demand points are frequently referred to as nodes, and the

connections as arcs or links. The water distribution network below (Figure 2-6),

which is analyzed extensively in later chapters, is an example of a model of this

type.

The reliability of the individual components of the network are described in many

of the same ways for full network systems as for more aggregated systems,

leading to many similarities between network-oriented reliability methods and

the methods discussed in the previous section. However, more variations are

possible for the definitions employed for when the system operates. For example,

one definition of an operating system is again when demand at every node is met.

However, for a network model an system may be described as operational if

demand for only one specified node is met, or if demand for some specified subset

of nodes is met, regardless of the states of the other nodes. In the previous section,

where the one demand node was the only demand node such finely tuned

definitions were not possible.

Network reliability has been studied mainly in the fields of Communications

Engineering and Operations Research. Much of the work has concerned the

problem of network connectivity, for independently unreliable links, described
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with pi's and qi's. In a paper on the complexity of network reliability

computations, Ball [1980] identifies and classifies a number of reliability

measures previously used in the literature. These measures include:

* probability that two specified nodes (s and t) in a network are connected,
* probability that a specified subset of nodes in a network are connected, and
* probability that all nodes in a network are connected.
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In addition, it is possible to allow the nodes as well to be unreliable. In water

systems unreliable nodes could be used, for example, to model water tanks which

sometimes run dry. Then the above measures can be extended to include the

probability that specified nodes are connected and operative.

Despite the seeming simplicity of this model, Valiant [1979], Ball [1980] and

Provan and Ball [1983a] have proved that the computations of the above

straightforward definitions of reliability are NP-hard for general networks. NP-

hard means that these problems can be shown to be at least as hard as a large

class of problems for which no "easy" algorithms are known. (An "easy"

algorithm in this context is used to mean that the number of computations

required by the algorithm grows only polynomially with problem size.) Thus it is

likely no polynomial-time algorithms to calculate these reliability measures for a

general network can be found, implying exact analytical reliability methods for

extremely large networks will always be cumbersome. However polynomial-time

methods for networks with special structure, such as all series and parallel

connections, have been developed. A discussion of methods for calculating these

connectedness reliability measures follows.

Satyanarayana and Wood [1982] present a polynomial-time algorithm for the

calculation of the above reliability measures on undirected series-parallel

networks. Agrawal and Satyanarayana [1984] followed by presenting a

polynomial-time algorithm for calculating these measures on directed series-

parallel networks. These methods involve identifying structures, such a triangles

or series connections, in the networks. The methods provide ways to reduce these

structures to simpler structures, without changing the reliability of the system.

Both of these algorithms allow series-parallel networks to be reduced to a single

edge, with edge reliability equal to the reliability of the entire system.
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Satyanarayana and Wood's algorithm is employed in Chapter 3, where it is

described in detail.

Agrawal and Barlow [1984] present a brief but clear survey of existing concepts

and methods for the calculation of these reliability measures from the perspective

of Operations Research. They identify three methods that may be used, instead of

complete enumeration, to calculate these reliability measures, namely:

* inclusion-exclusion,
* sum of disjoint products, and

* decomposition.

Inclusion-exclusion methods deal with minimal path sets, which are sets of links

such that the failure of any one link in the set will cause some node in the

specified subset to become disconnected. For any one path set i, the probability of

the event that all links in the path set are operating [Pr(A)] can be found as the

product of the ps's for every link in the path set. These methods involve

identifying each minimal path set, calculating Pr(A[), summing up the Pr(A)'s

for each path set, and subtracting some terms to account for the fact that some

links occur in more than one path set and have thus been double counted.

Unfortunately, there are an exponential number of these correction terms.

Sum of disjoint product methods also involve identifying each minimal path set.

Let p indicate the number of path sets. Let Ai indicate the event: all elements in

path set i operate, and A the (complex) event: any element in path set i is failed.

The probability that the network is connected is given by:

Pr [y =1] = Pr(A1 ) +Pr(A1 A2 ) + ... + Pr(AlA2 . . . A_ Ar).
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In this method there are only p terms, however the work involved to calculate

each term is usually exponential.

Decomposition (also called factoring) was described in the previous section. A

general network can decompose into an exponential number of terms, so again

these methods are, in the worst case, exponential.

Agrawal and Barlow [1984] reference a number of algorithms for these methods.

Other recent algorithms include: Rosenthal [1977], Buzacott [1980], Johnson

[1984] and Provan and Ball [1984]. Ball and Provan [1983b] present approximate

methods for these network based measures. Some work on calculating these

measures without independent failures has been done (see Zemel [1982] and

references). Although most of these algorithms will work with any general

network, most methods exploit some special network structure. Considerable

computational saving may be obtained by chosing a method suitable to the

network at hand. In Chapter 3, Rosenthal's algorithm of was used and is

explained in more detail.

Reliability measures involving link capacities and limits on supply can also be

defined for networks, although they have received somewhat less attention in the

literature. Applicable measures include:

* probability that demand can be met at every node in the system,
* probability that demand can be met at some specified subset of nodes in the
system,
* probability that demand can be met at any time t,
* probability that demand can be met within an interval (0,T),
* expected total shortfall in the system, and
* expected shortfall at any specified node.

Most of the methods for calculating these measures involve specifying a capacity

or flow limit on each link in the network. The links are again assumed to be
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independently unreliable, and the individual reliabilities of each link are

described by p,'s and q's. Some of the above connectivity type methods can be

extended to this case, specifically Rosenthal [1977]. Later, Rosenthal [1981]

developed a faster method for calculating these supply related measures on

series-parallel networks. Other methods for measures of this type are presented

by Aneja and Nair [1980], Willie [1979], and Lee [1980]. Shogan [1982] presents a

method for these calculations when supply and demand are also random. Carey

and Hendrickson [1984] present approximate methods for these measures. In

Chapter 3, Lee's algorithm is adapted and applied to water distribution systems

modeled as capacitated networks. Details of Lee's algorithm are presented there.

In addition to the probabilistic measures described above, a number of

deterministic reliability measures, dependent only on the layout of the network,

have been defined. These include such measures as:

* minimum cut-node set - the smallest set of nodes such that if any one of these
nodes are removed from the network, some node becomes disconnected,
*minimum cut-link set - the smallest set of links such that if any one of these
links are removed from the network, some node becomes disconnected, and

* diameter - the maximum number of links in simple (non-cyclical) paths
between any two nodes in the network.

These deterministic measures are often referred to as measures of vulnerability.

Deterministic measures are most useful for characterizing the reliability of

networks, for a case where the disruptions are caused by an agent with some

intelligence and information about the network, e.g. for networks under enemy

attack. However, the operations of finding cut-node and cut-link sets are parts of

many probabilistic reliability methods. Additionally, some of these measures are

useful for examining the reliability of networks under catastrophic conditions, for

example as a step in the analysis of the likelihood that a water distribution

network is able to survive an earthquake. Wilkov [1972] provides a



comprehensive discussion of a number of deterministic reliability measures used

for reliability analysis of computer networks. Wilkov discusses some of the

probabilistic measures previously discussed in this section as well.

Lastly, another set of network-oriented reliability methods is fault tree analysis,

frequently used for safety analysis in the fields of Nuclear and Chemical

Engineering. A fault tree is a description, as a network, of the ways a structure

(e.g. nuclear reactor) can fail. Thus, in contrast to the reliability methods

discussed above, a major part of fault tree methodology is concerned with

generating a complete list of the nuts and bolts events which could cause the

structure to fail. For example, Figure 2-7 shows an example of a fault tree for the

collapse of a bridge.

When probabilities are assigned to each element in the fault-tree, the probability

of each failure (branch) occuring, and thus the total probability of failure of the

structure can be calculated. If a number of types of failure are possible for a

structure, each with different consequences, an event tree (similar to a fault-tree)

may be constructed. An event tree diagrams all possible paths following from a

top event, through a number of possible subsequent events, to the possible

consequences.

Analysis of fault and event trees also involves the identification of cut-node sets

in the trees, and the summation of the possible failure modes. Probabilities of

failure of the system within a specified period of time, and mean time to failure

are frequently used measures for fault and event tree analysis. Willie [1978] has

shown that the analysis of fault trees, without NOT-gates, is equivalent to

probabilistic network analysis (as described at the beginning of this section).

However, since fault trees for actual systems are very large (thousands of nodes)
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(Adapted from Ang and Tang [1984] pp 487)

reliability measures for most fault tree models can only be approximated. For

example, simplifying assumptions are frequently made to enable a lower bound

on the system reliability to be found. In addition, many of the methods in this

field involve heuristic rules such as disregarding failure events with minimal

effects or extremely low probabilities.

A large literature on fault and event tree modeling and analysis has been

developed. Two useful introductions to this field are Reliability Engineering and

Risk Assessment by Henley and Kumanmoto [1981] and Probability Concepts in

Engineering Planning and Design (Volume 2. Chapters 6 and 7) by Ang and Tang
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[1984]. A paper by De Jong, Snijders, and Wedmijer [1983 in Dutch], is reported

by Tangena and Koster to use failure-mode-and-effect analysis a part of a

methodology applied to analyze the reliability of the drinking water supply of the

city of Rotterdam.

Most water distribution networks involve several water sources, transmission

elements, and a large number of demand points, thus network based reliability

measures are potentially very useful for analyzing the reliability of these

systems. Chapter 3 focuses on three network based reliability measures which

can be calculated analytically.

In the future, the analytical methods for the calculating measures that are less

aggregated temporally should be developed for networks. Network reliability

measures, such as the frequency and duration measures discussed in the previous

section, are desirable. The simulation presented in Chapter 4 presents a non-

analytical way of determining the values of reliability measures such as mean

time between failure, and mean time to repair.



3.0 ANALYTICAL METHODS

3.1 USE OF ANALYTICAL METHODS FOR RELIABILITY CALCULATIONS

Practical analytical methods for calculating reliability measures defined on

water distribution networks can be adapted from network reliability methods

developed in other fields. The aim of this chapter is to identify several reliability

measures that are both useful in assessing the reliability of a water distribution

system, and can be calculated via methods requiring reasonable amounts of input

data, computer resources, and labor to use. This chapter will focus on network

based methods, because it is only these methods that allow reliability

calculations on networks of more than a few nodes. Analytically calculated

measures should allow fast initial assessments of the water system and easy

analysis of the sensitivity of these measures to changes in the input data.

Although not specifically discussed in this report, analytical methods also have

the potential to be optimized mathematically.

This chapter focuses on two types of reliability measures. Section 3.2 presents

some existing network based methods for calculating measures involving the

probability that an operational path exists between the sources and the demand

nodes. These methods are then applied to some sample water distribution

systems. Section 3.3 presents a network based method for calculating measures

involving the probability of maintaining a specified flow at all demand points in a

water distribution system. This method was developed by borrowing from similar

methods for other types of networks.
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3.2 REACHABILITY AND CONNECTIVITY

3.2.1 INTRODUCTION AND DEFINITIONS

In this chapter we will use the term "reachability" to denote the situation when

one specified demand node in the network is connected to at least one source, and

"tconnectivity" to denote the situation when every demand node in the network is

connected to at least one source.

Reachability and connectivity are measures developed to quantify the reliability

of electrical and communications networks. For water distribution systems (and

other flow-carrying networks) connection to a source is only a necessary, not

sufficient, condition to ensure that a given node is functional. For example,

although a fully operational path may exist between a water source and a given

demand node, if insufficient pressure exists in the system this demand node may

not receive any water. Thus measures of connectivity and reachability are useful

for performing an initial screening of the system. These measures can be used to

quickly identify systems with serious problems due to insufficient redundancy to

provide alternative routes when components fail. Similarly, demand nodes with

reachability probabilities below those in the rest of the system may indicate

serious supply shortages at these nodes.

For the calculation of these measures water distribution systems are often be

modeled as networks of supply and demand nodes, connected by links. The nodes

are modeled as being perfectly reliable. Each link i is said to have a probability pi

of functioning at any point in time and probability qj=1 -pi of failing.

Additionally, we also assume for all of the reliability and reachability methods

discussed in this chapter that the links fail independently. Except for

catastrophic occurrences (such as earthquakes) which are not accounted for by
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these methods, there is no reason to suspect significant interactions between pipe

failures in one pipe and the future operation of others.

At any point in time the system can assume one of a large number of

configurations, with some of the links functioning and other links failed. The

probability of any one configuration occurring can be calculated as the product of

the pi's for the operative links times the product of the qi's of the failed links. For

connectivity calculations, each configuration corresponds to either a connected

system, where every demand node is connected via functioning links to some

source, or a disconnected system. Similarly for reachability, for a specified node

each configuration corresponds to either a system in which the node is reachable

via functioning links or a system in which the node is unreachable. Water

distribution networks have the property of being "coherent", meaning that

failure of an additional link can not cause a disconnected system to become

connected, nor can it cause an unreachable node to become reachable.

Conceptually, calculating the overall probability of a given system being

connected or the probability of a given node being reachable is a straightforward

combinatoric problem. For any system, these probabilities can be calculated by

testing each configuration individually, and adding up the probabilities of each

configuration that is connected or for which a given node is reachable. However,

there are an exponential number of configurations. Even for a 20 link system 22,

or over one-million configurations, would have to be tested. Thus methods for

calculating these probability measures must find efficient ways of searching and

counting connected configurations.

It can be shown (Valiant [1979], Provan and Ball [1983a]) that calculating the

connectivity and reachabilities for a general network is NP-hard. (NP-hard

- 43 -



means that it is unlikely any polynomial time algorithms for these calculations

exist.) However, classes of graphs can be found for which polynomial time

algorithms for reachability and connectivity calculations can be developed. In

particular, the next section will focus on existing polynomial-time methods for

calculating reachability and connectivity on the class of series-parallel graphs.

For more general networks, many algorithms exist which are exponential but are

exponential to some base less than the number of links. Thus the key to

calculating reachability and connectivity measures for more general networks

involves finding some special structure that can be exploited in the reliability

calculations. One such method which is likely to be useful for many general water

distribution networks will be discussed in Section 3.2.3.

In order to discuss series-parallel graphs it is necessary to present a few

definitions. This chapter will follow the notation and definitions relating to

series-parallel graphs used by Satyanarayana and Wood [1982]. A series-parallel

network is an undirected network reducable to a tree by performing only series

and parallel reductions. A series reduction (Figure 3-1) can be performed by

replacing two links (u-v and v - w), incident to the same node of degree 2 (node

v) by one link (u - w). If the probability of operation of each original link is p, and

p2 respectively, the probability of operation of the new link will be p1p 2. A parallel

reduction (Figure 3-2) can be performed by replacing two links connecting the

same two nodes by one link. If the probability of operation of each original link is

p1 and p2 respectively, the probability of operation of the new link will be 1 -

qjq2. The overall probability that the network will remain connected, or that any

node (except v) will remain reachable is not affected by these reductions.

A polynomial-time algorithm by Satyanarayana and Wood [1982] calculates the

"K-terminal reliability" of an undirected series-parallel graph. For these
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calculations the analyst specifies a subset of nodes of interest in the graph; these

special nodes are called K-vertices. The "K-terminal reliability" is the probability

that all nodes in set K can communicate with one another (possibly through

nodes not in set K). For set K specified as all nodes, the "K-terminal reliability"

corresponds to connectivity as described in this section. For set K specified as two

nodes, one a source and one a demand node, the "K-terminal reliability"

corresponds to reachability for that node in a single-source system. Since any one

node will be connected whenever the entire system is connected, it is obvious that

the reachability for any node will always be greater than or equal to the

connectivity for the graph as a whole.

