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Abstract

The spectral element method is a weighted-residual technique for the
solution of partial differential equations that combines the geometric flex-
ibility of low-order h-type finite element methods with the rapid conver-
gence rate of spectral methods. In the speciral element discretization the
computational domain is broken up into macro- spectral elements, and
the dependent and independent variables are approximated by N** order
tensor-product polynomial expansions within each subdomain. Variational
projection operators and Gauss numerical quadrature are used to generate
the set of discrete equations. Convergence to the exact solution is achieved
by increasing the degree N of the polynomial approximation.

This thesis presents a new optimal-order Legendre spectral element dis-
cretization for the unsteady Navier-Stokes equations based on consistent
velocity /pressure spaces and a non-dissipative general formulation of the
convection operator. The resulting discrete equations are solved by a semi-
implicit method in time, with the implicit Stokes operator being treated by
a global parallelizable procedure consisting of nested preconditioned con-
jugate gradient/intra-element multigrid iteration. Numerical results are
presented that demonstrate the optimality of the discretization and solvers
for the solution of incompressible flow problems.

Thesis Supervisor: Professor Anthony T. Patera
Thesis Committee: Professors Yvon Maday and Ain A. Sonin
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Chapter 1

Introduction

Spectral element methods are high-order weighted-residual techniques for the
solution of partial differential equations that combine the geometric flexibility
of h-type finite element methods (Strang and Fix [59]; Ciarlet [15]; Girault and
Raviart [22]) and p-type spectral techniques (Gottlieb and Orszag [27] ; Canutd,
Hussaini, Quarteroni, and Zang [14]). In the spectral element discretization
(Patera [53]) the computational domain is broken up into macro- spectral ele-
ments, and the dependent and independent variables are approximated by N*/
order tensor-product polynomial expansions within each subdomain. Varia-
tional projection operators and Gauss numerical quadrature are used to gen-
erate the discrete equations, which are then solved by iterative procedures using
tensor-product sum-factorization techniques. Convergence to the exact solution
is achieved by increasing the degree, N, of the polynomial expansions, while

keeping the number of elements, K, fixed.

The spectral element method is one particular approach to spectral meth-
ods in complex geometries. As the spectral element method relies heavily on
variational projection operators, the technique is very similar to the p-type and
h-p-type finite element methods used in solid mechanics (Babuska and Dorr [4]),

however the latter do not use the tensor-product sum-factorization technique



which is essential for obtaining efficient iterative solution procedures. There
has also been much work on non-variational multi-domain spectral methods
for complex geometries based on explicit patching techniques (e.g. Gottlieb and
Orszag [27], Métivet and Morchoisne [46], Morchoisne [48], Marion and Gay [43],
Macaraeg 35|, Macaraeg and Street {36}, Laurien and Fasel [34], Métivet [45]).
The primary difference between the variational and the non-variational approach
is the treatment of the elemental boundaries. The variational approach only re-
quires C%-continuity across elemental interfaces, while higher-order continuity is
obtained as part of the convergence process. The non-variational {collocation)
method, however, strongiy enforces both C°- and C!-continuity across elemen-
tal boundaries. This difference in approach significantly affects the theoretical

analysis of the methods as well as the implementation.

The spectral element methods are optimal in the sense that the error they
incur is, at worst, a multiplicative constant away from the best fit possible in
the approximating polynomial subspace (e.g. Funaro [19], Funaro, Quarteroni,
and Zanolli [20], Maday and Patera {40]). A high-order approach is therefore
particularly attractive when aiming for accurate smooth solutions, e.g. solving
incompressible fluid flow problems. For this class of problem the spectral ele-
ment methods are competitive with A-type finite element methods as regards
efficiency, especially if the methods are implemented with optimal (resolution-
independent) solvers and in a paraliel architecture environment (Fischer [18]).
This improvement in efficiency is brought about due to the fact that, although
a high-order method requires more work per degrees-of-freedom than a low-

order method, for a fixed error requirement, many fewer degrees-of-freedom are



required by spectral element methods than by k-type finite element methods.
The increased efficiency is not obtained at the cost of decreased generality:
spectral element methods allows for geometric flexipility in representing com-
plex geometries by effecting a combination of local domain decomposition and
high-order interpolation. In essence, the spectral element methods provides a
general, accurate, and efficient treatment of incompressible flow problems in

complex geometries.

In this thesis we discuss spectral element discretization and solution proce-
dures for the incompressible Navier-Stokes equations. In Chapter 2 we discuss
the discretization of elliptic and parabolic equations, we consider optimal Stokes
discretizations based on consistent velocity/pressure spaces, and we construct
a non-dissipative discrete convection operator. In Chapter 3 we present global
iterative methods for the solution of the fully discretized semi-implicit Navier-
Stokes equations. In particular, we apply a Uzawa decoupling procedure in
which we solve the implicit Stokes operator based on a nested conjugate gradi-

ent iteration/intra-element multigrid approach.



Chapter 2

Spectral Element Discretizations

2.1 Motivation

In this chapter we develop a set of discrete operators which are used to
efficiently and accurately solve (integrate) the three-dimensional, unsteady, in-

compressible Navier-Stokes equations in a complex geometry 1,
du 2 .
p[ﬁ + (u-V)u] =-Vp+uViu+f inQ, (2.1)

V-u=0 inQ, (2.2)

subject to specified initial and boundary conditions for the velocity u. The
Navier-Stokes equations represent a set of nonlinear partial differential equa-
tions which combine both temporal and spatial derivatives. The emphasis in this
chapter will be on developing discrete operators resulting from high-order spec-
tral element spatial discretizations, while temporal discretization is performed

using finite difference techniques.

In order to motivate the particular choice of spatial discretization method
we must have a way to compare various solution strategies. We shall here define

an optimal numerical scheme as a discretization/solution procedure which can
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solve a given problem to a specified accuracy with the minimum computational
cost using a specified computer architecture. The particular class of problems
we are interested in solving here is multi-dimensicnal incompressible flow prob-
lems in complex geometries where we expect the regularity of the solutions to
be high. For convection-dominated flow problems we also need a discretization
procedure which can accurately resolve steep gradients like thin boundary lay-
ers and internal layers, and which introduces minimal numerical diffusion and
dispersion. Spectral methods typically have all these properites, however they
lack the generality associated with low-order (h-type) finite element methods in
terms of being able to represent problems in complex geometries. Hence, the
choice of discretization procedure will in general be a domain decomposition
technique in which the computational domain is broken up into K subdomain
(elements), and the dependent and independent variables are expanded in terms

of polynomials of degree N within each element.

In the following we assume that an appropriate time stepping procedure has
been chosen in order to meet numerical stability and accuracy requirements,
and we are left with solving a boundary-value problem at each time step. For
convenience we now define a discretization pair b = (K, N) associated with
the spatial discretization of the problem. A low-order finite element method
typically achieves convergence to the exact solution by increasing the number of
elemerits K, keeping the polynomial degree N fixed, e.g. N = 1; this convergence
strategy results in an algebraic convergence rate. In a spectral element method,
however, convergence is obtained by increasing the polynomial degree, N, while

keeping the number of elements, K, fixed; this convergence strategy results in
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exponential convergence for analytic solution and data. Note that in the case of
using only one element (K = 1), the spectral element method reduces to a pure

spectral technique.

It is clear that there exist many different discretization pairs h = (K, N)
which can meet the specified accuracy requirement. In order to choose an op-
timal discretization we define a work function W¢(e) as the computational cost
associated with solving a given problem in R¢ with a specified accuracy € and
using a discretization A = (K,N). The optimization problem then becomes:
Given ¢ and d, find b = (K, N) such that W () is minimized. For the class
of problems we wish to solve it is our claim is that even for engineering ac-
curacy” the optimal choice is neither a low-order finite element method nor a

spectral method, but rather somewhere in between; the optimal discretization

pair h = (K, N) will in genera! have values K # 1 and N # 1.

To motivate this conclusion we shall do a numerical experiment where we

solve the one-dimensional convection-diffusion equation
atzz +u, = f (2.3)

on a domain z € |0, 1] with Dirichlet boundary conditions u(0) = 1 and u(1) =
0. The particular choice of the data f and the constant a gives the highly
regular, but stongly varying solution u as plotted in Fig. 1. We now choose
a discretization pair h = (K, N), compute a numerical solution %, and the

associated ¥!-error,

on = [ [0~ ua)? + (s — a1 d )72, (24)
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and repeat this operation for many different discretization pairs. The conver-
gence rate is algebraic for a low-order method (N fixed, K = oo), while it is

exponential for a high-order method (K fixed, N = o0).

In order to compare the computational cost associated with each discretiza-
tion k = (K, N), we make some simplifications. First, we assume that optimal
iterative techniques are used to solve the systems of discrete equations, that is,
the iterative convergence rate is independent of the resolution b = (K, N), see
Section 3.3. Hence, the work is essentially proportional to the computational
cost associated with one matrix-vector multiplication (at least to leading order).
Next, we assume that the particular choice of discretization A = (K, N) to reach
a specified accuracy ¢ for the one-dimensional model problem (2.3) extends to
solve multi-dimensional problems in R?. Specifically, the computational cost
scales as W ~ O(K N4+, or equivalently, W3 ~ O(NN) where N = KN? is
the total number of degrees-of-freedom. The reason why spectral element meth-
ods (N > 1) are competitive with low-order finite element methods (N = 1) is

due to the fact that N is much smaller in a high-order approach.

We now plot in Fig. 2 the locus of work-minimum discretization pairs
h = (K,N), parameterized by the accuracy €. The trajectories are given for
d =1, 2 and 3. Essentially, the main conclusions are that as the required accu-
racy € increases, it becomes more favorable to go towards a high-order method.
Nex't, for the same specified accuracy the high-order approach becomes meore
optimal as the dimensionality of the problem increases. Finally, for a given
problem (d fixed) and a fixed accuracy, the computational cost increases much

more strongly near the (vertical) finite element ”axis” than near the (horizontal)
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spectral ”axis”, see Fig. 3.

