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by

Garry Raymond Willgoose
Rafael L. Bras

Ignacio Rodriguez-Iturbe

ABSTRACT

A catchment evolution and channel network growth model is presented.
Elevations within the catchment are simulated by a sediment transport continuity
equation applied over geologic time. Sediment transport may by modelled by both
fluvial (e.g. Einstein-Brown) and mass movement (e.g. creep and landsliding)
mechanisms. An explicit differentiation between the channel and the hillslope is
made with different transport processes in each regime. The growth of the channel
network is governed by a physically based threshold, which is nonlinearly dependent
on discharge and slope and thus governed by hillslope form. Hillslopes and the
growing channel network interact through the different sediment transport processes
and the preferred drainage to the channels to produce the long term form of the
catchment.

General requirements for network formation in physically based models are
examined by use of a previously reported leaf vein growth model. Elements of chaos
were discovered that result in apparently random networks being generated. It was
argued that this is also true for the catchment and connections with topologically
random networks were provided.

Synthetic catchments were simulated using a numerical implementation of
the model and statistics for the catchments are analyzed. Drainage density and
elevation characteristics are correlated with nondimensional numbers arising from a
nondimensionalization of the governing equations. These nondimensional numbers
parameterize rates of tectonic uplift, sediment transport, both in the channel and
the hillslope, channel growth, and resistance to channelization. Runoff rate,
erodability and flood frequencies arise explicitly in these numbers. A fundamental
measure of catchment dissection based on one of the nondimensional numbers is
proposed. It follows that drainage density and hillslope length are dependent, in a
well defined way, on runoff rate, slopes and catchment erodability.

Simulation results are compared with reported field data and small scale
experimental catchment evolution studies and found to be consistent. A linear
log-log relationship between channel slope and area, observed in the field, is also
observed in the simulation data at dynamic equilibrium. An explanation based on
model physics is proposed, a central feature being the balance between tectonic
uplift and fluvial erosion at dynamic equilibrium. This explanation also accounts
for observed deviations from the linear log-log relationship where slopes are reduced
for small areas; these small areas are dominated by diffusive transport processes in
the hillslope. The channelization threshold based on discharge and slope is
compared with recently reported data of hillslope slopes and contributing areas at
channel heads; the threshold is consistent with the field data.

2



Observed differences between hypsometric curves, previously attributed to
catchment age, are found to result from differences in the tectonic uplift regime. A
scheme for landscape classification, based on the nondimensional numbers, is
proposed which is more consistent with the governing physical processes than
previous work. A one-dimensional advection-diffusion reformulation of the
sediment transport equation is proposed that predicts rates of hillslope retreat and
hillslope degradation, and provides a link to observed hillslope transport
mechanisms.
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CHAPTER 1

INTRODUCTION

1.1 The Scope of this Work

For many years hydrologists and geomorphologists have been fascinated by

questions about catchment form. Why is it that channels form branched networks

reminiscent of blood veins, leaf veins, plant roots, and branches? Why is it that the

hillslopes adopt the form they do, draining directly to the channels with characteristic

patterns of runoff distribution? How do those properties interact with the hydrologic

response of the catchment? It is to these types of questions that this work is

addressed.

That networks occur in many different physical settings suggests that the

processes that create them should bear qualitative similarities that go beyond the

details of the specific physics. One of the first tasks of this work is to understand the

qualitative processes that govern the development of networks from initially uniform

conditions.

From an understanding of the qualitative processes the goal is then to develop a

quantitative understanding of how channel networks and hillslopes evolve with time.

Through a quantitative understanding of the evolution process general statements may

be made about the catchment form and hydrologic response at any point in time.

Catchment form is then seen in the context of the complete history of erosional

development of the catchment leading up to the present time.

The quantitative understanding of catchment evolution processes and their

effect on catchment form are the main thrusts of this work. Using a model of erosion

processes that has been theoretically and experimentally verified at small scales,

together with a physically based conceptualization of the channel growth process, a

large scale model of catchment evolution involving channel network growth and
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elevation evolution has been developed. Insights into the importance of catchment

scale interactions to overall catchment form are developed through the incorporation of

large scale interactions between the extending channel network and the subsequently

evolving hillslopes . It will be shown that neither the properties of the channel

network nor the properties of the hillslopes can be viewed in isolation but must be

viewed as components of a complicated large scale nonlinear system; the drainage

basin.

Using a nondimensionalization of the physical equations a number of

nondimensional numbers that govern catchment form are proposed. These numbers

are dependent upon such physical inputs such as climate and geological conditions.

The basic tenet of the work is that it is necessary to understand the physics of the

catchment processes to be able to fully understand the catchment form. The intention

is to "... identify linked process equations and so define geomorphological systems in

such a way that an analytical, predictive approach can be used ... " (p 48, Huggett,

1988). It is not claimed, nor was it intended, that the proposed model accounts for all

the processes occurring in the catchment. Rather a general model framework is

presented which is both physically realistic and provides a vehicle by which the

important interactions within the catchment can be examined.

There exists very little data at the basin scale with which a large scale model of

the kind proposed here can be completely verified. There exists channel network data

with which to verify, by themselves, the generated channel networks. There also

exists, independently of these data, hillslope data with which to verify the generated

hillslopes. Such comparisons of the individual components are successfully made.

Some of the limited data that geomorphologists have collected at the basin scale is

reinterpreted and alternative explanations for observed trends are offered which are

consistent with the presented model.

In summary, the guiding philosophy of this work is to develop a physically
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based model at the basin scale that incorporates the important interactions, with time,

between the two domains of the catchment; the channel network and the contributing

hillslopes.

1.2 Report Outline

This report can be broadly divided into three main sections, each section

consisting of several chapters.

The first section is a literature review and analysis of previous work regarding

network generation models. Chapter 2 presents a review of channel network and

hillslope statistics and models. Chapter 3 briefly reviews physically based network

models from outside of the hydrology and geomorphology literature. One particular

nonhydrologic model, a model of leaf veins in leaves, is analyzed in detail in Chapter 4

so as to understand the processes that govern network form and growth.

The second section of this report consists of the development of the physically

based channel network model. Chapter 5 presents the governing equations and

provides a justification of the physics adopted. A nondimensionalization of these

equations is presented in Chapter 6 and some of the geomorphological implications are

explored. Appendix A details the numerical solution technique for the governing

equations. Appendix B presents a reformulation of the sediment transport equations

used in the model and compares this new formulation with other work. Appendix C

derives the equations describing the sediment transport and channel initiation

mechanisms in greater detail than does Chapter 5.

The third section of this report is devoted to the analysis of the channel

networks and catchments simulated by this model. Chapter 7 presents an analysis of

simulation results and correlates these results with the physics adopted in the model.

Chapter 8 compares three sets of field data with results obtained from the simulations.

Appendix D gives the complete set of simulations performed and their corresponding

17



parameter set.

Chapter 9 summarizes this work and suggests further avenues for research.
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CHAPTER 2

EMPIRICALLY AND PHYSICALLY BASED CATCHMENT MODELS

2.1 Introduction

This chapter will summarize research related to the description of channel

networks and hillslopes. A prodigious amount of work has been done in this area.

Only that work that has relevance to the interpretation and analysis of the catchment

simulations, that form the bulk of the results of this work, will be introduced here. A

more comprehensive treatment of channel network properties can be found in

Abrahams (1984).

Historically researchers have examined the channel networks within

catchments, and the hillslopes that contribute to these channels, separately. Work has

been reported on the form of the channel networks within the catchment independently

of the hillslopes. In a complementary fashion work has been reported in the form of

the hillslopes independently of the form of the channel network. This distinction is

artificial but has been forced by the complexity of the interaction between the regimes.

The treatment in this chapter will reflect this disparate research heritage. The

first half of the chapter details work on the nature and form of channel networks. The

second half of the chapter details work on the nature and form of the hillslope. A short

section at the end discusses some of the problems of parameterizing the interaction

between the two regimes. There is also a nattiral distinction between that work that

simply describes the catchment form at a given time and that which attempts to

describe how the catchment evolves to a particular form at a given time. Hence each

section on channel networks and hillslopes has been divided between that work that

describes the catchment characteristics independently of time, and that work that

explicitly addresses catchment evolution. The description of the time dependent

physical characteristics and the processes that control them is very important. These

19



processes are at the heart of the physically based catchment model described in

Chapter 5.

2.2 Models of Channel Characteristics

2.2.1 Descriptive, Time Independent Channel Models

2.2.1.1 Ordering Models

The most outstanding characteristic of the drainage channels in a catchment is

that they form a tree-like network. Proceeding upstream from the basin outlet, each

channel bifurcates into two smaller streams, each of these streams breaks into two

smaller streams, etc., until the upper reaches of the network are reached and the

channels terminate. An alternative, equally valid, view is that as you proceed

downstream, channels merge, two at a time, until the catchment outlet is reached. In

topology nomenclature the channel network forms a / (i.e., binary) tree; each

bifurcation produces two branches.

The ordering models can be classified into two kinds: those that apply their

hierarchy from downstream in the upstream direction, and those that apply it from the

upstream source areas in a downstream direction. The former have generally been

unsuccessful and will be briefly discussed first.

Gravelius in 1914 proposed a system (Figure 2.1) where the channel at the basin

outlet is assigned an order of 1. The classification proceeds upstream. At the first

bifurcation upstream the minor stream is assigned an order of 2 and main stream

upstream of the bifurcation continues with order 1. In any general stream of order (i)

at the next upstream bifurcation the minor stream is assigned an order of (i+1) and

the major stream an order of (i). The selection of which stream is major and which is

minor is subjective. The main problem with Gravelius classification scheme is that

source streams will have different orders, depending upon their topological position in

the network. This is contrary to experimental evidence which points towards source
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streams having similar characteristics. In addition, if two nested catchments are

analyzed, then the same link in the field will have a different order depending upon

which of the nested catchments is being analyzed. Thus conditions downstream

evidently have an effect on the ordering system in the upstream reaches. This ordering

scheme is thus unsatisfactory.

Horton (1945) took a fundamentally different approach to stream ordering. He

ordered his streams beginning at the sources proceeding downstream. This idea

underpins all contemporary network ordering schemes. As with Gravelius, Horton

makes a distinction between main streams and tributary streams. Proceeding

upstream on a stream of order (i), the mainstream upstream of the bifurcation is

assigned the order (i) and the tributary stream order (i-1). The order of a tributary

stream that is also a source (i.e., it terminates rather than bifurcates), is assigned an

order of 1. The Horton scheme has the same failings as the the Gravelius scheme.

Firstly, the distinction between main and tributary streams is subjective. Secondly,

for two nested catchments, it is possible for a given stream in the field to be assigned a

different order, depending upon the network topology downstream of that stream.

Strahler (1964) proposed an ordering scheme that removed many of the

inconsistencies inherent in the Horton scheme. Zavoianu (1985) claims a Soviet

researcher, B. Panos, proposed essentially the same scheme in 1948. In the scheme all

source links are assigned an order of 1. When two links of the same order (i) merge,

the downstream link is assigned an order one higher (i+1). When two links of unequal

order merge, the order assigned to the link downstream is that of the higher order

upstream link. Essentially the lower order link 's topological contribution to the higher

order link is ignored. However, the contribution is reflected in the physical properties

of the streams that are correlated with order.

The most important channel network properties described by Strahler statistics

are listed in Table 2.1. Typical ranges observed for these statistics are also listed.
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TABLE 2.1

Observed Strahler Statistics

Statistic Definition Observed Range

Bifurcation Ratio Rb = 4.79(1),4.87()
i+1

5.74 + 1.2(1)
4.92 + 0.8(1)
3 - 5(2)
2 - (4)

Li+
Stream Length Ratio Rj= +1 2.1-2.9(2)

i

2.37(1)

AArea Ratio RA=- +1- 4.3 -6.9(1

Stream Slope Ratio RS = 1.86(1)
i+1

1.44 - 3.46(1)

*
i = order

Ni = total number of streams order i;
Li = average length of all order i streams;

Si = average slope of all order i streams;
Ai = mean area at downstream end of all order i streams

()Zavoianu (1985);( 2 )Strahler (1964);(3)Schumm (1956)

(4)Shreve (1966)
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Many researchers have claimed that these ratios are independent of order i for any

given catchment. Others have claimed that they should be invariant over all

catchments and all orders. Shreve (1966), using topologically distinct random

networks (see Section 2.2.1.2), showed that the value of the bifurcation ratio is

constrained by topological arrangement of a branched network. Small sample sizes and

systematic effects have made it impossible to statistically validate these claims.

Shreve (1966) and Smart (1967) noted a slight decrease in the bifurcation ratio

with order. Tokunaga (1978) introduced a new stream number law, based on scale

invariance of network topology, that predicts such a trend in bifurcation ratio. This

new scheme has conceptual advantages when examining channel network growth, a

central purpose of this work.

Tokunaga adopts the Strahler ordering scheme but abandons the stream

number law based on bifurcation ratio. Instead he describes the ratios of numbers of

lower order streams (i.e., (i-l), (i-2), ... ) flowing laterally into the higher order stream

of order (i). These ratios are assumed constant irrespective of order. These ratios are

61 i e- 1  (2.1)

2 i i-2, etc, for all orders (i).

where i = order

S = average number of streams of order j flowing laterally into a

single stream of order i.

The ratios c,, 62, ... are considered to be independent of order. Tokunaga

defines a second statistics K, that relates these ratios so that

K . j+1
1 2 (2.2)
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The statistic K is also considered to be independent of order. Tokunaga (1978)

shows that the assumption of K and c independent of order is inconsistent with the

bifurcation ratio being independent of order. As will be shown below the effect on

bifurcation ratio is, for practical purposes, insignificant, but the conceptual value of

the Tokunaga stream number scaling will be seen to be important later.

An outline of the nonstationary bifurcation ratio result follows. For a basin of

order At the average number of streams of order A is given by (Tokunaga, 1978)

At-A-i t-A-i At-A-i
N(AAt)- Q - P Q (2 + -P) + P t (2 + 61)

(2.3)

where

2 + + K- 1(2 + + K) 2 -8K

P= 2

2 + cl + K + {(2 + + K)2 - 8K

Q =2

Thus the bifurcation ratio for streams of order (A-) flowing into stream of

order A in a basin of order At is

R b (At-A) - N( ( A-l), At) (2.4)N (AAtX
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Substituting Equation (2.3) into Equation (2.4) yields the following expression

for the bifurcation ratio

Rb(At-A)= I + - Q (2.5)
b A ~t A - + A

where

A= II-QP

Tokunaga shows that the only case where the bifurcation ratio is constant is

when A = 0. This is possible only in the case of K = 0 and c, # 0; a degenerate case

that Tokunaga calls, for obscure reasons, "structurally Hortonian networks".

Additionally, it may be noted that Q > P so that the bifurcation ratio increases with

increasing (At-A). The asymptotic result for bifurcation ratio as (At-A) tends to

infinity is

lim Rb(At-A)
(AtCA) -

=2K -l + 2Kj K2 - 1 (2.6)

where

2 + el + K
K = 

8K
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A plot of this asymptotic bifurcation ratio versus values of K is given in Figure

2.2. Tokunaga shows that the parameter values K = 2, cl = 1 correspond to the most

probable networks for Shreve's topologically distinct random networks (see section

2.2.1.2). The asymptotic bifurcation ratio in this case is Rb(oo) = 4. This point is

plotted on Figure 2.2. In addition, in Figure 2.3 the variation of bifurcation ratio with

(At-1) is plotted (with parameters K = 2, e1 = 1). It is apparent that the variation of

Rb with order is small, particularly in comparison with possible variations in K and (I.

Trends in Rb with order are likely to be difficult to distinguish from normal random

variations.

As previously noted, the main advantage of the Tokunaga scaling hypothesis is

that it characterizes networks with the order independent parameters K and (l, and

that it solves a fundamental scaling problem with the bifurcation ratio which becomes

apparent when describing growing channel networks. A more detailed consideration of

the advantages of the K, el statistics over the Rb statistic will be provided in Section

2.2.2, where the temporal aspects of channel network growth will be considered.

Finally, Tarboton, et al. (1988), have, using fractal arguments, postulated a

relationship between the Strahler bifurcation and length ratios for space filling

networks. They assert that

Rb =R2 (2.7)

This result is only true asymptotically as the order of the catchment approaches

infinity. Thus this result is not inconsistent with the Tokunaga scaling hypothesis.

2.2.1.2 Topologically Distinct Random Networks

Complementary to the classification of networks by order is the classification of
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networks by magnitude. Magnitude is typically discussed in the context of

topologically distinct random networks (TDRN), first discussed by Shreve (1966, 1967,

1969) and further developed by other researchers (e.g., Mock, 1971). The concept of

magnitude will be discussed first.

The idea of link magnitude is similar to that of Strahler order (Figure 2.1). A

link is defined as that length of stream between two bifurcations. Each source link is

assigned a magnitude of 1. Each downstream link is assigned a magnitude equal to the

sum of the magnitudes of its upstream tributary links. A link's magnitude can then be

interpreted as the number of source links contributing to that link. The total number

of links, n, in a network is related to the magnitude of the highest magnitude link, m,

by n = 2m-1.

Shreve (1967) distinguished between source links and all other links. Source

links are called "exterior links", all other links 'interior links". Shreve (1969), using

blue lines from 1:24000 topographic maps, observed a significant difference in the mean

length of interior and exterior links. Shreve (1974) presents data for Eastern Kentucky

that shows mean interior and exterior link lengths to be approximately equal. Using

digital elevation data Tarboton (unpublished data) analyzed a number of catchments

in the United States and found that mean link lengths for interior and exterior links

were not significantly different.

Mock (1971) further differentiated link types. Two types of exterior links were

defined:

1. Source link: A link draining into a link downstream of magnitude 2.

2. Tributary source link: A link draining into a link downstream of

magnitude greater than 2. In this case the other stream merging at the

outlet is of higher magnitude and the other stream may be considered

the main stream.

Four types of interior link were defined.

29



3. Bifurcating link: A link with equal magnitude links upstream and

merging with a lesser magnitude link downstream.

4. Tributary bifurcating link: A link with equal magnitude links upstream

and merging with a higher magnitude link downstream.

5. Tributary link: A link with unequal magnitude links upstream and

merging with a higher magnitude link downstream.

6. Cis-trans link: A link with unequal magnitude links upstream and

merging with a lower magnitude link downstream.

The tributary notation refers to the case where the link being classified is the

lesser (on the basis of magnitude) of the two streams at its downstream confluence.

Abrahams (1984) makes a further distinction between cis and trans links. A cis link is

where the upstream lower magnitude link and the lower magnitude link downstream

both enter on the same side of the river. A trans link is where they enter from

opposite sides. Abrahams asserts that because of the space filling characteristics of

networks, where tributaries on one side of a stream are roughly uniformly spaced, that

the length distribution of cis and trans links should be different.

The notion of a topologically distinct random network (TDRN) was first

introduced by Shreve (1966). Two networks of equal magnitude are topologically

distinct if the arrangement of links in the networks is topologically different. They are

the same if the topological arrangement of the links is the same. Shreve (1967)

presents a strict definition of this concept. He symbolically represents a network by a

string of E's and I's. Two networks of equal magnitude are topologically distinct if

their El string is different. The El string is constructed as follows.

1. Start at the outlet of the basin. Travel upstream on the network at each

bifurcation always taking the leftmost branch that has not already been

traversed.

2. Score an I the first time a particular interior link is traversed.
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3. Score an E the first time a particular exterior link is traversed.

Two networks of equal magnitude are topologically distinct if their El strings are

different.

To obtain mean properties of the networks from the TDRNs (e.g. mean width

function, mean length of Strahler streams) it is necessary to postulate a probability

distribution of occurrence for each individual TDRN. Shreve (1966) proposed that

each TDRN of a given magnitude should have an equal likelihood of occurrence. Mock

(1971) grouped together TDRNs exhibiting lateral symmetry into what he referred to

as ambilateral groups. He calculated mean properties assuming that each ambilateral

group was equally likely. These mean properties included the mean number of links of

a particular type (e.g. Source, Tributary Source) conditioned on various topological

statistics of the catchment (e.g. magnitude). Two TDRNs are members of the same

ambilateral group if their only topological difference is that a subnetwork is switched

left to right (i.e. the subnetworks look the same if one subnetwork is viewed in a

mirror).

Neither Shreve nor Mock provided any evidence that justified their postulate for

the probability distribution for the occurrence of TDRNs. Proving their hypotheses has

been difficult because of the large data requirements. Indeed it may be that the

probability of occurrence of TDRNs is conditioned on the prevailing catchment

geometry or systematic geologic effects

Shreve (1966) noted that the bifurcation ratio for individual networks varied

between 2 and 5. His random networks showed a slight upward curvature in the mode

bifurcation ratio with order, which is consistent with the Tokunaga (1978) scaling

hypothesis.

It seems reasonable to assume that if link and Strahler stream distributions are

different for Shreve's and Mock's equal likelihood postulates, then derived properties
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such as travel time distributions and average width function will be dependent upon

the postulate used. Whether the effect is important hydrologically or is verifiable in

the field is an open question.

2.2.1.3 Applications of Ordering and TDRN Models

The Strahler/Horton/Tokunaga ordering and the TDRN/magnitude topological

classification models for channel networks do not explicitly address temporal

components of catchment form. Despite this these models have proved to be useful

descriptors of catchment form at any given point in geologic time. In addition, a

number of researchers have used statistics derived from these classifications schemes to

develop models for the instantaneous unit hydrograph (IUH).

For many years it has been recognized that catchment geomorphology statistics

can be used as predictors of catchment flood properties. The literature is replete with

examples of simple applications of this kind (Chow, 1964). For instance, independent

variables such as mean channel slope and mean channel length being commonly used to

describe the 'time of concentration" of catchments.

The first major step beyond this type of statistical study was the development

of the geomorphologic instantaneous unit hydrograph (GIUH) by Rodriguez-Iturbe

and Valdes (1979). In this work the IUH was interpreted as being the probability

distribution that any raindrop that fell in the catchment would reach the outlet of the

catchment at a given time. Roughly speaking the runoff process was conceptualized as

a series of linear reservoirs, each reservoir corresponding to the area of the catchment

that drained into channels of the various Strahler orders. Discharge out of the

catchment resulted from a drop having a random chance of proceeding from a low

order reservoir to a higher order reservoir (Figure 2.4).
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Rodriguez-Iturbe and Valdes derived the following relationships for the peak

discharge and the time to peak of the IUH

Q _ = 3 R.43 V (2.8)

T = 0.44 L R0.55 R .55 R .38 (2.9)-V -b A

where

Rb,Re, RA = Strahler bifurcation, length and area ratios respectively.

Lg Q= length scale of the catchment, length of the order Q stream,

where the order of the basin is Q.

V = velocity of flood wave peak, assumed constant over both the

hydrograph and the catchment.

The important contribution of this work was the conceptual link between the

statistics parameterizing the catchment geomorphology and the IUH. Later work by

Gupta and Waymire (1983) and van der Tak (1988) has corrected and clarified a

number of minor details in the methodology. A major assumption is the constant

velocity assumption. There exists evidence to both support and refute this

assumption; i.e. that flow velocities are constant within the catchment (e.g. Pilgrim,

1977) or that the wave speed is variable over the period of a single hydrograph and

varies substantially with discharge (e.g. Price, 1975; Wong and Laurenson, 1983).

There have been a number of attempts to remove this dependency on constant velocity

(Gupta, et al., 1980; Rodriguez-Iturbe, et al., 1982).

The other important application of geomorphology is in the determination of

the so-called "width function" (e.g. Surkan, 1969; Troutman and Karlinger, 1984).

The roots of idea are based in the TDRN concept developed by Shreve. The width

34



function at some distance x is defined as the number of links whose outlets are (x-l)

links distant from the outlet. Thus the width function represents the topological width

of the catchment with distance. This can easily be related to the physical width of the

basin. If the mean link length is independent of order or magnitude and if the mean

area draining to any link is also independent of both order and magnitude, then the

width function is directly proportional to the mean area draining at a given distance

from the catchment outlet, the distance-area diagram. Thus the width function is

equivalent to the distance-area diagram commonly used in synthetic unit hydrograph

studies. If the assumption is made that the flood wave velocity is constant in both

space and time, then the time-area diagram and IUH follow directly.

Mesa (1986) extended the width function by modeling the channel network as a

spatially homogeneous birth/death Markov process with increasing topological distance

from the catchment outlet (each link from the outlet is considered to be a generation in

the birth death process). He then developed expressions for the width function

conditioned on magnitude. This is equivalent to conditioning the generated network

on the expected area of the catchment since (Shreve, 1969)

E [Area] = E [mean link area] - number of links

= E [mean link area] - (2 x magnitude - 1)

Mesa compares the expected width function, conditioned on magnitude anld

maximum length, independently, and finds that they both give satisfactory

approximations (+ 50%) to the actual width functions at 6 field sites.

As an aside it may be noted that Mesa (1986) modelled the topologically

random networks as birth/death Markov processes with each generation being

interpreted as increasing topological distance from the catchment outlet. At any

distance there is a probability of bifurcation or death (i.e., to channel bifurcation or
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source area). This process, which models TDRNs conditioned on magnitude, implies

some distribution of likelihood for the individual TDRNs of any given magnitude. The

expected or mean width function results from an averaging over the population

distribution of TDRNs generated. This can be compared with Shreve (1966) who

considered each TDRN of set magnitude to be equally likely, or Mock (1971) who

considered each ambilateral class to be equally likely. Gupta and Waymire (1983)

showed that the birth/death modeling of Mesa (1986) is equivalent to assuming the

TDRNs to be equally likely, as assumed by Shreve (1966). Thus the mean statistics of

Shreve's work and Mesa's work are comparable. The same cannot be said of Mock's

statistics.

In conclusion, the application of geomorphological principles to catchment

response is, as yet, in a rudimentary stage. Several ideas from the literature have been

briefly discussed. The techniques described above use as inputs the measured

characteristics of the channel networks and the surrounding hillslopes. That the

landscape results from erosion during flood events is an accepted concept. It thus

seems reasonable that the catchment, sediment transport and flood hydrograph form

should be fundamentally linked. An approach unifying the geomorphology and the

response could potentially generalize the geomorphological instantaneous unit

hydrograph and width function. Such a unification may also answer outstanding

questions about the flood wave velocity distribution in space and perhaps lead to

techniques relating remotely sensed elevation data to catchment response.

2.2.2 Models for Channel Network Evolution l

2.2.2.1 Introduction

The channel network classification models described in Section 2.2.1 have one

property in common; they all describe the channel network form independent of

temporal aspects. They ignore how the network developed and look at the network at
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a given time. Any attempt at geographic regionalization across a broad range of

catchments implicitly assumes one of two things

1. That the characteristics described by the ordering/TDRN models are

independent of time.

2. That the characteristics described by the ordering/TDRN models are

dependent on time, but that all catchments are at dynamic equilibrium.

Neither of these points have been well addressed in the literature. The

independence of time of ordering/TDRN statistics have never been satisfactorily

examined. Many people have claimed the landscape to be in dynamic equilibrium, but

as will be discussed in Chapter 6, there is considerable argument over this point.

Nobody has looked at the time scales of landscape adjustment and compared them to

time scales of variation of tectonic uplift or climate to see if the landscape has enough

time to adjust to changing geologic and climatic conditions. The reason for this

paucity of study is obvious: except at very small scales, the time scales of change are

too long to make a study of timescales a realistic proposition. In addition, the

statistical scatter from basin to basin makes it difficult to assert with any certainty

that descriptive statistics are even regionalizable.

So far all descriptive models of channel network growth have been based on

some conceptualization of reality. A major limitation is that they only model planar

form of the catchment, without regard to the elevation characteristics of the network.

Energy considerations are ignored. For instance, the outflow of sediment from a

catchment causes a net reduction in the elevation potential energy of the catchment,

yet no attempt is made to model the processes dissipating this energy. Consequently,

the mechanism for growth of the network is at best conceptual. At worst there is no

physical justification of the growth mechanism.

The major models that simulate network growth will be described in the

following sections. All of these models consider network growth in the plane, without
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regard to elevation. One model for channel network evolution will not be considered

here. This model is the channel elevation, heat-engine, analogy of Leopold and

Langbein (1962). This model is fundamentally different from the ones discussed in this

section. It does not model network growth. Rather the elevation characteristics of a

fully grown network are analyzed, on the basis of a thermodynamic analogy. It

displays substantial similarities with the hillslope evolution models to be examined in

Section 2.3.3 and will be discussed with these models.

2.2.2.2 Headward Growth Model

Conceptually headward growth is both the easiest to understand and the easiest

to ascribe a physical interpretation. It was introduced by Howard (1971). Recently

van der Tak (1988) reexamined the characteristics of the Howard model.

The principle of the headward growth model is simple. The network is

simulated on a rectilinear grid of points. The channel network is a connected set of

these points. This connection process of these points will now be described. A node

(or nodes) on the boundary is selected as the outlet of the catchment. This point is

used as the beginning of the network simulation process. The simulation proceeds in

generations or 'time steps ". At each generation the existing network of points is

examined and active growth sites, where growth may potentially occur in the coming

generation, are identified. The criteria for deciding which sites are active are

1. The active point is on a channel

2. There is at least one empty node adjacent (i.e., not occupied by a

channel) to the active site, so that growth is physically possible.

For any given simulation a growth probability, p0., for each active site is

assigned. By random selection this probability is used to determine which active sites

will actually grow by one grid length in the next generation. At any growth site the

actual growth direction is randomly determined. Various ad hoc rules need to be
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defined to ensure that, for instance, two growing sites do not grow into the same grid

point, and form a closed loop in the process.

Growth of the network stops when either of two conditions are satisfied

1. all nodes are occupied by channels, the ultimate drainage density is

achieved,

2. a predetermined drainage density has been achieved (i.e., a given number

of nodes are occupied by channels).

The model is called headward growth since the heads of the channels grow into

the "hillslopes " from the growing sites.

There are a number of implementation details of the model that have important

consequences for the form of the simulated networks. These details will also be

significant when this technique is compared with other network simulation techniques

described in later chapters. All of these details involve aspects of how the network

grows. Howard (1971) and van der Tak (1988) looked solely at the form of the

networks at ultimate drainage density. The final network generated follows directly

from the growth processes. Once a stream segment is generated by the simulation, it is

fixed in space forever. Both Howard and van der Tak note significant differences in

the qualitative form of generated networks, depending on the probability parameters

used in the simulation. The discussion that follows will concentrate on more subtle

aspects of the growth process that are implicit in the model structure. These issues

will become important in later chapters.

The first important point is the question of the locality of the growth process.

Active growth nodes are determined solely on the basis of whether adjacent nodes are

already occupied by channels or not. If adjacent nodes are not occupied, then the

direction of growth at that node, if it is chosen to grow in the next generation, is

totally random. The selection of growth direction pays no heed to the existing pattern

of the network. It is only required that other channels not occupy nodes adjacent to
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the active site. For instance, two channels may grow towards each other, totally

"unaware" of each other's existence, until they are adjacent. At this time they cannot

continue growth in the same direction and they must turn away from each other in

some fashion (Figure 2.5). In diffusion limited aggregation research (see Chapter 3)

this property is sometimes called locality since growth conditions are determined solely

on the conditions of the network in the adjacent nodes, rather than some more global

characteristic such as the overall network pattern. This locality property has its most

apparent effect on channels near the domain boundaries, with the channels strongly

reflecting the boundary geometry.

The second important point is the spatial distribution of the points selected for

growth in the next generation. In Howard's model all active growth sites are

considered equally likely to grow in the next generation. Thus an active site at the

base of the network, and an active node at the outer extremities of the network are

equally likely to grow. This effect is important when the pattern of network growth

with time is considered. The question of the distribution of growth sites in space is

addressed in detail in Chapter 3 where the concept of growth site screening is

introduced. Screening effectively reduces the probability of growth for interior nodes.

This is a consequence of the network around that point suppressing growth. The result

of the lack of screening in the Howard model is that at intermediate times the drainage

density at the root of the network will be higher than at the extremities. Ultimately

the drainage density will be constant throughout the catchment - that is a

requirement of the model - but at intermediate times the drainage density will be

higher at the network root. This situation can be contrasted with that in the

physically based network models discussed in later chapters where screening is

observed.

The third important point is about the rate of growth of the network. Neither

Howard nor van der Tak were concerned with how fast networks grow. They were
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solely concerned with the ultimate form of the network. Interest in the use of

headward growth models in more general channel/hillslope models is developing (Shaw

and Mooers, 1988). These authors modelled channel and hillslope processes as spatially

diffusive processes with greater diffusivity in the channel. The relative rates of channel

growth to channel and hillslope elevation response are important in determining the

transient form of catchment elevations.

The mean rate of growth of a single active site in the Howard model is given by

df
= pg

where f = length of an individual channel, units of the grid interval

t = time, units of generations

Some first order estimates of rates of network growth for the Howard model will

now be determined. As a simple initial case consider the case where all nodes on the

channel network are active sites. That is, if the network has a total length of fn grid

units, there are fn active sites. This is a reasonable approximation to the early stages

of network growth when drainage density is low. In this case the rate of growth of the

network is

din df
dV n dT

where fn = total length of all streams in the network, units are the grid interval.

An uover bound on the rate of growth of the network at early times and low

drainage densities is then

fn = t (2.10)

Some estimate can be obtained of the effect of inactive nodes by examining the
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situation near ultimate drainage density or later times. If all remaining unfilled nodes

are isolated (i.e., not clustered together) then the potential sites to be filled can be

given by

de

where fu = length of stream at the ultimate drainage density

= (n x m) for a n x m rectangular grid

Near the ultimate drainage density an upper bound on the rate of growth of the

network is given by

n =u - a e (2.11)

Development of an expression for the rate of growth of the drainage network at

intermediate times and drainage densities is complicated by the inability to obtain

explicit expressions for the number of active sites at any stage in network

development. An upper bound on this rate at early times is given by Equation (2.10).

An upper bound on this rate at later times is given by Equation (2.11). A postulated

variation of network length with time is given by Figure 2.6. At early times the

growth curve is concave upwards, reflecting the form of Equation (2.10). At later

times the growth curve is concave downward reflecting the form of Equation (2.11).

At some intermediate time there is an inflection point in the growth curve. Whether

the curve exhibits a period of constant growth rate will be addressed later in work, in

the context of the physically based channel growth model.

Note that the ultimate drainage density (and thus the mean hillslope length) of
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the simulated network is fixed by the grid size and spacing. The irregularity of the

channel is also fixed by the grid. An alternative way to simulate networks of variable

drainage is to apply an area threshold on tht ultimate network, ala Tarboton, et al.

(1988). Nodes with drainage areas less than the area threshold are defined to be

hillslopes. A growth process could be simulated by gradually reducing the area

threshold with time. This is a form of allometric growth model, to be discussed in

Section 2.2.2.4.

2.2.2.3 Random Walk Models

A simulation model that is opposite in philosophy to the headward growth

model is the random walk model. First introduced by Leopold and Langbein (1962) it

amounts to modeling the channel network in a downward direction from the runoff

source areas to the catchment outlet.

In this model source areas are considered to be distributed randomly in space,

with a Poisson distribution. The model tracks the random flow downhill from the

source until it either hits the boundary of the domain, in which case the boundary

point is considered to be a catchment outlet, or it hits another stream, in which case it

is considered to be a tributary of the stream it hits.

The single conceptual advantage of this model over the headward growth model

is that it includes the idea of runoff source areas, even if somewhat loosely. A key

issue is the assumption that source areas are uniformly distributed in space. The

network is assured to be space filling, this follows from the Poisson distribution of

source areas in space.

As with the headward growth model, this model is a local model for channel

growth. Every channel grows independently of any other channel, unless they are

adjacent, in which case the two channels join. As with the headward growth model,

this means that channel growth occurs independently of any global drainage pattern,
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imposed by the pre-existing channel network.

A difference of the random walk model from the headward growth model is the

role screening plays in the form of the simulated network. Attributing a growth

process with time to the random walk is clearly unreasonable. This makes it more

difficult to conceptualize how the preexisting network may influence the 'future"

network form. It might be reasonable to condition the simulated network upon some

required magnitude (it may then be interesting to look at the network form with

variable magnitude). As far as screening is concerned the random walk is

fundamentally different from the headward growth model. In this respect the random

walk model exhibits similarities to the DLA models (see Chapter 3) because both grow

by a random walk like process.

The fractal dimension of the channels in the simulated networks will be that of

a random walk; that is, a fractal dimension of 1.5. The available experimental evidence

for river channels indicates that this value is too high (Tarboton, et al., 1988). Thus

the channels simulated by the random walk model are too irregular.

2.2.2.4 Allometric or Topological Growth

The idea of allometric growth of networks is deeply rooted in the scaling ideas

of Horton (1945) and Strahler (1964). The allometric growth process may be loosely

demonstrated by taking a given channel network and averaging (blurring) the network

at a large horizontal scale and then gradually reducing the scale of averaging. Initially

a very coarse network will be observed with more and more detail becoming visible

with time as the blurring is reduced. Allometric growth can be modelled by allowing a

topological representation of the network, either Strahler order or topologically distinct

random networks, to grow a single link at a time. This is related to Horton and

Strahler 's work because they envisaged a scale independence of their topological

statistics. A third order basin can be interpreted as an early time version of a fourth
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order basin, with all the first order links removed. Woldenburg (1966) was the first to

formalize this notion of topological growth of networks.

It is important to recognize that the allometric growth process is fundamentally

different to either the headward growth or the random walk model. The latter models

simulate the physical dimensions of the network. The allometric growth models are

topological growth models. Strahler first order streams spawn lower order streams;

these lower order stream even lower order streams, etc. Physical properties are not

considered except that a priori distribution on link or Strahler stream characteristics

may be applied. Conceptually the growth models are more closely related to the

infinite topologically distinct random networks of Shreve (1967).

Very little work has been done with allometric growth simulation models. The

exception is a landscape simulation study of Kelley, et al. (1988). The main reason for

discussing the allometric growth is to note the conceptual advantages of the Tokunaga

(1978) stream number law over that of Horton or Strahler.

Tokunaga (1978) points out that the Horton/Strahler bifurcation ratio of .any

particular order of stream is dependent upon the order of the catchment. This

characteristic was first observed by Smart (1967), though Shreve (1966) noted an order

dependence in a slightly different context. The Tokunaga stream numbers hypothesis,

parameterized by constants K and ci, has been described earlier. These constants are

independent of catchment order and predict a bifurcation ratio dependent on

catchment order. The Tokunaga model gives the number of (i-1), (i-2),...,(i) streams

that will be tributaries to an order (i) stream. All the stream orders may be

incremented by 1, and new first order streams added and the Tokunaga scheme will

still be applicable to the new allometrically grown network. The same is not txue for

the Horton/Strahler bifurcation ratio. Thus the Tokunaga stream numbering scheme

exhibits scale independence in the growth processes (at least in the mean stream

numbers), whereas the bifurcation ratio does not. It must be noted, however, that

47



both the bifurcation ratio and Tokunaga's number rule are relationships for the mean

number of streams; they do not parameterize the variability about the mean. It will be

shown in Chapter 7 that neither number law is particularly good for normal sized

networks because of the large variability around the mean. In the mean it would

appear that the Tokunaga hypothesis is more appealing, simply because of this scale

independence, but for practical purposes neither measure is particularly satisfactory

because of this variability.

2.3 Models of Hillslope Characteristics

2.3.1 Introduction

The hillslope is defined as the intervening area between the channel network.

This, rather vague, definition of what constitutes hillslope is taken as fact in much

work on hillslope geomorphology. Traditionally geomorphology has been artificially

divided into two areas: channel network geomorphology and hillslope geomorphology.

The interaction between the two regimes has, until recently, been largely ignored so

that accurate, and general, definitions of where channels end and hillslope begins, have

not been necessary.

For the purposes of this section, a channel will be defined as a well contained

flow of limited extent perpendicular to the flow direction and with a width of flow

comparable to the depth of flow. Hillslope will constitute everything else. Hillslope

processes may or may not be dominated by either Horton (i.e., overland flow) or

Dunne (i.e., subsurface saturation) runoff production mechanisms. Figure 2.7

illustrates what this channel definition may look like in nature. This is a rather more

pragmatic, less accurate, definition of hillslope and channel than some consider

acceptable (e.g. Kirkby,1988). Nevertheless this definition will suffice for the

discussion of hillslope processes in this section. It will also allow the discussion of what

constitutes hillslope and channel in a separate, self-contained section (Section 2.4)
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devoted to hillslope channel interactions.

Analogously to the treatment of channel networks in the previous section, this

section will be divided into two parts. The first part will concentrate on those

descriptive measures of the hillslope that attempt to characterize hillslope form at any

give time, i.e., no explicit consideration of temporal effects. The second part of this

section will be devoted to models of hillslope evolution. In contrast to the channel

network case, most hillslope research has been devoted to understanding temporal

aspects of hillslope form.

2.3.2 Descriptive, Time Independent Hillslope Models

Rather surprisingly, considering the amount of research that has been devoted

to hillslope hydrology and hillslope geomorphology, there is a dearth of statistics for

summarizing hillslope form. This may reflect the infant state of knowledge about

hillslope runoff processes. It may also reflect the relative ease with which channel

properties may be identified, even from a low resolution topographic map. Hillslope

form is a distributed property, channel are easily identified lines. Hillslope runoff is

also much more complicated than channel flow. Most of the statistics to be described

below provide no direct insight into hillslope runoff processes. The work of Beven

(1979) and O'Loughlin (1981) on subsurface saturation is an obvious exception to this

gross generalization.

Mandelbrot (1983) triggered an interest in fractal characterization of landscape

and hillslopes with his beautiful three-dimensional pictures of mountain landscapes,

simulated using fractal techniques. Numerous other authors have duplicated this work.

These techniques will not be discussed here, nor will the techniques for measuring

fractal dimensions. Detailed discussion of these results will be delayed until Section

2.3.4 because the interpretation of these measurements will require some consideration

of hillslope evolution processes like creep, erosion, and rockfall, which are discussed in
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Section 2.3.3.

Horton (1945) introduced the most fundamental statistic for hillslope

characterization, the drainage density. The drainage density is defined as

Dd=A

where Dd = drainage density

f = total length of channels in the catchment

A = total area of the catchment

and it is related to the mean hillslope length by the relationship

1 (2.12)

where 'h = mean hillslope length.

Considerable variation of drainage density among catchments has been

observed. Horton interpreted the mean hillslope length as that length of overland flow

that was just sufficient to initiate erosion. Once erosion began channels were formed.

This surface runoff dominated transport process for channel formation was the

predominate interpretation of drainage density and hillslope length until Dunne (1969)

showed that groundwater runoff processes (e.g., subsurface saturation) can be

dominant in many catchments. It will be shown in Section 5.5 that the subsurface

saturation concept is consistent with the notion of a fixed support area, or source area,

for channel formation (Figure 2.8). That is, the area contributing to the channel head

is fixed. Effectively this means that the drainage density may be considered to be a,

function of the channel support area and the planar geometry of the groundwater flow
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on the hillslopes around the channel head.

Although the runoff processes proposed by Horton and Dunne are different the

effect on the interpretation of the drainage density is the same; it is the inverse of the

mean hillslope length. The only important difference between the Horton and Dunne

interpretation is the physical process that governs hillslope runoff.

The research relating drainage density to catchment conditions is unfortunately

unable to differentiate between these two opposing runoff processes. Gregory and

Walling (1968) and Gregory (1976) summarized the important physical inputs to

drainage density. Increased drainage density has been positively correlated with

1. increased extreme runoffs

2. increased mean runoffs

3. reduced soil permeability

4. reduced vegetative cover

5. increased relief

6. increased sediment yield

For instance, many authors have noted a relationship between drainage density

and the mean annual peak discharge of the form (Gregory, 1976)

Qp = a DOp d

where the power on the drainage density, 0, is typically of the order of 2.

Rodriguez-Iturbe and Escobar (1982) examined this relationship between drainage

density and extreme runoffs on the basis of energy conservation principles. They

concluded that "drainage density is both the cause and effect of energy expenditure of

the effective rainfall" (p. 137). Thus the drainage density and extreme runoffs should

be viewed as being interactive variables.

The other main statistic that has been used to characterize hillslope form is the
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hypsometric curve. This curve is a function relating the amount of area in a

catchment above a given elevation, in a non-dimensional form. Schumm (1956)

examined the hypsometric curve over a range of catchments in a landfill in New Jersey

(Figure 2.9). He attributed differences in the hypsometric curve for different

catchments to differences in ages of the catchments. It must be cautioned, however,

that hypsometric curves for a single catchment through time have never been plotted,

so that such assertions about age differences are somewhat speculative at this stage.

Strahler (1952, 1964) present a number of statistics to summarize the form of

the hypsometric curve.

1. Relative area lying beneath the curve.

2. Slope of the hypsometric curve at the inflection point.

3. Degree of sinuosity.

He notes that, though did not explain why, many hypsometric curves can be

fitted by the curve '

_ - x b -z

where y = relative height = H H 0

x = relative area =

b, d, z = fitting coefficients

a = area with elevation greater than elevation h

A = area of the catchment

H, H 0  = maximum and minimum elevations within the

catchment

It is generally believed that the hypsometric curve tends, with age, to a

characteristic form called the monadnock stage. In this stage the catchment consists of
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Figure 2.9: Hypsometric curves, Perth Amboy, New Jersey.
(from Schumm, 1956)
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a number of isolated bodies of resistant rock (called monadnocks) surrounded by a

"generally subdued surface" (p. 4-69, Strahler, 1964).

Strahler (1964) defines a ruggedness number for the hillslopes as

H Dd
Rh S d(2.13)

g

where Rh = hillslope ruggedness number

H = mean hillslope drop from the divide to the stream

Dd = drainage density

S = mean slope of the hillslope.

For a uniform plane the hillslope ruggedness number is 0.5. Strahler (1958)

found that the average value for several catchments ranged from 0.3 to 1.0. No

explanation was offered as to how this variation reflected differences in the hillslope

form. An explanation for the variation will be offered in Section 7.5.

Strahler (1964) related hillslope and channel slopes. This relationship was of

the form

Sh = a SC (2.14)

where Sh' Sc = hillslope and channel slopes, respectively

a, 0 = fitting coefficients, 4 and 0.8, respectively.

Finally Beven and Kirkby (1979) and O Loughlin (1981) present models for

predicting regions of subsurface saturation. This distribution of saturated areas is

parameterized as that area where
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> threshold constant (2.15)

where q = discharge = RA

R = rainfall depth

A = upstream contributing area

K = subsurface conductivity

S = hydraulic slope of groundwater table

O'Loughlin (1981) defines the threshold constant in this equation as

Threshold constant = h0 + x5 (M - S) (2.16)

where h0 = depth of water table

x = width of the saturated region around the channel

M = surface slope of the hillslope

This equation defines the point at which the convergence of flow lines will result

in the groundwater table reaching the surface. Where M = S this definition is

essentially that of Beven and Kirkby (1979). A number of authors have noted the

patterns of subsurface saturation excess predicted by these models are qualitatively

consistent with those field workers. In addition, recent work in forested catchments in

South East Australia, indicates a positive correlation between the wetness coefficient,

defined as

WC=g

and surface soil moisture content (O'Loughlin, personal communication). Such a result

is consistent with Beven (1983), where he parameterizes equation (2.15) in terms of a

moisture deficit. It would seem that measures of the spatial distribution of these
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wetted areas would be a useful measure of the form of the hillslope. Such work has not

been done.

This concludes the treatment of statistics used to describe hillslope form. The

following section will concentrate on models of hillslope evolution and the processes

that are important controlling agents in the evolution of the characteristics of

hillslopes.

2.3.3 Models for Hillslope Evolution

This section describes some models that have been proposed to simulate the

mass movement process on hillslopes. These models are of fluvial overland flow

erosion, creep, rainsplash and rockfall. One of the models discussed, that of Leopold

and Langbein (1962), was originally presented in the context of elevation evolution in

channels, rather than elevation evolution in hillslopes. It is discussed in this section

because conceptually it displays greater similarities to the hillslope models below than

it does to the channel network models discussed earlier. The Leopold and Langbein

heat equation model discussed below, unlike the channel evolution models, does not

model the growth of channel networks, but rather the elevation changes once they have

grown. In a similar way the hillslope models are solely concerned with elevation

changes with time.

There is general agreement in the literature that the elevation in the channel

networks and hillslopes may be modelled as an "open dissipative system" (Leopold and

Langbein, 1962; Scheidegger, 1970; Thornes, 1983; Huggett, 1988). The general form of

the governing equation for elevation changes in an open dissipative system is

Oz(x)
= sources - sinks + spatial coupling (2.17)
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where z = elevation

x = horizontal dimension, x E Q where Q is the catchment

t = time

This equation expresses the continuity of sediment, and thus elevation, within

the catchment. Sediment mass may be considered as elevation per unit area so that a

continuity equation for sediment is equivalent to a state equation for elevation as in

equation (2.17). The equation is called a dissipative system because of the sink term.

There is an outflow of sediment; elevation is being dissipated away. For a catchment

this dissipation term will be the sediment transport process. The sediment transport

process will also be the coupling term since changes in spatial patterns of elevations

will cause changes in drainage pattern and sediment transport and thus further changes

in the spatial pattern of elevation.

Thus the sources, sinks and spatial couplings are the physical processes that will

sculpt the landscape. This section is devoted to the discussion of these processes.

There is some disagreement about which processes dominate at the catchment scale,

and thus need to be modelled. Given the right conditions, though, all the processes to

be discussed have the potential to dominate at some scale. The difficult, and largely

unanswered, question is to determine what those 'ight " conditions are. A

nondimensional analysis in Chapter 6 will begin to address this question.

The source term in Equation (2.17) is important since without a source term

the only steady state solution for the elevation will be zero everywhere, i.e., a flat

plain. In the catchment setting this source term will be tectonic uplift. It is difficult

to conceive of any other physical process that would result in a net increase in

elevation throughout the whole catchment from watershed to outlet. Because of the

processes of aggradation and degradation erosion processes can produce localized

elevation increases but the net elevation over the whole catchment must be decreased.
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The spatial coupling and sink terms are potentially the most important terms of

the equation. It is through these terms that the spatial pattern of hillslopes and

channel network come into being. The remainder of this section will be devoted to

discussing the physical processes that are operative at the catchment scale which can

be thought as being spatial coupling and sink terms.

Initially, fluvial sediment transport will be discussed. They typically operate as

either sheet or rill erosion. Other, secondary, processes that act at the hillslope scale

will then be discussed. These processes include creep, rainsplash, and rockfall. These

processes are typically modelled by a Fickian diffusion term, and it will be shown that

they act in a fundamentally different fashion to fluvial sediment transport.

This section will.close with a consideration of some of the applications of these

models. The development of characteristic hillslope cross-sections will be discussed in

this context. A number of simulation models will be described and the implication of

their results to interpretations of hillslope form discussed. Some important failings of

these models will be identified.

Kirkby (1971), in a seminal work on hillslope form, proposed a general

framework within which one-dimensional transport by Hortonian overland flow on the

hillslopes could be viewed. He used a continuity equation for sediment transport of

similar form to Equation (2.17). For low slopes he proposed a general formulation of

the sediment transport-spatial coupling term of

= ( (2.18)

where Q is the transport law for the hillslope.

The sediment transport law was then related to the appropriate governing

process dominant in the hillslope. Kirkby suggested that a transport law of the

following form was appropriate.
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QS a Qm mSn (2.19)

where Q = discharge

S = slope

m, n = coefficients dependent on the governing process

= 0 and 1, respectively, for soil creep

= 0 and 1-2, respectively, for rainsplash

= 1.3-1.7 and 1.3-2, respectively, for soil wash

= 2-3 and 3, respectively, for fluvial transport in channels.

Though very comprehensive, Kirkby 's model was by no means complete.

Better understanding of some of the physical processes has since been obtained; for

example, rock fall and rainsplash. In addition, Kirkby only considered

one-dimensional flow. More sophisticated treatments, all based on Hortonian flow

runoff mechanisms, will now be considered.

The case of overland flow sediment transport will be dealt with first. To model

the slope development of a two-dimensional unchannelized basin, which can be

considered a hillslope, Luke (1974) proposed the continuity equation.

where S = maximum downhill slope

z [ 2 + ]2] 1/2

qs= sediment flux/unit width.

This equation is simply a restatement of Equation (2.18) in two-dimensional

61



form. Using a transport equation of the generic form

q = S f(Q)

where f(-) = monotonically increasing function of Q.

Luke derived characteristic forms for the hillslopes based on some simple boundary

conditions.. Slope profiles were consistent with those proposed by Kirkby (1971).

Smith and Bretherton (1972) looked at two hillslope characteristics.

1. The tendency of a one-dimensional hillslope to converge to a

characteristic form.

2. The tendency of a one-dimensional hillslope to channelize.

This latter work was carried out by deriving the flow and sediment transport

continuity equations for a smooth, one-dimensional hillslope, and applying a

two-dimensional elevation perturbation. If the perturbation grew, then this indicated

a tendency for the hillslope to rill or channelize. The governing equations used were

the continuity equations for Hortonian flow and sediment transport

where a = runoff rate

Qs = sediment transport equation = 0 Qn

After applying the two-dimensional perturbation to these governing equations,

a perturbation equation for elevation was obtained. This equation governed the

growth of the perturbations with time and was
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11

where z = elevation perturbation

S(z - z*)

Z*= the nominal elevation about which the governing equations

were linearized

x, y = streamwise and cross-stream directions, respectively

A1, B1  = constants dependent on the mean slope, S, and the mean

sediment transport, Qs.

They examined the stability of this perturbation and found that it was always

unstable; that is, any initial perturbation in elevation always grew. They also found

that the narrower the perturbation was in the cross-stream direction, the faster it

grew. An important conclusion of this work was that whenever fluvial sediment

transport is the dominant transport process then uniform overland flow is unstable;

rilling will always occur. This conclusion is of some concern since it is contrary to

observation where uniform overland flow and sheet erosion have been observed with no

tendency toward rilling. Dunne and Aubrey (1986) demonstrated that in hillslope

regions where rainsplash, a stabilizing process, dominates fluvial transport the

tendency to rill is suppressed, but downslope as fluvial transport begins to become

important, rilling begins to occur.