Since K-vertices are in some sense "special", some restrictions on series and

parallel reductions for components involving K-vertices exist. To maintain the
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correct reachability or connectivity for a graph with K-vertices, the series

reduction given in Figure 3-1 is possible only when either: (1) node v is not a K-

vertex or (2) all three nodes are K-vertices. If node v *is not a K-vertex, the

reduction in Figure 3-1 can be performed. When all three nodes are K-vertices the

following adjustment is made:

(1) the probability of operation of the new link (u -w) becomes plp2 /(l -qq 2),
and

(2) the system reliability correction factor is multiplied by (1 -qq 2)-

After the graph has been reduced to a single edge, the reliability of the network is

found by multiplying the probability of operation of the final edge by the

reliability correction factor. Notice, if the series of all K-vertices reduction is the

last reduction to be made, the reduction is equal to the non-K-vertex series

reduction. Otherwise, this new reduction method accounts for the necessity that

the "special" K-vertices be connected to the others, even though when the

reduction is made some K-vertices nodes seem to "vanish".

Note, for a series-parallel graph with a single source s and a single terminal t

identified, it may not be possible to reduce the graph via only series and parallel

reductions to an edge s - t. Similarly, for a given set K of identified nodes, it may

not be possible to reduce the series-parallel graph to a tree containing only those

nodes. Satyanarayana and Wood [1982, p. 6] call series-parallel graphs which

cannot be reduced to a tree of K-vertices by series and parallel reductions

"tcomplex series-parallel" graphs. A graph GK which can be reduced to a tree of K-

vertices by only series and parallel reductions is called "series-parallel"

reducible. For example in Figure 3-3, if node a is chosen as the source node and

node c as the terminal node (K = {a,c}), the graph GK is series-parallel reducible.
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In contrast, if b is chosen as the source node and d as the terminal node (K' =

{b,d}), the graph GK is series-parallel complex.

Figure 3-3 Series-Parallel Graph

All of the above definitions apply only to undirected graphs. For a directed graph

D, an associated graph G called the underlying graph can be specified. The graph

G will have the same nodes as D, but for each directed link in D, graph G will

have an undirected link connecting the same nodes. Figure 3-4 presents a

directed graph with the underlying graph of Figure 3-3. A directed graph is said

to be basic series-parallel if its underlying graph is series-parallel.

Figure 3-4 Directed Series-Parallel Graph
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3.2.2 CALCULATION OF REACHABILITY AND CONNECTIVITY FOR
SERIES-PARALLEL NETWORKS

Methods for calculating connectivity for series-parallel networks can be usefully

applied to the analysis of water distribution networks. Some, although certainly

not all, water distribution networks are series-parallel. Series-parallel networks

may be found in smaller systems which can be served by networks which are

basically serially connected trees with a few connections added on. Also, a useful

first step for some complex systems may be to abstract a series-parallel network

from the general network, since many reliability calculations are considerably

easier to do for series-parallel networks than for general networks. Reachability

calculations for series-parallel networks involve the added constraint that the

network involve only a single source. However, this constraint can be frequently

avoided by connecting the sources to a new (fictitious) "super source" by only

series and parallel connections.

The development of polynomial-time algorithms for reliability and connectivity

of series-parallel networks has occurred fairly recently. Satyanarayana and

Wood [1982] claim the development of the first such algorithm for undirected

series-parallel complex networks. A similar algorithm for reachability on

directed series-parallel complex networks was developed by Agrawal and

Satyanarayana [1984]. Both of these methods are based on performing reductions

which preserve the "K-terminal reliability" of the original network. The object of

these reductions is to eventually reduce the graph to a single edge with reliability

equal to that of the original system. This subsection will focus on the method for

undirected networks since usually pipes and fittings can carry water in either

direction, and thus can be represented by undirected links in a network.



This method proceeds by first making as many series and parallel reductions as

possible. For a series-parallel graph, if simple series and parallel reductions do

not reduce the system to a simple tree of K-vertices, the reduced network will

always contain one of the polygons shown in Figure 3-5. The polygons can be

reduced to a series connections of two or three links, as shown in the figure.

Similarly to the previously described series reduction when all three nodes are K-

vertices, (1) probabilities of operation for the "new" links are calculated and (2)

factors are multiplied into the system reliability correction factor (0). In all cases,

a polygon of three or more edges is reduced to two or three links connected

serially.

Once the polygons have been reduced, more series and parallel connections can be

identified and reduced. By repeating the reduction process, the network will be

reduced to a tree of only K-vertices, (usually a single edge). For a system reduced

to a single edge, the system reliability equals the p, for this edge multiplied by the

correction factor. System reliability for trees is also easy to calculate, again the

final reliability must be multiplied by the correction factor. Satyanarayana and

Wood [1982] provide a formal algorithm for this process, and prove that the

computational time involved is proportional to the number of links in the graphs;

e.g. this is a linear-time algorithm.

As an example of the use of this algorithm, the connectivity and the reachability

will be calculated for the series-parallel network, called Network A, with 10

nodes and 13 links (Figure 3-6). Network A represents a small system, with a

reservoir at node 1 and a pumping station at link 100. Links 98 and 99 are

pressure reducing valves, dividing the system into two pressure zones. Network

A with 13 links has 213 = 8192 different combinations of operational and failed
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Formulas:

a = qaPbqc
$ = Paqbgc

= PaPbPc-
(1 + qa/Pa +
qb/Pb + qc/pe)

a = qaPbgc

$ = Paqbqc
6 = PaPbPc'
(1 + qa/Pa +
qb/ Pb + qc/pc)

a = paqbqcPd +
qaPbPcqd +
qaPbqcPd

f = PaqbPcqd
6 = PaPbPcPd'
(1 + qa/Pa +
qb/Pb + qc/pe
+ qd/pd)

a = qaPbqcPd
1 = PaqbgcPd +

qaPbPcqd

6 = PaqbPcqd
Y = PaPbPcPd-
(1 + qa/Pa +
qb/Pb + qc/pc
+ qd/pd)

a = qaPbPcqd

Q = PaqbPcqd
6 = PaPbgcqd
Y = PaPbPcPd-
(1 + qa/Pa +
qb/Pb + qc/pc
+ qd/pd)

Note: Solid nodes represent K-vertices

Figure 3-5 Polygon-to-Chain Reductions
(Adapted from Satyanarayana and Wood [1982, p. 8])
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(pdqe +qdPe) +
Pb (qaPcPdqe +
PaqcqdPe)

= PaPbgcPdge
Y = PaPbPcPdPe
(1 + qa/Pa +
qb/Pb + qc/pc
+ qd/Pd + qe/pe)

= aPbPcqdPePf

= PaqbPc'
(qdPePf + PdgePf +
pdpeqf) +
papbqcpf(Pdqe +
qdPe) + qaPbqcPd
(qepf + peqf)
8 PaPbgcPdPeqf
Y = PaPbPcPdPePf -
(1 + qa/Pa + qb/Pb
+ qc/pc + qd/Pd
+ qe/pe + qf/pf)

Note: Solid nodes represent K-vertices

Figure 3-5 Poly gon-to-Chain Reductions (continued)

nodes, yet the connectivity can be calculated with only a few pages of

calculations.

Figure 3-7 presents a summary of the connectivity calculations for Network A.

Connectivity can be calculated by performing only series and parallel reductions.

However, since connectivity corresponds to the case where all nodes are

Formulas:



5 99 7
6 5 I 8 9

3 4*7 6 8

98 9g

10
11

Key:

100

Pump

1 Reservoir

Node

1 Pipeline

Note: Link lengths Pressure
not to scale Reducing

Valve

Figure 3-6 Network A (with link numbers)

K-vertices, for all series reductions the new edge probabilities must be adjusted

as described in the last section, and a correction factor calculated. Figure 3-8

presents a summary of the reachability calculations for node 7. Reachability

calculations for this node involve using the first of the polygon reductions given
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in Figure 3-5 (in Figure 3-8 this corresponds to the fourth reduction). All other

reductions for node 7 calculations are series or parallel reductions. Table 3-1

presents the reachability formulas for each node.

To give a more intuitive understanding of this system, Table 3-2 gives numerical

values for the connectivity of the system and the reachability of each node when:

* all links have p, = 0.95
* all links have pi = 0.97

* all links have p, = 0.99
* all links have p, = 0.999

* link 1-2 has pi= 0.9543 (pump) and the rest have p, = 1 - (1.557 x 10-6) x

pipe length (ft).

The rationale for the probability values in the last case is as follows. Link 100 is a

pump, which is assumed to fail on average 8 times per year for 50 hours each

time. (These values are in the range of those given in Damelin, et. al. [1972].)

Thus the pump is assumed to be operational with probability 1 - (8 50) / (24

365). For the pipes, a breakage value of 1 break/ mile/ year (from O'Day [1982, p.

591] , see table 4-5) was chosen. To investigate the "worst-case" behavior of this

system, this pipe breakage value is on the order of the highest value from data

from 15 U.S. cities. We further assumed each break lasted 3 days. Thus each pipe

is assumed to be operational with probability:

1 - (3-24) /(24-365) (pipe length (ft)/5280).

Table 3-3 presents the length and corresponding link probability of each link for

this case. Note, although these connectivity and reachability values are reported

only to four decimal places, as many digits as possible were carried in the

computer for the calculation of these values.
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Note: Every node is a K-vertex

6 P5 5 P99 8 P7 9
1.0

P3 P4 P9 P6 P8

3 4 10 17

P1 P2 P98 P10
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1.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1 - q1iq00) (1 - q3q5) (1 - q7q8)
5 P99 8 PC

Pb 
P4 P6

3 4 10 7
P2 P98 -9q

1l -qj

pa = pip00 / (1- qq100)
pb = P3P5/(1 -q3q5)
PC = p7p /(1q7q8)

(1 - q9qOq98)
5 P99 8

Pb
P4 P

3 4 ::7
P2 Pg P

Pa

pf = -6qc
P9 P98(1 - q9q10) / (1 - q9q10q98)

Figure 3-7 Connectivity Calculations for Network A
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Reliability Correction Factors
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P2 Pg
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P4 Pi

3 4
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(1- qqqi
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Pa

1

Pb
(1 - 42q44i)

3 5
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1

Pk = P2(1--q4qi) / (1-q2q4qi)

Figure 3-7 Connectivity Calculations for Network A (continued)
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Reliability Correction Factors

1.0

1 - qbqk

0 -s (D(1 -qaqbqk)
PS

Ps =Pa(l- qbqk) / (1 - qaqbqk)

Connectivity = ps (1 -qaqbqk) (1 -q2q4qi) (I- qgqh)(1-q99qf) (1 -q9qioq9g) (1-qiqioo)
(1 -q3q5) (1 - q7q8)

Figure 3-7 Connectivity Calculations for Network A (continued)

It is obvious that the reachabilities are very similar at each node. However, in the

less reliable cases it can be seen that the nodes in the lower pressure zone (nodes

7,8,9, and 10) have slightly lower reachabilities, with node 9 the lowest of all.

Since the reachabilities of these nodes are so alike, the connectivity value is a

good summary measure for this reliability question. From the last case, with the

varied link probabilities, it is obvious that the connectivity of this system is very

close to the probability of operation of the first link - the pump. Indeed, as shown

in Figure 3-9, for cases with equal link probabilities, the connectivity of Network

A varies linearly with the pi value.

3.2.3 CALCULATION OF REACHABILITY AND CONNECTIVITY FOR
GENERAL NETWORKS

For non-series-parallel water distribution networks more complex algorithms

must be used for the calculation of reachability and connectivity. As discussed in

Chapter 2 there are several algorithms suitable for these calculations, each of
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Note: Nodes 1 and 7 are K-vertices

6 P5 5 P99 8 P7 9
1.0
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pb = P3P5
PC = P7P8

5 P99 8
Pb Pa

P4 Sf

4
P2 Pg

pf = 1 - q6qc
pg = p98(1-q9q10)

Figure 3-8 Reachability Calculations for Network A - Node 7
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Reliability Correction Factors

5
Pb Ph( ) +)

P2 Pg

Ph = P99Pf

P= h (a+) ( + 8) /8
Ps

Pr

51.0

4 Pk

a = q2Pbq4
0 = P2qbq4
8 = P2PbP4(1 + q2/P2 + b/Pb + q4/P4)
Pr = 8 / (a + 8)
PS = 8 / (p + 8)

PsPh1.

........ PrPk

1- (PsPh)1( -PrPk)

Reachability of node 7 = [1 - (1 -PsPh) (1 - PrPk)I[(a + 8) ( + 8) / 5][Pal

Figure 3-8 Reachability Calculations for Network A - Node 7 (continued)
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Node Reachability

2 p100

3 PiooPI

4 p1oop1(l -q2(1 -P3P5(1 -q4qa)))

5 p1OOP1(1 -(1 -P 3P5)(1 -P2(1 -q4qa))

6 po0p1(1 -q3 (1 -P2p5(1 -q4qa)))
7 R(1 -(1 - PsP99Pt)(1 - PrP98Pu))

8 R(1 -(1 - PsP99)(1 -PrP98PuPt))

9 R R'(1 -(1 -PsP99pv)(1 -PrP98PuPw))

10 R(1 -(1 -PrP98)(1 -PsP99PtPu))

where:

Pa = P99P98(1 -q6(1 -P7P8))(1 -q9q0)
qa = 1 - Pa

Pn = P3P5

a = q2Pnq4

P = P2qnq4

8 = P2PnP4(1 + q2/P2 + qn/pn + q4/p4)
R = pioopi(a + 8)(P + 8)/8

Pr =8/(a + 8)

Ps = 5/(p + 8)
a' = q7p8q6

' = p7q8q6
8' = P7P8P6(1 + q7/p7 + q8/p8 + q6/P6)
R' = (a' + 8')(p' + 8')/8'

Pv = '/(a' + 8')

Pw = 8'/(P' + 8')

Pu = 1-q9qlo

Table 3-1 Reachability Formulas for Network A
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NETWORK A

Case I: pi = 0.95 for all i

Case I: pi = 0.97 for all i

Case III: pi = 0.99 for all i

Case IV: pi = 0.999 for all i

Case V: pi from Table 3-3

Connectivity:

I I IIIII IV V

0.8902 0.9364 0.9796 0.9980 0.9540

Reachability:

Table 3-2 Connectivity and Reachability Results for Network A
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Node I II III IV V

2 0.9500 0.9700 0.9900 0.9990 0.9543

3 0.9025 0.9409 0.9801 0.9980 0.9540

4 0.8979 0.9392 0.9799 0.9980 0.9540

5 0.8977 0.9391 0.9799 0.9980 0.9540

6 0.8979 0.9392 0.9799 0.9980 0.9540

7 0.8952 0.9382 0.9798 0.9980 0.9540

8 0.8952 0.9382 0.9798 0.9980 0.9540

9 0.8930 0.9374 0.9797 0.9980 0.9540

10 0.8952 0.9382 0.9798 0.9980 0.9540



Table 3-3 Network A Link Lengths and
Probabilities

which was designed for networks with different special structures. Thus it is

impossible to choose one algorithm which is most useful for general water

distribution networks. However, most water distribution networks are at least

(nearly) planar, i.e. they can be drawn on a plane with (little or) no crossing of

lines. Planarity limits the number of possible interconnections, and thus water

distribution networks are ensured to be relatively sparse.

