EXPERIMENTAL STUDY ON THE RESPONSE OF FINE SEDIMENTS

TO WAVE AGITATION AND ASSOCIATED WAVE ATTENUATION
by
PAUL MATHISEN

Bachelor of Science in Civil Engineering
University of Massachusetts at Amherst
(1984)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR
THE DEGREE OF
MASTER OF SCIENCE IN CIVIL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1989
© Massachusetts Institute of Technology 1989

Signature of Author

Department of Civi: Engineering
Av; ust 14, 1989

Certified by o
Ole S. Madsen
Professor of Civil Engineering
Thesis Supervisor
Accepted by

Ole S. Madsen
Chairman, Department Graduate Committee
Department of Civil Engineering



EXPERIMENTAL STUDY ON THE RESPONSE OF FINE SEDIMENTS
TO WAVE AGITATION AND ASSOCIATED WAVE ATTENUATION

by
PAUL MATHISEN

Submitted to the Department of Civil Engineering
on August 10 in partial fulfillment
of the requirements for the degree of
Master of Science in Civil Engineering

Abstract

In this thesis, results of laboratory experiments are presented with the purpose of
exploring the interaction between fine-grained sediments and water waves. These
experiments were conducted in a 28-meter-long wave flume with a 10-cm iayer of
.12-mm silica sand on the bottom, and were intended to complement previous
experiments using .20~mm sand, which were presented in M. Rosengaus’s Sc.D. Thesis
in 1987. In addition, modifications of the experimental setup and extensive accuracy
analyses were completed to further verify the results of Rosengaus (1987?. The
experiments included tests of initiation of motion of sediment under oscillatory flow,
the transient response of the sediment bed, and the steady state or fully developed
characteristics of wave/sediment interaction for both spectral and monochromatic
waves.

The initiation-of-motion characteristics are found to be reasonably well described by
Shields criterion, and the transient response of the bed appears to be well characterized
by the Relative Shields Parameter for both monochromatic and spectral waves. The
fully developed bed for monochromatic waves is found to exhibit the feature of a
breakoff. Slightly modified forms of the relationships originally proposed by Stefanick
$1979) are found to model bedform geometry, equivalent bottom roughness, and friction
actors reasonably well for monochromatic waves. On the other hand, the fully
developed bed for spectral waves does not exhibit a breakoff. In addition, a notable
difference between the monochromatic and spectral attenuation is apparent. This
difference is attributed to the occasional lurge bottom velocities associated with random
waves, which serve to round off the ripple crests and thus reduce their effectiveness as
energy dissipators. Therefore, the use of an equivalent monochromatic wave to model
spectral bedform geometry and relate this to the spectral attenuation is found to be
inappropriate. However, the spectral attenuation is found to be independent of spectral
shape. Thus, the representative Shields Parameter is found to be effective in separately
characterizing the spectral bedform geometry and the attenuation. Predictive formulas
for friction factors and effective roughness for spectral waves propagating over a
movable bed of cohesionless sediments are presented.

Thesis supervisor: Ole S. Madsen
Title: Professor of Civil Engineering



ACKNOWLEDGMENTS

The research presented in this thesis was funded by the National Oceanic and
Atmospheric Administration through Sea Grant Project No. R/C-18. The research was

completed under the supervision of Professor Ole S. Madsen.

Throughout the duration of this research project, Professor Madsen has always been
available to answer any questions or provide insight in solving any problems that may
aris2. In addition, through his outstanding courses and knowledgeable advice, I have
learned an immeasurable amount. Certainly, his support and advice have been
invaluable and are greatly appreciated.

The assistance of other people who have helped in the successful completion of this
project is also appreciated. First, I sincerely thank Mike Rosengaus for taking the time
to get me started in the lab. Also, Chris Rehman, the “UROP” stud=nt associated with
the project, provided much help in completing experiments and analyses. In addition,
the work of the laboratory technician, Jack Crocker, was essential in successful
operation of the wavemaker system. I also thank Professor Ken Melville, for allowing
the use of a great deal of equipment for the project, and Read Schusky, for his expert
typing skills needed to complete this thesis. Finally, I sincerely thank both my family

and my wife Sue for their unwavering support.



Table of Contents

page

Abstract 2
Acknowledgments 3
Table of Contents 4
List of Figures 8
List of Tables 11
List of Symbols 12
1 Introduction 17
2 Brief Summary of Basic Theory 20
2.1 Qualitative Description of Bottom Sediment Motion 20
2.2 Wave Attenuation 21
2.2.1 Monochromatic Waves 21

2.2.2 Extension to a Wave Spectrum 23

2.3 Characterization of Sediments 24
2.4 Bedform Geometry 25
2.5 Relative Roughness 27
2.6 Relating the Friction Factor to Relative Roughness 28

3 Experimental Setup 33
3.1 Description 33
3.2 The Sediment 34
3.3 Wave Generation 39
3.3.1 Monochromatic Waves 39

3.3.2 Spectral Waves 40

3.4 Wavemaker Calibration 45
3.5 Wave Measurement and Resolution 51



3.5.1 Review of Theory
3.5.2 Summary of Wave Measurement Procedures
3.6 Accuracy of Wave Measurements
3.6.1 Solution to the Sampling Problem
3.6.2 The Drift Problem
3.6.3 Gencral Accuracy Analysis
3.6.3.1 Monochomatic Waves
3.6.3.2 Spectral Waves
3.7 Bedform Analysis
3.7.1 The Developing Bed
3.7.2 The Fully Developed Bed
4 Experiment Design
4.1 Experimental Procedure
4.1.1 Monochromatic Waves
4.1.2 Spectral Waves
4.2 Description of Experiments
4.2.1 Monochromatic Waves

4.2.2 Spectral Waves

4.2.2.1 Spectral Experiments Using the .12 mm Sand
4.2.2.2 Spectral Experiments Using the .20 mm Sand

5 Response of the Sediment Bed
5.1 Initiation of Motion
5.2 The Developing Bed
5.3 The Fully Developed Bed

5.3.1 Monochromatic Waves

5.3.1.1 Comparison with Existing Relationships

5.3.1.2 Proposed Relationships

51
54
56
57
59
60
61
62
71
71
73
75
75
75
76
79
79
80
82
83
89
89
92
95

95
8



5.3.1.2.1 Linear Curve Fits
5.3.1.2.2 Improvements Based on Updated Breakoff Range
5.3.2 Spectral Waves
5.3.2.1 Comparison with Existing Relationships
5.3.2.2 Proposed Relationships
6 Wave Attenuation Over the Fully Developed Bed
6.1 Monochromatic Waves
6.1.1 Comparison with Existing Relationships
6.1.2 Verification of Breakoff Concepts
6.1.3 Improvements Based on Updated Breakoff Range
6.1.4 Summary of Attenuation Models Evaluated
6.1.5 Proposed Re]at'ionships
6.2 Spectral Waves
6.2.1 Comparison with Existing Relationships

6.2.2 Discussion of the Difference Between Monochromatic and Spectral
Attenuation

6.2.2.1 Comparison of Bedform Geometry
§.2.2.2 Quantification of “Roundedness” of Ripple Crests
6.2.2.3 Physical Explanations and Implications
6.2.3 Proposed Relationships
7 Conclusions
7.1 Initiation of Motion
7.2 The Developing Bed
7.3 The Fully Developed Bed
7.3.1 Monochromatic Waves
7.3.1.1 Bedform Geometry

7.3.1.2 Wave Attenuation

08
100
107
107
111
1156
115
115
122
125
126
128
130
130

138
138
140
144
146
150
151
151
152
152
1562
154



7.3.2 Spectral Waves 156

7.3.2.1 Bedform Geometry 156

7.3.2.2 Wave Attenuation 157

7.4 Recommendations for Future Research 160

8 References 162



Figure 2.1
Figure 2.2
Figure 2.3

Figure 2.4

Figure 3.1

Figure 3.2
Figure 3.3

Figure 3.4
Figure 3.5

Figure 3.6
Figure 3.7A
Figure 3.7B
Figure 3.8A
Figure 3.8B
Figure 3.9

Figure 5.1

Figure 5.2
Figure 5.3
Figure 5.4

List of Figures

page
Critical shields parameter for initiation of motion in steady flow,
from Madsen and Grant (1976). 26
Relative roughness according to Grant and Madsen (1982), from
Rosengaus (1987). 29

Jonsson’s (1966) wave friction factor diagram, from Madsen and
Grant (1976). 30

Wave friction factor vs. relative roughness in rough turbulent flow.
Comparison between Jonsson (1966), Kajiura (1968), Kamphuis
51975;, and Grant and Madsen (1978), from Grant and Madsen

1978). 31
Schematic view of experimental installation, from Rosengaus
(1987) 35
Grain size distribution of .12-mm Sand 37
Two methods for sinulating a wave spectrum, from Rosengaus
(1987) 42
Typical Pierson-Neumann spectrum, with an wpgx of 2.39 and
spectral energy equal to that of a 6-cm monochromatic wave 44
Typical JONSWAP spectrum, with an wpayx of 2.39 and spectral
energy equal to that of a 6-cm monochromatic wave 44
Origional wavemaker transfer function, from Rosengaus (1987) 48
Wavemaker calibration data (1988) - Amplitude 50
Wavemaker calibration data (1988) - Phase 50
Updated wavemaker transfer function (1988) - Amplitude 52
Updated wavemaker transfer function (1988) - Phase 52
Schematic view of the sampling malfunction, from Rosengaus (1987) 58
Experimental initiation of motion data, plotted against the critical
Shields parameter for initiation of motion in steady flow 91
Observations of Cy, and Cy,. for different wave conditions 93
Observations of ts, and t¢. for different wave conditions 93
Fully developed bedform height for monochromatic waves -
Comparison with existing relationships 97



Figure 5.5
Figure 5.6

Figure 5.7
Figure 5.8

Figure 5.9
Figure 5.10

Figure 5.11

Figure 5.12A

Figure 5.12B

Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16

Figure 5.17
Figure 5.18

Figure 5.19
Figure 5.20

Figure 5.21

Fully developed bedform steepness for monochromatic waves -
Comparison with existing relationships

Fully developed bedform lenlgth for monochromatic waves -
Comparison with existing relationships

Fully developed bedform asymmetry for monochromatic waves

Fully developed bedform height for monochromatic waves -
Proposed relationshin

Fully developed bedform steepness for monochromatic waves -
Proposed relationship

Fully developed bedform length for monochromatic waves -
Proposed relationship

Fully developed bedform asymmetry for monochromatic waves -
Proposed relationship

E}urve) fit to ripple steepness breakoff data taken from Stefanick
1979

Curve fit to nondimensional ripple height breakoff data taken from
Stefanick (1979)

Revised plot of fully developed bedform height for monochromatic
waves, based on updated breakoff range

Fully developed bedform height for spectral waves - Comparison
with existing relationships

Fully developed bedform steepness for spectral waves - Comparison
with existing relationships

Fully developed bedform length for spectral waves - Comparison
with existing relationships

Fully developed bedform asymmetry for spectral waves

Fully developed bedform height for spectral waves - Proposed
relationship

Fully developed bedform steepness for spectral waves - Proposed
relationship

Fully developed bedform length for spectral waves - Proposed
relationship

Fully developed bedform asymmetry for spectral waves - Proposed
relationship

97

99
99

101

101

102

102

103

103

106

109

109

110
110

113

113

114

114



Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5A
Figure 6.5B

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10A
Figure 6.10B
Figure 6.11

Figure 6.12
Figure 6.13

FDB friction factor for monochromatic waves - Comparison with
curves based on Stefanick’s relationships and linear fits to
bedform data (Models 1 and 2)

FDB relative roughness for monochromatic waves - Comparison
with curves based on Stefanick’s relationships and linear fits to
bedform data (Models 1 and 2)

FDB friction factor for monochromatic waves - Comparison with
curves based on “kyp/d = 275" assumption (Model 3)

FDB relative roughness for monochromatic waves normalized by
grain size - Comparison with curves based on Stefanick’s
relationships and “kp/d = 275” assumption (Model 3)

Filtered ripple profiles for monochromatic waves, 10.5 meters from

the wavemaker

Filtered ripple profiles for monochromatic waves, 13.5 meters from

wavemaker

FDB relative roughness for monochromatic waves - Comparison with

curves based on updated breakoff range and modified bedform
relationships (Model 4)

FDB friction factor for monochromatic waves - Comparison with
curves based on updated breakoff range and modified
bedform relationships (Model 4)

FDB friction factor for spectral waves - Comparison with curves
based on Stefanick’s relationships and linear fits to spectral
bedform data

FDB relative roughness for spectral waves - Comparison with curves
based on Stefanick’s relationships and linear fits to spectral bedform

data

Filtered ripple profiles for Pierson-Neumann spectral waves,
13.5 meters from wavemaker

Filtered ripple profiles for JONSWAP spectral waves, 13.5 meters
from wavemaker

Schematic to clarify the procedures for developing the
“roundedness” parameter, Am/Ax

FDB friction factor for spectral waves - Proposed relationship

FDB relative roughness for spectral waves - Proposed relationship

-10 -

117

117

120

120

123

124

127

127

135

139

139

141
147
147



List of Tables

Table 3.1 Summary cf sediment grain size distribution parameters for .12~ and

.20-mm sand 38
Table 3.2 Summary of Sy, ¥, and (¥’ /¥c)v values for .12- and .20-mm sand 38
Table 3.3 Summary of amplitude measurements for a high~intensity

Pizrson-Neumann spectral experiment 64
Table 3.4 Summary of amplitude measurements for a low-intensity Pierson-

Neumann spectral experiment 65
Table 3.5 Summary of amplitude measurements for a JONSWAP spectral

experiment 70
Table 4.1 Description of monochromatic wave experiments 81
Table 4.2A Description of the spectral experiments using .20-mm sand 84
Table 4.2B Description of the Pierson-Neumann experiments using .12-mm sand 85

Table 4.2C Description of the JONSWAP spectral experiments using .12-mm sand 86
Table 6.1 Summary of monochromatic FDB experimental results 116
Table 6.2A Spectral FDB experimental results for .20-mm sand 131
Table 6.2B Pierson-Neumann spectral FDB experimental results for .12-mm sand 132
Table 6.2CJONSWAP spectral FDB experimental results for .12-mm sand 133
Table 6.3 Ripple “roundedness” data 143

-11 -



List of Symbols

Ay bottom fluid particle excursion amplitude
a amplitude of surface wave
width of flume
C wave celerity
C, constant

Co expansion speed of ripple patches

Cg group velocity

Cu apparent mass coefficient

D energy dissipation

Dy energy dissipation due to bottom friction
d sediment grain size

E wave energy

Eg wave energy flux

EPu Pierson-Moskowitz spectrum

EmN JONSWAP deep water spectrum

FDB  fully developed bed
FMM fast measuring method

fw wave friction factor

g acceleration of gravity

H wavemaker transfer function
h water depth

i imaginary unit

k wave number

ky equivalent roughness of the bed

ker,kei Kelvin functions of Oth order

-12 -



Uplup

Nikuradse equivalent sand roughness

wave length

mean grain size in ¢ units

median grain size in ¢ units

slope of the incident wave amplitude along x

m associated with bottom friction

m associated with nonlinear energy transfers

m associate with side wall friction

number of frequency components in spectrum simulation
number of bedforms still experiencing growth behind the ripple patch front
cg/c = 4(1 + 2kh/sinh2kh)

#(1 + 2ksh/sinh2k¢h)

near-bottom velocity specirum

surface amplitude spectrum

sediment parmeter

sediment grain’s relative density (ps/p)

wave period

Time required to fully develop the bed

time

time required for full development of a single bedform

time required for appearance of a new incipient ripple

Ursell parameter

amplitude of harmonic near bottom horizonatal fluid velocity
amplitude of harmonic near bottom shear velocity

reference wind velocity (measured 10 meters above water surface)
near bottom horizontal fluid velocity

horizontal coordinate along length of flume

-13 -



7

Aa

horizontal coordinate across width of flume

vertical coordinate

bedform asymmetry, or in context of a wave spectrum, the Phillip’s Constant
skewness of sediment grain size distribution

phase angle

parameter associated with shallow water transformation function for use with
JONSWAP spectum

hase angle of H, or in context of JONSWAP spectrum, the peak enhancement
actor

difference in wave amplitude between stations

Am/Axripple “roundedness” parameter

n
6

K

§o

Ps

bedform height, or free surface displacement

phase angle for a surface wave (or a frequency component)
Von Karman’s Constant

bedform length

fluid kinematic viscosity

wavemaker displacement

amplitude of harmonic £ (for the first harmonic)

fluid density

sediment grain density

standard deviation, or in context of JONSWAP spectrum, the spectral width
parameter

standard deviation of log-normal sediment grain size distibution
bottom shear stress
maximum value of 7, during a wave cycle

hase of a surface wave (or frequency component), or grain size in ¢ units
-logzd (in mm))

Shallow water tranformation function, for use with a JONSWAP spectrum

Shields Parameter

-14 -



Ye Critical Shields Parameter for initiation of motion
¥’ [¢c Relative Shields Parameter

w radian frequency of wave (or frequency comnponent)

wh radian frequency of maximum spectral energy, transformed for propagation
into shallow water

Subscripts

BEAT second harmonic beat

b break off (in context of (' /%c)v), or bottom or bed
B bound wave of second harmonic

F second harmonic free wave
I

incident wave (the first harmonic)

[

frequency component index

in input signal

max  maximum value

out output signal

R reflected wave (first or second harmonic)
rep representative monochromatic wave

Irms root mean square

T total

t transmitted wave

16,50,8416%, 50%, and 85% of sediment (in weight) coarser than .
+ +x side of ripple patch

- -x side of ripple patch

-15 -



superscripts

/

(1)
(2)

*

associated with skin friction (flat bed)
first harmonic
second harmonic

modified

-16 -



1 INTRODUCTION

As concerns of global warming increase, fears of rising sea levels will grow. If these
fears are realized, coastal erosion and coastal processes resulting in damage to coastal
structures will be of the utmost concern. Therefore, knowledge of these coastal

processes is tremendously important.

To thoroughly understand near-shore coastal processes, a quantitative description of
the wave characteristics is essential. Wave characteristics in the coastal region are
determined by a number of physical processes. Normally, the primary energy input is
from the wind. Wind-generated waves, or wind waves, propagating into coastal waters
are realistically described as random waves and are characterized by a wave spectrum,
which expresses the distribution of wave energy over a frequency and directional

domain.

As a spectrum of wind waves propagates into shallower waters over the continental
shelf, the bottom of the shelf will affect the waves. These bottom effects include such
processes as wave shoaling, depth refraction, and energy dissipation due to bottom
friction. This bottom friction is extremely important due to the presence of bedforms
that appear on the sediment/water interface as a result of the action of waves. These
bedforms increase the hydraulic roughness of the bottom, and ensure the development
of a turbulent wave boundary layer, resulting in significant energy dissipation and wave

attenuatioa.

Therefore, it is apparent that the response of the sediment bottom to wave agitation
and associated wave attenuation can have an important impact on the wave
characteristics that may be found in shallow waters. Bearing this in mind, Madsen and
Rosengaus completed a two-year investigation of the response of .20~mm silica sand to

wave agitation and corresponding wave attenuation. In that study,
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relationships were first developed for monochromatic waves. Then wave groups with
two wave components, and finally wave spectra were studied. Experiments were
designed to characterize initiation of motion, ripple development and wave attenuation
over an initially flat bed, and wave/sediment interaction over a fully rippled bed. The
results are presented in M. Rosengaus’s doctoral thesis, entitled “Experimental Study

on Wave Generated Bedforms and Resulting Wave Attenuation,” completed in 1987.

While that experimental study provided a tremendous amount of insight into
bedform response and wave attenuation, more work was necessary for a number of
reasons. First, a number of nagging problems in the experimental setup remained. One
of these problems was a software problem and was referred to as the “dropout”
problem. In this problem, in an apparently random manner, a single sampled voltage
from one of the wave gauges would be skipped or “dropped out” of the sampling record,
with the remainder of the record being shifted up one data point because of it. This
dropout problem was found to occasionally affect the experimental results, and
preempted extensive data quality analysis to ensure acceptable results. Additional
concerns included a problem with the wave gauges, in which the voltage readings of the
gauges would steadily drift after calibration. Also, a more complete general accuracy
analysis of the experimental setup and procedures was necessary. While the effects of
these accuracy concerns were minimized using extensive data quality review, additional

analyses and improvements were deemed necessary.