Although these results are based on solving the simple one-dimensional model
problem (2.3), they nevertheless demonstrate the correct trends for a more com-
plex problem. In the case of the solution being locally irregular, we could argue
that it will pay off to use enough elements so as to confine the effect of the
singularities to within relatively small subregions of the total domain; once this
is achieved it will again be favorable to increase N in order to obtain higher
accuracy. This discussion will be addressed in more detail in a future paper.
Note that the scaling we have used for the computational complexity is valid on
serial machines. In the context of parallel architectures high-order methods are
favored even more strongly. This can be motivated from the fact that for a given
d and €, a high-order method results in less total number of degrees-of-freedom
than does a low-order method. Hence, on a parallel machine a high-order ap-
proach requires less commurication and gives a better load-balancing than an

h-type finite element method (Fischer [18]).

The main conclusion from the above discussion is that high-order domain-
decomposition techniques are attractive in the context of solving accurately
problems with smooth solutions. The spectral element method is one particular
approach which combines both the good resolution properties associated with
high-order discretizations with the geometric flexibility typically associated with
low-order methods. The spectral element discretization of (2.1} and (2.2) can

be expressed in matrix form as
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2

ntl _ . n
pPB(E—) +p Y = DI — pAwt + B, i=1,2,3,
k=0
(25)
D;y; =0, (2.6)

where B is a diagonal mass matrix (the variational equivalent of the identity
operator), C is the discrete convection operator, D;,7 = 1,2,3 is the discrete
gradient operator, T denotes transpose, A represents the discrete Laplace opera-
tor, and ax,k = 0,1, 2 are constants. In the rest of this chapter we shall develop
and analyze each of the discrete spatial operators 4, B, C, and D;, together
with combinations of these. We shall start in Section 2.2 with the spectral el-
ement discretization of the elliptic ocperator, followed by Section 2.3 where we
extend the method to solve the heat equation (parabolic). In Section 2.4 we
consider optimal saddle Stokes discretizations, and in Section 2.5 we contruct
the discrete convection operator (hyperbolic). Finally, in Section 2.6 we shall
see how we put all the operators together in order to solve the full Navier-Stokes

equations.

2.2 Elliptic Equations

2.2.1 One-Dimensional Problems

To illustrate the basic spectral element concepts we consider the following

one-dimensional elliptic Helmholtz problem: Find u(x) defined over the interval
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A =] — 1,1[ such that
—(puz)s + X =f  zEA, (2.7)
with homogeneoug Dirichlet boundary conditions,
u(—1) =ull) =0. (2.8)

Here subscript x denotes differentiation with respect to x, and we assume that
p(z) > po > 0, and A € R. The equation (2.7) shares many of the common
features of more complicated elliptic and saddle {Stokes) systems, yet it is suffi-
ciently simple to allow for a clear illustration of the spectral element discretiza-
tion of elliptic equations. As we shall see later, in order to solve a conduction
problem or a Stokes problem, unsteady or steady, we are ultimately faced with
solving an elliptic boundary value problemn of the form (2.7). In the case of an
implicit time stepping procedure, the constant A? typically plays the role of the

inverse of the time step.

The basis for our numerical scheme is the variational form of (2.7): Find

u € }}(A) such that
a(wo) = (fr)  Woe H(A) (29)

where
e L) ($9) = [ Ha)p(a)ds, (2.10)
e ady) = [[ba2)u(e) + M@z (211)

Here the function space L?(A) is the space of all functions which are square

integrable over A, while ¥3(A) is the space of all functions which are square
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integrable, whose derivatives are also square integrable over A, and which satisfy

the homogeneous boundary conditions (2.8).

The spectral element method proceeds by first specifying the discretization
pair b = (K, N), and breaking up the interval A into K subintervals (spectral
elements),

A=uf A (2.12)
where A; is defined by ax < z < e, + b (for convenience we here choose the
elements to be of equal length b). The space of approximation of the solution u
is then taken to be a subspace X}, of ¥J(A) consisting of all piecewise high-order

polynomials of degree < N,
Xn =Yy N H(4), (2.13)

where
Ya = {¢ € L2(A), ép, € Pv(Ax)}, (2.14)

and Py(Ax) is the space of all polynomials of degree < N on the interval A;.

The spectral element discretization corresponds to numerical quadrature of

the variational form (2.9) restricted to the subspace Xj: Find u, € X}, such that
ancr(unsvn) = (fyon)aer  Vun € Xi, (2.15)

where (-,*)acr and apgr(-,-) refer to Gauss-Lobatto quadrature of the inner

products defined in (2.10) and (2.11) respectively,

. b K N

(¢, ¥)reL = 2 ; §Pn¢(fn.k)¢(fn,k), (2.16)
b K N‘

GhrGL (¢’ 'l’) = 5 kz—: X-‘Opn¢z(fn,k)¢'z(£n,k)o (2.17)
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Here the &4 = ap + (6 + 1)8/2,0 < n < N,1 < k < K, are the locations
of the local nodes {n,k}, and the £,,pn, 0 < n < N, are the Gauss-Lobatto
Legendre quadrature peints and weighus, respectively (Stroud and Secrest [60]).
Note that with the N**-order Gauss-Lobatto quadrature we can integrate exactly
polynomials of degree 2N — 1 or less (Stroud and Secrest [60]), implying that

for p(z) = constant, apcy (un,vs) is integrated exactly while (f, vp)a L is not.

A detailed discussion of error estimates for the spectral element discretization
(2.15) is given in Maday and Patera [40]. Here, we shall only state the result

for the case p(z) = po = constant,
lu—ua i< CIN* |l u Jlo +N37* | £ ||} (2.18)

for u € ¥§(A) and f € ¥§(A) and where C is a constant. The sources of the dis-
cretization error || u — u, ||, are approximation errors, interpolation errors and
quadrature errors. From (2.18) we conclude that the spectral element solution
up converges to the exact solution u as NV = oo for K fixed, with faster than
algebraic (exponential) convergence obtaining for infinitely smooth (analytic)
data and solutions. This result should be contrasted to finite element hA-type

methods (N fixed, K = oo) for which only algebraic convergence results.

In order to implement (2.15) it is necessary to choose a basis for the polyno-
mial piecewise-smooth space X) in (2.13). The particular choice of basis does
not effect the (optimal) error estimate (2.18), however it eflects the conditioning
and structure of the resulting set of algebraic equations, which is very impor-
tant as regards the computational complexity associated with iterative solution

techniques, see Chapter 3. The choice of baris is also important as regards
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parallelism since it effects the inter-elemental couplings and hence the commu-
nication requirements. We choose an interpolant Gauss-Lobatto Legendre basis

to represent wy € X},

N
wa(z) = Uge,y D whhy(r) TEA >r€EA (2.19)
p=0
hy € Pu(A), hy(€) =64 Vp,q€{0,...,N}, (2.20)

where wf = wi(§) is the value of wy at local node {p, k}, and &, is the

Kronecker-delta symbol. Explicit expressions for the Lagrangian interpol-nts
h; are given in the Appendix. To honor the }} requirement and the essential

boundary conditions (2.8) we further require that

wh =wit! Veke{1,..,K -1} (2.21)

wy = wi =0, (2.22)

respectively. In addition to a basis for X, it will also be convenient to represent
functions (such as the inhomogeneity f) which are in Y, but not in X,. A
function wy, € Y}, is also expressed in terms of the interpolant basis (2.19), but
as wy, € Y, need not be in ¥* or satisfy the homogeneous boundary conditions

(2.8), we do not require the additional conditions (2.21) and (2.22).

The solution (us), the testfunctions (vs), and the data (f) are now all ex-
pressed in terms of the nodal basis (2.19) and inserted into (2.15). Choosing
each testfunction v, to be nonzero (unity) at only one global Gauss-Lobatto
Legendre coliocation point and zero at all the other collocation points, we arrive

at the final discrete matrix statement,

K N K N
2 'Y Hyug =)' Bf;, (2:23)
k=1 ¢=0 k=1 ¢=0

19



where f¥ = (&), and

HY = Al +X*B},  Vp,q€{0,..,N}? (2.24)
2 2
A =3 > PnDnpDny  Vp,q€{0,...,N} (2.25)
n=0
s _ b 2
Bm = Eppsm Vp,q e {0, seey N} (2-26)
DN = T{r—(fp) Vp,q € {Os"'aN} . (2'27)

Here ¥’ denotes "direct stiffness” summation, in which contributions from local
nodes {p, k} which are physically coincident are summed (enforcing (2.21)), and
contributions from local nodes {p,k} which correspond to domain boundary
points (here z = +1) are masked to zero (enforcing (2.22)). In terms of global
representation we can also write the spectral element discretization (2.23) of the

Helmholtz problem (2.7-2.8) in matrix form as
Hu=BJ, (2.28)

H=A+XB,

(2.29)

where u is a vector of nodal unknowns, f is a vector of given (interpolated) data,
A is the discrete Laplace-operator, H is the discrete Helmholtz-operator, and B

is a diagonal mass matrix.

To demonstrate numerically the rapid convergence rate promised by error
estimates of the form (2.18) we consider the problem (2.7-2.8) with p(z) = €%,
f(z) = e*(cosz — sinz), A = 0 on z =|0, x|, for which the solution is u = —sinz.
As all the data and the solution are analytic, we expect exponential convergence

to the exact solution. This i8 demonstrated in Fig. 4 where the L error is
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plotted as a function of N for K = 2. It is seen that when the resolution is
doubled the error is squared, consistent with exponential convergence. Note

that the discrete X! error || u — u ||1,6L also goes to zero exponentially fast.

Although the discrete solution u, is only contiruous and not C! across ele-
mental boundaries (25 € X3), the result in Fig. 4 indicates that the jumps in
derivatives at elemental boundaries are correctly taken care of by the variational
statement. In fact, it is shown in Maday and Patera [40] that C'-continuity is
weakly imposed by the variational form, which should be contrasted with the
spectral collocation (patching) method where C*-continuity is strongly imposed.
In the interior of an element, however, the spectral element method is equivalent
to a collocation procedure. To see this we consider the case of p(z) = 1and A =0
in (2.7). We then use the exactness of the Gauss quadrature formula (2.17) to
integrate the left-hand-side of (2.15) by parts, and choose the test function v,

to be unity at only one global collocation point. Equation (2.15) now reduces to

~uh o () = f*(£2s)
vge{1,..,N -1}, Vke{1,..,K} (2.30)
Pol—th eo(€okr1) — F¥1 (Eopes)] + pn[—uk oo (Eni) — F* (6ni)] =
[uns! (€oa+1) = o (Ena)]
Vk e {2,...K —1} (2.31)

where we have assumed that all the elements are of the same length. Thus in
the interior of an element the method is equivalent to a collocation precedure,

while on the elemental boundaries the spectral element discretization "naturally”
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generates a weak C'-condition on the solution (note po, py ~ O(1/N?)). We will

return to this issue in the multi-dimensional case.

