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Abstract

This thesis presents new methodologies that lie at the intersection of computational
statistics and computational dynamics. Stochastic differential equations (SDEs) are
used to model a variety of physical systems, and computing expectations over marginal
distributions of SDEs is important for the analysis of such systems. In particular,
quantifying the probabilities of rare events in SDEs—and elucidating the mechanisms
by which these events occur—are critical to the design and safe operation of engineered
systems.

In the first part of the thesis, we use data-driven tools for dynamical systems to
create methods for efficient rare event simulation in nonlinear SDEs. Our approach
exploits the relationship between the stochastic Koopman operator and the Kolmogorov
backward equation to derive optimal importance sampling and multilevel splitting
estimators. By expressing an indicator function over a rare event in terms of the
eigenfunctions of the stochastic Koopman operator, we directly approximate the
associated zero-variance importance sampling estimator. We also devise efficient multi-
level splitting schemes for SDEs by using the Koopman eigenfunctions to approximate
the optimal importance function.

Stochastic dynamical systems can also be tools for solving problems in computa-
tional statistics. Creative uses of SDEs have been instrumental in developing efficient
sampling methods for high-dimensional, non-Gaussian probability distributions. The
second part of the thesis develops new sampling methods that employ judiciously
constructed SDEs. We first present a framework for constructing controlled SDEs that
can sample from a large class of probability distributions with Gaussian tails, in finite
time. By choosing a linear SDE to be the uncontrolled reference system, we synthesize
feedback controllers that drive the sampling of such distributions. We identify and
approximate these controllers by solving only a static optimization problem.

Next, we develop novel approaches for accelerating the convergence of Langevin dy-
namics-based samplers. Reversible and irreversible perturbations of Langevin dynamics
can improve the performance of Langevin samplers. We present the geometry-informed
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irreversible perturbation (GiIrr) and show that it accelerates convergence of Rieman-
nian manifold Langevin dynamics more than standard irreversible perturbations. We
then propose the transport map unadjusted Langevin algorithm (TMULA), and show
that the use of transport enables rapid convergence of the unadjusted Langevin algo-
rithm for distributions that are not strongly log-concave. We also make connections
between transport maps and Riemannian manifold Langevin dynamics to elucidate
how transport maps accelerate convergence.
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Thesis Committee Member: Tuhin Sahai
Title: Technical Fellow, Raytheon Technologies Research Center

Thesis Committee Member: Themistoklis Sapsis
Title: Associate Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

1.1 Motivation

This thesis celebrates the interplay between computational statistics and computational

dynamics. Dynamical systems and their related computational methods are powerful

tools for describing and studying phenomena that evolve in time. State-of-the-

art methods for uncertainty quantification of dynamical systems employ tools from

computational statistics and are crucial for predictive modeling and decision making.

Concurrently, modern computational statistics methodology, such as Markov chain

Monte Carlo, make use of dynamical systems to sample from complex, high-dimensional

probability distributions. There are many areas of study that lie at the intersection

of computational statistics and dynamics, including as data assimilation, stochastic

optimal control, parameter inference for dynamical systems, nonlinear programming,

model reduction, interacting particle systems, and many others. In this thesis, we

focus on two topics: (1) rare event simulation for stochastic differential equations, and

(2) sampling probability distributions with SDEs.

1.1.1 Rare event simulation for stochastic dynamical systems

Our first major theme centers on a framework for developing efficient sampling methods

for computing the statistics of SDEs. In particular, we focus on estimating rare event
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probabilities. Understanding and quantitatively characterizing rare phenomena is

important to modeling, design, and decision making in a variety of science and

engineering disciplines. Examples include studying the failure of materials [75],

predicting the insolvency of financial institutions [46], understanding the occurrence

of rogue waves [30, 36], estimating reaction rates in computational chemistry [92, 121],

and assessing the reliability of aerospace systems [135]. Many of these examples

involve dynamical systems forced by random noise, which is captured in the form of

Brownian motion, and a key challenge is to compute the probabilities of noise-induced

rare events and the predominant mechanisms by which they occur. These rare events

are often associated with adverse outcomes and failures. Moreover, many complex

engineered systems are often available as a black-box, developing a purely data-driven

approach to quantify rare event probabilities and characterize their mechanisms is of

interest for these challenging engineering system.

Rare event simulation for SDEs is particularly challenging for two reasons. It first

requires a faithful model, i.e., one that exhibits the rare phenomena of interest with

sufficiently accurate probability. Second, a computationally efficient methodology

is needed to produce the rare event, i.e., to characterize the tails of the relevant

distributions. Performing the latter also elucidates the pathways or mechanisms

leading to a rare event.

For SDEs, expectations with respect to the induced path-space probability measures

are, generally, difficult to compute directly. Hence Monte Carlo methods are often

used to estimate these expectations instead. Simple Monte Carlo methods, while

robust, are inefficient for estimating expectations sensitive to rare events [122]. Since

rare events by definition occur infrequently, the variance of a simple Monte Carlo

estimator can be very large relative to the quantity of interest. Furthermore, for rare

events in SDEs that obey a large deviations principle, simple Monte Carlo methods

require an exponentially increasing number of samples to maintain a constant relative

error as the noise factor in the Brownian motion decreases linearly [37, 122]. For these

reasons, a vast body of literature has focused on devising sampling methods that

improve on simple Monte Carlo for rare event simulation [17].
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Importance sampling for SDEs constitutes a major class of Monte Carlo methods

for simulating rare events. Here, one simulates an alternative dynamical system whose

trajectories reach the rare event more often. Each of these samples is then re-weighted

according to its importance relative to the original SDE’s distribution. These weights

are given by the celebrated Girsanov theorem [85]. Multi-level splitting and subset

simulation comprise a different class of adaptive Monte Carlo methods for rare events

in which, over a series of iterations, one creates more unbiased, independent trajectories

that tend towards the rare event of interest. Splitting methods were first conceived

in [64], with more computationally efficient methods proposed recently [22, 127].

Subset simulation, on the other hand, was originally proposed in the engineering

reliability literature [5] and has been widely adopted and improved upon by the civil

engineering community [88]. While subset simulation can be used to estimate rare

event probabilities in dynamical systems, it is typically used to sample static models.

Links between subset simulation and sequential Monte Carlo are described in [20],

and multilevel splitting has been extended to static and non-Markovian models in [12].

Importance sampling for SDEs, while simple to implement and easily parallelizable, is

intrusive: in the context of SDEs, it requires altering the drift term of the model, which

may be impossible when the model is given as a black box. In contrast, multilevel

splitting methods are applicable in black-box settings and often more stable than their

importance sampling counterparts [17].

In the first part of this thesis, we propose a novel framework for rare event

simulation that uses tools originating from dynamical systems theory and combines

them with importance sampling (IS) and multilevel splitting (MS). Specifically, we

show that the stochastic Koopman eigenfunctions (sKO) associated with a given SDE

can be used to accurately and efficiently approximate zero-variance IS estimators, and

optimal MS estimators. The approach leverages recent developments in Koopman

operator approximation techniques and only assumes that the SDE is amenable to

numerical Koopman analysis.

The last decade has witnessed considerable interest in operator-theoretic and data-

driven computational approaches for analyzing and manipulating nonlinear dynamical
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systems. The Koopman operator is a linear mapping on the space of observables of a

given dynamical system [18, 68, 81, 83]. Its existence provides a global linearization

of the dynamics and enables spectral analysis for nonlinear systems. Moreover, the

discovery that data-driven methods for dynamical systems such as dynamic mode

decomposition (DMD) [106] (originally conceived in the fluid mechanics community)

can effectively approximate spectral objects of the Koopman operator [103] has led to

their further development and widespread application.

In nonlinear settings where the stochastic Koopman eigenfunctions cannot be

derived analytically, we use dynamic mode decomposition (DMD) methods to approx-

imate them numerically. There is no zero-variance estimator for multilevel splitting.

However, the optimal implementation of multilevel splitting, whose variance attains

the theoretical lower bound, is related to the solution of the KBE. Therefore, we

also study the use of approximate solutions of the KBE with sKO eigenfunctions for

multilevel splitting.

1.1.2 Stochastic differential equations for sampling

The second part of this thesis explores the use of stochastic differential equations for

sampling. A common problem in statistics and machine learning is that of computing

expectations with respect to complex probability distributions. These distributions

frequently arise as posterior distributions in Bayesian statistics. Bayesian inference is a

powerful framework for fusing observational data with prior knowledge to learn model

parameters. Computing expectations with respect to a target posterior distribution

arising from the Bayesian framework is often a challenging problem when the target

is highly non-Gaussian. To solve this problem, particularly in high dimensions, one

frequently resorts to sampling methods. Estimating these quantities efficiently via

Monte Carlo requires computationally efficient schemes for producing samples that

approximate the distribution. We explore two separate ways for using SDEs to solving

problems in Bayesian inference.

Our first approach re-interprets our framework for rare event simulation. We

develop a framework for constructing a family of controlled stochastic dynamical
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systems that can exactly sample from a class of probability distributions with Gaussian

tails on Rd. Recently the theory of controlled diffusion processes has been gaining

attention in statistics and machine learning. Given a reference stochastic differential

equation (SDE), an initial distribution, and a target distribution, one aims to find a

feedback control such that the marginal at some finite future time T is equal to the

target distribution. Finding the optimal feedback control enables exact sampling of

the target. This problem is also known as the Schrödinger bridge problem [107]. The

optimal control is known by different names in different communities, including the

Doob h-transform [38, 122] and the Föllmer drift [48, 120].

We present a special case of the approach when the reference system is a linear SDE,

and show that the optimal control can be expressed in terms of the eigenfunctions of

the reference system’s Markov generator. Relating these eigenfunctions to the target

distribution only requires solving a static optimization problem, instead of a dynamic

problem in the optimal control formulation. The resulting controlled (nonlinear) SDE

can produce samples from a broad class of target distributions, in parallel, and can be

used for importance sampling, or for approximate inference.

A different, but well established, class of sampling methods using dynamical systems

is based on the Langevin dynamics (LD), which uses the gradient of the log-target

density to specify a SDE whose invariant distribution is the target distribution of

interest. Long term averages over a single trajectory of the SDE can be then used to

estimate expectations of interest by appealing to the ergodicity of the stochastic process.

It is also known that certain perturbations to the LD can accelerate convergence of

the dynamics to the stationary distribution. In [95] the authors show that suitable

reversible and irreversible perturbations to diffusion processes can decrease the spectral

gap of the generator and decrease the asymptotic variance of the estimators. One widely

celebrated choice of reversible perturbation is the Riemannian manifold Langevin

dynamics (RMLD) [53], in which one defines a Riemannian metric to alter the way

distances and gradients are computed. The use of irreversible perturbations to

accelerate convergence has also been well studied in a variety of contexts and general

settings [61, 95, 96, 97]. By augmenting the drift of LD with a vector field that is
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orthogonal to the LD drift will leave the invariant density unchanged while accelerating

its convergence.

We propose a state-dependent irreversible perturbation of Riemannian manifold

Langevin dynamics that is informed by the geometry of the manifold. This departs from

existing literature, as the vector field of the resulting perturbation is not orthogonal

to the original drift term. We observe that this geometry-informed irreversible

perturbation accelerates convergence more than standard irreversible perturbations

and, if desired, can be used in combination with the SGLD algorithm to exploit the

computational savings of a stochastic gradient. Lastly, we explore how the transport

maps-based Langevin samplers accelerate convergence through the perspective of

reversible perturbations and through recent results on the convergence of unadjusted

Langevin algorithms.

1.2 Thesis contributions and outline

We present our contributions in the following chapters. The first part of the thesis

contains two chapters that establish a framework for efficient sampling for estimating

expectations of interest in SDEs based on the Koopman operator and its associated

numerical methods.

• Chapter 2 develops a way to construct efficient importance sampling estimators

for rare event simulation in nonlinear SDEs by using the Koopman operator.

Specifically, we propose using eigenfunctions of the stochastic Koopman operator

to approximate the Doob transform, which is a feedback controller, for an

observable of interest (e.g., associated with a rare event) which in turn yields an

approximation of the corresponding zero-variance importance sampling estimator.

In nonlinear settings where the stochastic Koopman eigenfunctions cannot be

derived analytically, we use dynamic mode decomposition (DMD) methods to

approximate them numerically. Numerical experiments demonstrate that even

coarse approximations of a few eigenfunctions, where the latter are built from

non-rare trajectories, can produce effective importance sampling schemes for
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rare events.

• Chapter 3 extends the framework described in Chapter 2 to more robust rare

event sampling schemes, specifically to multilevel splitting. In contrast to

importance sampling, multilevel splitting is a black-box approach to rare event

simulation that only requires sample trajectories of the model. Trajectories

are incentivized to move towards the rare event where favorable trajectories

are allowed to split. This approach requires a judicious partition of the state

space defined by level sets of an importance function (sometimes referred to as

the score function). We use the stochastic Koopman operator (sKO) and its

related numerical methods to approximate the optimal importance function for

splitting.

In the second part of the thesis, we present our contributions to efficient sampling

methods for probability distributions using stochastic differential equations. We first

study the construction of a class of controlled SDEs for sampling before considering

novel reversible and irreversible perturbations that accelerate the convergence of

Langevin dynamics-based sampling methods.

• In Chapter 4, we re-interpret the framework developed in Chapter 2 to create

an approach for constructing controlled stochastic differential equations that

exactly sample from a class of probability distributions with Gaussian tails.

Given a target distribution and a reference SDE, the Doob h-transform produces

a controlled stochastic process whose marginal at a finite time T will be equal

to the target distribution. Our method constructs a reference linear SDE and

uses the eigenfunctions of its associated Ornstein-Uhlenbeck (OU) operator to

approximate the Doob h-transform. The control is approximated by projecting

the ratio between the target density and the reference system’s time T marginal

onto the span of a finite set of OU eigenfunctions. This projection is performed

by minimizing the Kullback-Leibler (KL) divergence from the marginal produced

by the approximate control to the true target distribution. We relate our work

to the Schrödinger bridge problem.
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• In Chapter 5, we introduce a novel geometry-informed irreversible perturbation

that accelerates convergence of the Langevin algorithm for Bayesian computation.

Langevin dynamics (LD) are widely used in sampling high-dimensional, non-

Gaussian distributions whose densities are known up to a normalizing constant.

In particular, there is recent interest in the unadjusted Langevin algorithm

(ULA) in which a single realization of LD is used to estimate expectations with

respect to the target distribution. There exist perturbations to the Langevin

dynamics that preserve its invariant measure while accelerating its convergence.

Irreversible perturbations and reversible perturbations (such as Riemannian

manifold Langevin dynamics (RMLD)) have separately been shown to improve

the performance of Langevin samplers. We consider these two perturbations

simultaneously by presenting a novel form of irreversible perturbation for RMLD

that is informed by the underlying geometry. We demonstrate our approach on

posterior distributions arising from Bayesian logistic regression and independent

component analysis.

• In Chapter 6, we continue exploring perturbations for improving Langevin-based

samplers. When the target distribution is not strongly log-concave, ULA is

known to exhibit slow convergence. The use of transport maps have been

shown to accelerate the Metropolis-adjusted Langevin algorithm (MALA) where

the map creates non-Gaussian proposals and has been empirically shown to

accelerate convergence to the target distribution. We show that, under certain

conditions on the transport map and the target density, when a map is used

in conjunction with ULA, we can obtain geometric convergence of the output

process in the 2–Wasserstein distance even when the target distribution does not

satisfy the typical conditions for such rapid convergence. Moreover, we also show

that in the continuous-time setting, when a transport map is applied to LD, the

result is a RMLD with a metric that is defined by the transport map. Finally,

we make some connections between this approach and variational formulations

of Bayesian inference.
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In Appendix A, we study computing the eigenfunctions of the Ornstein–Uhlenbeck

(OU) operator, which is the stochastic Koopman operator for linear SDEs. The

computation of OU eigenfunctions supports the work in Chapters 2, 3, and 4. In

Appendix C, we also provide a brief note on methods for simulating stochastic partial

differential equations, which are used in Chapter 2.

1.2.1 Preprints

• Chapter 2 is based on work in [137], which is currently under review at the

Journal of Computational Physics.

• Chapter 5 is based on work in [136], which is currently under review at Statistics

and Computing.

• Appendix A is based on work in [138].
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Part I

Sampling methods for stochastic

dynamical systems

26



Chapter 2

A Koopman framework for

importance sampling and rare event

simulation

2.1 Introduction

In this chapter, we present a general framework for constructing Monte Carlo estimators

of rare event probabilities, and of other expectations associated with rare events,

in nonlinear stochastic differential equations (SDEs). In particular, we focus on

approximating the zero-variance importance sampling estimator using the stochastic

Koopman operator. By expressing the indicator function over a rare event in terms

of the system’s stochastic Koopman eigenfunctions, we can approximate the Doob

h-transform and obtain a lower variance estimator.

Intuitively, importance sampling for SDEs can be interpreted as a stochastic

optimal control problem. We want to find the most probable path that leads to the

system to end up in a rare event. There are many established approaches to importance

sampling for SDEs. For example, importance sampling have been further enhanced

by large deviations theory [37, 123]. These methods exploit the large deviations

principle as an alternative mechanism of characterizing rare events in dynamical
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systems, inform the implementation of splitting and importance sampling, and provide

theoretical guarantees on estimator efficiency [42, 122]. These methods also appear

in the literature as so-called instanton-based sampling methods, where minimizers of

the system’s large deviations rate function describe how to push the system towards

the rare event of interest [45, 79]. These enhancements are also related to variational

approaches to importance sampling, where the alternative SDE is posed as the solution

to a stochastic optimal control problem—which, in principle, can yield zero-variance

estimators [57, 56, 66, 139]. The drawbacks of these approaches are also well-noted.

Large deviations-based approaches for sampling are optimal in an asymptotic sense,

but counter-examples have been constructed to show that they can lead to larger

variance than applying direct Monte Carlo [54]. And the computational effort required

to solve stochastic optimal control problems can be untenable in high-dimensional

settings.

In this Chapter, we use the relationship between zero-variance sampling and the

Koopman operator to show that DMD methods can be integrated with importance

sampling to create new rare event simulation techniques. Our framework provides

a systematic approach with general applicability. For example, existing rare event

simulation techniques are often demonstrated on gradient systems, or on systems

with normal dynamics. Our approach is also applicable to non-gradient systems,

non-normal systems that display transient growth, and oscillatory dynamics. This

flexibility is critical for extending efficient dynamic rare event simulation to realistic

engineering problems [135].

A key feature of our approach is that we leverage the data-driven nature of Koopman

numerics to provide insight into rare events via simulation of non-rare trajectories.

The ability to resolve Koopman eigenfunctions near the rare event using non-rare

trajectories enables computation of a biasing that “pushes” importance sampling

trajectories into the rare event regions. We show that even coarse approximations of

the Koopman eigenfunctions using non-rare trajectories can produce good importance

sampling estimators for rare event simulation. While the training data do not need

trajectories that exhibit the exact rare trajectory we are trying to simulate, it is
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necessary to have training data that sufficiently covers the transition pathways to the

rare event. In theory, these trajectories can be long or short, but we have found that

long trajectories produce better approximation of the eigenfunctions. The method is

asymptotically exact in the sense that as one employs a larger number of Koopman

eigenfunctions, the variance of the corresponding importance sampling estimator tends

towards zero. We provide a non-asymptotic analysis that describes how, under certain

conditions, the second moment of the importance sampling estimator is bounded

by a term that depends on how well the Koopman eigenfunctions approximate the

observable of interest.

2.1.1 Problem setting and notation

Let {Xt}t∈[0,T ] be a time-homogeneous diffusion process evolving according to the

SDE, dXt = A(Xt) dt+ B(Xt) dWt

X0 = x,

(2.1)

where Xt is an element of Rd, A is a function from Rd to itself, B is a function from

Rd to the space of d × r real-valued matrices, and Wt is a standard r-dimensional

Brownian motion. To guarantee existence and uniqueness of a strong solution to the

SDE, we assume the drift vector and diffusion matrix are locally Lipschitz in space

[65]. We wish to estimate

ρ = E[f(XT )|X0 = x] =

∫
Rd
f(x)πT (x) dx, (2.2)

where f(x) is non-negative, and πT (x) is the probability density of the state at time

T . Note that if f(x) were an indicator function over some rare event of interest E,

then ρ would equal the probability of the state being in region E at time T . We also

assume that the system has an invariant distribution η∞.

In the next section, we review some theoretical tools for importance sampling in
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stochastic differential equations. In Section 2.3, we discuss the Koopman operator and

related numerical methods, and we present our framework for constructing importance

sampling estimators. In Section 2.4, we demonstrate the methodology on a range of

illustrative stochastic dynamical systems. We analyze the variance of the importance

sampling estimators produced by our methodology in Section 2.5. We discuss future

work in Section 2.6.

2.2 Rare event simulation for SDEs

We start with an overview of analytical tools for studying stochastic differential

equations, including the infinitesimal generator and the Kolmogorov equations. Much

of this discussion is based on Karatzas and Shreve [65], Øksendal [85], and Pavliotis

[90]. We also review importance sampling in the context of SDEs and describe related

approaches to rare event simulation based on stochastic optimal control and large

deviations theory.

2.2.1 Kolmogorov equations

Let Xt be defined by the SDE in (2.1). One of the primary tools for studying stochastic

processes is the infinitesimal generator defined as

Af = lim
t→0

E[f(Xt)|X0 = x]− f(x)

t
, (2.3)

for f ∈ DA, where DA is the set of functions for which the above limit exists for all

x ∈ Rd. For SDEs, a closed form expression of the limit involves the drift and diffusion

terms as follows,

Af = 〈A(x),∇f〉+ Tr
[
Q(x)∇2f

]
, (2.4)

=
d∑
i=1

Ai(x)
∂f

∂xi
+

d∑
i=1

d∑
j=1

Qij(x)
∂2f

∂xi∂xj
,
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where Q(x) = 1
2
B(x)B(x)∗ and ψ is a twice-continuously differentiable function on Rd.

The infinitesimal generator appears in the Kolmogorov equations, which are two PDEs

that describe the evolution of densities and statistics of a given SDE. The Kolmogorov

backward equation (KBE) describes the time-evolution of expectations of functions

of the state. Let Φ(t, x) = Et,x[f(XT )] := E[f(XT )|Xt = x] be defined on t ∈ [0, T ],

where T > 0. Then 
∂Φ

∂t
+AΦ = 0

Φ(T, x) = f(x).

(2.5)

The Kolmogorov forward equation (KFE), also known as the Fokker–Planck equation,

describes the evolution of the probability density function of the state. The equation

is found by considering the L2-adjoint of the infinitesimal generator. Let π(t, x) be

the probability density of Xt. Then
∂π

∂t
= A∗π(t, x)

π(0, x) = π0(x)

(2.6)

where the adjoint is

A∗π = −∇ · (A(x)π) + Tr
[
∇2(Q(x)π)

]
. (2.7)

Theoretically, expectations such as (2.2) can be found via a direct solution of the KBE.

The quantity of interest is simply an evaluation of the solution: ρ = Φ(0, x). However,

solving the KBE exactly is expensive and increasingly intractable as the dimension of

the state space grows. Furthermore, when one is interested in quantities such as rare

event probabilities, the required solution accuracy typically becomes prohibitive. For

this reason, we turn to sampling methods, in which multiple independent simulations

of an SDE are performed to estimate expectations through a sample average. While a

direct solution of the Kolmogorov equations may not be feasible, in what follows, we

show that these equations can be used to approximate zero-variance estimators.
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2.2.2 Importance sampling for SDEs

We now review some basic notions of Monte Carlo and importance sampling methods

for SDEs. Let P be the path-space measure induced by the SDE in (2.1). A simple

Monte Carlo method for estimating ρ involves generating M independent simulations

of the SDE, evaluating the function of interest f(x) at the end of each sample path,

and computing the sample average. We then have

ρ ≈ ρ̂ =
1

M

M∑
i=1

f(X
(i)
T ), (2.8)

where the samples X(i) are drawn independently from P. The efficiency of a Monte

Carlo estimator is typically evaluated by considering its variance and relative error

(also known as the coefficient of variation, i.e., the standard error divided by the

quantity of interest) [4]. They are, respectively,

V[ρ̂] =
1

M
Var[f(XT )], (2.9)

re =
1

ρ

√
V[ρ̂]. (2.10)

A good unbiased estimator should have low variance, but when estimating a small ρ

such as a rare event probability, relative error is the better metric. This is because

re can still be large if ρ is orders of magnitude smaller than Var[ρ̂]. In other words,

our goal is to ensure that the standard deviation of the estimator scales in proportion

with the probability of interest. The relative error per sample, re
√
M , is a useful

standardized measure of performance as it is independent of the sample size M [104].

The inefficiency of simple Monte Carlo methods is clear when used to estimate

rare event probabilities. Let f(x) = 1E(x) where E ⊂ Rd is a region of phase (or

observable) space visited infrequently. The variance and relative error of the estimator
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are,

Var[ρ̂] =
ρ− ρ2

M
≈ ρ

M
,

re ≈
1√
Mρ

.

We can see that the number of samples required to keep the relative error below 1 is

O(1/ρ). This task is particularly intractable when it is computationally expensive to

procure samples from the dynamical system. In simple Monte Carlo, the only way one

can reduce the variance of the estimator is by increasing the number of samples in

each estimate. Variance reduction methods pursue different mechanisms for reducing

the variance beyond simply increasing the number of samples.

One common variance reduction approach is importance sampling, which involves

drawing samples from an alternative probability measure, Q, that is absolutely con-

tinuous with respect the original probability distribution, such that the variance of

the resulting estimator is reduced. To account for the bias introduced when sampling

from the alternative probability distribution, each sample is weighted according its

relative importance with respect to the original measure P. In particular,

ρ̂IS =
1

M

M∑
i=1

f(X̃
(i)
T )

dP
dQ

(X̃(i)), (2.11)

where X̃(i) are drawn independently from Q. The variance of this estimator is

dependent on the product of the function f(x) and the likelihood ratio between P and

Q, and on the number of samples drawn:

Var[ρ̂IS] =
1

M
VarQ

[
f(X̃T )

dP
dQ

]
. (2.12)

Thus, designing a measure Q provides an additional mechanism to reduce the variance

of the sampling method. For SDE systems, the only admissible class of Q is induced

by another SDE system {X̃}t∈[0,T ] with the same diffusion term as the original SDE
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and a different drift term [85, 112]:

dX̃t =
[
A(X̃t) + B(X̃t)u(t, X̃t)

]
dt+ B(X̃t)dWt

X̃0 = x.

(2.13)

Here u(t, x) is called the biasing function. This function serves as a feedback controller

that guides the system such that the resulting importance sampling estimator has

lower variance. The likelihood ratio is now given by Girsanov’s theorem [85, 65]:

Z(X̃) ≡ dP
dQ

(X̃) = exp

(
−
∫ T

0

〈u(t, X̃t), dWt〉 −
1

2

∫ T

0

‖u(t, X̃t)‖2dt
)
. (2.14)

The task now is to choose u(t, x) such that the variance of the resulting importance

sampling estimator is smaller, or better yet, zero. Assuming that f(x) is twice-

continuously differentiable and strictly positive, there exists a choice of u(t, x) that

leads to a zero-variance importance sampling estimator. This choice is the celebrated

Doob h-transform [101, 105, 122].

Theorem 1 (Doob h-transform1). Let f ∈ C2 be strictly positive. Let Φ(t, x) =

Et,x[f(XT )] be the solution to 
∂Φ

∂t
+AΦ = 0,

Φ(T, x) = f(x).

(2.15)

Then using the biasing function

u(t, x) = B∗(x)∇ log Φ(t, x) (2.16)

1As written, Theorem 1 does not apply when f is an indicator function. This is an artifact of the
simple way we have chosen to express the result. It is straightforward to modify it by conditioning
on the event that XT enters a particular region; indeed, the Doob transform was originally derived
just for conditioned processes [101]. Also, our numerical experiments will mollify and positivize
the indicator function in constructing numerical approximations of the Doob transform, such that
Theorem 1 applies directly.
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in (2.13) will satisfy

f(X̃T ) exp

[
−
∫ T

0

〈u(t, X̃t), dWt〉 −
1

2

∫ T

0

‖u(t, X̃t)‖2dt
]

= Φ(0, x). (2.17)

While the Doob h-transform is a standard result [101, 105], we provide a proof of

the particular form presented in Theorem 1 to elucidate how it is important in the

construction of our importance sampling estimator.

Proof. We compute the stochastic integral

∫ T

0

〈u(t, X̃t), dWt〉.

Let g(t, x) = log Φ(t, x), and apply Itô’s formula:

dg =
∂

∂t
log Φ(t, X̃t)dt+ 〈∇ log Φ(t, X̃t), dX̃t〉+

1

2
Tr
[
∇2[log Φ(t, x)](dX̃t)(dX̃t)

∗
]

=
1

Φ

∂

∂t
Φ dt+

〈
1

Φ
∇Φ,A(X̃t) + BB∗

∇Φ

Φ

〉
dt+

〈
∇Φ

Φ
,B dWt

〉
+

1

2
Tr
[
BB∗

∇2Φ

Φ

]
dt− 1

2
Tr
[
BB∗

(∇Φ)(∇Φ)∗

Φ2

]
dt

=
1

Φ

(
∂

∂t
Φ + 〈∇Φ,A(X̃t)〉+

1

2
Tr
[
BB∗∇2Φ

])
dt+

1

2

〈
B∗∇Φ

Φ
,
B∗∇Φ

Φ

〉
dt

+

〈
∇Φ

Φ
,B dWt

〉
=

1

Φ

(
∂Φ

∂t
+AΦ

)
dt+

1

2
‖B∗∇ log Φ(t, X̃t)‖2 dt+ 〈B∗∇ log Φ(t, X̃t), dWt〉

=
1

2
‖u(t, X̃t)‖2dt+ 〈u(t, X̃t), dWt〉.

This implies that

∫ T

0

〈u(t, X̃t), dWt〉 = log Φ(T, x)− log Φ(0, x)− 1

2

∫ T

0

‖u(t, X̃t)‖2dt.
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Plugging this into (2.17), we have

f(X̃T ) exp

[
−
∫ T

0

〈u(t, X̃t), dWt〉 −
1

2

∫ T

0

‖u(s, X̃s)‖2ds
]

= f(X̃T ) exp
[
log Φ(0, x)− log Φ(T, X̃T )

]
= f(X̃T )

Φ(0, x)

f(X̃T )

= Φ(0, x).

Thus, the biasing leads to a zero variance estimator.

For more background on the Doob h-transform, we refer the reader to, e.g.,

[101, 105]. This choice of biasing results in a zero-variance estimator for ρ since

ρ = Φ(0, x). This result should not be surprising: having access to the exact solution

to the KBE enables construction of a Monte Carlo estimator with zero variance,

since an evaluation of the solution is, itself, a zero-variance estimator. Though this

relationship might seem tautological, it provides useful insights for devising efficient

rare event simulation techniques.

Previous approaches recast this problem in terms of optimal control. By defining a

new function U(t, x) = − log Φ(t, x), one can obtain a PDE for U(t, x) by performing a

change of variables on the KBE. The resulting PDE is known as a stochastic Hamilton–

Jacobi–Bellman (HJB) equation, which can be reformulated as a stochastic optimal

control problem. In [57], the authors opt to solve the stochastic optimal control

problem directly by using this formulation in conjunction with the Donsker–Varadhan

variational formula. One can further recast the problem in terms of the solution of a

system of forward-backward SDEs [66]. This approach also admits a cross-entropy

interpretation for importance sampling for SDEs [139].

A similar approach incorporates the theory of large deviations, specifically the

Freidlin–Wentzell theory for small noise diffusions [49]. Here, one considers a noise

parameter ε that scales the diffusion term, by replacing B(x) with
√
εB(x). Then

by considering the variable transformation U ε(t, x) = −ε log Φ(t, x) and sending ε

to zero, one obtains a Hamilton–Jacobi equation whose solution is related to the
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large deviations rate function of the system [122]. It was found that subsolutions

of this Hamilton–Jacobi equation [41, 42, 43], for diffusion processes on Rd and in

function space [104], result in provably asymptotically efficient estimators. However,

the drawback of this approach is that the subsolution of the Hamilton-Jacobi equation

must be “guessed,” which is not always straightforward. Note that exact solutions of

the resulting deterministic optimal control problem lead to strongly efficient estimators

for SDEs [122].

Our approach, described below in Section 2.3, will avoid both of the above refor-

mulations by directly computing approximate Doob transforms using approximate

solutions to the KBE. These solutions of the KBE will be expressed in terms of the

eigenfunctions of the stochastic Koopman operator. Our approach can also be related

to the work of [27], in which the authors combine trajectory data from molecular

dynamics simulations with nonlinear manifold learning techniques to inform the explo-

ration of rare regions of state space. However, their technique is restricted to gradient

systems for computational chemistry applications.

2.2.3 Related rare event problems

The problem posed in (2.2) is just one of many scenarios that are of interest in

rare event simulation. In this chapter, we only consider the problem of the state

being in some region of interest at some fixed future time T . Another common

problem is to compute the probability of entering some region, E, before another, F :

hence P(Xτ ∈ E), where τ = inf{t > 0 : Xt ∈ E ∪ F}. A variation of this problem

considers path-dependent quantities, which involve functionals of sample trajectories.

These problems are well-studied in the computational chemistry community, where

one seeks rare paths between long-lived molecular configurations [56, 92, 121]. This

quantity of interest is associated with the solution of a boundary value problem, and

its approximation can also be used for sampling. The application of data-driven

dynamical systems methodologies to this problem has been studied in [115].

Another quantity of interest is the probability of entering some set of interest

within a fixed finite time interval, i.e., P(τ ≤ T ) where τ = inf{t > 0 : Xt ∈ E}. This
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problem is associated with escaping from attracting sets of a dynamical system and is

well-studied in [41, 110]. In this case, asymptotically efficient importance sampling

estimators are designed by considering an initial-boundary value problem associated

with the KBE.

2.3 Importance sampling using the Koopman opera-

tor

We first review the deterministic and stochastic Koopman operators, and discuss how

they can be used to approximate expectations and probabilities. We then describe

how we will use the stochastic Koopman operator to construct importance sampling

schemes for SDEs.

2.3.1 The Koopman operator and its generator

A traditional approach to analyzing dynamical systems involves simulating the evo-

lution of states. The Koopman operator [68] provides an alternative perspective: it

represents the dynamical system in terms of the evolution of observables. The key

advantage is that the evolution of observables is linear even when the underlying

system is nonlinear, thus enabling spectral analysis of nonlinear systems [18].

Let xt be an autonomous dynamical system on Rd evolving according to ẋ = a(x).

Let F t be the flow map; that is, if x0 is the initial condition, then xt = F tx0. Let

f : Rd −→ R be an observable in some space of functions H. The Koopman operator

(KO) is defined as

Ktf(x) = (f ◦ F t)(x). (2.18)

It is trivial to show that the KO is linear even when the dynamical system is nonlinear.

This property allows one to study the eigenfunctions and eigenvalues of the operator.

A function φ(x) is a Koopman eigenfunction if it satisfies Ktφ(x) = eλtφ(x), where
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λ is the corresponding Koopman eigenvalue. In stochastic calculus, the stochastic

Koopman operator is known as the Markov semigroup operator of the SDE [90].

The stochastic Koopman operator (sKO) is defined in a similar fashion [31]. We

focus our attention on random dynamical systems that evolve according to SDEs as

defined in (2.1). Let {Xt}t∈[0,T ] be a stochastic process and f be a twice continuously

differentiable real-valued observable, respectively. Then the stochastic Koopman

operator is defined as,

Ktf(x) = E[f(Xt)|x0 = x] = E0,x[f(Xt)], (2.19)

where the expectation is taken over the distribution of the state of the stochastic

process at time t. Analogous to the deterministic setting, the sKO is also linear,

leading to the spectral analysis of nonlinear SDEs. The evolution of the expectation

of the sKO’s eigenfunctions at future times is simple to determine. If φ(x) is an

eigenfunction of the sKO, then E[φ(Xt)|X0 = x] = eλtφ(x). Thus, the time evolution

of certain observables of the dynamical system can be determined computationally.

2.3.2 Approximating expectations and probabilities

Assuming that the sKO eigenfunctions exist and form a basis for a suitable function

space, expectations and probabilities associated with an SDE can, in principle, be

calculated from all the eigenfunctions. Specifically, we can write the expectation of an

observable at some fixed time in terms of the expectations of the sKO eigenfunctions,

by first expressing the observable as a linear combination of these eigenfunctions.2

A finite collection of eigenfunctions can thus provide an approximation to the

expectations and probabilities of interest. Let f represent some observable of interest
2For SDEs that admit an invariant measure and whose generators are compact and self-adjoint,

the spectral theorem guarantees the existence of eigenvalues and a complete orthonormal set in
L2(η∞), where η∞ is the invariant measure. A frequently studied class of systems that admits a
complete set of eigenfunctions are reversible diffusions. One example of a reversible diffusion occurs
when the drift term is the gradient of a potential function and the diffusion matrix is the identity. In
these cases, the solutions to the Kolmogorov equations can be found via eigenfunction expansions.
See [90] for further details. Irreversible OU processes with invariant measure ν have also been shown
to admit a complete basis of eigenfunctions on Lp(ν) for p > 1 [82].
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and {φi(x)}Ni=1 be a collection of N eigenfunctions of the sKO with corresponding

eigenvalues {λi}Ni=1. Approximating the observable in terms of the eigenfunctions gives

f(x) ≈
N∑
i=1

fiφi(x), (2.20)

and hence,

E[f(Xt)|X0 = x] ≈
N∑
i=1

fi E0,x[φi(Xt)], (2.21)

=
N∑
i=1

fiKtφi(x)

=
N∑
i=1

fie
λitφi(x).