In addition to these concerns, another experimental limitation was associated with
the wave generation capacity of the wavemaker. This limitation restricted the spectral
experiments to those with relatively low spectral energy. A complete characterization
of the spectral wave/sediment interaction still required experiments of higher spectral
energy. Therefore, modifications to the settings of the wavemaker, along with a

recalibration of the wavemaker, were necessary.
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Finally, in addition to the limitations and problems associated with the
experimental setup noted above, additional experiments had to be completed using
sediment with a different, preferably finer, grain size. This was essential because the
experiments completed only used one type of sand. To show that the dimensionless
parameters defined in Rosengaus’s study actually characterize wave/sediment
interaction for both monochromatic and spectral waves, experiments using at least two

types of sand are necessary.

Therefore, the purpose of this thesis is to answer the questions related to the
experimental apparatus and provide additional information regarding the use of existing
dimensionless parameters and relationships to characterize wave/sediment interaction.
To accomplish this goal, a brief summary of the basic theory is first presented in
Chapter 2, followed by a description of the experimental setup and the new .12-mm
sand in Chapter 3. In this chapter, the wavemaker calibration, and complete analysis

of experimental accuracy are also discussed.

The actual experiments completed in this study are summarized in Chapter 4. Most
experiments made use of the new sand, which has a grain size of .12 mm, while some
additional experiments were completed using the .20-mm sand. In addition, the
experimental procedures for both the monochromatic and spectral wave experiments are

summarized in this chapter.

Finally, the results related to the response of the sediment bed and associated wave
attenuation are presented and discussed in Chapters 5 and 6. In these chaptexs,
proposed improvements and modifications to existing relationships are presented.

These proposed expressions are also summarized in Chapter 7.

-19 -



2 BRIEF SUMMARY OF BASIC THEORY

2.1 Qualitative Description of Bottom Sediment Motion

To better understand the basic physics of the interaction between waves and the
sand, one might consider a flat bed of sand with waves of relatively small amplitude
passing over it. In this case, the shear due to the waves passing over the sand would
not be enough to dislodge the sand particles. However, if we start increasing the
amplitudes of the waves, sand grain motion will eventually occur. This motion would
first be observed at any irregularities in the sand bed. Next, if we increase the wave
amplitude some more, a general rolling motion might be observed at these
irregularities, which will eventually lead to the formation of small ripple crests. Once
these ripple crests attain a height that can significantly affect the flow in the bottom
boundary layer, vortices will develop that will form more ripples. The resulting ripple
“patch” will expand and eventually cover the entire sand bed. After some time, the
ripple formations on the sand bed will reach a statistically steady or “fully developed”
state. Continued increase in wave energy will eventually lead to a regime of sand/wave
interaction known as the “breakoff range.” In this regime, the ripples lose their
organized structure and attain a random chaotic appearance in which the high wave
conditions appear to shave off the tops of the ripples. The theory to describe the
wave/sand interaction in terms of the associated energy dissipation is outlined in the

next section for the fully developed state and breakoff range.
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2.2 Wave Attenuation

2.2.1 Monochromatic Waves

Wave attenuation over a movable sand bed is normally quantified by making use of
conservation of energy. A one-dimensional energy conservation equation given by

Madsen (1976) is:

_g‘%_*_ﬂ%’g(El: Eqiss (2.1)

Here, cg is the group velocity, E is the wave energy per unit surface area, and Egjss
is the energy dissipation in the bottom boundary layer. Considering the steady-state
case, we can define the wave energy in terms of the wave amplitude. Assuming this

energy is associated with a monochromatic wave, we have:
E = }pga? (2.2)

The dissipation term for the case of a monochromatic wave includes energy losses due
to bottom friction and, in the case of a wave flume, sidewall friction. As noted in
Rosengaus (1987), sidewall dissipation can be characterized by making use of an
expression developed by Hunt (1952). The energy dissipation due to bottom friction
can be determined from the bottom shear stress and horizontal bottom orbital velocity

associated with the wave passing over the bed, and was defined by Kajiura (1968) as

Dy = -mp(1)Tp(t) (2.3)

We can relate the maximum bottom shear stress to the bottom velocity by using the

equation:
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Tom = $plwUp? (2.4)

in which we have introduced the concept of a wave friction factor.

Neglecting the phase difference between the bottom shear stress and velocity (due to
its small effect on energy dissipation), we can use these two relationships to get an
equation for the energy dissipation due to friction in a turbulent boundary layer

associated with moncchromatic waves:

Dp = - 3-pfwUp? (2.5)

As detailed in Rosengaus (1987), when applying our conservation of energy approach
over relatively short distances (a few wavelengths, say) we can approximate the

resulting &(cgE)/dx term of the energy conservation equation as:

AeE) — pgegal® (2.6)

Assuming steady-state, this leads us to:

pgcga% = - %pwam (2.7)

This equation provides us with a relationship between the wave attenuation and wave
friction factor. As a result, bottom friction and an associated friction factor can be
obtained by measurinj the change in amplitude of a monochromatic wave propagating
over a sand bed in a wave flume. Again, the details of this theory can be found in

Rosengaus (1987).
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2.2.2 Extension to a Wave Spectrum

A random sea is commonly characterized by its wave spectrum, which represents
the distribution of the wave energy over a range of frequencies and directions. For a
wave flume, we may simulate a wave spectrum in one direction over a finite number of
discrete frequencies by taking advantage of the concepts of linear superposition. In

terms of the near-bottom orbital velocity, we expect:

N .
Up(t) = z Uy, icos(wit + i) (2.8)
i=1

In practice, the energy dissipation within the turbulent boundary layer of a wave
spectrum is often simulated by simply expressing the spectrum of interest in terms of a
representative monochromatic wave. Madsen et al. (1988) showed that this may be

completed by assuming the proportionality:
Dj « Ubirep * Ubii? (2.9)
Here, the representative bottom velocity, Uy, is taken to be a root mean square value

N %
Ub:l‘ﬁp = 2 [Ub,12] (210)
i=1

The representative radian frequency is taken as
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N
L Up, 32

Wrep = | (2.11)

N
Y Upi?/w?
li=1

and the representative horizontal bottom excursion amplitude, Aprep, can be obtained

by dividing Up,rep by wrep.

When we incorporate these equations into the energy conservation equation, we find

that:

pgcgia'i%ac‘—i= - %‘ipfw,iub.repUb,iz (2.12)

This equation can be used to relate friction factor and attenuation as discussed above.
In this case, however, the equation is applied to each individual frequency component of
a wave spectrum. Presently, the limited data available for spectral wave attenuation

have indicated the validity of these assumptions.

2.3 Characterization of Sediments

One would expect that the wave friction factor defined above would be related to
tke characteristics of the sand bed. Therefore, our goal is to determine this

relationship.

Previous studies by Stefanick (1979) and Rosengaus (1987) have had some success
with implementation of a dimensionless sediment parameter to represent the wave-

sediment interaction for oscillatory flow over cohesionless sediments. This parameter is
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developed by comparing the fluid force acting on a single sand particle in a flat bed of

sand to the submerged weight of that sand particle as follows:

‘ /
¥ = e = feye (213)
Furthermore, Madsen and Grant (1975, 1977) demonstrated the validity of application
of a modified Shields Criterion (similar to the unidirectional Shields Criterion) to
describe the initiation of motion criteria for monochromatic oscillatory flow over a flat
bed of sand. While this initiation of motion is normally taken as a function of Reynolds
number, it can instead be expressed as a function of a dimensionless sediment

parameter:
Sk = d e g (2.14)
The Critical Shields Parameter as an indicator of initiation of motion is shown in

Figure 2.1.

The ratio of the two parameters discussed above, 9’ /¥, has successfully been used

by Stefanick and Rosengaus to characterize results for a wide range of data.

2.4 Bedform Geometry

This relative Shields parameter has helped to define relationships characterizing
bedform geometry and regimes of wave/sediment interaction (such as the wave

intensity associated with the breakoff range.)

For bedform geometry, a number of empirical relationships were defined by

Stefanick (1979). For wave intensities that are below the breakoff range, he found that:

- 95 ~



woIj ‘w0f £Pea}s Ul UOIIOUW JO UOLIRIIIUL I0f Iojswered sp[atys [eonu))

-

@

I

"(9L6T) yue1n pue usspepy

Ol S

'z 3m3rg
é i

_I_J___

_____d

S N

_hh_l_

pad(i-s) _

ot _

3] 4

1

1

o)

Ol

(@)

- 26 -



n/Av = .22[¢’ [1h] 18 (2.15)
n/ A = 16[3" /9]0 (2.16)

For wave intensities that were above the breakoff point, defined by

(¥ [¥c)b =1.85,0-8 (2.17)

the parameters representing bedform geometry were found to have an additional

dependence on S,:

N/ Av = 485,829’ [yhc] -8 (2.18)
/A = 285459y’ [9hc] 1.0 (2.19)

In addition, Rosengaus (1987) proposed some simple relationships to fit experimental

bedform data obtained for .20-mm sand. The relationships of interest include

n/Ab = 0.3094 - 0.0607(%’ /) (2.20)
and

n/ = 0.1864 - 0.0136(¢" /4c) (2.21)

These expressions would apply to values of ¢’ /¢ that are below (%’ /¥c)b as defined by
Equation 2.17.

2.5 Relative Roughness

For determination of the bottom roughness, the bedform characteristics ncted above

have been found to be physically relevant parameters. For example, in 1982, Grant and
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Madsen used data from Bagnold (1946) and Carstens et al. (1967) to develop a
relationship between relative roughness, kp/Ayp, and bedform characteristics and wave

intensity (as characterized by ¥ /1c):

X0 = 2871+ 160(s + cm)%-gqpc[[%]* -07)? (2.22)

The behavior of this relationship is shown in Figure 2.2. As can be seen in that figure,
the second term in Equation 2.22 represents the effects of sediment transport and can
be neglected for relatively low v’ /.. Therefore, for our purposes, we may rewrite

Equation 2.22 as:

%% = 2871 (2.23)

A common experimental procedure has been to use the general form of this equation
and vary the numerical coefficient to fit experimental data. For example, in Rosengaus

(1987), a better fit to the data was found if the coefficient, 28, was replaced by 23.

2.6 Relating Friction Factor to Relative Roughness

A number of relationships have been proposed for relating the wave friction
factor to the relative roughness. Figures 2.3 and 2.4 (from Stefanick, 1979) show some
of the theoretical results that relate friction factors to wave conditions and roughness
parameters. In Figure 2.3, Jonsson’s Wave Friction Factor Diagram shows the friction
factor as a function of a Reynolds Number and relative roughness, covering a variety of
flow regimes. For rough turbulent flow, a number of curves that relate the friction
factor to the relative roughness are plotted in Figure 2.4. Two of these include

Jonsson’s expression for rough turbulent flow:
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Relctive roughness (Gront & Modsen 1982)
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Figure 2.2  Relative roughness according to Grant and Madsen (1982), from
Rosengaus (1987). '
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1 1 Ay
+ lOglo——-—- = log,o - 0.08 (2.24)
W 4y, Kb

and an expression proposed by Grant and Madsen:

0.08 kp
Ker PGV + ke o A, <!
w — k (2.25)
b
where

KU Jw

In this expression, ker and kei are the Kelvin functions of zeroth order, « is Von
Karman’s constant, U, is the maximum bottom shear velocity, and ky, is the Nikuradse
equivalent sand roughness. This expression will be applied in a number of applications

in later sections of this report.
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3 EXPERIMENTAL SETUP

3.1 Description

The experimental work was completed in the Ralph M. Parsons Laboratory for
Water Resources and Hydrodynamics at the Massachusetts Institute of Technology in
Cambridge, Massachusetts. The project made use of a wave flume at the laboratory
that was 28 meters long, 76.2 centimeters wide, and 91 centimeters deep. A
programmable piston-type wave generator is located at one end of the flume, and an
absorber beach with a slope of one on ten is located at the other end. A 7.5-cm

horsehair mat was placed on this absorber beach to help minimize reflections.

For this project, a 10-cm layer of .12-mm uniform silica sand was placed in the
bottom of the flume. Therefore, a 10-cm-high wooden ramp was placed near the
wavemaker to contain the layer of sand and provide a smooth transition for the
generated waves propagating up onto the sand layer. This arrangement provided a test

section of approximately 16.5 meters between the ramp and the beach.

The wavemaker was controlled using a Charles River Data Systems computer that
operated under the RT-11 operating system. This computer generated a digital signal
that was converted to a + 10 volt analog signal by a Data Translation 2781 D/A
Converter. To ensure proper characteristics of the transmitted waves, the voltage
signal was conditioned by making use of a wavemaker transfer function, as is further

discussed in Section 3.4.

The generated waves were measured using six wave gauges and a controlling unit
manufactured by the Danish Hydraulic Institute that made use of a proportionality
between wave height and conductivity measured between two thin nichrome wires. The

output signal from the controlling device was converted to a digital signal by a
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Metrabyte Dash-16 D/A converter installed in an IBM PC XT computer. All
additional data processing and analysis was completed by making use of this personal

computer.

A schematic identifying the basic components of the experimental setup is shown in
Figure 3.1 (from Rosengaus (1987)). Detailed descriptions of the various experimental

components may also be found in Rosengaus (1987).

3.2 The Sediment

For his Sc.D. thesis, M. Rosengaus applied the theory summarized in Section 2 to
the interaction between long waves and a sediment bed comprised of .20-mm sand. In
this report, this theory is further tested by using an even finer silica sand with a mean

grain size of approximately .12 mm.

This fine sand was purchased from New England Silica, Inc., from South Windsor,
Ct. Specifically, the sand that was used was denoted as F-115 Ottawa sand. Review of
the manufacturer’s literature indicated that the sand distribution should have a mean
grain size of .1 mm. However, to verify the sand characteristics, an in-house sieve

analysis was completed.

This sieve analysis was completed in accordance with ASTM standards. In
addition, the grain size distribution was analyzed in the manner recommended by the
Shore Protection Manual, 1977, in which ¢ units are used to characterize the various

grain sizes of the distribution. The ¢ unit is defined as:

¢ = -logad (3.1)

where d is the grain diameter expressed in mm,
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Schematic view of experimental installation, from Rosengaus (1.987)
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Using this characterization, the Shore Protection Manual’s method makes use of a
number of parameters to describe the grain size distribution. Some of these include My,
which expresses the mean grain size in ¢ units, M4, which expresses the median grain
size, o, which provides an indication of the sorting, and a, which provides an indication

of skewness of the distribution.

The procedure for obtaining these parameters makes use of the plot shown in Figure
3.2, which shows the grain size distribution for the silica sand that was obtained. The

parameters can then be defined as follows:

mean grain size in ¢ units:

+ @50 + .

M¢_¢16 ¢§o Pa4 (3.2)
sorting:

o=t rlb (3.3)

mean grain diameter in mm:

dmean = 2—M¢ (3.4)
skewness:
M, -M
¢ do .
Qp = (3.5)

The definitions of ¢4, P50, Ps4, and Md¢ are indicated in Figure 3.2. The mean grain
size, d, which is the important parameter upon which the sediment parameter(S,) is
based, can be obtained from Equation 3.4 above. Also, Table 3.1 includes a comparison

of this information for the in-house analysis and distributer’s literature for both the
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.12-mm sand, and for the in-house analysis of the .20-mm sand (completed by

M. Rosengaus):

M(logs (mm))
Md(logs (mm))
sig

alpha

d (mm)

Table 3.1

.12-mm sand

distributer

3.260
3.220
0.510
0.078
0.104

in-house

3.097
3.120
0.595
0.039
0.120

.20-mm sand

distributor

2.473
2.480
0.470
0.489
0.196

in~house

2.417
2.340
0.315
0.240
0.196

From the grain size noted above, we can obtain the parameters that are considered

to be physically relevant to wave/sediment interaction (discussed in Chapter 2). For

the two sands used, these parameters are summarized as follows:

Table 3.2
d (mm)
12 :20
Sk 1.780 2.845
Ye 0.078 0.052

(¥ [9c)p 230  3.41

Ideally, we would like to run experiments that would provide information on wave

sediment interaction for a wide range of conditions for both the .12-mm sand and

.20-mm sand. For the experiments completed on the .20-mm sand by M. Rosengaus,
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the experimental setup basically limited the flow conditions to those within the breakoff
range as defined above. However, for the .12-mm sand, the flow conditions can be
generated that correspond to a 9’ /4 of about 3.0. Therefore, completing the
experiments on the .12-mm sand would be expected to yield information for a wider

range of wave/sediment interaction.

3.3 Wave Generation

3.3.1 Monochromatic Waves

In 1951, Biesel and Suquet established the linear theory associated with the use of a
piston-type wavemaker to generate monochromatic waves. The relationship between
the wavemaker motion and monochromatic wave characteristics was shown to be

an

€(t) = -€ocos wt = - TanhKh €0 wt (3.2)

with n; defined as

_Cg_ 1 2kh
n = c - 2’[1 + mn (33)
In 1971, Madsen showed that when the piston-type wavemaker motion is used to
generate long waves associated with Stokes Second Order Wave Theory, two second
harmonics are produced—a “bound” second harmonic, and a “free” second harmonic.

The bound harmonic is described by

_ ka? (2 + cosh 2kh)cosh kh
8 = S T 5inh%h (34)

and the free harmonic is
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tanh k_h
_ 1 ,cothkh[ 3 n F
' = PN s - B (3:5)
where
1 2k h
Ny = 2—[1 + m] (3.6)
and k is the wave number of the second free harmonic that satisfies the following
dispersion relationship:
(2w)? = gk tanh kh (3.8)

In addition, this free second harmonic can be eliminated by adding a second harmonic

correction to the wavemaker motion such that:

£(t) = —§o[cos wt + %%111—1 [a—s'i%l—gm - %] sin2wt] (3.7)

The details of the effectiveness and accuracy of the removal of the second harmonic is

discussed and demonstrated in Rosengaus (1987).

3.3.2 Spectral Waves

For the spectral wave generation, the linear theory noted above may be used to
advantage by implementing the theory of linear superposition. To simulate a wave
spectrum, a finite number of discrete frequencies are defined and a representative

monochromatic wave is chosen for each one. Thus, the surface profile would be

represented by:
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N
n= 2 ajcos(kix - wit - 6;) (3.9)
i=1

where one set of randomly chosen phases can be used to simulate one realization of the
spectrum. Generation of the spectrum can be accomplished by superimposing the

wavemaker motion for each of the components:

N
£ty =Y &(t) | (3.10)

i=1

Using these principles, simulation of a particular wave spectrum can then be
accomplished by defining discrete frequencies and associated component amplitudes for
generation. Rosengaus (1987) discussed two possible methods for spectrum simulation:
an equally spaced components method, and an equal energy components method. In
the former, equally spaced frequencies components are chosen. The amplitudes are then
defined to model the spectrum of interest. In this method, one or two components will
comprise the majority of the energy in a typical spectrum. In the latter method, the
frequency components are chosen such that all components are of equal energy.
Therefore, the amplitudes of each of the components would be the same. In this case,
more frequency components would be located near the frequency associated with the
peak spectral density. These two spectral simulation methods are clarified in Figﬁre 3.3
(taken from Rosengaus (1987)). In addition, a detailed discussion of spectral simulation

can be found in Rosengaus (1987).

In this study, two types of spectra were simulated. The first spectrum used was a

Pierson-Neumann spectrum. This spectrum is relatively broad banded and is defined

by:
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TYPICAL WAVE SPECTRUM
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Figure 3.3  Two methods for simulating a wave spectrum, from Rosengaus (1987)
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Spa(w) = cww'ﬂexp{— U%-E—f—o,} (3.11)

where

c= : (3.12)

In this equation for the constant, c, E'r represents the total energy associated with the

spectrum, and the wind speed, Uy is defined by:
Up=|z-E— (3.13)

A typical Pierson-Neumann Spectrum is shown in Figure 3.4.

