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CAPTER 6
THREE-DIMENSIONAL SINGLE-REALIZATION

SIMULATIONS OF SATURATED FLOW IN RANDOM POROUS MEDIA

6.1 Scope, Model Problems, and Methodology

This Chapter is devoted to the physical interpretation

and statistical analysis of large realizations of steady state

saturated flow fields in three-dimensional random porous media.

In the single-realization approach, the hydraulic conductivity

K(x) is generated as a particular replica of a statistically

homogeneous random field in 3D space. In view of reproducing a

relatively wide range of natural conditions, two main types of

model problems (isotropic/anisotropic) were selected, with

different subcases corresponding to various degrees of

conductivity variability. In all cases, the random field

conductivity was assumed locally isotropic, although the spatial

structure could be statistically anisotropic as well as

isotropic. This will be explained in more detail shortly.

[a] Model Problems.

The single-realization flow problems to be examined in

this Chapter are listed in Table 6.1, with a summary of numerical

and statistical input data in each case (problems A, B, E and F,

to be analyzed in Sections 6.3, 6.2, 6.4, respectively).
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TABLE 6.1
SYNOPSIS OF SINGLE-REALIZATION PROBLEMS OF STEADY SATURATED FLDW

WITH 3D RANDOM FIELD CNDUCITIVITIES
See Also Table 5.4

Category Isotropic Anisotropic

Problem Label A B E F
ID Number #51, #52. #53 #40, #30 #42 #43

Section Section 6.3 Section 6.2 Section 6.4 Section 6.4

C f 1.0. 1.7. 2.3 1.0, 2.3 1.0 1.0

1 1 1/4 1/4

((1., 1., 1.) (1., 1., 1.) (1., 1.. 0.25) (1., 1., 0.25)

(L.) (33.3, 33.3. 33.3) (25., 25., 25.) (30., 30., 7.5) (30., 60., 60.)

0.004 0.004 0.004 0.0004

Ax/X. (1/3. 1/3 1/3) (1/2, 1/2, 1/2) (1/2, 1/2, 1/2) (1/2, 1,4)

L /X (33.3. 33.3, 33.3) (25., 25., 25.) (30., 30., 30.) (30.,60.,240.)

n. (101, 101, 101) (51, 51, 51) (61, 61, 61) (61, 61, 61)

N 1 Million 130000 220000 220000

Computer Cray 2 Microvax 2 Microvax 2 Microvax 2

Note: The geometric mean conductivity was K. = 1 in all cases. The exact values used for

a were 1.0, 1.732, and 2.3025. Recall that af is the standard deviation of the normally

distributed log-conductivity (natural logarithm). For problems with more than one value of
C , the same realization of the enK field was used, provided appropriate rescaling in the

obvious way.
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In our view, these hypothetical flow problems cover a

relatively wide range of field situations for groundwater flow

applications, at least in a generic way. The selected set of

input data does not correspond to any particular field site, but

constitutes a fairly representative "sample" of known field

cases, as can be seen from our review in Chapter 2 (Section 2.3).

The geometry, flow regime, and boundary conditions

adopted in this work are represented graphically in Figure (6.1).

The flow domain is a three-dimensional parallelepiped rectangle,

defined by the size of its sides (L1 ,L2 ,L3 ). The flow regime

corresponds to purely saturated steady flow, and the boundary

conditions were chosen to mimick the case of a heterogeneous

groundwater flow system driven by some large-scale regional

hydraulic gradient (J1 ). Note that all lateral boundaries,

including the top and bottom faces of the flow domain, were

assumed to be impervious. Strictly speaking, this limits the

applicability of the model to the case of confined groundwater

flow.

Ideally, the case of unconfined groundwater flow could

be simulated by taking into account the shape of the water table
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as part of the solution. However, there was no provision to do

this in the saturated flow simulator developed in this work. To

be fair, note that the flow simulator could also be run in the

partialy saturated mode to simulate unconfined flow, provided

that the vadose zone above the water table be included in the

flow domain. However, we have not tried this cumbersome

approach. Instead, the case of unconfined flow could be

approximated in the purely saturated flow regime by assuming a

fixed, horizontal water table, through which some distributed

recharge flux could be prescribed. The regional hydraulic

gradient should be taken horizontal, and equal to the mean slope

of the water table as measured in the field. In our view, the

simulated flow fields obtained in this way could be fairly

representative of natural unconfined groundwater flow systems, at

least far enough below the water table. Thus, the model flow

problem of Figure 6.1 could be interpreted alternatively as a

confined flow system or as an unconfined flow system with zero

recharge at the water table.

Let us now discuss our particular choice of boundary

conditions (Figure 6.1) in the context of the single-realization

approach to stochastic flow. We have indicated earlier that the

flow was assumed to be driven at the large scale by some regional

hydraulic gradient. This type of condition wag modeled in an
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indirect fashion by prescribing constant head conditions on two

opposite faces of the flow domain, and zero flux conditions on

all other lateral faces.

As a consequence, the regional or "mean" hydraulic

gradient will be approximately aligned with the horizontal axis

x,, which also coincides exactly with the mean flow direction.

This property can be expressed more precisely by

defining "regional" or "mean" quantities as three-dimensional

spatial averages, e.g.:

Mean Hydraulic Gradient: J = - fLL -x.
i LIL2L3  axO

(6.1)

Mean Flux: -. = 1  - fQ dxQi LIL2 La ffQ -

Due to the particular geometry and boundary conditions

(impervious lateral boundaries), the mean transverse flux

components necessarily vanish (i2 = i% = 0) and the mean flow is

exactly horizontal. On the other hand, a simple manipulation of

the triple volume integral defining J. shows that the
1

longitudinal component J1 is exactly equal to:
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H1 -HO

= -Li (6.2)

and the other gradient components are expected to vanish for

sufficiently large domains (J2 = J3 = 0). Note that the boundary

conditions are such that the transverse components of the mean

hydraulic gradient are only approximately null in a heterogeneous

medium, whereas the mean transverse flux components are exactly

zero by construction. It does not seem possible to ensure both

conditions exactly with a consistent set of boundary conditions.

Attempts to do so will lead to an ill-posed boundary value

problem.

Equation (6.2) defines in a simple manner the

longitudinal "mean" hydraulic gradient imposed on the flow in

terms of the prescribed heads H0 and H, at the left and right

boundaries. One may conceptually relate this quantity to the

ensemble mean hydraulic gradient that would obtain by taking L.

infinite while (HI - HO)/L remains constant. Furthermore, we

have seen that the average flux over the flow domain is

necessarily aligned with the horizontal axis (xi), since all

lateral boundaries are impervious. This property of the

finite-domain flow field is consistent with the predictions of

the infinite domain spectral theory in the special case where the

log-conductivity field is statistically isotropic or has its
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principal axis of anisotropy aligned with the mean gradient

(horizontal axis x).

Accordingly, the anisotropic model problems listed in

Table 6.1 (E and F) were restricted to the case of horizontally

stratified aquifers, with a zero dip angle between the mean flow

and the principal axis of statistical anisotropy of the

log-conductivity field. In the more general case of a non-zero

dip angle (sloping stratification) the mean flux will not be

aligned with the mean hydraulic gradient in general. Future work

on this complex case should focus on the design of boundary

conditions compatible with the infinite domain and ergodicity

assumptions of the spectral theory. Briefly, there are at least

two different ways in which a global flow condition can be

prescribed over a finite domain of rectangular shape with a dip

angle. A regional hydraulic gradient can be ascribed by assuming

a linear head variation outside the computational domain (i.e.,

on all sloping boundaries). Alternatively, a regional discharge

rate vector can be ascribed by assuming a constant discharge rate

outside the computational domain. The first of these approaches

is a generalization of the boundary conditions chosen in this

work for the case of isotropic or horizontally stratified

formations. It is not clear at this point which one of the two

approaches will be the most advantageous for the simulation of

groundwater flow in sloping stratified formations: we leave this
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problem for future research.

[b] Random Conductivity Fields:

The random log-conducttutty field used for each

single-realization problem was a normally distributed

three-dimensional Markov field. In short hand notation, the

probability distribution function of en K(x) can be defined as:

pdf = w(en KGa 2) (6.3a)

where S indicates the standard normal distribution, KG is the

geometric mean conductivity:

KG = exp<en K>

and a2
f

(6.3b)

is the variance of the log-conductivity perturbation f:

f (x) = en (K()K)

(6.3c)

a = <f(X)2>.

The spectral density Sff(k) of the Markov field was given in

Table 3.1 of Chapter 3 under the designation "3D Ellipsoidal
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Markov". The covariance function of this random field is

exponential, of the form:

Rff(<) = (f(x)-f(x+E) >

= u -exp(-1E f /) (6.3d)
1

where is the separation vector, and X. is the integral

correlation scale of the log-conductivity along the principal

axis x. (i = 1,2,3). In the special isotropic case (Xi=X2=X3),

the covariance function takes the simple form:

R (E) = U2 - e (6.3.e)

where f is the separation distance, and X the isotropic

correlation length (same in all directions). For illustration,

we show in Figure (6.2) a contour map of a three-dimensional

isotropic Markov log-conductivity field in a two-dimensional

slice. Only the low contour values (from K = KG to K = KG/100)

are represented. The size of the slice is about 43 correlation

scales in each direction, the grid resolution is one third of the

correlation scale, and there are 129 nodes on each side (about

16,600 grid points on the slice). Note the large number of very

small regions of extreme conductivity. The areas devoid of

contour lines indicate high permeability "pathways" for the flow:
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Figure 6.2 Typical high-resolution contour map of
three-dimensional isotropic Markov log-conductivity
field in a square two dimensional slice. Only the
low contour values K/K = 1 to 1/100 are

represented (a = 1., Ax /X = 1/3, L /X = 43)
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there is no preferential direction for these pathways since the

field is statistically isotropic in this example.

It is important to note that the log-conductivity field

just defined is, by construction, statistically homogeneous and

ergodic in the strict sense. In other words, all n-point moments

up to arbitrary order are statistically invariant by translation.

Ergodicity guarantees the equivalence of infinite-domain spatial

average with the ensemble means. For instance, the fact that:

lim Rff() = 0
11f 11-)

suffices to guarantee ergodicity in the first and second order

moments (cf. Yaglom, 1962, 1.4). This is a desirable property to

have in the context of the single-realization approach. In

essence, ergodicity guarantees that, for sufficiently large

domains (L >> X ) a single spatial realization of the

log-conductivity field will carry almost all the information

contained in an infinite number of replicas of the random field

obtained in ensemble space. This will be illustrated later, by

comparing in a specific case the ensemble and spatial moments of

the input log-conductivity fields generated by the Turning Band

Method (problem A, section 6.3).
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[c] Statistical Analysis Methodology

Our methodology for estimating the statistical

properties (moments) of single realizations of random fields was

based on standard spatial average estimators applicable under the

assumptions of spatial homogeneity and ergodicity. The precise

procedure we used was not exactly the same for different types of

random fields (input log-conductivity, output hydraulic head and

output flux vector). The exact procedure used in each case is

explained in more detail below.

The spatial moments of the prescribed

homogeneous/ergodic log-conductivity field were computed by using

standard unbiased estimators. Let en(K. . ) be the discrete

realization of the log-conductivity field over the grid. The

mean and variance were computed by three-dimensional discrete

averages as follows:

Mean: en KG= - en Kjk (6.4a)

i,j,k

Perturbation: f = en (K k (6.4b)
iL,j,k i,j,k (6.4b

2 12Variance: = - (f i,j,)2 (6.4c), jfk
ijk

where N is the total number of nodes on the grid (N =nin 2no).
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The two-point covariance functions along each of the axes

(xI,x2 ,x3 ) were computed for discrete values of the separation

distance (f, = ijAxI, E 2 = i2 Ax2 , E3 = i3 Ax0 ) in a similar

fashion. Note however that the fully three-dimensional function

Rff(EiIE2,Ea) was not directly computed. For example, the

unidirectional covariance along xi was evaluated by:

R ff(ii,0,0) - N(i ) 'f(jj2 , j3 )-f(j1-ij 2 ,j3 ) (6.4d)

where N(i) represents the number of pair of points with

separation vector E = (i1Axi,0,O) on the grid, that is:

N(ii) = (ni-ii) - n2n

Note that 0 i1 ni-1. The triple index (jI,j 2 ,j3 ) in equation

(6.4d) was from (1,1,1) through (ni-ii,n2 ,n). The formulas used

to compute the covariance function in the other directions are

analogous.

For the particular single-realization problems examined

in this work, it was found that the spatial moments (6.4) of the

log-conductivity fields generated by the Turning Band Method were

fairly close to the prescribed ensemble moments. More details

will be given in later sections. Let us just mention here that

the agreement was particularly good for the isotropic flow
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problem A which had the finest resolution (Ax.IA. = 1.3) and the
1 1

largest sample size (L./X. 33.). The reader is referred to
1 1

Tompson, Ababou, and Gelhar (1987) for an evaluation of the

capabilities of the Turning Band random field generator and a

systematic comparison of ensemble versus spatial moments in a

variety of cases.

The statistical properties of the simulated flow field

(H(x),Q (x)) were evaluated in a similar fashion, for comparison

with the ensemble moments predicted by the spectral theory. Note

that the spectral theory itself is only approximate. In

particular there is no guarantee that the variables H and Q.
1

describing the flow share the properties of homogeneity and

ergodicity satisfied by the input log-conductivity field.

Indeed, the hydraulic head field is obviously not homogeneous in

the mean, since there is a non-vanishing mean head gradient in

the longitudinal direction. Moreover, the zero-mean head

perturbation:

h = H - <H>

may not be second order stationary/ergodic as the spectal theory

assumes, except perhaps asymptotically as a-f -> 0 (Chapter 4,

Section 4.1). Finally, the correlation range of the head

perturbation appears to be significantly larger than the
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conductivity correlation scale X (Chapter 3). As a consequence,

to obtain a statistically meaningful realization of the hydraulic

head f ield may require a domain much larger than what is needed

for a representative realization of the conductivity field. The

effect of boundary conditions renders this problem even more

accute, as the deterministic constraint on the head near a

boundary will tend to propagate towards the interior, in

proportion to the correlation range of the hydraulic head.

Accordingly, our strategy for evaluating the

statistical properties of the flow field was based on the premise

that the flow variables of interest are not necessarily fully

homogeneous in three-dimensional space. More precisely, we have

found empirically that the preferential direction of spatial

inhomogeneity for the finite-domain hydraulic head field was the

longitudinal direction parallel to the mean flow. It should not

be surprising that the flow be more nearly homogeneous in the

direction transverse to the driving force. This was confirmed

directly from the numerical solutions by examining the spatial

variations of the cross-flow average of the head field as a

function of the longitudinal coordinate.

- 1f
H(xi) = L2 La H(x) dx2dx3 (6.5a)

This function exhibited a few large scale fluctuations around the
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theoretical linear mean H = - J*x1 , with a wavelength typically

on the order of the full domain length: see Figure 6.3 for

illustration.

A zero-mean head perturbation h was then obtained by

detrending the numerical head field with the nonlinear mean

H(xi):

h(x) = H(x) - Hf(x,) (6.5b)

This quantity was assumed to be statistically homogeneous in all

three space directions in the interior of the domain. Therefore,

the head variance ( ') and covariance function (R ) were

computed by using the standard spatial averaging procedure as

described previously for the case of the log-conductivity field

(replace f by h in equations 6.4c and 6.4d). The domain of

integration was usually taken slightly smaller than the

computational flow domain in order to avoid including data

located near the boundaries.

The procedure used to analyze the statistical

properties of the flux vector Q.(x) was similar, however with

one essential difference. By construction, the cross-flow

average:

Qi(xi) = f Qi(;) - dx2dx3 (6.7a)
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is in principle independent of the longitudinal coordinate xi,

and the transverse mean flux components Q2 ,Q3 should vanish

since all lateral boundaries are impervious. In actual practice,

the "one-dimensional" conservative nature of the mean flow was

not exactly satisfied by the numerical flux field due to the

discrete nature of the solution (numerical errors) leading to

slightly inaccurate mass balance. We have found that these

discrepancies were sufficiently small to be neglected,

particularly for the highest resolution problem A of Table 6.1.

Thus Q1 was approximately constant along x1 , which justified

using a three-dimensional average to evaluate the constant mean

flux as follows:

- 1 rr~Q,= LLL j1jiXiX2-X3) dXJdX2 dX3

and similarly for Q2 and Q3 . The ratios Q./Qi(i=2,3) were
1

used to evaluate the relative mass balance error of the numerical

solution (ideally i2 = i% = 0).

In practice, the flux-integral above was converted into

a discrete sum, and the fluxes were evaluated by a. finite

difference approximation of Darcy equation at mid-nodal locations

( staggered grid (ii+1/2, i2 , i3 ) ) as explained in Chapter 5,

equations (5.4) and (5.7). In certain cases (problem B), the
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fluxes were evaluated as local cell-averages of neighboring

mid-nodal fluxes, in order to obtain a tractable representation

of the random velocity field for use in a particle-tracking

simulator of solute transport (ongoing research by Gelhar and

co-workers at MIT). Finally, the zero-mean flux perturbation:

q (x) = Q (L) - Q. (6.7b)

was assumed to be statistically homogeneous in three-dimensional

space. Consequently, the variances a2 and covariance functions
q i

R ( ) were evaluated, for each flux component (i=1,2,3), by

the standard three-dimensional spatial averaging procedure

described in equations (6.4c) an (6.4d), with f replaced by

q.. A similar procedure was also applied to the head gradient

field G. = 6H/Ox. (replace Q. by G. in equations 6.7).
1 1 1 1

Last, but not least, the effective conductivity in the

longitudinal direction was simply evaluated by:

Q,
K11 = - (6.8)

Ji

where Ja is the prescribed mean hydraulic gradient (6.2), and

Q, the computed mean flux defined by (6.7a). In the special case

of statistically isotropic log-conductivity field, equation (6.8)

gives in fact the value of the effective conductivity along any
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direction (problems A and B of Table 6.1). On the other hand, in

the case of statistically anisotropic log-conductivity (with

principal axis x1 aligned with the mean flow) the transverse

components K.,. (i = 2,3) remain unknown. An additional flow

simulation with the mean gradient oriented perpendicularly to the

x, axis would be needed to determine the effective conductivity

perpendicular to stratification.

[d] Finite Size Effects on Estimated statistics

At this point, it may be instructive to examine the

possible inaccuracies that may arise from the sampling of a

single finite-domain realization of the flow field. We have

already pointed out in particular that the hydraulic head field

is inherently non-stationary in the mean (ideally linear) and has

a larger correlation range than the input conductivity fieLd.

Therefore we expect that the computed mean and second order

moments of the hydraulic head could be affected by finite-size

sampling errors. We propose a simple evaluation of the

"equivalent number of independent samples" (sample size) for

evaluating sampling errors. Let Y(x) be a random field with

constant mean, X its correlation scale, and L the size of the
y

domain of averaging used to estimate its moments. Intuitively,

it seems reasonable to define the equivalent sample size as the

size of the averaging domain expressed in correlation scale
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units, that is:

N= L (6.9)
NY

where m is the dimensionality of the averaging domain

(m = 1,2,3 for 1D, 2D, 3D averaging). According to standard

sampling theory, (Appendix 2A), the sampling errors on the mean

and on the standard deviation are of the form:

O
2

Var(Y) ~
Y

U 2

Var(ay) ~
Y

to leading order in N This gives a rough estimate for the

relative sampling errors (e) in terms of the sample size (Ny) as

follows:

e(Y) = ~ 1

(6.10)

Var(uy) 1
e(CY) = 2

Let us now illustrate the implications of (6.9) and

(6.10) for the 1 million node single-realization problem A of

Table 6.1 (Ax./X. = 1/3 and L.A. ~ 33.3). According to
1 1 1 1
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equation (6.9), the sample size of the log-conductivity field is

about 37,000 samples in 3D space. From equation (6.10), this

implies that the sampling error on the mean (en KG) and the

standard deviation (af) should be on the order of 1% or less. On

the other hand, for the hydraulic head field, the spectral theory

predicts that the head correlation scales in the longitudinal

(i=1) and transverse (i=2,3) directions are:

i = 1: ~ 3.OX

i = 2,3: XH ~ 7.5X
H

Therefore, the three-dimensional size of the hydraulic head field

is only about 220 independent samples. Moreover, in a 2D

cross-section such as the one shown in Figure (6.3), the sample

size drops to just about 20 independent head samples!

We may now apply equation (6.10) to evaluate, the

sampling errors on the cross-sectional mean H(x1 ) and on the

standard deviation aH. At each given location x., the mean

trend Hf(xj) was evaluated by a 2D average as defined in equation

(6.5a). Therefore, the sampling size is only 20 and the relative

error on the mean will be quite large:

1
e(H(x, )) ~ - ~ 20%
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For the head standard deviation, the averaging domain is

three-dimensional. Applying equation (6.10) with sample size 220

gives:

1
e(CH) -- 4 5%.

The relatively large sampling error on the mean 1(x1 ) reflects

the fact that, in any given cross-section x1 , the number of

independent samples of the head field is quite low. To reduce

the error e(Hf) to 5% would require increasing the lateral side

of the domain by a factor of 4 in each transverse direction.

This would lead to a grid size of 16 million nodes if the

resolution Ax/X = 1/3 is kept fixed! Unfortunately, the

truncation error analysis of Chapter 5 (Section 5.2) showed that

a grid resolution on the order of 1/3 or less was required to

obtain a reasonable numerical accuracy on the computed flux

vector field, which has a much smaller correlation range than the

head (typically on the order of X). The inherent disparity in

the fluctuation scales of the flux and head fields is therefore

the main cause of trouble in the single-realization approach, as

will be seen.

In summary, we have found that the soundness of the

single-realization approach depends on the competing requirements

of large domain size (in order to obtain a large number of

samples of the hydraulic head in space), and fine grid resolution

(in order to capture the short range fluctuations of the
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conductivity and flux vector). The situation will be even more

severe in the case of statistically anisotropic

log-conductivities, as will be seen later (section 6.4). Our

particular choices of domain size and grid resolution (Table 6.1)

usually tended to sacrifice sample size for resolution. The

sampling errors due to modest domain size relative to the long

range correlation of the hydraulic head, were alleviated in part

by using the "ad hoc" detrending procedure of the head field as

explained in equations (6.5) above.

In the sequel, we will rely on the methodology just

described for analyzing the single-realization flow simulations

listed in Table 6.1 above. The table also indicates the section

where each particular flow simulation is being analyzed.

Section 6.2 treats the medium-size isotropic problem B

(130,000 nodes) and emphasizes some of the most obvious physical

features of the flow field. The preliminary statistical analysis

there does not include correlation functions.- Section 6.3

develops a more comprehensive statistical analysis of the flow

field for the isotropic problem A (1 million nodes), including a

systematic comparison. to spectral solutions in terms of

single-point and two-point moments. Finally, Section 6.4 focuses

on preliminary results obtained with the anisotropic problems E

and F (220,000 nodes). The key results of these analyzes are

summarized and discussed in the last section 6.5.
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6.2 Preliminary Analysis of 3D Isotropic Flow Simulations
(130,000 Nodes)

In this section, we analyze in some detail the

numerical flow fields obtained for the isotropic problem (B) of

Table 6.1 for two different values of the log-conductivity

standard deviation (o- = 1.0 and af ~ 2.3). The statistical

analysis will be limited here to single-point moments, due to the

relatively modest size of the grid. On the other hand, we have

chosen in this example to emphasize physical interpretation

rather than statistical analysis, by using visual representations

of the hydraulic head and flux vector fields. Some of the

results discussed in this section were reported in a recent paper

by Ababou et al. (1987).

[a] Flow field visualization:

The method used here to visualize the three-dimensional

flow fields relies heavily on "two-dimensional plots" showing

contour lines in selected slices, and occasionally on

"one-dimensional plots" of the solution along selected transects.

In all cases, the slices and transects were selected at locations

coinciding with the geometric center of the flow domain. For the
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"isotropic" simulations at hand, the domain was a cube. Figure

6.4 shows the location and orientation of three different slices

of interest. It is worth noting that the flow patterns in the

horizontal slice parallel to flow (top) and in the vertical slice

parallel to flow (centerpiece) should be statistically

indistinguishable in the "isotropic" case. The flow pattern in

the cross-flow slice (bottom) should look quite different, since

the mean hydraulic gradient should be approximately zero in that

plane.

In addition, we have included visual representations of

the input conductivity fields in the form of 2D contour lines

and, occasionally, 3D contour surfaces. We recognize that a

three-dimensional representation of the flow fields could be also

of interest, possibly in the form of contour surfaces of the

hydraulic head and/or stream-surfaces of the flux vector field.

This however was not attempted here. Nevertheless, we will see

that a number of interesting features emerge from a visual

inspection of low-dimensional plots of the random flow fields.

[b] Qualitative Analysis of the Flow Pattern

Let us now discuss the numerical solutions obtained for

the isotropic problem "B" of Table 6.1. This flow problem was

solved for two different values of the log-conductivity standard
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deviation (af = 1.0 and Uf = 2.3025) on a cubic grid of size

N ~ 130,000 nodes. Recall that the boundary conditions were

fixed heads on two opposite faces, and zero fluxes on all other

boundaries (Figure 6.1). We have seen that this is equivalent to

imposing a large-scale hydraulic gradient aligned with the mean

flow direction. The value chosen for the hydraulic gradient (J1

= 0.004) is typical for natural groundwater flow systems. The

random conductivity field was obtained from a single replica of

the 3D isotropic Markov field, generated by the Turning Band

Method. The grid resolution Ax./A. was taken equal to one half,
1 1

and the cubic domain size was 25 correlation scales in each

direction. About one hundred line processes were used in the

Turning Band generator, with a random distribution of lines in

space according to a uniform spherical distribution (see

Chapter 2 and Tompson et al., 1987). The resulting en K field is

Gaussian, with an isotropic exponential covariance function in 3D

space, as explained in the previous section. Note that the same

replica was used for the two sub-problems a = 1.0 and

a = 2.3025, by rescaling the en K field in the obvious way.

Figure 6.5 shows the low and high conductivity regions

(respectively black and white patches) in a two-dimensional slice

for the case a f 2.3. The contouring routine we used for this

and all other contour plots in this work was the Gconmap program
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(Dennis McLaughlin). The contours correspond to regions where

.the conductivity is one order of magnitude larger or one order of

magnitude smaller than the geometric mean (KG = 1). For

~f= 2.3, about 30% of the whole space is occupied by such

regions, equally distributed among low and high values (15%

each). Note that some of the patches appear to be significantly

larger than the correlation length (N = 1). As expected, they

seem isotropically oriented in space.

Figure 6.6 shows an attempt at representing the

corresponding high conductivity contour surfaces in

three-dimensional space. Here, we have represented only those

excursion regions where the conductivity is one order of

magnitude larger than the geometric mean. The smallest excursion

regions had to be filtered out in order to obtain a clearer

representation. This was done by applying a linear filter based

on a weighted local average of nearest neighbors. Even with this

artificial device, the picture remains somewhat misleading: the

excursion regions seem to crowd the page, although they really

occupy only 15% of the three-dimensional cube. In order to give a

feeling of the technical difficulty, we also show in Figure 6.7

a similar plot for the excursion regions corresponding

approximately to K/K > 3. It may be hard to believe that these
G

regions only occupy about 30% of the cubic domain. The "hidden
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Figure 6.6 Three-dimensional excursion regions of the 3D
random conductivity field in a cubic domain with
130,000 grid points (problem B with Uf = 2.3025).

The regions correspond to high values of the
conductivity such that K/KG > 10.



513

Same as Figure (6.6) except that K/KGFigure 6.7
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lines algorithm" of the package we used (Graf Kit), did not seem

able to handle properly such a contorted, random-like function of

space. More advanced 3D contouring softwares should be used in

these difficult cases.

Figure 6.8 displays the contour lines of the computed

hydraulic head in a horizontal slice parallel to the mean flow,

for - ~ 2.3. Low conductivity contours are also shown in the

background. The white areas, devoid of background conductivity

contours, correspond to regions where the conductivity is greater

than about 30% the geometric mean value (pathways for flow). It

is worth noting that the head gradient steepens near local minima

of the conductivity fields, and becomes flatter in the white

areas corresponding to larger conductivities. This interesting

behaviour could perhaps be deduced from the one-dimensional Darcy

equation:

dHi
q = - K(x) d (constant)

However, the generalization to three-dimensional flow is far from

obvious. The observed one-dimensional behavior could be

explained by the fact that the flow field in this example is

globally one-dimensional, since all lateral boundaries are

impervious. Incidentally, note that the head contour lines are
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Figure 6.8 Hydraulic head contours in a horizontal slice
parallel to the mean flow for problem B with a f =

2.3025. There are 10 contour lines of equally
spaced head values including the right and left
boundaries. Low conductivity contours are shown in
the background (log1 O(K/KG) = 0,-0.5, -1, -5,-2)
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orthogonal to the lateral boundaries (as they should). The

influence of such artificial boundaries on the fluctuations of

the head in the interior does not seem overly important: see for

instance how the left-most head contour line of Figure (6.8)

joins the two lateral boundaries.

Figure 6.9 compares the hydraulic head contours for

a = 1.0 and C ~ 2.3 in the same horizontal slice as

Figure (6.8). The influence of the log-conductivity variability

(crf) is quite dramatic: both the small scale and large scale

fluctuations (wiggles and smooth undulations) of the head contour

lines are significantly amplified when af increases from 1.0

(top) to 2.3 (bottom). Note that the same replica of the

log-conductivity field was used, so that the pattern of

fluctuations of en K was the same for the top and bottom

pictures of Figure (6.9). Another remarkable feature that

emerges from these pictures is that the hydraulic head contours

are relatively smooth compared to the noisy input conductivity.

The typical fluctuations scale of the head contour lines in the

cross-flow direction seems to be much larger than the X-scale of

conductivity. This feature is indeed predicted by the spectral

theory.
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More precisely, recall from Chapter 3 that the head

correlation function predicted by the spectral theory has a

larger correlation range than the input log-conductivity fields,

about 7.5X in the transverse direction and 3.OX in the mean flow

direction (see Figure 3.1). Our preliminary calculations of the

head covariance function, based on the spatial averaging method

outlined in the previous section (equations 6.4 and 6.6), showed

approximately the same behaviour for the case of moderate

variability a f= 1. However, the head covariance functions

obtained for the case of higher variability did not agree with

the spectral theory, probably due to the limited size of the

domain and, perhaps, to the relatively coarse grid resolution

(see problem B data in Table 6.1).

Nevertheless, it turns out that the computed head

standard deviations matched to within 10% the values predicted by

the spectral theory (equation 3.21) for both cases of moderate

and high variability, Uf = 1.0 and af ~ 2.3. Figure (6.10)

shows the slowly fluctuating nonlinear trend around which the

head variance was computed; a hypothetical linear mean head

profile is superimposed for comparison (top picture). The bottom

part of the figure displays a typical transect of the head

process around the nonlinear trend. It is important to note that

the computed head deviation would have been much larger than the
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Figure 6.10 One-dimensional representation of the spatial

f luctuations of the hydraulic head (Problem B - U-f

~2.3):

(a) Comparison of computed trend (X1 ) wi th

hypothetical linear prof ile

(b) Fluctuations of the head field around the-
trend for a particular transect parallel the
mean f low
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predicted spectral value if the hypothetical linear mean had been

used instead. In our view, the head variance obtained in this

way would be meaningless, since the whole method is based on the

premise that the second order moments of the flow field are

spatially homogeneous.

It is rather encouraging that our detrending technique

leads to a close agreement between the theoretical (spectral) and

numerical standard deviations of the head field, even for the

relatively modest size problem at hand. This was confirmed for a

number of other cases, isotropic and anisotropic, as will be seen

in later sections.

[c] Statistical Analysis of Single-point Moments

A more complete set of single-point moments of the

numerical flow field is given in Table 6.2. The table lists the

values of the head and flux vector standard deviations, as well

as the effective conductivities, obtained by the spatial

averaging techniques described in the previous section (equations

6.1-6.8). For comparison, the values predicted by the spectral

theory are also listed in the same table (in parenthesis). The

spectral formulas used to compute a H, K eff and '- , were given

in equations (3.21), (3,23) and (3.26) of Chapter 3. Note that
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TABLE 6.2

CODMPARISON OF NUMERICAL AND SPECTRAL THEORY STATISTICS FOR THE
"ISOTROPIC" FLOW PROBLEM B OF TABLE 6.1 (N = 130000 NODES).