There are a number of secondary processes that occur on the hillslopes that may

need to be considered, depending on the situation. Many of these processes have been

modelled by a Fickian diffusion term of the form

= Dz = D a (2.21)
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where Dz = diffusivity

S = slope

As previously noted Kirkby (1971) modelled creep and rainsplash with such a

term. Dunne (1980) supported the idea of modeling rainsplash by Equation (2.21) but

Dunne (1988) noted that the proportion of the hillslope over which rainsplash is

important, at the field scale, is quite small. Coventry, et al. (1988) suggested that

rainsplash may be an important process for detachment of particles which are then

transported by traditional fluvial mechanisms. This process they called rainflow.

However, the rates of rainflow transport reported were 1-10 mm/1000 years, very

small by hillslope erosion standards, where sheet wash erosion may be as much as 1-2

mm/year, particularly in steep tropical environments. Culling (1963) first proposed

that soil creep could be modelled by a diffusive term as in Equation (2.21).

Leopold and Langbein (1962) pursued the idea of an analogy between the heat

equation and elevation. They based their argument on the second law of

thermodynamics; entropy in a closed system should always increase. On the basis of

their ideas, Scheidegger (1970) proposed that elevation could be modelled by

= D-0 (2.22)
dx

While this equation is the same as Equation (2.21), the underlying principle is

different. In this latter case, the researchers appealed to the principle that energy

dissipation within the catchment should be uniformly distributed throughout the

catchment.

The unifying principle of all the processes described above is that diffusivity of

elevation is spatially constant. Appendix B shows that it is possible to reformulate the

fluvial sediment transport formula of Equation (2.19) in the form of an
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advection-diffusion equation. In one dimension, that is

$=-vN+ D&2

where v = advection velocity of an elevation perturbation

D = diffusivity of an elevation perturbation.

In this case of fluvial sediment transport, however, neither v or D are constant

and vary in a predictable fashion in space, dependent on both slope S and discharge Q.

Finally Kirkby (1971) and Andrews and Bucknam (1987) propose a model for

debris flows that for high slopes is in the form of nonlinear diffusion and for low slopes

becomes linear. For high slopes the equation is

X= ION ((2.23)
-T()

r

where K = diffusivity

Or= angle of repose of the debris material.

The expression simplifies to the following equation for low slopes (-S- < 0.1)
r

= I 2z (2.24)

For a typical angle of repose of 300, the latter equation is applicable to slopes

up to about 70. Fitting fault scarps with these equations and paleodating them,

Andrews and Buckman derived a value for K 0 of 0.61 m2 /1000 year.

Geomorphologists have been interested in determining characteristic hillslope

forms. This is the nondimensional shape that a hillslope will achieve with time, given
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uniform inputs. Some of the studies that have examined the issue of characteristic

profiles are Scheidegger (1970), Smith and Bretherton (1972), Kirkby (1971), Luke

(1974), Ahnert (1976), and Andrews and Bucknam (1987). The major differences

between the studies are the form of transport law used and whether the hillslope was

considered one dimensional or two dimensional.

Scheidegger (1970) obtained an analytic expression for hillslope evolution using

Equation (2.22) as the governing equation. The solution for elevation is

a 2t a3x

In nondimensional form this can be written as

a/ /

z/ =e (2.25)

where Z' = nondimensional elevation

a e

t= T = nondimensional time

x = = nondimensional horizontal distance
x

T = time scale

L = horizontal length scale

a = a2 T

3 = x3 Lx

The importance of Equation (2.25) is that it shows that the hillslope has a

characteristic longitudinal profile which simply declines uniformly in space with time.

In some sense we might consider the nondimensionalized form of the elevation to be in
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dynamic equilibrium and to have some characteristic form. The important topic of

dynamic equilibrium will not be pursued further here but will be dealt with in detail in

Chapter 6.

Both Kirkby (1971) and Ahnert (1976) present qualitative indications of

characteristic hillslope profiles depending upon the form of the governing transport

process. Kirkby classifies his profiles on the basis of the transport law in Equation

(2.19). Ahnert (1976) presents his on the basis of the different types of physical

processes (e.g. creep, landslide, erosion). Both sets of results are consistent. This can

be seen in the one-dimensional hillslope illustrated in Figure (2.10). If tectonic uplift

is in equilibrium with the erosion, then, using Kirkby 's formulation of transport from

Equation (2.19), the rate of change of elevation becomes

&=o= T-#QmSn (2.26)

where Q= R x

S =Oz
ax

T = rate of tectonic uplift

Solving this differential equation yields the following solution for elevation

along the hillslope

n-m+1-_ 
=[0 R 1/n n+ n (2.7)

Z = - n-m+ I? ] (2.27)

where Z = the elevation of the watershed

Thus if the transport law is such that m > 1, then the final profile is concave up

as shown in Figure (2.10b). If m < 1, then the final profile is concave down. Equation

(2.27) is consistent with the results presented by both Kirkby and Ahnert.
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Figure 2.10: Classification of characteristic hillslope profiles
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Geomorphologists have also argued about the relative contributions of hillslope

retreat and hillslope degradation to the hillslope form and how it develops. There has

been no quantitative analysis of this. The question is addressed in Appendix B.

Suffice to say that rates of hillslope retreat and hillslope degradation may be obtained

directly from the governing equations on the hillslope.

The aforementioned results are only true for one-dimensional hillslopes or for

very restrictive conditions in two dimensions. To generalize these results computer

simulations are necessary.

The two main approaches to catchment simulation are that of Ahnert ( 1976)

and that of Cordova, et al. (1982), and Roth, et al. (1989). The former author

developed a comprehensive hillslope simulation model that accounts for a large number

of transport processes including tectonism, weathering, rainsplash, fluvial erosion,

plastic and viscous flows, and debris slides, the general form of which are in line with

the parameterizations given above. He used this model in two dimensional modeling of

terrain to demonstrate the effects of geological inhomogeneity. As previously noted he

had also examined characteristic profiles for hillslopes.

The studies of Cordova, et al. and Roth, et al. modelled solely fluvial transport.

They modelled flow, via Mannings equation, and elevation evolution, via continuity of

sediment transport. The transport law used was the Einstein-Brown equation (see

Section 5.5 for a discussion of fluvial transport laws). The stated intention of this

simulation model was to produce channel networks. The model, however, does not

explicitly model the development of channel-like features. For instance, it does not

model the concentration of flow along preferred directions characteristic of channel

networks. The "channel network" is determined a posteriori from an analysis of

elevations and flow directions. That channel networks can be inferred is a direct

consequence of the interpretation of drainage directions; each node has many nodes

flowing into it, and only one flowing out of it. Because the model considers the
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surface, and all derived properties, to be smooth, the model could be better described

as a hillslope model. At the scale of the hillslope, a channel looks more like a line or

point, a dirac function. To model this requires a much greater concentration of flow

than the Cordova model can provide. That a Dirac function represents a channel's

properties better than the smooth representation of preferred drainage directions and

flow used by Cordova is a central tenet of the model developed in Chapter 5. It will be

the preferential erosion in the channel, represented as line, that causes the convergence

of flow in the hillslopes around the channel network.

This concludes the consideration of time dependent processes and their effect on

the form of hillslopes. It has been shown that a wide diversity of governing processes

may be parameterized in a simple power law dependent solely on discharge and local

slope. The promise of computer simulation has been highlighted, particularly in the

case of two-dimensional flow problems. The importance of the channel-hillslope

interactions on hillslope form was also pointed out.

2.3.4 Fractal Characterization of Landscape and Hillslopes

As previously noted, interest in fractal characterization of the landscape has

increased in recent years. This interest has largely been a result of the stunning

landscape pictures of Mandelbrot (1983) and others. The discussion in the previous

section of the governing processes on the hillslope provides the groundwork for an

examination of the research about fractals in the landscape. The mechanics of

estimation of the fractal dimension of data will not be treated here. A treatment of

this may be found in Tarboton, et al. (1988) or Mandelbrot (1983).

Ahnert (1984), Culling (1986), and Culling and Datko (1987) have studied the

fractal characterization of landscape. Ahnert found that the cumulative elevation was

fractal with a dimension between 0.5 and 1.0. This corresponds approximately to a

fractal dimension for elevations along a transect of between 1.5 and 2.0 and for
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elevation over an area of between 2.5 and 3.0. Culling (1986) and Culling and Datko

(1987) found the fractal dimensions of transects of landscape to be between 1.2 and 1.5.

Chase (1988) demonstrated, with a landscape evolution model, that depending on the

dominant erosional regime the landscape areal fractal dimension can vary between 2.2

and 2.9.

Culling and Datko noted a change in the fractal dimension for horizontal scales

less than 400m. For length scales less than 400m, the estimated fractal dimension was

about 0.1 higher than the fractal dimension for length scales larger than 400m. Thus

at low length scales, the landscape was qualitatively rougher than at longer length

scales.

Davis, et al. (1988) also noted a break in the fractal dimension at a horizontal

length scale around 500m. In their case they found the fractal dimension to be lower

at short length scales. This result contradicts the findings of Culling and Datko.

However, Davis, et al. obtained their elevation data from contour maps. A possible

explanation is that this horizontal length scale corresponds to that length below which

significant smoothing of point elevations occurs due to the linear interpolation between

contours.

Culling (1986) attempts to explain the fractal nature of the landscape in terms

of Gaussian random fields. These landscapes were called "diffusion degradation

regimes" and are modelled by a diffusion equation for elevation; that is

2z

The previous section noted that this equation adequately models a number of

landscape forming processes (e.g., creep, rockfall, rainsplash).

A number of assumptions in Culling's analysis invalidate his conclusion for
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scales less than hillslope scale. He assumes mean slopes are zero; a satisfactory

assumption at longer length scales than the hillslope, but not satisfactory at the

hillslope scale. He assumes slope increments (i.e., the slope over the ruler length used

for determination of the fractal dimension; see Tarboton, et al., 1988) are independent.

This is clearly incorrect at the hillslope scale since sediment transport and flow

continuity require that the slope increments be correlated, otherwise continuity cannot

be maintained.

Culling appears to recognize this limitation on his results to scales greater than

the hillslope by noting that "A transect taken across a landscape can be divided into a

series of interfluves." (page 236)

In conclusion, it appears that natural landscape seems to have a fractal

dimension of between 2.0 and 2.5, for scales greater than the hillslope. The question of

whether a fractal dimension exists, either the same or different, at horizontal scales less

than the hillslope scale appears to be an open question.

2.4 Coupled Hillslope and Channel Evolution

The models presented above for channel network evolution and hillslope

evolution have an important feature in common. They ignore the coupling between

the hillslope and the channel. An important motivation of this work is to develop a

realistic model for the evolution of both the channel network and the hillslope; that is,

recognizing the unity of the catchment. In this context a number of important

questions arise that in previous work could be simply ignored or glossed over.

The first question is that the interest is in a model consisting of two states (i.e.

hillslope and channel), what constitutes a channel? This may seem a somewhat

vacuous question and indeed in many cases the distinction between channel and

hillslope is obvious. For instance, a river bed (i.e., channel) is a drainage path where

depths of flow are large, velocities high, and the flow is typically bounded by steep
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banks. However, near the source the distinction may be less obvious. The well defined

channel may become a series of poorly defined depressions and springs (e.g., McHugh

and Prestergaard, 1988). Alternatively, it could be a well defined channel head in a

fixed location (e.g., Coelho-Netto, et al., 1987). This distinction between channel and

hillslopes at the channel head is crucial since it is the position of the channel heads

that determines the drainage density of the catchment.

These considerations lead to the more difficult question of what are the physical

processes necessary to form a channel, and what governs the partition between the

hillslope and the channel. Dunne (1989) suggests a subsurface saturation criteria

dependent on the groundwater flow head gradient. Montgomery and Dietrich (1988)

have noted a relationship between source area and the local hillslope slope at the

channel heads in a number of catchments in California.

The question of what is "the" channel network is further complicated by strong

transient effects at short timescales. The portion of the channel network flowing varies

with a number of climatic variables and varies from storm to storm and within storms

(Gardiner and Gregory, 1981). For a long-term geomorphology model, it is necessary

to average out these short-term effects. It is necessary to consider the average wetted

length of the channel network. If the geomorphology results largely from the sediment

transport in flood events, then the effective network is the average wetted length of

channel network during these geomorphologically effective events; the wetted length

between flood events is largely irrelevant since dry periods do not provide significant

erosive potential.

The average wetted length of channel can be determined from consideration of

the different types of hillslope processes. For overland flow, Horton postulated that

channels.form when the tractive shear stress exceeded a threshold. The more intense

the rainfall, the shorter will be the hillslope length. The average hillslope length will

then be averaged over the distribution of geomorphologically effective events. For
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subsurface saturation runoff a subsurface saturation criteria, such as developed by

Beven or O Loughlin, may be used. As in the case of overland flow, the region of

saturation (i.e., the channel) will increase with increased rainfall. Again averaging is

necessary to determine the mean channel network. In addition the effectiveness of

flood events needs to be considered. Since sediment transport is nonlinear with runoff,

large runoff events are disproportionately more important than small runoff events in

determining the landscape form. These major runoff events should be weighted more

than the minor runoff events. Thus there are two ways of defining the average channel

network which potentially yield different results.

1. Where runoff is the important issue, the network during runoff events is

averaged, weighting by the amount of runoff.

2. Where geomorphology is the important issue, the network during

geomorphologically effective runoff events is averaged, weighting by the

effectiveness of each event in sculpting the landscape form.

This idea of weighting on the basis of geomorphologic effectiveness dates back

to Wolman and Miller (1960). The application of this idea to determination of the

average channel network is obvious conceptually, but nontrivial practically.

A field orientated approach is to develop a measure of the mean hillslope length

and thus the drainage density. An example would be the fractal measures of the

previous section. The network that is found will be the geomorphologically effective

network rather than the effective network for runoff. Unfortunately this technique

does not answer the question of what are the physical runoff processes that create the

channel network, so is of limited usefulness in designing a simulation model.

Another important question is how to distinguish between rills and channels, if

there is a distinction, and what physical process defines the distinction if there is..

Horton (1945) in his explanation of channel formation from overland flow did not

discuss rilling. Smith and Bretherton (1972) note that for overland flow when
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sediment transport occurs, then channel/rill formation must occur. Neither view is

realistic; rills do occur in some cases, and hillslope sheet erosion has been observed

without rill formation. It was previously noted that rainsplash can suppress the

formation of rills by diffusive mechanisms. Channel formation occurs when fluvial

transport dominates the diffusive rainsplash effects. Another possible explanation is

that channel formation is suppressed by groundcover vegetation (e.g., grasses). Only

when the shear stresses are high enough to disrupt this mat and penetrate to the friable

underlying soil will channel formation begin. Either way channel formation is

controlled by more than simple shear stress or flow velocity thresholds. The

controlling process for channel head development will thus result from the interaction

of a number of poorly understood processes.

Another important issue for a coupled hillslope-channel model is determining

how fast a channel grows when the prevailing channel network is out of equilibrium

with the landscape and climate. This disequilibrium may occur when the network is

growing initially, under changes in runoff conditions (e.g., urbanization, climatic

changes), or changes in geologic conditions (e.g., after an uplift event). The literature

is notably silent on this issue. Existing discussions of channel growth are purely

qualitative with little connection to physical principles (e.g., Schumm, 1956; Morisawa,

1964).

In conclusion, some of the important issues encountered in the coupling of the

hillslope and channel have been discussed. The most significant problem is how to

distinguish between channels and hillslopes. Temporal averaging is necessary because

of the variation of wetted channel length over time. The concept of the

geomorphologically effective channel network has been introduced. This

geomorphologically effective network may be different from the effective channel

network active in runoff processes. Questions about channel growth rates were raised.

Many of the ideas presented here will form the basis of the coupled channel
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network-hillslope model developed in Chapter 5 and later chapters. Some of these

same concepts will also arise in discussion of the nonhydrologic network models

discussed in Chapters 3 and 4.
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CHAPTER 3

REVIEW OF NON-HYDROLOGIC NETWORK MODELS

3.1 Introduction

Branched networks are ubiquitous in nature. They occur in metal solidification,

polymer growth, two-phase flow in groundwater, leaf veins, capillaries in lungs and, of

course, in the branches and roots of trees, from where they obtained their name.

That networks are so common, over such a broad range of physical phenomena,

suggests that there must also be a qualitative similarity in the mechanisms that

control the growth of these networks. Certainly the qualitative form of the networks

generated in each case is similar. For instance, there is a partitioning of the domain

into two regimes; one regime representing the network or aggregate, the other regime

representing a substrate from where the network developed. All of these phenomena

form networks that, outwardly at least, appear random in nature. Many of the

networks provide a transport capacity for the substrate from the tips of the network to

the root. It therefore seems logical to suggest that the governing processes must be

qualitatively similar.

In this chapter a number of physically based models that produce networks will

be briefly discussed. It will be shown that the governing physics for all these models

presented have qualitative, even quantitative similarities. This chapter cannot go into

details of these models, instead their essence will be presented.

The search for qualitative characteristics of the network formation process that

are essential to network generation will begin in this chapter, and be completed in the

next chapter. In the hydrologic setting the use of topological and qualitative

characteristics of networks has been extremely useful, as noted in Chapter 2. Similar

studies of the dominant qualitative characteristics of general network growth will

similarly be useful. It is believed that the essential topological requirements for
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network growth discovered here are preserved in the physically based model of river

network growth that will be presented in Chapter 5.

3.2 Diffusion Limited Aggregation (DLA) Models

The concept of diffusion limited aggregation (DLA) originated with Witten and

Sanders (1981). It attempts to model the development of branched clusters of

material. A related technique is cluster-cluster aggregation. Both DLA and

cluster-cluster aggregation form fractal clusters. However, only DLA forms clusters

that appear network like; the discussion that follows is thus restricted to DLA.

DLA works in the following fashion. A grid is defined (typically triangular,

square, or hexagonal) and atoms are randomly placed at the nodes of the grid,

uniformly in space. This is the initial condition. At each time step, each atom is given

an independent (both in space and time) random perturbation to an adjacent node. If

the adjacent node is empty, that particle moves to the adjacent node, if not then

collision rules are invoked to decide the subsequent motion of both of the colliding

particles. With correct choice of collision rules global momentum is conserved. This

description is one of a standard cellular automata (Rothman and Gunstenson, 1988).

In DLA, one particular atom is chosen to be a seed, and its position, in time, fixed. If

another atom hits the seed, or hits an atom connected to that seed, it sticks and

becomes part of the stationary aggregate. Thus, with time, a network-like aggregate

will grow (Figure 3.1).

This process is diffusive and is a discrete simulation solution to the

two-dimensional isotropic diffusion equation (Witten and Sanders, 1981)

occ (2c1
7+ D 2 W + 2 0 (3.1)
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where D = diffusivity, related to the rate of movement of particles

c = average concentration of particles/unit area.

with the initial conditions

c(O) = c0

where N = initial number of atoms

X, Y = dimensions of the grid

A first type boundary condition, fixed concentration, at the edges may be

applied by embedding the solution domain within an even larger domain. In the

intervening region the number of atoms is kept constant, simulating an infinite store at

the fixed concentration.

The network grows out into the substrate region. The network grows by atoms

sticking to the network, referred to as the aggregate. It is important to note that

atoms, once stuck to the network, never return to the substrate. Because of this, the

network can be considered to be a constant concentration boundary condition to the

substrate region (i.e. c=O along the network); the concentration is zero at the interface

with the network (Ball, 1986). Within the network the concentration is actually c = 1

(1 atom/site) but as far as the substrate is concerned is only sees that the transport of

particles from the.network back into the substrate is zero, which can only be modelled

by a c = 0 boundary condition. This inconsistency between the actual concentration in

the network (c = 1) and the concentration seen by the substrate (c = 0) is a

conceptual problem with the way that boundary conditions are applied in the model

rather then in the transport processes within the substrate region. So the governing

equations are effectively
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= D + 4: in the substrate

c = 0 : in the network

As the network grows, then this boundary condition at the network on the substrate

region also grows.

Since most transport processes are driven by concentration gradients the zero

concentration in the network means that DLA is unable to model transport processes

within the network. This is a major failing of the DLA model if an analogy is sought

between the substrate concentration and the catchment elevation, and between the

aggregate and the channel network. DLA would model the channels as flat. Energy is

expended when water flows downhill. The DLA models, as described, cannot model

the balance of potential energy expenditure for flow and the sediment transport,

partitioned between the hillslope and the channel. Because DLA models the

"channels" as flat then all the energy expenditure occurs in the hillslopes.

An important characteristic of network growth with DLA that has recently

been identified (Stanley, 1986) is the property of network growth site screening.

Loosely speaking, screening is the capability of the existing network to bias the growth

in the various parts of the network. In DLA, the existence of the network surrounding

a potential growth site suppresses growth there. Fastest growth occurs in the

extremities of the network. In addition, Stanley proposed that the fractal

characteristics of any segment will be modified by the existence of the network around

it. The net result of this is that the fractal dimensions of the final network will vary

depending upon where and under what screening conditions that network branch grew;

thus the time history of network is crucial to describing the final form of the network.

A mathematical description of how screening governs the growth rate follows.

Network growth in DLA occurs by the transport of particles across the interface

81



between the substrate and the aggregate. The more particles that are transported

across the interface, the faster the network grows. DLA models this transport in a

discrete fashion with the aggregate/network growing by 1 particle when 1 particle

crosses the interface from the substrate to the aggregate and sticks to the aggregate.

In a continuum form, this transport across the interface can be modelled as

R=T=D 9c
Eh

where

This

growth rate

T = transport/unit width

n = direction perpendicular to the aggregate interface with the.

substrate

R = rate of growth/unit width of the aggregate perpendicular to the

interface.

equation gives the rate of growth of a unit width of the interface. The

for the total aggregate or network follows directly and is

Raggregate D ds
A

s = direction parallel to interface

A = the interface of the aggregate

Thus the

compared to the

relative rate of growth of some unit length of the aggregate interface

rate of growth of the total aggregate is

gR

aggregate

Oc

Achds
(3.2)
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This expression is equivalent to the probability that, in the discrete DLA

simulation, the interface will grow by one unit or one atom in a unit width in a unit

period of time. Since E varies throughout the domain, the rate of growth of network

at various points in the network will also vary accordingly.

As previously mentioned in DLA, the network effectively acts as a

zero-concentration boundary condition. In addition, because the network grows

outward from the initial seed or root of the network, concentrations of substrate are

lowest near the root of the network. This is because the zero concentration boundary

conditions have greater time to diffuse outward from the network near the root of the

network than they have had near the extremities. The net effect of this is that C is

highest at the extremities of the network so that the extremities of the network will

grow faster than the interior of the network. This is the essence of screening; the

existence of the network around growth sites near the root of the network reduces the

grow rate there. Alternatively if growth is viewed in the DLA sense as occurring an

atom at a time, the probability of growth is highest near the extremities of the

network.

If we return to the potential analogy between DLA and the catchment where

concentration is considered analogous to elevation, then O is the slope in the hillslope

perpendicular to the channel. Channel growth occurs proportionally to the hillslope

slope. The concentration within the network is analogous to the elevation of the

channel (considered fixed by DLA). The transport within the substrate region is of

sediment, which is analogous to reduction of elevation. The most important thing to

note, however, is the existence of the screening effect on network growth. Since the

screening effect on channel network growth has never been experimentally measured, it

can only be assessed indirectly. For instance, the observation that drainage density is

constant spatially (Abrahams, 1984) suggests the existence of some screening effects.
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This might be contrasted for instance with the case of the Howard (1971)

network headward growth model described in Section 2.2.2.2. Superficially the Howard

headward growth model appears similar to DLA. Growth occurs in generations with

each generation representing the growth of a single link connecting two node points;

this can be considered analogous to DLA's growth one atom at a time. However,

Howard's model displays deep dissimilarities in the mechanisms that govern the

network growth rate. Howard assigns each legal growth site an equal probability of

growth; nodes at the root of the network have an equal probability of growth as nodes

at the extremities of the network; there is no sort of screening. As noted in Section

2.2.2.2, this means that at intermediate times the network drainage density is high

around the root of the network and low at the extremities. Screening effects will be

returned to in the following chapters and will assume some significance in the

interpretation of experimental observations by Montgomery and Dietrich (1988) in

Chapter 8.

Consider a variant of the classical DLA problem, where concentration is not

zero within the network, but varies from zero at the root of the network to some

concentration c at the network extremities (assume c is less than the mean substrate

concentration). In this case if transport within the network is driven by a

concentration gradient, transport can be modelled. Let us now compare c in the

substrate with that of the classical DLA solution. In the new situation the differences

between the concentration in the network and concentration in the substrate at the

extremities of the network are reduced. At the root since the network concentrations

are essentially unchanged the concentration gradient at the network, a, is unchanged.

Compared with the classical DLA solution O at the network extremities is reduced

relative to the gradient at the network root. Thus in the new case the growth rate at

the extremities of the network is reduced, while that at the network root will be

unchanged. In a relative sense (i.e. Equation 3.2) network growth occurs faster at the
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network root than at the extremities - the screening effect of the network is reduced.

The importance of the screening property cannot be overstressed. It is through

screening that the spatial distribution of network growth is controlled. The functional

form of the screening will govern how fast the extremities of the network grow

compared with other parts of the network. These differences in the relative growth

rate of different parts of the network govern the distribution of the drainage density of

the network. And if Stanley (1986) is correct it will also govern the fractal

characteristics of the channel network. In addition, it should be noted that screening

results from the interaction of the network and the substrate. The substrate gradients

give the screening effect, but the substrate gradients result from the interaction of the

concentration boundary condition at the network and the substrate concentrations.

Thus there are a number of problems with using the standard DLA model to

simulate network growth in a catchment. These problems are:

1. The fixed concentration boundary condition at the aggregate means that

transport within the network cannot be modelled. Thus energy

expenditure cannot occur in the channels; a DLA model of catchment

erosion would force all erosional energy expenditure to occur on the

hillslope. The distribution of growth sites in the network is also biased

towards growth at network extremities.

2. DLA, as currently implemented by a cellular automata, is restricted to

linear diffusion. Diffusivities may vary in space and time (Toffoli and

Margolus, 1987, for instance, model refraction by using a spatially

variable diffusivity) but the diffusivity cannot depend upon the solution.

Thus nonlinear diffusion, with diffusivity dependent upon concentration,

cannot be modelled. Appendix B shows that sediment transport is

modelled by a nonlinear diffusive process.

Neither of these problems is essential to the DLA conceptualization, but both
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arise out of the current computational techniques for cellular automata.

Despite these difficulties DLA has been seen as a useful model for a number of

physical process that create networks including diffusion limited deposition of gaseous

metals on surfaces, solidification of metals (Ball, 1986), growth of polymers from the

basic monomer (Daoud, 1986), floculation and gelation (Kolb, et al., 1986) and

dielectric breakdown (e.g. lightning). The solidification processes, for instance, results

from modeling the heat equation (of the form of Equation 3.1), where the diffusivity is

a function of the conductivity and specific heat of the material.

3.3 Viscous Fingering in Porous Media

This section will briefly discuss aspects of viscous fingering (Figure 3.2). It is

commmonly observed that network-like fingering occurs where

1. a less viscous fluid is injected into a more viscous fluid

2. a fluid is injected or infiltrates into a unsaturated media.

Similarities exist in the governing equations for fluid flow in a porous media in

the above cases and the DLA solution technique described in the previous section.

Darcy 's law for flow in a porous media is (in tensor notation).

qj - K (3.3)

where q = specific discharge in direction j
Oh

= hydraulic gradient in direction i
1

K j = conductivity tensor

so that it follows that

s K (3.4)
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Typical viscous fingers created by water ad-
vaucing into a linear Hele Shaw cell filled with a poly-
mer solutiou (sleroglucau).

Typical viscous fingers created by water ad-
vancing into a radial Hele Shaw cell filled with a poly-
mer solution (scleroglucan).

Figure 3.2: Examples of viscous fingering:
a less viscous fluid is injected into a

more viscous background fluid
(from Nittmann, et al, 1986)
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where S5 = storativity of the aquifer

For a constant conductivity this gives

2h (3.5)
. t s Ok x (3x5

The similarity of Equations (3.4) and (3.5) with the governing equation for

DLA, Equation (3.1), should be noted where the head, h, above is analogous with the

concentration in DLA.

If a very low viscosity miscible fluid is injected into a high viscosity background

fluid then it has been shown that fractal networks are generated (Nittmann, et al.,

1985). The governing equations for the two phases are

=D : injected fluid
- x. 8x.Ft i i

= D/ h : background fluid
- x.8x.x

i i

where lID . << II IDQ |I
1.1 ii

If the fluid flow resistance is low then D is high. For instance, in a Hele-Shaw flow

apparatus, as experimentally studied by Nittmann, et al. (1985, 1986) D is inversely

proportional to viscosity. In the groundwater case W it is just the conductivity K

again inversely proportional to viscosity. In the limit as the viscosity ratio tends to

infinity, and for perfectly miscible fluids, this is analogous to the DLA model (Ball,

1986). In this case the pressure drop in the injected fluid (here the aggregate or
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network) from the injection point to the interface with the background fluid (the

substrate) is negligible in comparison with the pressure drop in the background fluid

because the viscosity of the injected fluid is much smaller. For DLA to be an analogy

perfect miscibility of the fluids is required so that there are no capillary pressures at

the interface to remove small scale irregularities at the interface.

In the terminology of the DLA discussion of the last section, the head variation

along the network or injected fluid is virtually zero so that the network may be

considered to be a constant head, but moving boundary condition, to the head in the

background fluid or substrate. Thus, the validity of the DLA approximation is a

function of the viscosity ratios, and is measured by how much the boundary head

varies within the network compared to the background fluid; as the viscosity ratio

drops the head variation will be increased and the -DLA approximation becomes less

valid. As noted in the previous section the distribution of growth sites (i.e. viscous

fingers) will also depend on the amount of head variation within the aggregate due to

the screening effects on head.

Invasion of an unsaturated porous media by a wetting fluid will result in

qualitatively similar, if not quantitatively identical, patterns. In the saturated region

behind the wetting front the conductivity Ki is much higher (11K1 invading 

IK ||background), than in front of the wetting front. The analogy with the low

viscosity invading fluid case is direct.

In conclusion, the important points to note from this section are:

1. The similarity of the porous media governing equations and those for the

DLA problem. Both involve gradient driven transport within the

background substrate (concentration in DLA, head in groundwater).

2. When the ratio of the conductivity in the porous media for the invading

fluid to the background fluid is infinite groundwater flow is modelled by

DLA. These large conductivity differences can be caused by variable
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viscosity or saturation.

3. Where the differences between the invading and background fluids are

not so strong head variation within the invading fluid may be of the

same order as in the background fluid. Because head variations within

the network are not negligible screening effects will be different to those

exhibited by DLA. Network characteristics should be different from

those exhibited by DLA.

3.4 Mitchison Leaf Vein Model

Mitchison (1980) proposed a model for chemical transport in leaf veins that

exhibits qualitative similarities to Equation (3.3) for transport by viscous fingering.

The flux of auxin (a growth chemical) is modelled by

D Ac (3.6)

where = auxin flux

D = diffusivity

Ac = change in auxin concentration between two adjacent cells

Ax = length of the cell

For vein formation to occur Mitchison notes that I must decrease as (p

increases and suggests that suitable formulations for this dependency are of the form

D ,n ;n = 2 (3.7)

A vein is 'identified" as being a pathway in which the flux of auxin is

significantly greater than in the rest of the leaf.

The governing equation for the leaf is, in differential form
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=D() 0 (3.8)

This is the steady state analog of Equation (3.4). Combining Equations (3.6)

and (3.7), the diffusivity in Equation (3.8) can be expressed as a function of

concentration

D(V) ~ D( (N)1

which clearly shows that Equation (3.8) is nonlinear diffusion in the concentration.

Since D(V) is variable in space, both within the leaf vein and within the background

substrate, then the equations are qualitatively but not quantitatively analogous to

DLA and two phase porous media flow.

The vein formation process proceeds as follows. As O decreases, the

diffusivity increases which further reduces the gradient. In Equation (3.6) the

transport in increased by these interactions. Thus preferred transport paths are

created in which ac is low and D is high so that chemical transport is concentrated

along these paths. It is important to note that there exists a gradient of concentration

along these paths. Thus if the transport paths, here considered to be the network, are

considered to be fixed concentration boundary conditions with time on the remainder

of the domain, the applied concentration will be variable in space, lowest on the root,

highest at the branch tips. Again we note the difference with the DLA boundary

condition at the network of constant concentration. The higher the diffusivity in the

preferred transport path, or the greater the nonlinearity of Equation (3.7), the more

valid the DLA approximation will be. because the concentration gradient will be lower

for equivalent fluxes. Mitchison showed that networks of preferred drainage paths

were created, but did not analyze them. The equations the investigator proposed show
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strong similarities to those of both DLA and viscous fingering problem.

3.5 Conclusions

The models presented in this chapter exhibit a number of qualitative and

quantitative similarities. Most importantly they all generate networks in space where

there are two phases, one phase being the network itself and the other phase being the

surrounding regions of substrate material. This chapter has attempted to quantify the

similarities on the basis of the governing equations of the physical processes involved.

It has been shown that these models, though from different fields of research, are

variants of the same problem.

Important points in the preceding discussions are:

1. All the models simulate some distributed property (e.g., concentration,

pressure) using either a linear or nonlinear diffusion process.

2. All the models are autocatalytic in the transport of this distributed

property. Autocatalysis is a form of positive feedback where a small

change in the property results in, through interactions in the nonlinear

system, an amplification of that change. In DLA, though the governing

equations in the substrate and the network are linear, nonlinearity arose

from the differentiation in transport processes between the network and

the background substrate. This property exhibits itself as preferred

transport pathways for the modelled properties.

3. In all models the generated network may be considered to be nearly a

constant concentration boundary condition on the substrate part of the

domain. In the case of groundwater flow and leaf vein growth, the head

and concentrations (respectively) in the network result from the

interaction of the transport processes in the network and the substrate.

In DLA the concentration is zero in the network.
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4. All models exhibit some form of growth site screening governed by the

interaction between the network and the surrounding substrate. The

detailed physics of the screening process is different for each model, but

the concept that certain parts of the network are more likely to grow or

that parts of the network grow faster than others, and that these rates

are determined by substrate characteristics, is common to all models.

The distribution of drainage density during active network growth is

strongly influenced by the screening properties of the model.

With the exception of DLA, there is no explicit differentiation made between

the areas of preferred transport (the network) and the remainder of the region; in other

methods the network must be interpreted a posteriori in a somewhat arbitrary fashion

(e.g., transport rate above a threshold). It is the intention of this work to construct an

analogy between the preferred transport paths and the channel network and an analogy

between the remainder of the domain and the hillslopes. Channels, after all, are just

preferred transport paths for water, and sediment. A means to make this

differentiation explicit, rather than implicit, is desired. The next chapter will examine

another non-hydrologic network model. This model displays deep similarities to the

models in this chapter, yet makes the differentiation between network and substrate,

and channel and hillslope, explicitly. In addition, its simple and explicit physics makes

it easy to examine some fundamental theoretical characteristics of network generation

in physical models.
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CHAPTER4

THE MEINHARDT LEAF VEIN MODEL

4.1 Introduction

Building on the ideas of the previous chapter we present a model first

introduced by Meinhardt (1976), and further explored by Meinhardt (1982), that

simulates the growth of leaf veins. These vein cells demonstrate network-like patterns

within the simulated leaf.

The system of differential equation that Meinhardt (1976) presented were

chosen for detailed study for a number of reasons:

1. The model makes an explicit differentiation between two states in the

system; leaf vein cells and normal leaf cells. The leaf vein cells form a

network pattern in space. A qualitative analog can be seen between this

and the drainage basin where the leaf veins might be considered

channels, and leaf cells the surrounding hillslope.

2. The leaf vein networks grow headward in time in a similar fashion to

channel networks.

3. The growth process is governed by physical interactions, following

directly from the system of differential equations. The simplicity of the

governing equations provides the opportunity for deeper understanding

of the network growth processes; even if only qualitatively.

This chapter will first present, and discuss, the equations of Meinhardt (1976).

The complicated nonlinear interactions between the various components of the

equation will be discussed, always searching to classify, simplify and generalize the

network producing behavior.

It will be demonstrated that there are three qualitative characteristics of the

equations that create the differentiated pattern of leaf vein networks. Using sensitivity
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studies it will be argued that these three characteristics are not specific to Meinhardt 's

equations, but are, in fact, powerful prerequisites of any network growth model based

on physical mechanisms.

The chapter will conclude with a discussion of the random properties displayed

by networks. Using concepts from chaos theory it will be shown how the apparently

random properties follow from the modelled physics. Some tentative hydrologic

analogies will be made with the three necessary conditions for network formation

referred to above. Consequently it will be suggested that the chaotic behavior

observed in the Meinhardt system of equations is a property common to many systems

that exhibit networking and that this may be an explanation for why channel networks

appear random.

4.2 The Governing Equations

Meinhardt (1976, 1982) presented a system of partial differential equations that

simulate the growth of leaf veins. A slightly more general form of the equations will be

discussed to show the generality of the qualitative growth mechanisms of the system.

These equations, hereafter called the Meinhardt equations, are:

ml
c9a c a z - pa + Da + p0 (4.1a)

ax.

Th mh a .
i

=, c3 c2 ca z - vh + D1 02 + py (4.1b)
i

Cg - 7co Z- Yz zM2 + D z (4.1c)
0 0 Z N
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W = C a - 0.IY +i Y2 (4.1d)
I + 9Y

Meinhardt solved these equations on a rectangular grid with sides L x nodes by

L nodes. The boundary conditions applied to the equations arex 2

8a 8h 9z 89Y9 1 -0 at x2 = 0, x2 = L
1 1 1 1 2 2

Oa _ h _Oz 'O'-0 at x, ,x,=1 l
2=0 tx-0,x 1=L .

These equations are identical to those of Meinhardt (1976) if

m = 2; c2 = 1; c3 = 1; 7= 1; m2=I

Of the four states modelled by these equations, three of them (a, h, z) model

chemical transport processes in the leaf. The fourth state, Y, models the spatial

pattern of leaf vein cells. From our perspective the latter state, differentiation, Y, is

the most interesting. Differentiation will be conceptualized as the channelization in

the catchment. In Meinhardt 's work the four states represent:

1. a: activator, high values of activator tend to start or trigger the

differentiation process.

2. h: inhibitor, high values of inhibitor tend to stop production of

activator. Inhibitor is created by higher activator levels.

3. z: substrate, the substrate is consumed by the differentiation

process.

4. Y: differentiation, a 0-1 variable that signifies the spatial pattern of
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veins within the leaf.

Of the four states, differentiation is the most important. The other three states

are useful simply because their interactions produce spatial patterns of differentiation

that appear similar to channel networks. The exact physics of activator, inhibitor, and

substrate will later be shown to be computationally and conceptually convenient but

practically unimportant.

Differentiation, Y, simulates the spatial pattern of leaf veins. If Y = 0 at a

point, then that point is a normal leaf cell. If Y = 1 at that point, then that point is a

leaf vein cell. The Equations (4.1) ensure that the points where Y P 1 form a

network-like pattern in space (Figure 4.1).

The network simulation process proceeds as follows: Initially activator,

inhibitor and differentiation are small (approximately 0.0) everywhere and the

substrate is z = 1 everywhere. This represents an undifferentiated leaf, with a

chemical substrate ready to be consumed. In addition, Meinhardt (1976) assumes that

coefficient c is a random field so as to produce random networks. It will be shown

later that this random field is unnecessary. At the start of the simulation a single

point is chosen as the seed or starting point of network. Differentiation is set to Y = 1

at this point. The nonlinear dynamics of Equation (4.1) is then sufficient to produce a

network of differentiated points, Y = 1, that grow headward with time eventually

filling the domain (Figure 4.1).

The process by which a single point in space differentiates in time will now be

explained. Initially the point will have a value for differentiation of Y = 0, i.e.,

undifferentiated. Finally, if the point lies on the network, it will have a value of

differentiation of Y = 1, i.e., differentiated. At the time the point differentiates there

will be a short period of transition where the value of differentiation is between 0 and 1.

Once a point differentiates, it remains differentiated for all time; differentiation is a

one-way process that cannot be reversed. The process of differentiation is triggered by
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Figure 4.1: Sample Meinhardt network showing
headward growth with time
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activator exceeding a threshold. Inhibitor and substrate values are irrelevant here

because they do not appear directly in the differentiation equation (Equation 4.1d).

They are only important insofar as they produce high levels of activator. This

differentiation process for a single point with time is shown in Figure 4.2.

How the differentiation process is controlled by the differentiation equation is

demonstrated in Figure 4.3. Figure 4.3 shows the differentiation equation for three

values of the activator term. The value of zero activator (Curve C) represents the

situation either at very early time (when Y = 0) or at very late time (when Y = 1).

There are three critical points (i.e. ii = 0), two stable (Y = 0, Y = 1), and one

unstable point (Y = 0.1). Points at Y = 0 or Y = 1 are stable against fluctuations in

Y, or small fluctuations in activator. All values of Y are attracted to, and will

eventually converge on, Y = 0, or Y = 1.

Curve A in Figure 4.3 shows the differentiation equation for a value of activator

above the activator threshold. For the case where the activator term is greater than

0.0025 (Curve B) there is only one critical point, Y = 1. Values of Y are attracted to

the value Y = 1. Thus an undifferentiated point (Y = 0) will tend to become

differentiated (Y is attracted to 1). Once Y is greater than 0.1, the activator value

may decline to zero, but the value of Y is now in the basin of attraction of Y = 1, and

so that point will tend inevitably to differentiate.

Other than the activator-differentiation connection there are other well defined

and important connections between Equations (4.la), (4.1c) and (4.ld). These

connections are shown in Figure 4.4. Some connections are not shown because they are

of secondary importance. The three important connections to note are that the

activator is an input to differentiation, differentiation is an input to substrate, and

substrate is an input to the activator and inhibitor equations. Thus there are three

conceptual components to Equation (4.1).

1. A component that triggers differentiation (i.e., activator)
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Figure 4.2: Schematic of Activator and Differentiation
evolution with time
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Figure 4.3: The Activator threshold and the Differentiation
equation representation
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Figure 4.4: Conceptual connections between the states
in the Meinhardt equations
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2. A component that is consumed by differentiation and which reinforces

the component that triggers differentiation (i.e., substrate).

3. A component that describes the spatial pattern of differentiation (i.e.,

differentiation).

These conceptual components will be important in later chapters where

qualitative analogies are made between the biological model and the physically based

channel and hillslope model described in Chapter 5. In this latter model an analogy

will be made so that the three components of the developed models are velocity or

shear stress, elevation, and channelization, respectively.

A number of authors have analyzed the mathematics of the Meinhardt

equations. The techniques used have concentrated on stability analyses at a point and

how patterns of activator and inhibitor develop in one dimension (e.g. Haken and

Olbrich, 1978; Briere, 1983; Segel, 1984). Bifurcations in the stable states with time

have been examined by Granero, et al. (1977) and Nicolis and Prigogine (1977). While

many of the concepts and techniques presented in these works are important, the

analyses, by necessity, were restricted to a single point in space or properties along a

line. The two dimensional, time varying effects that are central to network growth

were not studied because of their mathematical complexity.

Why the Meinhardt equations generate networks is the subject of the following

section. Some qualitative characteristics of the channel network growth process will be

identified and some general characteristics of a physically based network growth model

will be proposed.

4.3 Network Growth in the Meinhardt Equations

This section will examine the mechanisms whereby Equations (4.1) generate

networks in space. Some general, qualitative, rules will be proposed for space filling

network growth on the basis of the governing physical processes.
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It is important, first of all, to understand how a single point differentiates,

before it will be possible to explain network growth spatially. As previously noted, an

individual node differentiates because activator exceeds on activation threshold. Thus

an important question to be asked is under what conditions can the activator become

large? Consider the activator equation (4.la)

aa ca zd
F= ca-,- - pa + D a W + PO Y

It can be shown by scaling analysis that, for the parameters of Meinhardt

(1976), the last two terms on the right-hand side are of secondary importance,

compared with the first two terms. The activator equation can be approximated by

9a _ ca z - a

It follows that activator can only grow (F > 0), if

m1-1
ca z > 1 (4.2)

This threshold is a reliable indicator of growth potential for activator.

Figure 4.5 is a schematic cross-section along a line of differentiated nodes (i.e. along a,

branch). It illustrates how the states in Equation (4.2) vary along and in front of the

branch. It is seen that that the criteria of Equation (4.2) is highest just in front of the

branch head. This effect is seen in plan also, where a region of high activator potential

is seen in front of the branch head.

The process of branching occurs by a similar process. The networks gain their
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Figure 4.5: Distribution of state's values along a branch in a network:
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Figures 4.6, 4.7 and 4.8
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tree structure from branching or budding from the main stream; branch tip or branch

head splitting into two parts is never observed. The mechanism by which networking

occurs is thus lateral branching. Buds off the branch occur far behind the growing tip

and result from asymmetries of the activator, inhibitor and substrate. As in branch

head growth, the region of activator growth is given by Equation (4.2). The

distribution in space of the states determines the distribution of the branching points.

Because of the screening near the network root, network growth sites are less likely

near the network root. Near the network root substrate levels are low and inhibitor

levels are relatively high. Thus there is general inhibition of growth or lateral

branching behind the growing branch heads. This is just the screening effect discussed

in Section 3.2; the physics that causes the screening is somewhat different here but the

qualitative effect on the spatial distribution of network growth is similar.

There are three prerequisites on the qualitative behavior of the activator

physics. These prerequisites ensure that network-like growth of differentiation occurs.

The first prerequisite is that the region of high activator must be localized

around the growing branch tip. The subtle asymmetries in the spatial distribution of

activator, inhibitor and substrate around the growing tip result in high values of

activator at small distances in front of the growing tip. This effect is illustrated in

Figure 4.6.

It is important to note that the actual position and shape of the "activated"

region depends on the physics of the processes acting in the undifferentiated portion of

the leaf. The driving force for these processes is the line of differentiated nodes. Thus

there is a complicated interaction between the existing pattern of differentiation, the

processes in the leaf proper and thus the shape of the activated region, and the future

pattern of differentiated nodes.

The second prerequisite is that the region of high activator must move with the

growing branch tip. This movement of the activated region as the branch grows in
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Figure 4.6: Schematic of the mechanism for branch tip growth:
Activator is increased in front of the growing

branch tip by substrate gradients
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Figure 4.7: Schematic of the mechanism for maintaining linear
growth of branchs: Activator is locally reduced behind the growing

tip by substrate depletion to ensure growth occurs in only
the forward direction
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time results from the interaction between differentiated and undifferentiated regions.

The process of channelization consumes substrate and this lowers the activator behind

the tip so that the region of high activator moves with and in front of the tip. This

process is demonstrated in Figure 4.7. If the activator were not locally suppressed

behind the growing tip then blobs of differentiation would form.

The third prerequisite of the activator distribution is that regions of high

activator must "repel" each other so that the branch tips grow away from each other.

This produces space filling characteristics, similar to those observed in channel

networks (e.g., Abrahams, 1984). The repulsion of growing tips and repulsion from

boundaries is shown in Figure 4.8. This effect arises from complex interactions

between the spatial distribution of activator and inhibitors driven by the diffusion

processes in the undifferentiated portions of the leaf.

Gierer (1981) proposed that the system of equation with the correct

characteristics to produce spatial patterns, of the form in Figure 4.1, is more general

than that proposed by Meinhardt (1976). His conclusions were reached for an

activator-inhibitor system rather than the activator-inhibitor-substrate system of

Meinhardt (1976). Since activator is the only direct input into the differentiation

equation the differences between the system of equations Gierer studied and the

Meinhardt equations are relatively minor.

Gierer (1981), used general equations of the form

F= f(a,h) + D a(a)

(4.3)

ah g(a,h) + Dh(h)

where D(-) is a general diffusion-like coupling in space. He proposed six conditions

required for pattern formation.
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These conditions are:

1. the existence of an autocatalytic term (i.e., a ~ cam, m > 1, for some

value of states).

2. the existence of an inhibitory (i.e., h) component.

3. the inhibitory effect must be strong enough to ensure that stable,

bounded solutions exist for activator.

4. the length scale of activation must be less than the length scale of the

total field size (otherwise boundary conditions stabilize the activator).

5. the inhibitory time scale must be less than the activating time scale (so

that activation does not run away from inhibition).

6. the length scale of inhibition must be greater than the length scale of

activation (so that activation is confined to areas near those already

activated).

These conditions can be linked to the three prerequisites on the activator

distribution that have been noted above (Figures 4.6, 4.7, and 4.8). To ensure a

localized region of activator around the branch head requires an autocatalytic activator

(point 1) with an inhibitor away from the branch head to suppress long range

activation (points 2, 3, 4, and 6). To ensure that the region of activation moves with

the branch head requires all of the above effects, plus it also requires that the inhibitor

acts faster than the time scale of branch head advance. Since branch head movement

cannot proceed faster than the activator growth of the branch head, then the inhibitor

must act at timescales less than the activator timescale (point 5). The repulsion of

branch heads results from the longer range inhibition and shorter range activation

(point 6).

Gierer's conditions suggest that the form of the equations that can generate

networks may be more general than those presented by Meinhardt (1976).

To test whether Gierer's conditions on activator and inhibitor in Equation (4.3)
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are sufficient to generate networks, a sensitivity study of the parameters used by

Meinhardt (1976) in Equation (4.2) was performed. The parameters were

systematically varied to determine their effect on the networks generated. Two related

subjects were of particular interest:

1. Testing Gierer's six hypotheses regarding the activator and inhibitor

system in the context of the more general equations of Equation (4.1).

2. Determining parameter windows outside of which networks could not be

generated.

The parameters to be discussed below are all parameters in Equation (4.1). To

test the requirement for autocatalytic behavior (Gierer's point 1), mI was varied over a

broad range. Networks could be generated for values of mI > 1, provided compensatory

changes were made in parameter c so that activator magnitudes were maintained at

around the same level. As ml approached 1, the rate at which the network propagated

declined reflecting the lower autocatalytic strength.

To test Gierer's points 2 and 3, the parameter c2 was varied. This change

modified the relative balance between activator and inhibitor generation. If c2 was

reduced by more than 25%, so reducing inhibition, runaway activation occurred and

the whole region differentiated into a blob-like structure. If c2 was increased by more

than about 25%, network growth ceased. Thus it appears that the balance that exists

between activator and inhibitor magnitudes is very important.

To test Gierer's point 6, regarding the relative length scales of activator and

inhibitor, the diffusivities of activator and inhibitor were varied. This variation was

equivalent to a change in the length scales of diffusion. Meinhardt's ratio of

Dh-
diffusivifies was = 10. Reduction of Dh was possible until Dh was of comparable

a
,Dh

magnitude to Dz (Meinhardt's h = 3) at which value a network was difficult to
z

generate. Changes in D h were negatively correlated to changes in drainage density,
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thus being in line with the changes in diffusion length scales. Meinhardt (1976) chose

the values of Da and p with an eye to maintaining connected networks. The length

D
scale of activator diffusion (= -a was about 0.5 of a grid spacing. If either, Da was

increased, or p was decreased, thus increasing the activator length scale, "networks"

could still be generated but disconnected regions were common. That is, adjacent

nodes were not necessarily differentiated. This was a numerical, rather than a

conceptual, problem.

To test Geirer's point 5, regarding the inhibitor timescale being less than the

activator timescale, the parameter c3 was reduced. A reduction in c3 results in an

increased reaction time for inhibitor. In a similar fashion to reductions in c2,

reductions in c3 resulted in runaway activation. An interesting interaction with the

diffusive length scales occurred if c3 was increased since c3Dh is the inhibitor

diffusivity. As c 3 was increased drainage density was reduced. With pronounced

increases in c 3 (> 50%) network generation was suppressed; this resulted from the

inhibitor being increased compared to the activator.

Other sensitivities examined were for parameters c0, y, c, i2, D and c1. The

substrate equation (4.lc) was relatively insensitive to changes in any .of the parameters;

some processes were not even required. An exception was c0, the source term for

substrate, which had to be non-zero for network formation. There had to be a source

of substrate to counteract the consumption of substrate by other terms in the substrate

equation.

In the differentiation equation, c1 controlled the drainage density of the

network. If c1 was small, so that the activator threshold was high, then for a given

distribution of activator a node was less likely to differentiate, and vice versa. Thus

changes in cl and drainage density were positively correlated.

In general, it seems that Gierer (1981) was correct. Provided that his generic
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rules are satisfied, then networks may be formed by a wide range of physical processes.

We did find, however, that the values of the coefficients on these physical processes

needed to be "optimized" to generate the best looking networks; the form of the

processes, however, was not critical.

In conclusion, it has been shown that it is possible to generate space filling

networks from a very generic set of equations featuring diffusive coupling of processes

in space and autocatalysis in time. Three generic characteristics that must be shown

by the spatial pattern of activation were also proposed. It is believed, and supported

by the sensitivity studies, that these characteristics are generic requirements of all

network generating processes.

4.4 Input Randomness, Chaos and Random Networks

4.4.1 Introduction

All the network patterns presented here and in Meinhardt (1976, 1982) have a

random appearance. No two branches are alike and there are no obvious symmetries.

Nevertheless the qualitative form of the networks appears to be similar despite this

randomness. It is the purpose of this section to explore the reasons for this

randomness, and to demonstrate that the randomness in the networks arises because of

a phenomenon called transient chaos, a form of chaos that has only recently been

recognized in the mathematical literature (Moon, 1987).

