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Abstract

This dissertation investigates the eigenvalues and condition numbers of real and complex random matri-
ces with the goal of solving several open problems in numerical analysis that were raised in various forms
by the work of von Neumann, Birkhoff, Smale, Demmel, and others. Roughly, we answer the question:
What is the condition number of a random matrix? We also extend our techniques to solve an open
problem in multivariate statistics communicated to us by Olkin.

We follow the literature and consider randorn matrices with elements from standard normal distribu-
tions, but we study more than real square matrices; we describe various distributions for rectangular or
square, real or complex matrices. The condition number distributions that we derive for l1arge matrices
from a normal distribution model more general situations quite well.

The distribution of the condition number of a random matrix describes how many digits of numerical
precision are lost due to ill conditicaing when solving a random system of linear equations. It also
describes how long an iterative method such as the conjugate gradient iteration would take to converge
for a random system. In particular we show that a condition number hound used by von Neumann is
correct for only 80% of real random matrices. We solve a problem posed by Smale by showing that
the geometric mean of condition numbers of real square matrices grows like 4.65n. (The arithmetic
mean is infinite.) This leads to the conclusion that roughly log,o n + 0.7 digits may be lost due to ill
conditioning on average when solving large linear systems. The situation for random complex matrices
is that log,on + 0.4 digits may be lost on average. Another application is that the conjugate gradient
iteration is an O(n®) process on average. We also obtain an exact distribution that was estimated by
Demmel.

When a sample is taken from a multivariate distribution, it is of interest to perform tests on the
sample covariance matrix. We derive a recursion for the distribution and moments of the smallest
eigenvalue of the covariance matrix when the elements are assumed to be independent standard normals,
and we tabulate the expected values. In the language of multivariate statistics, we derive a recursion for
the distributions and moments of the smallest eigenvalues of Wishart matrices.

Thesis Supervisor: Lloyd N. Trefethen
Title: Associate Profesisor of Applied Mathematics
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I

1,

Notation

number of rows in a matrix

number of columns in a matrix (m < n always)
transpose of A

Hermitian transpose of A

smallest eigenvalue of a matrix

largest eigenvalue of a matrix

condition number of a matrix

v—1 (or an index)

independent and identically distributed

cumulative density function (distribution function)
probability density function

normal distribution with mean p and variance o?

z + yi, where z and y are iid N(u,0?)

m X n matrix, where the mn elements are iid N(0,1)
m X n matrix, where the mn elements are iid N(0, 1)
m x m matrix AAT, where A is G(m,n)

m x m matrix AA¥, where A is G(m,n)

Gaussian orthogonal ensemble: (A + AT)/2, where A is G(m,n)
Gaussian unitary ensemble: (A + A*)/V/8, where A is G(m,n)
trace(A)

exp(tr(A))

multivariate gamma function (p. 32)

complex multivariate gamma function (p. 33)
[Ticicjcm—1lzi = z;| (p. 41)

ze~*/?dz (p. 41)

du(21) . - dp(znmr) (p- 41)

Jap-1 S(N)AdR (p. 46)



He talks at random; sure the man is mad.
—- SHAKESPEARE, I Henry VI V.iii.

Chapter 1

Foreword

For three centuries, mathematicians searched for an exact formula for the roots of a general
polynomial. Their efforts would necessarily be in vain, as was shown in the early nineteenth
century when Ruffini (1813) and Abel (1827) independently demonstrated the unsolvability of
quintics in terms of radicals. Recast in the language of linear algebra, we immediately conclude
the lack of a simple expression for the eigenvalues of a general matrix, as they are the roots of
an arbitrary polynomial.

What if we redefine the problem, replacing “general” with “random™? We are no longer
interested in the eigenvalues of any one matrix; the distributions and expectations are what
matter now. Can we escape the clutches of the theorem of Abel and Ruffini and obtain closed
form solutions? Surprisingly, many times we can.

There are many applications of random eigenvalues. Cur point of departure, however, was
the desire to understand the ratio of the largest to smallest eigenvalue of AAT for a matrix
A. This is the square of the condition number of A which is often used to measure how many
digits we might lose upon numerically solving linear systems of equations, or perhaps more
importantly, how quickly an iterative method, such as the conjugate gradient iteration, wili
converge.

How does the condition number behave on average? This question has been asked in various

forms by von Neumann et al. [49], Birkhoff and Gulati [9], Smale [42], Demmel [15], and many



others. To capture a notion of “average,” these authors chose a probability distribution for
their random matrices. Answers usually have taken the form of an approximate bound on the
condition number distribution or expectation. In this thesis, we settle many of the issues by
obtaining exact formulas.

The next chapter outlines the history and applications of random eigenvalues in a variety
of fields. At the conclusion of this survey (Section 2.6), we summarize the contributions of this

thesis.



Chapter 2

History and applications

2.1 Numerical analysis

The limitations on solving large systems of equations are computer memory and speed. The
speed of computation, however, is not only measured by clocking hardware; it also depends
on numerical stability, and for iterative methods, on convergence rates. If we had a machine
that performed Gaussian elimination on a random n by n matrix for n = 1,000,000 in 16-digit
precision with a computation time of one year, after that year, would we have any correct digits
at all? Would doubling the precision and a wait of two years suffice? What about iterative
methods? How long do we need to wait to obtain convergence?

Such questions are not new. In 1946, von Neumann and his associates saw n = 100 on
the horizon, and hoped to understand the numerical stability question mathematically. Today,
perhaps the equivalent number is n = 50,000, but our understanding, though far better, is still
imperfect.

We review here the work of von Neumann and his colleagues Bargmann, Goldstine, and
Montgomery [49], for three reasons: to set the stage for random condition numbers, to illustrate

historical lessons, and to fill a gap suggested by Wilkinson[57]:

...although their paper deservedly received widespread recognition very few have

been able to give a concise sketch of the basie of their analysis.
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Given the difficulty of extracting the various ideas from their work,! we will recast their ideas
in modern notation, supplying equation and page references from [49] for the reader wishing to
go back to the original source.

Goldstine and von Neumann’s analysis [49c, 49d] has three components: the choice of
algorithm, the rounding errors, and the implications. For their algorithm, they made the
unfortunate choice of solving Az = b by forming ATA and solving the positive definite system
ATAz = ATb (the “normal equations”). This would be achieved by inverting ATA and then
forming M = (ATA)~' AT numerically. We know now that this algorithm unnecessarily squares
the condition number x, and thus is unstable, In fact, Goldstine and von Neumann recognized
the importance of the condicion number? (though they did not use this term), yet failed to
observe that squaring it was unnecessary.

Through a meticulous account of the numerical errors in Gaussian elimination, Goldstine

and von Neumann bounded the matrix residual computed in fixed point arithmetic by*
|AM — I||2 < 20x*n?37°, (2.1)

where 3 is the base and s is the number of digits. The factor n? arose from a worst case analysis
of the accumulation of errors. In their later paper, they reduced the factor 20n? to 200n by
assuming that the errors accumulate statistically ([49d], Equation (9.19)). Thus, they obtained
the estimate
|AM — I||2 = 200x%n3~°. (2.2)
In our summary so far, we have deliberately not introduced any random matrices; the only
randomness in (2.2) is not in the matrix A, but in the assumption of statistical distributions of
errors.
How is x estimated in (2.2)? This is where von Neumann and his colleagues introduced the

assumption of random matrices distributed with elements from independent normals. Various

!Wilkinson referred to the paper’s “indigestibility.”

24 the actual estimate of loss of precision . ..depends not on n only, but also on the ratio ! of the upper and
lower absolute tounds of the matrix. ...It appears to be the ‘figure of merit’ expressing the difficulties caused
by ...solving simultaneous equation systems ...” ([49a], p. 14).

3To their credit, Goldstine and von Neumann did remark, however, that their reasons for forming ATA “may
not be absolutely and permanently valid” ([49c], p. 514). They were merely attempting to work with a model
with which they could carcy out the analysis. With this model, they avoided the issue of pivoting.

This is a rough average of Equations (7.5') and (7.57) ([49¢], p. 551). See the comment after Equation (7.16)
for the justification for taking an average.

11



“rules of thumb”® are given for x when the matrices are so distributed: n ([49a], p.14), V10n
([49b), p.477), and 10n ([49¢c], p.555). We will show in Section 7.1 that the probabilities that
k is less than n, v/10n, and 10n converge to (approximately) 0.02, 0.44, and 0.80 respectively.
Thus the estimates have the right order of magnitude, but even the final estinate of 10n will
fail for 20% of random matrices.

To “reduce the probabilistic uncertainties to reasonably safe levels,” in their published

papers [49c, 49d], Goldstine and von Neumann made the assumptions that

Amex < 100n,
Amin > 1/1007, (2.3)
K < 10n,

where Amax and Amin are the extreme eigenvalues of ATA. ([49c], Equations (7.14}.a, b, and
c), written in terms of the eigenvalues rather than the singular values.) The result for Amax is
rigorously proved to hold with probability greater than 0.99 ([49d], Equation (8.8)), but for the
estimate of Amin (Which we will show fails for 20% of random matrices), they refer to a work of
V. Bargmann (“Statistical distribution of proper values”) which can not be lccated.®

Substituting (2.3) into (2.2), and taking ten digit precision, we obtain that the right hand
side of (2.2) is less than unity if » < 79. Actually, Goldstine and von Neumann made a further
approximation ([49d], Equation (9.18")) and obtained as one of their “bottom lines” the value
n < 86 ([49d], Equation (9.19.b)).

The principal direct methods today for solving linear equations are Gaussian elimination
with partial pivoting and the QR factorization. Thanks to the work of Wilkinson, we no longer
use (2.2) tc estimate the errors, but rather we bound the relative error of the computed solution
Z by

Iz — =2

llll2

Here ¢ is floating-point machine epsilon, x is the condition number, and f(n) includes the

< kf(n)e. (2.4)

possibly combined effects of a polynomial and, for Gaussian elimination, the growth factor.

Both factors are often dismissed as pessimistic and ignorable in practice.

SSometimes these estimates are referred to as an expectation and sometimes as a bound that holds with high,
though unspecified, probability.

®In telephone communications during April of 1989, Bargmann and Goldstine informed me that there probably
is no such document.

12



In 1979, Birkhoff and Gulati [9] resurrected Goldstine and von Neumann’s model, but incor-
porated Wilkinson’s bound. They observed the orthogonal invariance of random matrices with
independent normally distributed elements and performed several numerical experiments with
random number generators and EISPACK. They further suggested that random matrices with
normal elements are not ill-conditioned enough for testing Gaussian elimination and proposed
a method that would be.

Once again drawing from Goldstine and von Neumann’s model, Smale, in a 1984 seminar,
asked for

L, = E(logk),

the expected logarithm of the condition number of n by n matrices with normally distributed
elements. This question is posed in [42] alongside other random algorithm questions (such as
arise in linear programming) where the average tends to be far less costly than the worst case.

To understand the significance of log x, remember that the condition number can also be
defined as the smallest number x (depending on A only) such that for all z and éz, if Az =b

and A(z + 6z) = b+ 6b, then
62l _ 58l
lizllz 161l

(2.5)

As a consequence,

(log [|6z||2 — log||z||2) — (log ||8b]|2 — log [|b]l2) < log .

When taking the logarithm to the base 10, the equation above has the interpretation that the
number of correct digits in z can differ from the number of correct digits in b by at most log x.
Smale thus calls log x the loss of precision. For another interpretation of log x, consider (2.4)
with f(n) = 1. The logarithm of the condition number then bounds the exponent in the relative
error, giving a kind of “Richter scale” where a relative error of size € gives a loss of precision of
0, and every tenfold increase in the relative error increments this measure by 1.

In response to Smale’s question, bounds for L, were obtained by Kostlan [29] and Oc-
neanu(see [42]), who found that the exponential of the expected logarithm to the base e (i.e.,

the geometric mean) satisfies the following inequalities:

n?2/3+o(1) < exp(L,) < en®/?, (2.6)

13



In Section 7.1, we will replace their bounds with exp(Ln) = 4.65n + o(n).

The gap between 2/3and 5/2 in the exponents above represents a world of difference in terms
of comparing the average behavior of the conjugate gradient iteration with that of Gaussian
elimination. To see this, assume the conditjon number of a random matrix 4 js order n%, and
we apply conjugate gradient towards the linear system AT Az = ATb. The number of operations
per iteration is given by the two matrix vector multiplications, hence it js order n?, while the
number of iterations is order of the condition number of A which js order n®. Thus the total

number of operations is order n2t If a were 2/3, then we would know that conjugate gradient

Our conclusion that a = 1 shows that both are n3 operations, and the choice of method is more
subtle; it depends on the various constants involved.

Though most often one hears about the condition number in the context of the sensitivity
of solving linear systems, in fact every problem (as explained further in numerical analysis texts
such as [25]) has a condition number that expresses the magnification of the relatjve output error
given the relative input error. Problems are ill-posed when the condition number js infinite; they
are ill-conditioned when the condition number is large. Demmel [15] explains that the ill-posed
problems in a given class often form an algebraic variety, whilc the ill-conditioned problems
form a tubular neighborhood. Though Demmel’s model js very general, we will explain it for the
case of real and complex n by matrices, which can be identified with the Euclidean spacas
R™ and R?"*, The ill-posed matrices lie on a submanifold defined by det(A) = 0. Since det(A4)
is a polynomial, algebraic geometers refer to this manifold as an algebraic variety. A is ill-
conditioned when it is, in a sense that can be made precise, close to this manifold. It naturally
follows that ill-conditioned matrices lie in a tubular neighborhood around the manifold, i.e., the
set of points within a certain distance of the manifold. Demmel found it convenient to define
the condition number kp = Al A=Y,

With his model, Demmel concluded that for complex matrices with normally distiibuted

elements

1 - z-1)2n%-2 e2ns 1+ n2/z)2n?-2
( 2n4z)2 < Prob(kp > z) < ( z2/ ) -. (2.7)

He also computed the large z behavior for a fixed n:

Prob(xp > z) = "(L;‘i) +o(5). (2.8)

14



The bounds given in (2.7) are not very tight. For example, for £ = «. and n large we get a lower
bound growing like e~2" and an upper bound growing like e?". In Section 7.3. we will derive
the exact result

P(kp2z)=1-(1- n/:r?)n’-l‘

from which we can readily derive Demmel’s asymptotic result (2.8) as a corcliary.

When solving linear systems by Gaussian elimination with partial (or combnlete) pivoting,
the term f(n) in (2.4) is always factored as g(n)p(n) where g(n) is the growth fusto- and p(n)
is a polynomial. The worst case bound for g(n) is 2"~ for partial pivoting and is conjectured
to be n for complete pivoting, but what about the average g(n)? ror partial pivoting, vhe
growth factors that appear in practice are much smaller than 2"~!, but the this phenon.enca
represents 2n imoortant gap in our understanding of partial pivoting. Recently, Trefethen and
Schreiber [47] have studied this question and have given evidence that the growth factor is
another example of a quantity whose average is far better than its worst case. Through careful
experiments and the beginnings of a theory, they found that the average growth factors behave

approximately like n?/3 for partial pivoting and n!/? for complete pivoting.