The second spectrum simulated was a JONSWAP Spectrum. This spectrum, shown
in Figure 3.5, is a narrow-banded spectrum that is generally considered to be a more

realistic representation of ocean wave spectra. This spectrum is defined by:

2
exp| Lo = 1)

E, =E,7 20 (3.14)

where EPM is:
2mag? 5 Wnax 4

EPM = —mg— exp{- a’[‘u—)——] } (315)
This spectrum can be applied in shallow water by using;

S,m(w) = <I>(w)EJ (3.16)
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where ¢(w) is obtained from:
¢(w) = x 1 + wn?(x? - 1)) (3.17)
In this equation,

o= oft] T )

and x is obtained from:

xtanh(wy2y) = 1 (3.19)

The parameters that may be varied in these equations included a peak enhancement
factor, v, a spectral width parameter, o, and a Phillips Constant, a. First, the peak
enhancement factor was taken to be 3.3. Often two spectral width parameters are
used--one for the spectral band width associated with frequencies less than the
maximum frequency (call it aA) and another for those greater than the maximum
frequency (call this one aB). Commonly o, is slightly larger than ¢,. Since they are
generally similar in magnitude, a single spectral width parameter of 0.08 was used. The
final parameter, a, was varied to set the total energy associated with the spectrum. A
typical value was 0.0015 which yielded a design spectrum with the total energy equal to

that of a 6-cm wave with peak frequency of 2.39 rad/s.

3.4 Wavemaker Calibration

In order to operate the wavemaker in the manner prescribed by the equations above,

the wavemaker system must be calibrated. The calibration is necessary {o characterize
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the way in which the system will translate an input voltage signal into an actual
wavemaker displacement. This characterization is commonly defined in terms of a
transfer function with both an amplitude and phase. The amplitude of the transfer
function defines the magnification or reduction of the actual output wavemaker
displacement relative to the desired or input motion, and the phase of the transfer
function represents the lag of the output behind the input. Therefore, we can define the

input motion by

£in(t) = Real{| in]ei(@t + Bin)y (3.20)
and the desired output motion by

ouc(t) = Real{| £ouy[l(41 T Fout)) (3.21)
In this case, the transfer function can be defined as

H = jout = |H|e'? (3.22)
where the amplitude of the function is

— out
|H| = ‘HTI'L (3.23)

and the phase is

7= Bout - Bin (3.24)
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Then, to get the proper wavemaker displacement we must define a modified input

displacement:

€in(t) = _lfout| ei(wt + (Bout - 7)) (3.25)

When this modified displacement is used as input, the desired displacement described

by Equation 3.21 will be obtained.

Calibration of the system involves determination of the amplitude and bhase of the
transfer function for a range of wavemaker operating conditions (included signal
magnitude, frequency, and depth of water in which the wavemaker operates). This
calibration was initially completed by M. Rosengaus. The details of the analysis may
be found in his doctoral thesis. In March of 1988, the pressure and voltage gain settings
for the wavemaker were reset by Jack Crocker, the Laboratory Technician. The
pressure setting was increased from 1000 psi to 1200 psi and the voltage gain was also
increased. These changes were completed to increase the wavemaker output to allow
the generation of larger monochromatic waves and higher energy wave spectra. Since
the characteristics of the wavemaker system had changed, a new calibration was

necessary.

To simplify this calibration, an existing wavemaker generation program, which
included the transfer function developed by Mike Rosengaus, was used as the input to
the wavemaker system. The previously developed transfer function is shown in Figures

3.6A and 3.6B (from Rosengaus (1987)).

For this wavemaker system, both the amplitude and phase were found to be strong
functions of frequency and relatively weak functions of the magnitude of the signal.

Therefore, since previous calibrations had shown the transfer function to be relatively
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insensitive to the depth of water in which the wavemaker operates and most
experiments would use a 60-cm depth, the 60-cm depth was used for wavemaker

calibration.

The output amplitude vs input amplitude, |H|, was then determined over a range
of frequencies and signal magnitudes. This information is summarized in Figure 3.7A.
As can be seen in this figure, the amplitude is a relatively weak function of the signal
magnitude but is a relatively strong function of frequency (as expected). In general, the
lower frequency (higher period) oscillations and lowe. input signals result in more

magnification of the output signal.

In a similar manner, the phase angle between the output signal and input signal was
determined over the same range of frequencies and signal magnitudes. This information
is summarized in Figure 3.7B. In this case, the higher frequencies (lower periods)
resulted in a greater pLase lag between the input and output signals Also, the phase
angles associated with the different input signal magnitudes displayed some scatter
when compared at discrete frequencies. This simply shows that the effect of the input
frequency magnitude was relatively insignificant and the different measurements could

not be differentiated when read off of the oscilloscope.

From these two plots, the transfer function was developed by choosing
representative data points that would produce accurate wavemaker motion over a wide
range of experimental conditions. Since it is desirable to run spectral waves that
include a number of relatively small components oscillating at discrete frequencies, the
amplitude ratios associated with (H)i, = .25 (as noted on Figure 3.7) were used to
define the transfer function. Since the phase angles showed the scatter noted above, the

mean values for each of the frequencies were used in developing the transfer function.
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This information was then incorporated into the wave generation programs by
making use of Newton’s Divided Difference Interpolation Polynomials to define the
relationships over a range of frequencies. This new transfer function was actually a
correction to the previous transfer function and was simply added into the programs to
modify the program’s output signal (the wavemaker system’s input signal) so that the
proper wavemaker motion is realized. The final transfer function relationships for the
amplitude and phase are plotted in Figures 3.8A and 3.8B. Comparison of the new
transfer function to that described in Rosengaus (1987) shows a significant increase in
the amplitude of the transfer function. Since the pressure was only changed by 200 psi,

this increase can be primarily explained by the changes in the gain control.

3.5 Wave Measurement and Resolution
3.5.1 Review of Theory

Analysis of the interaction between waves passing over any sediment bed and the
resulting bedforms naturally requires some measurements of the wave characteristics at
different locations along the bed. Two methods for measuring the evolution of the wave

amplitude over the length of the channel are detailed in Rosengaus (1987).

The first of these methods, referred to as the Reference Measuring Method (RMM)
or Slow Measuring Method, used the wave gauges described in Section 3.1 to obtain
wave records of the surface displacement variation at closely spaced locations along the
wave flume. Provided that these records are taken after the wave motion within the
flume is at a steady state, they need not be simultaneous. Next, a Fourier Analysis is
completed for each record to define the energy associated with the first and second
harmonic wave components. Assuming a monochromatic experiment is being

completed, we would expect that, at the first harmonic, we have an incident wave
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My = a,cos(kx - wt - 0)) (3.26)
and a reflected wave

My = agcos(kx + wt + 0,) (3.27)
At the second harmonic, we expect a bound second harmonic wave

npl P =ay! 2) cos(2kx - 2wt - 0, 2) (3.28)
and a free second harmonic wave

e ? = a (D cos(ky - 2wt - G,(2) (3.29)
which satisfies a dispersion relationship of

(2w)p = gkytanh k h (3.30)

As discussed in Rosengaus’s thesis, these various components may be separated by
performing least-squares fits to the spatial variations of the amplitudes of the different

frequencies.

While this method produces accurate results, it requires a tremendous amount of
data and also a good deal of time to complete. Therefore, experimental requirements
were simplified by using the Fast Measuring Method (FMM). In this procedure, the
surface variation is measured simultaneously at a few closely spaced locations along the

flume. Provided that the gauge spacing is much smaller than the length scales
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associated with notable wave attenuation, the wave records may be used to separate the
various components of interest. This is accomplished by using Fourier Analysis on the
record of each gauge to define the amplitudes and phases associated with each frequency
component and then using the concepts of Cramer’s Rule to solve the resulting sets of
linear equations. Again, the reader should consult Rosengaus (1987) for the details of

the analysis.

3.5.2 Summary of Wave Measurement Procedures

For most experiments completed in this study, the Fast Measuring Method (FMM)
was used in the context of a three-gauge setup. Basically, one station was located near
the upstream (or “up-wave”) end of the sand bed and another was located downstream

(“down-wave”) end of the sand bed.
In summary, implementation of the FMM made use of five computer programs:

1. A sampling program, which used the DASH-16 A/D converter to convert the -10 to
+10 V signals to integral values between 0 and 4096.

2. A user-interactive gauge calibration program, for which the user would set the
gauges at various elevations so that the program could sample the associated
voltages and develop a surface displacement/voltage relationship for the gauge. The
program would fit a fourth order polynomial to the curve and form files containing

the regression coefficients for each of the gauges.

3. A processing program, which used files containing regression coefficients to convert

the integers output from the sampling program into surface displacements.

4. A Fast Fourier Transform program, to convert the suriace displacement records in

the time domain into amplitude and phase records in the frequency domain.

-54 -



5. A FMM program, to convert the amplitudes and phases associated with various

frequencies into the appropriate components.

For the monochromatic wave experiments, the FMM program adequately identifies
all wave components at each station. Therefore, attenuation can be studied by simply
comparing the components of interest at the up-wave and down-wave stations.
However, for the spectral wave experiments, non-linear interactions or energy transfers
that occur between the various spectral components are uravoidable. Therefore,
although the amplitudes of the spectral components could be measured at the two
stations, there is still no way to determine the relative magnitudes of energy dissipation
due to bottom friction and non-linear energy transfers as the wave component

propagates through the wave flume.

To overcome this problem, additional procedures were necessary. Therefore, a
procedure was developed to help evaluate the non-linear energy transfers. For all
spectral experiments, a number of experiments were run over a flat sediment bed. For
these flat bed runs, non-linear energy transfers between various components generally
dominate the energy dissipation due to bottom friction. In addition, a laminar
boundary layer exists for the flat bed conditions and the energy loss in the bottom
boundary layer can be estimated by well-documented laminar boundary layer theory.
Therefore, the energy dissipation due to bottom friction can be subtracted out and the
energy changes due to non-linear energy transfers can be determined for each cf the
spectral components. If these are then recorded as fractional energy changes (relative
to the energy at the up-wave station), they can be applied to the fully developed bed
experimental runs. Thus, for the spectral fully developed bed runs, the fractional
amplitude changes due to non-linear energy transfers are subtacted out, leaving only

the effects of bottom friction. Additional information regarding the use of this
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procedure can be found in Section 3.6.3.2, in which the accuracy of this procedure is

discussed.

For the experiments completed by M. Rosengaus using the .20-mm sand, the flat
bed was attained by flattening the bed using the “bottom scraper.” For these
experiments, it was found that the wave conditions in the flume could attain a steady
state before the wave agitation would result in bedform development. However, for the
.12-mm sand experiments, bedforms would develop before a steady state wave climate
was attained. Therefore, twenty 5-foot by 2.5-foot flat steel plates were purchased.
These plates were placed on top of the sand for the flat bed runs, assuring that no

bedforms would develop and that the boundary layer remained laminar for these runs.

3.6 Accuracy of the Wave Measurements

In M. Rosengaus’s doctoral thesis, a detailed analysis of the accuracy of the fast
measuring system was included. This analysis included an error propagation analysis of
the FMM and a comparison of the accuracy of the FMM relative to the RMM. In
addition, the thesis includes a discussion of “blind zones” associated with the FMM, in
which he defined gauge spacings that should be avoided because of a significant

sensitivity to errors in phase differences.

Despite the intensive analysis of error and accuracy completed by M. Rosengaus, a
few nagging questions remained. First, a sampling problem, which he referred to as the
dropout problem, still persisted. In this case, the sampling program would skip a time
step in one of the seven channels being sampled, placing the sample for the next time
step in its place, and adjusting the remainder of the record accordingly. This
phenomenon, which showed no easily recognizable pattern, was found to have an impact

on experimental results when it occurred. In the second problem, the voltages shown
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by the wave gauges during calibration were cccasionally observed to “drift” after
calibiation. This drift could in effect render the regression coefficients invalid and
possibly affect experimental results. Finally, the question of how accurately a
monochromatic wave, or each component of a wave spectrum, could be measured

required more attention. The review of these concerns is discussed in the following

subsections.

3.6.1 Solution to the Samp'ing Problem

The sampling problem was noticed by Mike Rosengaus when his wave spectrum
experiments yielded friction factors that did not appear to be reasonable. Also, energy

conservation principles were not satisfied in a number of cases.

An explanation was found by reviewing surface profile records. Many records
showed that, in an apparently random manner, for one of the seven channels being used
for sampling, a sample for one time step was being skipped, or “dropped out.” The
sample associated with the next time step was inserted in its place. The remainder of
the profile in that channel was still sampled throughout the sampling interval but was
shifted back by the one time step that was dropped out. This “drop out” problem,
which is clarified by Figure 3.9 (from Rosengaus (1987)), was quite difficult to
characterize. However, an organized analysis revealed a pattern. The first dropout
always occurred in the first channel, Channel 0; the second one always occurred in the
second channel, Channel 1; the third in Channel 2; and so on. In addition, the time
intervals between these dropouts often (although not always) occurred in systematic
time intervals. This pattern indicated that the problem may not be a hardware
problem, but a software problem. Somehow, it appeared that, during the transfer of
the data from the Dash-16 Data Acquisition Board to the IBM PC, the computer’s

interrupts were not properly accommodated. Since this software was provided in a
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packaged form rather than code, the problem was finally solved by purchasing another

software package that was available from Metrabyte Corporation.

3.6.2 The Drift Problem

The second problem that was of concern was that of wave gauge “drifting.” It was
found that, after calibration, the voltages generated by the wave gauges for any given
surface elevations would occasionally drift from the voltages obtained during

calibration. Control of this drift problem was accomplished in a number of ways.

First, the warm-up time for the wave gauge unit increased from the 10 to 15
minutes as recommeaded by the manufacturer’s literature to approximately 45 to 60
minutes before operation. This requirement was determined during the first analysis of
this problem after it was first observed. In this analysis, careful observations were
made during a number of successive calibrations after the wave gauge apparatus was
initially turned on. On different days, different procedures were attempted, such as
running waves over the gauges before calibration, leaving the water at its mean level
thought the testing period, and mixing the water to ensure removal of temperature

gradients. Of these parameters, the warm-up time proved to be the most critical.

Secondly, the accuracy of the calibration was verified by checking the voltages
before and after experimental runs. After many experimental runs and accuracy tests,
it was found that, in general, wave gauge drift tended to be characterized by an increase
in the voltage. The highest calibration level (associated with the highest water surface
level and maximum voltage) resulted in the highest upward drift. The lowest
calibration level (associated with the lowest water surface level and minimum voltage)
normally resulted in negligible drift. In addition, the voltages associated with the still

water level (normally set to zero voltage) were found to be good indicators of the

- 59 -



magnitude of the drift. Keeping these observations in mind, these “zeros” can then be
used as a criterion to determine the acceptability of measuring runs. Therefore, these
zeros were checked before and after completing experimental runs. If the drift of these
zeros for all gauges was well within the accuracy of the measuring system, the
experimental run was considered to be acceptable. If the drift was too high, the
experimental run was considered to be unacceptable, and the data were not included in

friction factor computations.

Finally, control of the drift problem was ensured by implementing a number of
other precautions. First, after filling the wave flume with water, it was commonly left
for about three days so that it would reach room temperature. Also, the water was
commonly mixed to ensure that all temperature gradients were eliminated. In addition,
during experiments using the .12-mm sand, some reaction appeared to be occurring
between the water and the nichrome wires associated with the wave gauges. This
produced a thin film of slime on the wires that resulted in nonlinearities in the
calibration. It was found that, as long as the gauges were wiped off after every run, the
film had ro effect on wave-gauge operation. Therefore, for all remaining experiments,

the gauges were wiped off after every run.

3.6.3 General Accuracy Analysis

The final concern related to the accuracy of the measuring system was how accuracy
limitations or errors were propagated though the equations for computation of a friction
factor. In other words, how accurate are our friction factor estimates? To determine
this, two cases were considered: Accuracy of monochromatic friction factors and

accuracy of spectral friction factors.
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3.6.3.1 Monochromatic Waves

First, the accuracy of the monochromatic wave experiments was determined by
making use of the results from Experiment B. Wave intensities tested in Experiment B
included amplitudes ranging from about 3 cm to 7 cm. In addition, review of wave
measurements showed the standard deviation of the incident amplitude to be roughly
.015 cm, which is less than 0.5 percent of the incident amplitude. In addition,
measurements of the change in incident wave amplitude due to wave attenuation had a
standard deviation of approximately .02 cm. Since the change in amplitude over the
sediment bed ranged between .2 and .3 cm, this standard deviation implies an accuracy

of 5 10 10 percent relative to the change in amplitude.

To determine the effects of these accuracy limitations on friction factcr estimates
the above information was propagated through the friction factor equations by using

principles describing error propagation. For this case, given:

fw = fu(cg, 2, Up, myp) (3.31)
we can express the error in fy as

st = [[ee] o o+ ffpou) s aom]]’ e
In these two equations, fy is the wave friction factor, cg represents the group velocity,
Uy, is the bottom horizontal orbital velocity, my, represents the measured attenuation

slope (change in amplitude per length of flume), and A denotes the standard deviation

of the associated parameter.
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When the above accuracy information was propagated through the friction factor
equation, it was found that the friction factor estimates should be accurate within a
standard deviation of approximately .012. In this case, we might expect that, if we run
eight experiments, the average friction factor obtained might be accurate within a
standard deviation of about .004. The experimental results agreed with the accuracy

estimates quite well.

3.6.3.2 Spectral Waves

The accuracy of the measurements in the spectral wave experiments, in which a
representative friction factor depends on the amplitudes of a number of components,

was found to be more critical than for the monochromatic experiments. This is due to a

number of reasons.

First, because the spectrum includes a number of components (five components for
these experiments), each component must be smaller than the single component of the
monochromatic wave experiments. This is due to the size limitations of the wave
flume. Because each component’s amplitude is smaller, the corresponding change in
amplitude over the sediment bed will be smaller and the limitations of the measuring

system will be of greater concern.

Also, the attenuation is defined in terms of a friction slope, my,, which represents

attenuation per unit length of flume. This slope is obtained by using the equation

mp = mg + Mgy + Mp) (3.33)

in which my is the total change in amplitude per unit length, mgy represents the

attenuation due to sidewall friction, and my) is the change in amplitude per unit length
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resulting from nonlinear transfers. Normally, the sidewall friction would be much less
than the bottom friction for wave motion over bedforms. However, nonlinear effects are
often found to be comparable to the effects of bottom friction. The nonlinear cnergy
slope is determined by using runs over a flat bed (as explained in Section 3.5.2), for
which the friction slope is minimal. Since our accuracy for these experiments is limited
in the same way as for the fully developed bed runs, the estimate for the friction slope

will have that much more error.

To determine the accuracy of spectral friction factor estimates, it was first necessary
to determine the accuracy of amplitude measurements of the wave components and the
associated attenuation. To accomplish this, data from Experiments S4 and S5 were
used. Both of these spectral experiments included five wave components and simulated
a Pierson-Neumann Spectrum. S4 represented an experiment with relatively high wave

conditions, and S5 had relatively low wave conditions.

To start, we can consider the amplitude statistics for Experiment S4, which are
shown in Tables 3.3A and 3.3B. In these tables, the measurements for all five wave
components are summarized. These components, Components 1 through 5, have
respective radian frequencies of 1.964, 2.393, 2.822, 3.375, and 4.541 rad/sec. As can be
seen in the tables, the experiment was repeated ten times over a flat bed. This flat bed
information is summarized in Table 3.3A. In addition, eight runs were completed over
a fully developed bed, which implies that the bed is fully rippled and is statistically in a
steady state. The fully developed bed information is summarized in Table 3.3B. For
each of the runs completed, amplitudes of each component were measured at a location
upwave (Station 1) and downwave of the sand bed (Station 2). The tables also include
the difference between the Station 1 and 2 amplitudes, which is a critical variable
necessary in determination of the friction factor. For this difference between Stations 1

and 2, a positive value indicates an increase in a component’s amplitude as it
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propagates down the flume, and a negative value indicates a decrease in amplitude. In
addition, averages and standard deviations are included in the tables. All of this

information is also summarized for Experiment S5 in Tables 3.4A and 3.4B.

In general, measurements of each wave component for the higher energy
spectrum(S4) indicate amplitudes in the range of 2.0 to 2.8 cm with a standard
deviation of approximately .06 cm. For the lower energy spectrum(S5), the amplitudes
range between about 1.5 and 2.0 cm and the standard deviation is approximately
.04 cm. Therefore, the error in amplitude measurements may be expected to be less

than about 3 percent for any run.

