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Abstract

Magnetized shocks are of interest in many astrophysical environments, in which high
Mach number flows interact with ambient media, planetary obstacles, and/or space-
craft to generate strongly radiating shocks. Some examples include extrastellar jets from
radio galaxies, relativistic jets from quasars and blazars, Herbig-Haro jets from Young
Stellar Objects, and shocks in core-collapse supernovae and supernova remnants. In this
study, we mimic these extreme astrophysical environments using pulsed-power driven
high-energy-density-plasma laboratory experiments, by generating hypersonic, magne-
tized large-Reynolds’ number plasma flows, using exploding z-pinch wire arrays on the
MAGPIE facility (1.4 MA peak current, 250 ns rise time). Plasma flows from adjacent
wire cores expand and generate oblique shock structures, resulting in modulation of the
plasma flow. These flows collide with inductive probes placed in the flow, which serve
both as the obstacles that generate the magnetized bow shocks, and as diagnostics of the
advected magnetic field. The oblique shocks, which are represented by oblique discon-
tinuities in electron density, are observed to exhibit hollow density profiles. A detached
bow shock forms ahead of the probe and exhibits a fully 3D structure, with a larger open-
ing angle in the plane parallel to the magnetic field, than in the plane normal to it. We
use the shock Mach angle to determine the upstream Mach number (5−8) of the flow.
We also introduce a novel technique to estimate the flow velocity and temperature of
pulsed-power driven plasmas, via simultaneous imaging of inductive probes and mea-
surement of the inductive probe signal. The velocity and temperature estimated using
this method are consistent with values reported in literature. Experimental results are
compared with full 3D simulations performed using the resistive MHD code GORGON,
and synthetic Thompson scattering spectra are generated, which form the basis of fu-
ture experiments.
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Chapter 1

Introduction

The vast majority of matter in the visible universe is composed of plasma — a quasi-

neutral gas of ions, free electrons, and/or neutrals. Astrophysical plasmas span an im-

pressive range of densities and temperatures, from the relatively cold low-density plasma

of planetary ionospheres (∼ 1011 particles m−3, ∼ 100 K or 10−2 eV) and interstellar me-

dia (∼ 106 particles m−3, ∼ 100 K or 10−2 eV) , to the hot dense plasma of stellar cores

(∼ 1032 particles m−3, ∼ 100,000,000 K or 103 eV) (Chen [1974]; Drake [2013]). An im-

portant mechanism of mass and energy transfer in astrophysical environments is via

hypersonic directed flows of magnetized plasmas (Smith [2012]). The interaction of

such high-velocity plasma flows with ambient media or planetary obstacles results in

the abrupt dissipation of kinetic energy via shock waves. Due to the ubiquity of high

Mach number astrophysical flows, shocks represent a fundamental process in most as-

trophysical plasmas.

Shocks are defined as internal surfaces of discontinuity in a fluid. Across a shock front,

thermodynamic properties (density, temperature, and pressure) and flow properties (ve-

locity) change discontinuously (Anderson [2001]). In a magnetized plasma, the mag-

netic field advected by the flow may also change discontinuously across the shock front

(Goedbloed et al. [2010]). In general, shocks form when a disturbance travels faster than

the speed at which compressive perturbations can travel in a medium. In a hydrody-

namic fluid, the sound speed determines the speed of propagation of linear perturba-

tions. As such, shocks form when an object travels faster than the sound speed in a given

medium (or equivalently, when a supersonic flow collides with a stationary obstacle).

For example, Figure 1 shows the bow shock around a bullet travelling supersonically

through air (Davidhazy [2015]). When the object travels sub-sonically, sound waves can

propagate through the fluid ahead of the object, providing information of the distur-

bance, and cause adiabatic changes to the fluid. However, when the object travels su-
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Figure 1-1: Shadowgraph of a bullet travelling supersonically through air (Davidhazy [2015]). A detached
curved shock front is visible ahead of the obstacle. Adapted from Davidhazy [2015], An Overview of High
Speed Photographic Imaging.

personically, trailing wavefronts can catch up with and overtake the leading wavefronts.

Since the fluid cannot receive information of the disturbance before the arrival of the

disturbance itself, the fluid will experience a discontinuous non-isentropic change in its

thermodynamic properties. In a magnetohydrodynamic (MHD) fluid such as a plasma,

linear perturbations can travel at three distinct speeds associated with the three linear

MHD waves - the shear Alfvén wave, the fast magnetosonic wave, and the slow magne-

tosonic wave. These waves are closely associated with the three kinds of shocks possible

in an ideal MHD fluid - intermediate, fast, and slow shocks (Goedbloed et al. [2010]).

The wave-steepening picture of shock waves provides an intuitive description of shock

formation. A non-linear pressure pulse traveling in a medium will steepen because the

local sound speed Cs ∝ p(γ−1)/γ is higher at peak of the pulse. Here, p is the pressure and

γ represents the polytropic index. However, the rate of dissipation typically increases

with gradients in fluid properties, i.e. Edis/τ ∼ D(u/δ)2, where Edis is the energy dissi-

pated over time τ and length scale δ, D is the diffusion coefficient and u is the dissi-

pated fluid quantity. Therefore, pulse steepening results in large gradients which fur-

ther increase dissipation. The pulse will continue to steepen until dissipative effects are

strong enough to balance the convective steepening, resulting in a steady shock front.

Therefore, shock formation and the width of the shock are determined by a competi-
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Figure 1-2: Convective steepening of a pressure pulse.

tion between convective steepening and dissipation, and the shock thickness is set by

the relevant dissipative length scale. In the fluid framework, dissipative processes which

facilitate the shock transition are resistivity η̄, viscosity ν and thermal conductivity κ,

which smooth out gradients in the magnetic field, momentum and temperature respec-

tively. Therefore, we can estimate the width of the shock front by determining the length

scale over which dissipated energy becomes comparable to kinetic energy. This is ac-

complished by setting the Reynolds number Re =Uδ/ν (for viscous dissipation) or the

magnetic Reynolds’ number Rem =Uδ/η̄ (for resistive dissipation) to order unity.

The dissipative length scale (δ ∼ ν/U ) is typically comparable a few ion-ion collisional

mean free paths λmfp,i i . We typically consider the ion-ion mean free path λmfp,i i be-

cause ions, which are much more massive than the electrons, carry most of the momen-

tum in the plasma. The shocks in which dissipative processes are responsible for the

transition between the upstream and downstream states are called collisional shocks

(Boyd and Sanderson [2003]). Since the shock thickness is comparable to the mean free

path, the fluid model is not applicable within the shock (a fluid model is applicable when

λmfp/a << 1); a kinetic description is required to determine the full evolution of param-

eters within the shock. Nevertheless, the fluid model can be used to determine the equi-

librium states asymptotically upstream and downstream of the shock, where temporal

and spatial scales of collision are small enough, such that the velocity distribution is

Maxwellian (Goedbloed et al. [2010]).
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Figure 1-3: (a) Twin jets from a young stellar object HH111 [Nasini, 2021]. The hypsersonic outflows from
the young star are characterized by a string of radiating "knots", which are conical or oblique internal
shocks generated due to the collision of material moving at different speeds. Image courtesy of ESA/Hub-
ble NASA. (b) Artist’s illustration of relativistic jets from a supermassive blackhole [Chiaberge, 2015]. Ex-
tragalactic jets typically terminate in a bow shock, where the hypersonic outflows impinge on the ambient
media. Image courtesy of NASA,ESA STScl.

1.1 Shocks in Astrophysical Plasmas

Large astrophysical objects can generate high Mach number flows which interact with

ambient media, planetary obstacles, and/or spacecraft to generate strongly radiating

shocks. Some examples include extrastellar jets from radio galaxies, relativistic jets from

Active Galactic Nuclei (AGN) like quasars and blazars, Herbig-Haro (HH) jets from Young

Stellar Objects (YSOs), and shocks in core-collapse supernovae and supernova rem-

nants. Such flows can often exhibit dynamically significant magnetic fields, and shock

formation in such systems is often accompanied by strong radiative cooling, both hydro-

dynamic and magnetohydrodynamic (MHD) instabilities, and turbulence, which can

significantly modify the shock dynamics (Remington et al. [2006]).

Astrophysical jets, such as those from radio galaxies, AGN or YSOs, often exhibit a string

of compact knots (Hartigan et al. [1990]; Smith [2012]). These knots represent regions

of intense radiation where the kinetic energy of the jet is abruptly dissipated as heat

via shock waves. In HH objects, these knots are called "internal working surfaces",

and are thought to be internal oblique or conical shocks generated due to the inter-

action of flows moving at different velocities within the jet. HH objects also terminate in

strongly radiating bow shocks generated due to the interaction of the hypersonic jet with

the circumstellar medium (Smith et al. [2003]). Protostellar and HH jets exhibit speeds

∼ 100kms−1, with typical Mach numbers in the range Ms ∼ 10−100 (Smith [2012]). Sim-
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ilarly, twin jets from radio sources like FRI/FRII galaxies terminate in two distinct lobes,

characterized by shocked regions of enhanced radio emission (called ‘hot spots’), where

the jet impinges on the extragalactic medium (Smith [2012]). Bends have also been ob-

served in the structure of extrastellar jets (Miley [1980]). The bending of such jets is

thought to be facilitated by oblique shocks generated during the interaction of the flow

with dense molecular clouds (Smith and Norman [1981];Choi et al. [2007]). Extragalac-

tic jets typically exhibit speeds between ∼ 0.01c − 1c, with Mach numbers Ms ∼ 1− 10

(Duncan and Hughes [1994]; Choi et al. [2007]).

Many hypersonic astrophysical flows, such as flows from YSOs or flows generated by su-

pernovae explosions, represent highly collisional flows, where the collisional mean free

path λi i is small compared to the characteristic length of the plasma (Lebedev et al.

[2019]). The flows can be described well using an MHD fluid model, and shocks in

such flows can be defined as collisional. In contrast, astrophysical shocks can also be

collisionless, i.e. the shock thickness is much smaller than the dissipative length scale.

In collisionless shocks, diffusion cannot provide the dissipation required for the transi-

tion between the upstream and downstream states, and dispersive effects facilitate this

transition (Goldstein et al. [1984]). Examples of collisionless shocks include planetary

bow shocks generated due to the interaction of solar wind with the ionospheres, mag-

netospheres, or atmospheres of planetary obstacles (Russel [1985]; Petrinec and Russell

[1997]). Although MHD theory cannot accurately capture the complete physics of colli-

sionless shocks, MHD and hydrodynamic theories have been successfully used to deter-

mine the shape and Mach angles of planetary bow shocks in our solar system (Spreiter

and Alksne [1969]; Spreiter and Stahara [1985]). Collisionless shocks represent an active

area of research in plasma physics. The focus of this thesis, however, is on shocks in col-

lisional laboratory plasmas.

1.2 Laboratory Astrophysics Shock Experiments

The only way to study distant astrophysical shocks is via the radiation that reaches the

Earth. Although astronomical observations have provided us with a wealth of informa-

tion, local direct measurements of relevant quantities like the magnetic field or current

are not possible. Moreover, astrophysical plasmas typically exhibit a range of interact-

ing physics, which evolve on extremely large length and time scales. Dynamically sim-

ilar laboratory experiments allow us to isolate and probe the physics of astrophysical

plasmas on comparatively manageable length and time scales. Furthermore, laboratory

27



Chapter 1. Introduction

Figure 1-4: 3D representation of an exploding wire array, which is commonly used as a plasma source in
pulsed-power plasma experiments.

experiments provide important benchmarks for numerical and theoretical models of as-

trophysical systems.

Laboratory experiments of shock dynamics are typically performed at high-energy-density

(HED) facilities with pulsed-power Z-pinch devices or laser plasmas. High-energy lasers,

such as those at the National Ignition Facility (1.8 MJ, Lawrence Livermore National Lab-

oratory) (Miller et al. [2004]) and the OMEGA facility (30 kJ, University of Rochester)

(Boehly et al. [1995]), generate HED plasmas (∼ 1025 m−3, ∼ 100eV) by depositing large

amounts of energy onto small targets. Laser plasmas have been used extensively to study

astrophysical shock dynamics, such as the evolution of hydrodynamic instabilities in

shocks relevant to supernova explosions (Remington et al. [1997]; Kane et al. [1999]), in-

teraction of shocks with low-density media or clumps relevant to supernova remnants

(Drake et al. [1998]; Robey et al. [2002]), and bow shock formation and turbulent interac-

tion of jets with ambient media relevant to YSO jets (Foster et al. [2005]). Laser plasmas,

however, typically do not exhibit dynamically significant magnetic fields.

Pulsed-power driven Z-pinch wire arrays provide an excellent platform to study magne-

tized shocks. Pulsed-power machines generate plasma by applying a large current to a

load, typically an array of thin wires, as illustrated in Figure 1-4, over a short period of

time. Pulsed-power driven plasmas (1024 m−3,10eV) have been used to study physics

relevant to YSO jets, such as the interaction of plasma jets with neutral gases (Suzuki-

Vidal et al. [2012]; Suzuki-Vidal et al. [2013]), the fragmentation of radiatively-cooled

bow shocks in counter-propagating jets (Suzuki-Vidal et al. [2015]), and radiatively-cooled

shocks in nested wire arrays (Ampleford et al. [2010]). The ablation of plasma from wire
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arrays produces highly collisional (λi i /a << 1), upstream flows with frozen-in magnetic

flux (Rem >> 1) (Suttle et al. [2019]). In a cylindrical wire array, current flows in a thin

skin region along the surface of the stationary wire cores, and the global magnetic field

acts only in the azimuthal direction. Plasma ablated from the wires is accelerated by the

radial j×B force; creating radially converging, or radially diverging (for an inverse wire

array) plasma flows, which advect magnetic field and current with them. The plasma

flows produced during the ablation phase are typically supersonic, super-Alfvénic, high

Reynolds number plasma flows, and their interaction with obstacles of varying geom-

etry have been used to study the behavior of quasi-1D planar shocks (Lebedev et al.

[2014]) and quasi-2D bow shocks (Burdiak et al. [2017]; Suttle et al. [2019]; Bott-Suzuki

et al. [2015]). In addition, imploding wire arrays have also been used to study oblique

shocks generated from the collision of adjacent azimuthally-expanding jets (Swadling

et al. [2013]).

Lebedev et al. [2014] studied the formation of a planar magnetized shock due to the in-

teraction of pulsed-power driven (MAGPIE generator peak current = 1.4 MA, rise time

= 250 ns) super-fast (M f ∼ 4.5), high Reynolds number (Rem ∼ 50) Aluminum plasma

flows with a planar conducting obstacle. In addition to a thin primary post-shock layer

of high density, high temperature stagnated plasma at the obstacle surface, a detached

sub-shock was observed to form ahead of the obstacle at a distance comparable to ion

inertial length ∼ c/ωpi (Lebedev et al. [2014]). The detached sub-shock is thought to

be a consequence of magnetic flux pile-up in front of the conducting obstacle, and the

transition facilitated by two-fluid effects. In the precursor, the ions are unmagnetized

(rLi >> δm) and the electrons are magnetized (rLe << δm). Furthermore, the precursor

thickness is comparable to the ion inertial length ∼ c/ωpi . The ion and electron fluids

decouple over this length, because the electrons, being less massive, can respond to the

electric field, but the ions, due to their inertia, cannot. The magnetic pressure deceler-

ates the electrons preferentially. Over time, the ion-electron separation creates a cross-

shock electric field, which decelerates the ions at the sub-shock. Similar modification of

shock morphology due to magnetic flux accumulation, where two-fluid effects facilitate

the shock transition, has been observed in quasi-2D magnetized bow shocks formed

from super-fast flows around conducting cylindrical obstacles (Suttle et al. [2019]; Bur-

diak et al. [2017]).

The orientation of the advected magnetic field relative to the obstacle axis affects bow

shock structure (Burdiak et al. [2017]). When the obstacle axis is perpendicular to the ad-

vected magnetic field, magnetic draping occurs, i.e. magnetic field lines accumulate and

bend near the obstacle. The shape of the resulting bow shock is, thus, modified by the
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accumulated magnetic flux, and is determined by a competition between the upstream

ram pressure and the magnetic tension of the bent field lines. This results in wide bow

shocks with large stand-off distance and opening angles, and a relatively small compres-

sion ratio of ρ2/ρ1 ∼ 2.

In contrast, when the obstacle axis is parallel to the advected magnetic field, magnetic

field lines slip past the obstacle and do not accumulate ahead of the obstacle. The re-

sult is a sharp bow shock with a smaller stand-off distance and larger compression ratio

ρ2/ρ1 ∼ 5, consistent with an MHD description of shock formation. For dielectric obsta-

cles, the bow shock structure resembles that of the parallel orientation, suggesting that

magnetic field diffuses through the resistive obstacle faster than it can accumulate. In

addition, no magnetic precursor is observed for conducting obstacles of smaller diame-

ter.

We can predict whether the magnetic field will pile-up from the resistive diffusion time

through the obstacle, which is tD ∼ R2/η̄, where R is the obstacle length scale, and

η̄ = η/µ0 is the resistive diffusion coefficient. Therefore, we can see that increasing the

obstacle resistivity η or decreasing the obstacle size R will result in a smaller diffusion

time and prevent magnetic flux accumulation. Suttle et al. [2019] also investigated bow

shock formation around magnetized obstacles with private magnetic fields parallel to

the advected field. Bow shocks around the magnetized obstacles were observed to have

a higher stand-off distance. Additionally, the magnetic pressure near the obstacle was

observed to hold off the incoming plasma flow, resulting in low plasma density near the

obstacle surface. Although quasi-1D and quasi-2D shocks in magnetized plasmas have

been examined extensively, full 3D shocks in magnetized pulsed-power plasmas have

received less attention as they require careful diagnosis for proper interpretation.

In this thesis, we investigate oblique shocks and 3D bow shocks in a highly collisional

magnetized Aluminum plasma, generated during the ablation phase of an inverse Z-

pinch wire array, on the MAGPIE facility (1.4MA peak current, 250 ns rise time, Imperial

College London). Ablation of plasma from the wire array generates radially diverging,

supersonic, super-Alfvénic flows with frozen-in magnetic flux (Rem >> 1). Plasma flows

from adjacent wire cores expand azimuthally and generate oblique shock strictures, re-

sulting in azimuthal modulation of the flow in the end-on plane. These flows collide

with inductive probes placed in the flow, which serve both as the obstacles that generate

the magnetized bow shocks, and as diagnostics of the advected magnetic field. Plasma

interferometry is used to diagnose the line-integrated electron density. The oblique

shocks, which are represented by abrupt discontinuities in electron density, exhibit hol-
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low density profiles. A detached bow shock forms ahead of the probe and exhibits a fully

3D structure, with a larger opening angle in the end-on plane than in the side-on plane.

The shock Mach angle is used to determine the upstream Mach number (3 < M1 < 8) of

the flow. Experimental results are compared with full 3D simulations performed using

the resistive MHD code GORGON. Synthetic optical Thompson scattering spectra are

generated, which form the basis of future experiments.

The laboratory experiments presented here provide insight into the fundamental physics

of radiatively cooled oblique shocks and 3D bow shocks in magnetized collisional plas-

mas, relevant to internal shocks in astrophysical flows, and external shocks around ob-

stacles such as planetary bodies and spacecraft. The results provide a benchmark for

theoretical models and numerical codes of astrophysical plasma shocks. Furthermore,

even though inductive probes are widely used in HED experiments, their perturbative

nature leads to questions about how reliably they can reconstruct the magnetic field in

plasma flows. These experiments additionally aim to resolve this question by careful

comparison between numerical simulations and experimental data.
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1.3 Outline of Thesis

The rest of the thesis is organized as follows:

In Chapter 2, we introduce preliminary equations and present the fundamental theory

of shocks in a magnetohydrodynamic fluid.

In Chapter 3, we provide a review of pulsed-power devices and Z-pinch wire arrays. The

experimental results presented in this thesis are supported by, and interpreted using

resistive MHD simulations in GORGON. The use of GORGON for simulation of shock

experiments is discussed in §3.3. The diagnostics employed and proposed here include

inductive probes, plasma interferometry, and optical Thompson scattering. These are

summarized in §3.4.

Chapter 4 presents the experimental results and analysis of bow shocks generated due to

the collision of magnetized upstream plasma flows with inductive probes. We report ex-

perimental results of electron density measured using plasma interferometry, and mag-

netic field measured using inductive probes. Experimental results are compared with

full 3D resistive MHD simulations of bow shocks in exploding wire arrays.

Chapter 5 presents the experimental results and analysis of oblique shocks generated

due to the collision of plasma flows from adjacent wire cores of the exploding Z-pinch

array. Experimental results are compared with 2D resistive MHD simulations of oblique

shocks in exploding wire arrays.

Finally, we summarize our primary findings and present conclusions in Chapter 6.
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Magnetohydrodynamic Shocks

2.1 Preliminary Equations

The governing equations in a collision-dominated plasma with sufficiently large tem-

poral and spatial scales are the magnetohydrodynamic (MHD) equations. The MHD

model provides a single-fluid description of the macroscopic behavior of a plasma. We

can write the resistive MHD equations as:

∂ρ

∂t
=−∇· (ρv)

ρ

(
∂

∂t
+v ·∇

)
v =−∇p + j×B =−∇p + 1

µ0
(∇×B)×B(

∂

∂t
+v ·∇

)
p =−γp∇·v+ (γ−1)

η

µ2
0

(∇×B)2

∂B

∂t
=∇× (v×B)+ η

µ0
∇2B

∇·B = 0

(2.1)

Here, ρ is the density, v is the velocity, p is the pressure, j is the current density, B is the

magnetic field, η is the resistivity, and γ is the adiabatic index of the fluid, defined as the

ratio of specific heat at constant pressure to that at constant volume, i.e. γ = cp /cv . In

a typical plasma, the ion mass far exceeds the electron mass mi /me << 1, so the mo-

mentum is carried primarily by the electrons. We assume that me → 0, so the density

described in Equation(s) 2.1 refers to the density of the ions. The velocity v describes the

mass-averaged velocity, which in this case becomes identical to the ion velocity in the

limit mi /me << 1.
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The first equation in Equation 2.1 is a statement of mass conservation. It equates the

time rate of change of mass in a given system to the mass flux entering the boundaries

of the system. It is true for all plasmas which do not have additional source/sink terms.

The second equation is a statement of conservation of momentum. It says that the total

time rate of change of momentum in an MHD fluid is due to the pressure gradient force

∇p and the Lorentz force j×B. The third equation is a statement of conservation of en-

ergy. The internal energy of an MHD fluid may change due to compression −γp∇·v, or

due to resistive heating ηj2. Finally, the last two equations describe the evolution of the

magnetic field. The fourth equation is called the induction equation, and is derived from

combining Maxwell’s equations with Ohm’s law. It shows that the magnetic field can be

advected by the plasma due to the ∇× (v×B) term, and can also diffuse resistively due

to the (η/µ0)∇2B term. The final equation ∇·B says that there can be no sources or sinks

of magnetic field.

We can define a dimensionless quantity called the magnetic Reynolds’ number Rem =
U L/(η/µ0) by taking the ratio of the convective and diffusive terms in the induction

equation. Here, U and L represent the characteristic velocity and length scale of the

fluid. The magnetic Reynolds’ number describes the relative importance of convection

to resistive diffusion. When the magnetic Reynolds’ number is large, i.e. Rem À 1, re-

sistive diffusion is negligible and the magnetic field is primarily advected by the flow.

The magnetic field is then said to be ‘frozen into’ the flow. This effect is mathematically

identical to the Helmholtz vorticity freezing theorem for inviscid flows.