THE SPECTRAL THEORY STATISTICS ARE SHOWN IN PARENTHESIS.

a = 1.0 f = 2.3025

U f .002510 .005901

(.002309) (.005317)

aT .003820 .04630

((.003451)) ((.01628))

.001299 .01959
q2

((.001220)) ((.00576))

ar .001313 .02148q3
((.001220)) ((.00576))

aq3 /Jq .344 .464

(.354) (.354)

.00527 .01604
(.00472) (.00968)

'2/Q1 .054 .161
(.000) (.000)

3 /Qi -.066 .011
(.000) (.000)

Ke f 1.318

(1.181)

4.010

(2.420)
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the flux standard deviations a shown in double parenthesis

were computed from a modified version of the spectral theory of

Gelhar and Axness (1983), as explained in Section 4.3 of Chapter

4. The conclusions to be drawn from Table 6.2 are summarized

below.

The most encouraging result from Table 6.2 is that all

the statistics computed from the simulated flow field in the case

of moderate variability (af = 1.0) agree with the spectral

theory with a 10% margin of error. On the other hand, in the

case of large variability (Uf ~ 2.3), there is a serious

discrepancy for most of the statistics related to the flux

vector. The most robust statistics appear to be the head

standard deviation (GH) and the ratio of transverse to

longitudinal flux standard deviations (a / ):

1
aH f

qT 1

UqL 48

It is remarkable that the ratio a /a , which indicates the
rT eL

relative variability of the transverse-versus-longitudinal flux
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components, does not depend on a f. This particular property of

the flow field predicted by the spectral theory, is approximately

verified by the numerical solutions.

We believe that the discrepancies between the

theoretical and numerical values of the flux deviation and

effective conductivity obtained for a ~ 2.3 are due to the

combined effects of insufficient domain size (K eff) insufficient

grid resolution (a and K ) and perhaps inaccurate first

order spectral solution in cases of high variability (small af

assumption). The unsufficient grid resolution (1/2) could be at

the origin of the mass balance error indicated by the non-zero

ratio Q2/Qi (11.6% fr oa ~ 2.3); this significant error could

also be explained by the fact that the fluxes were computed in

this case as local "cell averages" of mid-nodal values, which

might not be the best strategy. At any rate, the questions

raised above motivated our subsequent use of supercomputing

capabilities to simulate stochastic flow problems on larger and

finer grids (1 million nodes); this will be examined separately

in a forthcoming section. In comparison, recall that the grid

size for the flow problem at hand was "only" 130,000 nodes.
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[d] Qualitative Analysis of Flux Vector Field

In spite of the insufficient grid resolution, we found

that the flow problem at hand was sufficiently representative to

justify a preliminary qualitative analysis of the simulated flux

vector field. Figures (6.11) to (6.15) depict the spatial

variability of various flux components in the case af!-~ 2.3.

The first three figures show the fluctuations of Q (x) along

selected transects, and the next two figures display the pattern

of Q (x) in selected slices. In Figure (6.11), the longitudinal

flux component Qi is plotted along the mean flow direction xi;

the mean trend Qi(xi) is also displayed for comparison. Observe

the sharp peaks of QI(xi) at local maxima, compared to the smooth

local minima near zero. This behaviour indicates a positively

skewed distribution, as would be the case for a posttiue

log-normally distributed random function: see for instance the

plot K(x) given in Figure 2.3 of Chapter 2. In contrast, the

transverse flux components Q2 and Q3 depicted in Figure (6.12)

and Figure (6.13) appear to fluctuate symmetrically around their

zero mean value, as expected, due to the absence of a mean

driving force in the transverse directions.
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Figure 6.12 Transverse flux component Q2 along a transect
parallel to the mean flow direction x 1 (isotropic
Problem B, a-f = 2.3025)
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Figure 6.14 Contour lines of the longitudinal flux component
Qj in a vertical slice transverse to the mean flow
(isotropic Problem B, a-f = 2.3025). The isovalues

are equally spaced, from Q1 = 0 up; the black
patches correspond to high values of Q. well above

the mean Qi
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Finally, let us comment on two more figures showing

equally spaced isovalue contours of the longitudinal flux

component Q1 in selected slices. Figure (6.14) shows QI(x) in

a vertical plane transverse to the mean flow, i.e., such that the

mean flow is orthogonal to the sheet of paper, pointing towards

it. The regions of high "velocity" are highlighted in black: one

might think of a sieve, with the black patches corresponding to

holes or preferential pathways for flow. Two notable features

emerge from this picture. First, it appears once again that

local maxima (black patches) are much narrower than local minima

(white areas). Second, the excursion regions of Q, (e.g., the

black patches) are more or less isotropically oriented in the

cross-flow plane, as expected. However, note the

quasi-rectangular shape of some of the smaller patches. This is

probably due to insufficient grid resolution: the orthogonal

geometry of the grid induces an artificial anisotropy of the flow

field at the scale of the mesh.

It may be interesting to compare the near isotropic

pattern of excursion regions of Figure (6.14) to those shown in

the last Figure (6.15). In the latter case, the selected slice

was in a horizontal plane parallel to flow (water moves from left

to right in the plane of the sheet). The high excursion regions

of Q1 appear to be elongated in the longitudinal direction.



531

This indicates that the longitudinal flux is more strongly

correlated in the mean flow direction than across the flow. This

property is indeed in agreement with the findings of the spectral

theory (Figure 3.2 of Chapter 3). A direct comparison of

numerical and theoretical flux correlation functions for the

larger simulation (1 million node problem "A") will confirm these

qualitative observations.

[e] Summary of Findings

In summary, we have found that the relatively modest

size flow simulation at hand (130,000 nodes) produced a flow

pattern in accordance with the findings of the spectral theory

for a number of features, such as the head variance and, for

moderate variability, the flux variance and the effective

conductivity. The spatial structures of the hydraulic head and

the longitudinal flux component were qualitativety in agreement

with the behavior predicted by the spectral theory. It is

remarkable that meaningful information could be obtained from a

single realization of the flow field small enough to be produced

on a minicomputer (Microvax 2).
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However, we have also found some significant

discrepancies between the spectral theory and the numerical

solutions at high variability, particularly concerning the flux

standard deviations a , and the effective conductivity K ff

The observed discrepancies could be due to a combination of

truncation errors (insufficient resolution), sampling errors

(finite size effects), and possibly to the increasing inaccuracy

of the spectral theory as of increases. This latter

possibility may be indicated by the fact that the longitudinal

flux component appeared to have a positively skewed distribution.

This behavior seems to make sense intuitively, as the Darcy

equation shows that Q1 can be expressed by Darcy's equations:

Q1 (x) = K(x).J1 - K(x) Oh
Ox1

where the first term is a log-normally distributed random field.

Now, the first order spectral theory obviously cannot take this

kind of third order effect into account, since third order

moments are ignored.

In order to try to resolve the questions of the

accuracy of the spectral theory as Uf increases, we proceed to
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analyze in the next section a series of larger flow realizations

on a 1 Million node grid.

6.3 Statistical Analysis of 3D Isotropic Flow Simulations
(1 Million Nodes)

[a] Preliminary Considerations

The large single-realization flow problem to be

analyzed here (problem A of Table 6.1) is similar to the previous

one except for the finer grid resolution (Ax./N. = 1/3 instead of
1 1

1/2) and larger domain size (L./X. = 33 instead of 25). It may
1 1

be instructive to begin by comparing how the difference in size

could affect the statistical representativity of the flow field.

For this purpose, let us use the simplified analysis of sampling

errors outlined in section 6.1 (see equatton 6.10 and the example

below it). Thus, the sampling error on the mean hydraulic head

H(xj) was evaluated as the inverse square-root of the number of

head samples available in a cross-section transverse to the mean

flow direction. This number is 20 for the problem (A) at hand,
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compared to 10 for the previous problem (B). The relative

sampling error on the mean H(xi), according to equation (6.10),

would then be about 20% for problem A, compared to about 30% for

problem B. Thus, we expect that the fluctuations of the

nonlinear trend H(xi) will be less pronounced for the larger

problem A. In addition, we also expect a better accuracy on the

flux variance due to the finer grid resolution. This point will

be discussed in more detail later.

We focus now on the three single-realization flow

fields (Uf = 1.0., 1.732, 2.3025) corresponding to the isotropic

problem (A) of Table 6.1. On the numerical side, let us mention

that the iterative solution of these 1 Million node problems was

fully analyzed in Chapter 5 (Section 5.3, Table 5.4 and

accompanying figures). Recall in particular that the three

subproblems were solved in sequence on a Cray 2 machine,

requiring a total of about four hours of CPU time. Finally, it

may be worth noting that a single replica of the log-conductivity

field was used for the three subproblems. This was done by

rescaling en K(x) in the obvious way to accommodate different

values of the log-conductivity standard deviation a .
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[b] Conductivity Field Generation and Analysis:

The conductivity field was generated, as before, by the

three-dimensional Turning Band generator of Tompson, Ababou and

Gelhar, 1987. For the case at hand, a three-dimensional

isotropic Markov field en K(x) was generated over the 101 x 101 x

101 cubic finite difference grid. The particular data used in

the Turning Band generator were as follows: 1000 lines

distributed randomly in space ("turning band"), 300 harmonics per

line for the generation of each line spectrum, and a few hundred

points per line (up to 500) for the generation of the

corresponding line processes. Thus, the spatial resolution on

each line was about 1/5 relative to the mesh size. The

resolution in Fourier space was Ak = 1/3, and the high

wavenumber cut-off was k = 100 (k is a normalized wavenumbermax

equal to Xk). According to the empirical rules developed by

Tompson et al. 1987, these parameters are quite conservative and

should lead to statistically meaningful results as far as the

conductivity field is concerned.

It may also be important to note that the random number

generator we used was slightly different from Tompson et al.

1987. We took advantage of the fact that the largest integer on

the 64-bit words Cray 2 machine is very large (N = 263 , 9 10 ).

In these conditions, our literature review indicated that one of
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the most reliable random number generators available to date was

the "Type 2" congruent method of Fishman and Moore (1986) as

defined below. Let R be a random number uniformly distributed

in [0,1]. Then a sequence of pseudo-random numbers Rk is

obtained by:

Nk+1 L - Nk (mod.M)

(6. 11a)

+= Float (Nk+1)/Float(M)

where the modulus (M) and the multiplier (L) are, respectively:

M = 2 - 1 = 2,147,483,647

(6. 11b)

L = 950,706,376

and the initial seed N can be any number less than M (e.g.,

N = 1). The advantage of this particular random number

generator is that it is equidistributed and has a very large

cycle length M - 1, i.e., about 2 billion numbers. The

multiplier L given above was among the "best" in a series of

tests developed by Fishman and Moore (1986).

To illustrate the soundness of the random field

generator, we show in Table 6.3 a comparison between the
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TABLE 6.3

CX)PARISON OF THEORETICAL (ENSEMBLE) MOMENTS AND lMPITED
(SPATIAL) MOMENTS. FOR THE SINGLE REPLICA OF THE IS[TROPIC

3D MARKOV LOG-(DNDUCTIVITY FIELD GENERATED BY THE
TURNING BAND METHOD (1 MILLION NODE FLOW PROBLEM)

INPUT
Theoretical Values

0

1.0

0.3679

0.3679

0.3679

OUTPUT
Computed Values

0.1966

0.9983

0.3860

0.3785

0.3781

RELATIVE ERROR

+2 %

-0.2%

+5 %

+ 3 %

+ 3 %

Note: The relative error on the estimated mean was defined as (F-<f>)/f . In this

particular case, a =1 and f=en(K/KG) is a zero-mean Gaussian random field with isotropic

correlation function e . At separation distance f=X, the correlation is e - 0,3679.

<F>

R ff(.OO)

Rf f(0, X. 0)

Rff (0,0, X)

I I

I
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prescribed ensemble moments of the log-conductivity field and the

computed spatial moments obtained by the spatial averaging method

described previously (equations 6.4). Note that the relative

errors on the mean and standard deviation are very small; the

error on the covariance function at separation distance X is also

quite small. This excellent agreement indicates that the turning

band generator can produce statistically accurate realizations of

random fields at reasonable costs: the 1 million node realization

at hand required only 10 minutes of CPU time on the Cray 2

machine (without the use of Fast Fourier Transforms).

Furthermore, this also illustrates in a concrete way the

equivalence of ensemble and spatial moments for large

realizations of homogeneous-ergodic fields. In other words, the

particular log-conductivity realization at hand appears to be

fairly representative of the whole ensemble of possible

realizations.

(c) Visual representation of the head field

The three flow realizations obtained by numerical

simulation for the cases a f 1.0, 1.7, 2.3 were statistically

analyzed by using the same spatial averaging procedures described

in the methodology section (6.1). This will not be repeated
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here; the reader is referred to equations (6.4)-(6.8). In order

to illustrate concretely the spatial structure of the head field,

we show in Figure 6.16, (a),(b),(c) the contour lines of the

hydraulic head in a horizontal slice parallel to the mean f low,

for each of the three cases cf ~ 1.0, 1.7, and 2.3. Note that

each slice contains about ten thousand mesh points. The spatial

structure of the head does not seem to differ much from the

similar pictures obtained previously for a smaller flow problem

(Section 6.2).

In addition, Figures 6.17 (a),(b),(c) show the

fluctuations of the hydraulic head along a transect parallel to

the mean flow. The nonlinear trend H(x1 ) obtained by cross-flow

averaging was superimposed for comparison. It should be noted

that the nonlinearity of H(xj) seems milder than it was for the

smaller flow realizations analyzed previously: compare

figure 6.17a to figure 6.10. This finding is in accordance with

our previous evaluation of finite size sampling errors, at least

qualitatively. The improvement seems to be even better than

expected, due to the fact that boundary effects were not included

directly in the aforementioned analysis of finite size effects.
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Figure 6.16 (a) Contour lines of the three-dimensional
hydraulic head field in a horizontal slice
parallel to the mean flow (pointing right).
There are 11 iso-value contours including the
left and right boundaries (equally spaced
values). Flow problem A with 1 Million
nodes: (a) case orf = 1.0.
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(b) Same as (a), with a- = 1.732.Figure 6.16
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(c) Same as (a), with a fFigure 6.16 = 2. 305.
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Figure 6.17 (a) One-dimensional representation of the head
field (sample function .H(x,), and nonlinear

trend 1f(xi)) along a transect parallel to the
mean flow direction. Flow problem A with 1
Million nodes: (a) Case a f = 1.0.
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The flux vector field was not processed for graphic

representations due to technical reasons. However, the reader is

referred to the visual representations of the longitudinal flux

component Q,(x) obtained for the smaller flow realization of

Section 6.2 (Figures 6.11-6.15). At any rate, it will be more

informative to analyze the behavior of the flow fields in

statistical terms. This is now examined.

[d] Single Point Statistics of the Flow Field.

The results of statistical analysis of the flow fields

(H(x), Q (x)) obtained for different values of a are presented

in the form of tables (for single-point statistics) and figures

(for correlation functions). In each case, we develop a

systematic comparison with the results of the infinite-domain

spectral theory. For convenience the analytical results of the

spectral theory concerning the single-point moments of the flow

field are summarized in Table 6.4 below.

The numerical values of the single-point moments of the

flow fields obtained in the cases a f 1.0, 1.7, and 2.3, are

summarized in a compact form in Table 6.5. The values predicted
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TABLE 6.4
SUMMARY OF ANALYTICAL EXPRSSIONS FOR VARIOUS STATISTICS

FROM THE FIRST ORDER (-) AND HIGHER ORDER ((-)) SPECTRAL
SOLUTIONS, TO BE USED AS A REFERENCE FOR TABLES 6.5 AND 6.6

(CASE OF ISOTROPIC 3D MARKOV LOG CxNDUCrIVITY)

Expression

, F JIX

1-.058CF2I F- _. FJ

F

i = 2,3: F

i = 1 : 25KGaFJ

i= 2,3: 11}-KGaFJ1

1: 25OFQ1

Equation Number

Equation (3.21)

Equation (4.2)

Equation (3.22)

Equation (3.24)

Equation (3.26)

Other References

Bakr et. al 197

Gelhar (pers. coi.)

Dagan (19S3)

Appendix 3.B

Appendix 3.B

Chapter 4

(section 4.3)

i= 2,3: L- FQ

(Q ) i = 1: K effl Equation (3.14) Gelhar-Axness 19S3

i = 2,3: 0

(Ke) KG exp(o' 6) Eqs.(3.19),(3.23) Gelhar 19S4

Statistics

(OH)

(OG)

(a )
q.

((a -))
q.

i=
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TABLE 6.5
SUMMARY OF CDMPUTED STATISTICS OBTAINED FOR THE 1 MILLION NODE FLOW

SIMULATIONS (PROBLEM "A" WITH THREE VALUES OF LOG-<DNDUCTIVITY
STANDARD DEVIATION). AND COMPARISON TO SPECTRAL THEORY (IN PARENTESIS).

THE STATISTICAL QUANTITIES ARE DEFINED IN THE TEXT

Statistics a = 1.0 a f = 1.732 af = 2.3025

.002050 .003579 .004774
UH (.002309) ( .004000) (.005317)

((.002241)) ((.003635)) ((.004425))

.001558 .002711 .003625

(.001789) (.003098) (.004119)

CG2 .000979 .001817 .002569

(.001033) (.001789) (.002378)

7G3 .000975 .001793 .002518

(.001033) (.001789) (.002378)

a .003779 .01103 .02516

((.003451)) ((.00834)) ((.01628))

ar .001435 .005075 .01328
q2

((.001220)) ((.002950)) ((.00576))

aT .001476 .005285 .01381
q.3

((.001220)) ((.002950)) ((.00576))

/ /a .3906 .4791 .5489
q3 q,

((.3536)) ((.3536)) ((.3536))

.004856 .006889 .01004
(.004725) (.006595) (.00968)

2/1 .004 .009 .013
(.000) .000 (.000)

ZT/ , .013 .024 .033
((.000)) ((.000)) ((.000))

K /G 1.214 1.722 2.510

(1.181) (1.645) (2.420)
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by the spectral theory are shown in parenthesis immediately below

the numerical value. The values in single parenthesis (-) were

obtained from the standard first order spectral theory of Bakr

et. al. (1978) and Gelhar and Axness (1983). On the other hand,

the values in double parenthesis represent some higher order or

improved spectral solutions, as defined in Table 6.4. In

particular, note that the flux standard deviations ((a )) were

calculated from the improved spectral solutions developed in this

work (Chapter 4, Section 4.3). The statistical quantities listed

in Table 6.5 are as follows: standard deviations of the head

(aH), head gradient (aG); ratio of transverse/longitudinal flux
1

deviations (a /a ); mean longitudinal flux component (Q1 );
q3 qj

relative mass balance errors (Q1/Q1 for i=2,3); and effective

conductivity (K ff).

In order facilitate the comparison between numerical

and spectral results, we also show in Table 6.6 the relative

error on the spectral solutions for uH and a , relative to the

numerical solutions uH and a . Our choice here has been to

use the numerical solutions rather than the spectral solutions as

a reference. Thus, the relative errors listed in the table were

defined as:

e(cry) = -^.

aY
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TABLE 6.6
COMPARISON OF FIRST ORDER (-) AND HIGHER ORDER ((-)) SPECTRAL SOLUTIONS

WITH NUMERICAL RESULTS. THE NUMBERS IN PARENTHESIS GIVE
THE RELATIVE ERROR ON aH AND a WITH

RESPECT TO THE VALUES OBTAINED BY NUMERICAL SIMULATION

0f = 1 .0 f = 1.732 af = 2.3025

e(uH) (+ 13%) (+12%) (+11%)

((+ 9%)) ((+ 2%)) ((- 7%))

e(a ) (- 23%) (-54%) (-73%)

((- 9%)) ((-24%)) ((-35%))

e(a ) (-28%) (-65%) (-82%)

((-15%)) ((-42%)) ((-57%))

e(o ) (-30%) (-66%) (-83%)

((-17%)) ((-44%)) ((-58%))

Note: The relative error e(ay) is defined as the ratio (ay-ay)/ay where ay corresponds to

the spectral theory, and ay is the value obtained from the numerical simulation. See also

Table (6.4).
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In addition, Table 6.6 allows for a direct comparison between the

standard first order spectral solutions (single parenthesis) and

higher order or modified spectral solutions ((double

parenthesis)). The analytical form of each of these spectral

solutions was given in Table 6.4 above.

Our observations based on Tables 6.4, 6.5 and 6.6, can

now be summarized as follows:

(i) The most robust statistics are cH' UG., and K . For
1

these quantities, the values obtained with the spectral

theory match the numerical results within 10% (5% for

the effective conductivity), for the whole range of

log-conductivity variability. The ratio of transverse

to longitudinal flux standand deviations (e.g.,

a q/ ) is also relatively robust, although the

spectral result is off the numerical value by (-35%) in

the case of highest variability (af ~ 2.3). Note that

these comparisons are based on the modified spectral

solutions for the flux statistics.
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(ii) At moderate variability (a f= 1.0), all the

single-point statistics predicted by the spectral

theory match the numerical results to within 15%, or

10% if the transverse flux deviations (a ,q ) are

excluded. Again, these comparisons are based on the

modified spectral solutions for the flux statistics.

(iii) However, there are some significant discrepancies

between the spectral theory and the numerical

simulations concerning the values of the flux standard

deviations at higher variability (Uf 1.7). In the

case of highest variability (a ~ 2.3) the error on the

spectral results a is quite high relative to the

numerical results, particularly concerning the

transverse flux standard deviations (-50% with the

modified spectral theory, and as much as -83% with the

standard spectral theory).

(iv) The modified spectral theory proposed in this work for

the flux spectrum (Chapter 4, Section 4.3) produces

values of a that are in closer agreement with the

numerical simulations, than the standard spectral

theory. The improvement is uniform over the whole
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range of conductivity variability (f = 1.0, 1.7, 2.3),

and. is particularly significant for the longitudinal

flux component (a ).

(v) Finally, the Gelhar-Dagan second order spectral

solution for aH does not uniformly improve the

standard spectral result over the whole range of

conductivity variability. The agreement with the

numerical results is not significantly better with the

second order solution, except for a particular value of

f (f = 1.7). At any rate, the standard spectral

solution UH was already quite close to the numerical

values within the whole range a f 1.0-2.3.

These observations lead us to the conclusion that the

(modified) spectral theory and the numerical single-realization

simulations produced nearly identical results for most of the

single-point moments of the flow field, within a wide range of

log-conductivity variability (up to o f 2.3). However, it

should also be recognized that the predictions concerning the

degree of variability of the flux components (a ) were not in

such a good agreement for medium to large log-conductivity



554

variability (of ~ 1.7 or larger). Nevertheless, the a 's

obtained from the modified spectral solutions developed in this

work were significantly closer to the numerical results than

those predicted by the standard spectral theory. It is also

interesting to note that the second order spectral solution of

Gelhar-Dagan for the standard deviation of the head did not

significantly improve on the standard spectral solution relative

to the numerical results. We conclude that the most important

"high order effects" concern the degree of variability of the

flux vector. This may have important implications for solute

transport in a stochastic velocity field, and needs to be

discussed further.

The observed discrepancy on the degree of variability

(standard deviation) of the flux vector raises a question about

the accuracy of the spectral theory and/or the numerical

single-realization solution. The problem can be narrowed down

further by observing that, for moderate variability af = 1.0, the

discrepancy between the two methods is on the same order as the

estimated accuracy of the numerical solution (truncation error)

when the moditfted spectral theory is used. This can be seen by

comparing directly Table 6.6 to Table 5.2 of Chapter 5

(Section 5.2) for a f= 1.0 and Ax/A = 1/3, as will be explained

below.
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The result of this comparison is shown in Table 6.7.

It is important to note that the standard spectral theory is off

the numerical solution by an amount too large to be explained

solely by numerical truncation errors. On the other hand, the

modified spectral theory is close enough to the numerical

solution that the discrepancy could be due solely to numerical

truncation errors (for a = 1.0). Note that the relative

truncation error approximates the relative error between the

exact and numerical values of a . Indeed, recall that the

relative truncation error on the flux was defined as:

aU6q 
i

Sq.

q i

where 6q. is the truncation error on the flux:

65q = q.i - qi

q. is the numerical solution while q. is the exact (unknown)

solution. Therefore, it is not difficult to see that:
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TABLE 6.7

TRUNCATION ERROR AND DISCREPANCY BETWEEN THE SPECTRAL AND
NUMERICAL SOLUTIONS. FOR THE FLUX STANDARD DEVIATIONS a

(1 Million node problem A af = 1.00 and Ax/X = 1/3).

(1) (2) (3)
Relative truncation error Relative error Relative error
(exact/ numerical) (modified spectral/num.) (standard spectral/num.)...

e(a ) - 17% - 9% - 23%

e(q ) - 14% - 15% - 28%

e(a ) - 14% - 17% - 30%

Note: (1) Relative truncation error on the flux in the root-mean-square norm,
approximating the relative error between the exact and numerical a .

(2) Relative error between the modified spectral result and the numerical tr

(3) Relative error between the standard spectral result and the numerical a .
9.
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^2 2
a =U

qi qi
+ 2 <q.-oq.> + C 2

i 1 6q.

Now, it seems reasonable to assume that the random error 6
q i

will be generally proportional to q.. This yields:

<q.6q. ~ a q- 6q.

By using also the known fact that:

o6q << a .
1 oa

we obtain finally the approximate relation:

rq.-o q. a 6q.

- q.
Ei1

(6.12)

where the left term is the relative error listed in column (1) of

Table 6.7, and the right term is just the relative truncation

error of Chapter 5 (Table 5.2) with the sign reversed.

Thus, the result of Table 6.7 indicates that the values

a obtained by the modified spectral theory areof

statistically indistinguishable from the numerical values, in the
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case of of = 1.0. (This does not hold when the standard spectral

theory is used instead.) On the other hand, recall that all the

other single-point statistics predicted by the spectral theory

were quite close to the numerical results for af = 1.0 (and for

larger variability as well). We conclude that, at least for

mdoerate variability (af 1), both the modified spectral theory

and the numerical simulations must be quite close to the unknown

exact solution of the infinite-domain stochastic flow problem, as

far as single-point moments are concerned (standard deviations of

head and flux, and effective conductivity).

This encouraging conclusion seems justified if we

reject the possibility of a mere chance coincidence, given the

fact that the two methods are based on different kinds of

approximations, as shown below:

Spectral Theory Single-realization Simulations:

- Infinite domain - Finite domain
- Small parameter expansion - Finite difference discretization

(Uf)

- First or second order - Approximate factorization and
approximations iterative solution

- Ensemble moments - Spatial moments
(Fourier integrals) (physcial space summation)

On the other hand, the discrepancy between the a 's
q

predicted by the (modified) spectral theory and the numerical

simulations become statistically significant as af increases over
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unity (orf 1.7 and 2.3). Indeed, Table 6.6 shows that the

relative error between the two solutions increases with af,

while we know from Chapter 5 (Section 5.2) that the relative

truncation error does not increase with a f as a first

approximation (i.e., to first order in af). If the results of

the truncation error analysis are to be trusted, this implies

that the moditfted spectral theory significantly underestimates

the degree of variability of the flux vector as a increases,

say for af > 1-1.5. It is also clear from Table 6.6 that the

standard spectral theory leads to even more severe discrepancies,

as noted previously.

Based on these remarks, we have obtained empirical

expressions for the flux standard deviations (a ) that fit

extremely well the numerical results for the three values of Uf

tested in this work (a ~ 1.0, 1.7, 2.3). These conjectural

expressions are simple and take a form similar to the spectral

solutions, as follows:

or =I afo K Ke
"qj 15 JKG

(6. 13a)

w~ 2 a/3
a , a -a J, K e
q2  q 3  15f G

Equivalently, by using the relation between the arithmetic and
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geometric mean conductivities (KA = KGexp (7 /2)), these

relations can be expressed as:

a*= 8 K KA1/

qi -K fKGJ [KG

(6. 13b)

[KA 2/3
q2  3  15 "f KG K

Equations (6.13) agree with the numerical results listed in

Table 6.5 within a margin of error of 3% (a ) and 6% (a- ,u )qi q2 q3
for the whole range of conductivity variability up to af ~ 2.3.

These equations may be viewed as an empirical correction to the

spectral theory to compensate for "unmodeled" high order effects

in the case of large a. It seems clear, at least from all our

previous observations that the exact values of a must lie

between the values predicted by the modtfted spectral theory

(Table 6.4) and the empirical relations (6.13) - presumably very

close to the latter.

To complete our analyzis of single-point moments of the

flow field, let us recall form the previous section 6.2 that the

longitudinal flux component was found to be positively skewed,

based on a visual inspection of Q1 along selected transects and

slices (Figures 6.11, 6.14, and 6.15). This, in our view, is

another manifestation of high order effects not taken into
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account by the spectral theory as it stands now. Thus, it should

not be surprising that similar high order effects can contribute

to the variance of the flux vector. The proposed correction

(6.13) indicates that the effect of the high order terms, ignored

by the spectral theory, is exponential in U
2  With this
f.

correction, the a- and all other single-point statistics

predicted by the spectral theory agreed well with the numerical

results up to large conductivity variability (0 < a- f 2.3). It

will be interesting in the future to evaluate quantitatively the

entire probability distribution of the flux components from the

numerical results. Another key feature of the flow field is its

spatial structure, which will be investigated next in connection

with the predictions of the spectral theory,

[e] Spatial structure (two point correlations):

In the framework of the spectral theory, the spatial

structure of the flow field can be described by the

three-dimensional two-point correlation functions of the flow

variables H(x) and Qi(x). Although we have seen that this

information may not be sufficient (Qi(x) has a skewed

distribution, requiring three-point correlation functions), it

will nevertheless be instructive to determine the two-point

correlation functions of the numerical flow field and compare

with the results of the spectral theory.
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In the present case, we have evaluated the

unidirectional correlation functions:

R(fj) = R(fl, 0, 0)

RUA = R(0, E2, 0)

R(f3) = R(0, 0, f3)

for each of the flow variables:

-- hydraulic head H

-- flux vector components Q1 , Q 2 , Q3

-- (head gradient components G1 , G2 , G)

In actual practice, we computed first the covariance functions by

using the spatial averaging procedure explained previously in

equations (6.4, 6.5, 6.7) of Section (6.1). The correlation

functions were then simply obtained by dividing the covariances

by the variances (covariances at lag zero). Thus, we obtained

the correlation functions R ), R (f ), and RG.G.fj) for
HH11. 1 1

J = 1, 2, 3 and j = 1, 2, 3. Note that we use here the notation

R(f ) to denote unidirectional correlation functions (equal to

unity at lag zero), although the notation R(f) was used elsewhere

to designate covariance functions.
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Figures (6.18) and (6.19) show the correlation

structure of the hydraulic head field and a comparison with the

head correlation functions predicted by the spectral theory (see

Chapter 3, Section 3.3, Figure 3.1). The unidirectional

correlation functions from the numerical head field are shown in

Figures 6.18(a), (b), (c) for the cases o f= 1.0, 1.7, 2.3,

respectively. In all three cases, the head correlation structure

appears to be nearly isotropic in the cross-flow plane, as it

should, i.e.:

R H(0, E2, 0) R H(0,0,f3 )

In addition, the head correlation range is larger in the

cross-flow plane than in the longitudinal direction El parallel

to the mean flow. This feature is indeed predicted by the

spectral theory.

However, the agreement with the spectral theory is only

qualitative, as can be seen from the comparison of numerical and

spectral head correlations show in Figure (6.19) for the case

a ~ =1.0. It is clear from this figure that the numerical result

underestimates the correlation range of the head field with

respect to the spectral result, particularly in the cross-flow

directions. This is presumably due to the limited size of the

flow domain, as can be seen by examining the number of available
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Figure 6.18 (a) Numerical head correlation
three directions, for the
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Figure 6. 18
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xI

Figure 6.19 Comparison of numerical and theoretical (spectral)
head correlation functions in the longitudinal and
transverse directions fi and f2 (1 Million node
isotropic Problem A, with a = 1.0).
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"head samples" along the three axes. The transverse sample size

is:

L 33.3 45
7.5X 7.5 -

while the longitudinal sample size is:

L 33.3 g
30.X ~ 3.0 ~

Therefore, it is not surprising that the numerical head

correlation functions obtained by finite-domain averaging differ

somewhat from the results of the infinite-domain spectral theory,

particularly in the transverse direction where the equivalent

number of head samples is so small. See Appendix 2A for more

rigorous statements on sampling uncertainty.