For rare event probabilities, it suffices to replace f with an indicator function over

the rare set of interest; that is, to compute P(XT ∈ E|X0 = x), one would choose

f(x) = 1E(x). In general, making this approximation accurate may require accurately

computing many sKO eigenfunctions, which may not be practical in most settings.

Instead we can combine this idea with importance sampling, as follows.

The sKO eigenfunctions can be used to create approximate solutions to the

Kolmogorov backward equation. For continuous-time autonomous dynamical systems,

the set of stochastic Koopman operators {Kt}t∈[0,∞) form a one parameter semigroup

indexed by time. All elements of the semigroup share the same eigenfunctions,

with varying eigenvalues depending on their parameter value. The generator of the

semigroup is identically the infinitesimal generator of the SDE. That is, the generator

of the sKO semigroup is exactly the evolution operator of the KBE. While this

connection has been studied in stochastic analysis since the time of Kolmogorov, this

connection is made most explicit in [31].

With this knowledge, we can construct importance sampling estimators for nonlin-

ear SDEs. Observe that (2.21) provides an approximation to the quantity of interest

in (2.2). Rather than using it directly to estimate the probability of the rare event,
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we use it to approximate the Doob transform. Observe that

Φ̃(t, x) =
N∑
i=1

fie
λi(T−t)φi(x), (2.22)

is an approximate solution to the KBE in (2.5). Then we can use the approximate

Doob transform,

ũ(t, x) = B(x)∗
∑N

i=1 fie
λi(T−t)∇φi(x)∑N

i=1 fie
λi(T−t)φi(x)

, (2.23)

to construct a new importance sampling scheme via (2.13) and (2.14). Intuitively, if

Φ̃ is a good approximation of the true solution, then the approximate Doob transform

will be a good approximation to the true Doob transform, with the guarantee that if

there exists a complete set of eigenfunctions, then the estimator will have zero variance

as N →∞.

In practice, this framework offers considerable flexibility. While (2.21) provides an

approximation to the quantity of interest, the errors introduced by truncation, and

any additional errors resulting from numerical approximations of the eigenfunctions

themselves, cannot easily be characterized. Instead, using the approximation within

the Doob transform allows us to resolve these errors through Monte Carlo simulation.

Our numerical experiments will demonstrate that even crude approximations of a few

sKO eigenfunctions, where the latter are built from non-rare trajectories, can be used

to build effective importance sampling methods for rare event probabilities. Moreover,

the dynamics of the controlled SDE system (2.13) naturally reveal the most likely

paths to the rare event.

Next we discuss numerical techniques for approximating the sKO eigenfunctions.

2.3.3 Dynamic mode decomposition methods

Dynamic mode decomposition (DMD) methods are a class of data-driven methods that

can approximate eigenvalues and eigenfunctions of a (stochastic) dynamical system’s

(stochastic) Koopman operator. The original DMD method was presented in [106]
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as means of model reduction for complex fluid flows. Low-dimensional behavior was

extracted from time series data comprising snapshots of high-fidelity fluid dynamics

simulations. The connection between DMD and the spectral objects of the Koopman

operator was made clear by [103, 118], and there has since been considerable interest

in developing more effective and efficient DMD methodologies and variants.

DMD methodologies typically use only sample trajectories of the system to ap-

proximate the Koopman eigenvalues and eigenfunctions, by indirectly approximating

the infinitesimal generator [31, 133]. To avoid introducing errors due to these ap-

proximations of the generator, we use the analytical form of the SDE, which in turn

provides access to the exact form of the generator of the sKO semigroup. In particular,

we approximate Koopman eigenfunctions and eigenvalues using a recently developed

variant of DMD called infinitesimal generator extended dynamic mode decomposition

(gEDMD) [67]. The approach is based on using the stochastic Koopman generator in

(2.3) directly. We summarize the main steps in the approach here.

Fix a set of test points {xi}mi=1 drawn from a probability measure µ and a set of

twice continuously differentiable basis functions {ψk(x)}nk=1.3 Suppose the stochastic

process {Xt} evolves according to (2.1). The main idea is to project the action of

the Koopman generator onto the basis functions. Following the notation of [67], let

ψ(x) = [ψ1(x), . . . , ψn(x)]T , define dψk(x) := (Aψk)(x), and define

dΨX =


dψ1(x1) · · · dψ1(xm)

... . . . ...

dψn(x1) · · · dψn(xm)

 ΨX =


ψ1(x1) · · · ψ1(xm)

... . . . ...

ψn(x1) · · · ψn(xm)

. (2.24)

Let K be the finite dimensional representation of A. The task is to find the matrix

K ∈ Rn×n such that the residual ‖dΨX −KΨX‖F is minimized, where ‖ · ‖F is the

Frobenius norm. Each column of K is the solution to a least-squares problem, and it

can be shown that K = dΨXΨ+
X , where

+ denotes the pseudoinverse. Furthermore,

[67] shows that as the number of test points m→∞, this DMD method converges to a
3In our numerical experiments, we find that collecting test points from sample trajectories tends

to produce better results (when validated on separate testing data) than prescribing some arbitrary
measure µ.
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Galerkin projection onto the span of the basis functions with respect to µ. Specifically,

it is shown that,

K = dΨXΨ+
X = (dΨXΨT

X)(ΨXΨT
X)+ = ÂĜ+, (2.25)

where

Â =
1

m

m∑
i=1

dψ(xi)ψ(xi)
T , Ĝ =

1

m

m∑
i=1

ψ(xi)ψ(xi)
T . (2.26)

And as the number of test points goes to infinity,

lim
m→∞

Âij =

∫
(Aψi)(x)ψj(x) dµ, lim

m→∞
Ĝij =

∫
ψi(x)ψj(x) dµ. (2.27)

The quality of the approximated eigenfunctions and eigenvalues will depend on

the choice of basis functions and test point measure µ. We discuss our choices of

basis functions and µ within the numerical examples of Section 2.4.3 for nonlinear

stochastic systems; there, we also describe how we validate the resulting eigenfunction

approximations. We summarize gEDMD in Algorithm 1.

Algorithm 1: Infinitesimal generator extended dynamic mode decomposition
(gEDMD)

Input: SDE dXt = A(Xt)dt+ B(Xt)dWt, Basis functions {ψj(x)}nj=1, measure µ
Output: Stochastic Koopman eigenfunctions {φi(x)} and eigenvalues {λi}
1: Obtain test points {xi}mi=1 from measure µ
2: Evaluate {ψj(x)}nj=1 and {Aψj(x)}nj=1 at the test points
3: Form matrices Â, Ĝ, and K in (2.25) and (2.26)
4: Compute eigenvalues {λi}ni=1 and eigenvectors of {vi}ni=1 of K
5: Eigenfunctions are φi(x) = vTi ψ(x).

Lastly, we discuss the potential for using other DMD methods. Our primary reason

for selecting generator EDMD is that we have direct access to the generator, and would

like to exploit it. Other extended dynamic mode decomposition (EDMD) methods

could also be applicable [133]. A drawback of EDMD and its variants, however, is

that they require a judiciously chosen basis, which can be difficult to devise in the
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purely data-driven setting. There are methods such as (stochastic) Hankel DMD

[3, 31] that do not require a dictionary of functions, and instead use delay embedding

to generate a suitable dictionary. While such methods can accurately approximate

the eigenfunctions at the test points, evaluating gradients of the eigenfunctions is

more difficult. For our importance sampling approach, we need the ability to evaluate

the gradient of the eigenfunctions cheaply and at a variety of non-test input points.

Evaluating the gradients of Hankel DMD eigenfunction approximations is cumbersome,

as it either requires interpolation or the solution of adjoint equations.

2.3.4 Approximating observables by eigenfunctions

Given a finite collection of sKO eigenfunctions, we can approximate solutions to the

KBE, and hence the Doob transform, without having to solve the stochastic optimal

control problems associated with existing rare event sampling methods. Computing

these sKO eigenfunctions, as described in the previous section, is the first numerical

challenge of our approach. The second challenge is to approximate the observable

f as a linear combination of the eigenfunctions. We tackle this very simply, using

linear regression with a least-squares objective. One may wonder if a projection of the

indicator over the eigenfunctions would produce better results.

Formulating this regression problem precisely, and ensuring that the results can

be used to define an appropriate biasing function via (2.23), requires resolving two

issues. First is the choice of regression points. We construct the regression problem

using the same point set used to approximate the sKO eigenfunctions, as described

in the previous subsection. For rare event simulation, i.e., f(x) = 1E(x), properly

representing the indicator function demands that some regression points lie inside the

event of interest E. In our approach, we simulate many trajectories of the original

system with different initial conditions throughout the domain and then subsample

each trajectory to generate the regression (and EDMD) points. We assume that the

user knows where the rare event E lies in state space, but has little idea how the

system reaches it. To ensure that we have regression points inside E, we begin many

of the sample trajectories inside the event of interest. In our numerical experiments,
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for instance, the initial conditions are uniformly spaced over some subset of the state

space that contains a portion of the rare event and the initial condition x. (Further

details are given in Section 2.4.)

Now suppose that {φi}Ni=1 are the computed sKO eigenfunctions, and let {xj}mj=1

denote the regression points. Let f = (f1, . . . , fN) ∈ RN be the expansion coefficients

in (2.20), F ∈ Rm be evaluations of f at the regression points, and C ∈ Rm×N be the

design matrix with Cji = φi(xj). We then solve the least-squares problem,

min
f∈RN
‖F−Cf‖2

2 . (2.28)

Next, recall that the Doob transform requires the approximate KBE solution (2.22)

to be strictly positive. This property is not guaranteed by linear regression onto the

eigenfunctions. One could add positivity constraints at the regression points to (2.28),

but instead we correct “afterwards” by adding a constant to the approximate KBE

solution produced by the regression. This correction does not impact the consistency of

the sampling approach, because the constant function is always an sKO eigenfunction.

The value of the approximated observable f̃(x) =
∑N

i=1 fiφi(x) at each of the regression

points can be found by computing Cf . Assuming that the regression points sufficiently

sample the relevant parts of the state space, we simply take the minimum of these

values, denoted by −ε, and replace the coefficient f1 of the constant sKO eigenfunction

with f1 + max(ε, 0).

It is important to note that adding a positive constant to f̃ will not affect the

direction of the biasing function ũ(t, x). The magnitude of ũ will be diminished,

however, since adding a constant increases the magnitude of the denominator in (2.23).

This correction may thus cause the biasing to be too small to push the state into the

rare event. To address this issue, we scale the biasing function by a multiplicative factor

c ≥ 1, to ensure that a sufficient fraction of trajectories reach the rare event when

performing importance sampling; our final biasing is thus ũ(t, x) = cB(x)∗∇ log Φ̃(t, x).

In practice, we adjust c after finding the Doob transform, by simulating small batches

of the controlled system with different c values and choosing a value such that a
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sufficient fraction of samples (e.g., 0.2-0.6) reach the rare event. If c is chosen too

small, not many samples will reach the rare event and the resulting estimator will

have a large variance. If c is chosen too large, then too many samples will be pushed

deeply into the rare event, but the resulting weights will be small. Since the estimator

is unbiased, this implies that there will be at least one sample with a very large weight,

which again implies that the estimator will have a large variance. We have observed

that when the Doob transform is well approximated, the best factor c is close to one,

meaning that essentially no multiplicative correction is needed. In Section 2.4.1, we

observe the impact of c, and justify our procedure for choosing its value, through an

example.

Our approach is summarized in Algorithm 2. In the next section, we provide

further details on our implementation of the regression method and explore how the

numerical choices above affect the performance of importance sampling.

Algorithm 2: Approximating the Doob transform.
Input: SDE dXt = A(Xt)dt+ B(Xt)dWt and observable f(x)
Output: Approximate Doob transform ũ(t, x)

1: Generate test points {xj}mj=1 from sample trajectories with different initial conditions
2: Apply generator EDMD (Algorithm 1) to obtain sKO eigenfunctions {φi(x)}Ni=1 and

eigenvalues {λi}Ni=1. Alternatively, for linear systems, OU eigenfunctions are computed
exactly.

3: Approximate f(x) ≈ f̃(x) =
∑N

i=1 fiφi(x) via regression
4: If necessary, increase f1 so that f̃(xj) > 0 for all j.
5: Approximate solution to KBE is Φ̃(t, x) =

∑N
i=1 fie

λi(T−t)φi(x)
6: Approximate Doob transform (biasing) is ũ(t, x) = cB(x)∗∇ log Φ̃(t, x). Choose c such

that a sufficient number of trajectories reach the rare event.

2.4 Numerical examples

We demonstrate our framework on a series of linear and nonlinear stochastic dynamical

systems. The impact of numerical parameters used to construct the biasing is first

explored through a simple example involving a one-dimensional Ornstein–Uhlenbeck

(OU) process. We then demonstrate the generality of our approach for linear dynamical

systems with additive noise, by applying it to a non-normal linear SDE, a noisy
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Brownian oscillator, and the stochastic advection-diffusion equation (which is an

infinite-dimensional system). We then turn to several nonlinear SDEs, where we show

how the approach enables escape from different types of attractors.

The stochastic ODE systems are integrated numerically using a stochastic Runge–

Kutta scheme [105, 102]. The stochastic PDE system is integrated using exponential

Euler methods [62]. Since our importance sampling is unbiased, it suffices to report

the variance of the importance sampling weight as seen in (2.12). Without loss of

generality, we will also report the relative error defined in (2.10) with M = 1, i.e., the

relative error per sample.

2.4.1 Illustrative one-dimensional SDE

We first consider a simple one-dimensional OU process to illustrate our approach and

to highlight numerical challenges that occur in more complex examples as well. Let

Xt ∈ R evolve according to

dXt = −Xt dt+
√

2 dWt,

X0 = 0.
(2.29)

Our goal is to estimate ρ = P(XT ≥ 2|X0 = 0) = E[1x>2(XT )|X0 = 0], where T = 1.

For this problem, the marginal density at time T can be derived analytically and the

exact value of ρ (to five digits) is 1.5745× 10−2.

The infinitesimal generator of the system, which is the same as the stochastic

Koopman generator, is

Aψ = −xψ′ + ψ′′ (2.30)

and the associated eigenvalue problem is known as the Hermite differential equation,

whose solutions can be found in closed form. The eigenfunctions are the probabilists’

Hermite polynomials φn(x) = Hen(x) with eigenvalues λn = −n for n ∈ N. We use

least squares regression to find the expansion coefficients in (2.20). In this case, the
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eigenfunctions are orthogonal with respect to the standard Gaussian distribution,

which implies that an optimal approximation of the indicator function f(x) = 1x>2(x)

in a weighted L2(ν) (where ν is the standard Gaussian measure) sense could be

found by integrating the product of the indicator and an eigenfunction over the

standard Gaussian measure. More generally, if the diffusion is reversible, then its

eigenfunctions will be orthogonal with respect to the invariant distribution of the

system [90]. However, this approach is impractical for higher-dimensional systems,

as it would require computing several high dimensional integrals, each of which is

sensitive to the rare event. Therefore, to keep this example consistent with the results

of the more complicated systems, we perform regression as described in Section 2.3.4.

We perform our regression with test points drawn from a distribution with more

probability mass in the rare event than the invariant distribution. Specifically, we

draw m = 50 independent samples xi ∼ N (0, 22), where roughly 15% of points fall

inside the region of interest. To mitigate the Gibbs phenomenon, we use a mollified

version of the indicator in the regression problem, f(x) = 1
2
(1 + tanh(3(x− 2))). The

resulting approximations, for polynomial degrees p = N − 1 = 1, 2, 11, 21, are plotted

in Figure 2-1a. Notice that least-squares regression often leads to the approximating

function not being strictly positive over the domain. As explained in Section 2.3.4, we

then add a constant to the approximation such that it is strictly positive. We show

the resulting approximations of the indicator function in Figure 2-1b.

Now we use the approximated observable f̃ to build an approximate Doob transform

(2.23) and perform importance sampling via (2.13) and (2.14). To account for a

diminished biasing magnitude due to positivization, as discussed in Section 2.3.4, we

multiply the biasing function by a factor c ≥ 1 to ensure that a sufficient number of

trajectories reach the rare event. Below, we will explore how the choice of c impacts

the performance of the importance sampling estimator.

First, Figure 2-2 shows the time-T marginal distributions of the biased and unbi-

ased systems, along with the optimal (zero-variance) importance sampling distribution

for the expectation of interest. Notice that as the number of eigenfunctions increases,

the shape of the histogram tends towards the zero-variance importance sampling
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(a) Without positivity constraint. (b) With positivity constraint.

Figure 2-1: Approximating the indicator function.

density. Table 2.1 reports the variance and relative error per sample of the importance

sampling estimators resulting from each approximation of f . In this simple example,

we see that increasing the number of basis functions does not meaningfully increase

the efficiency of the estimator. This is likely because increasing the polynomial degree

of the approximation leads to more local minima and maxima, causing some sample

trajectories to be driven away from the rare event of interest. On the other hand,

this result demonstrates how even a small number of eigenfunctions can significantly

improve the efficiency of importance sampling. For instance, using just two eigen-

functions results in the variance being reduced by a factor of 20 compared to simple

Monte Carlo.

Variance Relative error

Monte Carlo 1.62× 10−2 8.07

IS p = 1 6.89× 10−4 1.67

IS p = 2 7.62× 10−4 1.75

IS p = 11 5.56× 10−4 1.50

IS p = 21 2.84× 10−4 1.07

ρtrue = 1.57× 10−2

Table 2.1: One-dimensional OU example: IS estimator variance with increasing
polynomial degree p. The multiplier c and offset ε are tuned.
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Figure 2-2: Sample distribution at time T = 1 for the one-dimensional OU example.
Blue curve is the optimal importance sampling density.
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Ideally, the multiplier c should be chosen so that the variance of resulting importance

sampling estimator is as small as possible. In Table 2.2 we demonstrate the impact of

c on this variance, fixing p = 1. The variance of the estimator initially decreases with

increasing c, up to a threshold beyond which the performance degrades. Intuitively,

too small a multiplier results in a larger variance, as too few samples reach the rare

event. On the other hand, biasing with a very large multiplier leads to many samples

deep in the tails. This implies that the most of resulting weights (2.14) will be small.

Since the estimator is unbiased, however, a few samples will have very large weights,

leading to a large estimator variance overall. In the following numerical examples, we

choose c such that roughly 50% of the resulting samples enter the rare event; this rule

of thumb is justified by the trends observed in Table 2.2. If, however, most of the

weights resulting from a given value of c are very small, and certainly if c is so large

such that the relative error is larger than that of simple Monte Carlo, then the value

of c should be reduced so that trajectories are not pushed as deeply into the tails.

Variance Relative error Proportion in rare event

Monte Carlo 1.62× 10−2 8.07 0.0157

IS c = 1 6.29× 10−3 5.05 0.0432

IS c = 2 2.69× 10−3 3.31 0.0912

IS c = 4 8.76× 10−4 1.89 0.284

IS c = 6 7.88× 10−4 1.79 0.558

IS c = 8 4.27× 10−3 4.16 0.789

IS c = 16 3.64× 10−1 38.4 0.999

ρtrue = 1.57× 10−2

Table 2.2: One-dimensional OU example: impact of the multiplier on importance
sampling performance, with fixed p = 1. Rightmost column reports the proportion of
sample trajectories terminating in the rare event region.
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2.4.2 Linear examples

We now consider linear SDEs of the form,

dXt = AXt dt+ B dWt, (2.31)

where A ∈ Rd×d is diagonalizable, has eigenvalues {−σi}di=1 with strictly negative real

parts, and right and left unit eigenvectors denoted by {ei}di=1 and {wi}di=1, respectively.

Here B ∈ Rd×r and Wt ∈ Rr is an r-dimensional Brownian motion. We also assume

that the left eigenvectors of A are not in the null space of B.

For linear stochastic dynamical systems, the sKO eigenfunctions can be found

exactly. The generator of the sKO semigroup for linear SDEs is known as the Ornstein–

Uhlenbeck (OU) operator. In was shown in [82] that, under mild conditions, the

OU operator has a discrete spectrum in Lp(ν), where ν is the stationary measure of

the process. Furthermore, [82] shows that the eigenfunctions are complete in Lp(ν)

for p ≥ 2, they have a polynomial structure, and the eigenvalues and eigenfunctions

are the same for all p. Computing the eigenfunctions, however, presents a separate

challenge. It is well known that if the OU operator is self-adjoint, which is the case

if A and B are symmetric and commute, then the eigenfunctions are the tensorized

Hermite polynomials [90],

φn(x) =
d∏

k=1

Heni

( √
2σi

‖B∗ei‖
〈x, ei〉

)
. (2.32)

If A is normal with only complex eigenvalues, and B commutes with A, then the eigen-

functions are a tensor product of Hermite-Laguerre-Itô polynomials, first noted in [24].

Otherwise, one has to consider numerical methods for computing the eigenfunctions

[67, 71, 138].
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Non-normal dynamics

We begin with a two-dimensional non-normal system, where

A =

−1 0

1 −0.3

, B = 0.1I. (2.33)

The inner product of the two eigenvectors of A is 0.8192, which reflects the degree of

non-normality of the linear system. The eigenvalues are σ1 = −0.3 and σ2 = −1, with

left eigenvectors [0.8192, 0.5735]T and [1, 0]T , respectively. We consider the problem of

escaping from a ball of radius L at a fixed finite time T ,

ρ = P[‖XT‖≥ L |X0 = 0], (2.34)

where T = 10, L = 0.75. This is a problem of escaping from an attractor, which is

well-studied in the computational chemistry literature. Methods such as transition

path theory [121] and the string method [130] characterize the most likely pathways

for trajectories to transition between metastable states. Related methods such as the

gentlest ascent dynamics [131] find transition paths by pushing the system along the

direction of the most slowly decaying right eigenvector of the Jacobian at the stable

point. In a separate effort, [104] justifies using most slowly decaying right eigenvector

to construct efficient importance sampling estimators for linear stochastic PDEs, in

the presence of a suitable spectral gap. Yet these methods are typically restricted

to gradient systems (noisy diffusions on a potential energy surface) or self-adjoint

linear systems. Using the Koopman approach, we will demonstrate below that biasing

a non-normal linear system along the left eigenvector that corresponds to the most

slowly decaying mode leads to a significantly better importance sampling estimator.

For the system in (2.33), one can easily check that the first six eigenfunctions,

ordered according to the magnitudes of the eigenvalues and with total polynomial
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degree up to two, are

φ0(x) = 1, λ0 = 0

φ1(x) =
√

200σ1〈x,w1〉 λ1 = −0.3

φ2(x) =
√

200σ2〈x,w2〉 λ2 = −1

φ3(x) = 200σ1〈x,w1〉2 − 1 λ3 = −0.6

φ4(x) = 200
√
σ1σ2〈x,w1〉〈x,w2〉 − 2

√
σ1σ2

σ1 + σ2

〈w1, w2〉 λ4 = −1.3

φ5(x) = 200σ2〈x,w2〉2 − 1 λ5 = −2

where w1 and w2 are left eigenvectors of A. The function of interest is an indicator

on the ball of radius 0.75 centered at the origin, which is projected onto the set of

eigenfunctions. Since the indicator is an even function along the direction of any

solitary left eigenvector, we can omit eigenfunctions with odd polynomial degree prior

to projection. Thus, the indicator function over the ball is projected onto the span of

{φ0, φ3, φ4, φ5}.

We plot the eigenfunctions in Figure 2-3 and highlight the left eigenvector directions

in red. To generate the regression points that are used to approximate the indicator

function as a linear combination of eigenfunctions, we simulate 121 independent trajec-

tories of length T , beginning with uniformly spaced initial conditions on [−0.8, 0.8]2.

The state is extracted at time intervals of ∆t = 0.02, and the resulting 60621 points

are shown in Figure 2-3. In this example we found

Φ(t, x) = 0.035 + 0.0342φ3(x)eλ3(T−t) − 0.0323φ4(x)eλ4(T−t) + 0.0092φ5(x)eλ5(T−t)

(2.35)

with multiplicative factor c = 7. Figure 2-4 then shows the vector fields produced by

the resulting biasing function at t ∈ {5, 8, 9.9}. Notice that the biasing pushes in the

direction of the slowest-decaying left eigenvector for most of the simulation period

[0, T ], until the end of the interval, when T − t becomes small and the biasing (2.23)

begins to push in all directions away from the attracting point. In Figure 2-5, we
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show sample trajectories of the unbiased and biased systems. Notice that the exit

directions do not generally align with any eigenvector directions. Performance of the

importance sampling estimator is summarized in Table 2.3, where we observe that the

variance is reduced by a factor of over 6000. Figure 2-6 shows the histogram of the

norm of the state at time T for simple Monte Carlo and importance sampling. Notice

also that far more samples reach the rare event when importance sampling is applied.

To show that method works well with larger values of T , we also consider the

case where T = 50 and apply the same biasing scheme, i.e., using (2.35) but with the

new T value. For this case, the estimator performs similarly well and we see that the

variance is reduced by a factor of over 3000. The results are summarized in Table 2.4.

The quality is maintained mainly due to the nature of the problem we are solving. We

only consider the probability that the state is in the rare event at a particular time

T , rather than being in the event at any time before T . This means that the biasing

function need not be very large until close to time T . This is reflected in the form of

the Doob transform—the biasing function is initially small, but grows exponentially

as t approaches T .

The effectiveness of biasing in the direction of the slowest-decaying left eigenvector

can be explained intuitively by considering the phase portrait of a deterministic

non-normal linear dynamical system. In Figure 2-7, we plot trajectories of a highly

non-normal stable linear system with initial conditions on the unit circle. We also plot

the left eigenvector with the least negative eigenvalue. First, note that there are initial

conditions for which the norm of the state initially grows before decaying towards

zero; this is a hallmark of highly non-normal systems. Second, notice that pushing

outwards in the direction of the left eigenvector naturally exploits the system’s transient

growth to move the state even further from the attracting point at the origin. In

non-normal systems, left and right eigenvectors corresponding to different eigenvalues

are orthogonal. Therefore, the slowest-decaying left eigenvector is orthogonal to the

(fast-decaying) manifold spanned by all but the slowest-decaying right eigenvector.

When pushing in the direction of the left eigenvector, trajectories are driven away

from the attracting point by the fast-decaying manifold of the dynamical system. The
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Figure 2-3: Left: Eigenfunctions of the non-normal SDE. Red vectors illustrate the
left eigenvectors of A. Right: regression points generated from sample trajectories of
the unbiased system.

Figure 2-4: Vector fields of the biasing for the non-normal linear system at different
times. Red vectors illustrate the left eigenvectors of A. Note that the lengths of the
vectors for a given time are plotted relative to each other and are not comparable for
different times.

left eigenvector direction thus harnesses the system’s underlying dynamics to reach

the rare event region with the least biasing effort.

Variance Relative error

Monte Carlo 1.64× 10−5 246.8

Importance sampling 2.72× 10−9 3.18

ρtrue = 1.64× 10−5

Table 2.3: Importance sampling performance for the SDE with non-normal dynamics.
Here, T = 10.
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Figure 2-5: Samples of the nominal and biased trajectories of the non-normal linear
system. Red circle denotes the boundary of the rare event.

Figure 2-6: Distribution of the norm of XT for simple Monte Carlo and importance
sampling of the linear non-normal system. Red line denotes the boundary of the rare
event region.
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Figure 2-7: Example phase portrait of a highly non-normal system. The red vector
points in the direction of the left eigenvector with the least negative eigenvalue. Notice
that initial conditions that lie on the line defined by this eigenvector will initially
experience transient growth before decaying to the origin.

Variance Relative error

Monte Carlo 1.74× 10−5 239.6

Importance sampling 5.60× 10−9 4.30

ρtrue = 1.74× 10−5

Table 2.4: Importance sampling performance for the SDE with non-normal dynamics.
Here, T = 50.

Stochastically-forced damped harmonic oscillator

Next we consider a damped harmonic oscillator forced by Brownian motion:

ẍ+ 2ζω0ẋ+ ω2
0x = Ẇt

x(0) = x0, ẋ(0) = 0 .
(2.36)

This example will show that our framework works well with complex eigenvalues and

rank-deficient noise. The oscillator can be put in the form of (2.31) with

A =

 0 1

−ω2
0 −2ζω0

, B =

0

1

. (2.37)
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Figure 2-8: Left: Exact eigenfunctions of the Brownian oscillator. Only the real part
of each eigenfunction is plotted. Right: regression points based on sample trajectories.

We compute P[|x(T )|> L |x(0) = ẋ(0) = 0], i.e., the probability that the position of

the oscillator exceeds some threshold by a fixed time given that it was initially at rest.

We set ω0 = 1, ζ = 0.5, L = 3, and T = 10.

To the best of the authors’ knowledge, for the oscillatory case, all rare event

simulation algorithms require solving an associated optimal control problem. Here, we

instead project an indicator function dependent on the first component of the state,

1|x|>3, onto the first nine sKO eigenfunctions. The eigenfunctions are expressed as

linear combinations of the Hermite–Laguerre–Itô polynomials; see [24, 138]. We plot

the real parts of these eigenfunctions in Figure 2-8. Regression points are generated

by simulating 121 independent trajectories of length T with uniformly spaced initial

conditions on [−5, 5]2 and extracting the state every ∆t = 0.02 time units. In this

example, the constant c = 6. In Figure 2-9, we show sample trajectories of the unbiased

and biased systems. Notice that the impact of the biasing only seems prominent

towards the end of the simulation, e.g., from t = 8 onward. Intuitively, this is because

the system has an attracting point at zero, and since we want samples to escape at

the end of the simulation, it is not advantageous to bias early.

In Figure 2-10 we show histograms of the absolute values of the position of the

two systems at time T . The estimator performance is summarized in Table 2.5, where

we observe that biasing reduces the variance by a factor of nearly 5000.
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Figure 2-9: Sample paths of the unbiased and biased Brownian oscillator.

Figure 2-10: Histograms of |x(T )| obtained using simple Monte Carlo and importance
sampling for the Brownian oscillator.
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Variance Relative error

Monte Carlo 2.28× 10−5 209.5

Importance sampling 5.10× 10−9 3.13

ρtrue = 2.28× 10−5

Table 2.5: Importance sampling performance for the Brownian oscillator.

Stochastic advection-diffusion

The stochastic advection-diffusion equation is an infinite-dimensional non-normal

linear system. We have, 
vt = bvx + αvxx +

√
εη

v(t, 0) = v(t, 1) = 0

v(0, x) = 0,

(2.38)

where η is space-time white noise. Following the approach in [104], this system can

be converted into the form of (2.31), where Av = bvx + αvxx acts on the space of L2

functions over x ∈ [0, 1] that satisfy the above boundary conditions, B is the identity

map, and Wt is a cylindrical Wiener process. The system is discretized using an

exponential Euler method [62]. Details about the numerical method used to simulate

this process are described in Appendix C.2. We estimate P
[
‖v(T, ·)‖L2([0,1])≥ L

]
given

that the system initially started at v(t = 0, x) = 0. We have b = 1, α = 0.1, ε = 1,

T = 10, and L = 2.5.

We compute the biasing for the system based on the SDE that arises from the

discretized version of the stochastic advection-diffusion equation. In this case, we use

only two eigenfunctionals: the constant functional and the second order eigenfunctional

φ2(v) =
√

2µ1〈v, w1〉2 − 1, where w1 is the eigenfunction of the L2-adjoint of A, −σ1

is the leading eigenvalue of A, and 〈u, v〉 =
∫ 1

0
uv dx. We measure the degree of

non-normality of the system by either looking at the Péclet number, which is equal to

b/α = 10, or the inner product between the first two eigenfunctions of the advection-

61



Figure 2-11: Histograms of ‖v(T, ·)‖L2([0,1]) computed using simple Monte Carlo and
dynamic importance sampling for the stochastic advection-diffusion equation.

diffusion operator, which is equal to 0.9147. In this example, we obtain

Φ(t, v) = 0.1434φ2(v) + 1.1434 (2.39)

with c = 20.

We plot the histogram of the norm of the system for the biased and unbiased

systems in Figure 2-11, and present the results of the sampling methods in Table 2.6.

Using only two eigenfunctionals, the variance of the estimator is reduced by a factor

of 12 over Monte Carlo.

Variance Relative error

Monte Carlo 2.02× 10−5 222.5

Importance sampling 1.68× 10−6 64.24

ρtrue = 2.02× 10−5

Table 2.6: Importance sampling performance for the stochastic advection-diffusion
equation.
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2.4.3 Nonlinear examples

Van der Pol oscillator

We now demonstrate our approach on nonlinear stochastic systems. Consider the

noisy Van der Pol oscillator given by,

d

x1

x2

 =

 x2

m(1− x2
1)x2 − x1

dt+
√

2ε

dW1

dW2

. (2.40)

In the absence of noise, the system exhibits a limit cycle, such that all initial conditions

converge to it (except the origin, which is an unstable equilibrium). In the presence

of noise, trajectories cluster on a band that is centered on the limit cycle of the

deterministic system. We consider the problem of ‘peeling’ a solution of the stochastic

system from this band. Let m = 0.3, ε = 0.01, and T = 10; our task is to estimate

P
[
x1(T )2 + x2(T )2 > 2.72 | x1(0) = 2, x2(0) = 0

]
. (2.41)

The initial condition lies on the limit cycle of the deterministic system. The rare event

is a region that lies outside of it.

We first find the sKO eigenfunctions of the system. As described in Section 2.3.3,

we apply gEDMD, using a basis {ψk(x1, x2)}nk=1 of bivariate Legendre polynomials

with total degree up to 10. This basis is constructed such that it is orthonormal with

respect to the uniform measure on D = [−4, 4]2 ⊂ R2. There are n = 66 elements

in this basis. We generate test points by using trajectory data beginning at 400

initial conditions uniformly spaced on D. Each trajectory is simulated on the interval

t ∈ [0, 10]. The test points are generated by sampling the trajectories at intervals of

∆t = 0.05, for a total of 8× 104 test points.

We find that the quality of the eigenvalues and eigenfunctions obtained via gEDMD

is highly sensitive to the polynomial degree and the choice of basis. Indeed, it is

well-noted that EDMD methods can often lead to spurious eigenvalues, i.e., eigenvalues

that are non-physical, when the choice of basis is poor [16, 67]. We find that the same
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is true for eigenfunctions obtained via gEDMD, when either the basis is not sufficiently

representative of the eigenfunctions or the test points do not sufficiently cover the

state space. Obtaining good approximation of the eigenfunctions is critical to our

sampling framework. Given a set of candidate eigenfunctions produced by gEDMD,

we cross-validate them with an independent dataset generated in the same fashion

as the test points. In particular, the mean-square error of a candidate eigenfunction

φ(x) with eigenvalue λ is defined as 1
m

∑m
i=1|Aφ(xi) − λφ(xi)|2. Only candidate

eigenfunctions with a testing error below some threshold (here chosen to be 0.04)

are used to approximate the Doob transform. In Figure 2-12 we show the first nine

approximated (and validated) sKO eigenfunctions, alongside a scatterplot of the test

points.

Figure 2-12: On the left, the first nine stochastic Koopman eigenfunctions for the
Van der Pol oscillator. Eigenfunctions are ordered according to the magnitude of the
real part of the Koopman eigenvalues, and only the real part of each eigenfunction is
plotted. Right figure shows the test points.

Approximating the Doob transform to estimate (2.41) requires approximating the

indicator function over the rare event region in the sKO eigenbasis. We first express

the indicator function in the Legendre basis by solving a least-squares problem on

the gEDMD test points. Since the Koopman eigenfunctions are approximated in

the same basis, we can immediately compute the coefficients of the indicator’s sKO

eigenfunction expansion. Just as in the linear case, if the expansion in the sKO
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eigenfunction basis is negative in some region of the domain of interest, we add a

constant so that the approximation to f(x) has value greater than 0.01. A scaling

factor of c = 17 is again applied to the biasing so that enough samples will reach the

rare event. In this example, we use fifteen eigenfunctions, of which nine are plotted in

Figure 2-12, to approximate the Doob transform.

In Figure 2-13, we show 25 unbiased and biased sample paths of the oscillator.

Notice that none of these unbiased sample paths reaches the rare event—they all

remain inside the red circle demarcating the rare event region—while many of the

biased paths do reach it. In Figure 2-14, we show the histogram of norm of the state

at time T = 10 for the two systems. We report simulation results for the estimators

in Table 2.7, and observe that the importance sampling estimator reduces variance by

a factor of more than 400.

Figure 2-13: Left: sample paths of unbiased Van der Pol oscillator. Right: sample
paths of biased Van der Pol oscillator. Red circle denotes boundary of the rare event.
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Figure 2-14: Distribution of norm of Van der Pol state at time T = 10. Red line
denotes boundary of the rare event.