The difference between the amplitudes for Stations 1 and 2, which is a critical
parameter for computing the friction factor, typically ranges between .05 to .10 cm for
the high energy spectrum, and between .03 and .08 c¢m for the low energy spectrum,
The standard deviations in these measurements is approximately .085 cm and .065 cm
for the high and low energy spectra, respectively. Here, the standard deviations of the
differences are of the same order as the magnitudes of the differences. There is
obviously a reason for concern when one realizes that this difference in measured

amplitudes provides the basis for the friction factor estimates.

Therefore, it is important to determine how much these inaccuracies will affect the
friction factor results. This can be determined by propagating the above accuracy
information through the friction factor equations using equations describing error
propagation, as was done for the monochromatic experiments in Section 3.6.3.1. In this

case, we expect:

fW = fw(cg.b ai) Ub!‘lﬂS) Ub;i: mb)i) (3.33)
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Thus, we can express the error in fy, as

2
Ay = | [G2aes]” + [Fi20ai]" + [Ghe—nUbras] "+ [FeaU04)’

+ (Gl amy] ]’ (330
bsi
The overall accuracy of the friction factor estimates for wave spectrum experiments was
estimated in this way. In the analysis, the higher energy accuracy information was used
as a critical case since the standard deviations were higher. For this case, it was found
that, for each component of a particular run, the friction factor estimate has a high
standard deviation of approximately .12, which is of the same order as the friction
factor itself. Experimental results for the friction factors of various components showed

with this accuracy estimate to be reasonable.

If one considers the representative friction factor for the experiment, the standard
deviation is .04. This estimate is still relatively high as compared to the friction factor
estimates themselves, which range approximately .08 to .20. However, if we repeat an
experiment eight times we might expect our average value to be accurate within a
standard deviation of .014, which would imply that the resulting representative friction

factor is accurate to within about 10 to 15 percent.

In general, all spectral results reflected these accuracy estimates. However, some
changes in accuracy characteristics were observed for the JONSWAP spectral runs. This
was because of the narrow banded nature of the JONSWAP spectrum, which is described
in detail in Section 3.3.2. For these narrow banded experiments, Experiments F, G, H,
and I, the three highest components had frequencies of 2.761, 3.375, and 4.295 rad/sec.

Tue two lowest frequency components had radian frequencies of 2.271 and

-67 -



2.454 rad/sec, respectively. Therefore, since the difference between these two

frequencies is very small, a problem in resolution of the two components results.

This problem results due to the limitations of the Fast Fourier Transform (FFT)
program, which, for the experiments completed, resolves the surface profile into 256
discrete components by transforming the surface profile records of 512 data points. For
example, for the five-component JONSWAP spectra simulated, the five frequencies noted
above would correspond to five distinct Fourier components (which are often referred to
as “spikes”). These spikes are often identified by numbers that, for this case, would
range between 0 and 255. The frequencies noted above would correspond to spike
numbers 37, 40, 45, 55, and 70, with 37 being the lowest frequency, and 70 being the
highest.

When simulating a spectrum, we define the frequencies of the various components
such that they each exactly match one of the discrete Fourier components defined
above. However, due to limitations of the discrete Fourier Analysis procedure and the
experimental setup, this match will never be perfect. Thus, upon Fourier
transformation, the energy associated with a component of interest will show up in (or
“leak” into) adjacent components. Therefore, when two components are oscillating at
similar frequencies, there will be some leakage of energy from one component to the
other, which will likely vary somewhat for each experimental run completed. Because
of this phenomenon, if we are trying to separate out the energy associated with each of
the two components, we might expect a variability in our measurements. This
variability would be reflected in a high standard deviation in the component amplitude

measurements.

After tabulation of results from some of the experiments completed, this turned out

to be the case, as can be seen in the amplitude statistics for Experiment G1, shown in
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Tables 3.5A and 3.5B. In these tables, the standard deviation of measurements of
amplitude for two lowest components ranged between .06 and .10 cm. The standard
deviations for the associated changes in amplitude between Stations 1 and 2 ranged
from .10 to .14 cm. However, the remaining components, Components 3, 4, and 5 (as
noted in Tables 3.5A and 3.5B), had standard deviations that are roughly comparable
to Pierson-Neumann experiments of the approximately the same intensity (Experiment

S5, for example).

These high standard deviations would likely have significant effects on the friction
factors that we find for attenuation associated with each of these two components.
However, they should have a small impact on the friction factor associated with the
total spectral attenuation. This could be shown by lumping these two components
together as one component, and measuring a representative energy or amplitude of the
resulting component. If this were done, we would expect that the friction factor (and
associated standard deviation) for the single coupled component would be quite
reasonable as compared to the separate friction factors for the two components. ¥or
example, when the two components are combined for Experiment G1, the standard
deviations of the resultant amplitude equations are reduced significantly. Also, for the
flat bed runs, the standard deviations associated with the estimates of change in
amplitude are reduced from .088 cm (Component 1) and .175 cm (Component 2) to
.078 cm for the coupled component. The fully developed bed runs show a similar trend,
with the .1-cm standard deviations for amplitude change for each of the components

being reduced to .074 cm for the coupled component.

As was suggested above, the JONSWAP spectral experiments proved that the higher
variability in the two components had negligible impact on the total spectral friction
factor. In other words, the standard deviations in the representative spectral friction

factor for the JONSWAP experiments were comparable to those of the less sharply

-69 -



L1070 600°0 91070 | 8S0°0 /¥O°0 22070 | 62[°0 £80°0 85G°0 | [0['C 801°0 96070 | 80I°0 €90°0 €80°0 aLs
30070- £9S°T €4STE | 61€70- SSE'T §/9°I | [0I°0- 08S'L 189°[ | v80°0- 697°1 €S8°[ | 200 0 LLL°1 SIL°1 IRV
¢v0°0- €9S°L S09°T | 0€2°0- vI¥"[ #9°1 | 0EL°0 9971 ggg°| 6070~ 1991 OVL°'T | 841°0- ¥94°T 2v6°T | 2ZII9
£20°0- I9S°[ 889°L | £52°0- 8LE'L SE€S°I | 221°0 5.1 €g9'[ | £22-0- 96S°[ 618°L | I80°0- 84T 6S8°[ | T[I[9
10070 €8S°[ 28S°[ | 29270- SI¢'T ££9°1 | £SI°0- 21S°T %/9°T | pgz-0- L6970 T86°L | [£1°0 2v8°[ [/9°[ | OI[9
50070 957 29[ | 66€70- LIE'T 9IL°[ | €50°0- 651 2/9°1 | §40°0- 9v9°L ¥69°[ | 200°0 958°[ pS8 L | 6019
€0070- 29S°[ GSS'[ | 99€°0- 8EE"[ HOL'[ | 960°0- €65°[ 669 | £90°0- 6S8°1 926°T | 010°0- ¢vL°L ©SL°T | 809
TI070- 571 G8S°L | 89€°0- LOE'L S/9°1 | v81°0- €06°T 189°[ | for-0- 828'1 867 | SSI'0 G28°L 049°L | (0I9
LI0°C 89S"L [SS'I | OVE'0- vYE'L $89° | 62£°0- v6b°1 €28°1 | 980°0- YEL'L 028°1 | Iv[°0 0/8°T 62L°[ | 9019
S10°0- €SS'L §95°T | 9270~ €2v°T £89°[ | S$0°0- 8091 €59°[ | 8£0°0 9€L°L B869°L | [0[°0- 692°T 0/8°[ | SOI9
$00°0 ILS°L 99S°T | IvE"0- pIE"L SS9°[ | 990°0- 94S°T 219°[ | 6/0°0- 228°1 10671 | £L0°%- 0S9°'L [2L°T | 019
81070~ 995°L $8S°[ | 98€°0- /62°[ €89°[ | 990°0- /8S°T €§9°[ | SOT°0Q 6/6°1 v/8°1 | 060°0- 289°1 2/1°T | €09
¢20°0 SLS'L €SSTL | 19€70- OTE'T [£9°1 | ¥b2°0- 61S°T £92°1 | 710°0- £68° I6°L | 82070 29L°1 pEL'T | 2019
100°0 2/S°T T4S°[ | 852°0- SIY'[ €£9°1 | 981°0- 06S'I 9[/'[ 0- €LL°T 98871 | 290°0 I8L°T 6[L°I to19
4410 2 WIS [ VIS | 410 2 VIS [ VIS | 4410 2 VIS T VIS | 4410 2 VIS [ VLS | 4410 2 VIS T VIS mmm
) S IN3NOJWOD ¥ LNINOJHOD € ININOJWOD 2 1NINOdWOD T ININOJWO)
T T aNOdWey _
(W3 NI) o
038 03d0713A30 A1TN4 Y04 SINIWIYNSYIH 3QNLITdWY =
61070 0[0°0 10°0 | 950°0 SKO'0 52070 | $90°0 £b0°0 ¢v0°0 | SLI°0 T12I°0 20I°0 | 880°0 0/0°0 2500 ats
8L0°0 09°L 99S°[ | £62°0- 98T 289 | $/0°0- S£9'[ 60L°T | 91070~ 298°L 8/8°L | OII°0 9v8°T Se/°[ 9AY
8v0°0 ¥09°1 9SS'L | OVE°0- IvE'T 1[89°L | /b['0- §b9'[ S6L'T | SLE0 280°2 L0L°L.| £90°0- 2v4°T 608°I 0219
L5070 LI9°T 09S°I | I¥E"0- v9€°1 SOL°[ | /p0°0- 8S9'[ 30470 1020 E66°1 1/8°1"| 6£0°0 SZ°T 9g/°[ 6019
300°0 96S°L I6S°I | 28270~ OLE°T 2S9°[ | /€0°0- S99°] ¢OL°L | (80°0- $26°[ T10°2 | VEI'0 €6/°T 659°[ 8119
L1070 06S°L €4S°[ | 2b2°0- €0v°T Sp9°[ | ge[ g~ Y6S°T O€L°T | 850°0- 9IL°T 4471 | 9170 296°1 S6L°L | (II9
S90°C 6C9°T #vS°L | 69€70- SPE'l pl/[ 0v0°0- 229°1 299°[ | €S1°0- 8¥8°[ 100°Z | SsI0 98°l 169°1 | 9119
bv0°0 8I9°L S°[ | 9€2°0- €9v°T 669°1 | 060°0- 0S°L 099" | S12°0- €5£°1 896°[ | 0b2'0 $26°[ ¥89°L | SII9 .
€070 009°[ ££S°0 | $I2°0- 0S6°T $99°[ | ppr-o- 96571 OvL"L | S00°0- vp8°I 668°T | LbI'v 9/8°[ 520°T | ¢II9
-mww_w--mmm“m--mmm“m---wqm“o- 0SE'[ 869°1 | 8v0°0 62/°I 189°[ | S0['0- [ps°[ 9v8°[ | 990°0 9v8°T 08L°[ | ¢€[19
3410z VIS T VIS | 4410 2 VIS [ vis 410 2 VIS T VIS | 4410 2 IS T vis 4410 e vwviS 1vis | qr
el S AT ER Rl M St Tl N
-----m-wimqmm¢mm-----------v-w¢uzomxou € ININOdW0) 2 LNINOAKOD I LNINO4WOD
(W2 NI)
S 038 LV14 Y04 SINIWIUNSYIW 3IGNLITdHY
wnIpads JYMSNO a8&3.%&&%&.2.%mw.&.&ﬂ-:::--:-:-------:--::--

R LA



peaked Pierson-Neumann Spectrum. Since the variability in friction factors for the two
low-frequency components did not affect the representative spectral friction factor, it
was not deemed necessary to use a single coupled component for the two lowest

frequency components.

3.7 Bedform Analysis

To relate wave attenuation to bedform characteristics, an extensive bedform
analysis is obviously essential. Procedures for quantifying the response of the sediment
bed to wave agitation were presented in Rosengaus (1987). These procedures include
methods for characterizing the transcient case, which we commonly refer to as “the
developing bed,” and the case that is statistically independent of time, which is usually
identified as “the fully developed bed.” The developing bed may include a sand bed
that is developing from an initially flat bed, as was the case for all experiments
completed in this study. Alternatively, it may include a redeveloping sand bed that was
initially in a fully developed state resulting from another wave climate, which was

studied in detail in Rosengaus (1987).

For this study, Chris Rehman, a UROP (Undergraduate Research Opportunities
Program) student, completed the majority of the bedform analysis. His work basically
made use of the methods and procedures that are detailed in Rosengaus (1987).
Therefore, a brief summary of the basic requirements for both the developing bed and

fully developed bed is in order.

3.7.1 The Developing Bed

M. Rosengaus observed that when the sediment bed in the wave flume was

developing from an initially flat state, ripples initially formed at discontinuities, or,
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more specifically, at the junctions between the glass side panels of the flume. At these
locations, the ripples would grow as patches, in a random and chaotic manner, and
eventually cover the sediment bed. Therefore, to help simplify the procedure,
“originator ripples” were set at the junctions by tracing a line across the flrme using a
wooden stick. This procedure forced the ripple patch to extend across the width of the

flume. Thus, the ripple patch would grow in an organized manner,

In addition, the appearance of the growing patch followed a trend. It was observed
that ripples that were located a certain number of crests behind the expanding patch
front attained a geometry that was very similar to their fully developed state. The
region between the patch front (at the flat bed) and these fully developed ripples
appeared to form a type of envelope. In any event, with this organized patch growth,

some parameters cculd be defined to characterize the development of the sediment bed.

The first of these parameters is the ripple patch expansion speed, Cyp, which is the
sum of the patch propagation speed observed in the wave direction or +X direction,

Cb+, and that opposite of the wave direction or -X direction, Cp.. Therefore,

Cb=Cp++ Cp- (3.33)

These patch propagation speeds are measured by noting the location of the patch fronts

at various times during the experimental run.

The next parameter of interest is the time it takes a bedform crest to develop from
its first appeara.ce to a fully developed state, tf. To develop an estimate for this
parameter, the observation noted above, in which fully developed ripples and associated
envelopes appeared, was used to advantage. The generalized parameter, tg, is actually

the average of tf, and tf.. tf,is determined by using information observed for the patch
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propagating in the +X direction, and ts. is determined using information observed for

the patch propagating in the -X direction.

To determine tf, and t1., a procedure was developed that would help to minimize
the subjectiveness of the observations. First, the number of bedforms experiencing
growth within the developing envelope (described above), which we can call NFB, is
estimated. Then, if we consider the +X direction as an example, the time for the
bedform to develop from its first appearance to its fully developed state is equal to the
time it takes for NFB new crests to appear. To estimate tg, another parameter, the time
for a development of each new bedform, tyew, must first be obtained by determining the
time elapced since the beginning of the run and dividing that by the total number of
ripples in the patch of interest. If we consider the +X direction as an exapmle, then

the time for the bedform to develop from its first appearance to its fully developed state

may be estimated by:
Ty = NFB+Tnew (3.34)

Obviously, the accuracy of this method is limited since it is dependent on the
subjective judgement of the observer to determine whether ripples are fully developed
and to locate the front of the ripple patch. However, this procedure does serve as a
quantitative indicator of the response of the sediment bed to wave agitation. Again,

the details of this procedure are thoroughly discussed and clarified in Rosengaus (1987).

3.7.2 The Fully Developed Bed

As noted above, the fully developed bed is defined to be in a state in which any
bedform parameters are statistically independent of time. The parameters that are

commonly accepted to be relevant to the fully developed bed include the
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nondimensional bedform height, n/Ay, length, A/Ay, steepness, 5/}, and the
asymmetry, a. The analysis of these parameters, which are further described in
Chapter 5, was completed by taking pictures of the bedform profiles at a number of
locations along the test section of the wave flume. These pictures were then analyzed
to obtain statistics associated with the bedform parameters of interest. This analysis
required the use of a variety of equipment and computer programs. The procedures and
materials associated with this analysis are described in detail in Rosengaus (1987).

However, they can be briefly summarized.

The experimental equipment for the bedform analysis includes an Olympus OM10
35-mm camera and a variety of photographic lamps. As noted above, a number of
photographs were taken of the bedform profile at various locations along the length of
the test section of the flume. To analyze these photographs (which were in the form of
slides), a slide projector was used to project the bedform profile onto a CALCOMP 9000
digitizing tablet. Then, an IBM XT computer was used to run a number of programs

to process the digitized profile.

The first processing program used converts the output from the digitizer
information into a record of equally spaced points representing the bedform profile.
Next, a program digitally filters the profile record to eliminate long variations not
associated with the individual bedforms. Once this is completed, another program
counts the individual bedforms, measures their heights and lengths, and computes
relevant statistics. In addition, another program is used to estimate the statistics on
the asymmetry of the bedforms. Finally, a program is used to plot the profiles.
Basically, this software provided all necessary information from which the

characteristics of the bedforms could be quantified in a statistically objective manner.

-4 -



4 EXPERIMENT DESIGN

4.1 Experimental Procedure

4.1.1 Monochromatic Waves

The experimental procedure necessary for setting up monochromatic wave
experiments in the wave flume is described in detail by Rosengaus (1987). However,

the procedure may be briefly summarized as a few steps.

First, the desired wave characteristics (amplitude, frequency, and wavelength) are
determined for the region of the flume that includes the sand layer. Next, these wave
characteristics are traced back down the ramp to define the characteristics of waves
that must be generated by the wavemaker. This computation is completed by using a
conservation of energy flux argument for a wave passing over an abrupt change in depth

(as per Ippen (1966)).

Once this is completed, a correction factor is computed to ensure that the second
harmonic free wave is properly eliminated in the test section. This free harmonic,
which shows up when using a piston-type wavemaker to generate Stokes Waves, is
discussed in Chapter 3. In this case, the transition over the ramp requires us to modify
the wavemaker motion to ensure the the free harmonic is sufficiently eliminated in the
test section (over the sand bed). As discussed in Rosengaus (1987), the component of
wavemaker motion that is normally used to eliminate the free harmoaic can be thought
of as a “counter-second harmonic free wave.” One might expect that this “counter-
wave” would normally be computed based on the deeper depth at the wavemaker
(usually 70 cm). However, the necessary “counter-wave” would have to be larger if the
depth at the wavemaker were the same as that over the sand bed (usually 60 cm).

Therefore, since the free harmonic must be eliminated in the test section, we might
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expect that the magnitude of this counter-second harmonic free wave must be larger
than that normally computed for the deeper depth at the wavemaker. Accordingly, a
correction factor is defined that may be used to adjust the amplitude of the component

of wavemaker motion that eliminates the second harmonic frez wave.

As is thoroughly explained in his thesis, M. Rosengaus obtained this correction
factor by determining what the amplitude of the free second harmonic would be if the
depth at the wavemaker were the same as that over the sand bed. Then, he adjusted
this amplitude as necessary to accommodate the deeper depth at the wavemaker by
making use of the conservation of energy flux computation. The correction factor
would then be this amplitude divided by the theoretical free harmonic amplitude. As
detailed in Rosengaus (1987), this procedure was tested experimentally. Although it
was shown that removal of the free harmonic could be improved by experimental “fine
tuning,” the procedure noted above was shown to be sufficiently accurate to remove the
free harmonic for the experiments completed. After the wavemaker recalibration, this
procedure for calculating this correction factor was tested. Experimentally, it was
shown that the removal of the second harmonic was improved if this computed
correction factor was reduced by about 15 percent. Therefore, for the monochromatic

wave experiments using the .12-mm sand, this reduced correction factor was used.

4.1.2 Spectral Waves

In addition to a number of spectral experiments using the 0.12-mm sand, a number
of spectral experiments were also completed using the 0.20-mm sand. All of these
experiments were simply a continuation of the spectral experiments completed by
M. Rosengaus. Therefore, a3 for the monochromatic wave experiments, a detailed
description of the design procedure for these experiments can be found in Rosengaus

(1987). Again, however, the design procedure can be summarized in a few steps.
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For the experiments of interest, the spectral intensity or spectral energy may be

expressed in terms of a representative monochromatic wave, as follows:

2
ep

E= J. Syn(w)dw = %ar (4.1)
0

Once the spectral energy has been defined (or an amplitude and radian frequency for a
representative monochromatic wave has been chosen), the shape of the spectrum to be
simulated must be determined. For the earlier experiments completed (preliminary
experiments and Experiments C, D, and E), a Pierson-Neumann spectrum was
simulated. This spectrum is a relatively brcad-banded spectrum in which the energy is

distributed over a wide range of frequencies.