It may be also instructive to compare directly the head

correlations in terms of correlation scales. Table 6.8 compares

the e-correlation scales of the head field for the spectral and

numerical solutions (-f ~ 1.0, 1.7, 2.3). The e-correlation

scale was defined as the distance at which the correlation drops

to e ~ 0.3679. Note that this definition coincides with the

integral correlation length in the case of the Markov

log-conductivity field (but not for other random fields such as
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TABLE 6.8

CORRELATION SCALES OF THE HYDRAULIC HEAD FIELD ALONG THREE DIRECFIONS:
COMPARISON OF SPECTRAL SOLUTION WITH THE NUMERICAL RESULTS OF THE

1 MILLION NODE "ISOTROPIC" FLOW PROBLEM A.

Correlation
Function

R HH(f')

RHH(f2 )

R HH(if)

Spectral theory
for a f

3.0

7.5

7.5

Numerical Results
(a f=10) (f =1.7) (a =2.3)

2.5 2.7 3.0

5.1 5.0 4.9

4.6 4.6 4.6

Note: The numbers give the e-correlation scale X , defined by

R(Xe) = e ~ 0.3679.Since the e-correlation scale X of the log-

conductivity was unity, the numbers can also be viewed as dimensionless
ratios (X .
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the hydraulic head). This table shows that, depending on af, the

longitudinal head correlation length obtained numerically is

0% - 15% smaller than the spectral theory predicts. For the

transverse head correlation length, the numerical value is about

40% smaller than predicted by the spectral theory. Although this

is a serious discrepancy, the spatial structure of the numerical

head field is qualitatively similar to that predicted by the

spectral theory. Incidentally, it may be surprising that the

numerical head correlation lengths appear to increase with rf,

thus getting closer to the spectral values as a increases.

The reason for this behavior is not all clear, and might result

from complex interactions between different kinds of sampling

errors in the numerical approach (finite domain effects,

nonhomogeneous head field, empirical detrending).

At any rate, it seems very likely that the observed

differences in the head correlation structure are due to the

limited size of the domain with respect to the head correlation

range, as explained above. Due to this limitation, we can only

conclude here that the numerical results do not invalidate the

predictions of the spectral theory concerning the infinite-domain

correlation structure of the hydraulic head. In practice

however, the spectral theory may not be applicable to flow

systems of limited size. In the case of a confined aquifer for

instance, our results suggest that the depth of the aquifer must
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be several tens of conductivity correlation scales (say 50-100)

in order to satisfy approximately the assumption of infinite

domain. This kind of limitation will be discussed again with the

anisotropic flow simulations presented in the next section.

Let us now focus on the correlation structure of the

flux vector field, which has important implications for solute

transport macrodispersion. Figures (6.20) through (6.28) show

various components of the numerical flux correlation tensor along

three directions. Each of these figures includes also a

comparison with the results of the spectral theory. But first,

it may be useful to provide some background on the method used to

represent the flux correlation structure.

For a vector field like the flux, the correlation

structure is defined by the tensor function R..(E) of the log
ii

vector E in 3D space. The more restricted subset of correlation

functions discussed below corresponds to the diagonal components

of this tensor, with separation vectors parallel to any of the

three principal axes (xI,x2 ,x3 ): unidirectional functions

R .(f ). The physical meaning of these correlation functions can

be better apprehended by examining Figure (6.20). For instance,

the function Ri(f 1 ) is the longitudinal flux correlation in the

longitudinal direction, while the function R2 2 (E3 ) is the

transverse flux correlation in the other transverse direction.
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Figure 6.20 Subset of vector-vector correlation functions,
restricted to the diagonal components of the
correlation tensor and to separation vectors
parallel to the principal axes.
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simulation).
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Figure 6.26 Numerical flux correlation functions R Q(22), and

R (f3) for a ~ 1.0, 1.7 and 2.3.
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Figure 6.27 Numerical flux correlation functions RQQ (fi), and

R Q(2) for Uf ~ 1.0, 1.7, and 2.3.
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to the result of the spectral theory, independent
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These functions satisfy a number of symmetry relations which were

discussed in Chapter 4 (Section 4.2).

With this in mind, let us now focus on the results

obtained for the flux vector correlation functions. For moderate

variability a f = 1.0, Figures 6.21 and 6.22 show a surprisingly

good agreement between the flux correlation function obtained

numerically and those predicted by the spectral theory

(Chapter 3, Section 3.3, Figures 3.2 and 3.3). There is in

particular an excellent agreement for the correlation functions

of the longitudinal flux component in any direction (R Q(gf) in

Figure 6.21). The agreement is also excellent for the

correlation functions RQQ (fI) and R Q(2 2 ) shown in Figure

(6.22). Finally, note that the numerical solution slightly

underestimates the correlation R (f) with respect to the

spectral theory, although the agreement is still fairly good.

Furthermore, it is also important to note that the

correlation structure of the numerical flux vector field appears

to satisfy the symmetry relations implied by the statistical

isotropy of the input log-conductivity field (Chapter 4, Section

4.2). This can be verified by assembling on the same plot the

numerical correlation functions that should be identical in

theory. The results of these comparisons are shown in Figures

(6.23, -(6.24), and (6.25) for the case a f= 1.0. The theoretical
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symmetry identities (listed below) are indeed satisfied quite

accurately by the numerical results:

Figure (6.23): R QQ( 2 ) = R QQ(ff)

Figure (6.24): R (fi) = R (2)

= R QQ(i)

= R Q(g3  )

Figure (6.25): R QQ(fa) = R QQ(2)

Overall, these encouraging results lead us to conclude

that the correlation structure of the flux vector field predicted

by the spectral theory must be fairly close to the exact result

in the case a f= 1.0. This conclusion is warranted if one

rejects the possibility of a mere chance coincidence between the

spectral solutions and the numerical single-realization

simulations. The reliability of the numerical flux correlations

does not seem questionable, in view of the fact that they

satisfied fundamental symmetry relations with excellent accuracy.

Thus, our simulation results confirm the validity of the

Gelhar-Axness spectral theory (Gelhar and Axness, 1983)

concerning the correlation structure, or shape of the flux

spectrum, at least for moderate variability (af 1). Note that

the same remark applies to the modified spectral solutions

developed in this work, since the proposed modification (Chapter
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4, Section 4.3) did not affect the shape of the flux spectrum,

but only the flux variances.

Let us now focus on the effect of increasing

log-conductivity variability on the correlation structure of the

flux vector field. First of all, note that the flux correlations

obtained from the spectral theory are independent of a f Now,

this appears to be approximately satisfied by the numericat flux

correlation functions R (f.), except for one particular

correlation function RQQ (f3 ), as shown in Figures (6.26),

(6.27), and (6.28). In each figure, the numerical correlation

functions obtained for the three cases a f= 1.0, 1.7, 2.3 were

superimposed. It seems clear that the only significant departure

from the spectral theory concerns the "correlation of the

transverse flux component in the other transverse direction",

R QQ(fa), as depicted in Figure (6.28). Nevertheless, the other

flux correlation functions appeared to be relatively stable with

respect to f, in accordance with the spectral theory.

Again, these results suggest that the spectral theory

of Gelhar and Axness (1983) is remarkably robust as far as the

flux correlation structure or shape of the flux spectrum is

concerned. The agreement between the numerical and "spectral"

flux correlation functions was reasonably good within the whole

range of log-conductivity variability up to af = 2.3. This can
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be seen more directly by inspection of Table 6.9, where the

correlation scales of various flux correlation functions are

compared to those predicted by the spectral theory. However,

this kind of comparison does not fully reflect the good agreement

observed from the plots. In our view, the only major point of

concern here is the behavior of the flux correlation RQQ (A)

and its identical "twin" RQQ (E). The reason for the

discrepancy on this particular correlation is not clear to us at

this point, although the theoretical results of Chapter 4 might

provide a clue for future investigation.

Finally, it might also be of interest to mention,

without going into details, that the correlation functions of the

head gradient (G) were also in good agreement with the spectral

theory. At large variability, there was a closer agreement

between the numerical and spectral correlations of the head

gradient than between the numerical and spectral correlations of

the flux. S-ince we also found that the standard deviations of

the head gradient predicted by the theory were quite close to the

numerical results for all values of a f, we conclude that the

head gradient field is not affected much by high order effects.

This finding might be useful for further refinement of the

spectral theory.
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TABLE 6.9

CORRLATION SCALES OF T1E FUX VECTOR MPONEN'IS ALONC THREE DIRECTIONS
(RQlQ (f )): COMPARISON OF SPECTRAL SOLUTION WITH THE NUMERICAL

RESULTS OF THE 1 MILLION NODE "ISOTROPIC' FLOW PROBLEM A

Correlation Spectral theory Numerical Results
Function for all af (af=1.0) (af=1.7 ) (af=2 .3 )

R QQ(fi) 1.70 1.75 1.41 1.16

R Q2(H) 1.70 1.26 0.71 0.53

R (H2) 1.70 1.33 0.77 0.55

R QQ( 2 ) 0.80 0.83 0.65 0.54

R QQ( 3 ) 0.80 0.85 0.64 0.52

R QQ(fl) 0.72 0.72 0.58 0.49

R QQ( 2 ) 0.72 0.81 0.71 0.63

R QQ(fi) 0.72 0.78 0.60 0.51

R QQ(fa) 0.72 0.85 0.76 0.66

Note: The numbers give the e-correlation scale X defined by R(Xe) = e ~ 0.36't).

The correlation scale of the log-conductivity field was equal to unity.
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[f] Summary of results:

The single-realization results obtained in this section

confirmed many aspects of the spectral theory previously

developed by Bakr et al. (1978) and Gelhar and Axness (1983).

Our arguments to accept (or reject) the single-realization

simulation results were based on a number of criteria:

evaluation of sampling errors for the head field, truncation

errors for the flux field, symmetry relations for the flux

correlation functions, and, last but not least, agreement with

spectral theory.

Some of our conclusions in particular seem beyond doubt

in view of the close agreement with the spectral theory for a

wide range of conductivity variability. Thus, it seems that the

standard spectral theory gives essentially exact solutions for

the standard deviations of the head (aH) and head gradient

(qG.), as well as the effective conductivity (K ff) up to large
i

variability a f= 2.3. Furthermore, the results also indicate

that the flux correlation structure predicted by the spectral

theory is very accurate at a f= 1.0, and remains still fairly

reliable up to large conductivity variability ( f = 2.3) except

perhaps for one particular flux correlation function.

On the other hand, our analysis suggested that the
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standard spectral theory significantly underestimates the degree

of variability of the flux vector (a ) even in the case of

moderate variability (af = 1.0 and larger). When the modified

spectral theory developed in Chapter 4 (Section 4.3) was used

instead, the theoretical values of a became closer to the

numerical ones. However the discrepancy was still larger than

the allowable margin of error (numerical truncation error on the

flux) in the case of large variability af > 1.7. New analytical

expressions (6.13) were proposed for the a in order to

compensate for unmodeled high order effects. It may be more than

a coincidence that these expressions, which involve combinations

of arithmetic and geometric mean conductivities, fit the

numerical results with very good accuracy for a f= 1.0, 1.7 and

2.3 as well. We therefore conclude that it may be important to

consider higher order spectral solutions of the flux vector (such

as those proposed in this work) for applications to groundwater

flow and transport in highly heterogeneous aquifers (say

~f 1-1.5 or larger).

In addition, we have found that the spatial structure

of the head field could be significantly different from that

predicted by the spectral theory in the case of finite size flow

domains, although the magnitude and anisotropy of the head

correlations were qualitatively in accordance with the spectral

theory. For the isotropic flow problem at hand, our analysis of



588

f ini te size effects suggests that the "infinite domain"

assumption of the spectral theory will hold in cases where the

longitudinal size is on the order of 25-50X, and the transverse

size 50-10OX. This might be important for applications involving

confined aquifers with finite thickness.

Apart from the above reservations concerning the flux

standard deviations and the head correlations, it seems that all

other large scale flow properties predicted by the spectral

theory are reasonably accurate within a wide range of

log-conductivity standard deviations, say up to af ~ 2 or so.

6.4 Summary Analysis of 3D Anisotropic Flow Simulations
(220.000 Nodes)

This section is devoted to the analysis of

single-realization flow simulations in the case of a

statistically anisotropic log-conductivity field (3D Markov

ellipsoidal) with principal axis parallel to the mean hydraulic

gradient. The "anisotropic" flow problems E and F of Table 6.1

were designed to mimick the case of horizontal groundwater flow

in a horizontally "stratified" aquifer, with anisotropy ratio

6 = 1/4 (ratio of vertical to horizontal correlation scales of

log-conductivity). Observe that the variability of the

log-conductivity field is the same for both problems (a f = 1.0)
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but the geometry of the discrete grid differs.

For Problem E, the grid resolution was taken to be

one-half with respect to the conductivity correlation scales in

each direction (Ax.IA.=1/2). On the other hand, for problem F,

the grid resolution in the vertical was much coaser (AxO/X 3 =4)

but, as a result, the vertical size of the domain was much

larger. The total number of nodes was the same for both problems

(220,000 nodes). These problems were designed to test the

applicability of the single-realization approach in the case of

statistically anisotropic media, and notably to evaluate the

numerical requirements implied by anisotropy. These preliminary

results are presented here because of their relevance for

practical applications, in view of the fact that most natural

formations exhibit some kind of stratification (see Figure 2.3.

of Chapter 2 for a comparison of the anisotropic Markov

conductivity with field measurements). However, there will be no

attempt here at obtaining an exhaustive statistical description

of the flow field, as was done in the case of isotropic

conductivities. The reasons for the limited scope of this study

may become clearer in the sequel.

In what follows, it will be convenient to designate the

anisotropic problem (E) as the "shallow stratified aquifer" flow

problem, and the anisotropic problem (F) as the "deep stratified
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aquifer" flow problem. Indeed, it can be seen from Table 6.1

that the aquifer thickness is just 7.5 units in the first case,

compared to 60 units in the second case, in units of the

horizontal correlation scale X of the log-conductivity field. By

the same token, recall that Problem E (shallow aquifer) has a

much finer grid resolution than problem F (deep aquifer),

particularly in the vertical direction. Despite these

differences, recall that the size of the grid was the same for

each case, comprising 61 nodes in each direction (220,000 nodes).

With this distinction in mind, we now proceed to

develop a succinct analysis of the simulated flow fields, limited

to the study of spatial variability of the hydraulic head. The

spatial variation of the head is depicted graphically in Figures

(6.29), (6.30), (6.31) along selected slices (respectively:

horizontal parallel to flow, vertical parallel to flow, and

vertical transverse to flow). Each of these figures shows the

numerical head fields obtained for:

(a) -- the "shallow stratified aquifer" problem (E)

(b) -- the "deep stratified aquifer" problem (F)

Figures 6.31(a), (b) in particular seem to indicate that the

pattern of hydraulic heads in the cross-flow plane perpendicular

to stratification is more anisotropic for the "shallow stratified
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Figure 6.29 (a) Hydraulic head contours in a horizontal slice
parallel to the mean flow, for a "shallow
stratified aquifer" (Problem E)
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aquifer" (a), than for the "deep stratified aquifer" (b). It may

be preposterous to draw any definite conclusions from such

limited observations, however we will see shortly that the above

conclusion is confirmed by statistical analysis.

The standard deviation and correlation functions of the

head were computed in each case by using the same longitudinal

detrending technique as in the previous sections (see section 6.1

on methodology). Figure (6.32) shows in each case (a) and (b) a

typical sample function of the head H(x1 ) along the mean flow

direction, superimposed on the cross-flow average H(xl) as

defined in equation (6.5). These pictures suggest that the head

variability around the nonlinear trend is smaller for the shallow

aquifer (a) than for the deep aquifer (b).

Indeed, Table 6.10 (top) shows that the head standard

deviation for (a) is significantly smaller than for (b). The

infinite-domain spectral theory (equation 3.28 of Section 3.4.

Chapter 3) gives the same value of aH in both cases.

Furthermore, it appears that the value predicted by the spectral

theory lies in between. the numerical solutions of (a) and (b).

This might be explained by the fact that, in (a), the flow domain

was too small to allow for fully three-dimensional fluctuations

of the hydraulic head whereas in (b), the grid resolution was

coarse enough to generate significant numerical noise that may
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TABLE 6.10
()MPARISON OF PRELIMINARY "ANISOTROPIC FLOW SIMULATIONS"

WITH THE RESULTS OF THE SPECTRAL THEORY:
HEAD STANDARD DEVIATION AND ()RRELATION SCALES

(220,000 NODE FLOW PROBLEMS E AND F. a f= 1.0 and a = 1/4).

Normalized
Head Standard
Deviation

aH/Ji

"H

Spectral Theory

0.3100

(a): Shallow Aquifer
(Problem E)

0.2654

-14%

(b): Deep Aquifer
(Problem F)

0.3678

+18%

xH (spectral)

(a):XH(Problem E )

(b):XH(Problem F)

3.0

2.2

2.2

7.0

2.6

3.7

5.7 3.7

Correlation Longitudinal Transverse Horizontal Transverse Vertical
Scales (1=1) (i = 2) (i = 3)

xen K 1.00 1.00 0.25

7.5

3.7

5.7



601

have contributed to the standard deviation of the head. Thus, UH

was underestimated in the first case and overestimated in the

second case, with respect to the spectral result. Note that c-H

was normalized by the mean head gradient, which was not the same

in the two simulations.

Let us now focus on the statistical correlation

structure of the simulated hydraulic head fields. It may be

instructive to examine first the correlation structure of the

single realization log-conductivity fields generated in each

case. Figures 6.33 (a) and (b) show the computed

log-conductivity correlation functions along the three principal

directions, respectively for the "shallow aquifer problem" (a)

and the "deep aquifer problem" (b). It is interesting to note

that, in the latter case, the Pn K-correlations along the

vertical axis are not very well captured due to the coarse grid

resolution Ax3 /X3 =4. Nevertheless, in both cases (a) and (b),

the computed correlations agree with the theoretical anisotropic

Markov correlation function. In addition, the computed standard

deviation of en K were in each case very close to the

theoretical value a =1.0, with a 2% margin of error.

The unidirectional head correlation functions were

computed from the detrended head fields according to the

procedure outlined in Section 6.1 (same procedure used for
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grid)
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analyzing the isotropic flow problems in previous sections). The

numerical head correlation functions corresponding to the

"shallow" and "deep" aquifer problems (a) and (b) are shown in

Figures 6.34(a) and (b). For comparison, the correlation

functions obtained from the spectral theory (Chapter 3,

section 3.4) are also displayed in Figure 6.34(c).

As expected, it appears that the head correlation

structure obtained for the "shallow stratified aquifer" (a)

disagrees more strongly with the infinite-domain spectral theory

than the correlations obtained for the "deep stratified

aquifer" (b). This can be also seen by comparing directly the

head correlation scales X(), as shown in Table 6.10 (bottom).

H

Thus the simulation results at hand confirm our

previous conclusions about the applicability of the spectral

theory in the case of stratified aquifers (Chapter 3,

section 3.5). It seems clear that the spatial structure of the

head field in the case of the shallow stratified aquifer could

not be adequately modeled by the infinite-domain spectral theory,

since the aquifer thickness (7.5 X) was on the same order as the

vertical correlation range of the head field (about 7.0 X

according to the spectral theory, or 2.0 X according to the

finite domain simulation). In these conditions, the hydraulic

head field obtained for the, shallow case (a) may not be
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representative of the ensemble of possible flow realizations, and

the stochastic single-realization approach becomes meaningless.

On the other hand, the head correlations obtained for

the "deep stratified aquifer" case (b) agree more closely with

the infinite-domain spectral theory. This leads us to believe

that the predictions of the spectral theory (near-isotropy of the

head in the vertical and horizontal directions transverse to the

mean flow) could be confirmed more conclusively with a larger

flow domain and improved geometry/resolution of the grid.

To obtain also an accurate statistical representation

of the flux vector field, however, the grid resolution may have

to be fine in proportion to the smallest correlation scale of the

input conductivity field (X3=V/4). Indeed, our previous

discussion of stratified flow systems (Chapter 3, sections 3.4

and 3.5) suggested that the correlation scales of the transverse

flux components could be only a fraction of the geometric mean of

horizontal and vertical conductivity scales (NG = JX-X3). The

reader is referred in particular to Figures (3.5) to (3.7) and

equation (3.22). The latter equation can be used to evaluate the

fluctations scales A.. corresponding to the flux correlations

R (f ). For the case at hand, this yields:
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Ai=X = N

A2 2 ~ 0.15 = 0.15X2

A33 ~ 0.30N = 1.20N3

In comparison, remember that the finest mesh size in the

simulations at hand was Ax. = 0.5X. ("shallow aquifer" problem E
1 1

of Table 6.1). Thus, it appears that the grid resolution was

probably much too coarse in the horizontal cross-flow

direction (x 2 ) to be able to capture the fluctuations of the

transverse flux Q2(x). Moreover, the grid resolution used for

the "deep aquifer" problem was even coarser.

For "anisotropic" media, we conclude that the grid size

may have to be exceedingly large in order to obtain a

statistically representative flow realization (hydrauttc head H)

while capturing the finest fluctuations of the flow field

(transverse flux component Q2 ). The severe requirements of the

single realization approach for stratified flow systems could

posstbly lead to prohibitive grid sizes in regard to current

numerical/computing capabilities (i.e., well above 1-10 million

nodes). This question could be examined further in the future by

analyzing the numerical flux vector fields for the currently

available. "modest size" flow realizations (220,000 nodes), or

perhaps from new simulations with improved grid resolution and

geometry.
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6.5 Summary and Discussion:

The stochastic flow simulations analyzed in this

chapter were aimed at evaluating the range of validity of the

spectral theory in the case of groundwater flow in finite

(but large) realizations of random porous formations. The

assumptions of the spectral theory, infinite domain and

homogeneity-ergodicity of the flow field, were not required in

the direct simulation approach. Thus, the simulated flow fields

were statistically analyzed by using spatial averaging and

detrending techniques very much like those frequently used to

analyze field data. Furthermore, the small parameter expansions

in the log-conductivity standard deviation (Of) required in the

spectral theory, were not needed in the direct numerical

simulation approach. Admittedly, the latter approach introduces

new kinds of errors, such as truncation errors, solution errors

due to approximate factorization of the matrix system and

incomplete convergence of iterations, and round-off errors.

However, these were presumably kept under control by using

various tools from numerical analysis and by numerical

experimentation (Chapter 5). In contrast, the accuracy of the

spectral solutions was essentially unknown before the present

research was initiated, except for a few special cases where

exact solutions were available (effective conductivities for

one-dimensional, and two-dimensional isotropic, random media).



611

The most significant results in this chapter were those

obtained from large flow simulations with statisttcalty isotroptc

log-conductivities (3D Markov field with exponential covariance)

in section 6.3. The numerical flow fields obtained on a large

three-dimensional grid (1 million nodes) were compared to the

spectral solutions, via statistical analysis, for a wide range of

conductivity variability (1 < a f 2.3). There was a

surprisingly good agreement for the effective conductivity (K ff)

and the degree of variability of the hydraulic head (standard

deviation OH around the empirical trend) for all values of f .

On the other hand, the degree of variability of the flux vector

field Q. was significantly underestimated by the spectral

theory for large variability (af > 1-1.7). In addition, our

visual observations fo the flux field (section 6.2) strongly

suggested that the probability distribution of the longitudinal

flux Q1 was significantly skewed positively. Both these effects

are presumably due to high order interactions not taken into

account by the first order spectral theory.

Nevertheless, the flux standard deviations a

predicted by the modified (higher order) spectral solutions of

Chapter 4 (section 4.3) were more closely in agreement with the

numerical results, than the standard spectral theory of Gelhar

and Axness (1983). A further empirical modification of the

spectral theory-to account for high-order effects at large values
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of o finally produced a near-perfect fit with the numerical

results. The empirical analytical expressions for a were given

in equations (6.13), to be compared to the standard and modified

spectral solutions listed in Table 6.4.

On the other hand, the flux correlation functions

(related to the shape of the flux spectrum) obtained from the

Gelhar-Axness spectral theory agreed remarkably well with the

numerical flux correlations in the case of moderate variability

(af = 1.0). Even for higher variability, there was still a fair

qualitative agreement between the spectral and numerical flux

correlation structures, except for one particular component of

the flux correlation tensor, RQQ (fa) . These results are

particularly important for applications to stochastic solute

transport. For instance, Gelhar (1987) shows that the

macrodispersivity of a solute convected in a random velocity

field Q1 (x_) is proportional to the integrated velocity

covariance (see for instance equations 4.64-4.65 of Chapter 4).

Overall, our results strongly suggest that the flux covariance

predicted by the spectral theory will be accurate for a wide

range of conductivity variability, provided the use of high-order

corrections for the flux variance as explained above. The

Gelhar-Axness theory of macrodispersion may have to be modified

accordingly, especially for cases of large variability.
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The hydraulic head correlation functions obtained

numerically did not agree so well with the spectral results, even

for moderate conductivity variability. In view of the very good

agreement observed for the flux correlation functions, we

conclude that the discrepancies concerning the spatial structure

of the head field were mainly due to the large fluctuation scales

of the head relative to the size of the flow domain. Thus, we

conjectured from a simplified analysis of sampling errors that

the infinite-domain spectral theory ideally requires a domain

size on the order of 25-50 correlation scales in the mean flow

direction, and as much as 50-100 correlation scales in the

transverse directions, in order to be applicable to practical

field situations (isotropic case). In fact, the spatial

structure of the head field obtained on a domain of size (33N)3

still agreed reasonably well with the spectral theory, at least

qualitatively. Thus, in the isotropic case, the numerical head

field appeared to be statistically anisotropic as predicted by

the theory, although the numerical correlation ranges were

systematically smaller.

For the anisotropic case on the other hand, the

restrictions on the range of applicability of the spectral

solutions seemed to be more severe (see Section 6.4). First of

all, it appeared that even for fairly large size flow problems

(the "deep aquifer" case), there was still a significant
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finite-size effect, resulting in smaller head correlations and

more pronounced head anisotropy than predicted by the spectral

theory (see Figures 6.34). Furthermore, we conjectured that a

severe restriction on the mesh size may have to be satisfied in

order to obtain a meaningful numerical solution for the flux

vector field. The strict resolution requirement is due to the

very small fluctuation scales of the transverse flux in the case

of a stratified aquifer (small vertical/horizontal anisotropy

ratio). Overall, the requirements of large domain size and very

fine grid resolution may lead to discrete systems too large to be

handled with current machine capabilities and/or with the class

of numerical methods considered in this work. At any rate, the

numerical simulations of Section 6.4 concerning the cases of

"deep" and "shallow" stratified aquifers, seem to confirm our

previous- concerns about the possible inapplicability of the

three-dimensional anisotropic spectral solutions in the case of

confined aquifers of moderate thickness (Chapter 3, section 3.5).

Note finally that these possible limitations of the

spectral theory concern only the correlation structure of the

hydraulic head, not its global variability. Thus, we have found

that, for all domain sizes and in all cases of anisotropy and

variability, the head standard deviation oH calculated by

empirical detrending of the numerical solution, matched to within

10-15% the spectral result. The fact that this worked also for
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the case of the "shallow" stratified aquifer indicates that the

spectral solution for -H can be quite robust, i.e., unaffected

by finite size effects and/or domain scale inhomogeneities,

provided that appropriate detrending techniques be used to smooth

out the observed inhomogeneities. More generally, our results

strongly suggest that the spectral theory provides an essentially

correct description of the correlation structure of the flow in

sufficiently large flow domains (deep aquifers), provided that

the effects of domain scale or large scale inhomogeneities be

smoothed out by detrending the observed hydraulic head field. In

actual practice, such inhomogeneities could be caused by the

presence of natural boundaries (or artificial boundaries in a

numerical model), and/or distributed sources, and/or inherent

inhomogeneities of the porous formation at the scale of the

domain or larger. This should be taken into account in

particular in the solution of the inverse problem based on field

measurements of conductivity (or transmissivity) and of hydraulic

head.

In summary, our direct simulations of

single-realization stochastic flow problems in finite domains

have helped defining the range of applicability of the

infinite-domain spectral perturbation solutions (Gelhar and

Axness, 1983, and this work, Chapters 3 and 4). Some of the

limitations of the spectral theory may have implications for the
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solution of inverse flow problems (correlation structure of the

head field), and for the theory of stochastic solute transport

(macrodispersion of a solute convected in a random velocity

field). Our results show that the restrictions of the spectral

theory, large domain and small variability, may be loosened

greatly by using appropriate detrending techniques to evaluate

the spatial structure of the head perturbations, and by using

higher order approximations for the flux variance as proposed in

this work. More research will be needed to evaluate the

applicability of the Gelhar-Axness theory for stratified

aquifers, particularly in the case of a dip angle between the

mean flow and the principal axis of statistical anisotropy, which

was not explored in this work (see indications in Section 6.1).
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CHAFIER 7: THREE-DIMENSIONAL SINGLE-REALIZATION SIMULATIONS
OF UNSATURATED INFILTRATION IN RANDOM SOILS

7.1 Scope and Objectives

This chapter is devoted to the numerical simulation and

interpretation of large scale realizations of stochastic

unsaturated flow in random soils. The principle of the

single-realization approach was explained in Chapter 2, and the

related numerical issues were discussed in Chapter 5. The

statistical aspects of the method were illustrated quite

concretely in Chapter 6 for the case of steady state groundwater

flow under a given regional hydraulic gradient.

However, here, a new difficulty arises due to the

severe nonlinearity and inhomogeneity of the infiltration

problem. For example, the preliminary infiltration experiments

presented in Chapter 5 (section 5.4.3) clearly demonstrated the

strongly inhomogeneous nature of the pressure field during the

early stages of infiltration from a local strip source (evolving

wetting front). When strong nonlinearity dominates the flow

process, the assumptions of the linearized spectral theory of

Mantoglou and Gelhar (1987) may be too constraining to warrant a

precise quantitative comparison between the ensemble mom'ents
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obtained by the theory, and the spatial moments obtained from the

numerical solutions. Therefore, unlike the case of groundwater

flow, we do not have here the support of a robust analytical

theory to guide our numerical experiments. For instance, little

is known about the behavior of the wetting front in the presence

of random heterogeneities. The reader is referred to Mantoglou

(1984) and the above-quoted work, for a detailed account of the

assumptions of homogeneity and the various linearization and

"small parameter" approximations involved in their spectral

solutions of transient unsaturated flow.

In addition, there is another difficulty inherent to

the single-realization approach when dealing with localized and

inhomogeneous transient flow processes, as occurs during

infiltration from a local source. In such cases, the actual size

of the flow domain (evolving wet zone) is regulated by the

physics and depends on the time scale of interest. Thus, a

single realization solution may not be statistically

representative of the ensemble of possible realizations unless

the time scale is large and/or the size of the source is large.

Our choice of strip-source infiltration problems was

motivated in part by this kind of limitation. In the

strip-source case, the source and the flow domain can be taken

arbitrarily large in the longitudinal direction parallel to the
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strip, at least within the limits imposed by computing

capabilities. By symmetry arguments, we expect the flow field to

be statistically homogeneous in the longitudinal direction, as

illustrated in Figure 7.1. By sampling the solution along the

longitudinal axis, one may obtain a representative picture of the

effects of spatial variability from a single realization of the

strip-source flow.

Accordingly, the next two sections will be devoted to

the study of transient strip-source infiltration in random

soils. In section 7.2, we investigate specifically the influence

of the variability of the unsaturated conductivity curve on the

flow pattern for a statistically isotropic soil. In section 7.3,

we analyze one very large realization of strip-source

infiltration in a statistically anisotropic soil, designed to

mimick an on-going experiment at the Las Cruces experimental farm

of the University of New Mexico. In either case, however, direct

statistical analysis of the pressure field will not be attempted-,

due to the limitations mentioned above.

In addition, Section 7.4 is devoted to a class of

infiltration problems where the solution is . expected to be

statistically homogeneous in all three space directions. Thus,

we have chosen to study the case of steady state infiltration

from a uniform plane source of constant intensity (uniform
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MOVING BOUNDARY

Figure 7.1 Illustration of a strip-source infiltration problem
having one spatial direction of statistical
homogeneity (longitudinal direction).
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"rainfall"). Some preliminary statistical analysis will be

briefly presented, for comparison with the results of the steady

state linearized spectral theory of Yeh et al. (1985), later

extended by Mantoglou and Gelhar (1987).