2.2.2 Two-Dimensional Problems
Rectilinear Geometry

The spectral element discretization of multi-dimensional elliptic equations
corresponds to a tensor-product extension of the one-dimensional method. We
consider here the two-dimensional Poisson equation on a rectilinear domain 2

with homogeneous Dirichlet boundary conditions on the domain boundary 911,
—Au=f in Q, (2.32)
u=0  on 9. . (2.33)

Here A = V? is the Laplace operator, and a point in {2 is denoted x = (z;, z2).
The more general muiti-dimensional case in complex geometry is discussed in
the next section. The variational statement equivalent to (2.32-2.33) is: Find

u € }}(1) such that
. — 1
/ﬂ Vu. Vvdx fn fodx  Vve X (Q), (2.34)
or, in abstract form

a(u,v) = (f,v) Vv € X3 (). (2.35)

The spectral element discretization proceeds by breaking up the domain 2

into K disjoint rectilinear elements in (z,, z3),

Q=Uf, M, M =]a,,a;[x]b,, b, (2.36)
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such that the intersection of two adjacent elements is either a whole edge or a
vertex, see Fig. 5. We then require that the variational statement (2.35) be
satisfied for a polynomial subspace of X] defined on the {l;,. As in the one-

dimensional case, we first define the space
Pu(f1) = {® € L2(0); @y, € Pv()} (2.37)

where Py(0:) denotes the tensor-product space of all polynomials of degree less
than or equal to N with respect to each spatial variable z; and z;. The spectral

element space X} consists of
Xn = X3 0 Py x(0). (2.38)
The discrete problem is then given by: Find u; in X, such that

/ Vu, - Vo dx = / fuadx Yy, € X,. (2.39)
n 11

To proceed with the numerical quadrature/interpolation we use an affine
mapping: z; = r,Z2 => r2,X € () = r € A X A, and perform tensor-product
Gauss-Lobatto Legendre x Gauss-Lobatto Legendre quadrature in (ry,72) to

obtain from (2.39)

K N N
Z' Z Z V“h(fl,h :,k) : Vvh(fl,m :,k)l’;ly,kp:,k =

k=1 p=0¢=0
K N N
2100 fun(&u Ea)opars  Yon € X, (2.40)
k=1 p=03=0
or
ancr(un,va) = (f,vn)reL Vu, € X (2.41)

Here the £}, £2, are the Gauss-Lobatto points, £}, = a, + (a}; — a,)(&, +1)/2,
& =b + (% — b)(& +1)/2, 4,02, are the quadrature weights from (2.16)
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including the "geometry”, p, , = pp(a} — ai)/2, p2, = pp(by, — bi)/2, and V still
refers to the gradient operator with respect to the x variable. Theoretical error
estimates of the form (2.18) can also be obtained for the multi-dimensional case,

see Maday and Patera [40], Funaro [19].

The last remaining point as regards implementaticn is the choice of basis. For
reasons of efficiency, tensor-product forms are virtually required in high-order
methods (see Section 3.1), and thus the basis for w, € X, follows naturally from
the one-dimensional case as

N N

wp (r1,72) = §§wgm(rl)h,(r,) XEM =>re€AxA, (2.42)
where the h; are the one-dimensional Gauss-Lobatto Lagrangian interpolants
defined in (2.20) and wf; = wy (&}, £2,). Similar to the one-dimensional case we
must also require the polynomials to be C%-continuous across elemental bound-
aries and enforce the homogeneous Dirichlet boundary conditions for w, € X,.
Expressing the discrete solution us € X}, the testfunctions v, € X}, and the
data f € Y, in terms of the basis (2.42) and chocsing vy, to be nonzero at only
one global collocation point, the discrete formulation (2.41) becomes

523 So(Ah Bl + Bl Al )ub, =

k=1 m=0n=0

f:' Z BE.BhfE.  Vi,j€({0,..,N}? (2.43)

or
=BJ. (2.44)
The one-dimensional elemental matrices A} , BY, in (2.43) are defined as in (2.25-

2.26), whereas A, B refer to the global multi-dimensional K-element versions of
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the discrete Laplace-operator and mass matrix, respectively. The critical feature
of (2.43) is the tensor-product factorization of the Laplace-operator that follows

from tensor product integration and basis.

In addition to greatly increased complexity and coupling in the matrix equa-
tions in two dimensions, there are other noteworthy differences from the one-
dimensional case. First, by using the properties of Gauss-quadrature the equiv-
alence of (2.41) to a collocation procedure for points internal to an element can
again be obtained. Although in one dimension the interface condition is rela-
tively simple, at cross-points between four elements in two dimensions the weak
C! condition naturally generated by the variational approach is less trivial. This
indicates the simplicity of the variational approach as compared to the ”patch-
ing” approach; in the latter, the sense in which the normal derivative is to be

interpreted at internal corners is less obvious.

Second, whereas in one dimensicn singularities can enter only through the
coefficients or forcing terms of the problem, in two space dimensions even with
analytic data the solution can suffer singularities if the domain boundary 31} is
not smooth. Although these singularities are often relatively weak in practice,
they must nevertheless be considered when judging the suitability of a high-order
approach. In a spectral method (K = 1) the singularities will effect the solution
over the entire domain, however in a spectral element method (K > 1) the effect
will.be localized to within the elements where the singularities occur. It should
also be noted that in the k-p type finite element treatment of elliptic problems,
exponential convergence can be achieved even in the presence of singularities by

effecting suitable refinement procedures (Babuska and Dorr [4]).
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Third, whereas geometry does not enter into one-dimensional problems, in
higher space dimensions this is often the critical issue. In the discretization
procedure we construct isoparametric spectral elements, thus allowing for local
elemental mappings similar to, but not as general, as those used in h-type finite
element methods. For instance, a tensor-product basis for triangular elements
has not yet been established. The next section explains in more detail how

problems in deformed geometries are treated.

Deformed Geometry

We consider now the two-dimensional Poisson equation defined in a deformed
domain 1 with homogeneous Dirichlet boundary conditions on the domain
boundary 911,

—Au=f tn 0} (2.45)

u=0 on 9N. (2.46)
The equivalent variational formulation is: Find u € ¥3(Q) such that
a(u,v) = (f,v) Vv € X3 () (2.47)

The spectral element discretization proceeds by breaking up the domain into K

(g=nerally deformed) disjoint quadrilateral elements,
a=uf 0, (2.48)

such that the intersection of two adjacent elements is either a whole edge or a
vertex. The discrete equations are then generated by applying tensor-product

Gauss-Lobatto Legendre numerical quadrature of the variational form (2.47)
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restricted to the subspace X, where the polynomial subspace X}, € }((} is defined
in (2.37-2.38). The discrete problem then becomes: Find uj € X}, such that

ancr(vn, vn) = (f,va)ncL, (2.49)

We now rewrite the integrals in (2.49) as a sum of contributions from all the

elements {1,

K K
Za"(u,v) = Z(f, v)", (2.50)
k=1 k=1
where
a*(u,v) = /{;k Vu - Vvdzdy, (2.51)
and
(f,0)* = /n fv dzdy. (2.52)

The elemental integrals are now mapped into a local (r, s)-system, see Fig. 6:

(z,y) € Qe = (r,8) € A x A, A =] — 1,1[, and we rewrite (2.51) as
11 .
a*(u,v) =/ / Vut(r,s) - VoE(r,s) | JE(r, 8) | drds (2.53)
-1J41

where V now denotes differentiation with respect to the the local (r, s)-coordinates,

ord dJdsd or 9 638,\

v= dz dr t oz 3z ds e+ (8y ar T oy E)e"’ (2.54)

J is the Jacobian,

_,0zdy 0Ozdy
J= 798 5;-5;), (2.55)

and superscript k refers to integretion over subdomain (2. In (2.54) we note

that

or 13y d9s 13y or 10z ds 10z

oz~ J0s° 9z~ Jor oy Jor oy 79 (2.56)
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and we rewrite (2.53) as

RS T
i _ E_ Gk g, :
a (u,u)_/-l/_1 Vet Vot drds, (2.57)
where
6 = (ycar - yraa)éz + (zraa - zaar)éy, (2.58)

and for simplicity we write z, = %, a, = 5";, etc. Similarly, the integral (2.52)

can be expressed as

(f,v)t = /‘;h fvdzdy = /»_11 _/_: frok | J* | drds. (2.59)

The spectral element method now proceeds by writing (2.49) as

K K
; aker(un, o) = 2 (frvn)k e (2.60)
=1 k=1

As for the rectilinear case we use a tensor-product interpolant basis to represent

a function wy, € X,

N N
wi(r,8) =) wh;hi(r)k;(s), (2.61)

i=0 j=0
where w}; is the value of wy at the (local) point (&;,¢;) inside element k, and

h; is the N*»-order Lagrangian interpolant through the Gauss-Lobatto Legendre
points,
hi(&5) = &, (2.62)
(&) = Dy (2.63)
The geometry (z,y), the solution (u,), the test functions (vs), and the data (f)
are all expressed in terms of the nodal basis (2.61) and inserted into (2.60). The
elemental integrals in (2.60) then become

at o (Un, 0n) = ppn,r,i—l\?uz(sp, &) - ok (6 £0) (2.64)
P
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where

eu’h(fm Eq) - pqmn :m’ (2'65)

‘emﬂm = [(y.):quﬁq.. - (y,):QGMD.,,.]é‘, + [(zr):q6meqn - (zo):qumsqn]ém

(2.66)

(3"):1 = me&qnz:m = UpmTmg, (2.67)

(Za)pg = EpmDinzh, = Dgnzt,, (2.68)

(yf):q = me&qny:m = Upm¥Ymyq, (2.69)

(¥)pg = SpmDinttin = Donyt, (2.70)

Tra = (2r)pg - (Ue)pg = (2o - (90)s (2.71)

and summation over repeated indicies is assumed. Similarly,

(fron)her = Popq | oy | FrvF- (2.72)

Note that in the case of deformed geometry we incur quadrature errors both
in the evaluation of aj gy (ua,va) 2and (f, v)sar, however for smouth solutions
they are roughly of the same order as the approximation errors and interpolation

€rrors.

