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Abstract

In this note, we explore the role of recurrent connections in Assembly Calculus through a number of
experiments conducted on models with and without recurrent connections. We observe that assemblies
can be formed even in the absence of recurrent connections, but also find that models with recurrent
connections are more robust to noisy inputs. We also investigate the spectral structure of the synaptic
weights and find intriguing similarities between models of neural assemblies and associative memories.

1 Introduction
There have beenmanymodels proposed to understand the brain, at different levels of abstraction - ranging
from molecular models of neurotransmission, to models of neurons, to whole brain models studied in
cognitive science. Recently, assemblies of neurons [1] have been proposed as a computational model at a
level of abstraction between models of neurons [2, 3] and whole brain models. Neural assemblies were
introduced by Hebb [4] nearly seventy years ago and have recently been experimentally established
[5, 6, 7, 8] as existing in mammalian brains. While modern deep neural networks are inspired by models
of the sensory parts of the brain, especially the visual cortex [9], assemblies of neurons are meant to
model intermediate levels of computation beyond sensory information processing. They are believed
to have the ability to represent memories and cognitive concepts. It is likely that this level is the one at
which higher cognitive functions like language are implemented.

Themodel of the brain used in Assembly Calculus consists of several brain areas with n excitatory neurons
each. The neurons do not have any internal structure and can either be firing or not firing (neuron set
to 0 or 1). The synaptic connections between neurons in different areas are drawn independently at
random with probability p. This means they have the structure of a random bipartite graph. Synpatic
connections between neurons in the same area follow the structure of an Erdos-Renyi graph Gn,p. While
brains have excitatory as well as inhibitory neurons, this model only has one type of neuron that fires
depending upon its total synaptic input. The function of inhibitory neurons is instead implemented by a
cap operation, which ensures that no more than k neurons out of the n in a specific brain area will fire
at a particular timestep. The final key component in this model is the multiplicative Hebbian plasticity,
that increases the strength of connection between neurons that fire in consecutive timesteps by a factor of β.

In this note, we investigate the role of recurrent connections in the model of Assembly Calculus as posited
in [1]. We consider two models in the Assembly Calculus - one with recurrent synaptic connections
within a brain area and another containing only feedforward synaptic connections. We evaluate their
performance on two tasks - the formation of assemblies and their ability to classify stimuli from different
distributions. We observe that in both cases, models without recurrent connections are able to perform the
tasks as well as those with recurrent connections. We then investigate the robustness of neural assembly
models to perturbations in the input and observe that recurrent connections make the models more
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robust to perturbations in the input.

Finally we investigate the spectral structure of the synaptic weights of the neural assembly models and
observe that one can recover the stimuli and corresponding neural assembly from the right and left
singular vectors respectively. This suggests that themodel of the brain proposed in the Assembly Calculus
is close to an associative memory.

2 Creation of Assemblies
2.1 Single stimulus
Assembly projection is the primary operation of the Assembly Calculus. It entails that through projection
of a stimulus assembly x in area S, an assembly y that can be thought of as a “copy” of x forms in a
downstream area A, and henceforth y fires every time x fires [1]. The idea is that, with repeated firing
of x, afferent synaptic connectivity from area S to area A excites a sequence of {y(t)} of sets of neurons
of size k in area A. With large enough parameters and high enough plasticity, this process converges
exponentially fast, with high probability, to create an assembly y as a result of the projection, as proven
by previous literature [1].

More formally, If we consider a brain area A receiving synaptic input from an assembly x in stimulus
area S, we can write the dynamics of the projection operation as:

y(t+1) = capk

(
W

(t)
AAy

(t) +W
(t)
ASx

)
W

(t+1)
AS = W

(t)
AS + βy(t+1)x⊤ ⊙W

(t)
AS

W
(t+1)
AA = W

(t)
AA + βy(t+1)y(t)⊤ ⊙W

(t)
AA

(1)

In the above set of equations,WAS andWAA refer to the weights of the afferent and recurrent synaptic
connections respectively. y(t) refers to the pattern of activity in A at time t, and at the end of T rounds of
firing, an assembly y is created as the result of the operation project(x,A). In each round, the synaptic
weights are updated according to the rule of Hebbian plasticity, by a factor of β.