Variance Relative error

Monte Carlo 1.69× 10−5 243.01

Importance sampling 4.03× 10−8 11.85

ρtrue = 1.69× 10−5

Table 2.7: Importance sampling performance for the Van der Pol oscillator.

Duffing oscillator

Now we consider the noisy Duffing oscillator,

ẍ+ δẋ+ x(β + αx2) =
√

2ε Ẇt,

which can be rewritten in standardized form as

d

x1

x2

 =

 x2

−δx2 − x1(β + αx2
1)

dt+
√

2ε

 0

dWt

. (2.42)

The deterministic Duffing oscillator has three equilibria. The origin is an unstable

equilibrium, while x∗ = ±
√
−β/α are two stable equilibria. In the basins of attraction

of the stable equilibria, the system exhibits damped oscillatory dynamics. In the

stochastic setting, noise can infrequently cause trajectories to transition between the
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basins of attraction. For a transition to occur, the stochastic forcing must “kick” the

system in the correct direction and with the correct magnitude, in critical regions of

the state space. We thus consider the rare event of transitioning from one basin of

attraction to the other:

P[x1(T ) > 0 |x1(0) = −1.5, x2(0) = 0].

Here we use parameter values α = 1, β = −1, δ = 0.5, ε = 0.0025, and T = 10.

The study of noise-induced transitions between attractors in dynamical systems is an

important problem that arises in protein folding and chemical kinetics [121, 122, 27].

Similar to the Van der Pol oscillator, we find the stochastic Koopman eigenfunctions

by applying gEDMD with a basis of bivariate scaled Legendre polynomials of total

degree up to 12. This leads to 91 basis functions. To create test points for gEDMD,

we simulate 400 independent trajectories over the interval t ∈ [0, 10], with initial

conditions uniformly spaced over D = [−2.5, 2.5]2. The data set is then generated by

sampling each trajectory at intervals of ∆t = 0.2. In Figure 2-15, we show the first

nine approximated and validated eigenfunctions of the stochastic Duffing oscillator,

along with the scatter plot of the test points. We approximate the indicator function

f(x) = 1x1>0(x1, x2) via a linear combination of these nine sKO eigenfunctions, using

regression on the same test points. As before, we add a constant to the approximation

so that the minimum value of the approximation to f(x) is greater than 0.01, and

scale the biasing term with a multiplicative factor c = 8.

In Figure 2-16, we show 25 of the resulting biased sample trajectories of the Duffing

oscillator, compared to unbiased paths. The few unbiased trajectories shown here

do not transition to the opposite basin of attraction. We plot a histogram of the

final positions of the unbiased and biased sample trajectories in Figure 2-17. The

figure demonstrates that unlike simple Monte Carlo, the biased trajectories are able

to sample the transition paths with much greater success. Quantitative performance

of the estimators is compared in Table 2.8. In particular, it can be seen that the

importance sampling estimator reduces variance by a factor of nearly 5000.
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Figure 2-15: First nine stochastic Koopman eigenfunctions of the noisy Duffing
oscillator. Eigenfunctions are ordered according to the magnitude of the real parts of
the Koopman eigenvalues.

Figure 2-16: Left: sample paths of the unbiased Duffing oscillator. Right: sample
paths of the biased Duffing oscillator. Red line denotes the boundary of the rare event.

Variance Relative error
Monte Carlo 2.11× 10−5 217.93
Importance sampling 4.35× 10−9 3.13
ρtrue = 2.11× 10−5

Table 2.8: Importance sampling performance for the noisy Duffing oscillator.
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Figure 2-17: Noisy Duffing oscillator: histogram of x1 at time T = 10 for the unbiased
and biased systems.

2.5 Analyzing the second moment

It is useful to understand how the approximation of the Doob transform impacts

the variance of the resulting importance sampling estimator. Here we provide some

simple analytical results to that end. For this analysis, we assume that the sKO

eigenfunctions are obtained exactly. Consequently, the only error in the solution to

the KBE originates from the accuracy of approximation of the terminal condition.

We perform a non-asymptotic analysis of the importance sampling scheme based

on the approach outlined in [41, 40]. Assume f(x) ≥ 0 and define h(x) = − log f(x);

recall that f(x) is the terminal condition of the KBE in (2.5), which is typically the

indicator function over the rare event. In contrast to our earlier presentation of the

Doob transform, here f is allowed to be a true indicator function, rather than a

mollified version of it. Indeed, the analysis in [41, 40] takes this scenario into account.

Recall that the importance sampling estimator (cf. (2.11)) of ρ = E0,x0 [f(XT )] can be

written as

Γ(x0) = e−h(X̃T ) dP
dQ

(X̃),

where x0 is the initial condition. The second moment of the importance sampling
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estimator corresponding to any control u(t, x) in the SDE system (2.13) is

Q(x0;u) = EQ

[
e−2h(X̃T )

(
dP
dQ

)2
]
.

Using [13] and the subsequent analysis in [40, 41], we obtain the following variational

representation of the second moment of the importance sampling estimator:

− logQ(x0;u) = inf
v∈V

E
[

1

2

∫ T

0

‖v(s)‖2 ds−
∫ T

0

‖u(s, X̂s)‖2 ds+ 2h(X̂T )

]
, (2.43)

where X̂ solves
dX̂s =

[
A(X̂s)−B(X̂s)u(s, X̂s) + B(X̂s)v(s)

]
ds+ B(X̂s)dWs

X̂0 = x0

,

and V is the set of progressively measurable admissible processes. Recall that when

f is the indicator function over set E, h(X̂T ) is infinity if X̂T does not enter E and

zero otherwise. We can, therefore, restrict the set of admissible processes so that V

only contains controls ensuring X̂T ∈ E with probability one. Then by Lemma A.1 in

[41], we have that for any sufficiently regular functions Z(t, x) and U(t, x), where the

control is u = −B∗∇U ,

− logQ(x0;u) ≥ inf
v∈V

2U(0, x0)− 2E[U(T, X̂)] + 2

∫ T

0

G[Z](s, X̂) ds (2.44)

−
∫ T

0

‖B∗(∇Z −∇U)‖2 ds ,

where G[Z] = ∂tZ + 〈A(x),∇Z〉 − 1
2
‖B∗∇Z‖2+1

2
TrBB∗∇2Z. The operator G can be

obtained from the partial differential operator of the KBE, ∂t[·] +A[·], via a change of

variables Z = − log Φ.

In our approach, the controller is derived from an approximation to the solution of

the KBE: ũ(t, x) = ∇ log Φ̃(t, x). Therefore, if we choose U(t, x) = − log Φ̃(t, x), then

we can use (2.44). Recall that we have assumed Φ̃ (2.22) to be constructed with the

exact sKO eigenfunctions. Therefore, it is an exact solution of the KBE of the system
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for t ∈ [0, T ), but does not match the terminal condition at t = T . Nonetheless, we

have G[U ] = 0 exactly. Taking Z = U then gives

− logQ(x0;u) ≥ 2U(0, x0)− 2 sup
v∈V

E
[
U(T, X̂T )

]
. (2.45)

Note that the above bound is tight if Φ̃(t, x) in fact exactly matches the terminal

condition, Φ̃(T, x) = f(x). In this case, we have that U(T, X̂T ) = h(X̂T ), which,

in turn, implies that the right-hand side equals 2U(t, x) = −2 log ρ and therefore

Q(x0;u) ≤ ρ2. Since Q(x0;u) ≥ ρ2 by Jensen’s inequality, we conclude Q(x0;u) = ρ2.

In other words, the variance of the estimator is zero.

On the other hand, when the biasing is imperfect but based on the true sKO

eigenfunctions, (2.45) implies that the bound on the second moment depends on the

accuracy of the approximations of f(x) and of the KBE solution at the initial condition

x0 (i.e., the quantity of interest ρ = Φ(0, x0)) using the eigenfunctions. Recalling that

U(T, X̂T ) = − log Φ̃(T, X̂T ), observe that

−2 sup
v∈V

E
[
U(T, X̂T )

]
= 2 inf

v∈V
E
[
log Φ̃(T, X̂T )

]
.

Appealing to the properties of the expectation and the fact that X̂T ∈ E with

probability one,

E
[
log Φ̃(T, X̂T )

]
≥ inf

y∈E
E
[
log Φ̃(T, y)

]
= inf

y∈E
log Φ̃(T, y).

Then (2.45) can be bounded from below as follows:

− logQ(x0;u) ≥ −2 log Φ̃(0, x0) + 2 inf
y∈E

log Φ̃(T, y). (2.46)

This relation is an upper bound for the second moment for the importance sampling

estimator. The first term reflects how well the solution approximates the quantity

of interest ρ. The second term reflects how well the approximate KBE solution

approximates the terminal condition in the rare event. It is important to emphasize
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that these two terms are coupled to one another since the solution at the initial

condition is dependent on how well the terminal condition is approximated.

Further refinement of these bounds is difficult. The framework we have presented is

rather general, in the sense that we did not make strong assumptions on the properties

of the stochastic dynamical system. Moreover, without prescribing closed-form or

otherwise very specific approaches to positivization or scaling (i.e., choosing ε and c),

it is difficult to characterize precisely how well the sKO eigenfunctions approximate

the solution to the KBE. For specific classes of dynamical systems, one might be able

to elucidate these bounds further, but since the emphasis of this chapter has been on

a generally applicable computational approach, we leave such analyses to future work.

2.6 Discussion

In this chapter, we presented a framework for constructing importance sampling

schemes for stochastic dynamical systems, using eigenfunctions of the associated

stochastic Koopman operator (sKO). We use sKO eigenfunctions to approximate the

Doob transform for the observable of interest, which in turn yields an approximation

of the corresponding zero-variance importance sampling estimator. Our approach is

broadly applicable, and we demonstrate the computation of rare event probabilities

in a wide variety of linear and nonlinear SDEs. These numerical examples highlight

how one can exploit non-rare (bulk) trajectories of the dynamical system to inform

biasing strategies for rare event simulation. For systems where the sKO eigenfunctions

cannot be derived analytically, we used generator EDMD to approximate them

numerically. Our approach is agnostic to the numerical method used to approximate

the sKO eigenfunctions, however, and thus as state-of-the-art methods for numerical

approximation of the Koopman operator improve, our framework too will improve in

accuracy and efficacy. Moreover, even imprecise applications of our approach can still

lead to significant variance reduction. We demonstrate that crude approximations to

the Doob transform, using only a few numerically-approximated eigenfunctions, can

lead to variance reduction of several orders of magnitude over simple Monte Carlo.
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We note that our approach is applicable to a wide range of stochastic dynamical

systems, including many that are not typically handled by existing rare event simulation

methods. Methods inspired by computational chemistry, for example, typically consider

high-dimensional diffusion processes governed by a potential, i.e., gradient systems. We

instead propose a single framework that enables rare event simulation in systems with

non-normal dynamics, oscillatory behavior, limit cycles, and degenerate noise—which

appear in a variety of scientific and engineering settings [30, 111, 135]. This framework

often “recovers” solutions proposed for specific cases. For instance, in non-normal

linear systems, we find that the dominant direction of biasing away from an attracting

point is aligned with the leading left eigenvectors of the drift term. This is consistent

with the rigorous theoretical results of [104] for infinite-dimensional self-adjoint linear

systems, where the left and right eigendirections coincide; there, the authors found

that (given a sufficient spectral gap) the best way to escape from an attractor is again

to bias in the direction of the most slowly decaying eigenmode. Another interesting

feature of our approach is that seems to work well even for large time horizons. Further

investigation will be needed, but this property is promising as large deviations-based

sampling methods often degrade with larger time horizons [41].

We can also contrast our approach with rare event simulation methods based on

stochastic optimal control [57, 56, 139]. The goal of these efforts is the same as ours:

to find a controller for the dynamical system that approximates the zero-variance

importance sampling estimator. However, the stochastic optimal control formulation

requires solving optimization problems or the associated nonlinear Hamilton-Jacobi-

Bellman equation, both of which may be intractable in high dimensions. These

methods attempt to precisely compute the Doob transform locally, depending on where

trajectories lie in state space. In contrast, we consider the Kolmogorov backward

equation, which, due to linearity, enables efficient computation based on eigenfunction

information. Our approach thus crudely computes the Doob transform globally, using

sKO eigenfunctions approximated via non-rare trajectories.

There are several avenues for future work. For example, approximation of the

terminal condition of the KBE via sKO eigenfunctions presents some outstanding
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questions. We currently construct this approximation by combining regression with

a post hoc numerical correction to ensure positivity. A single integrated, consistent

procedure for constructing positive approximations would be preferable: not only

might it improve the efficiency of rare event simulation, but it could also enable further

theoretical analysis of approximation error and hence estimator variance.

A practical bottleneck of our framework is the accuracy to which DMD methods

can approximate the sKO eigenfunctions in regimes where the amount of data is limited

relative to the dimensionality of the problem. Addressing this issue will be useful

for scaling our approach to more complex high-dimensional systems. The resolution

depends in part on how Koopman numerical methods develop in the future. Our

current approach requires the ability to evaluate gradients of eigenfunctions anywhere

in the state space. State-of-the-art Koopman numerical methods for high-dimensional

systems such as Hankel DMD only give values of the eigenfunctions at the test points.

The key to addressing these problems will be to find an alternative to importance

sampling that uses only the eigenfunctions, and not their gradients, for sampling.

Moreover, importance sampling is known to be, in many cases, an unstable method, as

there might be no guarantees that the variance of the resulting estimator is finite [17].

The main bottleneck to how this approach scales in high dimensions for nonlinear

problems is how well the stochastic Koopman eigenfunctions can be learned from

data. We discuss further limitations of state-of-the-art Koopman numerical methods

in Chapter 6.

In the next chapter, we present our approach to a more robust sampling methods

for rare event simulation: multilevel splitting. The connection between efficient

importance sampling estimators and multilevel splitting has been well established [17].

Multilevel splitting also has the virtue of being non-intrusive, meaning that one is

not required to alter the system dynamics to perform rare event simulation. Since

Koopman numerical methods enable us to construct crude approximations to the KBE

non-intrusively, combining these methods with multilevel splitting will lead to more

efficient black box approaches for rare event simulation.
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Chapter 3

Multilevel splitting with stochastic

Koopman eigenfunctions

3.1 Introduction

In the previous chapter, we showed how zero-variance importance sampling estimators

for SDEs can be constructed using eigenfunctions of the stochastic Koopman operator

which are computed via dynamic mode decomposition algorithms. While there exists a

zero-variance importance sampling estimator, approximating it via eigenfunctions has

a few drawbacks. First, importance sampling generally lacks robustness: it is possible

for an IS estimator to have an arbitrarily large second moment, which implies that

it can perform worse than standard Monte Carlo when the estimator is constructed

poorly. Second, in the context of our Koopman framework, importance sampling

requires the ability to evaluate gradients of the eigenfunctions everywhere in the

state space, and many state-of-the-art DMD methods for high dimensional systems

only produce eigenfunction values at the training points. Lastly, from the previous

chapter, we had to appeal to ad hoc approaches to correct approximations to the

indicator function when they evaluated to be less than zero in order to apply the Doob

transform properly. For these reasons, we appeal to multilevel splitting algorithms,

which addresses some these issues. The goal of this chapter is to show that the

Koopman framework in the last chapter can be used to create efficient multilevel
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splitting estimators.

3.2 The mechanics of multilevel splitting

We describe the basic mechanics of multilevel splitting as well as some state-of-the-art

approaches for constructing efficient estimators. The problem setting of this chapter

is identical to that of Chapter 2.1.1. Multilevel splitting was first presented in the

nuclear engineering literature by Kahn & Harris [64]. The basic idea of multilevel

splitting is to partition the state space into a sequence of nested sets with the smallest

set being exactly equal to the rare event of interest. The probability of interest is then

a product of conditional probabilities, each of which is not small. Each conditional

probability is estimated sequentially by simulating a branching process generated from

the stochastic differential equation. When a trajectory crosses into the next nested set,

it is allowed to split into independent trajectories. This increases the chance that a

trajectory will reach the rare event of interest. Each of these trajectories are weighted

down according to how many times it has been split. In Figure 3-1, we provide a

simplified diagram showing how a single initial trajectory produces a branching process

that leads to a trajectory reaching the set of interest.

The rare probability of interest can then be expressed as a product of conditional

probabilities, each of which is not small. Suppose we have E = D = DM ⊂ DM−1 ⊂

· · · ⊂ D1 ⊂ D0. Then we have that

P(E) = P(D0)
M−1∏
i=1

P(Di+1|Di). (3.1)

Basic implementations of multilevel splitting require three design parameters: 1)

the number levels (or nested sets) J , the splitting rates at each level {Rj}Jj=1, and the

locations of the nested sets. Given these three parameters, the estimator for (3.1) is

found as follows. Let Nj be the number of particles reaching level j with N0 being

the initial number of particles. Let Rj−1 be the splitting rate at level j − 1, that is,
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Figure 3-1: Multilevel splitting.

every particle that reaches level j − 1 splits into Rj−1 trajectories. Then we have

P(Dj|Dj−1) ≈ Nj

Rj−1Nj−1

The estimator can then be computed as

ρ̂ =
J∏
j=1

P(Dj|Dj−1) =
J∏
j=1

Nj

Rj−1Nj−1

=
NJ

N0

∏J
j=1Rj−1

. (3.2)

The locations of nested sets are described by their boundaries, which are defined as level

sets of the importance function U(x) [17, 35]. The importance function is sometimes

also referred to as the score function [14, 20]. The partitions in state space are defined

as level sets of the importance function. For example, Dj = {U(x) ≥ dj}. With this

parametrization, which set the state of a trajectory belongs to can be determined solely

by the evaluating the importance function. In summary, generic implementations of

multilevel splitting require the definition of the following parameters:

• Importance function U(x)
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• Number of levels J

• Locations of levels {dj}Jj=1, with DJ = E

• Splitting rates{Rj}Jj=1.

In Algorithm 3, we outline the the basic multilevel splitting procedure as presented in

[23].

Algorithm 3: Basic multilevel splitting
Input: SDE dXt = A(Xt)dt+ B(Xt)dWt, Importance function U(x), N0 initial

particles, splitting rate {Rj}Jj=1, splitting levels {dj}Jj=1.
Output: Rare event probability estimate ρ̂
1: for j = 1 to J do
2: for i = 1 to Nj−1 do
3: Run trajectory i until next level U(Xi

t) > dj or until final simulation time T .
4: end for
5: Discard trajectories that did not reach dj
6: Clone each trajectory that reach level dj into Rj independent trajectories.
7: Nj is the total number of active trajectories
8: end for
9: for i = 1 to NJ do
10: Run trajectory i until final time T
11: end for
12: Compute ρ̂ = 1

N0

1∏J
j=1Rj

∑NJ
i=1 1E(Xi

T )

Naturally, the main research question here is how does one choose these algorithm

parameters. The number of splitting levels and splitting rates are determined differently

depending on the multilevel splitting strategy. The performance of the method will

be greatly impacted by these design choices. We discuss some virtues of multilevel

splitting over other rare event simulation methods such as importance sampling. Unlike

importance sampling, the weights on each trajectory are always bounded below one,

which implies that the splitting estimator always has bounded variance. In importance

sampling, it is possible that to keep the estimator unbiased, there are certain weights

greater than one which leads to higher variance than if simple Monte Carlo were used

instead. Furthermore, multilevel splitting can be used with black box models that only

allow access to trajectories of the dynamical system, rather than requiring access to
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the model at each point of the simulation. This is desirable as many DMD approaches

can work in purely data-driven settings.

On the other hand, when the design parameters are not chosen wisely, splitting

can result in an intractable number of trajectories being simulated. One may end up

constructing an estimator with variance that is similar to simple Monte Carlo while

expending more computational effort. Intuitively, more levels and larger splitting rates

produce more trajectories, which implies lower variance of the resulting estimator.

However, too many particles can be intractable to produce if trajectories are expensive

to simulate. Too few levels or small splitting rates may not result in any trajectories

reaching the rare event. A poor partitioning of the state space can lead to higher

variance while resulting in more computational effort. We discuss two established

approaches for multilevel splitting in the next section.

3.2.1 Fixed rate splitting and large deviations theory

Like importance sampling, multilevel splitting has also been enhanced by large devia-

tions theory. In [35], it was established that large deviations approaches to importance

sampling can be adapted to multilevel splitting estimators. The basic observation is

that stochastic differential equations often admit large deviations principles [37, 49, 123].

Consider the family of diffusion processes parametrized by ε,

dXε(t) = A(Xε)dt+
√
εB(Xε)dWt. (3.3)

Define the probability of interest ρε(t, x) = P(Xε ∈ E|Xt = x), which is a function of

time and space. We say this system satisfies a large deviations principle if

lim
ε→0

ε log ρε(t, x) = −U(t, x), (3.4)

where U(t, x) > 0 is called the large deviations rate function. In contrast to importance

sampling, in multilevel splitting we are mainly concerned with the number of particles

being generated in the course of running the algorithm rather than only on the variance
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of the estimator. Assuming we have a fixed splitting rate, i.e., Rj = R for all j, a

sensible goal is to choose the levels such that out of R particles starting at level j − 1,

on average, only one particle will reach level j. From [35], it was shown that when

the importance function is chosen to be the large deviations rate function then the

resulting class of estimators parametrized by ε is asymptotically efficient.

Definition 1. We say an estimator ρ̂ε is asymptotically efficient if

lim
ε→0

logE[(ρ̂ε)2]

2 log ρε
= 0. (3.5)

Asymptotic efficiency implies that the number of particles needed to keep the

relative error constant will not grow exponentially as ε → 0. This, however, is a

relatively weak guarantee, and does not provide any guarantees on the variance of the

estimator. The number of levels, the splitting rate, and the locations of the trajectories

to achieve an asymptotically efficient estimator has also been noted [17, 35]. Assuming

one has access to the importance function, and assuming that we keep the splitting

rate constant Rj = R, the levels should be chosen so that dJ is defined such that

E ⊂ DJ , and the levels are spaced such that dj − dj−1 = ε logR [17].

In general, the large deviations rate function is difficult to obtain. The large

deviations rate function can also be related to the solution of a Hamilton-Jacobi-

Bellman (HJB) PDE [17, 35]. The HJB is difficult to solve, so it has been shown that

subsolutions of the PDE will also produce estimators that are asymptotically efficient

[43]. That is, if one can find a function Ũ(t, x) such that

∂Ũ

∂t
+H(x,∇Ũ) ≥ 0 (3.6)

Ũ(T, x) ≤ 1E(x) · ∞,

with H(x, α) = 〈A(x), α〉 − 1
2
‖B(x)>α‖2 and Ũ(0, x0) chosen to match the value of

U(0, x0), i.e., the true value of U(0, x0) at the initial conditions, then the resulting

multilevel splitting estimator with Ũ(t, x) will be asymptotically optimal. There is no

established way of finding these subsolutions numerically; rather there are insights
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in how to construct subsolutions by hand for different types of stochastic dynamical

systems in [17].

The HJB equation can be related to the Kolmogorov backward equation described

in Chapter 2. The KBE for the system in (3.3) is

∂Φε(t, x)

∂t
+ 〈A(x),∇Φε(t, x)〉+

ε

2
TrB(x)B(x)>∇2Φε(t, x) = 0 (3.7)

Φε(T, x) = 1E(x).

Recall that the terminal condition is determined by the indicator over the rare event.

By performing a variable transformation U ε(t, x) = −ε log Φε(t, x), we obtain a PDE

for U ε(t, x)

∂U ε(t, x)

∂t
+ 〈A(x),∇U ε(t, x)〉 − 1

2
‖∇U ε(t, x)‖2+

ε

2
∇2U ε(t, x) = 0 (3.8)

U ε(T, x) =∞ · 1E(x),

where we take the convention ∞ · 0 = 0. Taking ε to zero, we obtain (3.6). This

suggests that the solution to the KBE could be used to define the importance function.

We can use the same approximate solution to the KBE via stochastic Koopman

eigenfunctions and use it to define the level sets for multilevel splitting instead. We

demonstrate this in the numerical examples. However, we first provide some additional

intuition for why the KBE solution is useful for splitting and provide another approach

to choosing multilevel splitting parameters.

Intuition for why the KBE solution is optimal for fixed effort splitting

Here we give some intuition into why the solution to the Kolmogorov backward equation

is optimal for defining where the splitting levels should be placed. This discussion is not

a formal proof. Recall that ρε(t, x) = P(Xε
T ∈ E|Xε

t = x). The rare event probabilities

we consider satisfy large deviations principles. We have that limε→0 ε log ρε(t, x) =

−U(t, x), and so informally, one may write ρε(t, x) ≈ exp(−U(t, x)/ε). Next, notice
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that for t′ < t < T ,

P(Xε
T ∈ E|Xε

t′ ∈ Dj−1) = P(Xε
T ∈ E|Xε

t ∈ Dj)P(Xε
t ∈ Dj|Xε

t′ ∈ Dj−1).

Then, again, informally, this implies

P(Xt ∈ Dj|Xt′ ∈ Dj−1) ≈ exp(−U(t′, xj−1)/ε+ U(t, xj)/ε)

for some xj−1 ∈ Dj−1 and xj ∈ Dj. Suppose we wish to have a fixed splitting rate at

each level to be R and wish to have the levels so that P(Dj|Dj−1) ≈ 1/R, one should

choose levels such that ∆U(t, xj) = U(t′, xj−1) − U(t, xj) = ε logR. And therefore,

we should choose the levels sets such that Dj = {U(t, x) ≤ jε logR}. Lastly, recall

that ρε(t, x) is the solution to the Kolmogorov backward equation, and therefore, we

should choose U(t, x) = − log ρε(t, x).

3.2.2 Adaptive multilevel splitting algorithm (AMS)

Adaptive multilevel splitting is another well-established approach for choosing parame-

ters in the MS algorithm [22]. In contrast to fixed rate splitting in the previous section,

AMS is a fixed effort approach in which the number of trajectories being simulated at

any given iteration is held fixed. "Poor performing" trajectories, i.e., trajectories with

low importance function evaluations, are eliminated from the set of active trajectories.

Rather than allowing trajectories to split each time they first enter a new subset, the

splitting rate is chosen so that the number of new trajectories equals the number

being culled. In effect, the splitting rate is random and fractional depending how

many trajectories are eliminated during one iteration of the method. The splitting

levels are found based on where the trajectories in the course of a single iteration of

the algorithm. Specifically, the maximal importance function value is computed for

each trajectory, and then the splitting level is based on a certain quantile of those

importance function evaluations. We provide the AMS method in Algorithm 4 based

on [14] and [23].
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Algorithm 4: Adaptive multilevel splitting
Input: SDE dXt = A(Xt)dt+ B(Xt)dWt, Importance function U(t, x), N0 initial

particles, maximum level ξmax, Resampling size K.
Output: Rare event probability ρ̂
1: Simulate N0 independent trajectories
2: Compute Mi = maxt∈[0,T ] U(t,Xi

t)
3: Order Mi in ascending order.
4: Current level is L, the Kth largest Mi.
5: while L < ξmax and Mi not all equal do
6: Discard Km trajectories that Mi < L
7: From trajectories that are not discarded, randomly draw Km trajectories
8: Find when trajectories first reach level L and simulate Km new trajectories at those

locations. The total number of trajectories should equal N0.
9: ρ̂← ρ̂ ·

(
1− Km

N0

)
10: end while
11: ρ̂← ρ̂ 1

N0

∑N0
j=1 1(Xj

T ∈ E)

While not obvious, this algorithm is unbiased [14, 23]. In contrast to fixed rate

splitting, the number of iterations AMS will take is random. However it has been

proven that the method will stop in a finite number of steps. In fact, it will stop,

on average, in O(−N0 log ρ +
√
N0) number of steps for any importance function

[21]. This implies that the number of iterations AMS takes depends linearly on the

number of initial trajectories and the probability of the event. The upper limit of the

importance function defines when the algorithm needs to terminate. If the algorithm

only terminates on a set that is contained in the rare event of interest, then the

resulting estimator will not be unbiased as it is no longer computing the correct rare

event probability. In other words, the smallest set in the sequence is no longer equal to

the rare event of interest. When defining the upper limit of the importance function,

we need that the set E is contained in the set that is defined by the upper limit.

3.2.3 The optimal importance function

In contrast to large deviations-based fixed rate approaches, the asymptotic variance

of AMS can be derived. Here we provide some theory for the optimal importance

function as presented in [21, 23]. As N0 →∞, it has been shown that AMS satisfies

a central limit theorem, which has been used to show how the asymptotic variance
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depends on the importance function.

Let U(t, x) be the importance function and define Sl = inf{s : U(s,Xs) > l}. Let

pl = P(Sl ≤ T ). Define the conditional probability distribution ηl to be such that

when applied to a test function ϕ, η(ϕ) = E[ϕ(XSl)|Sl ≤ T ], and q?(x) = P(XT ∈

E|X0 = x).

Theorem 2 ([23]). The AMS estimator ρ̂ satisfies a central limit theorem

√
N(ρ̂− ρ) −→ N (0, σ2), in distribution, (3.9)

where

σ2 = −ρ2 log ρ− 2

∫ ξmax

−∞
Varηl(q

?)pldpl. (3.10)

Notice that the first term is independent of the choice of the importance function.

The variance is optimal when the second term is exactly zero. In [23], the authors

show that when the solution to the Kolmogorov backward equation is used to define

the importance function, i.e., when U(s,Xs) = Φ(s,Xs) exactly, then Varηl(q?) = 0

identically. In fact, for AMS, any monotone increasing function of the optimal

importance function is optimal [14, 23]. Unlike fixed rate splitting, AMS does not

require precise values of the importance function to define the level sets, only the

relative values of the importance function is important. This provides further evidence

that using the solution to the KBE will lead to efficient multilevel splitting estimators.

Furthermore, this theorem can give us a sense on how well an importance function is

performing by comparing the empirical variance with the theoretical lower bound.

In the next section we demonstrate the use of approximate solutions to the KBE

based on sKO eigenfunctions on a few canonical dynamical systems.
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3.3 Numerical examples

3.3.1 Nonnormal nodal sink

We first consider a nonnormal nodal sink similar to the one in Chapter 2, except with

a larger noise level. The system is

dX1

dX2

 =

−1 0

1 −0.3

X1

X2

dt+
√

2

dW1

dW2


We estimate the probability that the system escapes a ball of radius 9 by T = 10:

P(‖X10‖2≥ 9). We used five OU eigenfunctions and constructed the importance

function in Figure 3-2. In Figure 3-3, we plot sample trajectories of simple Monte

Carlo simulation, fixed rate splitting, and adaptive multilevel splitting. For fixed rate

splitting, we studied how the variance of the estimator changes as a function of the

splitting rate. Starting from a single particle, we ran each estimator 1000 times to

compute its empirical variance. Then we do this procedure 10 times. To see if the

extra computational cost associated with splitting is worth the variance reduction,

we weigh each variance estimate by the number of times the model is evaluated. We

see that when the splitting rate is only two and the number of splitting levels is held

constant at five levels, the variance is worse than that of regular Monte Carlo in red.

However, with a higher splitting rate, there is over variance is over 600 times smaller,

and is worthwhile even with the extra computational cost incurred. We report the

results in Table 3.1.
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Figure 3-2: Importance function for nonnormal nodal sink.

Figure 3-3: Left: Trajectories of simple Monte Carlo simulations. Middle: fixed rate
splitting N0 = 1. Right: Adaptive multilevel splitting N0 = 100.

Variance Relative error per sample

Monte Carlo 2.54× 10−4 62.75

Fixed rate splitting (R = 2) 4.60× 10−4 84.46

Fixed rate splitting (R = 3) 8.19× 10−6 11.27

Fixed rate splitting (R = 4) 4.16× 10−7 2.54

AMS 1.93× 10−6 5.47

ρtrue = 2.54× 10−4. Optimal AMS variance: 5.27× 10−7.

Table 3.1: Multilevel splitting performance for the SDE with non-normal dynamics.
Here, T = 10.
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Figure 3-4: Variance and cost analysis for fixed rate splitting on nonnormal nodal
sink.

3.3.2 Brownian oscillator

We study the Brownian oscillator in Chapter 2 with multilevel splitting. The system

parameters and rare event are the same. We compute ρ = P(|x10|≥ 3), and the system

in state space is defined as

d

x
ẋ

 =

 0 1

−ω2
0 −2ζω0

x
ẋ

 dt+

0

1

dWt, ζ = 0.5, ω0 = 1.

Figure 3-5: Left: Trajectories of simple Monte Carlo simulations. Middle: fixed rate
splitting N0 = 1. Right: Adaptive multilevel splitting N0 = 100.

In Figure 3-5, we plot the trajectories of the Brownian oscillator with simple Monte

Carlo simulation, fixed rate splitting, and AMS. We use the same KBE solution with

nine eigenfunctions derived in Chapter 2 and constructed the importance function
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Figure 3-7: Variance and cost analysis for fixed rate splitting on the Brownian oscillator
model.

in Figure 3-6. Similarly to the previous example, we study the variance reduction in

fixed level splitting as a function of the splitting rate with the splitting level held fixed

at five. We see substantial variance reduction over standard Monte Carlo for both

fixed rate splitting and AMS, with variance being reduced by as much as 104 times.

Full results are presented in Table 3.2.

Figure 3-6: Importance function for the Brownian oscillator.
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Figure 3-8: Importance function for Van der Pol oscillator

Variance Relative error per sample

Monte Carlo 2.88× 10−5 186.34

Fixed rate splitting (R = 2) 1.33× 10−7 12.65

Fixed rate splitting (R = 3) 7.47× 10−9 3.00

Fixed rate splitting (R = 4) 7.80× 10−10 0.97

AMS 2.28× 10−8 5.24

ρtrue = 2.88× 10−5. Optimal AMS variance: 8.67× 10−9.

Table 3.2: Multilevel splitting performance for the Brownian oscillator. Here, T = 10.

3.3.3 Van der Pol oscillator

Finally, we apply AMS to the same Van der Pol oscillator as in Chapter 2. For the

importance function, we use the same approximation to the KBE as in the importance

sampling example. In Figure 3-8, we plot the importance function over time for the

Van der Pol oscillator. In Figure 3-9, we plot fifty trajectories of the Van der Pol

oscillator using AMS. Notice that not many samples are split until towards the end of

the simulation. AMS reduces the variance substantially over standard Monte Carlo,

and even more than importance sampling of the previous chapter.
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Figure 3-9: Adaptive multilevel splitting applied to the Van der Pol oscillator

Variance Relative error

Monte Carlo 1.69× 10−5 243.01

AMS 1.77× 10−8 7.88

Importance sampling 4.03× 10−8 11.85

ρtrue = 1.69× 10−5 Optimal AMS variance: 3.14× 10−9.

Table 3.3: Adaptive multilevel splitting performance for the van der Pol oscillator.
Importance sampling is included for comparison.

3.4 Discussion and future work

In this chapter, we considered splitting methods for rare event simulation. Using the

same stochastic Koopman eigenfunctions we used for importance sampling, we found

that both fixed rate splitting and adaptive multilevel splitting reduces the variance

for rare event probability estimators. The approximations to the optimal importance

function is just as crude as those used for importance sampling. We observed that while

splitting does incur additional computational costs over standard Monte Carlo, the

variance reduction makes the additional cost worthwhile. Furthermore, implementation

of AMS does not require access to the drift or diffusion matrices directly, it only

requires the ability to simulate trajectories of any length. This property will be
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crucial when extending this framework to a fully black box formulation where the

sKO eigenfunctions are found in a purely data-driven fashion. For future work, we

outline a few approaches to approximating the Koopman eigenfunctions in a purely

black-box manner in the next section.

3.4.1 Combining diffusion maps with stochastic Hankel DMD

We describe combining two successful approaches for accurately and robustly computing

Koopman eigenfunctions with only trajectory data. The main problem with using

extended dynamic mode decomposition is that it requires choosing a basis a priori.

Choosing a basis judiciously is generally difficult to do, so methods such as the diffusion

maps algorithm and stochastic Hankel DMD generate a basis through data. The

diffusion maps basis is a data-driven basis constructed from the distribution of training

points from the trajectory data. They are known to recover the stochastic Koopman

eigenfunction for noisy gradient systems with the potential equal to the log-density of

the data-generating distribution [28, 10]. Furthermore, they have also been found to

be a good basis for expressing the stochastic Koopman eigenfunctions of non-gradient

systems [8]. Diffusion maps is an algorithm based on kernels, which is typically limited

to low dimensions. While the diffusion maps algorithm was originally conceived as

means of nonlinear dimension reduction for high dimensional data, the assumption is

that there exists a low dimensional manifold through which the data is fully described

[29]. Stochastic dynamical systems typically do not have this property, and therefore

there is generally no low dimensional manifold the test points will belong to. This

makes the diffusion maps approach restricted to low dimensional systems.

Concurrently, DMD methods based on Krylov subspace methodology, such as

Hankel DMD, constructs a basis through repeated action of the Koopman operator.