Rosenthal [1977] presents an algorithm which can be used to calculate a number

of reliability measures on complex networks. Although in the worst case the total

computational effort required by this algorithm grows more than polynomially

with the problem size, for "treelike" and other sparse networks the total

computational effort grows only linearly. Thus Rosenthal's algorithm should be

- 61 -

Link Length (ft) p

1 200 0.9997

2 1500 0.9977

3 1800 0.9972

4 2000 0.9969

5 1900 0.9970

6 1000 0.9984

7 2500 0.9961

8 3500 0.9946

9 1500 0.9977

10 1500 0.9977

98 500 0.9992

99 500 0.9992

100 pump 0.9543



Figure 3-9 Graph of Connectivity versus Link
Probability for Network A

useful for reliability calculations for many water distribution systems. Rosenthal

describes in detail how this algorithm can be used to calculate a number of

reliability measures, including reachability, connectivity, and the K-terminal

reliability described in the previous subsection. The algorithm as used for

connectivity calculations is outlined below, followed by the calculation of the

connectivity of a sample non-series-parallel network.

Rosenthal's algorithm is used with a model of the same type as in the previous

subsection, namely a network with perfectly reliable nodes, statistically

independent link failures, and with the probability of operation of each link given

by pi. In this method, the network is decomposed into a number of subnetworks.

Subnetworks are classified by the number of boundary nodes they contain. A
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boundary node is any node incident to an arc connecting the subnetwork to the

larger network. In Figure 3-10, a subnetwork is circled. Nodes 70 and 100 are

boundary nodes for this subnetwork.

I I

AN

80 18 78

28 20 16 60

150 2 90 12 14

26 -'70

100 10 2

48 20

110 6

10 1 102

10

------

N

Key:

20

A r2

65

...-.......

Pump

River

Node

Pipeline

Water
Storage
Tank:
...........

Note: Link lengths
not to scale

Figure 3-10 Network B

- 63 -



For a subnetwork with two boundary nodes (u and v), called a 2-subnet, the

possible configurations of this subnetwork can be divided into three separate

classes (Murchland [1957]):

"'failed" (denoted sf) = states in which nodes are isolated from the boundary

nodes

[u,v] = states not in sf for which u communicates with v via the 2-subnet

[u][v] = states not in sf for which u does not communicate with v via the 2-

subnet.

Classes for subnetworks with more than two boundary nodes can also be

identified by determining which subsets of the boundary nodes can communicate

via the subnetwork and which cannot. Each possible subset grouping is a

separate class. For a 3-subnet with boundary nodes (u,v, and w) the following six

classes exist: sf, [u,v,w], [u][v,w], [v][u,w], [w][u,v], [u][v][w]. For example,

[u][v,w] is the class of configurations for which u is not connected to v and w in the

subnetwork. However, u may communicate with v and w through the larger

network, if proper connections in the larger network are operative.

The algorithm is initialized by dividing the network so that each link is a

separate subnetwork. The algorithm proceeds by combining in each step, two

subnetworks with at least one boundary node in common. For the larger

subnetwork the probability of it being in each of the possible classes is then

calculated. The algorithm ends when all the subnetwork have been combined into

one network. Then the probability of being in class [u,v,w, . . , z] is the

connectivity for the entire network.

From Rosenthal, it is easily proven that when combining two subnetworks (Si

and S2 ) into a larger network (S3) the composition of any two classes (C, from S,

and C, from S2), yields a unique class of the larger subnetwork. Thus the
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probabilities associated with the new classes are calculated with the following

formula:

Pr(C 3) = E Pr(C, and C) = F Pr(C 1)Pr(C 2) (3-1)

where the sum is over all classes (Ci and C2) which combine to produce C3.

Rosenthal does not specify the order in which the subnetworks should be

combined. In fact he indicates he "tried unsuccessfully to find a good algorithm to

determine an optimal sequence of subnetwork merges to minimize ... [the] total

computational work". In one sets of computational experiments on variations of a

computer communications network linking some U.S. universities (1974

ARPANET), Rosenthal used the heuristic rule: first the links in series or parallel

configurations were combined, followed by successively merging 2-subnets into

one growing subnetwork. He was able to solve a 46 node/ 63 arc problem with this

algorithm, and needed to employ only subnetworks of 6 boundary nodes or less.

One iteration of this algorithm will be illustrated in the calculation of the

connectivity of Network B, an 10 node, 16 link network (shown in Figure 3-10).

Network B is a portion of a test problem "Anytown" proposed by Thomas Walski

for analysis at the June 1985 ASCE Water Resources Conference in Buffalo, NY.

This small network, a subset of the Anytown network, represents the central part

of the city. A subset of the network was chosen to allow calculation by hand. This

network is not series-parallel, for example the pentagon of nodes and links

surrounding node 90 cannot be reduced at all with series or parallel reductions.

In Network B, node 10 represents a water treatment plant, node 65 represents a

water storage tank, and the two links from node 10 to 20 represent pumps. Figure

3-11 presents a summary of a few steps of the connectivity calculations for this
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network. Again, for a better understanding of this reliability expression,

Table 3-4 presents the numerical value of this expression when:

* all links have pi = 0.95
* all links have p, = 0.97
* all links have pi = 0.99
* all links have pi = 0.999

* link 1-2 has pi = 0.9543 (pump) and the rest have pi = 1 - (1.557 x 10-6) x

pipe length (ft).

The last set of pi's again comes from a figure of 1 break/mile/year. Table 3-5

presents the length and corresponding link probability of each link in Network B

for this case.

Although this network is more complex than network A the connectivities are

quite similar. Again, as shown in Figure 3-12, for cases with equal pi's the

connectivity of Network B varies linearly with the p, value. The connectivity

calculated from the last probability set is again very close to the probability of

operation of the pump, despite the possible modifying influence of the water

storage tank.

Because the nodes are modeled as perfectly reliable, the connectivity expression

calculated above is actually an upper bound for the reliability of this system.

Node 65 represents a water tank, thus the assumption of perfect node reliability

implies the tank contains an infinite volume of water. Even if unreliable nodes

are allowed in the analysis, the assumption of independence of failures does not

allow modeling the length of time until the tank runs out of water as dependent

upon on the current configuration of the system. To model this more complex (but

more realistic) situation, fault-tree methods or simulation methods are needed.

Water tanks with finite volumes are modeled in the simulations in Chapter 4.
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Assume the subnetwork identified in Figure 3-10 (nodes 10,20,70,100,
and 110) has been solved. Nodes 70 and 100 are the boundary nodes.

Let the following represent the probabilities of each class:

Class
sf

[70,100]

[70][100]

Probability
ai

a2
a3

Assume another subnetwork (nodes 60,65, and 70) has also been solved.
Nodes 60 and 70 are the boundary nodes. Let the following represent the

probabilities of each class:

Class Probability

sf bj
[60,70] b2
[60][701 b3

These subnetworks can be merged into a 3-subnet, consisting of nodes 10,
20, 60, 65, 70, 100, 110, 120. Nodes 60,70, and 100 are the boundary
nodes. The probabilities of each class are:

Class Probability

sf
[60,70,100]

[60][70,100]

[70][60,100]

[100][60,70]

[60][70][100]

al + a2bl + a3bi

a2b2

a2b3

0

a3b2

a3b3

Figure 3-11 One Iteration of Rosenthal's Algorithm Used to Calculate the
Connectivity of Network B
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Table 3-4 Connectivity and Reachability Results for Network B

3.2.4 DISCUSSION

As discussed previously, the major use of connectivity and reachability values is

to provide a fast, easy to perform, check for reliability problems due to inadequate

network interconnections or extremely unreliable links. For some systems,

namely those that can represented by series-parallel networks, the algorithm of

Satyanarayana and Wood may be used to calculate reachability and connectivity

simply and extremely quickly. For more complicated networks, algorithms such

as Rosenthal's exist for the calculations of these measures.

One possible problem with these methods is in determining the correct values for

the probability of operation for each link. These values may be extrapolated from
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NETWORK B

Case I: pi = 0.95 for all i

Case II: pi = 0.97 for all i

Case III: pi = 0.99 for all i

Case IV: p = 0.999 for all i

Case V: p, from Table 3-5

Connectivity:

I II IV V

0.8956 0.9383 0.9798 10.9980 0.95341



Link Length (ft) p

101,102 pump 0.9543

78 100 0.9998

2 12000 0.9813

6 12000 0.9813

10 6000 0.9907

12 6000 0.9907

14 6000 0.9907

16 6000 0.9907

18 6000 0.9907

20 6000 0.9907

22 6000 0.9907

24 6000 0.9907

26 6000 0.9907

28 6000 0.9907

48 6000 0.9907

Table 3-5 Network B Link Lengths and
Pro ba bilities

historical records of the system. For example records may show the average pipe

in a system is operational all but one day per year, giving a p, of 364/365 =

0.9973. Similarly, as was done in the examples, these probabilities may be

estimated to be related to the length of a link with longer links usually being less

reliable.

No matter how these probabilities are estimated however, these methods always

reflect the assumption that the probabilities are "'instantaneous", i.e. they

represent the probability of the link being operational at any point in time. This

assumption implies that instants of time are independent. In these methods a
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Figure 3-12 Graph of Connectivity versus Link
Probability for Network B

link that was inoperative for one ten-hour period per one year would have

reliability equal to a link that was down for one hour ten times during the year.

Of course, once a pipe has failed it will stay failed for at least a few hours. Thus

the probability that a pipe is failed at some moment in time is not completely

independent of it's operational state the moment before. This model also cannot

exactly represent a situation where, for example, a pipe failure lasts no more

than one day, no matter how long the pipe has previously been operational. For

use as a fast first step in a reliability assessment however, this "point in time"

assumption is unlikely to be of much concern.
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3.3 PROBABILISTIC SUPPLY MEASURES

3.3.1 INTRODUCTION AND DEFINITIONS

As discussed in the previous section, reachability is not sufficient to establish

that the supply at a demand node is being met. For a reachable node, it is

important the node receive sufficient supply at adequate pressure. Receiving

adequate supply is a function not just of the arrangements of links in the

network, but also of the amount of flow that can be carried along these links.

Over time, as links randomly fail and are fixed, the amount of supply or the

pressure of that supply will vary at any given node. Thus it would be useful to

know for each node the probability distribution of these quantities.

Unfortunately, methods for calculating these distributions, or even the mean and

variances of these distributions can only handle very simple systems with no

more than a few nodes. There are, however, network based methods that can

calculate measures such as "the probability that x units of supply per minute can

be delivered at a given node", or "the probability that each node i can be supplied

with x, units of supply per minute at a specified pressure".

Conceptually, calculating the above probabilistic supply measures is again a

simple combinatoric problem, almost exactly like the problem of calculating

network connectivity and reachabilities. Again, the water distribution system

can be modeled as a network with perfectly reliable nodes, statistically

independent link failures, and each link i having a probability of failing (p ) at

any point in time. Then the probability that all nodes have sufficient supply can

theoretically be calculated by adding up the probability of each individual

configuration for which the system can provide the required supply. As with
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connectivity methods, the key to finding efficient algorithms is to find efficient

ways to search for operational configurations.

Testing for sufficient supply in a network is however much more difficult than

testing for connectivity of that network. Hydraulic networks behave according to

a simultaneous set of non-linear algebraic equations. Computer programs for

solving for the pressures and supplies in hydraulic networks do exist, but they

employ iterative techniques. It is also impossible to use the solution of the full

system to quickly deduce the solution to a reduced system, since flows can be

rerouted in complex ways. Even with an efficient algorithm for searching among

system configurations, a large number of configurations must be tested requiring

considerable amounts of computer time. Thus, in order to calculate these

probabilistic supply measures, some easily solved approximation of the hydraulic

characteristics of the full network must be found.

In this section, the use of a capacitated network as a model of the full hydraulic

network will be explored. A capacitated network model simply adds, to the

previously described network model, maximum capacities on each arc. Now, the

problem of determining if a given configuration can meet the specified demand

without exceeding the capacities of each link has been reduced to a classical

network flow problem, usually called a transshipment problem. Many well-

known polynomial-time algorithms exist for finding a feasible solution for a

transshipment problem for one network. However, it is a much more difficult

problem to find the probability that a network with unreliable links will operate,

which involves testing many individual network configurations. It can be proved

(Valiant, [1979]) that even for series-parallel networks the problem of finding the

probability that each node will receive sufficient supply is NP-hard.
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In the following subsections, algorithms for calculating probabilistic supply

measures on capacitated networks will be discussed, methods for assigning the

arc capacities will be developed, and these measures calculated for two sample

networks. Based on these examples, the validity of using a capacitated network

supply model to represent a water distribution system will be discussed.

3.3.2 CALCULATION OF PROBABILISTIC SUPPLY MEASURES ON
CAPACITATED NETWORKS

The objective of this section is to calculate the probability that every node in the

network receives sufficient water supply. This probabilistic supply measure is

similar to connectivity, except for this measure configurations in which all nodes

are connected may be still be infeasible due to lack of sufficient flow-carrying

capacity.

The development of methods for calculating the reliability of capacitated

networks has not received as much attention in the literature as has development

of methods for calculating connectivity. One of the conceptually easiest methods

was developed by Lee [1980]. Lee's algorithm, based on lexicographic ordering,

provides the search strategy among the possible configurations. At each iteration

this algorithm determines a set of operational configurations and accounts for the

probabilities of this feasible set. Lexicographic ordering in an extension of the

principle that the last arc on the list is deleted first.

In the worst case and with a poor choice of initial configuration, this algorithm

may search every one of the 2 L configurations (where L is the number of links in

the network). However, for sparsely connected networks, and networks that are

not highly reliable, this algorithm is fairly efficient. Thus for a first investigation

of the use of capacitated networks Lee's algorithm was employed to compute the
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probability that the system can meet the specified demand at each node without

exceeding the capacity of each arc.

The steps involved in using this algorithm are:

1) finding an initial feasible solution to the capacitated network, namely a
solution that supplies the specified demand at each node without exceeding
the capacity of any arc,

2) successively removing operational links and seeing if a feasible solution
to the reduced network can be found,

3) accumulating the probabilities of feasible configurations, and

4) repeating steps 2) and 3) for all links which participate in any feasible
solution until all feasible configurations have been accounted for.

For ease in solving the transshipment problem for the initial and the reduced

networks, the network is augmented as follows:

* a node representing a "super source" is added with supply equal to the
total network demand

* a link is added from the "super source" to each supply node with capacity
equal to the maximum supply at that node
* each undirected link i-j in the network is replaced by two directed links
(i-+j and j--i) each with capacity equal to the original link.

The classical spanning-tree based transshipment algorithm (see for example

Bradley, Hax and Magnanti, [1977, p. 326-335]) was used to solve the individual

network configurations. The solution to the reduced network can be easily found

as the minimum cost solution to the original network, when the costs on the arcs

are as follows:

* the cost of each failed arc is 1 unit

* the cost of each operational arc is 0 units.