The resitive MHD equations are derived from the single-fluid equations under a strict

set of assumptions, which are, in turn, derived from moments of the Boltzmann equa-

tion. In general, the resistive MHD equations are valid when (1) the plasma is colli-

sionally dominated, i.e. (mi /me )1/2λi i /a << 1, and (2) the ion gyro-radius rLi is small

compared to the length scale of the plasma rLi /a << 1 (Freidberg [2014]). Here, λi i is the

ion-ion mean free path and a is the characteristic length scale of the plasma. Further-

more, when (me /mi )1/2(rLi /a)2(a/λi i ) << 1, we can assume that the resistivity is small

η→ 0 (Freidberg [2014]). This limit is known as the ideal MHD limit, and it allows us

to drop the resistive terms in the energy and magnetic field equations. However, even

when the resistivity is small, its contribution may not be negligible. This is because the

resistive contribution in Equation(s) 2.1 is a combination of resistivity and gradients of

the magnetic field. Therefore, in plasmas with large gradients of the magnetic field, such

as within a shock layer, the resistive contribution can become significant even when the

resistivity is small. In collisional shocks, resistive dissipation facilitates the transition
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between upstream and downstream states.

2.2 Linear MHD Waves

We can derive the dispersion relations for linear MHD waves from the linearized ideal

MHD equations. Consider an infinite homogeneous medium defined by equilibrium

quantities — v0, j0 = 0, p0, ρ0 and B0 = B0êz, and subject to linear perturbations of the

form Q̃(r, t ) = Q1e−iωt e i k·r, such that ∂t →−iω and ∇→ i k. Here, Q̃ represents a small

perturbation Q̃/Q0 << 1 to the background quantity Q0. We assume, for simplicity, a co-

ordinate frame where êz is parallel to the background magnetic field, and the wavevector

k = k∥êz +k⊥êy lies in the z-y plane. Linearizing the MHD equations, and keeping only

the first-order terms, we get (Freidberg [2014]):

ωρ1 = ρ0 (k ·v1)

ρ0ωv1 = i j1 ×B0 +kp1

ωp1 = γp0 (k ·v1)

ωB1 =−k× (v1 ×B0)

ωµ0j1 =−i k× [k× (v1 ×B0)]

k ·B1 = 0

(2.2)

These equations can be combined and expressed as an eigenvalue problem:


ω2 −k2

∥V 2
A 0 0

0 ω2 − (k2
∥C 2

S +k2V 2
A ) −k∥k⊥C 2

S

0 −k∥k⊥C 2
S ω2 −k2

∥C 2
S


vx

vy

vz


1

= 0 (2.3)

Here, VA = B 2
0 /
p
µ0ρ0 is the Alfvén speed, and CS = √

γp0/ρ0 is the sound speed. Set-

ting the determinant to 0 gives us the dispersion relations for the shear Alfvén, the slow

magnetosonic wave, and the fast magnetosonic wave:

ω2 = k2
‖V 2

A (Shear Alfvén Wave)

ω2 = 1

2
k2 (

V 2
A +C 2

s

)[
1± (

1−α2)1/2
]

(Magnetosonic Wave)

Where α2 = 4cos2θ
C 2

SV 2
A(

C 2
S +V 2

A

)2

(2.4)
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Here, θ is the angle between the direction of propagation of the wave and the back-

ground magnetic field.

The phase speed ω/k of the shear Alfvén wave is:

(ω/k)2
A =V 2

A cos2θ (2.5)

The shear Alfvén wave is a transverse wave that propagates along magnetic field lines

at the Alfvén speed, and results in field line bending, but no magnetic compression. It

represents a competition between inertial effects and magnetic tension.

Similarly, for the magnetosonic wave, the phase velocity is:

(ω/k)2
f ,s =

V 2
A +C 2

S

2

1±
√√√√1−4cos2θ

V 2
AC 2

S

(C 2
S +V 2

A )2

 (2.6)

The slow and fast magnetosonic waves are compressional waves which represent a com-

petition between inertial effects, and plasma and magnetic field compression. Their

speed of propagation depends on the angle between the magnetic field and the direc-

tion of propagation.

We can visualize the anisotropy of MHD waves via a Friedrichs I diagram, as shown in

Figure 2-1. The Friedrichs I diagram represents the phase velocity of the principal MHD

modes in velocity space as a function of the direction of propagation. The fast wave

phase velocity varies from a maximum of VMS =
√

C 2
S +V 2

A perpendicular to the mag-

netic field, to a minimum velocity, equal to the higher of the sound and Alfvén speeds,

along the magnetic field. The slow wave does not propagate perpendicular to the mag-

netic field, and has a maximum velocity, equal to the lower of the sound and Alfvén

speeds, along the magnetic field. The shear Alfvén wave propagates at the Alfvén speed

along the magnetic field, and does not propagate perpendicular to the field.

The sound speed CS and the Alfvén speed VA can be related using the plasma β, which

represents the ratio of thermal to magnetic pressure in a plasma:

C 2
S

V 2
A

= γp/ρ

B 2/(ρµ0)
= γ

2
β (2.7)
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Figure 2-1: Friedrichs I diagrams representing the normalized phase velocity of fast (black line), slow (blue
line), and Shear Alfvén (red line) waves as a function of the angle of propagation relative to the magnetic
field. Note that the phase velocity is normalized using the magnetosonic wave speed VMS . (a) Friedrichs I
diagram for CS /VA = 1. The fast wave phase velocity varies from a maximum of VMS perpendicular to the
magnetic field, to a minimum velocity, equal to the higher of the sound and Alfvén speeds, along the mag-
netic field. The slow wave does not propagate perpendicular to the magnetic field, and has a maximum
velocity, equal to the lower of the sound and Alfvén speeds, along the magnetic field. The shear Alfvén
wave propagates at the Alfvén speed along the magnetic field, and does not propagate perpendicular to
the field. (b) Friedrichs I diagram for CS /VA = 0.25. The fast wave speed is approximately isotropic and
approaches the Alfvén speed. (c) (b) Friedrichs I diagram for CS /VA = 4. The fast wave speed is approxi-
mately isotropic and approaches the sound speed.

For small β << 1, the sound speed is much smaller than the Alfvén speed, and the

fast magnetosonic wave becomes the compressional Alfvén wave, which propagates

isotropically at the Alfvén speed. This is illustrated in Figure 2-1b. For large β >> 1,

the sound speed is much larger than the Alfvén speed, and the fast magnetosonic wave

becomes the ion sound wave i.e. V f ≈CS . This situation is illustrated in Figure 2-1c.

2.3 MHD Shock Jump Conditions

Within the shock, the evolution of thermodynamic properties, magnetic field, and the

flow velocity constitute a non-linear problem, and must be solved accounting for col-

lisional dissipative effects which convert the upstream state to the downstream state.

Since ideal MHD does not account for dissipation, these equations cannot be used to

describe plasma evolution within the shock. However, asymptotically upstream and

downstream of the shock, ideal MHD accurately describes the equilibrium fluid states,

and we can use the conservation of mass, momentum, and energy to relate the upstream

and downstream states.

To derive the jump conditions, we first express the ideal MHD equations in conservative
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form (Goedbloed et al. [2010]):

∂t

∫
V
ρdV =−

∫
S
ρv ·dA

∂t

∫
V
ρvdV =−

∫
S

(
ρvv+ (p + B 2

2µ0
)I− BB

µ0

)
·dA

∂t

∫
V

(
ρ

v2

2
+ p

γ−1
+ B 2

2µ0

)
dV =−

∫
S

(
ρ

v2

2
+ γp

γ−1

)
v ·dA−

∫
S

E×B

µ0
·dA

∂t

∫
V

BdV =
∫

S
n̂× (v×B)d A∫

S
B ·dA = 0

(2.8)

We transition to a frame moving with the shock front u = v−usn̂. Here, v is the fluid

velocity in the laboratory frame, us is the shock velocity, and n̂ is the unit vector normal

to the shock front. Carrying out the integral over across a control volume surrounding

the shock, and setting the shock thickness δ→ 0, we get (Boyd and Sanderson [2003]):

�ρun� = 0 (2.9)

�ρu(un)+ (
p +B 2/2µ0

)
n̂− (Bn)B/µ0� = 0 (2.10)

�(
ρu2

2
+ γp

γ−1
+ B 2

µ0

)
un − (B ·u)Bn

µ0

�
= 0 (2.11)

�n̂× (u×B)� = 0 (2.12)

�Bn� = 0 (2.13)

Furthermore, entropy must increase across the shock. So, entropically permitted shocks

satisfy (Goedbloed et al. [2010]):

�
p

ργ

�
≤ 0 (2.14)

Here, the double square brackets represent �φ� =φ1−φ2, whereφ1 is the upstream state

and φ2 is the downstream state. Equations 2.9 - 2.14 relate the upstream and down-

stream equilibrium states once all dissipative effects are accounted for. They are called
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the Rankene-Hughniot relations.

2.4 Hydrodynamic Shocks

We can obtain the hydrodynamic jump conditions by taking the limit B → 0. The jump

conditions Equations 2.9 - 2.13 then become:

�ρun� = 0

�ρu2
n +p� = 0

�ρut(un)� = 0�(
ρu2

2
+ γp

γ−1

)
un

�
= 0

(2.15)

Since the mass flux across the boundaries of the shock is constant ρ1u1,n = ρ2u2,n , the

tangential velocity is also continuous across the shock front, i.e. ρ1un,1�ut� = 0 ⇒�ut� =
0. Therefore, in a hydrodynamic shock, the tangential velocity remains unaltered while

the normal velocity, pressure, and density are discontinuous.

2.4.1 Normal Shock

Consider a shock where the upstream flow u1 = u1n̂ is normal to the shock front. Since

the tangential velocity remains continuous across the shock �ut� = 0, the tangential

component of the downstream velocity is also zero ut,2 = 0. We can combine the mass,

momentum, and energy jump conditions to express the downstream Mach number

M2 = un,2/Cs,2 = ρ2un,2/(γp2) in terms of the upstream Mach number M1 = ρ1un,1/(γp1)

(Kundu et al. [2012]):

M 2
2 = (γ−1)M 2

1 +2

2γM 2
1 +1−γ (2.16)

The entropy jump condition Equation 2.14 implies that for permitted jumps, M1 ≥ 1, i.e.

the upstream flow is supersonic. Given the upstream parameters, we can also determine

the downstream parameters as a function of the upstream Mach number M1 (Kundu
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et al. [2012]):

ρ2

ρ1
= u1,n

u2,n
= (γ+1)M 2

1

(γ−1)M 2
1 +2

(2.17)

p2

p1
= 1+ 2γ

(γ+1)
(M 2

1 −1) (2.18)

In the strong shock limit M1 >> 1, the compression ratio approachesρ2/ρ1 → (γ+1)/(γ−
1). For the ideal gas value of γ= 5/3, the maximum compression ratio is 4.

2.4.2 Oblique Shock

Consider a shock where the shock front forms at some angle σ to the upstream velocity,

as shown in Figure 2-2. Relative to the shock, the incoming flow has a component paral-

lel and a component orthogonal to the shock front, i.e. u1 = u1,nn̂+u1,t. From Equations

2.15, we see again that the tangential component of velocity remains continuous, while

the normal component is discontinuous, such that the downstream flow will now form

at an angle to the upstream flow. The effect is that the flow vector is rotated by an angleφ

across the shock front. The angle σ= tan−1(un,1/ut ,1) at which the shock forms relative

to the shock front is called the shock angle, while the angle φ by which the flow vector is

rotated is called the deflection angle.

Since the jump conditions 2.15 remain unchanged, we can determine the upstream

and downstream states across the oblique shock simply by expressing the normal Mach

number in terms of the total Mach number and the shock angle, i.e. M1,n = u1 sinσ/Cs,1 =
M1 sinσ. Replacing M1 → M1 sinσ into the normal shock relations, we get:

p2

p1
= 1+ 2γ

γ+1

(
M 2

1 sin2σ−1
)

(2.19)

ρ2

ρ1
= (γ+1)M 2

1 sin2σ

(γ−1)M 2
1 sin2σ+2

(2.20)

M 2
2 sin2(σ−φ) = (γ−1)M 2

1 sin2σ+2

2γM 2
1 sin2σ+1−γ (2.21)

The deflection angle φ can also be expressed as a function of the upstream Mach num-
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Figure 2-2: (a) Hydrodynamic oblique shock geometry. The upstream velocity vector is defected by an
angle φ across the shock front. The shock front forms at an angle σ to the upstream velocity vector. (b)
Shock angle as a function of defection angle for different upstream Mach number M1. The shock angle
can vary betweenπ/2 (normal shock) and the Mach angle (Mach shock). For a given defection angle, there
are two possible solutions - weak shock and strong shock - for the shock angle. (c) Detached bow shock
ahead of a blunt obstacle. The bow shock represents an oblique shock with varying shock and deflection
angles. The shock is strongest at the nose, where the shock angle is 90o ; this constitutes a normal shock.
Far away from the obstacle, the shock becomes an infinitesimally weak Mach shock.

ber M1 and the shock angle σ (Kundu et al. [2012]):

tanφ= 2cotσ
M 2

1 sin2σ−1

M 2
1 (γ+cos2σ)+2

(2.22)

Note that for entropically permitted shocks, the upstream normal Mach number M1 sinσ

should still exceed unity.

From the solution of 2.22, as shown in Figure 2-2b, we can summarize key aspects of

oblique shocks:

41



Chapter 2. Magnetohydrodynamic Shocks

• Setting φ = 0, in Equation 2.22, we get two possible solutions for which there is

no deflection — σ = sin−1(1/M1) ≡ µ and σ = π/2. The first case corresponds to

the Mach wave, which represents an oblique shock of infinitesimal strength. Sub-

stituting σ→ µ ≡ sin−1(1/M1), it can be shown that ρ2/ρ1 → 1, i.e. (no compres-

sion). The second case (σ=π/2) represents normal shocks, for which the velocity

is perpendicular to the shock front. This case represents the maximum possible

compression ratio.

• For constant M1, and µ≤σ≤π/2, a straight oblique shock solution only exists for

φ≤φmax. The maximum deflection angle φmax increases with M1.

• For φ< φmax and constant M1, there are two possible solutions for σ. If the solu-

tion lies above the φ=φmax line, the shock is said to be strong, otherwise it is said

to be weak. For a strong shock, the downstream flow is always subsonic, while for

a weak shock, the downstream flow is usually supersonic, except for in a narrow

range where φ is close to φmax. In reality, most oblique shocks are weak shocks,

such that the post-shock flow remains supersonic (Anderson [2001]).

• For a weak shock, increasing the deflection angle φ increases the shock angle σ,

while for a strong shock, increasing the deflection angle φ decreases the shock

angle σ.

• When the deflection angle is increased beyond the maximum deflection angle

φ > φmax, a straight oblique shock solution is not possible. In this case, we get

a detached curved shock front at some distance from the nose of the obstacle.

Therefore, an attached oblique shock becomes a detached bow shock for large de-

flection anglesφ>φmax. For a blunt obstacle, we always get a detached bow shock

instead of an attached oblique shock (Anderson [2001]).

2.4.3 Bow Shocks

Bow shocks are detached shocks characterized by curved shock fronts. They appear

when a supersonic flow collides with a blunt object, or with a sharp object for which the

deflection angle is greater than the maximum permissible deflection angle. Figure 2-2c

illustrates a detached bow shock ahead of a blunt obstacle. The distance from the nose

of the obstacle at which the detached bow shock forms is called the shock stand-off dis-

tance.

The bow shock represents an oblique shock with varying shock and deflection angles. At

the nose of the obstacle (Point A), the shock angleσ=π/2, i.e. the shock front is perpen-
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dicular to the upstream velocity. This constitutes a normal shock with deflection angle

φ= 0, and the normal shock relations 2.16 - 2.18 apply. Moving away from the nose, the

shock angle σ decreases, and the deflection angle φ increases (Point B). This constitutes

a strong oblique shock. In this regime, the post-shock plasma is subsonic. At some point

C, the deflection angle φ increases to its maximum permissible value φmax for the given

upstream Mach number M1. Beyond this point, both the shock angle σ and the deflec-

tion angle φ decrease; this constitutes a weak oblique shock (Point D). In this regime,

the post-shock plasma is supersonic. Finally, far away from the obstacle (Point E), the

shock angle reaches the Mach angle σ→ µ = sin−1(1/M1). Here, the deflection angle is

zero, i.e. φ(σ=µ) = 0.

The stand-off distance and the shape of the shock front depend on the upstream Mach

number M1, as well as the shape and size of the obstacle. Analytical solutions are typ-

ically inadequate, and the shock structure must be calculated numerically (Van Dyke

[1958]; Anderson [2001]). In general, increasing the upstream Mach number M1 will de-

crease the stand-off distance (Van Dyke [1958]; Anderson [2001]).

2.5 MHD Shocks

Equations 2.9 - 2.13 describe the equilibrium states upstream and downstream of a fully

MHD shock. Unlike in a hydrodynamic shock, the tangential velocity ut can now be

discontinuous, and depends on the jump in the tangential magnetic field Bt:

ρun�ut� = Bn�Bt� (2.23)

Therefore, the angle ϑ = tan−1(Bt /|Bn |) between the shock normal and the magnetic

field can modify shock properties. Figure 2-3 shows the different types of permissible

MHD shocks. We first examine the simple parallel (ϑ = 0) and perpendicular (ϑ = π/2)

shock limits.

2.5.1 Parallel Shocks

When ϑ1,2 = 0, the upstream and downstream magnetic field only have components

normal to the shock i.e. Bt,1,2 = 0, Bn 6= 0. This situation in depicted in Figure 2-3a. The

jump conditions 2.9 - 2.13 reduce to the hydrodynamic jump conditions 2.15. Therefore,

parallel shocks are hydrodynamic in nature and the magnetic field does not participate
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Figure 2-3: Types of MHD shocks (a) Parallel shock. The upstream magnetic field is parallel to the shock
normal. The magnetic field remains continuous, and the shock is hydrodynamic. (b) Switch on shock.
There is no tangential upstream magnetic field, but the downstream magnetic field has a non-zero tan-
gential component. (c) Perpendicular shock. The upstream magnetic field is perpendicular to the shock
normal. The downstream magnetic field is compressed. Perpendicular shocks represent super-fast to
sub-fast transitions. (d) Slow shock. Slow shocks represent super-slow to sub-slow transitions in which
the post-shock magnetic field is deflected towards the shock normal. (e) Intermediate shock. These rep-
resent super-Alfvénic to sub-Alfvénic or sub-slow transitions. The magnetic field changes direction across
the shock. (f) Fast shock. These represent super-fast to sub-fast transitions. The magnetic field is com-
pressed and deflected away from the shock normal.

in the shock dynamics.

In some cases, when ϑ1 = 0 but ϑ2 6= 0, i.e. there is a non-zero downstream tangen-

tial magnetic field Bt,2 6= 0. This is depicted in Figure 2-3b, and the shock is called a

switch-on shock. A switch-on shock is an fast/intermediate MHD shock for which the

downstream Alfvén Mach number is 1. (Goedbloed et al. [2010]).

2.5.2 Perpendicular Shocks

Consider a flow u1 = u1 n̂ = u1 êx with a magnetic field B1 = B1 êy, such that the upstream

magnetic field is perpendicular to the shock normal Bn = 0, ϑ=π/2. This is illustrated in

2-3c. The downstream velocity is also parallel to the shock normal, since �ut� = 0 when
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Bn = 0. The jump conditions 2.9 - 2.13 become (Boyd and Sanderson [2003]):

ρ1u2
1 +p1 +

B 2
1

2µ0
= ρ2u2

2 +p2 +
B 2

2

2µ0

u2
1 +

γp1

ρ1(γ−1)
+ B 2

1

ρ1µ0
= u2

2 +
γp2

ρ2(γ−1)
+ B 2

2

ρ2µ0

B2

B1
= ρ2

ρ1
= u1

u2

(2.24)

Introducing β1 = 2µ0p1/B 2
1 and the sound Mach number M1 = ρu2

1/(γp1), we combine

the jump conditions to get:

(r −1)
{
2(2−γ)r 2 + [

2γ(β+1)+βγ(γ−1)M 2
1

]
r −βγ(γ+1)M 2

1

}= 0

Or (r −1)
[
ar 2 +b(M 2

1 ,β1)r + c(M 2
1 ,β1)

]= 0
(2.25)

Where r ≡ ρ2/ρ1 is the density compression ratio and R ≡ p2/p1 is the pressure ratio.

Note that in a perpendicular shock, both the density and the magnetic field are com-

pressed by the same ratio.

The solutions of Equation 2.25 are r = 1 (no compression), and r = (1/2a)
(
−b ±

p
b2 −4ac

)
.

Entropically permitted shocks are compressive (r ≥ 1), so the entropically permitted

shock satisfies:

√
b2 −4ac > 2a +b

βγ(γ+1)M 2
1 > 2(2−γ)+2γ(β+1)+βγ(γ−1)M 2

1

M 2
1 > 1+ 2

γβ1
⇒ u2

1 >C 2
S +V 2

A ≡V 2
f

(2.26)

Therefore, entropically permitted perpendicular shocks represent super-fast (M f > 1) to

sub-fast transitions (M f < 1).

We can determine the downstream sound Mach number M2 and plasma beta β2 from:

M 2
2 = M 2

1
1

r R

β2 =β1
R

r 2

(2.27)
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Where R is the pressure ratio:

R ≡ p2

p1
= 1+ 1− r 2

β1
+ γM 2

1 (r −1)

r
(2.28)

We plot the solution of the Equation 2.25 as a function of the upstream fast Mach num-

ber M f ,1 in Figure 2-4a. The solution lies in the entropically permissible region only for

super-fast M f ,1 ≥ 1 to sub-fast transitions M f ,1 ≤ 1. The compression ratio increases

with increasing upstream fast Mach number. In the strong shock limit, the compression

ratio approches r → 4 for γ= 5/3. The solution is a weak function of the upstream β1.

2.5.3 Oblique MHD Shocks

We express the jump conditions 2.9 - 2.14 in non-dimensional (Goedbloed et al. [2010]):

�ūt� = �B̄t� (2.29)

�(M 2 −1
)

Bt� = 0 (2.30)

�M 2 + p̄ + 1

2
B̄ 2

t � = 0 (2.31)

� γ

γ−1
p̄M 2 + 1

2

(
1+ B̄ 2

t

)
M 4� = 0 (2.32)

�p̄M 2γ� ≤ 0 (2.33)

Where ūn ≡µ0ρ|un |/B 2
nun =−M 2, ūt ≡µ0ρ|un |/B 2

nut, B̄n ≡ Bn/|Bn | = −1, B̄t = Bt /|Bn | ≡
tanϑ, and p̄ ≡ µ0p/B 2

n = β/2. Note that M 2 ≡ µ0ρu2
n/B 2

n is the square of the normal

Alfvén Mach number and is only defined for Bn 6= 0.