Given an initial set basis functions, other elements of the basis are generated by

applying the Koopman operator multiple times to the initial functions. The approach

posits that this basis will span a Koopman invariant subspace on which eigenfunctions

are defined. Here, we highlight some qualities of each approach that are attractive for

multilevel splitting.
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Diffusion maps approach

Diffusion maps algorithms are known for their dimension reduction abilities for high-

dimensional data. They, however, have also been useful for characterizing stochastic

gradient flow systems. In fact, with certain parameter choices for the diffusion maps

algorithm, one can show that the eigenvectors of the stochastic matrix constructed by

the algorithm is equal to the eigenfunction values of a stochastic gradient flow system

with invariant measure being the data-generating distribution. This basis turns out

to be, in some sense, the optimal orthonormal basis for nongradient systems. The

following presentation is based mostly on [9, 10].

Suppose we are given ordered training points {x(i)}Ni=1 generated from a single

trajectory of a stochastic dynamical system. Define the diffusion kernel

KS
ε (x, y) = exp

(
− ‖x− y‖2

4ε(qε(x)qε(y))β

)
, (3.11)

where qε(x) is an order ε estimate of the sampling density q(x) ∝ exp(−U(x)). The

following theorem shows that the diffusion kernels can be used to approximate the

action of the generator corresponding to a stochastic gradient flow on functions f

Proposition 1 (From [8]). For a function f ∈ L2(q) and thrice-continuously differ-

entiable, define the functionals

Fi(xj) =
KS
ε (xi, xj)f(xj)

qSε (xi)αqSε (xj)α
, Gi(xj) =

KS
ε (xi, xj)

qSε (xi)αqSε (xj)α

where qSε (xi) =
∑

lK
S
ε (xi, xl)/qε(xi)

dβ. Then the stochastic matrix

LSε,α,βf(xi) :=
1

εmqε(xi)2β

(∑
j Fi(xj)∑
j Gi(xj)

− f(xi)

)
(3.12)

= L̂f(xi) +O
(
ε,
q(xi)

(1−dβ)/2

√
Nε2+d/4

,
‖∇f(xi)‖q(xi)−c2√

Nε1/2+d/4

)
(3.13)

with high probability, where c1 = 2− 2α+ dβ+ 2β and c2 = 1/2− 2α+ 2dα+ dβ/2 +β
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and m = 2. Here, L̂ is the generator of the system

dxt = −c1∇U(x) +
√

2dWt.

The eigenvectors of the stochastic matrix LSε,α,β are approximations of the eigen-

functions ϕj of L̂ evaluated at the training points. Thereafter, one way to approximate

the sKO eigenfunctions is by applying EDMD with this basis directly. The reason

this basis works best is because it leads to the minimal variance in the estimation of

the matrix entries [9]. We propose using this basis with stochastic Hankel DMD.

Robust DMD methods

We first review the standard DMD algorithm following the presentation in [129].

Let x0, . . . , xn be a trajectory of the stochastic dynamical system and let f be a

vector-valued observable and define f(i) := f(xi). Construct the matrices X =

[f(0), . . . , f(n− 1)], Y = [f(1), . . . , f(n)]. Let K = YX†. Denote the eigenvalues of K

to be λi and the left eigenvectors to be wi. The numerical eigenvectors are φ̂i = wTi X.

If the vector of observables f form a Koopman invariant subspace, then, with

enough trajectory data, dynamic mode decomposition produces eigenvalues that will

converge to the exact Koopman eigenvalues in that subspace. Furthermore, the

eigenvectors of K will correspond to the values of the eigenfunctions at the training

points. This following result even applies when the system is stochastic.

Proposition 2 (From [129]). Let f1, . . . , fk span a k-dimensional subspace of L2(µ),

F , which is invariant under the action of Koopman operator K. Let λj,n be the dynamic

eigenvalues produced by DMD along the trajectory x0, x1, . . . , xn. Then as n → ∞,

λj,n → λj, an eigenvalue of K for almost every initial condition. If the eigenvalues

are distinct, the numerical eigenfunctions converge to the values of the eigenfunctions

along the trajectory.

Choosing functions that span a Koopman invariant subspace, however, is generally

computationally intractable. Krylov-based dynamic mode decomposition methods are

better suited at approximating Koopman invariant subspaces. As the name suggests,
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given a single observable, a basis of functions is construct by repeated application

of the stochastic Koopman operator on that single initial observable. Just as in

the finite-dimensional setting, the intuition is that a basis constructed by repeated

application of the linear operator on some initial set of vectors (or basis functions)

can identify invariant subspaces of the linear operator more quickly. There are two

approaches that follow this intuition: the first is the stochastic Hankel DMD, which

approximates the action of the sKO by many short term trajectories along some long

single trajectory [31].

The second approach actually just uses a single long trajectory with the standard

Hankel DMD to approximate the spectral quantities. This approach works for ergodic

stochastic systems since the integral of the Koopman operator applied on an observable

with respect to the invariant measure is equal to that of the original observable:

∫
Ktf(x)dµ(x) =

∫
f(x)dµ(x).

A guarantee of Krylov subspace-based methods working for dynamical systems is

given in [129]:

Corollary 1 ([129]). Let f be some observable and define the Krylov sequence

f,Kf, . . . ,Kk−1f span a k-dimensional invariant subspace F and the restriction of K

to F is full rank. Let

f(t) = [f(t) f(t+ 1) . . . f(t+ k − 1)]>.

Then DMD produces eigenvalues λj,n that converges to the eigenvalues of K.

The practical computation of the Krylov sequences can be applied via time-delays.

While Krylov DMD methods simplify the choice of basis to a set of initial observables,

it still prescribe what initial observables one should choose. For future work, we

propose using the diffusion maps algorithm to define a set of initial basis functions

and then apply Krylov-based methods to identify a Koopman invariant subspace. We

hope that the data-driven basis will provide good initial functions that when used with
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robust DMD methods will produce sKO eigenfunctions that are useful for multilevel

splitting.
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Part II

Sampling methods by stochastic

dynamical systems
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Chapter 4

Sampling via controlled stochastic

dynamical systems

4.1 Introduction

Beginning in this chapter, we shift our focus and begin exploring sampling methods

by stochastic dynamical systems. Computing expectations with respect to high

dimensional, non-Gaussian distributions is a common problem in statistics and machine

learning. In this chapter, we re-interpret our approach to importance sampling for

SDEs to produce controlled SDEs whose marginal at a particular time T matches

target distributions.

The theory of controlled diffusions provides a different perspective of the work in

Chapter 2. The Doob h-transform highlighted in that chapter exactly samples from the

distribution of the time T marginal conditioned on the rare event, which is the same

as the problem’s zero-variance importance sampling distribution. In fact, the theory

of controlled diffusions provides a unifying approach to many problems in statistics,

including sampling [7], data assimilation [94], optimal transport [73], stochastic optimal

control [25, 26], and rare event simulation [57, 122, 139]. Computational methods to

construct the Doob h-transform efficiently have the potential to enable new approaches

to all of these problems.
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4.2 Controlled diffusion processes

In this section we review some relevant notions from the theories of SDEs and controlled

diffusion processes [65, 85, 90, 105]. This section is similar to that of Chapter 2.2.1. Let

{Xt}t∈[0,T ] be a time-homogeneous d-dimensional diffusion process on (Ω,F ,P, {Ft}).

The evolution of the diffusion is described by the SDEdXt = A(Xt) dt+ B(Xt) dWt

X0 = x0

(4.1)

where the drift term A(x) maps Rd to itself, the diffusion term B(x) maps Rd to the

space of d × r matrices, and Wt is a standard r-dimensional Brownian motion. To

guarantee existence and uniqueness of the solution, we assume that A and B are

Lipschitz continuous and have linear growth. A standard tool that describes and that

is used to analyze SDEs is the Markov generator defined as

Aψ :=
d∑
i=1

Ai(x)
∂ψ

∂xi
+

1

2

d∑
i=1

d∑
j=1

[B(x)B(x)∗]ij
∂2ψ

∂xi∂xj
. (4.2)

This is a linear operator that acts on the space of twice-continuously differentiable func-

tions and describes the evolution of expectations of the SDE through the Kolmogorov

backward equation (KBE). The adjoint of the operator describes the evolution of the

density of the state through the Kolmogorov forward equation, also known as the

Fokker-Planck equation. Define ηt,x0(x) to be the probability density of Xt with initial

condition x0. For f ∈ C2(Rd), define Φ(t, x) = E[f(XT )|Xt = x]. The Kolmogorov

backward and forward equations are
∂Φ

∂t
+AΦ = 0

Φ(T, x) = f(x)


∂ηt,x0
∂t

= A∗ηt,x0(x)

η0,x0(x) = δ(x− x0)

(4.3)

respectively, where A∗η := −∇ · [A(x)η] + 1
2

Tr∇2[B(x)B(x)∗η] and δ(x− x0) is the

point mass centered at x0. Now, given an unnormalized target density π(x), we wish
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to find the optimal feedback control u(t, x) such that the controlled diffusion process

dYt = [A(Yt) + Bu(t, Yt)] dt+ B(Yt) dWt

Y0 = x0

(4.4)

has its time T marginal equal to the target distribution. The control that achieves this

goal is called the Doob h-transform, which we describe in the following proposition.

Let p(t, t′, x, x′) denote the Markov transition kernel of (4.1); that is, for a set A,

P[Xt′ ∈ A|Xt = x] =
∫
A
p(t, t′, x, x′) dx′. The transition kernel of the controlled process

relates to that of the reference process for a certain class of controls.

Theorem 3 (Doob h-transform [38, 120, 33]). Let f ∈ C2(Rd) be strictly positive over

Rd and Φ(t, x) = E[f(XT )|Xt = x] be the solution to the KBE. Let p(t, t′, x, x′) be the

Markov transition kernel of the process in (4.1). If u(t, x) = B(x)∗∇ log Φ(t, x) is the

feedback control in (4.4), then the transition kernel of the controlled process is

pu(t, t′, x, x′) = p(t, t′, x, x′)
Φ(t′, x′)

Φ(t, x)
. (4.5)

Moreover, observe that by letting t = 0, t′ = T , and x = x0, we have

pu(0, T, x0, x
′) = ηT,x0(x

′)
f(x′)

Φ(0, x)
:= ηuT,x0(x

′), (4.6)

which is the marginal density of the controlled process at time T .

Note that this is a different version of the Doob transform as presented in Theorem

1. Now, assuming that the target distribution is absolutely continuous with respect to

the marginal distribution of the reference SDE at time T , notice that if we can choose

f(x) = π(x)/η(x) and solve the KBE, then the corresponding Doob h-transform will

lead to a controlled SDE that samples from the target distribution. (To compare with

Chapter 2, we fixed f(x) to be an indicator function over a rare event). We do not

need access to the normalized target density, as the denominator in (4.6) is itself

the normalization constant. This can be computed exactly if we truly had the Doob

h-transform.
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Suppose the initial condition X0 = x0 were not deterministic, and instead were

such that X0, Y0 ∼ η0(x), where η0(x) is any probability density on Rd. Then the

problem of finding a controller u(t, x) for process {Xt} such that Y0 ∼ η0(x), YT ∼ π(x)

and such that the KL divergence from the path space measure of {Xt} to that of {Yt}

is minimized is known as the Schrödinger bridge problem (SBP) [7, 34, 91, 107, 124].

While the solution to the SBP is still in the form of a Doob h-transform, computing

the solution is quite challenging and is an open area of research. State-of-the-art

methods for solving the SBP rely on solving a series of optimization problems, which

is quite intractable in high dimensions.

Previous work on controlled SDEs for importance sampling and rare event simula-

tion of SDEs typically do not take this approach, citing the difficulty of solving the

KBE for high-dimensional systems [122]. Instead, they consider a stochastic optimal

control perspective. If we introduce the variable transform U(t, x) = − log Φ(t, x), we

obtain a stochastic Hamilton-Jacobi-Bellman equation [122], which has the following

variational formulation

U(t, x) = inf
u
E
[

1

2

∫ T

t

‖u(t, Yt)‖2dt− log f(x)
∣∣∣Yt = x

]
. (4.7)

This approach is common in the rare event simulation literature [57, 122, 139]. A clear

proof of Proposition 3 using the stochastic optimal control formulation is provided in

[120]. The stochastic control perspective has the added benefit of also describing an

information-theoretic approach to the problem [57]. In the next section, we show that

there exists a family of SDEs whose Doob h-transforms can be found without directly

solving these computationally challenging problems.

4.3 Construction of the controlled SDE sampler

We construct a method for sampling a target density π on Rd, based on finding the

Doob h-transform using the KBE. Cases in which the solution to the optimal control

problem can be written in closed form are rare. Yet if the reference process’s Markov
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generator is time-independent and has eigenfunctions, then the solution to the KBE

can be written in closed form. This enables us to approximate the optimal control

directly. We thus convert the optimal control problem into a static optimization

problem that can be solved efficiently.

We first describe the reference process that admits closed-form expressions for the

Markov generator’s eigenfunctions. We then describe how we project the likelihood

function described in Proposition 3 onto the basis of eigenfunctions. Next, we sketch

how one can choose a good terminal marginal and what initial conditions will make

computations expedient. Lastly, we describe the class of distributions to which this

method applies before summarizing the approach in Algorithm 5.

4.3.1 Choosing a reference process

To make sampling via controlled SDEs tractable, we must find a way to approximate

the Doob h-transform without solving a high-dimensional PDE or a series of optimal

control problems. Unlike problems in dynamical systems and molecular dynamics

[43, 57, 122], since we only care about sampling from some target distribution, we

have freedom to choose the reference dynamical system.

In [7] the authors choose, as a reference, an overdamped Langevin system whose

invariant distribution is the target distribution. Intuitively, this has the benefit that

with a sufficiently large time horizon T , the control does not need to be excessive to

guide the system to the invariant distribution. However, one does not know the exact

density of the system at time T . Furthermore, one would still have to solve a PDE or

contend with optimal control problems.

Another option is to choose the reference to be a standard Brownian motion. The

density of a Brownian motion is known exactly for any time, and the solution to the

KBE can be written in terms of an integral. However this integral is expensive to

compute in high dimensions. This choice of reference is studied for neural SDEs in

[120, 119], where it is shown that feed-forward neural networks are rich enough to

approximate the Doob h-transform that will sample from a class of target distributions.

These papers do not provide an algorithm for finding the control, however.
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Our desiderata for a reference system are as follows: we need to be able to compute

the marginal density of the uncontrolled system at time T that contains the support

of the target density, and we need a way to solve the KBE or optimal control problems

without expensive computations. We argue that the reference system should be a

linear SDE, also known as an Ornstein-Uhlenbeck (OU) process. Specifically, the drift

term should be the negative identity and the constant d× d diffusion matrix B can

be user-designed depending on the target density:dXt = −Xtdt+ BdWt

X0 = x0.

(4.8)

Like Brownian motion, if the initial condition is deterministic, the density can be

derived exactly for all time. In this case, Xt ∼ N (x0e
−t,Σt) where Σt = 1−e−2t

2
BB∗

[65]. Furthermore, the corresponding Markov generator, called the OU operator, has

a discrete spectrum and the eigenfunctions of the system can be derived exactly. The

OU operator is

Aψ(x) = −〈x,∇ψ(x)〉+
1

2
TrBB∗ψ(x). (4.9)

The eigenfunctions of this operator are products of Hermite polynomials. In particular,

let B∗ei = µiei, where ‖ei‖= 1, and let n ∈ Nd
0 be multi-indices. The eigenfunctions

are

φn(x) =
d∏
i=1

Heni

(√
2

µi
〈x, ei〉

)
(4.10)

with eigenvalues λn = −
∑d

i=1 ni [82]. Here, Heni(x) denotes the Hermite polynomial

of degree ni. This spectral decomposition lets us find an exact solution to the KBE as

long as f(x) can be expressed in terms of the eigenfunctions. Notice that if

f(x) =
∑
n

cnφn(x), then Φ(t, x) =
∑
n

cne
λn(T−t)φn(x). (4.11)
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4.3.2 Projecting onto eigenfunctions

The OU process gives us eigenfunctions that allow us to avoid costly computations

associated with solving an optimal control problem or directly solving the KBE. The

issue instead is that we need to find the expansion coefficients ci for a given f(x)

and set of eigenfunctions {φn}n∈I . We find this “projection” by minimizing the KL

divergence from the approximate density to the target.

Define f̃(x, c) =
∑

n∈I cnφn(x), where I ⊂ Nd
0 is some set of multi-indices. Let

π(x) and π0(x) be the unnormalized and normalized target densities, respectively, and

let π̃ be the approximate density. Let η be the density of the uncontrolled system at

time T . Define f(x) = π(x)/η(x) and let f̃(x, c) be its approximation. Then we may

write the exact and approximate densities as

π0(x) =
f(x)η(x)

γ
, π̃(x) =

f̃(x, c)η(x)

γ̃
, (4.12)

where γ and γ̃ are the normalizing constants of π(x) and π̃(x). Here, γ is not known,

but γ̃ can be computed exactly: γ̃ = E[f̃(XT , c)|X0 = x0] =
∑

n∈I cne
λiTφn(x0). The

KL divergence from π̃ to π0 is DKL(π0(x)‖π̃(x)) = Eπ0 [log π0(x)− log π̃(x)]. Minimiz-

ing this divergence amounts to maximizing Eπ0 [log π̃] over the space of admissible

probability densities. This objective can be directly approximated. Recall that both

π0 and π̃ can be written in terms of η, and we have

max
c∈R|I|

Eη

[
f(x) log

f̃(x, c)

γ̃(c)

]
. (4.13)

Solving this optimization problem should guarantee that f̃(x, c) is positive since if

it were otherwise, π̃ would no longer be a density function. The objective function

is approximated using Monte Carlo samples from η. Doing so enforces positivity

at the sample points, since log f̃ diverges otherwise; it is possible, however, that

an approximation is negative elsewhere in the domain. With sufficient samples and

eigenfunctions of moderate degree, we find that this issue can be avoided in practice.
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4.3.3 Choosing the terminal marginal ηT and the initial condi-

tion

Next we must choose the marginal at time T , ηT,x0 , and design the reference OU

process accordingly. Since the only closed-form solutions to the OU process are normal

distributions, we restrict ourselves this class. We also assume that the initial condition

is deterministic. (Choosing otherwise complicates the problem, and is closer to the

full Schrödinger bridge [107].) In the optimization problem in (4.13), we are in effect

evaluating the expectation Eπ0 [log π̃] using ηT,x0 ≡ η as a biasing distribution. This

means that we should choose η such that the objective function can be estimated with

low variance. One way to choose η is to apply another method that would give some

(crude) normal approximation to π, such as the Laplace approximation, expectation

propagation, or mean-field variational Bayes. Doing so allows us to approximate the

scale of the target distribution and shift it closer to the origin. Therefore, we choose

the initial condition to be x0 = 0.

Suppose we have in hand a normal approximation N (0,Σ) to π. To find the OU

process that has this marginal at time T , we first find the eigenvalue decomposition of

Σ = V ΛV ∗. The eigenvectors identify the principal directions for the diffusion term.

The diffusion matrix is then chosen to be

B =

√
2Λ

1− e2T
V . (4.14)

4.3.4 Expressiveness of the Hermite polynomials

The OU eigenfunctions form a complete set in the weighted L2 space with weight

function equal to the invariant density η∞ of the SDE. For example, in 1-D we need

∫
R
|f(x)|2η∞(x)dx =

∫
R

π(x)2

ηT (x)2
η∞(x) <∞. (4.15)

One difficulty with having a deterministic initial condition is that the distribution

of the OU process at finite time T will always be a Gaussian that is narrower than
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the invariant distribution. This means the ratio between the invariant density and

the reference marginal ηT grows as exp(x2), which implies π(x) must have Gaussian

tails for the integral to be finite. It is possible to extend this method to include

distributions with heavier tails based on the Schrödinger bridge literature [7, 91, 94],

though the formulation will be more complicated.

Lastly we address the question of how to choose the set of multi-indices I ⊂ Nd
0.

In low dimensions (approximately d ≤ 5), it is practically feasible to use a total

order basis ‖n‖1≤ p for p ∈ N. For higher dimensional problems, we will need to

incorporate additional structure of the target density into the problem to reduce the

number of basis functions. One option is to take advantage of the target density’s

Markov structure [69]. If we know that the density factors into a product of potential

functions that are only dependent on a subset of the variables, we can construct a

reference process whose marginal matches the structure of the target. This allows us

to decouple the problem according to the Markov structure, gives us information on

how to choose the basis functions, and makes the approach more scalable.

Another generally applicable choice is the sparse truncation that corresponds

to choosing ‖n‖q≤ p for q ∈ [0, 1). Doing so assumes that f(x) is well approxi-

mated by polynomials that depend primarily on certain eigenvector directions, i.e.,

with only lower-order cross terms. This choice originates from the high-dimensional

approximation literature [108].
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We summarize the method in Algorithm 5.
Algorithm 5: Computing the Doob h-transform

Input: Unnormalized target density π(x), set of multi-indices I ⊂ Nd0
Output: Optimal control u(t, x)

1: Find an approximation η(x) = N (0,Σ) to π(x), define f(x) = π(x)/η(x)

2: Compute Σ = V ΛV ∗

3: Set B =
√

2Λ
1−e−2T V

4: Construct eigenfunctions {φn(x)}n∈I

5: Draw M independent X(i) ∼ N (0,Σ)

6: Solve c∗ = arg maxc∈R|I|
1
M

∑M
i=1 f(X(i)) log f̃(X(i),c)

γ̃(c) where

f̃(X(i), c) =
∑

n∈I cnφn(X(i)), and γ(c) =
∑

n∈I cne
λn(T−t)φn(x0)

7: Doob h-transform is u(t, x) = B∗∇ log
∑

n∈I c
∗
ne

λn(T−t)φn(x).

After simulating the controlled SDE (4.4) independently multiple times, we can use

the samples directly for approximate inference. We may also use them for importance

sampling or as an independence proposal in MCMC.

4.3.5 Correcting for bias due to SDE discretization

Since we do not have the true normalizing constant of π, we can use self-normalized

importance sampling [87] to compute (asymptotically) unbiased expectations, which si-

multaneously estimates the normalizing constant and the desired expectation. Because

our samples necessarily come from the discretization of an SDE, however, standard

methods such as the Euler-Maruyama or Milstein schemes do not truly sample from

π̃; instead they sample from the approximation π̃h [105].1 Because we choose to use

linear SDEs as the reference process, it is possible to correct this bias.

Let ηh and π̃h be the densities of the time T marginals of the uncontrolled and

controlled SDEs, respectively, using the Euler-Maruyama scheme with step size h. Let

N = T/h. Then ηh is a normal distribution with mean 0 and covariance matrix

Σh
T =

1− (1− h)2N

1− (1− h)2
hBB∗. (4.16)

1If the noise is additive, as in linear SDEs, the Euler-Maruyama and Milstein schemes are
equivalent.
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The density π̃h cannot be expressed in closed form, but the likelihood ratio of π̃h

with respect to ηh can be computed. Let Ŷk be the value of the discretized path at

step k, and ξk+1 be the sample of the standard normal random variable used in the

discretization. Then

logZ(YT ) = log
π̃h(YT )

ηh(YT )
=

N−1∑
k=0

〈u(tk, Ŷk), ξk+1〉
√
h+

1

2

N−1∑
k=0

‖u(tk, Ŷk)‖2h. (4.17)

Then observe that the following allows access to an unbiased estimator of the normal-

izing constant.

Eπ[1] = Eπ̃h
[ π
π̃h

]
= Eπ̃h

[
π

ηh
ηh

π̃h

]
= Eπ̃h

[
π(YT )

ηh(YT )
Z(YT )

]
. (4.18)

We provide details for correcting the bias as follows. We constructed controlled

SDEs whose marginal at time T is π̃, an approximation to target density π. Exact

samples from π̃ are obtained by taking the final positions of the simulated trajectories

of the controlled SDE (4.4). However, since these samples come from the discretization

of the SDE, they do not truly sample from π̃; instead they sample from π̃h. Because

we choose to use linear SDEs as the reference process, it is possible to calculate the

likelihood ratio needed to correct this bias, for both importance sampling and MCMC.

Observe that the Euler-Maruyama scheme applied to (4.8) and (4.4) gives us

X̂k+1 = X̂k − X̂kh+
√
hBξk+1 (4.19)

Ŷk+1 = Ŷk + (−Ŷk + Buk)h+
√
hBξk+1, (4.20)

respectively, for k = 0, . . . N − 1 where h = T/N , tk = kh, uk = u(tk, Ŷk), and

ξk+1 ∼ N (0, Id). Each of the discrete-time processes above has an associated path

measure, which we denote Q and Qu respectively. Let ηh be the marginal of Q at time

T . Note that as h approaches zero, ηh approaches the reference density η. Observe
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that

Eπ[1] = Eηh
[
π

ηh

]
= EQ

[
π(X̂N)

ηh(X̂N)

]
= EQu

[
π(ŶN)

ηh(ŶN)

dQ
dQu

]
. (4.21)

This means we need to need to derive the density of ηh and the likelihood ratio

dQ/dQu. The former can be derived exactly because the reference process is linear.

Recall that ηh is the density of X̂N . The random increments are normally distributed,

so the distribution of X̂k is normal for any k. Furthermore since X̂0 = 0, we simply

have to find the covariance matrix of X̂k. Let Σk = E
[
X̂kX̂

∗
k

]
denote the covariance

matrix of X̂k. For all k we have

X̂k+1X̂
∗
k+1 =(1− h)2X̂kX̂

∗
k + hBξk+1ξ

∗
k+1B

∗ (4.22)

+ (1− h)X̂kξ
∗
k+1B

∗
√
h+
√
hBξ∗k+1X̂

∗
k(1− h).

Taking the expectation and noticing that the increment ξk+1 is independent of X̂, we

have

E
[
X̂k+1X̂

∗
k+1

]
=(1− h)2 E

[
X̂kX̂

∗
k

]
+ hB E

[
ξk+1ξ

∗
k+1

]
B∗. (4.23)

This gives us the following recurrence relation

Σk+1 = (1− h)2Σk + hBB∗ (4.24)

which implies

Σh
T := ΣN =

N−1∑
k=0

(1− h)2k(hBB∗) =
1− (1− h)2N

1− (1− h)2
hBB∗. (4.25)

To compute the likelihood ratio dQ/dQu, we compute the joint densities of Q and
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Qu. The conditional density of X̂k+1 given X̂k is

q(X̂k+1|X̂k) =
1√

(2π)dh detBB∗
(4.26)

exp

[
−1

2
(X̂k+1 − (1− h)X̂k)

∗(BB∗h)−1(X̂k+1 − (1− h)X̂k)

]
.

The joint density of X̂1, . . . , X̂N is then

q(X̂1, . . . , X̂N) =
N−1∏
k=0

q(X̂k+1|X̂k). (4.27)

In a similar fashion, the conditional density of Ŷk+1 given Ŷk is

qu
(
Ŷk+1|Ŷk

)
=

1√
(2π)dh detBB∗

(4.28)

exp

[
−1

2
(Ŷk+1 − (1− h)Ŷk −Bukh)∗(BB∗h)−1(Ŷk+1 − (1− h)Ŷk −Bukh)

]

and the joint density can be found similarly as in (4.27). For any k, we have

log
q(Ŷk+1|Ŷk)
qu(Ŷk+1|Ŷk)

=− (hBuk)
∗(BB∗h)−1(Ŷk+1 − Ŷk(1− h)) (4.29)

+
1

2
(hBuk)

∗(BB∗h)−1hBuk.

Now notice that from (4.20), Ŷk+1−Ŷk(1−h) = hBuk+
√
hBξk+1 ∼ N (hBuk, hBB∗).

This allows us to write

log
q(Ŷk+1|Ŷk)
qu(Ŷk+1|Ŷk)

= −u∗k(huk +
√
hξk+1) +

h

2
‖uk‖2

= −
√
hu∗kξk+1 −

h

2
‖uk‖2. (4.30)

Then the likelihood ratio is

log
dQ
dQu

= log
q(Ŷ1, . . . , ŶN)

qu(Ŷ1, . . . , ŶN)
= −
√
h
N−1∑
k=0

〈uk, ξk+1〉 −
h

2

N−1∑
k=0

‖uk‖2. (4.31)
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This formula is akin to a discrete version of the Girsanov theorem [85, 105]. With this

and the expression for the density ηh, we can use (4.21) to estimate the normalizing

constant. While here we have described how to construct an unbiased estimate of

the normalizing constant of π, it is then simple to extend this construction to the

estimation of any other expectation over π.

4.4 Numerical experiments

We test our methodology on some simple non-Gaussian distributions and Bayesian

inference problems. In the 1-D and 2-D example problems, we show how the eigen-

functions approximate the target distribution, and find that only a few eigenfunctions

are needed to construct a good approximation. We then apply our methodology to

Bayesian logistic regression on several datasets from [52], demonstrating feasibility in

higher dimensions.

In general, we have not yet prescribed a definitive way of choosing a “good”

terminal reference distribution ηT . We do note, however, that the controlled SDEs

seem to perform better when the ratio between the target and reference densities

f(x) = π(x)/η(x) grow to infinity as |x|→ ∞. This is due to the fact that polynomials

diverge away from the origin, so they are poor at approximating functions that decay

away from the origin. This implies that η should decay faster than π and is why for

the 1-D and 2-D examples, the reference distribution is chosen so that the bulk of the

target distribution contains the bulk of the reference.

4.4.1 One-dimensional mixture model.

We demonstrate the methodology on a 1-D Gaussian mixture model and report some

trends relating to how the KL divergence converges as the eigenfunction basis is

enriched. The target distribution is π(x) = 0.6N (x; 1.8, 0.72) + 0.4N (x;−2.6, 0.92).

We choose the reference process to be such that the marginal at time T = 1 is

N (x; 0, 1.42). The optimization problem in (4.13) is solved with 10000 samples. In

Figure 4-1, we show how the approximate density approaches the exact density as
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Figure 4-1: 1-D Gaussian mixture model target. Red curve is the density of the
controlled SDE at T = 1, and p denotes the maximum polynomial order. Histograms
are from samples generated by the controlled SDEs. The optimization problem in
(4.13) is discretized with M = 20000 samples.

the basis is enriched as well as histograms that show samples from the approximate

density. In figure 4-2, we plot how the KL divergence from the approximate to the

target converges. Notice that while the KL reduces with more basis functions, the

variance grows when estimating the coefficients of the higher order polynomials.

4.4.2 Two-dimensional distribution.

We evaluate the method for a highly non-Gaussian distribution. The target distribution

is a slight modification of an example in [98]. The density of the two-dimensional

example in Section 4.4 is π(x) = exp(−U(x)) where

U(x) = 0.5

(
‖x‖2−1.5

0.7

)2

− log

[
exp

(
−
(
x1 − 2

0.8
√

2

)2
)

+ exp

(
−
(
x1 + 1.5

0.8
√

2

)2
)]

.

(4.32)

The reference process is chosen such that the distribution at time T = 1 is a normal

with mean 0 and covariance Σ = diag(0.6, 1). We use a total order basis of degree

up to p for p ∈ {0, 2, 4} as shown in Figure 4-3, and see that the density is well

approximated.
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(a) M = 2500 (b) M = 10000

Figure 4-2: KL divergence from the approximate density π̃ to the exact target π, for
repeated trials of optimization and sampling. While the divergence decreases with a
richer eigenfunction basis, its variance increases. The variance decreases when more
sample points are used.

h Essential sample size (M = 104)
0.1 5.9× 103

0.05 6.3× 103

0.01 6.7× 103

Table 4.1: Computed effective sample sizes for various levels of SDE discretization
(time step h), using the asymptotically unbiased estimator (4.21).

In Figure 4-4, the controlled SDE is discretized with h = 0.01. In Table 4.1,

we report the effective sample size (ESS) obtained when computing the normalizing

constant γ = Eπ[1] using the importance sampling estimator in (4.21) for various

levels of discretization. For comparison, the ESS is 1.7 × 103 with M = 104 points

when simply using the reference distribution η for importance sampling.

We use the samples from the p = 4 case to estimate normalizing constant via

importance sampling. In Figure 4-4, we show that if we use π̃ directly, the resulting

estimator is biased, but the mean-squared error is smaller than if we had used η as

the importance sampling distribution. If we apply the bias correction, the variance of

the resulting estimator increases, but it is unbiased.

4.4.3 Bayesian logistic regression.

Finally, we test our method on several Bayesian logistic regression problems, using

datasets described in [52] and following the same setup. The priors on the weights w
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Figure 4-3: Left three figures show the approximate density produced by the controlled
SDE for total degree up to p. Rightmost figure shows the exact target density. Red
dots show the simulated points of the controlled SDE. The optimization problem was
discretized with M = 10000 samples from η.

Figure 4-4: We use the p = 4 case as an importance sampling distribution to estimate
the normalizing constant of π(x).
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Dataset d CSDE NUTS
banana 3 0.5100 0.5094

diabetes 9 0.7567 0.7533
breast_cancer 10 0.5844 0.5844

heart 14 0.8100 0.8100
thyroid 6 0.8933 0.8800
titanic 4 0.7416 0.7416

Table 4.2: Testing accuracy of NUTS and controlled SDE approach from the Bayesian
logistic regression datasets. (Higher numbers are better.)

are Gaussian with mean zero and covariance matrix α−1I, and the hyperparameter

α is endowed with a Γ(a = 1, b = 0.01) distribution. We sample from the posterior

distribution of [w, logα]. We compare our methodology to the no U-turn sampler

(NUTS) [58], and use the sample points from the controlled SDE for approximate

inference. For lower dimensional problems where d ≤ 5, we use a total order basis with

order 4. For problems with d > 5, we use sparse truncation with q = 1/2. The reference

process is chosen such that the marginal at time T = 1 is the Laplace approximation

of the posterior distribution. For these examples, all SDEs are simulated with time

step h = 0.005. In many Bayesian inference problems, evaluating the posterior is the

main computational expense in sampling. To make the comparisons fair, we give both

methods approximatelyM = 20000 evaluations of the log posterior or its gradient. For

NUTS, this computational budget typically resulted in approximately 2000 samples,

of which we use the latter 1000 to estimate the weights. For the controlled SDE case,

we use the budget to solve the optimization problem in (4.13) and then generate 1000

samples of the approximate posterior using the resulting controlled SDE. In Table 4.2,

we report the testing accuracy of the two methods on a variety of datasets.

4.5 Discussion and future directions

In this chapter, we introduced a tractable approach to sampling based on controlled

SDEs. By choosing the reference process to be a linear SDE, we can use eigenfunctions

of the system’s Markov generator to approximate the required control, for any target
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distribution with Gaussian tails. Future research will investigate properties of the

optimization problem, expand the class of admissible distributions, and exploit low-

dimensional structure or sparsity in the control. We hope that these efforts create

new classes of practical methods for sampling, control, and data assimilation.

While tractable, our approach suffers from lack of robustness as small changes to

the algorithm parameters can lead to schemes that fail to produce samples from the

target distribution. Poor choice of the basis functions lead to lack of expressiveness so

that the basis cannot properly describe the target distribution without using many

more basis functions. Indeed, while we know that Hermite polynomials are able to

express a broad class of likelihood ratios, in practice we found that sometimes one

needs many polynomials to approximate the likelihood ratio.

In the following sections, we describe two future directions that may resolve some of

the challenges preventing the framework from being more easily applicable to Bayesian

computation problems.

4.5.1 Schrödinger half-bridge formulation

In the framework we described, the initial condition is always deterministic. If we

appeal to the Schrödinger bridge problem (SBP) formulation, we can treat more

general initial conditions, however solving SBPs generally for general initial and

terminal distributions is challenging and would require solving sequences of dynamic

programming problems instead [7]. Recall that our approach only requires solving a

static optimization problem.

Here we consider the Schrödinger half bridge problem, where we allow a proba-

bilistic initial condition, but we do not fix it to a specific distribution as in the full

SBP [7, 91]. Admitting more initial conditions into the framework may lead to more

to a more expressive class of approximating distributions. Following the setup before,

let π(x) be the unnormalized target density on Rd. Let η0(x) and ηT (x) be the initial
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density and reference terminal density, respectively. Let the reference process be

dXt = AXtdt+ BdWt

X0 ∼ η0(x).

The SBP framework requires one to find a controller u(t, x) such that YT ∼ π(x).

Since the initial distribution is no longer deterministic, the half-bridge formulation

implies that the initial density η0 will change as well. Recall that Φ(t, x) is the solution

to the KBE of the reference process:


∂tΦ +AΦ = 0

Φ(T, x) =
π(x)

ηT (x)
.

Let u(t, x) = B∗∇ log Φ(t, x), then Section 2.3 in [91] shows that the controlled process

will evolve as follows

dYt = [AYt + Bu(t, Yt)]dt+ BdWt (4.33)

Y0 ∼ Φ(0, y)η0(y),

with YT ∼ π(y). In this chapter, we had η0(x) be deterministic so that the initial

distribution of Y0 was identical to that of X0. This choice, however, is rather restrictive

since ηT can only be a Gaussian with the trace of the covariance being strictly less

than that of the invariant Gaussian of the reference process. We therefore would like to

allow for more general initial conditions in the hope that the resulting approximating

class is more expressive.