(Of course, a failed link i-j implies that both directed arcs i-+j and j-+i have failed.)

If the minimum cost solution to the above problem has zero cost, a feasible

solution using only operational arcs is possible. If the minimum cost solution is
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greater than zero, no solution is possible without using failed arcs indicating that

the reduced system can not meet the specified demand. The feasible flows carried

on each link, when every link is operating, are supplied as an initial feasible

solution to the transshipment problem for the reduced networks.

The computer program used for the analysis of the following sample systems

employed Lee's algorithm to search among configurations, linked to the classical

transshipment algorithm for testing the individual configurations. In this

program the initial feasible solution to the full network is required as a starting

point. It was not necessary to implement a search for the initial feasible solution,

because for networks of the size that can be handled by Lee's algorithm it is a

simple matter to find the initial feasible solution by hand.

As an example of the use of this algorithm, the Networks A and B (Figures 3-6

and 3-10) from the previous section were analyzed. The following paragraphs will

discuss details of the probabilistic supply analysis. Suitability of the model will

be discussed in the next subsection.

It is not clear how to determine the capacity of each link. Most pipes are rated as

to the maximum pressure they can withstand, so one limit to the amount of flow

they can carry may be obtained by setting the pressure at one end of that pipe to

the maximum allowable pressure, setting pressure at the other end to 0, and

solving for the flow carried by the pipe. Certainly this value will be an upper

bound on the capacity of the pipe, however it is unlikely that there will ever be

sufficient pressure in the system to obtain this limit. In most systems, the flow

through each link will be determined by the number and location of the pumps,

elevated water tanks, and other pressure modifying devices, rather than by the

pipe pressure limits. It is difficult, however, to determine how the pumping

- 75 -



capacity of each pump and the elevation of each tank will affect the flow through

some pipe not directly connected to that pump or tank.

As an attempt to avoid very complicated procedures, but to still reflect practical

limits on the flow in each pipe, a "rule of thumb" estimation was tried, namely

the maximum flow in each pipe will be the flow that would occur if the pipe was

installed at a gradient of 0.01. Thus the maximum flow in each link was given by

the Hazen-Williams equation (see for example Walski [1984a, p. 35]):

V = 0.55 x C x D. 63 X O".54 (3-2)

From (3-2) we get:

Q = 0.2795 xV x (ri x D2 )/ 4 = 4.057 x 10-4 x C x D2.63x SO.54 (3-3)

where:

V = velocity (ft/sec)
C = Hazen-Williams Coefficient
D = pipe diameter (ft)
S = slope
Q = flow (million gallons / day [mgd])
0.2795 = conversion factor from ft/sec to mgd.

If, in the actual system, the pipe actually has a gradient greater than 0.01 the

actual gradient was used for S in the above equation. Maximum flow for pumps

was determined by the maximum pump capacity, not by the above procedure. In

practice this estimate worked very well, except for links representing links

between tanks and the system. For these links it was finally easiest to determine

the limits of flow by examining a few configurations as solved by a computer

program which can solve for the flows and pressures in the hydraulic network

(based on the algebraic equations of network flow). For these analyses, SDP8
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(1984), a computer package for such hydraulic calculations by Charles Howard

and Associates, Ltd. was employed. The rationale for the limits used for these

links in each sample system will be discussed, as the system results are

presented.

Analysis of Network A (Figure 3-6), proceeded very smoothly. The limits for most

of the links were determined from formulas 3-2 and 3-3 above, with a slope of

0.01. Links 98 and 99, the pressure reducing valves, have a gradient steeper than

0.01. Thus for these links the actual slopes of 0.37 and 0.44 were used. Lastly, this

system has only one pump, so the maximum capacity of this link was set to the

total demand of the system. Table 3-6 presents the calculations and the link

capacities used for this analysis. Table 3-7 contains the demand at each node.

Link From To C D (in) S Capacity
(mgd)

1 2 3 120 16 0.01 5.946

2 3 4 120 12 0.01 2.790

3 3 6 120 14 0.01 4.185

4 4 5 120 10 0.01 1.727

5 6 5 120 14 0.01 4.185

6 8 7 120 8 0.01 0.960

7 8 9 120 10 0.01 1.727

8 7 9 120 8 0.01 0.960

9 10 7 120 10 0.01 1.727

10 7 10 120 6 0.01 0.451

98 4 10 65 6 0.37 1.716

99 5 8 65 4 0.44 0.649

100 (pump) 1 2 - - - 6.675

Table 3-6 Network A Link Capacity Data
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Node Demand
(mgd)

2 1.6

3 1.2

4 0.6

5 0.4

6 0.875

7 0.6

8 0.8

9 0.4

10 0.2

Table 3-7 Demands for
Network A

Calculation of the probability that every node receives sufficient supply for this

series-parallel network required very little time for analysis, less than 3.0 CPU

seconds on a VAX 11/750 per calculation. Thus a variety of runs were performed,

both to throughly analyze the system and to investigate the suitability of the

model.

Table 3-8 presents the probability of sufficient supply for a number of cases

involving Network A. Connectivity values for each case are included for

comparison. The first set of analyses were performed to investigate the

sensitivity of the analysis to the probabilities of operation of each link. Thus the

following cases, as used in section 3.2.2, were run:

* all links have pi = 0.95

* all links have pi = 0.97
* all links have pi = 0.99
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* all links have P, = 0.999

* link 1-2 has p1 = 0.9543 (pump) and the rest have pg = 1 - (1.557 x 10-6) x

pipe length (ft).

Secondly, a number of capacity conditions were investigated. Runs were

performed with the following conditions:

* normal capacity (Table 3-6)

* 0.9 x normal capacity

* 1.1 x normal capacity

* 1.2 x normal capacity.

For each of the above runs all link probabilities were set to the last case above,

since the probability of operation of a link is expected to depend on whether a link

is a pipe or a pump, and on the length of the pipe.

Link Probability of Connectivity
Case Probabilities Capacities Sufficient (from

Supply Table 3-2)

I all = 0.95 Table 3-6 0.6586 0.8902

II all = 0.97 Table 3-6 0.7817 0.9364

III all = 0.99 Table 3-6 0.9225 0.9796

IV all = 0.999 Table 3-6 0.9920 0.9980

V Table 3-3 Table 3-6 0.9426 0.9540

VI Table 3-3 1.1 x Table 3-6 0.9476 0.9540

VII Table 3-3 1.2 x Table 3-6 0.9483 0.9540

VIII Table 3-3 0.9 x Table 3-6 0.9426 0.9540

Table 3-8 Supply and Connectivity Probabilities for Network A

A comparison of the probabilities of sufficient supply with the corresponding

connectivity values indicates, as expected, the probability of the system being

able to deliver the required supply is less than the probability of it simply being
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connected. Particularly for the sets with less reliable links, the probability of

sufficient supply is considerably less than the probability of being connected. The

wide range of these probabilities is quite striking. For a system with pi = 0.95,

the probability of sufficient supply = 0.65866, compared with a probability of

sufficient supply = 0.9920 for a system with pi = 0.999.

For Network A, the supply probabilities also seem to be linearly related to the

link probabilities, for cases with equal p,'s. (Figure 3-13) For the last, more

realistic, probability set under normal capacity conditions, the probability of

sufficient supply is 0.9426, which is fairly close to the connectivity of 0.9540. For

systems with higher demands, more demand points, and/or pipes operating closer

to capacity under normal operating conditions, the difference in these values

would be expected to be larger.

Probability of Sufficient Supply

1 .0 0 ----- .- .- .- .-- .- - . --. -- .-. - - -- - ------ .- -

0.90

080

0.70

0.60

0.95 0.96 0.97 0.98 0.99 1.00

pi (equal link probabilities)

Figure 3-13 Graph of Probability of Sufficient Supply
versus Link Probability for Network A
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The 0.9 x normal capacity case had the same feasible minimum configurations,

and the same probability of providing sufficient supply as the normal capacity

case. It is interesting to examine the configurations "on the edge", namely those

feasible only under capacity conditions greater than normal. Each such

configuration is a "minimum link set" under normal capacity, implying if any one

of the arcs shown fails the configuration is no longer feasible. Figure 3-14

presents all the configurations which were found to be feasible under for the

normal capacity, followed by additional configurations which become feasible as

the capacities increase.

For capacities in the range used for these examples, links 1,2,3, 98, and 100 must

operate for the system to operate. Link 99 (5-8) is necessary for all but two

configurations in the 1.2 x normal capacity case, indicating this this link is also

quite crucial. For the normal capacity case only, the link 5 (4-5) is never in the

minimum link set, indicating the loss of this arc never causes the system to fail.

However, for some of the minimum feasible configurations for the 1.1 x normal

capacity case, link 5 is included. Thus it is expected that link 5 will add a small

amount of reliability to the system. Link 10 (10-7), which is parallel to another

link, is never in the minimum link set for an capacity condition. Thus link 10,

perhaps as well as link 5, might be removed without affecting the reliability of

the system to a large extent.

Calculation of the probability of sufficient supply for Network B (Figure 3-10),

was somewhat more difficult than for Network A. Network B, with 16 links, and

sections such as the pentagon around node 90 has much more redundancy than

network A, in the sense that many more alternative feasible configurations are
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Figure 3-14 Supply Feasible Configurations for Network A
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1.1 x Normal Capacity

6 5 99 8 9

3 4 6 8

3 2 4 98 10 7

1

2

100 (identified as feasible under

I normal capacities by SDP8)

6 5 99 8 9

3 4 8

3 2 4 98 10 9 7

100

1
3 4881

1

100

6 5 99 8 7 9

3 4 6

3 2 4 98 10 9 7

1

2

100

1

6 5 9

3 4 6

98 9
1

2

100

I

Figure 3-14 Supply Feasible Configurations for Network A (continued)
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1.2 x Normal Capacity

6 5 5 99 8 9

3 46

3 4 10 7

1

2

100

1

Figure 3-14 Supply Feasible Configurations for Network A (continued)

possible. Thus Lee's algorithm, which finds feasible configurations, took

considerably longer to analyze the larger network.

Every pipe in Network B has a gradient of less than 0.01, so the pipe capacities

can be determined from formulas 3-2 and 3-3, with S=0.01. However, for this

system demands were specified in gallons / minute (gpm), so the values from

equation 3-3 must be multiplied by 694.44 to convert from million gallons / day.

For the capacities of the pumps and the links connecting the water tanks, it was

necessary to investigate the behavior of the system with SDP8. Table 3-9

- 84 -

6 8 9

3 6 8

3 2 4 98 10 9 7
1

2

100

1

6 5 8 9

3 4 6 8

3 2 4 10 7

2

100



presents the calculations and the link capacities used for this analysis. Table 3-10

contains the demand at each node.

Link From To C D (in) S Capacity
(gpm)

2 20 70 70 16 0.01 2408

6 20 110 70 12 0.01 1130

10 70 100 70 12 0.01 1130

12 70 90 70 10 0.01 700

14 60 70 70 12 0.01 1130

16 60 90 70 10 0.01 700

18 60 80 70 12 0.01 1130

20 80 90 70 10 0.01 700

22 90 150 70 10 0.01 700

24 90 100 70 10 0.01 700

26 100 150 70 12 0.01 1130

28 80 150 70 10 0.01 700

48 100 110 70 8 0.01 389

78 (tank link) 65 60 - - - 1500

101 (pump) 10 20 - - - 3000

102 (pump) 10 20 - - - 3000

Table 3-9 Network B Link Capacity Data

SDP8 results show the tank must supply water, and one pump must be operating

for the system to meet demand at each node. When one pump is out the tank

supplies about 1500 gpm, so the capacity of the tank connection was set to 1500

gpm. By similar reasoning, each pump capacity was set to 3000 gpm, to allow the

4200 gpm demand to be met with one pump missing. Although these limits on the

pumps and tanks link capacities seem to allow the system to operate without the
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Node Demand
(gpm)

10 (river)

20 500

60 500

70 500

80 500

90 1000

100 500

110 500

150 200

65 (tank) -

Table 3-10 Demands For
Network B

tank suppling water, the capacity limits on the pipes near the tank do not permit

the network to operate without the tank in operation.

Calculation of the probability of sufficient supply for this non-series-parallel

network required approximately 2 CPU minutes on a VAX 11/750 per

calculation. Thus a smaller number of link probabilities and capacity cases were

performed than for Network A. Table 3-11 presents the probability of sufficient

supply for a number of cases involving Network B. The corresponding

connectivity values are included for comparison. Only four calculations were

performed to investigate the sensitivity of the analysis to the probabilities of

operation of each link, as follows:
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* all links have p, = 0.95

* all links have pi = 0.97

* all links have pi = .99

* links from 10-20 have pi = 0.9543 (pumps) and the rest have pi = 1 - (1.577
x 10-6) x pipe length (ft) [Table 3-5].

Secondly, only the following three demand conditions were investigated:

* normal demand (Table 3-10),

* 0.9 x normal demand

* 1.1 x normal demand.

For each of the above runs the probability of operation of each links were set to

the last probability case.

Link Probability of Connectivity
Case Probabilities Capacities Sufficient (from

Supply Table 3-5)

I all = 0.95 Table 3-9 0.8463 0.8956

II all = 0.97 Table 3-9 0.9085 0.9383

III all = 0.99 Table 3-9 0.9698 0.9798

IV Table 3-5 Table 3-9 0.9514 0.9534

V Table 3-5 0.9 x Table 3-9 0.9511 0.9534

VI Table 3-5 1.1 x Table 3-9 0.9514 0.9534

Table 3-11 Supply and Connectivity Probabilities for Network B

Again, a comparison of the probabilities of sufficient supply with the

corresponding connectivity values indicates, as expected, the probability of the

system being able to deliver the required supply is less than the probability of it

simply being connected. The range of the probabilities is less than that of

Network A, with a probability of meeting the specified supply of 0.8463 when all

links have p, = 0.95, as compared with 0.9798 when all links have pi = 0.99.
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Network B has many more minimum link feasible configurations than Network

A, three for Network A versus 289 for Network B. Again for this network, the

supply probabilities also seem to be linearly related to the link probabilities, for

cases with equal pi's (Figure 3-15). For the last, more realistic, probability set

under normal capacity conditions, the probability of sufficient supply is 0.9514,

which is quite close to the connectivity of 0.9534.

Figure 3-15 Graph of Probability of Sufficient Supply
versus Link Probability for Network B

In all of the feasible configurations identified, the tank link (78) and at least one

pump were operating as required. Also, links 2 and 6 (the links leading out of

node 20) were operational in all feasible capacitated network supply solutions

identified. Most of the configurations involved different combinations of failed

links from the pentagon around node 90. Thirty-five feasible configurations were

identified with 5 failed links in the pentagon. Five links failed in the pentagon is
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the maximum possible number of failed links; six or more link failures in the

pentagon cause some node to become disconnected. For all of these 35

configurations, links 2, 6, 10, 78, and at least one pump operate. Link 14 never

operates in any of these 35 configurations, although it does operate in some of the

other 254 identified feasible configurations. Eight configurations were identified

with five links out in the pentagon, plus one pump and link 48 (from node 100 to

110) failed. These eight configurations are in fact "spanning trees", e.g. a network

with no cycles containing all the nodes. The eight spanning tree solutions are

shown in Figure 3-16.