Combining the jump conditions, we can determine the downstream normal Alfvén Mach

number M2 as a function of M1, ϑ1 and β1. This is called the distilled MHD energy jump

condition:

1

2

(
M 2

2 −1
)2 {

(γ+1)M 2
2 − (γ−1)M 2

1 −γβ1
}

+ 1

2
tan2ϑ1

{
(γ−1)

(
M 2

2 −1
)(

M 2
1 −M 2

2

)−M 2
2

(
M 2

1 +M 2
2 −2

)}= 0
(2.34)
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Figure 2-4: (a) Perpendicular shock solution for the compression ratio r and downstream fast Mach num-
ber M f ,2 as a function of the upstream fast Mach number. Entropically permitted shocks are compressive
(r ≥ 1) shocks, which represent super-fast to sub-fast transitions. The compression ratio represents the ra-
tio of the post-shock density and magnetic field to the upstream density and magnetic field. In the strong
shock limit (M f ,1 → ∞), the compression ratio approaches 4 for γ = 5/3. The solution is a weak func-
tion of the plasma β. (b) Solution of the distilled MHD energy jump condition for β = 0.5 and ϑ1 = π/4.
The MA,1 = MA,2 line separates entropically permitted solution from the entropically forbidden solutions
(red). There are three types of permissible MHD shocks. For Mach numbers larger than point A, we get
fast shocks, where the upstream velocity is super-fast and the downstream velocity is sub-fast. Between
B and C, we get intermediate shocks, where the upstream velocity is super-Alfvénic and the downstream
velocity is sub-Aflvéic or sub-slow. Between C and D, we get slow shocks, where the upstream velocity is
super-slow and the downstream velocity is sub-slow.

The downstream parameters can be determined from:
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un2

un1
= ρ1

ρ2
= M 2

2

M 2
1

(2.35)

B̄t,2 =
M 2

1 −1

M 2
2 −1

B̄t,1 ⇒ϑ2 = tan−1

(
M 2

1 −1

M 2
2 −1

tanϑ1

)
(2.36)

p̄2 = β2

2
= β1

2
+ (M 2

1 −M 2
2 )

[
1−

(
B̄ 2

t ,1

2

)
M 2

1 +M 2
2 −2

(M 2
2 −1)2

]
(2.37)

Finally, from the entropy jump condition, it can be shown that entropically permitted

jumps satisfy M 2
2 /M 2

1 ≤ 1.

Figure 2-4b shows the solution to Equation 2.34. The M 2
A,1 = M 2

A,2 line separates entrop-

ically permitted solutions from the entropically forbidden solutions. The three types of

permissible MHD shocks are:

• Slow shocks (1 ≥ M 2
1 ≥ M 2

2 ). These are super-slow to sub-slow transitions. In Fig-

ure 2-4, slow shocks are represented by the part of the solution that lies between

points C and D, where the upstream velocity is super-slow. From Equation 2.36,

|B̄t,2| ≤ |B̄t,1|, so the magnetic field vector is deflected towards the shock normal.

This shock is illustrated in Figure 2-3d.

• Intermediate shocks (M 2
1 ≥ 1 ≥ M 2

2 ). These are super-Alfvénic to sub-Alfvénic or

sub-slow transitions. In Figure 2-4, intermediate shocks are represented by the

part of the solution that lies between points B and C, where the upstream velocity

is super-Alfvénic, and the solution is multi-valued. B̄t ,2/B̄t ,2 < 0, so the post-shock

and the pre-shock magnetic fields have opposite directions. This is depicted in

Figure 2-3e.

• Fast shocks (M 2
1 ≥ M 2

2 ≥ 1). These are super-fast to sub-fast transitions. In Figure

2-4, fast shocks are represented by the part of the solution that lies to the right of

point A, where the upstream velocity is super-fast. From Equation 2.36, |B̄t,2| ≥
|B̄t,1|, so the magnetic field vector is deflected away from the shock normal. This

shock is depicted in Figure 2-3f.
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Figure 2-5: (a) Fast bow shock ahead of a cylindrical obstacle (De Sterck et al. [1998]). The upstream
magnetic field is aligned with the flow and points from the left to the right. The shock front is concave
to the cylinder everywhere ahead of the obstacle. (b) Shock front with a dimpled shape. At the nose,
the shock is a switch-on shock, which is followed by an intermediate shock. The upper part of the shock
represents a fast shock. (c) Bow shock with 2 interacting shock fronts. The leading shock front exhibits
fast, intermediate and hydrodynamic parts, while the secondary shock front exhibits intermediate shock
transitions. Reprinted from De Sterck et al. [1998] - "Complex magnetohydrodynamic bow shock topology
in field-aligned low- flow around a perfectly conducting cylinder. Physics of Plasmas, 5(11), 4015–4027,"
with permission of AIP Publishing. (d) Optical self-emission images of bow shocks ahead of a conducting
cylindrical obstacle (top), and a non-conducting cylindrical obstacle (bottom) (Burdiak et al. [2017]). Flux
pile-up ahead of the conducting obstacle creates a bow shock with a larger opening angle and stand-off
distance compared to the non-conducting case. Reprinted from Burdiak et al. [2017] - "The structure of
bow shocks formed by the interaction of pulsed-power driven magnetised plasma flows with conducting
obstacles. Physics of Plasmas, 24(7)," with permission of AIP Publishing

2.5.4 MHD Bow Shocks

In an MHD bow shock, the shock morphology depends not only on the upstream Mach

number, but also on the plasma β and the angle ϑ between the shock front and the

magnetic field. Simulations of bow shocks in the switch-on regime show complex shock

structures with multiple interacting fronts, where a leading shock front is followed by a

secondary shock front (De Sterck et al. [1998];De Sterck and Poedts [2000]). The lead-

ing shock front is a super-fast to sub-fast transition; it then splits into two shock fronts

— one super-fast to sub-fast transition while the other is an intermediate super-fast to

sub-Alfvénic transition, which then evolves into a slow shock. Similarly, 2D simulations,

around perfectly conducting cylinders with field-aligned flow in the switch-on regime,

exhibit complex shock structures with 2 interacting shock fronts (De Sterck et al. [1998]).

The leading shock front exhibits fast, intermediate, and hydrodynamic parts, while the

secondary shock front exhibits intermediate shock transitions, as illustrated in Figure

2-5a.

49



Chapter 2. Magnetohydrodynamic Shocks

Figure 2-6: Mach cone in a hydrodynamic fluid. The disturbance, initially at position A, moves with a
supersonic velocity u form the left to the right. The disturbance emits spherical sound waves which travel
outwards at the sound speed CS . At some time t = 2∆t , the disturbance is at position C and has traveled
a distance 2u∆t from its initial position. The tangential surface which connects the spherical wavefronts
forms the surface of the Mach cone.

Furthermore, in magnetized shocks, the accumulation of magnetic flux at the obstacle

and field line bending can further modify the bow shock structure, such that the bow

shock shape is determined by a competition between the magnetic tension of the bent

field lines and the incoming ram pressure. In such shocks, where flux accumulation

modifies shock morphology and two-fluid effects facilitate the shock transition, have

been experimentally observed in magnetized bow shocks formed from super-fast flows

around conducting cylindrical obstacles (Suttle et al. [2019]; Burdiak et al. [2017]).

2.6 Mach Wave

Consider a point source traveling with some velocity u in the negative x-direction in

a stationary hydrodynamic fluid, as shown in Figure 2-6 (or equivalently, a stationary

obstacle in a fluid moving in the positive x-direction with velocity u). The source emits

spherical sound waves which propagate radially outwards isotropically at the local sound

speed CS . If u = 0, the wavefronts form concentric spherical surfaces which radiate out-

wards in time. If the source is non-stationary and travels with a velocity u < CS , the

center of each successive wavefront will be shifted to the left by a distance u∆t ; how-

ever, trailing wavefronts cannot catch up with the leading wavefront, and information
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Figure 2-7: (a) Determination of the Fast Mach angle using Friedrichs I diagram. The velocity circle
(dashed line) is centered at (0, v/2). The magnetic field vector makes an angle of π/4 with the velocity
vector. The fast magnetosonic phase-speed (solid black line) has a minimum value along the magnetic
field and a maximum value perpendicular to the field. The Mach lines (sold grey lines) are determined
by connecting the origin to the points of intersection of the velocity circle and the Friedrichs I diagram.
Here, the sound Mach number and the Alfvén Mach number are equal to 3.3. (b) Determination of the
Fast Mach angle using Friedrichs II diagram.

propagates both upstream and downstream of the disturbance.

If u > CS , trailing wavefronts now catch up with and overtake the leading wavefront,

such that information cannot travel downstream before the disturbance arrives. In Fig-

ure 2-6, the disturbance, initially at point A, travels to point C after some time t = 2∆t .

Points A and C are separated by a distance 2u∆t , and the original wavefront generated

at t = 0 has now traveled a distance 2Cs∆t . The tangential surface which connects the

spherical wavefronts forms the surface of the Mach cone, and represents a discontinuity

between upstream and downstream states. The half-angle of the Mach cone is called the

Mach angle µ. We can determine the Mach angle µ from the ratio of the radial extent of

each wavefront to the distance traveled by the point source, and show that it is related

to the Mach number (Kundu et al. [2012]):

µ= sin−1
(

CS∆t

u∆t

)
= sin−1(1/MS) (2.38)

The Mach wave represents an oblique shock of infinitesimal strength. The shock an-

gle σ here is equal to the Mach angle µ, for which the deflection of the velocity vector is

zero. For an MHD shock, we can have three possible Mach cones associated with each of

the three linear MHD waves. Of these, the fast Mach cone is typically the most relevant,

since the fast velocity represents the maximum velocity with which a linear MHD pertur-
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bation can propagate in a plasma. However, unlike a sound wave whose phase speed is

independent of direction, the slow, fast, and Alfvén phase speeds are anisotropic and de-

pend on the angle θbk between the wave vector k and the magnetic field B. The fast wave

phase speed varies from a maximum of Mms =
√

v2
A +C 2

S perpendicular to the magnetic

field (θbk = π/2) to a minimum of max(v A,CS) parallel to the magnetic field (θbk = 0).

Therefore, the Mach angle can also vary between 1/Mms ≤ sinµ≤ 1/MA,s depending on

the value of θbk . In the limiting case β << 1, C 2
S << v2

A, so the fast magnetosonic speed

becomes Vms(β<< 1) ≈VA. Similarly, when β>> 1, C 2
S >> v2

A, so the fast magnetosonic

wave becomes a sound wave Vms ≈CS . In both limiting cases, the fast wave phase speed

can be approximated to be isotropic.

For other cases, we can determine the Mach angle from the phase speed representation

in velocity space (Friedrichs I diagram) (Spreiter and Stahara [1985]; Spreiter and Alk-

sne [1969]; Petrinec and Russell [1997]). This method is illustrated in Figure 2-7a. We

assume a coordinate system where the upstream velocity V is along the x-axis. In the

plane that contains B and V, we draw a sphere of diameter V centered at (V /2,0). Next,

we draw the phase velocity curve of the fast wave phase speed for the given direction of

the magnetic field B. We can now determine the point(s) of intersection of the velocity

sphere with the phase diagram, and connect the origin to the points of intersection to

get the Mach lines which delineate the surface of the Mach cone. This method, however,

is only applicable for certain symmetric cases, and does not account for the difference

in direction between the central wave vector and the velocity vector of a propagating

point disturbance (Verigin et al. [2003]). For the symmetric cases θbk = 0 and θbk =π/2,

the analytical solutions for the Mach angle are (Spreiter and Stahara [1985]):

sinµ=
√

M 2
S +M 2

A −1

MA MS
(θbv = 0)

sinµ=

√√√√√M 2
S +M 2

A +1+
√(

M 2
S +M 2

A +1
)2 −4MS

2MA
2

2M 2
S M 2

A

(θbv =π/2)

(2.39)

The velocity of propagation of a point disturbance is the group velocity. We can deter-

mine the group velocity from the envelope of all plane waves at unit time emitted from

the origin at t = 0. We can also use a group velocity representation to determine the

Mach angle (Friedrichs II diagram) (Spreiter and Alksne [1969]). This method is illus-

trated in Figure 2-7b. We draw the group velocity diagram centered at (0,V ), and de-

termine the tangent to the curve that crosses through the origin. This is equivalent to
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the velocity-space representation of the MHD version of the Mach cone depicted in the

hydrodynamic case.

Verigin et al. [2003] describe a third method of determining the Mach angle directly from

the MHD Rankene-Hughniot relations. We assume that far from the obstacle, the shock

surface assumes a simple conic shape given by x + a(ϕ)ρ = 0. Here, ϕ is the azimuthal

angle, ρ is the radial length and x is the axial length of the cylindrical coordinate system

whose axis is aligned with the shock axis. The Mach angle can then be determined from

the gradient of the curve at a given ϕ at x →∞, i.e. tanµ(φ) =−∂xρ = 1/a(φ). By setting

the density ratio to unity r → 1 in the Rankene-Hughniot conditions, the 3D asymptotic

shape of the MHD shock can be determined from the solution of a non-linear ordinary

differential equation (Verigin et al. [2003]):

[
(a′ sinϕ−a cosϕ)sinθbv +cosθbv

]2 = M 2
A +M 2

S −
M 2

A M 2
S

1+a2 +a′2 (2.40)

Here, θbv is the angle between the upstream magnetic field and velocity vectors, and

a′ = d a/dϕ.

2.7 Adiabatic index of a plasma

It is clear from the analysis above that the adiabatic index of the plasma γ plays an im-

portant role in shock physics. The adiabatic index γ, which is defined as the ratio of

specific heats, is closely related to the polytropic index ζ, which relates the pressure to

the density in a polytropic process (Moran et al. [2010]):

p

ρζ
= const. (2.41)

By combining the first law of Thermodynamics d q = dε+ pd(1/ρ), and ideal gas law

p = nkB T , we can show that for a polytropic ideal gas, the polytropic index ζ is a function

of the specific heats:

ζ= cP − c

cV − c
(2.42)

Here, cp = dh/dT represents the change in specific enthalpy h per unit temperature,

cV = (dε/dT )V represents the change in specific internal energy ε per unit change in

temperature at constant volume, and c represents the heat transferred per unit mass

per unit temperature, i.e. c = d q/dT . For an isentropic process, no heat is transferred,

so c = 0. The polytropic index reduces to the ratio of specific heats, which is defined as
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γ= cp /cv .

We can also show that for an isentropic process, the internal energy and the pressure

can be related as:

ρε= p

γ−1
(2.43)

We can use Equation 2.43 to define an effective adiabatic index:

γ= 1+ p

ρε
(2.44)

The pressure and internal energy density in an ideal plasma with Te = Ti are:

p = (Z +1)ni kB T

ρε= 3(Z +1)ni kB T

2

(2.45)

These equations represent the standard statistical thermodynamics result for an ideal

gas. We can derive them by calculating the Helmholtz free energy F and canonical par-

tition function ZN of a dilute gas with N indistinguishable non-interacting particles,

which are defined as (Chen [2005]):

F =−kB T lnZN

ZN =
N∑
j

∞∑
i

exp

[
− Ei , j

kB T

]
p =−

(
∂F

∂V

)
T,N∫

ρεdV =∑
Ei

exp(−Ei /kB T )

ZN

(2.46)

Here, Ei , j represents the i -th energy level of particle j , typically represented using the

particle-in-box quantum mechanical solution, and we are summing over N particles to

find the total canonical partition coefficient of the N-particle ensemble. The pressure is

defined as the volume derivative of the Helmholtz free energy at constant temperature

and constant N, and the total internal energy is the summation of the expected energy

level of all particles.

The first equation in 2.45 is the familiar ideal gas relation, and the second equation is the
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statement that the total internal energy is equal to the summation of the kinetic energy

of all particles in the gas. Alternatively, we could have also derived the ideal gas internal

energy relationship by integrating the kinetic energy of each particle over a Maxwellian

distribution function. From Equation(s) 2.45 and 2.44, we can conclude that γ= 5/3 for

an ideal gas.

Most plasmas can be treated as ideal gases with a γ = 5/3. However, for HED plasmas,

the contribution of Coulomb interactions (potential energy of the electrons in the elec-

tric field of the ions), ionization energy, and excitation energy may become significant

(Drake [2013]). Consequently, the total internal energy of the ionized plasma is larger

than that of the ideal gas, and from Equation 2.44, we can expect the effective adia-

batic index to be smaller than the ideal value of 5/3. In particular, for an ionized high-Z

plasma, the pressure and internal energy density can be estimated using (Drake [2013]):

p = 1.6×10−12ni Te

(
1+0.63

√
Te −2.76×10−8nt

i

)
ρε= 1.6×10−12ni

[
1.43

p
T e +4.2Te

+T 3/2
e

(
1.3−0.315ln

(
ni

1023Te

))] (2.47)

Where all quantities are in CGS units, and temperature is in eV. For our plasmas of inter-

est with ni ∼ 1018 cm−3 and Te ∼ 10 eV, the value of the adiabatic index is γ≈ 1.13.

Similarly, strong radiative losses from a plasma can also modify the balance of pressure

and internal energy. In radiation-dominated plasmas, the value of the adiabatic index is

γ= 4/3 (Drake [2013]).

2.8 Summary of MHD Shocks

The theoretical discussion presented in this chapter will form the basis of our analy-

sis in subsequent chapters. The MHD equations describe the macroscopic behavior

of a collisionally-dominated (
p

mi /me λi i /a << 1) plasma with small ion Larmor ra-

dius (rLi /a << 1). We can use the conservation of mass, momentum, and energy to

relate the upstream and downstream states of a shock; these jump conditions are called

the Rankene-Hughniot jump conditions. Taking the hydrodynamic limit B → 0, we can

determine the relationships between upstream and downstream states for normal and

oblique hydrodynamic shocks. A detached bow shock always forms ahead of a blunt ob-

stacle in a supersonic flow, and represents an oblique shock with varying deflection and
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shock angles. At the nose of the obstacle, the shock is strongest and constitutes a normal

shock. Far away from the obstacle, the shock is infinitesimally weak and constitutes a

Mach shock. In the ideal MHD limit, we can derive three types of MHD shocks — fast

shocks, which are super-fast to sub-fast transitions, slow shocks which are super-slow to

sub-slow transitions, and intermediate shocks which are super-Alfvénic to sub-Alfvénic

or sub-slow shocks. MHD shock solutions not only depend on the upstream Mach num-

ber, but also the plasma β and the orientation of the magnetic field.

56



Chapter 3

Pulsed Power and Z-pinch Wire Arrays

3.1 Pulsed Power Generators

Pulsed-power machines are HEDP facilities used to apply a fast-rising high-amplitude

current pulse to an inductive load. Pulsed-power machines achieve this by discharg-

ing large capacitors and compressing the generated current pulse over a short period of

time. The largest existing pulsed-power machine is the Z HEDP facility at Sandia Na-

tional Labs. It is a high-impedance system capable of generating a peak current of 20MA

with a rise time of 300 ns (Sinars et al. [2020]). Other examples of pulsed-power gener-

ators include MAGPIE (∼ 1MA, 240ns; Imperial College London) (Mitchell et al. [1996]),

COBRA (∼1MA, 100ns; Cornell University) (Smith et al. [1995]), MAIZE (∼1MA, 100ns;

University of Michigan) (McBride et al. [2018]), and ZEBRA (∼1MA, 100ns; University of

Nevada Reno) (Bauer et al. [1999]).

There are two commonly used pulsed-power technologies — Marx Generator / Pulse

Forming Lines, and Linear Transformer Drivers (LTDs). Compared to the former, LTDs

are modular and self-contained devices capable of achieving low inductance and high

capacitance (McBride et al. [2018]). An example of a LTD-based pulsed-power system is

the MAIZE generator at the University of Michigan. Another LTD-based pulsed-power

machine called PUFFIN is under development at MIT (Hare et al. [2020]). An exhaustive

review of LTDs can be found in McBride et al. [2018].

Marx generators and Pulse Forming Lines (PFLs) are used in the majority of existing

pulsed-power machines, including the Z, MAGPIE and COBRA generators (Sinars et al.

[2020]; Mitchell et al. [1996]; Smith et al. [1995]). The MAGPIE generator at Imperial Col-

lege London, which was used to generate the plasma in the experiments presents here,

57



Chapter 3. Pulsed Power and Z-pinch Wire Arrays

Figure 3-1: Schematic of a pulsed-power machine Magnetically Insulated Transmission Line (MITL) and
load setup. The MITL is a coaxial line with a tapering cross-section which delivers the signal from the
large-diameter OTL to the load, that sits in a vacuum chamber on top of the MITL.

comprises 4 Marx banks (with 24 1.3 µF capacitors) with 4 PFLs (Mitchell et al. [1996]).

A Marx generator is a collection of capacitors and spark-gap switches. We charge the ca-

pacitors in parallel and discharge them in series, so that the output voltage is amplified

by a factor equal to the number of capacitors.

Marx banks generate a low-amplitude slow-rising signal. PFLs, which consist of inter-

mediate capacitances with successively smaller discharge times, are needed to com-

press this signal to create a fast-rising high-amplitude pulse. The signal then travels

via the Output Transmission Line (OTL) (on MAGPIE, this is called the Vertical Trans-

mission Line) to the Magnetically Insulated Transmission Line (MITL). The OTL is typi-

cally a large-diameter coaxial cable insulated with deionized water (Mitchell et al. [1996];

McBride et al. [2018]).

The MITL is a coaxial line with a tapering cross-section, as illustrated in Figure 3-1a.

It delivers the signal from the large-diameter OTL to the load, which sits in a vacuum

chamber on top of the MITL. The MITL is said to be magnetically insulated; this is be-
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Figure 3-2: (a) 3D representation of of an imploding wire array. The global magnetic pressure acts on the
outside edge of the wires and causes radially converging flows of plasma. (b) 3D representation of of an
exploding wire array. The wires are arranged around a central conductor. The global magnetic pressure
acts on the inside edge of the wires and causes radially diverging outflows of plasma.

cause the large current in the MITL generates strong azimuthal magnetic fields. Any

charge carrier which leaves the MITL experiences a strong radial v×B force which re-

turns it to the MITL (Mendel et al. [1983]). Magnetic insulation typically deteriorates

later in time (typically after peak current). When the magnetic field becomes small

enough, charge carriers can escape the MITL and breakdown occurs.
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3.2 Wire Array Z-Pinches

A z-pinch refers to any cylindrical column of plasma, through which current propa-

gates in the axial (or the ‘z’) direction. Wire array z-pinches refer to cylindrical, conical

or planar arrays of wires, which have been historically used as loads in pulsed-power

machines to generate intense bursts of x-ray and XUV radiation (Deeney et al. [1997];

Haines et al. [2005]; Giuliani and Commisso [2015]). It was later discovered that wire

arrays could also be used as sources of highly collisional magnetized plasmas for lab-

oratory astrophysics applications (Lebedev et al. [2019]; Lebedev et al. [2002]; Haines

et al. [2002]). A commonly used configuration is a cylindrical array, which can be of two

types — imploding arrays (Lebedev et al. [1999]; Lebedev et al. [2001]; Lebedev et al.

[2005] Ampleford et al. [2010];), and exploding arrays (also called inverse z-pinch arrays)

(Harvey-Thompson et al. [2009]; Hare et al. [2018]). An imploding wire array is a cylin-

drical cage of wires, as shown in Figure 3-2a. The magnetic pressure acts on the outside

edge of the wires and pushes the plasma radially inwards towards the array center. Im-

ploding wire arrays have been traditionally used to generate and study highly energetic

XUV and X-ray radiation (Ryutov [2000]; Lebedev et al. [2005]; Giuliani and Commisso

[2015]). In an exploding array, as illustrated in Figure 3-2b, the wires are arranged around

a central conductor. The global magnetic pressure acts on the inside edge of the wires

and causes radially diverging outflows of plasma.

We use exploding wire arrays in the experiments presented in this thesis. Exploding

wire arrays offer several advantages over other geometric configurations that make them

ideal for these experiments. Exploding wire arrays generate azimuthally symmetric flows;

which means that we can expect the properties of the flow to vary predominately in the

radial direction. Note that exploding wire arrays exhibit modulations in the axial and az-

imuthal directions, but these modulations are generally periodic (Chittenden and Jen-

nings [2008]; Harvey-Thompson et al. [2009]; Swadling et al. [2013]). Moreover, the radi-

ally diverging nature of the flows means that the plasma can flow uninterrupted into the

relatively large vacuum region, which allows for better diagnostic access to the plasma.