To make this framework tractable, we must be able to find initial conditions for

which the Fokker-Planck is easy to solve, and the corrected initial density is simple to

sample. To this end, we propose the following three classes of distributions for the

initial condition:

• Discrete distributions,
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• Eigenfunctions of the Fokker-Planck equation,

• Mixtures of Gaussians.

Discrete distributions

Here we consider initial densities of the form

η0(x) =
N∑
i=1

wiδ(x− xi) (4.34)

where δ(x − xi) is a delta distribution centered at xi, and wi > 0 are weights such

that
∑N

i=1wi = 1. One can easily show that

ηT (x) =
N∑
i=1

wiN (eATxi,ΣT ) (4.35)

where Σt solves Σ̇t = 2AΣt −BB∗. After solving for the controller based on the KBE

solution Φ(t, x), the modified initial density is

Y0 ∼ Φ(0, y)η0(y) =
N∑
i=1

w̃iδ(x− xi). (4.36)

The modified initial density is still discrete, but the weights are re-weighted. In this

case, the modified initial condition is still simple to sample. Choosing the correct

discrete distributions will require approximating the target distribution with a mixture

of Gaussians with identical covariance matrices first. This approach is also a special

case of the mixture of Gaussians initial condition we describe later.

Eigenfunctions of the Fokker-Planck equation

In Appendix A, we show that the eigenfunctions of the Ornstein-Uhlenbeck operator

are analytically available when A is self-adjoint and B is simultaneously diagonalizable

with A. It can be easily shown that the eigenfunctions of the Fokker-Planck operator

can be defined in terms of the eigenfunctions of the OU operator. Let η∞(x) be the
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invariant distribution, the eigenfunctions are φi(x)η∞(x). Suppose we have an initial

density of the form

η0(x) =
N∑
i=1

wiφi(x)η∞(x). (4.37)

Then the time T marginal is

ηT (x) =
N∑
i=1

wie
−λiTφi(x)η∞(x), (4.38)

and the modified initial condition is

Y0 ∼

[
Φ(0, y)

N∑
i=1

wiφi(y)

]
η∞. (4.39)

Since the KBE solution is approximated by the eigenfunctions of the OU operator,

the modified initial condition is, again, a product of a polynomial and the invariant

density. This density can be sampled from exactly via another controlled linear SDE

whose reference samples from the invariant density exactly in finite time. We expound

on this formulation in Section 4.5.2.

Mixtures of Gaussians

We can also solve the Fokker-Planck when the initial density is a mixture of Gaussians.

This can be regarded as a generalization of the case with the discrete distributions.

Let the initial density be

η0(x) =
N∑
i=1

wiN (µi,Σ
(i)
0 ). (4.40)

The reference terminal is

ηT (x) =
N∑
i=1

wiN (µie
AT ,Σ

(i)
t ) (4.41)
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where Σ
(i)
t are solved via the matrix differential equation Σ̇t = 2AΣt−BB∗ for each i.

The modified initial condition is then

η0(y) = Φ(0, y)
N∑
i=1

wiN (µi,Σ
(i)
0 ). (4.42)

We would require constructing and simulating N separate controlled linear SDEs to

sample from this modified initial condition.

4.5.2 A controlled SDEs formulation based on Fokker-Planck

eigenfunctions

We describe in more detail the formulation for sampling via controlled SDEs using the

Fokker-Planck eigenfunctions. We first find an approximation of the target density by

an expansion of the eigenfunctions of the Fokker-Planck operator corresponding to

some linear SDE. The eigenfunctions only depend on the covariance of the invariant

measure and the eigenvectors of B. Without loss of generality, we can choose A to be

the identity matrix. That is, suppose we have diffusion process {Xt}t∈[0,T ] evolving

according to

dXt = −(Xt − µ)dt+
√

2BdWt (4.43)

for µ ∈ Rd, B ∈ Rd×d, where B = B∗, and Bqk = λkqk, and Wt ∈ Rd is a standard

d-dimensional Brownian motion. The invariant density of the system is a Gaussian

with mean µ and covariance matrix Σ∞ = BB∗. The generator of this process is

Aψ = −
d∑
i=1

xi
∂ψ

∂xi
+

d∑
i,j=1

(BB∗)ij
∂2ψ

∂xi∂xj
. (4.44)

The eigenfunctions of the generator are the tensorized Hermite polynomials:

φn(x) =
d∏
i=1

Heni

(
〈x− µ, qi〉

λi

)
(4.45)
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where n ∈ Nd
0 with eigenvalue νn = −

∑d
i=1 niλi. One can then easily check that

eigenfunctions of the Fokker-Planck operator (which is the L2 adjoint of the generator)

are ψn(x) = φn(x)η∞(x) with the same eigenvalues. Since the eigenfunctions of

the generator φn(x) form an orthogonal set in L2(η∞), we have the property that

Eη∞ [φn(x)] =
∫
ψn(x)dx = 0 for all n.

We aim to approximate the target density by an expansion of the FP eigenfunctions,

i.e.,

πw(x) =
∑

n

wnψn(x) =

(
1 +

∑
n

wnφn(x)

)
η∞(x). (4.46)

The constant term is always equal to one since the other eigenfunctions always

integrate to zero. A feature of this parametrization is that there is no need to find a

normalization constant. It is, however, possible that the density approximation may

be negative. To find such an expansion, we aim to minimize the Kullback-Leibler

divergence from π to πw. Recall that since the SDE is not fixed a priori, we can also

optimize over these parameters. We have

min
µ,Q,Λ,w

DKL(πw‖π) (4.47)

where B = QΛQ∗.

This formulation allows us to recast the optimization over µ,Q, and Λ in terms

of a linear transport map. Define function T (z) = µ + QΛz. Let {ei} denote the
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canonical basis in Rd. Then observe that the pullback of πw under T is

π̄w := T#πw =

[
1 +

∑
n

wnφn(µ+ QΛz)

]
η∞(µ+ QΛz)|det QΛ|

=

[
1 +

∑
n

wn

d∏
i=1

Heni

(
〈QΛz, qi〉

λi

)]
exp
(
−1

2
(QΛz)∗(BB∗)−1(QΛz)

)
(2π)d/2|det BB∗|1/2

|det QΛ|

=

[
1 +

∑
n

wn

d∏
i=1

Heni

(
〈z,Λei〉
λi

)]
exp
(
−1

2
z∗ΛQ∗QΛ−2Q∗QΛz

)
(2π)d/2|det QΛ2Q∗|1/2

|det QΛ|

=

[
1 +

∑
n

wn

d∏
i=1

Heni(zi)

]
exp
(
−1

2
z∗z
)

(2π)d/2

=

[
1 +

∑
n

wnφ̄n(z)

]
η̄∞(z).

The eigenfunctions φ̄n are the tensorized probabilists’ Hermite polynomials, and the

invariant density η̄n is a standard normal. These correspond to the linear SDE with

identity drift and diffusion matrix. With this, we arrive at the optimization problem

min
T,w

DKL(T#π̄w, π) = min
T,w

DKL
(
π̄w, T

#π
)
. (4.48)

Note that the map T is not uniquely determined. A computationally convenient choice

of parametrization is to only consider transport maps that are lower triangular. That

is, maps of the form T̃ (z) = Lz+µ where L is a lower triangular matrix. We can then

derive Q and Λ from L. That is, if T (z) = QΛz + µ will have the same pushforward

measure as T̃ if Q and Λ are derived from the eigenvalue decomposition of LL∗.

We consider optimization over these two parameters separately. First note that we

have

DKL
(
π̄w‖T#π

)
= Eπ̄w

[
log π̄w − log T#π

]
.

When considering optimizing over T alone, we have

min
T

Eπ̄w
[
− log T#π

]
(4.49)
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while optimizing over w requires taking the entire objective into account. The first

problem can be solve by existing linear transport map algorithms. For the second

problem, we need to compute the gradient. One can derive

∂

∂wn

DKL(π̄w‖T#π) =

∫
φ̄n(x)η̄∞(x)

[
log π̄w(x)− log T#π(x)

]
dx

From a computational perspective, we may wish to do importance sampling when

computing the gradient since we will likely have samples of π̄w in the course of solving

the optimization problem. The exact strategy to use to solve this problem is yet to be

determined. Some ideas include alternating minimization, a greedy approach, or a

more direct gradient descent approach.

The second question to answer is to figure out how to sample from πw. If we can

procure samples from π̄w, then samples of πw can be found by simply mapping them

through the transport map T . Thus, the task at hand is how to obtain from π̄w so

that the objective function and its gradient can be evaluated efficiently. These details

will be further explored in future iterations of this algorithm.
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Chapter 5

Geometry-informed irreversible

perturbations for accelerated

convergence of Langevin dynamics

5.1 Introduction

In this chapter we consider a different type of stochastic dynamical system that

samples from target distributions of interest. We develop new ways for accelerating

the convergence of Langevin dynamics (LD) and improve the performance of Langevin-

based samplers more broadly. Langevin dynamics-based samplers are often used when

one only has access to the target distribution up to a normalizing constant. Langevin

dynamics uses the gradient of the log-target density to define the drift term of an

SDE whose invariant distribution is the target distribution.

Langevin samplers, however, can often suffer from poor performance when the

underlying dynamics converges slowly towards the stationary distribution. It is known

that certain perturbations to LD can accelerate convergence to the stationary distri-

bution. In [95] the authors show that suitable reversible and irreversible perturbations

to diffusion processes can decrease the spectral gap of the generator, as well as in-

crease the large deviations rate function and decrease the asymptotic variance of the
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estimators. Riemannian manifold Langevin dynamics is an example of a reversible

perturbation. A simple irreversible sampler adds a term to the drift that is equal to a

constant skew-symmetric matrix multiplied by the gradient of the log-target density.

In this chapter we present a state-dependent irreversible perturbation of Riemannian

manifold Langevin dynamics that is informed by the geometry of the manifold. This

departs from existing literature, as the vector field of the resulting perturbation is not

orthogonal to the original drift term. This geometry-informed irreversible perturbation

accelerates convergence and, if desired, can be used in combination with the the

stochastic gradient Langevin algorithm algorithm to exploit the computational savings

of a stochastic gradient.

Traditional sampling methods for Bayesian inference are often intractable for

extremely large datasets. While Langevin dynamics-based sampling methods only

require access to the unnormalized posterior density, they need many evaluations

of this unnormalized density and its gradient. When the dataset is extremely large,

each evaluation of the density may be computationally intractable, as it requires the

evaluation of the likelihood over the entire dataset. In the past decade the stochastic

gradient Langevin dynamics (SGLD) has been introduced and analyzed [114, 132] to

address the problem posed by large datasets. Rather than evaluating the likelihood

over the entire dataset, SGLD subsamples a portion of the data (either with or without

replacement) and uses the likelihood evaluated at the sampled data to estimate the

true likelihood. The resulting chain can then be used to estimate ergodic averages.

We demonstrate GiIrr on a variety of examples: a simple anisotropic Gaussian

target, a posterior on the mean and variance parameters of a normal distribution,

Bayesian logistic regression, and Bayesian independent component analysis (ICA).

Generally, we observe that the geometry-informed irreversible perturbation improves

the convergence rate of LD compared to a standard irreversible perturbation. The

improvement tends to be more pronounced as the target distribution deviates from

Gaussianity. Our numerical studies also show that introducing irreversibility can

reduce the MSE of the resulting long-term average estimator, mainly by reducing

variance. In many cases this reduction can be significant, e.g., 1–2 orders of magnitude.
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One must, however, also take the effects of discretization into account. In the

continuous-time setting, it is known theoretically that irreversible perturbations can

at worst only leave the spectral gap fixed. In borderline cases, though—i.e., in cases

where the continuous-time theoretical improvement is nearly zero—after accounting

for discretization, stiffness can actually cause the resulting estimator to perform worse

than if no irreversibility were applied at all. Indeed, we will describe in Appendix B

an illustrative Gaussian example in which the standard Langevin algorithm performs

better than the algorithm with the standard irreversible perturbation. That is, an

example in which additional irreversibility leads to increased bias and variance of

the long term average estimator (see Remark 4 for a theoretical explanation). Along

similar lines, the idea of applying irreversible perturbations to SGLD has recently

been studied in the context of non-convex stochastic optimization [60]. The authors

also note that while irreversibility increases the rate of convergence, it increases the

discretization error and amplifies the variance of the gradient, compared to a non-

perturbed system with the same step size; see also [15] for a related discussion on

the relation of SGLD to SGD and convergence properties. This reflects the increased

stiffness of irreversible SGLD relative to standard SGLD.

The rest of the chapter is organized as follows. In Section 5.2 we review reversible

and irreversible perturbations of the overdamped Langevin dynamics that may improve

the efficiency of sampling from equilibrium. Then, in Section 5.2.3, we present our

new geometry-informed irreversible perturbation. In Section 5.3 we present simulation

studies that demonstrate the good performance of this geometric perturbation, relative

to a variety of other standard reversible and irreversible choices. In several of these

examples, we also demonstrate the use of stochastic gradients. Section 5.4 summarizes

our results and outlines directions for future work. Appendix B details the simple

Gaussian example showing that in “borderline” cases—i.e., when continuous-time

analysis does not predict improvements from irreversible perturbations—the stiff-

ness created by an irreversible perturbation can, after discretization, lead to poorer

performance than the unperturbed case.
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5.2 Improving the performance of Langevin samplers

We begin by recalling some relevant background on Langevin samplers, Riemannian

manifold Langevin dynamics, perturbations of Langevin dynamics, and the stochastic

gradient Langevin dynamics algorithm. Let f(θ) be a test function on state space

E ⊂ Rd and let π(θ) be some unnormalized target density on E. In our experiments,

π(θ) arises as a posterior density of the form π(θ) ∝ L(θ;X)π0(θ), where L(θ;X) is

the likelihood model, X are the data, and π0(θ) is the prior density. Define {θ(t)} as

a Langevin process that has invariant density π(θ):

dθ(t) = β∇ log π(θ(t))dt+
√

2βdW (t), (5.1)

where β > 0 denotes the temperature, W (t) is a standard Brownian motion in Rd, and

the initial condition may be arbitrary. Assuming π is twice-continuously differentiable,

by ergodicity, we may compute expectations with respect to the posterior by the long

term average of f(θ) over a single trajectory:

Eπ[f(θ)] =

∫
E

f(θ)π(θ)dθ = lim
t→∞

1

T

∫ T

0

f(θ(t))dt. (5.2)

For practical computations, we must approximate (5.2) by discretizing the Langevin

dynamics and choosing a large but finite T . Applying the Euler-Maruyama method

to (5.1) with step size h yields the following recurrence relation,

θk+1 = θk + hβ∇ log π(θt)dt+
√

2βhξk+1 (5.3)

where ξk are independent standard normal random variables. The total number of

steps is equal to K = T/h. The resulting estimator for (5.2) is

Eπ[f(θ)] ≈ 1

K

K−1∑
k=0

f(θk). (5.4)
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This estimator is the unadjusted Langevin algorithm (ULA), which has found renewed

interest in the context of high-dimensional machine learning problems [44]. Discretiza-

tion and truncation, however, introduce bias into the estimator. Moreover, there

are noted examples in which the continuous-time process and the discretized version

do not have the same invariant distribution no matter the choice of the fixed, but

nonzero, discretization step h; see [50] for a related discussion. Certain Markov chain

Monte Carlo (MCMC) methods such as MALA circumvent these issues by using the

dynamics to propose new points, but accepting or rejecting them according to some

rule so that the resulting discrete-time Markov chain has the target distribution as its

invariant distribution [53, 100].

Many different SDEs can have the same invariant distribution. Therefore, there has

been much study into how the standard Langevin dynamics of some target distribution

can be altered to increase its rate of convergence. Some examples of this can be found

in the work of [61, 97] and others. The standard Langevin dynamics is a reversible

Markov process, meaning that the process satisfies detailed balance. The work of [97]

studies, in general terms, how reversible and irreversible perturbations to reversible

processes decrease the spectral gap, increase the large deviations rate function, and

decrease the asymptotic variance. Yet how to choose such perturbations to most

efficiently accelerate convergence is yet to be thoroughly studied in settings beyond

linear diffusion processes [72]. Also, with the exception of a few examples—see for

instance [39, 77]—these perturbations have mainly been studied in the continuous-time

setting.

5.2.1 Reversible perturbations and Riemannian manifold Langevin

dynamics

We only review relevant aspects of reversible perturbations and RMLD in this section.

For a detailed review of RMLD and its related Monte Carlo methods, we refer the

reader to [53, 76, 134]. Let B(θ) be a d × d symmetric positive definite matrix. A
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reversible perturbation on LD (5.1) is an SDE with multiplicative noise:

dθ(t) = β[B(θ)∇ log π(θ(t)) +∇ ·B(θ)] dt+
√

2βB(θ)dW (t). (5.5)

Here, the i-th component of ∇·B(θ) is
∑d

j=1 ∂θjBij(θ). This is equivalent to Langevin

dynamics defined on a Riemannian manifold, where the metric is G(θ) = B(θ)−1

[134]. A straightforward calculation shows that (5.5) with B(θ) being any symmetric

positive-definite matrix admits the same invariant distribution, π. The improved rate

of convergence depends on the choice of the underlying metric. The work of [53]

argues that choosing the expected Fisher information matrix plus the Hessian of the

log-prior to be the metric improves the performance of the resulting manifold MALA

method. Meanwhile, [97] shows that under certain regularity conditions, if B(θ) is

chosen such that B(θ)− I is positive definite, then the resulting estimator is expected

to have improved performance in terms of the asymptotic variance, the spectral gap,

and the large deviations rate function.

5.2.2 Irreversible perturbations

Consider the following Langevin dynamics

dθ(t) = [β∇ log π(θ(t)) + γ(θ(t))]dt+
√

2βdW (t). (5.6)

When γ(θ) ≡ 0, the process is reversible and has π(θ) as its invariant distribution. If

γ 6= 0, then the resulting process will, in general, be time-irreversible unless γ(θ) can

be written as a multiple of ∇ log π(θ); see for example [90]. However, an irreversible

perturbation can still preserve the invariant distribution of the system. By considering

the Fokker-Planck equation, one can show that if γ(θ) is chosen such that ∇· (γπ) = 0,

then π will still be the invariant distribution. A frequently used choice in the literature

is γ(θ) = J∇ log π(θ), where J is a constant skew-symmetric matrix, i.e., J = −JT .

The computational advantage of this choice is clear since only one additional matrix-

vector multiply is needed to implement this choice. The optimal choice of irreversible
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perturbation to linear systems that accelerated convergence fastest was completely

analyzed in [72].

The advantages of using irreversible perturbations is widely noted. The main result

of [61] is that under certain conditions, the spectral gap, i.e., the difference between

the leading two eigenvalues of the generator of the Markov semigroup, increases when

γ 6= 0. In [95, 96, 97], the large deviations rate function is introduced as a measure of

performance in the context of sampling from the equilibrium, and upon connecting it

to the asymptotic variance of the long term average estimator, it is proven that adding

an appropriate perturbation γ not only increases the large deviations rate function

but also decreases the asymptotic variance of the estimator. The use of irreversible

proposals in the MALA was studied in [86].

5.2.3 Irreversible perturbations for RMLD

In this section, we will introduce our novel geometry-informed irreversible perturbation

to Langevin dynamics. Suppose that we are given a diffusion process as in (5.5), and

we want to study how to choose an irreversible perturbation that leaves the invariant

distribution fixed. Indeed, our previous choice of irreversible perturbation remains

valid for this system, that is, adding γ(θ) = J∇ log π(θ) for a constant skew-symmetric

matrix J to the drift term of (5.5) will preserve the invariant density. This choice

yields the following SDE:

dθ(t) = [(βB(θ(t)) + J)∇ log π(θ(t)) + β∇ ·B(θ(t))]dt+
√

2βB(θ)dW (t) (5.7)

We refer to this system as Riemannian manifold Langevin with an additive irreversible

perturbation (RMIrr). This choice, however, does not take into account the relevant

features that the reversible perturbation may provide when constructing an irreversible

perturbation.

The reversible perturbation leads to a positive definite matrix (a metric, in the

terminology of Riemannian geometry) that is state-dependent. In contrast, the skew-

symmetric matrix J is fixed in the irreversible perturbation. The skew-symmetric
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matrix need not be constant, however, as an irreversible perturbation γ(θ) only

needs to satisfy ∇ · (γ(θ)π(θ)) = 0. In fact, if γ(θ) = C(θ)∇ log π(θ) +∇ ·C(θ) for

C(θ) = −C(θ)T , then this irreversible perturbation will also leave the invariant density

intact. Noting that Cii(θ) = 0 and that Cij = −Cji, observe that

∇ · (γ(θ)π(θ)) = ∇ · (C(θ)∇π(θ) + (∇ ·C(θ))π(θ))

=
d∑

i,j=1

∂Cij(θ)

∂θi

∂π(θ)

∂θj
+ Cij(θ)

∂2π(θ)

∂θi∂θj
+
∂2Cij(θ)

∂θi∂θj
π(θ) +

∂Cij(θ)

∂θj

∂π(θ)

∂θi

=
d∑

i>j,i=1

∂Cij(θ)

∂θi

∂π(θ)

∂θj
+ Cij(θ)

∂2π(θ)

∂θi∂θj
+
∂2Cij(θ)

∂θi∂θj
π(θ) +

∂Cij(θ)

∂θj

∂π(θ)

∂θj

+
∂Cji(θ)

∂θj

∂π(θ)

∂θi
+ Cji(θ)

∂2π(θ)

∂θj∂θi
+
∂2Cji(θ)

∂θj∂θi
π(θ) +

∂Cji(θ)

∂θi

∂π(θ)

∂θi

=
d∑

i>j,i=1

∂Cij(θ)

∂θi

∂π(θ)

∂θj
+ Cij(θ)

∂2π(θ)

∂θi∂θj
+
∂2Cij(θ)

∂θi∂θj
π(θ) +

∂Cij(θ)

∂θj

∂π(θ)

∂θi

− ∂Cij(θ)

∂θj

∂π(θ)

∂θi
−Cij(θ)

∂2π(θ)

∂θj∂θi
− ∂2Cij(θ)

∂θj∂θi
π(θ)− ∂Cij(θ)

∂θi

∂π(θ)

∂θj

= 0.

We seek an irreversible perturbation that takes the reversible perturbation into

account, with the possibility that C(θ) is not a constant matrix, and investigate if

it leads to any performance improvements of the long term average estimator. Note

that in the literature, the above condition ∇ · (γπ) = 0 is typically rewritten into the

following sufficient conditions: ∇ · γ(θ) = 0 and γ(θ) · ∇π(θ) = 0 [97]. One can check,

however, that when C is not constant, these conditions are not met, yet γ(θ) is still a

valid irreversible perturbation. A simple choice of C(θ) that incorporates B(θ) is

C(θ) =
1

2
JB(θ) +

1

2
B(θ)J , (5.8)

where J is a constant skew-symmetric matrix. The 1
2
factor is introduced so that if

B(θ) = I, i.e., if there is no reversible perturbation, then this perturbation reverts to
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the standard irreversible perturbation (Irr). We arrive at the following system:

dθ(t) =[(βB(θ(t)) + C(θ(t)))∇ log π(θ(t)) +∇ · (βB(θ(t)) + C(θ(t))]dt (5.9)

+
√

2βB(θ(t))dW (t).

We call this choice of perturbation the geometry-informed irreversible perturbation

(GiIrr). Indeed, while there are infinitely many valid choices for C(θ), we will

investigate the choice in (5.8) in the numerical examples. Since we will have already

explicitly constructed B(θ) and J for the other systems, the additional computational

cost of computing their product will be marginal. Furthermore, as mentioned earlier,

this choice reduces to Irr when B(θ) = I.

One may wonder when does GiIrr result in improved performance over standard

irreversible perturbations such as in (5.7)? Based on the numerical results and intuition,

we will argue that GiIrr results in better performance if the underlying reversible

perturbation already improves the sampling. As we mentioned earlier, the choice of

GiIrr that is made in this chapter is not unique, and a further investigation of its

theoretical properties is left for future work; see also the discussion in the Section 5.4.

The goal is to present this new class of irreversible perturbations and investigate it

numerically in a number of representative computational studies.

5.2.4 Stochastic gradient Langevin dynamics

In certain Bayesian inference problems, the data are conditionally independent of

each other given the parameter value. Therefore, the likelihood model can often be

factorized and the posterior density can be written as follows:

π(θ) ∝ π0(θ)
N∏
i=1

πi(Xi|θ) (5.10)

where π(Xi|θ) is the likelihood function for data point Xi. When the dataset is

extremely large, i.e., when N � 1, however, ULA becomes exceedingly expensive as it

requires repeatedly evaluating the likelihood over the entire dataset for each step of
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b(θ) σ(θ)
LD β∇ log π(θ)

√
2βI

RM βB(θ)∇ log π(θ)) + β∇ ·B(θ)
√

2βB(θ)
Irr (βI + J)∇ log π(θ)

√
2βI

RMIrr (βB(θ) + J)∇ log π(θ) + β∇ ·B(θ)
√

2βB(θ)

GiIrr (βB(θ) + 1
2
JB(θ) + 1

2
B(θ)J)∇ log π(θ)

√
2βB(θ)

+∇ · (βB(θ) + 1
2
JB(θ) + 1

2
B(θ)J)

Table 5.1: Summary of the five SDEs that share the same invariant density π(θ).
Stochastic gradients can be considered instead of the deterministic gradients. All
systems are of the form dθt = b(θt)dt+σ(θt)dWt. The term β denotes the temperature.

the trajectory. To mitigate this challenge, the stochastic gradient Langevin dynamics

was presented to reduce the computational cost of evaluating the posterior density

by only evaluating the likelihood over subsets of the data at each step. The true

likelihood is estimated based on the likelihood function evaluated at the subsampled

data [132]. Specifically, the gradient is estimated using a stochastic gradient

∇ log π(θ|X) ≈ ̂∇ log π(θ|X) = log π0(θ) +
N

n

n∑
i=1

log π(Xτi |θ) (5.11)

where τ is a random subset of {1, . . . , N} of size n drawn with or without replacement.

Depending on the choice of n, this approach cuts down on the computational costs

dramatically with some additional variance incurred by the random subsampling of the

data. The original version of this algorithm made the step size variable, approaching

zero as the number of steps taken K became large. SGLD applied with a variable and

shrinking step size was proven to be consistent: that is, the invariant distribution of

the discretized system is equivalent to that of the continuous system [114]. Having a

decreasing step size counteracts the cost savings provided by computing the stochastic

gradient, and therefore a version where the step size is fixed was presented in [128],

where theoretical characterizations of the asymptotic and finite-time bias and variance

are also developed. In most of our numerical results, we use stochastic gradient version

of the Langevin algorithm with fixed step size to demonstrate that SGLD can be used

together with irreversible perturbations.
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5.3 Numerical examples

In the following examples, we always apply the stochastic gradient version of each

Langevin system unless otherwise stated. We fix β = 1/2 for all examples. The efficacy

of the GiIrr perturbation does not change whether or not the stochastic gradient is

used. We illustrate this explicitly in Section 5.3.3, where we report the results of all

perturbations both with and without the stochastic gradient, for comparison.

5.3.1 Linear Gaussian example

Suppose we have data {Xi}Ni=1 ⊂ Rd generated from a bivariate normal distribution

with mean θ ∈ Rd and known precision matrix ΓX ∈ Rd×d. From the data, we infer

the value of θ. Endow θ with a normal prior with mean zero and precision Γθ ∈ Rd×d.

Then the posterior distribution is Gaussian with mean and precision

µp = (Γθ +NΓX)−1ΓX

N∑
i=1

Xi and Γp = (Γθ +NΓX), (5.12)

respectively. The Euler-Maruyama discretization with constant step size h applied to

the corresponding Langevin dynamics is

θk+1 =
(
I− Āh

)
θk + D̄kh+

√
hξk (5.13)

where

Ā =
1

2
(Γθ +NΓX), D̄k =

1

2
ΓX

N∑
i=1

Xi, ξk ∼ N (0, I).

Using stochastic gradients yields the same recurrence above except with

D̄k =
1

2
ΓX

N

n

n∑
i=1

Xτki
(5.14)

where n ≤ N and τ ki ∈ {1, . . . , N} is randomly sampled (with or without replacement)

[132]. Expectations with respect to the posterior are approximated by an long term
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average of the observable over the course of a trajectory. It has been shown that despite

subsampling the data at each step in the dynamics, this estimator has comparable

performance as the estimator produced by the regular Langevin dynamics with the

full likelihood or MALA [128, 132].

Now, we consider the case where the dynamics are perturbed by an irreversible

term that preserves the invariant distribution of the dynamics. We demonstrate that

this leads to a lower MSE than standard SGLD or Langevin dynamics. In this case,

we replace Ā and D̄k with A and Dk, which are

A =
1

2
(I + J)(Γθ +NΓX), Dk =

1

2
(I + J)ΓX

N

n

n∑
i=1

Xτki
. (5.15)

and J is a skew-symmetric matrix.

For the numerical experiments, we choose d = 3, N = 10, where the mini-batches

are of size n = 2. We have ΓX = 0.25I, Γθ is a precision matrix with eigenvalues

0.2, 0.01, 0.05 and eigenvectors that are randomly generated, and h = 0.005. Note that

these matrices were chosen so that the resulting reversible perturbation has eigenvalues

greater than one. To construct the perturbations, we choose B = Γ−1
p and J to be

J = δ


0 1 1

−1 0 1

−1 −1 0

 (5.16)

for δ ∈ R. We consider the five different SDE systems presented in Table 5.1 and

investigate how the MSE, bias, and variance differs for each case. For this example,

since a constant metric is used, the geometry-informed irreversible perturbation simply

produces a different constant skew-symmetric matrix than the other irreversible

perturbations. Each system is simulated for K = 105 steps with step size h = 5× 10−3.

In Figure 5-1, we plot the MSE of the running average for each case when the

observables are the sums of the first and second moments. To compute the asymptotic

variances of the observables we use the batch means method in [4]. After the burn-in

period of Tb = 5, we evaluate the observable over each chain. Each observable chain
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Figure 5-1: MSE of the running average for the first and second moments. Stochastic
gradients are used in this example.

is then batched into twenty separate chains, and their means are evaluated. The

asymptotic variance is estimated by computing the empirical variance of those means

and then multiplying by the length of each of the subsampled trajectories. In Table

5.2, we report the asymptotic variance of the estimator for each system.1 We see

that irreversible perturbations definitely improve the performance of the estimators,

although the improvement provided by the geometry-informed irreversible perturbation

seems marginal over RMIrr when estimating the second moments.

When the reversible perturbation is chosen such that the drift matrix is exactly

the identity (for example, when the matrix is chosen to be the covariance matrix of

the posterior), additional irreversibility cannot widen the spectral gap of the system.

This fact can be deduced from the results of [72]. The improved performance of the

geometry-informed irreversible perturbation is mostly due to the fact that the norm of

the corresponding skew-symmetric matrix is greater than that of simple irreversibility.

Even though one can scale the skew-symmetric matrix for the other two cases to

observe similar performance as geometry-informed irreversibility, GiIrr accomplishes

1The asymptotic variance reported here is σ2 where Var(Y (t)) ∼ σ2/t, Y (t) = 1
t

∫ t

0
φ(θt)dt, and φ

is an observable.
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that in a more systematic way.

E[AVarφ1 ] Std[AVarφ1 ] E[AVarφ2 ] Std[AVarφ2 ]

LD 37.75 11.94 209.4 84.38

RM 20.09 6.420 132.8 49.21

Irr 15.72 5.008 135.4 47.91

RMIrr 12.36 3.937 115.9 40.10

GiIrr 7.444 2.336 103.7 36.78

Table 5.2: Asymptotic variance estimates for the linear Gaussian example.

While it is known that irreversible perturbations can, at worst, maintain the

same performance as standard Langevin in the continuous-time setting [97], when

considering discretization and in borderline cases (i.e., when one does not expect

much or any improvement in continuous time), irreversibility may actually harm the

performance of the estimator as it introduces additional stiffness into the system

without resulting in faster convergence to the invariant density. A detailed exploration

of this effect is presented in Appendix B, in which we compute the bias and variance

of the long term average estimator for a simple linear Gaussian problem where the

posterior precision is a scalar multiple of the identity matrix. As further discussed

in Remark 4, in this case, the irreversible perturbation is not expected to lead to

improvement in the sampling properties from the equilibrium. Hence, the stiffness

induced upon discretization has a more profound impact on the practical performance

of the irreversible perturbation.

In the current numerical study, the posterior precision is diagonal, but not a scalar

multiple of the identity matrix. The eigenvalues of the resulting drift matrix are

therefore distinct, and by the theory in [72], irreversible perturbations are able to

reduce the spectral gap and result in improved performance. This is in contrast with

the example studied in the appendix.

136



5.3.2 Parameters of a normal distribution

This example is identical to that used in [53, Section 5] to demonstrate the performance

of RMLD. Given a dataset of R-valued data X = {Xi}Ni=1 ∼ N (µ, σ2), we infer the

parameters µ, σ. To be clear, in this example the state is θ = [µ, σ]T . The prior on

µ, σ is chosen to be flat (and, therefore, improper). The log-posterior is

log p(µ, σ|X) =
N

2
log 2π −N log σ −

N∑
i=1

(Xi − µ)2

2σ2
. (5.17)

The gradient is

∇ log p(µ, σ|X) =

 m1(µ)/σ2

−N/σ +m2(µ)/σ3

 (5.18)

wherem1(µ) =
∑N

i=1(Xi−µ), andm2(µ) =
∑N

i=1(Xi−µ)2. In [53], the authors propose

using the geometry of the manifold defined by the parameter space of the posterior

distribution to accelerate the resulting Metropolis-adjusted Langevin algorithm. The

authors in [53] suggest using the expected Fisher information matrix to define the

Riemannian metric, which in the context of reversible diffusions [97], is equivalent

to choosing B(µ, σ) to be the inverse of the sum of the expected Fisher information

matrix and the negative Hessian of the log-prior. Straightforward computations yield

B =
σ2

N

1 0

0 1/2

, √B =
σ√
N

1 0

0 1/
√

2

, ∇ ·B =

 0

σ/N

. (5.19)

As for the geometry-informed irreversible perturbation, let J = δ

 0 1

−1 0

, for δ ∈ R.

Then the relevant quantities are

1

2
JB +

1

2
BJ =

3σ2

4N
J,

1

2
∇ · (JB + BJ) =

3δσ

2N

1

0

. (5.20)

In the experiments, we have N = 30, h = 10−3, δ = 2. and simulate M = 1000
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independent trajectories of each system up to T = 1000 for a total of K = 106 steps.

The data is subsampled at a rate of n = 6 per stochastic gradient computation. Each

trajectory is allotted a burn-in time of Tb = 10. The dataset is generated by drawing

samples from a normal distribution with µtrue = 0 and σtrue = 10. The observables

we study are φ1(µ, σ) = µ + σ, and φ2(µ, σ) = µ2 + σ2. We plot the MSE, squared

bias, and variance of resulting estimators for each observable in Figures 5-3 and 5-4.

Moreover, in Table 5.3 we report the asymptotic variance of the estimators of each

of the five systems. The main takeaway is that an irreversible perturbation that

is adapted to the existing reversible perturbation performs much better than if the

irreversible perturbation were applied without regard to the underlying geometry.

Notice that the reversible perturbation considered here still improves the performance

of the long term average estimator despite the fact that B− I is not positive definite

on the state space. Indeed, while B− I being positive definite is a sufficient condition

to obtain improved performance, it is not a necessary one [97]. The reason for the

reduced asymptotic variance we observed here is because the reversible perturbation

B has eigenvalues larger than one where the bulk of the posterior distribution lies.

Figure 5-2 show single and mean trajectories of the burn-in period of trajectories

from each of the five systems. The plot shows that the geometry-informed irreversible

perturbation is able to find the bulk of the distribution sooner than the other systems

without incurring additional errors due to stiffness.

To show that the GiIrr perturbation is not intimately tied to the stochastic

gradient, we also report the results for each system when the gradients are computed

exactly in Table 5.4. We see that there is little meaningful difference in the results

compared to when stochastic gradients are used.
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Figure 5-2: Trajectory burn-in: each trajectory is run for T = 2.5. Left: single
trajectories, right: mean paths. The gradients are computed exactly here.

E[AVarφ1 ] Std[AVarφ1 ] E[AVarφ2 ] Std[AVarφ2 ]

LD 55.29 21.52 8332 4359

RM 20.63 6.019 4034 1378

Irr 5.791 2.638 2169 1072

RMIrr 6.512 2.226 1729 631.2

GiIrr 1.400 0.4697 479.4 170.8

Table 5.3: Asymptotic variance estimates for the parameters of a normal distribution
example. Stochastic gradients are employed.

Figure 5-3: Observable: φ1(µ, σ) = µ+ σ, δ = 2. Stochastic gradients are computed.
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Figure 5-4: Observable: φ2(µ, σ) = µ2 + σ2, δ = 2. Stochastic gradients are computed.

E[AVarφ1 ] Std[AVarφ1 ] E[AVarφ2 ] Std[AVarφ2 ]

LD (no SG) 48.51 17.53 7339 3707

RM (no SG) 20.91 6.445 3855 1406

Irr (no SG) 5.658 2.108 2265 1191

RMIrr (no SG) 6.276 2.075 1648 565.1

GiIrr (no SG) 1.363 0.4223 492.9 183.8

Table 5.4: Asymptotic variance estimates for the parameters of a normal distribution
example. The gradients are computed exactly.