The most obvious random input to Equation (4.1) is that Meinhardt (1976,

1982) applied a small random field to parameter c. These random fluctuations in c

were less than 1% of the mean value. No other random inputs were applied. However,

it should be noted that numerical errors add 'a small random input. It will be shown

that both these sources can be important in creating the observed randomness of the

networks. The important question that will be answered below is how these small

random fluctuations grow to dominate the overall form of the generated networks.
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The relevance of randomness in networks can be motivated by the simple

example in Figure 4.9. Here six different networks are presented. All six networks

were generated using identical parameters but varying the random inputs and the way

that the numerical calculations were performed. Figure 4.9a is the baseline case. It

uses the random field input on parameter c (Equation 4.la), and the equations are

solved in single precision on a microVAX (32 bit, 7 significant digits). The network is

clearly random with no apparent lateral symmetries resulting from the rectangular

domain. Figure 4.9b is the same as Figure 4.9a except that parameter c is now

deterministic, a constant across the domain. There is some lateral symmetry in the

parts of the network developed at early time (the diagonal branch splitting the domain

in two) but it is lost in that part of the network that develops at later times. Figure

4.9c is the same as Figure 4.9b except that the internal calculation of the 5 point

centered finite difference for the activator diffusion term is slightly modified; the order

of addition of the nodes is anti-clockwise instead of clockwise. The two finite

difference approximations were:

+,2 z_ z j + Zi._l + z + z - 4 z

2+ 2 ~2'Ox Ox9 (0 J) (A~x)

[C2z +2 _ z izJ + zjjl + z i-l1 + z - 4z
_W1 + x2  (i J) (Ax) 22 + 2~2

where (i,j) = node coordinates for evaluation of the second derivative

approximation.

It is apparent that this extremely small change in numerics has a significant

effect on the network form at later times. At early times, when numerical errors have

not had a chance to propagate, the networks are identical. Numerical errors thus seem
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(a) Baseline

(c) New diffusion,
no randomness

(e) New diffusion term,
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Figure 4.9: Illustrating the effect of randomness
on networks from the Meinhardt equation:

Input randomness and numerical noise
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to be responsible for part of the randomness of the networks. Figure 4.9d confirms this

impression by solving the same problem as Figure 4.9b in double precision (64 bits, 15

significant digits). The network exhibits lateral symmetry and close examination

indicates no randomness in any of the states of the equation (i.e., activator, inhibitor,

substrate or differentiation).

The random effects due to the numerics are smaller than the input randomness

on parameter c. Figure 4.9e shows a network with the diffusion term calculated as for

Figure 4.9b but with the input randomness of Figure 4.9a. That Figure 4.9a and 4.9e

are indistinguishable indicates that the numerical randomness is small in comparison

with the applied randomness in this simulation. In a large enough simulation, where

the network is actively growing over many timesteps, it is possible that the cumulative

effects of numerical errors may become important.

Finally, although the results are not presented here, not all random effects

result in random networks. Minor perturbations were applied to the initial substrate

values. There was no perceptible differences with the network generated without the

substrate perturbation. On the other hand minor random perturbations on the initial

activator levels resulted in random networks comparable in randomness with the

networks resulting from the random parameter c (see Figure 4.9f).

There are four important features of this example that will be noted

1. Randomness in parameter c has a very important effect on the

randomness of the simulated network.

2. Not all input randomness is created equal. Some input randomness has

no apparent effect on the networks generated.

3. Numerical error due to mirior round-off errors in the space and time

discretization can propagate nonlinearly in time to dominate the network

form at later times.

4. Despite this, parameter randomness is not essential for generation of
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networks from Meinhardt's equations. Parameter randomness modifies

the form of the final network. In addition, once the parameter

randomness is determined (i.e., a random field realization of the

parameter is chosen), in the absence of other perturbations, the resulting

network is fixed.

The reasons for this behavior will now be explored, but since the concepts that

are to be used are new, then some explanation of the methodology is in order.

4.4.2 Basics of Nonlinear Systems and Chaos

Consider, initially, a first order, single state linear differential equation

ds_a=bs s = S0 at t = 0 (4.4)

The exact solution of this equation is

S = s 0 ebt (4.5)

If the system starts at a slightly perturbed initial condition s = s0 + As 0 at time zero,

then the solution is

S = S0 ebt + As0 ebt (4.6)

Whether the initial perturbation As0 grows with time or not depends on the

sign of b. If b is negative, then after a long enough time the exact and the perturbed

answers will be indistinguishable. If b is positive, however, the two answers will

diverge for all time. In the nomenclature of the chaos literature the solution of

Equation (4.4), for b positive, is sensitively dependent on the initial conditions.
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Unfortunately the linear system of Equation (4.4) is too simple to demonstrate

everything needed. Although, for b positive, the initial random fluctuation in

Equation (4.6) grows with time, it never dominates the exact solution, Equation (4.5),

because the exact solution grows at the same rate. Consideration of a nonlinear

equation similar to Equation (4.4) will demonstrate a case where both the exact

solution and perturbation grow, but at different rates. Consider the differential

equation

d= bs(l-s) s = 0 at t =0

*t 0

Linearizing this equation about s = s ,the exact solution at time t , using a Taylor

Series expansion up to the first order terms,

*

ds = bs (I-s )+ (b -2bs )As (4.7)dt

The equation for the growth of the perturbation As, applied at time t ,is then

d = (b - 2bs )As (4.8)

This equation is linear in As so that, as in Equation (4.4), the perturbation As

grows if (b - 2bs ) > 0. The perturbation will grow faster than the exact solution if

*

(- 2s )

s (1 - s )

Under these conditions it is possible for the perturbation to grow to dominate

the exact solution. For a system of nonlinear differential equations, the situation is
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slightly more difficult. Consider the general n dimensional system with states si, .Sn

of the form

ds
Ft= ASg) (4.9)

where

To ob

system is lit

n-dimensiona

where

S(0) =

s . states of the equation

Lsnj
tain the differential equation governing the perturbation growth, the

earized in a similar fashion as was Equation (4.7), now using an

l Taylor Series so that

*
d(s + As) *

dt =

*
A(s_)

+ A(s )As

-D -1 2

Ofn

(4.10)

'

n

Ofn
n

*

As
As I

As n_

= vector of perturbations on the states s.

Subtracting Equation (4.9) evaluated at s = s from Equation (4.10) gives the

differential equation governing the growth of the perturbations

119



dA =- A(s )As 
(4.11)

The solution of this equation, for small As, is a simple result from linear algebra

(e.g. Hirsch and Smale, 1974)

A(s )t
As = eA A (4.12)

The way to characterize whether the individual perturbations Asi grow or

diminish with time is more complicated than in the one-dimensional case of Equation

(4.4). The answer involves determining the eigenvalues and eigenvectors of A(s ). A

strict, though difficult, derivation of this answer may be found in Hirsch and Smale

(1974). The derivation that follows is somewhat less strict and more intuitive.

The matrix exponential can be expanded as a series

As= I + A(s )t -- . As (4.13)

or rearranging the truncated form of this equation

(As - Asg) = A(s )As 0 t (4.14)

The perturbations As1, ... , Asn will grow with time when the corresponding term on

the right-hand side of Equation (4.14) is positive. This is characterized by the

eigenvalues A 1, ... , An and the corresponding eigenvectors el, ... , en of A(s ).

It is a basic result of linear algebra that the matrix A(s) can be expressed in

terms of its eigenvalues and eigenvectors, (neglecting the s dependence for clarity)
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A = T~1 D T

where T = (n x n) matrix, columns are the eigenvectors

D = (n x n) diagonal matrix of the eigenvalues
A 0

1 A 2

Substituting this result into Equation (4.14) yields

(As - Asg) = T- 1 D T As t

Multiplying through by T, on the left-hand side, and transforming the equation

so that the basis of the vectorspace is the eigenbasis, yields the equation

(As' -As") = D As' t (4.15)

where

As' = T As (4.16)

= the original perturbations As, transformed into the

eigenspace

As = T As0

Noting the definition of the diagonal matrix D, it is now clear that if an

individual eigenvalue A. > 0, then the corresponding perturbation |As - As"| will

be positive so that the perturbation As grows with time. This is clearer if the steps
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that took us from Equation (4.12) to (4.13) are reversed and applied to Equation (4.15)

so that

SeDt A
A t

e 0 2t
e

0

0 As~ ~ ,
As62

Ant
en - As6n

Taking an individual perturbation As then

A.t
As = e As6/

Thus if A. > 0, the corresponding perturbation As will grow with time. The

chaos literature (e.g., Moon, 1987) defines the Lypanov exponent, loosely speaking, the

measure of how fast small perturbations grow or decline, as

A.
aT. e 1 (4.18)

where o = ith Lypanov exponent.

If the ith Lypanov exponent is greater than 1, then the ith perturbation will

grow with time; if it is less than 1, the corresponding perturbation will decay with time.

It is important to note that Equations (4.17) and (4.18) only give information

about whether perturbations in the eigenspace grow or decay, not whether and how

much the original perturbations As1, ... , Asn grow or decay. How the original

untransformed perturbations, As, grow and decay depends on the linear combination of
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the eigenvectors and eigenvalues implied by Equation (4.16).

In addition, for a non-linear system, the linearization that gives the

perturbation Equation (4.11) changes with time, dependent on the value of s with

time. Thus, just as the linearization changes with time, so do the eigenvalues and

eigenvectors. This is why the definition of Lypanov coefficient above is only loosely

correct; the chaos literature uses a. time averaged value removing the dependency of

the linearization on time (Holden, 1987).

The relevance of the preceding discussion to the Meinhardt equations will now

be presented. The perturbations that are important are the initial random field input

into the coefficients in the activator equation and the random numerical noise that

inevitably arises in the numerical solution of the equations. How they propagate into

the states of Equation (4.1) will be shown.

4.4.3 Analysis of the Chaotic Growth of the Meinhardt Equation

This section will analyze the Meinhardt equations to determine regions of

chaotic growth, where small perturbations can grow and eventually dominate the

solution of the equations. This will demonstrate how random errors, either input

randomness or numerical errors, may modify the form of the network generated so that

it appears random.

Using the techniques described in the previous section, the Meinhardt equations

will be linearized around a nominal trajectory. This linearization gives the differential

equation of the perturbations from which the eigenvalues, eigenvectors, and Lypanov

exponents will be obtained. The distribution of positive eigenvalues (Lypanov

coefficients greater than 1) will be examined. These regions of positive eigenvalues will

be asserted to be regions of transient chaos, where small perturbations may grow and

dominate the solution of the equations.

The Meinhardt equation (Equation 4.1) may be formulated as in the form of the
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general nonlinear system of Equation (4.9) as

=f(s)

where

a
h

z

y

1(0) =

a0
ho

zo

yo

mI
ca z
-h- pa

m1
C 3 (c2ca z

C --

C0 - 7 0 z-

c a - 0 .LY

+ D a 2 + p0 Y

-- vh+Dh 2
1

eYz 2

+

+ Dza 2
x 

O 2

1

1 + 9Y 2

It follows that the equations for the perturbations As can be obtained from Equation

(4.19) by use of the linearizations in Equations (4.10) and (4.11) so that

(As) 
7t~= A(s_ )As (4.20)

where

s * = nominal states at t = t , the point around which the linearization is

performed.

As = perturbations on the states s.

A(a ) = (nxm) state matrix for the perturbations
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Of a Of a f a Oafa

Ifh 0 fh Of h 0 fh

Of Of If O9f
_riz z z z

V0 M- -01F
Ofy Ofy
0-?- Wn-

OfY
S=S

The individual derivatives in the matrix A(s ) are

cmI(a ) z

h

_c ( a ( ) 2 z
* m*

_ c(a )

h

= c3 c2 c mi(a ) z

Ifh
- s=s -v+Dh

f sh c *cc(a m
c& s=s* = c2ca)

p + Da
Of a

5=s- -

*

Of a

D5u s=s

Ofa
s=s

If 
a

WY s=s

Of

a s~S

- Po

(4.21a)

(4.21b)

(4.21c)

(4.21d)

(4.21e)

(4.2 1f)

(4.21g)
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s= s (4.21h)

8f o

01*= (4.211)
49f z af m2-(. 1i

a -s = - C0 m2 Y (z ) + Dz (4.21j)

ai = -E (z ) (4.21k)

* = c + (4.211)

ah * =f 0 (4.2 1m)

*= - .1+ (1 + 2 2 (4.21n)

The expressions for derivatives in Equation (4.21) are applicable at a point in

space and to determine them all that are needed is the values of the nominal states at

that point; the derivatives are independent of the values of the states at surrounding

points. Thus Equation (4.20) is not a partial differential equation. This is an

important point since the original problem (Equation 4.19) was a partial differential

equation and to solve it discretization in space is required. The original problem is

coupled in space. However, due to the linearization the perturbations are uncoupled in

space; the solution for perturbations can be determined independently of the states at
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nearby grid points. Thus the perturbation equation can be solved at each grid point

independently of the other grid points. Thus for a 20 x 20 grid four hundred 4 x 4

problems must be solved to determine the eigenvalues and eigenvectors. If the

perturbations were coupled in space a single, 1600 x 1600 problem must be solved.

Hence determining the eigenvalues and eigenvectors of A(s) for the former problem is

reasonable with existing computer equipment while the latter is not.

The reason for this decoupling in space of the perturbations is the linear spatial

coupling in the original state equations (Equation 4.19). The diffusion term D a ,a

Dh 2 D z2 are linear. If these terms were not linear, then the perturbation

would not be decoupled. It would then be necessary to linearize the diffusion terms to

decouple them. Thus the following eigenvalue and eigenvector analysis is exact and

involves no approximation.

To demonstrate the stability properties of the Meinhardt equations, the states

from a partially grown network were used. These states were used as the nominal

states for the linearization. The parameters used to generate the sample data set were

those of Meinhardt (1982).

Contours of the four states activator, inhibitor, substrate and differentiation are

provided in Figure 4.10. Figure 4.10a shows contours of activator. The four, perhaps

five, peaks correspond to points near the network where active growth of activator is

occurring around the branch heads. The pattern of differentiation and branch heads is

shown in Figure 4.10d. The eigenvalues of A(a ) from the perturbation equations are

contoured in Figure 4.11. As noted in the previous section, these eigenvalues

correspond to the eigenvectors of A(a), not the original states. Not only are the

eigenvectors linear combinations of the states, but they are linear combinations that

vary from point to point in the grid, since the eigenvalues and eigenvectors vary from

point to point depending upon the linearization at that point.
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Figure 4.10: Contours of the states of the Meinhardt equations:
time = 3000
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(c) Substrate
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(d) Differentiation

Figure 4.10 (ctd): Contours of the states of the Meinhardt equations:
time = 3000
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a Positive eigenvalues
(b) Eigenvalue 2 (unstable)

Figure 4.11: Contours of the eigenvaiues of the linearized
Meinhardt equations: time = 3000

139



I I I I I I I I I I I I I I I I I

.004 '

ee

- '~ ~\V.

Ib'
- I (7,)~\// \

-~ ~ '-
- -- -..--- ;-- K]>

- ii
/

V. \. -/
- \\V//~~ --

.1 -- -- --

I ''4 ' I I I I I I I I I

7

<

(c) Eigenvalue 3 * Positive eigenvalues
(unstable)

-- I 1-- 4- -4-..L I -_I-

INVN

X/-\ I

~' /
7- T--)N, / r r

131(

I I



While each eigenvalue corresponds to an eigenvector that is a linear

combination of the four states, and this linear combination changes in space, so that a

positive value for a particular eigenvalue cannot be categorically attributed to any

particular state, it is believed that Figure 4.11a largely corresponds to activator,

Figure 4.11b to inhibitor, Figure 4.11c to substrate, and Figure 4.11d to

differentiation. Negative eigenvalues correspond to stable Lypanov coefficients (i.e., a-5

< 1) while positive eigenvalues correspond to unstable Lypanov coefficients. The most

obvious result is the existence of large regions of stability in the undifferentiated

localities and the existence of instability for the points where the network is currently

growing for activator and differentiation. The eigenvalue roughly corresponding to

substrate is positive everywhere and that for inhibitor negative everywhere. Thus at

the tips random effects are very important, which is in accord with observations and

explains the sensitivity of the networking process to applied randomness.

We are now in a position to discuss propagation of randomness in the

Meinhardt equations. Figure 4.Ila indicates that any random fluctuations in activator

near the branch head will propagate unstably. Outside this region around the branch

head activator fluctuations are suppressed.

Far from differentiated points because the equations are stable the initial

perturbations almost disappear, but not entirely. When the lines of differentiation

pass through these areas, the residual effects (though extremely small) are propagated

unstably in time and are sufficient to result in different patterns being formed for

different realizations of the random fields (Figure 4.9e).

Randomness also has other important effects. Since activation, and thus

differentiation, are dependent on activator exceeding the activator threshold of

Equation (4.2), then addition of random perturbations results in better activation.

Where activation would not have occurred, it has, and where it has, it occurs faster

when random perturbations are applied. Networks with random components
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differentiate and proceed to equilibrium faster than they would otherwise. Also

random effects mean that nodes exceeding the activator threshold are less determined

by boundary conditions and more by the spatially random perturbations on the

autocatalysis parameter, c, which propagate as chaotic fluctuations in activator.

The chaotic effects described in this section are believed to be the cause of the

random behavior of the networks exemplified in the introduction to this section. The

random effects on parameter c obviously feed directly into activator and thus into the

differentiation function. The numerical effects on the other hand are always feeding

into the activator equation, but at early times, their cumulative effect is small. Thus

the network symmetry at early times. At later times there is sufficient time for

chaotic effects to act on the accumulation of errors to send the solution a trajectory

entirely different to that of the exact solution (i.e., double precision solution). The

effect of the different diffusion formulations only serves to reinforce the idea that

accumulation of random effects can dominate network form.

A very important, but unanswered, question is whether the chaotic systems

mechanisms that generate the randomness in the networks are specific to the

Meinhardt equations or whether they are more generally applicable. Of course, there is

no way to be certain of this without testing more general forms of equations but some

general and powerful comments can be made.

The differentiation equation (Equation 4.1d) is driven by activator exceeding an

activator threshold. Three generic properties that the activator must possess, for

networks to form, were proposed in Section 4.3. It has also been noted that the only

direct input into the differentiation equation is activator. It is apparent from Equation

(4.21a) that for mI > 1, the autocatalytic behavior of activator will result in Lypanov

exponents for activator perturbations being greater than 1. When activator is growing,

perturbations in activator are also growing. Thus a result of the autocatalytic

behavior is the existence of a sensitive dependence on initial conditions, a central
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feature of chaotic systems. If the activator and inhibitor equations are replaced with

some other form of activator function, provided that this new activator is also

autocatalytic, it is suggested that this new activator function will also show sensitive

dependence to initial conditions. If a small change in activator propagates through the

system so as to produce a self-reinforcing change in activator, then that activator will

be sensitive to random effects.

It is believed that the physical system that will be proposed in Chapter 5

displays this behavior, and that this autocatalytic behavior is an explanation for the

random form of channel networks in the field.

4.5 Conclusions

This chapter examined some of the important characteristics of a set of

equations developed by Meinhardt (1976, 1982) that have been shown to exhibit

networking behavior. The governing physics of these equations is a chemical transport

model and the equations were first presented in the context of leaf vein growth within

a leaf.

The most important characteristic of these equations is that there is an explicit

consideration of a differentiation process in space; the differentiation between normal

leaf cells and leaf vein cells. A qualitative analogy between leaf veins and channel

networks appears to exist. The differentiation process is shown to be governed by

some very complex interactions of chemical transport properties in the leaf cells

surrounding the leaf veins. This chapter identified how the underlying physics

governed the form of the networks generated. This work suggests that interactions

between the channel and the hillslope are central to the growth and form of the

channel networks

Using sensitivity studies, it was shown that the physics of the Meinhardt

equations were not unique in generating networks of differentiated nodes. All that is
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required is that the physics comply with some very general rules. On the basis of the

sensitivity studies, three general rules were proposed on the characteristics of the

growth mechanisms of a line of differentiated nodes. They were:

1. A potential growth region must surround and precede the end of a

growing branch. This allows the branch to grow.

2. The potential growth region must move with the branch tip and the

growth potential must be actively suppressed immediately behind the

growing tip. This forces the branch to grow as a line rather than as a

blob.

3. The potential growth regions of two growing branches must repel each

other, and the domain boundaries must repel the potential growth

region. This assures that the resultant network is space filling.

Finally, the observed randomness of the generated networks was explored in

terms of transient chaos. It was shown that while input randomness results in random

networks, the input randomness is not essential for the network growth process.

Networks can grow in the absence of random input. The means by which random

input comes to dominate the network form was explained in terms of transient chaos

near the growing branch tips. Maps of Lypanov coefficients demonstrated that chaotic

behavior occurs in regions of active growth and showed how random effects may grow

and dominate the form of the generated networks. It was argued, on the basis of the

sensitivity studies, that this chaotic behavior may not arise from the specific form of

the Meinhardt equation but may, in fact, be a general characteristic of all differential

systems that exhibit autocatalysis in the state that governs network growth.
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CHAPTER 5

A PHYSICALLY BASED CHANNEL NETWORK

AND CATCHMENT EVOLUTION MODEL

5.1 Introduction

In this chapter a model is presented that realistically simulates the growth and

evolution of channel networks and their contributing hillslopes. The realism results

from the incorporation of continuity for flow and sediment transport. The constitutive

relation relating flow and sediment transport incorporates generally accepted physics.

The model explicitly describes the differentiation between channel and hillslopes, and

their responses to runoff and sediment transport. This differentiation is the most

important physical characteristic of catchments. The interaction of the hillslope and

channel regimes over long time scales is also taken into account. The dynamics of

channel and network growth are modelled using physically based mechanisms for

channel initiation and growth. In addition, other important effects such as tectonic

uplift, rockslide, and soil creep are described with their own physics, independently of

the sediment transport mechanism.

It is believed that the model presented in this chapter is a good representation

of the minimal physics necessary for a branched network of channels to be formed.

This will be argued on the basis of the qualitative understanding developed in Chapter

4 regarding the important processes involved in creating networks in the Meinhardt

equations. Where necessary the intuition thus gained will be used in formulating the

processes that are modelled in this and later chapters.

The philosophical justifications for selectively incorporating processes, rather

than incorporating all possible processes, are threefold:

1. The smaller the number of processes involved in the evolution of the

networks and catchments, the easier it is to understand the complex
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nonlinear interactions that occur.

2. Perhaps paradoxically, the smaller the number of processes involved, the

more general are the results. For each independent process that is

modelled, a new nondimensional parameter is created. To compare two

catchments using similitude, all nondimensional parameters must be

equated. If only dominant processes are modelled, then the number of

nondimensional parameters to be matched is minimal, and greatest

flexibility is obtained in scaling two catchments for similarity. These

similitude conditions are dealt with in detail in Chapter 6.

3. The smaller the number of processes, the less the computational

problems in solving the resulting equations. As will be seen later, the

computational problems of solving the equations presented here are quite

severe.

The major disadvantage of choosing a minimal physical system is that it is

probable that different processes may dominate at different scales. It is believed that

all of the important processes at the catchment scale are included, so that this scale

problem is not an issue. In particular, a number of processes that are only important

at the hillslope scale, or in steep rocky catchments with thin soils, have been ignored.

The most important limiting assumption at the hillslope scale is that sediment

transport will be considered to be transport limited rather than source limited. That

is, the limiting condition on how much sediment is transported is the transport

capability, rather than the existence or lack of transportable material.

5.2 The Governing Equations of the Physical Model

This section presents the governing equations that will be used in this work.

The equations are used to simulate the growth and evolution of the channel networks

and the contributing hillslopes. Justification of the form of the crucial terms in these
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equations will be -provided in following sections. The formulation of the governing

equations implicitly assumes that the equations will be solved on a grid of equally

spaced points in the plane, in an analogous fashion to the finite difference solution

technique for partial differential equations.

Two variables are solved for in the plane, elevation and an indicator function

that identifies where channels exist in space. On the basis of the direction of steepest

slope, a flow or drainage direction is assigned to each node. These drainage directions

are then used to determine area contributing to (i.e., flowing into) each node. From

these areas, and the steepest slopes at the nodes, continuity equations for flow and

sediment transport are written. These areas and steepest slopes are also used to obtain

overland flow velocities, or the activator, which are then used in the channelization

function, as indicators of potential for channelization. Details of the numerical

implementation of the solution technique for these equations can be found in Appendix

A.

The governing differential equations are:

=c+ 1 2 i (S) I f(Yi)] + D L JOj +P (1-n) L 2 ii zg 2
sgi

(5.la)

OY. Y2

= dt [0.0025 cla + (- O.lY + I 2)] (5.1b)
1 + 9Y.

and the constitutive equations are:
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much of the following work so that
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ables in Equation (5.1) are

= elevation, at node j

= indicator variable for channelization, at node j
0 hillslope node

I channel node

= activator of channelization, at node j

= sediment transport, at node j (units of mass/time)

= discharge, at node j

= time

= horizontal distance, in direction i

= grid spacing (equal in both planar directions)

Oj= tectonic input

s= density of eroded material

= porosity of material before erosion and after deposition

= slope in steepest downhill direction, at node j
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Dz = diffusivity for diffusive transport processes

I.. = indicator function for whether node i drains into or out of node j
-1 i=j, drainage of node j

= 1 node i drains into node j
0 node i does not drain into or out of node j

= rate constant for sediment transport in channels

0 t = ratio of rate constant for sediment transport in the hillslope region to

sediment transport in the channels

mi, nI = powers of Q and S in the sediment transport equation

dt = rate constant for channel growth

1/cI = threshold coefficient on the activator of channelization

05 = multiplicative constant on activator

M5 , n5  = powers on Q and S, respectively, in the activator equation

/33, m3  = multiplicative constant and power, respectively, for relating the

characteristic discharge to the characteristic area.

5.3 Explanation of the Governing Equations

The governing equations (5.1) are nonlinear differential equations with two

states distributed in space. These two states are elevation and the indicator function

for channelization. The most important qualitative characteristic of a catchment, the

branched network of channels that form the backbone of the drainage system of a

basin, is thus explicitly modelled. There are five important properties distributed in

space that are derived directly from these two states. The first three are the steepest

downhill slope, contributing area and discharge. The other two important properties

are derived from the slopes and discharges and are the distribution of activator and

sediment transport in space. The activator and sediment transport distributions feed

back into the two state equations for elevation and channelization as inputs. Thus

there is a nonlinear interaction between the elevation and channelization, and the
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activator and channelization distributions in space. This interaction is the central

feature of the model.

The differential equation for elevation (5.1a) is a continuity equation in space

for sediment transport. Three physically based transport processes are modelled. The

most important process is the continuity term for fluvial sediment transport, which is

the second term in Equation (5.1a). This term is dependent on discharge and the

magnitude of the slope in the steepest downhill direction. Additionally, the magnitude

of the fluvial transport is dependent upon whether that point in space is channelized or

not. Typically, sediment transport on the hillslopes is much less than that in the

channel. This effect is parameterized by the f(Y) term of Equation (5.2d), where Ot is

much less than 1. The physics underlying the formulation of the fluvial transport term

of Equation (5.2c) is explained more fully in Section 5.4. The form of the summation

in Equation 5.2 follows from summing all the sediment inflows and outflows (expressed

as mass/(unit volume)), converting them to an effective volume (using the density and

porosity) and applying the sediment transport imbalance over the area associated with

the node, L2 . That is
g

& L-2 sediment inflow - sediment outflow

VF g Ps (1-n )

The second important term in the elevation equation is the tectonic input; the

first term in Equation (5.1a). The form of this term may be quite general with

variability allowed both in space and time. For instance, an uplift event, such as may

result from an earthquake (see, for example, Morisawa, 1964) can be described by

c0 (, t) = C 0 (x) 6(t - t0 )
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where

c 0 = the uplift resulting from the tectonic event

t 0 = time at which the event occurred

b(t) = dirac delta function

Uplift that occurs continuously with time, but that may be variable in space,

such as may result from continuous bulging of the continental crest (see, for example,

Havlena and Gross, 1988) can be described by

c0(x, t) = C 0

where c 0 = the uplift rate resulting from bulging, variable in space, constant

in time.

This tectonic term is important since it is the only mechanism to oppose the

continual downwasting of fluvial sediment transport. As will be described in detail in

Chapter 6, the so-called "dynamic equilibrium" of landscapes cannot occur without

the opposing processes of tectonic uplift and fluvial erosion.

The third term of the elevation evolution equation is the diffusive transport

term. As noted in Section 2.3, a number of hillslope transport processes can be

modelled by use of a spatially constant diffusion term. The processes that are lumped

together in this diffusion term include hillslope soil creep, rainsplash, and rockslide.

The literature indicates that the first two of these processes are only important in the

regions of the hillslopes near the watershed where discharge, and thus fluvial sediment

transport, is small. Rockslide, the third of the diffusive processes, is much more

uncertain. Little work has been done on determining the importance of this process at

long time scales. Since the adapted model was not primarily formulated for modeling

rocky, source limited transport environments, the diffusive process will be largely
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ignored in this work, even though the conceptual framework of Equation (5.1a) allows

it to be modelled. In Chapters 7 and 8, where the results of computer simulations will

be discussed, studies of the sensitivity to this term will be performed.

The channelization equation (5.1b) is the important equation with respect to

the development of channels and the extension of the networks. As noted in Chapter

4, the effect of the form of Equation (5.1b) is to make two values of Y stable

attractors, 0 and 1. Initially the catchment starts with Y = 0 everywhere, a situation

corresponding to no channels, only hillslope. When the value of the activator a exceeds

a critical threshold called the activation threshold, the value of Y = 0 becomes

unstable and Y goes into a transition state where it is increasing to Y = 1, i.e., that

spot in space is in transition from hillslope to channel. When Y reaches a value of 1, Y

remains at 1 forever, since the value of Y = 1 is stable irrespective of the value of

activator. That is, once a channel is formed, a channel cannot be unformed,

irrespective of what happens in the catchment after that. The effect of the activator

function is solely to trigger the beginning of the channelization process once a given

threshold is exceeded. The rate at which a point is channelized once the activator

threshold is exceeded is determined by the parameter dt; a large value of dt results in

the point differentiating quickly. The form of the channelization process in Equation

(5.1b) is inspired by the form of the differentiation function in the Meinhardt

equations.

The details of how this channelization process leads to network extension and

pattern development is a central justification for the work described in Chapter 4.

While the quantitative definition of activator in the Meinhardt equations and that of

Equation (5.2a) is quite different, the qualitative behavior is very similar. This is

particularly true of the spatial distribution of activator around the growing channel

heads, and its influence upon the growth of the spatial pattern of channelization or

differentiation. In Section 4.3 three conditions were asserted to be necessary conditions
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on the qualitative, or topological, spatial distribution of activator if networks were to

be formed. These conditions will be restated in the context of Equations (5.1) and

(5.2).

The first condition is that regions of high activator must be formed around the

growing channel tip. As is shown in Figure 5.1, these regions of high activator result

from the localized high slopes and the convergence of the drainage flow patterns around

the channel head. Both of these effects result from the larger erosion along the

channels, compared to the hillslopes. This preferential erosion in the channels results

from the higher sediment transport rates in the channels since «t << 1. Simply put,

channels erode faster than hillslopes and this behavior is necessary for a channel to

grow. If channels do not erode faster than hillslopes, then there is no preferential

drainage to incipient channels, and no encouragement through autocatalysis for

cihannelization to occur.

The second condition for network formation was that the region of activation at

the channel head must move with the channel head. As shown in Figure 5.2, this

results from the capturing of the flow directions around the channel head. In this way

discharges behind the channel head are diminished, even though slopes are of

comparable magnitudes. Thus activator is lower behind the channel head than at the

channel head.

The third condition for network formation was that growing channel heads

should repel each other and that growing channel heads should be repelled by a

boundary. This requirement ensures that the resulting network is space filling, a

commonly assumed, if not observed, feature of channel networks (Abrahams, 1984).

The repulsion of growing channel heads, as shown in Figure 5.3, results from an

interaction between the drainage patterns and erosion. Provided that in the sediment

transport Equation (5.2b) m > 1, then the rate of elevation change is positively

correlated with discharge. Thus everything else being equal, the region between the
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growing tips (region A) which has lower discharges, will have a slower rate of change of

elevation than the region outside the growing tips (region B). Since discharges follow

the steepest downhill direction, that means that discharges will be highest on the

outside of the growing tip (region B). On the other hand, slopes will be highest inside

the growing tips, in region A. It appears that provided m I ni that the higher

discharge in region B dominates the higher slope in region A. Thus the highest

activator is typically in region B so that growing tips repel each other.

The argument for repulsion from the boundaries proceeds in a similar fashion

(Figure 5.3). The boundary is modelled as a zero slope condition perpendicular to the

boundary, i.e.,

S0 x=0, L21 2~

(5.3)

=z 0 xi=0, L
2

for a rectangular solution domain, Q = [0,L1 ] x [0, L 21'
Postulate an image channel an equal distance from the boundary, a mirror

image of the actual channel. The boundary is a similar flow divide to that which

develops naturally in Figure 5.3. The argument for mutual repulsion between the real

channel and the image channel proceeds exactly as that above for the repulsion of two

real channels. The boundary conditions of Equation (5.3) mean that the boundary of

the domain is simply an artificial watershed, identical in all but one respect to that

developed naturally in the interior of the domain. The one respect where the

watersheds differ is that the domain boundary, which is a straight line, artificially

constrains the form of the channel alongside it and reduces its irregularity. This is a,

common problem of channel network generation schemes that apply fixed boundary

148



conditions (e.g. van der Tak, 1988).

There is another boundary condition which is important. This is the elevation

condition imposed at the catchment outlet. All elevations in this work are defined

relative to the fixed elevation imposed at the outlet of the catchment (i.e. the elevation

of the notch). Thus the tectonic uplift rate, c0 , is defined as the uplift relative to the

elevation of the outlet. As an example consider a small catchment with an outlet on a

the flood plain of a very large river. The outlet elevation may be dominated by

elevation changes in the floodplain in the large river; i.e. from the point of view of the

small catchment the elevation condition at the outlet is externally imposed and

variable in time. In this case c0 for the small catchment is the tectonic uplift relative

the flood plain of the large river (i.e. the catchment outlet elevation) not relative to sea

level.

The preferential erosion that occurs in the channel and the autocatalytic effect

this has on the activator is central to the branch head growth. It also has an

interesting consequence for hillslope erosion which is by definition unchannelized. For

the hillslope to be unchannelized, it must be that there is no autocatalytic tendency to

channelize. Something must be happening on the hillslope to stabilize the tendency to

channelization. This may result from there being no tendency for channels to erode

faster than the hillslope. If channels do not erode faster, then there is no positive

reinforcement for channelization. This may result from increased inputs to sediment

transport from rainsplash (a diffusive process in Equation 5.1) of the same order of the

fluvial erosion. Thus when fluvial erosion on hillslopes is comparable to the stabilizing

rainsplash effects, the self-reinforcing channel erosion is dominated by the channel

destroying diffusion. This mechanism is consistent with the first condition for network

formation, and the observed physics (Dunne and Aubrey, 1986). It would also explain

the disturbing conclusion of Smith and Bretherton (1972) who found, in a model

without diffusion, that channelization must occur in all regions that are undergoing

149



active erosion.

It was noted in Chapter 4 that the idea of Y=0 representing hillslope and Y=1

representing channels is only approximate. In particular, at a growing channel head

there is a period of time when the hillslope is in transition from hillslope to channel;

i.e. Y is between 0 and 1. Points intermediate between hillslope and channel have

sediment transport properties that are intermediate between that for hillslope and that

for channel. The adopted transition is of the form

1 Ot aY 0.1

01 [ Ot + (1-Ot)(Y--0.1) .9] aY < 1
f(Y) = 

>aY> 1

Where a = a model parameter greater than 1

The model is insensitive to changes in a. A detailed discussion of numerical

issues related to the solution of the governing equations is provided in Appendix A.

5.4 Physical Justification of the Sediment Transport Equation

The generic sediment transport formula used in this work is

QS 01 Qmi Sni (5.4)

where

Qs = sediment transport, in mass/time

Q = discharge

S = channel or hillslope slope

150



Though a sediment transport equation of this form has been used by

geomorphologists in previous work (Smith and Bretherton, 1972), this formulation of

the sediment transport equation is unconventional compared with the form used by

specialists in fluvial sediment transport (e.g., Vanoni, 1975). The unconventional

formulation was adopted because it has a number of significant computational

advantages over the traditional formulation (see Appendix A for details). This section

aims to show how the new formulation may be obtained from the Einstein-Brown

equation, a commonly accepted fluvial sediment transport formula. It will be shown

that a minimal number of simplifying assumptions are required.

In addition, it will be shown how the Einstein-Brown equation, an

instantaneous sediment transport relation, can be converted into a mean temporal

sediment transport relation for large timescales. It will be shown that the simple form

of Equation (5.4) can be maintained under this temporal averaging, and that only the

coefficient 01 is modified with coefficients mi, n1 unchanged. Thus the temporal

averaging results in the rate of sediment transport being changed; its form dependent

on mi, nI is unchanged.

This work adopted the Einstein-Brown sediment transport equation. This

equation captures the important dependencies of sediment transport; that is, its

dependence on depth, velocity, sediment size, and channel geometry.

The Einstein-Brown equation is expressed in terms of a non-dimensional

sediment transport #, and a nondimensional shear stress, . Vanoni (1975) gives the

governing equation as

40 ( 1) 3 (5.5a)

where
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75 F, g(s -1)d

70

7(s - 1) d5

F 1 - 2 + 36v2  _

3 gdS(s - 1)

(5.5b)

(5.5c)

36v2

gd 3 (S
s -1

and the notation used is:

qs = sediment discharge, mass/time/(unit width)

s = specific gravity of sediment

7 = pg = specific weight of water

d S = a representative diameter for the sediment particle.

d50, the 50 percentile diameter, is used.

g = acceleration due to gravity

7 0 = 7RS = bottom shear stress

R = hydraulic radius

S = bed slope

i/

If the

equation may

(5.5d)

Normally

= kinematic viscosity of water.

sediment is considered homogeneous throughout the catchment this

be simplified to yield

q = F2 (RS) 3

where
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F2 = 40 ys F, g(s - 1) d3 1) 3
F2  4 1  (s - 1) d 

= constant

(5.6b)

Experimental evidence suggest that the exponent in Equation (5.6a) is

variable so that a more general formulation is used below where

qs = F2 (RS)P (5.7)

Equation (5.7) is not in the form of Equation (5.4) so that this equation must

be reformulated so that it is dependent on discharge Q rather than hydraulic radius.

This is achieved by use of Mannings equation for discharge

R5 /3S 1 /2p
n (5.8)

where P = wetted perimeter of flow

n = Mannings roughness coefficient

Eliminating the hydraulic radius R from Equations (5.7) and (5.8) yields a

sediment transport equation that is true for all cross-sections

Qs = F'(P) Q5 S F (5.9)

3p
where F'(P) = F (n)5

Note that the multiplicative constant F' is dependent upon the wetted

perimeter. The form of this dependence depends on the channel geometry of the flow.
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A number of different channel geometries have been examined including

1. a wide channel with uniform depth across the cross-section

2. overland flow/unit width

3. a triangular channel with sideslopes a1

4. a general channel cross-section of the form y = aI x Ibi, where a, and
bi are variable.

The detailed derivations for each of these cases are presented in Appendix C.

The simplest case, a wide channel, will be used to illustrate the techniques involved.

In this case the governing sediment equation for the wide channel is

Qs SF (Q5 S f) (5.10)

3p
where F' = F2 (n)5

w = width of the channel.

The multiplicative constant F' is dependent, in a well defined way, on flow

geometry and sediment characteristics. F' is constant because the wetted perimeter is

independent of flow depth. For the specific example of the Einstein-Brown equation

(p = 3), Equation (5.10) simplifies to

Qs = F' Q1.8 S2 .1  (5.11)

where F' = [F 2 (n)1.8

Note that for the wide channel Equations (5.10) and (5.11) are exact and

require no approximation. This is also the case for overland flow/unit width and for

the triangular channel. However, some very small approximations are used to
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reformulate the sediment transport for the general cross-section into the form of

Equation (5.4).

For comparison purposes, the exact sediment transport formulae for the wide

channel and a triangular channel (with side slope a,) are tabulated in Table 5.1

together with those for a generalized cross-section. The channel cross-section has

very little effect on the functional dependence of sediment transport to channel slope.

The cross-section dependence is most apparent in the functional form of the discharge,

with a lesser dependence on the multiplicative constant. Table 5.1 indicates the range

of values that mi and n, may take in Equation (5.4). That is

m 1c [0.375p, 0.6p]

n e [0.7p, 0.813p]

c [0.413, 0.857]

Moore and Burch (1987) used unit stream power theory and the experimental

data of Mosley (Schumm, et. al., 1987) to derive a sediment transport equation for rills

and hillslopes. Their equation was

1.6 1 .8

(Q0.53 0. 6 )p

where p = 3.

This equation corresponds well with a case intermediate between the wide

channel and the variable geometry channel (Table 5.1).

The derivations summarized above apply only to the instantaneous sediment

discharge this being the typical use of the Einstein-Brown equations. It remains to be
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TABLE 5.1

Sediment Transport Equations

Channel Geometry Parameters Sediment Transport
a1 b Formulas

F n0.421p]
F 2 .24

F2 0. 467pl

F2 2 2 9 p

F 2 n 0.495p]
22.36P

F n0.444p1

F 2  n .46
22.67P

F n0.51 2 p

F2 2. 9p I

F 2 no0455p1
Fn 0.496p]

F 2 .2 1 P

F2  0 . 8D1

2 3.66 P-K

QO421p SO. 7 8 9 p

Q0.4 6 7 p S0.767p

Q0. 4 9 5 p SO. 75 3 p

Q0. 4 4 4 p SO. 7 78p

Q0.487p SO.757p

Q0.512p 0.744p

Q0 4 55p S0.773p

Q0. 4 9 6 p S0 .75 2 p

Q0.518p 0 .7 4 1p

Tr i angul ar Channel
(aI=s i deslo pe) [

[Wide Channel

Henderson (1966)

Moore and Burch (1987)

o . 3 75 p

F2  1 a
2.38 1 IQ0.375p S0 .8 1 3 p

F2 (n)0.6p] Q 0. 6 p SO. 7 p

# Q 2 S2

# Q1.6 S1.8
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demonstrated that Equation (5.4) is also a satisfactory representation of the mean

temporal sediment discharge over long time scales.

The time scales of interest in'this work are typically of the order of thousands of

years. By temporal averaging over the distribution of flood hydrographs, where

Equation (5.4) describes the instantaneous sediment discharge, a modified version of

Equation (5.4) can be obtained for the mean temporal sediment discharge. In the

process a new value of the multiplicative constant # is obtained that is dependent on

the moments of the distribution of flood events and the discharge, Q, used is the mean

annual discharge from a flood frequency analysis.

Hereafter, to avoid confusion of notation we will use the parameters of Equation

(5.4), i.e., 01, m, and n, to represent those parameters applicable to the mean

temporal sediment discharge equation and the equation

Q = 2 2 S 2  (5.12)

with its parameters 02, m2 and n2 to represent those parameters applicable to the

instantaneous sediment discharge equation. What follows is a brief summary of the

averaging over time of the instantaneous sediment transport to obtain the mean

temporal sediment transport equation. The complete details are provided in Appendix

C.

Consider a single flood hydrograph described by the discharge with time Q(t),

with a characteristic duration Tp, and a characteristic discharge Qp (Figure C.3), so

that

t/ t

t' = p

Q'(t) = Q%?
p
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The sediment load of a single hydrograph can then be expressed as

Q, = #2 Tp (Q2(t')) 2 dt' Q m2 n 2

By considering the peak discharge, QP, and the time of duration of the flood,

Tp, as random variables then the sediment transport per hydrograph, Q., is a random

variable. If, in addition, the rate at which the hydrographs occur with time is also a

random variable, independent and Poisson distributed in time, then the average

sediment transport rate is given by

00 m
Qs [92 Tp -f (Q'/(t') 2 dt']

2 2

1 + m2(m 2-l) + m2 p2  m2 n 2 (5.13)
L Q Q T-

p p p

where T = mean length of hydrographs

A = rate at which hydrographs arrive with time

Qp = mean peak discharge over all the hydrographs that carry

significant sediment load. Derived from flood frequency

analysis

2 the variance of the peak discharge, derived from flood

frequency analysis
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2 Tcovariance between the peak discharge and the length of

the flood hydrograph.

It should be noted that this equation is in the form of the generic sediment

transport equation where the correspondence between coefficients in the instantaneous

equation (5.12) and the time averaged equation (5.4) is as follows.

ni = n 2

#1 = 2 [ p A *' (Q'1(t')) 2 dt'

-mm

2 2
1Q Q T

p Qp Tp

A more complete expression for #1 that allows for skewed distributions of peak

discharges (e.g. the log-Pearson Type III distribution) is given by

# - #2T Af u(Q '(t'))m dt'

21 02 p 3!

02 7 0'2 )3/2

1 + m2 (m2-1) Q + m2(m2-1)(m2-2) P 3 +

p p
aQ pT ~

m 9 9(5.14)
p p

where
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7Q = skewness coefficient of Q

N

N(Q.
i=l

(2 )3/2

N = total number of flood events

Note that the incorporation of skewness only modifies the value 01, and not the

functional form (i.e. mI and n 1 ) of the sediment transport equation.

The major difference between the instantaneous and time averaged equations is

the definition of the discharge. The dependence of the mean temporal sediment

transport on the mean peak discharge is important. The discharge, Qp, in Equation

(5.13) is the average of all the peak discharges of flood events that carry significant

sediment loads. Thus Q is the mean peak discharge from a flood frequency analysis

based on exceedance series, with the lower cutoff on discharge being that below which

sediment load is insignificant.

Finally the differentiation between the rates of sediment transport in the

channels and on the hillslopes, factor Ot, needs to be justified. From Mannings

equation for discharge (Equation 5.8) if the discharge is fixed then an increase in flow

depth is balanced by a reduction in the wetted perimeter (all other factors being

equal). This decrease in wetted perimeter causes an increase in sediment discharge

(Equation 5.9). Thus as the flow concentrates and becomes deeper the sediment

transport increases. It is this effect that is conceptually modeled by the coefficient t'

Equation (5.9) indicates that the two important physical determinants of 0t are flow

cross-section geometry and sediment properties (parameterized by F 2 ). The latter

may in turn be affected by the flow velocities. Clearly determining Ot apriori is a

difficult problem.
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Some experimental evidence exists to support the use of Ot < 1. Priest, et al.

(1975) measured sediment transport rates on the hillslope immediately upstream of a

gully head and then again in the gully immediately downstream of the head. These

data suggest a value of 0t about 0.3 for an actively cultivated catchment. They found

that hillslope conservation measures (e.g. vegetation growth) did not significantly

reduce the gully sediment transport. If, in this case, hillslope sediment transport rates

are reduced then this would suggest that 0t in natural catchments should be less than

0.3.

The interpretation of discharge, Q, varies from the channel to the hillslope. For

channel it is just the discharge. For the hillslope it is the discharge/(unit width) times

the effective width of a hillslope node, L . The numerical code implicitly assumes

L =1.
g

In conclusion, this section has shown three things:

1. A commonly accepted instantaneous total load sediment transport

equation, Einstein-Brown, may be reformulated into the functional form

used in this work and thus this functional form may be related to

experimentally measurable quantities.

2. The instantaneous sediment transport equation, in the functional form

adopted in this work, can be time averaged to give a mean temporal

sediment transport equation, again in the functional form used in this

work. The discharge in the new mean temporal equation is the mean

peak discharge. The transport coefficient # is dependent upon the

distribution of flood peaks, parameterized by mean annual peak

discharge.

3. There is evidence to support the use of different sediment transport rate

coefficients in the channel and the hillslope parameterized in the model

by coefficient t'
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5.5 Physical Justification of the Activator Mechanism

This section will provide a linkage between the types of processes that are

observed to trigger or activate channelization in the field, and Equation (5.2a) which is

used to represent the activator mechanism in this work. It should be stated at the

outset that the state of the art understanding of these processes is, at best, primitive.

It may be stated that a qualitative understanding of the processes at work is

developing at the current time. Quantitative understanding of the range of processes is

less advanced, and is either the subject of current research, such as groundwater

induced stream growth (Dunne, 1988), or has yet to be fully addressed, such as is the

case for overland flow induced channel growth.

The generic equation used to represent the channelization activator is

a = f5 Qm 5 n 5  (5.15)

As noted in Section 5.3, the purpose of the activator in the channelization

equation (5.1b) is to trigger the one way process modeling the transition from hillslope

to channel. This process is triggered at the time when the activator exceeds the

channelization threshold at that point. Once this threshold is exceeded, the

channelization process proceeds at a rate governed by the timescale for channelization,

dt. The importance of the activator is in the triggering of the channelization, rather

than in governing the rate of channelization. Once channelization is triggered, growth

occurs independently of the activator level.

The question that this section addresses is: What physical processes can

Equation (5.15) be claimed to simulate given the use activator and its threshold are

put to in the model of Equation (5.1)? Some examples of physical processes follow.
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A number of different physical processes will be examined that could trigger

channel head advance. One of the most common criteria for the design of erosion

works is overland flow velocity. Many engineering handbooks give tabulations of

allowable velocities for various forms of ground cover or erosion protection (e.g.,

Henderson, 1966). We will show that overland flow velocity can be expressed in the

generic form of activator in Equation (5.15).

If the wide channel assumption is made so that hydraulic radius, R, is equal to

flow depth, y, and the wetted perimeter, P, is independent of discharge, then Mannings

equation can be written as

R2 / 3 S1/2
v = n(5.16)

and the discharge for a wide channel of width w can be written as

Q = n w (5.17)

Combining these equations yields

V = 05 0.4 S0.3 (5.18)

where 5 w 2/ 5n 3/5

A similar expression for velocity in a triangular channel may also be derived

where the exponents are different.

Another important concept in modern sediment transport theory is the concept

of a threshold bed shear stress, below which no sediment transport takes place. This
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concept was first clearly expressed by Shields (1936) (Vanoni, 1975) in his now famous

Shields diagram which relates bottom shear stress with sediment transport.

Thresholds on shear stress are included in transport formulae due to Duboys (in 1897),

Shields (in 1936) and Laursen (in 1958), among others.

For a wide channel, or overland flow region, the bottom shear stress r7 is given

by

r= R S (5.19)

In a similar fashion to the derivation for overland flow velocity we obtain an

activator expression of

S= , 90. 6 30.7 (5.20)

where 5 (n)

A similar expression for shear stress in a triangular channel may also be

derived.

Dunne (1969) proposed a conceptualization of a groundwater process where

groundwater streamtubes converged onto a seepage face at a channel head causing

channel erosion. This conceptualization of gully advance is supported by other field

work (e.g. Priest, et al., 1975). Dunne (1989) suggested a threshold on hydraulic

gradient above which erosion at the seepage force will occur by piping.

dH] = (s-1)(1-n) (5.21)[dH'threshold
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where

dH
dH = groundwater hydraulic gradient at the seepage face

8 = specific gravity of the sediment material

n = porosity

Using Darcy's law for groundwater flow at the seepage face yields an activator

formulation of

F 1 (5.22)

where

K = hydraulic conductivity

h = height of the seepage face

w = width of the seepage face

In summary three different and physically based mechanisms for controlling

channel growth have been examined. All three of these mechanisms can be formulated

in the form of the generic activator equation of Equation (5.15). In each case the

nonlinear dependence of the activator mechanism on discharge and slope followed

directly from the physics of the activation mechanism. In all cases the nonlinear

dependence on discharge and slope was different.

The differentiating feature between the different activation mechanisms is the

ratio (m5 /n 5 ). In Appendix C techniques developed in Chapter 6 are used to show

that activator functions with the same value of (m5 /n 5 ) are equivalent and differ only

in a transformation on the activator threshold above which channelization occurs.

Table 5.2 tabulates the activator mechanisms that have been examined, their

governing equations, and their (m 5 /n 5 ) values.

An important observation must be made about the definition of discharge. A

single definition is used in both the activator and sediment transport equations. In
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TABLE 5.2

Activator Equations (a = #5 Q 5 S 5 )

Mechanism Governing Equation M m5/n 5

1. Overland flow velocity
(wide channel)

2. Overland flow velocity
(/unit width)

3. Overland flow(+)
veloc i t y

(triangular channel)

4. Overland flow shear
stress (wide channel)

5. Overland flow shear
stress (/unit width)

6. Overland flow shear(+)
stress (triangular
channel)

7. Groundwater stream
sapping

8. Montgomery and
Dietr i ch (1988)

1
w n 3/ I Q0 .4 S0.3

1.33

1.33q0 .4 S0 .3

a
2 34(1+al)n I

r = [(n) 3 /5 Q0.6 0.7

= [ ^yn3/5 q0 .6 S0 .7

na1 7,
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Section 5.4 it was noted that for sediment transport this discharge may be interpreted

in two different ways, depending on the interpretation to be placed on the elevation

evolution equation (5.1a). They are:

1. If Equation (5.1a) is to be interpreted as the instantaneous change of

elevation with time, then Q is the instantaneous discharge.

2. If Equation (5.1a) is to be interpreted as the mean change of elevation

with time, elevation perturbations being averaged out, then Q is the

mean-of all peak discharges of all significant flood events, QP.
Activator must be interpreted in an analogous fashion. In the former case,

activator is considered to be that activator occurring instantaneously in time. In the

latter case, activator is considered to be the mean effective activator occurring at a

point over many storm events. The mean effective activator must be parameterizable

on the mean peak discharge Q . The question of what constitutes the mean temporal

activator of channelization, over many flood events, is very poorly understood, and has

not been satisfactorily addressed in the literature. Calver (1978) provided a

preliminary understanding on the basis of a conceptualization of the instantaneous

channel growth mechanism. The lack of theoretical basis for the conceptualization,

and lack of any experimental evidence, make this work somewhat speculative.

There is some experimental evidence to support a channelization activation

mechanism of the functional form proposed here. Montgomery and Dietrich (1988)

present data relating source area versus local slope on the surrounding hillslope for a

large number of channel heads in California. This data is fitted very well by an

equation of the form

A S 2 .5 = C (5.23)
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where C = constant

The ratio of m5 /n 5 for this data 0.4/m3. Recall that m3 is the power on area in

the relationship between discharge and area (Equation 5.2c). If m3 = 1 then this value

is substantially lower than any of the unrilled surfaces, but close to values for a

triangular channel. A detailed discussion of the data of Montgomery and Dietrich

(1988) is presented in Section 8.4.