If we remove the recurrent connections, the update equations governing the project operation become:

y(t) = capk

(
W

(t)
ASx

)
W

(t+1)
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(t)
AS + βy(t)x⊤ ⊙W

(t)
AS

(2)

We performed experiments to show the impact of recurrent connections on the creation of an assembly
y through the projection of stimulus assembly x. We used a neural assembly network with assembly
size n = 1000, cap size k = 41, and synaptic connection probability p = 0.1. We observed the total
number of neurons activated in all rounds of firing, and declared that an assembly was formed when no
new neurons were added to the set of activated neurons. We used different Hebbian plasticity values,
β = {0.001, 0.005, 0.01, 0.05, 0.1} and compared the creation of assemblies with and without recurrent
connections (under update equations (1) and (2) respectively).

The results of the experiment with and without recurrent connections are both presented in Figure 1. As
shown, though assemblies can be formed in models with recurrent connections, they are not necessary.
Assemblies can also be formed simply using afferent connections and synaptic Hebbian plasticity. In fact,
the creation of the assembly without recurrent connections is faster, since Hebbian plasticity ensures that
the set of neurons selected in the cap during the first round will continue to be selected in the cap in all
subsequent rounds of firing.
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Figure 1: The size of the assembly y being formed with (left) and without (right) recurrent connections
under a single stimulus.

Proposition 2.1. In a network with only afferent connections, the total number of neurons activated across all
rounds of Random Projection and Cap is k.

Proof. The synaptic input into each neuron in the brain area that receives input from the stimulus in the
first round is a binomial random variable. Using the Normal approximation to the binomial distribution,
and the tail bound on the Normal, we obtain that the activation threshold at the first time step is close to

C1 = pk +

√
2pklnn

k

Now consider the second round of firing - due to Hebbian plasticity, each neuron in the cap after the
first round will receive a synaptic input that is larger than the input it received in the previous round
by a factor of 1 + β, and each neuron that is not in the cap, will only receive the same synaptic input
that it received in the previous round. This means that no new neurons can make their way into the cap.
Extending this argument over all rounds of firing proves the result.

2.2 Stream of stimuli from the same distribution
We have shown that it is possible to create assemblies that correspond to a single stimulus, but it is
unlikely that the same pattern of neurons will fire for the same stimulus in a range of environments.
In this subsection we also consider the case where over the course of formation of an assembly, the
stimuli may vary from one timestep to another, but are all drawn from the same distribution of neural
activation patterns. This is a probabilistic generalization of the single stimuli, as noted in [10]. We show
that assemblies can be formed in this situation as well, both with and without recurrent connections in
the area where the assembly is formed.

The projection operation is defined in a similar fashion as equations (1), with the only modification
being - the stimuli at each timestep x(t), are all drawn from the same distribution, instead of being the
same. The distribution from which stimuli are drawn is defined as follows: a fraction pr(= 0.9) of the k
neurons in the stimuli are drawn from a coreset S of neurons, while the remaining (1− pr)× k neurons
in each stimulus are drawn uniformly at random from the neurons not in the coreset S. We observed
the creation of assemblies from stimuli drawn from this distribution, and report our results in Figure
2. The rest of the assembly network parameters (n, k, p) were set to the same values as in the previous
experiment. We can see that assemblies are created as long as the plasticity parameter β is high enough,
and that assembly creation occurs both in the presence and absence of recurrent connections.
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Figure 2: The size of the assembly y being formed with (left) and without (right) recurrent connections
under a stream of stimuli drawn from the same distribution.

3 Spectral Structure of Synaptic Connections
3.1 Single stimulus
In the previous section we saw that recurrent connections are not critical to the formation of assemblies.
However, one could expect that the presence of recurrent connections could influence the structure of
the synaptic connections between the stimuli and the brain area, and the rate at which assemblies are
formed.

In this section we investigate the spectral structure of the synaptic connectivity matrices and show that
in neural assemblies created from a single stimulus, the afferent connectivity matrix becomes a rank-k
matrix (where k is the cap size), both with and without recurrent connections. Furthermore, the rate of
convergence to a rank-k matrix is not affected by the presence of recurrent connections.