5.3.3 Bayesian logistic regression

Next we consider Bayesian logistic regression. Given data {(xi, ti)}Ni=1, where xi ∈ Rd,

and ti ∈ {0, 1}, we seek a logistic function, parameterized by weights w ∈ Rd, that

best fits the data. The weights are obtained in a Bayesian fashion, in which we endow

the weights with a prior and seek to characterize its posterior distribution via sampling.

Define ϕ(y) to be the logistic function ϕ(y) = (1 + exp(−y))−1. The log-likelihood

function is

l(w) =
N∑
i=1

tix
T
i w −

N∑
i=1

log(1 + exp(xTi w)). (5.21)
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The prior for the weights is normally distributed with mean zero and covariance α−1I.

The gradient of the log-posterior is

∇w log π(w|X) = −αw +
N∑
i=1

tixi −
N∑
i=1

ϕ(xTi w)xi. (5.22)

This term is used in the drift part of the Langevin dynamics that fully computes the

gradient of the log-likelihood at every step. If the data are subsampled as in SGLD,

we instead compute

∇w log π̃(w|X) = −αw +
N

n

n∑
i=1

tτixτi −
N

n

n∑
i=1

φ(xTτiw)xτi . (5.23)

We use the german data set described in [52] for the numerical experiments. In this

problem, there are 20 weight parameters to be learned. The training dataset is of size

N = 400 and we choose to subsample at a rate of n = 10 per likelihood computation.

The time step we choose is h = 10−4 and K = 4× 105 steps. We generate the skew-

symmetric matrix by constructing a lower triangular matrix with entries randomly

drawn from {1,−1} and then subtracting its transpose. The diagonal is then set to

zero and the matrix is scaled to have norm one.

As for the Riemannian manifold Langevin dynamics, in [53] the authors use the

expected Fisher information matrix plus the negative Hessian of the log-prior as the

underlying metric, which in this case is equal to

G(w) = α−1I + XΛ(w)XT (5.24)

where Λ is a diagonal matrix with entries Λii(w) = (1 − ϕ(xTi w))ϕ(xTi w) and xi is

the i-th column of X. The resulting reversible perturbation uses the inverse of G(w).

This perturbation, however, does not lead to accelerated convergence to the invariant

measure since the eigenvalues of G are large. This implies that the eigenvalues of

G−1 are less than one and so G−1(w) − I is not positive definite, a condition that

needs to be satisfied to guarantee accelerated convergence [95]. To alleviate this
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Figure 5-5: Bayesian logistic regression with a variable metric. Here, d = 20.

issue, we consider the reversible perturbation B(w) = I + G−1(w). This guarantees

B(w) to be positive definite for all w, but the drawback is that computing the square

root of B(w) requires explicitly computing or at least approximating the inverse

of G(w) repeatedly in the simulation (and not just computing the action of the

inverse). This additional computational cost is incurred for all examples that consider

a geometry-informed perturbation, both reversible and irreversible. We show the

result of this state-dependent perturbation in Figure 5-5 and report the asymptotic

variance in Table 5.5. The geometry-informed irreversible perturbation does provide

improvement over all other perturbations. We observe that the asymptotic variance

is reduced by half over RM, with only little additional computational effort. Most of

the computational cost of applying GiIrr is due to the evaluation of the reversible

perturbation. Therefore we emphasize that if one is already applying the reversible

perturbation to the Langevin dynamics, the marginal cost of applying the GiIrr

perturbation is negligible.
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E[AVarφ1 ] Std[AVarφ1 ] E[AVarφ2 ] Std[AVarφ2 ]

LD 1.967 0.9995 23.77 12.52

RM 1.328 0.6538 15.35 7.348

Irr 1.163 0.5698 14.84 7.738

RMIrr 0.8775 0.4228 10.68 5.306

GiIrr 0.7148 0.3450 8.798 4.490

Table 5.5: Asymptotic variance estimates for the Bayesian logistic regression example
with a state-dependent metric.

5.3.4 Independent component analysis

Our last example considers the problem of blind signal separation addressed in [132]

and [1]. This problem yields a posterior that is strongly non-Gaussian and multi-modal,

and we show that GiIrr has substantially better sampling performance over standard

reversible and irreversible perturbations. Suppose there are m separate unknown

independent signals si(t) for i = 1, . . . ,m that are mixed by mixing matrix M ∈ Rd×d.

Suppose we can observe the mixed signals X(t) = Ms(t) for N instances in time.

The goal of independent component analysis is to infer a de-mixing matrix W such

that the m signals are recovered up to a nonzero constant and permutation. As such,

this problem is generally ill-posed, but is suitable to be considered in a Bayesian

context. The ICA literature states that, based on real-world data, it is best to assume

a likelihood model with large kurtosis. Following [1, 132], let p(yi) = 1
4
sech2

(
1
2
yi
)
. The

prior on the weights Wij is Gaussian with zero mean and precision λ. The posterior

is equal to

p(W|X) ∝ |det W|
m∏
i=1

p(wT
i x)

∏
ij

N (Wij; 0, λ−1). (5.25)

The gradient of the log posterior with respect to the matrix W is then

f(W) = ∇W log p(W|X) =

(
N(WT )−1 −

N∑
n=1

tanh

(
1

2
yn

)
xTn

)
− λW. (5.26)
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It is suggested in [1] that the natural gradient should be used instead of the gradient

we see here above to account for the information geometry of the problem. Specifically,

[1, 114] post-multiply the gradient by WTW and arrive at the so-called natural

gradient of the system

DW :=

(
NI−

N∑
n=1

tanh

(
1

2
yn

)
yTn

)
W − λWWTW. (5.27)

In the context of RMLD, this is equivalent to perturbing the system with a reversible

perturbation with B(W) = WTW⊗I pre-multipled in front of the vectorized gradient.

That is, we have

vec(f(W)WTW) = (WTW ⊗ I)vecf(W).

We construct the GiIrr term as follows. To take advantage of the matrix structure

of the reversible perturbation, we choose the skew-symmetric matrix such that it acts

within the computation of the natural gradient. We choose J = (I⊗C0) + (C0 ⊗ I)

where C0 has the same sign pattern as (5.16) but such that J has matrix norm equal

to 2. Then the geometry-informed irreversible perturbation is

1

2
B(W)J +

1

2
JB(W) = (WTW ⊗C0) +

1

2
(WTWC0 ⊗ I) +

1

2
(C0W

TW ⊗ I).

To simulate the RM and GiIrr systems, correction terms (such as ∇ ·B(θ)) need to be

computed. The correction terms are derived using the symbolic algebra toolbox in

MATLAB. Since the perturbations are vectors of polynomials, the symbolic algebra

toolbox can easily derive and efficiently evaluate the correction terms.

For the numerical experiments, we synthetically generate m = 3 signals, one

of which is Laplace distributed, and two are distributed according to the squared

hyperbolic secant distribution. The posterior distribution is d = 9 dimensional, there

are a total of N = 400 data points, and the gradient is approximated by subsampling

n = 40 data points per estimate. Since the posterior is nine-dimensional and highly

multimodal, it is difficult to evaluate its marginal densities directly, i.e., without
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Figure 5-6: Posterior distribution sampled with standard Langevin with a deterministic
gradient with T = 10000 and h = 10−4. Notice that the system is very multimodal
and non-Gaussian.

sampling. Instead, we establish a baseline reference density by simulating the standard

Langevin dynamics with exact computation of the likelihood over all the data over

T = 10000 with h = 10−4. One- and two-dimensional marginals of this baseline

posterior distribution are plotted in Figure 5-6. The two-dimensional marginals

highlight the challenges of sampling from this posterior. In Figure 5-7, we plot trace

plots of the W21 variable for each system. By visual inspection, we see that mixing

is best for the geometry-informed irreversibly perturbed system. One can intuitively

expect that with better mixing, the geometry-informed irreversibility should yield

better estimation performance than the other systems. We assess this quantitatively

below.

As in the previous example, we simulate the five systems and compute the asymp-

totic variances of two observables for each system. Each system is simulated indepen-

dently 100 times up to time T = 2000 with h = 2× 10−5. The smaller step size is to

account for the additional stiffness irreversible perturbations introduce. Since the true
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mean of the posterior distribution is unknown, and because standard sampling methods

fail to adequately sample from the posterior distribution to get a reasonable estimate

for the mean, we only plot the variance of the two observables with respect to K in

Figure 5-8. To compute the asymptotic variance, we allot a burn-in time of Tb = 20.

The observables we estimate are φ1(W) =
∑

i,j Wij, and φ2(W) =
(∑

i,j Wij

)2

.

The asymptotic variance numbers confirm that the faster mixing observed in the

geometry-adapted irreversible perturbation does lead to a better sampling method.

The values of the asymptotic variance are reported in Table 5.6. Notice that the

geometry-informed irreversible perturbation far outperforms standard irreversibility

applied to the reversible perturbation. When estimating the posterior mean, GiIrr

yields an asymptotic variance that is more than 60 times smaller than that of RM.

E[AVarφ1 ] Std[AVarφ1 ] E[AVarφ2 ] Std[AVarφ2 ]

LD 81.76 23.88 50.21 17.92

RM 71.96 17.00 41.48 14.24

Irr 37.90 13.46 20.63 9.147

RMIrr 32.84 10.76 10.89 3.140

GiIrr 1.182 0.3881 0.7419 0.2391

Table 5.6: Asymptotic variance estimates for the ICA example.

5.4 Discussion

We presented a novel irreversible perturbation, GiIrr, that accelerates the convergence

of Langevin dynamics. By introducing an irreversible perturbation that incorporates

any given underlying reversible perturbation, which can also be interpreted as defining

a Riemannian metric, we have shown through numerical examples that geometry-

informed irreversible perturbations outperform those that are not informed as such. In

the examples, we found that GiIrr seems to perform best when the target distribution

is highly non-Gaussian.

Most of our numerical examples used stochastic gradients to cut down on compu-
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Figure 5-7: Trace plots of the W21 marginal.

Figure 5-8: Variance of running average estimators
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tational effort in sampling each trajectory. This demonstrates that SGLD can be used

in conjunction with irreversibility for practical computations.

We also provided some analysis on how irreversibility interacts with discretization

of the SDE systems. Irreversibility introduces additional stiffness into the system,

which may lead to additional bias or variance in the estimator. For practical purposes,

one can simply choose a small enough step size so that the asymptotic bias and variance

are sufficiently small. At the same time, we note an example (see Appendix B) where

the introduction of the irreversible term, once discretized, leads to no improvement in

the long term average estimator.

Future work could study the use of novel integrators which circumvent stiffness.

For example, [77] uses a multiscale integrator, but it is not readily adapted to

the data-driven setting of Bayesian inference. Another direction for future work is

to theoretically characterize the performance of the geometry-informed irreversible

perturbation and to compare it with that of other perturbations. A starting point for

such an analysis could be the general results of [97], in particular the large deviations

Theorem 1 together with Propositions 2–4 therein. Preliminary investigation of this

direction showed that it is a promising avenue for a theoretical investigation, but

non-trivial work and a finer analysis are needed to demonstrate the effects of this class

of irreversible perturbations. In the next chapter we turn our attention to reversible

perturbations.
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Chapter 6

Transport map unadjusted Langevin

algorithm: guarantees and

connections

6.1 Introduction

We continue developing methods for accelerating the convergence of Langevin dynamics.

In this chapter we make two main contributions. We present the transport map

unadjusted Langevin algorithm (TMULA), and show that when the transport map is

chosen properly, standard results for fast convergence of ULA will apply even when

the target distribution does not satisfy the usual assumptions of strong log-concavity.

We also show that in the continuous setting, when the transport map is applied to

standard Langevin dynamics, the result is an RMLD where the metric is defined by the

Jacobian of the transport map. Connections to large deviations theory and variational

formulations of Bayesian inference are made with the goal that these connections may

spur future development of designing approximate maps that accelerate convergence

of Langevin dynamics.

Transport maps are another recent approach to Bayesian computation [6, 80, 89,

109]. Transport maps provide a functional representation of complex random variables
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by expressing them as the function of a simple random variable. We study the use of

transport maps on the unadjusted Langevin algorithm (ULA). When the likelihood

model is easy to compute (such as when the model is simple and the dataset is

small), MCMC is used to obtain asymptotically unbiased samples from the target

distribution. However with large datasets, one may not have the luxury of rejecting

points. As a trade-off, ULA is used instead where one does not reject any samples, but

contends with the resulting bias due to discretization. Recently, there has been much

interest in the conditions a target distribution should satisfy to see rapid convergence

of ULA [44, 126]. These conditions typically are that the log-target should have

Lipschitz gradients and be strongly concave, or satisfy a log-Sobolev inequality. These

conditions are not generally guaranteed, however we show that with the use of a

transport map, we can obtain rapid convergence to the stationary distribution even

when the distributions do not satisfy these properties. An invertible transport map can

be applied to a target that does not satisfy typical conditions and create an ULA that

still converges geometrically fast towards the target. Properties of the map only affect

the constants in the convergence bounds and do not affect the rate of convergence. In

particular, the rate of convergence is optimized when the pushforward of the target

through the map is an isotropic Gaussian. At least in the context of ULA, this gives

insight into why a transport maps should be constructed so that it pushes the target

to a standard normal distribution.

Transport maps have also been found to improve MCMC algorithms [89] in which

an approximate transport map from the target distribution to a simple Gaussian

distribution was applied to Langevin dynamics of the pushforward of the target to

create proposal distributions. As samples of the target were obtained, the map was

updated. This can be viewed as a non-Gaussian extension of the adaptive Metropolis

algorithm [55]. While the method was shown to be ergodic and empirically shown

to produce better estimators for computing expectations with respect to posterior

distributions, the precise reason for why the transport map accelerated convergence

was not described. The authors of [89] conjectured that the map defined a Riemannian

metric, however no proof was provided.
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In this chapter, we also make connections between transport maps and the Rie-

mannian manifold Langevin dynamics. In the previous chapter, we showed that it is

beneficial to take the underlying reversible perturbation into account when applying

an irreversible perturbations on an already reversibly perturbed Langevin dynamics.

We previously assumed that the reversible perturbation was defined a priori. The

design of reversible perturbations most often appears as the study of choosing the best

Riemannian metric in the Riemannian manifold Langevin dynamics. In this chapter,

we study a particular way to parametrize reversible perturbations using transport

maps. Furthermore, we show that transport maps can also define geometry-informed

Langevin algorithms. We also make connections to the theory of reversible perturba-

tions and large deviations to explain why transport maps accelerates convergence. For

future work, we state some conjectures relating our work to variational formulations

of Bayesian inference.

6.1.1 Transport maps

The background we provide on transport maps are mainly based on [80, 89]. Transport

maps provide functional representations of complex random variables in terms of simple

random variables. Let X and Y be Rd–valued random variables with probability

measures µη and µπ supported on all of Rd, respectively. Let η and π be densities of

µη and µπ, respectively, with respect to the Lebesgue measure. We refer to η and π

as the reference and target densities, respectively. A transport map S : Rd −→ Rd is

a deterministic mapping such that the pushforward of µπ under the map is equal to

µη. That is, for any measurable set A ⊂ Rd, µπ(A) = µη(S(A)). The density π can be

written in terms of the map S and the density η: π(y) = η◦S(y) det JS(y), where JS(y)

is the Jacobian of S. While there are infinitely many mappings that can satisfy this

relation, a well-studied restriction is the Knothe-Rosenblatt rearrangement where the

map S is triangular, in which the i-th component of the map is dependent on the first

i components of the argument, and monotone increasing, where the partial derivative

of the i-th map is strictly positive [19, 80]. To be explicit, let X = [x1, . . . xd]
> and
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Y = [y1, . . . , yd]
>, the map S has the form

S(Y ) =


S1(y1)
...

Sd(y1, y2, . . . , yd)

, (6.1)

where ∂Si
∂yi

(Y ) > 0 for all i. There are several advantages for restricting to a map of

this form. First, the pushforward density of π through S can be easily computed since

the determinant of the Jacobian of S is the product of the diagonal entries. Second,

the triangular structure of the map allows the inverse to be easily computed. Finding

S−1(x) involves solving a sequence of d one-dimensional root finding problems, and

since the i-th entry of the map is monotone with respect to xi, the root is unique, and

therefore the inverse map exists. In what follows, we denote the inverse map to be T .

If the density η were standard normal, then samples of the target π can be obtained

by first procuring samples xi ∼ η and computing the inverse map y(i) = S−1(x(i)).

How transport maps are constructed computationally is not a focus of this chapter,

however, we provide some common approaches for approximating transport maps.

One method for constructing maps from densities is to minimize the Kullback-Leibler

(KL) divergence from π to the pushforward of η through the map T . We have the

optimization problem

min
T∈T

DKL(T]η‖π) = min
T∈T

DKL Eη
[
log

(
η(x)

π(T (y)) det JT )

)]
. (6.2)

Parametrizing the set of triangular, monotone increasing transport maps is explored

in [6]. Another approach to constructing maps is through samples of π. This problem

was considered in [89], in which the transport map is refined as more samples from

the target were obtained.

In this chapter, we assume we have a map S built from a procedure such as this,

except that S]π may not be Gaussian. When S]π is not Gaussian, using S directly

for sampling will lead to bias, however when combined with a Langevin sampler, we

can eliminate the bias. Moreover, we will show that when the Langevin sampler is
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applied to a target density that has slow convergence, the use of the transport map

can lead to faster rates of convergence.

6.2 Transport map-induced Riemannian metrics

In the previous chapter, we showed how certain perturbations to Langevin dynamics

can accelerate its convergence and improve the performance of Langevin samplers.

Transport maps have been shown to improve the performance of the Metropolis-

adjusted Langevin algorithm, where the map is used in combination with Langevin

dynamics to create non-Gaussian proposals for MCMC [89]. Here, we study how

transport maps alter Langevin dynamics through the lens of reversible and irreversible

perturbations. We show that the stochastic process induced by a transport map that

acts on a standard Langevin dynamics is a Riemannian manifold Langevin system.

Denote JT and JS to be the Jacobian matrices of maps T and S, respectively. Note

that these matrices are lower triangular, and that by the inverse function theorem,

note that JT = J−1
S .

The work of [89] present a method for accelerating the MALA by using transport

maps to construct non-Gaussian proposals. Rather than using the transport map

to pushforward the reference Gaussian distribution to the target, they instead map

proposals of the reference (which are in the form of Equation (6.3)) and use those

as proposals for sampling from π. They then noted that this proposal performed

better than the standard MALA proposal and hypothesized that this is due to the

fact that the transport map defines a Riemannian metric, and therefore induces a

Riemannian manifold Langevin dynamics (RMLD). When the underlying metric is

designed properly, the RMLD has been noted to have a faster rate of convergence to

the stationary density than standard Langevin dynamics [53, 76, 134]. The authors

conjectured that the Riemannian metric induced by the transport map is J∗SJS, but

they did not definitively prove that this is the case [89]. RMLD has also been shown

to be an example of a reversible perturbation on the original Langevin dynamics

[97, 134]. The equivalent reversible perturbation is found by considering the matrix
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B = (J∗SJS)−1. In the following proposition, we prove the conjecture formulated in

[89]. Let X(t) be defined as

dX(t) = ∇ log η(X(t))dt+
√

2dW (t) (6.3)

Proposition 3. (TM + LD = RMLD) Let X, Y be Rd-valued random variables with

densities η(x) and π(y), where η is a standard normal density. Let T : Rd −→ Rd be

a twice-continuous, invertible map such that π = T]η. The diffusion process T (X(t))

where X(t) evolves according to Equation (6.3) is equivalent to

dY (t) = [B(Y (t))∇ log π(Y (t)) +∇ ·B(Y (t))]dt+
√

2B(Y (t))dW (t) (6.4)

where B = (J∗SJS(Y ))−1 = JTJ∗T , and
√

B = J−1
S = JT .1

Proof. We first derive the SDE of the diffusion process Z(t) = T (X(t)). By Itô’s

lemma [85], the k–th component of Z(t) is

dZk(t) =
d∑
i=1

∂Tk
∂xi

dXi(t) +
1

2

d∑
i,j=1

∂2Tk
∂xi∂xj

dXi(t)dXj(t)

=
d∑
i=1

∂Tk
∂xi

(
∂

∂xi
log η(X(t))dt+

√
2dWi(t)

)

+
1

2

d∑
i,j=1

∂2Tk
∂xi∂xj

(
∂

∂xi
log η(X(t))dt+

√
2dWi(t)

)(
∂

∂xj
log η(X(t))dt+

√
2dWj(t)

)
.

By the Itô calculus, note that dt · dt = dt · dWi = 0 and that dWi · dWj = δijdt. so

we have that

dZk(t) =
d∑
i=1

∂Tk
∂xi

∂

∂xi
log η(X(t))dt+

d∑
i=1

∂2Tk
∂x2

i

dt+
√

2
d∑
i=1

∂Tk
∂xi

dWi(t).

1The divergence of a matrix is defined as (∇ ·B)i =
∑

j
∂

∂xj
Bij .
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Taken together, we may write

dZ(t) = JT∇X log η(S(Z(t)))dt+ c(Z(t))dt+
√

2JTdW (t), (6.5)

where

ck(Z) =
d∑
i=1

∂2Tk
∂x2

i

=
d∑
i=1

d∑
j=1

∂2Tk
∂yj∂xi

· ∂Tj
∂xi

. (6.6)

The second equality is true by the multivariate chain rule and will be useful later.

As for the RMLD, we perturb {Yt} by the matrix B = JTJ∗T . Then after substi-

tuting π(y) = η(S(y))|JS(y)|, we have

dY (t) = JTJ∗T∇Y log[η(S(Y (t))) det(JS)]dt+∇ · (JTJ∗T )dt+
√

2JTdW (t). (6.7)

First note that the diffusion term is equivalent to that of Equation (6.5), so we only

need to compare the drift terms. Next, notice that

∂

∂yk
log(η(S(Y ))) =

d∑
i=k

∂Si
∂yk

∂

∂xi
log(η(S(Y )))

Therefore, ∇Y log η(S(Y )) = J∗S∇X log η(S(Y )) and that JTJ∗T∇Y log η(S(Y )) =

JT∇X log η(S(Y )). This exactly matches the first part of the drift term in Equation

(6.5).

For the divergence term, first note the following identity. Let A and D be d× d

matrix-valued functions. Then observe that

(∇ ·AD)k =
d∑
j=1

∂

∂yj
(AD)kj =

d∑
j=1

d∑
i=1

∂

∂yj
AkiDij

=
d∑
i=1

d∑
j=1

∂Aki

∂yj
Dij + Aki

∂Dij

∂yj

=
d∑
i=1

d∑
j=1

[
∂Aki

∂yj
Dij

]
+ (A∇ ·D)k.
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Applying this identity to B = JTJ∗T , we obtain

(∇ · JTJ∗T )k =
d∑

i,j=1

[
∂Jki
∂yj

J∗ij

]
+ (JT∇ · J∗T )k

=
d∑

i,j=1

[
∂2Tk
∂yj∂xi

· ∂Tj
∂xi

]
+ (JT∇ · J∗T )k.

Notice that the first term is exactly the Itô correction term! Hence, we only need

to show that JTJ∗T∇ log det JS + JT∇ · J∗T = 0. To avoid issues with the chain rule

relating Y and X, it suffices to show that ∇ log det JS + J∗S∇ · (J∗S)−1 = 0.

For the first term, observe that

∂

∂yk
log det JS =

d∑
i,j=1

((J∗S)−1)ij

(
∂JS
∂yk

)
ij

=
d∑

i,j=1

(
∂2Si
∂yk∂yj

)
((J∗S)−1)ij

=
d∑

i,j=1

(
∂JS
∂yj

)
ik

((J∗S)−1)ij

Letting : j denote the j–th column vector, we see

(J∗S∇ · (J∗S)−1)k = −

(
J∗S

d∑
j=1

[
(J∗S)−1∂J∗S

∂yj
(J∗S)−1

]
:j

)
k

= −

(
d∑
j=1

[
∂J∗S
∂yj

(J∗S)−1

]
:j

)
k

= −
d∑
j=1

[
∂J∗S
∂yj

(J∗S)−1

]
kj

= −
d∑

j,i=1

(
∂J∗S
∂yj

)
ki

((J∗S)−1)ij.

which exactly the negative of the derivative of the log determinant of JS. We therefore

conclude that Equation (6.5) exactly matches (6.7).

Note that the previous result only requires the map to be twice-continuously
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differentiable and invertible. It is not dependent on the triangular structure of certain

transport maps.

6.2.1 Transport maps induce geometry-informed irreversibil-

ity

Irreversible perturbations to Langevin dynamics are known to accelerate convergence

to the equilibrium distribution by taking advantage of the anisotropy of the target

distribution. A natural question to ask is, what is the output stochastic process of

a transport map applied to a reference Langevin dynamics that has an irreversible

perturbation? The following proposition states that the output is an geometry-informed

irreversible perturbation applied to the Riemannian manifold Langevin dynamics

derived in Proposition 1. The irreversible perturbation takes the Riemannian metric

into account.

Proposition 4. (TM + Irr = GiIrr) Define triangular, monotone transport map T

be such that T]η = π. Let X(t) ∈ Rd evolve according to

dX(t) = (I + D)∇ log η(X(t))dt+
√

2dW (t)

where D is a skew-symmetric matrix. Then the stochastic process Y (t) = T (X(t))

evolves according to

dY (t) = [(B(Y (t)) + C(Y (t)))∇ log π(Y (t)) +∇ · (B(Y (t)) + C(Y (t)))]dt (6.8)

+
√

2B(Y (t))dW (t)

where B(Y ) is defined in Equation (6.4), and C(Y ) = JT (Y )DJ∗T (Y ) = (JS(Y )∗)−1DJS(Y )−1.
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Proof. We apply Itô’s formula and obtain

dYk(t) =
d∑
i=1

∂Tk
∂xi

[
∂

∂xi
log η(X(t)) + (D∇ log η(X(t)))i

]
dt+

d∑
i=1

∂2Tk
∂x2

i

dt

+
√

2
d∑
i=1

∂Tk
∂xi

dWi(t).

The first, third, and fourth terms are identical to the ones in Proposition 1 when

irreversibility is not considered. We only need to address the second term. First note

that

JTD∇ log η(X(t)) = DJ∗T∇Y log η(S(Y ))

= JTDJ∗T∇Y log(η(S(Y )) det JS(Y ))− JTDJ∗T∇Y log det JS(Y )

= JTDJ∗T∇Y log π(Y )− JTDJ∗T log det JS(Y ).

We only need to show that the last term is equal to ∇ · JTDJ∗T . From the proof of

the previous proposition, first observe that

(∇ · JTDJ∗T )k =
d∑

i,j=1

[
∂

∂yj
(JTD)ki

∂Tj
∂xi

]
+ (JTD∇ · J∗T )k

and notice that JTD∇ · J∗T = −JTDJ∗T∇ log det JS. Therefore, we only need to show

that the first term in the equal above is identically zero. We compute

d∑
i,j=1

[
∂

∂yj
(JTD)ki

∂Tj
∂xi

]
=

d∑
i,j,l=1

[
Dli

∂2Tk
∂yj∂xl

∂Tj
∂xi

]

=
d∑

i,l=1

[
Dli

∂2Tk
∂xi∂xl

]

=
d∑

i,l=1,i>l

Dli

[
∂2Tk
∂xi∂xl

− ∂2Tk
∂xl∂xi

]
= 0.
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6.2.2 Transport maps preserve large deviations principles

Transport maps applied to Langevin dynamics lead to interesting implications and

structures in the study of large deviations of empirical measures and estimators of

ergodic averages of observables. We review some notions of large deviations theory for

SDEs as presented in [97]. Let P(Rd) denote the space of probability measures on Rd.

Definition 2. Let {µt} be a sequence of random probability measures. The sequence is

said to satisfy a large deviations principle (LDP) with rate function I : P(Rd)→ [0,∞]

if

• For all open sets O ⊂ P(Rd),

lim inf
t→∞

1

t
logP(µt ∈ O) ≥ − inf

µ∈O
I(µ);

• For all closed sets F ⊂ P(Rd),

lim sup
t→∞

1

t
logP(µt ∈ F ) ≤ − inf

µ∈F
I(µ);

• The levels sets {µ|I(µ) ≤M} are compact in P(Rd) for all M <∞.

Intuitively, large deviations principles for the invariant measure quantify how fast

an empirical distribution convergences to the invariant measure.

Theorem 4. Consider an SDE with infinitesimal generator

L =
1

2
∇ · a(x)∇+ b(x)∇

Suppose measures µ ∈ P(Rd) has density p(x)dx = µ(dx) and p(x) ∈ C2+α(Rd) for

α > 0. Then the Donsker-Varadhan rate function is

I(µ) =
1

8

∫
Rd

∇p(x)∗a(x)∇p(x)

p(x)2
dµ(x)− 1

2

∫
Rd

b(x)∇p(x)

p(x)
dµ(x) +

1

2

∫
Rd
∇φ(x)a(x)∇φ(x)dµ(x)
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where φ(x) is a solution of the equation

∇ · [p(x)(b(x) + a(x)∇φ(x))] = 0.

For standard Langevin dynamics, i.e., if b(x) = ∇ log π(x) and a(x) = 2I, we have

the rate function

Io(µ) =
1

4

∫
Rd

∥∥∥∥∇ log
p(x)

π(x)

∥∥∥∥2

dµ(x). (6.9)

For Riemannian manifold Langevin dynamics, the rate function is

IB(µ) =
1

4

∫
Rd

(
∇ log

p(x)

π(x)

)∗
B(x)

(
∇ log

p(x)

π(x)

)
dµ(x). (6.10)

Large deviations principles for estimators of ergodic averages of observables are related

to LDP of empirical measures by the contraction principle. Consider some observable

f : Rd → R and the estimator

ft =
1

t

∫ t

0

f(Xs)ds.

The contraction principle allows us to concludes that ft has an LDP with rate function

Ĩf (l) = inf
µ∈P(Rd)

{
I(µ) :

∫
f(x)dµ(x) = l

}
. (6.11)

It is known that the asymptotic variance of the estimator ft is related to the second

derivative of the rate function as follows

σ2(f) =
1

2Ĩ ′′f (f̄)
(6.12)

where f̄ =
∫
f(x)π(x)dx. From these results, [97] conclude that if B(x)− I is positive

definite, then the estimator constructed using RMLD has lower variance than the one

constructed with standard Langevin. Next we present a result that relates the rate

function of the reference Langevin system with the RMLD induced by the transport
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map.

Proposition 5. Let η and π be continuously differentiable reference and target densi-

ties with infinite support on Rd and let T be a triangular, monotone transport maps

such that T]η = π. Define map S such that S]π = η. Let X(t) be the stochastic

process that evolves according to SDE in Equation (6.3) and Y (t) be the RMLD in

Equation (6.4) and let Iη(µ) and Iπ,B(µ) be their rate functions, respectively. Then,

Iη(µ) = Iπ,B(T]µ).

Proof. We compute:

Iπ,B(T]µ) =
1

4

∫ (
∇Y log

p(S(y)) det JS
π(y)

)∗
JTJ∗T

(
∇Y log

p(S(y)) det JS
π(y)

)
dT]µ(x)

=
1

4

∫ (
J∗T∇Y log

p(S(T (x))) det JS
π(T (x))

)∗(
J∗T∇Y log

p(S(T (x))) det JS
π(T (x))

)
T]dµ(x)

=
1

4

∫ ∥∥∥∥J∗T∇Y log
p(x)

π(T (x)) det JT

∥∥∥∥2

dµ(x).

Notice that the denominator is exactly equal to η and from previous computations (of

the multivariate chain rule of transport maps), and we have ∇Y = J∗S∇X . Therefore

we obtain,

Iπ,B(T]µ) =
1

4

∫ ∥∥∥∥∇X log
p(x)

η(x)

∥∥∥∥2

dµ(x) = Iη(µ).

We can interpret this result as a precise description of the intuition that the

Langevin algorithm involving the transport map induced RMLD somehow has the

same convergence properties of the reference Langevin dynamics. If the reference

is a standard normal and the map is constructed exactly, then the performance of

the RMLD on the complex target density is the same as that of LD on the standard

normal.

Remark 1. The large deviations rate function for empirical measures relating to

Langevin dynamics is closely related to the Fisher divergence [63]. The Fisher diver-
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gence from density p to density q defined on manifold E is

F(q‖p) =

∫
E

∥∥∥∥∇ log
q(x)

p(x)

∥∥∥∥2

q(x)dx. (6.13)

Therefore, one can see that, for example,

Iη(µ) =
1

4
F(p‖η), (6.14)

where p is the density of µ with respect to the Lebesgue measure.

This result can also be seen in terms of LDP for estimators of ergodic average of

observables.

Corollary 2. Let f : Rd → R be an observable, then Ĩπ,Bf (l) = Ĩηf◦T (l), and therefore

the asymptotic variance of (f ◦ T )t and ft are equal for the reference LD and target

RMLD, respectively.

Proof. Observe that

Ĩπ,Bf (l) = inf
µ

{
Iπ,B(µ) :

∫
f(x)dµ(x) = l

}
= inf

µ

{
Iη(S]µ) :

∫
f(x)dµ(x) = l

}
= inf

ν=S]µ

{
Iη(ν) :

∫
f(x)dT]ν(x) = l

}
= inf

ν

{
Iη(ν) :

∫
(f ◦ T )(x)dν(x) = l

}
= Ĩηf◦T (l).

6.3 Transport map unadjusted Langevin algorithm

In the previous section, we found that transport maps can be used to define Riemannian

metrics and studied how they interact with large deviations-based approaches for
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analyzing reversible perturbations. When designed properly, RMLD can be a powerful

tool for accelerating the convergence of Langevin dynamics. A good choice of metric

may not be of practical use if it is very expensive to evaluate. After discretization,

each step of RMLD requires evaluations of 1) the inverse metric, 2) the square root

of the metric, and 3) the divergence of the metric. Often the bottleneck to applying

RMLD is the computation of the divergence, especially when the metric is difficult

to compute already. The connection between transport maps and RMLD provides

another approach to applying RMLD, in which we map a discretization of overdamped

Langevin dynamics through the transport map. We call the resulting algorithm the

transport map unadjusted Langevin algorithm.

We first show sufficient conditions on the target distribution π and map S which

guarantees fast convergence of TMULA to stationarity. The main idea is that the

transport map allows us to relax the strongly log-concave condition that is usually

required for the target. Define η to be the pushforward of π through S, and let

U(x) = − logS]π(x). We make the following assumptions:

Assumption 1. The map S is ρ-strongly monotone. That is,

‖S(z)− S(z′)‖≥ ρ‖z − z′‖.

When the Jacobian is well-defined, this condition is equivalent to JS � ρI.

Assumption 2. The function U(x) is m-strongly convex, with L-Lipschitz gradients.

For all x, y ∈ Rd, there exists m and L such that

U(y) ≥ U(x) + 〈∇U(x), y − x〉+
m

2
‖x− y‖2, ‖∇U(x)−∇U(y)‖≤ L‖x− y‖.

The assumption that S is strongly monotone implies that the inverse map is

Lipschitz. Since there always exists an S such that S]π is standard normal, we know

there is at least one such map that satisfies these two conditions.

We obtain samples from π by first applying ULA to η and then applying the map

T on the trajectories of the Langevin system defined by η. We write the gradient of
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log η in terms of π and S:

∇X log η = ∇X log π(T (X)) det JT (X) (6.15)

= J∗T∇Y log π(T (X))−
d∑
i=1

J∗T∇Y log
∂Si
∂yi

.

We obtain TMULA, which is defined by the following stochastic process:


Xk+1 = Xk + hJ∗S(Y k)−1

[
∇Y log π(Y k)−

d∑
i=1

(
∂Si
∂yi

(Y k)

)−1

Hi(Y
k)

]
+
√

2hξk+1

Y k+1 = T (Xk+1)

(6.16)

where Hi(Y
k) =

[
∂2Si
∂y1∂yi

, · · · , ∂2Si
∂yd∂yi

]>
, where ξk+1 ∼ N (0, I).

We now show that the TMULA converges in the 2-Wasserstein distance to the

target distribution when these assumptions are met. The 2-Wasserstein distance

between probability measure µ and ν is

W2
2 (µ, ν) = inf

W :W]µ=ν

∫
Rd
‖x−W (x)‖2dµ. (6.17)

Proposition 6. Denote ηk and πk to be the distributions of the discrete-time process

Xk and Y k at time step k, respectively. Let h ∈ (0, 1
m+L

) and κ = 2mL
m+L

. Then,

W2
2 (πk, π) ≤ 2

ρ2

(
1− κh

2

)k[
‖x− x?‖2+

d

m

]
+ C1(h) (6.18)

where

C1(h) =
2L2d

κh

[
h2
(
κ−1 + h

)][
2 +

L2h

m
+
L2h2

6

](
1−

(
1− κh

2

)k)
. (6.19)

The proof is straightforward, we directly apply Theorem 5 from [44]. We relate the

convergence of ULA on S]π to that of π by relating the Wasserstein distance between

ηk and η with the distance between πk and π. Specifically we use the following lemma,
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which is also proven in [59]. The ρ-strongly monotone condition on S is crucial to the

proof.