If the proposed activator and autocatalytic channelization model is correct all

hillslopes will have a value for activator which is less than the activator threshold.

Digital terrain data for a catchment was analyzed to determine if the channel network

could be identified from the areas and slopes of the terrain data. The techniques used

for determining areas and slopes are those described in Tarboton, et al. (1988) and are

a variant of the techniques described in Appendix A for determination of area and

slope in the simulation model. The catchment analyzed was W15, a 23km 2 catchment

in Walnut Gulch, Arizona, used by Tarboton, et al. Figure 5.4a shows that region of

the catchment where

A S0.75 > 3.85 (5.24)

which corresponds to the region that exceeds the overland flow activator threshold

when discharge is proportional to area (Equation 5.18). Figure 5.4b shows that region

of the same catchment where

A S1.17 > 2.79 (5.25)

which corresponds to the region exceeding the overland shear stress activator threshold

when discharge is considered proportional to area (Equation 5.20)

A rough network can be discerned in a background of disconnected pixels in
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(a) Regions where AS 0.75 > 3.85

(activator = average velocity)

Figure 5.4: Activator distribution for digital terrain data of
catchment W15
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(b) Regions where A S.17 > 2.79
(activator = bottom shear stress)

Figure 5.4 (ctd): Activator distribution for digital terrain data of
catchment W15
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these figures. The disconnected pixels arise from noise in the elevations in the USGS

data elevation error (nominally + 8m on a 30m square grid). This noise creates

randomly distributed pixels with anomalously high slopes so the the activator for a

pixel may fall above the threshold. This observation is true even if the thresholds in

Equations (5.24) and (5.25) are varied so the random background noise is not a

characteristic of the thresholds used to plot the figures. For instance, lowering the

threshold does make the network more detailed but it also increases the number of

background pixels above the threshold.

Tarboton, et al. (1988) used area above a threshold (called the support area) to

identify where his channels started. A channel began when

A > support area

Note that for uniform runoff over the catchment (so that Q = R A) this

definition is equivalent with the Dunne activator mechanism in Equation (5.22).

5.6 Sample Results

This section presents some sample results of the application of the computer

model documented in Appendix A, based on the theory described in this chapter. This

section is not intended to be a comprehensive consideration of all aspects of the model

and the simulations; that will be provided in Chapters 7 and 8. Rather, using a single

simulation through time, typical characteristics of the generated catchments will be

noted.

The simulation run discussed in this section is CR2-3, and the parameters used

for this, and all other, runs are listed in Appendix D. The results of the simulation

presented here are typical of results obtained in this work. Figures 5.5 through 5.10

show the spatial distribution of various properties for selected times.
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Figure 5.5 shows the simulated channel network. It demonstrates the headward

growth of the channels from the initial seed on the bottom left-hand corner of the grid.

The directions of overland flow are also shown and they demonstrate the convergence

of flow directions on the hillslopes around the channel heads illustrated in Figure 5.1.

The branching pattern of the network resulting from lateral branching is qualitatively

similar to branching in the stream sapping hypothesis of Dunne (1969) and the pattern

of future branching is mirrored by the pattern of hillslope flow directions (Figure C.4).

As the network grows, it erodes valleys along the channels. This results from

the preferential erosion in the channels compared with the hillslopes. Figure 5.6,

contours of elevation, clearly shows this characteristic. It is the valley that results in

the convergence of hillslope flow directions noted above. These valleys result in the

preferred hillslope flow directions being towards the channel network. An alternative

view of this valley formation with time is given by Figure 5.7, which is an isometric

view of elevations within the catchments.

The network growth process is dominated by the spatial distribution of the

activator on the hillslopes. Figure 5.8 shows this spatial distribution of hillslope

activator. The spatial distribution complies with the three conditions on activator

distribution that have been proposed (see Figures 5.1 to 5.3). Most importantly the

activator is concentrated around the channel heads and moves with the channel heads.

It is apparent in Figure 5.8c that the highest peaks of the activator are at the growing

channel heads, and that other peaks within the interior parts of the network are

considerably lower. Verifying that the activator region repel each other, and that

boundaries repel them is more difficult. Figure 5.8a shows some repulsion from the

boundaries, the highest values of activator are away from the boundary so that future

channel growth is into the unchanneled catchment interior. At later times the

channels and high activator regions are relatively uniformly spaced which is consistent

with the repulsion hypothesis.
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Figure 5.5: Channel network and hillslope flow directions
with time: CR2-3 simulation

173

rK -

rQ
*1C .J { %LQJ$ 7

Y~~~ kAj~~Y #

F7

Kr.1v 7*
ZA I

V.:

/r

A -T-

%NN "INN r



(b) t' = 2000

(c) t' = 6000 (d) t' = 13000

I1 0 Catchmeht outlet

Mm.

Figure 5.6: Elevations with time: CR2-3 simulation
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(a) t' = 500

(b) t' = 2000

Figure 5.7: Isometric view of catchment with time:
Simulation CR2-3
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(c) t'= 6000

(d) t'= 13000

Figure 5.7 (ctd): Isometric view of catchment with time:
Simulation CR2-3
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(b) t' = 2000

(c) t' = 6000 (d) t' = 13000
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* Catchment outlet

Figure 5.8: Activator with time: CR2-3 simulation
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Figure 5.9 is a plot of contributing area to the network. Not surprisingly the

high areas are concentrated along the channel networks. This follows directly from the

valley development and consequent preferential drainage to the channel network. The

blotchy appearance of Figure 5.9a results from the initial minor random perturbations

on elevation which create large number of interior draining regions on the initially flat

surface.

Contours of hillslope slope are provided in Figure 5.10. The most interesting

characteristic of this plot is that the steepest slopes do not occur around the growing

head. The steepest slopes are on the laterally draining valley sides; the slopes draining

down the valley to the channel heads are quite low by comparison. Figure 5.10d shows

that as the catchment evolves with time the highest slopes are in the upstream reaches

of the catchment, with lower slopes downstream. These lower slopes result from the

hillslope erosion that has taken place in the older, root sections of the catchment of the

bottom left-hand corner (see Figure 5.6).

Activator can be high even if the slopes at the channel head are low. In Figure

5.5 the hillslopes contributing to the channel head are long compared to the hillslopes

draining laterally to the channel. Thus in the activator formulation of Equation (5.2a)

the area contribution overwhelms the slope contribution. This indicates that network

screening, which is primarily a result of reduction of contributing areas near the root of

the network, is an important process in governing the distribution of growth sites.

Figure 5.11 gives the hypsometric curves for the catchment. The shape and

trends with time of this curve are consistent with the interpretation of field data

proposed by Schumm (1956). Hypsometric curves are discussed in more detail in

Chapter 7.

Figure 5.12 shows the elevations of all the streams, normalized against both

distance and elevation, for a variety of times both before and after the network has

stopped growing. The curvature of the profile is reasonable and consistent with
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Figure 5.9: Contributing area with time: CR2-3 simulation
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(a) ' = 100 (b) t' = 2000

(c) t' 6000 (d) t' 13000

0 Catchment outlet
Max. Min.

Figure 5.10 Hillslope slopes with time: CR2-3 simulation
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Figure 5.11: Hypsometric curve with time: CR2-3
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Figure 5.12: Longitudinal profiles for channels, channel elevations normalized by
stream relief, horizontal distance from catchment outlet normalized by the length

of the longest stream: simulations CR2-3 and CR8-1
(time = 60000 = dynamic equilibrium)
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observed data.

Table 5.3 list some sample statistics for the catchment for the instant in time at

which the network stops growing. These statistics will be discussed in greater detail in

Chapter 7. Suffice to say at this stage that the statistics are realistic for natural

catchments.

In conclusion, a sample result has been shown and the characteristics of a

typical simulation have been illustrated. The networks that are generated are

qualitatively realistic both in planar and elevation profile properties. The drainage

directions on the hillslopes are shown to be consistent with hypotheses of previous

researchers and consistent with the stream sapping, headward growths mechanism.
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TABLE 5.3

Sample Statistics: Simulation CR2-3

Statistic Statistic

Rb 5.20 Rg 2.85

Rs 1.73 RA 6.61

Rb(1- 2 ) 5.50 Rb( 2 - 3 ) 4.00

R(1-2) 3.29 R(2-3) 1.12

Rs(1-2) 1.70 Rs(2-3) 1.88

RA(1- 2 ) 7.15 RA( 2- 3 ) 4.46

K 1.78 ( 2.25

D 6.80 magnitude 22

Mean catchment relief 9.90

Mean hillslope relief 4.18

Mean stream relief 6.41

Mean hillslope slope 1.92

(1-2)=statistics for Strahler order 1 to order 2
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CHAPTER6

NONDIMENSIONALIZATION AND SCALING

OF THE GOVERNING EQUATIONS

6.1 Introduction

The scaling and similitude properties of the system of governing equations

presented in Chapter 5 will be considered here. Similitude is an important concept

that allows the quantification of the similarities of, and differences between, two

catchments. Through the use of a small number of nondimensional numbers the

governing physics of a catchment may be summarized. These nondimensional numbers

lead to similarity conditions that allow the quantitative comparison of data obtained

at the field scale and at the controlled experimental scale.

This chapter is primarily concerned with derivation of the nondimensional

numbers applicable to the governing equations, and with explanation of some of the

more important consequences of this nondimensionalization to catchment

geomorphology concepts such as "dynamic equilibrium." This chapter is not concerned

with an exploration of the sensitivity of catchment form to these nondimensional

numbers; the effect of changes in the nondimensional numbers on catchment form is

the subject of Chapters 7 and 8.

The discussion below is divided into four main sections. The first deals solely

with the mechanics of the nondimensionalization under both transient and steady state

conditions. A linkage to the concept of "dynamic equilibrium" is developed. The

following section applies this nondimensionalization to the problem of comparing two

catchments, i.e., scaling one catchment so that its governing equations are in some

sense the same as that of another catchment. The third section addresses the question

of what are suitable scales to use in nondimensionalization; measures of catchment

form previously used by geomorphologists are examined for their suitability as
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catchment scales. The central problem of determining appropriate scales from field

data is addressed and a number of open questions posed.

The final section deals with an application of the nondimensional equations to

the problem of landscape classification. Landscape classification attempts to define the

differences between, and similarities of, the landscapes of different regions. This final

section will, by the use of similitude, challenge current ideas in this field. A more

general, and what is believed to be more correct, framework for classifying landscapes

will be presented.

6.2 The Mechanics of the Nondimensionalization

The equations (5.la-e) define the governing physics of the model discussed

below. They do not, however, provide an explicit understanding of the physical

behavior of the results under scale transformation. For instance, how do the results

vary if the catchment is twice as large, the sediment transport rates are halved, etc. A

nondimensional analysis of these equations will explicitly consider, and predict, the

effect of these scale transformations.

Examination of these equations, and consideration of their simulated solutions,

indicate that there are five fundamental scales; all others can be derived from these

scales. These nondimensional parameters and the scales that they are based upon are
_z

z : nondimensional elevation (6.1)
z

x : nondimensional horizontal distance
x

(6.2)

=TRRR' = : nondimensional runoff rate (6.3)
L R

t = : nondimensional time (6.4)

where Lz = vertical length scale (e.g. m)

Lx = horizontal length scale (e.g. m)
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LR = runoff length scale (e.g., mm depths)

TR = runoff rate time scale (e.g., hours)

T = catchment evolution timescale (e.g. years).

At this stage physical interpretations of these scales will not be formulated.

These interpretations, based on measurable properties, will be made in Section 6.4.

Note that the vertical and horizontal length scales are distinct. Differences in

the scaling of these lengths will prove important later in this chapter. For instance,

the vertical length scale, Lz, may be the hillslope drop from the watershed to the

channel while the horizontal length scale, L,, may be the mean hillslope length. It will

be shown later that these two scales are independent. It should also be pointed out

that there are other nondimensional parameters that are important and that capture

the form of tectonic effects, sediment transport, etc. One such nondimensional

parameter, (m 5 /n 5 ), the parameter governing the form of the activator equation is

described in Section C.2.3. Other important nondimensional parameters will be

described as the need arises.

The form of the nondimensional runoff rate in Equation (6.3) arises from the

dependence of discharge on runoff rate and drainage area.

Q = RA (6.5)

The form of the nondimensionalization in Equation (6.3) assumes that the

runoff rate is independent of area. For field scale problems this is a simplification of

reality. For experimental studies, as described by Schumm, et al. (1987), this

assumption is in line with the experimental inputs, spatially and temporally uniform

rainfall. In the field, the situation is more complicated. Section 5.4 addressed the

interpretation of discharge in the temporally averaged sediment transport equation. It

was asserted that in this case the discharge to be used is the mean peak discharge.

Practitioners (Leopold, et al., 1964) have in the past found this discharge to be related

to area by
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Qp = /3 Am3  m3 E [0.5,0.8]

or

Qp = RA

where

R 03
A (1-m 3)A

The areal dependence follows from the areal dependency of rainfall, and the

effect of travel times within the catchment upon the coincidence of peak discharges

from tributaries as the catchment becomes bigger. The importance of this latter

timing effect is dependent upon the areal dependence of the rainfall, the timing effect

being greatest when the areal dependence of the rainfall is least (i.e., rainfall is

uniformly spread over the catchment). It should then be clear that determination of

the relative contribution of the vertical and horizontal scales to discharge is difficult,

and lies at the heart of current work on runoff processes (Pilgrim, 1983; Milly and

Eagleson, 1987,1988). Rather than make assumptions in this regard we have chosen to

look at the simpler situation where runoff is independent of area. It is believed that

the qualitative conclusions reached in later sections will not be'substantially affected

by such a simplification.

Using the basic nondimensional parameters of Equations (6.1) to (6.4) and the

runoff relationship of Equation (6.5), the nondimensionalization of some important

derived properties is

A' 1 2 A : nondimensional area (6.6)
Lx

TR
Q= 2 Q : nondimensional discharge (6.7)

L2 LR
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Ln5 LR5
z R

QS

ni mi
Lz LR

: nondimensional slope

R
a

2m 5-n5
75 Lx

: nondimensional activator (6.9)

TR

2m 1-n 1

* L,

: nondimensional sediment discharge

= ) : nondimensional transport coefficient

(6.10)

1

: nondimensional activator coefficient

05

From this we define a nondimensional channelization indicator function

f'(Y) =

The nondimensional coefficients # and 0 are introduced for two reasons.

First, # may vary in space within a catchment. Some results could be as much related

to spatial patterns of # as to the actual magnitude of 0. The spatial pattern is
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captured by /' while the magnitude is captured by the scale 73. Second the scales

and /5 can not be related to the scales of Equation (6.1) to (6.4) because the inputs to

the #'s are sediment diameters and mannings n, which are independent of the

catchment scales used in Equations (6.1) and (6.4). Sections 5.4 and 5.5 indicate,

however, that #1 and #5 are not necessarily independent.

For a similar reason it is convenient to introduce a nondimensional tectonic

uplift of the form

c() :nondimensional tectonic uplift coefficient

c0

(6.11)

Substituting the nondimensional relationships of Equations (6.1) through (6.11)

into the governing equations of Equation (5.1) and collecting terms yields the

nondimensionalized governing equations

ml n. 2 
=TT c. + TS (S I f(Yi)] + TD 02z'

(6.12a)

aY. Y16Yi= TC - 0.0025 TA - a' + [ -0.1Y- + Y 2

I + 9Y2

(6.12b)

where

TT, TS, TD, TC, TA = nondimensional numbers defined below.

In Equation (6.12) we define a number of nondimensional numbers that govern

the relative magnitudes of the physical processes in the model. They are:
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Transient Tectonic Uplift Number:

TT _ Rate of
Tot a I rate

tectonic uplift
of elevation change

Tc
= L E

z

Transient Sediment Transport Number:

= Rate of e 1 evation change due to sediment transport
Total rate of elevation change

2m -n n-1 m
x z R

L
m

TR1

1

Transient Diffusion Number:

= Rate of elevation change due to diffusive transport
Total rate of elevation change

L TD

L2
x

Transient Channelization Rate Number:

TC = T i me scale of elevat ion change
T i mescale of channel growth

= (Tdt)

Transient Activator Number:

_ Magn i tude of channel init i ation process
Threshold on channel initiation

Ln 5 2m 5n 5 cn 5 5
= z x R 1 5.

Tm5
R
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The Equations (6.12a) and (6.12b) define the conditions of transient similarity.

Transient conditions are when systematic changes in either elevations or the channel

network are observed, so that the right hand side of Equation (6.12a) and (6.12b) can

be considered non-zero at the time scales of interest. Short term fluctuations in

elevations and the channel network are ignored for the purposes of defining transient

conditions since we consider the system of Equations (5.1) to be mean temporal

equations.

The nondimensional solution domain is given by W'. It is possible to define the

rectangular solution domain that is used in terms of L so that Equation (5.2e)

becomes

Ll L2
2' = [0, ] x [0, U-]

x x

However, it is more convenient to introduce another length scale, the catchment

length scale Ld, representing the length scale of the domain

= [0, I] x [0, 2] (6.14)
d d

where Ld = L .

The nondimensional number a, is used to represent the catchment horizontal

scale, relative to the fundamental horizontal scale, L (i.e the hillslope scale). The

nondimensional number a will called the Catchment Scale Number since it defines the

size of the catchment relative to the hillslope scale. The reasons for this formulation

will be addressed in Section 6.4.

For two catchments to be in transient similitude, the nondimensional
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parameters defined for each catchment must be equal. Formally this can be expressed

as (subscripts (1) and (2) refer to catchment (1) and (2), respectively)

TT(1 ) - TT(2 )

TS( 1 ) = TS( 2 )

TD(1) TD(2)

TC(1 ) = TC (2 )

TA(1 ) = TA( 2 )

al(1) - &1(2)

Tectonic uplift similarity

Sediment transport similarity

Diffusion similarity

Channelization rate similarity

Activator similarity

Catchment scale similarity

Furthermore, there are conditions on the nondimensional catchment properties

so that

Q'(_)i = Ox9(2)

z'(x' )( 1) = z'(x')(2)

c6(x')(1) = c6(x)(2)

Discharge distribution

Sediment transport distribution

(6.16)

Elevation distribution

Tectonics distribution

The conditions of Equation (6.16) amount to forcing the two catchments to be

exactly the same, after scaling. This shall be termed deterministic similarity. It may

be that, after scaling, statistics that capture the average behavior over the catchiment

of properties in Equations (6.16) are the same. This type of similarity will be called

statistical similarity. This distinction is made because it has been noted by previous

researchers (Schumm, et. al., 1987), and it will be noted here also, that even though

there exists physical similarity (Equation 6.15), the sensitive dependence of networks

on minor fluctuations during their growth, means that under virtually no conditions
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will Equation (6.16) be satisfied, except in some average, statistical sense. Two

networks on physically identical catchments will never be the same because of the

affect of minor input fluctuations. This issue was discussed in Section 4.4, for the

Meinhardt equations, and it will be returned to in Chapter 7 when simulation results

are interpreted.

An important concept in geomorphology is that of dynamic equilibrium. While

a catchment may exhibit short term, episodic, fluctuations in form, catchments in

dynamic equilibrium do not exhibit any systematic changes with time. The definitions

of both "dynamic equilibrium" and "systematic change" in the literature are vague.

There are three possible definitions of dynamic equilibrium depending upon viewpoint.

1. Other than short term episodic fluctuations, the channel network and the

surrounding hillslopes exhibit no change in time. Elevations are

constant, and the channel network is fixed in space. Hereafter this case

will be referred to as deterministic dynamic equilibrium.

2. Other than short term episodic fluctuations, statistics describing the

channel network and the surrounding hillslopes, exhibit no change in

time (i.e., statistical stationarity). For instance, Strahler slope ratios

may fluctuate over the short term, but their temporal mean value should

be constant with time. Hereafter this case will be referred to as

statistical dynamic equilibrium.

3. Other than short term episodic fluctuations, the nondimensional form of

the channel network and the surrounding hillslopes exhibits no change

with time. For instance, slope magnitudes may change systematically

with time, but the nondimensional slopes (i.e., S'(x)) do not change with

time; in the case of slopes the vertical length scale will change. Hereafter

this case will be referred to as nondimensional deterministic dynamic

equilibrium. We might talk of stationarity of the statistics of the
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nondimensionalized catchment. This case will be referred to as

nondimensional statistical dynamic equilibrium.

These definitions of dynamic equilibrium are all fundamentally different. The

strictest definition is the first, that of deterministic dynamic equilibrium. Here the

form of the catchment is totally fixed and no systematic variations are allowed in time

in any part of the catchment. The definition of statistical dynamic equilibrium is more

flexible, in that while it restricts the variation of statistics, it allows variations within

the catchment, provided that the mean properties do not change. Field studies that

assert, for instance, that the Strahler slopes do not vary with time are asserting

statistical dynamic equilibrium, since the Strahler slope is a statistic describing the

average slope of a number of channels with the same order.

The third definition, of nondimensional dynamic equilibrium, is the most

interesting since it has been used implicitly, but has never been explicitly described.

In the same sense that the similitude conditions were asserted in Equation (6.15), then

having nondimensionalized slopes, S' (x), that are the same should constitute some

form of equilibrium. The slope magnitudes or scales are dependent on time (via the

vertical scale Lz which is now variable with time), but the distribution of slope within

the catchment is independent. of time (i.e. nondimensional slopes do not change with

time). Typically the concept of nondimensional dynamic equilibrium arises most

frequently in dealing with characteristic profiles of hillslopes or channels (e.g., Smith

and Bretherton, 1972; Kirkby, 1971; Ahnert, 1976). Three examples of nondimensional

dynamic equilibrium are:

1. Strahler slope ratios independent of time.

2. Hypsometic integrals converging to the Monadanock stage/profile

(Strahler, 1964).

3. The nondimensional hillslope profile described by Equation (2.25)
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The preceding discussion was aimed at eliminating confusion over what is

meant by dynamic equilibrium. By and large, the derivation that follows assumes

statistical dynamic equilibrium. We concern ourselves primarily with ensuring that

physical similitude conditions based on nondimensional numbers are obeyed (Equation

6.15), and not with similitude conditions for the nondimensional catchment properties

(Equation 6.16). We will assert, however, that the time derivatives of elevation and

channel growth are zero; a somewhat stricter requirement than statistical dynamic

equilibrium. The nondimensionalized governing equations at dynamic equilibrium are

then

M n 82z
DET - c' + [(Q') (S') 1 ) f'(Yi)] + DED J = 0

1 1

(6.17a)

Y .
0.0025 DEA - a' + [-O.1Y. + 1 2] = 0 (6.17b)

J i 1 + 9Y .

In an analogous fashion to the transient case nondimensional numbers arise that

govern the physics of the model at dynamic equilibrium. They are

Dynamic Equilibrium Tectonic Uplift/Transport Number:

DET =T

Rateof tectonic uplift
Rate of elevation change due to sediment transport

C0 TR1 p (1-n) L2
-o 0 R Ps(-n 5 (6.18a)

2m I-n1 n L 1

Lx Lz LR
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Dynamic Equilibrium Diffusion /Transport Number:

DED = TDTh dt
= Rate of elevation change due to diffusive transport

mRate o elevation change due to sediment transport

D T Ps (1 - n) L 3
_ 2m -n 1+2 n 1-L m

1 L LR

Dynamic Equilibrium Activator Number:

n 52m 5-n 5m5
n5 L 5 n 5 L 5 c 3z x R 1 5

DEAti. = ITI =

(6.18b)

(6.18c)
T m5R

The Catchment Scale Number, al, is as defined in the transient case. Note that

the dynamic equilibrium nondimensional numbers are expressible in terms of the

transient nondimensional numbers defined in Equation (6.12) and (6.13). The tectonic

uplift/transport number is simply the relative rates of tectonic uplift to sediment

transport. The diffusion transport number is simply the relative rates of diffusion

transport to fluvial sediment transport. The activator number for dynamic equilibrium

is identical to that for the transient case.

In a similar fashion to the transient case, it is possible to define the conditions

for similitude to apply between two catchments ((1) and (2)) at dynamic equilibrium.

DET - DET(2)

DED = DED(2)

Tectonics/Transport similarity

Diffusion/Transport similarity

(6.19)

3. DEA = DEA(2) : Activator similarity

In addition, for deterministic dynamic equilibrium to apply it is required that
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4. Q(' x92

5. f(Y(x'))( 1) = f(Y(x'))( 2) (6.20)

6. z'(x')(1) = (x')(2)

For statistical dynamic equilibrium only the statistics of properties in Equation

(6.20a) as well as Equation (6.19) need be the same for the two catchments.

A final note will be made in conclusion of this section about the

nondimensionalization of the governing equation. The nondimensionalizations of

Equations (6.12) and (6.19) are-not unique. For instance, it may be more convenient

to replace the nondimensional elevation z' with a nondimensional slope S' (defined as

z'/x'), since slopes are a commonly used means of parameterizing catchment relief

properties. The definition of nondimensional slope in Equation (6.8) can be used to

replace Lz in the nondimensional governing equations. Define the slope scale and

nondimensional slope as

L
S'L= S =

where L = slope scale

The nondimensionalized transient governing equations are identical to those

presented before (Equation 6.12) but the definitions of the transient nondimensional

numbers are modified to

TT = L L 0  (6.21a)
S x
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TS =

2m -1 ni-1 m1 -
L S R 01

TTR S(1

L TD
TD = L2 2z

TC = Tdt

2m5 n 5

x S
It =

- n)

m5
L R5 CR 1

m
TR5

The nondimensionalized dynamic equilibrium equations are also identical to those

previously presented (Equation 6.17) with modified definitions for the nondimensional

numbers so that

DET =

DED =

m
CO T R0 1 L 1 LL

2m In Im 1
L L LR

D T Ps (I - n) L2
z R 9

n --1 2m 1+1
1 L n Lx

DEA =

2m5  n

x S
m

L m 5
R

-n) L3
if (6.22a)

(6.22b)

L R

C1 35
(6.22c)

mTR5
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6.3 Similarity Between Catchments Using Nondimensionalization

The previous section described the nondimensionalization of the governing

equations. Some similarity conditions were briefly outlined. This section expands on

those similarity conditions, and demonstrates their use by deriving the conditions

under which two catchments are similar. This will illustrate how field data from one

catchment may be compared with field data from another catchment, and how small

scale experimental data and numerical simulations may be scaled up to field scale.

Deterministic Dynamic Equilibrium

Consider initially the case of two catchments at deterministic dynamic

equilibrium. The similarity conditions for this case are summarized by Equations

(6.19) and (6.20). Similarity for two cases will be considered.

Case 1: Dynamic Equilibrium Similarity Ignoring Diffusion

In the case where diffusive effects in the catchment are negligible and may be

safely neglected, it is only necessary to consider Tectonic/Transport similarity and

Activator similarity, parameterized by the nondimensional numbers DET and DEA

respectively. If the scales of the two catchments being compared are differentiated by

the subscripts (1) and (2) respectively, then the similitude conditions are

DET(1 ) = DET(2 )

DEA( 1 ) = DEA( 2 )

or substituting the definitions of the nondimensional numbers from Equation (6.18)
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c 0(2) R (2)

__ 2m 1-n n m
1(1) L 1 n Lz(1) LR(1)

2m5-n 5 Ln5 Lm5

( 1) Lz(1) R(

TR(1)

2m1-ni ni mi
91(2) L x (2) Lz(2) LR(2)

(6.23a)

2m5-n 5 Ln5 Lm5

5 (2)Lx ( 2) Lz(2) R(2)c1(2)

R (2)

(6.23b)

These equations can be rearranged into a form that is reminiscent of the original

nondimensional number so that the similitude conditions are

(m1
TR ( 1,2)

2 m -n

L 1,2)

2m 5-n5
x ( 1,2)

Ps(1, 2 ) n

ln2
Lz (1,2)

Ln 5
Lz (1,2)
m5

TR( 1,2)

(1,2) g(1,2)
= 1 (6.24a)

LR(1,2)

m5
LR(1,2) "1(1,2 ) = 1 (6.24b)

where the scaling coefficients are defined as

- c(1)

c 0(2)
= TR(1)

T
TR(

2 )

_ 1(1)

01(2)
L L(1)

Lx(2)
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(1,2)

5(1,2)

c0(1,2)

TR(l1
2)

01(1,2)

Lx(1,
2 )

m
c0(1) T R ( 1) p(j) (1-n( S)L 2 P(2) (1-n(2 ))L



L

z(1,2) Lz(2 )

ps(1,2)

1s( 2 )

" (1,2) 1 - (2)

0~5(2)

.L&(i).
g1(1,2) g2g1(2)

The important difference between Equations (6.18) and (6.24) can be

demonstrated taking one parameter as an example. The parameter c 0 ( 1) is a

characteristic scale of catchmient (1) with the units of c 0. On the other hand c 0(1 12)

is a scaling coefficient relating the characteristic scale c 0 (1 ) of catchment (1) with the

characteristic scale of c 0 (2 ) of catchment (2), and c 0 (1 12 ) is dimensionless.

Case 2: Full Dynamic Equilibrium Similarity

In the case where diffusive effects are not negligible, so that tectonics, sediment

transport and diffusion are of a comparable magnitude, or where individual

components may be dominant in different parts of the catchmnent, so that none may be

ignored, then the similitude conditions for catchments (1) and (2) are

DET(1 ) = DET(2 )

DEA( 1 ) = DEA( 2 )
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DED() DED( 2 )

Substituting for the definitions of the nondimensional variables from Equation (6.18)

and (6.24) yields

m12

0(1,2) T R ( 1,2) _Pjs( 1,2 ) n (1,2) Lg(1,2) 1  (6.25a)
2m1 -n n m

01(1,2) Lx (1,2) Lz(1,2) LR( 1 ,2 )

2m 5 -n5  n 5 m

02(1,2) Lx ( 1,2) z 1,2) L R( 1 2 ) C1(1,2 ) 1 (6.25b)m

T R (1,2)

m 3

Dz(1,2) R(1,2) s(1,2) n( 1, 2 ) ) = 1 (6.25c)2m 1 -n 1 +2 n 1-l m1
0 1(1,2) Lx( 1,2) L z(1, 2 ) L R(1,2)

where D zD l is the diffusion scaling coefficient analogously to those

coefficients defined in Equation (6.24).

The similitude conditions are the same as for case 1, transport and activator

similitude, except that an additional condition, Equation (6.25c), is required for

diffusion similitude.

Transient Conditions

The conditions for similitude for two catchments under transient conditions will

be treated in a similar fashion to the treatment of conditions at dynamic equilibrium.

The main complication of the transient case is that the total number of similitude

conditions is increased from 3 to 5. The transient similitude conditions were
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summarized in Equation (6.15) and (6.16). As was done for dynamic equilibrium, two

cases will be considered, that where diffusion is not an important process and that

where it is.

Case 3: Transient Similarity Ignoring Diffusion

In the case of where diffusive effects in the catchment are negligible, it is only

necessary to consider similarity conditions for tectonics, transport, channel growth and

activator, parameterized by the nondimensional numbers TT, TS, TC, and TA,

respectively. Using the same notation as in Equations (6.24) and (6.25), the similarity

conditions for two catchments (1) and (2) are

TT(1 ) - TT(2 )

TS(1 ) = TS( 2 )

TC = TC(2)

TA(1) - TA(2)

and substituting for the definitions of the nondimensional numbers from Equations

(6.12) and (6.13) yields

T( 1 , 2 ) c0(1 ,2) - 1 
(6.26a)

Lz(1 ,2)

2m 1-n1  n1-1 n m
(1,2) Lx ( 1, 2 ) z(1,2) R(1,2) 1(1,2) = 1 (6.261))

TR(1,2) Ps(1, 2 ) n( 1,2) g (1,2)

T( 1,2 ) dt(1, 2 ) = 1 (6.26c)
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2m -n

1x (1,2 Ln5  m 5
z 1,2) LR(1,2 ) = 1m5

TR( 1,2)

(6.26d)

where

dt(
1,2 )

T (
1 )

T(
2 )

S t(2)
dt(2)

The equilibrium similitude conditions in Equation (6.24) are a subset of the

transient similitude conditions above. The rearranged equations are

c Tc0(1,2) TR(1,2)
2

Ps (1, 2) n (1,2) L g(1,2) -1
2m1-n n m

31(1,2)L x ( 1,2) L z(1,2)L R (1,2)
(6.27a)

2m 5-n 5 n 5  m

5(1, 2 )Lx( 1,2) z(1,2) R(1,2)Cl(l,2)

(m15
TR (1,2)

T(1,2 ) c 0(1 ,2) =

Lz ( 1,2)

T(1,2 ) dt( 1 ,2 ) = 1

1

=1 (6.27b)

(6.27c)

(6.27d)

The first two equations, Equations (6.27a) and (6.27b), are the similarity

conditions for dynamic equilibrium. Equation (6.27c) is a similarity condition on the
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timescale reflecting the rate of tectonic uplift, c 0, divided by the rate of elevation

change within the catchment, Lz/T. Equation (6.27d) is a similarity condition on the

timescale of the channel growth process, dt, compared to the timescale of elevation

change. Thus the transient similarity conditions are just those for dynamic

equilibrium with two additional constraints on timescales within the model.

Case 4: Full Transient Similarity

In the case where diffusive effects are not negligible, so that tectonics, sediment

transport and diffusion are of comparable magnitude, or where individual components

may dominate in different parts of the catchment, then the similitude condition for

two catchments (1) and (2) are

TT(1 ) = TT(2 )

TS(1) TS(2)
TC(1 ) = TC(2 )

TA(1) = TA( 2 )

TD(1 ) = TD( 2 )

Substituting for the definitions of the nondimensional numbers from Equations (6.12)

and (6.13) yields

m2
c0 (1,2) TR(1, 2 ) Ps(1,2 ) n( 1 ,2 ) Lg(12) -1

)2m,-nl n I L mi
1(1,2 )L x(1,2) z(1,2) R(1,2)

(6.28a)
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2m5-n 5  n Lm
35(1,2) Lx ( 1, 2 ) z (1,2) R (1,2)c1(1,2) -1 (6.28b)

Tm5
R( 1,2)

D Tmn/ 1  0~)(62cz(1,2) R(1,2) Ps(1,2) (1,2) -g(1,2)= (6.28c)
2 m2 -n1 +2 ni-1 

(1,2) L ( 1,2) Lz(1, 2 ) LR(1, 2 )

T(1,2) c0 (1 ,2 ) = 1 (6.28d)
L z(1 , 2)

T(1,2) dt(1, 2 ) = 1(628e)

As was the case for Equations (6.27), the equations above have been rearranged

to highlight the similarity between Cases 2 and 4, the dynamic equilibrium and

transient cases. Again the difference between the transient case and the dynamic

equilibrium case is the addition of two similitude conditions on the timescale of

catchment evolution process, T, and the rate of channel growth, dt*

The previous discussion in this section highlights two important points. These

points have important consequences in analyzing field and numerical data.

The first point is that as the number of processes to be modelled increases, so

does the number of similitude conditions. With more similitude constraints, there is

less freedom in the choice of the values of Lz(1,2), Lx(12), LR(1,2), etc., that may be

chosen to scale two catchments so that they look like each other. That is, as the

number of independent similitude conditions increases, the likelihood of two

catchments being similar (i.e., all nondimensional numbers equal) decreases.

Computer generated and experimentally obtained results have less generality since the
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degrees of freedom in the scaling are reduced. But, in reality, this lack of generality

may be illusory. It may be that some processes have no significant effect on certain

aspects of catchment form. Requiring similarity of these insignificant processes is an

unnecessary constraint, and only serves to reduce the generality of the data under

consideration. This is the rationale for developing the 'minimal" model that fits the

observed data, as noted in the introduction to this chapter. The less processes that are

found to be important in generating the catchment, and controlling its form, the

greater the generality of the results. This is a strong, pragmatic incentive to reduce

the number of processes modelled to a minimum.

The second important point to note is that at different scales, different

processes may be dominant. For instance, Schumm, et al. (1987) noted that at the

small scale of the Parker (1977) experiments, the overland transport processes are

dominated by rainsplash. At the typical field scale, however, hillslope processes are

dominated by fluvial transport and rainsplash effects are insignificant (Dunne, 1988).

Thus measurements made at one scale may be dominated by a process unimportant at

another scale. In the parameter estimation literature this problem is referred to as the

parameter observability problem; the data does not contain sufficient information

about the processes of interest. The relative magnitude of rainsplash and sediment

transport will be examined by use of the scales assigned in the nondimensional

analysis. From Equation (6.13a) the relative magnitude of the diffusion and fluvial

sediment transport may be expressed in terms of scales as
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(diffusion]
transportJ TD= DED=T9~

L TD TR Ps(

L2z) 2mi -n 1
x T Lx

T ps (1 - n) L 3  D

- 2m-n 1 +2 n1 -1 M -)

LL L R

(6.29)

The relative magnitudes of diffusion and fluvial transport in two different

catchments (1) and (2) may be compared by using the scaling techniques just

described, so that

(di f fus ion]
transport 1

[ di f fus ion]transport] J(2)

TR (1,2) Ps(1,2) n(1 ,2) L

2m1 -n1 +2 nI-1 mI
Lx ( 1,2) Lz( 1 ,2 ) LR(1, 2 )

We have already noted, in Chapter 5, that typical values of m and nI are 1.5

and 2, respectively, so that the relative magnitudes of diffusion and transport can be

approximated by the expression

(di f fus ion]
transport]

[ diffusion]transport] J(2)

T R( 1 ,2) Ps( 1

V Lx(1,2) z(1,2)

From this expression it can be seen that diffusion will be much less important

than fluvial transport in catchment (1) compared to catchment (2) if either Lx(1,2)'

Lz(1,2), or LR(1, 2 ) are large. That is, if catchment (1) is larger, steeper or wetter than
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)
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(6.30)

,2)n 1,2)

L1.5R(l1 2 )

g(1,2)) (D z(1,2)

01(1,2)

(6.31)



catchment (2), then diffusion process will be less influential. The relative sensitivities

to these three effects is shown by the power of the appropriate scaling coefficient. In

the case of the Parker (1977) results the most important effect is the relative

magnitude of the horizontal scales of catchments. This is a very important effect when

interpreting small scale experimental data. It is believed that these qualitative

differences in dominant runoff processes in the Parker experiments are due to the

differences in the applicable horizontal length scales; in this case, the length of the

hillslope. This will be demonstrated with some hypothetical, but realistic,

calculations. Figure 6.1 shows the experimental catchment of Parker (1977) with the

scales of some typical experimentally generated networks (from Schumm, et al. 1987).

This figure also shows a hypothetical field scale catchment with some typical scales

that might be observed in this case. Substitution of these results into Equation (6.31)

yields

[diffusion
transport1

[ diffusioni 
101

transport J(2)

where (1) E hypothetical field catchment

(2) Parker (1977) experimental catchment

This result indicates that diffusive effects are 1011 times less important in the

hypothetical field catchment than they were in the Parker (1977) experiments; a

significant difference by any standard.

6.4 Determination of the Scales Used in Nondimensionalization

The previous sections of this chapter have outlined the mechanics and use of the

nondimensionalization of the governing equations used in this work. It has also
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9km

9m

(a) Field scale catchment

Runoff Rate

Catchment Slope

: LR = 10mm/hr

: S = 0.0015

Horizontal Length Scale : L. = 15000 m

(b) Parker and Mosley
model catchments

Runoff Rate : LR = 50mm/hr

Catchment Slope :S =0.1

Horizontal Length Scale : L, = 15 m

Figure 6.1: Comparison of catchment scales for field and plot
scale catchments
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demonstrated some basic properties of the scaling behavior of these equations for

different physical situations. In all of these discussions, however, a detailed

explanation of the physical interpretation of the scales used in the

nondimensionalization has been postponed until later.

This section addresses the issue of the selection of appropriate scales in the

nondimensionalization. The discussion that follows concentrates on relating the scales

introduced in the previous sections to the descriptive statistics that are commonly used

in the geomorphology literature, e.g. drainage density, relative relief. As a practical

matter the connection between the nondimensionalized equations and the catchments

at the field scale will be formalized. The horizontal length scales will be discussed

first, followed by the vertical length scales; these two length scales being the most

commonly discussed in the literature. The runoff length scale will be briefly discussed.

This section will close with a discussion of timescales, an area that has received scant

attention in the literature.

An important question that will arise in this section is whether there exists a

single horizontal length scale and a single vertical length scale. Several candidates for

each of these scales will be identified. That there should exist a single fundamental

length scale from which all other are derived is very important. This is because the

nondimensionalization of Section 6.2 assumes a single horizontal length scale, L,, and a

single vertical length scale, L z. If there were more than one fundamental length scale,

not only would the nondimensionalization have to be changed to reflect this fact but

also the relative contribution of each of the scales in each of the physical terms would

need to be determined. This latter issue would be a major stumbling block. Just as

the nondimensional numbers of equation (6.15) and (6.19), and thus the similitude

conditions, depend upon the physics of equations (5.1) so the similitude conditions

would depend upon the relative contribution of the scales. Thus proving the existence

of a single horizontal and a single vertical length scale is a crucial component to
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justifying the nondimensionalization presented in this chapter.

It is commonly perceived that the mean hillslope length and hillslope drop are

invariant within the catchment. This is not true. In fact, the activator number

defined using the hillslope length scales, TAh, is the invariant measure of the

landscape. Because of this the mean hillslope length is inversely related to the runoff

rate and the hillslope slope, so that the hillslope length may vary even within a

geologically homogeneous catchment. This question is addressed in greater detail in

Section 7.3.1.

6.4.1 Horizontal Length Scales

The most fundamental statistic describing the planar form of networks is

drainage density. Drainage density is defined as

D = -(6.32)
dA

where f = total length of channels in the region Q

A = area of region Q

Drainage density is a dimensional property with dimension . High drainage

density means that the drainage network is dense in the region, while low drainage

density means that the network is sparse. Horton (1945) suggested that drainage

density is a fundamental scale of the catchment since half its inverse is the mean

hillslope length. From this argument it follows that the hillslope length scales of this

catchment (denoted by (1) and (2)) are related by

d(1) x(2) _ 1 (6.33)
Dd( 2 ) LX(l) Lx(1,2)
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where Lx(1, 2 ) = horizontal length scale factor (see Equation (6.24b)

LX(l) Lx(2) = horizontal length scales of the two catchments (1)

and (2) respectively.

In this case L is considered to be the mean hillslope length (see Figure 6.1).

Another characteristic horizontal scale is the size of the catchment. This could

be the maximum length of the catchment, or the maximum stream length, or square

root of the catchment area to name a few (Figure 6.1). These are all valid horizontal

length scales, but they are fundamentally different to the hillslope length scale. They

are not fundamental to the landscape form because they measure the scale, or size, of

the study catchment. The size of the catchment can vary, but- with the drainage

density constant, all that would change would be the Strahler order, magnitude or

some other measures of the scale of the channel network. The length scale Ld was

introduced in Equation (6.13) to represent the length scale of size of the domain. The

hillslope length scale, L,, and the catchment length scale, Ld, were related by the

equation

Ld = 0i L (6.34)

where a can be considered to be analogous to the order or magnitude of the drainage

network and was previously given the name Catchment Scale Number. Consider how

this al is related to the length scale L as defined by drainage density. Equation

(6.34) may be expressed as

Ld =- 1 (6.35)
2Dd

where L = = mean hillslope length
d
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It is possible to relate al and the magnitude, m, of the network if it is noted

that the total stream length of a network of magnitude m is

I= (2m - 1) ee (6.36)

where t = mean link length, assumed constant and independent of

magnitude

m = magnitude of the network

The total area of a catchment draining to a network of magnitude m can be

expressed as

A = (2m -l) At

where At = mean area draining to a link, assumed constant and

independent of magnitude

so that

Dd

Using these expressions for network area and length and the definition of

drainage density yields

(6.37)a, = 2L -A 10

and for the case of a square catchment of side length Ld (ie Af

yields

= L / (2m-1)) this
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a= 2(2m-1) (-) (6.38)
Ld

and if the mean link length It and the mean hillslope length Lx are related (i.e. ee = r7

Lx) then from equation (6.34)

a= 2(2m - 1)r

Thus al is just a nondimensional number measuring the scale (e.g. magnitude)

of the channel network so that the length scale of the catchment, Ld, and the hillslope

length scale, L,, can be related by the channel network from Equation (6.34) as

Ld =I 2(2m - 1)yn Lx

In a similar fashion an expression can be obtained relating the scale factor al
and Strahler order. The total stream length of a complete network of Strahler order n

is given by

S(1 - (R Rb)n)
(1 -R Rb)

where = mean length of 1st order Strahler stream

Rb, Re = Strahler bifurcation and length ratios respectively.

The total area of the complete nth order Strahler basin is
Al n-1

A = - (RA -1)RA - 1
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where A1  = the mean contributing area of 1st order Strahler stream

RA = Strahler area ratio

Using these expressions and the definition of drainage density yields the

relationship between the scale factor a and the order n of

L1  RA - 1 (ReRb)n- 1 - 1
) (6.39)

A 1  R f Rb ~ 1 Rn-1 _ IA

and if ReRb > 1 and RA > 1 which is normally true, then the limit for an infinite

order catchment is

lim [log(a1 )] = log[2 Ld 1 RA R -l RA + n log ( RRbd(-) ( )( ) o
n-o A1  RRb - 1 RfRb RA

(6.40)

Note that for al to increase with order, as expected, then RtRb > RA. For a square

catchment with length of sides Ld, Equation (6.40) simplifies to

ef (RA - 1)1/2 R / 2  R Rb
log a, = log [2 ]+nlog( )

A 1/ 2 (RfRb -1) RfRb R1/21 A
(6.41)

It should be emphasized that Equations (6.39) through (6.41) are only true for

complete Strahler networks. A complete network of order n is one that occurs

immediately upstream of the confluence of two n order streams or occurs when an nth

order stream flows into a higher order stream.
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It has been shown how the two horizontal scales of a catchment, one the mean

length of hillslopes, the other the size of the catchment can be related through the

catchment scale number, al. This scale number al has been shown to be directly

related to both the magnitude of the network and the Strahler order of the network,

two common measures for the topological size of the catchment.

6.4.2 Vertical Length Scales

Another fundamental feature of catchments and their channel networks is their

elevation properties. Many statistics parameterize the elevation characterized in terms

of slopes, which involve both the horizontal and vertical length scales, rather than

elevation alone. Simpler statistics using elevation alone will be dealt with first. But

first some preliminaries.

For horizontal length scales it has been noted that there are, in fact, two

important length scales. These length scales were the fundamental horizontal length

scale, the mean hillslope length, and the catchment basin length scale parameterizing

the size of the study catchment. A similar situation exists for the vertical length

scales. The first vertical length scale, believed to be the fundamental vertical length

scale of the landscape is the vertical length scale of the hillslopes. This may be

parameterized by, for instance, mean hillslope drop. The second vertical length scale is

that of the study catchment, or channel network. This second length is a function of

the size of the catchment. Presumably these two length scales are related, the

catchment vertical scale being a function of order or magnitude and the hillslope

vertical scale. Very little work has been done in this area, and the issue of relating the

two vertical scales will be returned to later, after discussion of the various measures of

vertical scale used by geomorphologists.

In the work that follows the catchment vertical length scale (e.g. catchment
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relief) will be represented by Le and the fundamental vertical length scale (e.g. mean

hillslope drop) by Lz.

One vertical length scale involving elevation alone is the maximum basin relief

H. The maximum basin relief is defined as the difference between the elevation at the

mouth of the catchment and the highest point on the catchment perimeter. This is a

catchment vertical scale. The scaling relationship, for two catchments (1) and (2),

using the catchment vertical length scale factor Le(1, 2 ) is

H( 2 ) - L1 H(1 )
e(1, 2 )

Another simple statistic involving elevation alone and which has attracted

recent attention is the Strahler stream drop (Yang, 1971; Tarboton, et al., 1988). The

former author found that the mean vertical.drop of a Strahler stream of any given

order was constant, and independent of order. The latter authors, using channel

networks derived from digital terrain data, found that there exists a threshold on

drainage density above which this stream drop constancy rule was no longer satisfied.

They interpreted this threshold drainage density as a fundamental horizontal length

scale. In the context of this work a horizontal length scale factor based on this scale

could be used in Equations (6.33) as previously described. The Strahler stream drop

can be used as the catchment vertical length scale and a catchment vertical length

scale factor Le(1, 2 ) derived so that

Az
Az = (1)

(2 e(1,2 )
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where Az(l), Az( 2 ) = Strahler stream drop for two catchments (1) and

(2) respectively.

Le(1, 2) = catchment vertical length scale factor.

This length scale measures the vertical scale of the channel network. Potentially the

drop could be related to the hillslope vertical scale, the fundamental vertical scale,

through the catchment magnitude. Some relationship between the channel and the

hillslope vertical length scales would clearly be needed to achieve this. A relationship

based on analyses of catchment simulations will be proposed in Chapter 7

There are a number of other statistics that are used to characterize the vertical

scale, that implicitly involve a slope in some generic way. The incorporation of slopes

means that these statistics characterize the ratio of the vertical and horizontal scales

(Lz/Lx) rather than the vertical scale alone. If the appropriate horizontal scale can be

determined by techniques previously described, then these statistics can be used to

determine the vertical scale. It is important, however, that the horizontal length scale

used to determine the horizontal length scale factor is consistent with that used in the

definition of the "slope". It is here that the distinction between catchment scales and

the hillslope scales must be clearly made. In addition, it will be shown in Chapter 7

that there are a number of measures of hillslope horizontal scale, all of which give

different values.

Schumm (1956) defined the relief ratio (in percent) as

Rh = H (6.42)
L

where H = maximum basin relief

L = maximum length of the basin parallel to the principal drainage

direction

Rh = Schumm (1956) relief ratio

If the maximum length of the basin, L, and the catchment scale, Ld, are linearly
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related then this catchment relief ratio can be scaled by the relationship

Rh(2) = Le(1, 2 ) Rh(l) (6.43)

d(1,2)

Melton (1957) provided an alternate definition of the relief ratio as

Rhp = 100 H (6.44)
P

where P = basin perimeter

Rhp = Melton (1957) relief ratio

Dimensionally this equation appears identical to Equation (6.36), so that the

scaling of the relief ratio is the same as Equation (6.43). It should be noted, however,

that the basin perimeter, P, has been noted to have a fractal characteristic (Strahler,

1964) in a similar fashion to that observed for the stream channels (Hack, 1957) so that

if

P ~ Xd d > l (6.45)

where X = ruler length as defined by Mandelbrot (1983)

d = fractal dimension

then the scaling relationship for Melton's relief ratio would be

L
Rhp(2) - e(1,2) Rhp(1) (6.46)

hp 2 dhp 1
Ld( 1 2 )

Strahler (1964) introduces a "hondimensional" ruggedness number to describe
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how rugged the combination of channel networks and hillslopes are. It is defined as

R = H Dd (6.47)

where R = Strahler (1964) ruggedness number

Dd = drainage density

H = basin relief
g

Dimensionally the ruggedness number, R , is a slope and the catchment and

hillslope slope scales are confused (drainage density is dependent on the hillslope

horizontal scale, L,, while the basin relief is dependent on the catchment vertical scale,

Le), so that the scaling relation is

Rg (2)= Le(1,2) R (6.48)
Lx(1 2 )

Clearly from the previous discussion R is dependent on the magnitude of the basin,

through the relationship between Le and Lz. As the magnitude of the network, and

consequently Le, increases, R increases.

Strahler (1964) defines another (this time truly nondimensional) ruggedness

number, which is dependent on the hillslope scales. In this definition ruggedness

number is defined by Equation (6.47) is divided by a hillslope slope. The basin relief

used is the difference in elevation between the river and the watershed so that the

ruggedness number characterizes the hillslopes rather than the channel network. The

equation is

H D
R = gh d(6.49)

g
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where Sh = some representative hillslope slope (e.g maximum hillslope slope,

mean slope).

This ruggedness number is truly nondimensional and magnitude independent because

all of the inputs are hillslope scales. Since this ruggedness number is truly

nondimensional, it does not scale and is constant across all basins with similar

hillslopes. It is thus not useful for determining vertical scaling relationships though it

may be useful for classifying landscapes (see Section 6.5).

It is clear that there are variety of ways of parameterizing the vertical relief of a

catchment. It is equally clear that there has, in the past, been no clear distinction

between the catchment vertical scale and the fundamental vertical scale. There is no

clear consensus on this distinction. This discussion has blurred the distinction of the

fundamental horizontal and vertical scales for the purposes of simplicity rather than

from any experimental evidence. It will now be shown that there does appear to be a

connection between the catchment vertical length scale and the hillslope vertical length

scale.

In the previous section a derivation relating the

horizontal scales and the Strahler order was presented.

speculative relation between vertical length scales will

(1964) noted a relationship between hillslope slope and

catchment and hillslope

In a similar fashion a

now be derived. Strahler

channel slope of the form

0 = 4 0.8g c

where 0
g9

0c

If this relationship

= slope of hillslope region

= slope of the channel draining the same hillslope region

is applied to the 1st order Strahler area, then
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Lz = 4 S0.8 
(6.50)

L 1

where S = mean channel slope of Strahler 1st order streams

L z = hillslope vertical length scale

L X = hillslope horizontal length scale.

If it is now assumed that the maximum drop from channel source to catchment

outlet results from the stream that flows from order 1 to order 2 to ... to order n, in an

nth order catchment, then the value of catchment relief can be related to the channel.

The catchment relief R is given as

n-1

R = i1() S 1 + Lz= Le (6.51)
i=1 R

where S , f = average slope and length, respectively, of the 1st order

Strahler stream

R,, Re = Strahler ratios for slope and length respectively.

Evaluating the summation in this equation and substituting for the 1st order Strahler

slope of Equation (6.50) yields a relationship between the catchment vertical length

scale and the hillslope vertical length scale.