Choosing the test functions v, tc be nonzero (unity) at only one global col-

location point, and zero at all other collocation points, we can write (2.60) as

EA')"!” E tymn mna (2.73)

where

Aumn = pl’pﬂj v:qu qumn’ (2’74)
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and
Bfian = 0ip; | I | 8imbin. (2.75)

Although the resuiting matrix equations are more complicated than (2.43) they
retain their tensor product form. The C%-mappirgs (2.61) are sufficient to insure

that the spectral element subspace Xj remains in H!(f1).

The isoparametric spectral element case is relatively simple to implement,
however there are many new theoretical issues which arise related to the effect
of mapping on interpolation and quadrature (Métivet [45]). Although no gen-
eral error bound is currently available, the numerical evidence to date indicates
that spectral accuracy is achieved even in relatively deformed elements. As an
example we consider the problem (2.45) on the domain @ = (z; € 10,1[,z; €
j0,1 4+ isinmzy[) with f = 0, u = sinz; - e7*2. The K = 4 spectral element
discretization used is shown in Fig. 7, in which the mapping for spectral ele-
ments k = 3,4 corresponds to a simple stretching in z; of the mapped domain
A X A = (I). It is clear that in more complicated domains more sophisticated
mappings are required; to date both differential (elasticity) and (Gordon-Hall)
blending methods (Gordon and Hall [2€]) have been used with success (Métivet
[45], Ho [29]). '

We plot in Fig. 8 the L®-error as a function of the total number of degrees-
of-freedom in one spatial direction, Ny = 2N + 1, demonstrating exponential
convergence to the analytic solution (Rgnquist and Patera [56]). Note that
although the domain {1 is relatively deformed compared to the mapped rectilin-
ear problem, high accuracy is nevertheless obtained with relatively few points

due to the good interpolation properties of Legendre-Lagrangian interpolants as
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applied to piecewice smooth boundaries 911.

To illustrate the importance of resolving the geometry we again consider the
solution of the problem (2.45) with data f = 0 and solution u = stnz, - e™*2.
In Fig. 9 we plot the L®™-error as a functicn of tiie total number of degrees-of-
freedom in one spatial direction, N:, but now for three different geometries and
discretizations. We note that the top element iu case (A) in Fig. 9 has a sharp
corner on the top edge, resulting in algebraic convergence as N; is increased.
In case (B) the top element is also deformed, however the edges are smooth
and exponential convergence is obtained. In case (C) the domain (A) is split
into K = 4 elements so as to obtain elemental boundaries which coincides with
the piecewise smooth boundary 31). Note that we this time obtain exponential
convergence to the exact solution, demonstrating both the necessity and power

of a domain decomposition approach.

Finally, we remark that the results presented here for two-dimensional de-
formed geometry are readily extended to three dimensions. Also note that in
the context of the full Stokes problem it appears that {slightly) subparametric
elements are preferred to the isoparametric elements presented here, see Section

2.4.

2.3 Parabolic Equations

The spectral element discretization procedure for solving elliptic equations

can readily be applied to solve parabolic problems. Consider the unsteady heat
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equation

gt—u = Au + f, (2.76)

on a domain {} with specified initial and boundary conditions. It can be shown
that applying a high-order spatial discretization procedure, the spectral radius
of the discrete second-order Laplace cperator scales like Ay maz ~ O(K?N*) for
large K; and N, where K; denotes the number of elements in a typical spatial
direction and N is the polynomial degree. Note that that A4 here refers to the
eigenvalues of A with respect to the mass matrix B, and not with respect to the
identity matrix I. This means that the time step in an explicit time integration
scheme must be smaller than At ~ O(K{?N~%), which is a severe stability
condition. Although K, may be large in a low-order finite element method
(N = 1), the factor N* resulting from a high-order scheme will in general give

a more severe time step restriction.

In order to avoid this severe time step constraint in the context of spec-
tral element discretizations, an implicit Euler backward time integration scheme
is used (we assume here that a sufficiently efficient iterative solver exists, see
Sections 3.2 and 3.3),
ntl _ yn

At

u

= (A 4 o1, (2.17)

and the spectral element discretization of (2.77) can then be written in matrix
form as

Hy =By, (2.78)

where
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and

g=f+=. (2.80)

&llea

Here g is the vector of nodal unknowns, f is a vector of given (interpolated)
data, A is the discrete Laplace-operator, H is the discrete Helmholtz-operator,
and B is the diagonal mass matrix. We see that we recover equation (2.7), with
A? playing the role of the inverse of the time step, implying that for each time
step we have to solve an elliptic boundary value problem. As an example of a
spectral element, solution to a multi-dimensional parabolic problem, we refer to
Rgnquist and Patera [56] where the method is used to solve the Stefan problem.
Here, the technique is extended to also account for a time-dependent geometry,

that is, the geometry is computed as part of the solution.

We close this section by remarking that although implicit time integration
seems to be natural when solving parabolic equations of the form (2.76), for
convection dominated parabolic equations, like the Navier-Stokes equations (2.1-
2.2) in the high Reynolds number limit, the time step restriction due to the
Courant condition might be a more severe restriction, and hence an explicit
time integration scheme is more appropriate. We shall return to this issue in

Section 2.5.

33



2.4 The Stokes Problem

2.4.1 Steady Stokes

Two-Dimensional Rectilinear Geometry

In this section we consider the two-dimensional steady Stokes problem: Find

a velocity u and a pressure p in a rectangularly decomposable domain 1 =
] — 1,1[2 such that

—pAu+Vp=£f in 1, (2.81)

—diva =0 in 0, (2.82)
subject to homogeneous Dirichlet velocity boundary cenditions on the domain

boundary 912,
u=0 ondn (2.83)

Here £ is the prescribed force and p is the viscosity. We will further denote a
point in {1 a8 x = (z;,z;). The more general multi-dimensional case in complex

geometry i8 discussed in the next section.

The spectral element discretization of (2.81-2.83) is based the equivalent

variational formulation: Find (u,p) in X x M such that

p(Vu,Yw) - (p,divw) = (f,w) VweX, (2.84)
— (g,divu) =0 'q € M, (2.85)

where
V9 e L) (4¥) = [ s(x)v(x) éx (2.86)
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The space for the velocity, X, and the space for the pressure, M, are given as
X= ['VOl (n)lz’ (2.87)

M=rin), L£2={¢e L) /ﬂ dx = 0}. (2.88)

Since the pressure is only determined up to a constant, we impose the average

pressure to be zero.

The discrete formulation of the Stokes problem consists of choosing two dis-
crete approximation spaces, one {(X,) for the velocity and one (M,) for the
pressure. In Bernardi, Maday and Métivet [8] the choice of X}, and M}, as poly-
nomial subspaces of X and M, respectively, is presented in the context of the
spectral collocation approximation. It is pointed out that na'i'vely choosing X
and M, to be subspaces of polynomial degree less than or equal to the same
constant N leads to an ill-posed problem polluted by spurious pressure modes.
For the collocation method an algorithm based on staggered grids is proposed
and analyzed in Bernardi and Maday [7] that avoids this problem; the extension
of these ideas leads to the well-posed spectral element method we present here
(Maday, Patera, and Rgnquist [42], Maday and Patera [40], Maday, Patera, and
Regnquist [41].

The spectral element discretization of (2.81-2.83) proceeds by first breaking

up the domain into K disjoint rectilinear elements in (z,, z;),
Q=Ul M, O =la,,a;[x]b, 8], (2.89)
such that the intersection of two adjacent elements is either an edge or a ver-

tex. We then require that the variational statement (2.84-2.85) be satisfied for
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polynomial subspaces X, C X and M C M defined on the {1;. We choose the

subspaces to be

Xn=Xn Puk(Q) (2.90)
My = M0 Py_ax(D), (2.91)

where
Pux (1) = {® € L*(Q2); ®pa, € Pv(M)} (2.92)

and Py (fl:) denotes the space of all polynomials of degree less than or equal to
N with respect to each spatial variable z; and z;. We see that the polynomial
degree for the pressure is two order lower than for the velocity. Also note that
the velocity is continuous across the elemental boundaries, while the pressure is

discontinuous.

Next, we define over each subdomain (spectral element) two integration rules,
one by taking the tensor-product of Gauss formulas, and the other one by taking
the tensor-product of Gauss-Lobatto formulas. First, we denote the (local)
Gauss nodes and weights as the pair (¢,w;) for i = 1,..., N — 1, and the (local)
Gauss-Lobatto nodes and weights as the pair (&;,p;) for £ = 0,..., N, and then
define the global quadrature points and weights as

Gr=at(@-a)a+1)/2,  w=w-(g-a)2 (2.93)
h=b+ B -b)(a+1)/2, Wl =wi- (b —b)/2, (2.94)
Ea=ort+(a—a)(&+1)/2,  plp=pi (0 —a)/2, (2.95)
Er=b+ G —0)(&+1)/2,  ph=pi- (b, —be)/2, (2.95)
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We can now define the two integration rules for all (¢, ¢) € [C°()]?,

K N-1N-1

(¥ = ; 33t G)¥ (e SFu)wiswis, (2.97)
=1 i=1 j=!
K N N

CRDICTED DD IP I (1R L (N I S (2.98)
k=1i=0 j=0

The discrete forraulation corresponding to the variational formulation (2.84-

2.85) can then be stated as: F'nd (up,ps) in Xj X M, such that
B(Vun, VWi )nor — (pr,dsvwalne = (£, Wr)ner,  Vwa € X,  (2.99)

— (g, divup)ae =0,  Var € M), (2.100)

In Maday, Patera and Rgnquist [42] a detailed theoretical analysis of the dis-
crete formulation (2.99-2.100) is performed in the case of semi-periodic boundary
conditions; the dependent variables (u, p) and the data f are in this case written
in terms of Fourier series in the periodic z,-direction, a procedure which decou-
ples all the Fourier modes for the Stokes problem. The resulting equations for
one Fourier mode are then discretized using spectral element discretization in
the non-periodic z,-direction, see the next section. For the semi-periodic case it
is further shown in Maday, Patera, and Rgnquist [42] that the discrete solution
(un,pa) is unique, and that the following error estimate holds for the velocity
Up,

o —wi 1< CIV=(a llo + I p o) + N [ £]L). (2100
Here, it is assumed that u € [¥?(A)]*,p € ¥°71(A), and £ € [¥?(A)}?, and the
domain 1 is defined as 0 =] — 1,1{x]0,2x|, and A =] — 1,1[. An error estimate
for the pressure is also deduced, and in Maday, Patera, and Rgnquist [41] opti-

mal error bound for the velocity is obtained for the non-periodic homogeneous
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problem (2.81-2.83). For spectral element discretizations of Stokes problems
in rectilinear geometry the main conclusions from the theoretical analysis can
be summarized as: (i) The discrete solution is unique, that is, there exist no
spurious pressure modes, and (ii) for analytic solution and data exponential
convergence to the exact solution is obtained as the polvnomial degree, N, is

increased for fixed number of elements, K.