15



2.2 Multivariate statistics

As imiportant a role as the eigenvalues of ATA have in numerical analysis, they play an even
more crucial role in multivariate statistics. Classical multivariate analysis considers random
vectors v € R™ such that for all (non-random) w € R™, wTv is a univariate normal. This is

the m-variate normal distribution” with mean and covariance

p=E(v), L=E((v-p)v-puT).

Typically, n samples from this distribution are collected as columns in an m by n matrix A.
It is then natural to form the random matrix W = AA7 which is so important that it has its
own name, a Wishart matriz,® named for J. Wishart, who first computed the joint density of
its elements in 1928 [59].

When p = 0, W is said to have the central Wishart distribution, sometimes denoted
Wm(n,Z). If v,...,v, are samples from a multivariate normal distribution, then the sam-
ple covariance matriz W is defined as == Y% (v; ~ 9)(v; — 2)7, where 5 = 1 "% | v;. Clearly
sample covariance matrices have the central Wishart distribution.

Figenvalues of Wishart matrices were first studied as far back as 1939, when Fisher, Hsu,
and Roy independently computed their joint distribution for £ = I.? Since then, a large body
of literature has emerged on the eigenvalues of Wishart matrices. The best introductions to the
subject are [2], [36], [28]; we particularly recommend [36].

Following von Neumann’s lead, we will be mostly concerned with matrices A of elements
that are independent standard normals. Equivalenily, we are interested in the case in which
the covariance matrix is the identity. We say W is W(m,n) if W = AAT, where A is an m by
n matrix of independent standard normals.

Just as eigenvalues of a fixed matrix give much information about its underlying structure,

eigenvalues of sample covariance imatrices give information about the underlying distribution.

One well-studied area is principal components analysis. In principal components analysis, one

"In Galton’s classic example, measurements are taken of the heights of fathers and sons. Each height is
normally distributed, but there are correlations between the height of a father and that of his son.

®Though numerical analysts generally work with ATA, we find it convenient here, and throughout the thesis,
to consider AAT.

®We derive this joint density in Section 3.4. Goldstine and von Neumann used this joint distribution to
estimate Amax. See Equation (8.2) in [49].

16



rewrites the samples v, in the basis of the eigenvectors of £. The components of the vector so
formed are known as the principal components and their variances are the eigenvalues of .
Another important application of the condition number of a random matrix is the sphericity
test, which evaluates the hypothesis that ¥ = Al, i.e., all the eigenvalues of ¥ are equal. See
[36] for yet further applications.

In Chapter 4, we derive new results concerning the exact distribution of the smallest eigen-
value of a Wishart matrix from W(m,n). These distributions can be used for tests of the null
hypothesis that the covariance matrix is . In combination with results on the largest eigen-
value, this can also be used for a sphericity test as can the distribution of Demmel’s condition
number described in Section 2.1.

Since we are focusing on the special case £ = I, we are regretfully ignoring the beautiful
theory of zonal polynomials, which are symmetric multivariate polynomials of the eigenvalues
of a symmetric matrix. Their natural definition arises from group representation theory [27].
Hypergeometric functions of a matrix argument are then defined in terms of these zonal polyno-
mials. The crowning achievement of this theory is that, with these functions, the distributions
of the eigenvalues of Wishart matrices with arbitrary covariance ¥ take a particularly simple
form. Unfortunately, despite this mathematical elegance, the zonal polynomials are notoriously

difficult to compute.

17



2.3 Nuclear physics

The quantum theory predicts that the discrete energy levels of an atomic nucleus correspond
to the eigenvalues of a Schrédinger operator. Unfortunately, for heavy atoms, the operator
is too complex, so physicists have theorized that the Schrédinger operator couid be replaced
bv a random Hermitian matrix. Its eigenvalues would then, it was hoped, correspond to the
observed energy levels.

Though many probability distributions have been proposed, the most famous are the Gaus-
sian ensembles proposed by Wigner!® [54]. We will only mention the Gaussian orthogonal
ensemble (GOE) and the Gaussian unitary ensemble (GUE). The Gaussian orthogonal ensem-
ble can be defined as (A + AT)/2, where the elements of A are independent standard normals.
It has the property of being invariant under orthogonal transformations. The GUE is a complex
version that is invariant under unitary transformations.

Wigner derived the joint eigenvalue distribution for these matrices in 1962 [54). We will
give a cleaner derivation from the multivariate statistics literature in Section 3.3. He is also
responsible for the famous “semi-circle” law, which states that the histogram for the eigenvalues
of a large random matrix is roughly a semi-circle. To be more precise, let A be a random matrix
with independent standard normal elements. Let M(z) denote the proportion of eigenvalues
of (A + AT)/(2/n) that are less than z. The semi-circle law states that as n — oo, i‘;M(z)
converges to 2(1 - z2)!/2 on [-1,1], O elsewhere. In fact, Wigner proved this statement for
random matrices that are more general than the GOE. Properly normalized, the conclusion
applies to random symmetric matrices with independent elemente taken from any distribution
with finite moments, mean 0, and variance matching those of the GOE or GUE. Since Wigner,
further progress has been made concerning the semi-circle law, including simpler proofs and
strengthening of the convergence.!! (One nice example is [19].)

To match experiments with theory and conversely, to make predictions from the theory,
physicists have needed more information about the eigenvalues of the GOE and GUE. Specifi-
cally, they have been interested in the random variable giving the spacings between consecutive

eigenvalues. When the eigenvalues are properly normalized, this random variable has the same

1°Wigner and von Neumann were schoolmates in Budapest and colleagues at Princeton.
" There has even been an argument based on principles of statistical mechanics (35).

18



distribution no matter where the eigenvalue lies in the spectrum. More generally, there are
physical reasons to study the kth eigenvalue larger than a given eigenvalue, known as the kth
nearest spacing. Anotler important quantity is the pair correlation function, which gives the
average number of eigenvalues in a fixed interval. The distributions of these random variables
have been computed for the GOE and GUE in the limit n — co. For further dectails, we refer

the reader to [13]. [35], and [39].}?

2.4 The Riemann zeta function

Quite remarkably, there appears to be an intimate connection betweer the eigenvalues of a
random matrix and the zeros of the Riemann zeta function. It has been conjectured that
g(% + At) has real roots A because somehow the roots correspond to the eigenvalues of a Her-
mitian operator. Odlyzko [37] has tested this conjecture through an enormous computational
effort; he computed 70 million zeros near zero number 10%° and several other large sets of zeros
as well. He found that the eigenvalues of matrices from the GUE (which we will define in
Section 3.1) modeled the zeros amazingly well. By plotting the theoretical coirelation functions
and the kth nearest spacing functions (briefly mentioned in the previous section) for the GUE
against histograms of observed data from the zeros of zeta, he observed the plots were nearly

identical.

2.5 Graph theory

Researchers in graph theory are finding interesting new problems by asking whether a random
graph has a certain property. Sometimes, these problems can be transformed into a random
matrix problem where the eigenvalues play an important role.

A graph can be described by its incidence matrix, A;;, which is 1 if vertices i and j are
connected by an edge, otherwise 0 . More generally, we can allow arbitrary positive integers for
multiple edges and negative integers for directed graphs. If instead of a fixed graph, we take

random graphs, we then have a distribution of random matrices.

12Some of this literature is very difficult to penetrate for the non-physicist. We hope this summary and the
information in Chapter 3 will make it easier.
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Wigner’s original proof of his semi-circle law has an interesting interpretation in the graph
theory context. Wigner’s proof was based on calculating tr(A*) for random matrices A and
observing that these traces, when normalized, converge. These limits give the kth moment of
the eigenvalue distribution since E(AF) = tr(A¥)/n. If A is an incidence matrix of a graph,
tr(A*) counts the number of paths in the graph that return to the starting point. The kth
moment of the eigenvalue then is related to the probability that a random walk of length k will
return to its starting point. Computation of the “semi-circle” (the functions actually are no
longer semi-circles) for regular graphs was done in [33]. For an estimate of the second eigenvalue
of a random regular graph, see [18]. Another interesting application can be found in [12], where
the eigenvalues of a random graph are related to the important problem of graph bisection. See

[11] for a survey of random graph theory.
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2.6 Contributions of this thesis

This thesis settles many of the random eigenv~2lue and condition number questions described
in this chapter by deriving the exact distributions and expectations in some cases and limiting
formulas in other cases.

As an addition to the table of contents, we now itemize the results that we consider most
important and where they can be found. We remark that starting with Chapter 4, all state-
ments labeled as theorems represent, we believe, new results, while important results from the

literature are labeled as propositions.

e Condition number distribution of large square real matrices with elements from a standard
normal distribution: Theorem 7.1, p. 67. Figure 2.1, p. 25 plots the limiting distribution
of k/n as n — o0o. The average logarithm of the distribution is also given in Theorem 7.1,

and Figure 2.3 on p. 27 plots the distribution of log x/n.

s Condition number distribution of large square complex matrices with elements from a
complex standard normal distribution: Theorem 7.2, p. 68. Figure 2.2, p. 26 plots the
limiting distribution of x/n as n — oco. The average logarithm of the distribution is also

given in Theorem 7.2, and Figure 2.4 on p. 28 plots the distribution of log x/n.

o Condition number (degenerate) distribution of large real or complex rectangular matrices
with elements from a real or complex standard normal distribution: Theorem 7.3, p. 69.

The average logarithm of the distribution is also given in Theorem 7.3.

e Condition number distribution for Demmel’s problem of complex matrices uniformly dis-

tributed on the sphere: Thecrem 7.7, p. 73.

e Smallest eigenvalue distribution of the matrix AAT, where A is a square matrix with

elements from a real standard normal distribution: Theorem 4.1, p. 41.

e Smallest eigenvalue distribution of the matrix AAT, where A is any m by n matrix with

elements from a real standard normal distribution: Theorem 4.3, p. 44.

e Form of the moments of the smallest eigenvalue distribution of the matrix AAT, where A

is an m by n matrix (m and n not both even) with elements from a real standard normal
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distribution: Theorem 8.1, p. 78.

e Expected smallest eigenvalues of the matrix AAT, where A is an m by n matrix (m < 25,
0 < n— m < 25) with elements from a real standard normal distribution: Appendix B,

p. 90.

e Average characteristic polynomials of various random matrices: Section 9.2, p. 83.

There are also other results about eigenvalues and condition number distributions not men-
tioned here.

We like to think that each of our descriptions of the eigenvalur s of random matrices is a
kind of solution to the question that we raised in the first two paragraphs of the Foreword. We
believe, however, that our result on the average smallest eigenvalue of a Wishart matrix comes
closest in spirit to the classical task of seeking constructible (with straight edge and compass)
solutions to problems.

Here are two examples of our results. Let A be an m by n matrix with independent elements
from the standard normal distribution. Let W = AAT. If m = n = 25, the expected value of

the smallest eigenvalue of W is
30285573653 /1077824526597.

On the other hand, if m = n = 27, the expected value is (p — qv/3)/r, with
p =931617797994681132254

q = 461090719632381299712
r = 5118884604638003146675.

These are exact answers in what might be called simplest form. We show in Theorem 8.1 that
so long as m and n are not both even, the expected value is always either in the rationals
or the quadratic extension of the rationals formed by adjoining /m. Thus, they are roots of
quadratics. Unfortunately, when m and n are both even, an arcsine of one of the parameters

appears, and the expectation in this case is probably a transcendental number.
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Table 2.1: Properties of the distributions of k/n

“Real | Complex

mode 1.71 1.63
median 3.67 2.40
geom. mecan | 4.65 2.67
arith. mean 00 3.54
P(k/n) <1 | 0.02 0.02

P(x/n) <10 | 0.80 | 0.96

P(x/n) < 100 | 0.98 | 0.9996

Our principal goal, however, was to settle the questions about condition numbers that were
raised by von Neumann, Birkhoff, Smale, and Demmel. (See Section 2.1.) To this end, we
derive the formula that

lim P(x/n < z) = e~/==2, (2.9)

where the matrices have elements from a standard normal distribution. Figure 2.1 plots the
density £e~?/ z-2/z? gith much useful information. The portion of the curve shown encloses
an area of 86%, while the boundaries of the alternating shaded and unshaded regions mark off
the deciles. A close inspection shows that the median is slightly less than 3.7. The solid dots
in Figure 2.5.a show observed data from 25,000 random matrices with n = 75. We see that
they agree very well, and predictions about the condition number distribution for large n can
be based on the plots.

Figure 2.2 plots the density and deciles for complex matrices with the same scale as the
previous plot. This curve, however, encioses an area of 98%. Comparing the two curves, one
notices the slower convergence of the tail of the real distribution. In fact, the real density
converges to zero so slowly that it has an infinite mean, while the complex density has a finite
mean.

Table 2.1 above lists some interesting properties of distributions of x/n for real and complex
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matrices.

The geometric mean result given in the table solves Smale’s problem, while the P(x/n) < 10
resalt for real matrices shows that von Neumann'’s estimate allows for 20% of random matrices
to have larger condition numbers. We should mention that the geometric mean result can be
computed from (2.9), but the result does not rigorously follow from this computation; more
care needs to be taken because of the logarithm. In fact, we can extend Smale’s problem by
asking for the distribution of log x/n. We plot the {imiting distributions and deciles as n — oo
for log x/n for real matrices in Figure 2.3 and for complex matrices in Figure 2.4.

We further remark that many of the results in this thesis provide models for similar questions
for other distributions. For example, Figure 2.5.b plots the same density as Figure 2.5.a, but
the histogram is based on the condition numbers of 25,000 75 by 75 matrices from the uniform
distribution [—1,1]. Similarly, Figure 2.5.c is based on the condition numbers of 25,000 75
by 75 matrices from the discrete distribution {—1,1}. Figure 2.5.d is based on the condition
numbers of 25,000 75 by 75 matrices from the uniform distribution [0, 1} which has non-zero
mean. Notice that we no longer use the histogram of x/n, but rather, 7255/113/2. Thus these

matrices are less well conditioned. See Section 7.1 for more about these matters.
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0.05¢

Figure 2.1: The limiting density of k/n (n X n real matrices)

(Shaded regions indicate deciles.)
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K/n

Figure 2.2: The limiting density of x/n (n X n complex matrices)
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Figure 2.3

The limiting density of log(x/n) (n x n real matrices)
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1. log(s/n) 2. 3.

Figure 2.4: The limiting density of log(x/n) (n X n complex matrices)
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Chapter 3

Fundamental concepts

3.1 Random matrix notation and terminology

In elementary statistics, the most important distribution is N(u,0?), the normal distribution
with mean u and variance 0. The normal distribution deserves its special place in part because
of the central limit theorem, which, loosely interpreted, states that large sums of random
variables often behave as if they were normally distributed.

In multivariate statistics, the most important distributions are derived from the normal.
Again statisticians have discovered that multivariate generalizations of the normal distribution
often suffice for their models. Following this principle, we will be primarily interested in the

following real ranziom matrices derived from the normal distribution.

Gaussian (G(m,n)) m x n random matrix with independent and identically distributed (iid)

elements which are N(0,1).
Wishart (W(m,n)) Symmetric m x m random matrix AAT, where A is G(m,n).

Gaussian Orthogonal Ensembli: (GOE) Symmetric m X m random matrix with iid ele-
ments that are N(0,1) on the upper-triangle and iid elements that are N(0,1) on the
diagonal. Equivalently, it is (A + AT)/2, where A is G(m,m).