These spanning tree solutions are the best candidates for "on the edge"

configurations. Increasing or decreasing the link capacities by 10% did not

appreciably change this reliability measure for this network.

3.3.3 DISCUSSION

As demonstrated by some of the previous examples, the probability that a

network can provide sufficient supply at each node may be considerably less than

the probability that it is simply connected. Thus except for systems in which

every pipe carries supply well under its capacity the supply based reliability

measures should be used.

The network model used for these calculations suffers from the same problems as

the reachability and connectivity measures in the use of p, values to represent the

reliability of each link. Again the uncertainty introduced by the ps's will be very

small compared to the uncertainty in the data used to estimate these values.

Thus the use of these instantaneous probabilities, instead of ones accounting

explicitly for the operate-fail-operate cycles should not to be of concern.
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Figure 3-16 Feasible Spanning Trees for Network B
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Of more concern, is the use of explicit limits on pipe flow capacities. As previously

discussed, pipes in networks do not truly have maximum capacities, since an

increase in pump capacity can always force more water through the pipe (as long

as the pipe does not burst). Additional tests were run with Networks A and B in

an attempt to determine how well the water distribution systems were

represented by capacitated network models. This further analysis consisted of a

check of the configurations identified as providing sufficient supply in the

capacitated networks with SDP8. With SDP8, fairly large networks can be solved

for either supplies or pressures at each demand node, for a network in which pipe

lengths, resistances, pump characteristics, and either demand or pressure at each

node are known. Of course, using SDP8 requires more computational effort than

finding the minimum cost flows to meet supply on a capacitated network.

SDP8 was used to model the networks by specifying:

* the length and resistance of each pipe,

* the demand at each demand node, and

* the pressure at each supply node.

Thus the unknowns, calculated by SDP8, were the supply at each supply node,

and the pressure at each demand node. A configuration was said to actually be

feasible if the pressure, as calculated by SDP8, for every node was at least 40

pounds / in 2 (psi). (In Chapter 4, different, more complicated definition of feasible

based on pressures at each node was used. However such complexity is not

appropriate for this simple model.)

For Network A there were few enough configurations so that the probability of

sufficient supply could be calculated with SDP8 "linked in"- to Lee's algorithm.

All of the configurations previously identified as feasible when the normal link
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capacities were used were also feasible using SDP8. There were however, three

additional feasible configurations identified only by SDP8. These configurations

are in fact the first three configurations identified as feasible in the 1.1 x capacity

case (Starred in Figure 3-14). All of these configuration were very close to the 40

psi limit, with the minimum pressure (always at Node 9) at 42 psi or less. The

additional reliability accounted for by these configurations is less than 0.005.

The two other configurations identified as feasible in Network A for the 1.1 x

capacity case, were also tested with SDP8. Both had minimum pressures in the

range of 20 - 25 psi. The 1.2 x capacity case allows three additional

configurations, however, two of these when checked with SDP8 were not feasible

(had negative pressures at some nodes).

As an additional test of Network A, the probability of sufficient supply was

recalculated with SDP8 with the definition of an operating system changed to: all

nodes must have pressure of at least 20 psi. Four additional configurations, with

minimum pressures in the range of 20-30 psi were identified.

For Network A at least, with the procedure described for calculating pipe

capacities, this method does come very close to calculating the correct probability

of sufficient supply. Also, by varying the pipe capacities by small amounts, useful

information about the contributions made by individual components to the

overall reliability can be gained.

Network B was not so easily checked with SDP8. Recalculating the probability of

sufficient flow for this network with Lee's algorithm linked to SDP8 is not

practical, due to the computer time and space requirements of such an analysis.

However, the eight spanning trees identified in Figure 3-16 were analyzed with

SDP8. Unfortunately, all eight had pressures at one node (150) below 40 psi.
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However, only node 150 was below 40 psi for any of these configurations; the

calculated pressures at node 150 for these configurations ranged from 16.4 to 36.4

psi.

A few other spanning tree solutions, not identified as feasible for the capacitated

network, were examined by SDP8. Each of these "extra" configurations had 5

links failed in the pentagon, but never links 10, 12, or 18. These configurations

also had minimum pressures at node 150, in the range of 28.7 - 34.9 psi. Thus the

capacitated network model is perhaps somewhat imprecise at identifying feasible

configurations "on the edge".

In all of the eight spanning tree configurations, links 10, 18, and 12 were

operating. A few configurations with some of these links failed were also

analyzed with SDP8. Indeed all of these configurations had nodes with pressures

well below 40 psi (most had nodes with calculated negative pressures). Thus the

capacitated network solutions appear, from this limited sample, to distinguish

clearly infeasible configurations.

Note, for Network A the configurations not found by the capacitated network

solution, or found incorrectly, all involve a number of failed links. This same

pattern appears to be true for Network B as well. For highly reliable components,

the probability of having a number of links out at the same time is very small.

Thus this method is likely to be more accurate for networks with fairly high p1's.

In conclusion, the use of Lee's algorithm and a model of capacitated network flow

appears to hold promise as a analytical method for the calculation of the

probability of sufficient supply in a network. This reliability measure was

checked with SDP8 for Network A; the probabilities from the two models were

very close. Network B could not be checked this way, but the investigations on
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selected configuration with SDP8 appear to support the applicability of this

method. Additional information on the accuracy of these probability values can

be found by simulation, the topic of the next chapter.
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4.0 SIMULATION METHODS

4.1 USE OF SIMULATION FOR RELIABILITY CALCULATIONS

As shown in the previous chapter, certain reliability measures defined on general

networks can be calculated analytically. These analytical methods can provide a

fast initial assessment of the reliability of a system. However, all of the analytical

methods developed thus far involve fairly stringent assumptions which can limit

the applicability of analytical results to understanding real-life systems. Also the

measures that can be calculated analytically are limited. Small systems with

features such as water storage tanks and operational responses to failures within

the system have been investigated analytically with fault-tree analysis methods,

however many of these methods also involve a number of simplifying

assumptions and approximations. Thus for a thorough investigation of the

reliability of a water distribution system, stochastic simulation methods

incorporating more complicated and realistic features of the system may be

desirable. In particular, for moderately large water distribution networks (10 -

50 nodes), simulation methods can provide accurate estimates of reliability for

systems with elements not easily incorporated in analytical methods. Thus, once

an initial assessment of the reliability of a water distribution system has been

performed analytically and alternative improvement options proposed, a

simulation of these options should be done to gain a better understanding of how

the proposed alternative systems will be likely to behave under real-life

conditions.

This chapter presents an event-oriented, discrete simulation program developed

to assess the reliability of water distribution networks subject to failure due to

pipe breaks and pump outages. This program can be used to calculate a variety of
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reliability measures relating to the number, location, duration, and effects of

failures. This simulation approach allows great flexibility in the types of network

elements that can be included for analysis, and of the failure time and repair time

distributions. Additionally, changes in the operation of the system in response to

pipe and pump failures can be simulated. Evaluation of options for improving the

system reliability can also be performed with this program.

In this chapter, the scope of the simulation is discussed in section 4.2. Two

systems (plus a subset of one system) were simulated as examples of the use of

this simulation program; the two systems are described in section 4.3. Following

is section 4.4 which specifies the failure and repair time probability distributions

used in this simulation. Section 4.5 contains some of the programming and

statistical details of this analysis. Results of the simulations are given in Section

4.6. Section 4.7 discusses the applicability and usefulness of the simulation

approach.

4.2 SCOPE OF SIMULATION

As in the previous chapter, the major source of unreliability in this analysis is

failures due to random pipe breaks and pump outages. In contrast to the

analytical methods of Chapter 3 however, this simulation analysis could be easily

expanded to include sources of unreliability such as lack of supply (e.g. drought),

and random contamination. Currently, only reservoirs, pumps, pipelines, and

storage tanks will be allowed as components of the water distribution system.

The program is event-oriented, meaning the time step of each iteration is

calculated as the time between consecutive random events. The time step then

varies from iteration to iteration. The program consists of two parts:
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1) the simulation section, which generates failure and repair events according
to specified probability distributions, and
2) the hydraulic network solution section, which gives the flows throughout
the network and the heads at each node, for a specified demand and system
configuration.

The program SDP8 (1984), by Charles Howard and Associates, Ltd. which was

used and described in Chapter 3 was incorporated as a subroutine in this

simulation program.

The simulation program is designed to analyze fairly detailed water distribution

systems, but is not appropriate for modeling every connection to every house in

the city. Instead, it is assumed demand for water is aggregated into demand

points, which are represented by nodes in the water distribution network.

Connecting pipes, as well as pumps, are represented by links between these

nodes.

For this study, demand is assumed to be known and constant. Thus the

fluctuations of demand over the day and over the year, though expected for any

real system, will in this study be "smoothed" into one average daily demand.

Since much of the data about failures is not well known, any reliability analysis

is approximate. Thus it is assumed the additional approximation of using an

average specified demand -is appropriate. With a similar rationale, it will be

assumed at the initiation of each set of failure events, the water storage tanks

will be filled to their average levels.

Since SDP8 is used as a subroutine, the simulation program was designed to use

the SDP8 data input file. To start the simulation the following information must

be specified:

* configuration of the network

* demand (in terms of volume/time) at each demand node,
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* head at each supply node,

* Hazen-Williams coefficient for each pipe,
* pump curve for each pump,

* geometry of the water tanks,

* estimated head at each demand node under normal conditions, and

* estimated supply (in terms of volume/time) at each supply node under
normal conditions.

In SDP8 the last two sets of estimated data are calculated exactly through an

iterative procedure. These estimated values are used as a starting point for the

SDP8 solution. Thus to reduce the computations necessary for the simulation

program, the full network should be preproccessed by:

(1) running SDP8 for the full system with data (both known and estimated) as
specified above,

(2) replacing the estimated values with the values calculated by SDP8.

This preprocessing ensures that SDP8 will converge quickly when it is used as a

subroutine to analyze the system with only a pipe or two failed.

The forms of the probability distributions used for pipe, and pump, break and

repair times are fixed by the simulation program (see Section 4-4). The

parameters for these distributions however, are user-specified and must be input

in an auxiliary data file. The simulation proceeds by randomly generating failure

times of the pipes and pumps according to the specified failure time distributions.

When a link fails it is removed from the system. The new heads at the demand

nodes in the reduced network are determined by generating a new SDP8 input

file, and then making a call to subroutine SDP8. It is assumed link failures leave

the demands unchanged. The new heads at the demand nodes are used to tell how

the system is performing.
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In this simulation it is assumed the water supplied to a given node will depend on

the head attainable at the node. For each node, two head limits must be given:

(1) a minimum head (Hm), and

(2) a service head (Hs).

These head limits are also stored in the auxiliary data file.

The system will be said to be performing normally only when, for each node, all

the imposed demands can be met with heads above the service limit. If however,

at some node in the diminished system, the head is below the service limit, it is

assumed at that node the system cannot supply the full demand. In this case, it is

assumed the operators of the system react with the following policy:

(1) nodes with heads below the minimum head limit will be completely shut
off,

(2) nodes with heads above the minimum head limit but below the critical
head limit will be supplied at a reduced level, and

(3) nodes with heads above the service level are supplied at normal service
levels.

Each node can then be in a normal, reduced service, or failure mode. (See Table 4-

1). The system will be said to be in normal mode if all nodes are receiving normal

supply, in failure mode if supply to any node has been shut off, and in reduced

service mode if some node or nodes are receiving reduced supply but no nodes are

completely shut off.

As a simple but general purpose policy, supply for a node in reduced mode will be

reduced according to the following equation:

Q = [(H - Hs) / (Hm - Hs)]1/2 * C (4-1)
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Mode Head at Node (H) Supply

Normal Hservice < H Equal to demand

Reduced Service Hminimum : H 5 Hservice Reduced according to
equation 4-1

Failure H < Hminimum None

Table 4-1 Node Service Modes

where:

Hs= service head,
Hm = minimum head,

H = calculated head (Hs H : Hm), and

C = full demand at the node.

Figure 4-1 shows how the supplied flow varies with head for a typical node. The

rationale for this formula is that hydraulic laws for flows through devices show

flow is proportional to the square root of head. Thus we assume the supply

reduction from normal supply to no flow will be related to the square root of the

computed head level.

Once a link has failed, a random repair time is generated and the system is

assumed to operate in the diminished state until the repair time is reached, or

another link fails. The simulation program records the total duration of reduced

service and failure periods at each node, the shortfall at each node, and various

information as listed in Table 4-2.
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Supplied
Flow

(% of
Demand)

0%
Hm Hs H, Head at the node

No supply Reduced Normal
Supply Supply

"Failure" "Reduced" "Normal"
Mode Mode Mode

Figure 4-1 Supply Response to Head Loss

4.3 DESCRIPTION OF SIMULATED SAMPLE SYSTEMS

Two sample systems were selected to test and demonstrate this simulation

method: 1) a small 10 node network and 2) a larger 22 node network. These

systems were chosen because they provide a good range of features to test the

program. The two systems will be referred to by the innovative names of System

A and System B +.

System A (Figure 3-6), which was also analyzed in Chapter 3, is a small series-

parallel network with 9 demand nodes, 1 reservoir, 10 pipes, 1 pump, and 2

pressure reducing valves. Table 4-3 presents the elevations of the nodes in

System A. Note, in this system water must be pumped up from the reservoir and

the pumping station (nodes 1 and 2 at 100 feet) to a higher elevation zone (nodes

3, 4, 5, and 6 at 200-350 feet), and then down again to a zone of lower elevation
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Event Related:

Type of event (failure or repair)
Duration of event
Total number of events in simulation period
System status during each event (normal, reduced
service or failure)

Node Related:

Total demand during simulation period
Total supply during simulation period
Shortfall
Average head
Minimum head during non-failure periods
Minimum consumption during non-failure periods
Number of reduced service events
Duration of reduced service events
Number of failure events
Duration of failure events

Link Related:

Number of pipe failures
Total duration of failure time for each pipe
Percentage of failure time for each pipe
Number of pump failures
Total duration of failure time for each pump
Percentage of failure time for each pump

System Related:

Total system consumption
Total number of breaks
Time-averaged number of breaks
Maximum number of breaks

Table 4-2 Accounting Information Kept for Each
Simulation Run

(nodes 7, 8, 9, and 10 at 10-50 feet). Thus we expect the pump will be crucial to the

reliability of this network, and reliability at the higher nodes will be less than at

the lower ones.
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Node Elevation(ft)

1 (Resevoir) 100

2 100

3 200

4 210

5 230

6 350

7 10

8 10

9 50

10 25

Table 4-3 System A Elevations

The second system, System B +, (Figure 4-2) is a larger and more realistic

network, with 16 demand nodes, 3 pumps, 2 water tanks, 1 water source, and 34

pipes. It is more highly connected, and not series-parallel. This network is taken

from a water network problem proposed by Tom Walski, Army Corps of

Engineers, as a design problem to be worked on by various water distribution

network designers and presented at the July 1985, ASCE, Water Division

Conference. Walski posed the problem as finding an economical set of older pipes

to re-line or replace, and a few possible new pipes to install, so as to meet future

demands on the system. As a first pass at a reliability analysis of this system, the

current (1985) system under the current "average" water demands will be

analyzed in this chapter. Table 4-4 presents the elevations of the nodes in System

B +. As does System A, System B + involves pumping water uphill. The water

source is at a low elevation (node 10 at 10 feet), so water is pumped uphill from
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the river to downtown (nodes near 70, at 50 feet), to the new part of town (node

140, at 80 feet), and to the other town areas (nodes near 160, at 120 feet).