When a strong current pulse is applied to the wire array, the material in the wires heats

Ohmically, and vaporizes and ionizes to form a ring of hot low-density coronal plasma

around the relatively dense cold wire cores (Lebedev et al. [2001]). The initial explosion

of the wires is not well understood and typically results in an inhomogeneous column of

vapor and liquid states, which comprises the stationary wire cores. The total magnetic

field in the array is the superposition of the local magnetic fields around each wire. In

an exploding array, the magnetic field Bθ points in the azimuthal direction, and decays

60



Chapter 3. Pulsed Power and Z-pinch Wire Arrays

Figure 3-3: Current-carrying coronal plasma around the central wire core.

as Bθ ∼ I /r inside the array(Harvey-Thompson et al. [2009]). Here, I is the current and r

is the radial distance from the array center. The total current enclosed by an Amperian

loop is zero outside the array for an exploding array, so that the azimuthal magnetic field∮
B ·ds = 0 goes to zero here. This is illustrated in Figure 3-4b. Because of the large mag-

netic pressure inside the array compared to the outside, the coronal plasma experiences

a net outwards magnetic force.

Most of the current density is concentrated within a thin skin region at the surface of

the wire cores (Lebedev et al. [2005]; Lebedev et al. [2001]). The current flows prefer-

entially through the conducting coronal plasma in the skin region, and the wire cores,

which experience little magnetic pressure, expand at the sound speed, while the coro-

nal plasma accelerates radially outwards under the action of the global j×B force (Lebe-

dev et al. [2001]). The plasma ablates into a force-free region initially devoid of a mag-

netic field. The ablating plasma advects some magnetic field and current with it, such

that the magnetic field is redistributed into the initially force-free flow region (Burdiak

et al. [2017]). The initial phase of the wire array is marked by the continuous ablation

of plasma from the wire cores — this is called the ablation phase. Characteristic pa-

rameters for a pulsed-power driven Aluminum plasma on a ∼ 1 MA facility during the

ablation phase are shown in Table 3.1.
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Table 3.1: Characteristic parameters for a pulsed-power driven Aluminum plasma on a
∼ 1 MA facility during the ablation phase

Measurable Quantities Electron density ne (cm−3) 1018

Magnetic Field B (T) 10
Velocity v (cm s−1) 107

Ion temperature Ti (eV) 10
Electron temperature Te (eV) 10
Effective Ionization, ne /ni = Z 3.5

Derived Quantities Alfvén Speed VA (cm s−1) 8 106

Ion Sound Speed Cs(cm s−1) 2 ×106

Fast Magnetosonic Speed V f (cm s−1) 8 ×106

Ion Larmor Radius rLi (cm) 7 ×10−3

Electron Larmor Radius rLe (cm) 1 ×10−4

Ion Inertial Length δi (cm) 6 ×10−2

Ion-Ion Mean Free Path λi i (cm) 1 ×10−5

Electron Plasma Frequency ωp,e (rad s−1) 6 ×1013

Non-dimensional Quantities Sonic Mach Number Ms = v/CS 7
Alfvèn Mach Number MA = v/VA 2
Fast Mach Number MA = v/V f 2
Reynolds’ Number Re = va/ν 106

Magnetic Reynolds’ Number Rem =µ0va/η 10
Plasma Beta β 0.1
Adiabatic Index γ 1.13
Ion Magnetization rLi /a 10−2

Electron Magnetization rLe /a 10−4

Collisionality (mi /me )1/2 (λi i /a) 10−3
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Figure 3-4: (a) Side-on (r-z plane) view of an exploding wire array. In the derivation of the rocket model, we
assume that the wire cores remain stationary and the magnetic pressure accelerates the coronal plasma
to a constant velocity V in a thin skin region of width δr . (b) Top (r-θ) view of an exploding wire array.
At t= 0s, the total current enclosed within the Amperian loop outside the array is zero, while the current
enclosed within the Amperian loop inside the array is non-zero. The net magnetic pressure thus pushes
the plasma radially outwards.

Experiments and simulations of wire arrays have shown an axial non-uniformity in the

ablation rate. The axial non-uniformity corresponds a m = 0-like instability, and ex-

hibits a quasi-periodic structure with a time-independent wavelength comparable to

the wire core size (Lebedev et al. [1999]; Harvey-Thompson et al. [2009]; Chittenden and

Jennings [2008]). The wavelength of the modulation typically grows with the growth of

the radius of the coronal plasma, and then becomes constant later in time, when the

coronal plasma stops expanding. This point typically corresponds to the time at which

the global magnetic field becomes large enough to switch the topology of the magnetic

field around the wire core. The non-uniform ablation rate eventually leads to breaks in

the wires, which signifies the end of the ablation phase, and the beginning of the ex-

plosion/implosion phase Lebedev et al. [2005]; Lebedev et al. [2001]. The current path

through the wires is disrupted, and the current switches to the plasma, which experi-

ences an abrupt and rapid acceleration (Lebedev et al. [2005]); Lebedev et al. [2001]).

The trailing mass is left behind and does not participate in the explosion. In our ex-

periments, we ‘over-mass’ the wires, such that the wires ablate continuously and do not

experience the explosion phase.

63



Chapter 3. Pulsed Power and Z-pinch Wire Arrays

3.2.1 Rocket Model of Mass Ablation

We can approximate the rate of mass ablation and radial density distribution from a wire

array using the a simplified phenomenological model called the rocket model (Lebedev

et al. [2005]). We use the following simplifying assumptions in the model:

(1) We neglect the discrete wires and model the wire array as a thin cylindrical plasma

shell of radius R0, height l , and thickness δr , with R0 À δr .

(2) The wire cores remain stationary dR0/d t = 0; all current density is concentrated in an

infinitesimally thin skin layer at the surface. No current flows through ablated plasma,

and the wire cores.

(3) The j×B force only acts on coronal plasma in the skin region.

(3) Plasma ablates outwards continuously from the surface of the shell with characteris-

tic radial velocity V that is constant in time

The global magnetic field B in the exploding wire array is given by Ampere’s law — the

integral of the magnetic field along a closed contour s is proportional to the enclosed

current I . For an Amperian loop inside the exploding array:

∮
B ·ds =

∫
A
µ0 j ·dA∫ 2π

0
Bθr dθ =µ0I ⇒ Bθ =

µ0I

2πr

(3.1)

The magnetic field thus decays with radial distance from the array center. Outside the

array, the total current in the Amperian loop is zero, so there is no magnetic field outside

the wire array. Current flows in the coronal plasma on the inside of the wires, so the

current density in the cylindrical shell is I /4πR0δr , and the j×B force density at the

array radius r = R0 is:

j×B = µ0I 2

8π2R2
0δr

êr (3.2)

A mass balance on the control volume (CV) containing the coronal plasma (see Figure

3-4) shows us that the time rate of change of mass of the shell is equal to the area integral

of the mass flux at the surface:

ṁ =−ρs AsV (3.3)
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A momentum balance on the CV gives us:∫
j×BdV = ∂t

∫
V
ρvdV +

∫
A
ρvv ·dA

ρsV 2 As = µ0I 2

8π2R2
0δr

2πR0δRl
(3.4)

Substituting ṁ =−ρs AsV , we can get an expression for the mass ablation rate from the

wire array:

ṁ =− lµ0

4πR0V
I 2(t ) (3.5)

The mass ablation rate is thus proportional to the square of the current I (t ) through the

wires. We integrate Equation 3.5 to determine the total mass ablated at time t :

∆m = m(0)−m(t ) = lµ0

4πR0V

∫ t

0
I 2(t ′)d t ′ (3.6)

If we require the remaining mass m(τ) = αm0 to be some fraction α of the initial mass

m0 after a current pulse of duration τ, we can determine the required initial mass per

unit length as:

m0/l = µ0

4πR0V (1−α)

∫ τ

0
I 2(t ′)d t ′ (3.7)

Mass injected at r = R0 at time t is spread over a larger area at r = r at some later time

t ′ = t + (r −R0)/V :

ρ0V (2πl )R0|t = ρ(r )V (2πl )r |t ′ =−ṁ (3.8)

Substituting for the ablation rate ṁ, we can determine the radial mass density distribu-

tion at time t ′ as:

ρ(r, t ′) = µ0

8π2R0r V 2

[
I (t ′− r −R0

V
)

]2

(3.9)

3.3 Resitive MHD Simulations of Wire Arrays

We use GORGON to simulate the dynamics of the plasma generated in a wire array.

GORGON is a 3D resistive MHD two-temperature code developed by Chittenden et al.

[2004]. GORGON solves the resistive magnetohydrodynamic equations explicitly using

a forward Eulerian method in time. It uses a two-temperature model, which means that

the ion and electrons have separate temperatures which equilibriate over some colli-

sional time scale τeq . The electrons are heated resistively and undergo radiative cooling,
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while the ions are heated by compression and viscous heating. The electrons and ions

exchange energy via collisons. GORGON has been used to successfully reproduce and

study the dynamics of MHD shocks and wire array ablation (Chittenden et al. [2004];

Chittenden et al. [2004]; Harvey-Thompson et al. [2009]; Lebedev et al. [2014]; Burdiak

et al. [2017]).

An important feature of plasma shocks is the intense emission of radiation associated

with the post-shock plasma. The transition in energy states of electrons is accompanied

by the emission or absorption of radiation. A plasma can emit radiation due to free-free

electron transitions (Bremsstrahlung radiation), free-bound transitions (recombination

radiation), and bound-bound transitions (line radiation). A magnetized plasma may

also emit cyclotron emission associated with the gyro-motion of electrons around mag-

netic field lines. To accurately account for the change in internal energy due to radiative

losses, we must solve the radiative transport equation and account for the spatially and

temporally varying emissivities and absorbtivities of the plasma. However, solving the

full radiative transport can be computationally restrictive, so GORGON uses a simple

volumetric radiation loss model, which estimates the volumetric radiative power from

each cell to be equal to the sum of the Bremsstrahlung and recombination loss from the

plasma (Huba [2013]):

q̇rad = K Z 2ne ni T 1/2
e

(
1+ ∆E Z−1

Te

)
(3.10)

Here, ne and ni are the ion and electron densities respectively, Te is the electron temper-

ature, ∆E is the ionization energy, and K is a constant of proportionality. In GORGON,

we use a value of K = 3×1.69×10−38.

We also require a model for the equation-of-state (EOS) to relate the ionization state Z

to the temperature and density of the plasma. In a plasma, collisions between electrons

and ions can excite bound electrons to higher energy states, or even excite a bound elec-

tron into the continuum, making it a free electron. Similarly, ions and electrons can

collide and recombine into an ion with a reduced charge — a process called collisional

recombination. When the rates of collisional ionization and recombination are in de-

tailed balance, the system is said to be in LTE (Drake [2013]). GORGON uses a numer-

ical approximation to the LTE Thomas-Fermi model to predict the ionization state of

the plasma. The Thomas-Fermi model solves for the potential field in each ion sphere

(the region in space around the ion where the electrostatic influence of the ion is non-

negligible) using the Poisson equation, which relates the Laplacian of the electric po-

tential to the spatially-varying charge density in the ion sphere (Drake [2013]). Thomas-
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Figure 3-5: Comparison of LTE Thomas-Fermi (TF) and Saha ionziation models with a non-LTE tabulated
ionization model for an Aluminum plasma. Darker colors represent increasing ion density. Thomas-
Fermi tends to overpredict the ionization state, while the Saha model tends to underpredict the ionization
state compared to the nLTE model

Fermi self-consistently solves for the spatially-varying electron density in the ion sphere.

Another commonly used LTE model is the Saha model. The Saha equation describes the

equilibrium densities of ions in adjacent ionization states. We can estimate the degree of

ionization of the plasma from the ionization state at which the rates of recombination

and ionization are balanced. The Saha model predicts an average ionization level of

(Drake [2013]):

Z ≈
√

Te

EH

√√√√ln

[
1

ne

g j

4gk a3
o

(
Te

πEH

)3/2
]
− 1

2
(3.11)

Here, Te is the electron temperature, ne is the electron density, gi , j represent the degen-

eracies of adjacent states, and EH = 13.6 keV is the energy require to ionize an electron

from a hydrogen atom. The Saha model is typically limited because it does not include

the effect of multiple ions (which can lower the ionization energy — a phenomenon

called continuum lowering)(Drake [2013]).
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Figure 3-6: Schematic of a simple inductive probe with two oppositely-wound loops of conducting wire.
A time-varying magnetic field induces a voltage in a wire loop equal to the time rate of change of the
magnetic flux through the loop, which is read by the oscilloscope.

Both Saha and the Thomas-Fermi models compute the ionization state at LTE. How-

ever, plasmas can deviate from LTE. In non-LTE plasmas, using a LTE equation-of-state

will add an additional uncertainty in the ionization state. In Figure 3-5, we compare the

Thomas-Fermi and Saha models with a tabulated non-LTE ionization model (Chitten-

den et al. [2016]). For our temperatures of interest, Thomas-Fermi tends to overpredict

the ionization state, while the Saha model tends to underpredict the ionization state

compared to the nLTE model.

3.4 Diagnostics

We present three diagnostic techniques — (1) Inductive probes, (2) Laser Interferometry,

and (3) Optical Thompson Scattering. We use inductive probes and laser interferometry

to measure the magnetic field and plasma density respectively. We do not use Optical

Thompson Scattering in the experiments presented in this thesis, but we introduce it

here, because we hope to implement it in future experiments to determine the ion and

electron temperatures, ionization, and velocity of the plasma.

3.4.1 Inductive Probes

An inductive probe is simply a loop of conducting wire, as illustrated in Figure 3-6. In-

ductive probes function due to Faraday’s law of electromagnetic induction — a time-

varying magnetic field induces a voltage in a wire loop equal to the time rate of change

of the magnetic flux through the loop. The voltage response of the probe can have two
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contributions — one due to the time-varying magnetic flux through the loop, and an-

other electrostatic component due to the coupling of stray voltages or the voltage from

the pulsed-power generator. One method to isolate the magnetic component is to have

two oppositely-wound loops in the inductive probe, which allows us to combine the sig-

nals from each loop and eliminate the contribution of the electrostatic component:

V1 = Φ̇1 +
∮

E ·dl

V2 =−Φ̇2 +
∮

E ·dl

V = V1 −V2

2
= N Ḃ Ap

(3.12)

Here, Φ is the magnetic flux, E is the electric field, N is the number of turns in the wire,

B is the magnetic field , and Ap = b ·n Aloop is the projection of the cross-sectional area

of the loop along the magnetic field. The oppositely wound loops are placed next to

one another, so that they experience approximately the same magnetic and electrostatic

components.

The area of the probe Ap can differ from the geometric area of the loop because of skin

effects. One way to determine the effective area is to calibrate the probe by placing it

in a known magnetic field. We get localized measurements of the magnetic field from

inductive probes. For effective measurements, the length scale of variation of the mag-

netic field must be small compared to the size of the probe.

3.4.2 Laser Interferometry

Laser interferometry is an imaging technique used to measure the line-integrated elec-

tron density. It has been used in pulsed-power plasmas to visualize the plasma flow

(Swadling et al. [2013];Lebedev et al. [2014]; Burdiak et al. [2017]). Laser interferome-

try is based on the principle of interference of two electromagnetic waves with different

phases. In a typical interferometry setup like the Mach-Zehnder interferometer shown

in Figure 3-7, a monochromatic beam is split into a reference and a probe beam using a

beamsplitter. The probe beam then propagates through the plasma, while the reference

beam propagates via air or vacuum. Since the refractive index of the plasma is different

from that of vacuum, the probing beam accumulates a different phase compared to the

reference beam as it propagates through the plasma. The reference and probe beams,

which now have a relative phase difference between them, interfere at the target. The

phase difference between the two beams can be determined from the intensity at the
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Figure 3-7: Schematic of a simple Mach-Zehnder interferometer.

detector, and the phase difference can then be related to the electron density.

Consider two monochromatic plane electromagnetic waves:

Er = Er,0e−iωt e i kr·x

Ep = Ep,0e−iωt e i kp·x (3.13)

The reference wave Er and probe wave Er interfere at the detector. The total field be-

comes:

Et = Er +Ep =
(
Er,0e i kr·x +Ep,0e i kp·x

)
e−iωt (3.14)

The total intensity is:

It = Et ·E∗
t

It = |Er,0|2 +|Ep,0|2 +Er,0 ·Ep,0

[
e i (k1−k2)·x +e−i (k1−k2)·x

] (3.15)

Using the Euler expression e iθ+e−iθ = 2cosθ, we get:

It = |Er,0|2 +|Ep,0|2 +2Er,0 ·Ep,0 cos[(k1 −k2) ·x] (3.16)
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Or:

It = (|Er,0|2 +|Ep,0|2)

(
1+ 2Er,0 ·Ep,0

|Er,0|2 +|Ep,0|2
cos∆φ

)
(3.17)

Where∆φ= (k1 −k2) ·x is the phase difference between the reference and probe beams.

In general, the phase accumulated by an electromagnetic wave for a slowly-varying medium

is (Hutchinson [2002]):

φ=
∫

N ·dl (3.18)

Here, N = k2c2/ω is the refractive index.

In the absence of the plasma, the probe and reference beams have the same refractive

index N ≈ 1, and accumulate the same phase, so that the phase difference is zero, i.e.

∆φ= (k1 −k2)·x = 0. In this case, the detector reads a constant intensity. In the presence

of the plasma, k1 6= k2, so a phase difference is introduced between the probe and refer-

ence beams, and the detector reads a modulated intensity It /I0 ∼ (1+cos∆φ) depending

on whether the probe and reference beams interfere constructively or destructively.

The variation in the detected intensity varies as cos∆φ. Therefore, phases that are sepa-

rated by 2π have the same intensity, which makes it difficult to uniquely determine the

density and direction of change of the phase. To overcome this issue, we introduce a

deliberate misalignment between the probe and reference beams (Hutchinson [2002];

Swadling et al. [2013]). The misalignment introduces a spatially varying phase differ-

ence between the probe and reference beams (even when there is no plasma), such that

an interference pattern of bright and dark fringes forms at the detector, as shown in Fig-

ure 3-8c. Consider an interferometer where the wavevectors of the probe and reference

beams are misaligned with an angle 2α between them. The intensity at the detector is

given by 3.16. If we assume that Ep,0 ≈ Er,0 ≡ E0, then we can write the intensity at the

detector as:

It

2E 2
0

= 1+cos[(k1 −k2) ·x] (3.19)
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Figure 3-8: (a) Synthetic electron density map. The plasma electron density is modeled as a radially vary-
ing Gaussian function with a standard deviation of 50 λ. We have normalized the spatial axis with the
probing laser wavelength. (b) Synthetic interferogram in a spatially homodyned system, where there is no
misalignment between the probing and reference beams. (c) Background interferogram in the absence
of plasma in a spatially heterodyned system. A slight misalignment between the probe and laser beams
produces an interference pattern of dark and bright fringes. (d) Synthetic interferogram in the presence of
the plasma. The phase introduced by the plasma distorts the pattern of bright and dark fringes. We have
ignored any shadowgraphy effects due to density gradients, and any emission and absorption of radiation
by the plasma in generating the synthetic interferograms.

For the configuration shown in Figure, we can write the phase difference as:

(k1 −k2) ·x =
(

k cosα

k sinα

)
−

(
k cosα

−k sinα

)
= 2k sinαy (3.20)

Combining this result with Equation 3.19, we observe that in the absence of any plasma,

the intensity at the detector is modulated in the y-direction with a wavenumber kmod =
2k sinα. For small α¿ 1, we can approximate the intensity as:

It

2E 2
0

≈ 1+cos
(
2kαy

)
(3.21)
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Here, k is the wavenumber of the probe and reference beams, and α is half the angle

between them. Therefore, we can see that the interferogram comprises a linear pattern

of dark (2kαy = nπ ,n =±1,3,5, ...) and bright fringes (2kαy = mπ ,m =±0,2,4, ...), with

a fringe separation (between successive bright or dark fringes) of ∆λ = π/kα. This is

shown in Figure 3-7c, where we have generated a synthetic interferogram from the in-

terference of two electromagnetic waves with a slight misalignment between them.

The presence of the plasma adds an additional phase φp to the probe beam. Using the

ansatz φp ≈∇φp ·x, we can express the intensity as:

It

2E 2
0

= 1+cos
[
(k1 −k2 +∇φp) ·x

]
(3.22)

The phase introduced by the plasma now changes the wavenumber of the modulation,

and allows us to determine both the magnitude and the direction of change of phase. In

regions where the phase in increasing with distance along the direction of propagation,

i.e ∇φp > 0, the fringes are closer. Similarly, where the phase decreases with distance, i.e

∇φp < 0, the fringes are spaced further apart.

The introduction of a phaseφp distorts the spatially uniform fringe pattern in a spatially

heterodyned interferometry system, as shown in Figure 3-8d. All that remains is to re-

late the phase to the electron density ne of the plasma. In order to do so, we need to

determine the refractive index of the plasma, which requires solving for the dispersion

relation of electromagnetic waves in a plasma.

We present the full derivation of the EM wave dispersion relation in Appendix A for the

interested reader. Here, we shall only consider the case where the gyration frequency of

electrons is much smaller than the frequency of the EM wave, i.e. Ωc ≡ eB
m ¿ ωpe ¿ ω.

Here, B is the magnetic field strength, e is the electron charge, and m is the electron

mass. For our plasmas with typical values of B ∼ 10 T, ne ∼ 1018 cm−3, the electron gyro

frequency isΩc ∼ 2×1012 rads−1, which is much smaller than the typical laser frequen-

cies ω= c/k ∼ 1015 rads−1 used for laser plasma diagnostics. In this limit, the principal

mode of propagation is the ordinary wave (or O-wave), which has the dispersion relation

(Hutchinson [2002]):

N 2 = k2c2

ω2
= 1−

ω2
p

ω2
(3.23)

Here, ωp = ne e2/mε0 is the electron plasma frequency.
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When the wave frequency equals the electron plasma frequency ω = ωp , the wave is

cut-off. When ω < ωp , the wave vector k becomes imaginary and oscillatory solutions

are not possible. The wave is said to be evanescent and is damped exponentially. The

cut-off or critical plasma density nc is:

nc = ω2mε0

e2
(3.24)

And the refractive index can be written as:

N 2 = 1−ne /nc (3.25)

The phase difference ∆φ between the reference beam and the probing beam is:

∆φ=
∫

(k1 −k2)(k1 −k2)(k1 −k2) ·dldldl = ω

c

∫
1−

√
1−ω2

p /ω2dl (3.26)

In the limit where ω2
p /ω2 << 1, we can write Equation 3.26:

∆φ= 1

2cω

∫
ω2

p dl = ω

2cnc

∫
ne dl (3.27)

Thus, the phase difference between the reference and probe beams is proportional to

the line integrated plasma density.