The remainder of the experiments simulated a JONSWAP spectrum, which is a
relatively narrow-banded spectrum. The JONSWAP spectrum is commonly accepted as
the more realistic of the two spectra. The parameters and relationships describing both
of these spectra are summarized in Section 3.3.2. In addition, they are plotted in

Figures 3.4 and 3.5.

Tor spectrum simulation, the theoretical continuous wave spectrum is partitioned
into five components of equal energy using a numerical integration program. Since we
have defined the total desired energy for the spectrum, we can simply divide this |
equally among the five components and thereby obtain design amplitudes for each of
the spectral components. Then, the frequency for each component can be taken as the

centroid of the region under the spectral curve that it will represent.

This choice of a five-component spectrum was advantageous because it provided a

wide range of frequencies to represent the frequency distribution that might be found in
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a real spectrum. It also reduced the problems posed by some of the earlier eight-

component spectral representations.

The first advantage of reducing the number of components to five involved the size
limitations of the wave flume and accuracy of the measuring system. Basically, the
depth of the flume limits the total allowable surface height. The concepts of
superposition would indicate that, coasidering this size restriction, if we have fewer
components in the spectrum the amplitude of each component can be larger. The
accuracy of the amplitude measurements is limited by the measuring system, as is
discussed in Section 3.6.3. In effect, with larger amplitudes for each of the components,
the relative error will be smaller. Therefore, we will get a more accurate determination

of the attenuation and friction factor.

It is also advantageous because, with fewer components, fewer higher harmonics and
nonlinear interactions result. For example, if two components included in a spectrum
are wj, and wp, we expect second harmonic components oscillating at frequencies of
(2wy), and (2wy) and third harmonic components oscillating at (3w;) and (3ws). In
addition, the two frequency components will interact nonlinearly to produce
components oscillating at |wi+ws| and |w;-ws]. We must make sure that these
additional components do not oscillate at frequencies that coincide with those of other

components in our spectrum and affect our amplitude and attenuation estimates.

Once the frequencies of each of the components have been chosen, they must be
adjusted to complement the wave gauge sampling parameters. This requirement arises
because we are using a number of discrete saxnple points over a finite sampling period
or “window” to resolve the components of the water surface profile. Due to the
characteristics of discrete Fourier transforms over finite sampling periods, the ratio of

the sampling period to any component’s period must be an integer for accurate
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resolution. This slight adjustment assures that the energy leakage around the frequency

spike of interest will be minimized.

After the frequencies have been finalized, ensuring that the energy leakage is
minimized and nonlinear components have negligible impact, the final characteristics of
the wave spectrum that will be generated over the sand bed may be defined. These
characteristics may then be used to obtain the amplitudes of componerts in the deeper
water at the wavemaker. This is completed by applying the energy flux conservation
equations, also mentioned in Section 4.1.1, to each of the components of the spectrum.
Then, the spectrum may be generated by making use of a random number generator for

each of the phases of the oscillatory components to be generated.

4.2 Description of Experiments

4.2.1 Monochromatic Waves

All monochromatic wave experiments associated with this thesis were completed
using 0.12-mm silica sand in the flume. These experiments, being an extension of the
experiments completed by M. Rosengaus using the 0.2-mm sand, were performed in a
similar manner. As for the previous set of monochromatic wave experiments, “typical

wave conditions” were considered to be those characterized by

h = 60.0 cm
a=6.0cm

L = 600 cm

h/L = 1/10

w = 2.39185 rad/sec
T = 2.627 sec
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The monochromatic wave experiments completed were:

Experiment A. This experiment, designed with typical wave conditions except for the
wave amplitude, was intended to better define the initiation-of-motion condition for
waves propagating over an initially flat bed. Therefore, no “originator” ripples were
formed at the beginning of the experiment. The amplitudes used were 2.0, 2.5, 3.0, 3.5,
and 4.0 cm. Runs with progressively higher wave amplitudes were completed, and the
progression from onset of movement to ripple development and ripple patch progression

was observed.

Experiment B. Again, the typical wave conditions were used with the exception of the
amplitude, which again was progressively increased. Here, however, the amplitudes
used were 4.0, 5.0, 5.5, 6.0, 7.0, and 8.0 cm. For this experiment, the characteristics of
the developing bed were analyzed. In addition, the procedure was to determine
attenuation over a developed bed, and alsc to record the bedform characteristics.
Therefore, the bed was allowed to reach a fully developed or steady state for each
amplitude used. In this way, quantitative relationships between bedforms and the

associated wave attenuation could be developed.

A suminary of the monochromatic wave experiments is shown in Table 4.1.

4.2.2 Spectral Waves

The spectral experiments in this study included five experiments for which the
0.2-mm sand was used, and eight experiments for which the 0.12-mm sand was used.
The spectral experiments were completed with the purpose of characterizing any
general relationships associated with the wave/sand interaction for an arbitrarily chosen

spectrum. Also, the experiments were intended to test the assumption of using a
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representative monochromatic wave to characterize the attenuation associated with a

wave spectrum,

The spectral experiments completed can be considered in two groups:

4.2.2.1 Spectral Experiments Using the 0.20-mm Sand

Experiment S1. The primary purpose of this experiment was to verify the reproduction
of spectral experiments completed previously by M. Rosengaus. For this experiment, a
five-component design spectrum was used for which the associated spectral energy was
set equivalent to one-half of the energy associated with the typical monochromatic wave
(defined in Section 4.2.1). As for Experiments S2 through S5, a Pierson-Neumann

spectrum was simulated.

Experiment S2. This experiment was also used as additional verification of the spectral
experiments and also included analysis of the developing bed. The experiment included
another representation of the same spectrum. Here, the spectrum was generated using
a different random seed for the random number generator routine in the wave
generation program. Therefore, the relative phases for each of the components were
different from those of the components generated in Experiment S1. Again, however,
the spectral energy was taken as one-half of that associated with the typical

monochromatic wave.

Experiment S3. This experiment was completed after changes were made to the
wavemaker to increase its output so that higher waves could be generated. Because of
these changes, the wavemaker was recalibrated. After this recalibration (which is
discussed in Section 3.4), this experiment was completed to verify proper wavemaker

operation and to test the accuracy of the measuring system. The energy was equal to
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that of the typical monochromatic wave. The developing bed was also analyzed in this

experiment.

Experiment S4. This experiment, also completed after wavemaker recalibration, was
completed ic study the wave/sand interaction for higher spectral energies. Therefore,
the spectral energy was taken to be equal to that of the typical monochromatic wave.

No developing bed information was obtained for this experiment.

Experiment S5. Here, wave/sand interaction for lower spectral intensities (including
that associated with the developing bed) was studied. This experiment provided a
comparison to Experiment S4, which yielded information regarding high spectral
intensities. For Experiment S5, the spectral energy was taken to be equal to one-half
that of the typical monochromatic wave. In addition, Experiments S4 and S5 both
were used to study the accuracy limitations of the experimental setup, and were used as
examples in Section 3.6.3.2. The Pierson-Neumann spectral experiments are

summarized in Table 4.2A.

4.2.2.2 Spectral Experiments Using the 0.12-mm Sand

Experiment C. For this experiment, two realizations of the spectrum were generated,
which means that experiments were completed for two different random seeds to define
the phase relationships. The design spectral energy was taken to be equal to three-
fourths of the energy associated with the typical monochromatic wave. Developing bed
information was obtained for this experiment. The developing bed was also analyzed
for Experiment E. However, for Experiments D and F through J, no developing bed

information was obtained.
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Experiment D. Here, the energy was designed to be that of the typical monochromatic
wave to obtain information about spectral dissipation associated with high spectral

intensities. Again, two realizations were generated.

Experiment E. In this case, a slightly smaller spectral intensity was studied in an effort
to characterize spectral wave/sand interaction for spectral waves of lower energy. The
design spectral energy was set equal to three-fifths of that of the typical monochromatic

wave. As noted above, the developing bed was analyzed for Experiment E.

Experiment F. For this experiment, a JONSWAP shallow water spectrum was used. All
of the previous experiments had shown 9%’ /¢ to be a useful dimensionless parameter for
characterizing the relatively broad Pierson-Neumann spectrum. Therefore, for this
case, the purpose was to test the applicability of 9’ /¢ for the JONSWAP spectrum. In
this case, the design spectral energy was set to equal the energv ussociated with the

typical monochromatic wave and two realizations of the same spectrum were simulated.

Experiment G. This experiment also simulated the JONSWAP spectrum and was
completed with the same intention as Experiment F. In this case, however, the spectral
energy was set equal to one-half of that associated with the typical monochromatic

wave. Here, only cve realization was completed.

Experiment H. Here, one realization of a JONSWAP spectrum was simulated. The

spectral energy was set at four-fifths of that of the typical monochromatic wave.

Experiment I. For this case, one realization of a JON' WAP spectrum was tested using a
design spectral energy of one and one-tenth of that associated with the typical

monochromatic wave.
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Experiment J. This was the final experiment completed using a JONSWAP spectrum.
In this case, the intention was to obtain the highest possible spectral intensity given the
constraints of the experimental apparatus. To accomplish this, the input amplitudes
for each of the five components were taken to be 3.0 cm and the random seed was
chosen to prevent any wave breaking in the flume. The design spectral energy for this
experiment was approximately equal to one and one-quarter that of the typical

monochromatic wave.
The spectral experiments using the .12-mm sand are summarized in Tables 4.2B and

4.2C. In Table 4.2B, the Pierson-Neumann experiments are presented, while the

JONSWAP spectral experiments are summarized in Table 4.2C.
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5 RESPONSE OF THE SEDIMENT BED

When long waves pass over a flat sediment bed, there will be attenuation of the
waves due to bottom friction. As we increase the wave energy, sand grain motion will
occur and will eventually lead to development of bedforms in the sediment bed. We
would expect these two phenomena to be interrelated, since the bedform characteristics
produce a roughness that affects the friction factor associated with the wave
attenuation. Ideally, we would hope that, with knowledge of the characteristics of the
wave train or spectrum propagating over the sand bed, we would be able to predict
bedform geometry, and from this information estimate a relative roughness and friction
factor describing wave attenuation. Therefore, in this study, we first consider the
bedform characteristics resulting from the waves passing over the bed. In this chapter,
the bedform data for the experiments using .12-mm sand, and those completed by
M. Rosengaus using the .20-mm sand are compared to an existing relationship

summarized in Chapter 2.

5.1 Initiation of Motion

The initial motion mentioned above was experimentally characterized by running
waves of increasingly higher amplitude over a completely flat sand bed. Detailed

observations were then made in an attempt to define the wave intensity associated with

incipient tand grain motion.

A specific initiation of motion condition was actually difficult to define. However,

four separate conditions were observed:

1. The “scraper” used to flatten the sand bed occasionally left small longitudinal
depressions that were parallel to the wave direction. At relatively low wave intensities,

ripples that were less than about 1 mm in height were observed forming in these
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depressions. It appeared as though these small ripples consisted of the finer sands of
the sediment’s grain size distribution. Also, since these ripples did not propagate or

grow, they were assumed to be of insignificant importance.

2. At a slightly higher wave intensity, which was quite close to that associated with the
critical Shields criterion, a general grain motion was observed at any irregularities in
the sand bed (which are infrequent yet unavoidable considering limitations in flattening

the sand bed).

3. At a wave intensity that was slightly higher than critical, ripples were found to form.
at the irregularities noted above and also would propagate (very slowly) in both the

downstream and upstream (“downwave” and “upwave”) directions.

4. For regions of the bed that were perfectly flat, no motion was observed for the wave
intensities tested. It was obvious that the motion associated with these perfectly flat
regions would not correspond to Shields criterion. In addition, flat beds of this tyy.e

would not be found in nature, and, therefore, were not considered further.

To better characterize the first three of the initiation-of-motion conditions, they are
plotted against Shields diagram for initiation of motion in Figure 5.1. In this plot,
information regarding the .20-mm sand is also included. This information was obtained
from observations made during the .20-mm sand experiments, in which the same four
conditions were noticed (although a criterion was not defined for Condition No. 1).
Basically, review of Figure 5.1 shows a relatively good correspondence with Shields

Criterion.
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5.2 The Developing Bed

As is described in Section 3.7, to characterize the transition between a flat sediment
bed and fully developed bed, the growth of ripple “patches” was observed. Two
parameters are used to describe this ripple patch growth. The first parameter is the
patch propagation speed normalized by the horizontal bottom velocity, Cy/Up. The
second is the time to full development of a single ripple, normalized by the wave period,

tg/T.

The data associated with the first of these parameters, Cp/ Uy, is plotted against
¥’ [Yc in Figure 5.2. In this figure, the filled symbols represent the Cy,/Uy, for the patch
growth in the direction of wave propagation (+X direction). The open symbols
represent Cp/Uy for patch growth in the direction opposite to that of wave propagation
(-X direction). It is apparant that there is a rather wide scatter in the data, which is

expected due to the unavoidable subjectivity the estimates of different observers.

First, review of this figure shows that the ripple patch growth, as expected, is
generally larger in the direction of wave propagation. For lower values of ¢’ /4, the
differences between patch growth in the +X directions and -X directions are relatively
small, which seems reasonable since we would expect linearity to dominate at these
lower wave intensities. Also, in general, the reiationship between Cy,/Uy, and 9’ /¢
matches relatively well for the two sands, although there is a significant difference
between the results of the monochromatic wave experiments for the two sands at higher
values of ¢’ /¢ (greater than a ¢’ /¢ of 2, say). However, the data at these higher
values is limited. In addition, for the expeiiments with the .12-mm sand, it was found
that the measurement of patch growth was extremely difficult because of the rapid
rates of growth and spontaneous ripple growth occurring at locations other than the

front of the originator ripple. Therefore, based on the available data, no clear

-92 -



Developing Bed Results
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Figure 5.2  Observations of Cyp. and Cp-for different wave conditions
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distinction between the results for the two sands can be identified and, for the most

part, the Relative Shields Parameter appears to be a good indicator of wave sediment

interaction over the developing bed.

Additional review of Figure 5.2 reveals that the spectral results, for which the
concepts of the representative Shields Parameter and representative horizontal bottom
velocity (discussed in Section 2.2.2.) have been used, generally match the
monochromatic results. This implies that the use of the representative monochromatic
wave in this manner is appropriate for characterization of the response of the
developing sediment bed. Of course, this conclusion is again based on limited data with

limited accuracy, especially for the higher wave intensities.

In the next plot, Figure 5.3, t1/T is plotted against ¢’ /¢¢. In this figure, all data
appears to fall on one general curve. Therefore, this figure verifies the conclusions
noted in the above paragraphs. Review of this figure shows that the parameter t¢/T
asymptotically approaches zero as 9’ /. gets large. Also, as 9’ /. approaches 1.2
(approximately), ts/T appears to go to infinity. This implies that no bedform

propagation occurs for values of /¢ that are less than 1.2,

In summary, while the developing bed data is widely scattered, so:me preliminary
conclusions can be stated. First, the Representative Shields Parameter provides a
reasonably good indicator of wave sediment interaction for a developing bed. Secondly,
the use of a representative monochromatic wave to represent a wave spectrum provides
an acceptable characterization of the response of a developing bed. Because of the wide
scatter in the data, and unavoidable subjectivity in observations and estimates, no
relationships are presented to characterize the developing bed at this time. Accurate

relationships for the developing bed would require additional research.
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5.3 The Fully Developed Bed

5.3.1 Monochromatic Waves
5.3.1.1 Comparison with Existing Relationships

For a reasonably high wave intensity, once we have bedform propagation occurring
at the irregularities described in Section 5.1, we expect the associated ripple patches to
continue to grow until the bed is completely covered. With a continued steady-state
wave motion over the sand bed, the ripples should eventually reach a steady state in
which their characteristics are statistically independent of tirne. For this condition, we

refer to the bed as fully developed.

Some common parameters used to characterize fully developed bedform geometry
include the bedform height (7), length (1)), steepness (n/A). In addition, the
asymmetry () is also occasionally considered. If we defire our bedform as being
bounded by two troughs, we can define the asymmetry as the ratio of the length
between the first trough and the crest of a ripple, to that of this trough to the next
trough (the ripple lenguh). Normally the height and length are nondimensionalized by
the excursion amplitude, Ay. The nondimensionalized height and steepness have been
considered to be the important parameters defining the relative roughness, and

therefore are of special interest.

Many previous experiments have shown that the bedform parameters (and
attenuation results) will exhibit different behavior for values of 1’ /¢ exceeding a
particular valuc, co.nmonly denoted as the “bLreakoff value”. Above this value, in the
breakoff range, the ripples were observed to be somewhat shaved off and exhibited a
three-dimensional nature. In addition, this breakoif range was estimated in terms of

the sediment characteristics as was defined in Equation 2.17.
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Stefanick (1979) presented some empirical relationships to relate the fully developed
bedform characteristics to the intensity of the waves passing over the sand bed. These
relationships, which are discussed in Chapter 2, accounted for the existence of a
breakoff range and relate the bedform geometry to Shields Parameter, a dimensionless
parameter that has successfully been shown to represent wave-sediment interaction.
Since we are interested in verifying the use of this parameter for any sand, thc bedform
geometry data from both the .12-mm and .20-mm sand experiments were plotted

against it.

The random nature associated with the breakoff range appeared to be prevalent for
a number of the high intensity monochromatic wave experiments completed in this
study. The attenuation results (discussed in the next chapter) also exhibited some type
of breakoff. Therefore, one would expect that the parameters defining bedform
characteristics would exhibit this breakoff and that the empirical relationships defined
in Stefanick’s thesis would be appropriate. However, upon plotting the bedform

parameters against 9’ /1, no concrete evidence of the breakoff was found.

For example, Figure 5.4 shows /Ay, plotted against ¥’ /9. For the .12-mm sand,
th= application of Equations 2.15 through 2.19 provides a reasonable fit to the data.
However, for the .20-mm sand, the breakoff point is estimated to be at a higher wave
intensity and these equations provide a poor fit to the data. In addition, the data
points for the .20-mm sand and .12-mm sand basically fall on a single straight line,
Therefore, at this point, the linear curve fit proposed by M. Rosengaus (1987) appears
to provide the most accurate representation of the data and the breakoff characteristics
defined by Equations 2.15 through 2.19 cannot be substantiated. However, the use of
v/ ¥c as a dimensionless parameter representing wave-sediment interaction appears to

be verified.
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Monochromatic Wave Experiments
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This argument seems to be verified even more in light of the results presented in
Figure 5.5, in which 7/ is plotted against 9’ /¢c. In this case, we do see a slight
difference between the .20-mm sand and .12-mm sand as we move out into the breakoff
range. However, the difference is not significant enough to justify a distinction.
Moreover, the plot of Equation 2.19 in the breakoff range for the .12-mm sand shows a

poor correlation with this data.

The final two plots are those of /Ay vs. 9’ /tc and @ vs 9’ /¢, shown in Figures
5.6 and 5.7, respectively. While neither of these two parameters are normally used in
the calculation of the relative roughness, A/Ay, is obviously associated with 5/ and
n/Ab. Therefore, one can simply consider A/Ay, to be the ratio of 7/Ay, to n/X. In any
event, both curves basically show the data points for the two different sands to lie on a

single line and no distinct breakoff point can be confirmed.

5.3.1.2 Proposed Relationships

As stated above, the concept of a breakoff range for the bedform gecmetry
parameters cannot be confirmed with existing data. Therefore, two alternatives have
been considered. For the first approach, we can characterize the bedform geometry in
terms of linear curve fits as was originally done by M. Rosengaus. In the second
approach, we can look more closely at the relationships proposed in Stefanick(1979) to

verify the appropriate definition of the breakoff value and associated equations.

5.3.1.2.1 Linear Curve Fits

In this case, the curve fits proposed in Rosengaus (1987) have been modified, since

more data have now been included.

Therefore, we obtain
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n/Ap = .3365 - .0751(9’ /1) (5.1)

Also,

/X = .1904 - .0176(¢" [9c) (5.2)

Combining these two yields

AAy = 1.5977 - .1878(%’ [ ) (5.3)
Finally,
a = .4482 + .0129(9’ /) (5.4)

These relationships are plotted in Figures 5.8 through 5.11 along with the data they
represent. All of these relationships are very similar to thcse defined in Rosengaus

(1987), which are shown by the dashed lines in Figures 5.8 through 5.11.