LL 0.25 1-Ref n-i__________
Le = Lz[Lz. Rl - 1 1( ) + 1]

R

= '2 Lz (6.52)

where
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0'2 = Lz2 Rl R- ) + 1
s 5.62 L1. 25 (1

R

If Rf < R then a2 increases with catchment order. In the case where Re = Rs'

so that the mean Strahler stream drops are independent of order, the case described by

Tarboton, et al. (1988b), the relationship between the catchment and hillslope vertical

length scales is different and given by

n LO.25
Le = Lz (z + 1) = a2Lz (6.53)

5.62 Lx

n L0 .2 5

where a2 Z + 1).

5.62 L
x

The relationships of Equation (6.52) and (6.53) relate the catchment and

hillslope length scales on the basis of the catchment Strahler order. An equivalent

relationship based on catchment magnitude has not been previously presented,

however, a proposed relationship between catchment slopes, areas and magnitudes will

be discussed in Section 8.3

It is important to note that Equations (6.52) and (6.53) are speculative. There

does not exist any experimental work in the literature to substantiate the exact form of

these relationships. Nevertheless these equations and Equations (6.35b) and (6.38)

which relate the catchment and hillslope horizontal length scales via Strahler order and

magnitude are important conceptually. These relationships indicate that the statistics

of drainage density, catchment size, catchment relief, hillslope relief and Strahler order

or magnitude are all related. We have already shown the relationship
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Ld = a (order/magnitude) - Lx (6.54a)

Le = a2 (order/magnitude, Lx, Lz) - Lz (6.54b)

Consider a case where the drainage density and catchment size are given. The

relationship of Equation (6.54a) yields the order and the magnitude of the channel

network. The relationship of Equation (6.54b) indicates that only one of Lz or Le need

to be measured, the other follows from the order and magnitude of the channel

network. Thus of the four degrees of freedom in the horizontal and vertical length

scales, Equation (6.54) implies that there are only 3 independent degrees of freedom.

This issue will be returned to in Chapter 7 where further relationships will be

developed on the basis of the computer simulations.

The discussion thus far has restricted itself to determining the characteristic

horizontal and vertical length scales and using them as input for nondimensionalizat ion

of the governing equations. It is these length scales that have been most thoroughly

quantified in the literature. Other important scales in Equations (6.1) through (6.5)

are runoff rate, differentiation/channel growth timescale, and elevation change

timescale. These will be dealt with briefly below.

6.4.3 Runoff Length Scales.

The runoff rate is, superficially, an easy property for which to determine the

scaling coefficient LR. The runoff rates for the two catchments are determined and

Equation (6.3) is used to determine LR. This assumes that the dominant discharge is

proportional to area as in Equation (6.5). Realistic catchments that have these

characteristics would be those formed in the rainfall-erosion facility (REF) at

Colorado State University (Parker, 1977; Schumm, et al., 1987).

Natural catchments are unlikely to obey such a simple relationship between

discharge and area. If the dominant discharge is considered to be the bankful
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discharge, then a more reasonable relationship would be (McDermott and Pilgrim,

1983)

Q = #4 A 4 m4 E [0.5, 0.8] (6.55)

where 94 = frequency factor for bankful discharge

The factor #4 can be considered to be equivalent to the runoff rate but the dimensions

are different due to the areal dependence of rainfall. As previously discussed this areal

dependence is poorly understood so this case will not be further discussed.

This concludes the discussion of transport processes that are important for both

the transient and the dynamic equilibrium cases.

6.4.4 Timescales of Elevation Change.

The timescales T in Equation (6.4), and dt in Equation (6.12b) are relevant

only for the transient case of Equation (6.12). Except for Brunsden (1980) and

Schumm, et al. (1987), there has been an almost complete absence in the literature of

explicit consideration of transient effects in network growth and catchment evolution.

Dynamic equilibrium is typically implicitly assumed. As a result there are no

commonly accepted statistics for parameterizing the two transient effects; elevation

change and network/channel growth. The former of the two transient effects is easiest

to parameterize from the governing equations and will be dealt with first.

To parameterize the elevation change transients, it is convenient to reformulate

Equation (6.12a) as
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- - = - T c ) + -L (T D ) 0 2 Z
Ll Lz 0 L2 , 2

X 1

L2m1 -n1  n1- m
L 2m- L n1L m n

+ ( x z R )(T #1) )[(Qp' (S )I f' (Yi)]
T R 1 Ps (1 - n) L 2  i 1J

(6.56)

or

& / L 2 rni-ni L 1  L ) ( n
=(-)6 ( nz R 1 1

TR (l-n) Ls

+ ()D Z (6.57)
L2 z W2

X 1

where c6 =T c0

/= T D

It is important not confuse c6, 13, and D with the nondimensional parameters;

for these three parameters the prime simply signifies a transformation. It follows from

Equation (6.57) that, for example, a doubling of the timescale in any given catchment

results in a requisite doubling of all the transport coefficients, if similitude is to be

maintained. Alternatively, two catchments with transport coefficients c 0(1 )' (1)'
Dz(1), c0 (2 )' 0(2 ), Dz( 2 ), related by a constant of proportionality T( 1,2) (see Equation

6.25 for notation) are similar and only differ in the timescale T(1 ) and T(2 ) at which

the processes are measured. This follows from Equation (6.57). For example, consider

a catchment A with transport coefficients double that of some other catchment B, but

otherwise identical. Catchments A and B are similar except that time appears to
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proceed twice as fast in catchment A than in catchment B. In terms of

nondimensional age, t', catchment A has a nondimensional age twice that of

catchment B.

6.4.5 Timescales of Network Growth

The other major timescale of importance is the timescale of network growth,

1/dt. Parameterizing the timescale of network growth from the governing equations is

not possible. It should be noted that 1/dt, the inverse of the rate constant dt in the

governing Equations (6.12), is the timescale of channel growth rather than the

timescale of network growth. This distinction is important since network growth

consists of two interactive processes.

1. The rate at which the high activator region advances in front of the

growing channel head.

2. The rate at which the channel grows at any particular point in space

once the activator threshold is exceeded.

The second of these two processes is parameterized by the channel growth

timescale 1/dt.

The first of these processes is primarily dependent on the rate of overland

erosion. The channel growth rate plays a minor role. With very low overland erosion

rates, the high slope (and thus high activator) region cannot proceed very far in

advance of the growing channel head so that the channel extends in space slowly.

With very high overland erosion rates, the overland area is eroded so quickly that

slopes are never high enough to exceed the activation threshold even though the slope

advance is very fast. Again the channel extends in space very slowly. At some, as yet

undefined, intermediate overland erosion rate, the channel extension rate and network

growth rate are maximum. It is apparent that parameterization of network growth
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rates will need to be performed on simulated networks rather than from the governing

equations and the network growth rate thus obtained will be empirical in nature (see

Chapter 7).

One possible way to parameterize network growth is by the rate of change of

drainage density, so that

dD (d..)l (.8
(dt7)(2) = Lx( 1,2 ) TN( 1 ,2 ) ( )(1) (6.58)

where the network growth timescale, TN, is defined in an analogous fashion to the

elevation change and channel growth timescales so that

t/ = Nondimensional network growth timescale
N

TN( 1 2) T 1 (6.59)
N(11) = N(2-)

Another definition of network growth is simply in terms of the rate of increase

in the length of the network so that

dL " TN dLN_ TN dN (6.60)
dt ' L dtn x

This relationship assumes that channel length is not fractal. As noted

previously a definition based on channel length suffers from the difficulty of

determining whether the channel length is fractal or not, and if so determining the

dimensionality.
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6.5 Similitude and Geomorphological Landscape Classification

Finally, another application of the nondimensionalization of this chapter is to

the problem of the classification of landscapes. That is, which landscapes are similar,

and which are fundamentally different. This is a subject that has held the interest of

geographers and geomorphologists since the turn of the century (Davis, 1924;

Scheidegger, 1987). It has often been the case that these researchers have provided

conflicting interpretation of what seem to be similar observed data. A possibility is

that these data, and the interpretations based on them, are not necessarily conflicting

but result from the different underlying assumptions made by different researchers

when they have analyzed the data.

Consideration of the nondimensionalized equations for catchment evolution

presented in this chapter will demonstrate that the varying views of catchment

evolution of different researchers are consistent, if somewhat simplistic. In addition,

some erroneous ideas regarding classification of landscape types will be corrected by

use of similarity analysis.

The nondimensional governing equations of a catchment at deterministic

dynamic equilibrium are given by Equation (6.17). To simplify the analysis that

follows diffusive processes will be neglected; this is assumed to be a good

approximation at the field scale. To further simplify the analysis, it will be assumed

that the tectonic uplift is constant with time, but variable in space i.e.

c0 (x,t) = c 0 c6(x)

where c 0  = tectonic uplift rate scale introduced in Equation (6.11)

c6(x) = nondimensional tectonic uplift variable in space

At dynamic equilibrium the channel network has stopped growing so that the

channelization equation may be ignored for all intents and purposes. Of prime interest

is the balance between the tectonic uplift and erosion. The conditions of dynamic
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equilibrium then follow from Equation (6.17a) and are

DETC 1 j) ni IC C/ (x) i

(6.61)

where DETC = the Dynamic Equilibrium Tectonic Uplift/Sediment transport

Number (see Equation 6.18) defined using the catchment length

scales Ld and Le

The nondimensional catchment domain is given by

lx

where Q = the original catchment

Equation (6.61) has been arranged so that all the scales of the catchment are on

the left-hand side in DETC, while all the nondimensional catchment characteristics are

on the right-hand side. Since all the scales on the left-hand side are independent of

time and space, then all differences between catchments at dynamic equilibrium must

be parameterized by the individual terms on the right-hand side. From the similarity

conditions of Equation (6.20) two similar catchments must, by definition, have Q', S',

f'(Y), c6(x) equal. Thus DETC must be equal for two similar catchments. Moreover

since Equation (6.61) is the nondimensional catchment downwasting due to fluvial

erosion divided by the nondimensional tectonic uplift, and since they must be equal for

the nondimensional catchment to be in dynamic equilibrium, then

DETC=1

232



for all catchments, similar or not.

To examine the question of catchment similarity consider two catchments ((1)

and (2)) in which fluvial erosion is the only erosive process. In this case Equation

(6.61) is applicable. Because DETC = 1 for all catchments then transport similarity

between the two catchments at dynamic equilibrium is automatically satisfied

(DETC(1) = DETc( 2 )). However, for two catchments to project onto the same

nondimensional catchment (i.e. for two catchments to be similar) then the Catchment

Scale Number, al, must also be the same (i.e. a1(1) = a1(2)) so that the

nondimensional drainage densities are the same. If this latter condition is satisfied

then the catchments satisfy the physical similarity conditions. In this case the

hypsometric curves for the two catchments will be identical, except for some small

statistical scatter (see Section 7.2).

The classification of similar landscapes should be made on the nondimensional

catchment characteristics contributing to DETC on the right-hand side of Equation

(6.61) and aI. The scales in DETc do not form a basis on which to classify the

landscape form. This is because all scales, except LS, result from external sources.

That is, LR results from the runoff and thus the rainfall, L the length of the hillslopes

and thus the fixed network, 01 the landscape erodability and thus the regional geology

and c 0 the rate of tectonic uplift. Since DETC is constant across all catchments, then

for two catchments (1) and (2) their slope scales adjust in the following fashion

L c [ T1 Ps(l -n) L

2m1  m )()
S(2) L L LR

_ 2m, mi 1 1/ni
i L~ LR

( 1 mx R -) (6.62)

c 0  TR ps( 1 - n) L0 R g
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Thus the slopes of the catchment adjust in response to the external inputs.

This is the way dynamic equilibrium is maintained; slopes adjust to the uplift and

erosional regime. The slopes of two catchments in dynamic equilibrium are related to

the other physical inputs.

The central issue of this section is landscape classification, in particular the

views of Scheidegger (1987). For the following discussion the similarity conditions in

Equation (6.61) are applied and it is shown that Scheidegger 's fluvial landscape

classification criteria and Equation (6.61) are incompatible. He classifies fluvial

landforms on the basis of

1. Tectonic activity - into regions of 'high activity," 'medium activity,"

and "low activity."

2. Aridity - into regions of "humid" and "arid" climate.

These classification criteria can be compared with the similarity conditions

expressed in Equation (6.61). Logically, those catchments that can be scaled so that

they satisfy the similitude conditions (so that nondimensional catchments look the

same) should be classified into the same categories. There are 4 characteristics that

are spatially distributed and which contribute to DETC and thus the form of the

catchment (Equation 6.61)

1. Channel network form, through the spatial distribution of f'(Y(x)).

2. Drainage directions, through the spatial distribution of Q'(x).

3. Slope form, through the spatial distribution S'(x).

4. Tectonic uplift, through its spatial distribution c6(x)

For catchments to be similar all these characteristics must be equal (Equation

6.20). For dissimilar catchments, recalling that DETc = 1, then only 3 of the 4

characteristics are independent. Since c6(x) is externally applied then one of f'(Y(x)),

Q'(x), and S' (x) must be a dependent characteristic. These characteristics are not the

ones used by Scheidegger. Both the tectonic activity and aridity he uses appear as
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length scales on the left-hand side of Equation (6.61), as the tectonic uplift scale, c 0 '

and the runoff scale, LR. The importance of this observation is that the scales that

Scheidegger uses to classify landscapes are components of the nondimensional number

DETC. Thus the catchment slopes (whose magnitudes are given by LS) adjust to

compensate for the aridity and tectonic activity to ensure that DETc remains equal to

1 (Equation 6.62).

To exemplify this consider the case where only the runoff length scale, LR, and

the tectonic uplift, c0 , differ between the two catchments (1) and (2). Then the

relationship between the slope scales of the catchments is (Equation 6.62)

L c Lml/n,
LM 0(1) LR(2)
S(2) c0(2) Lln 1/

R(1)

-m /n,
- c0 (1 ,2 ) L R( 1,2) (6.63)

For two catchments, (1) being more arid than (2) (i.e LR( 1 ,2 ) < 1) the slopes

in catchment (1) will be higher than in catchment (2). A more arid catchment will

have higher slopes because of its reduced ability to erode comparative to the tectonic

input. If the tectonic uplift in catchment (1) is less than in catchment (2) (i.e.

CO(1,2) < 1), then slopes will be least in catchment (1), all other processes being

unchanged. However, in both cases the form of the catchment will remain unchanged

provided the 3 inputs to DETc remain unchanged. If the spatial pattern of tectonic

uplift and runoff is the same in both catchments (1) and (2) then these 4

characteristics will not be changed.

This discussion demonstrates the error of classifying landscapes on the basis of

their aridity and tectonic activity.
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A complicating issue in the use of Equations (6.61) and (6.62) is that they

ignore potential transient effects. In this chapter the distinction between the transient

stage of catchment evolution and the dynamic equilibrium stage has been stressed.

This distinction follows directly from the governing equations for catchment evolution.

This distinction is rarely made in the field because of difficulties distinguishing these

two stages. The transient stage is very important, however, since it is at this stage

that the channel network is formed and the predominant directions of hillslope

drainage fixed. The patterns of erosion are largely fixed once the transient stage is

complete. In addition, in Section 8.3 it will be shown that the network growth model

adopted in this work produces networks whose branch head positions in space can only

be explained by the transient portion of catchment evolution.

Another transient effect arises if slopes are increased by changes in tectonic or

runoff input so that active channelization occurs. This factor can be quantified by

looking at the scaling of the activator equation (Equation 6.18c) using the activator

number.

Finally the assumption of dynamic equilibrium used in this section may be

violated. From the nondimensional analysis it is apparent that there is a single degree

of freedom at dynamic equilibrium, the vertical length scale of the catchment; the

slopes in the catchment adjust to all other physical properties of the catchment, in

particular the tectonic uplift. If teconic uplift varies slowly in time compared with

erosional processes (i.e. TT < TS) then the catchment may be considered to be in

dynamic equilibrium.

Davis (1924) on the other hand thinks in terms of cycles of tectonic events,

followed by long periods of erosion. In the governing equations of this work, this

corresponds to dirac function inputs of tectonic uplift i.e.,
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c0(x,t) = 0[6(t -T 0 ) + 6(t - t1 ) + 6(t - t2) + ...

where t0 , t 1 , t2 = times of tectonic uplift events.

This scenario yields a deterministic dynamic equilibrium that is a flat plain.

Catchment form can only be sensibly described by use of the transient form of the

catchment evolution equations where the catchment is alternately rising and declining

with time; dynamic equilibrium is meaningless. This endlessly transient catchment

form is one extreme in the geomorphologic evolution of catchments.

Another alternative view, at the other extreme of catchment behavior, is taken

by Scheidegger (1987). He thinks in terms of tectonic events occurring concurrently

with erosion, with a mean temporal equilibrium being obtained between erosion and

tectonic uplift; that is, a landscape permanently in dynamic equilibrium. Neither the

view of Davis or Scheidegger is complete. The only complete view is one that

explicitly considers transient effects and timescales of adjustment of catchment

elevations.

Finally, parenthetically, an observation is made on landscape form in different

regions. That many desert areas are quite flat, and many tropical areas are quite

mountainous suggests that other processes simultaneously scale to compensate for the

aridity effect on catchment slopes so that a scale change in runoff scale cannot be

considered independently of other scale changes, such as tectonic uplift. That

elevations, and thus orographic effects on rainfall, are quite high in many wet areas

(e.g., the Pacific rim archipelago) and low in many desert areas (e.g., Australia) may

be an explanation. A first order justification for this assertion, based on Equation

(6.61), follows. Eagleson (1970) and Chow (1964) present evidence that rainfall r is

approximately proportional to the elevation, E, everything else being equal. In

addition, from Equations (6.1) and (6.8) elevation and slope scale in the same fashion,
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if the horizontal length scale is constant. Thus a similarity condition relating rainfall,

elevation, and slopes may be derived so that

r _E z_=_--= -= L - - L (6.64)
r' E' Z' z S/ S

If, in addition, it is assumed, to first order, that runoff, R, is proportional to

rainfall, then the runoff and vertical length scales can be related

LR_ R L z = -(6.65)
r

It follows from Equations (6.64) and (6.65) that the slope scale and runoff scale

are equal (i.e LR = LS). Substituting this result into Equations (6.22a) and (6.61) and

moving # and Lx to the right-hand side (since scaling of sediment transport rate and

horizontal lengths is not considered here) then

2m1

0 ___x 2 - DETC (6.66)

Ln 1 +m p(1-n ) L C

R

Since similarity requires that DETc be constant, then as c0 (i.e tectonic uplift)

is decreased and thus the catchment relief, then LR (i.e runoff) decreases to

compensate. This decrease in runoff follows from the reduced orographic effects on the

rainfall (and thus runoff) distribution. To be similar, catchments with low tectonic

inputs will tend to be arid and catchments with high tectonic inputs will tend to be

wet; this follows from the observed orographic relationship between elevation and

rainfall.
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CHAPTER 7

RESULTS

7.1 Introduction

This chapter is the first of two dealing with the analysis of catchment

simulations over a range of physical parameters. Here the numerous characteristics of

the simulations are analyzed. Where possible, statistics are compared with those

results obtained by field workers, though in most field studies the appropriate physical

parameters are not reported so that the comparisons are largely qualitative. This

chapter is not, however, primarily concerned with the comparison of the model with

field data; that is the purpose of Chapter 8.

The chapter begins with a detailed consideration of the effects of randomness on

statistics that have been used to characterize hillslopes and channel networks. It will

be shown that many of the topological measures of channel network form are very

sensitive to changes in elevations. A mechanism whereby topologically distinct

random networks (Shreve, 1966) arise quite naturally out of the growth process will be

proposed.

One of the most important characteristics of the simulation model is its ability

to explicitly differentiate between the channels and the hillslopes. The length scales of

the exterior links and the hillslope draining to them will be related to the underlying

physics of the activator function. Equations will be proposed that relate the drainage

density and the rate of network growth to the physical processes acting in the

catchment.

Many channel network link properties have been measured by field workers.

Unfortunately, there exists a great deal of scatter in their results and many studies are

contradictory. Link properties are examined and compared with the typical ranges

observed in the field. Some conclusions will be reached regarding the significance, or
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otherwise, of proposed correlations. These conclusions will be justified in terms of the

governing physics.

The related question of whether there exists a fundamental horizontal scale in

the catchment will be addressed. It will be shown that it is possible to relate many of

the horizontal length scales, such as mean link length, source area, hillslope length,

etc., and that the relationships appear to be relatively independent of the adopted

physics.

These correlations together with the drainage density relationships will be used

to show that there are only two independent length scales; one vertical and one

horizontal. A formulation in terms of the rate of tectonic uplift and total area of the

catchment will be presented. All other length scales follow from these. This result will

be used to justify the form of the nondimensionalization of the governing equations,

presented in Chapter 6.

Hypsometric curves are presented for two different tectonic uplift regimes. The

first is an episodic uplift with erosional downwasting, the second is a continuous uplift

leading to dynamic equilibrium. Differences in the hypsometric curves which have

previously been attributed to age are shown to result from differing uplift histories in

catchments.

Finally the effect of hillslope diffusion processes (e.g., creep, landslide,

rainsplash) on catchrnent form is addressed. While the channel network is modified in

line with the random growth hypothesis of Section 7.2, it is shown that the overall

form of the catchment is relatively unaffected.

7.2 Randomness in Channel Networks

This section is devoted to assessing the randomness that appears to be inherent

in channel networks when the physical similarity conditions of Chapter 6 are satisfied.

Much work has gone into quantifying this topological randomness (e.g., Shreve, 1966;
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Mock, 1971; Mesa, 1986). The link between the channel network growth process and

the physics of the runoff and transport within the catchment have largely been ignored.

This section will demonstrate that very simple externally applied randomness results in

very complicated, and random, network statistics. It will become apparent that those

statistics that parameterize the channel network topology exhibit the greatest

variability. Those statistics that parameterize more continuous variables such as

elevation exhibit less variability.

To demonstrate the random effects, two sets of runs will be examined.

1. The runs CR2-6, CR7-1, CR7-2, and CR7-3. These runs were

identical in every respect except that the random field elevation

perturbations applied to the initially flat catchments (0.25% of the

initial catchment value) were different.

2. The runs CR2-3, CR4-6, CR4-7, CR4-8, CR4-9. These runs were

identical except that the vertical scale of the catchment (parameterized

by Le, see Chapter 6) was varied by varying the tectonic uplift, c0 , and

that the time step of the numerical solver was varied. These runs

display the variability resulting from numerical effects.

The four runs of point 1 satisfy the conditions for transient statistical similarity

(i.e. Equation 6.15) so are physically similar. The same is true of the runs in point 2.

Both sets of simulations produced networks that were variable in form. The final

channel networks are shown in Figure 7.1.

The consideration of randomness will start with the statistics of network

topology based on network order. These statistics were summarized in Section 2.2.1.1

where the Horton, Strahler, and Tokunaga ordering models were introduced.

Plots showing the variation with time, as the channel network grows, of

Strahlers' bifurcation, length, slope and area ratios are given in Figures 7.2 through
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Figure 7.1: (a) random channel networks from
initial elevation perturbations,

simulations CR2-6, CR7-1, CR7-2, CR7-3
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CR4-7 CR4-8

0 Catchment outlet

CR4-9

Figure 7.1 (ctd): (b) random channel
networks from numerical effects,

simulations CR2-3, CR4-6, CR4-7,
CR4-8, CR4-9
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7.5. The values of the ratios for each order are plotted separately. There is

considerable variability in all of the ratios through time, and there is a degree of

variability in these statistics even when the network has stopped growing.

One explanation for the variability in the bifurcation ratio, with time, follows.

This explanation borrows ideas from the allometric growth hypothesis and the

topologically random networks described in Chapter 2. At some time we have a

network of magnitude (m). A channel will branch off from the side of an existing

channel creating- a new network of magnitude (m+l). The location of this branching

follows from the chaotic physics controlling network growth. Once that link has

branched off the network has grown allometrically. The Strahler bifurcation ratio for

these two networks, different by just one link, will vary with each cycle of allometric

growth. The very large fluctuations in the bifurcation ratio result from the bifurcation

ratios of two networks being significantly different even if the networks differ by just a

single link. Kirchener (personal communication) in a study of mapping errors for

channel networks looked at the effect of randomly adding a single link to a network. He

found that the addition of a single link to a given magnitude 8 network resulted in

magnitude 9 networks that were drawn from the population of magnitude 9

topologically distinct random networks (TDRNs) and that the magnitude 9 TDRNs

were approximately equally likely. If the TDRNs are equally likely it follows that the

bifurcation ratio for magnitude 9 networks will be drawn from the probability

distribution for bifurcation ratios exhibited by the TDRNs of Shreve for magnitude 9.

Shreve (1966) showed that the range of bifurcation ratios is typically 2.5 to 6.

From the topological viewpoint the final network will be the result of a random

allometric growth process. The bifurcation ratio will come from the distribution of

bifurcation ratios resulting from Shreve's postulate of equal likelihood of occurrence of

each topologically distinct random network.
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Figure 7.2: Strahler bifurcation ratio with time:
simulations CR2-6, CR7-1, CR7-2, CR7-3
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Figure 7.4: Strahler slope ratio with time:
simulations CR2-6, CR7-1, CR7-2, CR7-3
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Figure 7.5: Strahler area ratio with time:
simulations CR2-6, CR7-1, CR7-2, CR7-3
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This growth hypothesis ignores growth site screening. Screening will effectively

bias the growth sites so that growth is more likely at the extremities of the network

than the root. It is believed that this systematic process will not invalidate the

argument for random allometric growth of the network, it will simply condition the

link sampling process during allometric growth.

Parker (1977) simulated the growth of networks using the rainfall erosion

experimental facility at Colorado State University. He mapped the planar form of the

networks that were formed with time. The bifurcation ratios with time for these

networks are given in Figure 7.6. There were two networks; 1 and 2. These networks

corresponded to two separate experiments starting from uniform unchannelized initial

conditions. Since the runoff/unit time for the applied rainfall was constant with time

Parker plotted all his data using cumulative volume of runoff as a surrogate of time;

for consistency we do too. For Network 1 this data shows the same degree of scatter in

the bifurcation ratio as the simulated results and there does seem to be a reduction of

the scatter with time, as the network's magnitude increases. For Network 2 there

appears to be a decline in the scatter of bifurcation ratio up to volume 20000. After

this time the network was 'refreshed" a number of times by increasing the catchment

relief and allowing erosion to continue anew until the network stabilized to a new,

higher, drainage density. This new network development may account for the

increased scatter observed after cumulative runoff volume 20000 in Network 2.

For the simulation results the Strahler ratios for slope, area and length also

varied considerably with time, although scatter appears to diminish with time. The

major fluctuations apparent in these figures correspond to times when the Strahler

order of the network increases. As the network grows a link that may have been part

of an order (i) stream becomes part of an order (i+1) stream, even though that link's

characteristics have changed little in the meantime. Through the allometric growth

process whole sections of the catchment change order, even though the link
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characteristics have changed only slightly. This is because the order of the network is

very dependent upon the topological arrangement of the links. In a similar sense to the

case of bifurcation ratio, two catchments that vary only in the position of a single link

may have very different Strahler statistics. Thus there is a great deal of scatter

inherent in the Strahler statistics.

The bifurcation, length, slope, and area ratios, with time averaged over the

entire catchment, are shown in Figures 7.7 to 7.10. Compared to the Strahler ratios

calculated for individual orders, the ratios exhibit less scatter, reflecting the larger

sample size. However, like the Strahler ratios for the individual orders, there is still

substantial scatter in the statistics averaged over the entire catchment both during and

after active network development.

The trends with time for the Tokunaga statistics, K and c, based on Strahler

ordering, are presented in Figures 7.11 and 7.12. These statistics also show

considerable scatter with time. This scatter arises for the same reasons as the scatter

in the bifurcation ratio, both statistics are based on the Strahler ordering scheme so

that random allometric growth is again important. The Tokunaga parameters provide

an alternative way to measure stream numbers. Figure 7.13 shows the trend with time

of the bifurcation ratio calculated from Tokunaga's K and c for an infinite catchment

(Rb(OO) in Equation 2.6). The coefficient of variation in Rb from the Tokunaga

statistics is similar to that of the bifurcation ratio calculated directly from the stream

numbers (Figures 7.2 and 7.7) so that Tokunaga statistics do not provide a more

reliable means of assessing the mean stream populations. While the Tokunaga number

theory has conceptual advantages over the bifurcation ratio in the mean sense (Section

2.2.2.4) the statistics appear to be no more reliable estimators of the population than is

the bifurcation ratio.

Thus there are difficulties with the Strahler and Tokunaga ordering statistics
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that become apparent when temporal aspects of catchment form are considered. There

is considerable inherent variability in the statistics, and this scatter follows directly

from the allometric growth of the network. The final channel network reflects this

topological randomness. This growth argument is useful for understanding why field

catchments exhibit considerable variability in the ordering statistics. The random

allometric growth hypothesis also suggests mechanisms whereby the topologically

random networks of Shreve (1966) may develop in the field environment.

When a network grows, the growth occurs in two ways:

1. exterior links extending into the catchment, and

2. lateral branching from either exterior or interior links.

These two growth mechanisms both induce randomness in the lengths of the links.

Figure 7.14 shows the scatter in the mean link lengths for the developing networks.

Exterior links appear no more variable in length than interior links and the mean

length of both types grows with time.

Figure 7.15 shows the increase of magnitude with time. Figure 7.16 shows the

increase in drainage density with time. The variability of drainage density is very

small and the variability of magnitude with time is larger. For a fixed catchment area

drainage density is a function of only magnitude and mean link length so that

variations in mean link length and magnitude are negatively correlated (Equations 6.32

and 6.36). Thus some of the variability in the mean link length can be explained by

the randomness of the allometric growth process. It cannot result from any innate

variability in the physical length of the network because the drainage density variation

is quite small.

Figure 7.17 shows the width functions for the final networks. Despite the

scatter of the width functions, it is possible to hypothesize a mean width function that

generally increases with distance from the outlet then drops dramatically after it

reaches its peak value. The actual shape shown in Figure 7.17 is not believed to be
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Figure 7.15: Magnitude with time:
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Figure 7.16: Drainage density with time:
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generally applicable, but is believed to reflect the shape of the catchment (i.e., a square

in this case).

Finally 7.18 shows that the variability of the hypsometric integral is quite

small, even with quite variable planar network characteristics. Figure 7.19 shows the

sediment yield of the total catchment through time. It may be noted that a change in

area under the hypsometric curve (the hypsometric integral) reflects the loss of

sediment within the catchment so that the sediment yield and the hypsometric

curve/integral are related.

The conclusion drawn from this section is that there is considerable inherent

variability in many of the standard statistics for measuring the catchment and its

network, particularly those describing topological properties. It is important to note

that the catchment simulations in this section satisfy the physical similarity conditions

of Chapter 6. All differences between the simulations are due to stochastic effects.

The idea of proving the hypothesis that the Strahler ratios are constant seems both

hopeless and pointless. It is hopeless because the inherent variability of the network's

characteristics means that networks must be impractically large to determine these

statistics with the required degree of accuracy. It is pointless because if the Strahler

ratios are important in the determination of some derived characteristic (e.g., the

GIUH of Section 2.2.1), then the inherent variability of the statistics for realistically

sized catchments necessitates the determination of these statistics for each catchment

individually rather than using some mean regional values. Of what use is knowing that

the underlying Strahler ratio is constant if the sample statistics of networks are not

close to the underlying value for practical size problems?

On the other hand there are a number of characteristics like the magnitude,

drainage density, and the hypsometric curve that exhibit little variability. This is

because they are physically based, rather than topologically based, characteristics.
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Figure 7.19: Sediment yield from the catchment:
simulations CR2-6, CR7-1, CR7-2, CR7-3
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They are also, in some sense, integrated over the catchment. Small variations in the

catchments do not result in large variations in the statistics.

Whether derived characteristics of the catchment, such as the instantaneous

unit hydrograph (IUH), are highly variable or not, dependent upon the channel

network variability, is an open question. Gregory and Walling (1968) and

Rodriguez-Iturbe and Valdes (1979) observed an increase in the peak runoff of the

IUH with increased drainage density and decreased link length, both of which are low

variability properties of the catchment (Figure 7.16). Rodriguez-Iturbe and Valdes

(1979), however, hypothesized a dependency of the IUH on Strahler statistics, which

are high variability properties of the catchment (Figures 7.2 to 7.10). If the IUH is

totally dependent upon network topology then the shape of the IUH might be expected

to be highly variable from catchment to catchment, even if the catchments satisfy the

physical similarity conditions of Chapter 6. If the IUH is dependent upon low

variability properties such as drainage density or the hypsometric curve then the IUH

would not be expected to be highly variable from catchment to catchment. The

relative importance of high and low variability properties in determining the shape of

the IUH is still an open question. The answer to that question will determine how

variable is the shape of the IUH from catchment to catchment when the physical

similarity conditions of Chapter 6 are satisfied.

7.3 Drainage Density and Its Variation with Time

The main characteristic provided by the catchment simulation model is the

channel network. The channel network is, as previously described, the central feature

of the model. The catchment characteristics are generated through the long term

preferential erosion within the channel network, relative to the hillslopes. Since the

channel network is central to the model, then it is important to understand how it

varies with the nondimensional parameters of Chapter 6.
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This section will look at three important features:

1. parameterization of where the channel starts in terms of the hillslope

length scales and other physical characteristics;

2. parameterization of the drainage density in terms of the catchment

length scales and other physical characteristics; and

3. parameterization of the rate at which the channel network grows in

terms of catchment length scales and other physical characteristics.

The previous section indicates that the inherent variability of drainage density

is low. Thus systematic trends with physical parameters can be easily distinguished

from stochastic components.

7.3.1 Drainage Density and Hillslope Length Scales

This section aims to show that the fundamental invariant property of the

landscape is neither the drainage density nor the mean hillslope length but is the

activator number based on hillslope lengths and drops, runoff rates and erodability,

TAh. For a fixed runoff rate, catchment erodability and hillslope slopes, the drainage

density is fixed, but variation in runoff rates, erodability or slopes changes the drainage

density and thus the mean hillslope lengths.

Consider first the mechanism that controls channel growth. For a channel to

grow, the activator threshold must be exceeded; for a channel to stop growing, the

activator around the branch head must fall below that threshold. For a node that is on

the verge of differentiating from hillslope to channel the activator term in the

channelization equation is

activator m5 n5  (7.1)
activator threshold = c=
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where L = the activator threshold.

Thus the channel will stop growing when the contributing area or runoff rate decreases

(causing Q to decrease), the local slope at the branch head decreases, the activator

threshold 1/c1 increases, or the activator coefficient #5 decreases. If the hillslopes

above the channel heads have a consistent nondimensional form then

z'/ = f(x') (7.2)

where z' = z/Rh = nondimensional

Rh = mean hillslope relief

x'/ = x/L = nondimensional

L, = mean hillslope length

The nondimensionalizations of Equations (6.12)

elevation above the channel

distance from the channel

and (6.13) can then be used to give

/ 5 Q m5 n5
n 2m 5-n mc

L z5 L x5 5 L R5 ci 1 5_
T m 1
TR5

a/ = TAh a

(7.3)

where TAh = hillslope activator number, where the length scales, L and Lz'

are those for the hillslope above the channel head

a' = nondimensional activator at the channel head dependent on the

nondimensional hillslope, z' = f(x') and a' = #5 Qm5 Sn5

If the nondimensional hillslopes around the channel head are the same for all channel

heads then a' does not vary systematically. Equations (7.1) and (7.3) then yield

TAh = C (7.4)
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where C = constant

From the definition of TAh in Equation (7.3) and noting that typically (2m5-n 5 ) > 0

2 L
it can be seen that source areas (= Lx) decrease with increased slope (L ), increased

X

hillslope drop (= Lz), increased runoff (E LR) and increased activator threshold (= c1 ).

A decrease in source area is equivalent to an increase in drainage density

This result is consistent with theoretical results obtained by Kirkby (1986), for

catchments dominated by Hortonian style runoff, though not for catchments

dominated by subsurface saturation style runoff. This result is also consistent with

field data presented by Dietrich, et al. (1986) and Montgomery and Dietrich (1988)

(see Chapter 8 for a detailed discussion).

This provides a useful way of parameterizing the hillslopes around the channel

head. The inputs to TAh are simple, hillslope horizontal and vertical scales (e.g. mean

hillslope length and mean hillslope drop), runoff length and time scales (e.g. mm/hr),

and the coefficients c1 and / 5 . In principle Equation (7.4) should be true irrespective

of the physical parameters since the physical parameters are included in the

nondimensional number TA. The only proviso on Equation (7.4) is that the

nondimensional hillslope, and thus a', does not change. A priori only a change in the

hillslope sediment transport equation exponents (i.e. m1 and nl) will change hillslope

form and a' appreciably (Kirkby, 1971 or Figure 2.10).

To verify the validity of Equation (7.4), TAh was evaluated for the similations

using as the hillslope length scales

Lx = (mean Strahler first order area)1/2

Lz = mean drop of hillslopes in the Strahler first order areas
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The results are presented in Table 7.1. The variation in TAh is 20%. This is

good considering that the length scales used to evaluate TAlh are approximations to the

actual length scales that govern channel growth. A similar result was found for

experimental data by Dietrich, et al. (1986). The Lx, based on Strahler 1st order area,

was satisfactory because the ratio of contributing source area at the channel head to

the Strahler 1st order area was remarkably constant across all the physical parameters,

except for a trend with the ratio m5 /n 5 (see Section 7.3). The chosen Lz, based on

mean hillslope drop, was satisfactory because it is representative of the slope at the

channel head; a higher hillslope drop was accompanied by a higher hillslope slope at

the channel head.

The fluctuations in the observed value of TAh are considered to arise from three

sources:

1. Differences in the rates of growth of channel networks. Figure 2.10

showed that the equilibrium hillslope profile for hillslopes is concave up

for the physical parameters of the simulations. During the growth phase,

however, when erosion in the channel proceeds much faster than in the

hillslope, the hillslope profile has a tendency to be concave downward,

particularly near the channel. The faster the network grows, the more

pronounced the effect. Thus the characteristic hillslope profile is

dependent upon the timescales of growth of the network and Equation

(7.4) is invalidated at times before dynamic equilibrium. This effect was

exhibited by runs CR5-2, where channels developed faster, and CR3-4

and CR3-5 where overland erosion proceeded more slowly.

2. Variation in the relative sizes of the channel source area and the Strahler

first order area. The source area was a greater percentage of the first

order area for an activator function with high slope dependence (e.g.,
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TABLE 7.1

TAh for the Hillslopes

Run TAh Run TAh

CR1-3 1.15 CR4-7 1.99

CR2-3 1.22 CR4-9 1.20

CR3-3 1.21 CR5-1 1.20

CR3-4 0.98 CR5-2 1.15

CR3-5 1.11 CR9-6 0.90

CR4-2 1.21 CR9-8 0.88

CR4-5 1.21 CR9-10 0.86

CR4-6 1.22 CR9-11 0.88
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(source area)/(Strahler 1st order area) is approximately 78% for CR9

runs, m5 /n 5 = 0.5) than for low slope dependence (e.g., approximately

50% for CR1 and CR2 runs, m5 /n 5 = 1.33). Thus the use of the

Strahler first order areas to define Lx only approximately reflects the

governing horizontal length scale, Lx, based on source areas. This

dependence accounts for almost all the scatter in TAh for the CR9 runs

in Table 7.1.

3. Since the local slope at the channel head, which controls the activator,

and the mean slope, used to define Lz, are different, then TAh will be

dependent on the value of n5 in the activator equation. None of the

simulations in Table 7.1 exhibit this effect since m5 was varied and n.5

kept constant to vary the value of m5 /n 5.

In summary, it is very easy to determine the point at which channels stop

growing in terms of the local hillslope slopes at the channel heads and source areas.

This follows directly from the form of the activator and differentiation equations. It is

that point on the hillslope where the activator falls below the activator threshold. It is

also possible to parameterize this point in terms of the mean properties that are

typically measured for hillslope and exterior links, e.g., Strahler first order area,

exterior link area, hillslope drops.

An important observation which goes to the heart of the scales of dissection of

the landscape will be made here. Equation (7.4) defines the relationship between the

fundamental (i.e hillslope) scales of the landscape. Traditionally workers have

considered the mean hillslope length, Lx, as the fundamental scale of dissection.

However, Equation (7.4), which governs where channels stop growing, defines a

relationship between the hillslope horizontal length scale (e.g. mean hillslope length),

L , and the hillslope vertical length scale (e.g. the mean hillslope drop), Lz. Another

independent relationship is required to fix either Lx or Lz uniquely. This is important
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since it indicates that the drainage density (the inverse of the mean hillslope length) is

variable and is dependent upon the hillslopes; the steeper the hillslopes, the shorter the

hillslopes and the higher the drainage density. Strahler (1958) observed that "... areas

of lower drainage density commonly have ... gentler valley side slopes [compared with

areas with higher drainage densities]" (p 295).

Solving this problem requires looking at catchment horizontal and vertical

length scales, Ld and Le* A catchment that is steeper overall (i.e. Ld/Le high) will

also have steeper hillslopes. It will be shown later that the mean hillslope and

catchment slopes are related through the sediment transport continuity of the model.

But catchment scales are determined by such effects as tectonic uplift so that the

higher the tectonic uplift, the steeper the catchment, the steeper the hillslope and the

higher the drainage density. If the catchment area is less and the tectonic uplift is the

same then similar trends are postulated.

It is through a relationship between the catchment length scales and the

drainage density that we will be able to determine the hillslope length scales uniquely.

Thus it will be shown that the catchment scales and the hillslope length scales are

intimately connected. The next section develops the required relationship while the

final connection between the scales will be presented in Section 7.5.

7.3.2 Drainage Density and Catchment Length Scales

We now discuss the issue of predicting the drainage density based on catchment

properties. The results reported above provide a means of predicting the drainage

density, but only if the hillslope drops or slopes are known. We will now discuss the

case where only the catchment horizontal and vertical length scale are known (e.g.,

catchment area, catchment relief or mean catchment slope).

There are two ways of determining the drainage density from the catchment

length scales. The first approach is by developing the relationship from first principles
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A speculative relationship between the hillslope length scale (defined as mean hillslope

length) and catchment length scale (defined as the square root of the catchment area)

that was dependent on network magnitude or order was developed in Chapter 6

(Equation 6.37) In a similar fashion a speculative relationship between the vertical

length scales of the hillslopes and the catchment through the order of the catchment

was also developed (Equation 6.53). These derivations suggest an approach that

eliminates magnitude between Equations (6.37) and (6.53) together with Equation

(7.3) to derive an expression for drainage density. That is, Equation (6.37) and (6.53)

give relationships between the catchment and hillslope length scales of the form

Ld =f(Lx, m)

Le = f2 (L L , m) (7.5)

while Equation (7.3) gives a relationship between the hillslope length scales of the form

Lz f3 (L ) (7.6)

Drainage density is just a function of hillslope length scale so that

L = f4 (Dd) (7.7)

Substitution of Equations (7.6) and (7.7) into Equation (7.5) yields

Ld = f,(f 4 (Dd), m) (7.8a)

Le = f2 (f4 (Dd), m) (7.8b)

In principle, the magnitude m can be eliminated between the equations (7.8a)
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and (7.8b) yielding a relationship for drainage density Dd dependent only on the

catchment horizontal and vertical length scales. Analytical difficulties and various

approximations inherent in Equations (6.37) and (6.53) that lead to Equations (7.5)

preclude this approach.

The second, and more realistic, approach is to perform a multiple regression on

the nondimensional drainage density and the nondimensional parameters derived in

Chapter 6 using the catchment simulations. A number of different relationships were

fitted, but the best, both conceptually and in the mean square sense, was

/ 1 TA c-TAh 0.53  -0.06 n5 4.12
d 28 TAOt 2.5 + (7.9)

where D = nondimensional drainage density

= DdLd

Ld = horizontal length scale of the catchment

= (catchment area)1/2

Le = vertical length scale of the catchment = catchment relief

TAh = TA defined using the hillslope length scales, L and LZ, as

defined in Equation (7.3)

TAc = TA defined using the catchment horizontal and vertical

length scales, Ld and Le.

The explanative power of this equation is quite good, the fit explaining 90% of

the variance of the fitted points. Figure 7.20 shows a plot of observed versus estimated

D for the multiple correlation above. The observed values plotted are those drainage

densities calculated from the simulations, while the estimated values are calculated

from Equation (7.9). Some verification points, not used in fitting the regression, are

also shown in the figure. The fit of these verification points is quite satisfactory. The
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simulations used for calibration and verification are given in Appendix D. Figure 7.21

shows 4 simulated networks that vary only in their value of TAc, slowing the variation

in drainage density.

The form of the multiple correlation is consistent with an analytical expression

that can be derived for nondimensional drainage density when the activator function is

a function solely of area (as in Tarboton, et al., 1988). Let the activator function be of

the form

a =# 5 A

where A = area draining to the channel.

This expression for activator is just Equations (5.2a) and (6.5) with the

parameters m 5 = 1, n5 = 0 and R = 1. This constitutes one extreme of the spectrum of

different, and valid, (though not necessarily realistic) activator functions. It would be

an advantage if the drainage density expression was consistent at this extreme value

for m5 /n 5 since Equation (7.9) does claim to allow for variation in m5 /n 5. Channel

growth is initiated when the area draining to a node is higher than the so-called

support area or source area (As). Then the activator number for the hillslope is,

noting the change in the definition of the horizontal length scale compared to Equation

(7.1) for convenience

TAh 05 c L2 (7.10)

where b = length scale of the hillslope = (AS) 1 / 2

Using Equation (2.12) the nondimensional drainage density can be expressed as
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D/=LdDd L d Ld(f 5 cl) 1/ 2

x 271(TAh)

where Ld = length scale of the catchment

= (catchment area)1/2

L, = mean hillslope length = Ls

The catchment scale activator number is

TA = ic L 2

Substituting this result into Equation (7.11) for Ld yields the nondimensional

drainage density relationship

[TA -1/2
1DC(7.12)d r [TAjh

The trend of this result with TAC and TAh is consistent with Equation (7.9) if

TAc >> TAh (i.e., catchment large) which is also required for the definition of

drainage density in Equation (2.12) to be correct.

Return now to Equation (7.9). Drainage density is positively correlated with

(TAc-TAh). When this term is zero, (i.e., TAC = TAlh), the drainage density is also

zero. This occurs when either the size of the catchment, Ld, or the relief of the

catchment, Le, is insufficient to trigger channelization and the simulated catchment is

totally hillslope. The TAh term in the denominator. of this term provides consistency

with Equation (7.12) and slightly reduces the variability in prediction of the regression.

Drainage density is negatively correlated with the ratio of overland sediment
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transport to channel sediment transport, O. This results from sediment transport

continuity in the hillslope and the channel. Sediment transport continuity at the

channel head requires that the slope of the hillslopes must be higher than the slope in

the channel since at the channel head and for a one-dimensional hillslope

Qm1 ni m 1Sn (,3
c1 = OtI#l9h 1 Sh (7.13)

so that at the channel head, where Q. = h

1
S n

h

This result is also true for a two-dimensional hillslope-channel interface (see

Section 8.3). As Ot decreases, and hillslope erosion decreases relative to the channel,

SC/Sh decreases. But the total relief of the catchment is unchanged so that Sh
increases a little and Sc decreases a little to compensate. Since the hillslope slope has

increased to maintain sediment transport continuity, then to maintain the activator

balance at the channel head (i.e. TAh = constant), the source area must decrease.

Thus the channel extends into the hillslope region and the drainage density is

increased.

7.3.3 The Rate of Increase of Drainage Density

The final property of the channel network to be dealt in this section is the rate

of increase of drainage density, or the rate of growth of the channel network. Figure

7.12 shows a typical growth history for a network. It is possible to identify four stages

in
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the increase of drainage density with time; these are shown in Figure 7.22.

1. A short transition where slopes and drainage directions are beginning to

develop around the notch at the catchment outlet.

2. The main growth stage where drainage density grows almost linearly

with time until close to the ultimate drainage density.

3. A transition stage where the growth rate decreases as a result of

reductions in the contributing area to the channel heads. This reduction

could result from applied boundary conditions or competition from

adjacent networks.

4. The ultimate drainage density, where growth stops.

The drainage density curve is dominated by the second, linear growth, stage.

Figures 7.22 and 7.16 can be compared with the drainage density growth postulated for

Howard 's headward growth model in Figure 2.6. The curves are quite similar.

The linear growth stage for the network results from two competing processes.

The first of these two processes is that as the network grows .the magnitude of the

network and the number of potential channel growth sites also grows. This produces

the concave up portion of 'the drainage density curve in Figure 7.22 at early times.

However, the number of growth sites is not proportional to magnitude since many

channel heads do not grow. This results from the screening effect of the surrounding

networks near the network root. Growth sites are concentrated in the outer parts of

the network. This screening effect is qualitatively similar to that observed in other

network growth models, which were described in Chapters 3 and 4. The net effect is

that there is modest increase in the number of growth sites. The increase in growth

sites produces an upward curvature in the drainage density with time.

The second of the two processes is that as the network extends the relief of

hillslopes around the channels diminishes at an ever increasing rate. Since the stream

profile is
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concave up, the rate of increase in elevation at the channel head per unit horizontal

advance rises (and so the hillslope relief diminishes) at an ever increasing rate as the

channel network grows. This reduction in hillslope relief slows the growth of each

channel head by reducing the hillslope erosion. The total effect, though not large, is

sufficient to offset the overall increase in the number of growth sites producing the

linear growth stage. Howard's headward growth model does not model this second

process and grows at the same rate everywhere, so it is believed it will not have a

linear growth stage.

The slope of the linear part of the drainage density growth curve was fitted to

the simulation data using multiple regression to yield

d = 5920 00.18 TC0.1 5 TAc 3 .0 9 TS0. 5 6 (n5 5.88 (7.15)
5

An observed versus estimated plot of the data is provided in Figure 7.23. A number of

verification points are plotted and their agreement with the predictions is quite

satisfactory.

To highlight the physical dependencies, this equation may be reformulated as

dD'" nd 5920 (Ot TS)0 .1 8 TS0. 3 8 TC0. 1 5 TA 3.09 5 5.88

(7.16)

The first term of Equation (7.16), 0t ' TS, is the nondimensional number for the

hillslope erosion rate while the second term, TS, is the nondimensional number for the

channel erosion rate. The rate of increase of drainage density is positively correlated

with both. As channel erosion increases, because of the preferential channel erosion,

the slopes in the hillslopes around the channel head are increased. This creates a larger

region of activation around the channel head so that the rate of extension of the
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channels is faster. A similar correlation between the size of the activated area and the

rate of network extension was qualitatively noted during the study of the Meinhardt

network model in Chapter 4, though the effect was never quantified.

In a similar sense increased erosion rates in the hillslopes also increase the size

of the activated region. It is through the overland erosion term that the elevation

changes in the channel are transmitted into the hillslopes. The faster these changes are

transmitted, the faster the activated region can propagate into the hillslope and the

faster the channel head can grow.

An incremental change in overland erosion has less effect than channel erosion

because for hillslope erosion there is a competing process at work. As hillslope erosion

increases, the area of influence of the channel increases, but the hillslope slopes also

decrease. If hillslope erosion proceeds too quickly compared with the channel erosion

then the slopes and thus the activator will be too low to trigger channelization; the

hillslope is simply eroded flat too quickly in comparison to the rate of change of the

channel elevation. It is thus postulated that for high values of 0 -TS the drainage

density growth rate should decrease with increased 0t * TS. Such behavior was

qualitatively observed in the Meinhardt model. Such behavior was not observed in the

physical model, but this possibility was never actively pursued. It may be, and it is so

believed, that for realistic values of 0t this behavior is never seen.

The rate of drainage density increase is positively correlated with the rate of

growth of channels at a point, TC. If a channel grows faster at a point, then the faster

growth in the sediment transport rate in the channel results in higher slopes in the

hillslope surrounding the channel head. This term is related to the transient sediment

transport number, TS. A lower sediment transport rate in the channel may be

partially offset by a faster growth of the channel at that point, so that during the

hillslope to channel transition period the sediment transport rates are about the same.
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Recall that during transition sediment transport rates are interpolated between that

for the hillslope and that for the channel.

The rate of drainage density is positively correlated with the catchment scale

activator number, TA . This term is the dominating influence on the rate of growth.

This catchment scale activator number is also strongly correlated with the drainage

density. Thus an increase in the drainage density is paralleled by an increase in the

rate of growth of the network. Interestingly, Equations (7.9) and (7.15) suggest

increases in TAC result in increases in both drainage density and drainage density

growth rate, but imply a reduction in the nondimensional time to ultimate drainage

density.

There is a threshold on the value drainage density may take depending on

whether TAc < TAh in Equation (7.9); there is no threshold on rate of growth in

Equation (7.15). This is not an inconsistency. It simply says that there is a minimum

network growth rate which occurs when TAc = TAh in Equation (7.9). An

explanation for this minimum growth rate follows from channel growth being driven by

a region of high activator around the channel head. This region of high activator is

produced by the steep slopes around the channel head arising from the preferential

erosion in the channel eroding down the bottoms of the hillslopes. If the network

grows too slowly, then hillslope erosion has sufficient time to flatten the hillslopes

around the channel head so that the region of high activator disappears and the

network can no longer grow. Thus the network must grow at a minimum rate to

ensure that the steep slopes around the channel head are maintained. This minimum

rate will be related to hillslope and channel erosion rates, as indicated by Equation

(7.16).

The positive correlation of the network growth rate with n5 /m 5 follows from

several network properties. The higher the drainage density, the faster the network

growth rate; both the growth rate and drainage density are positively correlated with
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n5 /m 5. For large values of n5 /m 5 the effect of network screening is reduced. For high

n5 /m 5 , channel growth is dominated by the local hillslope slopes around the channel

head which are less affected by the surrounding network, than are the contributing

areas. The hillslope slopes around the channel head arise primarily from the

hillslope-channel erosion interactions, contributing areas primarily from drainage

directions and overland erosion. This reduced screening effect for high n5 /m 5 means

that there are more growth sites within the network so that overall growth rates are

increased.

7.3.4 Conclusions

This section has correlated the nondimensional numbers introduced in Chapter

6 with properties related to drainage density and network growth.