The strip-source and the steady uniform infiltration

problems of Sections 7.3 and 7.4 were solved for the same large

realization of a statistically anisotropic random soil, over a

grid of size 300,000 nodes. To run these two problems required a

CPU time on the order of 10 hours on a Cray 2 machine, including

trial and errors for adjusting the time steps. Note that the

steady state infiltration problem of section 7.4 was in fact

solved by way of transient simulation up to a relatively large

time of infiltration (3 months), and required about 3 CPU hours

on the Cray 2 machine. In contrast, the preliminary strip-source

infiltration problems presented in section 7.2 were solved on

relatively "modest" grid sizes (25,000 nodes) using the

Microvax 2 minicomputer. It should be noted that the purposes of

the three sets of simulations (sections 7.2, 7.3, 7.4) were

somewhat different. The contents of each section are summarized

below for convenience.

Section 7.2 (25,000 nodes/transient):

Preliminary simulations of transient strip-source
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infiltration on statistically isotropic soils for relatively

small time and length scales (3 days of infiltration, 1.4 x 4 x 4

meters domain). Test of different assumptions concerning the

variability of the Pn K(h) curve, and qualitative interpretation

of simulation results.

Section 7.3 (300,000 nodes/transient):

Single-realization simulation of transient strip-source

infiltration and drainage on a statistically anisotropic soil for

relatively large time and length scales (20 days of infiltration

and drainage, 5 x 15 x 15 meters domain). The geometry, boundary

conditions, hydraulic properties, and spatial variability data

were selected to mimick the on-going "trench" experiment at Las

Cruces. Qualitative interpretation of simulation results.

Section 7.4 (300,000 nodes/steady):

Single-realization simulation of steady state

infiltration from a plane source of constant intensity (uniform

rainfall). Same geometry, grid size, and soil data as in the

previous strip-source "experiment". Qualitative interpretation

and preliminary statistical analysis of pressure head variability

and effective conductivity. Comparison with linearized spectral

solutions.
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A few additional comments may be useful to complete

this summary. In all cases, the unsaturated conductivity curve

was assumed to vary randomly in space (one different curve for

each node of the grid), while the water retention curve was

assumed to be the same at all locations (deterministic). The

unsaturated conductivity-pressure relation was assumed to be

exponential, and the water retention curve was represented by the

Van Genuchten function, as explained in Chapter 5

(section 5.1.3). The precise data and the assumed stochastic

properties of the conductivity curve will be given in more detail

in the sequel: see in particular the next section (7.2)

concerning the method used to generate random conductivity

parameters. On the whole, the single realization solutions

presented in this chapter constitute, as far as we know, the

largest high-resolution representations of heterogeneous

three-dimensional unsaturated flow systems available to date.

7.2 Strip Source Infiltration in Statistically Isotropic Soils
(25,000 nodes):

7.2.1 Model problems and input data

The nonlinear conductivity and water retention curves

adopted in the sequel are, respectively, the exponential and the

Van Genuchten functions (see Chapter 5):
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K_(x) exp (a(x_)h) if h < 0

K(h,x) = (7.1)

K x) if h > 0

e -e r
O(h) = 0 + s r (7.2)

s (1+ (-Ph)n 1-1/n

Both parameters K s(x) and a(x) of the unsaturated conductivity

curve (7.1) are assumed to be random functions of

three-dimensional space. On the other hand, we assume that the

water retention curve (7.2) is deterministic, i.e., the same at

all spatial locations. This simplifying assumption was motivated

by the findings of Mantoglou (1984) and Mantoglou and Gelhar

(1987), whose linearized spectral results suggest that the

variability of 0(h,x) plays a minor role compared to the

variability of K(h,x). Their results also indicate that the

statistical properties of the flow will be quite sensitive to the

mean and variance of a(x).

The parameter a corresponds to the slope of the

log-conductivity curve, obtained by differentiating en K(h,x)

with x fixed. Various physical interpretations of a were

discussed in Chapter 5 (section 5.4.2), e.g. inverse height of

the capillary fringe, pore size distribution index, or

convection/diffusion ratio. Field data concerning the

variability of the conductivity curve were discussed in
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Chapter 2 (section 2.3.2, table 2.2). It should be pointed out

that the degree of correlation between Ks(x) and a(x) remains

unknown. On the other hand, the linearized spectral solutions of

Mantoglou and Gelhar (1987) seem to be fairly sensitive to the

assumed correlation between these two random field parameters

(correlated/uncorrelated) and very sensitive to the degree of

variability of the a-parameter in particular.

In the present section, we propose to investigate

directly the effect of variability of the a-parameter and of the

correlation between a and K , by way of numerical simulations of
5

strip-source infiltration for relatively modest time and length

scales. The relevant input data used in these simulations are

summarized in Table 7.1 below. Three types of variability were

assumed for the random conductivity curve of equation (7.1):

Case (1): K (x) random, a constant.

Case (2): (Ks(x), a(x)) random and perfectly correlated.

Case (3): (Ks(x), a(x)) random and perfectly uncorrelated.

In each case, the parameters enK and/or ena were

assumed to be statistically isotropic Markov random fields in

three-dimensional space, with a constant-mean Gaussian

distribution. Thus, defining KG and aG the geometric means of

K_(x) and a(x), we used the turning band method (Chapter 2 and
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TABLE 7.1
SUMMARY OF INPUT DATA FOR THE SINGLE-REALIZATION

SIMULATIONS OF STRIP-SOURE INFILTRATION IN STATISTICALLY ISOTROPIC SOILS
(25.000 NODES)

Description

Vertical domain size
Transverse horizontal domain size
Transverse longitudinal domain size
Strip source width

Flux at the surface of the strip

Condition at the bottom boundary

Initial pressure head

Space-Time Time step
Discretization Mesh size Ax. (i=1,2,3)

Unidirectional number of nodes n.
1

Total number of nodes of 3D grid

Exponential

Conductivity

Curve (Random)

Geometric mean saturated conductivity

Standard deviation of en K
5

Geometric mean of the en K-slope

Standard deviation of en a

Isotropic correlation scales X.

Value

L,
L2

L3
W

q

q,

1.40 m
4.00 m
4.00 m
1.10 m

2 cm/day

- K(h)

h. =-15o cmin

Variable
Ax.=0.10 m

n.= (5, 41, 41)

N = 25215

KG = 541 cm/d

af =0.7

aG

a
x.

0.09 cm

0.3

0.20 m

Van-Genuchten Saturated moisture content 0 = 0.38
S

Water retention Residual moisture content 6 = 0.07r

Curve Scaling parameter 1 = 0.05 cm1
(Deterministic) Shape factor (real number) n = 2.00

Type of Data

Domain
Geometry,
Boundary
Conditions,

and Initial

Conditions
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Chapter 6) to generate the zero-mean Gaussian random fields:

f(x) = en(KS(x)/KG)

(7.3)

a(x) = en(a(x)/aG)

with isotropic exponential covariance function. The

corresponding spectral density can be found in Table 3.1 of

Chapter 3 (special case of ellipsoidal Markov-spectrum, with

equal correlation lengths in all three directions).

Note that we assumed the log-normality of the

a-parameter. This differs from the assumption of normality

implicit in the theoretical work of Mantoglou and Gelhar (1987).

In our opinion, the log-normal behavior of a makes sense in view

of the fact that this parameter, like K , is necessarily positive
5

for all usual types of rigid porous media. This is also

supported by the experimental observations discussed in the data

survey section of Chapter 2. In particular, Russo (1983) found

that a(x) followed a log-normal distribution with skewness

coefficient equal to 1.36 (similarly, Ks(x) was log-normal with

skewness 2.49). Now, equations (2.19-2.21) can be used to relate

the mean and variance of a log-normal variable (Y) to the

geometric mean (YG) and the variance of enY. These equations

also show that the skewness of a log-normal variable is always
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positive and increases rapidly with its coefficient of variation.

On the other hand, in the case of mild variability (Oy(<<l) the

skewness of Y becomes negligible, the standard deviation of enY

becomes approximately equal to the coefficient of variation

(ur/Y), and the geometric mean (YG) becomes close to the mean

(Y). These simple observations may help compare our simulation

data to other data or theories published in the literature.

A few single-realizations of the log-normal random

f ields Ks(x) and a(x) were produced in order to simulate the

three cases outlined above. In case (1), only Ks was random.

The turning band method was used to generate one realization of a

Gaussian random field, say u1 (x), and the desired K -field was
5

obtained by rescaling u 1 (x and applying an exponential transform

in the obvious way. In case (2), where enKs and ena were

perfectly correlated random fields, the same realization ui(x)

was used to obtain both Ks(x) and a(x) after rescaling and

exponentiating. Finally, in case (3), two independent

realizations ui(x) and u2 (x) were used to obtain Ks(x) and a(x)

independently from each other. The procedures just described are

summarized below for convenience, along with a possible

generalization to handle the case of imperfect correlation, as

may be needed in the future when more data become available.
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Case (1):

K (x)-= G e f-u(x) (7.4)

a(x) = aG

Case (2):

Ks )=KG - exp (-u()) (7.5)

a(x) = aG exp (a a-u(x))

Case (3):

Ks )KG - exp (cf-ui(x)) (7.6)

a(x) = exp (a -u 2 (x))

General case (imperfect correlation):

Ks() = KG exp(uf-uI(x)) (7.7)

a(x) = aG exp {U(p u1 (x) + 1-p2 u2(x))}

In the latter case, p designates the correlation

coefficient between f(x) and a(x) (-1 < p 1). More precisely,

the covariance tensor of the jointly Gaussian random fields

(a(x), f(x)) is of the form:

R (R a 2 /o2  pa /aR() pa f a f

R fa() R ff(f) JPora /af 1 Rf f(
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Accordingly, case (1) obtains by taking Ua = 0, case (2) by

taking p = 1, and case (3) by taking p = 0. The two special

cases p = 1 and p = 0 were motivated by the observation that

(a,Ks) should be positively correlated (0 < p < 1) since both

a and Ks generally increase with soil coarseness, and decrease

with clay content.

Figure 7.2 illustrates the two extreme assumptions of

perfect correlation and perfect independence (p = 1 and p = 0)

corresponding to cases (2) and (3). The en K(h) functions were

plotted schematically for different spatial locations. The

log-conductivity curves shown in the top part of Figure 7.2 have

perfectly correlated slope and intercept (en a and en Ks). Their

envelope has the shape of a hyperbole. On the bottom part of the

figure, the case of perfect independence between en a and en Ks

is represented in the same fashion. There is no well-defined

envelope in this case. Figure (2.2) of Chapter 2 suggests that a

reasonable description of natural conductivity variability stands

somewhere between these two cases. Admittedly, more work is

needed to refine these simplified representations of unsaturated

soil variability (see discussion of field data in Chapter 2).

Let us now comment briefly on our choice of some of the

other data of Table 7.1, in relation with numerical and

statistical issues. First of all, observe that the statistical
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InK

InK

Figure 7.2

-h

-h

(a)

(b)

Schematic representation of unsaturated
log-conductivity variability in two cases. On top,
the parameters en Ks and en a are perfectly

correlated (Case 2 in the text). On bottom, they
are perfectly uncorrelated (Case 3 in the text).
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resolution of the grid is moderate:

Ax.i 1

1

and isotropic in space (same in all directions). Second, note

that the Peclet number constraint:

Pe = aAx, ( 2

which arose as a "nonlinear stability condition" in Chapter 5

(section 5.4.2, equation 5.128) seems to be satisfied if a is

replaced by its geometric mean value aG. Thus, we obtain for the

aG of Table 7.1:

Pe = aG-Ax, = 0.9 2.

The procedure used to control the size of the variable

time step was described in Chapter 5 (section 5.4.3). In no case

was the time step allowed to grow at a rate faster than

Atn+1 /Atn = 1.25. The initial time step size was

At. = 0.003 day (4mm 20 sec). Infiltration lasted for aboutin

3 days, after which the simulation was halted. The results shown

in this section were obtained with a fixed domain size, but

similar results were also obtained by using the variable domain

size algorithm (see Figures 5.11-5.13 of Chapter 5). Finally, it
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is worth noting that the size of the domain is relatively small:

the "sample size" L./A. is 7 in the vertical, and 20 in both
1 1

horizontal directions. The infiltration experiment was stopped

at t = 3 days because the flow domain was too small to

approximate a "semi-infinite" medium for larger times. The

selected output times were t = 0.5, 1.0, 2.0 and 3.0 days. The

resulting three-dimensional pressure head fields are being

analyzed below.

7.2.2 Simulation results

We now discuss the simulation results (pressure head

fields) obtained for the three cases of unsaturated conductivity

variability described above (equations 7.4, 7.5, 7.6 and

Figure 7.2). The geometry and boundary conditions were

illustrated in Figure 7.1, and the complete set of input data was

given in Table 7.1. Recall in particular that the initial

pressure h. was -150 cm.

in

Figures 7.3, 7.4 and 7.5 give three-dimensional views

of a single pressure contour surface obtained after two days of

infiltration. These figures show essentially the shape of the

wet zone (h > -90 cm) in perspective view. Figure 7.3

corresponds to K random and a constant (case 1), Figure 7.4

to An Ks and On a random but perfectly correlated (case 2),



634

Figure 7.3: Two perspective views of the pressure contour
surface h = - 90 cm at t = 2 days for strip-source
infiltration in a statistically isotropic soil with
initial pressure h. = - 150 cm (Case 1: K

in s
random, a constant)
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Figure. 7.4 Two perspective views of the pressure contour
surface h = - 90 cm at t = 2 days for strip-source
infiltration in a statistically isotropic soil with
initial pressure h. = - 150 cm (Case 2: K and a

in s
random, perfectly correlated).
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Figure 7.5 Two perspective views of the pressure contour
surface h = - 90 cm at t = 2 days for strip-source
infiltration in a statistically isotropic soil with
initial pressure h. = - 150 cm (Case 3: K and a

in s
random, perfectly independently).
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and Figure 7.5 to en K and en a random and perfectly
S

uncorrelated (case 3).

Comparing figures 7.3 and 7.4 (cases 1 and 2) clearly

shows that the variability of the log-conductivity slope (a)

plays a more important role than the variability of the saturated

conductivity (K ). Despite the relatively small variability of

a in Figure 7.4 (Cen a = 0.3) the shape of the wet zone is much

more contorted than in Figure 7.3 where only Ks is variable

(Uen K = 0.7). Furthermore, comparing figures 7.4 and 7.5

(cases 2 and 3) indicates that the spatial variability of the wet

zone is increased further when a is allowed to vary

independently from Ks (x) . In the latter case (Figure 7.5) the

wet zone at t = 2 days appears to be extremely contorted, and

even disconnected. This indicates that soil heterogeneity can

induce the creation of local wet regions entirely surrounded by

dryer regions, at least in the transient flow regime.

Some of these observations are also illustrated by

Figure 7.6, which depicts the pattern of pressure head contours

in a vertical plane transverse to the strip-source for the three

cases discussed above. Note the separation of the wet plume in

two distinct plumes on the bottom part of Figure 7.6 (case 3,

Ks(x) and a(x) independent). The two "halves" of the wet plume

could perhaps reconnect at a later time. Incidentally, our
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Figure 7.6 Pressure head contour lines in a vertical plane
transverse to the strip source for cases (1), (2),
(3) as in Figures (7.3), (7.4), (7.5). The
pressure contours are labelled every 10 cm, e.g.,
contour #6 corresponds to - 60 cm, and contour #9
to - 90 cm.

15
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choice of the value h = -90 cm to represent the 3D pressure

surfaces in the previous plots, was motivated by the fact that

this value corresponds fairly well to the wetting fronts

appearing in the 2D contour maps of Figure 7.6. The wetting

fronts are sharply defined in all three cases, as could be

expected for early times of infiltration in a relatively dry

soil.

Overall, these pictures clearly show that the pressure

field becomes increasingly variable and "chaotic" as the

log-conductivity slope a(x) becomes more variable and independent

of Ks(x). When a is constant, the variability of Ks(x)

produces only mild variability of the unsaturated pressure field.

When ac(x) is variable, the unsaturated plume develops

mushroom-shaped regions oriented downwards, especially in the

longitudinal direction (as can be seen from Figures 7.4 and 7.5),

but also in the transverse direction (Figure 7.6 bottom). The

size of these "mushrooms" seems to be on the order of 0.6-1.0 m,

or about 3-5 correlation scales (X = 0.2 m).

These observations lead us to think that the typical

scale of fluctuation of the pressure field could be on the order

of 1 meter, or 5 correlation scales. However, the pressure

fluctuations are too large, and the domain too small, to permit a

meaningful statistical analysis in the case of random a(x).
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Furthermore, it is not clear how the length and width of the

strip influence the flow pattern at early times. It seems

possible that the width of the strip imposes a definite length

scale to the fluctuating pressure field, both in the longitudinal

and transverse directions (in the present case, the strip width

is 1.1 m, or 5.5 correlation scales). At any rate, the influence

of the strip source width could be considerably reduced for large

times of infiltration and large wet zones, as far as the

fluctuation scales are concerned.

To verify these conjectures would require simulations

on larger domains, and for larger times of infiltration. The

transverse size of the domain should be taken larger in order to

avoid interactions between the wet zone and the lateral (no-flow)

boundaries as the unsaturated plume evolves. In addition, the

length of the strip should be taken much larger than the typical

fluctuation scale of the pressure field in order to obtain

meaningful spatial moments by longitudinal averaging (i.e., by

averaging in the direction of statistical homogeneity as

illustrated in Figure 7.1). It seems reasonable to require that

the strip length be at least 102-10 pressure correlation scales.

For a grid resolution Ax/X equal to one-half, and assuming a

pressure fluctuation scale on the order of 5X, this would lead to

10-10 mesh points in the Longitudinal direction. In

comparison, there were only 41 nodes along the strip length in
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the case at hand, and a total of 25,000 nodes in 3D space. To

obtain statistically meaningful large-time solutions (in the

sense defined above) would therefore require a three-dimensional

grid size of at least 1-10 million nodes for the isotropic case

at hand, and probably even more for the anisotropic case.

In this discussion, we assumed implicitly that a mesh

size equal to one-half the correlation scale of input hydraulic

properties provided adequate resolution. It may be instructive

to examine the grid resolution problem more closely here.

Inspection of the pressure contours shown in Figure 7.6, suggests

that the 10 cm mesh was perhaps too coarse to resolve the

smallest scales of fluctuations of the pressure field (see the

rectangular and straight-line shapes of the pressure contour

fluctuations at the small scale). This is even more apparent in

the pressure contour plot of Figure 7.7, which represents the

pressure field in the vertical plane coinciding with the

longitudinal axis of the strip source (case 1: en K and en a
5

perfectly correlated). This indicates that grid resolution may

have to be refined further, especially in view of analyzing the

flux vector field and the related convection-dispersion pattern

of a contaminant carried in the flow.

On the other hand, the chosen grid resolution of one

half was perhaps fine enough to obtain a reasonably accurate
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Figure 7.7 Pressure head contour lines in a vertical plane

parallel to the strip source for case (2) as in

Figure (7.4). The pressure contours are labelled

every 10 cm, e.g., contour #6 corresponds to -60

cm, and contour #9 to -90 cm.

FF
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picture of pressure variability. The numerical experiments of

Chapter 5 with uniformly layered soils showed that the mesh size

could be taken equal to layer thickness without distorting the

overall pattern of the pressure fields (see Figures 5.23, 5.24

and 5.25 of Chapter 5, section 5.4.3). There is also the

remaining constraint of a low Peclet number, or small vertical

mesh size, that must be satisfied in order to avoid

instabilities. There were no particular instability problems in

the case at hand.

7.3 Strip Source Infiltration in a Statistically Anisotropic
Soil (300,000 nodes)

7.3.1 Model problem and input data

[a] - Overview of data

In this section, we present the results of a

single-realization simulation of strip source infiltration in a

more realistic case than before. The soil data, geometry, and

boundary conditions were chosen to mimick an on-going "trench

experiment" at the New Mexico State University College Ranch of

Las Cruces, New Mexico (Wierenga, Gelhar et. al. 1986, and

Wierenga, Porro et. al. 1986). The major differences with the

simulations of the previous section are the following:
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- the strip source does not span the whole length of

the computational domain

-- the soil is stattsttcally antsotropic, with a larger

correlation scale in the horizontal than in the

vertical.

-- the space-time scales of simulation are relatively

large (5 m x 15 m x 15 m and 20 days)

-- both the infiltration phase and the natura drainage

after the end of infiltration are being simulated

(10 days of infiltration followed by 10 more days of

drainage).

Figzure 7.8 shows a schematic representation of the

computational flow domain in perspective view. Its size is 5 m

in the vertical, and 15 m in both horizontal directions.

However, note that the strip source only extends over a length of

9.8 m in the longitudinal direction (4 m in width). The vertical

plane in the forefront represents the face of the trench in the

experimental set-up of Wierenga et al. (1986). This was

approximated as a "no-flow" boundary in our simulation, despite

evidence that some evaporation actually occured in the field

experiment. The other vertical faces of the domain were assumed

also to be "no-flow" boundaries; they did not seem to interfere

with the infiltration and drainage processes at the time scale of

the simulation. The bottom boundary, however, was not deep
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enough to avoid interactions with the evolving wet zone during

the last part of the drainage phase (more on this later). The

flux at the surface of the strip was 2 cm/day during

infiltration, and zero during the redistribution phase. A zero

flux was imposed over the remaining part of the soil surface at

all times.

Table 7.2 summarizes the input data used for the

simulated "trench experiment" just described, including geometry,

initial and boundary conditions, space-time discretization, and

hydraulic properties of the hypothetically random soil. Some of

these data were chosen in accordance with available field

observations or were imposed by the experimental, set-up (the

infiltration experiment at the Las Cruces site was in fact

designed in part for purposes of comparison with mathematical

models like ours). However, some of the other data of Table 7.2

were only indirectly related to field observations, or were

imposed by numerical constraints. The rationale behind the

selected inputs shown in Table 7.2 is explained in more detail

below for each category of data.

FbI Space-time discretization and computational issues

The three-dimensional mesh size was chosen as a

compromise between the numerical constraints (Peclet number
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TABLE 7.2
SUMMARY OF INPUT DATA FOR THE SINGLE-REALIZATION SIMULATION OF STRIP-SOURCE

INFILTRATION IN A STATISTICALLY ANISOTROPIC SOIL ('TRENI EX ERIMENT")

Type of Data Description Value

Domain Vertical domain size L, = 5.0 m
Geometry, Transverse horizontal domain size L2 =15.0 m
Boundary Transverse longitudinal domain size L3 =15.0 m
Conditions, Strip source width Ws = 4.0 m

and Initial Strip source length Ls = 9.9 m

Conditions Flux at the surface of the strip q 2 cm/day

Condition at the bottom boundary q = - K(h)

Initial pressure head h. = - 150 cm

Space-Time Time step Variable
Discretization Mesh size Ax. (i=1.2.3) Ax = 0.10,0.20,0.20 m

Unidirectional number of nodes n n.= 52, 76, 76

Total number of nodes of 3D grid N = 300352

Exponential Geometric mean saturated conductivity K G = 100 cm/d
Conductivity Standard deviation of en K a = 0.6083

Curve (Random) Geometric mean of the en K-slope aG = 0.0494 cm~

Standard deviation of en a a = 0.2202
a

Anisotropic correlation scales X X = 0.25.1.0.1.0 m

Van-Genuchten Saturated moisture content 0 = 0.368

Retention Curve Residual moisture content 6 = 0.102
r

(Deterministic) Scaling parameter f = 0.0334 cm~-
Shape factor (real number) n = 1.982
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constraint aAx, << 2 in the vertical, and statistical resolution

.requirement Ax./A. << 1 in all three directions) and
1 1

computational feasibility (total number of nodes on the order of

105-10 6 at most). In addition, we rejected any solution that

would have resulted in a large discrepancy between Axi, Ax 2, Ax3

by a factor of more than 2. Our choice Ax. = (10 cm,20 cm,20 cm)
1

seems to satisfy approximately all these requirements. Note that

the statistical resolution of the grid in the vertical direction

(2/5) is coarser than in the horizontal directions (1/5). There

are 52 nodes in the vertical, and 76 nodes in each horizontal

direction, resulting in a total of about 300,000 nodes in three

dimensions.

On the other hand, the time-step was variable,

typically on the order of 5 minutes initially, up to several

hours towards the end of the drainage phase (t = 20 days). As a

consequence, the computational work was mostly consumed by the

early stages of the infiltration phase. For example, the

simulation of the first quarter of the infiltration stage, from

t = 0 to 2.5 days, consumed 1.5 hour of CPU time on a Cray 2

machine (NASA Ames Research Center). For the whole infiltration

phase, t = 0 to 10 days, the computational work was about 4 CPU

hours. Only one additional hour was consumed in the simulation

of 10 days of natural drainage after the end of infiltration

(t = 10 to t = 20 days). Therefore, the total computational



work was about 5 hours of Cray 2 CPU time for the whole 20 day

simulation.

[c] Soil properties and spatial variability

As before, we assumed that the water retention curve

0(h) was deterministic, i.e. independent of spatial location.

The 6(h) curve was assumed to follow the Van Genuchten relation

(equation 7.2 in the previous section). The "mean" parameters of

0(h) were obtained by fitting the Van Genuchten function to a set

of measured values 0.(h.) obtained from samples taken within the

upper soil layer (0-75 cm). Figure 7.9 shows the data points and

the fitted "mean" O(h) curve, from Wierenga, Porro et al. (1986)

and D. Polmann (personal communication).

The unsaturated conductivity was assumed to be an

exponential function of pressure, as in equation 7.1 in the

previous section, with random saturated conductivity K s(x) and

random slope a(x) of the Pn K(h) curve. Furthermore, a(x) and

Ks(x) were assumed to be statistically independent (i.e.

uncorrelated). This corresponds to "case 3" of the previous

section (see bottom part of Figure 7.2), which produced a greater

variability of the flow pattern than the case of perfect

correlation. The standard deviations of Pn K was evaluated from
d

field measurements and, indirectly, by relating the spatial
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variability of K(h) to that of O(h) through a conceptual model

(Mualem-Van Genuchten). The latter procedure was also used to

evaluate the standard deviation of Ana, since direct measurements

of Pna were not available. In addition, the geometric means KG

and aG were evaluated indirectly by fitting a tangent

straight-line to the Mualem-Van Genuchten log-conductivity

function at K = 2 cm/day (value of the infiltration flux at the

strip source) as shown in Figure 7.10. Note that the unsaturated

conductivity values predicted by the two models are roughly in

agreement (same order of magnitude) within the range of pressures

-150 cm ( h < -50 cm.

The en a and en K random fields were assumed to be
s

independent Markov fields with anisotropic correlation lengths

X, = 0.25 m, X 2 = X3 = 1 m. These values were chosen based in

part on variograms of Pn K measured in the field (Wierenga et
s

al., personal communication). However, note that the same

anisotropic correlation scales were used for ena, for which no

data were available. Although there is a great part of

subjectivity in this choice, it seems reasonable to assume the

same anisotropy ratio (XI/X3 = 1/4) for both parameters of the

conductivity curve. The turning band method was used to

generate two independent realizations of the 3D anisotropic

Markov random fields en Ks and en a over the 300,000 node grid.

In actual practice, two isotropic fields were generated, and the
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desired anisotropy was obtained by rescaling the three coordinate

axes (see Chapter 2, equation 2.18).

[d] Initial conditions:

Selecting an adequate initial condition in agreement

with field observations proved to be a major difficulty, due to

the restricted range of applicability of the exponential

conductivity model used in the flow simulator. Field

observations based on direct measurements of in-situ moisture

contents suggested that the soil was initially very dry, near its

residual moisture content (negative pressures on the order of

4
10 cm). However, preliminary numerical experiments with an

initial pressure h. = - 300 cm, corresponding toin
-5

K. = 3 10 cm/day in the mean, showed that there was a severein

restriction on the time step size in order to avoid divergence of

the nonlinear system solver (nonlinear SIP, based on Picard

iterations for linearization). The initial pressure was finally

revised to a higher value h. = - 150 cm, corresponding toin

K. = 0.06 cm/day in the mean.in

For further reference, we give below a list of

numerical values of some "mean" hydraulic properties

corresponding to the initial state of the soil:
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-- Pressure: h. = -150 cm
in

- Relative conductivity: Kin G .= 0.6 10-3

-- Conductivity/flux ratio: K. /q = 0.03in o

-- Moisture content: 0. = 0.155
in

e. - e
-- ~ ~ * ~* = n rDegree of saturation: Si =r = 0.20.

s r

Note that the soil is relatively dry, since only 20% of the

porosity is initially filled with water. In addition, the

following parameters may help evaluate, in different ways, the

downward velocity of the wet zone:

-- Maximum pressure at the source: h = -79.2 cmmax

-- Maximum moisture content at the source: 6 = 0.198
max

-- Downward velocity (mass balance):

q-K
V= q - n- = 20.2 cm/day

max in

-- Downward velocity (wetting front):

dK
v = (Td6in = 8.8 cm/day

The so-called maximum pressure h was evaluated by solving themax

equation:

K(h ) = q.

v was evaluated by using the followingand the velocity
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identities:

dK dh a Kin
v = ( ) = a(K j) = C.i

in in in

-l
In the case at hand, a = 0.0494 cm , K. = 0.06 cm/day, and

in
-1

C. = 0.00034 cm . The result for v, given above, followsin

immediately. These relations are only intended to provide "order

of magnitude" estimates of the downward velocity of the wet zone

for mean values of the hydraulic parameters of the soil.

[e] Boundary conditions:

As stated earlier, all lateral boundaries were assumed

impervious (including the face of the trench). The boundary

conditions at the soil surface were a fixed flux (q = qO on the

strip source, and q = 0 elsewhere). During infiltration the

source flux was qO = 2 cm/day. The condition at the bottom

boundary was variable. During the early stages of infiltration,

the moving boundary algorithm was used (see Chapter 5,

section 5.4.3, Figure 5.11). However, this procedure proved to

be inefficient, as the artificial bottom boundary moved rapidly

downwards to reach the maximum prescribed depth (5m). After that

time, a zero pressure gradient was imposed at the fixed bottom

boundary:
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Oh -+ q=- K(h)

Since the initial conductivity was quite small

(Kin = 0.06 cm/day, compared to qO = 2 cm/day) the downward flux

through the bottom boundary was essentially negligible as long as

the wet zone had not reached that boundary (infiltration phase

and part of the drainage phase). The influence of the

zero-pressure gradient boundary during the passage of the

downward moving wet zone will be discussed later, based on visual

inspection of the simulated pressure field.

7.3.2 Simulation Results

[a] Infiltration Phase:

The simulated infiltration phase lasted for 10 days, at

a specific discharge rate of qO = 2 cm/day over the strip source.

Given the width and length of the strip (4 m x 9.9 m) the total

quantity of water applied to the soil was about 7.9 m3 (2100

gallons). A simple calculation shows that, if this amount of

water was distributed uniformly beneath the strip-source (wtthout

lateral spread) over a 4 meter deep layer, the increase in

volumetric soil moisture in that region would be 0.05, which

approximately brings the moisture content to its potential

maximum (0) as evaluated in the previous sub-section. The
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corresponding degree of saturation in that region of soil would

be 40%, compared to 20% initially, still a moderate amount.

These preliminary considerations may give an idea of the meaning

of the term "wet zone" in this case of relatively slow-rate

infiltration. Indeed, the so-called "wet zone" will presumably

be only moderately wet, i.e., quite drier than the saturation

point on average. This should be kept in mind when the terms

"wet zone" and "wetting front" are being employed in the sequel.