66
140 50

40
64 38 36

2 42 80 18 53 34
2 8 18 70 40

170 628 2220 16 60 3

0 4 150 90 12 14 30
60 160 46 26 70 8

58 100 10 3-0

50
130 48 20 103

56 .120 52 10 6 101
102 10

:Key: See Figure 3-10 :

Figure 4-2 Network B +

As a preliminary investigation of the reliability of Network B +, several SDP8

runs were performed on different system configurations. The following

configurations were examined:

* only one pump operating, both tanks operating,
* all pumps operating, both tanks failed (empty).
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Node Elevation (ft)

10 (river) 10 (average)

20 20

30 50

40 50

50 50

60 50

65 (tank) 235 (average)

70 50

80 50

90 50

100 50

110 50

120 120

130 120

140 80

150 120

160 120

165 (tank) 235(average)

170 120

Table 4-4 System B + Elevations

Even with only one pump, at every node the demand can be met at a head greater

than or equal to the service head limit. However, when both tanks have failed

every node is below the minimum head limit, implying when both water tanks

are empty none of the demands can be met. Thus, the pumps are not likely to be

as crucial to the reliability of this system as they were to the smaller system.

However, the volume and operation of the water tanks is expected to have a large
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effect upon the reliability of the entire system, since the water tanks are so

crucial to meeting average demands.

The second system analyzed in Chapter 3, System B (Figure 3-10), is a subset of

Network B +. The nodes in Network B correspond to the part of the Network B +,

described as being built before 1940. One simulation run for Network B was

performed as a check on the analytical results.

4.4 FAILURE AND REPAIR TIME PROBABILITY DISTRIBUTIONS

Data about probability distributions of failure times and repair times for pipes

and pumps are usually not readily available. No failure or repair time data

specific to the two networks analyzed exist. Thus, for this simulation,

"treasonable" distributions with "reasonable" parameters were chosen. The

distributions and the parameters used in this simulation, as well as literature

supporting these choices are described in this section.

A few studies have looked at quantifying the number of pipe breaks per unit time

per pipe length, based on pipe qualities such as age, material, etc. Walski [1984b]

and O'Day [1982] present some data on pipe break interarrival times but only

look qualitatively at factors affecting these interarrival times. Shamir and

Howard [1979] developed an exponential model describing the increase of pipe

breaks with pipe age. Walski and Pelliccia [1982] added corrections to this model

for the factors of pipe size and number of previous breaks. However, neither of

these models looks specifically at the interarrival time between individual breaks

of the same pipe. A study in the mid-seventies for the City of Ann Arbor,

Michigan (reported by Pollock, personal communication 1985) found break rates

for pipes were constant once the pipes were about 50 years old and interarrival
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rates for pipe breaks were exponential. It is commonly assumed, by these and

other studies, that failures of different pipes occur independently.

For this study an exponential distribution was chosen for the pipe break

distribution. A listing of the rate of pipe breaks for various US cities, obtained

from a US General Accounting Office report to Congress [1980], is presented in

Table 4-5. A figure of 1 break/1 mile/year was picked for use for all pipes. This

figure is in the high range so as to fully exercise the simulation system. For each

pipe this is multiplied by it's length to give the average number of breaks per

year for the link. The reciprocal of this number is the exponential parameter - the

expected time between breaks. Figure 4-3a presents this distribution graphically

for a 0.5 mile long pipe.

Marks, et. al. [1985] presents a hazard failure model giving the probability, at

any dt, that the pipe will break, based on several factors including the age of the

pipe, the number of previous breaks, and the time since the last break. This

hazard function could be added to this simulation program as an arrival rate for a

non-homogeneous Poisson process. For this first study, such an analysis seemed

overly complicated.

There is even less data available on pump breaks than on pipe breaks. In a

simulation of a water distribution system with only pump failures Damelin, et .

al. [1972] used an exponential distribution for pump break interarrival times.

However, their data were based on interarrival times of working hours, thus

ignoring times when the pumps were inoperative due to scheduled outages for

maintenance. A representative time of 1000 hours was chosen as the mean time

between pump failures from their paper. This pump break time distribution is

graphed in Figure 4-3b.
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City Year Pipe breaks/ 1000 miles/
year

Boston 1969-70 36

Chicago 1973 54

Denver 1973 156

Houston 1973 1290

Indianapolis 1969-78 83

Los Angeles 1973-74 43

Louisville 1964-76 123

Milwakee 1973 234

New Orleans 1969-78 680

New York City 1976 75

San Francisco 1973 106

St. Louis 1973 106

Troy, NY 1969-78 167

Washington, DC 1969-78 116

Table 4-5 Pipe Break Data

Source: "Additional Federal Aid for Urban Water Distribution Systems Should
Wait Until Needs are Clearly Established, Report to the Congress", US General
Accounting Office, Washington, DC, November 24, 1980; as quoted by Kelly
O'Day, "Organizing and analyzing leak and break data for making main
replacement decisions", p. 591, Journal American Water Works Association,
November, 1982.

Again from Damelin et. al., pump repair times can be represented by a log-normal

distribution [Arad, 1968]. Parameters were chosen for the model based on the 50

hours mean time between failure given in Damelin but with more variability,

again so as to fully exercise the program. Figure 4-3d presents the distribution

used, (u=3.93, a = 0.20).

- 108 -



f(x)
1.0 -
0.8 -
0.6 -
0.4 -
0.2 -
0.0

f(x)
1.0 -
0.8 -
0.6 -
0.4 -
0.2 -

L AA

L.

1.0 2.0 3.0 4.0
1000 hours

4b - Pump Break Distribution
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4d - Pump Repair Distribution

Figure 4-3 Break and Repair Time Probability Distributions

No data were found for pipe repair time distributions. A uniform distribution

between 3 hours and 3 days (72 hours) was chosen as a first estimation of this

process. (Figure 4-3c). For an analysis of an actual system, data on these times

should be available from maintenance and payroll records of many urban public

works departments.

4.5PROGRAMMING AND STATISTICAL DETAILS

As shown in Table 4-2 a number of reliability measures are calculated by this

simulation program. Since these measures are based on a finite number of
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random events the calculated values are only approximate. To obtain some idea

of the confidence intervals associated with these estimated values, a few

reliability measures were chosen. These were annual shortfall (gallons), the

percentage of time spent in emergency mode (for every node), and the percentage

of time spent in failure mode (for every node). Although this choice was made to

avoid the computational effort necessary to calculate confidence intervals for

every criteria in Table 4-2, these measures are also felt to be some of the most

important measures for assessing the reliability of the system. The shortfall

measure is felt to be a good overall indicator of the reliability of the system.

However, a low shortfall for some systems could be obtained by disconnecting, at

any sign of emergency, one node of moderate demand so as to supply the others.

Thus the percentages of time spent in the non-normal conditions for each node

were also examined in evaluating alternative systems, to check for such

"scapegoating". Examination of these measures also allows the identification of

nodes markedly more or less reliable than average.

Since simulation results are not exact and will vary over (independent)

simulation runs, comparisons of different systems must not be made on the basis

of one simulation run for each alternative. Originally for this study 40 individual

simulations of 5 simulated years each were planned for each system examined.

It is important to note how the statistics of, for example, annual shortfall as

calculated from 40 runs of five years each compare with 1 run of two hundred

years. First, in the 40 five-year simulations the system starts with all elements

working. In the 1 two-hundred-year simulation there is no guarantee the system

will be working on the first day of every fifth year. However, since both of these

systems are fully operational much more than they are not, the disagreements

due to this factor will probably be minor. Thus if we could perform two studies:
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(1) an infinite number of 5 year runs, and (2) a simulation for an infinite time

period, then the average annual shortfall calculated by both methods will closely

agree.

The main reason for running 40 five-year simulations versus 1 two-hundred-year

simulation is to be able to quantify the uncertainty in the reliability estimates.

For example, a single average annual shortfall estimate (such as in the 1 two-

hundred-year run) is a number with no variance. However, when the 40 five-year

runs are used to estimate this value, and the estimated annual shortfall and the

variance of this estimate can be calculated.

One way of calculating means and confidence intervals comes from classical

statistics, by noting that most of the estimates involve the sum of a large number

of random occurrences. Thus by a law of large numbers the reliability estimates

are expected to be normally distributed. Then, for n estimates: x1,x2, . .. ,xn , the

mean X is estimated by:

* X = I /n. (4-2)

The variance a is estimated by:

* 2= n (x2-f/ (4-3)

The 95% confidence interval (CI) is given by:
(4-4)

*CI = X 196 ' (a2 / n)i

For System A, a five-year simulation period was adequate and implementable.

Five years is long enough for a number of elements (about 50) to break. Initially

for System A, 40 runs of five years each were performed giving confidence

intervals within 10% for shortfalls and for the percentage of time in failure mode
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for each node. Almost no time was spent in reduced service mode by any node, so

these percentages were extremely small. The confidence intervals for such small

numbers have little meaning. The overall conclusion, that time in reduced

service mode is negligible, is nonetheless still valid. Thus 40 runs five-year

simulations were judged to give sufficient accuracy for this problem. However,

System B + was not so easy to analyze.

System B + is much larger than System A and many more breaks occurred in the

same simulated time period. Initially, a five-year simulation period was tried, but

this experiment resulted in over 500 breaks, exceeding the storage capacity of the

program. As another experiment, a one-year simulation period was tried.

However, the simulation of 40 runs of System B, even for only a 1-year period,

turned out to be impractical in terms of required computer time. Thus a different

approach to calculating confidence intervals, the regenerative method, was

implemented for the System B + simulations. (See Law and Kelton [1982, pp. 297

- 3021 for a detailed description of the regenerative method.) The regenerative

method involves measurements within a "'cycle", which in this case can be

defined as the time between successive times when the system first becomes fully

operational. Within each individual cycle the shortfall, time spent in each mode,

etc. for that cycle are tabulated. The n cycle times and measurements are

statistically independent, and so can be used with methods from classical

statistics to calculate the required reliability estimates and the associated

confidence intervals. Thus for example, after n cycles, n cycle times (cL,c2, .. . ,cn)

and n shortfall measurements (sL,s2, ... ,s) are obtained . The best estimate for

the time-average shortfall S is given by:

S = .s / $ (4-5)
i=1 i=1
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We can calculate an estimated annual average shortfall Si for each cycle i by

(note ci in hours):

S =S. - S' C. '8760 
(4-6)

The variance U2 of these cycles estimates is given by:

02 (S. _S)2 (4-7)

The 95% confidence interval is then given by:

CI=S a 1.96-o2/n)II / ( n (4-8)

Once the regenerative method was implemented, the simulations for System A

were rerun. The results from the two methods, for both the estimation and the

confidence intervals, were almost identical.

Early simulation runs, even for System A, turned out to take considerable

computer time. This large computational requirement occurred because SDP8

was being called for each failure, even though many of the same elements (the

pumps) were failing again and again. To reduce these repetitive calculations,

another preprocessing step was added. Before the simulation was run, each link

in turn was deleted, while all the other links remained in place. A SDP8 solution

was obtained for each of the above system configurations and the calculated head,

status, and (possibly reduced) supply at each node stored on a binary file. The

simulation program was then changed slightly to read the binary file whenever

the system contained only one failed element, instead of calling SDP8 again.

Since repair times are, in general, much shorter than failure times it is rare for

two elements to be broken at the same time. Thus the stored heads could be used

for most failure events, and this programming modification reduced the

necessary computer time considerably.



A simplified flowchart of the simulation run is presented in Figure 4-4. The

program was verified by careful handchecks on truncated runs of 10 failures,

using a table of random numbers generated with the same seeds as used in the

simulation. The random number routine, supplied with the VAX FORTRAN 5

product was used, untested, for these simulations. The program was checked to

ensure:

(1) the correct failure and repair times were being generated,

(2) program control was working correctly,
(3) the correct SDP8 input files were being generated,

(4) SDP8 was working as a subroutine exactly as it had when it was a stand-
alone program, and

(5) the accounting was being done correctly.

The program has not been explicitly compared with actual data for any system to

see if this simulation actually reproduces the reliability behavior of a water

distribution system. It does have high face-validity since SDP8 is an accepted

program for analyzing the hydraulic behavior of such a system. Also, as

explained in Section 4.4, the failure and repair time distributions are

"'reasonable." However, the reliability results have never been compared with

any real-world data, because a data base of information of this type is not

available. Such validation would be desirable in the future.

4.6RESULTS

A printout of the input data for System A is presented in Table 4-6. Critical and

minimum heads for this system were specified to correspond to 20 psi and 40 psi

respectively. (Head limit (ft) = elevation (ft) + pressure (psi) * 2.307.) Various

simulation runs were made for this system.No insurmountable problems were
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encountered in the simulation of System A. Highlights of the results of these

simulations runs are presented below.

Table 4-7 shows the state of each node while each link is the only broken element

in the system. During the entire two-hundred-year simulation run for System A,

there was never a case where two pipes failed at the same time while the pump

was operating. Thus all emergency conditions recorded in the simulation were

caused by breaks in pipe 2 (connecting nodes 3 and 4) and pipe 5 (connecting

nodes 5 and 6).

A summary of the results for System A is presented in Table 4-8. In this system

there is very little problem with reduced service. Node 9 endures reduced service

most often, but this mode occurs on average only for about one day per year and

less than once per year. Failure conditions do occur relatively frequently. Note,

all of the node failure results are very close to those of the pump. This

correspondence indicates pump failures are the major source of unreliability in

this system, as expected. It should be noted that the probability distribution

parameters were consciously chosen to be high, so fairly high failure occurrences

are not surprising.