We generated an assembly by running the projection operation using a stimulus x, and looked at the
spectral structure of the afferent synaptic connectivity matrix WAS . We use R (WAS) =

∑k
i=1 σi(WAS)∑n
j=1 σj(WAS)

to measure how closeWAS is to a rank-k matrix, where σi(WAS) denotes the ith singular value ofWAS .
In Figure 4 we see that WAS is converging to a rank-k matrix as R (WAS) converges to 1. This rank-k
structure emerges in models both with and without recurrent connections, and as Figure 4 shows, there
is a negligible difference between the rate of convergence in the two cases.
We also look at the singular vectors U, V ofWAS and see that a curious relationship emerges between the
singular vectors, the stimulus x and the assembly y. For each right singular vector vi, we computed the
hamming distance between capk(|vi|) and the stimulus x, and for the left singular vectors ui we similarly
computed the hamming distance between capk(|ui|) and the assembly y. Here | · | is an an entrywise
absolute value operator when applied to a vector. As we see in Figure 3, the first k right singular vectors
are very close to x while the first k left singular vectors are very close to y. This structure appears in the
afferent synaptic connectivity matrix WAS , once again in both the presence and absence of recurrent
connections. When we performed a similar analysis on the recurrent synaptic connectivity matrixWAA,
we observed that both the left and right singular vectors are close to the assembly y in the sense described
above. We present these observations in Figure 5.
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Figure 3: The hamming distance between the left singular vector ui of WAS and y with recurrent connec-
tions (top left) and without (top right), and between the right singular vector vi of WAS and x (top two)
with recurrent connections (bottom left) and without (bottom right). As shown, the left singular vectors
u1, . . . , uk converged to y and the right singular vectors v1, . . . , vk converged to x. Further, the presence
of recurrent connections showed little effect on the convergence result as almost no difference can be
observed between two sides of the figures. Assemblies created using a single stimulus.
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Figure 4: The trajectory of WAS converging to a rank-k matrix by measuring the ratio of the sum of top k
singular values to the sum of all n singular values ofWAS . Assemblies created using a single stimulus.
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Figure 5: The hamming distance between the left singular vectors U ofWAA and y (left), and between
the right singular vectors V of WAA and y (right). Assemblies created using a single stimulus.
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3.2 Stream of stimuli from the same distribution
Having seen the special spectral structure that emerges in the assembly network during the creation of
an assembly from a single stimulus, we now study the same phenomena when assemblies are created
by a stream of stimuli drawn from the same distribution. The distribution of stimuli that we consider is
the same as the one described in the previous section. We see from Figures 6, 7, and 8 that the results
are similar in essence to those seen in the case of a single stimulus. We note that comparisons to the left
singular vectors are made against the neurons in the coreset S instead of any particular x(t) drawn from
the distribution.
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Figure 6: The hamming distance between the left singular vector ui of WAS and y with recurrent connec-
tions (top left) and without (top right), and between the right singular vector vi of WAS and S (top two)
with recurrent connections (bottom left) and without (bottom right). As shown, the left singular vectors
u1, . . . , uk converged to y and the right singular vectors v1, . . . , vk converged to S . Further, the presence
of recurrent connections showed little effect on the convergence result as almost no difference can be
observed between two sides of the figures. Assemblies created using a stream of stimuli from the same
distribution
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Figure 7: The trajectory of WAS converging to a rank-k matrix by measuring the ratio of the sum of top k
singular values to the sum of all n singular values of WAS . Assemblies created using a stream of stimuli
from the same distribution
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Figure 8: The hamming distance between the left singular vectors U ofWAA and y (left), and between
the right singular vectors V of WAA and y (right). Assemblies created using a stream of stimuli from the
same distribution

4 Assemblies created without recurrent connections are well sepa-
rated

Previously, Dabagia, Papadimitriou, and Vempala [10] rigorously showed that Assembly Calculus pro-
vides a learning mechanism for classifying samples from reasonably separated classes. We highlight
here in particular that AC can, without recurrent connectivity, reliably form an assembly that represents
each concept class in response to (a) a few stimuli when they are clusters of similar assemblies, or more
generally (b) divided by a halfspace with margin, both with experimental evidences. Without recurrent
connectivity, this learning mechanism still exhibits all key attributes of brain-like learning mechanism: it
is entirely online and generalized from very few samples with only mild supervision.