The simulated three-dimensional pressure head fields

(300,000 nodal values) were saved at times 1.0, 2.5, 5.0, 7.5,

10, 15, and 20 days. A post-processor code was used to sample

the three-dimensional pressure fields along certain slices (2D)

and transects (lD). The location of some of the selected slices

was outlined in Figure 7.8 above. Three vertical slices

transverse to the strip source, and one vertical slice coinciding

with the longitudinal axis of the strip, were selected in order

to display the transverse and longitudinal pressure field

patterns at different times of infiltration and drainage. In

addition, certain transects were selected along these slices in

order to display in a single graph the time evolution of

unidirectional pressure profiles. Occasionally, we will also

show the pressure pattern in a horizontal slice or along a

horizontal transect located at a given depth. For clarity of



656

exposition, let us define below our terminology concerning the

sampled slices and transects (see Figure 7.8K:

-- X, Y, Z coordinates:

X = lateral coordinate (horizontal, transverse to

strip)

Y = longitudinal coordinate (horizontal, parallel

to strip)

Z = vertical coordinate (depth below soil surface)

-- "Transverse" slices:

Vertical slices transverse to the strip source:

Y = 2 m (near trench face)

Y = 4.8 m (mid-point along the strip)

Y = 9.8 m (free edge of the strip)

-- Vertical transect:

Vertical transect located in the transverse slice

Y = 4.8 m, and passing approximately through the

geometric center of the strip

(X = 0, Y = 4.8 m)

-- "Longitudinal" slice:

Vertical slice parallel to the strip and coinciding

with its longitudinal axis of symmetry (X=0)
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-- "Longitudinal" transect:

Horizontal transect lying in the horizontal slice

X = 0, at some specified depth Z.

-- "Transverse" transect:

Horizontal transect lying in the transverse slice

Y = 4.8 m, at some specified depth Z.

-- Horizontal slice:

Horizontal slice located at some specified depth Z

(Z = 0.5 m: "shallow"; Z = 2.0 m: "deep").

A fairly representative picture of the

three-dimensional pressure field can be obtained by looking at

the pressure contours in three different "transverse slices" on

the same page. This is shown in Figures 7.11, 7.12, 7.13, and

7.14 at times t = 5 days, t = 10 days, t = 10 + 5 days, and

t = 10 + 10 days, respectively. A general observation that can

be made is that the lateral edges of the wetted zone have a

propension to spread laterally (see the contour line h = -125 cm

during infiltration, or h = -70 cm during drainage). In

contrast, there are some isolated (disconnected?) wet regions of

high pressure which seem to be quite stable throughout the

process of infiltration and drainage. A localized region of high

pressure can be observed just beneath the center of the source
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Figure 7.13 Contour lines of pressure head in three
vertical-transverse slices during the simulated
strip-source experiment after 10 days of
infiltration and 5 days of drainage (t = 15 days).
From top to bottom: -slices Y = 2m, Y = 4.8m,
Y = 9.8m.
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Figure 7.14 Contour lines of pressure head in three
vertical-transverse slices during the simulated
strip-source experiment after 10 days of
infiltration and 10 days of drainage (t = 20 days).
From top to bottom, slices Y = 4.8 m and Y = 9.8m.
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(approximately 2 m deep) in the bottom parts of figures 7.11

through 7.14. Overall, these pictures leave the impression that

the stratified structure of the soil (i.e., the statistical

anisotropy of the conductivity curve) produces a differentiated

anisotropy of the wetted zone, with a more pronounced lateral

spreading of soil moisture in marginally wet regions than in the

core of the wetted zone.

The evolution of the wetted zone can be followed by

looking at a single "transverse slice" at successive times, as

depicted in Figure 7.15. The pressure contours are shown at

times t = 5 days, t = 10 days, and t = 10 + 5 days (from top to

bottom) for the "transverse slice" located near the free edge of

the strip source (Y = 9.8 m). During infiltration, the flow

pattern beneath the strip source seems to be quasi-one

dimensional down to a depth of approximately one meter, below

which lateral spreading takes place. The same feature can also

be observed at other locations along the strip (see previous

figures 7.11-7.14). During the drainage phase, the wet region

just beneath the strip source moves downward, and diffuses away

laterally as well.

It may be also instructive to examine the evolution of

the wetted zone in a longitudinal slice. This is shown in

Figure 16 at three different times during infiltration and
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Figure 7.15 Contour lines of pressure head in the

vertical-transverse slice located near the free
edge of the strip (Y = 9.8 m) at three different

times. From top to bottom: t = 5 days, t = 10
days, and t = 15 days (10 days infiltration + 5
days drainage).
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Figure 7.16 Contour lines of pressure
vertical-longitudinal slice

head in the
(X= 0)

different times. From top to bottom: t
= 10 days, and t = 15 days (10 days i
and 5 days drainage).
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drainage, for the vertical-longitudinal slice coinciding with the

axis of symmetry of the strip . This figure illustrates the

complex three-dimensional nature of the flow system. In a

homogeneous soil, the flow pattern along the strip (from left to

right on Figure 7.16) would be quasi uniform, except for a

possible edge effect on the free end of the strip (right part of

the graphs). This edge effect, i.e., diffusion of moisture away

from the free edge of the strip, seems to be minimal during

infiltration, but more pronounced during natural drainage. In

any case, the influence of vertical/horizontal anisotropy appears

once again to be quite important, as can be seen from the

elongated shape of pressure contour lines below the strip. Note

that the length of the strip is only ten times larger than the

horizontal correlation scale X of Pn K and Pn a, i.e. much
s

too short for a statistical analysis of the (presumably

homogeneous) longitudinal fluctuations of pressure.

To complete our visual representation of the

three-dimensional pressure pattern, we show in

Figure 7.17 (a) and (b) the pressure contour lines in two

horizontal slices, located respectively at depth Z = 0.5 m and

Z = 2.0 m, during the drainage phase (time t = 15 days). These

figures should be compared to the vertical-longitudinal pressure

map of Figure 7.16 at the same time t = 15 days. The horizontal

pressure map obtained at shallow depth Z = 0.5 m (Figure 7.17a)
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Figure 7.17 (a) Contour lines of pressure head in a horizontal
slice at shallow depth Z = 0.5 m. Time t = 15
days (10 days of infiltration and 5 days
drainage).
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Figure 7.17 (b) Same as (a), for a horizontal slice at a
larger depth Z = 2.Om.
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is not surprising in view of the previous figure. For the larger

depth Z = 2.0 m (Figure 7.17 b), the horizontal pressure map

reveals previously unnoticed features: non-symmetric spreading

of the relatively "dry" part of the moisture plume in the

transverse direction, compared to the nearly axi-symmetric

pattern of "wet" pressure contours. It is not clear whether

these features are due to a three-dimensional edge effect, or

merely to the particular soil heterogeneity below the free edge

of the strip at that depth.

Finally, it is also instructive to examine the

evolution of pressure profiles along selected transects in the

vertical, transverse, and longitudinal directions. This is shown

in the following figures: vertical pressure profiles during the

infiltration phase (Figure 7.18) and the drainage phase

(Figure 7.19); horizontal-transverse pressure profiles during

the drainage phase at depth 0.5 m and 2.0 m (Figure 7.20

(a) and (b))j and horizontal-longitudinal pressure profiles

during the drainage phase at depths 0.5 m and 2.0 m (Figure 7.21

(a) and (b)).

The vertical pressure profiles of Figure 7.18 depict

the downward movement of the local "wetting front" at that

particular location. A simple calculation shows that the

downward velocity of the front decreased with time, from
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Figure 7.18 Pressure head profiles in the vertical direction
during infiltration (times t = 1.0, 2.5, 5.0 and
10 days). The vertical transect is located near
the geometric center of the strip (X=0,Y=4.8m).
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Figure 7.19 Pressure head profiles in the vertical direction
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center of the strip (X = 0, Y = 4.8m).
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Figure 7.21 (a) Pressure head profiles in the horizontal-
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located at depth Z = 0.5m.
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1.5 m/day during the first day, to 1.1 m/day during the next 1.5

days, then 0.3 m/d during the next 2.5 days, and finally

0.2 m/day during the last 5 days of infiltration. The latter

value coincides with our previous estimate (V) based on mass

balance:

qo- K.
V = in 0.2 m/day,

0 - 0.
max in

but is still higher than the asymptotic velocity (v) of the

wetting front, previously evaluated as:

dK
V = (&. 0.1 m/day.

dO i n

At any rate, it seems that the pressure profiles of Figure 7.18

tend to a quasi-steady downward translation as time evolves

(compare t = 2.5, 5.0, and 10.0 days). This, however, could be

particular to the soil region traversed by the vertical transect

located at the center of the strip. The seemingly

one-dimensional behavior of the transient wetting front along

that transect could be perhaps explained by the large width of

the strip source, on the same order as the total depth of the

flow domain (4 m compared to 5 m).

The remaining figures (7.19, 7.20, 7.21), shown just

above, depicted the evolution of pressure profiles during the
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drainage phase. Figure (7.19) shows that the soil was constantly

drying above depth 3.5-4.0 m, and wetting below 4.0 m depth. The

"gravity-driven" flow condition imposed at the bottom boundary

(q = -K(h) at depth Z = 5.0 m) allowed water to cross that

boundary downward as natural drainage took place. Figure (7.20)

clearly shows the persistent effect of the strip-source

infiltration phase during drainage: the soil remains wetter

beneath the strip source during the whole drainage period,

particularly at shallow depth Z = 0.5 m (Figure 7.20 (a)). At

larger depth Z = 2.0 m, the contrast of pressures beneath and

away from the strip is milder due to lateral spreading

(Figure 7.20 (b)). However, this kind of effect is not observed

in the longitudinal direction parallel to the strip

(Figure 7.21): the longitudinal wetting front near the free edge

of the strip does not seem to smooth out with depth and/or with

time. The dimensions of the strip are such that there is little

lateral diffusion at the edge of the strip (apparently no more

than 1 m). See however Figure (7.17 b) for a two-dimensional

picture of edge effects.

Some other observations on the statistical nature of

pressure variability can be made, in view of the one-dimensional

pressure profiles just discussed. The vertical profiles of

Figure (7.18) display quasi-homogeneous pressure fluctuations

over several meters (below the wetting front for t = 1 day, and
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above the wetting front for t = 10 days). It can be seen by

visual inspection that the amplitude of pressure fluctuations is

larger on average for dryer soil:

Ah ~ 25 cm for h ~ -150 cm

Ah ~ 5-10 cm for h ~ -80 cm.

This observation agrees qualitatively with the findings of the

linearized spectral theory of Mantoglou and Gelhar (1987).

Incidentally, it is also interesting to note that the

mean pressure h -80 cm (t = 10 days) coincides with our

previous estimate of the maximum asymptotic pressure h . Thismax

implies that the "mean" conductivity of the wetted soil beneath

the center of the strip becomes about equal to the infiltration

flux at the surface of the strip, after a sufficiently large time

of infiltration. Note that the mean conductivity is defined here

at the deterministic K(h) curve corresponding to geometric mean

parameters KG .and a. Now, the fact that the mean vertical

pressure gradient is zero (Figure 7.18 at t = 10 days) suggests

that the "mean" conductivity coincides with the large-scale

effective conductivity in the vertical, i.e.:
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K 1 (h) ~ KG - exp (aG-h).

Finally, it should also be noted that the pressure

fluctuations in the vertical appear to have a relatively small

length scale (on the order of Xi = 0.25 m) whenever a relatively

constant mean pressure can be identified (Figure 7.18). In

contrast, the pressure fluctuations in the horizontal directions

appear to have a more complex structure, with a superposition of

small and large scales of fluctuations: see in particular

Figure (7.20 a) and Figure (7.21 a). The largest scale of

fluctuations of pressure (apparently several meters) may reflect

the large horizontal correlation scale of the anisotropic soil

(1 m). However, these large scale fluctuations could also be due

to a phenomenon of "scale selection" in relation to the size of

the strip source itself (4 m x 9.8 m).

The ensemble of observations presented just above will

be summarized in the last section of this chapter (section 7.5:

summary and discussion). Before this, we present below the

results of another large infiltration simulation on the same

random soil, but for a very different type of flow conditions.
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7.4 Steady "Rainfall" Infiltration in a Statistically
Anisotropic Soil (300,000 nodes)

7.4.1 Model problem and input data:

In this section, we present the results of a large

single-realization of steady state infiltration from a uniform

planar source with constant flux. The geometry of the flow

domain as well as the random soil properties are the same as in

the previous section. In particular, we use here the same

realization of a statistically anisotropic random conductivity

curve on the 300,000 node grid, as previously. See

subsection 7.3.1, Figure 7.8, and Table 7.2 concerning input data

(except for boundary conditions).

The steady state solution was obtained by running the

flow simulator in the transient regime until a steady state was

reached beyond "reasonable doubt". The boundary condition over

soil surface was a uniform constant flux qO = 0.060517 cm/day,

approximately equivalent to a mean "rainfall" rate of 213 mm per

year (arid climate). The condition at the bottom boundary (Z =

5m) was a zero pressure gradient, i.e., by Darcy equation:

q = -K(h, x).

The initial condition was a uniform pressure:
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h. = -150 cm.
in

Note that qO and h. were chosen in such a way that the final
in

solution should be close to the "initial guess" (h in) on average:

q0 = KG exp (aG hin) = K(hin'

All lateral boundaries were assumed impervious (zero flux).

The transient simulation was conducted in several

pieces, with intermediate solutions saved at times:

t = 4.92, 14.44, 44.03, 64.33, 74.31, and 114.00 days

The flow had clearly reached a nearly steady state regime by the

time t = 114 days (approximately 4 months of infiltration). This

was attested by the insignificant changes of pressure observed

along a selected transect, beyond the first 2 weeks of

infiltration. An example is shown in Figure 7.22 for a vertical

transect located at the geometric center of the domain. The

pressure profiles at times t = 44, 64, 74 and 114 days were

almost indistinguishable (only the last of these is represented

in the figure). Moreover, the mass balance routine (Chapter 5,

section 5.4.3) was used to monitor the global convergence of the
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Figure 7.22 Vertical pressure head profiles obtained at
different times during the transient simulation
towards a steady state solution of the "rainfall
infiltration" problem. Times t = 4.9 day, 14.4 day
and 114 day: the crosses indicate the quasi-steady
solution at t = 114 days. The vertical transect is
near the center of the domain.
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solution towards a steady state. The relative mass balance

error:

Q. - Q
E = in out

in

was only about +2% at time t = 114 days. Thus, it seems beyond

doubt that a steady state flow regime was actually reached, at

least in a mean sense.

7.4.2 Simulation Results and Statistical Analysis:

The steady-state three-dimensional pressure field was

sampled along selected slices and transects, all traversing the

geometric center of the flow domain. Figure 7.23 depicts the

pressure head contour lines in a vertical slice and located

midway between lateral boundaries, and Figure 7.24 shows the

pressure contours in a horizontal slice located at mid-distance

between -the top and bottom boundaries. In both cases, the

pressure contour values are equally spaced and range from -110 cm

to -190 cm (recall that h. = -150 cm). The contour values werein

not shown on these figures; some comments will help clarify their

meaning.

The most striking feature in the vertical slice of

Figure 7.23 is the presence of narrow-elongated "fronts" (nearly
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Figure 7.23 Pressure head contour lines in a vertical slice for
the steady state "rainfall" infiltration in a
statistically anisotropic soil (300,000 nodes).
The slice approximately crosses the geometric
center of the domain (Y = 7.4m).
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Figure 7.24 Pressure head contour lines in a horizontal slice
for the steady state "rainfall" infiltration in a
statistically anisotropic, soil (300,000 nodes).
The slice is approximately located at the mid-point
between soil surface and bottom boundary (z=
2.5m).
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black on the picture) separating two regions of local maxima of

pressure, -above and below. Inspection of contour values reveals

that in most cases, the regions just above the horizontal fronts

have a local maximum of pressure (relatively wet), and those

below have a local minimum of pressure (relatively dry). See for

instance the two zones marked "W" and "D" ("wet" and "dry") in

Figure 7.23. The important role of statistical anisotropy of the

soil parameters is quite evident. In its downward movement

driven by gravity, water tends to accumulate above elongated

lenses of low unsaturated conductivity, and spreads laterally

from there by a kind of "diffusion" process.

On the other hand, the horizontal slice of Figure 7.24

displays a fairly isotropic pattern of pressure heads, as could

be expected due to the horizontal isotropy of the soil and the

horizontal uniformity of boundary conditions. The labels "W" and

"D" were used here again to designate regions of maximum pressure

(wet) and minimum pressure (dry). It seems that most of the

relatively "wet" regions are larger and have smoother pressure

gradients than the locally "dry" zones. This may indicate an

assymmetry in the probability distribution of pressure, with

negative skewness. Equivalently, the tension \P = - h could

perhaps be represented by a log-normal random function having

positive skewness. Another possible interpretation of the

observed assymmetry (?) of the pressure field around the value
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h. = -150 cm could be that the actual mean h was in factin

higher (wetter) than the initial state.

In order to obtain a more synthetic characterization of

the steady pressure field, we have attempted a summary

statistical analysis of h(x) based on the assumption of

statistical homogeneity of first and second moments in all three

spatial directions. This was also complemented by a second

statistical analysis of h(x), assuming that the perturbation:

h'(x) = h(x) - i(x

is homogeneous in 3D space. The spatially variable mean h(xi)

intervening in this expression was obtained empirically by

averaging the pressure in the horizontal plane at each different

depth xi. The results obtained by the two methods were fairly

close, as shown in Table 7.3. However, the empirical mean h(x1 )

was quite variable with depth.

Interpreting the statistical results of Table 7.3 to

their face value, it appears that the pressure head standard

deviation was about 20 cm around the constant mean

h ~ h. = -150 cm. Furthermore, it turns out that h(x) wasin

negatively skewed (or 'p = -h positively skewed) as conjectured

earlier based on pressure contour maps. Finally, it appears that
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TABLE 7.3
SINGE-POINT MOMENTS AND CORRELATION FUNCTION

OF THE PRESSURE HEAD FIELD FOR THE
SINGLE-REALIZATION "RAINFALL INFILTRATION"

SIMULATION ON A STATISTICALLY ANISOTROPIC SOIL
(300.000 NODE GRID)

Note: p(1.6X ) indicates the value of the pressure correlation function at lag

f.=1.6X along the x. axis (XI = 0.25 m vertically, and X2 = X3 = 1 m horizontally).

Pressure h' (x) = h(x) - h h' (x) = h(x) - h(x1 )

Moments h = 3D average (x1 ) = 2D average

Mean h - 147.5 cm ---

Stand. Dev. 0 h 19.1 cm 17.9 cm

Skewness -Y - 0.27 - 0.22

Kurtosis C + 0.30 + 0.22

p(1.6Xj) + 0.352 + 0.311

p(1. 6 X 2 ) + 0.386 + 0.298

p(l.6X 3 ) + 0.381 + 0.287
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the correlation scales of pressure in the vertical and horizontal

directions are proportional to the soil parameter correlation

hscales. Thus, if X. designates the e-correlation scale of
1

pressure (such that the correlation drops to e- ~ 0.37), then we

have from Table 7.3:

h
X./X. ~- 1.61 1

h
X, ~=O.4m vertically
h

X. ~ 1.6m horizontally
1

These results seem to be confirmed in part by the

behavior of the fluctuating pressure head along selected

transects. Figure 7.25 displays the vertical pressure profile

along the transect located at the center of the domain, and

Figure 7.26 shows two perpendicular transects in the horizontal

plane. The degree of variability of pressure along these

transects seems to agree with the computed standard deviation

(amplitude of oscillations about 20 cm around the 'local mean).

However, the spatial pattern of pressure along these transects

does not seem to quite agree with the computed correlation

scales, 0.4 m in the vertical and 1.6 m in the horizontal. There

are apparently some very long range fluctuations of pressure

along the selected transects. More work is needed before

definite conclusions can be drawn regarding the anisotropic

correlation structure of the steady pressure field.
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Figure 7.25 Pressure head profile in the vertical direction for
the steady state "rainfall" infiltration
simulation. The transect is located near the
geometric center of the domain (X = 0, Y = 7.4m).
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Figure 7.26 (a) Pressure head profile in the horizontal
direction for the steady state "rainfall"
infiltration simulation. The transect
crosses the center of the domain and is
oriented in the "transverse" direction
(Y = 7.4m, Z = 2.5m).
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(b) Same as (a), for another horizontal transect
crossing the center of the domain and oriented
in the "longitudinal" direction (X=O, Z=2.5m).
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On the other hand, a preliminary estimate of the

effective unsaturated conductivity in the vertical direction was

obtained by assuming a zero mean pressure gradient vertically.

Using a "large scale Darcy equation", this gives the simple

equation:

K 1 (h) = - qj.

The mean downward flux qj was evaluated by using the boundary

flux calculations generated by the mass balance subroutine of the

flow simulator (qi = -0.059974 cm/day). This eventually leads to

an effective unsaturated conductivity of the form:

K1 1(h) = 0.88 K(h)

where the so-called "mean" unsaturated conductivity K is the

deterministic function:

K(h) = KG-exp(aGh)

Now, Mantoglou and Gelhar (1987c) obtained the steady

state effective conductivity as a solution of linearized spectral

equations. In the case of. independent (Ksa) parameters and

extreme anisotropy (e = Xj/A -+ 0) they obtained a relation for

Ki(h) in the form of an expression that depends on soil
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variability, multiplied by the deterministic conductivity K(h)

defined above. Using their equation (34.b) with J1 = LI = 1,

corresponding to a zero mean pressure gradient, we obtain the

theoretical relation:

^[ 1 * u+ 2 -(h 2-2XAh) _
Ki(h) = exp -

1+a 1i

For the case at hand, the single-point moments of f = Pn K and
s

a = en a were given in Table 7.2 of the previous section (shown

below for convenience):

a f= en K =0.6083; KG -100 cm/d

a = a = 0.2202; a(= 0.0494 cm

By using also some previously established identities (equations

2.19-2.21 of Chapter 2) we obtain:

a = 0.01128 cm
a

-1
a = 0.0506 cm

With A = 25 cm, and h = -147.5 cm (after Table 7.3 just above),

this gives the theoretical result:



696

Ki1 (h) = 0.62 K(h)

Now, according to the previous numerical result, the coefficient

0.62 becomes 0.88. This can be regarded as a mild discrepancy

between the theoretical and numerical effective conductivities,

given the many assumptions that were made. In fact, we expected

a theoretical value smaller than the numerical one, since we

assumed e -> 0 for the spectral solution (asymptotic case of

perfectly stratified soils), whereas the numerical simulation was

carried out for a finite anisotropy ratio 6 = 1/4 (imperfectly

stratified soil). The vertical conductivity must indeed be

smallest in a perfectly stratified soil.

Similarly, the pressure head standard deviation

(uh : 20 cm in Table 7.3) can be compared to the steady state

spectral solution obtained by Mantoglou and Gelhar

[1987b, equation (28)]:

1M
a = - - - -(C2 + CF2.-h2 h -- Jf aUh a 1 1+rI A .

With the data at hand, this gives the theoretical value:

Uh = 26.2 cm.

Again, this compares very well with the numerical result



697

-h = 20 cm; the slightly higher value of a h predicted by the

theory could be due again to its asymptotic character (limit of

perfectly stratified soil 6 -+ 0, compared to 6 = 1/4 in the

numerical simulation).

We conclude that the numerical single-realization

solution of steady state rainfall infiltration was large enough

to be statistically meaningful as far as the single-point moments

of the pressure field are concerned. Indeed, we presume that the

relatively good agreement between the spectral theory and the

single-realization statistics could not be purely coincidental

(mean pressure gradient and mean flux, intervening in the

effective conductivity, and standard deviation of pressure).

However, there remains a gray zone concerning the correlation

structure of the pressure field. The flow domain may have been

two small, despite the large size of the grid (300,000 nodes), to

accurately represent the spatial structure of pressure in free

space. More work is needed here in order to evaluate the

statistical representativity of the observed spatial structure of

h
the pressure field (X. = 1.6 X.?). Our results also showed that

1 1

the probability distribution of tension head (4 = -h) was

positively skewed; it seems likely that the skewness would

increase with increasing variability and/or increasing mean

tension head. This complication reflects the complexity of

stochastic unsaturated flow systems due to highly nonlinear
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coefficients.

7.5 Summary and Discussion:

It may be useful to summarize the main results of the

different single-realization simulations of unsaturated flow

systems presented in this Chapter. The modest size simulations

of strip-source infiltration in statistically isotropic soils

(section 7.2) were intended to explore the sensitivity of the

solution to different hypotheses of conductivity variability. It

was clear, from the three hypothesis tested, that the spatial

variability of the wetted zone was extremely sensitive to the

degree of variability of the slope a of the log-conductivity

curve Pn K(h). In addition, the degree of correlation between

en K and Pn a also had an important effect. For early times of
5

infiltration (t ~ 2 days) it was found that the 3D wetted zone

was sharply defined (steep wetting front), and was extremely

heterogeneous and contorted in the - case of statistically

independent parameters K and a (with a- = 0.7, and
5s

aena = 0.3).

These findings suggest that future research on large

scale flow and solute transport in the vadose zone should focus

on the development of practical methods and/or conceptual models

for determining the spatial variability of 'the nonltnear



conductivity curve. For instance, it could be useful to search

for possible correlations between the slope of en K(h) and other

hydraulic soil parameters (saturated conductivity, pore size

distribution, etc.) or by using certain similarity assumptions

(relation between O(h) and K(h)).

In the case of isotropic soils, reviewed just above,

the heterogeneity of the wet zone was manifested by the

appearance of mushroom-shaped bulbs that evolved more or less

independently, at least until reconnection occured. The spatial

pattern of the wet zone for .a statistically antsotropic,

imperfectly layered soil was visually quite different, as shown

in section 7.3. Indeed, the large single-realization solution

obtained for 20 days of strip source infiltration and drainage

(300,000 node simulation) exhibited pronounced lateral spreading

of the edges of the wet zone. After a few days of infiltration,

there appeared also several isolated wet regions of ellipsoidal

shape. The vertical/horizontal aspect ratio of the marginally

wet periphery of the unsaturated plume was much smaller than the

aspect ratio of high moisture regions. This seemed to confirm

the findings of Mantoglou and Gelhar (1987) concerning the

pressure-dependent anisotropy of the effective conductivity for

stochastic unsaturated flow systems.
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Some other features of the heterogeneous flow system of

section 7.3 seemed to be more specific to the particular boundary

conditions and the geometry of the strip source, which were

chosen to mimick an on-going field experiment. For instance, it

appeared that the flow pattern beneath the center of the

strip-source was fairly "one-dimensional" during the infiltration

phase. The pattern of lateral diffusion around the free edge of

the strip was also discussed. See subsection 7.3.2 for a

detailed presentation of the 3D pressure field sampled at various

locations of the 300,000 node grid during the 20 day simulation.

For applications to vadose zone contamination (say,

resulting from the leak of a buried radioactive waste) it may be

important to examine the possible effects of anisotropy over much

larger time and length scales than those considered in our

numerical simulations. The results obtained in section 7.3

suggest that the downward movement of the core of the unsaturated

plume may continue to slow down indefinitely during the

redistribution phase, while the marginally wet edges of the plume

diffuse laterally and the mean moisture content of the plume

decreases. This simplified "picture" may also indicate the

possible behaviour of a contaminant carried in the unsaturated

moisture plume. However, to simulate this type of phenomenon

over three-dimensional length scales on the order of 100 m and

time scales on the order of months or years may be too
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prohibitive with the numerical single-realization approach

adopted in this work, unless some new simplifying assumptions are

adopted.

In addition, there is also the need for investigating

the sensitivity of the wetting/drainage pattern with respect to

initial conditions. In particular, the interpretation of our

transient simulation results was somewhat obscured by the fact

that a uniform pressure was prescribed initially. This

simplifying assumption should be revised, as it ignores the past

history of the heterogeneous flow system under natural

conditions. Nevertheless, despite the limitations just

discussed, the 20 day simulation of section 7.3 provided, for the

first time, a detailed picture of a relatively large transient

unsaturated flow system (5m x 15m x 15m) with highly variable

nonlinear soil properties (random curve K(hi,x)) and an

unusually high grid resolution in 3D space (52 x 76 x 76 ~

300,000 nodes). The results of this direct simulation could

serve as a proving ground for future conceptual models.

In section 7.4, we showed more concretely how the

single realization approach could be used to test current

theories of spatially variable unsaturated flow. The

statistically anisotropic soil of the previous section (7.3) was

used to simulate a steady state infiltration under a uniform
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constant flux at soil surface (uniform "rainfall"). The inherent

statistical homogeneity of this type of infiltration problem

justified our attempt at a direct statistical comparison with

available spectral solutions (Mantoglou and Gelhar, 1987). The

standard deviation of the pressure head and the effective

unsaturated conductivity of the vertical infiltration system

agreed with the spectral solutions within a margin of error of

20%.

This agreement is quite encouraging, but needs to be

confirmed for a wider range of conditions, i.e., for other flow

rates or mean pressure head values. Our results also suggested

that the probability distribution of tension head (, = -h) was

positively skewed. If the hypothesis of a log-normal

distribution of the tension head was retained, the skewness would

increase rapidly with the coefficient of variation of tension

head (equation 2.19 of Chapter 2), which itself is known to

increase with mean tension (spectral theory of Mantoglou and

Gelhar, 1987). Therefore, it is possible that, for very dry

soils, a second order moment description of tension head

variability will not be sufficient to completely characterize the

actual distribution. of tensions. A log transform could be used,

but third order moments may eventually be required.
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Finally, it should be emphasized that the correlation

scales of the pressure head random field were found to be

proportional to the X scales of the random soil parameters

h
(1 ~ 1.6 X.). However, this result may not be representative of

truly "infinite domain" pressure fluctuations, given the limited

size of the flow domain with respect to the computed pressure

hcorrelation scales (about 10 X. in each direction). Note that

the total CPU time required to solve this steady state problem on

a Cray 2 machine was not overly prohibitive. In spite of the

large 300,000 node grid, only 3 CPU hours were required to

converge to a steady solution (in 85 time steps or 114 days of

infiltration). It seems feasible to simulate such statistically

homogeneous unsaturated flow systems over larger grids, on the

order of 1 million nodes or more.

In conclusion, the application of the numerical

single-realization approach to stochastic unsaturated flow

problems provided a means of direct visualization of plausible

heterogeneous pressure fields in three-dimensional space, with a

degree of detail unattainable by current field measurement

techniques. A few numerical experiments unveiled the complex

nature of unsaturated flow systems. One of the most striking

features of the transient strip-source infiltration problem was

its great sensitivity to the degree of variability of the

conductivity curve (particularly its slope a) and to statistical
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anisotropy. The complex interactions between the homogeneous

random field fluctuations of hydraulic properties and the

evolving nonlinear wetting front (and drying front) seem to defy

current stochastic analyses. However, the good agreement

obtained between the linearized spectral theory and the numerical

solution of steady state "rainfall" infiltration suggests that a

simplified conceptual model like the spectral theory can provide

reliable predictions of unsaturated flow variability in certain

cases. The encouraging results obtained in the steady state case

may possibly be extrapolated (confirmed) for transient flow

systems after sufficiently large times and/or in the absence of

sharp wetting fronts.
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CAY'rER 8: CONCLUSIONS

A number of approaches were developed in this work for

the characterization of three-dimensional flow fields in randomly

heterogeneous porous media. For the most part, this problem was

tackled under the assumption that naturally heterogeneous

subsurface formations can be realistically modeled in the form of

statistically homogeneous random functions of space. Our focus

on a fully three-dimensional representation of subsurface flow

phenomena was motivated by experimental as well as theoretical

evidence on the artificial character of lower dimensional

representations. Most of our results confirm indeed that, in the

general case, fluid pathways are inherently three-dimensional in

heterogeneous porous media. On the other hand, experimental

evidence supporting the assumptions of randomness and statistical

homogeneity of the hydraulic properties of natural porous

formations was discussed in the data survey section of Chapter 2.

These assumptions were at the basis of most of the

conceptual approaches pursued in this work. For instance,

statistically homogeneous (and ergodic) random hydraulic

properties were postulated in most of the analytical

contributions of chapters 3 and 4, except in the spectral

conditioning approach. In a certain sense, the postulate of a

homogeneous/ergodic porous medium was also used for the numerical



706

simulations of single-realization flow fields in chapters

6 and 7. With this in mind, we now proceed to summarize and

discuss the interrelated results obtained in different parts of

this work, as well as some practical consequences in the area of

subsurface hydrology. The discussion will be followed by a

"summary of contributions", and a brief epilogue presenting a

more general assessment of the outlook for stochastic approaches

to subsurface flow and contaminant transport.