In order to implement (2.99-2.100) we must define bases for the solution space
Xn X My. As for the spectral element discretization of elliptic equations, due
to reasons of computational efficiency, we expand the solution in tensor-product
form
N N
w;(r,r) =33 uf;hi(r)hi(rs) x€M=>reAxA. (2.102)
i=0 5=0
Here uf; = w;(&},,€3,) is the velocity at the tensor—produ;:t Gauss-Legendre
Lobatto points (£}, £},) in subdomain (spectral element) 2, and k; and h; are
the N*» order Lagrangian interpolants through the Lobatto points. The data is
expanded similarly to the velocity,
N N
fr(ri,ra) =203 £ hi(ri)hi(rs) x€M=>reAxA, (2.103)
§=0 j=0
however the pressure is represented at the Gauss points,
N-1N-1
ph(r1, ) = )_? E phhi(n)hi(r) xcMy=reAxA (2.104)
Here p}; is the pressure at the tensor-product Gauss-Legendre points ($hes¢he) in
subdomain (spectral element) 9y, and the k; are the (N — 2)** order Lagrangian
interpolants through the Gauss points. In Fig. 10 the staggererd mesh is illu-

trated for K = 1 and N = 7. Note that in contrast to the finite difference case,
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the velocity and pressure collocation points are not shifted relative to each other
in a regular fashion. In fact, we see from Fig. 10 that in some regions there are
only velocity points with no pressure points in between. In the finite difference
case a regularly spaced staggered mesh follows naturally from approximating
the differential operators with finite differences. In the spectral element method
the staggered mesh is used to represent the (Lagrangian interpolant) bases asso-
ciated with two different high-order polynomial subspaces, and there is no need

for the mesh points to be regularly epaced.

The expansions (2.102-2.104) are now inserted into (2.99-2.100) and the dis-
crete equations are generated by choosing test functions wy, € X}, in (2.99) which
are unity at a single £ and zero at all other Gauss-Lobatto Legendre points,
and test functions g, € M), in (2.100) which are unity at a single ¢ and zero
at all other Gauss Legendre points. The resulting set of discrete equations can

then be written in matrix form as

#Al‘_‘—_.r_?ﬁ = .E_.L 1=1,2, (2‘105)
—Dyu; = 0. (2.106)

Here u;,t = 1,2 and p represent vectors of nodal unknowns, A is the discrete
Laplace-operator, B is the diagonal mass matrix, D;,t = 1,2 is the discrete
gradient opertor, and T indicates the transpose operator. The linear algebraic
system (2.105-2.106}) corresponds to a symmetric saddlepoint problem, see Sec-
tion 3.4.

We now present numerical results for the spectral element discretization of

(2.81-2.82) for a two-dimensional problem with specified Dirichlet boundary con-
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ditions. The extension of (2.99-2.100) to non-homogeneous boundary conditions
does not cause significant difficulties if the boundary conditions are compatible
with a sclenoidal velocity field. In particular, we look at the following simple

test prob'em:

u = (u;,u;) = (1 - z3,0) (2.107)

P = 8InNWZ; - SINTI; (2.108)

f = (fi, 2) = (2 + ncosnz, - sinwzy, msinwz, - cosnzy), (2.109)

on the domain 1 =] —1,1[* with u = (u;, u3) specified on the domain boundary.

Note that both the solution and the data are analytic. The domain is broken up
into K = 4 similar subdomains (spectral elements), and the numerical solution
is compared to the exact soution for different values of the polynomial degree NV.
Fig. 11 shows the maximum pointwise error in the velocity and the pressure as
a function of the total number of degree-of-freedom in one spatial direction. As
expected from the infinitely smooth nature of the solution, the error decreases
exponentially fast as N increases for fixed K. Note that although the velocity
can be approximated exactly by a second-order polynomial, we still incur an
error in uy partly because of the coupling between the velocity and the pressure,

and partly because the data f cannot be interpolated exactly.

To solve a problem in more complex geometry we present some results for
creeping flow in a wedge. The extension to complex geometry can be derived by -
following a similar procedure as described for elliptic problems. The geometry
for the wedge is shown in Fig. 12a together with the spectral element discretiza-
tion (K = 30, N = 8). The imposed velocity boundary conditions are no-slip

conditions on the two vertical side walls, while a unit horizontal velocity is im-
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posed along the top (horizontal) side. The spectral element solution in form of
streamlines is shown in Fig. 12b, and for comparison we have also included a
flow visualization from an experiment by Taneda [62], Fig. 12c. Based on 2
gimilarity solution Moffatt [47] derived asymptotic results for the strength and
the location of an ”infinite” number of eddies. He predicts that in the direc-
tion from the top to the bottom of the wedge, the strength of the next eddy
should asymptotically be about 405 times weaker than the previous one (for a
total wedge angle of 28.5 degrees). With the particular discretization used in
this example we are able to resolve 4 eddies. The ratio of the strength of twoe
successive eddies in the computed solution is (from top to bottom) 386, 406 and
411, all in good agreement with Moffatt’s asymptotic results. Note that already
the third eddy is so weak that is has not been seen experimentally. Moffatt also
shows that the distance from the bottom of the wedge to the center of the next
eddy is about half the distance to the previous one, again in good agreement

with our results.

As a third example we consider parallel Stokes flow past a sphere. This is
an axisymmetric problem, and the spectral element discretization procedure for
the Cartesian case needs to be modified. This is done in Rgnquist, Patera and
Deville [58], and we shall here just state the main results. First, the variational
form will have an r-weighting, where r is the radial distance from centerline.
Second, subparametric representation of the geometry is necessary to ensure
the absence of spurious pressure modes. Third, the boundary conditions for the

two velocity components are different.

The geometry we consider in this example is shown in Fig. 13. The length
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of the domain is 30, and the height is 15. The radius of the sphere is ¢ = /2.
On the domain boundary we impose exact velocity boundary conditions (White
[66]). No-slip conditions are imposed on the surface of the sphere, while on
the axis zero Dirichlet condition is imposed for the radial velocity, and zero
Neumann condition is imposed for the axial velocity. From the spectral element
solution we integrate the total stress over the surface of the sphere to get the
total drag. The exact solution for the drag is given as F = 6ruUa (White [66]),
where p is the viscosity, U is the (axial) free stream velocity far away from the
spnere, and a is the radius of the sphere. The computed drag is compared to
the exact solution, and in Fig. 14 we plot the relative errcr as a function of the
pelynomial degree N, keeping the nuinber of elements, K, fixed. Again, due to
the smooth nature of the solution and the geometry, exponential convergence is

obtained.

Two-dimensional Semi-Periodic Case

In this section we consider the Stokes problem (2.81-2.82) defined on the

domain =] —1,1[x]0, 2x[, with semi-periodic boundary conditions of the form
Vz; €10,2x] u(-1,z;) =u(l,z;) =0 (2.110)
Vzy€]-1,1]  u(z,0) = u(zy,27). (2.111)

A detailed theoretical study of this problem can be found in Maday, Patera, and
Rgnquist [42], however we shall here presert the main numerical results. First,

we write the dependent variables (u,p) and the data f in terms of Fourier series
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in the periodic z3-direction,

0

u(zy,z3) = Y 0"(z1)e™*, (2.112)
k=-o00
x A
plz,z) = D P(z1)e™™, (2.113)
k=-o00
m A I3
f(£1,22)= Z f"(zl)e"‘”, (2.114)
k=-oc0

where ¢ = /—1. The Fourier representation {2.112-2.114) results in a set of
decoupled equations for each Fourier mode k, which are discretized using spectral

element discretization in the non-periodic z;-direction.

To demonstrate numerically the convergence rate in the semi-periodic case,
we consider two test problems in which the viscosity u is equal to unity and
the Fourier index k = 1 in (2.112-2.114). For the first test problem the exact

Fourier coefficients for the solution and data are given as

@ = (@,483) = (—(1 + cosnzy),i stnnz) (2.115)
P = sinmz, (2.116)
f = (fi, ) = (~(1 + cosrzy) /m,i (2 + 7*)sinnz,), (2.117)

while the exact Fourier coefficients for the solution and data for the second test
problem are

@ = (@,13) = (—(1 + cosnz,),i sinmz;) (2.118)
p = sinxzy+ | 2y — 1/2 [1H/3 (2.119)
fi = [~(1 + cosxzy) x + (v + 2/3)sgn(z1 — 1/2) | 7 — 1/2 [""V%]  (2.120)

fa=3[(2 + ) sinwzy+ | 2, — 1/2 [112/3] (2.121)
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on a domain A where z; € A =] — 1,1]. Note that the solution and the data
in the first test problem are analytic, while the regularity of the second test
problem is determined by the value of v, which is assumed to be an integer.
In the first test problem A is divided into K = 2 equal subintervals A; and A,,
while in the second test problem only K = 1 element is used. Convergence is

achieved by increasing the order of the polynomial expansions, N.