Node Data:

Demand Suply Head
for or for Fu Service Minimum

Elevation Fully Fully Workglly Head HeadNode (feet) Working Working Working Limit Limit
System System S(fee) (feet) (feet)
(MGD) (MGD)

1 (Res.) 100 - 6.625 100.00 - -

2 100 1-.6 - 388.48 192.28 146.14

3 200 1.2 - 386.43 292.28 246.14

4 210 0.6 - 376.80 302.28 256.14

5 230 0.4 - 377.54 322.28 276.14

6 250 0.825 - 380.05 342.28 296.14

7 10 0.6 - 173.57 102.28 56.14

8 10 0.8 - 170.31 102.28 56.14

9 50 0.4 - 160.87 142.28 96.14

10 25 0.2 - 181.37 117.28 71.14
-:- -:

Pump Data:

Pump curve: discharge = input head + 375 - 0.015*flow- 58

Mean time to pump break: 1000 hr

Pump Repair Parameters for log-normal distribution: u = 3.93, a = 0.2

Pipe Repair Data:

Uniform Distribution: 3 - 72 hours

Table 4-6 System A Input Data
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Link Data:

Mean
Lenth iamter Hazen- TIme to

Link From To Length Dinmete Williams Pipe
Coef. Break

(hr)

1 2 3 200 16 120 231000

2 3 4 1500 12 120 30800

3 3 6 1800 14 120 25700

4 5 4 2000 10 120 23100

5 6 5 1900 14 120 24300

6 7 8 1000 8 120 46300

7 8 9 2500 10 120 18500

8 7 9 3500 8 120 13200

9 10 7 1500 10 120 30800

10 10 7 1500 6 120 30800

98 (valve) 4 10 500 6 65 92500

99 (valve) 5 8 500 4 65 92500

100 (pump) 1 2 - - - -

Table 4-6 System A Input Data (continued)
0
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Nodes in Normal Nodes in
Link From To Status Reduced Failed Nodes

Service

1 2 3 1,2 3,4,5,6,7,8,9,10
2 3 4 1,2,3,4,5,6,7,8,10 9

3 3 6 1,2,3,4,7,8,10 5,6,9

4 5 4 all

5 6 5 all

6 7 8 all

S 7 89 all

8 7 9 all

9 10 7 1,2,3,4,5,6,10 8,7 9

10 10 7 all

98 4 10 1, 2, 3,4,5, 6 7, 8, 9, 10

99 5 8 1,2,3,4,5,6 7,8,9,10

100 1 2 all

Table 4-7 Node Status for Single Link Failures

Normal:
Reduced service:
Failed:

40 psi node pressure

20 psi node pressure 40 psi

node pressure 20 psi
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System Results:

2350 cycles

4846 events

Average annual shortfall: 5.04%

121.08 million gallons ( 5.5)

Node Results:

Average Time in Average Average
Reduced Service Time in Failure Shortfall

Node
hours number hours number annual

% /year /year % /year /year % average
(106 gal)

1 (Res.) 0.0 0 0 0.0 0 0 - -

2 0.0 0 0 4.98 436 8.4 4.97 29

3 0.0 0 0 4.99 437 8.4 4.99 22

4 0.0 0 0 4.99 437 8.4 4.99 11

5 0.15 13 0.4 4.99 437 8.4 4.99 7

6 0.15 13 0.4 4.99 437 8.4 5.03 15

7 0.14 13 0.3 5.07 444 8.6 5.10 11

8 0.14 13 0.3 5.07 444 8.6 5.10 15

9 0.28 25 0.7 5.21 457 8.9 5.27 8

10 0.0 0 0 5.07 444 8.6 5.07 4

Note - Confidence Intervals:

% in reduced service, within 0.05

% in failure, within 0.23

Pump Results:

Average Time in Failure: 4.97%

436 hours/year

8.4 / year

Table 4-8 System A Simulation Results
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Link Results:

Table 4-8 System A Simulation Results (continued)
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Time in Failure

Pipe
hours number!
year year

1 0.02 1 0.04

2 0.15 13 0.3

3 0.16 14 0.4

4 0.14 12 0.3

5 0.14 12 0.3

6 0.11 10 0.2

7 0.25 22 0.6

8 0.33 29 0.7

9 0.14 13 0.3

10 0.12 10 0.3

98 (valve) 0.03 3 0.9

99 (valve) 0.05 4 0.1



On average then, the system appears to function completely about 95% of the

time. The corresponding figures from the analytical methods in Chapter 3, are:

connectivity = 95.4% and probability of sufficient flow = 94.26%. (These figures

correspond to the "'realistic" probability case [Case IV in Table 3-8].) The results

of the methods agree closely for this system. However, it should be noted that in

both cases these figures mainly reflect the reliability of the pump. For another

comparison between the analytical and the simulation methods, we can compare

the relative reliabilities of the individual nodes. From the reachability

calculations in Table 3-2 node 1 is expected to be the most reliable and node 9 the

least. The simulation results, both for reduced service and failure modes, agree.

Note, although we might expect the nodes at the higher elevations to be the least

reliable, for this system the least reliable nodes are those furthest from the source

but at lower elevations.

Since the pumps are not most important determinant of reliability in this system,

a number of changes in the pump related parameters were examined as options

for system improvement. The alternatives simulated were:

(1) improvement of pump maintenance, resulting in an increase of mean time
between failures from 1000 to 1500 hours,

(1) improvement of pump repair, resulting in an decrease of mean time to
repair from 50 to 40 hours,

(3) a combination of alternatives 1 and 2.

Figure 4-5 presents, for the base case (B) and the improvement options (1, 2, and

3), the calculated values of annual shortfall and percentage of time in each mode

for node 9. Node 9 was chosen for these comparisons, because it is the node with

the most severe reliability problems. Note, increasing the maintenance to the

pump causes a larger decrease in shortfall and failure percentage at node 9, than
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does improving the pump repair time. The combination of these two options

decreases shortfall and percentage of time in failure mode by approximately 45%.

Average Annual Shortfall (106 gallons):

121.8 82.9 97.1
128

112

96

80

64

48

32

16

0

65.9

B 1 2 3

Failure Mode % at Node 9:

5.2 3.6 4.2 2.9

Reduced Service Mode % at Node 9:

.4

.2

0
B 1 2 3

0.28 0.30 0.30 0.29

- -

B 1 2 3

Figure 4-5 Comparison of Results for System A Options

Another improvement option could be to add another pump to the system. A

smaller pump connected in parallel could be an economical way of both

increasing the normal effectiveness of the system, and providing added
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reliability. However, using SDP8 alone shows adding a smaller pump in parallel

is unlikely to augment the system reliability. A pump with 1/3 the capacity was

tried, but this pump could not supply the network on its own. Thus most nodes

will still be out the 5% of the time the large pump is inoperative. A pump of 1/2

the size of the original pump was also tried, but this pump alone could not supply

the network either. Obviously the reliability of this system could be enhanced by

adding another full sized pump, either in parallel to the first or as a standby.

However, this option is likely to be very costly.

A listing of the input for System B + is given in Table 4-9. The critical and

minimum heads were set to be equivalent to pressures of 40 psi and 10 psi,

respectively. The 40 psi is design standard for this system; and 10 psi is

considered to be the pressure at which it is reasonable to cut off water altogether.

This system is quite large, and frequently more than one link failed at the same

time. Also the tanks are frequently depleted. Thus it is hard to tell which

configurations to pre-compile. Simulating all the 2 link failure combination

involves 372 = 1369 SDP8 solutions, which requires unreasonable computer time

(several CPU hours). However, the simulation runs themselves take considerable

computer time, so some savings due to pre-compilation of data is desirable. As a

compromise, runs were made and data stored of:

(1) each pipe failed individually (34 runs),

(2) one pump failed (1 run),

(3) one pump failed and each pipe failed individually (34 runs),

(4) tank 165 failed and each each pipe failed individually (34 runs),

(5) both tanks failed and each pipe failed individually (34 runs).

For both computer time and storage requirements a simulation period of 3 years

(approximately 140 regeneration cycles) was chosen. This period gave confidence
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Node Data:

Demand Su ply Headfor or Service Minimum
Elevation Fully Fully fr uly Head HeadNode (feet) Working Working Working Limit Limit

System System (fSee (feet) (feet)
(gpm) (gpm) (et

10 (river) 10 - 4428 10 - -

20 20 500 - 305.61 112.28 43.07

30 50 200 - 242.40 142.28 73.07

40 50 200 - 234.41 142.28 73.07

50 50 200 - 232.16 142.28 73.07

60 50 500 - 234.96 142.28 73.07

65 (tank) 235 - 342 235 - -

70 50 500 - 242.40 142.28 73.07

80 50 500 - 228.33 142.28 73.07

90 50 1000 - 225.88 142.28 73.07

100 50 500 - 229.33 142.28 73.07

110 50 500 - 234.50 142.28 73.07

120 120 200 - 228.67 212.28 143.07

130 120 200 - 228.69 212.28 143.07

140 80 200 - 228.34 172.28 103.07

150 120 200 - 228.32 212.28 143.07

160 120 800 - 234.27 212.28 143.07

165 (tank) 235 - 1630 235 - -

170 120 200 - 226.10 212.28 143.07

Pump Data (same for all 3 pumps):

Pump curves: discharge = input head + 300 - 2.43 x 10- 6*flowl. 97 4

Mean time to pump break: 1000 hr

Pump Repair Parameters for log-normal distribution: u = 3.93, a = 0.2

Table 4-9 System B + Input Data
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Pipe Repair Data:

Uniform Distribution: 3 - 72 hours

Tank Data:

Diameter: 100 ft
Initial Depth: 10 ft
InitialVolume: 78,540 gallons

Link Data:

Table 4-9 System B + Input Data (continued)
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Mean

Link From To Length Diameter Hazen- Time to
Lik rm o (feet) (inches) Williams Pipe

Coef. Break
(hr)

2 20 70 12000 16 70 3855
4 20 30 12000 12 120 3855
6 20 110 12000 12 70 3855
8 30 70 9000 12 70 5140

10 70 .100 6000 12 70 7710

12 70 90 6000 10 70 7710
14 70 60 6000 12 70 7710
16 90 60 6000 10 70 7710
18 60 80 6000 12 70 7710

20 90 80 6000 10 70 7710
22 90 150 6000 10 70 7710
24 90 100 6000 10 70 7710

26 100 150 6000 12 70 7710

28 80 150 6000 10 70 7710

30 30 60 6000 10 120 7710



Link Data (continued):

Mean
Lenth iamter Hazen- Time to

Link From To Length nhes)r Williams Pipe
Coef. Break

(hr)

32 30 40 6000 10 120 7710

34 30 50 6000 10 120 7710

36 40 50 6000 10 120 7710

38 80 50 6000 10 120 7710

40 80 140 6000 10 120 7710

42 150 140 6000 8 120 7710

44 150 160 6000 8 120 7710

46 100 160 6000 8 120 7710

48 100 110 6000 8 70 7710

50 110 160 6000 10 120 7710

52 110 120 6000 8 120 7710

56 120 130 6000 8 120 7710

58 160 130 6000 10 120 7710

60 130 170 6000 8 120 7710

62 160 140 6000 8 120 7710

64 170 140 12000 8 120 3855

66 140 50 12000 8 120 3855

70 60 65 100 12 120 46260

80 160 16520 100 12 120 46260

101 (pump) 10 20 - - - -

102 (pump) 10 20 - - - -

103 (pump) 10 20 - - - -

Table 4-9 System B + Input Data (continued)
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intervals for System B+ to within 18% for shortfalls. Again the confidence

intervals for the small percentages of time each node was in failure or reduced

service mode were sometimes quite wide.

Various simulation runs were made for this system. Highlights of the results of

these simulations runs are presented in Table 4-10.

The nodes with the high percentages of time in reduced service and failure mode,

are the nodes that cannot be supplied by the pumps alone. These percentages

correspond primarily to the 20% of the time both tanks have been depleted.

Walski reports the system has trouble filling tank 165, so it does not seem

surprising that 20% of the time (about 1.5 days/week), there is some supply

problem at the nodes at the higher elevations (nodes 120, 130, 160, and 170).

Walski did not specify the diameter of the tanks; these diameters were picked as

"reasonable".

Other studies have been made on this system (Lee et. al. [1985], Gessler [1985]),

however they focused on finding a design to meet projected future water demand

rather than on reliability. Lee used 800,000 gallon tanks which were not allowed

to run dry. Gessler used a tank with 200,000 of available flow. These tanks are

approximately in the range of the 587,000 of available water used in this

simulation. However in both of these studies, the recommended expansion

involved another tank added to the system.

It seems reasonable that in designing storage for this system, the volume of the

water storage tanks should take into account the amount of water needed to

supply the system during failure events. The required tank volume should be

related to the distribution of the pipe repair time. Thus, for improvement
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System Results:

2350 cycles

4846 events

Average annual shortfall: 7.39%

248.68 million gallons ( 44.7)

Pump Results:

Pump 101:
Average Time in Failure:

Pump 102:

Average Time in Failure:

Pump 103:

Average Time in Failure:

4.51%

395 hours/year

7.3 / year

4.03%

353 hours/year

7.0 / year

3.93%

344 hours/year

7.0 / year

Table 4-10 System B + Simulation Results
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Node Results:

Average Time in Average Average
Reduced Service Time in Failure Shortfall

Node
hours number hours number annual

% /year /year % /year /year % average
(106 gal)

10 (Riv) 0.0 0 0 0.0 0 0 - -

20 0.0 0 0 0.0 0 0 0.00 0

30 0.66 57 2.7 1.39 120 3.3 1.59 1.7

40 1.33 115 3.0 1.62 140 4.7 1.89 2.0

50 11.16 965 23.0 1.62 140 4.7 2.20 2.3

60 9.96 862 20.3 1.62 140 4.7 2.10 5.5

65(Tk) 0.0 0 0 20.02 1734 43.0 - -

70 0.66 57 2.7 1.39 .120 3.3 1.60 4.2

80 18.34 1588 41.0 1.62 140 4.7 3.77 9.9

90 18.34 1588 41.0 1.62 140 4.7 4.12 21.7

100 18.34 1588 41.0 1.62 140 4.7 3.92 10.3

110 18.08 1566 41.0 1.62 140 4.7 3.24 8.5

120 2.13 186 42.3 20.01 1733 43.3 20.19 21.2

130 2.18 190 42.3 20.01 1733 43.3 20.20 21.2

140 17.78 1540 43.3 2.23 193 6.7 9.81 10.3

150 2.17 190 43.7 19.96 1729 43.0 19.99 21.0

160 2.17 190 43.7 19.96 1729 43.0 20.15 84.7

165LTk) 0.0 0 0 22.14 1919 44.7 - -

170 2.22 194 43.7 19.96 1729 43.0 20.21 21.2

Note - Confidence Intervals:

% in reduced service, within 3.1
% in failure, within 3.4

Table 4-10 System B + Simulation Results (continued)
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Link Results:

Time in Failure

Pipe hours / number /
year year

2 0.56 49 1.0

4 1.02 89 2.3

6 0.34 30 1.7

8 0.25 22 0.7

10 0.37 33 0.7

12 0.37 33 0.7

14 0.55 48 1.0

16 0.50 44 1.7.

18 0.41 36 0.7

20 0.45 39 1.7

22 0.31 27 1.0

24 0.50 44 1.0

26 0.50 43 1.0

28 0.33 29 1.7

30 0.35 31 0.7

32 0.72 63 1.0

34 0.69 60 1.7

36 0.63 56 1.3

38 0.77 67 1.3

40 0.05 5 0.3

Table 4-10 System B+ Simulation Results (continued)
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Link Results (continued):

Table 4-10 System B + Simulation Results (continued)
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Time in Failure

Link

% hours / number /
year year

42 0.63 56 1.3

44 0.74 65 1.3

46 0.73 64 2.0

48 0.43 38 1.3

50 0.38 33 0.7

52 0.-19 17 0.7

56 0.11 10 . 0.3

58 0.32 28 0.7

60 0.33 29 1.0

62 0.75 66 1.7

64 0.89 78 2.0

66 1.14 100 3.0

70 0.47 41 1.0

80 0.11 9 0.7



alternatives, combinations of pipe repair time distributions and tanks sizes were

examined. The following options were examined:

(1) tank diameter = 100 ft, pipe repair time = 3 - 72 hours (base case),

(2) tank diameter = 150 ft, pipe repair time = 3 - 72 hours,

(3) tank diameter = 100 ft, pipe repair time = 3 - 48 hours,

(4) tank diameter = 150 ft, pipe repair time = 3 - 48 hours,

(5) tank diameter = 100 ft, pipe repair time = 3 - 24 hours, and

(6) tank diameter = 150 ft, pipe repair time = 3 - 24 hours.