[a] Discussion of results:

One of the main motivations of this work was to assess

the range of validity of the spectral solutions of stochastic

subsurface flow developed by Gelhar and others during the past

decade (Bakr et al. 1978; Gelhar and Axness 1983; Mantoglou and

Gelhar 1987; Gelhar 1986). The spectral theory of stochastic

flow (and mass transport) relies on the postulate of statistical

homogeneity of the random flow field (hydraulic or pressure head

perturbation, and water flux or velocity vector). In addition,

this approach implicitly assumes the existence of ergodic

solutions, since it purports to characterize unique "effective"

transport properties for infinite-domain realizations of the flow

field. Finally, the spectral solution method also requires small

parameter expansions and various linearization approximations, in

order to arrive at tractable closed-form solutions of the
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governing stochastic partial differential equations. Let us

point out that similar approximate expansions were also required

in other analytical and numerical stochastic approaches published

in the literature (see review in Chapter 2).

The existing "spectral theory" developed by the

above-mentioned authors was expounded in detail in Chapter 3 for

the case of stochastic groundwater flow. The approximate nature

of the spectral solutions was made clearer by using u--expansions,

where - is the standard deviation of the random log-conductivity

field. The modern formalism of Fourier space representations of

statistically homogeneous random fields was heavily used, and

served as a background for subsequent developments. Some

particular restrictions on the properties of the log-conductivity

spectrum were discussed, in view of previous results obtained in

the literature. In particular, we concluded that, in order to

obtain a statistically homogeneous hydraulic head solution around

its linear mean, the random conductivity field must be taken more

nearly "periodic" as the degree of freedom of flow decreases,

from fully three-dimensional and isotropic formations to the

extreme case of one-dimensional flow, with all the conceivable

intermediate cases corresponding to various configurations of

stratified flow systems.

Furthermore, some new closed form results were inferred
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by applying the spectral solution method to a variety of specific

cases, in particular for horizontally stratified aquifers. Our

findings regarding the correlation structure of the flow field

led us to restrict the range of validity of the infinite-domain

spectral solutions (aquifer thickness must be much larger than

the horizontal fluctuation scales of the conductivity field). For

stratified aquifers, the hydraulic head field was found to be

nearly isotropic in vertical planes, and only moderately

anisotropic in horizontal planes. An approximate analysis also

suggested that the flux or velocity vector was much more strongly

anisotropic in 3D space than the head field. These previously

unknown results were confirmed in part by subsequent numerical

experiments.

However, we recognize that more work will be needed in

order to fully characterize the correlation structure of the

velocity field in the case of stastically anisotropic aquifers.

This may have important consequences regarding the validity of

two-dimensional representations of groundwater flow and transport

phenomena commonly used in engineering practice. In addition, we

expect that stringent grid resolution constraints will be

required for the numerical simulation of strongly anisotropic

flow systems due to the disparity of fluctuation scales involved.

Moreover, note that the analytical results just discussed were

obtained within the framework of the spectral theory, based on
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"small parameter" approximations, and on the assumption of

statistical homogeneity of the input conductivity and the output

flow field.

In contrast, we have developed in Chapter 4 new

stochastic solutions of the groundwater flow equation without

some of the limiting assumptions of the spectral theory (see

discussion in section 4.1). Thus, the "small parameter"

approximation was dropped altogether in section 4.2, devoted to

the development of non-perturbative spectral solutions. In

addition, we obtained in section 4.3 an "improved" spectral

solution for the groundwater velocity spectrum, by linearizing

the equations for the velocity components rather than that for

head. Finally, the assumptions of infinite domain and

statistical homogeneity of the flow field were abandoned in

section 4.4, where a new "spectral conditioning" approach was

developed to treat the case of finite size flow and transport

phenomena. It may be worthwhile to recapitulate here on some of

the main results obtained by these alternative spectral

approaches.

The non-perturbative spectral relations obtained in

section 4.2 were derived from fundamental statistical symmetries

and other "exact" properties of the flow field in the case of

statistically isotropic and homogeneous random conductivity. In
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the 3D case, mass conservation and statistical axial symmetry

were used to infer relations on the covariance or spectral

structure of the flow field. A special conjugacy relation was

found in the 2D case, leading to a statistical identity relating

the head gradient and velocity fields. It was found that the

previous first order spectral solutions (e.g. Gelhar and Axness,

1983) were consistent with these statistical identities in any

number of dimensions (for isotropic media). However, a close

inspection of the first order spectral solutions also revealed

that the degree of variability of groundwater velocity was

probably underestimated in the 3D case. A new, presumably

"improved" spectral approximation, was developed in Section 4.3

for arbitrary conductivity spectrum. The new spectral solution,

although not exact, turned out to agree better with subsequent

numerical results, and was also consistent with the previous

non-perturbative spectral relations for 3D isotropic media. Some

of the implications of these results will be discussed shortly.

In the general case of statistically anisotropic

aquifers, exact statistical identities of the type mentioned just

above were not obtained, due to the lack of symmetry of the flow

pattern. In any case, recall our previous finding that the

infinite-domain spectral theory may not be directly applicable to

shallow aquifers unless their thickness is much greater than the

horizontal fluctuation scales of natural heterogeneities. Some
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of the numerical experiments, to be discussed later in this

chapter, suggested indeed that the aquifer thickness must be on

the order of several tens of horizontal fluctuation scales for

the spectral theory to be applicable. When this is the case, the

spectral results of Gelhar and Axness (1983) can be used to infer

the effective conductivity of the groundwater flow system at the

large scale. These authors showed in particular that, as a first

order approximation in u-, the effective conductivity is a second

rank symmetric tensor whose degree of anisotropy depends (in a

seemingly complex position) on the variance and statistical

anisotropy of the underlying random conductivity field. Their

result takes the .form of complicated Fourier integrals, although

some simplifications occur in assymptotic cases of perfect

stratification (infinitely small or infinitely large anisotropy

ratio) and in the isotropic case (anisotropy ratio equal to

unity).

In contrast, we proposed in this work a simple

analytical expression for the effective conductivity in the

general anisotropic case, based on an empirical generalization of

a previous conjecture by Matheron (1967). This author observed

that, for isotropic formations, the effective conductivity seems

to depend in a simple fashion on spatial dimension. Our

generalization by way of induction, led to an expression relating.

the effective conductivity component K .. to the log-conductivity
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variance a2 , the correlation scale X., and the geometric and
1

arithmetic averages of the three correlation scales (X,,X2 ,X3 ),

as shown in equations (4.48-4.49) of Chapter 4, section 4.2.6.

For illustration, let us use an example taken from a field

contamination study discussed in Gelhar (1986). The three

correlation scales, in the same order as above, were

60 m and 15 m (horizontal) and 1 m (vertical), and the

log-conductivity variance was 4.2. By using the Gelhar-Axness

formula, Gelhar (1986) was able to evaluate the anisotropy ratios

of the effective conductivity (horizontal/vertical: Kli/K3 3 ;

horizontal/horizontal: K1 1/K2 2 ). His values were 47 and 1.3,

respectively. By using instead the simple relation proposed in

his work, the conductivity anisotropy ratios are found to be

45 and 1.2, very close to the values predicted by the

Gelhar-Axness first order spectral theory. The proposed relation

also coincides with the effective conductivity result of Bakr et

al. (1978) in the 3D isotropic case. In addition, this relation

coincides with all results known to be exact, such as the

arithmetic and harmonic means for flow parallel and orthogonal to

perfect stratification, and the geometric mean for

two-dimensional isotropic media).

Some of the new analytical results established in this

work may have direct implications for the study of solute

transport in randomly heterogeneous groundwater flow systems. If
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molecular diffusivity is neglected, the pathways of nonreactive

solutes convected in the flow are the same as those of tagged

fluid particles. Therefore, the variability and spatial

structure of the groundwater velocity field determine entirely

the overall transport properties of the flow, like

"macrodispersivity". Furthermore, assuming for convenience that

the porosity of the aquifer is approximately constant, the

groundwater velocity is simply proportional to the Darcy flux.

The two vector fields, velocity and flux, are therefore

equivalent if one ignores the constant of proportionality. With

this in mind, let us examine more specifically some of the

consequences of our analytical results in the area of groundwater

solute transport.

Approximate spectral solutions of stochastic

groundwater solute transport were developed by Gelhar and Axness

(1983) and others. Subsequently, Gelhar (1987) pointed out that

the asymptotic or "large time" longitudinal macrodispersivity

(A,,) was proportional to the correlation scale of the

longitudinal velocity component in the longitudinal direction.

The factor of proportionality was the longitudinal velocity

variance divided by the square of the mean velocity. By plugging

in this relation the Gelhar-Axness spectral solutions of

stochastic groundwater flow, one obtains a simple closed form

expression for Ai1 in the 3D isotropic case. Surprisingly, it
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turns out that the resulting macrodispersivity has a maximum at

some moderate value of, the log-conductivity variance (a2 = 3) and

tends to zero as a goes to infinity. Now, this seemingly

unphysical behavior disappears when the "improved" velocity

spectrum proposed in this work (section 4.3) is used instead of

the Gelhar-Axness spectrum. For 3D isotropic formations in

particular, the large time macrodispersivity obtained with the

higher order solution takes the simple form Ail = a2X, where X is

the integral correlation scale of the isotropic log-conductivity

field.

It is particularly instructive to note that the product

of u2X is invariant under local averaging of the underlying

conductivity field. Thus, Vanmarcke (1983) observed that the

product "variance-correlation scale" quantifies the intrinsic

amount of uncertainty carried by a homogeneous random field,

independently of the scale of measurement. Our result concerning

macrodispersivity suggests a parallel interpretation. The large

time longitudinal macrodispersivity of a solute, convected over

infinite distances in a statistically homogeneous groundwater

velocity field, quantifies in effect the intrinsic variability of

the porous formation independently of the scale at which this

variability is "measured".

However, it should be emphasized that these results on
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contaminant macrodispersion rely on quite stringent hypotheses:

the large time and infinite domain assumptions, the postulate of

a statistically homogeneous porous formation, and the first order

perturbation approximations of the solute transport equation.

Intuitively, the "large time" assumption means that the

contaminant plume must have encountered a large number of

conductivity fluctuations or formation heterogeneities. Assuming

that the formation is statistically homogeneous, this becomes

equivalent to requiring that the size of the plume or the mean

travel distance (L) be much larger than the formation's

correlation length (N). In actual practice however, there may

not exist a uniquely defined correlation length valid for a

sufficiently large range of plume sizes or travel distances. It

is this particular problem that was addressed in section 4.4 of

Chapter 4 (Finite size effects: band-pass self-similar spectra,

spectral conditioning and uncertainty).

The "spectral conditioning" approach was

developed in order to characterize finite-size and evolving

phenomena in stochastic flow and transport problems. This

approach avoids the elusive concepts of correlation scales,

infinite domains, and statistical homogeneity, while still

retaining some of the analytical simplicity of the spectral

solution method. By applying first the standard spectral solution

method in conjunction with a band-pass self-similar model of
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random field heterogeneity, based on data published in the

literature, we evaluated explicitly the dependence of statistical

properties on domain size (1- and 3-dimensional head variance,

effective conductivity, and macrodispersivity). This motivated

further development of the spectral conditioning approach for a

consistent characterization of the effects of domain size on the

mean, variance, and effective conductivity of the flow field. In

particular, the uncertainty on these parameters was shown to be

directly related to domain size, i.e. to the typical length scale

of the phenomenon of interest. Although closed form solutions

were limited to the case of one-dimensional flow, it seems that a

similar spectral conditioning approach could be developed in

order to quantify the effective transport coefficients and the

uncertainty of evolving contaminant plumes in three-dimensional

groundwater flow systems. Some of our preliminary results

suggest that, for statistically isotropic 3D formations, both the

macrodispersivity and the effective conductivity will grow with

plume size, while the uncertainty on these coefficients will

decrease (at least up to a certain cut-off scale many times

larger than the largest size of geological heterogeneities).

With some further refinements, it seems that this approach could

provide an analytically tractable model of the process of

evolving macrodispersion with only minimal assumptions on the

random nature of the underlying porous formation.
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Much of the remaining part of this work was devoted to

the development and application of a numertcal approach to

saturated - as well as unsaturated stochastic flow, under the

postulate of statistically homogeneous random field properties of

the porous medium. The proposed approach required solving

numerically the governing flow equation for a single realization

of random field properties in a large but finite domain, with

approximate boundary conditions. Observe that no assumption

whatsoever was made on the nature of the flow at the solution

stage. The motivation behind this numerical "single-realization"

approach was two-fold. First of all, our expectation was that

the single-realization flow fields obtained numerically could be

statistically analyzed by using standard detrending and spatial

averaging methods under some weak assumptions of statistical

homogeneity (section 6.1 of Chapter 6). In this way, the

numerical simulations could be compared directly to available

spectral results (second order moments of the flow field, and

effective conductivity) like the Gelhar-Axness groundwater flow

spectral solutions and the unsaturated flow spectral solutions of

Mantoglou and Gelhar (1987). Moreover, because the

single-realization method does not entail any a priori

assumptions concerning the random nature of the simulated flow

field, it lends itself naturally to an empirical evaluation of

the validity of the homogeneity/ergodicity assumptions of the

spectral theory. As will be seen, these assumptions may not be
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justified in certain cases, but the single-realization approach

can still be used as a means of obtaining, by way of direct

numerical solution, a plausible realization of the detailed flow

pattern in a typical heterogeneous or random porous formation.

To be successful, the proposed numerical approach must

obviously take into account the specific numerical issues

associated with the discrete solution of highly variable,

random-like flow equations on large three-dimensional grids with

fine mesh resolution. The saturated/unsaturated flow simulator

developed and. tested in Chapter 5 was designed specifically for

that purpose ("Bigflo" code). An efficient finite difference

system solver (the "strongly implicit procedure" or SIP method)

was used to solve the saturated (linear) as well as unsaturated

(nonlinear) flow equations, for large realizations of random

hydraulic coefficients on three-dimensional grids as large as one

million nodes. The largest simulations of Chapter 6 (saturated

flow) and Chapter 7 (unsaturated flow) required the use of the

Cray 2 supercomputer, with typical CPU times of a few hours per

simulation. However, a number of meaningful "medium size"

simulations were also obtained on a Microvax 2 minicomputer.

Typically, a "medium size" numerical problem in this

work could involve a grid size of tens of thousands of nodes for

unsaturated flow, and up to two hundred thousand nodes for steady
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saturated flow. The largest numerical problems involved grid

sizes of several hundred thousand nodes for unsaturated flow, and

one million nodes for -saturated flow. To obtain meaningful

numerical solutions for such large random flow problems required

a certain amount of numerical analysis and experimentation, the

results of which are now being discussed. However, the reader is

referred to Chapter 5 for details. See in particular Appendix 5D

for an abstract of the "Bigflo" simulator used to generate all

the numerical solutions analyzed in this work.

One important new result of numerical analysis

concerned the question of consistency and accuracy of finite

difference approximations of stochastic partial differential

equations. This theoretical problem was tackled by developing a

spectral method of truncation error analysis, leading to closed

form expressions for the root-mean-square finite difference error

in the case of stochastic groundwater flow with a statistically

isotropic three-dimensional random conductivity field. More

precisely, the Fourier-space spectrum of the stochastic error

(difference between the discrete solution and the exact solution

of the continuous equation) was explicitly evaluated - at least

to the leading order of a double expansion in terms of the mesh

size (Ax) and log-conductivity standard derivation (a). The

reLative root-mean-square error was defined as the ratio of

standard deviations of the error to that of the variable itself
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(the variables of interest were the hydraulic head and the f lux

vector). It was found that the relative error was in general

proportional to a fractional power (p) of the mesh resolution

ratio (Ax/X), where X is some fluctuation scale or correlation

scale of the conductivity field. The exponent p defines the

order of accuracy of the finite difference scheme in a

mean-square sense.

For the hydraulic head, the order of accuracy was 2 for

a "smooth" log-conductivity field but dropped to 3/2 for a

"noisy" log-conductivity field (respectively Hole-Gaussian and

Markov three-dimensional spectra). For the flux or groundwater

velocity vector, the order of accuracy was 1 in the "smooth"

case, and only 1/2 in the "noisy" case. These previously unknown

results show that the seven point centered finite difference

scheme yields a consistent approximation of the exact hydraulic

head and flux vector for a wide range of random log-conductivity

fields, including the case of the "noisy" three-dimensional

Markov field (non-differentiable in the mean-square sense). The

specific results obtained for the isotropic Markov field

indicated that a good accuracy on the hydraulic head, and a

reasonable accuracy on the flux vector, could be obtained with a

statistical grid resolution (Ax/X) on the order of 1/3. Note

however that these results may hold only for moderate

conductivity variability (presumably for a not much greater than
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unity). These indications were used in Chapter 6 to design the

numerical simulations of stochastic groundwater flow, and to

evaluate confidence intervals on the numerical solutions for

comparison with the results of the spectral theory.

In addition, we also developed in Chapter 5 a

particularly cautions approach for estimating the error due to

the approximate iterative solution of the finite difference

system (SIP solver, based on approximate factorization of the

coefficient matrix and Picard iterations). Thus, we used

standard results of linear algebra to show that the Euclidian

norm of the residual error may significantly underestimate the

true root-mean-square solution error, particularly in cases of

slow convergence. An approximate upper bound on the true error

was evaluated in terms of the residual error and mean convergence

rate of the iterative solver. Numerical experiments for steady

state stochastic groundwater flow (similar to a "random heat

equation") were conducted for values of a- up to 2.3 and grid

sizes on the order of 100,000 to 1 million nodes, using a Cray 2

machine for the largest problems. Briefly, these experiments

indicated that the convergence rate of the SIP solver was roughly

proportional to the unidirectional size of the grid, a number

presumably related to the square-root of the condition number of

the random conductivity matrix. For the degree of variability

and the problem sizes investigated, it was concluded that the
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matrix system could be solved with 1% relative accuracy on the

hydraulic head with a few hundred to a thousand underrelaxed

iterations.

Overall, these results of truncation error analysis and

iterative solver convergence lead us to believe that the

stochastic groundwater flow simulations presented in Chapter 6

were generally quite accurate, particularly concerning the

largest simulations with statistically isotropic conductivity

(1 million nodes, with grid resolution 1/3). Likewise, the

"turning band method" used to generate discrete realizations of

random conductivities seemed adequate, since the spatial

statistics of large conductivity realizations appeared to be very

close to the prescribed ensemble statistics. These indications

appear quite useful in view of the fact that there is no known

exact solution to the stochastic groundwater flow equation.

Some aspects of the numerical/statistical methodology

adopted in this work could be quite useful in other contexts.

For example, our numerical approach and results on stochastic

groundwater flow could be extended to other physical problems

involving random conduction phenomena (thermal and electrical

conduction in composite materials, and random resistance

networks). In addition, our spectral analysis of stochastic

truncation errors could perhaps be extended to other
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discretization methods (weighted residuals and pseudo-spectral)

and to other stochastic equations (convection-diffusion in random

media). This may be particularly important for assessing the

feasibility of direct numerical simulations of solute transport

in random porous media.

Other numerical contributions of this work concerned

the numerical solution of randomly heterogeneous unsaturated flow

systems, involving highly nonlinear and spatially variable

hydraulic coefficients. In the transient case, a fully implicit

time discretization scheme was used. The method used to solve

the resulting nonlinear finite difference system was basically

the same as for linear flow problems, however with an additional

outer Picard iteration loop t

(nonlinear SIP solver). A h

nonlinear finite difference

constraint on the time step

grid Pechet number condition

grid (aAx1  2, where a

log-conductivity function of

size). However, any truly

o sequentially linearize the system

euristic stability analysis of the

equations suggested that a severe

(At/Ax2 ) may be required, unless a

be satisfied at each node of the

is the slope of the unsaturated

pressure, and Ax1 the vertical mesh

rigorous statements on numerical

requirements were precluded by the complexity of the spatially

variable unsaturated flow equation.

In view of these difficulties, the problem solving
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capabilities of the transient unsaturated flow simulator were

tested in an empirical fashion by way of numerical

experimentation (comparisons with analytical solutions, mass

balance checks, and other tests). In the process, some

instructive observations were made on the physics of

two-dimensional strip source infiltration in uniformly stratified

soils with horizontal or vertical layers (cf. last section of

Chapter 5). More importantly, some truly large simulations of

three-dimensional infiltration in "random soils" were analyzed at

length, in Chapter 7.

From a numerical viewpoint, the most difficult random

infiltration problem was the case of transient strip source

infiltration in a statistically stratified soil, with a different

unsaturated conductivity curve defined at each mesh point of the

300,000 node grid in three-dimensional space. It may be of

interest here to recall some of the details of this numerical

experiment (see Chapter 7). About 5 CPU hours of Cray 2 time

were consumed in the simulation of 10 days of infiltration and

10 subsequent days of drainage in a moderately dry soil, with

initially small but increasing time step size. The exact size of

the time step at initial time and at a few intermediate times,

was set empirically by trial and error, although an automatic

adjustment was also made by the code during simulation. Overall,

our experience with this numerical experiments indicates that a
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very severe constraint on the time step could be required for

convergence of the nonlinear iterations in the case of dry soils.

In the case at hand, the initial degree of saturation was only

moderately low, about 20%.

Thus, it may be questioned whether a fully implicit

finite difference method such as used in this work is truly

adapted to the simulation of extremely sharp infiltration fronts

in "air dry" soils, particularly in the presence of random

heterogeneities. On the other hand, the extreme nonlinearity of

the exponential conductivity-pressure relation assumed in this

work may also be called into question. In any case, it should be

kept in mind that, in spite of these difficulties, the flow code

was efficient enough to simulate some rather large and highly

heterogeneous unsaturated flow systems, with grid sizes on the

order of tens of thousands of nodes (Microvax 2) to several

hundred thousand nodes (Cray 2)... in reasonable amounts of CPU

time. - Some of the most important results of stochastic flow

simulations will now be discussed, both for saturated and

unsaturated flow.

The large high-resolution simulations of stochastic

groundwater flow and unsaturated flow in random media were

thoroughly analyzed and discussed in Chapter 6 and Chapter 7,

respectively. Each of these chapters included a "summary and
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discussion" section, of which some essential points are recalled

here. Starting with the case of groundwater flow in

statistically isotropic aquifers, it should be emphasized that a

remarkably good agreement was found between the

single-realization simulations and the spectral solutions,

particularly concerning the effective conductivity and the head

variance. For the latter quantities, the agreement between

simulations and theory was quite good up to large conductivity

variability ( a = 2.3, where a is the standard deviation of

Pn K). However, the single-realization head variance was

computed about a slightly nonlinear trend of hydraulic head in

the mean flow direction, in contrast with the linear mean head

assumed by the first order spectral theory. There was some

evidence that the discrepancy in the mean head was due to the

"modest size" of the flow domain relative to the large

correlation range of the hydraulic head. As a consequence, the

computed head correlations were systematically smaller than the

theoretical ones, although there was a broad agreement concerning

the three-dimensional structure of the head field. On the other

hand, a similar but more pronounced discrepancy was observed in

two cases involving statistically anisotropic conductivities

("shallow" and "deep" stratified aquifers). In the case of a

shallow stratified aquifer, the spatial structure of the

simulated head field did not agree with the infinite domain

spectral result. This confirms our previous discussion
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concerning potential restrictions on the range of applicability

of the spectral theory.

With these results in mind, it might be useful at this

point to discuss some implications for practical issues like the

solution of inverse flow problems, or other questions where the

spatial structure of the hydraulic head field (measured or

predicted) may intervene. Broadly speaking, our numerical

results indicate that the spectral theory is essentially correct

for the head variance, and to a lesser degree the head

correlation structure, provided that the effects of large scale

inhomogeneities be removed by empirical detrending of measured

hydraulic heads. In actual practice, statistical inhomogeneity

can be equated to the nonlinearity of the observed mean head

field. We expect that the head covariance function predicted by

the spectral theory be relatively accurate when this nonlinearity

is mild. In the case of shallow aquifers however, the predicted

head covariance function may not be realistic if aquifer

thickness is on the order of ten horizontal correlation scales or

less. These indications may be particularly useful for the

solution of inverse flow problems, where prior knowledge of the

cross-correlation between heads and log-conductivities will be

required.

The case of statistically anisotropic log-conductivity
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fields is important for applications, as most natural geological

formations appear to be stratified. In the case of horizontal

stratification, the theoretical (spectral) results obtained in

Chapter 3 suggested that the groundwater velocity vector was

strongly anisotropic in proportion with the degree of anisotropy

of the porous formation. However, recall that the hydraulic head

appears to be only mildly anisotropic, independent of the

formation's anisotropy (from theoretical and simulation results).

Thus, it can be inferred that the hydraulic head carries little

information about the covariance structure of groundwater

velocities, which ultimately determines the fate of contaminants

(dispersion). Now, since detailed measurements of groundwater

velocities are rarely feasible in practice, it seems particularly

important to ascertain the validity of the spectral results

concerning the correlation structure of the flux or velocity

field. This question remains open in the case of stratified

aquifers; however, encouraging results were obtained in the

special case of statistically isotropic aquifers as explained

below.

In the case of statistically isotropic aquifers, the

groundwater velocity correlation functions (tensor) obtained

numerically agreed very closely with the spectral results of

Gelhar and Axness (1983) for moderate log-conductivity

variability (a = 1), and were still in reasonable agreement for
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higher variability (up to a = 2.3). However, the Gelhar-Axness

solutions appeared to underestimate the velocity variances,

especially for high variability (a > 1). The discrepancy was

milder for the "improved" velocity spectrum proposed in this

work, although still significant. The numerical values obtained

for the velocity variances suggested that the high order terms

neglected in the standard and "improved" spectral solutions grow

exponentially with the log-conductivity variance. Equations 6.13

give empirical expressions fitted to the numerical velocity

variances. Finally, a visual inspection of the numerical

velocity vector field also revealed that the longitudinal

component had a positively skewed probability distribution,

possibly close to a lognormal distribution.

These findings should motivate future research towards

a higher order characterization of the random groundwater

velocity field, as this may have consequences for stochastic

solute transport. Our finding that the first order spectral

solutions underestimate the velocity variance with respect to

numerical solutions, also imply that contaminant

macrodispersivity (over large time scale) will be higher than

predicted by the spectral theory. Admittedly, more work is

needed in order to assess more precisely the accuracy of our

numerical evaluation of the variances of groundwater velocity.

The effect of numerical noise was taken into account in our
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comparisons of numerical/spectral solutions by using the previous

results of truncation error analysis. It seems also important to

evaluate the possible effects of the shape of the input

log-conductivity (a Markov spectrum was used in the case at

hand). The influence of the log-conductivity spectrum on

stochastic flow and transport solutions was discussed in

section 3.2 of Chapter 3 ("infrared" and "ultraviolet"

divergences of Fourier integrals). At any rate, the simulation

results of Chapter 6, section 6.3, clearly show that the

"improved" spectral theory provides a reasonably accurate

approximation of the groundwater velocity covariance for a wide

range of conductivity variability, at least for the specific case

of an isotropic Markov log-conductivity field with exponential

covariance.

Overall, we may conclude that the single-realization

approach to stochastic groundwater flow led to statistical

results similar to those obtained by the infinite-domain spectral

theory, at least for a choice of domain size and boundary

conditions that guaranteed the approximate statistical

homogeneity of second order moments of the flow field (after

empirical detrending). This encouraging result seems to confirm

the operational character of the homogeneity/ergodicity

hypothesis on which the spectral theory depends, at least for

steady state groundwater flow in sufficiently deep aquifers and
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approximately constant "regional" hydraulic gradient. On the

other hand, the limitations of the homogeneity/ergodicity

hypothesis appeared to be much more severe in the case of complex

nonlinear flow systems, such as infiltration in randomly

heterogeneous unsaturated soils (Chapter 7). The numerical

single-realization solutions of infiltration are now being

discussed.

In the case of transient infiltration from localized

(strip) source in moderately dry random soils, it seemed quite

obvious that no large three-dimensional flow region of

approximate statistical homogeneity developed during the time

scales of simulations (on the order of days or weeks).

Nevertheless, visual inspection of the time-dependent

three-dimensional pressure fields revealed some global features

of evolving unsaturated plumes in heterogeneous soils. It was

observed that maximum variability of the pressure field occured

when the level and the slope of the unsaturated log-conductivity

curve were both random and statistically independent. In the

case of statistically isotropic soil, the shape of the wetted

zone at early times of strip-source infiltration appeared to be

extremely contorted in 3D space, but with little lateral

spreading. On the other hand, there was a pronounced lateral

spreading away from the strip source in the case of statistically

stratified soils (vertical/horizontal anisotropy ratio equal to
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1/4). Based on the spatial pattern of pressure contours observed

during infiltration and drainage, the anisotropy of the flow

field appeared to be pressure-dependent, with a more pronounced

lateral spreading of the edges of the moisture plume (marginally

wet) than inside the core of the plume (wet). This is

qualitatively similar to the behavior predicted by Mantoglou and

Gelhar (1987) based on their linearized spectral solutions of

transient unsaturated flow (the anisotropy of the wetting

effective conductivity is more pronounced in dry regions than in

wet regions).

In spite of the large size of the grid (300,000 nodes)

it seemed preposterous to attempt a quantitative statistical

analysis of the above strip-source experiment, as the unsaturated

plume remained too small to sample a sufficiently large

"spectrum" of soil heterogeneities. Indeed, some of the features

of the simulated moisture pattern seemed to be specifically

related to the idiosyncracies of the heterogeneous environment

(the particular random field realization of hydraulic parameters)

and to boundary and initial conditions (strip width, input flux

and initial pressure head). In view of these limitations, it may

be useful to examine from a more general point of view the

possibility of obtaining statistically meaningful realizations of

transient unsaturated flow in typical situations.
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The case of the accidental spill of a radioactive

liquid at the Hanford site can be used here for illustration (see

Chapter 1, and the report by Rouston et al. 1979 for details).

As a first approximation - although admittedly a crude one - let

us assume that the contaminant plume can be equated to the

unsaturated plume. The source located near soil surface, can be

assimilated to a disc with a diameter of a few meters. Due to

the axi-symmetry of the source, we expect that the moisture or

contamination pattern be more nearly statistically homogeneous

tangentially around the axis of the source than along any other

direction ("axi-symmetric homogeneity"). Finally, note that the

time and length scales of interest could be a few decades and

several tens or hundreds of meters, or perhaps much more. In

comparison, the natural fluctuation scales of the formation

heterogeneities could be on the order of a fraction of a meter or

perhaps several meters.

The key question is whether the statistical properties

of the three-dimensional unsaturated plume (real or simulated)

will converge to some stable quantities as time goes on.

Unfortunately, it seems clear from our example that a direct

numerical simulation similar to the highly detailed simulations

of strip source infiltration obtained in this work, will be

extraordinarily prohibitive given the time and length scales of

interest: perhaps tens of millions of mesh points, and hundreds



734

of hours of supercomputer time on a Cray 2 machine). Thus our

hypothetical example leads us to conclude that some of the

features of the current single realization approach may have to

be altered before a meaningful and accurate characterization of

evolving unsaturated plumes can be achieved for the very large

time and length scales of interest. Essentially the same remarks

apply to the similar problem of evolving contaminant plumes in

groundwaters. To our knowledge, there exists at present no

satisfactory simulation (high resolution -- large time scale) of

these types of phenomena that could be used for testing existing

analytical theories.

On the other hand, in the case of a steady state

unsaturated flow ("rainfall" infiltration), we have found a

relatively good agreement between numerical results and the

linearized spectral solutions of Mantoglou and Gelhar (1987) and

Yeh et al. (1985). The steady state pressure field obtained for

a statistically anisotropic soil was analyzed by the same spatial

averaging method used in groundwater flow simulations, assuming a

statistically homogeneous random field of pressure in all three

space directions. The pressure head standard deviation and the

vertical component of the effective unsaturated conductivity were

both within 20% of the theoretical spectral solutions. This

encouraging result is of interest for applications involving

toxic wastes buried in dry formations characterized by a very
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slow (downward?) flow of water, as in the hypothetical scenario

discussed by Winograd (1981). In such cases, the simulated

unsaturated water velocity field, if obtained on sufficiently

large high-resolution grid, could be used to simulate the

transport of a radioactive solute leaking from the buried source.

Note that the present "rainfall" infiltration experiment on a

300,000 node grid involved a relatively "modest" domain size

(5m x 15m x 15m) and a relatively high downward flux

(213 mm/year) compared to only 2 mm/year at the Yucca Flat site

in Nevada (approximate evaluation by Winograd, 1981). The time

scale of interest for contaminant transport could be thousands of

years or more.