Channel heads stop growing when the activator, dependent upon the

contributing area and local slopes, falls below the activator threshold. At a channel

head that is on the verge of growing activator is equal to the activator threshold. The

activator number based on mean hillslope length scales, TAlh, was also shown to be

constant. The importance of this relationship is that it provides the link between the

hillslope length and the hillslope drop; it cannot, however, be used for prediction of the

drainage density without knowledge of the hillslope drops. It was postulated, and it

will be shown in Section 7.5, that catchment slopes resulting from tectonic uplift

provide the missing link for determining the drainage density.

The drainage density was dependent upon two activator numbers, one based on

hillslope length scales, TAh, and one based on catchment length scales, TA c It was

also found to be weakly dependent on the ratio of hillslope to channel erosion rates.

The rate of network growth was found to be strongly related to drainage

density. The timescale of network growth of network growth was found to be

positively correlated to the erosion and channel growth rates in a form that was
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dimensionally consistent.

Both the drainage density and rate of network growth exhibited strong

dependencies on the form of the activator function. It was possible to parameterize

this effect via the ratio n5 /m 5 . For large values of this parameter, both drainage

density and rate of growth were large.

For the moment we leave the question of the interaction of horizontal and

vertical length scales. It will returned to in Section 7.5

7.4 Planar Properties of the Landscape

This section is devoted to the planar properties of the simulated channel

networks and the contributing hillslopes. These planar properties are related to the

fundamental horizontal length scale of the catchment, hereto loosely referred to as the

mean hillslope length. Much research has been devoted to parameterizing channel

network planar properties irrespective of the catchment slope properties. These

properties will compared with the results of the simulations.

7.4.1 Planar Link Properties

This section discusses the planar properties of the links in the simulated

networks. Field workers have observed many relationships, some contradictory. Some

examples of relationships include

1. interior and exterior links have different probability distributions

(Smart, 1969)

2. link lengths are correlated with the link magnitude or the downstream

link magnitude (Smart, 1981; Abrahams, 1984)

3. link length distributions are either exponentially (Smart, 1969) or

gamma distributed (Abrahams, 1984; van der Tak, 1988).
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To test whether mean interior and exterior link lengths were significantly

different the mean link lengths for interior and exterior links were calculated for 17 of

the catchment simulations. There were no apparent differences in the link

distributions for different runs except in the mean. All used the same activator

function so that potential variations in the relative lengths of interior links to exterior

links from this source were eliminated. To eliminate the variation in the mean of the

link lengths from catchment to catchment, the ratio of external link lengths to internal

link lengths Le/Li was calculated. Because each simulated network had different

magnitudes, the estimation variance of the mean link lengths for each network was

different and related to the number of links

2

- e
Tim

e

where e = mean exterior link length

m = magnitude

2 2
, a = variance of the link length and the estimate of the mean link

e U

length, respectively

and likewise for interior links

2

2 a L.
m-1

1

where L~ = mean interior link length.

To eliminate this source of nonstationarity in the variance of the mean, a t-test

was performed using a null hypothesis of
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L
( - 1)

H0 =0 (7.17)

Values of this variable together with the original mean interior and exterior link

lengths are given in Table 7.2. A two-sided t-test indicated that the null hypothesis

could not be rejected at the 5% significance level; i.e. the mean exterior and interior

link lengths were not significantly different. Not only that but the 95% confidence

interval for the test variable was -0.30 to 0.37 with the mean value of the test variable

in Equation (7.17) being 0.04. If these values accurately represent the population

moments, then approximately 70000 links would be required to reject the null

hypothesis, an enormous number of links. This suggests that the rejection of H 0 is

quite strong and that for all intents and purposes the interior and exterior links should

be considered to have the same mean length.

Smart (1981) suggested that link lengths are positively correlated with the

magnitude of the downstream link. To test this hypothesis, link lengths were plotted

against the link magnitude and the downstream link magnitude for the simulations

CR2-6, CR7-1, CR7-2, and CR7-3 (Figures 7.24 and 7.25). The correlations between

the link length and magnitudes are poor ranging from 0.07 to 0.21. None are

significant. An analysis by eye of the figures suggests that an envelope curve on the

link length distribution might indicate a decreasing maximum link length with link

magnitude and no apparent trend with downstream link magnitude. This lack of

correlation between the link lengths and magnitude is supported by field data

(Abrahams, 1984).

The final link property examined was the probability distribution of the link

lengths. Smart (1968) suggested that link lengths should be distributed with an
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TABLE 7.2

Mean Exterior and Interior Link Lengths

LL

RUN E .L 01 -
e i e L

CR1-3

CR2-3

CR2-4

CR2-6

CR3-3

CR3-4

CR3-5

CR4-2

CR4-5

CR4-6

CR4-7

CR4-9

CR5-1

CR5-2

CR7-1

CR7-2

CR7-3

2.34

6.58

21.50

3.47

1.87

3.42

3.34

3.48

3.26

5.37

5.88

5.29

5.60

2.06

3.84

3.85

3.55

2.22

4.81

6.24

3.60

1.59

4.61

3.31

3.03

3.07

5.89

5.66

5.25

6.29

2.27

3.88

4.47

4.13

0.29

0.79

1.29

-0.18

1.00

-1.24

0.04

0.71

0.32

-0.31

0.14

0.03

-0.39

-0.64

-0.05

-0.64

-0.53

2.27

5.72

15.40

3.53

1.73

4.01

3.32

3.26

3.17

5.62

5.77

5.27

5.93

2.16

3.86

4.15

3.84

1.93

5.04

9.69

2.96

1.34

3.53

2.94

2.45

2.37

3.94

2.68

3.71

4.24

1.89

3.14

3.63

3.08

1.38

1.29

2.52

1.42

1.67

1.29

1.27

1.77

1.78

2.03

2.46

2.01

1.95

1.31

1.51

1.30

1.55
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exponential distribution. More recent evidence (Abrahams, 1984; van der Tak, 1988)

suggested that a gamma distribution with a shape parameter, a, around 2 provided a

better fit to the observed data.

To test these hypotheses with the simulated data, the moments of the link

length distribution were calculated, lumping interior and exterior together. As was

previously shown, the mean length of interior and exterior links were shown to be not

significantly different, and it is believed that this is also true for higher order moments

so that the link distributions for interior and exterior links may be considered jointly.

This reduces the estimation error on the moments calculated below. The mean,

standard deviation and gamma distribution shape parameter determined by the

method of moments are given in Table 7.2. The shape factor, a, for the gamma

distribution was calculated from

a = ( )2

using the moment estimates of mean and variance. The mean shape factor for the

simulated catchments was 1.7 + 0.4. van der Tak (1988) calculated a shape factor of

1.8 for two basins in New Hampshire and one in Arizona, using maximum likelihood

estimation. Using the method of moments his results for shape factor are 1.66 0.64.

The simulation results are consistent with this result suggesting that link lengths are

gamma distributed with a shape parameter of about 1.5 - 2.0.

7.4.2 Fundamental Length Scales of the Catchment

This section will briefly discuss observed relationships between various

'fundamental" horizontal length scales of the catchment. They all, in some sense,

capture the length scale of dissection of the landscape loosely referred to as the mean

hillslope length. It will be demonstrated that while this is a reasonable viewpoint,
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there are some subtle differences between the various measures that reflect the physical

processes at work in the hillslope.

Horton (1945) proposed that the drainage density and the mean hillslope length

be related by

D 1  (7.18)
h

and argued that channels form when runoff occurs over longer distances than the mean

hillslope length.

Other useful measures of the level of dissection are

1. mean link length, Lg

2. mean interior link length, L

3. mean exterior link length, Le

4. square root of the first order Strahler area, A1

Recently Montgomery and Dietrich (1988) introduced the concept of source

area, As, that area observed to contribute to the channel head. The square root of the

mean source area, A., is another length scale (Equation 7.10).

Another length scale calculated here and related to the source area concept is

the mean hillslope length of the lateral contributing areas, L , hereafter called the

lateral hillslope length. This is different to the definition of mean hillslope length

based on the drainage density since it excludes the source area so that only the lateral

flow to the channels is considered. The lateral hillslope length will always be less than

the mean hillslope length. It is defined as

A -mA(
Lh = --
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where A = catchment area

I = total length of channel network

m = network magnitude

A = mean source area contributing to the channel head

The various length scale definitions are illustrated in Figure 7.26.

These length scales were calculated for 20 of the computer simulations listed in

Appendix D. There appeared to be no significant trends with any nondimensional

numbers except for a trend with the ratio n5/m 5 . All results presented here are for

n5/m 5 = 0.75. The various length scales were then plotted against each other and a

simple least squares regression of the following form fitted

(length scale) = a (length scale2 )

The results of this regression are given in Table 7.3, and the correlation

coefficients for each of the fits is given in Table 7.4. In general, the correlation

between the various length scales is very high (typically better than r = 0.98).

Some notable relationships are:

1. Le = 1. 27 Li, yet Section 7.4 showed that Le and Li are not significantly

different (implying Le = Li). Note that the correlation coefficient in

Table 7.4 is relatively low. This anomalous regression is believed to

result from the regression being fitted by simple least squares; i.e., it

does not reflect the estimation error on the mean link length which is

dependent on network magnitude. The hypothesis test on link lengths in

Equation (7.17) is weighted by the estimation error of the means. The

correlation between the interior link length, Li, and the other exterior

link length scales, (A,) 1/2, and (AS) 1/ 2 is relatively poor.
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TABLE 7.3

Regression of Length Scales from simulations: y = a x

A 1 /21

1.07

1.37

1.28

1.42

2.25

3.71

Le A 1/2
e

1.28

1.18

1.27

2.08

3.39

0.928

1.03

1.64

2.69

1.16

1.74

2.93

1.24

2.24

L i Lh

1.66

TABLE 7.4

Correlation Coefficient of Regression (R 2
on length scales from simulations

Le A 1/2be A"

0.852

0.993

0.986

0.803

0.918 0.970

y
x

Le

A 1 /2

LL.

Lh

Lg t

A 1/21y
x

Le

A 1/ 2

LL.

Lh

0.994

Li Lh

0.999

0.987

0.755

0.997

0.953

0.993

0.970

0.710

0.984

0.920

0.984

0.757

0.996

0.947

292



2. The source area is typically about 50-70% of the Strahler first order

area. This regression has a high statistical significance but is only valid

for n5 /m 5 = 0.75. There is a strong dependence on n5 /m 5 ; for

n5 /m 5 = 2 the source area is 70% of the Strahler first order area.

3. Le = 1.0 8  , the length of the exterior links are very strongly related to

area contributing to that link.

4. There is a significant difference between the length of lateral hillslopes,

Lh, and the mean hillslope determined from drainage density, Lh. This

difference reflects systematic differences in the hillslope form for the

source area and the lateral hillslope areas. A typical first order area is

approximately twice as long as it is wide (Figure 7.26). The area

upstream of the branch head (the source area) is 50% of the exterior link

area so that there is significant difference between the lateral hillslope

length and the mean hillslope length.

This difference between lateral hillslope length and the length scale of the

source area is important. We have previously noted that at the channel head (or any

potential channel head about to branch off laterally)

TAh = constant

If the hillslope length is shorter, then everything else being equal, the slopes must be

higher to compensate and maintain the value of TAh. This effect is clearly seen in

Figure 5.10. The source areas contributing to the channel head tend to be long and

have relatively low slope, while those hillslopes contributing laterally tend to be

shorter and have higher slopes. Valleys at early time tend to be long and flat
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longitudinally, even above the channel head, and steep laterally. Towards dynamic

equilibrium this tendency is reduced

The differences between the lateral hillslope length and the mean hillslope

length from drainage density influences the hillslope ruggedness number calculated by

Strahler (Equation 2.13) where

HDd H
Rh -~ -~ 2L hS

H (from Table 7.3) (7.20)

where H = mean hillslope drop

S = some characteristic hillslope slope.

The lateral hillslope length and the mean hillslope lengths relationship is from Table

7.3. If S is the mean lateral hillslope slope (i.e. S = H/Lj) this equation becomes

Rh = 0.30 (7.21)

where Strahler (1958) proposed the right-hand side value to be 0.5. Strahler found

values of Rh ranging from 0.3 to 1.0.

7.4.3 Link Contributing Area Relationship

Smart (1972) suggested that the area draining to an exterior link was different

to the area draining laterally to an interior link. He defined a dimensionless variable,

a, such that

a = exterior
interior
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and found its mean value to be 1.85 1.5 for data from 12 catchments. The area data

for the 17 simulations that were used in Section 7.4 were analyzed; the resulting a

values are presented in Table 7.5. In Section 7.4 a significance test was performed to

test if interior and exterior link lengths were significantly different. In a similar

fashion to that done for the test on link lengths (Section 7.4.1) the link areas were

transformed using the estimated variances of the mean areas to produce a statistically

homogeneous variable. A hypothesis test was performed on this transformed variable

with the null hypothesis that the interior and exterior link areas are the same i.e.

H :- = 00 a

At the 5% level a t-test indicated a to be significantly greater than 1, with the

5% confidence limits on a being 2.34 and 3.10. The mean and standard deviation for a

from the simulations was 2.53 2.8. Given the large standard deviations in a and the

5% bounds, the simulated results are considered to be consistent with the results of

Smart (1972).

Shreve (1974) found for Rockcastle Creek, Kentucky, that the ratio of the mean

exterior link length to the mean interior link length was 1.04 and the ratio of the mean

exterior link area to mean interior link area was 1.56. These are consistent with the

results above.

The difference in the areas contributing to exterior and interior links is due to

the source areas contributing to the exterior links. In Section 7.4.2 the mean lateral

hillslope length and the mean link lengths were linearly related (there was no

significant difference between the lateral hillslope lengths for interior and exterior

links). Since exterior and interior link lengths are the same, exterior and interior links

have the same lateral contributing area but the exterior links have an additional
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TABLE 7.5

Mean Exterior and Interior Link Areas

A e/A.-l
R un T e. a e 1e 1 -Ae/Ai

CR1-3

CR2-3

CR2-4

CR2-6

CR3-3

CR3-4

CR3-5

CR4-2

CR4-5

CR4-6

CR4-7

CR4-9

CR5-1

CR5-2

CR7-1

CR7-2

CR7-3

7.21

6.58

480.0

15.93

4.65

19.7

15.5

14.4

13.8

45.9

47.8

42.6

43.5

6.65

17.0

17.6

16.7

3.49

4.81

36.5

9.00

1.69

15.7

8.23

6.14

6.53

24.6

22.0

20.7

26.8

3.63

9.66

13.3

10.5

2.07

1.37

13.15

1.77

2.75

1.26

1.89

2.34

2.11

1.86

2.18

2.06

1.62

1.83

1.76

1.33

1.60

2.17

0.79

2.34

1.45

3.73

0.69

1.76

2.31

2.31

1.37

1.67

1.66

1.13

2.02

1.64

0.81

1.37
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hillslope contribution from the source areas contributing to the branch head. This

source area is about 50% of the contributing area to exterior links (Table 7.5) so that

exterior link areas are about twice the interior link areas, consistent with the results of

the hypothesis test above.

7.5 Relating Hillslope and Catchment Length Scales and Channel Network Magnitude

This section will demonstrate that the results of Sections 7.3 and 7.4 may be

used to relate the catchment area and catchment relief to the hillslope length and

hillslope relief, and thus to drainage density and magnitude. In this way it will be

shown that there are only two independent length scales, the catchment size and the

catchment relief. All other vertical and horizontal length scales, as well as the channel

network magnitude, follow directly, given the assumed catchment physics. Through

the relationship developed below the essential unity of the length scales will be

demonstrated; neither the hillslope nor the channel scales can be considered

independently of the other. The drainage density is intimately connected to both the

slopes of the catchment and the slopes of hillslopes.

In Section 7.3 the hillslope length scale, L,, was defined as the square root of

the Strahler first order area. This definition will be used below. The catchment length

scale, Ld, as in Section 7.3, will be defined as the square root of the catchment area.

The catchment vertical scale, Le, will be defined as the catchment relief and the

hillslope vertical scale, Lz, as the mean drop of the hillslopes in the Strahler first order

areas.

Drainage density and the mean hillslope length are related by (Horton, 1945)

Dd =(7.22)
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and from the definition of drainage

magnitude, m, mean link length, L, and the catchment horizontal scale, Ld, by

(2m-1)Le

Dd L 2
d

(7.23)

From the previous section the mean hillslope length, Lh, and the hillslope length scale,

L can be related by

Lh = '1 L x

where = 1
-2.25 (from Table 7.3).

The mean link length can be related to the hillslope length scale by

Le = q2 Lx

where = 1
-1.28 (from Table 7.3).

Substituting these relationships into Equations (7.22) and (7.23) and eliminating

drainage density yields the following relationship between the hillslope, the catchment

horizontal length scales and the magnitude

Ld
L = L

x 2(2m-1 )qlq2

(7.24)

It was shown in Section 7.3 that the hillslope activator number, TAh' is

constant so that
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TAh = C (7.25)

2m5 -n 5  n Lm5

where TA hl z R I '5
R

This equation provides the connection between the hillslope horizontal and vertical

length scales and upon rearrangement yields

1 n5-2m 5  m 5

Lz R 5 L 5 LR 5 (7.26)
C 175

Substituting Equation (7.24) into Equation (7.26) provides a relationship between the

hillslope vertical length scale, the catchment horizontal length scale and the

magnitude.

To connect the magnitude to the catchment vertical and horizontal length

scales, it is necessary to use the nondimensional drainage density relationship of

Equation (7.9). Simplifying this drainage density relationship yields

L D = [(L d2m -n5 L en5 _ 0.53 0-0.06 (2.5 + 5 4.12
d d 28 U-) t m)x L 5

(7.27)

Substituting Equation (7.22) for the drainage density in this equation and Equation

(7.26) for the hillslope vertical length scale yields the following expression for the

horizontal hillslope length scale
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m 5 2m5-n 5 n5

LR Ld e
]-0.53 00.06
-1 Ot

2.+n5 -4.12
n 5.2

L (7.28)

This equation can be rearranged to highlight the dependence of the hillslope horizontal

scale upon the mean catchment slope scale g = Le/Ld

m5
LR5

2m 5 n5
Ld

1 -0.53 0 06
-1 Ot'

n 5 -4.12
2.5 + ]

(7.29)

and for a large catchment (Ld >> 1) then

14L d
L ~ 91

[c175]
LCTR7 LR

n5 -0.53 00.06
5 Ot

As the catchment becomes steeper (3 increases) the hillslope length, L,, becomes

shorter.

The hillslope slope scale, LS (=Lz/Lx), and the catchment slope scale can be

related so that

-2m 5  rn-1

14Ld] n 5 c175] n5

I- m
LR 5 0t

- 0 .1 n 5 '

8.2 m5
n 51n 5
+ 5_L

(7.31)

As the mean catchment slope increases the hillslope slope roughly increases with the
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c175]14 Ld
L = 1

cp3 511 4 Ld
L = i

2.5 +
n5 -4.12

m 5- j

(7.30)
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square of the mean catchment slope (m5 ; 2), with a commensurate increase in

drainage density.

The importance of these equations is that they are dependent upon only two

independent length scales: the catchment horizontal length scale, Ld, and the

catchment vertical length scale, Le. All other catchment scales can be expressed as

dependent variables of Ld and Le* That is,

1. The hillslope horizontal length scale, Lx, follows directly from Equation

(7.28)

2. The hillslope vertical length scale, Lz, follows from Equations (7.28) and

(7.26).

3. The catchment magnitude, m, follows from Equations (7.28) and (7.24).

4. Other horizontal scales such as source area size, lateral hillslope length

and mean link length follow from Equation (7.28) and the regressions of

Section 7.5.

That all catchment scales can be expressed in terms of catchment size and

catchment relief is important for three reasons. The first, and foremost, reason is that

they show the importance of the catchment scale processes in determining the hillslope

properties. Through the dependence on catchment slopes it is shown that the hillslope

length scales are dependent on catchment scale processes like tectonic uplift. The

mechanism for the connection of scales is the channel network. Thus while

geomorphologists observe the drainage density, and attribute to it the fundamental

scale of the landscape, the hillslopes are governed by larger scale processes as much as

by hillslope activator processes. Neither hillslope nor catchment scales are preeminent,

both interact to produce the observed landscape.

The second reason these relationships are important is that they establish that

there are only two independent length scales: one vertical and one horizontal. The
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nondimensionalization of the governing equations presented in Chapter 6 used only two

length scales: one vertical and one horizontal. If there were more than two

independent length scales then that nondimensionalization would be erroneous.

The third reason this relationship is important is purely pragmatic. Hillslope

length scales can now be predicted from catchment properties. In the field setting the

two known variables will be the tectonic uplift and the size of the basin. If the

tectonic uplift is known, then the catchment relief may be determined.

1. For a single uplift event, the catchment relief is approximately the

magnitude of the tectonic uplift.

2. For continuous uplift, the catchment relief is the cumulative amount of

tectonic uplift at the -time the network stops growing. It is not the

catchment relief at dynamic equilibrium, which, as will be shown later, is

slightly larger. The catchment relief is determined from equation (7.16)

iteratively. A final catchment relief is assumed fixing the

nondimensional numbers and the network growth rate is calculated,

which determines the total uplift at the time the network attains its

ultimate drainage density implied by the assumed relief. By trial and

error the initially assumed catchment relief, and that given by the

tectonic uplift and the rate of growth of the network can be matched.

The size of the catchment, the other input into the predictive equation, may be

constrained by geologic conditions, experimentally applied boundary conditions or the

competition between adjacent catchments. If, for instance, tectonic uplift comes from

a thrust block uplift then the areal extent of the uplift will effectively govern the

maximum possible size of the catchment.

Once the two catchment scales are determined from the governing physical

conditions, the hillslope and network scales follow directly. An alternative

interpretation of Equations (7.24) and (7.31) is that with a knowledge of the hillslope
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length scales these equations give the relationship between catchment area (= L ) and

catchment relief (= Le) for the catchment draining a downstream point in the channel.

At the downstream outlet of the catchment these alternative views of the equations are

equivalent.

For the typical physical conditions where 0 < (2m 5 - n5 ) < 1, the following

trends in hillslope length can be deduced from Equation (7.28).

1. For constant uplift, as the catchment area increases the hillslope length

increases. This is because the catchment, overall, is flatter and less

erosive, so that hillslopes are flatter and thus longer so as to maintain

TAh =C.

2. As the catchment relief increases, the hillslope length decreases. This is

because the catchment, overall, is steeper. Again TAh = C must be

maintained.

3. As the ratio of hillslope erosion to channel erosion rates, Ot, decreases,

the hillslope length decreases. This is because hillslopes get steeper and

channels flatter. This follows from the sediment transport continuity

around the channel head discussed in Section 7.3.2.

4. As the hillslope activator increases, or the activator threshold decreases,

the hillslope length decreases. This is because the erosion potential of

the hillslope has increased comparative to the hillslope's ability to resist

the erosion. The hillslope activator may increase if, for instance, the

runoff increases.

For the change in conditions of points 1 and 2 above (i.e. changes in the mean

catchment slope) the trends of the hillslope relief, LZ, are the inverse of those for the

hillslope length scale, L . This follows from TAh = C. For the changes in conditions

of point 3 (i.e. increased erosive power) the trends of Lz are similar to those of L .
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7.6 Hypsometric Relations and Dynamic Equilibrium

The hypsometric curve has long been used by geomorphologists as an indicator

of *the age of catchments. For instance, Schumm (1956) attributed differences in

hypsometric curves for different catchments in the same region to the different ages of

the catchments (Figure 2.9). To test this hypothesis, hypsometric curves have been

plotted for two different simulations. The first simulation, based on run EB11-9-5,

consisted of an event uplift followed by network development and decline of the overall

catchment elevations with time. This corresponds to an episodic uplift, erosional

history. The uplift history is thus

c0w = co (t - t0 )

where 6(t) = dirac delta function.

The second simulation, based on runs CR2-3 and CR8-1, consisted of an uplift event

followed by erosion and network growth. At the time at which the network attained

its maximum drainage density a second uplift, this time continuous with time, that

just balanced the sediment outflow from the catchment, was introduced. The

catchment was then allowed to proceed to dynamic equilibrium where the tectonic

uplift just balances the sediment outflow. The uplift history in this case is

c0(t) = 0 6(t) + c0 H(t - t0 )

where H(t-t0 ) = Heavyside step function

(0 t < t 0

I t > to

The hypsometric curves, for various times, for the episodic uplift case are given
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in Figure 7.27, while those for the dynamic equilibrium case are given in Figure 7.28.

The hypsometric curves in Figure 7.27 were calculated from a simulation using a

20 x 20 grid while those in Figure 7.28 were for a simulation using a 40 x 40 grid.

Thus the curves in Figure 7.27 appear rougher reflecting the coarser spatial resolution

of this simulation. In addition, there are some slight random differences between the

hypsometric curves because the networks were generated from different initial random

elevation perturbations. Figure 7.14 indicates that this sampling effect should be

small.

The time evolution of the two curves is very different. However, there are some

broad similarities between the runs. Both runs are predominantly concave down at

early times, and the area under the curve diminishes with time. This is consistent with

Schumm (1956). Both curves, at early times, exhibit a kink in them where the slope of

the hypsometric curve changes dramatically. This kink corresponds on the horizontal

scale to the drainage density of the catchment (Figure 7.27). Nodes in the channel

have dramatically reduced elevation, while nodes on the hillslope undergo little

elevation change from the initial relief. As the drainage density of the network

increases and more of the catchment is channelized, the kink in the hypsometric curve

moves to the left, indicating that more and more of the catchment is falling under the

influence of the channel network. At times long after the network has stopped growing

the notch disappears because hillslope erosion has had sufficient time to come into

equilibrium with the new stable channel network, removing the sharp differentiation in

elevation between the hillslope and the channel network. A similar kink exists in the

general form of the hypsometric curve for young catchments proposed by Strahler

(1952, 1964) and observed by Schumm (1956). It seems reasonable to suggest that in

the field, analogously with the simulations, that this kink indicates that proportion of

the catchment in valleys under the influence of the more quickly eroding channel

network.
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Figure 7.27: Hypsometric curve: Episodic uplift,
elevations normalized by initial relief
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Figure 7.28: Hypsometric curve: Continuous uplift,
elevations normalized by initial relief
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In Figure 7.27 the hillslope portion of the hypsometric curves declines at a

faster rate than in Figure 7.28. The simulation EB11-9-5, on which Figure 7.27 is

based, used an overland erosion rate, Ot, that was three times higher than that in the

simulation CR2-3/CR8-1, upon which Figure 7.28 is based.

The most interesting aspect of the hypsometric curves is their trend with time

long after the network has stopped growing. The hypsometric curve for episodic uplift

converges to a curve that is concave up everywhere. The general trend is consistent

with that observed for erosional development of catchments in spoil heaps by Schumm

(1956) (Figure 2.9). The uplift histories for the simulation data and Schumm's field

data are comparable; the initially flat spoil heap of Schumm's study could be

conceptualized as having resulted from a single uplift event. If the hypsometric curve

for the simulations is replotted so that the elevation axis is now normalized by the

original catchment relief (Figure 7.29) another similarity appears. The stage where the

curve is concave down overall corresponds to that period when the catchment relief is

unchanged from the original catchment relief. The period when the hypsometric curve

is concave up corresponds to the period when the catchment relief is declining from the

original value. The reason for this behavior is that when the catchment relief is

declining the portions with the slowest rate of decline are the low contributing areas,

high elevation regions near the catchment watershed. In some sense these low erosion

zones are "holding up" the edges of the catchment while everywhere else the catchment

is declining more quickly. Then the hypsometric curve is concave upward. This

argument parallels that for the existence of a Monadnock stage of catchment

development where 'isolated rock may form isolated hills rising above a generally

subdued surface..." (p. 4-69 Strahler, 1964). It is, apparently, unnecessary to require

isolated rocky outcrops with their accompanying source limitation of transport; the low

erosion regions around the catchment watersheds suffice to produce a monadnock stage
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Figure 7.29: Hypsometric curve: Episodic uplift,
elevations normalized by current relief
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Figure 7.30: Hypsometric curve: Continuous uplift,
elevations normalized by current relief
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hypsometric curve where there is an overall catchment downwasting.

The hypsometric curve for the dynamic equilibrium case (Figure 7.28) tends

with time to an S-shaped curve very similar to the curve observed by Strahler (1964)

and which he calls the "equilibrium stage". Contrary to expectations, it appears in

Figure 7.28 that even after the continuous tectonic uplift is imposed, that the mean

elevation of the catchment is still declining. This impression results from the curve

being normalized against the current catchment relief. If instead, the curve is

normalized by the original catchment relief, then it becomes clear that catchment relief

increases with time, but that the mean elevation, as expected, is constant (Figure

7.30). There is a redistribution of elevation within the catchment which is

accompanied by an increase in catchment relief as the catchment approaches dynamic

equilibrium. Hillslopes tend to become higher and steeper, the valley portion of the

catchment remains much the same. Despite the requirement that TAh = C (Equation

7.24) the hillslopes can become steeper overall without inducing active network

growth. The slopes of the hillslopes immediately upstream of the channel heads do not

increase but the slopes of the hillslopes close to the watershed do; the nondimensional

shape of the hillslope is changed. This characteristic will be shown more clearly in

Section 8.3 and Figures 8.6 and 8.7 where slope-area relationships for channels and

hillslopes at dynamic equilibrium will be discussed in detail.

These qualitative differences in the hypsometric curves are corroborated by

contours of elevations with time (Figures 7.31 and 7.32). Both figures show the

contours of elevation (normalized by the current catchment relief) for the time period

after attainment of the maximum drainage density. This time period corresponds to

that period when the catchment relief is either increasing or decreasing from its initial

value (Figures 7.29 and 7.30). For the episodic uplift case (Figure 7.31) there is a

substantial increase with time in the proportion of area at low elevations. For the
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Figure 7.31: Elevation contours for episodic uplift,
simulation EB 11-9-5.
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(a) time = 15000

(c) time = 35000
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Figure 7.32: Elevation contours for continuous uplift,
simulation CR8-1.
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continuous uplift-dynamic equilibrium case (Figure 7.32) changes in elevation

distribution are confined to highest elevations. The proportion of area at the highest

elevations is declining with time. The trends with time of the elevation contours are

consistent with those of the hypsometric curves for both catchments.

On the basis of these the simulation results it is asserted that the differences

between the "equilibrium" or 'mature" stages and the "Monadnock" stage referred to

by Strahler (1964) is not one of age, but one of tectonic uplift history. The mature

stage, concave down at low elevations and concave up for high elevations reflects a

landscape in dynamic equilibrium with the tectonic uplift regime. The Monadnock

stage, concave up for all elevations reflects a declining catchment subjected to episodic

uplift events. This latter type of catchment is not in dynamic equilibrium.

This differentiation of catchments into event uplift versus continuous uplift may

be complicated by other interactions in the field. In particular the relative rates of

change of tectonic uplift and the rate of erosion are important. A catchment with a

short timescale of elevation change due to high erosion rates (i.e., high TS, Chapter 6)

will go to dynamic equilibrium faster than one with long timescale and low erosion

rates (i.e., low TS). The catchment with high TS will react more quickly to changes in

the tectonic environment. Thus for the same uplift history two catchments different

only in their TS value may exhibit different hypsometric curves. The catchment with

high TS will be closer to dynamic equilibrium than the catchment with low TS; the

catchment with low TS will have an event uplift hypsometric curve, the catchment

with high TS will have one more like the dynamic equilibrium case.

7.7 Sensitivity Study of Diffusive Hillslope Processes

To assess the effect of the diffusive term in Equation (5.1a) on hillslope and

network characteristics, a sensitivity test on the parameter Dz was performed. This

parameter controls the magnitude of the Fickian diffusion in the elevation evolution
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equation and was designed to model the diffusive transport processes described in

Section 2.3.3 (e.g. creep, rainsplash, and landslide). As noted in Appendix B fluvial

sediment transport cannot be modelled by a Fickian diffusion term so it is modelled

separately.

A value was adopted for Dz that resulted in about 10% of the catchment being

dominated by diffusive effects. This value of Dz was determined by trial and error, the

value adopted is given in Appendix D for the simulation CR10-1. A node in the grid

was considered to be dominated by diffusion effects if the rate of elevation change due

to the diffusion term was greater than the rate of change of elevation due to fluvial

sediment transport. That is, from Equation (5.1a), diffusion domination occurs at

node j when

6 z.m n

Dz ps 1-n) i i i1 51

Two comparable runs, different only in the magnitude of the Dz, are shown in

Figure 7.33. As expected following the discussions of Section 7.2, the simulated

networks are quite different. Any small perturbation in elevations results in

self-reinforcing changes in the network realized by the simulation. The diffusion,

though a minor component spatially, provides the small perturbations necessary to

change the network generated.

Figure (7.33c) shows the spatial region over which diffusion dominates sediment

transport when the network stopped growing. These regions mostly lie on or near the

watersheds where discharge, and thus fluvial sediment transport, is low. This

consistent with the observation that rainsplash dominates at the watersheds (Dunne,

1988b) and that proceeding downslope rainsplash is dominated by fluvial transport

(Dunne and Aubrey, 1986).
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Figure 7.33: Sensitivity of the channel network to diffusive transport
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Hypsometric curves are plotted for the diffusive and nondiffusive cases in Figure

7.34. There is very little difference between the form of the hypsometric curves

reflecting the small aggregate effect of diffusion on the elevations. The horizontal

position of the kink in the hypsometric curve, which Section 7.6 showed was indicative

of the drainage density of the catchment, varies between the two runs. The diffusive

run has a slightly faster rate of network growth than the nondiffusive case so that the

kink moves faster from right to left. A plot of the drainage density with time (Figure

7.35) corroborates this. Since the area under the hypsometric curve (the hypsometric

integral) is indicative of the mean elevation of the catchment above the outlet, the

elevations in the diffusive network declined slightly faster at early times. This is

reflected in a slightly higher sediment transport out of the catchment (about 20%

higher). At the time when the network stopped growing the hypsometric curves are

very similar. The reason for the faster extension of the diffusive network was the

increased overland transport of the added diffusive transport compared to fluvial

transport alone in the nondiffusive case.

Some network and hillslope statistics are provided in Table 7.6 for both the

diffusive and nondiffusive cases, for the time when the network stopped growing. The

topological statistics, as expected, are greatly different, due to the differences in the

generated networks. Otherwise the effects of the diffusion- term are small.

In conclusion, the diffusion term has been shown to have a relatively minor

effect on catchment form. As expected the channel network simulated was

significantly changed because of the chaotic network growth mechanism. Topological

statistics reflected these differences. Other statistics were less affected by the diffusion

effects. The spatial distribution of diffusion domination within the catchment was

qualitatively consistent with field observations.
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TABLE 7.6

Summary Statistics for Networks Based on Diffusive

and Nondiffusive Hillslope Processes

Statistic TD = 0(') TD=2 x10- 8 (2)

Rb 5.50 4.60

RL 3.00 1.43

R 1.76 1.60

RA 7.02 3.28

K 1.78 3.29

2.25 0.37

D 6.80 6.44

Rc 9.90 9.90

R 3) 4.18 4.05h

S(4) 1.63 1.63he

(1) Results from simulation CR2-3, t'= 12000

(2) Results from simulation CR10-i, t= 12000

(3) Rh = mean hillslope drop,
exterior links

(4) She = mean hillslope slope,
exterior links
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CHAPTER 8

EXPERIMENTAL VERIFICATION

8.1 Introduction

This chapter discusses aspects of the experimental verification of the catchment

evolution model presented in this work. At the outset it is noted that the catchment

evolution model is sufficiently novel that there is no preexisting data set capable of a

comprehensive verification of the model. The published data may, however, be used to

verify some of the components of the model; the presentation of this chapter is

governed by this pragmatic constraint.

If the data does not exist to completely verify the model, it is important to

identify, and verify, the more speculative components of the model. Below is a short

summary of some of these aspects of the model. This is not to say that this chapter

will provide adequate verification of all of these components; it won't. Rather the

intention is to highlight the aspects of the model that require experimental verification,

whether in this chapter or in later work.

The sediment transport formulas in the elevation equation are as good as can be

expected given the state of the art in fluvial sediment transport. The formulation,

nonlinearly dependent on discharge and slope, is consistent with accepted

instantaneous transport* for rivers and hillslopes. The conceptual step from the

instantaneous sediment transport to the long-term mean sediment transport involving

flood frequencies and the mean annual discharge is more speculative, even though it is

commonly used by theoretical geomorphologists. The postulate of different sediment

transport rates in the channel and in the hillslopes (viz. the Ot factor in Equation 5.1)

is consistent with some data obtained at short timescales. There is little experimental

evidence supporting it at long time scales, though it follows theoretically from short
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time scale behavior.

The activator concept, and the formulation adopted, nonlinearly dependent on

discharge and slope, is particularly novel. Recent data apparently supporting the

formulation will be examined in Section 8.4.

The channel head growth mechanisms in the model, apart from the use of the

activator function, have been conceptualized into the autocatalytic differentiation

equation and the timescale of channelization 1/dt. Once the activator threshold is

exceeded channelization proceeds irrespective of conditions within the catchment.

Very little work has been reported on the long term dynamics of channel growth and

dependence of growth rates on physical properties. This lack of knowledge implies that

we are unable to say with any certainty, without extensive site specific field work,

what are the important physical processes in determining the timescale 1/dt.
In the model, channels are conceptualized as distinct entities with well defined

channel heads. For gully erosion this seems a reasonable approximation, but others

suggest that this viewpoint is not general enough (Kirkby, 1988). Since, in this model,

the channel network is only used to differentiate rates of sediment transport, the issue

is not whether channels are distinct or not, it is whether there is a distinct point within

the catchment (e.g., the channel head) where the mean rate of sediment transport

changes abruptly for the timescales of landscape formation.

Finally in both the activator and sediment transport formulas, the definition of

discharge adopted is the same. For the long term average equation this assumption

needs verification since the discharge adopted is the mean annual discharge. In any

experimental verification, the determination of the dominant runoff mechanism is a

central problem. Though no results have -been presented here, the computer model is

able to model both Horton and subsurface saturation runoff, the latter by use of a

saturation threshold, (e.g. Beven and Kirkby, 1979; O'Loughlin, 1981). For subsurface

saturation the important question is then what are the dominant mass movement
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mechanisms in that part of the catchment that is unsaturated on the hillslopes?

The list of the components of the model that need verification is daunting.

Many, however, go to the very heart of understanding the hillslope--channel

interactions that occur over geologic time. This chapter will not answer all the

questions, but confine itself to three experimental results that have been reported in

the literature.

The first work that will be examined is the experimental small scale catchment

simulation studies carried out by Parker and Mosley and reported in Schumm, et al.

(1987). These data are the best reported, and best controlled, experiments related to

catchment evolution. Scale effects in the sediment transport processes preclude the use

of a great deal of the data obtained, and from our perspective many interesting

variables were not measured. Nevertheless, it will be shown that the simulation model

exhibits both qualitative and quantitative similarities to the experimental data.

The second work that will be examined is work empirically relating slopes and

contributing areas (Flint, 1974; Tarboton, et al., 1989). It is shown that the observed

relationship can be derived from the simulation model analytically and that this result

corresponds well with that determined from networks based on digital elevation data.

The third, and final, work that will be examined is an observed relationship

between channel head contributing area and local hillslope slope (Montgomery and

Dietrich, 1988). It is shown that the data is consistent with the adopted activator

formulation, and that networks simulated using an activator equation fitted to this

data are realistic.

8.2 Plot Scale Catchment Evolution Experiments

Schumm, et. al. (1987) presents a comprehensive summary of work performed

at the Colorado State University in 1970's and 1980's using their experimental rainfall

erosion facility. The range of experimental work carried out was far reaching and
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touched upon almost all aspects of fluvial geomorphology. The particular work that is

of importance here is that described in Parker (1977). Parker simulated the growth of

channel networks using simulated rainfall and uniform sloping initial conditions on

elevations. Initial slopes were varied over almost an order of magnitude.

The following data from Parker (1977) will be discussed:

1. Planar network form with time, e.g., magnitude, Strahler ratios.

2. Length scales with time, e.g., drainage density, exterior link lengths.

3. Sediment yields with time.

4. Variation of drainage density with catchment slope.

The first of these points, planar network form with time, and in particular

Strahler ratios, was discussed in Section 7.2 and will not be further discussed here.

Before proceeding, however, it is important to list the limitations of the data

reported by Parker. This will provide a perspective on the verification of the

simulation model that follows. There are some problems in interpreting Parker 's data.

The first problem concerns the hillslope erosion processes. Schumm, et. al.

(1987) notes that the hillslope erosion processes in Parker's experiment were

dominated by rainsplash effects. This rainsplash dominance arises from the small

horizontal scale of the experimental catchments. Short hillslopes have low discharges

and small fluvial erosion terms. As an example of the use of the nondimensional of the

simulation model, Chapter 6 showed that for typical catchment scales diffusive

transport from rainsplash is about 10 times more important relative to fluvial

transport on the hillslopes of Parker's basin compared to typical field scale catchments.

In the introduction of this chapter, the ratio of the hillslope and channel erosion rates,

the Ot factor, was identified as one component requiring verification. At the field

scale, and in the model, it is postulated that the same, or similar erosive processes

dominate on both the hillslopes and the channels; with an unconfirmed component

being the ratio of the erosion rates. In Parker's experiment the erosive processes
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acting on the hillslope and in the channel are different: in the channel it is fluvial

erosion; on the hillslopes it is diffusive rainsplash. These two processes scale differently

with both discharge and slope so the relative magnitudes of erosion from Parker's

experiment are not applicable to the field scale.

The second point concerns the rate of growth of the network. The processes

that govern the rate of advance of the channel head are not well understood (Dunne,

1989). In the model these processes have been conceptualized, and the growth rate of a

channel at a point parameterized by dt. If dt is increased, the channel grows faster.

Conversely, if dt is decreased, the channel grows more slowly. In addition, there are

erosion forces acting at the channel head, like undercutting, landsliding, and sediment

transport, that are not considered explicitly in the model except through the activator

function. The activator function provides a threshold above which channelization

occurs, it does not explicitly give the rate of growth of the channels. How the growth

rate scales with area, discharge and slope is unknown. It is also probable that the

processes that are dominant at the experimental plot scale are not dominant at the

field scale. Thus the activator function and parameter dt for Parker's experiment may

not be applicable at the field scale.

A third problem is that Parker's data does not allow verification of the

stochastic component of the model because he used a uniform rainfall rate with time.

Thus the dependence of the sediment transport rate on mean annual peak discharge

cannot be tested.

Despite difficulties in the interpretation of the Parker data, some important

qualitative characteristics of his data are observed in the results from the simulation

model. One qualitative characteristic showed by both simulation and experimental

data is the scatter in the lengths of TS and S type links (see Section 2.2.3 for the

definition of link types) during the growth process. Parker observed that the lengths of

the S links displayed a greater variance than the length of the TS links and that the TS
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link length distribution did 'not vary greatly with time. Similar characteristics were

not observed in the simulations (Figure 8.1).

Parker noted that the sediment yield from the experimental catchments

initially rose sharply to a peak then declined slowly with time. He found that the

decline with time could be fitted with a curve of the form

Y= &V 7  (8.1)

where Y = sediment yield in mass/time

V = volume of water, a surrogate for time (V = RT)

a, 7 = fitting coefficients

= 850, -0.86 for Experiment 1

= 78, -0.15 for Experiment 2.

The difference between Experiments 1 and 2 was that in Experiment 1 a notch

was applied at the outlet so that network growth occurred primarily by notch advance.

In Experiment 2 no initial notch was applied so that the network did not grow so fast

nor so distinctly, initially. The slower decline of sediment yield in the second

experiment was because 'initial sediment yields were not high, but continued incision

of the channel and an increase in sediment transport efficiency maintained higher

sediment yields for a longer period during basin evolution" (Parker, 1977, p. 29).

For the simulated catchments a similar power law'decline of sediment yield was

observed. Figure 8.2 shows typical plots of sediment yield versus time for the

simulated catchments. Power laws have been fitted to the sediment yield decline, and

the fits, which are quite good individually are shown in the figures. The power of the

sediment yield decline, -y, is in the range of -1.2 to -1.8. These values are about 50%

to 100% higher than the single value for Experiment 1 reported by Parker. Despite this

the results of the simulations are considered consistent with Parker 's for two reasons.
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Figure 8.2: Sediment Yield with time, typical results
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1. The values for a and ^t, reported by Schumm for Experiment 1 given

above, were for a single experiment, with no indication of their

repeatability. The variation of y from -0.86 to -0.15 simply by

removing the notch suggests that they are sensitive to experimental

fluctuations. This is supported by Schumm who notes that slumps and

slope failures result in the yield 'fluctuating dramatically. "

2. Parker plots the yield versus time for different catchment reliefs (what

are effectively 6 related experiments) and it appears that the rate of

decline of sediment yield, 7, increases with catchment relief (Figure 6.2

in Parker, 1977). The reported value for 7, of -0.86, is the value for the

catchment with the lowest relief. Despite considerable scatter of the

data it appears that - could be up to twice as large (i.e., 7 e -1.6) for

the higher relief basins (Figure 8.3).

The final result of Schumm, et. al. (1987) that will be compared with the

simulation results is a regression between the drainage density and the mean

catchment slope obtained from the experimental data. A relationship for drainage

density based on catchment horizontal and vertical length scales was presented in

Section 7.3. It will be shown that the trend of drainage density with slope for the

experimental data is similar to the trend of the drainage density equation based on the

simulation data.

Schumm presented the relationship between drainage density and catchment

slope as

Dd = 0.91 + 22.4 S (8.2)

where S = (initial catchment relief from notch to watershed)/(length of the

experimental basin)
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The failing of this expression is that it predicts a nonzero drainage density when the

catchment slope is zero. The data was replotted on a log-log scale and a power law

expression obtained

Dd = 13.1 S0.62 (8.3)

The fit of this latter expression is as good as the original and has the added benefit of

predicting zero drainage density for zero slope. The -data points and the new

regressions are plotted in Figure 8.4

Using the simulation data a general expression for drainage density was

obtained (Equation 7.9). The difficulty of this expression is that it has a threshold on

TAlh and is not of the form of Equation (8.3) complicating the verification of the

simulation data. An alternative expression for the drainage density of the simulation

data was developed. This equation is

D = 5 x 103 0 0.1 1 TAc 1 .4 8  (8.4)

This equation is applicable for:

1. TAc >> TAh (i.e., drainage density is high).

2. m5 = 0.4, n5 = 0.3 (i.e., activator is overland flow velocity).

Equation (7.9) is more general than Equation (8.4), but in fact fits the appropriate

simulation data little better than the above equation.

The catchment slope can be approximated, for the purpose of the scaling

analysis, by S = Le/Ld, using the catchment vertical length scale, Le, and the

catchment horizontal length scale, Ld. In Parker's study the catchment area was

fixed, being the area. of the experimental basin. Consequently the catchment

horizontal length scale, Ld, is fixed so that changes in slopes are equivalent to changes
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in the catchment vertical length scale, Le*

From Equation (8.3) the trend of the experimental data is

Dd ~ SO.62 ~ LO.62 (8.5)d e

Similarly, from Equation (8.4) the trend of the drainage density from simulation data

is

D d O-0.11 TA 1. 48 Y 0-0.11 LO. 44  (8.6)t C t e

The 0t factor complicates the interpretation of the simulation data. The result

in Equation (8.4) is for the case where both hillslope and channel erosion are

dominated by fluvial sediment transport and

Qs,channel 01 Qml Sn (8.7)

Qs,hillslope 01 Ot Qm 51 (8.8)

where m1 = 1.8, n1 = 2.1 for Einstein-Brown sediment transport and

0 = Qsjhi I Is lope (8.9)
t Qs,channel

The factor Ot is the ratio of the hillslope and channel erosion rates. The experimental

catchments of Parker had hillslopes dominated by rainsplash so that the hillslope

sediment transport rate is (Equation 2.21)
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Os,hillslope =Dz (8.10)

We may interpret 0t in its most general sense as just the ratio of transport

rates on the hillslope and the channel so that for the experimental data

Q. rD a
ot shilsIoe z 1[ ] (8.11)

s,channel 0Q 1 JLs 1J

If the slope terms in this equation are replaced by the catchment vertical scale, as in

Equations (8.5) and (8.6), then

as
o ~ = L -n = (8.12)t Sn 1 ee

S i

where n = 2.1

Thus as the catchment becomes steeper (i.e., Le increases) the ratio of the sediment

transport rate on the hillslope to that in the channels decreases, i.e., the difference

between them becomes larger. Variation of hillslope form with slope is not addressed

by this analysis though it is not expected that any variations will be dominant.

If Equation (8.12) is substituted into Equation (8.6), then

Dd e .56 (8.13)

Comparing Equation (8.5), from the experimental data, and Equation (8.13), from the

simulation data, the agreement of the trends in drainage density with catchment

vertical scale, and thus mean slope of the catchment, is good. The differences of the
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powers of slope are within experimental error as can be seen in Figure 8.4 where an

equation of the form of Equation (8.13) is plotted.

8.3 Renormalization of Contributing Areas, Magnitudes and Slopes

Tarboton, et al. (1989) have found that channel networks derived from digital

elevation data show a relationship between area and mean slope in the channels of the

form

AaS = constant (8.14)

where A = contributing area to the downstream end of the link

S = mean slope of the link

a = a renormalization coefficient in the range of 0.4 to 0.7

(Tarboton, unpublished data).

Using the catchment evolution model developed herein, it is possible to derive this

relationship for a catchment in dynamic equilibrium. This relationship relates the

tectonic uplift regime of the catchment with the erosional processes occurring in the

channels.

For a catchment in dynamic equilibrium the tectonic uplift for any catchment,

or part thereof, equals the average erosional loss rate over that catchment. Thus, by

continuity in the channel at the outlet of the catchment, we may say

c0 A = Qs,outlet n01 m1 Sn (8.15)

where c 0  = tectonic uplift rate

A = catchment area
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Q = channel discharge at the outlet

S = channel slope at the outlet

A commonly observed relationship between discharge and area (e.g. Leopold, et

al., 1964) is

Q= i A a2  (8.16)

Substituting this relationship into Equation (8.15) and rearranging yields

a2ml-1 mi

A 1 S n= [+]i[ i (8.17)

Thus the predicted renormalization coefficient, ap, is

ap= 1 (8.18)p n1

To verify this relationship the renormalization of Equation (8.14) was fitted to the

catchment simulation of CR8-1, a simulation which had been allowed to proceed to

dynamic equilibrium. Equation (8.17) is applicable to the instantaneous areas and

slopes. A regression on these areas and slopes is shown in Figure 8.5. The fit is very

satisfactory (r > 0.99). The fitted renormalization coefficient is a = 0.374. Using the

parameters of run CR8-1 (a2 = 1.0, m, = 1.8, nj = 2.1), the predicted

renormalization coefficient is ap = 0.381, a very good agreement with the fitted value.

Tarboton, et al. found a value of the renormalization coefficient of a = 0.47

using mean link slopes and the total contributing area to the bottom of the link.

Further data on the sediment transport equation and flood frequencies for their
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catchment is required to verify the fitted renormalization. Nevertheless, the observed

renormalization is within the bounds of the predicted renormalization coefficient

(Equation 8.8). If, for instance, the same Einstein-grown sediment transport equation

is used, but with p = 3.5 (instead of p = 3), then with a2 = 1, the predicted

renormalization coefficient is a = 0.45. Thus the renormalization coefficient, a, is

fairly dependent on the governing sediment transport equations for the catchment. If

the flood frequency distribution with area for the catchment is known, so that a2 may

be estimated, then a is potentially an estimator of the exponents in the sediment

transport equation.

It should be emphasized that there exists considerable variability in the fitted

renormalization coefficient depending on how it is estimated. In addition to the

renormalization relationship with area (Equation 8.14) Tarboton, et al. fitted

relationships of the form

(2m-1)a' S = constant (8.19)

m S = constant (8.20)

where m = magnitude

a', a'' = renormalization coefficients for (2m-1) and m,

respectively

Flint (1974) fitted Equation (8.19) to 11 catchments and found a' to be in the

range 0.37 to 0.83 with correlation coefficients of around 0.9. Equations (8.14), (8.19)

and (8.20) were fitted to the simulation CR8-1, using definitions of area and slope

consistent with Tarboton to yield the coefficients a = 0.33, a' = 0.42, a'' = 0.53 with

correlation coefficients of r = 0.99, 0.86, 0.85 respectively. Thus there is considerable

variability in the renormalization coefficient depending on the variables used in the
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renormalization.

A commonly accepted relationship for area and magnitude is

E[A] = (2m-1) E[Ae] (8.21)

where E[.] = expectation operator

A, = area draining laterally to a link, assumed the same distribution

for both exterior and interior links.

It was shown in Chapter 7 that there is a significant difference between the area

draining to an exterior link and the area draining to an interior link. More correctly

then, the mean area should be expressed as

E[A] = m E[Ae] + (m-1) E[A] (8.22)

where Ae, Ai = area draining laterally to exterior and interior links

respectively.

Equation (8.19) is equivalent to Equation (8.14) only if Equation (8.21) is true. As

noted, however, Equation (8.22) is more satisfactory. The effect of the difference in

exterior areas is clear in Figure 8.6 where (2m-1) and area are plotted versus link

slope. For the regression of (2m-1) versus slope the difference in the fitted

renormalization coefficient is solely in the magnitude 1 links (i.e., exterior links), where

slopes are anomalously high. If a regression is fitted to (2m-1) and slope, ignoring the

exterior links, then the fitted renormalization coefficient is closer to that based on area,

a. This is consistent with Equation (8.22).