These random matrices have complex analogues which we will also study in depth. Let

N(u,0?) refer to the distribution of z + iy, where z and y are iid N(p,0o?).
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Complex Gaussian (G(m,n)) m x n random matrix with iid elements which are N(0, 1).
Complex Wishart (W(m,n)) Hermitian m x m random matrix AA”, where A is G(m,n).

Gaussian Unitary Ensemble (GUE) Hermitian m x m random matrix with iid elements
that are N(0,1) on the upper-triangle and iid elements that are N(0, 3) on the diagonal.
Equivalently, it is (A + A¥)/v/8, where 4 is G(m, m).

The arbitrary normalizations were chosen to most closely match the literature with which

we were familiar.

3.2 Jacobians for matrix factorizations and Haar measure

Little known to many researchers in linear algebra is the fact that the familiar matrix factor-
izations, which can be viewed as changes of variables, have simple Jacobians. These Jacobians
are used extensively in applications of random matrices in multivariate statistics and physics.
As an example, consider the Cholesky factorization A = LLT, where A is symmetric positive
definite and L is lower triangular with positive diagonal elements. This factorization can be
thought of as a change of variables from tne n(n + 1)/2 independent elements of A to the
n(n + 1)/2 potentially non-zero elements of L. This change of variables is well defined since
every symmetric positive definite matrix has one and only one Cholesky factorization. We recall

that if we change variables from a vector z to a vector y, the Jacobian is the determinant

0z, 0z,

: : (3.1)
oz, Jz,
oy Oy

For a rectangular matrix A with mn independent elements, let
dA = lu’a.-j
i
denote the differential volume element. Following [36], we will abuse notation by using the
same notation to denote the volume elements of more special matrices. For example, if § is
symmetric or L is lower triangular, let

dS = H ds.-_,-

i<
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and

dL = [] dli;.

i<
In these cases the differential product includes only the n(n + 1)/2 independent parameters. If

A is a diagonal matrix, then we ict
dA = f[ dX;;.
i=1
For orthogonal matrices Q, d@ will be a bit more complicated. Let Q be an m by n matrix!
with QQT = I. As a subspace of R™", these matrices form a submanifold Vi, of dimension

mn — Im(m+ 1) called the Stiefel manifold. Let dQ denote the volume element on Vi, » induced

by this embedding. It can be shown that the total volume of V;, , is

2m1rmn/2
/v _dQ=t (3.2)

where the multivariate gamma function is defined by
m
Tm(a) = 7™/ I(a - (i - 1)/2). (3.3)
i=1

For m = 1, dQ is the surface element of the sphere and (3.2) reduces to the surface volume of
the sphere. When m = n, dQ/Volume(V, ) is often called the (invariant) Haar measure.
The most important property of Haar measure is its invariance under orthogonal transfor-

mation. This means

[da=[ do,
s Qs
where S is any (Lebesgue measurable) set of orthogonal matrices, @ is any particular orthogonal
matrix, and QS is the set of products of @ with elements of S. The measure dQ/Volume(V; )
then defines a probability space on the orthogonal matrices which is invariant with respect to
orthogonal transformations. For further details consult [36]. For information on the numerical
generation of random orthogonal matrices distributed with Haar measure see [3] and [44].

For complex matrices, the volume elements are given in terms of the real and imaginary
parts. Thus if A is a complex rectangular matrix with A = A, + iA., then dA=dA,dA.. If
H = H, + iH, is Hermitian, dH = dH,dH,.. Since H,. is an antisymmetric matrix, its volume

element is the product of the n(n — 1)/2 independent variables above the diagonal. If L is

'Here, and in the entire thesis, we always assume m < n.
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complex lower triangular with real positive diagonals, the volume element has the same form
as that for Hermitian matrices.

Unitary matrices are analogous to orthogonal matrices. Let Q be an m by n matrix with
QQ¥ = I. As a subpace of R?™", these matrices form a submanifold Vi, , of dimension 2mn—m?

with volume element d@. It can be shown? that the total volume of Vm." is

- 2m7|.mn
dQ = ——, 34
/V,,.,,. Q T'm(n) (34)
where the complex multivariate gamma function is defined by
m
Pm(a) = #mm=D2T](a - i +1). (3.5)
=1

Now that we have defined the differential volume elements, we need to know how to trans-

form between them. The transformations are given in the following theorem.

Theorem 3.1 The changes of variables for the common factorizations have the following Ja-

cobians

' Cholesky S =LLT ds = 2m [, ImH1=3d L
Real y L@ A=1LQ dA = 7, Ir*dLdQ
eigenvalue § = QAQT  dS =[];; |\ — Aj|dAdQ
Cholesky H = LLH  dH =2™[I%, Zm-t+lgL

Complez { LQ A=1LQ dA = [I%, 2r-2+1gLdQ
eigenvalue H = QAQH dH = [Tic;(Ai = A;)2dAdQ

7

Proof The proof of the Cholesky factorization results is particularly easy because the Jaco-
bian matrix is itself upper triangular. The LQ and eigenvalue decomposition results are more
complicated. See [36] for a clear exposition on how to derive these results in the real case. The
complex Cholesky factorization appears in [22]. We have not seen the complex LQ result in
the literature and derived it for ourselves, but will not give the details here. The eigenvalue

formulas for real and complex matrices appear in [35] and [54]. 0O

The LQ formulas hold for rectangular matrices, so that if A is m by n, then Q (Q) is m by

n and L is m by m. To make the eigenvalue factorization unique, we assume that the diagonal

?We computed this volume, but it must appear in the literature.
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elements of L are ordered from greatest to least and that the first row of Q@ (Q) is real and
non-negative. Thus the eigenvector matrices Q only occupy a proportion 2=™ of the volume
of the Stiefel manifold, and the eigenvector matrices  occupy a submanifold of the unitary
manifold. We are not concerned with sets of measure zero, such as the set of matrices with

multiple eigenvalues.

3.3 Joint element densities

As already mentioned, the matrix distributions in this thesis are derived from the familiar

univariate normal distribution, N (y,0?), with probability dencity function (pdf)

(2 — 1)
(2ro?)~1/2 exp(-(2a—2#)).

To construct the joint element densities for random matrices with independent elements, one
simply takes the product of the densities of the independent elements. We note that tr(AAT) =
X a?j and that AAT (AAM) is unchanged when A is multiplied by an orthogonal (unitary)

matrix. Thus,

Lemma 3.1 The joint densities for the indicated random matrices are

G(m,n) (2r)~™"/%etr(-LAAT)
GOE  2~"/ip—n(n+l)/dgrr(-14?)
G(m,n) (27)"™"etr(—3AAH)
GUE  2Mn=1)/2p-n%/2g4r(_ A2)

where etr(A) = exp(tr(A)). Furthermore, these distributions are invariant under orthogonal

(unitary) transformations.

The elements of a Wishart matrix are generally not independent, arnd thus the joint dis-
tribution is more complicated. Following [36], we compute it in two steps using the LQ and
Cholesky formulas in Theorem 3.1 and the joint element density for G(m,n) given in Lemma

3.1. The following diagram outlines the calculation.
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W =LLT

W = AA

The top (horizontal) arrow projects A onto the space of upper triangular matrices. Inte-
grating the @ component over the Stiefel manifold gives that the joint density of L is

gm-mn/2

To(n /2)etr LT)HI"".

This is essentially the decomposition due to Bartlett [5] which states that the elements [;; are
independent, 1% is x2_;,,, and the off-diagonal elements are standard normals.

The right (vertical) arrow is a one-to-one map of L onto the space of symmetric matrices.
Via the Jacobian of the Cholesky factorization in Theorem 3.1, we can derive the joint density

of the elements for a real Wishart matrix. The complex case is analogous. Thus,

Lemma 3.2 The joint density of the elements of a matriz from W(m,n) is

1
—_— (n—m- l)/2
2"‘"/2Pm(n/2)e"( W)(det W) (3.6)

while for a matriz from W(m,n), it is

1
—————etr(—=W)(det W)"~™. 3.7
T W (et W) (3.7)
A curious observation is that when n = m in the complex case, or n = m + 1 in the real

case, the det W term vanishes, and thus the off-diagonal parameters are independent aside from

the constraint that the matrix be positive semi-definite.
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3.4 Joint eigenvalue densities

Here we calculate the joint densities of eigenvalues for real and complex Wishart matrices and
Gaussian ensembles. We believe this is the first time that all these calculations have been

gathered in one place and given as corollaries of the same theorem.?

Theorem 3.2 Let the real symmeltric, m X m matriz S have a joint density function f(S5)
which is invariant under orthogonal similarity transformations. Then the joint density of the
m eigenvalues of S, My 2 A2 2 ... 2 Am 18

o ( / ) f(A) 'I<IJ(,\ (3.8)

If, instead, S is Hermitian and f(8) is invariant under unitary similarity transformations, then

the joint density is

= ( ) I - % (39)

Proof The proof for real matrices follows from Theorem 3.1 by integrating the @ component
in the eigenvalue Jacobian, i.e., multiplying by the volume of V; , and then dividing by 2™,
since we assume the first row of @ is non-negative. The complex proof is analogous, but we

must divide by (27)™ for the arbitrary phases of the m elements in the first row of Q. O

Corollary 3.1 The joint densities of the eigenvalues Ay 2 ... 2 Am of the symmetric (Hermi-

tian) random matrices defined in Section 3.1 are

W(m,n) rm(m/;;"rm(n/a)e"P(‘%ZMHAE"‘"“"”II(*--Aj) (3.10)

i<j
1
GOE AT TG2) exp(—= zv)g(x - ;) (3.11)
_ 2—mn1rm(m—l) aem 2 '
W(m,n) me p—EzA)HA ‘I<IJA —/\) (312)
n(n-1)/2
GUE m exp(— Y _A}) i]:[j(,\.- - X)% (3.13)

3The real case, however, is well covered in [2].
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where the unlabeled sums and products run from i = 1 to m. For the Wishart cases, this is
the joint distribution of the non-negative eigenvalues, while for the Gaussian ensembles, the

eigenvalues may be anywhere on the real line.

The joint density for the eigenvalues of real Wishart matrices was derived in three indepen-
dent papers in 1939 by Fisher, Hsu, and Roy. James in 1960 computed the joint distribution
for the more general case of arbitrary covariance matrices. See [27] for references and a survey
of some of the related history in multivariate statistics. The equivalent calculations in physics

were first performed by Wigner in 1962 [54].
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3.5 Bidiagonalization of a Gaussian matrix

The standard method (due to Golub and Kahan) for computing the singular values of a general
matrix A is to first reduce it to bidiagonal form through orthogonal transformations. If 4 is a
random Gaussian matrix, the resulting random bidiagonal matrix takes a particularly simple

form.

Theorem 3.3 If A is G(m,n), then A is orthogonally similar to an m by n matriz

z, 0 --- 0
Ym—1 Tn
m-—1 n-1 : (3]4)
N Tp_(m-1) 0 --- 0
where z? and y? are distributed as x* variables with j degrees of freedom (i.e. x?).* The

elements here are all non-negative and independent.

The idea of the proof is to perform the standard Householder transformations on the random
matrix. See [41] or [48] for details. Computing the singular values of a bidiagonal matrix is
much less costly than computing them for a dense matrix (O(n?) operations in practice, rather
than O(n?)), so this theorem can be used to speed up random matrix experiments on larger
matrices (though we did not find the need to do so in the course of this work).

We also have the complex analogue,
Theorem 3.4 If A is G’(m,n), then A is unitarily similar to an m by n matriz
Ton 0 --- 0

Yo(m-1) T2n-1) (3.15)

Y2 ZTn-(m-1)) 0 -+ O

where the notation 1s as in Theorem 3.3.

4 Recall that the x? distribution is defined as the distribution of § sums of squares of standard normals.
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From these theorems, we can immediately obtain the interesting facts that the determinant
of a matrix from W(m,n) has the distribution x2x2_;...x2_41- (The notation refers to
the distribution of the product of random variables with the indicated x? distributions.) For
a matrix from W(m,n), the determinant has the distribution xgnxg(n_l) .. xg(n_(m_l)). Since
the expected value of a random variable with distribution x2 is k, we obtain that the expected
value of the determinant is Tr%n'ﬂ in the real case and 2"‘-(-;_’%)-! in the complex case.

Other matrix reductions of Gaussian matrices also have simple forms. We mentioned the
Bartlett decomposition in Section 3.3 which gives the distribution of Q and R if the matrix A
is factored as an orthogonal matrix @ times an upper triangular matrix R. This result had also
been observed by Birkhoff and Gulati [9]. The standard method for computing the eigenvalues
of a general symmetric matrix A is to first reduce it to tridiagonal form through orthogonal
similarity transformations. If we do this for a random symmetric matrix that is from the GOE

or GUE, the resulting random tridiagonal matrix also takes a particularly simple form which

is mentioned in [48).
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Chapter 4

Smallest eigenvalue distribution for

W(m,n)

The distributions of the extreme eigenvalues of Wishart matrices have been known in terms
of zonal polynomials [30] and in terms of Pfaffians [31], but we have not seen any closed form
expressions in the literature. In this chapter, we will integrate the joint eigenvalue distribution
of real Wishart matrices to obtain the exact pdf (probability density function) of the smallest

eigenvalue. For convenience, we rewrite formula (3.10) for the eigenvalues A; > ... > A\, >0

as
Kmned T % TTAZ ™D (A = A)ds ... dAm, (4.1)
=1 1<j
where /
_ m2Zo o n—i+l._ m-i+1
Kl = ( ) TTI( 5—I( ) (4.2)

=1
4.1 A multivariate integral for the pdf of )\,

Using symmetry, it is easy to see by integrating (4.1) that the probability density function for

the smallest eigenvalue Ay, is

Km"‘ n—m-— -
Srain(A) = (_m-_l)!’\( 1)/2-A/2

- n-1
x [ e TINA T - al TT (= AP0y,
R;

1<i<j<n-1 i=1
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where Ry = {(A1,...,Am=1) : Ai > A}. Notice that we removed the arbitrary ordering on the A;
and correspondingly divided the density by (m — 1)!. Now, performing the change of variables

z; = A; — A, we obtain:

Lemma 4.1 The pdf of the smallest eigenvalue Anin of a matriz from W(m,n) is

Knn (nzm=t _y m-1 n—m=1
_Amn_ye=mst _im/2 / i + N AdQ, 4.3
(m - 1)} € R .1:11:( i+A) (4.3)

where A = [[i<icjcm—1 |%i = Zjl, dQ = dp(z1)... dp(za-1), dp(z) = ze~%/%dz, and the inte-

gration takes place over the positive orthant, R'.,’_"l ={(z1,...yZm-1) : z; 2 0}.

It is the integral in the lemma above that we wish to understand. We have not seen the pdf
expressed in this form in the literature. However, as the rest of this chapter illustrates, this

form is convenient for obtaining the exact pdf.

4.2 The pdf of A\p, for W(m,m)

The casc m = n is the case of interest to von Neumann, Birkhoff, and Smale, as described in
Section 2.1. In this case, the integral in (4.3) turns out to satisfy the differential eqnation for

the Tricomi function.