It remains to be seen whether detailed simulations of

very large steady state unsaturated flow fields in extremely dry

heterogeneous formations can be obtained at reasonable costs with

the present version of our unsaturated flow simulator. At any

rate, the present results strongly suggest that the linearized

spectral solutions of Mantoglou and Gelhar (1987) may provide an

adequate characterization of pressure variability and effective

conductivity in such cases. This is in contrast with the case of

transient infiltration/drainage from localized sources, where the

question of the validity of the homogeneity/ergodicity postulate

remains open.
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[b] Summary of contributions

It may be useful at this point to recapitulate in a

compact form the main findings of this work, with a highlight on

new approaches and results. For convenience, we follow the order

of exposition adopted in this report; analytical results of

Chapters 3 and 4, numerical analyses of Chapter 5, and

statistical analyses and interpretation of single-realization

simulations in Chapters 6 and 7. A header is used to indicate

the nature of the results being summarized (analytical results,

numerical analysis, simulation results):

Analyttca ResuLts: Explicit characterization of the

stochastic hydraulic head and groundwater velocity

f ields by using the spectral solution method of Gelhar

and Axness (1983) in the case of statistically

stratified aquifers: new results concerning the

statistical anisotropy of the flow field and the

applicability of the theory for finite-thickness

aquifers.

Analyttca ResuLts: Non-perturbative spectral relations

for stochastic groundwater flow in statistically

isotropic formulations. Test of first order spectral

solutions: they satisfy all the non-perturbative
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spectral relations between the flux and head spectra in

1,2,3 dimensions. In particular, an equation relating

the flux and head spectra is shown to be "exact" in the

2D case.

Analytical Result: New closed form expression for the

effective conductivity of stochastic groundwater flow

systems in the general case of 3D statistical

anisotropy. This conjectural expression fits most of

previously established results (Matheron 1967; Gelhar

and Axness 1983), including those known to be exact.

Analytical Result: "Improved" spectral approximation

for the groundwater velocity spectrum based on a system

of equations governing the velocity or flux vector.

The velocity variances and the resulting

macrodispersivity differ from the standard spectral

results of Gelhar and Axness (1983). The behavior of

both statistical properties appear more realistic with

the new solutions. Numerical flow simulations also

showed a better agreement with the new expressions for

velocity variance.

Analytical Results: Self-similar model of randomness
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and "spectral conditioning" approach for the

characterization of stochastic flow and transport

phenomena over finite and time dependent length scales.

Quantification of effective flow and transport

coefficients over finite size domains, and the

uncertainty on these coefficients. For evolving

phenomena such as a growing concentration plume in a 3D

isotropic medium, the preliminary results suggest that

macrodispersivity and effective conductivity increase

while their uncertainty decreases.

Numerical Analysts: Truncation error analysis for the

finite difference approximation of stochastic

groundwater flow equation (a model of "random heat

equation"). Explicit closed form evaluation of the

root-mean-square error on the hydraulic head potential

and on the water flux vector, for different types of

random log-conductivity fields. The order of accuracy

is fractional in the case of a "noisy" log-conductivity

field such as the non-differentiable 3D isotropic

Markov field: 3/2 for the head and 1/2 for the flux, in

terms of the mesh size resolution (Ax/X).

Evaluation of the true solutionNumerical Analysts:
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error due to the approximate factorization and

iterative solution of the finite difference system with

the SIP solver. The residual error underestimate the

true error in cases of slow convergence. Applications

and numerical experiments for stochastic groundwater

flow systems with grid size up to 1 million nodes.

Analysis of convergence rate (inversely proportional to

the unidirectional size of the grid).

Numertcal Analysts: Non-standard stability analysis of

the time-implicit finite difference approximation of

the nonlinear unsaturated flow equation. A Peclet

number constraint Pe < 2 is required for nonlinear

stability. Note Pe = a Axi, where a is the slope of

the log-conductivity function of pressure, and Ax1 the

vertical mesh size. A severe constraint on the time

step size could result if this Peclet condition was not

satisfied everywhere, as may occur when a is a random

field.

Stmulatton Results: Most of the spectral results of

stochastic groundwater flow were confirmed by

statistical analysis of single-realization flow fields,

with random hydraulic conductivities generated by the

3D turning band method. The limitations of the
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spectral results in the case of high variability and

finite domains (shallow aquifers) were analyzed in

detail. The simulations involved 3D grids of size

100,000 to 1 million nodes, and statistically isotropic

as well as anisotropic random log-conductivities with

standard deviations from a = 1 up to 2.3. In the

isotropic case, both the hydraulic head and the

velocity field were thoroughly analyzed.

Simulaton Results: The case of localized infiltration

in three-dimensional heterogeneous soils with random

unsaturated conductivity curves was explored by the

single-realization approach with exceptionally fine

grid resolution (from 25,000 up to 300,000 nodes). The

wetting pattern appeared to be very sensitive to the

variability and anisotropy of the conductivity

parameters (especially the slope of the

log-conductivity curve). The study includes in

particular a comprehensive qualitative analysis of

infiltration and drainage on a statistically stratified

soil (20 days, 5m x 15m x 15m, and 300,000 nodes).

Stmulation Results: Steady state "rainfall"

infiltration (213 mm/year) on a statistically

stratified soil (5m x 15m x 15m, and 300,000 nodes).
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The results of statistical analysis were in agreement

with the linearized spectral solutions of Mantoglou and

Gelhar 1987 (pressure head variance, and unsaturated

effective conductivity).

[c] Outlook of stochastic approaches:

Some of the new methods and results developed in this

work, particularly the approach of "spectral conditioning" and

the results obtained by single-realization simulations, suggest

some possible modifications of current conceptual approaches of

naturally heterogeneous subsurface flow and transport phenomena.

Originally, one of the leitmotives of this work was that such

phenomena can be represented by single spatial replicas of

statistically homogeneous and ergodic random fields. At first

sight, the single replica postulate seems to be a natural working

hypothesis for the study of randomly heterogeneous phenomena,

since events actually take place in a "single world" rather than

through some hypothetical ensemble space. Furthermore, the

homogeneity-ergodicity postulate can be justified intuitively by

the observation that such physical phenomena, taking place in

heterogeneous environments over large length scales, may become

globally homogeneous after many natural fluctuations have been

encountered. The idea of balanced compensation is in fact at the

root of our intuitive understanding of the concept of "chance"
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(law of large numbers: stable and equal frequencies for head or

tail in a game of coin tossing).

Accordingly, the "ergodic" or "single realization"

approach purports that spatially heterogeneous subsurface

phenomena may be characterized uniquely by a few statistical

parameters. These parameters describe spatial fluctuations in a

synthetic manner, in the same sense that the mean, amplitude, and

wavelength characterize entirely a sinusoidal signal. In the

language of random fields, the equivalent statistical quantities

are the mean, standard deviation, and correlation lengths.

Similarly, the concept of cross-correlation between two random

fields can be related to the phase difference between two

periodic signals. This simple analogy illustrates the fact that

deterministic (periodic) as well as random (ergodic) spatial

fluctuations can be characterized in terms of spatial moments

without any explicit recourse to a hypothetical ensemble space.

In summary, the ergodic "single-world" approach focuses on a

single flow/transport event, taking place in "infinite" physical

space, and whose statistical properties describe uniquely the

spatial structure and global transport properties of the

phenomenon at hand.

However, the single-world approach might be challenged

on the grounds that natural flow and transport phenomena take

place over finite or evolving length scales rather than in
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infinite space. A difficulty of this nature was encountered with

some of the numerical single-realization simulations analyzed in

this work, particularly for steady groundwater flow in shaLlow

stratified aquifers, and for transient infiltration from

locatized sources (evolving moisture plume over a time scale of

days or weeks). In the latter case in particular, it seemed

clear that the assumptions of infinite domain, homogeneity and

ergodicity, were not operational. In view of this crucial

difficulty, it may be useful to consider alternative

methodologies.

Some alternative stochastic approaches proposed in the

literature do not have recourse to the postulate of

homogeneity/ergodicity of subsurface flow/transport phenomena.

Broadly speaking, these approaches are based on an ensemble

characterizat ion of the statistical properties of random

phenomena, and rely more or less explicitly on the notions of

uncertainty and risk. The case of stochastic groundwater flow

was tackled along these lines by Dagan (1982), Townley (1983),

McLaughlin (1985), and Ma et al. (1987), using various

mathematical methods (approximate Green functions, numerical

solution of approximate moment equations, Monte-Carlo

simulations). In these ensemble approaches, the concept of

uncertainty seems to play a major role, particularly for

phenomena of a local nature (e.g. uncertainty of drawdowns near a
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pumping well). Nevertheless, there remains some ambiguity

concerning the physical meaning of the statistical results

obtained by the proponents of the ensemble approach in some

applications (uncertainty or spatial variability ?). This

question might be clarified by a simple hypothetical example in

the area of groundwater contamination.

Consider the case of an evolving concentration plume

due to the continuous release of a contaminant from a local

source in a heterogeneous aquifer. Depending on the

configuration of local heterogeneities near the source, the plume

may initially take an extremely asymmetrical shape, or even split

in two distinct parts. An example of plume splitting can be seen

for instance in Figure 7.6 (bottom) in the case of a moisture

plume during strip source infiltration. See also the very

different moisture patterns observed in two distant vertical

planes along a strip source (top and bottom parts of

Figure 7.12). Now, it seems possible that some of the asymmetry

and inhomogeneity observed at early times will persist as time

goes on, despite increasing homogeneization and mixing with

increasing travel distance. The peculiar features of the

evolving plume are determined by the idiosyncracies of the

heterogeneous formation in the neighborhood of the source, and

depend on the exact location of the source in situ. With these

considerations in mind, it seems clear that localized or evolving
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flow and transport phenomena can be characterized by a certain

degree of uncertainty. At the same time, the concept of

"effective" or "large scale" transport properties (like effective

conductivity and macrodispersivity) may still be relevant,

provided that the particular length scale of interest be taken

into account.

The analytical approach of spectral condtttonting,

developed in this work, may be one consistent way of combining

the ensemble and single world approaches. The ensemble viewpoint

enters into play by assigning uncertainty to the actual location

of the contamination event in a single, randomly heterogeneous

formation. The single world approach intervenes in the

definition of global or effective transport properties at the

scale of interest. Along these lines, it seems possible to

design, in parallel to the spectral conditioning approach, a

numerical simulation method somewhat similar to the

single-realization approach implemented in this work. For

instance, the fate of a contaminant released from a local source

could be studied by solving numerically the flow and transport

equations in a single realization of the random formation, using

Monte-Carlo simulations to sample several possible locations of

the source with respect to the detailed configuration of the

heterogeneous porous formation.
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APPENDIX 2A:
UNCERTAINTY OF SAMPLE STATISTICS FOR RANDOM

VARIABLES AND RANDOM FIELDS

This appendix gives a brief overview of finite sample

statistics for random variables, and adds further indications in

the more general case of random fields. This may serve as a

reference for parts of chapters 2 and 6 where some of the sample

statistics are used to evaluate confidence intervals on spatial

moments of single replicas of random fields. However, the

present review is not meant to be a complete summary of available

results in the literature.

1. Random variables:

The statistics of finite size samples of a random

variable (y) are themselves random variables, whose variances

quantify the uncertainty of finite size sample statistics. In

the case where the sample size is reasonably large (say n > 50)

the sample mean and the sample variance are defined,

respectively, by:

^ 1 1
n.

n-l = 2(
1

^ 1^u. __ (y _- 3
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and follow approximately the normal distributions:

p: N (p, u2 /n)

1% 2 4
a2 : N (a2 , 2a /n)

Moreover, the sample standard derivation a also follows

approximately a normal distribution for sufficiently large n,

as shown below:

a: N (a, a2 /2n)

These results can be found in many textbooks, for instance

Kendall and Stuart (1977). Note that all three estimators are

unbiased and convergent.

For practical applications, it may be useful to

quantify the uncertainty of these sample statistics by defining a

"relative error" (E) as follows:

E(ji) -(Var(11))

a2
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E) -(Var(o))

Plugging the previous results in these expressions gives the

relative errors on the sample mean, variance, and standard

deviation as follows:

E() =

E(U 2 ) =

E(u) = Vl/2n

As suggested in chapters 2 and 6, these formulas can be used also

to evaluate (crudely) the uncertainty of sample statistics of

finite size realizations of correlated random functions, with an

appropriate definition of the "equivalent" number of independent

samples (e.g. n = L/X for one-dimensional space).

2. Correlated random variables and random functions:

Let us point out other results of interest in the case

of correlated random functions or discrete random processes

(sequence of correlated random variables). Beginning with the

case of two correlated random variables (yi, y2 ) following a

bivariate normal distribution, Kendall and Stuart (1977) show

that the variance of the sample correlation coefficient (p) is

given by:
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Var (p) = - (1-p) 2
P n

However, Kendall and Stuart also point out that the sampling

distribution of p tends very slowly to normality as n increases,

so that using this formula to estimate confidence intervals on

the true value (p) may be misleading.

For a discrete random process or a sequence of random

variables, the sample correlation coefficient:

n-j n
P. . 2 Y. Y. .A/ 2 U2

i n- 1 1+, n U= i

is unbiased for sufficiently large n, and its variance is given

by:

Var(p) = (pT + p p

i=-00

- 4p P p1+j + 2p2p ].i~~~ ,]~j i

The latter formula is due to Bartlett (1946).

Finally, for a stationary random function Y(x) of

one-dimensional space (or time), the sample covariance function

could be evaluated as:
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R(f)

0

(Y(x) - )(Y(x+E)-p)dx

for lag distance f L, where L is the size of the available

sample. The above estimator is unbiased. Bartlett (1946) gave

the ensemble covariance between two values of the estimated

covariance function at different lags (see also Vanmarcke, 1983).

In particular, this yields the variance of the estimated

covariance function:

1
Var(R(f)) =

0 0

Alternatively, the domain of integration (L-E) could be replaced

by (L) to obtain unbiased estimates. With this modification and

some further manipulations, it is easily shown that:

The latter formula gives explicitly the ensemble variance of the

estimated covariance function at any lag distance f < L. Note

Var(R(f)) =

+L

(1 -' )(R(s+f)-R(s-f) + R2 (s))ds

-L

COV(Y(xi-f)-Y(xi),Y(x2-f)ty(x2))dxidx2
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that an a-priori knowledge of the true covariance function is

required.

It may be useful to illustrate the above formula in a

simple case. Let Y(x) be a one-dimensional random function with

exponential covariance function:

R(f) = 2 e-jI/x

where c2 is the variance and X the integral correlation scale

of Y(x). After some tedious but straightforward integrations, we

obtained a closed-form expression for the squared relative error

defined as:

S2(f) = Var(R(f))/R(f) 2.

In particular, that expression could be simplified in the case

L >> X (large number of equivalent independent samples). The

result is given below:

2 2)= X_[ 1 f 1 X + f

At zero lag ([ = 0) this gives the relative error on

the estimated variance:
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62(0) 2

2 1 (1 -TE

which, by comparison with the result obtained for the estimated

variance of a single random variable (62 = 2/n), illustrates that

for X/L << 1 the number of independent samples becomes n = L/X.

For intermediate lag distances, say X = , the relative error is

approximately (using X << L):

Finally, at large lag distances >> X, one obtains a large

relative error that goes to unity (100%) as f goes to L. These

simple results could probably be generalized to treat the case of

discrete finite realizations of three-dimensional fields.
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APPENDIX 3.A

CL.OSED FORM EVALUATION OF THE HEAD GRADIENT VARIANCES FOR THE
3D ISOTROPIC MARKOV SPECRUM

Assuming for convenience that the mean hydraulic

gradient J is aligned with the xi axis, and denoting h -x
-x. the

gradient of head perturbation, the spectrum of the head gradient

field is, from Section 3.1:

Sh. ,h .(k) = k k
1 ,j 1

Jkk2

k

In particular, this gives:

i
h.,h 121 Sff(k)V i k

= + 2 2Uh +% + rh,
k2 Sf f(k) dk.

2

Oh.
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Plugging this expression in the 3D Markov isotropic spectrum, one

obtains:

2 _ fkij 1 dk.
. i f2 k2 (1+X2k2 ) 2

I f
00x

Using spherical coordinates, this gives:

0=27r qp=ir
2

2 =f = r'7h~ 2 J J
i 1 iT =0 p0=O

k=+o

cos 2 0 sin2 'p - k2 sinp d@ de dk

(1+x
2k 2 ) 2

k=0

0=2r

V 2

72 J0
0=0

cos2 E dO f sin'p dep

P=O

k=+00

k dk

(1+x 2k2)2

k=0

4 f u du
3 7r (1+U2)

The integral above, is equal to 7r/4, whence the final result:

a2  1 2 j +22 2 = J1 h 3 f 2h h2 v> -3 f
= , ,

On the other hand, the transverse head gradient variance can be
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obtained directly as follows:

h2 Sh2h2(k) dk

= Ji k I Sf f(k) dk

Plugging the 3D isotropic Markov spectrum above and integrating

yields finally:

2 2 12 2

Oh2 ' Ch 3 15 1 f

The longitudinal head variance obtains readily from previous

results, using the fact 7h2 = uh. by symmetry. Whence:

2

hi

2
Uh

= 1 r2 j

2 u + 2~

C222r

2~ f 2j2

3

=> 2  1 2
h 5 fJ
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In summary, the head gradient standard deviations are:

11
nhi f J d 2 = f
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APPENDIX 3.B

CLOSED FORM EVALUATION OF FLUX VARIANCES AND CROSS-CDVARIANCES
AT LAG ZERO, FOR THE 3D ISUTROPIC MARKOV SPECTRUM

In order to evaluate R (0), we use the flux spectrum

of the standard first order spectral theory, given by equation

(3.18):

r k.k )
S (k) = K2 J 2 -2q iq - G' k k2 6j 1 2] Sff(k)

where S is the 3D isotropic Markov spectrum:

Sff(k) = - 1
72 (1+X

2k2 )2

and k is the radial wavenumber:

= ki + k2 + k3.

The cross-covariances are given by

R (0) = iIS q (k) dk. (i=1,2,3 and j=1,2,3)
-00
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By using certain symmetry properties of the flow as explained in

Section 4.2, only the following spectra need to be integrated:

K2 j 2 2S (k) =K JI af
qigq

j 1: S (k)
q1j.

K 2 2 2G ,Uf 1 - - kk 1+x2k2)2

S (k) = K J j2
q2q3  G f

j1: S (k) = K J 
j 2

1,. Transverse Flux Variance:

a2 =R (0) (j = 2,3):
qT qj j

kik2 k3  x3

k 4  7r2 (1+X2k 2 )2

1 j _______

k* 4 r2(1+x2 k 22

TTkik X dki dk2 dk3
JJJ k* 4 2(1+x2 k 22

K2

K J 1 2C2

7r 27r +0

-- - = I

p=0 6=0 k=0

dk dO dp - k2 sinp.

,2(1+x2 k 22k2] 

2
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sin2 p cos 2 0 _ sin2 0 sin2

(1+x
2 k2 )2

7r 27r

j sin5 pdp -

qp=O 0=0

+00

cos20 sin2 0 dO k dk

k= (1+x2k 22
k=O

16 !r 2r
4, 3

1
15 2 T ~ 1 K2 J2 2

2. Longitudinal Flux Variance:

a2 = R (0):
q L qjq1

U 2

L ii

K 2 2 2r2
I'S 1 2/k2)2(1-ki

(1+x2 k 22

dki dk2 dk3

7r 27rI P
p= (=0

[1 - sin2( cos2 92.]2  k2 sin dk dO dp.

j (1+x
2k 2 ) 2

k=0

Expanding:

(1-sin2p -os2 O)2 sinp E sinp - 2 siny cos20 + sin<p - cos 0

v2

7r 2

7r2
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and plugging this in the integral gives:

27r 7r

- - d x

0 0

s inpdq - 2

2rr

+ cos 4 de x J sins9pdf

0 0

27r }r
ICos 2 Od x js in'pde

0 0

k2 _dk

(1+x2 k 22
x J

0

-3
- 27 x 2 - 2

8
15

x 7r x 4/3 + 3xv x {

a2  2 2K
Oq L 15 KG Cf J

3. Cross-Covariances Between Different Flux Components at Lag
Zero:

These cross-variances vanish due to the fact that the

spectral integrand is odd. Precisely, Rq2q 3 (Q) vanishes since

S (k) is odd in k2 and k3 ; similarly, R (0) vanishes

because S (k) is odd in k, and k2 . Whence the result:

I

R (Q) is 0 for i X j.
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APPENDIX 3.C

CLOSED FORM EVALUATION OF CERTAIN CORRELATION
FUNCT'IONS OF THE FLUX AND HEAD GRADIENT VECTORS, FOR THE 3D

ISOTROPIC MARKOV SPECTRUM

1. Transverse Flux Correlation Function

Here, we focus on the correlation of the transverse

flux component q 2 along the other transverse direction xa.

This correlation function is defined as:

R (0,0,f)
R (fe) = q2q2
q 2q 2  2

q2

From (3.18) and (3.24) we have:

S (k) = K J - 2 1 Sf f(k)
k.k 

1
k5 2 j

CF2 =
1

TK72 T2j
q 2 1f5 G fJI

which gives for the correlation function:

2k
R (UA = 15 fe jkaf3 2 Sff(k)dk.

q2q2 CY 2J k 4
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Plugging the 3D isotropic Markov spectrum:

a 2 x3

Sff(k) =
r 2 (1+X2k2)2

in the integral above yields:

15X3  jk[f[ 1k k d
q2q2 T2 JJJ k4 (1+X2k2 )

Using spherical coordinates we obtain finally

double-integral:

15X3 F X dr k2cos(kf3cosp)R (qq ) = 47r sin p dp dk.
4292 (1+X2k2)2

Equivalently, by letting u = \k and a = f./A this gives:

15 u2cos(ua cosp)
R (f) = 4-- sinp dFJ du
q2q2 4-r (l+u2)2

'-I

Finally, taking symmetries into account and letting v = sinp or

cosp, and 1-V2 = cosp or sinp, with 0 < p ( ir/2, we obtain:

Rq A 15 f 1 (1-v 2 )2 dv f u2cos(uv a) du

q2q2 2v A (1+u 2 ) 2

From Gradshtein and Rhyzik (3.728.3),

the

we have for the inner
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integral:

x2cosAx dx = 1-A)e-A

0 (l+x
2 )2

Note that as A -+ 0 the result above converges to -r/4 as expected

(good check). Plugging this result in the double-integral above

yields:

1

R () = [1-av-2v2+2av +V4-av]e-av dv
q2 q 2 8 fo

where a = f3/A is the dimensionless separation

integration, this gives:

1) 1-a) +-a(,+ 1Rq2q2(a) a1- + e (1a)-

+ 2e-a 1 + 2-+ 2_3_ 4

a2 a a

- 2ea [1 + j + 6 + +
a a2 a3

- e-a 1 + + 12 a +
6 a 2 a 3 a 4

distance. After

1
a

12

a 3

a+ 24
a" as

5+ 20 +60+ 120 +120 120

a a2 a3 a4 a5 a

-e -a -+
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This expression finally reduces to:

15 1 12 -a 5 12 12R (0,,f3) = - - (}1 - + +
q2q2  2 a 2 a 2 3

where a = fA. It can be checked that this correlation function

goes to one as a -+ 0, as it should. This can be shown by using

a Taylor development of e a up to fifth order.

2. Head Gradient Correlation Functions:

The correlation functions Rhh(l) for the head
1 j

gradient vector h. = dh/dx. can be obtained similarly by
1 1

integrating the spectrum Sh.h.(k) given in Chapter 3. It turns
1 j

out that some of the directional correlations thus obtained are

identical to certain flux correlations. In particular, we

obtain:

Rhih,(O,OE3) = R q2q2 (,,).

A more general closed form expression for Rhh(E) could be

1 J

obtained directly by differentiating the known head correlation

R (E) as explained in Chapter 3:
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a2R (_)

Rh h (f = - f _ '

By carrying out differentiation with respect to [ and to

r = J2+ ES, one obtains equation (4.14) in the text. The final

closed form result, not reproduced here, would obtain by plugging

Rhh(f) of equation (3.22) into equation (4.14).
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APPENDIX 3.D
HEAD COVARIANCE FUNCTION FOR THE 3D ANISOTROPIC

MARKOV SPECTRUM (INDICATIONS FOR NUMERICAL INTEGRATION)

In this appendix, we explain how the head covariance

functions shown in Figure 3.4 were obtained for arbitrary

anisotropy ratio, in the form of double Fourier integrals to be

tntegrated numericaly.

Assume e1 = P2 = e and let e = e3/P be the arbitrary,

anisotropy ratio in the 3D anisotropic Markov spectrum of

log-conductivity Sff (Table 1 of Chapter 3). The relation

between the head and log-conductivity spectra is:

S (k) = J - Sff(k)
k

The head covariance function is just the Fourier Transform of

S

R hh(E) = e' i Sl(k) dk

which finally leads to an expression of the form:
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Rhh(E) = ' j J A - I(j)

where I(E) is the triple integral:

2 ; k'- cos(k f)
I(4) = (7) -2 2 dk.

k [e +klik+e2 k~]2

We now express I(f) by using spherical coordinates in

Fourier space:

k =Jk+k2+k

k= k cosO sino

k2= k sine sino

k3 = k coso.

0 < k < + o

0 < < 27r

0 <p 7ir

The Jacobian of the transformation (from Cartesian to spherical

coordinates) is:

8(k1 ,k2 ,k3 )

a(k,0,0) = k2 - sin.

After some manipulations, this gives:
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2r +C0

I(E) = (2) - cos2o-de { sin3 do

0 0 (

cos(k-A) dk

) [k2B2+e2 2

where:

A(0, ) = (E cos8 + E2 sinO) sin4 + f3 - cosO

B(O) = ]sin2, + 62 - cos2 4.

Generalizing a formula given by Gradshteyn and Rhyzik (3.729.1)

we obtained for the k-integral above:

cos(k-A) dk =r 1 eC

o [k2B2 +p-2 ]2 4-3 B

where:

C =1e_ I-I.

This leads to the expression given in the text:
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which was finally integrated numerically as explained in the

text.

The head variance in particular obtains by letting the

separation vector go to zero:

h = Rh ( ).

In this case, the integral I(0) above comes much simpler:

2v
I() = -2 -

0

cos 2 -dO j sinao do

0 lsin2 +e2.cos240

This integral (or another equivalent integral) has already been

evaluated by Naff and Vecchia (1986). The resulting head

variance is given in close form in the text (equation 3.26).

2w 7

I() = -- - cos 2
0. df F(0,4)d4

0 0

F(e,SS) = sin 3 -1+C(0 1)] e-C(O)
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APPENDIX 3.E

QUASI-ANALYTICAL EVALUATION OF THE HEAD COVARIANCE
R ,(OOE3 ) FOR THE 3D ANISOTROPIC MARKOV SPECTRUM WITH

SMALL ANISOTROPY RATIO

In this appendix, we compute the vertical head

covariance function in the anisotropic case with small anisotropy

ratio (e << 1), in order to check the more general results

obtained by numerical integration. The result given in Section

3.4 for the 3D anisotropic Markov spectrum was:

Rh(E) = I J2 j2 -I()8 f

where I(f) had to be evaluated numerically.

In the case e << 1, we let e = 0 in I(f) and restrict

the analysis to the case of a vertical separation vector

(0,0,f3). This gives a more tractable integral as shown below

(for E3 > 0):
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27r

I(7) = {
r20

cos 2E-dE.

sin 2  - 11 + T cotg .3 exp1- 7- cotg 0 dO

Tr/2E33

+ 7r/2 + 
[ + cotg j exp - cotg dO }

Now, let:

u = cotg 0

a = f 3 /

After some manipulations, we obtain:

I(f3) = % -audu + a { ue-au du
V ( 1+u2)2 0 (1+u 2)2

where a = f3/i is the dimensionless separation distance in the

vertical. We now use a result from Gradshteyn and Rhyzik

(3.355.1 and 2):
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e-adu 1
= ea {ci(a)-sin(a) - si(a)-cos(a)

O (1+u2)
2

-a-[ci(a)-cos(a)+si(a)-sin(a)]}

COfc

0

ue-adu
(u -au d = {1-a-ci(a)-sin(a) - si(a).cos(a)]}

(1+u2)2 2

The special functions si(x) and ci(x) are the sine and cosine

integrals:

00 x

si(x) sin tdt = - + sin(t) dt
x t 2 0

ci(x) = cos t dt = C + en x +
x

x

T cos(t) - 1 dt
0

where C is the Euler constant:

C = 0.577215---

Using a Table of sine-cosine integrals (Korn and Korn,

1968, Appendix F.6) we obtain in particular:
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4
I(0,0,if3) = - - 0.6717 for f3 = e

4I(O,0,f3 ) = - - 0.2529 for if3 = 7R.

Plugging these values into the relation given on top of this

appendix gives the head correlation for two different separation

distances in the vertical:

Rhh (0,0,P)
~ 0.8552

2

Rhh(0,0,7R)
~ 0.3220.

Cr2

The results obtained by numerical integration agreed closely with

these analytical values (see Figure 3.4 with e << 1).
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APPENDIX 3.F

CLOSED FORM EVALUATION OF THE FLUX VARIANCE FOR THE 3D
ANISOTROPIC MARKOY SPECTRUM WITH SMALL ANISOTROPY RATIO

In this Appendix, we compute the variance of the flux

vector components for a small anisotropy ratio (e << 1), using

the 3D anisotropic Markov spectrum of Table 3.1 (Chapter 3). For

completeness, we also compute the macrodisperstuity according to

Gelhar and Axness (1983), for arbitrary anisotropy ratio.

The flux spectrum obtained by the standard first order

spectral theory is given generally by equation (3.18) in the

text. For the case at hand, we define for convenience a rescaled

flux spectrum as follows:

e 2 R3
S =S /{- .02 K 2 lq iq.i q iq. 72 f KGJ}

11~ 911 Tr2*

The resulting expression for the rescaled flux spectrum is:

[6 k k1 2  1

S (k)= --
q iqi k2 [1+p22(k 2+k 2+F-2 k 2)]2

where e = 3/e is the (small) anisotropy ratio. The flow

statistics of interest can now be expressed as:
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2= 2 {S (k) dk

A .. =-- - Sq (ck2 ,k 3 ) dk2 dk3
Q2 g2 i

where o2 is a scaled flux variance, and A.. a scaled
qi1

macrodispersivity for solute transport at large times in the

absence of local dispersion (see Gelhar and Axness, 1983, and

Gelhar, 1985).

Using spherical coordinates in Fourier space (see for

instance Appendix 3.D), we obtain the scaled flux variances in

the form:

2~k 2 dk
orr dO B:.(OS) d j

i 0 0 0 [1+e2 (sin2 0+e
2cos 20)k2- 2

The k-integral can be worked out by using a formula given in

Gradshtein and Rhyzik (3.241.5):

CO

f x 2 dx

0 (1+x2 )2

This gives finally:
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27r

2 7 d f B.(O,O)dO
qi 4p3 0 0

where the integrand B. takes the form:
1

1=1: Bi(O,$p) = (1-2 cos26 sin2g + cosO4sin4 q)

i=2: B2(6,O) = cos 29 - sin20

i=3: B 3 (0,0) = cos 2 0 - cos24P

s in4/

(sin2 + 2 CoS2 )3/2

.5
sin 4 3

(sin20+62cos2)
3 / 2

sin340

(sin20+e2cos2) 3 /2

For e << 1, it turns out that the approximation e 0 0

can be used in the integrals involving B2 and B., but not in

the integral inrnhlring 1R. (thkic wroil lel A t nn

of the type "zero divided by zero"). Beginning with the

components i = 2, and i = 3, we plug e ~ 0 in B2 and B3 to obtain,

after some simple integrations:

U
2

q2  32P 3

2 7

q3 p

(6 ~ 0)

0)
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For the longitudinal flux component, we obtain after

integrating over 0 and keeping e X 0 in some of the intermediate

expressions:

02 ~l r sin d112,Ss d3r/2
4p3  0 (sin2 0+e 2cos2 ,3/2 8

However note that we used 6 ~ 0 to evaluate an intermediate

expression (4-integral) that resulted in the term 137rr2 /8

To evaluate the remaining O-integral above, let us

take u = cos 0 as the new variable of integration and use a

result by Gradshtein and Rhyzik (2.271.5). This yields for the

0-integral above:

r/2 1

... d =f du

0 0 __2)U2)

1
u

]1-(l-62)U2 0

Ti 1

This leads finally to a close form expression for the scaled
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longitudinal flux variance:

2 r2 1 13
a ~-(----r)

qj p3 e 32

Finally, the flux variances are readily obtained by

observing that:

2 2 - 2 K J2

Tiq g r 

Thi s gives f inal ly:

provided that e (< 1. This result was given in equation 3.31.