3.4.3 Optical Thompson Scattering

Optical Thompson Scattering (OTS) is a powerful diagnostic technique that can provide

information about the density, temperature, ionization, and velocity of a plasma. It is

another commonly used diagnostic technique in pulsed-power driven plasmas (Harvey-

Thompson et al. [2012]; Burdiak et al. [2017]; Hare et al. [2018]; Suttle et al. [2021]). In

OTS, we illuminate a small volume of the plasma with a monochromatic laser beam. The

electrons in the plasma accelerate in response to the electromagnetic field of the inci-

dent radiation. The accelerating charges in the scattering volume emit radiation in all

directions (except along the electric field) — this is called the scattered radiation which

typically exhibits a power spectrum different from the incident light. We collect the scat-

tered radiation at some angle θ to the direction of propagation of the incident beam, and

by measuring the scattered spectrum with a spectrometer, we can determine several im-

portant properties of the plasma. Scattering from a plasma in the non-relativistic regime
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Figure 3-9: (a) Schematic of a simple Optical Thompson Scattering setup. An electromagnetic wave with
the wave vector ki illuminates the scattering volume. We collect the scattered radiation (which has some
wave vector ks) at an angle θ to the incident wave. The spectrum of the scattered radiation is measured
with a spectrometer. (b) A synthetic spectral density function showing well separated ion acoustic peaks.
The spectral density function is convolved with the spectrometer response function (a Gaussian function
with σ = 2Å to generate the expected signal. The spectral density function is Doppler shifted due to the
velocity of the moving plasma.

is called Thompson scattering. Similarly, scattering from relativistic plasmas is called

Compton scattering. The plasmas of interest in this thesis are non-relativistic plasmas,

so their scattered radiation can be described well with the theory of Thomson scattering

(Sheffield et al. [2010]).

We do not provide the full theory of Thompson scattering here, but only summarize

the key results. The full derivation based on the treatment by Sheffield et al. [2010] and

Hutchinson [2002] is provided in Appendix B for the interested reader. Consider an elec-

tromagnetic wave with the wave vector ki and angular frequency ωi which illuminates

a small scattering volume within the plasma, as shown in Figure. We collect the scat-

tered radiation (which has some frequency ωs and wave vector ks) at a distance R along

the direction ŝ. We define the scattering wave vector and the scattering frequency as

k = ks −ki and ω = ωs −ωi respectively. The total scattered electric field will have con-

tributions from all electrons in the scattering volume, so we integrate the power over

the electron distribution function and represent the average power as the ensemble-

averaged power. We calculate the time-averaged power per unit solid angle per unit

frequency interval from the Fourier transform of the total energy flux along the scatter-

ing direction ŝ. The ensemble-averaged scattered power spectrum for non-relativistic
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scattering is (Sheffield et al. [2010]):

〈
dP̄

dΩsdωs

〉
= qi nr 2

e

2π

[
ŝ× (ŝ× Êio)

]2
e i ks R N S(k,ω) (3.28)

Where qi n = cE 2
i 0/(4π) is the magnitude of the incident energy flux, re = e2/me c2 is the

classic electron radius, Ei0 is the incident electric field, ŝ is the scattering direction, ks is

the wave number of the scattered radiation, ωs is the frequency of the scattered radia-

tion,Ω is the solid angle, and N is the total number of electrons in the scattering volume.

S(k,ω) is called the spectral density function. It determines the shape of the power spec-

trum in frequency space, and is a function of the scattering wave vector k and the scat-

tering frequency ω. The spectral density function is defined as (Sheffield et al. [2010]):

S(k,ω) ≡ lim
T→∞,V →∞

1

T V

〈 |ne(k,ω)|2
neo

〉
(3.29)

Here, ne (k,ω) is the Fourier transform of the electron density ne (r, t ), and ne0 is the aver-

age electron density of the scattering volume. For a non-relativistic, unmagnetized col-

issionless plasma, we can show that the spectral density function has the form (Sheffield

et al. [2010]):

S(k,ω) = 2π

k

∣∣∣1− χe

ε

∣∣∣2
f̂eo

(ω
k

)
+ 2πZ

k

∣∣∣χe

ε

∣∣∣2
f̂i o

(ω
k

)
(3.30)

Here, Z is the ionization, f̂0 is the 1D normalized Maxwellian distribution, and χi and χe

are the electric susceptibilities of the ions and electrons respectively, which are related

to the plasma dielectric constant:

ε= 1+χe +χi (3.31)

We can show that for an unmagnetized collisionless plasma, the electric susceptibilities

are (Sheffield et al. [2010]):

χs = 1

(λD k)2

(
ZsTe

Ti

)
w

(
ω

kvth,s

)
(3.32)

Here, λD is the Debye length, Te and Ti are electron and ion temperatures, and vth,s is

the thermal velocity of species s. w is the derivative of the plasma dispersion function,
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which we can write in terms of the Dawson integral:

w(z0) = 1+ i
p
πz0e−z2

0 −2z0D+(z0)

D+(x) = e−x2
∫ x

0
e t 2

d t
(3.33)

The 1D normalized Maxwellian distribution is:

f̂s =
(

1

πv2
th,s

)1/2

exp(−v2/v2
th,s) (3.34)

vth,s =
√

2kbTs

ms
(3.35)

The scattering wave vector is:

k = ks −ki

k =
√

k2
i +k2

s −2kski cosθ
(3.36)

The scattering frequency is:

ω=ωs −ωi

ωs,i =
√

c2k2
i ,s +ω2

pe

(3.37)

ωpe =
(

4πne e2

me

)1/2

(3.38)

Here, ωpe is the electron plasma frequency.

When the electron fluid is non-stationary and moves with a velocity V, the scattered

frequency is Doppler shifted by V ·k. The scattered frequency is then:

ωs =
√

c2k2
s +ω2

pe +V ·k (3.39)

The spectral density of the scattered radiation (Equation 3.30) has contributions from

both the ion and electron fluids. The scattered radiation also exhibits resonances at the

electron plasma wave and ion acoustic wave frequencies (Sheffield et al. [2010]). These

appear as peaks in the spectral density function, which are typically damped by Lan-
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dau and collisional damping. The ion acoustic feature, which are low frequency peaks

that appear at the ion acoustic frequency, is of particular interest. Figure 3-9b shows

a sythentic OTS spectrum with well-defined ion acoustic peaks. The peak separation,

peak width, and the Doppler shift allow us to discern information about the ion and

electron temperatures, ionisation, and velocity of the plasma (Sheffield et al. [2010]). We

provide more discussion on the application of the OTS ion feature to plasmas of interest

in Chapter 5.

The spectral density function (Equation 3.30) and the electric susceptibilities (Equa-

tion 3.32) are derived for non-relativistic unmagnetized collisionless plasmas. These

assumptions require further elaboration. The first, that of a non-relativistic plasma, is

satisfied when the characteristic velocity V of the plasma is small compared to the light

speed c, i.e. V /c ¿ 1. The laboratory plasmas presented in this thesis exhibit velocities

∼ 100 km s−1, so this criterion is easily satisfied. Next, we assume that the plasma is colli-

sionless and unmagnetized, which at first glance, does not seem to apply to our system.

Typically, a plasma is collisionless if the mean free path of collisions λmfp is comparable

to the length scale L of the plasma. Similarly, the plasma is said to be magnetized is the

gyro-frequencyΩc is small compared to the characteristic frequency of the plasma 1/τ.

From Table 3.1, λmfp/L ¿ 1 and ΩeτÀ 1 for our plasmas of interest, so the plasma is

highly collisional and magnetized (Suttle et al. [2019]; Burdiak et al. [2017]). Therefore,

it seems paradoxical to assume a collisional unmagnetized plasma in our derivation.

This apparent paradox is resolved if we consider that the plasma can still be collision-

less and unmagnetized with respect to the oscillating EM fields of the propagating laser

beams, i.e. ν/ωi ,s ¿ 1 and Ωc /ωi ,s ¿ 1 (Sheffield et al. [2010]). Here, ν is the frequency

of collision between the ions and electrons, andΩc is the ion or electron gyro-frequency.

The EM fields of the propagating laser beams oscillate at a much smaller time scale

compared to the time scales at which the electron and ions collide and gyrate, and the

plasma appears effectively collisionless and unmagnetized to the incident and scattered

waves.

3.5 Summary of Pulsed-Power Machines and Z-Pinch Wire

Arrays

We use pulsed-power machines to drive a fast-rising high-amplitude current pulse through

an inductive load. Pulsed-power machines, like the MAGPIE generator at Imperial Col-

lege London, achieve this by discharging the capacitors in the Marx banks, and com-
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pressing the resulting current pulse using the Pulse Forming Lines. The Output Trans-

mission Line and the Magnetically Insulated Transmission Line (MITL) deliver the cur-

rent pulse to the load which sits in a vacuum chamber. We use an exploding wire ar-

ray as the load in our pulsed-power experiments to generate a highly-collisional ra-

dially diverging magnetized plasma. An exploding wire array consists of a cylindrical

set of wires arranged around a central conductor. When the current flows through the

wires, the mass in the wires vaporizes and ionizes to form a ring of coronal plasma,

which is pushed radially outwards by the strong magnetic pressure inside the array. We

can estimate the rate of ablation in a wire array using the Rocket model, which esti-

mates the mass ablation rate to be proportional to the square of the total current in the

wires. We present three diagnostic techniques — inductive probes, plasma interferom-

etry, and Optical Thompson Scattering (OTS). Inductive probes, which work based on

Faraday’s law of electromagnetic induction, measure the time rate of change of mag-

netic flux through the probe. Laser interferometry, which allows us to determine the

line-integrated electron density, is a refractive index measurement based on the inter-

ference of two electromagnetic waves with a relative phase between them. Finally, OTS

is based on the scattering of light by the plasma, and can help us determine the ion and

electron temperatures, ionization, and velocity of the plasma.
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Chapter 4

Bow Shocks in Supersonic

Super-Alfvénic aluminum Plasma

In this chapter, we investigate 3D bow shocks in a highly collisional magnetized alu-

minum plasma, generated during the ablation phase of an exploding wire array on the

MAGPIE facility (1.4 MA, 250 ns) 1. Ablation of plasma from the wire array generates radi-

ally diverging, supersonic (5 < M1 < 8), super-Alfvénic magnetized flows with frozen-in

magnetic flux (Rem >> 1). These flows collide with inductive probes placed in the flow,

which serve both as the obstacles that generate the magnetized bow shocks, and as diag-

nostics of the advected magnetic field and flow velocity. Laser interferometry is used to

diagnose the line-integrated electron density. A detached bow shock forms ahead of the

probe and exhibits a fully 3D structure. The shock opening-angle is larger in the plane

parallel to the magnetic field than in the plane perpendicular to the field. We calculate

the the shock Mach angle from the shock geometry to determine the Mach number of

the upstream flow. The Mach angles are ∼11° and ∼7° in the parallel and perpendicular

planes respectively. Inductive probe measurements show that the peak post-shock mag-

netic field is ∼ 14 T. We determine the velocity of the flow from the time of flight of the

plasma to the probe, and by combining this information with the observed shock geom-

etry, we estimate the temperature of the plasma. The velocity and electron temperature

are in good agreement with values reported from Thompson scattering measurements

in similar flows. Finally, we compare the experimental results with fully 3D simulations

performed using the resistive MHD code GORGON.

1The experimental data reported here were collected by personnel at the MAGPIE facility, Imperial
College London, in 2016. The author is responsible for the analysis and interpretation of the collected
data.
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Figure 4-1: Experimental setup showing the exploding wire array and obstacle configuration. (a) End-on
(xy-plane) view of the experimental geometry, showing a cylindrical array of 16 equally-spaced 30µm Al
wires around a central cathode. The array diameter is 16 mm and the array height is 16 mm. An inductive
probe serves as the obstacle and is placed ∼ 5.5 mm from the array surface. The magnetic field lines lie
parallel to the end-on plane, and point in the azimuthal direction with respect to the center of the array.
(b) Side-on (xz-plane) view of the experimental geometry. In the side-on plane, the magnetic field lines
ahead of the obstacle lie perpendicular to the plane, and point out of the page.

4.1 Experimental and Diagnostic Setup

The experimental setup is illustrated in Figure 4-1. The load consists of a cylindrical

array of 16 equally-spaced 30µm diameter aluminum wires around a central stainless

steel cathode. The array diameter and the array height are both 16 mm. The load is

placed within a vacuum chamber that sits atop the MITL of the pulsed-power generator.

The current pulse (1.4 MA peak current, 250 ns rise time) is generated using the MAGPIE

generator at Imperial College London.

When current flows through the wires, the wires heat up resistively. The wire material va-

porizes and ionizes to create a ring of low-density coronal plasma around the dense wire

cores. Current density is mostly concentrated within a thin skin region containing the

coronal plasma immediately around the stationary wire cores. The global j×B Lorentz

force accelerates the coronal plasma radially outwards, and the ablating plasma streams

supersonically into the flow region around the array. The ion-ion mean free path of the

ablating plasma is typically small (λi i /a ¿ 1), and the magnetic Reynolds number is

typically large Rem ∼ 10− 100 (Suttle et al. [2019]). The ablating plasma advects some

of the current density and the magnetic field at the array surface radially outwards, re-

sulting in outflows of highly collisional magnetized plasma. The velocity of the ablating
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plasma in similar setups is typically supersonic MS ∼ 5 and super-fast M f ∼ 2 (Burdiak

et al. [2017]; Suttle et al. [2019]). When these hypersonic outflows collide with the obsta-

cles, they generate detached bow shocks.

In contrast to previous experimental work, an inductive probe serves as the obstacle,

and is placed 5.5 mm from the array surface. The probe consists of two strands of

enamel-coated wire, threaded through a ∼ 1 mm diameter thin steel tube. In addition to

generating bow shocks, the probe also measures the post-shock magnetic field. We use

a laser interferometry imaging system to visualize the plasma flow and the bow shock.

The interferometry system provides line-integrated side-on (x-z plane) and end-on (x-

y plane) views of the experimental setup. Note that throughout this chapter, we use a

coordinate system positioned at the intersection of the obstacle axis and the wire array

surface.

4.1.1 Inductive Probes

In addition to the inductive probe placed in the flow, a second inductive probe is placed

in a recess inside the MITL (magnetically insulated transmission line) of the pulsed-

power machine, and is used to monitor the current in the load. The signal from the

probes is recorded using an oscilloscope with a 1 ns digitization rate.

The probe placed in the flow consists of two oppositely-wound single-turn loops of con-

ducting wire in a thin steel tube, as illustrated in Figure 3-6. Having two oppositely-

wound loops in the inductive probe allows us to combine the signals from each loop

and isolate the contribution of the time-varying magnetic flux.

V1 = Φ̇1 +VE

V2 =−Φ̇2 +VE

V = V1 −V2

2
= N Ḃ Ap

(4.1)

Here, Φ is the magnetic flux, E is the electric field, N is the number of turns in the wire,

B is the magnetic field , and Ap = b ·n Aloop is the projection of the cross-sectional area

of the loop along the magnetic field.

We position the inductive probe to measure the azimuthal magnetic field (with respect

to the array center); the normals to the surfaces of the loops lie along the magnetic field.

The inductive probe was calibrated before use in the experiment to determine the effec-
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Figure 4-2: (a) Raw end-on interferogram of the experimental set-up the the absence of plasma. This view
is illuminated using a 532 nm pulsed Nd-YAG laser. (b) Raw side-on interferogram of the experimental
set-up the the absence of plasma. This view is illuminated using a 1053 nm Nd:Glass laser. The probe
and reference beams are slightly misaligned to generate a spatially heterodyned system. In the absence of
plasma, this creates a linear pattern of bright and dark interference fringes.

tive area Ap of the probe. This was done by placing the probe within the known magnetic

field generated by a ∼ 1 kA time-varying current. The effective areas of the probe deter-

mined from the calibration is Aeff = 0.295±0.01 mm2.

The voltage signal from the probe is proportional to the time-rate of change of the mag-

netic field. To determine the magnetic field strength at the probe, we integrate the signal

in time with the initial condition B(t = 0) = 0.

In pulsed-power systems, inductive probes are a good diagnostic of the magnetic field

only until the time of peak current. After peak current, magnetic insulation in the MITL

becomes weaker and breakdown can occur. The current can take complicated paths

through the system, and the measurement of the current in the MITL using the inductive

probe is no longer a good proxy for the behaviour of the current in the load itself.

4.1.2 Laser Interferometry

We use a Mach-Zehnder interferometry system to visualize the plasma flow and to deter-

mine the line-integrated electron density. Our interferometry system is set up to provide

both end-on and side-on views of the experimental setup. The end-on (x-y plane) view
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provides an axially integrated view of the experimental setup. This view is shown in Fig-

ure 4-2a. This line-of-sight is illuminated using a 532 nm pulsed Nd-YAG laser with a

pulse width of 150 ps. The pulse width sets the coherence length and the temporal res-

olution of the interferometry system. The side-on view provides a line-integrated (along

the y-direction) view of the x-z plane. This view is shown in Figure 4-2b. It is illuminated

using a 1053 nm Nd:Glass laser.

We combine the probe beam (which passes through the plasma) and the reference beam

(which passes through air/vacuum) at the CCD of a DSLR camera. The probe and ref-

erence beams are slightly misaligned to generate a spatially heterodyned system. In the

absence of plasma, this creates a linear pattern of bright and dark interference fringes.

When the probe beam propagates through the laser, the resulting phase accumulated

by the beam distorts the fringe pattern and introduces a spatially-varying fringe shift.

We use the observed fringe shift to determine the phase difference between the probe

and reference beams, and to calculate the line-integrated electron density (Hare et al.

[2019]).

4.2 Electron Density Measurements

and Shock Morphology

Figure 4-3 shows the end-on and side-on raw interferograms and the processed line-

integrated electron density maps captured at 300 ns after current start. The phase accu-

mulated by the probing beam distorts the linear fringe pattern in the raw interferograms.

A detached bow shock, characterized by a curved discontinuity in electron density, is

visible in both end-on and side-on images. Note that the bow shock is more distinct

on the top of the probe in both end-on and side-on images. This is because the shock

front is almost parallel to the fringes under the probe, so the fringes remain relatively

undisturbed. The shock front appears distinct on the other side of the probe, where the

fringes are at an angle to the shock.

The upstream electron density is not constant ahead of the obstacle. In both end-on

and side-on images, the electron density is high near the surface of the wire array and

decreases with distance from the array. In the end-on plane, the upstream flow exhibits

significant modulation in the azimuthal direction. The azimuthal modulation in elec-

tron density results from the supersonic collision of adjacent jets emanating from the

wire cores, which forms hot dense standing oblique shocks. We discuss oblique shocks

in more detail in Chapter 5. Due to the oblique shocks, we expect the Mach number of
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Figure 4-3: (a) End-on spatially heterodyned raw interferogram captured at 300 ns after current start using
a Mach-Zehnder interferometry system with a 532 nm laser. The red shaded region is the shadow of the
inductive probe, measured by blocking the reference beam and therefore backlighting the inductive probe
using the probing laser beam. (b) End-on line-integrated electron density map determined using laser
plasma interferometry. (c) Side-on raw interferogram captured at 300 ns after current start using a 1053
nm laser. (d) Side-on line-integrated electron density map determined using laser plasma interferometry.
A detached bow shock is visible ahead of the probe in both side-on and end-on views. The shock opening
half-angle is larger in the end-on view than in the side-on view. Note that regions in black near the obstacle
and the wire array surface represent locations where the probing beam is lost.

the upstream flow in the end-on plane to also be modulated. In comparison, the up-

stream flow in the side-on plane is relatively more uniform.

We define the shock opening half-angle α/2 as the angle between the obstacle axis and

the shock front (See Figure 4-4). The opening half-angle decreases continuously with
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Figure 4-4: Schematic overlay showing bow shock geometry observed ahead of the inductive probe in the
end-on view. The shock front is represented by the dashed green line. The opening half-angle is the angle
between the obstacle axis and the shock front. The shock angle is the angle between the upstream velocity
and the shock front.

distance from the nose of the obstacle. We observe the shock opening angle to be larger

in the end-on plane than in the side-on plane.

The upstream velocity u1 makes an angle θu1 with respect to the horizontal. We define

the shock angleσ as the angle between the upstream velocity vector and the shock front

(Figure 4-4). We can determine the shock angle from the opening half-angle and the

velocity angle as σ=α/2−θu1. To determine the opening-half angle from the observed

bow shock geometry, we trace the shock front and fit a curve s(xs , ys) to it. The opening

half-angle then becomes α/2 = tan−1(d ys/d xs).

In the side-on view, the upstream velocity only has a component in the x-direction, i.e.

θu1 = 0. So the opening half-angle and the shock angle are equal in the side-on view. In

the end-on view, the velocity vector makes a non-zero angle with the horizontal. There-

fore, we must account for the direction of the upstream velocity when calculating the

shock angle. We assume that the upstream velocity propagates radially outwards with

respect to the array center. The upstream velocity then makes an angle θu1 = tan−1(y/x)

to the horizontal.

In a bow shock, the shock angle varies continuously from 90° at the nose of the obstacle

to the Mach angle µ asymptotically far away from the obstacle, where the bow shock

87



Chapter 4. Bow Shocks in Supersonic Super-Alfvénic aluminum Plasma

constitutes an infinitesimally weak Mach wave. From our interferometry images (Fig-

ure 4-3), we observe that the shock opening half-angle approachesα/2 →30° andα/2 →
7° in the end-on and side-on views respectively. The Mach angles are µ ≈ 11± 0.5° and

µ ≈ 7± 0.5° in the end-on and side-on planes respectively. We discuss the discrepancy

between the end-on and side-on Mach angles in §4.4.

If we assume that the linear wave phase velocity in the plasma is isotropic, we can use the

simple relation sinµ= 1/M1 to obtain the upstream Mach number. In the end-on plane,

the observed Mach angle corresponds to an upstream Mach number of MS = 5.2±0.3.

In the side-on plane, the upstream Mach number is MS = 8.2±0.6.

The assumption of an isotropic linear phase velocity requires further elaboration. If

the shock is hydrodynamic, then the sound wave, which propagates isotropically at the

ion sound speed Cs , sets the Mach angle. In a fast magnetohydrodynamic shock, the

fast magnetosonic wave which determines the shock dynamics exhibits an anisotropic

phase velocity — the fast wave propagates at the magnetosonic velocity
√

V 2
A +C 2

S per-

pendicular to the magnetic field, and at the higher of the sound speed and Alfvén speed

VA parallel to the magnetic field. Experimental results from pulsed-power aluminum

plasmas in exploding wire arrays have shown that the magnetic pressure dominates, so

that the Alfvén speed VA exceeds the sound speed CS . Secondly, similar experiments

with 2D cylindrical obstacles show that the fast and Alfvén Mach numbers are expected

to be roughly ∼ 2 (while the sound Mach number MS > 5) (Burdiak et al. [2017]; Suttle

et al. [2019]). Thus, we can expect the anisotropy in the fast wave speed to be small.

4.3 Magnetic Field Measurements

Figure 4-5a shows the voltage signal from the inductive probes placed near the MITL

and in the flow. The signal from the inductive probe near the MITL is proportional to

the time rate of change of the current in the load. The current rate İ in the load is ini-

tially positive for 0 < t < 250 ns, then becomes negative for t > 250 ns, before returning

back to 0 at t ≈ 400 ns. The voltage signal at the load exhibits a characteristic ‘double-

bumped’ structure with a larger peak at ∼ 85 ns and a smaller peak at ∼ 180 ns, caused

by reflections from impedance mismatches within the transmission lines (Mitchell et al.

[1996]). We observe that the rise time of the load current is ∼ 250 ns.

The probe placed in the flow measures the time-rate of change of the post-shock mag-

netic field. The probe in the flow approximately reproduces the shape and characteristic
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features of signal at the MITL, including the characteristic ‘double bump’, showing that

the magnetic field is frozen into the flow, and that the magnetic field from the inside of

the array is advected to the outside by the ablating plasma. The black and blue circles in

Figure 4-5a represent these features on the load and probe 1 signals respectively.