Theorem 4.1 The pdf of the smallest eigenvalue of a matriz from W(m,m) is

m m+1\  _ —Am -1 1
Fraia®) = = (B ) A2y (m, -2 3 ),

2
When a > 0 and b < 1, the Tricomi function, U(a,b, z), is the unique solution to Kummer’s
equation

i~ +(b-2)— —aw =0, (4.4)
satisfying U(a,b,0) = T'(1 - b)/T(1 4+ a — b) and U(a,b,00) = 0.

Proof Let
m—1
w(A) = / I @i+ N 2060,
R+_ i=1

!Throughout the remainder of this thesis, all statements labeled as theorems represent new results, Important
results from the literature are labeled as propositions.
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Our goal is to show that w(A/2) satisfies (4.4). We will need a little more notation. Let A = §A;
where § = [[123! |21 — z;| and Az = [I5<icj<m~1|%i — %j|. Further, let f_;-"b = 2%(z; + A)® and

]'[,_J (z; + A)"‘ Lastly, let dQ = du(z)...du(zm-1) and dQ; = du(z2)...dp(zm-1).
Below we express w,w’, and w” using this notation. All the integrations are over Rr'l, and

symmetry is used when possible.

w = /glAdQ
- 3
W = _1"-2—1/)'{" 7 g2 AdQ

w" = (m—lgm_2)/f1'_%f:'_%yaAdQ+%(m—l)/f,' 2 g2AdQ.

Since g1 = (A + zl)f gg, we have

3 ~3
w = /a:lff'_’ggAdQ+,\/fl' ?g,AdQ

3
= ——w +/ “2g,AdQ

= ——2A—'w +/f2 ’g € nledI]sz
"o -
= -;r:f"’ ~2 [t a e A,

= 'ﬁw +2/Ez—1[f1' 75}‘3"’/2!12132(1-"?1492-

The last line is the result of integration by parts. The differentiation gives three terms, so that

-3
w=_2_'\_w +4/fl' 2 AdQ — 3/f1 ggAdQ+2(m—2)/z 2 igade
-T2
A
= QLS)"_’ 3/fl' K l ngdQ (4_5)
Investigating each of the above two integrals, we find
/ fmig,Ad0 = / o4 Ad0 - 2 / 24,040, (4.6)

and

-3
f LT pnd0 = /——zl(”H) 0% 972 gy nd)

I — T2 )

—_— '2 '2
= "/z,—xfl o5 gyAd,
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because z—f’f}; is anti-symmetric. We can use the identity :—lf_-_g; + ;f_l;‘- = 1 and symmetry to

integrate this last expression. We obtain

T 0,-3 / I 0-3% 0,-3
AQ Q
./1'1 — I 1 g2 ,\ I — I fl fz gaA

- % / [T PN (4.7)

We substitute (4.6) and (4.7) into (4.5), replacing the integrals with the expressions for v’
and w”, and finally rescale z = A/2 to obtain equation (4.4). All we now need is w(9) which
has an integrand of the form (4.1) with m and n replaced by m — 1 and m + 1. Since (4.1)
integrates to 1, we have w(0) = K2, . ;(m — 1)}, and clearly w(oo) = 0. The constant term

in the pdf is then

Knm I‘(m/2+1)_' m  TI(m) __1_7_z_r<m+l)
Km_1m+1 D(3/2) ~ 2m-12T(m/2) ~ 2r 2 )’

and the theorem is proved. a

4.3 The pdf of A\, for W(m,m +1)

As we remarked at the end of Section 3.2, if n = m + 1 the elements of the Wishart matrix
are independent aside from the constraint of positive definiteness. This leads to a particular

simplicity in the smallest eigenvalue distribution.

Theorem 4.2 The pdf of the smallest eigenvalue of a matriz from W(m,m +1) is fy_,.(A) =

-’z'ie"‘"‘/z, i.e., MAmin 18 ezponentially distributed.

Proof When n = m + 1, the integral in (4.3) is independent of A. In fact, other than the
constant, the only term is e~*™/2. The constant must then be m/2 for the formula to be a pdf.

When m = 1 this result is trivial, but it is surprising that it is true for all m. a
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4.4 The pdf of )\, for W(m,n) (recursion)

In the last two sections, we gave explicit formulas for the pdf of Apin when n — m is Oorl.

In Section 4.6 we give an exact expression when n — m is 2 or 3, but no exact expressions are

known for other cases. Thus, we found it necessary to derive a recursion for the densities.
The following theorem is one of the principal contributions of this thesis. We state it in this

section and prove it in the next.

Theorem 4.3 The pdf of the smallest eigenvalue of a matriz from W(m,n) is

cm,n/\(“'"“")/ze"‘"‘/zg(,\), where

Prn(A) ifn —m is odd,

9(A) = . ,
Qma(A)UN) + Bnn(A)U'(X) ifn—m is even.

Here U() is the Tricomi function U5, -3,3), and U'()) s its derivative, — mrl[(meL 33
The ezpressions Prnn(R),@mn(N), and Rm,n(X) are polynomials with rational coefficients which

are determined by recursions given below. The constant c,, ,, is

_ m(m—n)/ P((m + 1)/2) " F(]/2)
e = P I_Il I((m +7)/2)’

where p = 2™/2-1 it 0 _ m is odd and 2-1/2 if n — m is even.

One can verify by counting powers of r and 2 that Cm,n is rational when n and m have opposite
parity. If m and n are even, ey ,21/2 i rational, while if m and n are odd, Cmn(2m)1/2 g
rational. The Tricomi function U (a,b,2) is the confluent hypergeometric function descri bed in
Chapter 13 of [1] and Chapter 48 of (43].

The degree of P, , is jm-1)(n-m- 1), while the degrees of Qmn(A) and Ry, .(A) are
at most 3(m — 1)(n — m). Here are the recursion formulas for computing Pr n, given P, ,,_,,

or Qm,n and R, ., given @2 and Rpyna:
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Recursion for Py n,Qmn, and Rmn

n - m odd:

SO = Pm,n—2
Fori=1tom-1

_— ) 2\, : n—i-1_,

S = (/\ +n - 'l)S -1 - ms-_l + )\(t - I)Ws,_z
Pm.n = Om-1
n—meven:

e Qm,n—2
So - (Rm.n-2
Fort=1tom~-1
. 22, . n—1-1
S. = (A +n - 1)5,_1 - ;__;Si-l + /\(t - 1)_17175'—2

m—1
1 0 =5

. Si—h
m=t}1 2% X+1

Initial cases:

Pm,m+l =1, Qm.m =1, and Rm,m = 0.

‘We found it very convenient to compute these polynomials (and also the moments of the
distribution described in Chapter 8) using the symbolic package Mathematica [60]. The Math-

ematica programs appear in Appendix A.
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4.5 Proof of Theorem 4.3

Theorem 4.3 is proved by combining the lemmas of this section. We begin by introducing
some simplifying notation for the multivariate integrals that are of interest.
Definition 4.1 Let
1% = /R _f(Nade,

+
where the integrand f()) is

gil,‘l + /\)a  ee (I.‘ + ’\)ci(ii+l + A)a—l ces (ICH.J' + ,\)a'igz.-ﬂ'ﬂ + /\)0_2 oo (:L'm + A)a-i.

i lerms j terms m-i-j-1 terms

Further define the operator

I75lg] = _/R __, f(N)gadq.

Notice that given a parameter m (which we omit from the notation), IZ; is a function of A.
We sometimes make this explicit by writing I%;(A). The subscripts ¢ and j and the implicit
parameter m — ¢t — j — 1 give the number of terms of degree a, @ — 1, and a — 2 respe'ctively.
The total number of such terms is (i) + (j)+ (m—-i~-j—-1)=m - 1.

In this notation, we can rewrite (4.3) as
Praia(X) = kmnAe™ ™25 o(N), (4.8)

where a = 2=2=1 and kp, pn = K /(m = 1)1,

It is already obvious from (4.3) or (4.8) that if n — m is an odd integer, then I%_, , is a
polynomial. This fact was observed using other methods in [30] and [35).

The integrals we are about to compute appear complicated, but the next lemma makes
explicit how symmetry can be used to simplify them. Using symmetry is an old trick which

was most recently popularized in this context in [4].

Lemma 4.2 We have

IZ i1 = MY ifi<k<i+j,
Ifj [zk] - +1,j-1 J f J (4.9)
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If the terms (zx + A) and (z; + A) have the same ezponent in the integrals (i.e., both k and |
fall within one of the closed intervals [1,1], [i + 1,i + ], or [i + j + 1,m — 1]), then

. ThT) -

o, = .
L P 0, (4.10)
[ Tr ] 1
Lils—=] = 3% (4.11)
o [_2t ] o
I"'J' Zr — %] = I"'J' [l'k] B (412)

Proof Equation (4.9) is little more than the statement zx = (zx + A} — A. The integral in
(4.10) vanishes since the integrand is antisymmetric in z4 and ;. The integral in (4.11) follows

from the identity -*~ 4 £~ =1 and symmetry. The integral in (4.12) follows from (4.10)

11—z

. . 1'2 IrT,
and the identity - =z, — &=L, -

In the next lemma, we give preliminary recurrence relations for computing I7;. We say
“preliminary” because we will shortly replace our first relation with a more efficient recurrence

involving derivatives of the relevant polynomials.

Lemma 4.3 The integrals I?; satisfy the recurrence relations

I7; (A+20+7+2k+2)[7, ;41 - Ak +2(a - 1)) ; + (1 = )AL 40, (4.13)
B, = I (4.14)

lm—J—l ’

wherek=m—i— 35— 1.

Proof The second equation is immediate from Definition 4.1. To prove (4.13), we begin by
observing

IP; = My i + Iy i),

by replacing ¢ with i — 1 and j with j 4+ 1 in (4.9). We choose the variable z; for an integration
by parts in the integral I ; .. ,[z;]. The relevant terms for this variable have the form -2(z; +

=Zi/2 the integrand vanishes at the

Py okl | P lzi—zllz?;%e”‘/2. Due to the factors of z? and e
endpoints, and we need only compute 3% {(zi + A~ [] |z; — z/|z?} e~=i/2. Since 3':7.,|a:.-—x,| =

|z; — | /(zi — z1), we conclude

;= ARL j40 +2 (2I|'—l.j+l + (@ = DIZ jlzies) + I i [r::,]) ’
I i
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.
= (A4 2o+ Dy = 2N = DI + 2 i [ 2]
I#14

obtaining the term for I, ;[zi4;] from (4.9).

Lastly, we calculate

_ Y I if1<l<i,
2L i [ z; _'x’] =9 It ifi<i<i+yj,
2y =AM, i+ j<li<m,

These equations follow from Lemma 4.2. The first equation can bhe derived by pulling out a

factor of (z; + A) and using both (4.10) and (4.11). The second case is (4.11) exactly. To derive
'l

the last case, we pull out a factor of z; + A to obtain 2I7, ; [:*_-_';‘-] + 2AI7%, [1: e —::] a

An algorithm can be based on (4.13) because it allows for reduction of the first index i until
we reach 0. Then (4.14) allows us to reduce a to a — 1. Thus (4.13) and (4.14) give us the

orI

means to compute I?; by reducing it to the case of I} m—1-it

im—1—i In Lemma 4.6, we give

expressions for these initial cases.

Lemma 4.4 Ifi+j=m -1 (i.e., m—i— j—1=0), then
2\ d
Fi=(A+2a+j+2)[[ j4 - +1dAI--1J+1+A('— 1)(1+ )1-2,1+2
Proof The property that i + j = m — 1 means (from Definition 4.1) that the integrand
has exponents @ and a -~ 1, but no exponents @ — 2. Lemma 4.3 gives I; in terms of
IZ e Iy, and IZ 5 04 o. Since (i — 1) +j # m — 1, we need to express this term differ-

ently if we are to have a recursion with no exponents of @ — 2. We use the observation that

whenm—-1—-j—-1=0,

d
d)\I' 1,j+1 = (1 - 1al 2,j+2 1 (4 +1)(a-1)I7, 9

which comes from differentiating under the integral sign. Combining this with Lemma 4.3, the

lemma ie proved. O

Lemma 4.5 Assume inductively that

Ia

i0,Jo

= A(NUA) + Bi(\U'(N),
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for 0 < ig < i and ip + jo = m — 1, where the A;, and B;, are polynomials, and U and U’ are

as in Theorem {.8. Ifi + j = m — 1, then we have

2\ . n—1-1 m-1
Ai=(A+n-i)Ai - —A 1+ A - 1)7‘_—'-#1:—2 - 2(—m_—i—)3i-la
(/\+n—-z)B,_‘_AB l+’\(’“1)—Tl'B, 2_21\14;'-1 ':1(/\-:-1)B,'_1

Proof This follows directly from Lemma 4.4 and the differential equation satisfied by U:
2AU" — (A4 1)U’ = 251U = 0. (See 13.1.1 in [1]). d

Lemma 4.8 For n — m odd, the initial case « = 1 is a multiple of a Laguerre polynomial,

1 mi! (m+2—-i)
Il,m—l—l - 2(m+ 1)"[‘: ( ’\)1

and Ls.a)(—:c) =3 o (*2)z™ is the generalized Laguerre polynomial. For n—m even, using
the notation of Lemma 4.5, the initial case @ = 1/2 is a combination of Laguerre polynomials

and Tricomi functions,

dmo1-i = AU+ BU,
_ L((m +1)/2)i! -9
A (m—Dar (=A),

~2AT((m + 1/2)it | ms-
(m = 1)(m - Dar !

Proof This is proved by induction. From (4.8) and Theorem 4.2,

V(=a),

I(}.m—l = 12—1,0 - mk-lm+l/2

We then proceed by induction using Lemma 4.4 and two identities for Laguerre polynomi-
als: ALCED(ZA) + (a4 1+ NLEEV(22) = aLP(=)) and £LE(-A) = LAV (=X). This
completes the odd case.

For n — m is even, we note from (4.8) and Theorem 4.1

2 N mI'(m)
om-1"~" “m-10 " ?m_l/zr\(m/2) -

Again, we continue by induction using Lemma 4.5 and the two identities above for Laguerre

polynomials. O
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4.6 The pdf of )\, for W(m,m +2) and W(m,m 4 3)
The pdf of Amin when n — m = 2 and 3 follows from Lemma 4.6.

Corollary 4.1 The pdf of the smallest eigenvalue of a matriz from W(m,m + 2), is

Izt -1 1A A 11
P = L 12 (NP2 5.5+ LAV 5.5)].

The pdf of the smallest eigenvalue of a matriz from W(m,m + 3), is

Fran®) = gy L)
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4.7 Summary

We list all the pdf’s which we know exactly in Table 4.1. Other pdf’s can be computed using
the recursion formulas given in Section 4.4. In Appendix A, we provide Mathematica programs

for such computations.

Table 4.1: The pdf of Amin is given by A(P=m=1)/2g=Am/2p( ),

n—m h())
0 e U (25 -4, M/2)
1 m/2

(=it m— m
2 (721 ) [Lg)-l(_'\)U('_Zl’ _%’ ‘2\') + %Lg)-d(_’\)[j(-'}lt %-) %)]

3 T bl i(=)

The pdf’s for m = 3 give a representative illustration of the the general case. Figure 4.1
plots the distribution functions for m = 3 and n = 3,4,...,28. One might immediately notice
that the distribution gets wider as n gets larger. A special case of interest occurs when m = n.
This case is unusual in that the pdf is infinite at 0, while for n > m +1 it vanishes at 0. Another

unusual feature when m = n is that the pdf monotonically decreasing, while for n > m + 1 it
is bell-shaped.