A summary of the shortfalls for each combination is given in Figure 4-6. The

"best" alternative (large tanks and pipe repairs within 24 hours) gives an average

annual shortfall of 93 22 million gallons. For this case the maximum time in

reduced service mode is 7.3 1.7 % for node 110, and the maximum time in

failure mode is 7.6 1.7 % for nodes 120 and 130.

Average Annual Shortfall (106 gallons):

249 184 212 142 149 93
256

224 -

192

160-

128

96 - "M

64 -

32

0
1 2 3 4 5 6

Figure 4-6 Comparison of Results for System B + Options
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To allow a comparison with the results of the analytical computations in the

previous chapter, one simulation run was made on Network B (Figure 3-10). A

listing of the input for Network B is given in Table 4-11. Analogously to the large

network, System B +, the critical and minimum heads were set to be equivalent

to 40 psi and 10 psi, respectively. Since only one simulation run was planned, no

preproccessing was performed for this system. Thus, every time the simulation

encountered a system with any element failed SDP8 was called.

The simulations for this system, with no prestored supply results, required 368

CPU seconds. Highlights of the results of this simulation are given in Table 4-12.

Within this three year simulation period, 79 cycles occurred, encompassing 244

events. This period gave confidence intervals to within 23% for shortfalls. Again,

this system has severe problems with reliability. The tank failed (was dry) for

11.7% of the simulation period. Node 150 was the least reliable node, failing the

same 11.7% of the time the tank was dry. The nodes in the pentagon failed

approximately 2% of the time. The nodes in the pentagon also spent significant

time in reduced service mode, about 10%. Again the nodes furthest away from

the water sources have the most reliability problems, not a surprising result since

all of these nodes (except 20 and 150) are at the same elevation.

From Chapter 3, the system connectivity is 0.9534 and the probability of

sufficient supply is 0.9514. These figures, however, assume that the tank is

completely reliable and thus never runs dry. A comparison with the simulation

results show that these analytical measures are somewhat optimistic for this

system, as expected.
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Node Data:

Demand Suply Headfor r Service Minimum
Elevation Fully Fully for Fully Head Head

Node (feet) Working Working Working Limit Limit
System System System (feet) (feet)
(gpm) (gpm)

10 (river) 10 - 3026 10 - -

20 20 500 - 306.09 112.28 43.07

60 50 500 - 234.60 142.28 73.07

65 (tank) 235 - 1174 235 - -

70 50 500 - 238.62 142.28 73.07

80 50 500 - 217.43 142.28 73.07

90 50 1000 - 216.97 142.28 73.07

100 50 500 - 220.12 142.28 73.07

110 50 500 - 248.57 142.28 73.07

150 120 200 - 217.30 212.28 143.07
-io -__

Pump Data (same for both pumps):

Pump curves: discharge = input head + 300 - 2.43 x

Mean time to pump break: 1000 hr

Pump Repair Parameters for log-normal distribution:

Pipe Repair Data:

Uniform Distribution: 3 - 72 hours

10 - 6 *fIowI. 974

u = 3.93, o = 0.2

I Tank Data:

Diameter: 100 ft
Initial Depth: 10 ft
InitialVolume: 78,540 gallons

Table 4-11 Network B Input Data
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Link Data:

Mean
Lenth iamter Hazen- Time to

Link From To Length Diamete Williams Pipe
(fet) inces) Coef. Break

(hr)

2 20 70 12000 16 70 3855

6 20 110 12000 12 70 3855

10 70 100 6000 12 70 7710

12 70 90 6000 10 70 771012 70 90 6000 10 70 7710
14 70 60 6000 12 70 7710

16 90 60 6000 10 70 7710

18 60 80 6000 12 70 7710

20 90 80 6000 10 70 7710

22 90 150 6000 10 70 7710

24 90 100 6000 10 70 7710

26 100 150 6000 12 70 7710

28 80 150 6000 10 70 7710

48 100 110 6000 8 70 7710

78 60 65 100 12 120 46260

101 (pump) 10 20 - - - -

102 (pump) 10 20 - - - -

Table 4-11 Network B In put Data (continued)
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System Results:

79 cycles

244 events

Average annual shortfall: 4.62%

101.98 million gallons ( 23.4)

Node Results:

Average Time in Average Average
Reduced Service Time in Failure Shortfall

Node
hours number hours number annual

% /year /year % /year /year % average
(106 gal)

10 (Riv) 0.0 0 0 0.0 0 0 - -

20 0.0 0 0 0.0 0 0 0.00 0

60 9.63 843 20.7 2.09 183 5.3 6.23 16

65(Tk) 0.0 0 0 11.72 1027 25.3 - -

70 7.01 614 14.7 1.01 88 3.0 1.69 4

80 9.63 843 20.7 2.09 183 5.3 6.93 18

90 9.63 843 20.7 2.09 183 5.3 6.71 35

100 10.42 912 22.3 1.30 114 4.0 4.78 13

110 0.09 8 1.7 1.01 88 3.0 1.04 3

150 0.45 39 6.3 11.72 1027 25.3 11.76 12

Note - Confidence Intervals:

% in reduced service, within 3.1
% in failure, within 3.4

Table 4-12 Network B Simulation Results
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Pump Results:

Pump 101:

Average Time in Failure:

Pump 102:

Average Time in Failure:

Link Results:

4.87%

427 hours/year

8.7 / year

3.23%

283 hours/year

5.7 / year

Table 4-12 Network B Simulation Results (continued)
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Time in Failure

Pipe
P hours / number /

year year

2 0.59 52 2.7

6 0.58 51 2.7

10 0.35 31 0.7

12 0.20 18 0.3

14 1.06 93 2.0

16 0.69 61 1.3

18 0.14 13 0.7

20 0.57 50 1.3

22 0.50 44 1.0

24 0.39 34 0.7

26 0.53 47 1.3

28 0.38 33 0.7

48 0.20 17 0.3

78 0. 20 0.3



4.7 DISCUSSION

As shown by the previous examples, simulation can be a useful tool for reliability

assessment. Although simulation seems a time consuming task in comparison

with the analytical methods presented earlier, in this context simulation

provides three advantages.

First, with simulation a number of reliability measures can be calculated. As

shown in Table 4-2 this program already calculates a number of measures. With

only minor modification the program could record additional measures such as,

the duration of the longest period of failure at any node, the duration of the

longest period of reduced service at any node, and the period in which the greatest

total shortfall occurred. Only with simulation is such flexibility in reliability

criteria possible.

Second, simulation allows the analysis of a system with complicated interactions.

This system included operational response to supply loss, water tanks with

storage dependent on the state of the system, and fairly detailed modeling of the

reliability of the individual pipes in the system. Analytical methods have been

designed which handle, to some extent, some of such complexities. However, to

analyze a system with all of these elements at once requires simulation.

Simulation provides a level of realism available with no other method.

Third, simulation allows the detailed modeling of the hydraulic behavior of the

system. In contrast, to remain tractable most analytical methods require a

simplified description of the water system. In chapter 3, considerable effort was

spent determining how well the model of capacitated flow could be "forced" on the

water system. By using simulation with an accepted model of hydraulic behavior
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in a piping network, like SDP8, the risk of a totally incorrect response in some

untested range of the model can be lessened.

However as previously mentioned, simulation can be time consuming, both in

terms of computer time required per analysis and in terms of time to set up and

use such a program. Also simulation results are hard to optimize, and can be hard

to generalize beyond a very specific system. Thus perhaps the best approach to a

reliability analysis is to use both simulation and analytical of methods. Exactly

how these two approaches can be used together is discussed next.
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5.0 CONCLUSION

5.1 OVERVIEW OF RELIABILITY ASSESSMENT OF WATER
DISTRIBUTION SYSTEMS

Several methods for calculating reliability measures for water distribution

systems have been presented in previous chapters. For each method, calculations

have been performed for sample systems. In this section, an overview of these

methods is presented, in order to suggest how they may be used together towards

the development of a comprehensive understanding of the reliability of an

existing system. This methodology does, of course, rely on the previously

presented methods, however it also relies on an equally important component of

any engineering analysis - sound engineering judgment.

As a means of building understanding and developing an intuitive sense of the

hydraulic behavior of the system, we recommend as a first step in any reliability

analysis the investigation of several network representations with the a

computer model of the hydraulic behavior of the system. The simulation program

presented in Chapter 4 used such a model, SDP8, as a subroutine. However,

before the simulation is run, and frequently before any analytical calculations

are done, it may be useful to use the hydraulic model as a stand-alone program.

At a minimum, the following system configurations should be investigated in an

initial analysis:

* all components operational,
* each water source in turn inoperative,
* each pump in turn inoperative, and

* frequently expected combinations of pumps and sources inoperative.

For a system with which the analyst is already familiar, the use of a computer

model to understand the system may be unnecessary. However, initial use of the

- 141 -



network solver with the proposed network representation can also be used to

investigate how well this system model actually describes the real system.

Execution of this initial step can also lead to the identification and elimination of

glaring errors in such a representation.

As the next step of the reliability assessment, we recommend the use of relevant

analytical methods. As was shown in Chapter 3, measures of connectivity and

reachability are fairly easy to calculate even for moderately sized, complex

systems. These measures can be used to identify basic sources of unreliability in a

system such as lack of network interconnections or extremely unreliable links. In

addition, nodes with reachabilities below those of others in the system may be

initially identified as problem areas in the system. Following these relatively

easy calculations, it is also important to calculate the more complex measures of

probabilistic supply. As described in Chapter 3, some difficulties were

encountered with the calculation of these measures even on moderately sized,

complex networks. However, either by using a simplified representation of the

network in question, or by obtaining faster and more sophisticated algorithms

and software for these calculations, these probabilistic supply calculations should

be possible for most water distribution systems. These measures will identify

nodes in the network which, although connected, do not reliably receive the

amount of water demanded.

Armed with the above information and calculations, the analyst can perform a

tentative reliability assessment. If these analyses, or past experience, indicate an

existing reliability problem these calculations should help to pinpoint specific

areas of concern. Once problem areas are identified, possible improvements to the

system may be suggested.
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To some extent, the improvement options can be investigated with the methods

mentioned thus far. For example, if a new link is suggested, it would be

worthwhile to re-run some of the system configurations using the hydraulic

model, and to recalculate the connectivity, reachabilities, and probabilistic

supply measures for the augmented system. We envision the above steps being

done in an iterative fashion, until promising improvements are identified.

When a small number of improvement options have been suggested, simulation

(as in Chapter 4) can be used to investigate these alternatives more fully. In the

simulation analysis, as many of the complexities of the system as possible should

be included. The simulation in Chapter 4 included elements such as water tanks,

and operational response to shortages in supply. For other systems additional

features may be desirable. Also the simulations should be designed so as to

calculate a wide range of reliability measures, including the measures previously

calculated analytically, as a check on the accuracy and agreement of the various

approaches. If done carefully and with good judgment, simulations can provide a

very good understanding of the reliability of these alternative systems under

real-life conditions. Again, the lest two steps may proceed iteratively, with

simulation results suggesting new alternatives and vice versa.

In conclusion, previous chapters present a number of reliability assessment tools.

These tools, combined with care, experience, and common sense can be used to

provide a detailed and fairly comprehensive assessment of the reliability of an

existing system, and can be used to compare alternative schemes for improving

that system. An outline of the steps proposed in this subsection is presented in

Figure 5-1.
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use computer model to
investigate hydraulic
behavior of the system

calculate connectivity
and reachabilities for
the system

calculate probabilistic
supply measures
(possibly for a more
aggregated system)

a

use simulation to
test improvement
options

formulate conclusions
and recommendations

Figure 5-1 Proposed Process for Reliability Assessment
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5.2 SUGGESTIONS FOR FURTHER WORK

There are a number of projects and areas for further research suggested by this

work. This additional effort can be classified into two areas:

* theoretical and algorithmic development, and
* software and computer system development.

Of the methods discussed in this report, those for calculating probabilistic flow

measures most need additional theoretical development. As was discussed in

Chapter 3, the program developed using Lee's algorithm [1980] required large

amounts of computer time for even moderately sized systems. However, as

mentioned in Chapter 2, other more sophisticated algorithms for these measures

exist. Willie [1979] presents what appears to be a faster method for calculating

reliability of capacitated flow networks. Part II of his paper discusses a flow

network analysis program he developed for these algorithms. If this code is

publicly available, it would be interesting to obtain it and apply it to water

distribution networks. Even if this code is not available, the development of

another program for the calculation of probabilistic flow measures, using the

outline of Willie's algorithm as presented in his paper, would be of value.

Alternatively, Rosenthal's algorithm, employed in Chapter 3, has also been

extended to the calculation of reliability measures on capacitated networks. Since

this algorithm seemed to work well for planar networks it also is likely to reduce

the computations required for these measures. Additional investigations of the

adequacy of the methods used in Chapter 3 for assigning link capacity values

should also be performed.

Once the tools to calculate the measures investigated in previous chapters are

refined, a number of further analyses could be performed. It would be interesting
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to study the relationship between these reliability measures and other

characteristics of the network. Such characteristics include the topology of the

network, the values of the reliabilities of the individual components, and the

location and amount of water storage in the network. Additionally, Lee's

algorithm can be used with other definitions of an operational system. For

example a system could be said to be operational if only some of the nodes receive

sufficient supply, instead of all the nodes as was previously used. Changing the

definition of an operating system then changes the reliability measures

calculated based on this definition. It would be interesting to see how such

changes affect the reliability values calculated for a given system.

Another useful theoretical development suggested by this work, would be to use

stochastic gradient techniques in addition to the simulation developed in Chapter

4. Such an extension would then lead to formal ways of finding improvement

options and can be used to optimize the system with respect to reliability

considerations. It should also be possible to relate the improvements to cost. A

tradeoff curve of reliability versus cost could be developed by using stochastic

gradient techniques to optimize the system for a number of proposed funding

levels. Joining cost, reliability, and other design considerations can lead to true

multi-objective design methods for water distribution networks.

The largest need, however, if the ideas and methods in this report are to be used

by practitioners, is to develop a more integrated system of computer software. For

the analyses in previous chapters, an ad hoc conglomeration of programs was

developed with little attempt to make these programs user-friendly, or even

usable by someone not familiar with them. For example, although the programs

use similar information about the system configuration and other parameters

relevant to the reliability of the piping system, most of these programs now

- 146 -



require separate data files. Additionally, software for calculations of reachability

and connectivity is either publicly available, or could easily be developed, to

perform the calculations done by hand in Chapter 3.

One can envision a system of integrated software for the assessment of water

distribution system reliability, based on the methods presented in this report.

Such a system would have easy editing and updating capabilities for managing

the required inputs to, and for storing and integrating the outputs from, these

programs. The programs themselves should be easy to use, and should run off

common data files. In the best of all worlds, these programs would also have

extensive display capabilities for showing the outputs in useful forms, including

dynamic color graphics displays. It is even possible such a system could be

developed to run on a personal computer, if the user was willing to allow the

simulations to run for relatively long periods of time.

Even without all the capabilities described above, there is much that could be

done with the software tools developed for this report, with perhaps some

additional purchased software for reachability and connectivity calculations.

Starting with these tools, a system for performing water system reliability

assessments as outlined in Figure 5-1 could be developed that would be directly

useful for planners and operators of such systems.
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