Figure 4-5b shows the normalized load current and the advected post-shock magnetic

field. The normalized load current is determined by integrating the MITL inductive

probe signal. The advected magnetic field is determined by integrating the voltage sig-

nals from the probe in the flow. The load current initially rises, reaches a maximum at

∼ 250 ns, and then falls. The load current and the advected magnetic field have similar

shapes, again confirming that the magnetic flux is frozen into the flow. We observe the

post-shock peak magnetic field to be ∼ 14 T. Due to a lack of calibration information we

only show the shape of the current waveform rather than its magnitude. Other exper-

iments show that MAGPIE consistently delivers a 1.4 MA peak current, which what we

used in the later simulations of this experiment.

Figure 4-5c shows the velocity of the plasma at the inductive probe determined from

the ratio of the distance from the array to the probe and the time of flight of the plasma

to the probe. The time of flight is determined from the time interval between the cor-

responding features on the load and the probe signals respectively, as shown in Figure

4-5(a). The distance to the probe (L = 5.55 ± 0.25 mm) is determined from the interfer-

ometry images. The velocity at the probe is ∼ 100 km s−1 early in time and decreases to

∼ 60 km s−1 at t ≈ 350 ns. We can compare flow velocity with the flow speed determined

in similar exploding arrays using Thompson scattering. Burdiak et al. [2017] report a

flow velocity of ≈ 75 km s−1 at t ≈ 250 ns from Thompson scattering measurements at

a position ∼ 6 mm from the array. This is consistent with the calculated flow velocity of

71±12 km s−1 from our inductive probe measurements.

At 300 ns, the velocity at the probe is V = 62±12 km s−1. From the interferometry images,

we know that the expected upstream Mach numbers are 5.2±0.3 and 8.2±0.6 in the end-

on and side-on planes respectively. If we assume that the shock is hydrodynamic, then

we can determine the sound speed CS and the electron temperature Z Te of the plasma.

The sound speed is CS = 11.8±2.4 km s−1 in the end-on plane, and CS = 7.6±1.6 km s−1

in the side-on plane. This corresponds to Z Te = 35±14 eV and Z Te = 14±6 eV in the

end-on and side-on planes respectively. For comparison, the value of Z Te determined

using Thomson scattering in a similar pulsed-power driven aluminum plasma is ∼ 42 eV

(Burdiak et al. [2017]). Assuming an average ionization of 3.5 for the aluminum plasma,

the expected electron temperature is Te ≈ 10 eV (end-on) and Te ≈ 4 eV (side-on).

89



Chapter 4. Bow Shocks in Supersonic Super-Alfvénic aluminum Plasma

Figure 4-5: Load current and magnetic field measurements from inductive probes. (a) Voltage signal from
inductive probes. The grey line represents the signal from the probe located near the magnetically in-
sulated transmission line (MITL). The black line represents the voltage signal from the inductive probe
placed in the flow. (b) Normalized load current and the advected post-shock magnetic field. The ad-
vected magnetic field is determined from integration of the voltage signal from the probe. (c) Velocity of
the plasma at the probe determined from the time of flight of the plasma to the position of the probe.
The time of flight is determined from the time interval between the corresponding features on the load
and the probe signals respectively, as shown in (a). The blue solid curve is a linear fit through the velocity
measurements, and the blue shaded region is the ±1 standard deviation bounds of the fit.
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Figure 4-6: GORGON resistive MHD simulation with an electron density slice of the ablating plasma at
300 ns. A detached bow shock is seen ahead of the obstacle. Note that the left half of the electron density
slice is clipped for clarity.

4.4 Comparison with Simulation

We perform full 3D simulations of a 16 mm diameter 16 mm tall exploding wire array

with 16 equally-spaced 30µ aluminum wires. A sine-squared current profile (Ipk = 1.4

MA, trise = 240 ns) was applied to the load. The simulation domain is a cuboid with di-

mensions 60× 60× 45 m3, and a resolution of ≈180µm. The wire core diameter is set

to ≈540µm. We place a perfectly resistive cylindrical obstacle of radius ∼ 1 mm at 5.5

mm from the array surface. The cylindrical obstacle mimics the inductive B-dot probes

in the experiment, and is aligned parallel to the x-axis. The leading edge of the cylinder

is a non-conducting sphere of radius ∼ 1 mm, such that the leading edge is located at

x ≈ 12.6 mm. The obstacle is positioned such that the oblique shock centerline is paral-

lel to the obstacle axis. The simulation geometry, together with a slice of the simulated

electron density at 300 ns, are shown in Figure 4-6.

Figure 4-7a and Figure 4-8a show the end-on and side-on slices of the simulated elec-
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tron density through the obstacle mid-plane at 300 ns. Figure 4-7b and 4-8b show the

end-on and side-on line-integrated electron density at 300 ns. A detached bow shock is

visible ahead of the obstacle in both the electron density slices and the line-integrated

maps. In the line-integrated electron density maps, the shock front appears "muted",

similar to what we observe in the experimental image. This is because line-integrating

obfuscates the intensity of the 3D shock front.

The simulated upstream flow is qualitatively similar to the experimentally observed flow.

The electron density is higher closer to the array surface and decreases with distance

from the array in both the simulation and experiment. In the end-on plane, the up-

stream flow in both the simulated and experimentally observed electron density maps

are modulated in the azimuthal direction due to the formation of oblique shocks be-

tween adjacent plasma jets, while in the side-on plane, the upstream flow is relatively

more uniform. The opening half-angle in the end-on plane is larger than in the side-on

plane, similar to what is observed in the experiment. Far from the obstacle, the opening

half-angle in the side-on plane approaches ≈ 7o in both the simulation and experiment.

In the end-on plane, however, the opening half-angle in the end-on plane approaches

≈ 21o in the simulation, and ≈ 30o in the experiment.

We determine the shock angle in the simulation by subtracting the angle the upstream

velocity makes with the horizontal from the opening half-angle. The Mach angles from

the simulation are µ≈ 8° in the end-on plane, and µ≈ 7° in the side-on plane. This cor-

responds to an upstream Mach number of 7.2 < M1 < 8.2.

We can compare these values of the upstream Mach number obtained from shock geom-

etry with those obtained from the fluid properties. We calculate the sonic Mach number

MS = u1/CS . Here, CS = √
γZ Te /mi is the ion sound speed, Z is the ionization of the

plasma, Te is the electron temperature, and mi is the ion mass. The polytropic index γ

typically differs from the ideal fluid value of 5/3 for a plasma, and is a function of the ion

density ni and electron temperature Te . The polytropic index of the simulated plasma

remains relatively constant at γ ≈ 1.13 throughout the plasma. The upstream flow is

supersonic. In the end-on plane, the sound Mach number is modulated between the

oblique shocks and the jets, and varies between 4.8 < MS < 8.2 upstream of the shock.

In the side-on plane, the upstream Mach increases with distance form the array, and

varies between 4.8 < MS < 6.9 upstream of the shock. This range of Mach numbers is

in good agreement with the range of Mach numbers expected from the geometry of the

simulated shock (7.2 < M1 < 8.2).
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Figure 4-7: (a) End-on slice of electron density at 300 ns from 3D resistive MHD GORGON simulation
of the experimental geometry. (b) End-on line-integrated electron density at 300 ns from 3D resistive
MHD GORGON simulation of the experimental geometry. (c) Experimental end-on line-integrated elec-
tron density at 300 ns from plasma interferometry (reproduced here from Figure 4-3). In each image, the
plasma flow is from the left to the right, and the magnetic field lies in the plane of the page. A bow shock,
characterized by a discontinuous increase in electron density, is visible ahead of the obstacle. Far from
the obstacle, the opening half-angle in the end-on plane approaches ≈ 21o in the simulation, and ≈ 30o

in the experiment.

Figure 4-8: (a) Side-on slice of electron density at 300 ns from 3D resistive MHD GORGON simulation
of the experimental geometry. (b) Side-on line-integrated electron density at 300 ns from 3D resistive
MHD GORGON simulation of the experimental geometry. (c) Experimental side-on line-integrated elec-
tron density at 300 ns from plasma interferometry (reproduced here from Figure 4-3). In each image,
the plasma flow is from the left to the right, and the magnetic field points into the page. A bow shock,
characterized by a discontinuous increase in electron density, is visible ahead of the obstacle. Far from
the obstacle, the opening half-angle in the side-on plane approaches ≈ 7o in both the simulation and
experiment.

We also compute the fast Mach number M f = u1/V f of the flow. Note that the fast mag-

netosonic speed is assumed to be V f =
√

C 2
S +V 2

A . The plasma beta of the simulated
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Figure 4-9: (a) Magnetic field lines overlaid on the electron density map generated in GORGON at 300
ns after current start. The magnetic field lines point in the azimuthal direction, and remain mostly unaf-
fected by the shock front, confirming the hydrodynamic nature of the shock. (b) Line-outs of the magnetic
field and electron density along the obstacle-axis. The magnetic field exhibits a negligible perturbation at
the shock front.

plasma is β∼ 0.1, so the upstream fast phase velocity is roughly isotropic and the Mach

number is approximately equal to the Alfvén Mach number. In the end-on and side-on

views, the upstream flow is sub-fast just upstream of the obstacle, and the fast Mach

number upstream of the shock increases to 1.1-1.9 away from the obstacle.

The upstream Mach number predicted from shock geometry is in better agreement with

the calculated upstream sonic Mach number MS than with the fast Mach number M f .

This suggests that the simulated shock is hydrodynamic in nature, and that the mag-

netic field is able to diffuse resistively through the obstacle rather than be compressed

ahead of it. We plot the magnetic field lines overlaid onto the simulated electron den-

sity map in Figure 4-9a. The magnetic field lines point in the azimuthal direction, and

remain mostly unaffected by the shock front, confirming the hydrodynamic nature of

the shock. 4-9b shows line-outs of the magnetic field and electron density along the ob-

stacle axis. The magnetic field exhibits a negligible perturbation at the shock front. This

can happen if the resistive diffusion length scale is large, such that the magnetic field de-

couples from the fluid, and diffuses through the obstacle, instead of piling-up, or being

compressed by the shock. The calculated resistive diffusion length from the simulation

is Lν ∼ 1 mm. Furthermore, numerical resistivity, introduced due to a finite grid size,

can also increase the resistive diffusion length scale.

Finally, we plot the simulated magnetic field at the probe as a function of time, and com-

pare it with the experimentally obtained magnetic field strength in Figure 4-5. The shape
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Figure 4-10: (a) Pile-up of magnetic flux ahead of the 3D obstacle in the end-on plane. The field lines drape
around the obstacle, and the magnetic tension of the bent field lines opposes the upstream ram pressure.
(b) Pile-up and slipping of magnetic field lines ahead of a 3D obstacle in the side-on plane. Some of the
field lines will pile-up ahead of the obstacle, and some will slip past the obstacle. If the obstacle is resistive,
magnetic field may also resistively diffuse through it. The accumulation of the magnetic field will depend
on the competition between the rates of pile-up, diffusion and slipping

of the simulated magnetic field measurement is similar to that of the experimentally ob-

served field. However, the peak simulated field at the probe (∼ 5.5 T) is weaker than the

experimentally observed peak field (∼ 14 T). This suggests that the simulation may not

completely capture the dynamics of shock formation in the plasma. The higher post-

shock magnetic field observed in the experiment may be due to magnetic field pile-up

ahead of the obstacle. This may also explain the higher Mach angle (∼ 11°) observed

in the end-on plane compared to the side-on plane (∼ 7°). When magnetic field lines

frozen into the flow approach a resistive obstacle, they may pile-up ahead of the obsta-

cle, slip past it or diffuse through the obstacle. If the rate of slipping and diffusion in

small, then the magnetic field will drape around the obstacle. When the field lines pile-

up and bend ahead of the obstacle, as shown in Figure 4-10a, the magnetic tension of

the bent field lines provides an additional force opposing the ram pressure of the incom-

ing upstream flow, which results in a larger opening angle and stand-off distance of the

shock (Burdiak et al. [2017]). The end-on plane represents the plane parallel to the field

lines, and this bending and larger opening angle should increase the end-on opening

angle. However, in the side-on plane, the magnetic field lines are normal to the plane,

so even when the magnetic field lines pile up, the bending of field lines does not affect

the side-on shock angle, although we will still see a larger stand-off distance. This is

shown in Figure 4-10b. Moreover, the field lines can also slip past the obstacle, as shown

in Figure 4-10b, and also diffuse through the obstacle (and the thin layer of hot con-

ductive plasma on the obstacle surface), so the accumulation of the magnetic field will
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depend on the competition between the rates of pile-up, diffusion and slipping. More

experiments and simulations are required to investigate magnetic field pile-up ahead of

the inductive probe.

4.5 Future Work

We propose 2 additional diagnostics to better characterize the shock dynamics in fu-

ture experiments. These are (1) Shadowgraphy/Schlieren Imaging (2) Optical Thomp-

son Scattering.

4.5.1 Shadowgraphy and Schlieren Imaging

Shadowgraphy and Schlieren imaging are imaging techniques that depend on the re-

fraction of light through the plasma. Electron density gradients cause deflection of light

rays in a plasma. Light rays are deflected away from high-density regions and towards

low-density regions. The magnitude of the deflection depends on the spatial derivative

of electron density.

In Shadowgraphy, light that passes through the plasma is simply captured on a detector.

High-density regions appear darker than low-density regions in the image. In Schlieren

imaging, light that has traveled through the plasma is focused using a converging lens.

A stop (or ‘knife-edge’) is placed at the focal point. This blocks any undeflected rays and

only allows deflected rays to pass through and impinge on the detector. This technique

is called dark-field Schlieren. The stop can also be displaced by some distance from the

focal position. This allows the undeflected rays to pass through and blocks the deflected

rays — a technique called bright-field Schlieren.

The intensity of the resulting image is proportional to the spatial derivatives of the elec-

tron density in Schlieren and Shadowgraphy imaging. Since bow shocks generate strong

density gradients, these techniques can be used to produce high-resolution images of

the shock.

4.5.2 Optical Thompson Scattering

We can determine the sound Mach number and direction of the upstream flow using

Optical Thompson Scattering (OTS). In OTS, we illuminate a small volume of the plasma
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Figure 4-11: Synthetic optical Thompson scattering spectra generated using simulated properties. (a)
Position of the TS collection volumes overlaid onto the simulated electron density slice at 300 ns. (b)
Synthetic TS spectral density function at θ = 90° scattering angle. (c) Synthetic TS spectral density function
at θ = 135° scattering angle. The sythetic spectra show well-defined ion acoustic peaks. We can determine
the electron and ion temperatures from the peak separation and peak width respectively, and the velocity
along the scattering vector from the Doppler shift of the response. Note that the red solid line represents
the spectral density function (black solid line) convolved with the spectrometer response (black dashed
line). The spectrometer response is assumed to be a σ= 0.2Å gaussian function.

.

with a laser beam. The incident light is scatted by the plasma in all directions. We col-

lect the scattered radiation at some angle θ to the incident light. The spectrum of the

scattered light can give us information about the density, temperature, ionization, and

velocity of the plasma. OTS is discussed in more detail in Chapter 3.

The spectral density of the scattered radiation has contributions from both the ion and

electron fluids. The scattered radiation also exhibits resonances at the electron plasma

wave and ion acoustic wave frequencies. These appear as peaks in the spectral density

function. Peaks are typically damped by Landau damping and collisions.

The ion acoustic feature is of particular interest in our application. The ion acoustic

peaks are low-frequency features which appear at:

ωac '±k

(
k2λ2

D(
1+k2λ2

D

) (
Z Te

mi

)
+ 3Ti

mi

)1/2

(4.2)

Here, k is the wavenumber, λD is the Debye length, Z is the ionization, Te is the electron

temperature, Ti is the ion temperature, and mi is the ion mass.

Ion acoustic peaks are only visible in the spectral density function when Z Te /T1 > 3. For
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smaller values of Z Te /T1 the peaks are strongly damped. The wavelength separation of

the peaks ∆λ ∼ λi
p

Z Te /mi gives us information about the electron temperature. The

width of the peak, which depends on the amount of Landau damping, increases with in-

creasing values of Z Te /Ti . Finally, we determine the velocity along the scattering vector

from the Doppler shift of the scattered radiation. By collecting the scattered radiation

along two non-parallel scattering vectors, we can determine the direction and magni-

tude of the upstream in-plane velocity.

Synthetic TS spectra at two different scattering angles θ = 90° and θ = 135° are shown

in Figure 4-11. The spectra are generated using the plasma parameters in the GORGON

simulation at 300 ns. Note that the Thomas-Fermi LTE ionization model used in GOR-

GON typically under-predicts the electron and ion temperatures. Here, we have used

more realistic values of electron and ion temperatures (Z Te ∼ 40 eV, Ti ∼ 10 eV) for the

simulated spectra. The synthetic spectra show well-defined ion acoustic peaks, and the

response is Doppler shifted from the origin. This will allow us to determine the velocity,

electron, and ion temperatures in the experiment, and allow us to compare the velocity

and temperature determined from the inductive probes.

4.6 Summary

In this chapter, we have presented experimental results and discussion of bow shocks

generated in a supersonic magnetized plasma due to collision with inductive probes.

The plasma was generated using a pulsed-power driven exploding wire array with 16

equally-separated aluminum wires. An inductive probe was used to measure the post-

shock magnetic field in the flow, and laser interferometry was used to image the bow

shock and the flow around the probe.

Interferometry images taken at 300 ns after current start show a well-defined detached

bow shock ahead of the probe. The bow shock has a 3D structure, with a larger open-

ing angle in the end-on plane than in the side-on plane. Part of this effect is due to the

radially diverging nature of the upstream flow. Assuming that the upstream flow points

radially outwards from the array center, we subtract the angle of the velocity vector rel-

ative to the horizontal from the shock opening half-angle to determine the shock angle.

Far from the obstacle, the shock angle asymptotically approaches the Mach angle. From

the shock geometry, the Mach angle is 11°±0.5° in the end-on plane, and 7°±0.5° in the

side-on plane. These correspond to upstream Mach numbers of 5.2±0.3 (end-on) and

8.2±0.6 (side-on).
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Inductive probe measurements show good agreement between the shape of the signal at

the load and in the flow. The probe signal reproduces the characteristic "double-bump"

that appears in the load signal at a later time, showing that the magnetic field is frozen

into the flow. We integrate the probe signal in time to determine the magnetic field

strength. The peak magnetic field strength is 14 T and occurs at ∼ 345 ns after current

start.

We use the time-of-flight of the plasma to the probe to estimate the flow velocity. The

flow velocity at the probe is ∼ 100 km s−1 early in time and decreases to ∼ 60 km s−1

later in time. The calculated flow velocity is consistent with the flow velocity of reported

in literature for pulsed-power driven aluminum plasmas. We use the velocity and the

shock geometry to estimate the sound speed, and therefore Z Te in the flow. The esti-

mated value of Z Te is 35±14 eV and 14±6 for end-on and side-on values of the Mach

number respectively, and includes the value of 42 eV determined using Thompson scat-

tering for a similar plasma.

We compare our results with full 3D resistive MHD simulation in GORGON. The sim-

ulation successfully reproduces several features of the experiment. The simulated bow

shock has a larger opening angle in the end-on plane than in the side-on plane. We

calculate the shock angle by subtracting the velocity angle from the opening half-angle.

The Mach angle is side-on plane is 7°, which is in good agreement with the experimen-

tally observed value. The Mach angle is end-on plane is 8°, which is ≈ 3 ° lower than the

experimental value. This may be because the simulation may not be accurately captur-

ing the magnetic field- pile-up ahead of the obstacle.

We calculate the sonic Mach number from the simulated plasma parameters, and find

that it is in good agreement with the range of upstream Mach numbers expected from

the shock geometry. Therefore, the simulation predicts a hydrodynamic shock. Visual-

ization of the simulated magnetic field shows that the magnetic field is mostly unper-

turbed by the shock front. This may be a result of a very large resistive diffusion length

scale, which allows the magnetic field to diffuse through the obstacle and not participate

in the shock.

The results presented here provide insight into the physics of 3D magnetized bow shocks,

which are of relevance to many astrophysical plasma flows. Furthermore, we use a new

diagnostic technique to estimate both the time-resolved velocity and temperature of the
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plasma, by simultaneously measuring the time of flight of the plasma to the inductive

probe, and the geometry of the bow shock.
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Chapter 5

Oblique Shocks in Inverse Z-Pinch Wire

Arrays

In this chapter, we discuss oblique shocks in a highly collisional magnetized plasma,

generated during the ablation phase of the exploding wire array described in Chapter 4 1.

Standing hydrodynamic-like oblique shocks form when adjacent jets of plasma diverg-

ing from the wire cores collide in the azimuthal direction. We use laser interferometry to

visualize the oblique shocks and to obtain the line-integrated electron density. Oblique

shocks appear as regions of high-density post-shock plasma bounded on either side by

oblique shock fronts. The oblique shocks also exhibit a hollow density profile — the elec-

tron density is high near the shock fronts, and low near the shock center-line. Treating

the shock as a hydrodynamic-like oblique shock, we estimate the upstream sonic Mach

number from the observed shock geometry, and compare the experimental results with

2D resistive MHD simulations performed using GORGON.

5.1 Experimental and Diagnostic Setup

The experimental setup is described in Chapter 4. The load is a cylindrical exploding

wire array with 16 equally-spaced 30µm diameter aluminum wires, driven by the MAG-

PIE generator (1.4 MA, 250 ns). We use an end-on Mach-Zehnder laser interferometry

system (532 nm Nd:YAG) to visualize the oblique shocks.

1The experimental data reported here were collected by personnel at the MAGPIE facility, Imperial
College London, in 2016. The author is responsible for the analysis and interpretation of the collected
data.
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Figure 5-1: End-on (xy-plane) view of the experimental geometry, showing a cylindrical array of 16
equally-spaced 30µm Al wires around a central cathode. The array diameter is 16 mm and the array height
is 16 mm. Collision of the azimuthally expanding plasma from the wire cores results in the formation of
oblique shocks between the ablating plasma jets.

5.2 Oblique Shock Morphology

Figure 5-2 shows the line-integrated end-on electron density map obtained from laser

interferometry at 300 ns after current start. Oblique shocks form between plasma jets

ablating from the wire cores, and appear as dense regions of post-shock plasma bounded

by oblique shock fronts. The shocks exhibit a hollow density profile — the electron den-

sity is lower at the shock center-line and higher at the oblique shock fronts. The oblique

shocks form due to the supersonic collision of adjacent azimuthally-expanding plasma

jets. The coronal plasma accelerates radially outwards from the array center under the

action of both the j×B and the pressure gradient ∇p force. The j×B force only acts in

the radial direction, and does not accelerate the plasma in the azimuthal direction. The

plasma expands in the azimuthal direction due to its thermal pressure. Adjacent jets col-

lide supersonically and form oblique shock, as observed in Figure 5-2a. We take lineouts

of the line-integrated electron density along the azimuthal direction at radial locations

R = 12 mm, 12.5 mm, and 13.0 mm. The electron density is ∼2x higher along the cen-

ter of the ablating jets than in the oblique shocks. The electron density rises sharply at

the oblique shock fronts. The post-shock electron density is mostly uniform close to the

array (R ≤∼ 12 mm), but the density profile becomes hollower away from the array at

R ≥∼ 12.5 mm.
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Figure 5-2: (a) End-on line-integrated electron density map obtained from laser interferometry. Oblique
shocks form between the ablating plasma jets from the wire cores, and appear as dense regions of post-
shock plasma bounded by oblique shock fronts. The oblique shocks exhibit a hollow density profile with
high density near the shock fronts and low density near the shock center-line. We use a coordinate sys-
tem centered on the array axis. (b) Lineouts of the line-integrated electron density along the azimuthal
direction at radial distances of R = 12 mm, 12.5 mm and 13 mm from the array center (dashed blue lines
in (a)). The electron density rises sharply at the oblique shock fronts. Close to the array (R = 12 mm), the
post-shock electron density is mostly uniform, but the density profile becomes hollow at R ≥ 12.5 mm.