51



\
‘0

i

‘.‘

N

TN
‘:‘:“;;‘;i“\\’;“ ‘ n=28
"’&’"”:::&ii‘i‘i:*:*:;’* ;

\

Figure 4.1: The density of Amin for W(3,n), n = 3,4,5,...,28
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Chapter 5

Other smallest eigenvalue results

5.1 Asymptotic smallest eigenvalue for W(m,n)

In this section, we derive the limiting distribution of mAyin when m = 7 and m — oo, We
further review a result by Silverstein [41] that gives the limiting distribution of Amin/m when
m and n go to infinity with a fixed ratio. The first distribution describes the behavior of the
smallest singular value of a random square matrix from G(m,m), while the second describes
the behavior for a large rectangular random matrix from G(m,n).

From Theorem 4.1, we can derive the following strong convergence result.

Theorem 5.1 The pdf of mAymin, where Apin is the smallest eigenvalue of a matriz from

W(m,m) converges pointwise to

_ 1+ VT _a4ym
f(z) - 2ﬁ € ?
as m — 00.
Proof From Theorem 4.1, the pdf of z = m)y, is
= [Pp (ML) 1pzgeppgm =1 1 3z
Im(=) = V27rr( 2 )z UG )
The limit of fm(z) as m — oo follows from Stirling’s formula and

m+2 m-1 1 «z _ -VF
)U( 9 v—2’2m)—(1+\/5)e )

lim 2m='/21(

m—00 2
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which is a variation of equation 13.3.3 in [1]. O

The convergence given in Theorem 5.1 is very fast. Figure 5.1 plots fin(z), the density of
MAmin for m = n with m = 1,2, and co. Given the proximity of these curves it would be
pointless to plot any of the intermediate curves! Figure 5.2 plots the density of vmAmi, also
for m = 1,2, and oo. The density of v/mAmin has vanishing slope at the origin for all m.

When m # n, the smallest eigenvalue was described by Silverstein [41].

Proposition 5.1 Ifm and n tend to infinity in such a way that m/n tends to a limit y € (0,1],
then Amin for W(m,n) satisfies!

i 25 (1~ V)? (5.1)

As an example, if we take n = 2m we find that A, /n converges almost surely to 3/2— V2~
0.09 as n — oo. Figure 5.3 plots the density of nAgin for W(m,2m) for m = 3,9,15,21,27.

When m = 27 the density is quite narrow.

!Recall that “almost sure convergence” means that only a set of measure 0 of the sequences of growing
matrices with m/n converging to y does not have this property.
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Figure 5.1: The density of mAm, for W(m,m), m =1,2,00
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Figure 5.2: The density of VVmAmin for W(m,m), m = 1,2,00

56



20.71

17.51

15.T

12.5}

10 .4

m =27

Amin/2m

Figure 5.3: The density of Amin/2m for W(m,2m), m = 3,9, 15,21, 27
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5.2 Asymptotic geometric means of \;, for W(m,n)

When n = m, inspection of the probability density given in Theorem 4.1 shows that E(1/Amin) is
infinite for all m, though we will show in Section 8.2 that E(Amin) = 0.69/m for m large. In this
section, we calculate E(log \,in), whose exponential is the geometric mean of the distribution.
This quantity enters into tl.e evaluation of E(logx) given in Chapter 7.

We begin with a technical result concerning the uniform integrability of the random variables

log(Amin)- (See [8] p. 291 for the Jefinition of uniform integrability.)

Lemma 5.1 The random variables l,, = log(Amin) where Amin is the smallest eigenvalue of a

matriz from W(m,m), m=1,2,..., are uniformly integrable.

Proof The difficulties with the logarithm function occur near 0 and near co. The condition of
uniform integrability then becomes, for all € > 0 there exists a positive number § (which will

be small) and a positive number M (which will be large) such that for m sufficiently large

/ log  fm(z)dz < €,

where the integration is over the two intervals [0,6] and [M,00]. Here fm(z) is as in the proof
of Theorem 5.1. For z < 1, log z fa(z) < cz~/2 log z for m sufficiently large. Since cz~'/?'0gz
is integrable, we can choose § to make the integral from 0 to é§ be smaller than ¢/2. The iarge

z behavior can be even more easily bounded. O

Theorem 5.2 If Apin 18 the smallest eigenvalue of a matriz from W(m,m), then as m — oo

00 e-l/2|;z
+1

E(log(mAmia)) — —27 — 2¢'/? / dy ~ —1.68788. .., (5.2)
1

where v = 0.5772 is Euler’s constant.

Proof Using the notation of Theorem 5.1, the number we seek is

o0
lim / log 2 fin(2)dz.
m-—00 0

From the previous lemma, we can interchange the integration and the limit since the functions

log z fm(z) are uniformly integrable. We then obtain

1o 2 LEVE - (z/24v3)
/0 log z 57z e dz.
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This integral can be manipulated into the integral given in (5.2) using equation 4.331.1 in [23],
but we know of no simpler form. In this form, however, numerical integration is trivial.

We now turn to rectangular matrices. In the last section, we mentioned that if m and n
tend to infinity in such a way that m/n tends to a limit y, then = Amin => (1 — \/7)%. Thus we

expect

Theorem 5.3 If Anin is the smallest ~igenvalue of a matriz satisfying the conditions of Propo-

sition 5.1, then
E(10g Amin/n) = log(1 = /5)? + o(1).

Proof From Proposition 5.1, it is sufficient to verify that the variables Apin/n are uniformly
integrable. Let ¢ = Apin/n. All we must check is that for some ¢ and r depending on y,
f5 log z fy(z)dz and [7°logz f,(z)dz vanish as m,n — oo.

First we bound f)_; (A).

-1

fron) = Kmpddo=mDe=d [ o= T 5 TI00 - ap) TL - O™ ay,
R'\ i<y =1
m-—1 L(n—m+1)
S K ,\i(ﬂ—m l)c__/ El=l fH(A _AJ) H Az m dA'
i<) i=1
K. 1
= #,\E(H—M—l)e—hlm,
Km—l,n+l
and from (4.2),
Knn rig-in- ’"‘H)I‘(_'I'_)

Kn_1n+1 1-'(7'"/2)1-‘( =+ L)I( "_mn)
We then have, for e < 1 -y,

0 2> /longd(z)dz> 5(n—m+l)/ logz z!(" m-1) ,—nz/2 4,
n+lm-1

((—))

Estimating the tail is much easier. Let 7 have the distribution x2,,_,/n. According to
(3.14), we can define a probability space in which o < 7, and it is a straightforward asymptotic

analysis to show that the tail vanishes as n — oo.
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5.3 Smallest eigenvalue results for W(m,n)

Many of the results that were derived for W(m, n) have straightforward analogues for W(m, n)
which we list here.
The joint distribution of the eigenvalues of W(m,n) was given in 3.10. We rewrite the

distribution in the convenient form

m
Rpne F LN T TI(N = Aj)%dAr ... dAm, (5.3)
i=1 i<
where
- m
kK =2™][M(rn-i+)I(m-i+1). (5.4)

=1

With an appropriate transformation and symmetry we obtain that the pdf of Ayip is

"i:[l(:,- + A" AN, (5.5)

m-1 .
+ =1

Rm-ﬂ n—m —z\m/Z/
mo1 A

where A = [Ticicjcm-1(2i — 2;), dQ = dpu(z1) ... dp(zn-1), dp(z) = z2e=%/2, and the integra-
tion takes place over the positive orthant, R';_'"l. Compare (4.3).

The variable A only appears within a polynomial factor in the integral in (5.5). Thus the

complex version of Theorem 4.3 is in fact simpler than the real version.

Theorem 5.4 The pdf of the smallest eigenvalue of a matriz from W(m, n) is cm'nA"‘"‘e"\"‘/sz'"(/\),

where ¢m n 18 a constant and Pm o()) i3 a polynomial of degree (n — m)(m ~ 1).

We have not worked out the recursion that these polynomials satisfy, but the initial case is

trivial.

Theorem 5.5 The distribution of the smallest eigenvalue of @ matriz from W(m,m) is f_, () =

%e'*"‘/ 2 i.e., MAmin 18 ezponentially distributed.

Proof The proof is exactly the same as that of Theorem 4.2. It is perhaps surprising that the
case m = n is so much simpler for random complex matrices than it is for real matrices. From

this formula we immediately obtain

Corollary 5.1 The ezpected logarithm of the smallest eigenvalue of a matriz from W(m,m) is

E(log(mAmin)) = log2 — v = 0.11593 ...

60



Proof The appropriate integral is Equation 4.352 in [23].

We now turn to the case of large rectangular complex matrices. The result of Silverstein

(Proposition 5.1) has a complex version:

Proposition 5.2 Ifm and n tend to infinity in such a way that m/n tends to a limit y € [0,1],
then Amin for W(m,n) satisfies

1 :

= Amin =1 -v)?. (5.6)

As in the real case, the expected logarithm does not misbehave, so we conclude:

Theorem 5.8 If A is a matriz satisfying the conditions of Proposition 5.2, then

E(log Amin/n) = log(1 — v/7)* + o(1).
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Chapter 6
Largest eigenvalue results

6.1 Asymptotic largest eigenvalue for W(m,n)

The largest eigenvalue of a Wishart matrix (or the largest singular value of a Gaussian matrix)
is much easier to describe than the smallest eigenvalue. In particular, it is no longer necessary
to distinguish between the cases m = n and m # n. As we did in Proposition 5.1, we wish to
take large matrices W(m, n) for which m/n tends to a limit y € [0, 1]. We cover the case m = n

by taking y = 1. We have another result from Silverstein [41],

Proposition 6.1 Ifm and n tend to infinity in suck a way that m/n tends to a limit y € [0,1],
then Amax for W(m, n) satisfies

%Am =+, (6.1)

It is interesting to check Proposition 6.1 experimentally. Taking y = 1 (m = n, the propo-
sition states that —':;,\m converges in probability to 4, With m = 100, we computed Amax/m
for 1000 matrices. Figure 6.1 plots the empirical distribution function, which is quite close to

a step function with step at 4.

6.2 Asymptotic geometric means of Amax for W(m,n)

The next theorem gives the geometric mean of A,y in an analogous manner to the way Theorem

5.2 obtains the geometric mean of Amin. This is, of course, twice the geometric mean of the
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Figure 6.1: The empirical cdf of Apax/m for W(m,m), m = 109
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largest singular value of the corresponding Gaussian matrix.

Theorem 8.1 If m and n tend to infinity in such a way that m/n tends to a limit y € [0,1],
then

E(log Amax/n) = log(1 + /7)* + o(1).

Proof First we bound the pdf of max, fi_, ()):

1/22 _"_m
< ——mn o i(n4m=3) -z/2 _ ntm-3) —z/2
Donl2) € o = TR e 6y

This bound was derived for m = n in [49] by manipulating (4.1). The same techniques work
more generally.
Now let o denote Apax/n, and let fs(z), F5(z) be the corresponding probability density

function and cumulative density function. We break up E(logo) = [y° log z f,(x)dz into three

[+]+f

for values of € and r depending on y, but not n. By Lemma 4.1, the middle integral approaches

integrals:

log(1 + \/7)?, and we proceed to show that the other integrals vanish in the limit.
Step 1:f;

Let 7 be the random variable defined by 1(z2 + y2 _)). Considering the first column of
(3.14) we have M|l = | X]I? = Amax > 22 + 32,_,, ie. ¢ > 7. It follows that F,(z) < Fr(z).
Integrating by parts,

0> /: log z f,(z)dz = —/0 Fo (z)d > - /ol F (x)dz -/ log z f,(z)dz .

The terms log zF;(z) and logzF,(z) produced hy the integration by parts vanish as z — 0.
The former can be verified by using the fact that 7 has the distribution n—? X2, m_1, and the
latter follows from the former.

To complete the argument we take m = m,, and let k = n + my, — 1, so that 7 has the

distribution x?/n, and f,(z) = -‘1‘-{-2-;:/; k/2=1g-nz/2 Then,

¢ k/2
0> /0 logz f;(z)dz > (;(/22) / (log )/~ = (= +y)k/2
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Here the = indicates that only the exponential behavior is kept as n — oo. (Computing the
asymptotics of this integral is routine but not obvious. A good reference is [6], chapter 6.) By
choosing any € < (1 + y)/e, we have the desired result.
Step 2:f7°

For the singularity of the logarithm at oo we use Lemma 4.2, the fact that f,(z) =
% fana (), and a standard asymptotic analysis.

Forr>1+y,

/r * fo(z)log zdz < / 2 fo(z)dz = / :2(4x/n) frow (22)dz

%ﬂ'llz o0 n4mp~1 _zd
T(n/2)T(Mn/2) Jrnj2” ¢ 4

n (e (er) Uy Y)Y

Here again, ~ indicates that only the exponential behavior is kept as n — oo. By taking r

(depending on y) sufficiently large, we conclude step 2. a

65



6.3 Largest eigenvalue results for W(m,n)

In Section 5.3, we obtained the analogues of the smallest eigenvalue results for complex matrices.
Here we do the same for the largest eigenvalue results. Unlike the smallest eigenvalue case, there

are no surprises here, and we omit the proofs.

Proposition 8.2 If m and n tend to infinity in such a way that m/n tends to a limit y, then
Amax for W(m,n) satisfies

1

—Mmax 21+ vy)? . (6.3)

Theorem 8.2 With the assumptions of Proposition 6.2,

E(log Amax/n) = log2(1 + /%)? + o(1).
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Chapter 7

Condition numbers

7.1 Limiting condition number distributions, as n — oo

With the theory of the smallest and largest eigenvalue of Wishart matrices now developed, we
can describe the limiting condition number distribution of matrices from G(n,n) and G(n,n).

We consider the following theorem to be one of the principal contributions of this thesis:

Theorem 7.1 If k is the condition number of a matriz jfrom G(n,n), then the pdf of k/n

converges pointwise to the pdf

flo) = A emarem

as n — 0o. Moreover,

E(logk) = logn + ¢ + o(1)
as n — 0o, where ¢ = 1.537.
Proof From Proposition 6.1, we know %/\m 23 4, and Theorem 5.1 gives the limiting dis-
tribution for nAmin. The distribution of the ratio of these quantities, k2/n?, converges by a
standard probability argument. The appropriate change of variables gives the limiting pdf of

k/n. The expected logarithm result follows from Theorem 5.2 and Theorem 6.1. Taking the
exponential, we obtain exp(log(x)) = 4.65n + o(n).

Corollary 7.1 If k is the condition number of a matriz from G(n,n), then

. _ =2/z—2/z3
Jim P(k/n<z)=¢e .
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Figure 2.1 plots the pdf given in Theorem 7.1. Figure 2.5.a is a histogram based on MATLAB
computations of the condition numbers of 25,000 matrices with iid elements from a standard
normal distribution with n = 75. The data support the claim that the formulas in Theorem
7.1 and Corollary 7.1 work very well for reasonably large values of n. Figure 2.5.b and Figure
2.5.c are histograms also based on the condition numbers of 25,000 matrices with n = 75
and iid elements from the uniform distribution [—1,1] and the discrete distribution {-1,1},
respectively. The data suggest that Theorem 7.1 is robust under changes of distribution with
mean 0. We have a partial proof that we hope to complete that this is so, but for now, we
will state this as conjecture. We will also state as conjecture the distribution of the condition

number when the mean is not 0.