We followed the methodology purposed in [10]. Both experiments for (a) stimulus classes and (b)
halfspace-separated shared the basic setup of presenting a few examples from the same class and allowing
plasticity to train synaptic weights. Additionally, the incoming weights of each neuron are re-normalized
to sum to one after the conclusion of presenting each class, based on the assumption that synapses are
subject to homeostasis in between training and evaluation [11]. We performed classification on top of the
learned assemblies by predicting which class corresponds to the assembly with the most neurons on. We
had success with large enough plasticity parameter β = 0.1 for stimulus classes and β = 1.0 for halfspaces.

4.1 Classification in stimulus classes without recurrent connections
A stimulus is an assembly-like representation, defined as a set of k firing neurons x, that encodes training
or testing data in a special area S called the sensory area. The learning process happens in another brain
area A, of which only one area is required, through the formation of assemblies in response to the projec-
tion of sequences of stimuli from a stimulus class C in the sensory area. The projection evokes a response
R, a distribution over assemblies in the brain area A. Due to plasticity and inhibition, R tends to be
highly concentrated. We call the intersection R∗ =

⋂
x∈S x the core of R for set SR of all assemblies x that

have positive probability in R. In particular, neurons in R∗ fire significantly more often on average than
other neurons [12]. Note that a stimulus class C is a distribution over stimuli defined by two parameters
r, q ∈ [0, 1], r > qk/n and the set of k neurons SA in the sensory area. To generate a stimulus x ∈ {0, 1}n
within the distribution C, each neuron i ∈ SA is chosen independently with probability r, while each
neuron i /∈ SA is chosen independently with probability qk/n [10].

Here, we demonstrate that Assembly Calculus can learn to classify reasonably separated stimulus classes
without recurrent connectivity as follows: we chose a stimulus class C, randomly sample and present a
new stimulus from C at each time step for a fixed number of rounds. We repeated this procedure for
different stimulus classes to solely train afferent synaptic weights. Finally, we presented new stimuli in a
random order of different stimulus classes trained to test the extent of learning.
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In figure 9, we demonstrate learning of classifying four stimulus classes, with and without recurrence
connections, both reach perfect accuracy. Most importantly, we highlight Assembly Calculus can learn to
classify stimulus classes perfectly without recurrent connectivity. Figure 10 also reinforces this message
by visualizing the learned assemblies and the extent of their overlap when learned with stimuli from the
same class.
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Figure 9: Assemblies learned for four stimulus classes with (left) and without (right) recurrent con-
nections. For each of the two subfigures, the distributions of firing probabilities over neurons are
on the left, and the average overlap of the assemblies are on the right. Despite each additional class
slightly overlap with previous ones, a simple readout over assembly of neurons suffices perfect classi-
fication accuracy in both cases. Little to no difference can be observed between the two cases. Here,
n = 103, k = 102, p = 0.1, r = 0.9, q = 0.1, β = 0.1, with 5 samples per class. [10]
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Figure 10: Accuracy of classifying stimulus classes as a function of stimulus core firing probability r with
(left) and without (right) recurrence. [10]

4.2 Classification in halfspaces without recurrent connections
The halfspace classification experiment shares the same setup as what is described in section 4.1 [10]: it is
accomplished by presenting classes of stimuli, along with plasticity and inhibition mechanisms. Here, we
consider a linear threshold function as the labeling function, parameterized by an arbitrary non-negative
vector v and margin∆. We create a single assembly to represent examples on one side of the threshold
and denote their distribution by D+, where each coordinate is an independent Bernoulli variable with
mean E(Xi) = ( kn +∆vi). We denote the distribution of negative examples D−, in which each coordinate
is an independent, yet identically distributed Bernoulli variable with mean k/n. Note that D+ and D−
share the same support. For the purpose of classifying, a fraction 1 − ϵ+ of neurons is guaranteed to
fire for a positive example and a fraction ϵ− < 1− ϵ+ of neurons is guaranteed not to fire for a negative
example. We classify a test example as positive if at least a 1− ϵ fraction of neurons fire and as negative
otherwise for ϵ ∈ [ϵ−, 1− ϵ+].