5.3.1.2.2 Improvements Based on Updated Breakoff Range

To verify the breakoff values defined by Stefanick, the data summarized in Figures
5.12A and 5.12B (taken from Stefanick,1979) were analysed. In these plots, (¥’ /%c)b is
plotted as a function of S,. In Figure 5.12A, the experimental breakoff values (or
ranges) were defined using ripple steepness data, and Stefanick’s breakoff relationship,
Equation 2.17, is shown as a dashed line. In Figure 5.12B, this dashed line is also
shown and the -anges were defined using ripple height data. Rather than the “visual

best fit” obtained by Stefanick, a power law relationship for the data shown in Figures
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5.12A and 5.12B was assumed and best-fit lines were located by making use of the
midpoints of all of the data ranges plotted. These more rationally determined
relationships are plotted on the figures as the solid lines. In this case, the breakoff

value using the ripple steepness data was found to be described by:

(¥"/¥c)onl = 1.8 5,8 (5.5)

which is the same as that defined by Stefanick. However, the breakoff using the

nondimensional ripple height data was found to be:

(¥ /¥c)onab = 2.0 Sy 4 (5.6)

which is different from Stefanick’s relationship.

While Stefanick had assumed a single value representing the breakoff point for all
ripple geometry parameters, this analysis would imply that different bedform geometry
parameters might exhibit a breakoff at different values of ¢’ /#.. In addition, a
physical argument can be presented to justify the possibility of these separate breakoff
values. This argument stems from the observation that ripples associated with the
higher values of 9’ /v appear to be shaved off. As we increase the wave intensity to a
point at which the tops of the ripples re being shaved off, the slope of the 5/Ay, curve
would get steeper. If the ripple length does not change significantly at this point, then
A/Ayp would continue to vary at the same slope. In this case, /A would exhibit a
breakoff at this point. On the other hand, if the ripple length changes in such a way
that the ripple shaps is roughly maintained, 7/) may not yet exhibit a breakoff. In this

case, a breakoff in ripple steepness, 7/, might still occur at a higher wave intensity. In
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any event, the assuraption of a single breakoff value for all bedform parameters is not

necessarily the case, and different breakoff values are quite possible.

As noted above, Stefanick’s expression for (9 /9c)y matched the curve fit to the
1/ breakoff, and therefore is still considered to be valid for that parameter.
Consequently, Stefanick’s relationships for 7/\ were considered to be valid both below
and above the breakoff point. However, the expression obtained for (¥ /)y using the
curve fit to the /Ay, breakoff data was different from that of Stefanick. Therefore,
while the same 7/Ay, expression could be used below the breakoff point, modification of

the 7/Ay equation above the breakoff point was considered to be preferable.

To accomplish this, the power of 9’ /9. in the n/A} equation was taken to be the
same as that defined by Stefanick, -1.5, leaving two unknowns: an exponent for S, and
a constant coefficient. Then, revised values for these two unknowns could be defined by

using the following “power law” form of an equation for n/Ay:

n/Av = A S," (¢ [9c)t-

along with Equation 5.6. The resulting relationship is:

M Ab = 56 S84 (1 [40) 15 (5.7)

Now, these revisions may be applied to the .12~ and .20-mm sand that was used in
the present experiments. First, from Equation 5.5, the breakoff for 5/, (¥’ /%c)bn1, is
at a 9’ /4 of 2.128 for the .12-mm sand, and 3.371 for the .20-mm sand. Using
Equation 5.6, for 9/Apb, (¥’ /%¥c)bnab can be shown to be 2.236 and 3.038 for the .12-
and .20-mm sands, respectively. In addition, the /Ay, plot (Figure 5.4) has been
modified using Equations 2.15 and 5.7. The revised plot is shown in Figure 5.13. For
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values of ¢’ /9. that are below any breakoff, there is no change from Figure 5.4.
However, the locations of the curves in the breakoff range have changed to reflect the
modified breakoff range noted above. Here, the curve for the .12-mm sand still closely
matches the data and the curve for the .20-mm sand is shifted back somewhat.
Unfortunately, however, this shifted .20-mm curve is still significantly higher than the

data point located at a 9’ /9. of about 2.8.

To summarize, this alternative approach does not represent the data as accurately
as the use of the linear curve fit discussed in the preceeding section. However, it does
improve upon Stefanick’s relationship somewhat. In addition, this approach accounts
for the concept of a breakoff range. As will be discussed in Chapter 6, the presence of
some type of breakoff range makes physical sense and also is justified by experimental
data for attenuation of monochromatic waves. Again, the /Ay, can be described using
Equation 2.15 if 9’ /4. is below the appropriate breakoff, which is defined by Equation
5.6, and by Equation 5.7, if ¢’ /9 is above this breakoff. For 5/), Equation 2.16 is
used below the breakoff, defined using Equation 5.5 (or 2.17, since they are the same),

and by Equation 2.19 above the breakoff value.

5.3.2 Spectral Waves
5.3.2.1 Comparison with Existing Relationships

For the Wave Spectra, we would hope that we could define a representative Shields
Parameter to characterize the wave-sediment interaction. In addition, we would like to
describe the wave spectrum in terms of a monochromatic wave as discussed in Chapter
2. Therefore, the representative horizontal bottom excursion amplitude for the
spectrum, Aprep, i8 used to normalize the bedform parameters. Hopefully, the

attenuation and bedform characteristics for wave spectra, when represented in this
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fashion, can be shown to comply with the relationships for monochromatic waves. If
this is the case, then the task of determining wave spectrum attenuation and associated
bedform response would be simplified tremendously due to the equations that already

exist for the monochromatic waves.

In this study, the use of the equivalent monochromatic wave, defined in Chapter 2,
as a representation for spectral attenuation and bedform characteristics could not be
verified. However, the representative Shields parameter proved to be an adequate

parameter describing wave-sediment interaction for a wave spectrum,

This is apparent in Figure 5.14, which shows of plot of the nondimensionalized
bedform height against the representative Shields parameter. In this case, there is a
relatively good correlation between the data of the monochromatic wave experiments
and spectral wave experiments, although the spectral data does lie slightly below the
monochromatic data. In addition, the spectral data for both the .12-mm sand and
.20-mm sand correlate quite well, showing that (1’ /9c)rep is a physically relevant

parameter representing wave/sediment interaction.

When the ripple steepness, /), is plotted against ¢’ /%, the spectral data do not
correlate very well with the monochromatic wave data, as can be seen in Figure 5.15.
Here, the ripples formed by monochromatic waves appear to be steeper than those
formed by spectral waves. It appears as though the many components associated with
the wave spectrum giving rise to occasionally high near-bottom velocities must

somehow limit the growth or the geometry of the bedforms.

The final plots of interest include those parameters that are not commonly
considered to be directly related to the relative roughness, which is discussed in
Chapter 6. These parameters are A\/Aprep and o and are shown in Figures 5.16 and

5.17. A relatively good correspondence between the data of the monochromatic wave
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Wave Spectrum Experiments
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Figure 5.17 Fully developed bedform asymmetry for spectral waves
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experiments and those of the spectral experiments can be noticed in both of these plots.
In Figure 5.16, however, it can be seen that A/Ay, for the spectral experiments is
slightly higher than A/Ay, for the monochromatic experiments. This is reasonable when
we realize that A/Ayrep is indirectly related to the roughness because A and Ayrep

respectively show up in 7/A and n/Aprep.

In summary, (¥’ /%c)rep is applicable to the badform parameters for both the
monochromatic and spectral waves. The bedform parameters for the spectral
experiments using the different types of sand correlated quite well, as did those for the
monochromatic wave experiments. However, a direct correlation between the
monochromatic wave results and spectral wave results was not observed primarily due
to the differences in ripple steepness. Of course, anry differences in this steepness should
show up in both the /Ay, parameters and /Ay, parameters, since they have common
variables. Careful review of Figures 5.14 and 5.16 does show that, for A/ Ay, the
spectral results are slightly higher, and for /Ay, the monochromatic results are slightly
higher. Therefore, it appears as though the difference in steepness may be attributed to
a slightly lower bedform height and slightly longer bedform length for the wave

spectrum experiments.

5.3.2.2 Proposed Relationships

As discussed above, it appears as though previously defined relationships for
monochromatic waves cannot justifiably be applied to the bedform characteristics for a
wave spectrum. Therefore, the proposed relationships will simply consist of linear line
fits though the .12-mm and .20-1.m spectral data. First, for the parameters that are

commonly considered to be related to the relative roughness, we obtain:

1/ Abrep = .3357 - .0869(%" / Yicrep) (5.8)
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and
nf/\ = 1864 - .0136(%’ [Ycrep) (5.9)

Here, we see that the equation for 7/Aprep is quite similar to Equation 5.1, but n/) is

somewhat different than Equation 5.2. For A/Aprep, we find that:

A/ Abrep = 2.0490 - .3859(%’ /Yerep) (5.10)

which is quite similar to Equation 5.3. Finally, the equation for a is simply taken to be

that same as Equation 5.4, which was derived for the monochromatic wave experiments

a = .4482 + .0129(¢’/¢crep) (5.1])

These four relationships are plotted against the data they represent in Figures 5.18

through 5.21.
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6 WAVE ATTENUATION OVER A FULLY DEVELOPED BED

6.1 Monochromatic Waves

6.1.1 Comparison with Existing Relationships

As discussed in Chapter 5, when waves pass over a sand bed, bedforms will develop.
These bedforms will act as roughness elements which will increase friction over the bed
and result in wave attenuation. If we are interested in the wave height or wave energy
(possibly for engineering purposes) for a wave train that has passed over a sand bed,
this attenuation could be of significant importance. Therefore, the relationships
between bedform characteristics, relative roughness, and wave attenuation are

desirable.

The experiments completed to study wave attenuation over the sand bed made use
of the theory and procedures detailed in Rosengaus (1987). In summary, the procedure
is to measure the attenuation and use it to calculate the fric.ion factor. Then, we can
use existing relationships between friction factor, fy, and relative roughness, kyp/Avb, and
measurements of bedform geometry to piece together the relationships of interest.

Some attenuation results of the experiments completed are summarized in Table 6.1.

As can be seen in that table, no attenuation analysis was completed in Experiment
A, which was completed to investigate the initiation of motion for the .12-mm sand.
However, attenuation was analyzed in Experiment B and friction factor information for

that experiment is inciuded in Table 6.1.

The monochromatic wave attenuation results for Experiment B are summarized in
Figure 6.1, which shows the friction factor, fy, plotted against the Relative Shields

parameter, ¥’ /4, for both the .12-mm sand and .20-mm sand. In this figure, three
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curves are plotted--all of which make use of Equation 2.25, the Grant-Madsen

relationship between friction factor and relative roughness.

The solid and dotted lines make use of a modified form of Equation 2.22, Grant and

Madsen’s equation relating bedform geometry to the relative roughness:

kp/Ab = 23(n/Ab)(n/A) (6.1)

In this form of the equation, the effects of sediment transport have been neglected
because of the relatively low flow intensity. Also, the constant, 23, is used instead of
the origional constant, 28. This revised constant was proposed by M. Rosengaus based
on results of the experiments completed using the .20-mm sand. As can be seen in
Figure 6.1, for values of 9’ /4. that are less than about 2.2, the curve based on the
relationship above provides an excellent fit to the data for the .12-mm sand. Therefore,
the use of this revised constant was considered to be verified in the .12-mm sand

experiments.

The geometry parameters in Equation 6.1 were obtained using Stefanick’s empirical
relationships, Equations 2.15 through 2.19, in which the dependency cu ¥’ /9. varies
depending on whether 9’ /. is less than or greater than (9’ /%c)b. As can be seen in
Figure 6.1, the breakoff vaiue for the .12-mm sand, according to Stefanick’s
relationship, is at about 2.3. For the .20-mm sand, it is at about 3.4. The curve
denoted by the dashed line also uses Equation 6.1, but uses the linear curve-fits
proposed by M. Rosengaus as inputs for the bedform parameters. Therefore, it does not

exhibit a breakoff.

Review of Figure 6.1 shows a good correlation between the friction factors for the

two types of sands for 9’ /¢ less than approximately 2. For higher values of ¢’ /4, the
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data points for the .12- and .20-mm sand separate, which would be expected if the
concept of a breakoff point, defined in terms of 9’ /4, is valid. For the .12-mm sand,
the actual breakoff value appears to be located at a ¥’ /9. of 2.0, which is relatively
close to 2.3, the value that is obtained when using Equation 2.17. For the .20-mm
sand, an actual breakoff value appears to be located at a 9 /4. of 2.7, which is much
less than the predicted value of 3.4. In addition, the data points for the higher values of
¥’ [ still do not match the predicted curves. At these higher flow intensities, the

data points all fall below the curves that are based on Equations 2.15 through 2.19.

The same trends are also evident in Figure 6.2, which shows bottom roughness
normalized by the bottom excursion amplitude or relative roughness, ki,/Ap, plotted
against ¥’ /9. In this figure, the data points were directly converted from friction
factors to relative roughnesses using the Grant-Madsen fy to ky,/Ap, relationship.
Again, the relationships match the data quite well for lower values of ¢’ /9. and a
breakoff range does appear to exist. However, the breakoff values do not appear to be
accurately predicted and the relationships for higher values of ¢’ /¢ do not accurately

correlate with the data.

Rosengaus (1987) also considered another interpretation of relative roughness.
Instead of normalizing the bottom roughness against the excursion amplitude, he
normalized it against the average grain diameter. He found that the relative roughness
(kp/d) data for experiments with the .20-mm sand could be approximated by a
constant kp/d of 275. Then, given Ay, the Grant Madsen fy to ky/Ay relationship can
be used to define a friction factor. He found that, of the relationships available, this

procedure provided the best fit to the friction factor data.

Here, the procedure discussed in the above paragraph was additionally applied to

.12-mm sand. The resulting plot of fy vs. ¥’ /4 is shown in Figure 6.3. In this figure,

- 119 -



Monochromatic Wave Experiments

iy ve. /¥,
0.400
0.350 1
0.300 +
0.250 ¢ °
3 0.200 +
0.150 +
0.100 t
0.050 1 —k,/d=275(.12 mm sond)
"= kp/d=275(.20 mm sand)
0.000 t } : { t
1.000 1.500 2.000 2.500 3.000  3.500 4.000
V'/ Ve
Figure 6.3  FDB friction factor for monochromatic waves - Comparison with curves
based on “ky/d = 275" assumption (Model 3)
Monochromalic Wave Experiments
ky/d vs. ¥'/Y
800 -
- (Usmg Eqts. 2.;5 . 219 e .12 mm sand
1 .12 mm sand '
7001 ... Using Eqts. 2.15 ... 2.18 ©.20 mm sand
600 - (.20 mm sand)
— k,/d=275
500 +
O )
~, 400+ Lo s O
= //* ! \>, """"""""""""""""""""""""""
3001 .39 g0 5Q0
- 0O N & AR i o
2007 o° o o+ °. © el
100 4.
0 { j } 4 {
1.000 1.500 2.000 2,500 3.000 3.500 4.000
. v/
Kigure 6.4  YDB relative roughness for monochromatic waves normalized by grain

size - Comparison with curves based on Stefanick’s relationships and

“kb/

d = 275” assumption (Model 3)

- 120 -



the solid line represents the friction factor for a ky/d of 275 for the .12-mm sand, and
the dashed line represents the friction factor for the same ky/d for the .20-mm sand.

As can be seen in the figure, the curve provides a reasonable fit to the data for the .20~
mm sand. However, for the .12-mm sand, the fit is not as good. For this case, the data
points for ¢’ /9 less than 2.0 fall well above the .12-mm curve, and data points for

higher values of ¥’ /¢ fall slightly below the .12-mm curve.

This trend is also evident in light of the associated plot of ky/d vs. ¥’ /¢, which can
be seen in Figure 6.4. In this figure, the solid line represents the constant ky/d of 275,
the dashed line represents ky,/d for the .12-mm sand, and the dotted line represents the
kp/d for the .20-mm sand. These curves were obtained by making use of Equations
2.15 through .19 and the excursion amplitude which can be obtained with knowledge
of the Relative Shields Parameter. The data points were obtained directly from friction

factors by making use of the Grant Madsen relationship as before.

In this figure, the same trends noted above can be observed. The calculated ky/d
matches the data relatively well for the lower values of 9’ /4, but provides a relatively
poor match for higher values of 9’ /4, as discussed above. The constant value for ky,/d
of 275 is basically representative of the average of all of the data points, but obviously

cannot yield any insight into any breakoff characteristics.

In summary, review of the data indicates some type of a breakoff. In addition, a
dependence on grain size is observed, with the data for the .12-mm and .20-mm sands
breaking off at different values of 9’ /¢ and displaying separate trends in these breakoff
ranges. Naturally, equations that do not account for these breakoff characteristics
would provide a relatively poor fit to the data. Comparison to the data appears to
indicate that this is the case. However, the existing equations that do incorporate the

concept of a breakoff range dc not accurately match the data either. More specifically,
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the predicted breakoff values do not match the observed values, and the predicted
relationships do not match the data at higher wave intensities. Therefore, the next step

might be to attempt to verify whether there is or is not a breekoff range.

6.1.2 Verification of Breakoff Concepts

There are two concerns involving the concept of a breakoff range. First, there was
no clear breakoff range that could be observed in the bedform geometry parameters that
were obtained. Second, the breakoff values observed do not match well with the

relationship defined by Stefanick (1979).

First, the bedform geometry parameters, discussed in Chapter 5, include the
nondimensional bedform height, 7/ Ay, the ripple steepness, 5/, the nondimensional
bedform length, A\/Ap, and the asymmetry, a. The bedform height and steepness are
commonly taken to be the primary factors that affect the equivalent bottom roughness.
Since there was no clear observable breakoff value for either of these two parameters,
one might suspect that there is some other bedform characteristic influencing the

equivalent bottom roughness.

To look at this possibility more closely, two sets of bedform profiles are shown
Figures 6.5A and 6.5B. Each set includes six profiles. In Figure 6.5A, the profiles
located 10 meters from the wavemaker for all six trials of Experiment B are shown.
They are organized with the lowest intensity experiment (B1) at the top and the
highest intensity experiment (B5) at the bottom. A similar set of profiles, but at a

location 15 meters from the wavemaker, is shown in Figure 6.5B.

Review of these two sets of profiles does indicate that there is a transition that
occurs at a 9’ /4. approximately equal to 2.0. This can be seen by comparing the top

three profiles (Experiments B1, B2, and B6) with the bottom three profiles
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(Experiments B3, B4, and B5). It appears as though the bottom three profiles of these
two figures are more random in nature. Also, the crests of the ripples for the bottom
profiles appear to be less peaked than the top three, as if they have been shaven off.
While the difference between the bottom three and top three profiles is rather subtle, a
distinction is apparent. This distinction may provide an explanation for the breakoff

range observed in the friction factor and relative roughness results.

As previously noted, breakoffs were observed at a 9’ /¢ of 2.0 for the .12-mm sand,
and a 9’ /9. of 2.7 for the .20-mm sand. These observed breakoff values are both lower
than those predicted by Stefanick’s relationship (Equation 2.17). In addition, the two
values are somewhat lower than any of those values predicted by Equations 5.5 and 5.6,

the modified breakoff relationships proposed in Section 5.3.1.2.2.

However, we can compare these breakoff values to the data plotted in Figures 5.10A
and 5.10B. As can be seen in those figures, the breakoff data for the bedform geometry
parameters are widely scattered, and the observed values noted above fall well within
the range of variability of the numerous other experiments. Therefore, the fact that the
breakoff value predicted by Stefanick’s relationship does not match very well with the

observed breakoff values should not be of serious concern.

6.1.3 Improvements Based on Updated Breakoff Range

In Section 5.2.1.2.2, the bedform geometry relationships proposed in Stefanick
(1979) were modified to account for the presence of different breakoff characteristics for
the different bedform parameters. These modified relationships can be used to develop
an improved model for the representation of bottom roughness and wave attenuation in

terms of a friction factor.
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To accomplish this, the updated bedform relationships, which include Equations
2.16, 2.17, 2.19, and 5.5 through 5.7 are used in conjunction with Equation 6.1 to
provide a prediction of relative roughness. The resulting representation of the relative
roughness is plotted in Figure 6.6. In this figure, the curve for the .12-mm sand is only
slightly affected, while the curve for the .20-mm sand is improved somewhat. Also,
while the curve for the .20-mm sand is moved closer to the data points, both curves

still lie well above the data points in the breakoff range.