Conjecture 7.1 If K is the condition number of a matriz with iid elements that have mean 0
and finite variance, then the pdf of k/n converges pointwise to the pdf given in Theorem 7.1.
Furthermore, if k is the condition number of a matriz with iid elements that have mean p and
standard deviation o, then the pdf o ?ffc/n:’/2 also converges pointwise to the pdf given in

Theorem 7.1.

The conjecture can be understood intuitively as follows. The first statement says that for
large n, any distribution with mean 0 behaves like a normal distribution with mean 0. This is
related to the central limit theorem. The second statement is based on the fact that the largest
singular value of a random matrix with elements that have mean p is un, while the smallest
singular value appcars to only depend on the standard deviation, not the mean.

Figure 2.5.d illustrates what happens when we take the condition number of a matrix with
iid elements, but a non-zero mean. Here the histogram is based on 25,000 samples of the random
variable 725n/n3/2, where the matrices have iid elements from the uniform distribution [0, 1]
and n = 75.

We turn now to the case of complex matrices.

Theorem 7.2 If & is the condition number of a matriz from G(n,n), then the pdf of k/n

converges pointwise to the pdf
8 —4 2
f(z) = —e~=
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as n — oo. Moreover,
E(logk) = logn + %7 +log2 + o(1) = log n + 0.982
as n — O0.

Proof The pdf follows from Theorems 5.5 and 6.2, while the expected logarithm follows from
Theorems 5.6 and 6.2.

Corollary 7.2 If k is the condition number of a matriz from G'(n.,n), then as n — o0
P(k/n< z)= e~47
The rectangular matrix result is

Theorem 7.3 If & is the condition number of a matriz from G(m,n) or G(m,n), where m

depends on n in such a way that limg_o m/n = y € [0,1], then k converges almost surely to

1+/y

=7 asn — o0, Moreover,

1+‘/§+o(1)

E(logk) = log -3

asn — 0o,

The convergence follows trivially from Propositions 5.1, 5.2, 6.1, and 6.2. The expected
logarithm of the condition number follows from Theorems 5.3 and 5.6 for Amin and Theorems

6.1 and 6.2 for Amax-
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7.2 Exact expressions for m = 2

It is possible to integrate (4.1) and (5.3) against the condition number to get the exact distri-
butions of the condition numbers of real and complex 2 X n matrices. We spare the reader the
details and just give the results.
The pdf of the condition number of matrices from G(2,n) is
f(z)=(n- 1)2""'i_1—:c"'2 . (7.1)
@+ 17
When the matrices are from G(2,n), the pdf of the condition number is

(2n) z?3(2? -1)?
F(n)I(n—-1) (z241)™

f(z)=2 (7.2)

We can use (7.1) and (7.2) to evaluate the integrals giving the expected condition numbers.

The result is

Theorem 7.4 If k is the condition number of a matriz from G(2,n), then
1 I(5h)
E(log K.) = iﬁi‘(—nﬁj

If the matriz is from G(2,n), then

1 =126\ 1
E(logn)—log2+-2-—kz=:2:1?(k)k—_—1.

We can also obtain the exact distribution for the smaller and the larger eigenvalues:

Theorem 7.5 If Amin and Amax are the ezireme eigenvalues of a matriz from W(2,n) and g

denotes (n — 1)/2, then the pdf of Amin i8
rain(X) = Knge™ (2P + 28(28 — T(B,7/2))
and the pdf of Amax i3
rane(A) = Knae™/2A071 (20062 — 29(28 — Ay(8,)/2)) -

A similar result for W(2,n) could be calculated.
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7.3 Demmel’s condition number

As mentioned in Section 2.}, Demmel [15] has been interested in the distribution of kp =
IlAllFllA=" |z when 4 is G(n,n) or G(n,n). As mentioned in Section 2.2, this condition number
has been used for a sphericity test in multivarite statistics. Demmel observed that the distri-
butions of these random matrices, when considered as elements of R™ and Rz"?, spherically
symmetric as are the condition numbers xp. Furthermore, the condition number is scale in-
variant, so there in no loss in generality in assuming that A is distributed uniformly on the
unit sphere ||A||r = 1. It remains to understand the distribution of ||A~!||2, or equivalently,
the distribution of the smallest singular value of A.

We use the same theory that we used to obtain the distribution of the smallest eigenvalue
of Wishart Matrices. To make this concrete, let Wp be the random matrix AAT, where A4 is
a real matrix uniformly distributed on the unit sphere in R™. Let Wp be AAH, where A is a

complex matrix which can be thought of as uniformly distributed on the unit sphere in R,

Lemma 7.1 The joint density of the elements of a matriz from Wp is proportional to
§( (W) -- 1)(det W)~1/2,

while for Wp it is proportional to
6(tl‘(W) - 1)’

where § is the Dirac delta function.

Proof Since A is uniformly distributed on the sphere, its joint density is proportional to
8(tr(AAT) = 1) in the real case and §(tr(AA) — 1) in the complex case. We then perform the
same two-step calculation indicated in the diagram before Lemma 3.2 and obtain the indicated
results. In fact, it would be no more difficult to consider m by n matrices whose mn elements

are uniformly distributed on the unit sphere. O

From this lemma and Theorem 3.2, we conclude

Proposition 7.1 The joint density of the n eigenvalues of W, Ay > ... 2 An, 251 Ai = 1,
is proportional to []7=y A; 172 [Tic;(Ai = Aj) while the joint density of the eigenvalues of W is
proportional to [T;<;(Mi — ;)%
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The above result for the real case is due to Bartlett (1951) and refered to in [40], where the
integrals are evaluated in terms of two dimensional integrals. We will use an alternate method
to obtain an expression for the pdf of Apin. Notice that Amin cannot exceed 1/n since the sum

of the n eigenvalues is 1.

Lemma 7.2 The pdf of the smallest eigenvalue Amin of W is proportional to
)\“/2/"_l Aﬁ{(z; 4+ A)"V2z,}ds, (7.3)
Sx =1
where A = [1cicj<n—1|%i—2;l, the integration takes place over the simplez S¥ V= {(z1y. .1 Tno1)
z; > 0,50 z; = 1 — nA}, and ds is the volume element on this simplez. Similarly, the pdf of
the smallest eigenvalue Ayin of W is proportional to

n-1
A? H z?ds. (7.4)
1

-1
5%

We do not know how to perform the integral to obtain a simpler expression for the distri-

bution for W, but for W, the integral is relatively exsy:

Theorem 7.8 The pdf of the smallest eigenvalue of a complex matriz defined by AAH | where
A is uniformly distributed on the sphere ||Allr = 1, is

Prain(X) = (% = n)(1 - n:c)"z‘z.

Proof We make the change of variables y; = (1 — nA)z; and discover that the integral (7.4)
becomes (1 — nA)** =2 times a quantity that is independent of A. The nZ — 2 factors of (1 —n))
have the following origins: n? — 3n + 2 from A?, 2n — 2 from []z?, and n — 2 from the volume
element. Thus the pdf is a constant times (1 — nz)"z‘z. Lastly, the constant is chosen so that

the integral on [0, 1/n] is unity. a

Corollary 7.3 If Anin is the smallest eigenvalue of a complex matriz defined by AAH where

A is uniformly distributed on the sphere ||A||F = 1, then
P(Amin 22)=(1 - na:)“z"', 0<z<l1/n.
We then obtain an exact formula for the distribution that Demmel estimated,
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Theorem 7.7 If kp is Demmel’s condition number of a compler matriz A that is uniformly

distributed on the sphere ||A||F = 1, then
P(kp2z)=1-(1- n/::z)"z"l, z > /1.

Proof This follows from the previous corollary since k% = 1/Amin. O
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7.4 The tails of the condition number distributions

In the previous sections, we described the behavior of the condition numbers but said little
about the probability that a matrix with a large condition number may appear. Here we will
approximate the condition numbers for square matrices in order to get a sense of the tails of
the distributions.

There are four random condition numbers that we find interesting. Let x and & denote
the 2-norm condition numbers of matrices from G(n,n) and G(n,n) respectively. Since we are
only considering n X n matrices we omit the dependence on n in the notation. The other two
condition numbers are the Demmel condition numbers defined in Section 7.3. Let kxp and &p
denote the Demmel condition number in the real and complex cases as above. We chart the
condition nuinbers and relate them to the eigenvalues of the corresponding Wishart matrix in

the table below.

G(n,n) G(n,n)

— Amax
k= min

KD = ;m% ED=\/§;\—5

In the tables that follow, we consistently use the above ordering: real vs. complex in the columns

and 2-norm vs. Demmel’s norm in the rows.
The numbers in the table below are the values that the indicated expressions converge to

almost surely as n — oo.
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W(n,n) W(n,n)

3 e

,'-ET E?:l ’\" 1 2

The first row is (6.1) and (6.3). The second row is derived from the law of large numbers and
the observation that the trace of a Wishart matrix has the xﬁg distribution in the real case and
the x2 ; in the complex case. Replacing these convergence results with equality, we define four

approximate condition numbers:

G(n,n) G(n,n)

4n =1/ _ 8n

=\ | ¥ =V

K = n? = 2n2
D xmin D xmln

These approximate condition numbers are defined with the point of view that the numerators
are merely normalizing factors. (See [56] p.191.)
Directly from the definition of these condition numbers we have the following justification

of our approximation:
Lemma 7.3 Asn — oo, k/K’, kp[Kp, k[, and Rp /Ry all converge almost surely to 1.

The approximate condition numbers only depend on Ayjn. Thus it becomes necessary to

investigate the probability that Ay, is small.

Lemma 7.4 As A — 0, P(Amin < A) ~ VAn if M has the distribution W(n,n) and P(Amin <
A) ~ An/2 if M has the distribution W(n,n).

Proof The real result comes from analyzing the formula given in Theorem 4.1. The complex

result is trivial since nAyin has the distribution x3 according to Theorem 5.5.
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Theorem 7.8 As z — oo,

G(n,n) G(n,n)

P(k'>z)~2nfz | P(F' > z)~ 4n?/z?

P(klp > z) ~ %%z | P(R]p > z) ~ n3/z?

Proof Combine the small A behavior described in Lemma 7.4 with the definitions of our con-
dition numbers. The results follow from the obvious change of variables.

In the complex Demmel case, we can compare our results with those known for the exact
condition number. We have for all n, P(kp > z) ~ (n® — n)/z? as £ — oo, while we have

P(#p > z) ~ n3/z? as £ — oo. The difference is negligible for all but very small n.
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Chapter 8

Moments of \;, for W(m,n)

8.1 Computation of the moments

From the form of the pdf of Amin given in Theorem 4.3, we can obtain expected values and

other moments of the distribution in closed form in terms of hypergeometric functions. Let

2 ﬁ+1r
p = (;) (8 +1),
f(z) = 2F1(m_1,z+1/2,m/2+z+3/2,1_1/m),
9(z) = 2F1(m+1,z+1/2,m/2+z+3/2,1_1/m),
Then,
/oo,\ﬁe—a\m/zd,\ .
0
oo 5
g ampag Pl LA Y 1
/0 Me U( 5 2,2)dA I‘(ﬂ+’—;—+2)f(ﬁ+2)'
® \e—mz 4 pm=1 1A m—1 pl(B+3) 1
8- m/2 % 1A _ 5 1

These integrals can by obtained by taking Laplace transforms and interchanging the order of
integration. Since integrations of this form are documented in [23] (see formula 7.621.6), we
merely list the results.

We derived a further set of formulas that allows us to reduce the hypergeometric functions

f(2) and g(z) into a simpler form.
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Lemma 8.1 The hypergeometric functions defined above can be computed using the following

formulas

(k+ (m - 1)/2)(k + (m +1)/2)
T T R- 12k + DA - 1fm) 2

g(k) = (2 -1+ (1—K)/m)(k+ (m +1)/2)g(k — 1) - EF @ D/D(k+ (m + 1)/2)

f(k) = K2-1/m)(k+ (m+1)/2)f(k-1)

f-1) = TR = 1m)mDIB(m - 1)/2,3/2;1 - 1/m),
f0) = (m+1)ym/2m,
9(0) = X2 1/m)= 0B 4 1)/21/2i1 - 1/m),

o) = 2 (50) - (m+ 1)/2vm),

where B denotes the incomplete Beta function, B(p;v;z).

Proof Though there are many relationships involving hypergeometric functions ([1] and [43}),
we have not seen any of the two term recurrences listed in the literature and derived the formulas
ourselves. The derivations of all these formulas are tedious, and we omit them.

If m is odd, the two Beta functions can be expressed in the form p + ¢\/m where p and ¢
are rational. (See formula 58:4:10 in [43]). Though we do not rewrite the formula here, it is
used in the Mathematica programs in Appendix A.

We conclude from these formulas and Theorem 4.3 that

Theorem 8.1 If m and n are of opposite parity, then all the moments of the pdf of Amin are

rational. If m and n are odd, the moments take the form p + q/m where p and q are rational.

One might wonder what happens when m and n are even. In this case, the Beta function
above can be expressed in terms that involve an arcsine (See 58:4:11 in [43]). Since Mathematica

is capable of calculating the Beta function, we saw no reason to exploit this possibility.

8.2 Expected values when n—m =0,1, and 3

In the special cases n — m = 0,1, and 3 (but not 2), we have the exact expected values of

the smallest eigenvalue of a matrix from G(m,n). Table 8.1 lists these expected values and
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their asymptotics. The expected value integral for n — m = 1 is trivial from Theorem 4.2,
while when n - m = 0 or 3, the integrals can be found in {23]. The asymptotics are most
readily calculated from the integral forms for the hypergeometric functions. Particularly useful
formulas are 60:3:3 (which has a typographical error in our edition) and 48:3:5 in [43]. We
could use the same formulas to further derive exact expressions for all of the moments of these
distributions, but in these tables, we content ourselves with merely the expected value. We
know of no simple formula for the expected value integral when » — m = 2, and we believe that
it may not be obtainable as a hypergeometric function of one variable.

Table 8.2, gives five correct digits for the expected value for n = m. We also performed a
few MATLAB experiments with 1000 n X n matrices. We found typically that averaging the
data from 1000 matrices would give at best two digits, which we included in the table.

Appendix B gives the expected values of A, for m < 25 and m—n < 25. We computed the
exact expressions symbolically and then asked Mathematica to compute the numerical values
to 22 decimal places. We then rounded the answers to ten decimal places.