In contrast to the experiment on stimulus classes, we only present positive examples in halfspace experi-
ment, and hence only one assembly is formed for one class. We classify by comparing against half the cap
size. Using a simple sum readout over assembly neurons, halfspaces are classified with perfect accuracy
both with and without recurrent connections as shown in figure 11. We can however see that the overlap
between the assemblies of the positive examples is much larger in the case of the model with recurrent
connections when compared to the one without. Figure 12 also shows us that the classification accuracy
is similar between the two models and finds similar trends as the margin ∆ increases.
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Figure 11: Assemblies learned for the positive and negative classes with (left) and without (right)
recurrent connections. For each of the two subfigures, the distributions of firing probabilities over
neurons are on the left, and the average overlap of the assemblies are on the right. Despite each additional
class slightly overlap with previous ones, a simple readout over assembly of neurons suffices to achieve
perfect classification accuracy in both cases.
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Figure 12: Accuracy of classifying stimulus classes as a function of the margin ∆ between the positive
and negative classes with (left) and without (right) recurrent connections. [10]

5 Assemblies createdwith recurrent connection are more robust in
assembly recall

A natural question immediately follows the experimental results shown in section 2, 4 - what useful role
do recurrent connections hold in Assembly Calculus, if they had little to no impact on the convergence of
afferent connections and classification performance?

In this section we identify a key role for the recurrent connections in Assembly Calculus - providing
robustness in assembly recall. We show that assemblies created with recurrent connections are able to
recover the created assembly from a corrupted input more robustly than those created with just afferent
connections.
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5.1 Single Stimulus
In order to investigate the robustness of assembly recall, we first trained the assembly network with a
single stimulus x0 ∈ {0, 1}n to form an assembly y0 in the brain area A by firing for Ttrain steps. We then
probed the assembly network with a corrupted input x that is a certain hamming distance away from
the input stimulus x0. We recovered an assembly y by projecting the corrupted input x for Trecover steps.
The robustness of assembly recall was measured using the hamming distance between y and y0.
Denote the hamming distance between input x and x0 as dH(x, x0). Experimental evidence in figure 13
shows that, despite recalling in a network trained without recurrent connections displayed slightly better
performance in dH(x, x0) ⪅ k/2, a network trained with recurrent connections exhibited dominantly
better performance and provided more robustness under larger dH(x, x0).
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Figure 13: Assembly performance in recalling the original formed assembly y0 when probed by a
corrupted input x that is dH(x, x0) away from the original input stimulus x0. Here, we used n = 1000, k =
41, p = 0.03, β = 0.05, Ttrain = 40, Trecover = 10. Results are averaged over 10 trials. Results are shown
for models with and without recurrent connections, and the models with recurrent connections are more
robust.

5.2 Stream of stimuli from the same distribution
We repeated our experiment testing the robustness of assembly recall in the situation where the input
stimuli are not fixed through all timesteps, but are instead drawn from the same distribution. We used the
same setup as in sections 2.2 and 3.2 where the stimuli are drawn from a distribution where a pr fraction
are drawn from a coreset S , and the rest are drawn uniformly at random. We measured the robustness of
assembly recall to two perturbations from this distribution. In the first experiment (results in Figure 14)
we kept the coreset S the same for the corrupted stimuli, but changed the fraction pr that was drawn
from the coreset. In the second experiment (results in Figure 15) the hamming distance between the
coreset S ′ for the corrupted stimuli and the coreset S for the original stimuli was varied from 0 to 2k.
In both experiments, as shown in the figures, we see that the models with recurrent connections are
more robust to pertubations, even in the case where the assemblies are created by stimuli drawn from a
distribution rather than a single stimulus.
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Figure 14: Assembly performance in recalling the original formed assembly y0 when probed by a stream
of corrupted inputs x that contain a different fraction pr of the coreset than the stream x0 that was used
to create the assembly. Here, we used n = 1000, k = 41, p = 0.03, β = 0.05, Ttrain = 40, Trecover = 10.
Results are averaged over 10 trials. Results are shown for models with and without recurrent connections,
and the models with recurrent connections are more robust.
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Figure 15: Assembly performance in recalling the original formed assembly y0 when probed by a stream
of corrupted inputs x that are drawn from a coreset S ′ that differs by a certain hamming distance
from the coreset S of the original stream x0 that was used to create the assembly. Here, we used
n = 1000, k = 41, p = 0.03, β = 0.05, Ttrain = 40, Trecover = 10. Results are averaged over 10 trials.
Results are shown for models with and without recurrent connections, and the models with recurrent
connections are more robust.