Lemma 1.

W2
2 (πk, π) ≤ 1

ρ2
W2

2 (ηk, η) (6.20)

Proof. We use the fact that S is ρ-strongly monotone:

W2
2 (ηk, η) =W2

2 (S]π
k, S]π) = inf

W

∫
‖x−W (x)‖2dS]πk(x)

= inf
W

∫
‖S(x)−W ◦ S(x)‖2dπk(x)

≥ ρ2 inf
W

∫
‖x− S−1 ◦W ◦ S(x)‖2dπk(x).

Since W is such that W]S]π
k = S]π, this implies that S−1

] W]S]π
k = π, and we

therefore have

W2
2 (πk, π) ≤ 1

ρ2
W2

2 (ηk, η).

Based on this statement, the rate of convergence can be optimized by considering

the term r = 1− κh
2

alone. Choosing h to be as large as possible, the rate is

r = 1− mL

(m+ L)2
. (6.21)

We show this rate is optimized if and only if η were an isotropic Gaussian. Fix m > 0,

we study the function r(L) = 1− mL
(m+L)2

for L ∈ [m,∞). Taking the derivative with

respect to L yields

∂r

∂L
=
m(L−m)

(m+ L)3
, (6.22)

which is always positive for L > m. Thus, the greatest rate of convergence is attained
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when L = m, which implies that ∇2U(x) = I, and therefore implies that η is identically

a standard normal. At least in the context of TMULA, this result supports the intuition

that constructing a map S such that η is as close to an isotropic normal as possible is

best.

6.3.1 Simple numerical example

To briefly demonstrate the differences between TMULA and a direct discretization

of RMLD with the transport map defining the reversible perturbations, we provide

the following simple numerical example. We consider a very thin banana distribution

defined as follows

log π(y) = − 1

2 · 1002
y2

1 −
1

2
(y2 + 2y2

1 − 200)2. (6.23)

The transport map that takes samples from this distribution to a standard normal is

S(y) =

 y1/10

y2 + 2y2
1 − 200

. (6.24)

We simulate the standard Langevin dynamics with Euler-Maruyama, the transport

map ULA, and a direct discretization of RMLD with the reversible perturbation

defined by the transport map for a simulation length of Tb = 100 with time step

h = 5 × 10−4. The results are produced in Figure 6-1. We compare the results to

samples directly produced from the transport map. These figures show that TMULA

and RMLD accelerates convergence to the stationary distribution because they are

reversible perturbations applied to the Langevin process.

Visually note, however, that RMLD seems to have difficulties staying on the very

narrow valley defined by the log-density. This is likely due to the stiffness of the

directly discretized RMLD system. In contrast, TMULA is the better able to stay in

the valley since the reference process (an Ornstein-Uhlenbeck process) is not stiff.
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Figure 6-1: Banana distribution. Top left shows the log density, top right shows
exact samples produced by a transport map. Bottom left shows single trajectory of
Langevin dynamics, bottom middle shows single trajectory of TMULA, bottom right
shows single trajectory of direct discretization of RMLD. Simulation length Ts = 100,
time step h = 5× 10−4.

6.4 Discussion and future work

In this chapter we studied the use of transport maps for accelerating the convergence

of Langevin dynamics. For the unadjusted Langevin algorithm, it is clear that

transport maps expands the space of distributions for which there are guarantees of

rapid convergence. We have also made interesting connections to the Riemannian

manifold Langevin dynamics as well, however, these results do not easily translate

into computational notions that we can employ for practical use yet. Indeed, while an

exact map will accelerate convergence of the invariant distribution, having access to

the exact map also means that one does not have to resort to Langevin dynamics at

all. In particular, we hope this work can potentially lead to interesting new objective

functions for constructing approximate transport maps that optimally accelerates

convergence of Langevin dynamics.

We showed the connections between transport maps and Riemannian manifold

Langevin dynamics. Not only do transport maps provide a way to parametrize a

certain class of Riemannian metrics, they also provide another way to discretize RMLD.

There are, however, many more interesting directions we can investigate with this

connection at hand. We discuss two possible future directions in this section.
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6.4.1 Connections to variational formulations of Bayesian in-

ference

We restrict ourselves to target distributions that arise from Bayesian statistics. In

the context of Bayesian inference, another approach to evaluating the efficacy of the

RMLD is to study variational formulations of the Bayesian update [117]. One can

cast the Bayesian posterior distribution as the solution to a variational problem on

the space of distributions with the Wasserstein distance. Following the presentation

of [117], we let π0(y) be the prior density and let l(y) ∝ exp(−φ(y)) be the likelihood.

Let JKL be a functional defined on the space of probability densities on Rd

JKL(ρ) := DKL(ρ‖π0) +

∫
Rd
φ(y)ρ(y)dy. (6.25)

The minimizer of this functional over the space of probability distribution is equal to

the posterior distribution π(y) ∝ l(y)π0(y).

The following result relates the convexity of the optimization problem to the

Riemannian metric. For each x ∈ Rd, define the inner product gx(u, v) = 〈G(x)u, v〉,

where u, v ∈ Rd. Using a framework for defining gradient flows in the space of

probability distributions with the 2-Wasserstein distance as the metric [2], the authors

of [117] show that the gradient flow derived from (6.25) is the overdamped Langevin

dynamics. The convexity of this optimization problem, which defines the rate of

convergence of the flow to the minimizer in the KL-divergence, with different metrics

defined by the Riemannian metric is derived in [117].

Proposition 7 (Proposition 3 and Theorem 10 from [117]). The geodesic convexity

of the variational formulation for Bayesian inference with metric G is

λG = inf
v,y∈Rd

Ricg(v, v)− Hessg log[πg(y)](v, v) (6.26)

where g(v, v) = 1, πg(y) is the density of the posterior with respect to the measure

defined on the manifold, Ricg(v, v) is the Ricci curvature tensor and Hessg(v, v) is the

Hessian tensor defined with respect to the metric.
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For our particular choice of metric, we compute that log πg(y) = −1
2
‖S(y)‖2. We

conjecture that when the exact transport map is used, λG = 1 identically. To prove

this, we need to compute the Ricci curvature and Hessian terms above. The Christoffel

symbols of the Riemannian manifold with metric G is defined

Γlij =
1

2

(
∂

∂xj
Gki +

∂

∂xi
Gkj −

∂

∂xk
Gij

)
G−1
lk . (6.27)

And the Ricci curvature tensor and Hessian tensors are

(Ricg)ij =
∂Γlij
∂xl
− ∂Γlil
∂xj

+ ΓlijΓ
k
lk − ΓkilΓ

l
jk. (6.28)

(Hessg log[πg(y)])ij =
∂2

∂yi∂yj

(
1

2
‖S(y)‖2

)
− Γlij

∂

∂yl

1

2
‖S(y)‖2. (6.29)

Computing these terms is generally quite difficult, however it would be useful to see

how the transport map implies a metric and changes the properties of the resulting

optimization problem.

We consider a slightly different formulation of the above proposition that does not

use the definition of the Ricci curvature tensor.

Proposition 8 (Proposition 3 in [117]). Let F ∈ C2(Rd) and µ(du) ∝ exp(−F (u))du.

The sharp constant λ for which DKL is λ-geodesically convex in the g-Wasserstein

distance is equal to

λG := inf
x∈Rd

Λmin
(
G−1/2(B +∇2F −C)G−1/2

)
where ∇2F is the usual Euclidean Hessian matrix of F , B is the matrix with coordinates

Bij =
∂Γlij
∂xl
− ΓkilΓ

l
jk

and C is the matrix with coordinates

Cij = Γlij
∂F

∂xl
.
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We conjecture that with any transport map T such that T#η = π, where π is the

target distribution and η is the pullback of π through T , the constant λ of RMLD

with target π is the same as that of LD on pullback η.

Conjecture 1. Let λη be such that

λη := inf
x∈Rd

Λmin
(
−∇2 log η

)
and λπ be equal to that of λG above with G = J∗SJS and F = − log π. Then λη = λπ.

First observe that

∇2
Y log π(y) = ∇2

Y log η(S(y)) +∇2
Y log det JS(y).

The first term is equal to the following

∇2
Y log η(S(y)) = J∗S(y)∇2

X log η(x)JS(y) +
n∑
k=1

∂

∂yk
log η(S(y))∇2

Y Sk(y).

After pre- and post- multiplying the first term by G−1/2, we have exactly the term

inside of λη. Therefore, we only need to show that

∂Γlij
∂yl
− ΓkilΓ

l
jk +

∂

∂yk
log η(S(y))

∂2Sk
∂yi∂yj

+ Γlij
∂

∂xl
log η(S(y)) + Γlij

∂

∂yl
log det JS = 0.

If η were standard normal, this result would that the exact transport map that

maps the standard normal to the target distribution will define a Riemannian metric

such that the convexity of the optimization problem on the target is the same as that

of the normal distribution.

Proving this result may be useful for other types of Langevin dynamics-based

Bayesian inference methodology beyond RMLD. For example, sampling methodologies

based on interacting Langevin diffusions use an empirically estimated covariance

matrix to define the reversible perturbation [51]. Like for RMLD, Transport maps

may be a generalization of the covariance matrix used in the interacting Langevin

diffusions methodology.
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6.4.2 Creating new objective functions for designing Rieman-

nian metrics

While we have shown that Riemannian metrics can be parametrized through transport

maps, we did not describe a way to use the theory of reversible perturbations to

inform how to design transport maps that will result in metrics that accelerate

convergence of Langevin dynamics. The large deviations approach for analyzing

reversible perturbations provides a rate function which is used to measure the quality

of a Langevin sampler, but using rate function to define an objective function for

constructing transport maps does not seem straightforward. While an exact transport

map is desirable, having it implies one no longer needs Langevin dynamics to sample

from the target distribution. For future research, it is desirable to find some way of

finding good Riemannian metrics based on approximate transport maps.
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Chapter 7

Conclusion and future work

The goal of this thesis was to exhibit the symbiotic nature of recent advances in

computational statistics and computational dynamics. We conclude by providing a

unified discussion of all the major ideas presented here. We highlight common themes

and challenges the chapters share with each other. From there, we specify future

research directions brought up from ideas in this thesis.

7.1 Sampling for stochastic dynamical systems

In the first part, we demonstrated how state-of-the-art tools in computational dy-

namical systems can be used to devise efficient statistical tools for characterizing rare

events in stochastic dynamical systems and quantifying their probabilities. Advances

in numerical methods for Koopman operators provide new ways of computing the

eigenfunctions of the operator of the Kolmogorov backward equation, thereby enabling

cheap, approximate solutions to the KBE. By expressing the indicator function over

rare regions of interest in terms of these eigenfunctions, we are able to approximate

zero-variance importance sampling estimators and optimal implementations of mul-

tilevel splitting estimators. These eigenfunctions are learned from sampling typical

trajectories of the dynamical system at different initial conditions.

Our techniques are generally agnostic to the exact Koopman numerical method

applied; however, the main computational bottleneck for our approach is how well
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Koopman eigenfunctions can be learned from trajectory data and how cheaply the

eigenfunctions and their gradients can be evaluated throughout the domain. While

atypical or rare trajectories that exhibit the rare event are not needed to successfully

devise an efficient estimator, having training points near typical rare event paths

improve estimator performance. In the examples on which we demonstrated our

approaches, we found that learning a few eigenfunctions can reduce the variance of

the rare event estimator by four orders of magnitude.

The ultimate goal of this work is to devise a fully black-box approach for estimating

rare event probabilities and characterizing their mechanisms, i.e., a rare event sampling

algorithm that solely depends on trajectory data. To describe a path to achieve this

goal, we highlight limitations of our current work and present possible strategies to

circumvent those limitations in the pursuit of this totally black-box algorithm.

• Current limitations of Koopman numerical methods. The importance

sampling and multilevel splitting methodologies presented in this thesis critically

depends on how well the stochastic Koopman eigenfunctions can be learned

from data. We applied extended dynamic mode decomposition and its variants,

in which a basis is specified a priori and the action of the stochastic Koopman

operator on the basis is projected onto the basis to obtain a finite dimensional

representation of the operator. While this approach enables the fast evaluation of

the approximate eigenfunctions and their gradients, the algorithm often produces

spurious eigenvalues and eigenfunctions, which need to be identified and removed

before applying our rare event sampling algorithm. Furthermore, when the basis

is not chosen properly, the quality of the eigenfunctions can often be quite poor.

To alleviate this problem, one extension of this approach is to adaptively learn

the basis simultaneously or iteratively while learning the eigenfunctions. Neural

nets have been employed mostly due to their expressiveness [74, 113]. However

all of these approaches suffer from the curse of dimensionality since the number

of basis functions needed to effectively express the eigenfunctions will grow

exponentially with dimension.
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To circumvent the issues that arise from basis-dependent methods, we may also

consider basis-free methods, such as Hankel DMD [3, 31, 129] or extensions of

the diffusion maps algorithm [8, 9]. These methods approximate the value of the

eigenfunctions at the training points, and at least in the case of Hankel DMD,

can be scaled to high dimensions since the computational cost scales with the

size of the amount of trajectory data. These methods also have convergence

guarantees. For Hankel DMD, it was shown that, assuming an invariant subspace

could be identified, the approximated eigenfunctions will converge to the true

eigenfunctions in the limit of infinite data over a long trajectory [129]. In the

case of diffusion maps-based methods, there are guarantees where the stochastic

matrix produced by the diffusion maps algorithm will converge to the generator

of the diffusion process for noisy gradient systems in the limit of infinite data.

Both methods still implicitly depend on a basis of initial observables. Given

an initial set of observables, Hankel DMD produces a dictionary of observables

through the repeated application of the system’s stochastic Koopman operator.

The idea behind this approach is based on Krylov subspace methodology, in

which the basis produced by the powers of the operator applied to an initial basis

function is able to quickly approximate an invariant subspace. One drawback of

this approach is that one still has to define a good initial set of basis functions

for the method to work in practical settings.

On the other hand, the diffusion maps algorithm constructs a data-driven basis

using trajectory data. Given data, the diffusion maps algorithm yields an

orthonormal basis composed of eigenfunctions of the gradient system defined

by the log of the data-producing density [9, 10]. Moreover, it has been shown

that this particular basis is the optimal orthonormal basis as it minimizes

the Dirichlet energy which allows the Koopman eigenfunctions to be learned

robustly. Specifically, the estimators for learning the expansion coefficients

will have minimal variance [8]. A drawback of this approach is that the basis

is constructed from a kernel, which means that it may be scalable in high
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dimensions (say for more than dimension 10). A future direction of research may

be to see how diffusion maps can be combined with Hankel DMD methods. For

example, a small initial set of basis functions can be learned from the diffusion

maps algorithm and Hankel DMD is applied to generate more eigenfunctions.

While the basis-dependent approach to Koopman numerical methods may often

produce spurious eigenfunctions, they produce eigenfunctions whose gradients

can be quickly evaluated throughout the state space. This is advantageous for

our rare event sampling algorithm as both the importance sampling and splitting

methods require repeated evaluation of the eigenfunctions or their gradients.

Applying importance sampling with eigenfunctions learned from Hankel DMD

or the diffusion maps approach may be impractical as the gradients will need

to be estimated from eigenfunction evaluations from training points, which

would have very large variance. A more viable approach is to only consider

multilevel splitting and investigate the use of high dimensional interpolation

in evaluating the eigenfunctions. Notwithstanding the drawbacks of Koopman

numerical methods, further investigation of these methods will be crucial in the

development of a black-box rare event sampling algorithm.

• Adaptive exploration of the state space. Ultimately, we are pursuing

a rare event sampling algorithm with only the ability to simulate from the

black-box of some stochastic dynamical process. In theory, our method only

depends on the sample trajectories. What parts of the state space the sample

trajectories explore is important in developing rare event sampling algorithms.

While trajectories that exhibit the rare event do not need to be included in

the dataset, the training data do need to at least cover the various transition

pathways for our algorithm to be effective. In high dimensions, it is difficult

to have training data cover all parts of the state space, therefore it is best to

have a strategy to adaptively explore the state space. For example, we may

draw inspiration from [27], in which a diffusion maps algorithm is applied to

adaptively explore a free energy landscape to find saddle points and transitions
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between local minima. This approach was only studied in the context of gradient

systems, and was not used in the estimation of probabilistic quantities. It may

be interesting to see how our work can be combined with these ideas.

• Projecting the indicator function on to the approximated stochastic

Koopman eigenfunctions.

Once the eigenfunctions are estimated, another challenge is to project the

indicator function over the rare event onto the eigenfunctions. In Chapter 2,

we saw that to apply importance sampling properly, the approximate function

needs to be strictly positive. We addressed this issue in a relatively arbitrary

way, in which we simply added a positive constant to the approximation so that

it was strictly positive over the training points. For future work, it may be

interesting to investigate more rigorous ways for positive regression.

This problem may also be of interest for multilevel splitting. While multilevel

splitting does not need the approximation to be positive, we have not yet thor-

oughly investigated how our approach works for splitting when the approximation

is not corrected.

• Characterizing the types of rare events for which our approach will

be effective. Throughout the Koopman rare event sampling methodology, there

is an implicit assumption that indicator functions over rare regions of interest

can be expressed in terms of the Koopman eigenfunctions. Of course, this is

not true in general, so it would useful if we could characterize the types of rare

event problems our approach would be effective.

7.2 Sampling by stochastic dynamical systems

In the second part of the thesis, we showed how dynamical systems can be used to

sample from complex probability distributions. While Langevin samplers such as

the unadjusted Langevin algorithm (ULA) exhibits exponential convergence in the

Wasserstein distance, the class of distributions that satisfy the conditions required
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for fast convergence is rather restrictive. We presented three approaches for sampling

with stochastic dynamical systems.

Langevin samplers rely on ergodicity, i.e., the property that the empirical average

of a function over a single trajectory will eventually equal the expectation the function

with respect to the target distribution. However, the empirical average may converge

very slowly. One way to resolve this problem is to create a dynamical system that

can sample from target distributions in finite time. In Chapter 4, we re-interpreted

our approach to importance sampling for diffusion processes to exactly sample from

a general class of probability distributions with Gaussian tails. We presented an

approach to building controlled SDEs whose finite-time marginal distribution will

match the target distribution. By wisely choosing a linear SDE as the reference

process, we are able to devise exact solutions of the Kolmogorov backward equation in

terms of eigenfunctions of the Ornstein-Uhlenbeck operator. By expressing the ratio

of the target density and the marginal density of the uncontrolled system at some

finite time T , we are able to derive the optimal control that produces a controlled

process that samples from the target distribution by only solving a static optimization

problem. This was in contrast to approaches based on the full Schrödinger bridge

problem [7], where usually some sort of infinite-dimensional optimization problem

needs to be solved. While the approach is elegant in its presentation, its practical

implementation to high-dimensional problems in Bayesian inference requires certain

challenges to be addressed.

• Expressing the ratio of the target and reference densities in terms of

the OU eigenfunctions. Like the rare event sampling problem, one of the

primary challenges of this method is to efficiently expand functions in terms

of the KBE operator’s eigenfunctions. In our formulation, we can pursue a

least-squares regression approach, however the issue is that the approximating

function needs to be strictly positive so that the control can be properly applied.

The approach we take results in a highly non-convex objective function whose

evaluation needs to be estimated with sample points. It would also be interesting

to see how the properties of this optimization problem will change with the
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alternate formulations we presented in the conclusion of Chapter 4.

• Informed ways for choosing the reference process and versions of the

algorithm. Even when the likelihood ratio can be sparsely expressed in terms

of the eigenfunctions, we found that the quality of the approximation is very

sensitive the choice of the eigenfunctions (which is dependent on the choice of

reference process). In our examples, the reference processes were chosen in an

ad hoc fashion. To make the algorithm more practical and robust, it would be

beneficial to devise a way to automatically choose and refine the choice of the

reference process.

• Beyond linear systems: other choices of the reference process. We

chose linear stochastic systems to be the reference process because their Fokker-

Planck (FPE) and Kolmogorov backward equations (KBE) can be solved an-

alytically through eigenfunction expansions. It would be interesting to see if

there are nonlinear SDEs whose FPE and KBE could be solved exactly. This

would expand the class of approximating distributions and potentially make our

approach richer and more robust.

• Solving the Schrödinger bridge problem. The controlled SDEs formulation

we presented in this thesis is the solution to a special case of the Schrödinger

bridge problem (SBP) when the initial condition is deterministic. In the con-

clusion of Chapter 4, we proposed a few different special cases of the SBP that

may merit further investigation. For future work, it would be interesting to see

if our formulations can be further developed to solve the full Schrödinger bridge

problem. Finding more efficient ways of solving the SBP will be impactful for

problems in data assimilation and optimal control.

The other approach we took to improve the performance of Langevin samplers is

the design of novel reversible and irreversible perturbations. In contrast to controlled

SDEs, the reference process is the overdamped Langevin dynamics and the dynamics

are changed so that the system converges more quickly to the stationary distribution,
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but still in infinite time. The most well-known instantiation of reversible perturbations

is the Riemannian manifold Langevin dynamics, which is known to accelerate con-

vergence when the difference between Riemannian metric and the identity is positive

definite. Meanwhile, irreversible perturbations are simple and cheap to find and

compute, and in continuous-time, guarantees accelerated convergence. In Chapter 5

we proposed and demonstrated a geometry-informed irreversible perturbation that

accelerated the convergence of Riemannian manifold Langevin dynamics more than

if standard irreversibility were applied alone. This geometry-informed irreversibility

took the underlying Riemannian metric into account when designing the irreversible

perturbation.

• Analysis on when geometry-informed irreversibility performs better.

While our numerical examples showed the promise of state-dependent irreversibil-

ity through numerical experiments, further detailed investigation needs to be

done to understand under what conditions does geometry-informed irreversibility

accelerate convergence of Langevin dynamics and how to design it. While there

is previous work analyzing irreversible perturbations with large deviations theory,

applying this mode of analysis for geometry-informed irreversibility has not been

fully explored.

• Synthesis and analysis of new discretization schemes for irreversible

perturbations. While irreversibility is known to always improve the perfor-

mance of Langevin samplers in continuous-time, this property does not hold in

discrete-time. In Appendix B we show how the variance of the estimator can

increase when irreversibility is introduced. Proposing discretizations other than

Euler-Maruyama can potentially alleviate some of these difficulties.

• Computational studies for trading off sophisticated perturbations with

producing more samples. While perturbations (both reversible and irre-

versible) accelerates convergence of Langevin dynamics, they incur additional

computational cost when applied. An open question is how does this additional

computational cost trade off with the improvements in sampling performance? In
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Chapter 5, we saw that for the Bayesian logistic regression example the reversible

perturbations were quite expensive to compute, and the improvements in per-

formance were relatively marginal when compared with unperturbed Langevin

dynamics. It would be beneficial if one could determine if applying perturbations

is worthwhile compared to simulating longer trajectories in standard Langevin a

priori.

In Chapter 6, we studied reversible perturbations in the context of transport maps.

Given an invertible map and a target distribution, we define a reference Langevin

process on the pullback of the distribution through the map. When the inverse

the map is applied to the reference Langevin process, the output is a Riemannian

manifold Langevin process with a reversible perturbation that is defined by the

Jacobian of the map. When the map is applied to an irreversibly perturbed reference

process, the result is a geometry-informed irreversibly perturbed Langevin system

on the target distribution. The transport maps not only parametrize reversible

perturbations, but they also provide new way to discretize Riemannian manifold

Langevin dynamics. With this connection, we introduced the transport map unadjusted

Langevin algorithm, which is easier to simulate than a discretized Riemannian manifold

Langevin dynamics when the map is available. This connection, while interesting,

requires further development on how to construct the transport map.

• Devising alternative objective functions for finding transport maps

and reversible perturbations. Our analysis shows that an exact transport

map that takes a standard Gaussian to the target distribution optimizes the

rate of convergence of the TMULA in the 2-Wasserstein distance. Having the

optimal transport map renders the use of Langevin dynamics moot since we

can use the map directly to produce samples from the target. One goal is to

produce new objective functions for finding approximate transport maps that

can be directly linked to the improved sampler performance.

• Further properties of transport maps and reversible perturbations.
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Information geometry appears in contexts beyond Riemannian manifold Langevin

dynamics. The metric defined by transport maps are another way of encoding

information geometry. Further research could involve using this new perspective

for other kinds of Bayesian methodology, such as the construction of interacting

particle systems [51]. In Chapter 6, we highlighted the variational formulation of

Bayesian inference, in which different kinds of Riemannian metrics can increase

the convexity of the variational problems associated with Bayesian inference.

Connections such as these could result in even more interesting algorithms in

Bayesian computation.

In this chapter, we showed that transport maps can defined Riemannian metrics.

Another interesting avenue of exploration is studying the necessary conditions a

Riemannian metric should satisfy so that it corresponds with a transport map.

This would enable TMULA for new classes of Riemannian metrics.
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Appendix A

Computing eigenfunctions of the

multidimensional Ornstein–Uhlenbeck

operator

We discuss approaches to computing eigenfunctions of the Ornstein–Uhlenbeck (OU)

operator in more than two dimensions. While the spectrum of the OU operator and

theoretical properties of its eigenfunctions have been well characterized in previous

research, the practical computation of general eigenfunctions has not been resolved.

We review special cases for which the eigenfunctions can be expressed exactly in terms

of commonly used orthogonal polynomials. Then we present a tractable approach

for computing the eigenfunctions in general cases and comment on its dimension

dependence.

A.1 Introduction

The Ornstein–Uhlenbeck (OU) operator naturally arises in many fields. In stochastic

differential equations (SDEs), the OU operator is the generator of the Ornstein–

Uhlenbeck semigroup, which describes the evolution of statistics OU processes, which

are linear time-homogeneous SDEs [90]. Eigenfunctions of the OU operator also appear

in Koopman operator analysis of linear stochastic dynamical systems, as the stochastic
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Koopman operator for linear SDEs has the same eigenfunctions as the OU operator

[31]. These eigenfunctions have been useful in perturbation analysis of Fokker–Planck

equations for nonlinear SDEs [70]. Recently, the eigenfunctions have been shown to

be useful in constructing importance sampling schemes for rare event simulation [137].

The OU process is also used to model dynamical phenomena in financial mathematics

[84, 125] and neuroscience [47, 99].

Properties of the spectrum and eigenfunctions of the OU operator have been

thoroughly explored in the literature. For example, the spectrum has been computed

exactly, and many theoretical properties of the eigenfunctions—such as the fact that

they are polynomials and are complete in certain weighted Lp spaces—have been

established [82]. There are, however, applications in which one needs to directly work

with the eigenfunctions [70, 137]. The exact form of the eigenfunctions has only been

recorded in limited special cases, and a comprehensive approach to computing the

eigenfunctions, in general, has not been found by the authors. In this note, we describe

certain cases in which the multidimensional OU eigenfunctions can be represented

compactly in terms of commonly used orthogonal polynomials. Then we outline

a direct way of computing them in a more general setting. This note is targeted

towards those who are looking for methods to exactly compute the eigenfunctions of

the OU operator for general diagonalizable drift and diffusion matrices, in arbitrary

dimensions.

A.2 Theory and special cases

A.2.1 Notation and problem setting

Let A and B be d× d and d× r real-valued matrices, respectively, with d ≥ r, and

define Q = 1
2
BB>, where > denotes the matrix transpose. Below, λ will denote the

complex conjugate, ∗ will denote the conjugate transpose, and 〈u, v〉 = u∗v will be

the inner product. Assume that the eigenvalues of A have strictly negative real parts,

and that none of the left eigenvectors of A are contained in the kernel of B>. We also
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assume that A is diagonalizable; B may be rank-deficient.1 We study the computation

of the eigenfunctions on Lp(ν) for p > 1, where ν is the invariant probability measure

associated with the linear system of the operator. The existence of a nondegenerate

invariant measure ν is guaranteed by the assumptions on A and B [82]. The OU

operator A is given by

Aψ = 〈Ax,∇ψ〉+ Tr Q∇2ψ =
d∑
i=1

(Ax)i
∂ψ

∂xi
+

d∑
i,j=1

Qij
∂2ψ

∂xi∂xj
. (A.1)

In the context of stochastic differential equations, the OU operator is the infinitesimal

generator of the OU process, which is a time-homogeneous linear SDE,

dXt = AXtdt+ BdWt , (A.2)

where Wt is a standard d-dimensional Brownian motion.

The spectrum of the Ornstein–Uhlenbeck operator and its associated semigroup has

been well studied (for example, see [82, 11, 78]). Previous research has characterized

the eigenfunctions of the self-adjoint OU operator, which corresponds to the case when

A is self-adjoint and shares the same eigenvectors as B. In this case, the eigenfunctions

are the tensorized Hermite polynomials [90]. In d = 2 dimensions, if A has only

complex eigenvalues and is normal (i.e., A>A = AA>), the eigenfunctions are the

so-called Hermite-Laguerre-Itô (HLI) polynomials [24]. In general the OU operator is

not self-adjoint, so we cannot appeal to the spectral theory of self-adjoint operators

to prove the existence of eigenvalues. Nevertheless, the seminal work of [82] shows

that, under mild conditions, the OU operator has a pure point spectrum in Lp(ν) for

1 < p < ∞, where ν is the stationary measure of the OU process. Moreover, [82]

shows that the eigenfunctions form a complete basis in Lp(ν) for 1 < p < ∞, the

eigenfunctions are all polynomials, and that the eigenvalues and eigenfunctions are

the same for all 1 < p < ∞. We summarize these facts by recalling the following

propositions from [82].
1When B is rank-deficient, this leads to the case where the Ornstein–Uhlenbeck operator is

hypoelliptic [82].

184



Proposition 9 ([82, Theorem 3.1]). Let −λ1, . . . ,−λl be the distinct eigenvalues of

A, where λk > 0 for all k. Then the spectrum of A is given by

{
−

l∑
k=1

nkλk : nk ∈ N

}
.

Moreover, the linear span of the eigenfunctions of A is dense in Lp(ν).

Proposition 10 ([82, Proposition 3.1]). Suppose that u is in the domain of A and

satisfies (γ −A)u = 0 for some γ ∈ C. Then u is a polynomial of degree less than or

equal to |Re(γ)/s(A)|, where s(A) = supk{Re(λk)}. That is, the eigenfunctions of the

OU operator are polynomials.

In [71], the authors describe the generalized form of the OU eigenfunctions in

terms of ladder operators. Given a seed eigenfunction, repeated application of the

ladder operators generates other eigenfunctions. While compact in its mathematical

formulation, the approach is not easily amenable to practical computations. To make

computing eigenfunctions tractable, we represent the OU operator as a matrix acting

in some chosen basis of polynomials. Since it is known that the eigenfunctions of the

OU operator are polynomials, an exact matrix representation of the OU operator on

some finite dimensional vector space of polynomials is possible [82].

While the pure point spectrum of the OU operator on Lp(ν) spaces with p > 1 is

known explicitly, there is no explicit expression for the eigenfunctions in general. In

[82], the authors showed that for p > 1 the spectrum of the OU operator is the same

as that of

Lψ := 〈x,A>∇ψ〉 =
d∑

k=1

xk
(
A>∇ψ

)
k
, (A.3)

regardless of the form of the diffusion term. In Section A.4, we will show how the

eigenfunctions of L in fact comprise a judicious choice of basis for computing the

eigenfunctions in general. The following lemma will be useful later when converting

the OU eigenvalue problem into a matrix eigenvalue problem.
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Lemma 1. Let A ∈ Rd×d be diagonalizable and full rank. Let fi be a left eigenvector

of A with eigenvalue −λk, i.e., f ∗kA = −λkf ∗k . Let n ∈ Nd
0 be a d-dimensional multi-

index of nonnegative integers. The eigenfunctions of the operator Lψ = 〈x,A>∇ψ〉

are

ψn(x) :=
d∏

k=1

ψnk(x) =
d∏

k=1

〈x, fk〉nk (A.4)

with eigenvalues

µn = −
d∑

k=1

nkλk. (A.5)

Proof. Observe that

〈
x,A>∇

d∏
k=1

ψnk(x)

〉
=

〈
x,A>

d∑
j=1

nj〈x, fj〉nj−1fj

d∏
k 6=j

〈x, fk〉nk
〉

=
d∑
j=1

nj〈x,A>fj〉〈x, fj〉nj−1

d∏
k 6=j

〈x, fk〉nk

=
d∑
j=1

−njλj
d∏

k=1

〈x, fk〉nk

= −

(
d∑
j=1

njλj

)
ψn(x).

A.3 Hermite and Hermite-Laguerre-Itô polynomials

In this section we review the definitions of the Hermite and HLI polynomials, and

some of their relevant properties.
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A.3.1 Hermite polynomials

There are many ways to define the probabilists’ Hermite polynomials. The most

relevant characterization for this note is the Hermite differential equation, which is an

eigenvalue problem of the form

−xφ′n(x) + φ′′n(x) = µnφn(x). (A.6)

The solutions to this differential equation are the Hermite polynomials φn(x) = Hen(x)

with eigenvalues µn = −n for n ∈ N0.

The Hermite polynomials (like any other univariate orthogonal polynomials) satisfy

a three-term recurrence relation:

Hen+1(x) = xHen(x)− nHen−1(x). (A.7)

Furthermore, derivatives of the Hermite polynomials can be expressed in terms of

other, lower-order, Hermite polynomials as

d
dx

Hen(x) = nHen−1(x).

A.3.2 Hermite-Laguerre-Itô polynomials

The Hermite-Laguerre-Itô (HLI) polynomials are bivariate orthogonal polynomials first

studied by Itô in his study of multiple complex-valued Itô integrals. The definition of

the HLI polynomials used in this note is from [24]. A more comprehensive collection

of the properties of these polynomials can also be found there. For integers m,n and

(x, y) ∈ R2, the polynomials are

Jm,n(z, z) =

(−1)nn! zm−nLm−nn (zz, ρ), m ≥ n

(−1)mm! zn−mLn−mm (zz, ρ), m < n
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where z = x+ iy and Lαk (x, ρ) are the generalized Laguerre polynomials defined by

the Rodrigues formula

Lαn(x, ρ) =
ρn

n!
x−αe

x
ρ
dn

dxn
(
e−

x
ρxn+α

)
, n ∈ N.

The first six Hermite-Laguerre-Itô polynomials for ρ = 1 are

J0,0 = 1, J1,0 = x+ iy, J0,1 = x− iy

J1,1 = −(x2 + y2) + 1, J2,0 = (x+ iy)2, J0,2 = (x− iy)2.

Like the Hermite polynomials, the derivatives of HLI polynomials can be written in

terms of other HLI polynomials. Defining z = x+ iy, we have,

∂

∂z
Jm,n(z, z̄) = mJm−1,n(z, z̄)

∂

∂z̄
Jm,n(z, z̄) = nJm−1,n(z, z̄).

The following crucial result from [24] shows that Jm,n are the OU eigenfunctions

Proposition 11 ([24], Theorem 2.6). The Hermite-Laguerre-Itô polynomials satisfy

[
λz

∂

∂z
+ λz

∂

∂z
+ 2σ2 ∂

∂z∂z

]
Jm,n(z, z̄; ρ) = µm,nJm,n(z, z̄; ρ)

where λ = −a+ ib, ρ = σ2/a, and µm,n = −(m+ n)a+ i(m− n)b.

A.3.3 Special cases

The eigenfunctions of A are well-known for certain special cases. We outline some of

these cases here.

A and B are self-adjoint and simultaneously diagonalizable

Here we study the case where A and B are self-adjoint and simultaneously diagonaliz-

able. Then the eigenvalue problem is decomposable into d one-dimensional eigenvalue
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problems, each of which is a Hermite differential equation. The relationship between

the Hermite polynomials and the OU operator with A = B = I has been well-studied

(see, e.g., [11, 78, 90] and the references therein). The extension to the present scenario

is straightforward. The eigenvalues of A are real and the eigenvectors are orthogonal.

Suppose we have Aek = −λkek and Bek = σkek for λk, σk > 0, with 〈ej, ek〉 = δjk. We

first show that univariate Hermite polynomials defined in the direction of each of the

eigenvectors are eigenfunctions. That is, we make the ansatz that

φk(x) = g(〈x, ek〉) (A.8)

and show that g can be expressed in terms of a Hermite polynomial. The gradient

and Hessian of this function are

∇φk(x) = g′(〈x, ek〉)ek, ∇2φk(x) = g′′(〈x, ek〉)eke>k , (A.9)

so the OU operator applied to φk(x) yields

Aφk(x) = 〈x,A>ek〉g′(〈x, ek〉) +
1

2
Tr
[
BB>eke

>
k

]
g′′(〈x, ek〉).