The expected value for fixed m is asymptotic to n as n — oo. The explanation is the Law of
Large Numbers. For large n, the matrix ;l.-AAT has diagonal elements which are almost surely
1 since these elements are the means of n independent variables with mean value 1. Similarly

the off-diagonal elements are means of n independent variables with mean value 0.
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Table 8.1: E(Amin) for n —m = 0,1, and 3

E(/\min) m — 00

ﬁ(m+81)(m+3)2p,("*;‘ 2,248 — 1y | /BU(3/2,-1/2,1/2)/m = 0.6886409/m

2/m 2/m

m+2
%r,,t%zﬂ(l - m,3;4; -2/m) (€? = 1)/m = 6.389056/m

Table 8.2: E(Apin) when m = n

m | E(Amin) experimental
1| 1.00000 1.01
21 0.42920 0.46
310.26795 0.25
41 0.19387 0.20
51 0.15164 0.15
6 | 0.12443 0.12
71 0.10547 0.10
8 | 0.091510 0.091
9 | 0.080804 0.080

10 | 0.072336 0.0723

100 | 0.0069209
1000 | 0.00068899
10000 | 0.000068868
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Chapter 9

Random matrices and orthogonal

polynomials

We describe in this chapter some interesting relationships between random matrices and orthog-
onal polynomials. We show that Wishart matrices are associated with Laguerre polynomials,
while Gaussian ensembles are associated with Hermite polynomials. The list would not be
complete without the third set of classical polynomials, the Jacobi polynomials. They are also

associated with eigenvalues of a class of random matrices which we will describe.

9.1 The random matrix associated with a weight function

We recall that if w(z) is a non-negative function on a (possibly infinite) interval [a,b], then we

can define a sequence of orthogonal polynomials p,(z) of degree n by the condition

/a ’ ok(@)pa(z)w()dz = 0, if k # n.

The three classical weight function classes are

w(z) [2,b] Pn(2)
Laguerre %= z € [0,00) L)(z)
Hermite e’ z € (—00,00) | Hyn(z)
Jacobi |[(1-2)*(1+z)°| ze€[-1,]] PP ().
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Through a linear change of variables, we may also define Laguerre, Hermite, and Jacobi poly-
nomials on other intervals as well.

We are now ready to define the random matrix associated with a weight function. Let
w(z) be a weight function on an interval [e,b], and let S be the set of symmetric matrices
whose spectrum is inside this interval. For § € S, the scalar function of a matrix argument
f(S) = det(w(S)) is well-defined and is invariant under orthogonal similarity transformations

of S. By normalizing w so that
S)dS =1,
J.#s)

we can consider S to be a probability space. We then introduce

Definition 9.1 Ifw(z) is a weight function on [a,b], and S is the probability space of symmetric
matrices whose eigenvalues are in (a, b] with the probability measure described above, we say that

the matrices in S have the random matriz distribution associated with w(z).

We immediately have the analogous definition for Hermitian matrices, which we will also use.
In the following, we will not be concerned with whether w(z) has been normalized, and we will

allow for linear changes of variables as well.

Theorem 9.1 The real and complez Wishart matriz distributions are associated with (rescaled)
Laguerre weight functions, while the Gaussian ensembles are associated with (rescaled) Hermite

weight functions.

Proof From Lemma 3.2, if A is W(m,n), then 2A is associated with the Laguerre weight
function z("=™-1/2¢=-= while if A is W(m,n) then 2A is associated with the Laguerre weight
function z"~™e~%. From Lemma 3.1, if A is from the GOE, then /24 is associated with the
Hermite weight function, while if A is from the GUE, then it is associated with the Hermite
weight function.

The only attempt at the kind of generality given in Definition 9.1 of which we are aware is
the short article [32], which compares the random matrices associated with Hermite polynomials
with those associated with Legendre polynomials. That Wishart matrices are associated with

Laguerre polynomials appears to have never been observed.
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9.2 Characteristic polynomial

One compact way to all the eigenvalues of a matrix is through its characteristic polynomial,
Pg(t) = det(tI — S). For a random matrix S, we can ask for the average characteristic polyno-
mial, P(t) = E(Ps(t)). The roots of this polynomial well deserve to be considered a typical set
of eigenvalues for the random matrix at hand. So far as we know, the results in this section are
new.

For random n by n Hermitian matrices associated with a weight function w(z), the average
characteristic polynomial is the nicest result it could be; it is the orthogonal polynomial of

degree n defined by w(z):

Theorem 9.2 Let a random n by n Hermitian matriz S be associated with a weight function
w. Then the average characteristic polynomial is the monic orthogonal polynomial of degree n

defined by the weight function w.

Proof This follows immediately from Theorem 3.2 (3.9), the fact that the characteristic poly-

nomial is defined to be monic, and the following well-known formula from [46]:

Proposition 9.1 Let w(z) be a weight function on an interval [a,b]. Then
pal(t) = / TICt = %) TT = 202 T wihi)dx
a b i=1 i<J =1

defines orthogonal polynomials of degree n with weight function w.

From Theorems 9.1 and 9.2, we have

Corollary 9.1 The average characteristic polynomials for matrices from W(m,n) and the

GUE are
W(m,n) Ly ™(z/2)

GUE Hy(z).
For real symmetric matrices, we unfortunately do not have as general a theory as in Theorem
9.2, though we believe this would be a fruitful topic of further research. In particular, it would
be very useful to understand

0= [ TIe- 3T - A e ©.)

i=1 i<j i=1
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for arbitrary G, especially § = 1. It is possible, however, to compute ps,‘")(t) when the weight

function w(z) is one of the classical weight functions:

Lemma 9.1 The polynomial pg.”)(t) defined in (9.1) is proportional to
P 1) if w(z) = (1 - z)*(1 + z)Pon [--1,1],
Lsf")(%t) if w(z) = z%e~%on [0, 00},
Hn(\/gt) if w(z) = e=**on [—00, 0],

wherea' = -1+ 2(a+1)/wand f' = -1+ 2(B + 1)/w.

Proof The Jacobi result appears in [4]. The Laguerre and Hermite results do not appear in
the literature, but can be derived from the Jacobi result using Equations (5.3.4) and (5.6.3)
in [46]. We have derived an alternative proof of this lemma by verifying that in each case,
the multivariate iniegral satisfies the differential equation for the polynomial. These proofs
are similar in flavor to the proof we gave of Theorem 4.1, so we omit them. We suspect a yet
simpler proof of this lemma might be obtained by taking the Laplace transform in ¢, because the
classical orthogonal polynomials have simple Laplace transforms, though we have not pursued
this idea.

We now consider another set of random matrices that arise in the multivariate analysis of
variance (MANOVA). Let A be a matrix from W(m,n,) and B be from W(m,n;). Then we
will say the matrix C = A(A + B)™! is W(m,n1,n3). Since C = (I + AB~1)71, it is positive
definite with all eigenvalues on the interval [0,1]. It is cleaner to work with the symmetric
matrix § = A~1/2CAY2, which has the same eigenvalues and is invariant under orthogonal
similarity transformations. The joint density of the elements of the random matrix § can be
given as cdet w(S) where w(z) = g3(m-m-1)(1 _ g)d(n2-m=1) (Gee [2], p. 529.) Thus these

matrices are associated with the Jacobi weight function rescaled to the interval [0, 1].

Theorem 9.3 The average characteristic polynomials for matrices from W(m,n), the GOE,
and W(m,nq,ny) are

W (m,n) L™ (z)

GOE Hp(z)

W{m,ny,n2) P{p—mma=m) () _ 9g)

84



Proof The proof follows from Lemma 9.1 and Theorem 9.1.

The following MATLAB instructions give a simple way to test these formulas:

rand(’normal?’)

ph=zeros(1,8); pl=ph; pj=ph;

fcr j=1:10000, a=rand(7);s=.5%(a+a’);ph=ph+poly(s);end

for j=1:100060, a=rand(7);s=a*a’;pl=pl+poly(s);end

for j=1:10000, a=rand(7);s=a%a’;b=rand(7);tab*b’;pj=pj+poly(s/(s+t));end

In the three cases below we list normalized results of the MATLAB experiment on the left and

the coefficients of the true polynomials (normalized to be integers) on the right. The coefficients

are written sequentially with that of the highest order term in the first row.

Hermite Laguerre Legendre "

ph H, pl L, Pj p; “
128.0 128 -1.0 -1 3432.0 3432
-3.5 0 49.0 49 |f -11995.3 -12012
-1337.2 -1344 -880.8 -882 || 16580.5 16632
27.4 0 7300.7 7350 | -11490.3 -11550
3340.6 3360 || -28906.8 -29400 4168.2 4200
-25.8 0| 51226.3 52920 -748.6 -756
-1686.6 -1680 || -33492.1 -35280 55.5 56
38.8 0 4530.4 5040 -1.0 1

9.3 The mode

Another notion of the most likely distribution of the eigenvalues is given by the set of numbers

that maximize the joint density function. Unlike the characteristic polynomial viewpoint which

we believe to be new, this has been noticed by the physicists for the cases of the GOE and the

GUE.

We start with another proposition from [46).
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Proposition 8.2 The set of A; that mazimize the ezpression
n
T(A,-.5an) = [T wa) [T 1A = Al
i=1 i<
where w(z) is a Jacobi, Laguerre, or Hermite weight function, is given by the roots of an

orthogonal polynomial with respect to the same type of weight function.

See ([46], p.140) for the details relating the weight function w(z) with the orthogonal poly-
nomial wliose roots provide the maximum.
The conclusion to be reached is the following table listing the orthogonal polynomial whose

roots maximize the joint density of the eigenvalues, when there is a maximum.

W(m,n) L&™N(g)
W(m,n) L&-™"(z/2)
GOE Ha(z)
GUE Ho(z).

We find it curious that the mode and expected characteristic polynomial differ slightly in
the Wishart case, but are exactly identical for the Gaussian ensembles. This makes us wonder
whether the roots of Hermite polynomials may somehow be related to the behavior of the

Riemann zeta function. (See Section 2.4.)
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Appendix A

Mathematica programs

Our Mathematica programs for computing the distribution of the smallest eigenvalue of a
Wishart matrix and the moments of the distribution follow. We have separated the even and
odd cases, though they could in fact be merged into one routine with some “If” statements.

Users should be careful not to try to calculate both cases at once with these programs.
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(G T L L T T T L L PP P L P P PP TP T PP T
(esssseessnns Smallest Eigenvalue of Wishart Matrices sssessessss)
(sesnnsetnnsa n-m odd SESERRASEES)
(*esssnsnnnnae Alan Edelman 3/89 CTTTTTTTTTYS)

(‘tt--.t‘.“‘...‘..‘lt#‘..“‘..l‘...‘i‘.“.‘....“‘t.t..“‘.““‘)

pa_.n_l:=p(m,n]=1f(n==m+1,1,
Block([{s},
(a[-1]=0; 8[0] =p[m,n-2];
8[i_]:=s[i]=Expand[(14n-1i)s[1-1]-21/(m-i)D[8[i-1],1]
+ 1(i-1) ((n-i-1)/(m-1))e8[i-2]];
s[m-1])]1]

c(m_,n_):=m Product{Gammal[j/2]/Gammal(j+m)/2],{j,2,n-n}]e
2" (m(14m-n)/2-1)

(» Calculate zth moment of W(m,n) *)
moment(m_,n_,z_]:=c[m,n]sCoefficientList (p[m,n],1].
Table[(2/m) ~(z+k+1+(n-m-1)/2)Ganma [z+k+1+(n-m-1)/2],{k,0, (m-1) (n-m-1)/2}]

("t“‘t“.‘...‘..“‘...t.-.‘.“tttttt“‘t“O.‘!‘..““...‘t.t‘t‘)
(essssseveses Smallest Eigenvalue of Wishart Matrices sesssssssss)
(nssansensess n-m even IITTTITT T )]
(xsesssnnsnse Alan Edelman 3/89 ssesseseeen)
(tt!.“#l.‘.“‘!l0““.“'l‘l!“‘ti"“.“‘.‘.“‘.t“.tl.“tt.‘.t)

(* Here we compute an ordered pair of polynomials Q and R as
described in Chapter 4; we denote the pair by q »)

(» n=a »)

qe_,m_]:={1,0}
twobytwo[m_]={{0,(m-1)/2},{21,1+1}}

(sn>me)
qm_,n_]:=q[m,n]=Block[{e},
(8[-1]1={0,0}; s[0]=q[m,n-2];
8[i_]:=s[i]=Expand{ (1+n-i)s[i-1]-21/(m-i)D[s[i-1],1]
+1(i-1) ((n-i-1)/(m-1i) )8 [i-2]-twobytwolm].s[i-1]1/(m-i)];
s[m-1])]

(» Calculate zth moment of W(m,n) )
moment [m_,m_,z_]:=Simplify[c[m,n]s Sqrt[(2/m)-(2z+1)] gr(m,z+n/2] (z+1)£[m,z]]
moment [m_,n_,z_] :=(Print [q[m,n}];Simplitylc[m,n]*(
Coefficientlist[q(m,n][[11]1,1].
Table[Sqrt[ :2/m) " (2z+2k+n-m+1)]gr(m,z+k+n/2] (z+k+(n-m)/2+1)1 [m,z+k+(n-m)/2],
{k,0,(m-1) (n-m)/2,1}]
~(m-1)/4#CoefficientList(q[m,n] [[2]],1].
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Table [Sqrtl(2/m)-(2z+2k+n-m+1)]grim,z+k+n/2] gim,z+k+(n-m)/2],
{x,0,(n~-1)(n-m)/2,1}1)1)

(* We use 1 on the next line to denote z+kin/2 »)
grim_,1_):=gr(m,1]=Gamma[l+1-n/2]Gamma[l+(-n+1)/2] /Gamma(n/2+1+(-n+3)/2]

c(m_,mn_):=a Gamma[(m+1)/2] / Sqrt[ 2Pi]
c(m_,n_]:*m Product[Gammal[j/2]/Gammal(j+m)/2],{j,2,n-u}]*Sqrt[2- (m(m-n)-1)]

(» These are the f and g functions of section 5, when m is odd

they are computed exactly, othervise they are left in terms of Betas #)

fim_,-1) :=f[m,-1]wIf[ EvenQ(m],
(m-1)/2 (1-1/m)"(-(m-1)/2) Seta[1-1/m,(m-1)/2,3/2],
Simplify[(m-1)/2 Sqrt[(i-1/m)"(-(m-1))] =
Sum((~1)"j((m-3)/2)!/jt/((m=3)/2-§)!
(1-Sqrt[m~(-(2j+3))1)/(5+3/2) ,{j.0,(m-3)/2}]1]]

f(m_,0] := f(m,0]= (a+1)+Sqrt(ml/2/m

flm_,k_]:=f(m,k]= Simplify[
(k(2-1/m) (k+(m+1)/2)1 [m,k-1]-(k+(m-1) /2) (k+(n+1)/2) £ [m,k-21)/
((k-1/2) (1-1/m) (k+1))]

gm_,0]:=g[m,0]=If[EvenqQ(n],
(m+1)/2 (1-1/m)"(-((m+1)/2)) Beta[1-1/m,(m+1)/2,1/2],
Simplify[(m+1)/2 Sqrt[(1-1/m)~(-(m+1))] =
Sum[(~1)~j((m-1)/2)'/j5!/((m-1)/2-§)"
(1-Sqrt[m~(-(2j+1))1)/(j+1/2),{j,0,(m-1)/2}1]]

gm_,1]:=g(m,1]=(g(m,0]-(u+1)/(2Sqrt [(m]))m...~-3)/(m-1)

gn_,kx_]:=g(m,k]= Simplity(
((2k-1+4(1-k)/m) (k+(n+1)/2)g[m,k-1]-(k+(m-1)/2) (k+(m+1) /2)g[m,k-21)/
(k(k-1/2) (1-1/m))]
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Appendix B