The extra area draining to exterior links is believed to be one possible reason
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why Tarboton, et al. (1989) observed considerable scatter in the fitted renormalization

coefficient depending on whether a, a' or a" is fitted to the data. The trend of a <

a' < a'' in the simulated catchments is consistent with that for their field data

It is also possible to fit the renormalization to the hillslopes. Equation (8.15) is

satisfied in the channel flowing out of the catchment, irrespective of the erosion

processes within the catchment. It can, however, be applied with equal validity to the

scales less than the hillslope scale. The sediment outflow is that corresponding to

transport on the hillslope, so that

c0A = 01 Ot 1 S (8.23)

where A = contributing area of hillslope

Ot = hillslope channel erosion rate factor

and the renormalization equation for the hillslope becomes

a2 ml-1 mII

A n ,] tn (8.24)

where this equation is derived in a similar fashion to Equation (8.17). If hillslope

erosion is governed by the same physics as the channel, then the renormalization

coefficient for the hillslope and the channel will be the same. The only difference will

be the value of the constant on the right-hand side.

Figure 8.7 plots the instantaneous slopes and areas for run CR8-1 for the whole

catchment, when at dynamic equilibrium. For comparison, two common measures of

hillslope scale are indicated in this plot. The first is the mean Strahler first order area.

The second is the mean source area. These length scales are common measures of
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hillslope scale. As predicted by Equations (8.16) and (8.24), the hillslope line falls

higher than the channel line. That is, for the same area the slopes are higher for

hillslopes than channels. This slope change is required by sediment transport

continuity at the boundary between the hillslope and the channel. This was discussed

for the one-dimensional case in Section 7.3. The predicted difference in the slopes,

from Equations (8.16) and (8.24) is

1

= (8.25)
.c-

and for run CR8-1 ( t = 0.1, nI = 2.1), this gives Sh/Sc = 3.0, which is corroborated

by Figure 8.7.

This sharp differentiation between the slopes of the hillslopes and channels is

not as pronounced when the catchment is far from dynamic equilibrium. Figure 8.8

shows the catchment of Figure 8.7 at earlier times, when the network is still growing.

For areas greater than 10, where timescales of sediment transport are short and

elevations proceed to equilibrium quickly, the differentiation of slopes between the two

regimes is clear. For smaller areas, where sediment transport is low and elevation

change timescales long, there has been insufficient time to develop this differentiation.

Note that the scatter of slopes increases as areas decrease, reflecting the progressively

longer timescales of elevation adjustment; small areas are further from dynamic

equilibrium. The question of timescales of elevation transients and equilibrium are

dealt with in detail Appendix A, in the context of the numerical solution of the fluvial

sediment transport equations.

The sharp differentiation between the slopes on the hillslopes and in the

channels in Figure 8.7 was not observed by Tarboton, et al. Figure 8.7, however,

represents the ideal situation and there are many reasons why the differentiation in
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slopes may not be observed. First, both Tarboton, et al. and Flint observed scatter in

the plotted slopes about the trend of up to half an order of magnitude. In addition,

before dynamic equilibrium the differentiation in slopes is not sharp (Figure 8.8). Both

of these effects would tend to hide any differences between the hillslopes and the

channels.

The activator function used here is perfectly deterministic so that the

differentiation between the hillslopes and channel is perfect; i.e. the activator line in

Figure 8.7 and 8.8 is a line. In reality both the activator function and the activator

threshold will be variable in space so that the activator line will rather tend to a region

of transition from hillslope to channel. The hillslope and channel lines in Figure 8.7

will still exist but the horizontal demarcation between hillslope and channel will be

blurred so that the region in which both channel and hillslope coexist (left of point A

in Figure 8.7) will be larger. If the slopes are averaged for a given area then the mean

line will fall through the channel line at high areas and hillslopes at small areas. A

possible renormalization that results from this is drawn in Figure 8.7 and is labelled

the observed renormalization line. The slope of this line, -0.5 to -0.6, is consistent

with slopes calculated by Tarboton, et al.

Tarboton, et al. (1989) noted a deviation from the power law trend of slope for

small areas. If their derived network had a high drainage density, they found that with

decreasing area mean slopes reached a maximum value and then slopes leveled off or

decreased for further decreases in area. This deviation is not totally unexpected. The

renormalization of Equation (8.14) predicts infinite slopes at the watershed where the

contributing area is zero. This is clearly unrealistic and indicates that other physical

- mechanisms must dominate hillslope form for small areas. It has been noted several

times that the diffusion term of Equation (5.1a) dominates the fluvial term for small

areas. Using the full governing Equation (5.2a), Equation (8.15) can be generalized to
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c0 A =/Qm 1 Sn1 + Dz L S (8.26)

where L = width of the catchment outlet = 1 (in the simulations)

and substituting for discharge

my am ni
c0 A =01 a 1 nA S + Dz L S (8.27)

Clearly as area diminishes the second term dominates and the equation can be

approximated by

c0 A =Dz L S

or

A-1 S = c 0
DzLz g

or in nondimensional form

A' 1 S= TT DET
TU DETY

so that the renormalization coefficient, ap, for diffusion dominated hillslopes is

(Figure 8.9a) a = -1. The slopes for areas intermediate between the two regimes are

indicated in Figure 8.9a and are calculated by solving Equation (8.27) for slopes with

area. Simulation CR8-3 was performed to confirm this prediction. The simulation

was diffusion dominated and the TAc was set so that the whole catchment was

hillslope (i.e. TAc < TAh). The areas and slopes near dynamic equilibrium and the
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calculated renormalization line are shown in Figure 8.10. Some nodes with low slopes

are apparent, corresponding to portions of the catchment far from dynamic equilibrium

(computer time limitations constrained how far the catchment could be allowed to

evolve). Note that all slopes fall below the renormalization line because of interactions

with the fluvial sediment transport term. This assertion is justified as follows. The

problem statement of Equation (8.26) can be generalized with two (or more) different

sediment transport mechanisms so that

m n1  m n/
c0 A = #1 Qm1 S + #I Qm1 S (8.28)

and the slopes at dynamic equilibrium are shown in Figure 8.9b. The main practical

problem is to determine the relative magnitudes of the two processes 01 and #1; this

determines the area threshold below which one of the processes (the one with smaller

ap) in Equation (8.28) governs the slopes and above which the other process

dominates. The scale parameter that controls this is (Figure 8.9b)

1n 1 a2(mn I -mInI) - (nj-n1 )
(8.29)

For 7J large the transition area is large and for #, small the transition area is

small.

We now leave the issue of the renormalization coefficient and discuss some of

the differences in hillslope and channel characteristics highlighted by Figures 8.7 and

8.8. As was shown in Section 7.3, if the channel head is not to grow, then in the

hillslope around the channel head,
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#5 Q m S5 n< athreshold (8.30)

If the channel head is just at the point of growing, then in the hillslope around

the channel head

m5 5n5 = athreshold 
(8.31)

and if the channel head is actively growing, then in the hillslope around the channel

head

m5 Sn5 > athreshold 
(8.32)

Equation (8.31) is the dividing line between two regimes of behavior, active

channel growth or no-channel growth and will be referred to as the activator line.

This line determines the hillslope scales through the hillslope activator number, TAh

It was shown in Section 7.3.1 that TAh = constant which is equivalent to Equation

(8.31).

All the hillslope nodes in Figure 8.7 must fall within the regime of Equation

(8.30); i.e. to the left of the activator line. Some of the hillslopes around the channel

heads will fall on the intersection of the activator line and the hillslope line. This

situation was illustrated in Figures 8.7 and 8.8 where the activator threshold was

plotted. Since not all channel heads lie on the intersection of the hillslope and

activator lines, small perturbations in the activator or the threshold will only cause

some of the hillslopes around channel heads to channelize, not all of them. This is

illustrated in Figure 8.10a where the activator threshold for wetter conditions is

plotted.
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Another interesting point in Figure 8.7 is that there exists a portion of the

channel network that falls to the left of activator line, within the regime of Equation

(8.25). This is apparently contradictory.

There is no contradiction if we consider the case where the channelization

mechanism is autocatalytic (Figure 8.11a). Once the activator threshold is exceeded

channelization occurs irrespective of other catchment characteristics. This is the

situation modelled in this work in Equation (5.1). A channel node to the left of the

activator line arises when a hillslope node goes into the domain of Equation (8.32)

either through attaining a high slope or large contributing area. The hillslope node

then differentiates into a channel (i.e. it falls vertically to the channel line in Figure

8.8). Unless the area draining to that node increases dramatically during the

channelization process, this node will fall to the left of the activator line after

channelization. Channels will be formed at the first point downstream at which the

area is sufficient to cause the activator to exceed the activator threshold. Immediately

downstream of this point, in the channel, slopes are lower and these points in the

channel will fall to the left of the activator line.

However, this does not explain the existence of channels to the left of point A in

Figure 8.7. These channel nodes result from high transient slopes in the hillslopes at

times before dynamic equilibrium. At early times there is significant scatter in the

hillslope slopes (e.g., Figure 8.8). Some hillslope slopes are large enough to trigger

channelization, even though their slope at dynamic equilibrium (given by the hillslope

line in Figure 8.7) would be too low to do so. This influence of transient slopes is an

important point since it indicates that even at dynamic equilibrium there are parts of

the channel network that exist only because of transient effects during the catchment

evolution process

On the other hand, consider the case where channelization is not an

autocatalytic process. In this case for a hillslope node to become a channel, activator
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must exceed the activator threshold throughout the transition from hillslope to

channel, i.e., during the transition the node must always fall to the right of the

activator line. If a hillslope node is just to the right of the activator line then it starts

to channelize. It will fall vertically with time in Figure 8.7 (providing its contributing

area does not change substantially). At some later time this node will cross the

activator line at which time channelization can proceed no further. That node will be

stuck in a state intermediate between hillslope and channel. This case is illustrated in

Figure 8.11. The points that fall on the activator line are intermediate between

hillslope and channel. Since there is no distinct transition from channel to hillslope, as

was the case for autocatalytic channelization, then channel heads will no longer be

distinct. Rather channel 'heads" will have a gradual transition from channel to

hillslope as described by Kirkby (1988).

There is one similarity between the case of autocatalytic and nonautocatalytic

channelization. For the nonautocatalytic channelization case under wetter conditions

transition nodes become more channel-like. Under dryer conditions, however,

intermediate nodes do not become more hillslope like; the activator function only

triggers hillslopes to become channels in the differentiation equation, not vice versa.

For the autocatalytic channelization case under wetter conditions the channel network

will extend. Under drier conditions the channel network cannot recede unless a

mechanism that explicitly obliterates channels is postulated. Thus both types of

channelization postulate a mechanism for channel growth that is one way: from

hillslope to channel. Neither explicitly postulates a mechanism for obliterating

channels.

8.4 Channel Initiation Mechanisms

Dietrich, et al. (1986) and Montgomery and Dietrich (1988) studied the

hillslopes surrounding channel heads in a number of field sites in California and
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Oregon. They observed a hyperbolic relationship between the area upstream of the

channel head, the source area, and the local slope on the hillslope in the steepest

direction immediately upstream of the channel head. In addition, they observed a

negative correlation between the prevailing mean annual rainfall and the size of the

source area. More rainfall was accompanied by a smaller source area for a given slope.

The data presented in Montgomery and Dietrich (1988) are reproduced in

Figure 8.12. The three study sites, Coos Bay, Sierra Nevada, and Marin County have

mean annual rainfalls of 1500 mm, 260 mm, and 760 mm, respectively.

The activator formulation of Equation (5.2a) is

a = 5 Q5 Sn5

and if the Hortonian runoff discharge-area relationship of Equation (6.5) is adopted

Q =RA

where R = effective runoff rate.

then the activator function may be expressed as

a = #5 Rm 5 Am5 Sn5  (8.33)

If the data of Montgomery and Dietrich represent the activator line of Section

7.3.1 and Equation (8.31), then their data may be fitted by an equation of the form of

Am5 Sn5 = ath r e shold (8.34)m
, R 5

353



Fitted Activator function

0* .0.0
0

valey gradient (m/m)
1.0

(a) Coos Bay

Fitted Activator function

0

41

Montgomery and Dietrich (1988)
-channel initiation criteria

eq

A

0
'a

104_

-03_

0

0.0

Fitted Activator function

* 0

0

vaney gradient (m/m)
1.0

(b) Sierra Nevada

Figure 8.12: Hillslope slope and contributing
area data: Montgomery and Dietrich (1988)

(original drawings from W. Dietrich)

P. I IIIII s .IIIINw

valey gradient (m/m)

(c) Marin County

104.-eq

A

0'a

0 .0

1Q5 -

A

0
U,

102

0.0 1.0

354

ff102



or
1

A S n5/m 5  athreshold m5 1

= a' (8.35)

threshold

where athreshold = the activator threshold normalized (but not

nondimensionalized) for prevailing runoff rates, and

other catchment conditions.

Equation (8.35) was fitted by eye to the data of Figure 8.12 Each of the three

data sets were fitted individually and the best regressions are listed in Table 8.1.

These regressions are also plotted in Figure 8.12. The general form of the fitted

activator line was

A S2.5 = constant (8.36)

These regression equations are very different to those fitted by Montgomery and

Dietrich (the dotted line in Figure 8.12c). Their mechanism based on groundwater

stream sapping and landsliding is concave down, the regression fits are concave up.

In addition, Montgomery and Dietrich note that the data contradicts results

obtained by Kirkby (1986) for a subsurface saturation runoff mechanism with channel

initiation based on overland flow sediment transport. Kirkby predicts an increase of

source area with slope, since as slope increases the saturated area decreases reducing

the overland flow erosion potential. If on the other hand the hillslope is dominated by

Hortonian overland flow in triangular rills, flow governed by Mannings equation, and if

bottom shear stress is assumed to be the process that triggers channelization, then the

functional form of the activatQr equation (Table 5.2) is
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TABLE 8.1

Activator Regression;
Montgomery and Dietrich (1988) Data

Site I Regression

Coos Bay AS 2 .5 = 710

Sierra Nevada AS2. 5 = 2020

Marin County AS2. 5 = 1240
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a = 7= ( Q5

This overland flow mechanism is approximately consistent with the field data of

Figure 8.12. Of course, this argument does not constitute a proof that the channel

initiation mechanism is shear stress in rilled flow. Rather it indicates the difficulty of

attributing a physical interpretation to the channel initiation mechanism without

detailed field work to understand both the dominant, or geomorphologically effective,

runoff mechanisms and the detailed mechanics of channel extension at the channel

head. For instance, preliminary field work suggests that groundwater flow plays an

important part in the growth of channels heads in Marin County (Dietrich, personal

communication) yet Equation (8.34) does not explicitly involve groundwater processes.

Montgomery and Dietrich also noted a systematic deviation in the source areas

measured for the three study sites and qualitatively attributed that deviation to

differences in the average rainfall, and thus runoff, at each site. A large amount of the

systematic deviation of the constant in Equation (8.36) can be quantitatively explained

by the dependence of Equation (8.34) on runoff rate. Consider the simplest case

possible where the runoff in Equation (8.35) is proportional to the mean annual rainfall

(i.e. r a R). Using the equations fit by eye to the data (Table 8.1) gives a best fit

equation of

Q S2.5 a rA S2.5 = 0.87 (8.37)

where r = rainfall rate.

This regression reduces the coefficient of variation of the residuals from 50% to

19%. The fit is hardly perfect, and only three points were used in the regression so not

too much significance should be placed on this result.. What it does indicate, however,

is that the trend of the field data is consistent with runoff component of the activation
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criteria fitted to the data. This lends credence to the form of the activator criteria.

Finally it should be noted that the slopes in the channels are irrelevant in

Equation (8.37). The relevant slopes are the hillslope slopes. As has been stressed

elsewhere in this work, the channel growth process is governed by the hillslope

processes; the channels act only to guide the overall form of the hillslopes by the

preferential drainage that occurs to the channel.

The fitted activation criteria is consistent with those proposed in Table 5.2,

though it might be noted that the fit of the area to slope is at the high end of the range

of n5 /m 5 proposed. Most of the simulations discussed in Chapter 7 used a value of

n5/m 5 = 0.75, while the fitted value is 2.5. To check that reasonable networks and

catchments can still be generated with this value of n5/m 5 a number of simulations

were run with n5/m 5 = 2.0. The networks and the catchment elevations at the time

when the channel network stopped growing are given in Figures 8.13 and 8.14. The

results are reasonable, but do display a number of interesting characteristics.

The first interesting characteristic is that the networks generated did not

always fill the entire grid when the tectonic uplift applied was an initial instantaneous

uplift. In some of the runs the network only extended into about half the grid and

then stopped. This behavior is explained by examining TAh for n5/m 5 = 2.0

(Equation 6.13e).

L n5 Lm 5 F
TA z R c1  5  (8.38)

TR

Note that L does not appear here because 2m 5 -n5 = 0. Thus TAh = constant

requires Lz = constant; all other scales in Equation (8.38) are externally applied. At

the root of the network, where the channel is at its lowest elevation, the hillslope relief,
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Lz, is highest. Thus channels will grow here. For points upstream, which are at a

higher elevation, the hillslope relief is lower and TAh is lower. At some point TAh

falls below the value above which channels grow, at which stage the channel can no

longer grow. For hillslope relief lower than this threshold relief the activator is

insufficient to extend the channelization. As athreshold is increased so that this

threshold hillslope relief is increased it is found that the channel network is unable to

grow the fill the whole region. This argument is valid for Davisian, event tectonic

uplift, regimes. Regimes with continuous tectonic uplift may suffer the same fate if

overland erosion rates are very high relative to the rate of extension of the channel

network so that hillslopes never attain the necessary high reliefs.

The second interesting characteristic of the simulation is related to the value of

n5 /m 5. For the simulations of Chapter 7, with n5 /m 5 = 0.75, the relief threshold

characteristic noted above does not occur because TAh involves a term of the form

2m5-n 5
L m5, where 2m5-n 5 > 0. If there is insufficient hillslope relief to induce

channelization, then channelization stops until overland erosion has proceeded enough

to increase the contributing area to that channel head (i.e Lx is increased). Lower

relief just means increased hillslope lengths, Lx, before channelization will occur. For

n5/m5 = 2.0, the contributing area has no effect whatsoever. For n5/m 5 > 2.0,

decreasing the contributing area increases TAh and thus the tendency to

channelization. This arises because, in TAh, as the contributing area increases, the

slopes decrease, and this decrease of slope dominates the increase in area. Since

Equation (7.15) indicates that TAc dominates all other nondimensional numbers in

setting the rate of growth of the network, channel growth is fastest when the slopes are

highest. Fast channel growth will tend to maintain high slopes. At some slope,

however, the hillslopes will become unstable and landsliding will become the dominant

mechanism for hillslope sediment transport. This follows from the equation for
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landslide transport proposed by Andrews and Bucknam (1987) where transport tends

to infinity as the slope approaches the angle of repose (Equation 2.23). This is

consistent with Montgomery and Dietrich who reported micro-landsliding at some of

their field sites, and the fit to their data of n5 /m 5 = 2.5 in Table 8.1 puts their data

in this steep slope regime.

The third interesting characteristic is the influence of n5 /m 5 on growth site

screening. A clear trend in drainage density can be seen in Figure 8.13; drainage

density is highest at the outlet and least near the edges of the network. Screening of

growth sites occurs in the catchment simulation model by the reduction of contributing

areas to nodes near the root of the channel network. Slopes are about the same

everywhere. For n5 /m 5 < 2, TAh is highest at the network extremities. As n5 /m5

increases the effect of screening is reduced because of the relative lesser importance of

areas and network growth is less biased towards the network extremity. Drainage

densities will tend to be higher inside the network.

Finally the dynamic equilibrium and renormalization ideas of the previous

section have some important implications for the interpretation of the data in

Figure 8.12. The channel slope-area renormalization of the previous section and the

autocatalytic channelization process mean that a number of different, and conflicting,

interpretations can be given to the data.

The first interpretation is the case where the catchments are at dynamic

equilibrium and the channelization mechanism is autocatalytic. In this case all of the

data of Figure 8.12 must be on the hillslope line of Figure 8.8. In this case the

Montgomery and Dietrich data is not measuring the activator line of Figure 8.8, but is

in fact measuring the renormalization function for the hillslope. Moreover, the value of

a for a regression fit of Equation 8.14 to the data of Figure 8.11 is a r 0.33 - 0.4. This

value is within the range of values for ap (Equation 8.17) using fluvial sediment

transport equations (Table 5.1). This is one explanation for their data.
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The second interpretation that may be given to the data is that the catchment

is at dynamic equilibrium, but that the channelization mechanism is not autocatalytic.

This case was illustrated in Figure 8.11b. In this case it is probable that the data of

Montgomery and Dietrich measure the activator line, in Figure 8.11b labelled

transition. Note that in this case the channel heads would be indistinct and not well

defined; Dietrich (personal communication) indicates this to be the case at some of the

study sites.

The third interpretation that may be given to the data is that the catchment is

not in dynamic equilibrium and that channel head growth is still occurring. In this

case the hillslopes around growing channels will lie to the right or above the activator

line. Nongrowing channels will be to the left or below the activator line. The observed

data would probably be indicative of the activator line. Montgomery (personal

communication) has observed that some of the channel heads are actively eroding.

This suggests that at short time scales, the channel network is growing into the

hillslope; catchments cannot be at dynamic equilibrium. Whether this is true for long

time scales is unknown, the current growth may be no more than a short term random

fluctuation of the channel head position.

Which of these three interpretations of the presented data is correct cannot be

determined without further study. Each interpretation is consistent with some of the

observations so that none can be totally eliminated from consideration at this stage.

Either of the second or third interpretations suggest that the data measures the

activator line and thus the activator function. This was the interpretation that was

adopted in this section.

In conclusion, the data of Dietrich, et al. (1986) and Montgomery and Dietrich

(1988) has been examined and reinterpreted using the activator function of this work.

After fitting the activator function catchments were simulated and the results were

satisfactory. The simulated channel networks did exhibit a trend in drainage density
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within a single network and it was postulated that this result followed from the

reduced growth site screening for large values of n5 /m 5, the regime of Montgomery and

Dietrich's data. Some questions were raised regarding the interpretation of the

presented data that can only be resolved by further field work
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CHAPTER 9

CONCLUSIONS

9.1 Summary of Results

This work consisted of three sections. The first section was devoted to

understanding those processes that create networks, whether they be hydrologic or

otherwise. On the basis of extensive simulation with a model from the biological

literature a number of necessary conditions were proposed for any physical system that

generated networks. Elements of chaotic behavior were discovered in the network

growth process of this model. This chaos explained the observed random network

generation. .Because of similarities in the physics there is reason to believe that these

results are applicable to the channel network growth model proposed in this work.

The second section of this work developed the physically based model of channel

network growth and hillslope evolution. This model simulates the long term changes

in elevations within the catchment and the consequent effect on channel network

growth and hillslope form. The changes in elevation are modeled by continuity

equations for flow and sediment transport; elevation changes result from local

imbalances in the sediment transport. A channelization mechanism, called activator,

which is nonlinearly dependent on discharge and local slope is used and it is the spatial

distribution of the activator around the channel head that governs where and whether

the channel head grows; a channel grows if the activator exceeds a threshold. A

central component of the model is that erosion in the channels takes place at a faster

rate than in the hillslope. This preferential erosion in the channels results in

convergence of the flow on the hillslopes towards the channels. It is the convergence of

flow that triggers channel growth. Thus the interaction between the hillslopes and the

channels over long timescales is central to the final form of the channel network, and
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the hillslopes.

The sediment transport formulation used was related to a generally accepted

sediment transport equation; Einstein-Brown. It was shown that the instantaneous

sediment transport can be related to the long term mean sediment transport with a

simple dependence on the mean annual peak discharge. The activator function was

justified, in a similar fashion, using commonly accepted thresholds for channel erosion

protection.

A nondimensionalization of the equations was presented and nondimensional

numbers that control the physical processes within the catchment were proposed.

Using these nondimensional numbers similarity conditions for disparate catchments

were presented; catchments that satisfy the similarity conditions have comparable

physics. This work allows, for the first time, the comparison of catchments in a

physically meaningful fashion. The implications of the nondimensionalization for a

proposed classification scheme of fluvial landscapes were discussed and some questions

raised regarding the unsuitability of aridity and rate of tectonic uplift as landscape

classification criteria.

The third section of the work concentrated on the interpretation of the results

of using the proposed catchment evolution model in a numerical simulation mode. It

was demonstrated that the network's growth process was sensitively dependent on the

elevations. For catchments satisfying the similarity conditions noted, the topological

statistics of the generated networks varied greatly both in time and between

simulations. This variation was consistent with results from small scale model studies.

Statistics of the catchment not based on topological characteristics exhibited much less

variability.

One of the nondimensional numbers, the activator number measuring the

magnitude of the channel initiation process, was found to be a significant influence on

the drainage density within the catchment. If the length scales used for calculating the

366



activator number were the hillslope length and hillslope drop the activator number was

found to approximately constant. This constancy of the hillslope activator number

was the fundamental relationship determining the hillslope length scales and thus the

drainage density. Importantly the activator number was dependent on both hillslope

slope and hillslope length so that steeper hillslopes meant shorter hillslopes and a

higher drainage density. Without information on the hillslope slopes the hillslope

activator number does not completely determine the drainage density. It was

demonstrated that the hillslope slopes were related to the catchment slopes and in turn

the catchment slopes were related to the tectonic uplift regime. Steeper catchments

had steeper hillslopes and through the hillslope activator number higher drainage

densities. A regression between drainage density and the catchment slopes provided

the crucial link between catchment scales and hillslope scales that allowed the

determination of the hillslope length. Thus neither the hillslope nor the channel

network may considered separately, they are only components of a larger system, the

catchment, which must be considered in its unity to understand the development of

landscape form.

The drainage density and the rate of increase of drainage density were related to

the nondimensional numbers and physically based explanations of the trends proposed.

The planar properties of the networks and the hillslopes were examined. It was noted

that many of the measures of link length and hillslope length are linearly related and

these relationships appeared to be independent of the majority of the governing

physics. The form of the catchment at dynamic equilibrium was examined. In

particular, it was shown that differences in the hypsometric curve that have been

previously attributed to catchment age are in fact attributable to the tectonic uplift

history of the catchment; i.e. whether tectonic uplift was a single uplift event (i.e.

Davisian) or continuous uplift leading to dynamic equilibrium.

The verification of the model against existing experimental data was an
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important component of this work. Many characteristics of the network were

examined and successfully compared with the reported experimental data. The model

was compared with trends observed for small scale experimental catchments generated

in erosion facilities. The trends of sediment transport with time and drainage density

with slope are consistent with those reported.

Experimental results relating channel slope to link magnitude and contributing

area were examined. Similar results were observed in the simulations. This

correlation was explained by an equation relating the sediment transport and tectonic

uplift within the catchment at dynamic equilibrium. This result, which followed from

the proposed catchment evolution model, explained many, apparently anomalous,

characteristics of the field data. Deviations in slopes at small areas were demonstrated

to result from diffusion domination of transport on the hillslopes. It was shown that

the slope-area regression may be a useful means for determining the dominant

sediment transport processes both within the channels and on the hillslopes.

Recent data relating hillslope slopes and contributing area draining to channel

heads were satisfactorily explained by the activator function adopted in this work.

The activator function was also able to explain an negative correlation observed

between the channel head source areas and mean annual rainfall at the site. This

followed from the activator's functional dependence on discharge, and thus runoff.

Catchment's simulated with the activator function fitted to the data appeared

realistic. In addition, the nondimensionalization of the activator indicated that the

fitted channel head extension process should induce localized landsliding, which was

consistent with the field observations.

In conclusion, it is noted that the catchment evolution model proposed in this

work was consistent with most of the available field data. Some credence may be

placed on the predictions of the model. While the simulation model is not perfect it is

strongly believed that the model provides a powerful new tool with which to examine
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the physical processes that govern the geomorphology and hydrology of catchments.

9.2 Further Research

Further research based on the work presented here can proceed in two

directions. First, since many of the large scale interactions within the model are poorly

understood there is a need for further verification of the model against field data.

Second, the model, model structure and nondimensionalization of the proposed physics

provide opportunities to explore aspects of both hydrology and geomorphology that

have been previously inaccessible.

Consider the field verification of the model. Here further work can take two

directions. The first direction is to attempt to obtain all the physical parameters

required for the model in order to confirm the predictions of the model. As noted in

the introduction to Chapter 8 these data requirements are quite daunting and include

1. Channel and hillslope sediment transport equations.

2. Flood frequency distributions related to area.

3. Channel head advance rates and an accurate mapping of the geographic

position of channel heads. Determination of which heads are advancing

and which are not so that the activator function may be determined.

4. Detailed elevation data for the catchment.

The second direction that experimental verification may take is along the lines

of Section 8.3 where the field data were used to verify simulation results from the

model rather than the actual governing processes. If theoretical predictions can be

made with the model then these can be used to design a well controlled field

experiment measuring the physical properties of greatest interest.

For instance, in Section 8.3 a relationship between slope and area is discussed.

The comparison of this section was incomplete since flood frequency data and sediment

transport relations were not available to verify the fitted relation. The comparison
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might be considered something of a parameter estimation exercise since the model was

shown to be a plausible explanation for the observed trend not that it was the correct

explanation. More work could usefully be carried out here.

Field measurement of slopes and areas in both the channel and the hillslopes at

the channel heads may be able to verify the sharp difference in hillslope and channel

slopes predicted by the model at dynamic equilibrium. A paired comparison of slopes

in the channel and the hillslope at the channel head may be able to eliminate much of

the scatter observed when the slopes and areas from digital elevation data are lumped

together.

The mean long term sediment transport relation derived from the instantaneous

sediment transport relation could be verified from field data. Sediment transport over

a number of storms -could be examined and the net result integrated.

There are considerable prospects for further work theoretically using the

numerical model developed. Ideally much of this work would proceed in parallel with

field work to allow verification of predictions made. Some ideas for extension of this

work include

1. Incorporation of the subsurface runoff mechanism. The current

computer code uses Hortonian overland flow. The code was designed to

facilitate the extension to subsurface saturation runoff. Simulated

catchment characteristics could then be examined. New nondimensional

parameters that result from the new physics could be correlated to

catchment characteristics, as was done in Chapter 7. It may be possible

to distinguish between those catchments with Hortonian runoff and those

with subsurface saturation runoff on the basis of these catchment

characteristics.

2. Other sediment transport mechanisms on the hillslopes may be

examined. The physically based explanation of the area-slope
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renormalization provides a framework within which this may be

examined. With sufficiently detailed elevation data it may be possible to

infer the dominant transport mechanism on the hillslope remotely, which

could then be verified in the field.

3. The constant velocity assumption implicit in many instantaneous unit

hydrograph (IUH) models may be examined. The renormalization of

slope on area provides a physical basis on which to base estimates of

flood wave velocity.

4. An extension of point 3 would be to develop a synthetic IUH by

examining the unit response of the synthetic catchments. The shape of

the IUH could parameterized in a particularly parsimonious fashion

based solely on the nondimensional numbers.

5. The similarity conditions proposed in Chapter 6 could be examined to

increase their generality in the classification of landscape. In a practical

setting it may be possible to use these similarity conditions in the

restoration of land to its natural condition after open-pit mining

operations. The numerical model would also be useful in this regard. It

might also be a useful design tool for predicting risk of gully erosion from

modification of landuse and climate.

Any extension of this work will doubtless require a great deal of numerical

simulation. While substantial effort has already been devoted to the solution of the

sediment transport equation there is a need for further work. The existing technique is

explicit and suffers the stability problems of explicit schemes. The use of the

predictor-corrector algorithm with nonlinear extrapolation only serves to defer the

stability problems. Currently the model is very computer time intensive, each

simulation taking of the order of 1-2 CRAY X-MP CPU hours (approximately

100-200 microVAX hours). For the grid sizes used this is comparable with other
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two-dimensional sediment transport models. Nevertheless, it is apparent that some

effort will need to be devoted to the numerical solution scheme before significantly

larger grids can be solved.

In conclusion, it might be noted that this work has barely scratched the surface

of a novel approach for examining the geomorphology and hydrology of the landscape.

It is believed that the model of this work provides a useful framework that can be

extended and generalized to study many unexplored aspects of catchment

geomorphology and hydrology.
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APPENDIX A

IMPLEMENTATION DETAILS OF

THE "BRANCH" NETWORK SIMULATION CODE AND

THE "FEOUT" NETWORK ANALYSIS CODE

A.1 Introduction

This appendix describes the numerical and algorithmic details of the two

computer codes that have been developed for this work. The first and most important

computer code is the numerical implementation of the physically based channel

network and hillslope evolution model described in Chapter 5. The solution of these

equations is very difficult because of their strong nonlinearity and numerical stiffness.

A detailed discussion of the adopted solution algorithm is presented below.

The second computer code is one that analyzes the output of the network

simulation code. The large amount of data generated by the network simulation model

makes it very difficult to satisfactorily analyze the data by hand. The code is

sufficiently general to have uses for catchment analysis quite apart from the analysis of

the simulation data herein.

A.2 The Branch Network and Catchment Simulation Code

A.2.1 Introduction

The code is written in FORTRAN 77 and the latest version of the code is

V6.30. It exists in two forms, one optimized for running on a standard serial computer

(e.g., VAX, Macintosh) and one optimized for running on a CRAY X-MP vector

supercomputer. Unless otherwise noted, all data in this thesis were generated with the

vectorized version V6.28. The differences between versions V6.28 and V6.30 are

cosmetic.

The variable identifiers in the code and their correspondence to parameters in
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the model detailed in Chapter 5 are given in Table A.l.

TABLE A.1

Model Parameters and Computer Variables

Computer Model
Variable Parameters

z z
Y Y

pore n
Dz DzDzz
bI

ml m

ni n

b5 05
m5 m5
n5 115

dtime dt
otime ot

b3 /3
n3 n3

notch c0

To solve for elevation and channelization, a catchment shape is chosen and it is

subdivided by a square grid, equally spaced in both directions. The node points of the

grid are the points at which the elevation and channelization function are determined.

The code has some limited capability for modeling irregular boundaries, but none of

the data presented in this work have used this capability (Figure A.1).

The code is written so that the timescale of elevation change, T, (Equation 6.4)

is unity. All variables involving time dependence are defined relative to this timescale.
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Figure A.1: Definition of terms used in the
solution algorithm
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The timestep used in the solution of elevations is defined by an input parameter as a

proportion of this timescale. In all results presented here the time indicated is time

nondimensionalized by the timescale T; in the code T is referred to, somewhat

erroneously, as the timestep. In addition, the code assumes that the grid spacing in

each direction is unity so that L in Equation (5.1a) is unity for all the simulations.

All length scales quoted in this work are, unless otherwise stated, in grid length units.

A number of different tectonic uplift regimes are allowed. All tectonic uplifts

are defined relative to the elevation of the catchment outlet. Either continuous with

time uplift or no uplift are possible with the spatial distribution being either uniform in

space or linearly varying along one of the principle directions of the grid. When

combined with the capability of the code to output data files listing all states and

parameters at any specified time and the ability to restart from those files using

modified parameters (e.g. tectonic uplift) this creates a flexible capability for modeling

both time and space varying tectonic uplift. Note that a spatially uniform tectonic

uplift with a fixed notch elevation is logically equivalent to a lowered notch elevation

with no tectonic uplift; only the datum from which the elevations are defined changes.

A.2.2 Determination of the Discharge and Local Slope

To begin the calculations initial elevations are assigned to the grid and the

catchment assigned an initial pattern of channelization. All the simulations of this

thesis use as initial conditions a flat surface for elevations with no channelization. A

node that is the outlet to the catchment is chosen and its elevation fixed. Tectonic

uplift is applied to the remaining nodes within the catchment. Very small random

perturbations to the initial elevations are applied with a typical value being 0.25% of

the initial tectonic uplift.

Using this elevation information, the computer code determines a drainage

direction at each node. A node may only drain into one of the 8 nodes directly
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adjacent to it. The drainage direction determines the node to which all the flow

drains. Broadly speaking, the node drains in the steepest direction though the exact

means of determining this steepest direction varies as follows. If the node is a channel,

then the drainage direction is towards the node with steepest downhill slope

constrained so that

1. Drainage is only allowed into another channel. Channels cannot drain to

hillslope nodes.

2. If a channel drains across a diagonal, as shown in Figure A.2(a), then the

value of the slope in the diagonal direction is defined as that slope to the

channel rather than that to the node diagonally opposite. This is

consistent with the catchment surface being approximated by a

triangular finite element with the opposite side having the elevations in

the channel and the apex having the elevation at the node. The slope is

thus the diagonal slope to the channel. In Figure A.2b it is clear that

any drainage to point A ultimately ends up at node labelled B. To avoid

the potential for drainage directions that cross, the drainage direction at

the node is defined as being directly to node B, rather than diagonally.

If the node is a hillslope node, then the drainage direction is to the adjacent

node with the steepest downhill slope. If a channel cuts across the diagonal as in

Figure A.2(a), the slope and drainage direction algorithm of point 2 above is used.

These rules for determining the slopes and drainage directions ensure that

1. Crossing channels or crossing drainage directions do not occur.

2. The restriction of channel nodes to draining into other channel nodes

reduces the effects of small numerical instabilities.

3. The channel network and hillslope flows represent a good approximation

to the flow in the direction of steepest slope.

The contributing area at each point is determined by summing all the areas of
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Figure A.2: Slope and drainage direction determination
in the presence of diagonal channels

389

44



the nodes contributing to that node. The algorithm to do this is based on the equation

(see Figure A.3)

8

A = (I A1 ) + 1

i=1

where A = the area of the adjacent node i

{ i if node i drains to node j

=0 if node i does not drain to node j
This equation is solved iteratively by relaxation. Discharge is related to area by the

expression

Q = #3 Am3

In this work only a value of m3 =1 has been used.

A2.3 Solution of the Sediment Transport Continuity Equation for Elevation

Elevation changes result from imbalances in sediment transport. If more

sediment enters a node than leaves, then the elevation at that node increases and vice

versa. The balance of sediment transport at a node is determined by evaluating the

sediment transport into that node and subtracting the sediment transport out of that

node. The sediment transport equation, which is given by (variables are defined in

Section 5.2)

QS= f(Y) Q Sn

is evaluated at every node. The discharge- used is that discharge based on area
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determined in the previous section and the slope used is the local slope in the steepest

direction as determined in the previous section. The rate of change of elevation at a

node due to fluvial sediment transport alone is then given by

N m n

= ps(l-n) 1A -' 'ii f(Yi) Q i Si (A.1)
1=1

1 i f node i drains into node j
where I = 0 i f node i does not drain into node j

-1 when i = j
N = number of nodes in the grid

n = porosity of sediment

ps = density of sediment

Axk = grid spacing in the k direction = L

Diffusive transport is also allowed. The Fickian diffusion term is evaluated in

space by a five point centered finite difference approximation so that

D 9 z ~D zi+j + z l + z i-l7j + z -- 4z

z z AxA 2

(A.2)

where Dz = diffusivity

zq d = elevation at the node with the (x1 ,x 2 ) coordinates equal to (ij)

_ az z..
22 + - ; Einstein implied summation convention
k 1

Equations (A.1) and (A.2) are solved in time by an explicit finite difference

scheme. An explicit scheme was adopted over an implicit scheme, despite the poorer

stability properties, because of the difficulty of solving for the drainage directions,
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area, and discharges implicitly. Comparison of the adopted scheme, described below,

with an implicit scheme of Roth (1986), used for hillslope simulation, indicates similar

computational burdens for roughly comparable problems. A number of different

numerical techniques for solving the elevation equation were tested. The two most

successful techniques, described below, are related; the second is an extension of the

first. They are both based on a two point predictor-corrector scheme (Acton, 1970).

The first scheme uses linear extrapolation for the predictor step, and parabolic

interpolation for the corrector step. In this scheme the predictor equation is given by

Oz
z?(t 0+At) = z(t 0 ) + At t

0 Ttz=z(t),Y=Y(to)

OY
_Y(t 0+At) = Y(t 0 ) + At -- Z(t)YY(t (A.3)

The corrector step which uses the states and derivatives with time at time to,

and the predicted derivatives with time at time t0 +At interpolates those with a

parabola to give the corrected states of

zc(t 0+At) = z(t 0 ) + A[ O(

+ z=z z(t0+At),Y=_(t +At)

az
+ tz=z(to),Y=Y(to)1 A4
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Y e t + ) = YAtt + O(t 0 +At) = Y(t0 ) + 9 [t z=z'(t0 +At),Y=YP(t 0 +At)

+D 
-z=z(t 0),Y=Y(t0fr

An equivalent way of writing the elevation predictor-corrector equations, that

leads to the second solution strategy, is

zP (t0 +At) = z(t0 ) + Az (A. 5)

zc(t 0+At) = z(t 0 ) + 0.5 ( AzP + Azc ) (A.6)

Oz
where AZ = At - z=z(t0 ),Y=Y(t0 )

az
Az = At D p(t 0+At)Y=Y(t 0 +At)

Similar expressions may be written for the channelization equation. In the

reformulated problem Azp and AzC are the predicted and corrected changes in

elevation from the original elevations, z(t0 ). In the equations above we use linear

extrapolation and parabolic interpolation to determine these elevation changes.

Practically, if we can extrapolate and interpolate more accurately then the elevation

changes from this new method may be used as the elevation changes in Equations

(A.5) and (A.6). The derivation that follows will. develop a nonlinear extrapolation

method that is an approximation to the exact solution of Equation (A.1). This

nonlinear solution will be used to predict the changes in elevation on the basis of the

physical problem, rather than using simple linear extrapolation. The new solver has

significant stability advantages and is particularly good at alleviating the numerical
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stiffness problems of the sediment transport equation. This technique was used to

produce the simulation results in this work.

An underlying assumption of the following derivations is that the dominant

term in the elevation equation is the sediment transport term, with diffusion

considered to be a second-order effect. Stiffness in the elevation equation arises

because the area,, and thus the discharge, at different points in the catchment varies

from 1 to NM, where NM is the area of the simulated catchment on an N x M grid. At

nodes near the outlet of the catchment (i.e., nodes with large contributing area. -and

thus discharge) small fluctuations in elevations are corrected very quickly because of

the large discharge in the sediment transport equation. Near the upper reaches of the

catchment fluctuations where areas are less perturbations in elevation are corrected

more slowly. Using the scheme of Equations (A.3) and (A.4) requires small time steps

both for numerical stability and to capture the detail of these fluctuations in

elevations.

Instead of using the linear extrapolation for elevation of Equations (A.3) and

(A.4), an approximate analytic solution to Equation (A.1) is used for both the

extrapolation of the predictor step and the interpolation of the corrector step.

Consider the sediment continuity at node j. Equation (A.1) can be written as

z. 1m n m n

(Y1 f ) Qi ISl-( (A. 7)

ifj

where the summation is over all the nodes in the grid. The local slope for node i, a

node flowing into node j, can be expressed as

Z. -Z.
S. = 1
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where . = distance between nodes i and j

For node j, where flow is out of the node, the local slope can be expressed as

z5 -zk
S . Z

kj

where k = node that node j drains into

Substituting these results into Equation (A.7) yields

1z m -Z.- l m1  Z -Zkl n1
, =f(Yi) Ii Qm I z-Z - f( Q m1 [zjZknI

ij ij j I

ifj
(A.8)

This is a system of NM first order nonlinear differential equations in z.. This
J

system of equations is too difficult to solve as it stands. So we look at one node in

isolation, node j with elevation z. at time t 0 . We assume that for the period of one

timestep (i.e. time from t0 to t 0 +At) that all the elevations of the surrounding nodes

do not change, nor do the flow directions, so that I and Qi do not change. Under

these assumptions there exists an equilibrium elevation for node j, z , towards which

z.(t) will tend with time. So as time tends to infinity, we get

M, m!zz n, m, [z. -zk n,]=
I-n [ i Sij 9 Q - f(Yj) Q - jk] = 

iij
(A.9)
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We desire to know

1. The value of the equilibrium elevation, z.

2. The rate at which z.(t) tends to z. so that we may predict z(t 0 +At),
J JJ

where At is the timestep.

It is shown in Section A2.4 that the differential equation for z.(t) in Equation
J

(A.8) can be approximated by using the elevations at time t = t0 as the initial

conditions

* nl
& z (z.(t) - z.)

__ for t t0  (A.1O)
t=t (zto)- z n 1

Solution of this equation yields the solution for z (t0 + At) as

n

n 11 1-n
z (t +At) = z + [z(tZ-z [z(t 0 )-z + t=t0 (1im)At

(A.11)

This equation gives the elevation at a node j, z , for time t > t 0. The solution,

however, requires knowledge of the equilibrium elevation z This elevation, z ., is

estimated from the elevations at time t=t 0. To find this equilibrium elevation z , we

desire the solution, in terms of z of
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-z.

z=z.
j

- un [ If Y ij I i

ifj

-f(Y n Q , z.-z k n j]-f(Y ) Q = 0

To determine z this expression is approximated by a Taylor series (expanded

terms), around the elevation at time t0 ' z (t0 ), so that

&z. Oz.
0 -IT

+ Fz-z.(~)1 ~?= N')
z.=z.(t0 ) L z -z ( ( z)tz jzi( 0) z 

T =z (to) = 0

(A.12)

Solving for the equilibrium solution
* *

z. = z.yields the estimate of z.
J J

conditions at t=t0

z .(

j

Oz.

O()z

( z.

z = z (t0 ) z =z. (t0)

=z (t 0 )

The derivative with respect to z.

given by

can be determined from Equation (A.8) and is
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dz. = -Ti' [ f )IIQ zs-zn -+ 1 Z -zk' 1
ii jk jk

ij

ini 1, -1 m- 1 -1
1 f(Y 1 I.Q 1Si1  f(Y.)Q S. 1

1-n L -
j k

iij
(A.14)

The solution for z in Equation (A.13) and (A.14) is an approximation. How

good the approximation is depends on how good is the linearization of Equation (A.12).

If n=1 the linearization is exact. However, the typical value of n1 is about 2. A

numerical experiment was performed to assess this error by iteration on Equations

(A.10) and (A.ll) in a loop of the form
*

1. Evaluate the new z., for all j, using Equations (A.13) and (A.14).

2. Using these new values of z as the new values for zI and z (t 0 ), evaluate

for the new value of z The drainage directions were not reevaluated,

3. Repeat Step 2 until convergence is observed.

It was found that convergence to a maximum relative error of 0.1% over the

entire grid was typically observed within 3 to 5 iterations, for nt = 2.1. This was

considered satisfactory. Note, however, that iterations are not performed within the
*

simulation code when determining z This decision was a trade-off between accuracy

and added speed of the algorithm. The results from Equations (A.13) and (A.14) are

used in the direct solution for the new elevations at each timestep.

The primary advantage of the solution technique of Equations (A.11), (A.13),

and (A.14) is that it yields more stable solutions over a broader range of timescales.

The Euler predictor-corrector method of Equations (A.3) and (A.4) with its linear
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extrapolation has a tendency to exhibit oscillations in the elevations for large values of

#Q 1 At. If the timestep is too large, then elevation oscillations occur in the

downstream regions of the channel network. These elevation oscillations grow until

eventually some downstream elevations are higher than upstream elevations. This

induces oscillations in the drainage directions and thus the contributing areas and

discharges. When these effects feedback into the elevation and sediment transport

equation, the solution strategy fails catastrophically. The means by which these

oscillations initially develop are illustrated in Figure A.4a.

The new technique based on Equations (A.11), (A.13), and (A.14) is equivalent

to a two point predictor-corrector using nonlinear extrapolation. For large # Q I

the elevation predicted is the equilibrium elevation given by Equations (A.13) and

m I
(A.14), zj. For very small 1 mQ mAt, the solver converges to the two point

predictor-corrector method with linear extrapolation (Equations A.3 and A.4). For

intermediate values the elevations are intermediate between these two extremes.

These results are a good approximation to the exact solution, and are illustrated in

Figure A.4b.

Sensitivity studies on a 20 x 20 grid showed that both schemes were mass

conservative for small time steps (e.g., nondimensional timestep At = 0.001). The new

nonlinear extrapolation maintained mass conservation up to a nondimensional timestep

of At = 0.1 for some test cases. The linear extrapolator was typically not mass

conservative, nor stable, for nondimensional timesteps above At = 0.01. Considering

the added computational burden of the nonlinear solver, it was about five times more

efficient on a scalar machine, and it was equally vectorizable so that gains were not

lost on the supercomputer through inefficient vectorization.

The stability threshold is dependent upon Q with Q = O(NM) (NM =

number of nodes in the grid) and m1 - 2 (see Section 5.5). Thus for a grid twice as
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large (40 x 40), the efficiency differential of the new method is about four times that

found for the 20 x 20 grid; the new method is approximately twenty times more

efficient for the 40 x 40 case. For the 40 x 40 case with the nonlinear solver, the

solution up to ultimate drainage density typically takes about one CPU hour on the

CRAY X-MP supercomputer.

A.2.4 Derivation of the Approximation of Elevations with Time

This section will demonstrate under what conditions the approximation of

Equation (A.10) is satisfactory.

* n
&. &.(z.(t)-z.) f

,gli = i~ for t > t0
0 (z (to)-z)1

First we note that this equation is consistent with the exact solution of the equation

when t=t0 . It is also consistent as t -> oo where z (t) -> z and > 0. Note that

0 &.
for (z (t)-z.) positive, ,l is negative and vice versa.

The general solution to the problem is too complex to present here. Rather an

error analysis of a simple example will be used where there is only one inflow node and

no convergence of flow. The profile of the channel is illustrated in Figure A.5. The

sediment transport continuity equation for this case is
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III1 11 1
=01 ( Q i S

= ~ [ -[

1n 11
- Q 2 1 S2 1

II
( ( ) 1

for t > t0

I I(z2-z3 (0))

21

z 2 = elevation of the node being examined

Q1, Q2  = inflow and outflow discharges respectively

S1, S2 = inflow and outflow slopes respectively

zi(o), z3 (0) = elevations at the upstream and downstream nodes respectively at

time t=t0'

1, 1 9  = distance of the upstream and downstream nodes from the node

being examined

When z2=z ,the equilibrium elevation for node 2, then

*n
(z,(O)-z2)2

n

I
I m

Q92 I(z2-z3 (0))
n~,1

It simplifies notation below if Equations (A.10), (A.15) and (A.16)

expressed in transformed coordinates, z' =z-z , so that

[1Q11
n

(zI(0)-z')
17n I I- [ (Z -z (0)) n

n

2

(A.17)
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Q i z (0)

n1
11

~2 z&t Oz

Q2 (-z (0)) 1
n 1~

n
z /yz2

t(t 1
2 z/(0)

Combining Equation (A.17) and (A.19) yields the error expression for the

approximation proposed

az/ az
E =f-it

- flu [
in

Q2
n
21

rn
Q m

n
1

I

z/nz2

z(Ot 1

(z
n1 z /

(0)-z2) 1 2

z /(0)

(z -z (0))

1
z ( 1

2 /(0)

(A.20)

where E = the error of the approximation

If we express z' = z (0) + A where A is the change in z with time from the initial

value and is considered small then using Taylors Series up to linear terms
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(z! (O)-z' (0))n

(z (0)-z3(0)) 
n



( )z1 21 /0

= [ (z{(0)-z2(0))1 + n A (z (0)

ni n -1
z (0) + n1 A z. (0)

z (0)

= n A (z(0) + z/(O))

n-
+1)1

-z (0))
n -1

[z (0) - z /(0) 1

n -1 z (0)

(z (O))

-1
z (O)

We obtain a similar expression for the second term on the right hand size of Equation

(A.20) by substituting for z (0) with (-z (0)) in Equation (A.21).

results into Equation (A.20) yields

Substituting these

n11 A1

(z (0))1
[

In n
Q z/ (0)

1, 1QiZiO
z (O) )11-1

z7(O)

M, n,

Q2 1 (-z (0))
n

zq (0) n -1
z (0) )

This expression can be further simplified to yield
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-z 2(0))n

I -

zi(0)
=ni -(Z7()



E ni n #; z(0) n 1-1

(zI (0)) ZI0

- m 1 11 in 11
Q1 z (0) Q2 z 2(0)

11 n

- 1 ~21

m nz (0)-
21 (-z (0))n- z"(0) -(n -() - 1 -1

Q2 [ ]1i [ __ ___

Z( z1(0) z (O)
2 ) z (0)

and substituting the equilibrium conditions of Equation (A.18) the expression for the

error is

11 'A z (0) z (0) - zj(0) n1-1
E = n 3 z3( 1

and for a small horizontal discretization then z 3(0) is small (since slopes are finite theni
2A ~ S Ax) so that the error expression is E ~ O(Ax2). Thus the approximation in

Equation (A.10) is good and the error involved is approximately of order Ax2 where

Ax is the spatial discretization.

A.3 The FEOUT Network and Catchment Analysis Code

FEOUT is a general purpose network and catchment data analysis program. It

directly uses output files from BRANCH. The latest version of this code is V1.40. The

code is written in FORTRAN 77 and uses GKS for graphics output. The program is

command line driven and has rudimentary on-line help. All the data analyses of this
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work were performed with this code.

Some of the capabilities of the code include:

1. Strahler and Tokunaga analysis by order for stream length, slope, area

and drop. Mean hillslope slopes and drops stratified on the StrahIler

order of the stream they drain into.

2. Link analyses for slope, contributing area and magnitude stratified on

Strahler order, exterior versus interior link type, topological

classification (after Mock, 1971) and magnitude.

3. Hillslope slopes, drops, mean length and source area.

4. Distributional properties (using the method of moments) of the above

characteristics.

5. Catchment, hillslope and channel relief, and drainage density.

6. Fractal characteristics of the channels.

7. Saturation area, properties (after O'Loughlin, 1981).

8. Plotting of the planar properties of the channel networks and the

contributing hillslopes.

9. Plotting of profiles of hillslopes and channels.

10. Plotting of hypsometric curves.
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APPENDIX B

ONE-DIMENSIONAL ADVECTION-DIFFUSION FORMULATION

OF SEDIMENT TRANSPORT

B.1 Introduction

This section will demonstrate that it is possible to reformulate the

one-dimensional form of the overland flow sediment transport equation, as presented

in Chapter 5, into a one-dimensional advection-diffusion equation; that is, the spatial

coupling of elevations is the result of advection and diffusion of elevation changes. The

diffusion and advection coefficients in the new formulation are nonstationary and

nonhomogeneous. It should be noted that the analysis that follows is only applicable

to the overland flow runoff mechanism and, in particular, is not applicable to the

subsurface saturation mechanism.