In the first test problem we obtain exponential convergence as the order N is
increased. Fig. 15 shows the error in the velocity and the pressure as a function
of the total number of degrees-of-freedom (Gauss-Lobatto Legendre points) in
the z;-direction. This rapid convergence rate is expected due to the fact that
the solution and the data are analytic. In the second test problem we obtain
algebraic convergence as the order N of the polyncmial expansions is increased.
Fig. 16 shows the error in the pressure as a function of the total number of
degrees-of-freedom (Gauss-Lobatto Legendre points) in the z;-direction for 4 =
3 and v = 5. The convergence rate is given approximately as N~(7*1), which
in this particular case is slightly better than the theoretical estimate of N3~7
predicted by (2.101).

Multi-Dimensional Deformed Geometry

Using the idea of tensor-product expansions the spectral element discretiza-
tion for the two-dimensional steady Stokes problem can readily be extended
to solve three-dimensional problems in rectilinear geometry. We have further

extended the method to allow for treatment of general deformed geometries.
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The only subtlety ae regards the general-geometry formulation for the Stokes
problem is insuring the absence of spurious pressure modes, and preserving the
(physical) hydrostatic mode p = constant. To this end we use subparametric

mappings, that is, the geometry is represented in the space
G = [PN_z_x N )(l(ﬂ)]s. (2.122)

If the pressure is constant, p, = po, the choice (2.122) for the geometry space

insures that the pressure term in (2.99) is zero,
(po,di.vW)h.G =0 Yw € X, (2.123)

for arbitrary geometries, as should be the case given the similar property of the
continuous equations. This result follows from the fact that all the quadratures
in the scalar product (2.123) are exact, and integration by parts is allowed.
Hence, the subparametric mapping preserve the hydrostatic pressure mode. Al-
though we currently have no proofs as to lack of spurious modes in the general
geometry (up,pa;Xp) € Xi X My x Gy, formulation, we have yet to encounter

difficulties in practice.

2.4.2 Unsteady Stckes

The unsteady Stokes equations are given by

— pAu+ Vp 4 p% =f in 0, (2.124)
—divu=0 in Q, (2.125)

45



with boundary and initial conditions
u=0 on an, (2.126)

u{x,t = 0) = g(x) in Q. (2.127)

Here all the variables are defined as for the steady case, with ¢ representing time,
and p the density of the fluid. Alhough there are physical problems in which
the unsteady Stokes equations are relevant (e.g. high frequency phenomena
for which the convective terms are small, but the unsteady terms are not), the
unsteady problem is primarily of interest as regards its role in unsteady Navier-

Stokes calculations.

We proceed directly to the time-discretization of (2.124-2.127) by an implicit
Euler backward method (readily extended to Crank-Nicolson),

_ n+l n+1 u™t! — " __ gntl
pAU" +Vp"T 4 p Ve S (2.128)
- diva™! = 0, (2.129)

in which (u™t!,p"*') = (u(x,nAt),p(x,nAt)), and At is the time step. The
variational form is given by: Find (u™*!,p"*!) € X x M such that

n+l _ ..n
u(Va"t, Vw) — (o™, divw) + p(ET“—,w) =", w) VweX,
(2.130)
— (diva™t,q) =0 Vge M. (2.131)

As for the steady case we will consider discretizations based on (2.130-2.131):
Find (uj*!, pi*') € X\ x M, such that

:+l - ?

) u
u(Vapt, Ywi)aer — (pp, divwa)rg + P('—A_t_h'swh)h,GL = (f""!, wp)nar
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Ywy € X, (2.132)

- (divu:"", q,.)h,g =0 Vg, € A4, (2.133)

where X, and M, are the same polynomial subspaces of X and M as relevant

to the steady problem (2.81-2.83). In matrix form (2.132-2.133) are written as:

Rl _ gn
(0 — be)uAuft — DI pt! + p.E.(f'“—‘T‘-‘—) =Bft' i=1,2,3, (2.134)
— Dt =o0. (2.135)

Defining the discrete £2-norm || ¢ |lo,cz based on Gauss-Lobatto quadrature as

I ¢ llocz= (6" Bg)*/%, (2.136)

we note that for any discretization for which A is symmetric positive-definite

(2.134-2.135) are unconditionally stable,

| &™** flogz <1l «* llo,cr, (2.137)

as can be readily demonstrated by multiplying (2.134) with ! and (2.135) by

p"t1, respectively.

2.5 Hyperbolic Equations

The main objective with this section is to construct an accurate spatial dis-
cretization of the convection operator in a convection or a convection-diffusion
transport equation. Ultimately we will use this operator to represent the ad-
vective (nonlinear) term in the incompressible Navier-Stokes equations, in which

accurate representation of the convection operator is a critical issue when aiming
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for accurate smooth solutions. In the treatment of diffusion probiems and saddle
Stokes problem the question about smooth solutions is usually no critical issue
(except for maybe induced singularities due to the geometry). In the treatment
of convectionn problems, however, the issue about smoothness deserves extra
comment. The key point in the justification of using a high-order method is the
fact that we are essentially looking at problems where derivative information
about the solution is also important. The solutions may include steep gradients
like thin boundary layers in the limit of small viscosity in convection-diffusion
problems, however we are always interested in resolving these steep gradients.
In fact, when using a high-order discretization scheme it is virtually required to
resolve all the structure in the solutions, otherwise global breakdown will occur
in form of wiggles. We emphasize that in the following, all our initial condi-
tions are assumed to be smooth; propagation of soclutions with weak or strong

discontinuities are not treated here.

In direct simulation at moderate Reynolds numbers, numerical diffusion and
dispersion induced by the discrete convection operator may effectively produce
solutions that are different from the physical solutions. Numerical diffusion will
lower the effective Reynolds number in the computed solution, while dispersion
errors will cause incorrect propagation of waves with different wave numbers.
An energy argument also motivates the use of an accurate spatial representation
of the convection operator. For an ideal inviscid, unforced fluid with periodic
boundary conditions, the incompressible Navier-Stokes equations conserves hoth
linear momentum and kinetic energy. Similarly, a passive scalar convected by a

solenoidal velocity field is conserved both linearly and quadratically. In calcula-
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tions where accurate energy representations are crucial, the same conservation

properties should hold also in the discrete case.

The arguments mentioned above are the primary motivation for using a
high-order spatial discretization technique in the treatment of convection or
convection-diffusion equations. In this section we use the spectral element
method to construct a discrete high-order convection operator which has (spa-
tially) no numerical diffusion, and has minimal dispersion errors. The discrete
operator also conserves quadratic energy as does the continuous counterpart. In
a low-order discretization scheme the dispersion errors are large except for very
low wavenumbers of the discrete spectrum, however, in a high-order convection
operator about 2/3 of the discrete spectrum is accurately represented. This
means that in order to avoid dispersion errors, a low-order scheme will need
much more resolution than required to resolve the flow, in contrast to our high-
order operator where only a small increase in resolution is required. This extra
resolution requirement coincides roughly with the additional resclution required
if aliasing errors are to be avoided without filtering (2/3-rule, see Orszag [50]).
This issue will be further addressed in Section 2.6 in the context of soiving the

Navier-Stokes equations.

2.5.1 Convection of a Passive Scalar

We consider here the unsteady convection of a passive scalar in an arbitrary

domain 12,

% +L9=0 inQ, (2.138)
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where

Lo =YV -(v6) (2.139)

is the convection operator, and
V.v=0. (2.140)

Here 0(r, t) is a passivescalar (e.g. temperature), v(r) is a given steady solenoida!
velocity field, and r € (1. Equations of the form (2.138) arise in the convection
of temperature, mass, or species, and are important in the convection-diffusion
equation,

30

5 TL0= aV?9, (2.141)

where « is the diffusivity. Equations of the form (2.138) and (2.141) also play
a major role in the Euler equations and the incompressible Navier-Stokes equa-

tions.

The expression for the convection operator L given in (2.139) is called the
conservative form; combining (2.139) and (2.140) gives the equivalent convective
form,

L6 =vVe. (2.142)

A third way of writing L is as a linear combination of the convective and the
conservative forms,

Lo = %vvo + %v . (v0), (2.143)

which is called the skew-symmetric form. In the continuous case all the three
forms are equivalent, however as a point of departure for a discrete formulation
(2.143) is preferable in multi dimensions. The reason for this will become clear

after discussing how the boundary conditions imposed on the domain boundary
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01 effect the properties of the convection operator L. We start with multiplying
(2.139) through by the test function ¢ and integrate over the domain {2,

(%, L0) = (,vV6) (2.144)
where the inner product (-,-) i3 defined as
(®,¥) = /ﬂ 20dn. (2.145)

After integration by parts and applying the incompressibility constraint (2.140),

we arrive at the following result,
(,L6) = —(6,vVe) + j; YOV -idS. (2.146)

or

(¥,L0) = —(L,0) + [ _wbv-ds. (2.147)

Here 1i is the outward unit normal on the domain boundary 90. It follows from
(2.147) that for the class of homogeneous boundary conditions on 0,3 for which
the surface integral in (2.147) vanishes, that the convection operator L is skew-
symmetric. The corresponding set of homogeneous, linear, time-independent

boundary conditions will be denoted as
By = 0. (2.148)

Examples of skew-symmetric boundary conditions include: the specification of
6 on some segment of 3(1; the imposition of periodicity on @ over some pair of
segments on 9{}; and no specification of boundary conditions on 8 over a segment
of 30 for which v - = 0. We further assume that the imposed boundary
conditions lead to a well-posed system. The skew-symmetric property implies

51



that L has imaginary eigenvalues, reflecting the fact that the convection operator

is non-dissipative.

Another important class of boundary conditions of typical interest is "out-
flow” boundary conditions. In this case no specification of ¢ is imposed on a
segment of N for which v -4 > 0. The extended set of boundary conditions

that includes outflow as well as B,, will be denoted as
BO=0 on 0. (2.149)

In the case of cutflow conditions the boundary integral in (2.147) does not vanish,
and L is no longer skew-symmetric. It can be shown that the eigenvalues of L
are now in the right-hand plane, (8, L8) > 0, reflecting the fact that energy is

leaving the domain f1.