Table of expected values

We tabulate E(Amin) for matrices from W(m,n) for 2 < m < 25 and 0 < n — m < 25. The
tables were computed to 22 significant places and then chopped to ten digits after the decimal
point. Unlike standard numerical calculations, we had the expected values in an exact symbolic

form, and thus it would have required little more work to compute 100 significant digits.
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10
11

13
14

15
16
17
18
19
20
21
22
23
24

256
28

28
29
30

m=2
0.42920 36732
1.00000 00000
1.64380 55098
2.33333 33333
3.05475 68872
3.80000 00000
4.56388 303561
5.34285 71428
6.13436 84146
6.936560 79366

7.74780 52569
8.56709 96€71
9.39345 56839
10.22610 72261
11.06441 68149
11.90784 77078
12.75694 28659
13.60830 93377
14.46460 63684
15.32453 61449

16.18783 66763
17.06427 59614
17.92364 74344
18.79576 62206
19.67046 60775
20.54759 68694

m=5
0.165163 83427
0.40000 00000
0.71765 48409
1.08825 60000
1.50106 56933
1.94856 39884
2.42623 B7127
2.92689 13163
3.45026 86960
3.99272 34899

4.56215 82326
5.12680 32872
5.71518 38047
6.31604 89963
6.92832 71646
7.56109 17322
8.18353 511989
8.82494 83888
9.47470 51601
10.13224 87016

10.79708 16322
11.46875 73400
12.14687 30488
12.83106 40136
13.52099 86745
14.21637 45776

DO~V bhWwY

m=3
0.26794 91924
0.66668 66666
1.14532 36690
1.67901 23456
2.25346 00587
2.85962 B0Ob71
3.49136 49631
4.14428 69481
4.816512 31731
5.50136 57834

6.20104 09819
6.91256 25619
7.63463 32629
8.36617 61781
9.10628 57451
9.85419 18989
10.60823 33212
11.37083 70986
12.13850 30368
12.91179 13689

13.60031 30120
14.47372 17649
16.26170 79269
16.05399 32198
16.85032 64164
17.65047 98383

=6
0.12443 41749
0.33333 33333
0.60542 71012
0.92736 29890
1.28000 25081
1.68673 30432
2.11257 47680
2.56366 140156
3.03681 77176
3.52084 87205

4.04039 64542
4.56683 94337
5.10772 01146
5.66179 13630
6.22797 61562
6.80633 671565
7.38306 04993
7.98039 12777
8.69671 40299
9.21144 27696

9.83406 05679
10.46410 14813
11.10114 37344
11.74480 40188
12.39473 28285
13.056061 03850
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m=4
0.193868 69492
0.50000 00000
0.88171 34635
1.31876 00000
1.79862 99628
2.31261 16071
2.85500 70662
3.42128 78999
4.00807 04176
4.61270 04261

5.23306 06344
5.86738 50439
6.51426 51182
T7.17248 30335
7.84101 30065
8.51897 50868
9.20660 76928
9.90024 64731
10.60230 77679
11.31127 55311

12.02669 08511
12.74814 34726
13.47526 48690
14.20772 25338
14.94521 52378
15.68746 80600

n=7
0.10547 25222
0.28571 42857
0.52371 54718
0.80839 56410
1.13193 23711
1.48851 80375
1.87368 43823
2.28389 92217
2.71630 965644
3.16856 99712

3.63872 350056
4.12611 66662
4.62633 69196
5.14116 61301
5.66854 48153
6.20764 45893
6.75734 64476
7.31722 34894
7.886562 70064
8.46467 51679

9.05114 37324
9.64545 83674
10.24718 81838
10.85594 04444
11.47136 59041
12.09310 49796
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[
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DVAONND AR BRWWNON NRrer=H,rO00000

mn=8

.09150 97964
.25000 00000
.46151 96969
.T1673 11774
.00888 20636
.33286 48256
.68464 22272
.06102 82827
.45938 12163
.87761 26503

.31357 83268
.766C0 60648
.23344 22226
.71471 11079
.20878 38624
.71475 29409
.23181 46503
.76926 15224
.20642 06311
.84274 299956

.39769 50102
.98080 12483
.53162 848563
.10978 065638
.69489 44336
.28663 56620

m=11

.06547 13615
.18181 81818
.34043 73973
.535629 06594
.76180 39979
.01636 14562
.20602 32011
.59836 00476
.92128 60942
.26307 62871

.62220 63733
.997356 79391
.38737 39867
.79123 20941
.20802 31611
.63693 435563
.07723 52€70
.52826 65644
.98943 06451
.48018 33924

.94002 84793
.42851 08353
.92521 23787
.42974 78403
.94176 12516
.46092 29043

10
11
12
13
14
16
i6
17
18

19
20
21
22
23
24
26
26
27
28

29
30
31
32
33
34

m=9
0.08080 356714
0.22222 22222
0.41267 36025
0.64387 80726
0.91025 49030
1.20717 17360
1.53102 70970
1.87889 33531
2.24834 76088
2.63735 50957

3.04418 585686
3.46736 35262
3.90566 930566
4.356770 66875
4.82277 38763
5.29989 25622
5.78827 95487
6.28723 367456
6.79612 38176
7.31437 956075

7.84148 30349
8.37696 28383
8.92038 79264
9.47136 31341
10.02952 50854
10.59453 87070

m=12
0.06979 63181
0.18666 686666
0.31308 575850
0.49372 04732
0.70449 10738
0.94214 07768
1.20399 77427
1.48782 67734
1.79172 97178
2.11407 51130

2.45344 66933
2.80860 39887
3.17845 33324
3.56202 33148
3.96844 66148
4.36694 42452
4.78681 41751
5.21742 01224
5.65818 35579
6.10857 648086

6.56811 653970
7.03635 62015
7.51288 97961
7.99733 83218
8.48935 189601
8.98860 579689
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10
11
12
13
14
15
16
17
18
19

20
21
22

24
25
26
27
28
29

30
31
32
33
34
35

13
14
16
16
17
18
19
20
21
22

23
24
26
26
27

28

29
30
31
32

33
34
35
36
37
a8

m=10
0.07233 556663
0.20000 00000
0.37304 04473
0.5684656 30642
0.82937 21482
1.10346 08797
1.40357 16270
1.72703 652508
2.07162 11316
2.43543 96181

2.81687 15791
3.21461 61001
3.627156 07720
4.06370 09721
4.49321 57239
4.94484 84626
65.40784 165261
5.88151 35138
6.36524 88867
6.85848 93333

7.36072 65604
7.87149 61681
8.39037 26418
8.91696 44497
9.45001 12170
9.99187 95082

m=13
0.05602 38447
0.15384 61638
0.28980 93197
0.45816 48440
0.65524 97891
0.87811 53460
1.12432 37307
1.39182 06754
1.678856 00614
1.98389 33004

2.30562 46594
2.64287 73826
2.99461 74207
3.36992 268456
3.73766 64133
4.12800 36707
4.52936 025669
4.94142 35176
5.36363 46573
5.79548 22637

6.23649 68114
6.68624 50686
7.14433 06661
7.61038 111656
8.08405 47921
8.56503 27919
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29
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m=14

.05096
.14286
.26976
.42740
.61247
.82230
.065464
.30761
.67967
.86911

.17499
.49610
.83148
.18024
.54160
.914856
.20934
.69448
.08973
.51469

.93862
.37139
.81252
.26163
.71841
.18253

68663
71428
92161
27206
844156
40167
66296
24117
33412
35462

082656
686584
40691
72650
88442
672564
43910
26949
23984
92771

81007
88288
28008
96212
38601
36047

m=17

.04170
.11764
.22340
.365679
.51228
.69082
.88964
.10723
.34229
.593656

.86028
.14126
.43B7E
. 74302
.06238
.38321
. 73494
.08706
.449056
.82060

.20099
.59014
.987569
.39301
.80609
.226564

64222
70588
78577
46681
09032
44814
31884
85103
46097
20199

0685656
90977
82841
84460
84477
70099
53674
11012
28964
606156

86711
82288
87620
82829
66577
31404

m=156
0.04744 92130
0.13333 33333
0.25230 7305656
0.400562 30533
0.57497 46818
0.77321 095693
0.99317 92468
1.23312 9038vY
1.49154 70620
1.76711 11141

2.06865 57960
2.365614 63283
2.685656 80779
3.01936 02250
3.365560 25602
3.72340 46604
4.09244 69233
4.47208 30702
4.86173 38242
5.26088 15408

5.66936 56163
6.08647 85381
6.51164 24684
6.94540 62739
7.38654 29325
7.83504 72574

m=18
0.03932 62653
0.11i11 11111
0.21130 84599
0.33698 61582
0.48682 66436
0.855691 425567
0.84562 25271
1.06354 556807
1.27846 24192
1.51926 43031

1.77498 06713
2.04476 05077
2.32780 77045
2.62340 92865
2.93091 57942
3.24873 33243
3.67931 68722
3.91916 47085
4.26881 359156
4.62783 46626

4.99582 99020
5.37242 906567
5.75728 69512
6.15008 11467
6.65050 986064
6.956829 01409
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m=16
0.04439 30078
0.12500 00000
0.23697 87426
0.37683 27319
0.54181 78817
0.72968 48226
0.938564 01424
1.16676 10162
1.41293 79112
1.67683 37846

1.95436 37743
2.24752 197568
2.56446 32132
2.87438 84636
3.20658 30189
3.665039 67491
3.90623 60065
4.2706b6 683GH
4.64585 91999
5.03068 21280

5.42459 94618
5.82721 62514
6.23816 56018
6.65710 59279
7.08371 85498
7.61770 556783

m=19
0.03720 29666
0.10626 31578
0.20045 33390
0.32006 99998
0.46197 06360
0.62437 83426
0.80677 90508
1.004856 93492
1.22046 51536
1.45167 23910

1.68726 6562164
1.95671 92637
2.22018 83847
2.51399 40900
2.810561 67380
3.11818 83524
3.43648 65492
3.76492 94007
4.10307 105356
4.45049 79595

4.80682 56157
5.17169 57278
5.64477 37278
5.92574 65961
6.31432 00360
6.71022 12701



20
21
22
23
24
25
26
27
28
29

30
31
32
a3
34
36
36
37
38
39

40
41
42
43

46

23
24
26
28
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42

43
44

46
47
48

m=20
0.03520 70857
0.10000 00000
0.19065 98061
0.30477 38068
0.44036 43348
0.59574 81050
0.76954 190256
0.96050 58427
1.16765 58113
1.38972 68838

1.62615 35922
1.87606 47494
2.13872 14618
2.41350 74618
2.60982 11796
2.99711 915636
3.30490 04921
3.62270 21724
3.95009 650164
4.28668 02354

4.63208 64042
4.98598 68596
5.34799 73929
5.71787 42283
6.095631 22337
6.48004 33323

m=23
0.03059 46537
0.08695 65217
0.16628 98889
0.266566 75886
0.38617 277086
0.52376 17098
0.67813 84506
0.84831 02317
1.03335 83550
1.23246 776509

1.44490 18854
1.66999 11776
1.90712 38482
2.15573 852560
2.41531 81676
2.68538 49397
2.96549 60164
3.25523 983981
3.55423 29874
3.86211 74696

4.1785656 83272
4.50324 15502
4.83687 22357
6.17617 29579
5.52388 23181
5.87875 36502

21
22
23
24
26
26
27
28
29
30

31
32
33
34
36
38
37
38
39
40

41
42
43
44

46

24
26
26
27
28
29
30
31
32
33

34
36
36
37
38
39
40
41
42
43

45
46
47
48
49

m=21

.03367
.08523
.18177
.20087
.42087
.56963
.73644
.91992
.11908
.33298

.56082
.80186
.06642
.32088
.69767
.88629
.18326
.49109
.80842
.13484

.47000
.81356
.165621
.52466
.89160
.26681

QOOINBP PWWWNNNNRE 200000000

689863
80952
92904
51603
56766
81618
02176
76433
010456
69006

90012
52373
13870
13653
99896
69560
17627
94046
686657
89205

74022
66865
26611
05497
336562
02777

=24

.02929
.08333
.159498
. 256687
.37096
.50348
.656233
.81664
.99527
.18773

.39322
.61111
.84081
.08179
.33356
.6p564
.86762
.14011
.43973
.73913

.04700
.36303
.68603
.01843
5.36729
5.70326

b WWWNNNMNREME 2000000000

36778
33333
61310
79818
43285
16168
12262
794656
19681
04413

355640
37618
74121
79246
01865
58606
94706
49284
27097
72790

48883
16351
17478
60643
06770
57219
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m=22
0.03201 65087
0.09090 90909
0.17368 97257
0.27819 06321
0.40268 47041
0.54572 86244
0.70608 20629
0.882685 95627
1.07449 90916
1.28073 97419

1.500680 53503
1.73339 18668
1.97846 73796
2.23621 405676
2.50312 15266
2.78168 13413
3.07043 23372
3.36894 66512
3.67682 63181
3.99370 03198

4.31922 20172
4.65306 69012
4.99493 06136
5.344562 71970
5.70168 75419
6.06585 80022

m=25
0.02809 87880
0.08000 00000
0.15323 41171
0.24601 358560
0.35691 06046
0.48472 61246
0.62842 35023
0.78708 96640
0.95990 98417
1.14615 056383

1.34614 56363
1.56628 75323
1.77901 88630
2.01282 62652
2.25723 52975
2.51180 60103
2.77612 93322
3.04982 39262
3.332563 34862
3.62392 43873

3.92368 36288
4.231561 70304
4.54714 76226
4.87031 423565
5.20077 022567
5.53828 23429



Appendix C

Other uses of the programs

We give here a few sample outputs from the Mathematica routines. For example, we find that

q[3,15] is the ordered pair of polynomials

143589145600 + 51412838400%1 + 27622425600%1-2 + 9260697600+1-3 +
2202076800#1°4 + 396506880%1°5 + 55883520%1-6 + 6216210%1~7 +
540540%1°8 + 35970%1°9 + 1760%1°10 + 58+1-11 + 1-12,

~29059450400*1 - 24588748800%1°2 - 10218700800%1"3 - 2767564800%1-4 -
545629600%1°5 - 82494720%1°6 - 9750510%1~7 - 893970%1-8 - 62370%1-9 -
3190%1710 - 110%1-11 - 2%1-12}

These correspond to the polynomials @3,15 and R3;5 described in Theorem 2.1. The con-
stant c3 15 is obtained by typing c[3,15] and we find that ¢35 = (27)~1/2/21576627072000.
From Theorem 4.3, we now know the distribution of the smallest eigenvalue for W (3,15). We
could now readily plot the distribution or derive any quantity of interest from the distribution.
We obtained the first and second moments by typing m1=moment (3, 15,1] and m2=moment [3,15,2].
We further numerically obtained the mean and variance to ten places by typing m=N[m1,10],

v=N[m2-m1-2,10]. The results were

485986370753
ml = 14 - —mcmme e
44079842304 Sqrt[3]
16553532759625
m2 = 210 - ~—=-mmcmmmmeeeeoao

66119763456 Sqrt[3]
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7.634633263
7.168805888

<
na

One can also obtain very precise values for the percentage points of the distributicn. This is
particularly easy when n — m is odd since Mathematica will perform the integration to obtain
the cumulative density function. Then with the command FindRoot, Mathematica will f.nd

the percentage point to arbitrary precision.
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distribution of, 23-26, 67-76
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