Figure 5-3: Schematic of the oblique shock geometry with the radial and azimuthal components of the
upstream magnetic field. In the limit of small α/2− θ and Br /Bθ ¿ 1, the upstream magnetic filed is
approximately parallel to the shock normal, and the shock becomes a hydrodynamic-like oblique shock.

Let us examine whether we expect the shock to be hydrodynamic (magnetic field is not

compressed) or magnetohydrodynamic (magnetic field is compressed). Consider an

oblique shock front which forms at an angle α/2 from the horizontal at a radial position

R0 from the array center, as illustrated in Figure 5-3. In the exploding array, the oblique
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shocks form close to the array surface, so R0 is approximately the radius of the exploding

wire array. We call the angle between the two oblique shock fronts α the opening angle

of the shock. At an arbitrary radial length r , the shock front is located at an azimuthal

position θ. From the geometry, we can relate the shock opening half-angle α/2 and the

azimuthal position θ of the shock at some r using:

tan(α/2) = r cosθ tanθ

r cosθ−R0
(5.1)

Let the shock normal and shock tangent be represented by the unit normal vectors n̂

and t̂ respectively. Then the tangential and normal components of the magnetic field at

the shock front are:

Bt = [Br cos(α/2−θ)−Bθ sin(α/2−θ)] t̂

Bn = [(Br sin(α/2−θ)+Bθ cos(α/2−θ)] n̂
(5.2)

Here, Br and Bθ are the radial and azimuthal components of the upstream magnetic

field. In the small angle limit α/2−θ ≡ ζ<< 1, the expressions reduce to:

Bt ≈ Br −Bθζ

Bn ≈ Br ζ+Bθ ≈ Bθ

(5.3)

We see that the magnetic field normal to the shock front reduces to the azimuthal field.

Across a shock front, the normal magnetic field remains continuous, i.e. �Bn� = 0, so we

expect the azimuthal magnetic field to be continuous across the shock front. The ra-

dial field Br contributes to the tangential field, which obeys �n̂× (u×B)� = 0, and can be

discontinuous across the shock front. Finally, in the limit of small radial magnetic field

Br /Bθ ¿ 0, such as in a cylindrical wire array, the tangential magnetic field becomes

small compared to the normal magnetic field Bt /Bn ∼ Br /Bθ − ζ¿ 1. We can approxi-

mate the shock as a parallel shock (Bt → 0), and the MHD shock reduces to a hydrody-

namic oblique shock. Therefore, we expect the oblique shocks to be hydrodynamic-like

in the exploding wire array.

In a hydrodynamic oblique shock, the upstream velocity u1, which forms an angle θu1

with the horizontal, is deflected by an angle φ across the shock front, as illustrated in

Figure 5-4a. The angle at which the shock front forms relative to the upstream velocity

is called the shock angle σ. Across the shock front, the tangential velocity remains con-

tinuous, while the normal velocity decreases abruptly. In Figure 5-4a, the shock front
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Figure 5-4: (a) The upstream velocity makes an angle θu1 with the horizontal, and is deflected by an angle
φ across the shock front. The tangential velocity remains continuous across the shock front while the
normal velocity decreases abruptly, which causes the velocity vector to deflected counter-clockwise away
from the horizontal. The shock front forms at an angle σ to the upstream velocity. (b) The upstream
velocity makes a negative angle to the horizontal and the magnitude of this angle is |θu1| > π/2−α/2. In
this case, the tangential velocity is in the negative direction, and the velocity vector is deflected clockwise
away from the horizontal. (c) The upstream velocity makes a negative angle to the horizontal and the
magnitude of this angle is |θu1| ≤π/2−α/2. In this case, the tangential velocity is in the positive direction,
and the velocity vector is deflected counter-clockwise towards the horizontal.

deflects the velocity vector counter-clockwise away from the horizontal. We can show

that the shock geometry satisfies the following relations:

θu1 = θu2 −φ
σ=α/2−θu1

Where θu 1,2 = tan−1
(

uy

ux

)
1,2

(5.4)

The deflection and shock angles can be related using the upstream sonic Mach number

M1 = u1/CS and the polytropic index γ (ratio of specific heats) of the plasma (Kundu

et al. [2012]):

tanφ= 2cotσ
M 2

1 sin2σ−1

M 2
1 (γ+cos2σ)+2

(5.5)

Thus, for a plasma of polytropic index γ, if we know the shock and deflection angles, we

can estimate the upstream Mach number from the shock geometry. From Equation(s)

5.4, we see that the shock angle σ and the deflection angle φ depend on the opening

half-angle α/2, and the upstream and downstream velocity angles θu1,2. We can mea-
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sure the opening half-angle α/2 = 10° ± 1.4° directly from the shock geometry shown in

Figure 5-2.

We do not know the values of the velocity angles θu1,2. However, we can still estimate the

upstream Mach number if we make some simplifying assumptions. Due to the symme-

try of the system, we assume that the post-shock velocity is parallel to the shock center-

line, i.e. θu2 = 0. If the upstream velocity makes an positive angle θu1 > 0 with the hor-

izontal, as illustrated in Figure 5-4a, then the velocity vector will always be deflected

away from the shock center-line, and it is not possible to satisfy θu2 = 0. Similarly, when

the upstream velocity angle is negative θu1 < 0, but the magnitude of the velocity an-

gle is |θu1| > π/2−α/2, the velocity vector will be deflected clockwise away from the

shock center-line, and the post-shock velocity will not be parallel to the horizontal. This

scenario is illustrated in 5-4b, where the tangential components of the upstream and

downstream velocity are negative. The only situation in which the velocity vector is de-

flected towards the shock center-line is when the upstream velocity angle is negative

θu1 < 0 and its magnitude is |θu1| ≤ π/2−α/2. In this case, as depicted in Figure 5-4c,

the tangential components of the upstream and downstream velocity are positive, and

the velocity vector is deflected counter-clockwise towards the shock center-line.

By setting θu2 = 0, we can simplify Equation(s) 5.4. The deflection angle becomes φ =
−θu1, while the shock angle becomes σ = α/2+φ. We must now determine possible

values of the upstream velocity angle θu1. One limiting case is that of θu1 = φ = 0, for

which the velocity vector remains undeflected. In this case, the shock angle is equal to

the shock opening half-angle α/2, and corresponds to the Mach angle µ= sin−1(1/M1).

Therefore, the upstream Mach number M1 for φ= 0 is simply:

M1|φ=0 = 1

sin(α/2)
= 5.8±0.9 (5.6)

What is the maximum possible magnitude of θu1? We already know that the magnitude

of θu1 must satisfy |θu1| ≤ π/2−α/2 for the velocity vector to be deflected towards the

shock center-line. Furthermore, the deflection angle φ must be less than some maxi-

mum deflection angle φmax beyond which an attached oblique shock solution does not

exist. This imposes an additional upper bound on the value of θu1. The value ofφmax de-

pends on the upstream Mach number, and can be less than the geometrically-imposed

bound of π/2−α/2. For example, for an upstream Mach number of M1 ∼ 5, φmax ≈
60°. For our system, we can also expect values of θu1 to be much smaller than φmax.

This is because the magnetic pressure, which accelerates the plasma in the radial direc-

tion, dominates the thermal pressure, which causes the azimuthal expansion, such that
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Figure 5-5: (a) Upstream Mach number as a function of the upstream velocity angle θu1 for the case θu2 = 0
and α/2 ≈ 10 degree. The upstream Mach number for γ = 1, 1.13 and 5/3 are represented by the blue
curves. The deflection and shock angles are represented by the red and black dashed lines respectively.
For the given shock geometry, we expect the upstream Mach number to very between 4 < M1 < 6 for
γ= 1.13. (b) σ−φ−M1 diagram representing possible upstream Mach number curves for possible values
of shock and deflection angles at γ = 1.13. The blue curves represent the solution of Equation 5.5 for
different M1. The grey line represents the geometric relationship between the shock and deflection angles.
Possible solutions of the upstream Mach number can be determined from the points of the grey and blue
curves.

the upstream velocity will approach the shock front at shallow angles rather than steep

angles. Using Equation 5.5, we calculate the expected upstream Mach number in the

range 0 ≤ |θu1| ≤ 20°, as shown in Figure 5-5a. We calculate the upstream Mach number

for γ= 1.13, which is the expected value of the polytropic index for an aluminum plasma

with ne ∼ 1018 cm−3 and Te ∼ 10 eV (Drake et al. [1998]; Swadling et al. [2013]). The cal-

culated upstream Mach number varies between 4 < M1 < 6 for the given oblique shock

geometry. The Mach number curves for the isothermal γ = 1 and the adiabatic γ = 5/3

cases are also shown in Figure 5-5a.

We can gain additional insight by representing the solution using a σ−φ−M1 diagram,

as shown in 5-5b. The blue curves represent the solution of Equation 5.5 for different

M1. For a given upstream Mach number, possible solutions of the shock angle σ vary

between σ=90° (normal shock) to σ= 1/µ (Mach shock). For both these cases, there is

no deflection of the velocity vector, i.e. φ= 0. For constant M1, a straight oblique shock

solution only exists for φ≤φmax, and for φ<φmax and constant M1, there are two possi-

ble solutions for the shock angleσ. If the solution lies above theφ=φmax line, the shock

is said to be strong, otherwise it is said to be weak. For a strong shock, the downstream

flow is always subsonic, while for a weak shock, the downstream flow is usually super-
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Figure 5-6: (a) Simulated electron density map from 2D resistive MHD GORGON simulation at 300 ns
after current start, showing oblique shocks with hollow density profiles. (b) Line-out of the simulated
electron density along the azimuthal direction at radial distances of R = 13 mm from the array center. We
compare the line-out of electron density from the simulation (red line) with the line-averaged electron
density measured using laser interferometry from the experiment (black line). The magnetic field (green
line) changes negligibly across the shock fronts.

sonic, except for in a narrow range where φ is close to φmax.

The grey line in Figure 5-5b represents the geometric relationship between σ and φ

based on the observed shock geometry. To determine the upstream Mach number for a

given deflection angle, we look for the Mach number for which the blue and grey curves

intersect. We observe that for higher values of the deflection angle, the upstream Mach

number must decrease, which is consistent with what we observe in Figure 5-5a for

γ= 1.13. We also expect the deflection angle to be smaller than the maximum possible

deflection angle, such that the oblique shock is weak, and the post-shock flow remains

supersonic.

5.3 Comparison with Simulation

We perform 2D resistive MHD simulations of a 16 mm diameter exploding wire array

with 16 equally-spaced 30µm aluminum wires using GORGON. A sine-squared current

profile (Ipk = 1.4 MA, trise = 240 ns) is applied to the load. The simulation domain is

a square with dimensions 60×60 mm2, and a resolution of ∆x ≈ 40µm. The wire core

diameter is set to ∼120µm.

Figure 5-6a shows the simulated electron density map at 300 ns after currents start.
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Oblique shock fronts, characterized by sharp discontinuities in electron density, form

between the streams of ablating plasma. The shock opening-half angle isα/2 = 9°±1.5°,

which is in good agreement with the experimentally observed shock opening half-angle.

The simulated oblique shocks also exhibit a hollow profile similar to the experimen-

tally observed shocks, although the ratio of the post-shock electron density between the

shock fronts and the shock center-line is larger for the simulated shock fronts than for

the experimentally observed shocks. We compare the line-out of the electron density

from the simulation with the line-averaged electron density from the experiment, as

shown in Figure 5-6b. We compute the line-averaged electron density by dividing the

line-integrated electron density obtained from laser interferometry by the height of the

array. The simulation predicts a ∼1.5-2.5x smaller electron density than that observed in

the experiment. In the simulation, the post-shock electron density jumps by ∼ 2x com-

pared to the density just upstream of the shock. The post-shock density near the shock

fronts (∼ 1×1018 cm−3) is larger than that in the ablating jets (∼ 0.7×1018 cm−3), while

in the experiment, the post-shock density is smaller than that in the jets. Figure 5-6b

also shows that the magnetic field remains relatively unchanged across the shock front,

which confirms that the shock is predominantly hydrodynamic in nature.

It is possible to determine the velocity angles directly from the simulation. The angles

formed by the upstream and downstream velocity with the horizontal are θu1 ≈−4° and

θu2 ≈ 1 °. The values of the velocity angles from the simulation are consistent with our

assumption that the upstream velocity approaches the shock front at a shallow angle,

and that the downstream velocity is deflected towards the shock center-line, and is ap-

proximately parallel to it. From Equation(s) 5.4, the deflection and shock angles are

φ≈ 5° and σ≈ 13° . For γ≈ 1.13, the expected upstream Mach number is Ms,1 ≈ 5.8.

We can compare this value of the upstream Mach number obtained from the shock ge-

ometry with that obtained from the simulated fluid properties. In order to do so, we

calculate the ion sound speed Cs = √
γZ Te /mi of the plasma. Here, Z is the ioniza-

tion level, Te is the electron temperature, and mi is the ion mass. The values com-

puted for different γ are summarized in Table 5.1. The Mach number calculated from

the sound speed is higher than that calculated from the shock geometry for the simu-

lated oblique shocks. One possible explanation for this discrepancy could be significant

radiative cooling of the post-shock plasma. The post-shock plasma is hot and dense,

and will therefore lose internal energy, and hence pressure, due to radiative losses. The

lower post-shock pressure will result in a smaller opening half-angle, and thus, a smaller

shock angle. The effect is that the grey line in the σ−φ−M1 diagram (Figure 5-5b) will

shift downwards, and we will need a larger M1 to produce the same deflection across
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the shock front. This would explain why the geometry of the oblique shock predicts a

smaller upstream Mach number than that calculated directly from the fluid properties

of the upstream plasma.

Table 5.1: Upstream Mach number determined from shock geometry and fluid proper-
ties from GORGON simulation. The experimental Mach numbers are calculated for a
deflection angle of 5°

Simulation Experiment
γ Cs (kms−1) MS (Fluid) MS (Geometry) MS (Geometry)

1.0 7.5 8.8 5.7 ±0.9 4.7
1.13 8.0 8.3 5.8 ±0.9 4.8
1.67 9.7 6.8 6.4 ±1.3 5.2

5.4 Summary and Future Work

In this chapter, we have presented experimental results and discussion of oblique shocks

generated in a supersonic magnetized plasma due to collision azimuthally expanding

jets of ablating plasma in an exploding wire array. The plasma was generated using a

pulsed-power driven exploding wire array with 16 equally-separated aluminum wires.

End-on Mach-Zehnder laser interferometry was used to diagnose the line-integrated

electron density.

Interferometry images taken at 300 ns after current start show well-defined oblique shocks

between streams of plasma ablating from the wire cores. The oblique shocks appear

as sharp discontinuities in the electron density, and exhibit a hollow density structure,

where the electron density is high close to the shock fronts and lower near the shock

center-line. The shock opening half-angle, measured from the shock geometry, was ob-

served to be α/2 = 10°±1.4°.

In order to estimate the upstream Mach number of the flow, we apply simplifying as-

sumptions. We assume that the shock is hydrodynamic-like, because the component of

the magnetic field tangential to the shock front is expected to be small compared to that

normal to the shock front. We also assume that the post-shock velocity is approximately

parallel to the shock center-line, and that the upstream velocity approaches the shock

front at shallow angles with the center-line. With these assumptions, we estimate an

upstream sonic Mach number in the range 4.5 < M1 < 6 for deflection angles between

0° <φ< 10°.
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We compare our results with 2D resistive MHD simulations in GORGON. The simulation

successfully reproduces important features of the experiment. The simulated oblique

shocks exhibit hollow density profiles, and have an opening half-angle ofα/2 = 9°±1.5°,

which is in good agreement with the experimentally observed geometry. The angles

formed by the upstream and downstream velocity with the horizontal in the simulation

are θu1 ≈−4° and θu2 ≈ 1 °. The values of the velocity angles from the simulation are con-

sistent with our assumption that the upstream velocity approaches the shock front at a

shallow angle, and that the downstream velocity is deflected towards the shock center-

line and is approximately parallel to it. We use the velocity angles and the shock ge-

ometry from the simulation to determine the expected upstream sonic Mach number

Ms,1 ∼ 6. We can also compare the Mach number determined from the shock geome-

try to the one directly computed from the plasma ion sound speed. The Mach number

calculated from the sound speed is higher than that calculated from the shock geometry

for the simulated oblique shocks.

In order to compare the experimentally observed oblique shock geometry with the ex-

pected geometry from the plasma sound speed, we must determine the upstream Mach

number, velocity, temperature, and the direction of the upstream and downstream ve-

locity in the plasma. We can do this using the ion feature of Optical Thompson scatter-

ing, which allows us to determine the ion and electron temperatures from the width and

separation of the ion acoustic peaks, and the velocity along the scattering vector from

the Doppler shift of the scattered signal. By collecting the scattered light along two dif-

ferent directions, we can also determine the velocity angle. We can collect the scattered

radiation along multiple control volumes across the shock front, which will allow us to

determine how the velocity, temperature, and sound speed change across the oblique

shock.
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Chapter 6

Conclusions

The results presented in this thesis provide insight into the physics of 3D magnetized

bow shocks and quasi-2D oblique plasma shocks, which are of relevance to many astro-

physical plasma flows, such as in extrastellar and protostellar jets (Smith [2012]; Smith

et al. [2003]; Remington et al. [2006]). Magnetohydrodynamic shocks can exhibit com-

plex structures, where the frozen-in magnetic field can also be compressed along with

the density, and the orientation of the upstream magnetic field can modify the shock

dynamics (Goedbloed et al. [2010]; De Sterck et al. [1998]). Furthermore, the magnetic

field may also pile up, slip past or diffuse through a resistive obstacle, further complicat-

ing the shock dynamics (Burdiak et al. [2017]; Suttle et al. [2019]).

We generate a supersonic and super-Alfvénic collisional plasma flow using a pulsed-

power driven 16-wire Aluminum wire array, and the interaction of the plasma flow with

inductive probes generates detached bow shocks (Figure 5-1). Interferometry images

taken at 300 ns after current start show a well-defined detached bow shock ahead of the

probe (Figure 4-3) . The bow shock has a 3D structure, with a larger opening angle in

the end-on plane than in the side-on plane. Part of this effect is due to the radially di-

verging nature of the upstream flow, so to calculate the shock angle, we must account

for the direction of the upstream velocity. Far from the obstacle, the shock angle asymp-

totically approaches the Mach angle, which represents the shock angle for an infinites-

imally weak shock. From the shock geometry, the Mach angle is 11°±0.5° in the end-on

plane, and 7°±0.5° in the side-on plane. These correspond to upstream Mach numbers

of 5.2±0.3 (end-on) and 8.2±0.6 (side-on). The Mach angle is ∼ 3° higher in the end-on

plane than in the side-on plane, which suggests that line-bending and pile-up of mag-

netic flux, as illustrated in Figure 4-10, which can result in larger opening angles in the

end-on plane, may play a role in the shock dynamics.
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We also introduce a novel technique to estimate the flow velocity and temperature of

pulsed-power driven plasmas, via simultaneous imaging of inductive probes and mea-

surement of the inductive probe signal. Using the time-of-flight of the plasma to the

probe, we estimate the time-resolved flow velocity, which varies from ∼ 100 km s−1 early

in time to ∼ 60 km s−1 later in time (Figure 4-5). The calculated flow velocity closely

matches the flow velocity of 50−100 kms−1 reported in literature using Thompson scat-

tering measurements for similar pulsed-power driven Aluminum plasmas (Burdiak et al.

[2017], Lebedev et al. [2014]), and with our 3D resistive MHD simulations. Furthermore,

from the velocity and the shock geometry, we estimate the ion sound speed, and there-

fore the product of the electron temperature and ionization Z Te of the plasma. The es-

timated value of Z Te is 35±14 eV and 14±6 for end-on and side-on values of the Mach

number respectively, and includes the value of 42 eV determined using Thompson scat-

tering for a similar plasma (Burdiak et al. [2017], Lebedev et al. [2014]).

We also investigate the formation of standing oblique shocks due to collision azimuthally

expanding jets of ablating plasma in the exploding wire array. Interferometry images

show well-defined oblique shocks between streams of plasma ablating from the wire

cores. The oblique shocks exhibit a hollow density structure, where the electron density

is high close to the shock fronts and lower near the shock center-line (Figure 5-2). The

shock opening half-angle, measured from the shock geometry, is α/2 = 10°±1.4°.

We estimate an upstream sonic Mach number in the range 4.5 < M1 < 6 for deflection

angles between 0° < φ < 10° (Figure 5-5a). Representing the solution on a σ−φ− M1

diagram (Figure 5-5b) shows that the oblique shocks are weak shocks, and that the post-

shock velocity will remain supersonic. This analysis of the oblique shock is based on

certain simplifying assumptions. We assume that the shock is hydrodynamic-like, be-

cause the component of the magnetic field tangential to the shock front is expected to

be small compared to that normal to the shock front. We also assume that the post-

shock velocity is approximately parallel to the shock center-line, and that the upstream

velocity approaches the shock front at shallow angles with the center-line. 2D resistive

MHD simulations of an exploding wire array justify these assumptions.

Future work will investigate the effect of magnetic field pile-up on the shock dynamics of

bow shocks, and directly determine the velocity direction and temperature, and hence

the Mach number, of the upstream flows for both oblique and bow shocks. To do this,

we aim to implement Faraday polarimetry and Thompson Scattering. Using the ion fea-

ture of Optical Thompson scattering (Figure 4-11), we expect to resolve well-defined ion

acoustic peaks, which will help us determine the ion and electron temperatures from
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the peak width and separation, and the flow velocity from the overall Doppler shift. We

also aim to better measure the shock angle using refractive-index based techniques such

as laser shadowgraphy and Schlieren imaging. The experimental campaign will be sup-

ported by resistive MHD simulations in GORGON, where we perform 3D simulations on

finer grids to decrease the effect of numerical diffusivity, which will allow us to better

understand the role of magnetic field pile-up in 3D bow shock dynamics.

115



Chapter 6. Conclusions

116



Appendix A

Derivation of the Electromagnetic Wave

Dispersion Relation in Plasmas

Here, a derivation of the wave dispersion relation in plasmas based on the treatment by

Hutchinson [2002] is presented.