This yields the eigenvalue problem,

−λk〈x, ek〉g′(〈x, ek〉) +
1

2
σ2
kg
′′(〈x, ek〉) = µkg(〈x, ek〉). (A.10)

Recall that the probabilist’s Hermite polynomials Hen(x) solve the Hermite differential

equation −xHe′n(x) + He′′n(x) = −nHen(x). Therefore, notice that if g(〈x, ek〉) =

Henk
(√

2λk
σ2
k
〈x, ek〉

)
for some nk ∈ N0, we then have

−λk

√
2λk
σ2
k

〈x, ek〉He′nk

(√
2λk
σ2
k

〈x, ek〉

)
+ λkHe′′nk

(√
2λk
σ2
k

〈x, ek〉

)
(A.11)

= −nkλkHenk

(√
2λk
σ2
k

〈x, ek〉

)
.
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In the next section, we will see that products of different univariate eigenfunctions

defined in the directions of the eigenvectors of A are eigenfunctions of A. Specifically,

φn(x) =
d∏

k=1

φnk(x) =
d∏

k=1

Henk

(√
2λk
σ2
k

〈x, ek〉

)
, (A.12)

is an eigenfunction with eigenvalue µn = −
∑d

k=1 nkλk.

A is normal and A,B are simultaneously diagonalizable

Now we consider the case where A is normal, i.e., AA> = A>A, but not necessarily

self-adjoint. For this case, it is possible for A to have complex eigenvalues. In [24], for

an OU operator with

A =

−a b

−b −a

, and B = σI,

the OU eigenfunctions are found to be the Hermite-Laguerre-Itô (HLI) polynomials.

The HLI polynomials are

Jm,n(z, z̄; ρ) =

(−1)nn! zm−nLm−nn (zz̄, ρ), m ≥ n

(−1)mm! z̄n−mLn−mm (zz̄, ρ), m < n

where Lαk (z, ρ) are the generalized Laguerre polynomials, ρ = σ2/a, and z = x1 + ix2.

The OU eigenvalues in this case are µm,n = −(m+n)a+i(m−n)b. [24] also generalizes

this result to d dimensions, for even d, when the matrix A is normal but only has

complex eigenvalues. Similar to the self-adjoint case, the eigenfunctions are simply

products of the HLI polynomials on each of the eigenspaces.

We now explicitly write the eigenfunctions for general normal matrices A and for

self-adjoint matrices B that share the same eigenspace as A. The latter conditions

imply that B is only has real eigenvalues. While the expression follows simply from

previous results, to our knowledge no previous work has explicitly computed these

eigenfunctions.
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When A has both real and complex eigenvalues, the eigenfunctions are products of

Hermite and HLI polynomials. Suppose A has l eigenspaces, with l′ real eigenspaces

and l − l′ complex eigenspaces; that is, A has l′ real eigenvalues and l − l′ pairs of

complex eigenvalues. Let fi denote a unit left eigenvector of A with eigenvalue −λk;

that is, f ∗kA = −λkf ∗k . Let the first l′ eigenvalues be real and the next l− l′ eigenvalues

come in complex conjugate pairs. To be clear, for complex eigenvalues, we write

λk = ak−ibk. Let B be such that Bfk = σkfk, where σk > 0. Note that l′+2(l−l′) = d.

Let n ∈ Nd
0 be a multi-index defined as n = (n1, . . . , nl′ , n(l′+1)1, n(l′+1)1, . . . , nl1, nl2).

Then the eigenfunction of the corresponding OU operator is

φn =
l∏

k=1

φnk(x) =
l′∏
k=1

Henk

(√
2λk
σ2
k

〈x, fk〉

)
·

l∏
k=l′+1

Jnk1,nk2

(√
2〈x, fk〉,

√
2 〈x, fk〉; ρk

)
(A.13)

with eigenvalue µn =
∑l′

k=1−nkλk −
∑l

k=l′+1[(nk1 + nk2)ak − i(nk1 − nk2)bk], and

ρk = σ2
k/ak. We show that Equation (A.13) is indeed an OU eigenfunction. We first

compute the following two expressions:

〈x,A>∇φn(x)〉 =
l∑

k=1

〈x,A>∇φnk(x)〉
l∏

j=1,k 6=j

φnj(x)

1

2
Tr BB>∇2φn(x) =

1

2

l∑
k=1

Tr BB>∇2φnk(x)
l∏

j=1,k 6=j

φnj(x)

+
l∑

k>j

Tr BB>∇φnk(x)∇φnj(x)>
l∏

k′=1,k′ 6=k 6=j

φnk′ (x).

The gradient of φnk is

∇φnk(x) =


√

2λk
σ2
k

He′nk

(√
2λk
σ2
k

〈x, fk〉

)
fk if 1 ≤ k ≤ l′

√
2
∂Jnk1,nk2
∂zk

fk +
√

2
∂Jnk1,nk2
∂zk

fk if l′ + 1 ≤ k ≤ l,
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where zk =
√

2〈x, fk〉. The Hessian of φnk is

∇2φnk =


2λk
σ2
k

He′′nk

(√
2λk
σ2
k

)
fkf

>
k if 1 ≤ k ≤ l′

2
∂2Jnk1,nk2
∂z2

k

fkf
>
k + 2

∂2Jnk1,nk2
∂z2

k

fkf
>
k + 4

∂2Jnk1,nk2
∂zk∂zk

fkf
>
k if l′ + 1 ≤ k ≤ l.

By the normality of A, the left eigenvectors of are orthonormal, so Tr[BB>fkf
∗
k ] =

〈B>fk,B>fk〉 = σ2
k, and Tr[BB>fkf

∗
j ] = 〈B>fj,B>fk〉 = σkσj〈fj, fk〉 = 0. For

cases where fk is complex, i.e., when l′ + 1 ≤ k ≤ l, we also have Tr[BB>fkf
>
k ] =

〈B>fk,B>fk〉 = σ2
k〈fk, fk〉 = 0.

Next observe that for 1 ≤ k ≤ l′, we have

〈x,A>∇φnk(x)〉+
1

2
Tr BB>∇2φnk(x) =− λk

√
2λk
σ2
k

〈x, fk〉He′nk

(√
2λk
σ2
k

〈x, ek〉

)

+ λkHe′′nk

(√
2λk
σ2
k

〈x, ek〉

)

=− nkλkHenk

(√
2λk
σ2
k

〈x, ek〉

)
.

For l′ + 1 ≤ k ≤ l, we appeal to Proposition 11 in the Appendix to obtain

〈x,A>∇φnk(x)〉+
1

2
Tr BB>∇2φnk(x) =−

√
2λk〈x, fk〉

∂Jnk1,nk2
∂zk

−
√

2λk〈x, fk〉
∂Jnk1,nk2
∂zk

+ 2σ2
k

∂2Jnk1,nk2
∂z∂z

=[−(nk1 + nk2)ak + i(nk1 − nk2)bk]Jnk1,nk2 .

As for the cross terms, the normality of A implies that it is identically equal to zero.

Therefore, we have Aφn(x) = µnφn(x).

The above result also applies if B were a scalar multiple of an orthogonal matrix

instead of being simultaneously diagonalizable with A: i.e., when B = σP and

P>P = PP> = I.
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A.3.4 Applications of the special case eigenfunctions

The eigenfunctions for the special cases above form complete orthonormal bases in

L2(ν), where ν is the invariant measure for the associated stochastic processes [24, 90].

The invariant density of ν is a normal distribution with mean zero and covariance

Σ =
∫ T

0
esABB>esA

>ds [65]. Any function g ∈ L2(ν) can then be expanded as an

infinite sum of eigenfunctions, and the expansion coefficients can be expressed in terms

of an integral with respect to the invariant measure:

g(x) =
∑

n

gnφn(x), where gn =

∫
g(x)φn(x)dν(x). (A.14)

The eigenfunctions of the L2(ν)-adjoint of the OU operator can also be found explicitly

in this case. The adjoint operator is the Fokker–Planck operator of the stochastic

process [90]. The adjoint operator applied to a density p ∈ L2 is

A∗p(x) = −
d∑
i=1

∂

∂xi
[(Ax)ip(x)] +

d∑
i,j=1

∂2

∂xi∂xj
Qijp(x). (A.15)

The adjoint eigenfunctions are then qn(x) = φn(x)p(x) with eigenvalue µn, where p(x)

is the invariant density. Solutions of the Kolmogorov backward equation (KBE) and

Fokker–Planck equations can then also be expressed in terms of the eigenfunctions.

For example, the KBE with terminal condition g ∈ L2(ν):
∂Φ(t, x)

∂t
+AΦ(t, x) = 0

Φ(T, x) = g(x)

has solution

Φ(t, x) =
∑

n

gne
µn(T−t)φn(x).

The solution of the Fokker–Planck equation can be obtained similarly.
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A.4 Computation of general eigenfunctions

Here we turn to the case where we only assume A is diagonalizable. While in theory

we know that the eigenfunctions can be expressed in closed form by polynomials,

there is no simple way of expressing them in terms of classical orthogonal polynomials.

Instead, we have found that a tractable approach for computing the eigenfunctions

is to choose a basis of polynomials defined by the left eigenvectors of A. Then, the

action of the OU operator on the basis can be exactly represented by a matrix and the

eigenfunctions are found by solving a matrix eigenvalue problem. We choose the basis

{ψn(x)}n∈I , where the functions are defined in (A.4) and I ⊂ Nd
0 is some index set.

This particular basis is chosen since its components are eigenfunctions of the first term

of the OU operator. As we will see, this basis leads to a sparse matrix representation

of the OU operator. Observe the following computation:

Aψn(x) =〈x,A>∇ψn〉+ Tr
[
Q∇2ψn

]
= µnψn + Tr

[
Q∇2ψn

]
.

We have that the trace term is

Tr
[
Q∇2ψn

]
=

d∑
k=1

Tr
[
Q∇2ψnk(x)

] d∏
j=1,j 6=k

ψnj(x)

+ 2
d∑

k=1

d∑
j=k+1

Tr
[
Q∇ψnk∇ψ>nj

] d∏
l=1,l 6=k,l 6=j

ψnl

=
d∑

k=1

Tr
[
Qfkf

>
k

]
nk(nk − 1)〈x, fk〉nk−2

d∏
j=1,j 6=k

ψnj(x)

+ 2
d∑

k=1

d∑
j=k+1

Tr
[
Qfkf

>
j

]
nknj〈x, fk〉nk−1〈x, fj〉nj−1

d∏
l=1,l 6=k,l 6=j

ψnl .
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In more compact notation, we write

Aψn(x) =µnψn(x) +
d∑

k=1

〈fk,Qfk〉nk(nk − 1)ψm(k)(x) (A.16)

+ 2
d∑

k=1

d∑
j=k+1

〈f j,Qfk〉nknjψm(kj)(x)

where all entries of m(k) and m(kj) are equal to the corresponding entries of n except

for m(k)
k = nk − 2, and m(kj)

k = nk − 1 and m(kj)
j = nj − 1. Therefore, as long as m(k)

and m(kj) are in I, then Aψn(x) is contained in the span of {ψn(x)}n∈I . For practical

computation, it is necessary to order the basis; lexicographical ordering is one obvious

choice, but the choice is arbitrary and left to the user. Each basis function corresponds

to an element of the standard basis, i.e., if there are N = |I| basis functions, then the

k-th element of the basis corresponds to the vector in RN with 1 in the k-th entry and

zero everywhere else. The matrix representation of A is then M = [Aψn1 · · · AψnR ].

Suppose we are attempting to compute the eigenfunction with index n. Based

on (B.1), since the OU operator is a differential operator, Aψn is itself a polynomial

with index less than n in the lexicographical ordering. This would require at most

N =
∏d

k=1(nk + 1) basis functions to span all the polynomials up to and including

multi-index n. The resulting matrix representation of M would then be an N ×N

matrix. However, (B.1) implies that Aψn is dependent on at most 1
2
(d2 + d+ 2) terms,

which does not grow with the number of basis functions. Therefore, the resulting

matrix is often quite sparse when many basis functions are considered. Solving the

matrix eigenvalue problem would give all of the eigenfunctions of A with index up to

and including n.

Furthermore, if one only wishes to compute a single eigenfunction corresponding

to index n (rather than all the eigenfunctions with total degree less than or equal to

n), then one does not need to include all the basis functions with index less than or

equal to n. For example, when d = 2 and we wish to compute the eigenfunction with

index (2, 3), then the basis functions needed to express this eigenfunction have indices

{(2, 3), (2, 1), (1, 2), (1, 0), (0, 3), (0, 1)}. In Figure A-1, we show the sparsity pattern of
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two matrix representations of the OU operator in high dimensions. Lexicographical

ordering was used in constructing these matrices. Notice that in Figure A-1a, the

matrix has size 1080× 1080; in contrast, the matrix would be of size 2160× 2160 if all

indices less than or equal to n were included in the basis. Similarly, in Figure A-1b,

the matrix has size 17280 × 17280 rather than 34560 × 34560. The matrices were

constructed by brute force, but they exhibit an interesting sparsity structure: for

example, in Figure A-1b, only 0.12% of the matrix entries are nonzero. In future work,

it may be interesting to investigate computationally efficient and structure-exploiting

techniques for automatically constructing these matrices. As explored in [71], the

(a) d = 6, l′ = 4, l = 5, n = (4, 3, 2, 2, 2, 3).
The matrix is of size 1080× 1080.

(b) d = 9, l′ = 5, l = 7, n =
(1, 3, 3, 2, 2, 1, 3, 4, 2). The matrix is of size
17280× 17280.

Figure A-1: Sparsity patterns for two different matrix representations of A.

eigenfunctions can be computed recursively via ladder operators. One could, therefore,

express the ladder operators in terms of the basis we have chosen here, so that other

eigenfunctions can be generated (given some initial high order eigenfunction).

Lastly, we comment on numerical methods for solving this matrix eigenvalue

problem. Recall that given an index n, the corresponding eigenvalue µn is known

exactly by Proposition 9, which means that only the eigenvectors need to be found.

This means that only the nullspace of M− µnI needs to be computed. In addition,

M − µnI is an upper triangular matrix, which means that if M can be stored in

memory (even in a sparse fashion), then the reduced row echelon form of the matrix
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can be easily computed and the nullspace can be found trivially. If only matrix-

vector multiplies Mv are accessible, the Arnoldi iteration can be employed to find the

eigenvectors iteratively [116].

Remark 2. One may ask if there is another choice of basis such that the number of

terms produced by the trace term can be reduced. For example, a tempting choice is to

use the basis defined in (A.13). We found that this choice yields a more complicated

expression that is similar to (B.1) without making the resulting matrix representation

sparser.

Remark 3. Our approach is similar to that of [93], which computes eigenfunctions of

the OU operator in the case that A is not diagonalizable (in contrast with the present

setting). More specifically, [93] fixes a basis of polynomials (in fact, the tensorized

Hermite polynomials) and seeks a finite-dimensional representation of the OU operator

in that basis. However, eigenvalue problems of more than d = 3 dimensions were not

studied.

A.5 Discussion

We have presented a new approach for computing eigenfunctions of Ornstein–Uhlenbeck

operators, in a general setting where the matrix A is diagonalizable. We first collect

results for special cases, e.g., when A is self-adjoint or normal, and write explicit

expresssions for the eigenfunctions in terms of certain orthogonal polynomials. We

then address the general setting, where we show that by using a judicious choice of

basis, one can compute eigenfunctions of any order, and in arbitrary dimension, by

solving a sparse eigenvalue problem. The resulting matrix representation of the OU

operator exhibits interesting structure that can be exploited to solve the associated

eigenvalue problem efficiently.

These eigenfunctions have been found to be useful for applications such as simulat-

ing rare events [137] and approximating solutions to the Fokker–Planck equation [71].

We anticipate that this approach will be relevant for many other applications.
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Appendix B

Supplementary Material for Chapter

5: The effects of discretization for

irreversible Langevin dynamics

In this section, we study the effects of discretization in the setting of an irreversibly

perturbed Langevin system. Results in full generality are, as yet, elusive; therefore we

only consider a Gaussian example, as it still provides insight into how irreversibility

interacts with discretization in impacting the asymptotic and finite sample bias and

variance of the long term average estimator. While we do not present the results when

a stochastic gradient is used, we note that the results are similar and can be easily

extended based on what we present here. Recall that,

A =
1

2
(I + J)(Γθ +NΓX), D =

1

2
(I + J)

(
ΓX

N∑
i=1

Xi

)
, where J = δ

 0 1

−1 0


For this analysis, all precision matrices are 2× 2 scalar matrices. That is, we assume

Γθ = σ−2
θ I, ΓX = σ−2

X I. This is distinct from the example in Section 5.3.1, since the

precision matrices there are diagonal but not scalar. Let b = 1
2σ2
X

and SX =
∑N

k=1Xi,

so that D = b(I + J)SX .

We summarize our findings here. For fixed discretization size h and scalar precision
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matrices as defined above, and introducing the irreversible perturbation scaled by δ,

we find the following:

• The asymptotic bias for linear observables is zero, that is, E[θ∞] = µp;

• The asymptotic variance for linear observables increases. We found that

TrVar[θ∞] =
2

2a− ha2(1 + δ2)
(B.1)

where a = 0.5(1/σ2
θ +N/σ2

X);

• The finite time estimator for the observable φ(θ) = θ1 + θ2 has lower bias and

variance;

• The finite time estimator for the observable φ(θ) = ‖θ‖2 has higher bias and

variance.

We focus on the finite time results and omit the asymptotic results, since the the

former case is of more practical interest. The computations related to both are similar.

Finite time analysis: bias for linear observables. We study how the magnitude

of the irreversibility, characterized by δ, impacts the mean-squared error MSE =

E
[
‖θ̄K − µp‖2

]
where θ̄K = 1

K

∑K−1
k=0 θk. We approach this quantity via its bias-

variance decomposition:

MSE =
∥∥E[θ̄K ]− µp

∥∥2
+ TrVar

(
θ̄K
)
. (B.2)

First, we compute the expected value of the sample average E
[
θ̄K
]

= 1
K

∑K−1
k=0 E[θk].

For simplicity, we assume that the initial condition is always θ0 = 0. For any k, we
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have

E[θk] = (I− hA)E[θk−1] + hD

= (I− hA)kθ0 + h

k−1∑
n=0

(I− hA)nD

= h(Ah)−1(I− (I− hA)k)D

= A−1D−A−1(I − hA)kD.

This yields

E[θ̄K ] =
1

K

K−1∑
k=0

(
A−1D−A−1(I− hA)kD

)
= A−1D− 1

K
A−1(Ah)−1(I− (I− hA)K)D.

Since µp = A−1D, the bias is

bias = − 1

Kh
A−2(I− (I− hA)K)D.

The norm of the bias can in fact be computed. Note that A2 = (1 + δ2)a2I and we

have

‖bias‖2 =
1

K2h2
DT (I− (I− hAT )K)A−2TA−2(I− (I− hA)K)D

=
1

K2h2a4(1 + δ2)2
DT (I− (I− hAT )K)(I− (I− hA)K)D

=
b2

K2h2a4(1 + δ2)2
STX(I + J)T (I− (I−ATh)K)(I− (I− hA)K)(I + J)SX .

The inner matrix can be computed. Since each matrix above is simultaneously

diagonalizable, we only need to consider the eigenvalues of each of the above matrices.

Note that I + J is a normal matrix, so we may write the eigenvalue decomposition
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I + J = PDP∗, where ∗ denotes conjugate transpose, Q = diag(1 + iδ, 1− iδ), and

P =
1√
2

1 1

i −i


is orthogonal. Now note that

I− (I− hA)K = P

1− (1− ah(1 + iδ))K 0

0 1− (1− ah(1− iδ))K

P∗,

which implies

(I− (I− hAT )K)(I− (I− hA)K) = |1− (1− ah(1 + iδ)K)|2I.

Using the fact that (I + J)T (I + J) = (1 + δ2)I, and we have the following

‖bias‖2 =
b2

K2h2a4(1 + δ2)
|1− (1− a(1 + iδ)h)K |2‖SX‖. (B.3)

To simplify further, we write 1− a(1 + iδ)h = reiθ where r2 = (1− ah)2 + δ2a2h2, and

tan θ = δah/(1− ah). Then we obtain

‖bias‖2 =
b2

K2h2a4(1 + δ2)
|1− rKeiθK |2‖SX‖2

=
b2

K2h2a4(1 + δ2)
(1 + r2K − 2rK cosKθ)‖SX‖2.

We know that r < 1, since otherwise, the numerical scheme would be unstable. It is

easy to see that for large, but not infinite, K, the bias decays as O(1/(Kh
√

1 + δ2)),

so the introduction of irreversibility decreases the constant in front of the expression

and therefore slightly improves the convergence of the bias.
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Finite time analysis: variance for linear observables. For simplicity, we as-

sume θ0 = 0. We compute TrVar(θ̄K). We begin with

TrVar(θ̄K) = TrE[θ̄K θ̄
T
K ]− TrE[θ̄K ]E[θ̄K ]T

and compute these terms separately. It is difficult to surmise a relationship between δ

and TrVar(θ̄K) even with exact formulas, so we appeal to plots of the expressions to

see that the variance decreases with irreversibility. We computed E[θ̄K ] in the previous

section.

With the observation that

A−2(I− (I− hA)K)E[D] =
b

a2
PQ′P

∗ E[SX ]

where

Q′ =

1−(1−ah(1+iδ))K

1+iδ
0

0 1−(1−ah(1−iδ))K
1−iδ ,


and P is defined in the previous section. We compute that

TrE[θ̄K ]E[θ̄K ]T = ‖µp‖2+‖bias‖2− 2b2

Kha3(1 + δ2)
Re{(1− iδ)(1− ah(1 + iδ))K}‖E[SX ]‖2.

(B.4)

The other term is more complicated and needs to be approached more carefully.

Observe that

TrE[θ̄K θ̄
T
K ] =

1

K2

K∑
i,j=1

TrE[θiθ
T
j ] =

1

K2

(
K−1∑
i=0

TrE[θiθ
T
i ] + 2

K−1∑
i<j=0

TrE[θiθ
T
j ]

)
.

We take each term individually. To compute E[θkθ
T
k ], it is actually better to consider

the covariance matrix of θk, Σk = E[θkθ
T
k ]− E[θk]E[θk]

T .
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We first compute

E[θkθ
T
k ] =(I− hA)E[θk−1θ

T
k−1](I− hA)T + h2DDT + hI

+ (I− hA)E[θk−1]DTh+ hDE[θTk−1](I− hA)T

E[θk]E[θk]
T =(I− hA)E[θk−1]E[θk−1]T (I− hA)T + DE[θk−1]T (I− hA)T

+ (I− hA)E[θk−1]D + h2DDT

which imply the following recurrence relation. Assuming Σ0 = 0, we have

Σk = (I− hA)Σk−1(I− hA)T + hI = h
k−1∑
n=0

(
(I− hA)(I− hA)T

)n
= h

k−1∑
n=0

(I− (A + AT )h+ h2AAT )n

= ((A + AT )− h2AAT )−1(I− (I− (A + AT )h+ AATh2)k).

Let s = 1− 2ah + h2a2(1 + δ2), then, by recalling that A + AT = 2aI and AAT =

a2(1 + δ2)I, the above sum is equal to 1−sk
1−s hI. Therefore,

Tr Σk =
2h(1− sk)

1− s
. (B.5)

Meanwhile note that

E[θk] = µp −A−1(I− hA)kD.

Therefore,

TrE[θk]E[θk]
T = E[θk]

T E[θk] =‖µp‖2+DT (I− hAT )kA−TA−1(I− hA)kD

− 2µTp A−1(I− hA)kD

=‖µp‖2+
skb2

a2(1 + δ2)
‖SX‖2−2µTp A−1(I− hA)kD.
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We now take the sum for each expression from k = 0 to K − 1. We have

K−1∑
i=0

Tr Σi = 2h

(
K

1− s
−

K−1∑
i=0

si

1− s

)

= 2h

(
K

1− s
− 1− sK

(1− s)2

)

and

K−1∑
i=0

E[θi]
T E[θi] = K‖µp‖2+

(1− sK)b2

a2(1 + δ2)(1− s)
‖SX‖2−2µTp A−1(hA)−1(I− (I− hA)K)D

= K‖µp‖2+
(1− sK)b2

a2(1 + δ2)(1− s)
‖SX‖2−2µTp h

−1A−2(I− (I− hA)K)D.

For the cross-terms, observe that we may write

K−1∑
i<j=0

θiθ
T
j =

K−1∑
i=0

θi

K−1∑
j=i+1

θTj (B.6)

which can be simplified further. First note that

θj = (I− hA)θj−1 + Dh+
√
hξj−1

= (I− hA)j−iθi + h

j−1−i∑
n=0

(I− hA)nD +
√
h

j−i−1∑
n=0

(I− hA)nξj−1−n.

Plugging this expression into the double sum above, we have

K−1∑
i=0

θi

K−1∑
j=i+1

[
θTi (I−ATh)j−i + h

j−1−i∑
n=0

DT (I−ATh)n +
√
h

j−i−1∑
n=0

ξTj−1−n(I−ATh)n

]
.

(B.7)
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Taking expectations, we have

K−1∑
i=0

K−1∑
j=i+1

[
E[θiθ

T
i ](I− hAT )j−i + hE[θi]D

T

j−1−i∑
n=0

(I− hAT )n

]

=
K−1∑
i=0

K−1∑
j=i+1

[
E[θiθ

T
i ](I− hAT )j−i + hE[θi]D

T (ATh)−1(I− (I−ATh)j−i)
]
.

Carrying out the computation for the first term, we have

F =
K−1∑
i=0

E[θiθ
T
i ]

K−1∑
j=i+1

(I−ATh)j−i

=
K−1∑
i=0

E[θiθ
T
i ](I−ATh)(ATh)−1(I− (I−ATh)K−1−i).

For the second term we have,

K−1∑
i=0

E[θi]µ
T
p

K−1∑
j=i+1

(I− (I−ATh)j−i)

=
K−1∑
i=0

E[θi]µ
T
p

[
(K − 1− i)I− (I−ATh)(ATh)−1(I− (I−ATh)K−1−i)

]
.

The summations are difficult to compute precisely, so we compute them by direct

evaluation instead. For simplicity, we assume that µp = E[SX ] = [0, 0]T , σX and σθ

are chosen such that a = 1. For this scenario, the bias is zero and only the variance

contributes to the MSE. The variance is

Tr[Var θK ] =
1

K2

(
2h

(
K

1− s
− 1− sK

(1− s)2

)
+ 2 TrF

)

where E[θiθ
T
i ] = Σi = 1−si

1−s hI.

In Figure B-1 we plot the variance for varying choices of δ. In this plots, h = 0.001,

K = 2× 105, and δ varies between zero and ten. We can clearly see that strengthening

the irreversible perturbation leads to improvement of the squared bias and variance of

the long term average estimator.
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Figure B-1: Variance for different δ, fixed h.

Finite sample analysis for the quadratic observable φ(θ) = ‖θ‖2. The previ-

ous finite sample results for the observable φ(θ) = θ1 + θ2 suggests that both the bias

and variance of the long term average estimator goes down with a larger irreversible

term. In this section, we show that this is actually a special case, and that when the

observable is not linear, then the bias and variance may increase. We analyze the bias

and variance of the long term average estimator of the observable φ(θ) = ‖θ‖2. Define

φ =

∫
φ(θ)π(θ)dθ, φK =

1

K

K−1∑
k=0

φ(θk). (B.8)

As before, we assume that µp = [0, 0]T , E[SX ] = 0, and σx and σθ are chosen such

that a = 1. We compute |EφK − φ|2 and Varφk and see how they vary with δ. From

previous computations, we can show that

EφK = 2h

(
1

1− s
− 1− sK

K(1− s)2

)
, (B.9)

where s = 1− 2ah + a2h2(1 + δ2). Given this, the only term left to compute is the

variance of the second moment of this observable:

E
[(
φK
)2
]

=
1

K2
E

(K−1∑
k=0

θTk θk

)2


=
1

K2

K−1∑
k=0

E
[
(θTk θk)

2
]

+
2

K2
E
K−1∑
k=0

K−1∑
l=k+1

(θTk θk)(θ
T
l θl). (B.10)
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To compute the first sum, consider the following:

θTk θk = θTk−1(I− hA)T (I− hA)θk−1 + hξTk−1ξk−1 + 2
√
hθTk−1(I− hA)T ξk−1

and so we have

(θTk θk)
2 =s2(θTk−1θk−1)2 + h2(ξTk−1ξk−1)2 + 4h(ξTk−1(I− hA)θk−1)2 + 2sθTk−1θk−1hξ

T
k−1ξk−1

+ 4s
√
h(θTk−1θk−1)θTk−1(I− hA)T ξk−1 + 4h3/2(ξTk−1ξk−1)θTk−1(I− hA)T ξk−1.

Taking the expectation, we have

E[(θTk θk)
2] =s2 E[(θTk−1θk−1)2] + h2 E[(ξTk−1ξk−1)2] + 4hE

[
(ξTk−1(I− hA)θk−1)2

]
+ 2shE

[
(θTk−1θk−1)(ξTk−1ξk−1)

]
.

After simplifying, we arrive at the following recurrence relation:

E
[
(θTk θk)

2
]

= s2 E
[
(θTk−1θk−1)2

]
+ 8h2 + 8shE

[
θTk−1θk−1

]
. (B.11)

Let βk = E[(θTk θk)
2], ζk = 8shE[θTk θk], and κ = 8h2. We have the following recurrence,

which we solve

βk = s2βk−1 + ζk−1 + κ

= s2kβ0 +
k−1∑
n=0

s2nζk−n−1 +
k−1∑
n=0

s2nκ.

From previous for the term ζk, we have

βk =
k−1∑
n=0

s2n8sh · 2h1− sk−n−1

1− s
+ κ

1− s2k

1− s2

=
16sh2

1− s

k−1∑
n=0

(s2n − sk+n−1) +
8h2(1− s2k)

1− s2

=
16sh2

1− s

(
1− s2k

1− s2
− sk−1 1− sk

1− s

)
+

8h2(1− s2k)

1− s2
.
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Next we compute the summation of the cross terms. Define Rk such that

K−1∑
k=0

Rk =
K−1∑
k=0

K−1∑
l=k+1

E
[
(θTk θk)(θ

T
l θl)

]
. (B.12)

We write

θTl θl = sθTl−1θl−1 + hξTl−1ξl−1 + 2
√
hξTl−1(I− hA)θl−1

= sl−kθTk θk +
l−k−1∑
n=0

hsnξTl−n−1ξl−n−1 + 2
√
hsnξTl−n−1(I− hA)θl−n−1.

This implies that

Rk =
K−1∑
l=k+1

(
sl−k E[(θTk θk)

2] +
l−k−1∑
n=0

2hsn E[θTk θk]

)

=
K−1∑
l=k+1

βks
l−k + 2hE[θTk θk]

l−k−1∑
n=0

sn

=
K−1∑
l=k+1

βks
l−k + 2hE[θTk θk]

1− sl−k

1− s

= βk

K−1∑
l=k+1

sl−k +
2hE[θTk θk]

1− s

K−1∑
l=k+1

1− sl−k

= βk
s− sK−k

1− s
+

2hE[θTk θk]

1− s

(
K − 1− k − s− sK−k

1− s

)
.

To summarize, we have

E
[(
φK
)2
]

=
1

K2

K−1∑
k=0

(βk + 2Rk), (B.13)

the squared bias is (EφK−1)2 and the variance is E[(φK)2]−E[φK ]2. These expressions

are not simplifiable easily, so we plot these expressions and study their trends. In

Figure B-2, we plot the squared bias and variance for fixed h and K and varying δ. In

these plots, h = 0.001, K = 2× 105, and δ varies between zero and ten. Notice that

for these choices, both the squared bias and variance increases as δ grows, showing
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Figure B-2: Bias and variance of φ(θ) = ‖θ‖2 for varying levels of irreversibility.

that for irreversibility provides no benefit, and in fact, harms the performance of the

standard estimator.

Remark 4. When discretization is considered, sampling properties in this simple

example in which the drift is proportional to the state cannot be improved upon using

irreversibility. Let us now explain this phenomenon from a theoretical point of view.

In [97], the authors show that adding an irreversible perturbation to the generator of

the diffusion process may decrease the spectral gap, and will never increase it. They

further prove that in the continuous case, decreasing the spectral gap then decreases

the asymptotic variance. However this improvement is not strict, that is, irreversibility

is only guaranteed to not increase the spectral gap.

Meanwhile, in [72], the authors consider irreversibility only in the context of

linear systems, and rigorously study optimal irreversible perturbations that accelerate

convergence to the invariant distribution. Their results show that when the drift matrix

is proportional to the identity matrix, the spectral gap cannot be widened. Proposition

4 in [72] shows that the leading nonzero eigenvalue of the irreversibly perturbed drift

matrix is bounded above by the leading nonzero eigenvalue of the original drift matrix

and below by the trace of the original drift matrix over the dimension of the state

space. The lower bound is then the optimal spectral gap. For a drift matrix that is

a multiple of the identity, the upper and lower bounds are the same, which implies

that the spectral gap can never decrease from its original value in the continuous case.

After factoring in discretization, the irreversible perturbation increases stiffness of the

system, which contributes to increased bias and variance in the resulting estimator.
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Appendix C

Numerical solution to stochastic

PDEs

We provide a brief review of methods for simulating stochastic PDEs. Much of this

presentation is based on [62, 140]. We use these methods when discretizing the

stochastic advection-diffusion equation in Chapter 2.4.2.

Stochastic PDEs are typically solved by formulating the equation as a stochastic

differential equation on a Hilbert space of functions defined over some subset of Rd. Let

H2(D) be a Sobolev space over an open set D ⊂ Rd. Let A be a compact self-adjoint

linear operator that maps H2(D) to itself, and f be a possibly nonlinear function from

H2(D) to itself. Stochastic PDEs are typically formulated in the following semilinear

form,

dXt = [AXt + f(Xt)] dt+ dWt, (C.1)

where f are nonlinear functions from H2(D) to itself, Xt ∈ H2(D) for all t, and Wt is

an infinite-dimensional Wiener process. The inner product over this Sobolev space is

〈ψ, φ〉 =

∫
D

ψφ dx. (C.2)

Theoretical details on infinite-dimensional Wiener processes can be found in [32].
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C.1 Simulating infinite dimensional Wiener processes

Let H be a separable infinite dimensional Hilbert space and Wt be an H-valued

Q-Wiener process. One may simulate this process using a series expansion. Let

{ek}k∈N be an orthonormal basis of H comprised of eigenvectors of Q with eigenvalues

qk > 0. One can then represent Wt as follows,

Wt =
∞∑
k=1

√
qkβk(t)ek, (C.3)

where βk are independent real-valued one-dimensional Wiener processes.

C.2 Exponential Euler schemes

The exponential Euler scheme is a type of Galerkin method in which the linear part of

the projected SPDE is solved exactly. The nonlinear parts are integrated forwards in

time using Duhamel’s principle. We assume A admits an orthonormal basis {φi}∞i=1

in L2(D) with eigenvalues −λi for λi > 0, where φk ∈ H2(D) ∩H1
0 (D). Here, H1

0 (D)

denotes the Sobolev space whose functions satisfy Dirichlet boundary conditions.

Define a finite-dimensional subspace of H2(D) via a subset of the orthonormal

basis {φi}Ni=1. We project the SPDE onto the resulting N -dimensional space and

obtain a finite-dimensional representation of the SPDE,

dXN
t =

[
ANX

N
t + FN(XN

t )
]
dt+ dWN

t (C.4)

where

ANv =
N∑
i=1

−λi〈v, φi〉φi , (C.5)

FN = PNF
∣∣∣
XN

=
N∑
i=1

〈f(XN
t ), φi〉φi. (C.6)

The result of the projection is called the Itô-Galerkin stochastic ODE. The mild
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representation of the solution is

XN
t = eAN txN0 +

∫ t

0

eAN (t−s)FN(XN
s ) ds+

∫ t

0

eAN (t−s) dWN
s . (C.7)

Discretizing in time, we arrive at the following recurrence formula. Let Y N
k = XN

k∆t;

then we have

Y N
k+1 = eAN∆tY N

k + A−1
N

(
eAN∆t − I

)
FN(Y N

k ) +

∫ tk+1

tk

eAN (tk+1−s) dWs. (C.8)

This recurrence equation can be decoupled into N equations describing the evolutions

of the coefficients of the solution. Let Y N
k+1,i and F i

N denote the ith components of

Y N
k+1 and FN , respectively. Each component of Y N

k+1 evolves according to

Y N
k+1,i = e−λi∆tY N

k,i +
1− e−λi∆t

λi
F i
N(Y N

k ) +
√
qk

∫ tk+1

tk

e−λi(tk+1−s) dβi(s). (C.9)

As for the last integral, note that any stochastic integral where the integrand is not

dependent on the Brownian motion is Gaussian [85]. Furthermore, any Itô integral

has mean zero (by virtue of being a martingale) and its variance can be computed via

the Itô isometry. That is,

E

[(∫ tk+1

tk

e−λi(tk+1−s) dβi(s)
)2
]

=

∫ tk+1

tk

e−2λi(s−tk+1)ds (C.10)

=
1

2λi

(
1− e−2λi∆t

)
. (C.11)

Therefore, the numerical algorithm for simulating the SPDE is

Y N
k+1,i = e−λi∆tY N

k,i +
1− e−λi∆t

λi
F i
N(Y N

k ) +

√
qk
2λi

(1− e−2λi∆t)∆W i
k , (C.12)

where ∆W i
k ∼ N (0, 1). When simulating the stochastic advection-diffusion equation,

in particular, we have Av = αvxx and f(v) = bvx.
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