6 Recurrent connections alone can complete patterns
We highlight the significant role recurrent connections hold in pattern completion. Pattern completion is
an important and well-studied phenomenon involving assemblies: the firing of the whole assembly y in
response to the firing of a small subset of its cells [13]. We emphasize recurrent connections are crucial
to pattern completion, in which it alone suffices to complete the whole assembly very accurately by its
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subset with enough reinforcement of the original assembly [1]. Here, we demonstrate an experiment that
trains a standard assembly network with both afferent connectionWAS and recurrent synaptic connection
WAA for Ttrain steps to form an assembly y0 ∈ {0, 1}n, in which y0 consists of k firing neurons emerged
from projecting with Hebbian multiplicative plasticity and inhibition. Then, we perturb y0 by leaving
only α fraction of k firing neurons on for α ∈ [0, 1] to form y: among k original winners, αk of them
are randomly sampled to be left on without replacement and consequently the rest are turned off. We
attempt to recover y0 by setting y(0) = y and performing random projection and cap with the recurrent
weightsWAA for Trecover steps. Mathematically, the neurons in brain area A evolve as:

y(t+1) = capk

(
W

(t)
AAy

(t)
)

After, we examined the performance of pattern completion by measuring the percentage of assembly
recovered by measuring |Sy0

∩Sy|
|Sy0

| , where Sy denotes the set of k winners in assembly y. The model
showed promising results in figure 16 that recurrent terms alone can complete the assembly. With
α = 0.4, β = 0.05, p = 0.03, more than half of the assembly was recovered with Ttrain = 25; as the extent
of reinforcement increases, ie. when Ttrain = 45, more than 85% of the assembly was recovered. Similarly,
with same α and β, and p = 0.08, the recurrent terms completed pattern near perfectly.
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Figure 16: Pattern completion with n = 1000, k = 41, Ttrain = {25, 27, 30, 33, 36, 39, 42, 45}, Trecover =
2, α = 0.4, and β = 0.05. Here, we used p = 0.03 on the left, and p = 0.08 on the right. We replicated the
experiment on each Ttrain values for 20 trials and took the average to distinguish the result from random
events.

7 Discussion
In this note, we have conducted various experiments on the Assembly Calculus (AC) model to explore
the role of recurrent synaptic connections. We see that the absence of recurrent connections does not
significantly alter assembly formation (Section 2) and the spectral structure of the synaptic connections
(Section 3). These observations were observed both in assemblies created from single stimuli, as well as
those created from a stream of stimuli all drawn from the same distribution. In section 4, we also saw
that models without recurrent connections are able to classify stimuli from different distributions as well
as those with recurrent connections, with a notable difference. The assemblies for stimuli in the same
class that are created with recurrent connections have a larger overlap than those with created without
recurrent connections.

This observation is also consistent with our experiments in Section 5, where we test the robustness of
assembly recall in models with and without recurrent connections. We observe that models with recur-
rent connections are more robust to noisy inputs and shifting distributions. The models with recurrent
connections are able to recall assemblies from stimuli that are much more noisier than models without
recurrent connections.
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An initial hypothesis that can explain our observations on the role of recurrent connections in AC is sug-
gested by our observations in Section 3 that neural assembly models are akin to associative memories [14].
We were able to make this observation because the feedforward and recurrent synaptic weight matrices
take on the following forms: WAS ≈

∑k
yx⊤,WAA ≈

∑k
yy⊤. We can analogize the difference between

models with and without recurrent connections to the difference between single-shot and iterative asso-
ciative memories. Drawing on basic results in linear systems theory [15], we can understand howmodels
with recurrent connections, which are globally stable systems, converge to their top singular vector. This
can explain how models with recurrent connections are more robust. We can also draw on linear systems
theory to explain how pattern completion can be performed by models with recurrent connections.
Models without recurrent connections are, of course, unable to recall assemblies from corrupted versions
due to architectural limitations. This argument will be made more formal in a new version of the note.
In the updated version we also hope tomake a stronger connection between associative memories and AC.
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