The advantage of this new formulation of sediment transport is that it

facilitates comparison of the elevation equation developed for this work with previous

published work in this area, of the kind described in Chapters 3 and 4. Almost all of

these models use a homogeneous, stationary, and isotropic Fickian diffusion term for

the spatial coupling of elevations. It will be shown that the subtle differences between

the formulations used in previous work and that in this work cause important

differences in the form of the catchments generated.

Generalization of this reformulation to two-dimensions has not been performed

because of the difficulties caused by the convergence and divergence of the flow. The

effect of lateral inflow on the one-dimensional formulation will be examined to

demonstrate some of the simpler characteristics of two-dimensional flow.

B.2 The One-Dimensional Advection-Diffusion Formulation

- This section will develop the mathematics of the advection-diffusion
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formulation of sediment transport. As in Chapter 5, the sediment transport equation

is of the form

QS =O m S n (B.1)

It is recognized that it is highly likely the coefficients will vary systematically in space

because of the natural sorting of sediment in the downstream direction (Rose, personal

communication). The added complexity of including the variability in the following

analysis only clouds the central issue while the simplification of ignoring it does not

invalidate the conclusions.

Considering sediment transport continuity on an incremental element (x is

defined in the downslope direction and z vertically upwards) then

d dQ dQ
x= -y+ Ax (B.2)

so that the sediment transport continuity equation yields the elevation evolution

equation

dz _ dQ5  (B.3)

To determine the right-hand side of Equation (B.3), we can use the sediment

transport equation (B.1) so that

dQ m Qm-1 +n n-1d m (B.4)an X we cOl Q Uec eSm+snS Qn n th

and if we collect terms and note that
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S = - and dS - z
dxp

then Equation (B.3) ca~n be expressed as

-I#m QnM-1 Sn-i d dz _ ( rn n-1
aK- Q S

This equation can be compared with the standard formulation of

advection-diffusion equation, i.e.,

dz 2
-v d=D dzV U- Ddx2

v = advection wave speed

D = diffusivity

can thus conclude that Equation (B.6) is a nonlinear form of the

advection-diffusion equation with variable advection speed and variable diffusivity.

These rate constants are:

v =0 m Q -1 n-l

D =On Qm n-1

Advection wave speed

Diffusivity

B.3 Characteristics of the Advection-Diffusion Formulation

In this section two types of overland flow will be considered: instream flows

which might typically correspond to channel flows, and lateral flows which might
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dz
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(B.8)
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typically correspond to flows from the hillslope at right angles to the direction of

instream flows. The traditional linear advection-diffusion equation with constant

coefficients as in Equation (B.7) operates in two modes: advection dominated and

diffusion dominated. It will be shown in this section that the advection dominated

mode corresponds to conditions where lateral inflows dominate instream flows, while

the diffusion dominated mode corresponds to conditions where instream flows dominate

lateral inflows.

To examine the conditions under which advection dominates diffusio) in

Equation (B.6), consider the ratio of the advection velocity and diffusion coefficient

0 m Q M-1 S n -1 dQ
advection TxQ rn- 1-i
d i f f usion Qm Sn-i (B.0)

or

advection m (B.1)
d i f fusion n Q(

Since the n/m ratio is typically of the order of 1, then the advection domination

occurs when

dQ
>>i> (B.12)

Since the numerator of Equation (B.12) represents the lateral inflow and the

denominator represents the instream flow, then advection domination occurs when

lateral inflow is an important contributor to instream flows.

It shall now be considered where in the channel network and hillslope, lateral
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inflows are important in comparison to instream flows. Initially the analysis will be

confined to scales larger than the first order basin. If drainage density is constant

throughout the catchment, then it is reasonable to assume that the mean hillslope

length is independent of the position within the catchment (Horton, 1945). The mean

lateral inflow term can then be expressed as

- = Rhst (B.13)

where Rhs = average runoff excess rate over the hillslope draining to the

position x in the channel

f = hillslope length

s = coordinate direction along the hillslope stream line or channel.

If instream discharge is related to catchment area in an analogous fashion to Equation

(B.13) then

Q = RcaA (B.14)

where A = contributing area upstream

Rca = average runoff excess rate over the contributing area,

then Equation (B.11) can be expressed as

advection m Rhs (B. 15)
di f fsion ~n R -aca

Two features are apparent in Equation (B.15):

1. Rainfall/runoff rates only occur as a correction factor relating the

average upstream runoff rate with the local runoff rate.
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2. With typical values of n, m, R1 s, and Rca, Equation (B.15) is small for

all but the most upstream sections of the first-order basins, so diffusion

dominates for all except the hillslope. Other than in the hillslope region

by the definitions of the hillslope length and first-order basin, it follows

that A is much larger than 1.

Thus, in a one-dimensional sense, large portions of the catchnent can be

approximated by the equation

dz (n Qi Sn-) 2 (B.16)
ds

The most important feature of Equation (B.16) is that the diffusivity is not

constant in space. Neither is it constant in time because continuing erosion will result

in changes in slopes and discharges. This is in contrast to a model recently proposed

by Shaw and Mooers (1988) where the proposed model for hillslope and channel

evolution was based on the diffusion equation, i.e.,

2

Dhds hillslope
hsds2

dzd
dz= (B. 17)

d2
hli dh

where D hs, Dch = diffusivites for elevations in the channel and hillslope

respectively

and while the diffusivities did vary from the hillslope regions to the channel regions,

they were considered constant within their respective regions.

Consider now the region of the catchment where advection dominates, i.e.,
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hillslope scale. The appropriate elevation equation is

mz QM-1 gn-1 B.18)z

It can be noted that the advection term in Equation (B.18) goes to zero at the

watershed. This condition is true irrespective of the value of slope at the boundary

provided only that it remain finite. Thus at the domain boundary

dz = 0 (B.19)

This is not true in hilly terrain without rocky outcrops because of the dominance of soil

creep, rainsplash, and rockfall near the watershed (Dunne, 1988).

This is another important difference between the sediment transport model and

the model proposed by Shaw and Mooers. The authors enforce a zero slope condition

at the boundary. This clearly is inconsistent with the requirements of Equation

(B.19). If sediment transport is the only process operational at the boundary, then in

fact a, slope condition cannot be applied and a first type condition (i.e., specified

elevation) is mandatory. On the other hand, the importance of a slope condition will

be dependent on the relative importance of the diffusive processes of creep, rainsplash

and rockfall near the boundary at the scales of modeling. This scale will be dependent

on the grid resolution adopted in the numerical model. The experimental evidence

seems to indicate that the scale where these processes are dominant is very small and

will only be important for catchments at the hectare scale (Moore and Burch, 1988).

Thus at the scales that are typically resolved by modeling, it is reasonable to assume

that the appropriate boundary conditions are those for the sediment transport model

rather than the diffusion model as modelled by Shaw and Mooers. In other words there

are three important scales in real catchments.
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1. Large scale (channel network scale) - Diffusion dominated (sediment

transport)

2. Medium scale (hillslope scale) - Advection dominated (sediment

transport)

3. Small scale (hillslope scale) - Diffusion dominated (rainsplash, creep,

rockfall),

but because of the very small scale of the third process and resolution limitations of the

computer model, the third process should be ignored totally by the modeling.

Problems with the pattern of catchment elevations around the watershed are

apparent in the results of Shaw and Mooers (1988), and it is believed that the

inappropriate boundary conditions are the problem.

B.4 Hillslope Retreat Versus Hillslope Degradation

The question of whether hillslope retreat or hillslope degradation is the

dominant process in the long-term evolution of hillslope form has vexed

geomorphologists for some time (e.g., Zharkov, 1987). The derivations of the previous

sections begin to provide some answers to this question.

Hillslope retreat occurs when a hillslope of a constant shape or form retreats

away from the valley bottom towards the watershed (Figure B.1a). This movement

can be characterized by the retreat speed (m/century, etc.). Hillslope degradation

occurs where the hillslope surface declines with time, slopes decline, and the watershed

elevation decline. There is no characteristic hillslope form in the latter case (Figure

B.lb).

If fluvial sediment transport is considered the dominant hillslope process then,

for a one-dimensional hillslope at least, Equation (B.1) is applicable to describing the

elevation evolution of the hillslope. The reformulation leading to Equation (B.6)

suggests that hillslope evolution may be characterized by two processes.
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1. An advection speed for the constant form hillslope, analogous to hilislope

retreat.

2. A diffusivity corresponding to hillslope degradation.

Thus it can be said that

Hillslope Retreat Speed = 0 m Qm-1 Sn- 1 d (B.20a)

Hillslope Degradation Diffusivity = 0 n Qm Sn-1 (B.20b)

and the retreat process dominates degradation when

m n 1 (B.21)

and vice versa.

If, for the moment, variation within the hillslope is ignored, then hillslope

retreat dominates when convergence of flow is strong so that rate of change of

discharge is large.

The slope and discharge dependence of Equations (B.20) suggest that neither

speed nor diffusivity are constant within a single hillslope, as previously noted. Thus

these equations can only give average rates of degradation and retreat for the two

processes, over the entire hillslope. Retreat speed, for instance will be minimum at the

watershed and the channel, where slopes are low and maximum at a point slightly

downstream of the steepest part of the hillslope. This effect will tend to steepen the

upper parts of the hillslope and flatten the lower parts of the hillslope. Similar

non-linear effects can be noted for the degradation component.

Equation (B.20a) provides a comparison with the hillslope simulation method of

Shaw and Mooers (1988), which is linear diffusion, so that the transport law is
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Q5 =D d=DS

Chase (1988) recently proposed an event-based model for elevation evolution

based on transport, linear in discharge, so that

Q= D Q = D Q S

The retreat speeds and diffusivities are given in Table B.1. It is notable that

Shaw and Mooers model cannot model slope retreat at all, and relies entirely on slope

degradation for hillslope form. Chase's model removes the slope dependence in the

retreat and diffusivities, though the discharge dependence of Equation (B.20) remains.

Thus for Chase's model retreat speed will be constant over the hillslope if the flow

convergence remains the same on the hillslope. His diffusivity will be maximum at the

downstream end of the hillslope rather than in the mid-section of the hillslope.

TABLE B.1

Retreat Speeds and Diffusivities

for Hillslopes

I Transport Retreat Speed | Diffusivity

n Sm mn-1 sn-1 d Q n Qm Sn-1

DS 0 D

DQS DQ dQ

In the context of the area-slope renormalization discussed in Section 8.3 the
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Shaw and Mooers transport model will give an entirely different trend to that of this

work or Chase. Since their model is diffusion only they will give an increasing slope

with area, Chase's model a constant slope (if runoff is proportional to area) while the

fluvial transport model of this work will give decreasing slope with area. It is observed

that slope decreases with increasing area for large areas and increases with area for

very small areas. The reader is referred to Section 8.3 for further details.

In conclusion it has been shown that hillslope retreat rates and degradation

rates may be derived, to first order, from the hillslope erosion process. The expressions

obtained are simple and it may be easy to calibrate these equations from

paleo-landscape data. Alternatively measurement of sediment transport process

should enable an answer to be obtained to the question of which hillslope process is

dominant: hillslope retreat or hillslope degradation.
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APPENDIX C

THE PHYSICAL BASES OF THE SEDIMENT TRANSPORT

AND ACTIVATOR FUNCTIONS

C.1 Physical Basis for the Sediment Transport Equation

C. 1.1 Introduction

The generic sediment transport formula used in this work was

Qs 01 Q 1 (C.1)

where

QS sediment transport, in mass/time

Q = discharge

S = channel or hillslope slope

Though a sediment transport equation of this form has been used by

geomorphologists in previous work (Smith and Bretherton, 1972), this formulation of

the sediment transport equation is unconventional compared with the form used by

specialists in fluvial sediment transport (e.g., Vanoni, 1975). The unconventional

formulation was adopted because it has a number of significant advantages

computationally over the traditional formulation (see Appendix A for details). This

section aims to show how the new formulation may be obtained from the

Einstein-Brown equation, a commonly accepted fluvial sediment transport formula. It

will be shown that a minimal number of simplifying -assumptions are required.

In addition, it will be shown how the Einstein-Brown equation, an

instantaneous sediment transport relation, can be converted into a mean temporal
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sediment transport relation for long timescales. It will be shown that the simple form

of Equation (C.1) can be maintained under this temporal averaging, and that only the

coefficient #1 is modified with coefficients m, and nj unchanged. Thus the temporal

averaging results in the rate of sediment transport being changed; its form, dependent

on mI and n1 , is unchanged.

A large number of competing fluvial sediment transport formulas have been

described in the literature. The scatter in the predictions from these formulas are

quite substantial. Large differences are not unusual both between the equations and

the observed data, and between the equations themselves. It is not the intention of

this section to discuss and compare the merits of the various equations, good

descriptions of the various formulas may be found elsewhere (Graf, 1971; Vanoni,

1975). Rather this section will concentrate on one particular, relatively accepted,

equation, the Einstein-Brown equation. This equation captures, at least conceptually,

the form of sediment transport; that is, its dependence on depth, velocity, sediment

size, and channel geometry.

C.1.2 Deriving the Instanteous Sediment Transport Equation.

The Einstein-Brown equation is expressed in terms of a non-dimensional

1sediment transport #, and a nondimensional shear stress, . Vanoni (1975) gives the

governing equation as

=40 ( )3 (C.2)

where
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(C.3)

-t F g(s - 1) d3

(C.4)

7(s - 1) d5

F _ 2 + 36v 2 1 36v 2  (C.5)
3 gd3(s - 1) gd3(s - 1)

and the notation used is:

q = sediment discharge, mass/time/(unit width)

s= specific gravity of sediment

7 = pg = specific weight of water

ds = a representative diameter for the sediment particle. Normally

d50, the 50 percentile diameter, is used.

g = acceleration due to gravity

ro = -tRS = bottom shear stress

R = hydraulic radius

S = bed slope

v = kinematic viscosity of water

Throughout this work, it is assumed that sediment characteristics over the

catchment are homogeneous so that variations in sediment specific gravity s and

representative diameter ds may be ignored. This assumption is consistent with the

objective expressed in Section 5.1; that is, developing the minimal model that will

create realistic branched channel networks and realistic hillslopes. It is recognized that

sediment characteristics change within the catchment in a systematic fashion,
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particularly along hillslopes. Such systematic variations should be modifiers of the

form of the catchment, rather than a fundamental agent in creating the form of the

channel network and hilislopes. Additionally, much of the work on the variation of

sediment characteristics down hillslopes is of a preliminary nature (e.g., Coventry, et

al., 1988), so that it is difficult to allow for such effects in a reliable, and general, way.

For homogeneous sediment characteristics F1 , in Equation (C.5) is constant.

The Einstein-Brown equation may be simplified to

q = F9 (RS) 3  (C.6)

where

3- 3
F2 =40 ys Fi g(s - 1) d 3 W _as]d3 (C. 7)

Under the assumption of homogeneous sediment characteristics, since F1 is

spatially constant so is F2 . However, even if sediment characteristics do vary, the

variation is confined to the multiplicative constant F2 . The exponent of 3 on hydraulic

radius and slope in Equation (C.6) follows from the original Einstein-Brown work.

Recent work indicates that this exponent can vary slightly but falls in the range of 2.5

a 3.5J (Madsdn, personal communication). For this reason the derivations that follow

will use a more general form of Equation (C.6), one where the exponent is allowed to

vary so that

q s = F2 (RS)P (C.8)

The objective of the derivations that follow is to remove the dependence of

424



sediment transport on hydraulic radius, R, in Equation (C.8) and reformulate this

equation so that it is dependent on only discharge, Q, and slope, S, and is in the form

of generic sediment transport equation (C.1). This is achieved by use of Mannings

equation for discharge

R5 / 3 S1/ 2 P

where P = wetted perimeter of flow

n = Mannings roughness coefficient

Eliminating the hydraulic radius R from Equations (C.8) and (C.9) yields

3p 3p 1 31) 1)
qs = [F2 ( 5 Q5 S1 0 = F'(P) Q5 510 (C.10)

It will be noted that the multiplicative constant F/ is dependent upon the

wetted perimeter, P. The form, and relevance, of this dependence will be examined by

looking at three diffetent types of channel cross-section.

Case 1: Wide Channel or Overland Flow

The simplest case that can be considered is that of a wide channel, or overland

flow/unit width, as illustrated in Figure C.1. In these cases the governing sediment

equation for the wide channel

3p 3p 7p

Q8  = [F2 (n 5  5 S 10

= F' (Q 5 S 10) (C.11)
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Figure C.1: Channel and hillslope flow geometries
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where w = width of the channel.

For overland flow/unit width, the governing equation is

3p 3p 11
q [F n )5 1q5 10P

qs = [F2( 5 q S
r

-F//q5 S 10
(C.12)

where

qs = sediment discharge in units mass/(unit width)/(unit time)

wr = wetted perimeter/unit width of bottom

q = discharge/unit width.

The multiplicative constants F' and F'' are constant and dependent, in a well

defined way, on flow geometry and sediment characteristics. That they are constant

results from the wetted perimeter being independent of flow depth. The wetted

perimeter in the overland flow case is dependent on the shape of the bottom of the

flow. If the bottom is perfectly flat then wr = 1. If the bottom is rilled then wr > 1,

the actual value depending on the bottom geometry.

For the specific example of the Einstein-Brown equation (p = 3), Equation

(C.11) simplifies to

= F' Q1 .8 S2.1 (C.13)

where F' = [F 2 (n)1.8

Using the Chezy equation for discharge instead of Mannings equation,

Henderson (1966) obtained, for the Einstein-Brown equation, the expression
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22Qs = F' Q S

It may be noted that Equations (C.11) to (C.13) are exact and require no

approximation.

Case 2: Triangular Channel

The second case that will be considered is flow in a triangular channel. This

case is slightly more complicated than the first because both the hydraulic radius and

wetted perimeter change with depth of flow. It will be shown that the sediment

transport in a triangular channel can also be formulated in the functional form of the

generic sediment transport equation of Equation (C.1).

Consider a, triangular channel with shape as in Figure C.1 with the geometry

y = a, lxi (C.14)

where

y = elevation above the bottom of the channel

x = half width of channel

a1 = side slope of the channel

An expression will be derived for the wetted perimeter in terms of discharge and

slope. This result will be substituted into Equation (C.10). The geometric

characteristics of channel cross-sectional area, A, wetted perimeter, P, and hydraulic

radius, R, can be expressed in terms of depth, y, as

A = a, y 2  (C.15)

P=22 1 + a1y (C.16)

428



R = y (C.17)
2 1 + a

These expressions are substituted in Mannings equation for discharge (Equation

C.9), and after rearrangement and elimination of the depth y, a relationship between

wetted perimeter, discharge, and slope is obtained

P = [2.38 (1 1 )5/8 n3/ 8 c3/ 8 -3/16 (C.18)

Substituting this result into Equation (C.10) and simplifying yields the

sediment transport equation for a triangular channel

QS = [F9 n3p/8 a 1  )3p/8Q 0. 3 75 p S0 .8 13 p (C.19)
2.38 1 + a2

1

For Einstein-Brown's value of p = 3, this becomes

QS= F' Q1 .13 s2.4 4  (C.20)

where F' = [F 2  . 1 2)1.13
2.38 1 + a

Comparing the result for the wide channel (Equation C.13) and that for the

triangular channel (Equation C.20), the main difference is the much reduced

dependence on discharge for the triangular channel. This results from the strong

dependence of discharge on depth of flow (Q - y8 /3). Large changes in discharge have
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significantly reduced effects on flow depths, stresses and thus sediment transport in a

triangular channel.

We will now discuss a case where wetted perimeter is dependent on discharge, F

is dependent on discharge, and where an' approximation is necessary to formulate the

equations as the generic sediment transport equation.

Case 3: Narrow Channel or Rilled Flows

The third, and potentially most interesting, flow geometry is a, channel or rill,

where the flow has not exceeded the conveyance capacity of the channel, as illustrated

in Figure C.1. In this case the wetted perimeter varies with discharge, typically in a,

non-linear fashion. It will be necessary in this case to introduce a, number of

approximations to allow Equation (C.10) to be expressed in the form of Equation (C.1)

where the coefficients 01, mi, and n1 are independent of discharge.

To simplify the analysis, and without significant loss of generality, channels and

fills with the following geometry will be considered.

y = a1 xb (C.21)

where

y = elevation above the bottom of the channel

x = the half width of the channel

a1, bI = channel geometry coefficients

To be able to express Equation (C.10) in a form dependent only on discharge

and slope, it will be necessary to find a relationship between wetted perimeter,

discharge and slope in the form
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P = a2 b b3 (C.22)

Mannings equations for discharge gives the discharge as

A 5 / 3 S1 / 2

P 2/ 3 n

(C.23)

This relates the cross-sectional area, discharge and wetted perimeter and cat be

used to eliminate of discharge in Equation (C.22) so that

3+21) 2

P 3

5b'? 1) + b9

(C.24)
- a S

=A 3 9 )

1>2n

Both cross-sectional area, A, and wetted perimeter, P, are dependent on depth

but independent of the slope, S. This means that

b3 + 2= 0
2

so that Equation (C.24) can be rewritten as

3 5b 2

a 2 3+2b2  3+2b2

2

(C.25)

(C.26)

Both area, A, and wetted perimeter, P, are dependent upon the channel geometry and

depth of the flow in the channel, y. For the assumed channel geometry (Equation
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C.21)

1+1)

A 2a b b
A= (y') (C.27)

(b + 1)

2(1-b1 )

P =9a ) z I + 1]1/2 dz' (C.28)
0 [(a b

where y' = = nondimensional depth of flowa
Z' = =nondimensional elevation above the bottom of the channel.

A simple analytic expression relating the area, A, and wetted perimeter, P, does

not exist for this channel geometry. The approach adopted is to obtain an

approximate expression in the form of Equation (C.26) by eliminating y' between

Equations (C.27) and (C.28). It is convenient to fit the derivative of P with respect to

y'. That is, the expression

3 3b2-3

dP 5b 2 )2 3+2b 2 dA (C.29)

3+2b2 n 1/2

will be fitted using the expressions

1

dA= 2a (y) 1 (C.30)

2(1-b1 )

1 2a [ b b + 1 1/2 (C.31)

Equation (C.24) can be rewritten as
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3 3b2-3

dP 5 b2  a9 3+2b2  2a b  1+b 2b9 +3
Jy r 3+2b (7ba+1 )

3(b 1+1 ) (b 2-1)

dA + 2b2+3

(C.32)

In addition, it is necessary to fit Equation (C.32) over a specified range of y'.

Leopold and Langbein (1962) point out that the maximum lateral slope of a channel

cross-section, at the top of the bank, should be the angle of repose of the material, this

being the steepest angle at which the sediment material is stable. Using the channel

cross-section geometry (Equation C.21), an expression for the maximum lateral slope

and thus the maximum depth of the channel is obtained

= tan 0r (C.33)
Iy=maX

where 'r = angle of repose of sediment material.

The maximum depth of channel follows and is

bI

tan Or b-1(
y = 1(C.34)

A typical value for the angle of respose for cohesionless, granular material is

300. Values of the maximum depth of the channel area are tabulated in Table C.1

(angle of repose of 300) for various values of channel geometry parameters aI and b1 .
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TABLE C.1

Maximum Nondimensional Depth, y', for a Channel with

Variable Geometry, Angle of Repose = 300

I Maximum depth = y' max

a = 1 a1 = 3 a = 10

b = 2 0.75 0.083 0.0075

bi = 3 0.44 0.084 0.0139

b = 4 0.33 0.076 0.0152
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Curves of versus dA for these values of a1 and b are shown in Figure C.2. Inuives r of_ vesu 1

this figure, power law curves have been fitted. These fitted curves were used to

determine values of a2, b2 , and b3 from Equation (C.32) and the resulting coefficients

are given in Table C.2. Substituting these values of a2 , b2, and b3 into Equations

(C.27) and (C.10) yielded the sediment transport formulas given in Table 5.1. For

comparison purposes, the exact sediment transport formulas for the wide channel and

triangular channel previously derived are also tabulated.

The channel cross-section shape has little effect on the functional dependence of

sediment transport to channel slope. The cross-section dependence is most apparent

in the power on discharge, with a lesser dependence being displayed by the

multiplicative constant. Table 5.1 indicates the range of values that m1 and n1 may

take in Equation (C.1). That is

m c [0. 3 75p, 0.6p]

n c [0.7p, 0.813p] (C.35)

c [0.413, 0.857]n

In conclusion, it has been shown that a good approximation to accepted

sediment transport formulas is given by Equation (C.1), with an appropriate choice of

coefficients. Appropriate values of the coefficients #1, m, and n, have been derived for

a variety of channel geometries, using the Einstein-Brown sediment transport equation

as an example.

It has been noted that the coefficients of Equation (C.1), #1, m, and nI are

dependent on channel geometry and sediment characterization in a well defined way.

For uniform overland flow, a wide channel and a triangular channel flow Equation

(C.1) is an exact representation of the Einstein-Brown equation. For the case of
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TABLE C.2

Fitted Parameters a2 , b2 , and b3

Channel Fitted Wetted
Channel
Geometry

a, b1

Fitted Wetted
Perimeter Parameters

b 3 b2
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1 2 0.298 -0.149 3.84 n0.298

1 3 0.221 -0.111 3.98 n

1 4 0.175 -0.088 4.17 n0.175

3 2 0.260 -0.130 4.49 nO.260

3 3 0.189 -0.095 5.19 n0.189

3 4 0.149 -0.074 5.94 nOl

10 2 0.241 -0.121 5.11 n0.241

10 3 0.174 -0.087 6.97 n0*

10 4 0.136 -0.068 8.71 n0.136



variable channel geometry, the error in approximating Einstein-Brown with constant

i, i, and nI is small, particularly in comparison with the errors of prediction of the

sediment transport formulas.

Moore and Burch (1987) used unit stream power theory and the experimental

data of Mosley (Schumm, 1987) to derive a, sediment transport equation for rills on

hillslopes. Their equation was

98 1.6 31.8

N (Q0. 5 3 S0. 6 )p

where p = 3.

This equation corresponds well with a case intermediate between the wide

channel and the variable geometry channel (Table 5.1).

C.1.3 Deriving the Mean Temporal Sediment Transport Equation

The derivations thus far, however, have been limited to the instantaneous

sediment discharge. The Einstein-Brown equation has mostly been verified for

sediment transport at an instant in time, not averaged over long periods of time. It

remains to be shown that while Equation (C.1) is satisfactory for describing the

instantaneous discharge, that it is also a satisfactory representation of the mean

temporal sediment discharge over long time scales.

The time scales of interest in this work are typically of the order of thousands of

years; time enough to average over the distribution of geonorphologically effective

runoff events (Section 2.4). It will be shown that by temporal averaging over the

distribution of flood hydrographs, where Equation (C.1) describes the instantaneous

sediment discharge, a modified version of Equation (C.1) can be obtained for the mean

temporal sediment discharge. A new value of the multiplicative constant 3 will be
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obtained that will be dependent on the moments of the distribution of flood events.

The interpretation of discharge is also changed.

Hereafter, to avoid confusion of notation we will use the parameters of Equation

(C.1), i.e., 01, m, and n1 to represent those parameters applicable to the mean

temporal sediment discharge equation and the equation

QS 09 (C.36)

with its parameters #2, m2 and n2 to represent those parameters applicable to the

instantaneous sediment discharge equation.

In most unregulated rivers the amount of sediment transported during flood

events far exceeds that transported during the long low flow periods that separate

these events. This follows from the highly nonlinear dependence of sediment transport

on Q in Equation (C.1), where m2 is typically of the order 2 of more, as previously

described. In addition, the flow volume distribution is highly skewed towards high

discharges, so that high discharges carry a disproportionately large volume of sediment.

It is then a useful, and very good, approximation to ignore all sediment transported

during the low flow periods, and consider sediment transport as occurring in discrete

events, these events corresponding to the flood hydrographs. The mean temporal

sediment transport is then obtained by averaging over the distribution of transport

events.

Consider a single flood hydrograph described by the discharge with time Q(t),

with a characteristic duration Tp, and a characteristic discharge Q . In the following

derivation the characteristic discharge will be considered to be the peak discharge

(Figure C.3) The total sediment load carried by this single hydrograph, Qs, is given

by
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Qs '2 V Q(t) 2 dt (C.37)

where Qs= sediment load of the hydrograph, mass/hydrograph.

The channel slope has been assumed constant over the length of the

hydrograph. If we define a nondimensional time and a nondimensional discharge so

that

p

qp

then the sediment load/hydrograph (Equation C.37) may be expressed as

Q 5 = [2T 1  (Q '(t'))dt'] Q 2 n 2  (C.38)

Note that the total sediment load per flood event is in the form of the generic

sediment transport equation of Equation (C.1). If flood hydrographs are considered to

have a characteristic or average shape, Q'(t') then it is possible to parameterize the

total sediment load in a hydrograph by its peak discharge Qp, and its duration Tp
with a constant multiplicative constant #. It is now possible to average this equation

over the probability distribution of hydrographs, parameterized by their random peak

discharge, Qp, and duration, T Knowing the frequency in time of these events would

permit the expression of the mean temporal sediment transport equation in terms of

flood frequency, mean peak discharge, and mean duration. The details follow.

Consider the shape of the flood hydrograph, Q'(t'), fixed and independent of

Qp and T p. The distributions of the peak discharges and times of duration of floods
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can be expressed in terms of their means and random fluctuations around those means

so that

-*

Qp =QP+Qp

T =T +T
p p p

E[QP] = Qp;
*

E[Q 1]= 0; E[(Q )2
2

o P
*

E[T]= T; E[Tp]= 0;

*
E[Tp

* = 2

p lP

*92
E[(T) ] =

p

IQp = mean peak discharge

T p = mean time of duration

QP, Tp = random fluctuation of peak discharge and time of duration about mean

values.

The sediment load in each flood hydrograph can then be considered to be a,

random variable, derived from the probability distributions of Q and T .
p p

The

sediment load per hydrograph can also be expressed as a mean and random fluctuation

about that mean so that

QS =S + QS

E[QSI =S;
^*Q2 2
E[(QS
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where

Qs = mean sediment load/hydrograph

Qs = random fluctuation of the sediment load/hydrograph about its mean

value

Substituting these expressions into Equation (C.38) yields the perturbation

equation for sediment load/flood event

Q+ Q [ 2 J - (Q'(t')) 1 dt] (T, + T)(Q + Q) 2 S 2
s s P p p

(C.39)

We are interested in the mean of this random sediment load over many flood

events. Define a rate constant A which is the average number of flood events N

occurring in a given period T as that

A = E[N]
T

So in any given period T, the sediment transport rate (Qs + Q ) averaged over the

period T will be

(Qs + Qs)
A(Q + Qs)N

'

2 ,__'= ' dt'] T + T P)(Q +
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where QS

QS

= mean sediment transport rate over period T

= perturbation of the sediment transport rate from mean in

period T

The mean temporal sediment transport rate (load/(unit time)) is obtained by

taking the expectation with time of Equation (C.40), so that

QS = E[Qs + Qs]

dt' -

N -
E[T ( T

+ T P)p
* m 2

+ Q ) ]p
(C.41)

If the rate at which flood events occur, parameterized by A, is independent of

both the duration and peak discharge of the flood events this equation may be

simplified to obtain

E[(T + T )(Q
p p p

In order to evaluate the expectation in this equation, it is necessary to expand

the nonlinear term in peak discharge

discharge, yielding

n2 ro
S 02 A [ -o(

E[(T + T*)(q
p p p

by Taylor's series around the mean

dt']

m2 -1

+rm 2 p p

* 2 m,9-2
+ 2 (m22-1)(Qp 2 _

(C.43)
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peak

= n2 2 [fOu(Q',(t'))m2

2 A Sn9[w /)m2
= #2 9 --, (Q'(t') dt' -



If the expectation is evaluated and perturbation terms of order 3 or more are

neglected, then the following expression is obtained for the mean sediment transport

rate

Qs =[2 TP A fo(Q'/(t'/)) m2 dt'

2 2
OQ 01Q PT -)

[1+ mT(n1 2-1) P + m 3 
1  Q S2

Q Q TQP QP TP
(C.44)

It should be noted that this equation is in the form of the generic sediment

transport equation where the correspondence between coefficients in the instantaneous

equation (C.36) and the time averaged equation (C.1) is as follows.

in 1 - m2

n = n2
2 2

1 - 2  p Af (Q'(t')) 2 dt' 1 + m2 (m2-1) 2 + m2 O+ T
Q Q Tp p p

Thus it is seen that the instantaneous sediment transport equation and the

mean temporal sediment transport are of the same form and are simply related, at

least in principle.

The major difference between the instantaneous and time averaged equations is

the definition of the discharge. The dependence of the mean temporal sediment
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transport on the mean peak discharge is important. An important concept in river

engineering is that of the "dominant" discharge. The dominant discharge is that

discharge which, from a sediment transport viewpoint, is equivalent to the distribution

of discharges over many flood events. The channel size and shape is typically asserted

to be in balance with the dominant discharge, leading to this discharge sometimes

being referred to as the channel forming discharge. In this case the dominant discharge

is sometimes considered synonymous with the bankful discharge (Pilgrim and

McDermott, 1981). It is generally asserted that the bankful discharge has a. recurrence

interval of 1.5 to 2.5 years, roughly corresponding to the mean annual peak discharge.

Thus the dependence of the mean sediment transport on the mean peak discharge in

Equation (C.44) appears in a, fashion consistent with current ideas regarding channel

cross-section equilibrium. The derivation leading to Equation (C.44) provides some

insight into why this might be so.

There is one important difference between the dominant discharge above and

the mean peak discharge in Equation (C.44). The dominant discharge is, in practice,

equated to the mean annual peak discharge with the mean being determined from the

series of annual maximum discharges. However, Q in Equation (C.44) is the average

of the peak discharges of all flood events that carry significant sediment loads. Thus

QP is the mean peak discharge from a flood frequency analysis based on exceedance

series, with the lower cutoff being that discharge below which sediment load is

insignificant. The relative merits of each of these flood frequency analysis techniques

has been widely debated in the hydrology literature; currently there is no prevailing

opinion. It is not clear whether the mean peak discharge calculated from each method

is necessarily the same; in any case, for Equation (C.44) the exceedance series, not the

annual maxima, should be used.

This analysis that started at the instantaneous sediment transport equation
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(C.36) and that arrived at the time averaged sediment transport equation (C.44) is a,

standard second order perturbation analysis (Gelhar and Axness, 1981). By ignoring

third order perturbation terms in Qp in the evaluation of Equation (C.43), it is

implicitly assumed that the frequency distribution of Qp is symmetric. Practical

experience in flood frequency analysis suggests that this is unreasonable, since skewed

distributions such as log-normal, log-Pearson type III and Gumbel are commonly

found to provide satisfactory fits to flood frequencies.

Incorporation of higher order moments, so that skewed distributions of Q) can

be modelled does not invalidate the conclusion reached for the second order analysis.

For instance, if the third moment of Qp were to be modelled (i.e., E[(Q )3 ]), so that

non-zero skewness may be modelled, then the multiplicative constant 0,, in Equation

(C.44) is modified and becomes

=02 T A\ L (Q'(t/)) dt']
2 (2 3/2

"Q 7YQ k"Q
(m2(m21) 2 2 9-1)(rn 2 -2) 3 3 +

Qp Qp
2
Q T

12I j p (C.45)
- - I

Q T
p p

where

Q = skewness coefficient of Q
I) p

N

(Q*)
N il

2 3/2
(oh )

p
N = total number of flood events
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Note that the incorporation of skewness only modifies the value of 1, and not

the functional form of the sediment transport equation. Additional, higher order,

moments of Qp, such as -kurtosis, may be incorporated. The marginal benefit of

including higher order moments diminishes, however, because of the increased

difficulty and unreliability of estimating them. The most complicated frequency

distribution that is currently used by hydrologists is the log-Pearson type III which

uses the mean, variance, and a shape parameter. They may be determined from the

first three moments of the distribution of QP.
In conclusion, this section has shown two things:

1. A commonly accepted instantaneous total load sediment transport

equation, Einstein-Brown, may be reformulated into the functional form

used in this work. This reformulation requires some assumptions

regarding channel cross-section geometry. In all cases, the

approximations implicit in the reformulation are small. It was shown

how the coefficients of the Einstein-Brown equation may be used to

derive the parameters of the generic sediment transport (Equation C.1).

Thus the functional form of sediment transport used in this work may be

directly related to experimentally measurable quantities.

2. The instantaneous sediment transport equation adopted in this work can

be time averaged to give a mean temporal sediment transport equation.

The result is in the functional form used in this work. The discharge

used in the mean temporal equation is the mean peak discharge. This

mean peak discharge is interpreted as the "dominant" or channel

forming discharge. The transport coefficient #, is dependent upon the

distribution of flood peaks, parameterized by mean peak discharge.
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C.2 Physical Basis for the Activator Mechanism

C.2.1 Introduction

This section will provide a, linkage between the types of processes that are

observed to trigger, or activate, channelization in the field, and Equation (5.2a) which

is used to represent the activator mechanism in this work. It should be stated at the

outset that the state-of-the-art understanding of these processes is, at best, primitive.

A qualitative understanding of the processes is beginning to be developed at the

current time. Quantitative understanding of the range of processes is less advanced,

and is either the subject of current research, such as groundwater induced stream

growth (Dunne, 1989) or has yet to be fully addressed, such as is the case for overland

flow induced channel growth.

The generic equation used to represent the channelization activator is

a =5 m5 (C.46)

In Section 5.3 it was noted that the purpose of the activator in the

channelization equation (5.1b) is to trigger the one way process modelling the

transition from hillslope to channel. This process is triggered at the time when the

activator exceeds the channelization threshold at that point. This threshold in

Equation (5.1b) is

athreshold '47)

Once this threshold is exceeded, the channelization process proceeds at a rate

governed by the timescale for channelization, 1/dt. The form of Equation (5.1b) is

such that the actual value of activator during the transition stage between hillslope
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and channel (i.e., when Y is between 0.1 and 1.0) is relatively insensitive to the actual

value of the activator, a, provided that activator is not substantially larger than the

threshold value. Formally this can be expressed as

a < 5 athreshold (C.48)

Thus the importance of the activator is in the triggering of the chainelization,

rather than in governing the rate of channelization. Once channelization is triggered,

growth occurs independently of the activator level. It was noted in Section 5.3 that

during the channelization process sediment transport is considered to be intermediate

between the value of transport for a hillslope and the value of transport for a channel.

Because the rate of channelization is independent of activator level, and so is

independent of drainage directions (which follow from the hillslope form), the form of

the transition from hillslope to channel sediment transport is relatively unimportant.

The question that this section addresses is: What physical processes can

Equation (C.46) be claimed to simulate given the way the activator threshold is used

in the model (Equation 5.1)? Some examples of physical processes will follow.

An important observation must be made before we begin. In Equation (5.1)

there is only one definition of discharge and this single definition was used in both the

activator and sediment transport equations. It was noted in Section C.1 that this

discharge may be interpreted in two different ways, depending on the interpretation to

be placed on the elevation evolution equation (5.1a). They are:

1. If Equation (5.1a) is to be interpreted as the instantaneous change of

elevation with time, then Q is the instantaneous discharge.

2. If Equation (5.1a) is to be interpreted as the mean change of elevation

with time, short term elevation perturbations being averaged out, then Q
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is the mean of all peak discharges of all significant flood events, QP.
Activator must be interpreted in an analogous fashion to sediment transport.

In the one case, the activator occurs instantaneously in time. In another case, the

activator is considered to be the mean over many storm events. This mean activator

must be expressed in terms of the mean peak dischage Q . The question of what

constitutes the mean temporal activator of channelization, over many flood events, is

very poorly understood, and has not been satisfactorily addressed in the literature.

Calver (1978) provided a preliminary understanding on the basis of a. conceptualization

of the instantaneous channel growth mechanism. The lack of theoretical basis for the

conceptualization, and the lack of any experimental evidence, make this work

somewhat speculative.

C.2.2 Deriving the Activator Equation

In the derivation of the activator formulas that follow a number of different

physical mechanisms will be examined for different channel geometries. In the cases

where the channel initiation mechanism, or activator, is considered be either overland

flow velocity or overland flow bottom shear stress two channel geometries will be

examined; a wide channel of uniform depth and a triangular channel. These activator

mechanism are based on Hortonian overland flow mechanisms.

Recently a threshold based on a groundwater driven stream sapping mechanism

has been proposed (Dunne, 1989). It can be formulated into the form of the activator

function used in this work.

Case 1: Overland Flow Velocity

One of the most common criteria for the design of erosion works is overland

flow velocity. Many engineering handbooks give tabulations of allowable velocities for
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various forms of ground cover or erosion protection (e.g., Henderson, 1966).

overland flow velocity can be expressed in the generic form of activator in Equation

(C.46).

If the wide channel assumption is made so that hydraulic radius, R., is equal to

the flow depth, y, and the wetted perimeter, P, is independent of discharge, then

Mannings equation can be written as

R2 / 3 S1 / 2
v = n (C.49)

and the discharge for a wide channel of width w can be written as

SR5 / 3 51/2 w
Q = n1w

(C.50)

Combining these equations yields

1
V =[ 2 / 513 /5] Q0. 4 S0.3 (C.51)

or expressing this result in terms of discharge/(unit width), q,

n
. (C .52)

A similar expression for velocity in a triangular channel may also be derived.

Consider a triangular channel geometry with sideslope al (Equation

Mannings equation for velocity and discharge (Equations C.49 and C.50).

C.14) and

Using the

expression for hydraulic radius and wetted perimeter of Equations (C.16) and (C.17),
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we may obtain, after elimination of the flow depth, y, the following expression for

average velocity in the channel

V = - 9 3 0.25 Q0.25 S0.375 (C.53)
4(1 + a I )n

Equations (C.51), (C.52), and (C.53) are expressed in the general form of activator

equation given by Equation (C.46). Coefficients 5, i 5 , and n5 all follow directly

from the hydraulics of the environment and the roughness of the surface.

Case 2: Overland Flow Shear Stress

An important concept in modern sediment transport theory is that of a

threshold bed shear stress, below which no sediment transport takes place. This

concept was first clearly expressed by Shields (1936) (Vanoni, 1975) in his now famous

Shields diagram which relates bottom shear stress with sediment transport.

Thresholds on shear stress are included in transport formulas due to Duboys (in 1897),

Shields (in 1936) and Laursen (in 1958), among others. Without sediment transport

the erosion necessary to scour out a channel cannot take place.

For a wide channel, or overland flow region, the bottom shear stress 7- is given

by

T* =/RS (C.54)

Using the expression for discharge from Mannings equation (C.50) to substitute

for depth y (y = R for the wide channel) in Equation (C.54) gives the bottom shear

stress for a wide channel as
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n= [()3/5Q 0. 6 s0. 7  (C.55)

The equivalent expression in terms of discharge/(unit width), q, is

= [Y n 3/5 ]0. 6 S0. 7  (C.56)

A similar expression for shear stress in a triangular channel may also be

derived. With the triangular channel geometry with sideslope a, (Equation C.14),

Mannings equation for discharge (Equation C.8), the shear stress equation (C.54) and

the expressions for hydraulic radius and wetted perimeter of Equations (C.16) and

(C.17), we may obtain, after elimination of the flow depth, y, the following expression

for the average shear stress on the channel bottom.

n a 78/3 j 3 /8 0. 375  0. 8 13  
(C.57)

As for the wide channel case Equations (C.55), (C.56) and (C.57) are in the

form of the generic activator equation (C.46). The coefficients #5, M5, and n 5 follow

directly from the hydraulics of the environment and the roughness of the surface. It is

interesting to note that the dependence of #3 on Mannings roughness coefficient is

qualitatively different from the case of overland velocity.

It might be noted that there are two opposing viewpoints regarding the

applicability of a threshold shear stress to channel formation. The first viewpoint is

that channel formation cannot occur unless sediment transport occurs, thus the shear

stress threshold must be exceeded for channel formation to occur. However, it must be

noted that active sediment transport occurs on the hillslopes, albeit at lower rates.
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Thus the shear stress threshold must be exceeded on the hillslope as well as in the

channel. These contradictions would suggest that the shear stress threshold is not the

crucial one for triggering channelization. Priest et al. (1975) supports the view that a

shear stress threshold is not the critical one for channel growth. He notes that shear

stresses in the channel are insufficent to scour the channel, even though they are

sufficent to removed already loosened material.

The second viewpoint is that a second, higher, threshold may conceivably exist

that corresponds to the channelization threshold. This threshold may represent the

breaking through of the mat of grass and root material in the upper soil zone. It is this

effect that should be modelled as the critical threshold on channelization. This was the

philosophy of the preceding derivations. This philosophy is consistent with

observations that substantial overland erosion may take place on the hillslope without

rilling or channelization (Dunne and Aubrey, 1986).

Case 3: Groundwater Stream Sapping

Dunne (1969) proposed a conceptualization of a groundwater process where

groundwater streamtubes converged onto a seepage face at a channel head. The

groundwater discharged from the seepage face and into the channel, eroding and

extending the channel head. This conceptualization has been supported by other

experimental evidence (Coelho Netto, et al., 1987) and is illustrated in Figure C.4.

Channel advance occurs because of the erosion and piping at the seepage face, followed

by head collapse, provided only that the in-channel sediment transport is sufficient to

remove the loosened material from the seepage face and carry it downstream. The

form and magnitude of the processes that act at the seepage face are still not known

exactly, and seem to vary from site to site (Dunne, 1989). As a result there is some

uncertainty about the actual physical variables that are responsible for most of the

bulk movement at the channel head, e.g., hydraulic gradient, pore pressure, velocity,
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Figure C.4: Dunne's stream sapping hypothesis (from Dunne, 1980)
(a) Uniform initial conditions (b) Budding of a new channel

(c) Flow convergence around the channel head
(d) Flow patterns around a network of channels
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specific discharge or grain shear stress.

Dunne (1989) suggested a threshold on hydraulic gradient above which erosion

at the seepage face would occur by piping. He believed velocity effects are not

important at the seepage face. This hydraulic gradient threshold is

dH= (s-l)(1-n) (5.58)
d threshold

where

dli
= groundwater hydrualic gradient at the seepage face

s = specific gravity of the sediment material

n = porosity

To reformulate Equation (C.58) into the form of the generic activator equation

Darcy 's law is used. Darcy 's law for groundwater flow at the seepage face is

Q = K h w (C.59)

where

K = hydraulic conductivity

h = height of the seepage face

w = width of the seepage face

Formulating this in the form of the generic activator, where head gradient is the

activator yields

d Kh Q (C.60)

Again, as for the overland flow cases, the coefficients 5, m 5 , and n5 in
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Equation (C.46) follow directly from the hydraulics of the environment. The hydraulic

conductivity, K, though heterogeneous in space, is a well defined quantity, at least in

its spatial mean. The seepage face area, hw, is perhaps less well defined. It is

probably a function of the shape of the channel head and the depth of the soil, these

properties being well defined within a catchment.

Note that the groundwater hydraulic gradient dH and the landscape slope S are

not necessarily equal. There is no immediate connection between the variations in the

groundwater table and variations in the landscape elevations. In Appendix A, where

details of the computer model are discussed, it is noted that the dischafgs90f-Xs

obtained from an analysis of flow directions derived from the land surface topography.

Groundwater flow directions may not follow the surface topography. For the

groundwater flow activator the discharge used in the sediment transport equation will

be different from that in the activator mechanism, the former from surface flow

considerations, the latter from groundwater flow considerations. This issue is outside

the scope of this work and will not be dealt with here. A slightly simpler case is when

the pattern of elevation and groundwater head are the same, and where subsurface

saturation is the dominant runoff mechanism. This is the case of 0 'Loughlin (1986).

He assumes that the pattern of elevation change in the landscape and the groundwork

phreatic surface are the same. The method for determining discharge used in this work

is satisfactory in this case. Note, however, that channel growth on the basis of

groundwater flow calls into question the whole idea of hillslope erosion resulting from

overland flow that is implicit in Sections A.1 and 5.4.

In summary three different and physically based mechanisms for triggering

channel growth have been examined. All three of these mechanisms can be formulated

in the form of the generic activator equation of Equation (C.46). In each case the

nonlinear dependence of the activator mechanism on discharge and space followed

directly from the physics of the activation mechanism. In all three cases the nonlinear
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dependence on discharge and slope was different. The derived activator equations are

summarized in Table 5.2.

C.2.3 Scaling of the Activator Threshold

The differentiating feature between the different activation mechanisms is the

ratio (m5 /n 5 ). If (m5 /n 5 ) is equal for two different mechanisms, then they are

equivalent in their behavior except for a scaling of the activator number TA (see

Chapter 6). A short justification of this assertion follows. Similarity with respect to

TA was discussed in Chapter 6 for constant n 5 and n5 . The derivation below relaxes

that limitation so that m5 /n 5 is constant but n5 is variable.

The reader will recall that the region where activator exceeds the activator

threshold is used solely to indicate where channelization can occur. Thus two different

activator functions, in the same catchment, are equivalent if the regions where the

activator exceeds the activator threshold are the same. This is equivalent the saying

that the line x = C along which a(x) = athreshold is the same for both of the

catchments. Thus for two catchments (1) and (2) we require

1
a()(C) = a(2)(C) = athreshold ( ) (C.62)

or casting this into nondimensional form using the activator number, TA,

TA() Q(C ( ) 5(1) S'(C') ](1)

= TA(2 ) Q[Q(C)m 5(2)/n5(2) S'(C') n5(2) (C.63)
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Now if

= M15 (2 )/n 5 (2)

n 5 (1,2)
n5(1,2)

= m5 /n 5

=-I

m5 (1 ,2)

n5(1,2)

-n"5(1)

"'5(2)

= n5(1)
115(2)

then Equation (C.63) may be rearranged to give

Q'(C')m5/n 5 S'(C')

I
n5(2)-n5(1)

(2)

The right, hand side is a constant independent of x. To obtain a similarity

condition relating TAtj) and TAI, we raise Equation (C.64) to the power of 115(1)'
k -1) k -1)I I )

multiply by TA(1) and substitute for the left hand side with Equation (C.63). This

gives

=(1) 5(2)115(1) = I (C.65)
A)

TA" (2)
TA(1)

Equation (C.65) is the similarity condition for activator for two catchments (1) and (2)
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so that

where

(C.64)

Mn5(1 )/n 5(1)



when m5 (1 ,2 )/n5 (1 ,2) = 1. This similarity condition is identical with that derived in

Chapter 6 from the governing equation (Equation 5.1).

The foregoing argument is the justification for the assertion that two activator

mechanisms with equal (m5 /n 5 ) are equivalent except for a scaling coefficient. Table

5.2 contains a list of the activator mechanisms that have been examined in this section,

their governing equation, and their m5 /n 5 ratios.
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APPENDIX D

SIMULATION DATA

Run TT TS TC TA TD O m
10i 10-3 10-6 t

CR1-3 1 1.76 1 15.77 0 0.1 1.33

CR1-4 1 0.35 1 15.77 0 0.1 1.33

CR2-3 1 1.76 1 9.46 0 0.1 1.33

CR2-4 1 1.76 1 5.68 0 0.1 1.33

CR2-6 1 1.76 1 12.61 0 0.1 1.33

CR3-3 1 1.76 1 15.77 0 0.01 1.33

CR3-4 1 1.76 1 9.46 0 0.01 1.33

CR3-5 1 1.76 1 9.46 0 0.001 1.33

CR4-1 1 0.43 1 10.72 0 0.1 1.33

CR4-2 1 7.19 1 13.88 0 0.1 1.33

CR4-3 1 0.16 1 10.72 0 0.1 1.33

CR4-4 1 20.1 1 13.88 0 0.1 1.33

CR4-5 1 7.19 1 13.88 0 0.1 1.33

CR4-6 1 1.76 1 9.46 0 0.1 1.33

CR4-7 1 1.76 1 9.46 0 0.1 1.33

CR4-8 1 1.76 1 9.46 0 0.1 1.33

CR4-9 1 1.76 1 9.46 0 0.1 1.33

CR4-1b 1 1.76 1 9.46 0 0.1 1.33

CR5-1 1 1.76 10 9.46 0 0.1 1.33

CR5-2 1 1.76 10 15.77 0 0.1 1.33
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Run TT TS TC TA TD 0 m

104 10- 10 n 5

CR7-1 1 1.76 1 12.61 0 0.1 1.33

CR7-2 1 1.76 1 12.61 0 0.1 1.33

CR7-3 1 1.76 1 12.61 0 0.1 1.33

CR8-i 31.0 - Run to dynamic equilibrium of CR2-3

CR8-3 13.9 - Run to dynamic equilibrium of CR1O-2

CR9-6 1 6.68 1 2.59 0 0.01 0.50

CR9-8 1 1.68 1 2.59 0 0.01 0.50

CR9-10 1 0.10 1 2.24 0 0.01 0.50

CR9-11 1 0.73 1 2.44 0 0.01 0.50

CR10-1 1 1.76 1 9.46 0.02 0.1 1.33

CRi0-2 1 0.03 1 1.03 1.44 0.1 1.33

CR11-i 1 1.76 1 3.53 0 0.1 0.92

EB11-9 1 0.85 1 169.0 0 0.1 1.33

All runs used n5 =0.3, m 1 =1.8, n 1 =2.1 except

EB11-9 which used n5 =0.75
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Regression of Drainage Density with Nondimensional numbers

Simulations used for the calibration of the regression were

CR1-3, CR2-3, CR3-3, CR3-4, CR3-5, CR4-2, CR4-5, CR4-G,

CR4-7, CR4-9, CR5-1, CR5-2, CR9-6, CR9-il.

Simulations used for the verification of the regression were

CR2-4, CR2-6, CR11-i

Regression of Drainage Density Growth Rate with Nondimensional numbers

Simulations used for the calibration of the regression were

CR1-3, CR1-4, CR2-3, CR3-3, CR3-4, CR3-5, CR4-1, CR4-2,

CR4-3, CR4-4, CR4-5, CR4-6, CR4-7, CR4-8, CR4-9, CR4-10,

CR5-1, CR9-6, CR9-11.

Simulations used for the verification of the regression were

CR2-4, CR2-46, CR5-2
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