We are now in a position to explain why it may be advantageous to use the
particular form (2.143) of L instead of (2.139). In deriving the skew-symmetric
property for\ L in the case of B,,8 = 0, we use the fact that the velocity field
is incompressible, however the proof of skew-symmetry for L defined in (2.143)
does not rely on the fact that the velocity field be solenoidal; in any discrete
scheme this is important for stability since the sense in which the velocity field

is incompressible may not be consistent with integration by parts.
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2.56.2 One-Dimensional Problems. Skew-Symmetric Bound-

ary Conditions

To show the spectral element discretization procedure for the convection

operator, we first consider the one-dimensional version of (2.138), namely
0 +0, =0 (2.150)
on the interval A =] — 1,1[ with periodic boundary conditions
6(—1) = 4(1). (2.151)

Here, subscript ¢t and z denotes differentiation with respect to ¢ and z, respec-
tively. We note that the velocity is unity and that the boundary conditions
(2.151) satisfy B,,0 = 0, that is, we are considering the skew-symmetric case.
In fact, periodic boundary conditions are the only skew-symmetric boundary
conditions in the one-dimensional case. The continuous solution 8(z,t) belongs
to the space X, where

X =H'Y(T x A) (2.152)

where I’ =|0,7[, and 0 < ¢t < 7. The weak form of (2.150) can now be stated as:
Find 0 € X such that

(¥,6) + (¥, LO) =0 VYpeX, Vt,0<t<r. (2.153)

where

X =4 (A) (2.154)

denotes the space of all functions which are square integrable over A, whose

derivative are also square integrable over A, and which satisfy the pericdic
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boundary conditions (2.151). The space X ensures that we are only lcoking
at problems with continuous solutions; as mentioned in the introduction to this
section we are only considering problems which have (piecewise) smooth solu-
tions. Another reason for looking at solutions which are in }! is the treatment

of convection-diffusion problems where this is a requirement.

In the one-dimensional case the velucity is constant (V - v = 0) and all the
forms (2.139), (2.142) and (2.143) are equivalent, also as a point of departure for
a discrete formulation. Using the expression (2.139), and integrating by parts

we arrive at

('/)’ Lo) = (¢'1 0:) = —(0, ¢z) + 0y |1_1= _(0, '/"z) = _(L’»b, 0)- (2-155)

In (2.155) the boundary term vanishes due to the periodic boundary conditions

(2.151), and the convection operator becomes skew-symmetric.

The basis for the spectral element discretization of (2.150-2.151) is a Galerkin
procedure in which we search for a solution 8, (t) € ¥!(I'; X,) where X}, is a high-
order pelynomial subspace X, C X. The discretization procedure starts with

breaking up the domain into K subintervals (spectral elements),
A=Uf A, (2.156)

where A, is defined by a; < z < a+b (for convenience we choose the elements to
be of equal length b). The space of approximation for the semi-discrete solution
t +— 0,(¢,-) is then taken to be the subspace X C X consisting of all piecewise

high-order polynomials of degree < N,

Xn=XNPyx (2.157)
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where

Pux () = {® € L3(0); B, € Pv(D)} (2.158)

and Py(A:) is the space of all polynomials of degree < N on the interval A;.

The spectral element discretization of (2.150) corresponds to numerical quadra-
ture of the Galerkin form (2.153) restricted to the subspace Xj;: Find 6,(t) €
X*(T'; X)) such that

('»bbs oh,t)h,GL + (t,b);, Lah)h,GL =0 Vi € X, (2.159)

where (-, -)acL refers to Gauss-Lobatto quadrature as defined in (2.16). Due to
the exactness of the quadratures in the one-dimensional case, it follows from

(2.155) that the discrete convection operator can be written as

(¥n, LOn)ncr = (¥n,0n2)ne = —(On, ¥hz)ncL- (2.160)

To implement (2.159) we choose an interpolant basis for Xj. As for elliptic
equations the solution 6, and the test functions i, are expressed in terms of
Ntt.order Lagrangian interpolants through the Gauss-Lobatto Legendre points.
The test functions are then chosen to be unity at one global (Gauss-Lobatto)
collocation point, and the semi-discrete equations (2.159) can be stated in matrix
forra as

B, +

1A

g=o0. (2.161)

Here 8 is a vector of nodal unknowns, B is the diagonal mass matrix defined in

(2.26), and C i8 the discrete convection operator

c=p=-p7, (2.162)
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where the expressions for D and DT follow from (2.160),

K N
{00}, =>'> Dyt Vpe{o,..,N}, (2.163)
k=1 ¢=0
and T denotes the transpose operator. Here {p,} are the Gauss-Lobatto Legen-

dre weights, and the elemental derivative matrix {D,,} is defined in (2.27).

If we instead of the convective form (2.139) use the skew-symmetric form
(2.143} as a point of departure for our discrete formulation, the discrete convec-

tion operator becomes
Cc= %[2 - D7), (2.164)
which is a more consistent form to use in the multi-dimensional case. The reason
why (2.139) and (2.143) are equivalent in the one-dimensional case is due the
fact the velocity is constant, and all the quadratures are exact. From (2.162)
or (2.164) we immediately see that the discrete convection operator associated
with the skew-symmetric boundary conditions (2.151) is also skew-symmetric,
that is,
Cc=-CT. (2.165)

Multiplying (2.161) by 6" and using the skew-symmetric property (2.165) we

get
§"Bo, = -6"C=0"C8=0 (2.166)
or
2GeBo =2 | 20 foau=o, (2.167)
implying that
I %Q;T;Q llo,cz= constant. (2.168)
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Here || - Jlo,cL denotes the discrete £3-norm based on the Gauss-Lobatto Leg-
endre points. S milarly, multiplying (2.161) with the unit vector 17 and using
the exactness of the quadratures in the one-dimensional case together with the

periodic (skew-symmetric) boundary conditions (2.151), we derive that
2, r
—(1"B§) =0, 2.169
2 (" Bo) (2.169)

or

1T B9 = constant. (2.170)

The results {2.168) and (2.170) mean that the passive scalar 8 is conserved
linearly and quadratically also in the discrete sense, that is, the convection
operator C does not incur any nuzaerical diffusion. Note that this result is based
on the semi-discrete equations (2.161), which represent a set of coupled ordinary
differential equations. If we include time-discretization as well, the result {2.168)
still holds for time discretization schemes which are symmetric like the implicit
Crank-Nicolson scheme. In general the results (2.168) and (2.170) hold for any

time discretization scheme in the limit as the time step At = 0.

Due to the skew-symmetric property (2.165) all the eigenvalues for C will
be pure imaginary. To demonstrate the accuracy of the discrete convection

operator spectrum, we consider the one-dimensional eigenvalue problem: Find

{(6,A) € X x R such that
LO=:i zeA=|-1,1], (2.171)

with pericdic boundary conditions 8(—1) = #(1). The spectral element discret-
zation of (2.171) is: Find (0x,Ax) € X, X R such that

(¥n, LOW)ngr = $Au(n; On)ngr  Vipu € X, (2.172)
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or in matrix form,

Co=iMmBo. (2.173)

The eigenvalues (A, A,) will be real from skew-symmetry.

In Fig. 17 we plot the entire discrete spectrum of (2.173), A, = 2\ /7 NK,
for K =10 and N =9. It is seen that a large part (about 2/3) of the spectrum
is accurately represented by the spectral element approximation, similarly to
earlier results derived for the pure spectral case (Weidemanr and Trefethen
[65]; Vandeven [63]). For comparison we have also included in Fig. 17 the

corresponding h-type finite element result (with lumped mass matrix).

We now turn to discuss the issue of time discretization in more detail. First,
we make some remarks regarding solution algorithms. In chapter 3 we shall see
that all the iterative solution techniques we present are based on the assumption
that the matrix to be inverted is symmetric. Symmetric matrices typically
result from discretization of parabolic equations describing diffusion problems,
or from decoupled saddle problems like the Stokes problem. For convection or
convection-diffusion problems unsymmetric matrices result, and many iterative
solution techniques fail, or become inefficient to use. In the context of solving the
Navier-Stokes equations, the convective term makes the equations unsymmetric
and nonlinear, which can significantly complicate the solution algorithm. One
way to avoid these problems is to use a semi-implicit or a fully explicit scheme,
in which at least the convective (unsymmetric) part of the equations is treated
explicitly. This explicit treatment, however, imposes a restriction on the time
step which resuits in high computational cost to reach steady state solutions, in

particular for high Reynolds numbers.
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The issue of numerical stability is always important in an explicit or semi-
implicit time stepping procedure. Of interest is determining the restriction on
the time step At in order to maintain {(numerically) stable solutions, even in the
limit as the time ¢ = co. This time step restriction is closely connected to the
spectrum of the discrete spatial operators, in this case the convection operator.
The region of absolute stability (Gear [21]) is the region in which the product
of the time step At and the maximum eigenvalue Anq.(C) of the (explicitly
treated) spatial operator gives numerically stable solutions. Again, note that

A(C) refers to an eigenvalue of C with respect to the mass-matrix B.

In the case of skew-symmetric boundary conditions all the eigenvalues of the
convection operator C are pure imaginary, and any explicit time integration
scheme must therefore have part of the imaginary axis included in its absolute
stability region. In Fig. 18 we compare the absolute stability region for a few
time integration schemes. We have chosen to use a third-order Adam Bashforth
method, mainly because of the relatively large portion of the imaginary axis
included in its stability region. This method is not symmetric in time (like
Crank-Nicolson), which means that the fully discrete equations will no longer
be skew-symmetric; numerical diffusion on the order of O(At?) will be incurred
due to the time discretization procedure, however for small time steps this error

is negligible.

In Fig. 18 we note that the absolute stability region for a third-order Adam-

Bashforth time integration scheme crosses the imaginary axis at a value

At + Amaz(C) = 0.723, (2.174)
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where the maximum eigenvalue of the discrete convection operator scales like
Amaz(C) ~ O(KN?), see Fig 19. Since the minimum mesh spacing on the
computational grid scales like Azpin ~ O(1/KN?), it is expected that

Amas(C) - AZpin => B = constant as N = oo. (2.175)

In Fig. 20 we plot the product Amas(C) + AZpin for the problem (2.173) as a
function of the polynomial degree N for K = 1 and K = 9. In both cases the
product approaches the limit

B=1.18 (2.176)

for large values of N. Note that this value of § corresponds to a velocity equal
to unity. Combining (2.174) and (2.176) the time step restriction in the more
general case becomes '

A
At < 0.61 min, {Fz}p, (2.177)

where U is the velocity at the (local) collocation point p. From (2.177) we
see that the third-order Adam-Bashforth method is stable if the (local) Courant
number is less than 0.61 everywhere in the domain. (The criterion (2.177) is used
in the actual implementation of the convecticn operator in multi dimensions.) In
the context of solving the unsteady, incompressible Navier-Stokes equations, the
result (2.177) tells us that as the Reynclds number increases and more resolution
is required, the time step must decrease according to (2.177). In other words, as
it becomes more important to avoid numerical diffusion and dispersion, this is
automatically taken care of through the numerical stability restriction (2.177).
If we are only interested in steady state solutions, however, the Courant criterion

(2.177) is the price we have to pay for treating the convective term explicitly.