Note that a tends to a non-zero constant value as e -> 0, while

a and a vanish as e -0..
q 2 q 3

The scaled macrodispersivity A defined at the

beginning of this appendix is easily computed for arbitrary

values of the anisotropy ratio (e < 1), as shown below:

or2 a 2 Ij 13 -E

- -2 7/2 T2 7r
Uq _ 

i G J' 32

2 2f

q3 ~ fKG 1 9,
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-- A.. = J dk2 dk3
i [1+p2 (k+62k)]2

This gives immediately:

A2 2 = A3 3 = 0

For the longitudinal component of macrodispersing, let us use

circular coordinates in the transverse plane (k2 ,k3 ):

k2 = k0cose

k3 = kosinO

ko = Ik 2+k 2

Jacobian = ko

This yields:

All V Jadp ko dko

Qi 0 0 [1+B(O)-ko]2

B(O) = e2 .[l_(j_62 )sin2 O] 0

The k0-integral is easily worked out by using the variable of
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integration:

W = 1 + B(e)-ko

We obtained after integration:

2 7r
All -

P22

7r/2
r d 2

0 1-rysin
2O

^ = 1 - 62 (0 < r < 1). From Gradshtein and Rhyzik

(2.562.1) we get for 6-integral:

x

I dO 1
-= arctg (41- tg x)

1-y sin 2 9 7-1-

This gives:

2 ir 1 ir/2A = - . [arctg(e tg x)] .
A2l i- e

After rescaling

macrodispersivi ty:

A, 1 , we obtain finally the dimensional

Qi

It is worth mentioning that a correction to the

where
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standard first order spectral method was proposed in Section 4.3

of this work. Accordingly, the term (KGJ) should be replaced by

(Q) in all the results obtained in this Appendix. In

particular, the macrodispersivity becomes

All = a e

The major difference between this and the previous

expression is that A., increases monotonously with Uf in the

modified result just above. In addition, note that A 1 is

independent of the anisotropy ratio (0 < e < 1). However, All1

becomes indeterminate if 6 = 0.
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APPENDIX 3.G
CL(SED FORM EVALUATION OF THE HEAD VARIANCE AND COVARIANCE

FUNCTION FOR THE 3D HOLE-MARKOV SPECRUM
(ISOTROPIC AND ANISOTROPIC CASES)

In this Appendix, we evaluate the head variance for the

Hole-Markov spectrum with arbitrary anisotropy ratio. In

addition, we also evaluate in closed form the head correlation

function along the vertical direction (in the isotropic case

only). These results are used in the text for comparison with

the standard Markov spectrum without a "hole". Note that the

effect of the "hole" is to decrease the low-wavenumber content of

the log-conductivity spectrum.

The head CoIarianFceJ U) prpl "iona t1Lo a cer tain

triple Fourier integral I(E), given in Section 3.6. By using

spherical wavenumber coordinates as in Appendix 3.D, we obtain

after some manipulations:

Rhh(f) 8 f I

C os20 dO sin34-K(0,0) d

0 o [sin2f+e
2cos2 ]2
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K(O,4) = k2 cos(ak)dk

%0 (k 2+b 2)3

a = |(f cose + E 2 sin9) sino + E3 cosOI

b=

R- sin2
4+6

2cos 24

By using a number of intermediate results

from Gradshteyn and Rhyzik (3.737.1) we obtained a closed form

expression for the K(0,0) integral as shown below. First, let us

define a class of integrals of the form:

jr fCO cos(ak)dk
n o (k2+b2)n

Then we have:

K(0,0) = J2 - b2 j3

On the other hand, the Jn integrals are known in closed

form:

v e-ab n-1 (2n-k-2)!(2ab)k

n (2b)2n-1 (n-1) I k!(n-k-)!

Plugging Jn into K finally leads to
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K(8,*) = -. +ab-(ab)2  -ab
76 b3

Plugging K(0,0) in I(E) above leaves a fairly

complicated double integral to be evaluated in the general

anisotropic case with arbitrary separation vector E. To arrive

at a useful close form result for the correlation function, let

us focus on the isotropic case, and let f be a vertical

separation vector (0,0,f3). The anisotropic case will also be

considered later for variance calculations.

1. Isotropic Case: Covariance R (0,0,fa):

Letting e = R3/R = 1 and f, = E2 = 0, the expression

for the I(s) integral reduces to:

I(f3) = (.)3 J cos 2 O-dO -L(f3 )

L(f3 ) = 2 r (1-u2 ) (1+s3 u-(s3 -u)
2 ) e-audu

0

where s3 = f3/e is the dimensionless separation distance in the

vertical. Note that the integral L was obtained after changing

a variable of integration (u = sinO). This integral can be

worked out without difficulty (the details are tedious and will
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not be shown here):

1= 2 1-e-s-e~a]-[+ se-S3L~3)=s3 sl s3 _esJ-1 4 Je

Eventually, we find that the head covariance

directly to L(fa) via:

can be related

Rhh(O'O2-3) = 1) .

In particular, taking E. = 0 gives the head variance in the

isotropic case. The value of L(0) can be found by using a Taylor

development of L(f.) as E3 -+ 0; the result is:

L(O) = 4/3.

This gives immediately the head variance for the isotropic case:

CT2  1 ir 2 T2p 2  (-l
h = T(1) -

The head correlation function in the vertical direction can now

be expressed as:
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Rhh(O,0,3) _ 12 2 [-e-s3 s se }(
-~- - - - (I =e 41). (

a2 s3 sI s3
h

where S3 = f3 /P . These two equations, taken together, give in

closed form the head covariance in the cross-flow direction for

the isotropic Hole-Markov spectrum.

2. Anisotropic Case: Head Variance u2 :

In the general anisotropic case, the head variance

obtains by taking E = 0 in the general expression given for I(E)

at the beginning of this appendice. The integral K(6,0) now

becomes more tractable since the term cos(ak) is eliminated from

the integrand:

K(Ok) = k2  dk
f (k 2+b 2)3

After Gradshetyn and Rhyzik (3.241.4) we obtain:

K(1,6) =
16.b3

w alone, as defined earlier.where b is a function of
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Plugging this expression into the integral I(E) evaluated at zero

spearation distance gives finally:

I( 1 ) sin 3 do

S2 ]sin2 +6 2cos 24o

=r 2 79f j2e 2 , 1(Q).

It turns out that the 0-integral above can be computed

in closed form, separately, for e > 1, e = 1 and e < 1. For the

simplest case e = 1, we obtain the same head variance as already

found above (isotropic case). For e < 1, the 0-integral can be

rewritten as:

1 . sin3 do

0 1 +1 2 sin2 0

where -_2 -62)/62. This integral can be evaluated from two

results of Gradshteyn and Rhyzik (2.584.7 and 2.598). We give

below the final result for a':

h = V f J2 R - 1(0)

I = Vr 5 1 e 1-2F2 1-1)
I() A Q + -arcsin(I - (6 < 1)

4 2 1-62 1_2 1-2I

For e > 1 the 0-integral can be expressed as:
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7r

T sin
3 o do

0 1-(02-sin2

where i
2  2)2. Using again a few intermediate results

of Gradshteyn and Rhyzik, we obtain finally:

r2 7r2 j2 pI33 _.(hG 'f

7r F1 1 2 _6+F2_ 21
1(0 = Rn Yl{-1 6~ [+6~ (6 > 1)

It is interesting to note that a'2 tends to a non-zeroh

constant as e -+ 0 if the geometric mean correlation scale R G

4e 3 is held fixed. On the other hand, the last equation above

shows that a2 -+ 0 as e -+ 00 while P is held fixed.h G
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APPENDIX 5.A

CLOSIED FORM EVALUATION OF THE NUMERICAL HEAD ERROR
a(8H) FOR THE 3D MARKOV SPECTRUM OF LOG-QONDUCTIVITY

In this Appendix, we describe in some detail the

analytical integrations needed to obtain the root-mean-square

norm of then numerical head error 6H(x_) (truncation error) in

the case where the log-conductivity is an isotropic 3D Markov

random field. The final result was given in the text (equation

5.63 top: "noisy input"). The next appendix (5.B) presents

similar calculations in the case of a Gaussian log-conductivity

spectrum ("smooth input"). Recall that these results were

obtained by a stochastic analysis of the truncature errors

arising from the finite difference discretization of the

groundwater flow equation.

Our starting point is equation (5.59) in the text,

which gives the variance of 6H(x) obtained by Fourier integration

of the 6H-spectrum up to wavenumbers Ik| ~r/Ax. That equation

is reproduced below for convenience:

Ax2 2
Var(6Hi) ~[J, )4 -I

where I is the 3D integral:
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I =
3k i (k2 -k2) 2 Sf f(k) dk.0k(k -- + M Uf

k12 k 1 2 -
0 < k < r/Ax Ik ko

Note that k is the radial wavenumber (k.. k.) , and that

summation over repeated indices is implicit, unless stated

otherwise.

last term

In the case of the isotropic 3D Markov spectrum, the

in the integrand of I takes the form:

S(k) X 1

a 22 (1+x2k2)2

By using spherical coordinates as defined, for instance, in

Appendix 3D, we obtain:

I = I' - I''

where the integrals I' and I'' are respectively:
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r/Ax

V 2 0O

k* dk

(1+X
2k 2) 2

2vr

0

dO - A(0,0)dO

0

A(O,4) = cos2 0-sin3o-[3cos2 9-sin2 o + cos4
0-sin 

4
,0 +

sin 0 sin4 ( + cos4 0]2

Now, the first integral I' can be rewritten by using

the transformation u = Xk as follows:

, 1I, = -2

(Xir)2
du.

0 (1+u
2 ) 2

This integral was already computed in the text by using

identities from Gradshteyn and Rhyzik 1980 (2.174 and 2.175):

see above equations (5.61) in the text for details. The

resulting expression for the I' integral is finally:

1 r 1 3 R2  3
= - + 2 - - R arctg

(T)2 1+R2  1+R2

where R is the radial grid resolution parameter defined as:
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R Ax
X7r

For the second integral I'', the integrand A(O,O) can

be decomposed in the form:

A(0,0) = [a+b+c+d] 2 = a2 +b2 +c 2 +d2 +2(ab+bc+cd+da+ac+bd)

This gives A(0,0) in the form:

A(0,0) = 9 cos 6 -'sin 7  + cos' 0 -sin" cf

+ cos 20sin8O-sin 0+ cos2 -sin 4-cos c

+ 6 cos80 sin9O + 2 cos 6-sin 0-sin 4

+ 6 cos4 0_sin5 o-cos 4 0+ 6 cos4  sin 4 0singo

+ 2 cos 6-sin 7 cos4 + 2 cos2 -sin4 0_sin 7 -cos4

To obtain a close-form expression for the double-integral of

A(0,0), we used the following identities from Gradshteyn and

Rhyzik, 1980 (2.510 - 511-512-513):
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cos 2p-dO = 2v - (2p-1)!!

p!2'

cos O-sin 2nO-dO = (2n-l)!!

(2n+p) (2n+p-2) -.- (p+2)

(2n-1)(2n-3)--e1

=0 (n > 1, p odd)

2r

-0

(n > 1)

> 1, p even)

n!
(2n+p-1) (2n+p-3) -.-. (p+1)

. 2n+l P 2 n+l
sin p-d$ = 2n+l

Cos 0 - sin2n+1 *dO

cos -sin 2n+ -.d =

1 _4n -6 +2n+l
2n+p+l I2n+p-l in

In these expressions, we used the following notations:

(2n-l)!! = (2n-1)

6in = 1 if n =1

6in = 0 if n l1.

(2n-3) ... 1

Using these identities finally led to a closed form (exact)

expression for I'' = fJ A(O, O)dG dO in the form of a sum of ten

rational numbers (fractions) multiplied by the number 7r.

2ir

o

2ir

To
cos G.dO

F:

The
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approximate value of I'' is finally:

I'' ~ 3.85v ~ 4r.

This gives immediately the desired result for Var(5H).

Multiplying I' by I'' above and using the first equation of this

appendix gives a closed form expression for Var(6H).

Furthermore, to obtain the reLative root-mean-square error:

E(H)= a(6H)
aH

we also need the following result already obtained in the text

(equation 3.21 or Bakr et al. 1978):

1
0* -- IUrf I

H V f

This gives finally the desired result for the relative

root-mean-square error on the head, as follows:

_(_H) vT Ax 3/2
u(H) 12 (-)

where the function G(y) is defined by:

G(y) = + . y arctg (

1+y2 l+y
2 1+ y a ]
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Ax
Note that, for y - << 1 we obtain:

(A) 1+0 (Ax 1 + 0 (Ax

Ax
Therefore, replacing the term G( A) by one in the above result

gives the leading order term of the relative head error, as shown

in the text.
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APPENDIX 5.B

CLOSED FORM EVALUATION OF THE NUMERICAL HEAD ERROR

o-(6H) FOR THE 3D HOLE-GAUSSIAN SPECTRUM OF LOG-C(NDUCTIVITY

This Appendix follows a development parallel to that of

Appendix 5A, but with a Hole-Gaussian spectrum rather than a

Markov spectrum for the 3D isotropic log-conductivity field.

Therefore, we will refer to some of the notations used in

Appendix 5A in the sequel. However, let us first define the

Hole-Gaussian spectrum, since it was not used anywhere else in

this work.

The Hole-Gaussian ellipsoidal log-conductivity

spectrum, with "rational hole" of order m, was defined and used

by Vomvoris (1986) to obtain spectral solutions of stochastic

solute transport. The general form of this spectrum is:

21 2 3  (R2k2)m

Sf (k) f 3/2 (2m+l)!! exp(- k)
(2ir)

with implicit summation on repeated indices, and:

(2m+l)-!! = 1.3.5... (2m+1).

In the particular case at hand, we used the isotropic
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Hole-Gaussian spectrum of order one (m = 1):

f P -e2k 2 /2
Sff(k) = 3 3/2 * 2k2. e

Now, in order to evaluate the relattue head error

c(MH)/a(H), we need to evaluate the standard deviation u(H) of

the head solution by using the results of the spectral theory of

stochastic flow (equations 3.18 of Chapter 3). The head spectrum

is related to the log-conductivity spectrum by:

Shh(k) k Sff(k).

The head variance uA obtains by integrating the head spectrum

in Fourier space (- o < k. ( + co). Plugging the Hole-Gaussian
1

S f spectrum on the right-hand side gives:

2 j2__P5

aH = 3/2
3(27r)

k 2
-_2 k 2/2

I t= e dk
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The I, integral is easily worked out by using spherical

coordinates. We obtained after some manipulations:

47r 0 - p22k 2/2
I, = f- k2 e dk

47r 2 /2J e du

_ 4 r 3 1 2
393

where we used the identity:

2n -pu2  (2n-l)I!! 1 r
u e du=

0 2(2zn

after Gradshteyn and Rhyzik 1980 (3.461.2). This gives finally

the first order spectral solution for the head variance in the

case of a Hole-Gaussian isotropic log-conductivity field in 3D

space:

2 1 j2 t

Let us now evaluate the standard deviation of the head
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error, a(6H), as in Appendix 5A. Briefly, our starting point is

the relation:

2 jx2 R5

cr(6H )2 C~f 13/2 2~ ~J
3(27r)

I =

0 ( k < r/Ax

Note that the exponential term in the integrand above resulted

from plugging the Hole-Gaussian spectrum in equation (5.59) given

in the text. Now, by using spherical coordinates, the I-integral

above takes the form:

I = I' - I''

where the I' integral is:

ir/Ax

, k-e _p dk

and the I' ' integral is the same as that of Appendix 5A:

[3k 3 ki(k 2-k2) 
2

k k 3e
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2ir 7

I' ' = do dO A(0,0) ~ 4r

For the I'-integral, we use the transformation u = kR

to obtain, after some manipulation:

i 4 6 [ { u e - e /2du -
0

ub - e-u2/2du

Using again the Gradshteyn-Rhyzik identity given above, we obtain

by taking n = 3 and p = 1/2:

S- e /2 15du = 2 V17r .

0

Now, the second integral intervening in I' is always positive,

and goes to zero as the radial resolution:

R Ax

goes to zero. This gives a relatively tight upper bound on the

I' integral:
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47r .l5 v-

- 7y 2

Using intermediate results above finally leads to a

similar upper bound estimate of the variance of 6H:

5c2 jg2

u(6H)2 < f i j . ( Ax 
(24)2

with equality in the limit as the grid resolution R goes to

zero. Combining this result with the previous equation for 2

finally gives a tight upper bound for the reLattue error on the

head in the case of a Hole-Gaussian log-conductivity spectrum:

a(6H) vv Ax 2

c(H) - *

This inequality was given in the text in equation (5.63) under

the designation "smooth input". Recall that the inequality

becomes equality asymptotically as the radial grid resolution

R = Ax/(vR) goes to zero. In practice, approximate equality

holds for R <<1, say Ax < 0.5N.
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APPENDIX 5.C

CLOSED FORM EVALUATION OF THE NUMERICAL ERROR ON THE FLUX VECTOR
AND hEAD GRADIENT FOR THE 3D MARKOV SPECTRUM OF LOG-CNDUCIVITY

In this Appendix, we evaluate the root-mean-square

error on the flux vector qm and the head gradient G M, using

equations (5.73) and (5.77) in the text. Recall that Appendix

5.A evaluated the error on the hydraulic head in the case of the

iostropic 3D Markov log-conductivity spectrum. The same spectrum

is used here to evaluate a(5qm) and a(6Gm).

According to equations (5.73) and (5.77), the

expression for Var(6q ) will involve a sum of three sets of

() (2) (3)integrals L , L , L The Li integral taken alone willm m m

Sn give the value of Var(5G ). These integrals are
m

three-dimensional Fourier space integrals, with domain of

integration 0 < 1k I r/Ax. For simplicity, we will approximate

this rectangular domain as the sphere 0 < k < 7r/Ax, where k is

the three-dimensional radial wavenumber.

More precisely, we have:
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r(m K A -2 (L + L(2) + L(3)

rJ1.f Ax2 2
Var(c5G ) = I L(1

m 24 - m

where the L , L (2), L(3) integrals are defined as follows form m m

each component m = 1,2,3 of the flux or head gradient vectors:

L 1 - 12 (k) S ff(k) dk

f

2kik 3
L(2) 1 m I () Sff(k) dk

f

(no summation implied over m)

L(3) _ 1 . Sff(k) dkM T2 JJJ 4

and the I m(k) terms appearing in the integrand are of the form:

I (ki) = k I k - -- +1 k /k*

i=1,2,3

We now proceed to evaluate these integrals after plugging the 3D

isotropic Markov spectrum:
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S (k) = 1 -- .
f r 2 (1+X2k 2)2

Let us focus first on the L integral. By using
m

spherical coordinates, we obtained after some manipulation a

tractable expression for the first "component" of L(1) (i.e.,
m

with m = 1) as follows:

LM = Lo- LO"

7rX

Lo= - du
v2X4 o0 (1+u

2 )2

L MI d d - A(0,0)

A(O,4) = 9 cos8 O-sin9O + cos'2'-sin 3S

+ cos 4 O-sins6-sin1 3 4

+ 2 cos8 O - sin4 *sin' 3 0

+ cos-4 0 sinso- coseo

+ 2 coseO- sin9 -cos4

+ 2 cos4 0 _ sin4 0 - sin9 O- cos 4

+ 6 cos'00 sin1 1 4

+ 6 cos6 0 - sin 4 0 - sin 1

+ 6 cos60 _ sin -_ cos4'
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For LO, we obtained by using identities from

Gradshteyn and Rhyzik 1980 (2.174 and 2.175):

[1 R-5 5R-3 5R 5 -1
LO = 2X4 2 3 3 2 + 2 arctg (Ri)

ir N l-+R 2

in terms of the radial resolution ratio:

R =Ax

For R << 1 (say R < 0.2 or so) this gives approximately:

L0  1
3r2X4 R3

On the other hand, evaluating the double integral

(1)"Li "requires some straightforward but tedious trigonometric

integrations, similar to those developed in Appendix 5.A.

Without going into details, we give below the final result.

L l)" ~-7.3527r
-3

Combining the two previous results gives finally, for a
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resolution R = Ax/(X7r) reasonably smaller than unity (say R <

0.2 or Ax/N < 0.5):

(l1) 2 2  1
97r .4R3

For m = 2, the evaluation of

integrations similar to those developed above.

integral can be cast into the form:

(1)L() requires

Briefly, this

L('= LO - L l"

where L0  was defined and evaluated previously, and L2 " is a

double trigonometric integral similar (but not identical) to the
(1N

previous L '". The final result is written below for the case

R << 1 (as explained previously):

m = 2: L l) 2

157rX 4R3

where we used for convenience the approximation 0.41 ~ 2/5.

(2)We now focus on the second set of integrals, L .m

Using again spherical coordinates, we obtained these integrals in

the form:
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L (2) = LO - L (2),,
m m

where LO was defined (and evaluated) previously, and the L
m

are trigonometric integrals similar in form to the Ll

integrals, but simpler. They are given below:

m = 1: L(2)" = dO dO

[cos8 '(-sin94 + cos" O sin1 p

+ cos6 O-sin 4 0 sin II + cos6  - sin4 - cos4 0]

2irw

M= 2: L( 2 )" = d d

[cos4 O-sin4 0 - sine$

+ cos O-sin 20 sin ic + cos 0 sin6 sin 4O

+ cos4 0-sin2 0_sin 7 0cos4 ]

This gives finally:

(2)" ~ 0.847r

(2)" ~ 0.lOi.

Multiplying by LO and using again the approximation R =

Ax/(Xir) << 1 as explained previously gives finally the L
m
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integrals:

For the L(3) integrals, we use again spherical
m

coordinates to obtain after some manipulations:

mL= 1: sin9o do -M J -0f 0
cos 0- dO

1 8 32 35

3ir2 X4R3

4 1
4 1i (for R << 1)9-m "4 ARj

and:

7r 27r

m = 2: L(3) Lo sino - cos2 O sin60 dO

0 0

1 8 32

372r 
4R3 9 35

1 28 1

2 R 3

57r
64

(f or R << 1)

(2) 2 0.84 1
~3 Tr X 4R3

(2) 2 0.10 1
3 r X4R3
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We have therefore obtained closed form expressions for

the three sets of integrals L5), L(2 ) and L involved in the
m m m

variance of the flux error and head gradient error, as defined at

the beginning of this Appendix. Note that each set of integral

was evaluated for the longitudinal component (m = 1) and for the

transverse component (m = 2). The result for m = 3 is identical

to m = 2 by symmetry, due to the statistical isotropy of the flow

in the cross-flow plane. The final results given in the text

(equations 5.7S - 5.79) were obtained as follows:

- Assemble the integrals above to compute Var(6Ym) as

indicated on top of this Appendix (Ym stands for the

components of the flux vector or of the head gradient).

- Use the known spectral solutions Var(Ym) to evaluate

the ratio Var(6Ym)/Var(Y ).

- Take the square-root of the above expression to obtain

the final result o(6Ym)/u(Ym), which gives the

root-mean-square norm of the error reLative to the

root-mean-square norm of the variable itself.
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APPENDIX 5.D
"BIGFLO" CODE ABSTRACT

A High Resolution, Three Dimensional, Saturated/Unsaturated
Flow Simulator

1. Program Name: BIGFLO

2. Auxiliary Programs:

-- Combig (Set of common blocks for BIGFLO.)

-- Floproc (Large set of Data Processing Routines)

-- Cturn or TB3 (Turning Band Generator of 3D Random

Fields)

3. Programming Language: Fortran 77

4. Computers and Operating Systems:

BIGFLO has been developed on a Microvax minicomputer

rI th1SLie V V 1.raUII syLtem; it was subsequently

modified to run on a Cray 2 supercomputer running the

UNICOS (UNIX) operating system, and the CFT77 Fortran

compiler. These modifications eliminated a few minor

non-standard features, such as instructions with more

than 20 continuation lines, and the "INCLUDE" statement

used on the Microvax to include the set of common

blocks COMBIG (same for all subroutines).
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5. Machine Requirements:

BIGFLO contains about 12,000 lines of instructions and

comments. Most of the storage required at execution

time is taken up by the master array ABIG defined in

the main program MAINFLO. The size of this array can

be modified as needed in the main program; the

parameter LPAR located just below the dimension

statement must take exactly the same value as the

dimension (otherwise the results could be

unpredictable). No other modification will be needed

in the BIGFLO code in order to run a particular

problem.

The actual size of the master array required to solve a

particular problem is proportional to the size (N) of

the three-dimensional grid: typically about 12 N for a

saturated flow problem with spatially variable

conductivity. On a Microvax 2, a practical limit for

the size of the master array is about 1 -1.5 Million;

on the four-quadrant Cray 2, the size could be as large

as 250 Million words in principle. The code will issue

an error message and stop execution if the prescribed

size of the master array is insufficient to solve the

problem.
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6. Program Description:

BIGFLO is a three-dimensional porous medium flow

simulator, handling steady, transient saturated, and

partially saturated or unsaturated flow, with spatially

variable or randomly distributed hydraulic

coefficients.

The code is based on a finite difference approximation

of the equation governing the hydraulic head (saturated

flow) or the pressure head (partially saturated or

unsaturated flow). The governing flow equation was

obtained from the (generalized) Darcy equation and the

continuity equation without source terms. The

computational flow domain is a three-dimensional

parallelepiped rectangle, discretized into an

orthogonal grid of mesh points.

For transient unsaturated flow in dry soils, or any

similar evolution problems, the actual size of the

computational domain can be time-dependent

(automatically controlled by the code). For one and

two-dimensioanl problems, the size of the grid can be

shrinked to just 5 nodes (3 internal nodes and 2

boundary nodes) along the unmodeled directions.
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The boundary conditions accepted by the code are,

respectively, a fixed flux normal to the boundary, a

fixed head, or a zero head gradient. The prescribed

fluxes and heads can vary arbitrarily over the

boundaries, as well as the type of boundary condition

(flux, head, or zero head gradient). In the case of

unsaturated or partially saturated flow, the direction

of the gravity vector with respect to the axes of the

flow domain can be arbitrary, as prescribed by the

user.

The hydraulic properties of the porous medium required

for saturated flow problems are the saturated hydraulic

conductivity (Ks) and the specific storativity (Ss).

Both can vary arbitrarily in space as needed. For

partially saturated or unsaturated flow, the hydraulic

conductivity (K) is assumed to be an exponential

function of pressure head (h) with a given slope (a),

up to a given bubbling pressure (hb) where K reaches

the saturation value K . All three coefficients, K
s s

and hb can be spatially variable over the 3D grid of

mesh points. The soil moisture retention curve 0(h)

can be an arbitrary function with several parameters

(two of which can be spatially variable). The current

version of the code includes subroutines for 0(h)
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piecewise linear, exponential, and "Van Genuchten

function". The soil moisture capacity is computed by a

chord slope (finite difference) differentiation of the

0(h) function. Finally, the specific storativity Ss is

taken into account in regions of positive pressures

(partially saturated flow). In this case, unlike the

case of purely saturated flow, S must be assumed

constant in space.

7. Solution Method:

The governing equation is discretized by a seven-point

centered finite difference scheme in 3D space, and a

fully implicit backwards Euler finite difference scheme

i-n timrn Thein Ernea n--nnAn t,c 1-n-h I-%~

steady solution algorithms for the linear saturated

flow problem. A steady state option also exists for

the nonlinear unsaturated flow problem, however the

best strategy in this case seems to obtain the steady

state by running the transient solution algorithm for

large times.

The nonlinear flow problem is approximately linearized

by a modified Picard iteration scheme. Thus, an

approximate linear system has to be solved for each
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iteration step, and this is repeated several times at

each time step.

The linear or linearized finite difference system is

solved iteratively by using a preconditioned iterative

method. For the nonlinear case, this gives a doubly

iterative loop: outer iteration loop for

linearization, and inner iteration loop for solution of

the linear system. The available matrix solvers used

in this code are variants of the Strongly Implicit

Procedure .(SIP solver), based on an approximate LU

factorization, and on a modified Picard iteration

scheme to converge to the exact solution. Other

routines corresponding to the ICCG solver (Incomplete

Choleski-Conjugate Gradients) have been introduced in

the code, but are not fully debugged at this time.

8. Problem Restrictions:

Some of the limitations of the BIGFLO simulator are

listed below:

-- Geometry: The 3D domain must be a parallelepiped

rectangle.

-- Source terms: There are no source terms in the

interior of the domain.
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-- Water table: The familiar 2D equation of

unconfined flow with a water table is not included

(use instead the partially saturated flow option).

9. I/O Data Processing:

Most of the inputs/outputs of the BIGFLO code can be

processed interactively by using the companion code

FLOPROC, a special-purpose data processor for creating

the basic input file of BIGFLO and processing ID, 2D,

3D data fields (including statistical analysis). The

generation of random field parameters inputs is handled

separately by using the 3D Turning Band code (CTURN or

TB3). BIGFLO can be run as a batch process

(non-iteractively). The required input files required

have the logical names INPUTj (j=l, . .. 9). The basic

input file INPUT1 contains the actual names chosen by

the user for all the other input files, as well as the

basic description of the flow problem and a number of

numerical options. INPUT1 can be created interactively

by using the data processor FLOPROC.

The numerical outputs from the BIGFLO code can be quite

large. A short file containing basic information on

the simulation is created at the start (OUTlO) as well

as a short error file named OUTBAD. The output files
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OUT11 and OUT12 contain numerical information such as

the residual iteration errors; the output file OUT13

contains mass balance errors and other information

required at each time step (depending on options). The

three-dimensional head field (solution) is stored in a

data file named HEAD-TO for steady flow, or in several

data files named HEADTn or H-Tnnn for transient flow

problems (at selected times prescribed by the user).

The format of these files can be either ASCII

(formatted) or BINARY (unformatted). The latter option

is strongly recommended in the case of large

simulations. However, binary data files are not easily

transportable among different operating systems. It is

recommended to rename all output files after completion

of a BIGFLO run, since the code uses always the same

file names for its outputs.

The data processor FLOPROC can be used to obtain other

information from the 3D head field, such as: 3D flux

vector field, 3D head gradient field, transects and

plane sections of three-dimensional fields, and

statistical properties (mean, variance, covariance

functions).
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10. Practical Implementation:

The tasks required to execute the BIGFLO code are

summarized below:

(a) Create basic input data file INPUT1 by using the

interactive FLOPROC code.

(b) Find out which other input f iles are needed. The

FLOPROC processor can be used to generate the initial

condition (INPUT2) and the boundary conditions (INPUT3)

if they are spatially variable. The other input files

INPUT4-INPUT9 correspond to spatially variable

hydraulic properties. In certain simple cases, only

the INPUTl file is required. Example: saturated or

unsaturated flow with uniform initial condition,

uniform Ouluary conuditions, n 1fe U1 tMe

domain, and spatially constant hydraulic coefficients.

(c) If necessary, specify the names of the additional

input files in the basic input file INPUT 1 created

previously.

(d) Run BIGFLO: for complex problems, it is advised

to execute the code with the option LRUN = 0 as a test;

a full simulation LRUN = 1 can then be launched after

inspection of the output (OUT10) of the previous test.
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(e) Error messages from the BIGFLO code will appear in

the output file OUTBAD in cases of abnormal

termination. Three types of errors (usually detected

after a short time of execution) will cause the program

to stop executing:

-- Insufficient dimension of the master array ABIG

-- Erroneous or incompatible set of data in the basic

input file INPUT 1; the error code LBAD = -n will

help locate the cause of the problem, e.g. by

scanning the source code for the string "LBAD = ".

-- Erroneous or non-existent data file INPUTj(2 j 9);

the first digit of the error code LBAD will help

locate the problem (e.g., LBAD = - 52 indicates a

problem with INPUT5).

11. Author and Reference:

R. Ababou, "Three-Dimensional Flow in Random Porous

Media", PhD Thesis, Parsons Laboratory, MIT, Cambridge,

Massachusetts, January 1988.