An electromagnetic wave obeys Maxwell’s equations:

∇×B =µ0j+µ0ε0
∂E

∂t
(A.1)

∇×E =−∂B

∂t
(A.2)

Taking the curl of A.2 and substituting A.1, we get:

∇×∇×E =− ∂

∂t
∇×B (A.3)

∇×∇×E =− ∂

∂t
(µ0j+µ0ε0

∂E

∂t
) (A.4)

If we express the electric and magnetic fields as a superposition of uniform homoge-

neous zero-th order components and time and space varying first order components (of

the form ∼ e−iωt e i k·x), we can express the wave equation as:
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k× (k×E) =− iω

c2

(
j

ε0
− iωE

)
(A.5)

Where we have made the substitution c2 = 1/µ0ε0. Making the substitution k× (k×E) =
k(k ·E)−k2E, we get:

k(k ·E)−k2E+ ω2

c2
E+ iω

c2ε0
j = 0 (A.6)

In a vacuum, j = 0 and ∇×E = 0, so the dispersion relation for an electromagnetic wave

propagating in vacuum becomes:

ω2 = c2k2 (A.7)

In a medium, the current j = σ ·E can be written as the dot product of the conductivity

tensor and the electric field. Thus, we get:

(
kk+ (

ω2

c2
−k2)I+ iω

c2ε0
σσσ

)
·E = 0 (A.8)

Introducing the dielectric tensor εεε= I+ iσσσ/(ωε0), we can write:

(
kk−k2I + ω2

c2
εεε

)
·EEE = 0 (A.9)

We can determine an expression for the conductivity tensorσσσ, and hence for the dielec-

tric tensor εεε from:
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jjj =∑
s

jjj s =
∑

s
ns qsvvv s ≡

∑
s
σσσs ·EEE (A.10)

Where ns , qs and vsvsvs are the number density, charge and the velocity of species s (electron

and ion) in the plasma. From the plasma fluid momentum equation, we can determine

the velocity as a function of the electric field. Here, we assume a cold plasma and neglect

collisions.

ms
Dvvv s

Dt
= qs (E+vvv s ×B) (A.11)

Assuming the zero-th order magnetic field is BBB 0 = B0ẑ̂ẑz, and that the zero-th order veloc-

ity and electric fields are zero, we get:

ms
∂vvv s

∂t
= qs (E+vvv s ×B0) (A.12)

−i msω

vx

vy

vz


s

= qs

Ex

Ey

Ez

+qs

 vy B0

−vxB0

0


s

(A.13)

Or:

vx,s = qs

ms

(
iωEx −ΩsEy

ω2 −Ω2
s

)
(A.14)

vy,s = qs

ms

(
iωEy +ΩsEx

ω2 −Ω2
s

)
(A.15)

vz,s = qs

ms

(
i Ez

ω

)
(A.16)

Here,Ω= qB0/m is the cyclotron frequency. The current density jjj is:
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jx,s = ε0
q2

s ns

msε0

(
iωEx −ΩsEy

ω2 −Ω2
s

)
= ε0ω

2
ps

(
iωEx −ΩsEy

ω2 −Ω2
s

)
(A.17)

jy,s = ε0
q2

s ns

msε0

(
iωEy +ΩsEx

ω2 −Ω2
s

)
= ε0ω

2
ps

(
iωEy +ΩsEx

ω2 −Ω2
s

)
(A.18)

jz,s = ε0
q2

s ns

msε0

(
i Ez

ω

)
= ε0ω

2
p,s

(
i Ez

ω

)
(A.19)

Here, ωp = √
q2n/(ε0m) is the plasma frequency. Thus, the current denisty j can be

represented as:

jjj s =σσσs ·EEE = ε0ω
2
p,s


iω

ω2−Ω2
s

−Ωs

ω2−Ω2
s

0
Ωs

ω2−Ω2
s

iω
ω2−Ω2

s
0

0 0 i /ω

 (A.20)

And the dielectric tensor εεε is:

εεε= I+ i

∑
sσσσs

ωε0
=

 S −i D 0

i D S 0

0 0 P

 (A.21)

Where:

S = 1−∑
s

ω2
p,s

ω2 −Ω2
s

(A.22)

D =∑
s

Ωs

ω

ω2
p,s

ω2 −Ω2
s

(A.23)

P = 1−∑
s

ω2
p,s

ω2
(A.24)

In the case, where the ion contribution is small, i.e. ωΩi >> 1, we can approximate S, P

and D as functions of the electron contribution only.
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Assuming the wavevector k is in the y z plane and forms an angle θ with the unperturbed

magnetic field B0ẑ, the dyadic product kk becomes:

kk = k2

 sin2θ 0 sinθcosθ

0 0 0

sinθcosθ 0 cos2θ

 (A.25)

We can now construct the dispersion matrix as:

DDD =
(
kkkkkk −k2III + ω2

c2
εεε

)
(A.26)

D =

k2 sin2θ−k2 + ω2

c2 S −i D ω2

c2 k2 sinθcosθ

i D ω2

c2 −k2 + ω2

c2 S 0

k2 sinθcosθ 0 k2 cos2θ−k2 + ω2

c2 P

 (A.27)

D =

−k2 cos2θ+ ω2

c2 S −i D ω2

c2 k2 sinθcosθ

i D ω2

c2 −k2 + ω2

c2 S 0

k2 sinθcosθ 0 −k2 sin2θ+ ω2

c2 P

 (A.28)

Multiplying with c2/ω2 throughout, and using the relation NNN = kkkc/ω for the refractive

index n:

Dn ·EDn ·EDn ·E =

−N 2 cos2θ+S −i D N 2 sinθcosθ

i D −N 2 +S 0

N 2 sinθcosθ 0 −N 2 sin2θ+P

 ·EEE = 0 (A.29)

For non-trivial solutions the determinant of the dispersion matrix must be zero, i.e det (DnDnDn) =
0.

For the case where the unperturbed magnetic field is small i.e. Ω/ω≈ 0, and considering

only the electron contribution, we get:

S = 1−
ω2

p,e

ω2 −Ω2
e
≈ 1−

ω2
p,e

ω2
= P (A.30)
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D = Ωe

ω

ω2
p,e

ω2 −Ω2
e
≈ 0 (A.31)

P = 1−
ω2

p,e

ω2
(A.32)

The dispersion tensor is:

det

−N 2 cos2θ+P 0 N 2 sinθcosθ

0 −N 2 +P 0

N 2 sinθcosθ 0 −N 2 sin2θ+P

= 0 (A.33)

The only non-trivial solution is:

n2 = P (A.34)

Or

ω2 = c2k2 +w 2
p (A.35)

This wave propagating through the plasma is termed the ordinary wave. For the case

where the wave vector is perpendicular to the unperturbed magnetic field, i.e. θ = π/2,

the determinant of the dispersion tensor is:

det

 S −i D 0

i D −N 2 +S 0

0 0 −N 2 +P

= 0 (A.36)

(P −n2)
(
S(S −n2)−D2)= 0 (A.37)

The solutions are:

N 2 = P (A.38)

N 2 = S2 −D2

S
(A.39)

The first solution represents an ordinary (O) wave, while the second solution represents

the extraordinary (X) wave.
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Similarly, when the wave vector is along the unperturbed magnetic field θ = 0, we get:

det

−N 2 +S −i D 0

i D −N 2 +S 0

0 0 P

= 0 (A.40)

P ((S −N 2)2 −D2) = 0 (A.41)

The solutions are:

P = 0, N 2 = S +D, N 2 = S −D (A.42)

The solutions represent the electron plasma waves, and the right and left circularly po-

larized waves respectively. We can verify that the last two expressions result in circularly

polarized waves by substituting N 2 = S ±D into the dispersion relation.

Ex

Ey
= i D

S − (S ±D)
=±i (A.43)

The dispersion relation or the right and left circularly polarized waves can be written as:

R = S +D = 1−
ω2

pe

ω(ω+Ωe )
(A.44)

L = S −D = 1−
ω2

pe

ω(ω−Ωe )
(A.45)

Here, we have assumed that the ion contribution is small compared to the electron con-

tribution.

These solutions apply for the case of a constant and uniform background medium. The

Fourier transformation ∼ e−iωt e ik·xk·xk·x no longer applies in media with spatial gradients.

However, for the case where the medium is slowly varying, the WKB (Wentzel, Kramers

Brillouin) approximation can be used:

E ∼ exp

(∫
k ·dlk ·dlk ·dl

)
exp(−iωt ) (A.46)
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The WKB approximation is valid when:

|∇k|
k2

<< 1 (A.47)
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Derivation of the Thompson scattering

Spectral Density Function

An electromagnetic wave incident on an electron causes it to accelerate. The accelerat-

ing charge then emits electromagnetic radiation. This is the scattered electromagnetic

field. In a particular scattering volume, the total scattered field is due to the contribution

of all electrons within the volume. The time-averaged power is then measured using a

spectrometer. Here, we derive the power spectrum for Thompson scattering. the deriva-

tionin based on the treatnet by Sheffield et al. [2010] and Hutchinson [2002].

B.1 Scattered Power Spectrum

The scattered electric field Es at position R ŝ in the far-field (R >> L) due to particle of

charge q moving with velocity v =βββc is given by:

Es(R, t ) = q

cR

[
ŝ× ŝ−βββ×βββ
(1− ŝ · β̇̇β̇β)3

]
r et

(B.1)

In the non-relativistic limit β→ 0, the scattered field becomes:

Es(R, t ) = q

cR

[
ŝ× (ŝ× β̇̇β̇β)

]
r et (B.2)

Here, the values are calculated at retard ted time t ′ ≈ t −R/c + r · ŝ/c due to the time it

takes the wave to reach the observer at R.
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In the low-temperature limit, assuming B = 0, the acceleration due to a monochromatic

incident field Ei = Ei0eki·r−ωit′ is:

β̇̇β̇β= −eEi o

me c
exp(ki · r−ωi t ′)Êio (B.3)

And the scattered field from a single electron is:

Es(R, t ) = re Ei 0

R

[
ŝ× (ŝ× Êio)

]
r et exp(ki · r−ωi t ′) (B.4)

Where re = e2/me c2 is the classic electron radius.

The total scattered field is the contribution from all electrons in the scattering volume.We

define the total scattered field ET
s as:

ET
s (R, t ) =

∫
dr

∫
dvF (r,v, t ′)Es(R, t ) (B.5)

Where F (r,v, t ′) = δ(v−vj)δ(r− rj) is the point distribution function of the electrons at

time t ′.

The total scattered power along ŝ is calculated by the area integral of the energy flux or

Poynting vector. For an electromagnetic wave, the energy flux along ŝ is

q = (c/4π)EsB · ŝ = (c/4π)|E T
s |2 (B.6)

We are interested in the time-averaged power per unit solid angle over time T , which is:

dP̄

dΩs
= cR2

4π
lim

T→∞
1

T

∫ T /2

−T /2
|ET

s (t)|2 (B.7)

Using Percival’s theorem, we get:

dP̄

dΩsdωs
= cR2

4π
lim

T→∞
1

2πT
|ET

s (ωs)|2 (B.8)
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Here, ET
s (ωs) is the Fourier transform of ET

s (t′), which is:

ET
s (ωs) =

∫ +∞

−∞
d te iωs t ET

s (t′) (B.9)

we can now combine Equations B.8, B.9, B.5 and B.4, to get:

dP̄

dΩsdωs
= cR2

4π
lim

T→∞
1

2πT

∣∣∣∣∫ d te iωs t
∫

dr
∫

dvF
re

Ei 0
R

[
ŝ× (ŝ× Êio)

]
exp(i [ki · r−ωi t ′])

∣∣∣∣2

(B.10)

Carrying out the integral over velocity space, and simplifying we get:

dP̄

dΩsdωs
= cE 2

i 0r 2
e

4π

[
ŝ× (ŝ× Êio)

]2
lim

T→∞
1

2πT

∣∣∣∣∫ d t
∫

drne (r, t ′)e i ki·re−iωi t ′e iωs t
∣∣∣∣2

(B.11)

Substituting for retarded time t = t ′+R/c − ŝ · r/c , the exponential terms can be simpli-

fied:

e−iωs t e i ki·re−iωi t ′ = e iω−t ′e−i k−·re i ks R (B.12)

Whereω− =ωs−ωi and k− = ks−ki are the scattering frequency and wave vector respec-

tively.

Next, we perform a inverse Fourier transform of the electron density ne (r, t ′) in time and

space.

ne (r, t ′) =
∫ +∞

−∞
dk

(2π)3

∫ +∞

∞
dω

2π
e i k·re−iωt ′ne (k,ω) (B.13)

Where, W =ω− iγ is combination of the real and imaginary frequencies. Therefore, we

get:

dP̄

dΩsdωs
= cE 2

i 0r 2
e

4π

[
ŝ× (ŝ× Êio)

]2
e i ks R lim

T→∞
1

2πT∣∣∣∣∫ d t ′
∫

dr
∫

dk

(2π)3

∫
dω

2π
ne (k,ω)e i ((k−k−)·re−i (ω−ω−)t ′

∣∣∣∣2
(B.14)
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Performing the integral over time and space gives us:

∫
d t ′e−i (ω−ω−)t ′ = 2πδ(ω−ω−) (B.15)

∫
dke−i (k−k−)·r = (2π)3δ(k−k−) (B.16)

And then performing the integral over k and ω space gives us:∫
dk

∫
dωne (k,ω)δ(ω−ω−)(2π)3δ(k−k−) = ne (k−,ω−) (B.17)

Thus, the power spectrum becomes:

dP̄

dΩsdωs
= cE 2

i 0r 2
e

4π

[
ŝ× (ŝ× Êio)

]2
e i ks R lim

T→∞
1

2πT
|ne (k−,ω−)|2 (B.18)

Redefining k = k− and ω=ω−, and introducing the spectral density function S(k,ω):

S(k,ω) ≡ lim
T→∞,V →∞

1

T V

〈 |ne(k,ω)|2
neo

〉
(B.19)

Where ne0 = NV is the mean electron density, and N is the total number of electron in

scattering volume V . Finally, we can express the ensemble-averaged power spectrum

as:

〈
dP̄

dΩsdωs

〉
= qi nr 2

e

2π

[
ŝ× (ŝ× Êio)

]2
e i ks R N S(k,ω) (B.20)

Where qi n = cE 2
i 0/(4π) is the magnitude of the incident energy flux.

B.2 Spectral Density Function

Next we determine the spectral density function S(k,ω) for a collisionless unmagnetized

plasma. We start by expressing the distribution function Fs of species s as the superpo-

sition of a mean distribution F0 and a fluctuating distribution F1.

Fs = F0 +F1 (B.21)

The evolution of a colissionless plasma is described by the Vlasov equation. The zero-th
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and first order fields become:

∂F0

∂t
+v ·∇F0 = 0 (B.22)

∂F1

∂t
+v ·∇F1 + q

m
E1 ·∇vF0 = 0 (B.23)

The Poisson equation becomes:

∇2φ1 =−4πρe,1(r, t ) (B.24)

Where φ is the electric potential and ρe,1 = (Z eni ,1 −ene,1) is the charge density.

If we assume that the potential varies as φ1e i k·r, and take the inverse Fourier transform

of the charge density, then we can represent the first order potential as:

φ1 = 4π
∫

dk

k2(2π)3
e i k·rρe,1(k, t ) (B.25)

The electric field then becomes:

E1 =−∇φ1 = −i 4π

(2π)3

∫
dk

k2
ke i k·rρe,1(k, t ) (B.26)

Next we take the Fourier-Laplace transform of Equation B.23. For the first term we get:∫
dr

∫ ∞

0
d t
∂F1

∂t
e−i k·re iW t =

∫ ∞

0
d t
∂F1(k, t )

∂t
e iW t (B.27)

∫ ∞

0
d t
∂F1(k, t )

∂t
e iW t = ∂

∂t

∫ ∞

0
d tF1(k, t )e iW t − iW

∫ ∞

0
d tF1(k, t )e iW t

=
[

F1(k, t )e iW t
]∞

0
− iW F1(k,W )

=−F1(k,0)− iW F1(k,W )

(B.28)

Similarly, the Fourier-Laplace transform of the second term is:

∫
d t

∫
drv · ∂F1

∂r
e−i k·re iW t = v ·

∫
dr
∂F1(r,W )

∂r
e−i k·r (B.29)

129



Appendix B. Derivation of the Thompson scattering Spectral Density Function

∫
dr
∂F1(r,W )

∂r
e−i k·r = ∂

∂r

∫
drF1(r,W )e−i k·r + i k

∫
drF1(r,W )e−i k·r

=
[

F1(r,W )e−i k·r
]+∞
−∞+ i kF1(k,W )

= i kF1(k,W )

(B.30)

Finally, we look at the last term.∫
d t

∫
dke−i k·re iW t q

m
E1(k′, t ) ·∇vF0 = q

m

∫
dre−i k·rE1(k′,W ) ·∇vF0 (B.31)

q

m

∫
dre−i k·rE1(k′,W ) ·∇vF0 = −i 4π

(2π)3

q

m

∫
dr

∫
dk′

k ′2 k′e i k′−k·rρe,1(k′,W ) ·∇vF0 (B.32)

Performing the integral over r-space and then k-space, we get:

q

m

∫
dre−i k·rE1(k′,W ) ·∇vF0 = −i 4πq

m

∫
dk′

k ′2 k′ρe,1(k′,W ) ·∇vF0δ(k′−k)

= −i 4πq

k2m
ρe,1(k,W )k ·∇vF0

(B.33)

Therefore, the Fourier-Laplace transform of Equation B.23 is:

−F1(k,0)− iW F1(k,W )+ i v ·kF1(k,W )− i 4πq

k2m
ρe,1(k,W )k ·∇vF0 = 0 (B.34)

Re-arranging, we get:

F1(k,W ) = i
F1(k,0)

W −v ·k
−

(
4πq

k2m

)
ρe,1(k,W )k ·∇vF0

W −v ·k
(B.35)

Summing over all velocities, we get:

n1e (k,W ) =−i
N∑

j=1

e i ·r0,j

W −v0 ·k
+ χe (k,W )

e
{Z en1i (k,W )−en1e (k,W )} (B.36)

n1i (k,W ) =−i
N /Z∑
l=1

e i ·r0,l

W −v0 ·k
− χi (k,W )

Z e
{Z en1i (k,W )−en1e (k,W )} (B.37)
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Where the susceptibility of species p is defined as:

χp (k,ω) ≡
∫ +∞

−∞
dv

4πZ 2
p e2npo

mik2

k ·∂ f̂po/∂v

W −v0 ·k
(B.38)

Finally solving the system of equations B.36-B.37:

n1e (k,W ) =− i

[
N∑

j=1

e i k·r j (0)

W −v0 ·k
− χe

ε

N∑
j=1

e i k·r j (0)

W −v0 ·k

+Zχe

ε

N /Z∑
l=1

e i k·rl (0)

W −v0 ·k

] (B.39)

The first term represents the contribution from free electrons, the second term repre-

sents contribution from the correlation of electrons with other electrons, and the last

term represents the contribution from the electrons dressing ions.

Finally, we take the ensemble average to determine the spectral density function:

S(k,ω) = 2π

k

∣∣∣1− χe

ε

∣∣∣2
f̂eo

(ω
k

)
+ 2πZ

k

∣∣∣χe

ε

∣∣∣2
f̂i o

(ω
k

)
(B.40)

Here, ε= 1+χe +χi is the dielectric function, and f̂0 is the unperturbed 1D normalized

distribution function. Therefore, we can determine the spectral density function given

the species distribution function, and the electron and ion susceptibility functions.

B.3 Electric Susceptibility

Next, we determine an analytical function for the susceptibility.We start with the Vlasov

equation for a collisonless unmagnetized plasma.

∂ f

∂t
+v ·∇ f + q

m
E ·∇v f = 0 (B.41)

We linearize the Vlasov equation using f = f0+ f1,E = E1, keep only the first order terms,
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and express the time- and space-varying first-order terms as Fourier components:

∂ f1

∂t
+v ·∇ f1 + q

m
E1 ·∇v f0 = 0

− iω f1 +v · i k f1 =− q

m
E1 ·∇v f0

f1 = −i q

m

(
E1 ·∇v f0

ω−v ·k

) (B.42)

The perturbed current density is:

j1 =
∫

dvqv f1 = −i q2

m

∫
dv

(
v1E1 ·∇v f0

ω−v ·k

)
(B.43)

We take the velocity and perturbed electric field to be along k, and let f̂k = n0 fk be the

1D normalized distribution distribution for the isotropic distribution f0(v).

j1 = −i q2n0

m

∫
d v

(
v∂v f̂k

ω− vk

)
E1 ≡σE1 (B.44)

In a linear dielectric medium, the current density is the time-rate of change of the polar-

ization current P.

j1 = 1

4π

∂P1

∂t
= −iωχE1

4π
(B.45)

Thus, the susceptibility can be expressed in terms of the conductivity as:

χ=
ω2

p

k2

∫ ∞

−∞
d v

∂v f̂k

ω/k − v
(B.46)

Where ωp =√
4πn0q2/m is the plasma frequency.

For a Maxwellian distribution,

f̂ =
(

1

πv2
th

)1/2

exp(−v2/v2
th) (B.47)

Where vth ≡√
2kbT /m is the thermal velocity.

Thus, for species s, the susceptibility χs can be written as:

132



Appendix B. Derivation of the Thompson scattering Spectral Density Function

χs =
ω2

p,s

k2

2p
π

∫ ∞

−∞
d v

v−3
th,s v exp(−v2/v2

th,s)

v −ω/k

χs =
ω2

p,s

k2v2
th,s

2p
π

∫ ∞

−∞
d x

xe−x2

x −ω/(kvth,s)

(B.48)

Here, we have made the substitution x = v/vth . Simplifying, we get:

χs = 1

λ2
D k2

(
n0,s q2

s Te

n0,e e2Ti

)
w

(
ω

kvth,s

)
(B.49)

Where:

w(z0) ≡ 1p
π

∫ ∞

−∞
d z

ze−z2

z − z0
(B.50)

And λD = √
kbTe /(4πne,0e2) is the Debye length. Here, ns,0 is the unperturbed density

of charged species s. For electro-neutrality to hold n0,s/n0,e = e/qs , so we can simplify

Equation B.49 as:

χs = 1

(λD k)2

(
ZsTe

Ti

)
w

(
ω

kvth,s

)
(B.51)

The function w(z0) has a simple pole at z = z0, and can be evaluated to be:

w(z0) = 1+ i
p
πz0e−z2

0 −2z0e−z2
0

∫ z0

0
ez2

d z = 1+ i
p
πz0e−z2

0 −2z0D+(z0) (B.52)

Here, D+(x) is the Dawson function defined as:

D+(x) = e−x2
∫ x

0
e t 2

d t (B.53)

B.4 Thompson Scattering Summary

To summarize, the scattered power spectrum for a non-relativistic, unmagnetized colli-

sionless plasma is a function of the spectral density function S(k,ω) :

〈
dP̄

dΩsdωs

〉
= cE 2

i 0/(4π)r 2
e

2π

[
ŝ× (ŝ× Êio)

]2
e i ks R N S(k,ω) (B.54)
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S(k,ω) = 2π

k

∣∣∣1− χe

ε

∣∣∣2
f̂eo

(ω
k

)
+ 2πZ

k

∣∣∣χe

ε

∣∣∣2
f̂i o

(ω
k

)
(B.55)

The dielectric function ε and the electric susceptibilities χs are defined as:

χs = 1

(λD k)2

(
ZsTe

Ti

)
w

(
ω

kvth,s

)
(B.56)

w(z0) = 1+ i
p
πz0e−z2

0 −2z0D+(z0) (B.57)

ε= 1+χe +χi (B.58)

The 1D normalized Maxwellian distribution is:

f̂s =
(

1

πv2
th,s

)1/2

exp(−v2/v2
th,s) (B.59)

vth,s =
√

2kbTs

ms
(B.60)

The scattering wave vector is:

k = ks −ki

k =
√

k2
i +k2

s −2kski cosθ
(B.61)

The scattering frequency is:

ω=ωs −ωi

ωs,i =
√

c2k2
i ,s +ω2

pe

(B.62)

ωpe =
(

4πne2

me

)1/2

(B.63)

When the electron fluid is non-stationary and moves with a velocity V, the scattered

frequency is Doppler shifted by V ·k. The scattered frequency is then:

ωs =
√

c2k2
s +ω2

pe +V ·k (B.64)
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