This trend is also reflected in the plot for the friction factor shown in Figure 6.7,
where the Grant-Madsen relationship between f, and ky/Ay has been used. Again,
however, for wave intensities well into the breakoff range, the .20-mm curve does

provide a slightly better fit to the data.

6.1.4 Summary of Attenuation Models Evaluated

In the preceding sections, four different predictive models for characterization of
wave attenuation over bedforms were presented. To summarize, three of these were
based on existing relationships and all of them used Grant and Madsen’s equation for
relating friction factor to relative roughness. The first of these three models, which we
might call Model 1, made use of the relationships first presented in Stefanick (1979),
Equations 2.15 through 2.19 to define the bedform geometry and then Equation 6.1 to
obtain the relative roughness. In this model, a dependence on the grain size is
accounted for in the relationship for the breakoff value and bedform parameters in the
breakoff range. The second model, which we can refer to as Model 2, used linear curve
fits to the bedform geometry along with Equation 6.1 to define the relative roughness.
Here, no possibility of a breakoff range or grain size dependence was accounted for. The
resulting attenuation relationships obtained when using Models 1 and 2 are shown in

Figures 6.1 and 6.2.
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The next method reviewed was one proposed by Jonsson (1966) and used in
Rosengaus (1987). In this model (call it Model 3) the equivalent bottom roughness, ky,,
was normalized against the mean grain diameter. Therefore, although no breakoff was
accounted for, a grain size dependence was included. Since this parameter, ky/d, was
found to be of the order of 275 for all values of ¢’ /4 for the .20-mm sand, this value
was taken as constant. Then, with kp/d taken as 275, and with knowledge of the
relationship between the bottom excursion amplitude and 9’ /¢, the distribution of
kp/Ap could be found. This in turn could be used to obtain a predicted distribution for

the friction factor, which is shown in Figure 6.3.

The final predictive model proposed, Model 4, was similar to that presented in
Stefanick (1979). However, in the modified version, two different breakoff relationships
were defined instead of the one relationship used by Stefanick. Therefore, one was
associated with g/, and another improved relationship was associated with 7/Ayp, as
discussed in the previous section. A revised 7/Ay, relationship was then defined for use
when 9’ /9. exceeded the appropriate value. Again, Equation 6.1 was used to obtain
the relative roughness. The attenuation relationships for this model can be found in

Figures 6.6 and 6.7.

6.1.5 Proposed Relationships

Of all of the predictive models presented, this final model, Model 4, which makes
use of the revised 5/Ayp, relationship, is proposed for use in characterizing wave
attenuation. This method is preferable because of two principal reasons. First, it
provides a reasonable fit to the data. Secondly, it is physically more iealistic because it
accounts for the existence of a breakoff range and also includes a dependence on the

grain size, which is clearly exhibited by the experimental data.
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The advantages of this model can be shown by review of the friction factor results
summarized in Figures 6.1, 6.3, and 6.7, which were described in Section 6.1.1. In
summary, the use of Stefanick’s relationships (Model 1), while not providing an
accurate match to data points at higher wave intensities, does account for the presence
of a breakoff range. The use of linear curve fits (Model 2), which provides a reasonable
match for the .20-mm data, does not provide an accurate match when the additional
.12-mm data is included. In addition, this model naturally does not account for a
breakoff range or grain size dependence. The constant ky/d assumption, used in Model
3, while including a grain size dependence, also neglects any possibility of a breakoff. In
addition, the distribution predicted by this model provides a reasonable fit to the
.20-mm data, but provides a poor fit to the .12-mm data. The final model, which was
developed by modifying Stefanick’s bedform geometry relationships, still does not
provide an accurate match to the data for higher values of ¥’ /¢y.. However, it is a
slight improvement over Model 1. Also, it accounts for the presence of a breakoff

range, and provides a reasonable overall fit to the data for the .12- and .20-mm sands.

To estimate the accuracy of this fit, we can consider the ratio of a predicted friction
factor to the actual measured friction factor, (fw)pred/(fw)meas, and determining the
mean and standard deviation for this parameter. If this is done, the mean is 1.09,
indicating that the model overestimates the friction factor slightly. The associated
standard deviation for this parameter is .20, implying that the accuracy of the model is

approximately + 20 percent.
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6.2 Spectral Waves

6.2.1 Comparison with Existing Relationships

As discussed in Chapter 2, the purpose of the spectral wave experiments was to
verify a simple procedure for characterizing spectral attenuation over a movable
sediment bed. In this procedure, the spectral attenuation is modeled by the atienuation
associated with an equivalent monochromatic wave having the same near-bottom
velocity and excursion amplitude as the root-mean-square bottem velocity and
excursion amplitude of the wave spectrum. This procedure would provide the benefit of
allowing the relationships associated with monochromatic waves, which have been
studied extensively, to be applied to wave spectra. The wave spectrum experimental

procedures used to accomplish this goal were discussed in detail in Chapter 4.

The attenuation results for these experiments are summarized in Tables 6.2A, 6.2B,
and 6.2C. Tables 6.2A and 6.2B include the results of the Pierson-Neumann spectral
wave experiments for the .12- and .20-mm sands, respectively. Table 6.2C summarizes
the results of the JONSWAP spectral wave experiments. These tables include summaries
of wave characteristics and friction factor data for each of the components of the
spectral experiments completed. Also, in the rows of the tables entitled “rep,” the
characteristics associated with the representative monochromatic wave (discussed in
Chapter 2) are listed for the various experiments. These rows also include the
representative friction factors, associated equivalent bottom roughnesses, and the mean
bedform data. The standard deviations associated with these representative values and
mean bedform data are summarized in the rows entitled “s.d.” Again, these
representative values for the spectral characteristics are not simply the means of the
values for the associated spectral components. They are obtained by using the

procedure detailed in Section 2.2.2. In addition, the standard deviations are associated
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with the scatter of the representative values found from each of the experimental runs

completed.

To analyze the attenuation results, the spectral results were compared to the
monochromatic results. If the use of the representative monochromatic wave for
characterizing bedform geometry and relating it to spectral attenuation is valid, there
should be a correspondence between the spectral results and monochromatic results.
Unfortunately, as can be seen in Figure 6.8, this correspondence is poor. In that figure,
the representative friction factors for the spectral experiments are plotied against the
representative Shields Parameter. The monochromatic friction factor results, along
with various curves, are also shown. The solid and dotted curves were defined using
Equations 2.15 through 2.19, 6.1, and 2.25. Also, it was apparent that use of the linear
curve fits to monochromatic bedform geometry along with Equations 6.1 and 2.25
would not provide a fit to the spectral friction factor data. Therefore, the curve fits to
the spectral bedform geometry, Equations 5.8 and 5.9, were used along with Equations

6.1 and 2.25. The resulting relationship is plotted as the dashed line in Figure 6.8.

Review of this figure shows that the spectral friction factors generally are less than
the monochromatic friction factors. Apparently, any differences between magnitudes of
the monochromatic and spectral bedform parameters are insufficient in accounting for
the differences in friction factor estimates. Certainly, the curves obtained from the
equations noted above have no application to the spectral data. Also, it is obvious that
the discrepency is so significant that the modified curves discussed in Section 6.1.3
would not render any reasonable correlation. Therefore, they were not included in this

figure.

Onre of the conclusions of Rosengaus (1987) was that the attenuation characteristics

of wave spectra can be accurately represented by the assumption of a single
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monochromatic wave based on an equivalent rms bottom velocity. However, this
conclusion was preliminary since it was based on experiments that were of relatively
low wave intensity. As is shown by the results plotted in Figure 6.8, the recent
experiments, for which much higher spectral wave conditions were also tested, showed
that this conclusion is not correct. A single equivalent monochromatic wave cannot be
used to represent both the bedform geometry and attenuation characteristics of a wave

spectrum.

However, review of the Figure 6.8 reveals that this spectral representation does
provide some benefits. First, although the spread in the spectral friction factor data is
relatively wide, the data for the .12-mm and .20-mm sands basically fall on the same
line. This observation indicates that the use of a representative Shields Parameter to
characterize spectral attenuation in terms of a friction factor is reasonable. In addition,
no specific breakoff values can be identified, or, if a breakof{ does exist its 9’ /¥e would
be less the 9’ /¢ values for the experiments completed. In any event, no spectral
breakoff can be justifiably defined using the spectral experimental data available. This
would imply that the concept of a breakoff value defined in terms of S, is not

appropriate for spectral waves.

Secondly, while the experiments completed deterministically represented wave
spectra of chosen intensity, different phase relationships between the various spectral
components, randomly chosen, were simulated. Specifically, for each of Experiments C,
D, and F, two realizations of the same spectrum were tested. This means that, for each
of these experiments, two different random seeds were chosen to define the phase
relationships between different components of the spectrum. If one locates the points
for these experiments on Figure 6.8 by making use of the information summarized in
Table 6.2, it is apparent that the relative phases of the different components does not

have any notable impact on the results.
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The final point of intcrest regarding Figure 6.8 involves the comparison between the
friction factor results for the JONSWAP spectra, identified by the filled square symbols,
and those for the Pierson-Neumann Spectra, identified by the filled circular and
triangular symbols. As discussed in Chapter 3, the JONSWAP spectrum is relatively
narrow banded and the Pierson-Neumann spectrum is quite broad banded. Since no
significant difference can be noted between friction factors of these two spectral shapes,

it is apparent that the attenuation characteristics are independent of spectral shape,

This observation identifies an important concept regarding spectral attenuation. As
opposed to considering the wave spectrum in a deterministic sense, we might view it in
a stochastic sense. If we consider a stochastic interpretation of a wave spectrum, we
would expect that the amplitude of any single frequency component as well as the
combined peak values of any wave-associated variable are Rayleigh distributed.
Therefore, if we have a narrow-banded spectrum representing an irregular wind sea, we
expect the maxima of the near-bottom orbital velocities to be Rayleigh distributed.
Thus, we expect that, as the spectral width is reduced towards a single component, the
spectral characteristics do not approach the limit of a monochromatic wave. Since the
friction factor results appear to be independent of spectral shape, these concepts are

verified.

Next, to look at the attenuation characteristics of wave spectra from another angle,
the representative relative roughness for the wave spectra is plotted against the
representative Shields Parameter in Figure 6.9. In this figure, Equation 2.25 is used to
convert the friction factors to relative roughnesses. Here, the monochromatic
roughnesses are plotted, along with the curve based on line fits to bedform geometry
and curves that make use of Equations 2.15 through 2.19 and 6.1. Again, the same
trend is obvious, with the spectral results all located well below the monochromatic

results. In summary, it is apparent that the differences between bedform parameters of
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the spectral and monochromatic wave experiments are not enough to account for the
differences in relative roughness or friction factor results. Therefore, the next step is to

attempt to explain these differences.

6.2.2 Discussion of the Difference Between Monochromatic and Spectrai Attenuation
6.2.2.1 Comparison of Bedform Geometry

To arrive at a plausible explanation for the difference between the monochromatic
and spectral attenuation results, we might first consider the bedform geometry itself.
As noted in Chapter 5, differences were apparent between the monochromatic and
spectral bedform geometry. First, the n/Aprep data for the wave spectra were generally
slightly less than the corresponding 7/Ay data for the monochromatic waves. In
addition, the n/) spectral data were all significantly lower than the monochromatic 7/
data. However, as noted above, these differences were not enough to explain the
reduced friction factors associated with the spectral experiments. Therefore, the next
step would be to determine whether a mechanism other than these two parameters may

govern the equivalent bottom roughness.

To do this, we can compare the bedform profiles of the various experiments. A
number of bedform profiles are shown in Figures 6.10A and 6.10B. In 6.10A, sample
profiles for Experiments E1, C1, and D1 are shown. Experiment E1 represents the
lowest wave intensity, with a 9’ /9. of 1.544 and Experiment D1 has the highest
intensity, with a 9’ /9c of 2.280. All three of these experiments simulated Pierson-
Neumann spectra. In Figure 6.10B, some JONSWAP spectral experiments are shown.

Included, in order of increasing intensity, are Experiments G1, H1, and I1.

From these two typical sets of profiles, no clear distinction can be identified

between the Pierson-Neumann spectra and JONSWAP spectra. This is reasonable since
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there was no clear distinction between the attenuation characteristics of the Pierson-

Neumann and JONSWAP spectra.

However, these two sets of profiles may be compared to those included in Figures
6.5A and 6.5B, the typical monochromatic profiles which were previously discussed in
Section 6.1.2. When we compare the profiles of similar spectal intensity (of equal
¥’ [4c), a sharp contrast is apparent. For the most part, the crests of the spectral
ripples appear to be more rounded than those of the monochromatic ripples. In
addition, the ripples associated with the wave spectra appear to more closely resemble
the monochromatic ripples that are associated with wave intensities in the breakoff
range as discussed in Section 6.1.2 (Experiments B3, B4, and B5), despite the

representative value of ¢’ /. being well below the monochromatic breakoff value.

6.2.2.2 Quantification of “Roundedness” of Ripple Crests

To help verify the difference between the monochromatic and spectral ripples, a
procedure was developed to quantify this “roundedness” of the ripple crests. In this
procedure, an estimate of curvature was made by measuring the bedform surface slope
on either side of the ripple crest. More specifically, the measurements were taken at
locations where the hedform width was 30 percent of the bedform length, as clarified in
Figure 6.11. These two slopes, one positive and one negative, are then used to obtain a

parameter that reflects the ripple roundedness. This parameter, Am/Ax, is defined as:

Am/Ax = %& (6.2)

and may be interpreted as a rough estimate of the inverse of the radius of curvature.
Therefore, we expect that ripples with rounder crests would have lower Am/Ax values

and ripples with sharper crests would have higher Am/Ax values. Keeping this in
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mind, the monochromatic and spectral ripples may be compared and any additional

effects of roundedness may be clarified.

This investigation, completed by Chris Rehman, the UROP student working on this
project, made use of a representative ripple profile from each of the experiments for
which bedform geometry was evaluated. A summary of the results is shown in Table
6.3. As can be seen in this table, typical values of Am/Ax range from .55 to about .25.
The monochromatic experiments noted in the table include Experiments B1 through
B6. In general, comparison of monochromatic and spectral results for similar values of
(¥’ [%c)rep Teveals that the Am/Ax values for the spectral ripples are lower than those
of the monochromatic ripples. Two exceptions include the Am/Ax results for
Experiments C2 and E1, which were of relatively low spectral intensity. The results for
these two exceptions closely match the result for Experiment B2, which roughly has the

same 9’ [ as the (¥’ /9c)rep values for these spectral experiments.

In general, most spectral Am/Ax values are quite similar to the monochromatic
Am/Ax values associated with the observed monochromatic breakoff range. Of course,
this same general trend was prevalent in the ripple steepness (7/)) results discussed in
Section 5.3.2. However, as discussed in Section 6.2.1, the differences between the
monochromatic and spectral 'bedform geometry are not enough to account for the
differences observed in monochromatic and spectal wave attenuation. Therefore, while
the behavior of this roundedness parameter would naturally be reflected in the /A
results, the parameter shows that, in addition to the difference in 5/A, there is a
definite difference between the monochromatic and spectral bedform geometry when we

look more closely at the ripple crests.
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Table 6.3

Ripple Roundedness Data

expt ¥’ [ Yc mean

B1
B2
El
C2
Gl
S2
B6
Il
D1
F1
B3
C1
B4
F2
B5
D2
S3

1.25
1.59
1.54
1.62
1.54
1.35
1.93
2.28
2.28
1.99
2.38
1.61
2.80
2.05
2.90
2.34
2.46

Am/Ax
st.dev.
.55 .03
42 .07
41 .09
41 .07
.39 .08
.38 .04
.35 .02
.35 14
.34 13
34 .08
31 .04
.30 .10
.30 .08
.28 .07
.29 10
27 .02
.26 .01
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6.2.2.3 Physical Explanations and Implications

If we consider the characteristics of spectral wave motion over a rippled sand bed,
an explanation can be developed for this phenomenon. The underlying concepts
associated with this explanation involve the variety of individual waves that make up
the spectrum. While smaller waves may be predominant in the surface profile, the few
large waves may still dominate the bedform interaction. It is hypothesized (and to
some extent supported by the bed profiles in Figures 6.10A and 6.10B) that the
influence of the occasionally large waves on the bottom bedform geometry would be to
round off the crests of the ripples, and therefore reduce the effectiveness of these crests
as energy dissipators. With the crests of the ripples smoothed out, the turbulent eddies
and associated energy dissipation would be reduced. Basically, the time scales required
to redevelop any sharper peaks of the ripples appear to be longer than the time scales
associated with the occurence of these larger waves. In summary, this reduction in
spectral energy dissipation associated with the rounding of the crests of the ripples can

explain the difference between the monochromatic and spectral results.

From this physical reasoning, it would appear that, when the root-mean-square
(rms) bottom velocity ar * representative excursion amplitude (defined in Chapter 2)
are used to represent the spectral characteristics, the larger waves are not weighted
enough. One approach to handle this problem would be somehow place more weight on
these larger waves. As an example, one might empirically accomplish this by using
what might be called a “significant bottom velocity” as a representative value. For this
representative value, the average of the highest one-third of the component bottom

velocities could be used.

Unfortunately, a procedure such as this is not really justified. First, while it would

still allow us to define a representative monochromatic wave, it would not properly
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account for any breakoff range. The breakoff values, which were found to vary for
different bedform parameters and values of S, [or monochromatic waves, were not
observed in the spectral experiments. In addition, the breakoff concept as discussed in
Section 6.1.2 does not appear to be appropriate for spectral waves since, for most values
of ¥’ [vc, the crests of the ripples are rounded or shaved off due to the effect of larger
waves. This means that the idea of ripples being shaved off purely by the wave
intensity (as in the monochromatic breakoff range) does not appear to apply for
spectral waves. In effect, because of the absence of distinct breakoffs in the spectral
data for either of the two sands, any modifications to representative parameters

describing spectral characteristics would appear to be inappropriate.

The idea also simply would not work well because of the bedform characteristics.
The procedure might shift the attenuation data (fy and ky/Ap) so that it is relatively
close to the monochromatic curves. However, if this is done, the bedform geometry
data, especially 7/, for which the spectral data is well below the monochromatic data,

cannot be appropriately represented.

To summarize, the spectral atienuation and bedform characteristics cannot be
simultaneously represented by the attenuation and bedform characteristics of a single
monochromatic wave. The inadequacy of the use of a representative monochromatic
wave in this manner results due to the important effect of the larger waves of the
spectrum, which round off the crests of bedforms and therefore reduce the effectiveness

of these bedforms as energy dissipators.
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6.2.3 Proposed iciationships

Since the concepts of a single representative monochromatic wave cannot be used to
relate bedform geometry to attenuation characteristics for a wave spectrum, the best we

can do is define curve fits to the data.

Therefore, two possibilities for representing the spectral friction factor results are

considered: a linear curve fit and a power law fit.

The linear curve fit to the spectral friction factor data yields the following

relationship:

fwrep = .3157 - .1025 (¥’ /Yeurep) (6.3)

This relationship is shown as the dashed line in Figure 6.12. The power law

relationship was found to be:

fw,rep = ,293 ('l,b’ /¢c,rep) -1. 58 (6.4)

This relationship is also shown on Figure 6.12 as the curved solid line.

Of these two empirical relationships, the preferred one is the power law relationship.
It is the better alternative because use of the linear relationship results in negative
friction factors for values of ¥’ [ tc,rep that are greater than about 3.0, which, for
obvious reasons is unreasonable. Equation 6.4 results in a friction factor of .034 at a
¥’ [Yerrep Of 4.0, which does not appear unreasonable. Of course, one must keep in
mind that Equation 6.4 was obtained using data valid for 9’ /¢c,rep less than about 2.5

and therefore, strictly speaking, can only be valid for this range.
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Once a relationship is defined to determine the friction factor in terms of wave
intensity, it is desirable to also characterize the wave attenuation in terms of a bottom
roughness. To accomplish this, we can use Equation 2.25, Grant and Madsen’s
relationship to relate friction factor to bottom roughness. However, the use of Equation
2.25 assumes the turbulent eddies in the bottom boundary layer to be scaled by the
bottom roughness, ky,. If ky,/Ay, is greater than 1, the excursion amplitude, Ay,
becomes the length scale of the turbulent eddies. In this case, the friction factor must
be constant and can be taken as .23, the value associated with a ky/Ay, of 1.0.
Therefore, to appropriately model speciral wave attenuation, Equation 6.4 must be
modified by incorporating the constant friction factor of .23 for ky/A} greater than 1.0.
This modification, which was included in Figure 6.12, yields the proposed friction factor

relationship:

23 for ?,b’/"/)c,rep < 1.17
fo = (6.5)

293 (¥ [Yorep) -5 for 9’ [foep 2 117

To evaluate the accuracy of this relationship, the ratio of the predicted friction factor to
the measured friction factor, (fy)pred/(fw)meas, was taken for all data points. The mean
value standard deviation for this ratio were found to be 1.027 and .099, respectively.
This indicates that Equation 6.5 can be used to estimate the spectral friction factor

with a relative error of about 10 percent.

Next, since many coastal models use the relative roughness as an input parameler,
it is desirable to define a separate empirical equation to represent that parameter. This
was accomplished by converting all of the friction factor data to relative roughnesses
using Equation 2.25 and fitting a curve to this data. Two curve fiis were tested: a
power law fit and an exponential fit. These two relationships are plotted against the

relative roughness data in Figure 6.13 as the solid line (power law relationship) and
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dashed line (exponential relationship). In addition, the curve fit for the friction factor
data, transformed according to Equation 2.25, is plotted in this figure as the dotted
line. Since, as is apparent in that figure, the empirical power law fit matches this
transformed curve extremely well and is slightly more accurate than the exponential fit,
it was considered to be the preferred alternative. Here, because of scaling argument
summarized above, the ky/Ap,rep is taken to be 1.0 for values of ¥’ /9c,rep that are less

than 1.17. The resulting relationship is:

1.0 for Y [Yerep < 1.17

kb/Ab,rep = (6-6)
1.549('¢' /Tpc,rep)-z' 54 for Tp’ /"bc,rep Z 1.17

Use of this relationship to define the relative roughness, in addition to Equation 2.25,

will provide friction factor estimates with an approximate accuracy of + 10 percent.
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7 CONCLUSIONS

In conclusion, the purpose of this thesis was to resolve a number of unresolved
questions and problems that still remained after completion of the experimental study
presented in Rosengaus (1987). In addition, the desire was to provide additional
information regarding the use of existing dimensionless parameters and relationships to

characterize wave/sediment interaction.

First, the questions and problems noted above, which mostly pertained to the
experimental apparatus, included some limitations imposed by the wavemaker output
capacity. These limitations were overcome by making adjustments to the wavemaker
and by recalibrating the wavemaker system, as is discussed in Chapter 3. In addition, a
sampling problem and a number of concerns related to the general accuracy of the data
acquisition system required attention. These concerns were resolved by updating the
sampling software and by completing a general accuracy analysis, which is also
presented in Chapter 3. Therefore, it was determined that the experimental setup
could be used to provide accurate experimental results that could be used to

characterize wave/sediment interaction for a wide range of wave conditions.

Once accuracy of the experimental setup was verified, some more experiments were
completed using the same .20-mm sand as for Rosengaus (1987). In addition,
experiments were completed using a finer .12-mm sand. The associated experimental

results were then analyzed to assist in quantifying relationships associated with:

1 Initiation of motion and ripple formation on an initially flat bed subjected to both

monochromatic and spectral waves,

2 Geometry, height, and length of bedforms as a function of wave and sediment

characteristics,
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3 The equivalent hydraulic roughness of wave generated ripples, and the rate of
dissipation of wave energy in the bottom boundary layer and corresponding wave

attenuation.

To summarize, conclusions can be stated for the initiation of motion of sediment
particles and characteristics of the developing bed, and characteristics of the fully
developed bed, for which the relationship between bedform geometry and wave

attenuation has been explored.

7.1 Initiation of Motion

Three separate initiation of motion conditions are notable. The first of these
corresponded quite closely to that predicted by the Critical Shields Criterion for
Initiation of Motion (¢¢). In this case, the grain motion was observed at irregularities
in the sediment bed. The second initiation of motion condition was that associated
with bedform propagation, which occurred at values of ¢’ that were slightly higher
than 9).. Finally, a separate initiation of motion criterion was observed for regions of
the sand bed that were perfectly flat. This condition was significantly higher than

Shields Criterion and was not quantified.

7.2 The Developing Bed

The data obtained for the parameters characterizing the developing bed exhibited a
wide scatter. However, these parameters for both the .12- and .20-mm sands, when
plotted against 9’ /4 , generally displayed similar developing bed characteristics and
any differences between results for the two sands could not be verified because of the
unavoidable subjectivity of the observations. Therefore, based on available data, the

Relative Shields Parameter provides a good characterization of the bedform response for
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fine sands. In addition, the spectral results were represented by making use of a
representative monochromatic wave, as is clarified more in Section 7.3.2. Analysis
showed that, in general, the spectral results corresponded favorably with the
monochromatic results, indicating that the use of the representative monochromatic
wave in this manner provides a reasonable characterization of spectral wave/sediment

interaction for a developing bed.

7.3 The fully developed bed
7.3.1 Monochromatic Waves

As noted above, the purpose of the monochromatic wave experiments was to define
relationships characterizing fully developed bedform geometry, and then use these
relationships to determine the wave attenuation in terms of the hydraulic roughness of

the sediment bed, from which a friction factor can be defined.

7.3.1.1 Bedform Geometry

To quantify bedform relationships, various bedform parameters were plotted against
the Relative Shields Parameter. When plotted against 9’ /¢, the data for the bedform
parameters for the .12- and .20-mm sands, generally lined up on a single line, and were
quite well represented by a linear curve fit. Review of these parameters for the
monochromatic wave experiments revealed no distinct breakoff characteristics. In
addition, the bedform geometry relationships proposed in Stefanick (1979), which
account for the presence of a breakoff range, provided a relatively poor fit to the

bedform geometry parameters.

Although Stefanick’s relationships provided a relatively poor fit to the data when

considering both the .12- and .20-mm sands, review of breakoff data plotted in
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Stefanick (1979) revealed that the match could be slightly improved. This was done by
allowing for different breakoff values for different bedform parameters. While the
relationship for the breakoff for 7/\ was the same as that proposed by Stefanick, his
breakoff for 7/Ap was modified by reanalyzing his data. Therefore, the relationship for
/Ay to be used when 9’ /¢ is greater than (¥ /¥c)bnab was accordingly modified.

This summary above leaves us with two sets of relationships for characterizing the
bedform geometry paramete-s of interest. First, the linear curve fits, which provide the

best correlation with the data, are as follows:

n/Ab = .3365 - .0751(9’ /9c) (7.1)

and

n/A = 1904 - .0176(¢’ /%c) (7.2)

The second set of relationships for these parameters makes use of the two relationships

for the breakoff values. First, for /Ay, the breakoff value is defined by:

(¥’ [¥c)bnab = 2.0S,0- 4 (73)

Then, n/Ay, is determined by:

o/ Ap = [.22(7/1’/%) - 16 i (97 /%) < (¥ /4¥c)onab (7.4)
565, 84(9 [9hc) 18 5 (¥ /%e) > (¥ /%c)bnab

For n/), the relationships are the same as those defined in Stefanick (1979). The
breakoff is defined by:

(9" /¥c)bn1 = 1.85,0-¢ (7.5)
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and 7/] is determined by:

oA = [-16(?!"/%) 0 (9 de) € (¥ /¥c)onab (76)

2854 89( [he) -0 5 (¥ /%) > (¥ /We)bnab

These relationships, while not as accurate as the linear curve fits, do account for a
breakoff range. Accounting for a breakoff range is preferable since the existence of the
breakoff range has been demonstrated by previous investigations of wave-generated
bedforms and also is evident in the attenuation results of this study. In addition, the
use of these equations provides the best overall physically reasonable model when we
link attenuation, bottom roughness, and bedform geometry in a single quantitative

model.

Additional bedform parameters that are normally not considered to be associated
with the hydraulic bottom roughness include A/Ay, and the asymmetry, a. A/Ay, can be
determined using the equations summarized above. The asymmetry, a, can be

determined by the following relationship:
a = 4482 + .0129(9’ [vc) (7.7

7.3.1.2 Wave Attenuation

As mentioned above, the wave attenuation results, expressed in terms of a friction
factor, exhibited a breakoff. This breakoff was verified by review of some typical
bedform profiles and was also shown to be reasonable when compared with data from
Stefanick (1979). As previously noted, while the bedform parameters did not display
the clear breakoff that showed up in the attenuation data, a reasonable explanation was

found. Here, we maintain that, at the higher flow intensities associated with the
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breakoff range, the crests of the ripples are rounded or shaved off. This phenomenon

changes the hydrodynamics of flow in the bottom boundary layer and reduces the

effectiveness of the ripples as energy dissipators.

To represent these attenuation results, a number of predictive relationships were
compared. It was determined that the use of relationships developed by modifying
those from Steranick (1979) provided a reasonable fit to the data. Moreover, these
relationships mwaintain a sound physical basis by accounting for the breakoff. Therefore,
the propcsed procedure for modeling the response of a sediment bed to wave agitation
and associated wave attenuation makes use of Equations 7.3 through 7.6, listed above,
to characterize the bedform geometry. Then, the relative bottom roughness for lower

wave intensities can be determined using the following equation:

kn/Ab = 23(n/Ab)(1/2) (7.8)

This equation is a simplified form of an equation originally proposed by Grant and
Madsen (1982). Here, the original constant proposed by Grant and Madsen, 28, has
been changed to 23 as was suggested by Rosengaus (1987). This modification provides
an improved fit to the data. In addition, the effects of sediment transport have been
neglected, implying that this relationship should only be used in cases of relatively low
wave intensity (for, say, 9’ /v less than about 4.0). For higher flows, Equation 2.22,
with the constant taken to be 23, may be used. Finally, the friction factor may be
obtained by using Equation 2.25, Grant and Madsen’s expression relating the friction
factor to relative roughness, which is shown in Figure 2.4. Use of this model will

predict the friction factor within an accuracy of + 10 percent.
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7.3.2 Spectral Waves

As for the monochromatic wave experiments, the primary goal of the spectral
experiments was simply to obtain quantitative relationships characterizing bedform
response to spectral wave agitation and the associated spectral attenuation due to
bottom friction. Specifically, the desired objective was to verify that this task could be
accomplished by making use of an equivalent monochromatic wave to characterize a
wave spectrum. This equivalent wave is defined as a monochromatic wave that has the
same horizontal bottom velocity and excursion amplitude as the respective root-mean-
squared values for the wave spectrum. If this procedure is successful, attenuation
relationships based on data from many monochromatic wave experiments could be
applied to spectral attenuation. Therefore, the approach was to compare the
monochromatic and spectral results when plotted against a representative Relative

Shields Parameter.

7.3.2.1 Bedform Geometry

First, the spectral and monochromatic bedform geometry data were plotted against
(¥’ /%c)rep and analyzed. It was found that, while the data for nondimensional bedform
height for the spectral experiments were relatively similar to that of the monochromatic
experiments, the bedform steepness clearly differed, with the data generally falling
below that of the monochromatic experiments. In addition, as for the monochromatic
bedform daca, no clear breakoff characteristic could be observed. Consequently,

Stefanick’s relationships could not be used to model the spectral data.

However, the spectral bedform data for the .12- and .20-mm sands, when plotted
against (9’ /¥c)rep generally fall on a single line. This implies that the use of a

representative Relative Shields Parameter provides a good characterization of bedform
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response to spectral wave agitation. Therefore, a number of empirical relationships

were developed to represent the spectral bedform geometry.

These relationships, developed by making use of linear curve fits, are:

1/ Abrep = .3357 - .0869(%’ [ Yc)rep (7.9)

and

/A = .1864 - .0136(%’ [%c)rep (7.10)

Values for A\/Aprep can be obtained from Equations 7.9 and 7.10 above. In addition,
the spectral asymmetry, «, was quite similar to the monochromatic asymmetry and can

be well represented by Equation 7.8.

7.3.2.2 Spectral Attenuation

The results presented in Rosengaus (1987) showed that the representative
monochromatic wave could be used to characterize spectral bedform geometry in terms
of commonly accepted bedform parameters. In addition, the use of this representative
wave was also shown to successfully relate these bedform geometry parameters to the
spectral wave attenuation. However, this result was based on experiments that were
limited to wave conditions of relatively low intensity. Additional experiments
completed, of higher wave intensity, have shown that the representative monochromatic
wave can be used to separately characterize spectral bedform geometry and spectral
wave attenuation in the same manner as used for monochromatic waves. However,
these additional experiments have proved that the spectral bedform geometry cannot be
related to the spectral wave attenuation. This fact became quite evident upon
comparing the monochromatic and spectral friction factor data, from which it was clear

that all spectral friction factors were clearly lower than the monochromatic friction

- 167 -



factors. Therefore, the spectral friction factor, defined in terms of a representative
monochromatic wave, does not correlate with the monochromatic wave friction factors.

In addition, no breakoff value was evident in the spectral attenuation data.

Since the spectral bedform data were generally lower than the corresponding
monochromatic data, linear curve fits to the spectral bedform data were used to obtain
predicted friction factors. However, these predicted friction factors still were not low
enough to reasonably represent the spectral friction factor data. To further explore
this, bedform profiles were inspected and compared to corresponding profiles for the
monochromatic wave experiments. This comparison revealed that the ripple crests that
are formed by spectral waves are more rounded (or shaved off) than their
monochromatic counterparts. This rounding effect is attributed to the occasionally
very large near bottom velocities that occur when a spectrum of many components
propagates through shallow water. Basically, the rounded ripple crests change the
hydrodynamics of the flow in the bottom bouudary layer resulting in the lower spectral

friction factors.

While the spectral experiments refuted any ideas of implementing a representative
monochromatic wave to simultaneously model bedform geometry and spectral
attenuation, a number of new conclusions were drawn from the spectral results. First,
the spectral friction factor results, when plotted against (%’ /%c)rep for the .12-mm sand
and .20-mm sand, generally fell on a single curve, again verifying the effectiveness of
the Representative Shields Parameter for characterizing spectral wave/sediment
interaction. In addition, experiments completed using the same spectrum but with
different phases for all of the spectral components showed that the spectral attenuation
characteristics for the experiments were independent of phase. Finally, the Pierson-
Neumann (broad-banded) and JONSWAP (narrow-banded) spectral results also fell on a

single curve. This indicates that the spectral attenuation characteristics are
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independent of spectral shape. Thus, we expect that, if we hypothetically decrease the
bandwidth of a wave spectrum towards zero, such that almost all of the spectral energy
gets concentrated on a single frequency, the limit in terms of attenuation will not be the
characteristics of a monochromatic wave. Instead, the spectral characteristics should
be maintained. This lack of dependency of fy on spectral shape also provides additional
support for the explanation of the rounding effect, in which the dissipative
characteristics of the spectrum are attributed to occasionally large near-bottom orbital

velocities.

In summary, the success of the Representative Shields Parameter in characterizing
spectral wave attenuation provides the opportunity to define a simple empirically based
model for spectral wave attenuation. As opposed to the model for monochromatic wave
attenuation, however, bedform geometry relationships cannot be related to ky/Ap,rep,
since the experimental results did not verify any relationship between these parameters.
Therefore, it is apparent that n/Ay, and /) are not enough to characterize the
equivalent bottom roughness. The crest roundedness, which is not normally reported,
plays a major role in the dissipation process. A relationship between bedform geometry
and spectral relative roughness would require more research that is not included in the

scope of this thesis.

Therefore, an empirical power law relationship is proposed for the friction factor in

terms of the Representative Shields Parameter. This relationship is:

. {.23 i (' [¥e)rep < 1.17 )

203(Y’ [Ye)rep™t- 88 5 (¥ /¥c)rep 2 1.17

which will predict the friction factor within + 1" percent. A relationship for the relative

roughness, which is often assumed to be known for coastal computer models. was
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determined by using a power law fit to the ki, /Ay data obtained by transforming

experimental friction factor data using Equation 2.25. This relationship is:

(7.12)

kp [1.0 s (¥ [9c)rep < 1.17
AL =

{50000 [edrep -5t (W [deep 2 117

7.4 Recommendations for Future Research

While the analysis of data for the .12- and .20-mm sands provided a tremendous
amount of insight into wave/sediment interaction for a wide range of wave conditions,
much more work is necessary. To gain a better understanding of the wave/sediment

interaction in the coastal environment, additional analytical, experimental, and field-

based research is essential.

For example, a number of analytical questions were raised by some of the
experimental observations noted in this study. These pertain to the hydrodynamics of
the flow in the turbulent bottom layer and its relationship to the the monochromatic
ripple characteristics as delineated by the breakoff value. In addition, more study
regarding the boundary layer hydrodynamics and its relationship to the ripple
“roundedness” that was observed in the spectral bedform geometry is necessary. An in-
depth analysis of the boundary layer hydrodynamics could also help to improve the
understanding of the relationship between bedform geometry and the equivalent bottom

roughness resulting in wave attenuation.

In the laboratory, a number of areas could use more investigation. One example is
the developing bed and bedform response to changing wave conditions. Specific
experiments designed for this purpose would help to characterize the bedform response.
In addition to the developing bed, more study of the fully developed bed would be

advantageous. For exampie, the spectral experiments completed used only five
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components to represent a wave spectrum, which is an extremely coarse representation.
Additional experiments with finer resolution of the frequency domain and spectral
attenuation would be quite beneficial in verifying some of the conclusions noted in this

study.

Again, one cannot overemphasize the importance of verification of the laboratory
results in the field. Naturally, the field investigations related to the interaction of
waves and bedforms are extremely difficult and quite expensive. However, since the
purpose of characterizing the wave/sediment interaction is to apply the concepts to

coastal problems, the benefits would be well worth the costs.

- 161 -



8 REFERENCES
Bagnold, R. A. 1946. Motion of waves in shallow water: Interaction between waves
and sand bottom. Proceedings of the Royal Society (Ser. A) 187:1-15.

Biésel, F., F. Suquet. 1951. Les appareils générateurs de houle en laboratoire. La
Houille Blanche 6(2):147-165.

Carstens, M. R., F. M. Nielson, H. D. Altinbek. 1969. Bedforms gererated in the
laboratory under oscillatory flow: Analytical and experimental study. U.S. Army
Corps of Engineers, CERC Technical Memorandum No. 28.

Grant, W. D., O. S. Madsen. 1979. Combined wave and current interaction with a
rough bottom. Journal of Geophysical Research 79(C4):1797-1807.

Grant, W. D., O. S. Madsen. 1982. Movable bed roughness in unsteady oscillatory
flow. Journal of Geophysical Research 87(C1):469-481.

Hunt, J. N. 1952. Viscous damping of waves. Le Houille Blanche 7:836-842.
Ippen, A. T. (ed.) 1966. Estuary and coastal hydrodynamics. McGraw-Hill.

Jonsson, I. G. 1966. Wave boundary layers and friction factors. In Proceedings 10th
Conference on Coastal Engineering, ASCE, 1:127-148.

Kajiura, K. 1968. A model of bottom boundary layer in water waves. Bulletin of the
Earthquake Research Institute (University of Tokyo) 46:75-123.

Kamphuis, J. W. 1975. Friction factor under oscillatory waves. Journal of the
Waterways, Harbors and Coastal Division, ASCE, 101(WW2):135-144.

Madsen, O. S. 1971. On the generation of long waves. Journal of Geophysical
Research 76(36):8672-8683.

Madsen, O. S., W. D. Grant. 1975. The threshold of sediment movement under
oscillatory waves: A discussion. Journal of Sedimentary Petrology 45(1):360-361.

Madsen, O. S., W. D. Grant. 1976. Sediment transport in the coastal environment.
R. M. Parsons Laboratory, Department of Civil Engineering, MIT, Technical
Report No. 209.

Madsen, O. S., W. D. Grant. 1977. Quantitative description of sediment transport by
waves. Proceedings 15th Conference on Coastal Engineering. ASCE 2:1093-1112.

Rosengaus, M. R. 1987. Experimental Study on wave generated bedforms and
resulting wave attenuation. Sc.D. Thesis, MIT.

Shore protection manual. 1977. U.S. Army Corps of Engineers, CERC.

Stefanick, T. A. 1979. A realistic model of wave attenuation due to bottom friction.
M.S. thesis, MIT.

- 162 -