The fully discrete equations for the one-dimensicnal convection problem
(2.150-2.151) can now be written as:
gt _ o

B{=—F;1= —gak{g_ﬂ}"’*, (2.178)

where superscript n denotes time step number n, and ay, £ = 0, 1, 2 are the coeffi-

cients in the third-order Adam Bashforth scheme; ag = 23/12,a; = —16/12, o,
5/12. In the case of variable time step, these coefficients will depend on the time
step. Finally, we remark that the particular form (2.178) of the discrete equa-

tions also persist in the multi-dimensional case.

2.5.3 One-Dimensional Problems. Qutflow Boundary Con-

ditions

An important class of problems is inflow/outflow problems where we don’t
have periodicity. In the case of pure convection, the order of the spatial operator
is one, and we cannot impose Dirichlet boundary conditions both at inflow and
outflow in order to define a well-posed problem. The solution can be described
in terms of characteristics where the spatial direction is importé.nt. For this
. class of problem we specify initial conditions and impose Dirichlet boundary

conditions at inflow, while no boundary conditions are imposed at outflow.

In the case of convection-diffusion problems, the second-order diffusion oper-
ator requires boundary conditions to be imposed both at inflow and outflow in
order to formulate a well-posed problem. This is the case even for convection-

dominated problems like in high Reynolds flow situations, or for heat transfer
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problems involving high Peclet numbers. In many inflow/outflow situations we
don’t know what to specify as outflow conditions. This is often due to the fact
that the outiow boundary is an artificial boundary which is created when we
truncate an infinite domain in order to define a finite computational domain.
An example of such a situation is flow past a cylinder where we don’t know the
solution in the wake behind the cylinder. For this class of problems we impose
zero Neumann conditions at outflow. It can be shown that in the limit of high
Reynolds numbers or Peclet numbers, normal (non-physical) boundary layers of
thickness and magnitude O(Re™!) or O(Pe™!) will form at the (artificial) out-
flow boundary, while the rest of the computational domain will be unaffected
of the outflow conditions. If we instead of Neumann conditions impose Dirich-
let conditions at the outflow boundary, normal boundary layers of thickness
O(Re™) or O(Pe~!) will still form, however in this case we need to resolve this
boundary layer in order to avoid wiggles and global breakdown of the discrete
solntion. Since the boundary layer can be very small, we need high resolution in
a region of the domain where we are not interested in the solution anyway. Fur-
thermore, since this is a normal boundary layer, the time step restriction due to
the Courant condition (2.177) is severe. The reason we don’t have to resolve the
(artificial) boundary layer in the case of Neumann condition is because this is a
much weaker (natural) form of boundary condition, in contrast to the Dirichlet

type which is a strong (essential) form.

We shall now discuss how the properties of the convection operator C change

in the case of outflow conditions. As for the skew-symmetric case we consider
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[

the equation
0¢ + 0; = 0 (2.179)

on the inteval A =] — 1, 1], but now with Dirichlet boundary condition at inflow,
6(-1) =0, (2.180)

and specified (smooth) initial conditions. Note that in this case the space X =
X1%(A) where the superscript O denotes the homogeneous essential (Dirichlet)

boundary condition at inflow. The boundary integral in (2.147) does not vanish,

('ﬁ; Lo) = ('p’ 0:) = _(01 ’/’z) + 0(1)'1’(1) 75 _(L¢'s 0)a (2'181)

and the convection operator is no longer skew-symmetric. The eigenvalues of
L do no longer lie on the imaginary axis, but rather in the right- hand plane,
consistent with the fact that energy is leaving the system. The spectral element

discretization of (2.181) is given as

(Yn, LOu)ngr = (¥n,0n. oL = —(Ons ¥nz)ner + 0 (1)¥n(1), (2.182)

where we as usual express the testfunction ¢, and the discrete solution 8,
in terms of N** Lagrangian interpolants through the Gauss-Lobatto Legendre
points. The expression for the convection operator then becomes (for simplicity,

consider the case with only one element, K = 1),

{co}, = f:ppr.ﬂg == f:Pqupoq + iapquNoq vp € {0,...,N}.
= = = (2.183)
We note that except for the single node defining the outflow boundary (p = ¢ =
N), the discrete convection operator C in (2.183) is still skew-symmetric,

Cog=Dpg=—Dpp  VYp,a€{{0,... N}¥{\{p=q=N}}. (2.184)
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Here, D represents the spectral element discretization of the convective form
(2.144) as defined in (2.163). The last matrix element of the convection operator
C is obtained from (2.183) as follows:

1
Cxw =Dny=-Dyn+1= (2.185)

Using the results (2.184) and (2.185) we can now easily derive how the linear

and quadratic zﬁoments of 0 change as a function of time,
.
5L BY) =—bn (2.186)

2,1 2,1 1
a(;ﬂrﬁﬂ =3 I EQTQ llo,cL= '"‘2‘912v- (2.187)

These results are consistent with the amount of linear and quadratic moments

leaving the domain at the outflow boundary.

The fact that C is skew-symmetric except for the (single) matrix element
coupling at the outflow boundary motivates a decoupling of C into one skew-

symmetric part, C,,, and one symmetric part, C,,
c=¢,,+C,. (2.188)

The skew-symmetric part is associated with redistribution of energy within the
domain, while the symmetric part is associated with energy leaving the domain
at outflow. In this decoupling procedure it is convenient to introduce the diag-

onal Boolean mask matrices (M, M) defined as (for simplicity, K = 1),
My,=1 Vpe{0,.,N-1} (2.189)

M,=0 p=N (2.190)



The mask matrices makes it possible to split the collocation points into two
disjoint groups, one (M) which is associated with all collocation points not on the
outflow boundary, and one (M) which is associated with points on the outflow
boundary. In the one-dimensional case the skew-symmetric forms (2.162) and

(2.164) are all equivalent and C,, can be written as
C =MD~ 207IM + M DM -~ MTD"H, (2.192)

where we have used the more consistent form (2.164) in the first term. The
symmetric part of C must be able to represent the kinetic energy 6?/2 leaving

the outflow bcundary. Choosing the testfunction ¢, = @), in (2.182) we find that
—T 1 | R —
C,=M [D+207|M, (2.193)

consistent with the result {2.185). We note that this particular form for C is

used also in the multi-dimensional case.

Finally, we make some remarks regarding inhomogeneous boundary condi-
tions at inflow. In this case the solution belongs to the space § € N¥1E(4),
where superscript E denotes (non-zero) essential inflow boundary condition,
while the space for the testfunction 1, remains in ¢ € ¥1°(A). However, the
energy arguments described for the homogeneous case are still valid, and the

main conclusions remain the same as before.
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2.5.4 Two-dimensional Convection Operator

We consider first the problem (2.138)-(2.140) in a rectilinear domain ( with
skew-symmetric boundary conditions (2.158). The weak form of (2.138) can be
stated as: Find 8 € X such that

(0,0 + (¥, L6) =0 VY€ X, (2.194)
where
X =XY(T x ), (2.195)
X = ¥'q), (2.196)
T =]0,7,0<t < (2.197)

In (2.194) the convection operator can be expressed as
(¥, L8) = (v,vV) = —(08,vVy), (2.198)
where the boundary term in (2.147) vanishes due to the skew-symmetric bound-
ary conditions (2.148).
As usual the spectral element discretization proceeds by breaking up the
domain into K disjoint macro- spectral elements,
1=uUf, 0, (2.199)

where the intersection of two elements is either a whole edge or a vertex.
The semi-discrete problem is then defined by performing tensor-product Gauss-
Lobatto numerical qua.dratﬁre of the Galerkin form (2.198) restricted to the
subspace Xj: Find 6, € ¥!(T; X3) such that

(Yn,Onedrer + (Uns LO)rgL =0 Vb € X, (2.200)



where

Xp=Xn PN,K(Q), (2.201)
Pux () = {® € L}(Q); B}, € Pv(M)}, (2.202)

and Py(02x) denotes the space of all polynomials of degree less than or equal
to N in each spatial direction. The testfunction ¢, and the solution 8, are
-now expressed in terms of a tensor-product extension of the one-dimensional

interpolant basis, and the discrete convection operator becomes

(Yms LOn)ngL = (¥n, VVO0)reL, (2.203)

or in matrix form

cr =D, (2.204)

where D represenis the spectral element discretization of the convective form
(2.144). The velocity field in (2.203) is appoximated using the same high-order
interpolant basis as for the testfunction and the solution. The Gauss quadrature
is no longer exact, and the convection operator C’ as defined in (2.203-2.204) is

no longer exactly skew-symmetric,
C=D~-pT=Cn. ~ (2.205)
However, if we use the form (2.143) for the convection operator we obtain
Cc= %[2 - D7, (2.206)

and skew-symmetry is now obtained for the discrete operator also in the multi-

dimensional (isoparametric) case.

For outflow boundary conditions the discrete spectral element convection

operator takes the same form as in the one-dimensional case (2.192-2.193). In
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the multi-dimensioznal case we note that the symmetric part of C no longer has
only one non-zero matrix element, but becomes a non-diagonal matrix which
couples nodes on the outflew boundary. The particular form for C, can again
be motivated from the discrete version of (2.146) together with the fact that C,
must be able to represent the kinetic energy leaving the outflow boundary. It
can be shown that if v-# = 0 on the outflow boundary, the matrix C, represents
the kinetic energy QTE C, M 8 leaving the outflow boundary.

To illustrate the accuracy of the spectral element discretization of the conve-
tion operator, we consider convection of a two-dimensional Gaussian pulse across
the rectilinear domain Q = (z; € |0,3[, z; € | — 2.5,2.5[). The exact solution as

a function of space (z;,z;) and time ¢ is given as
0(31, z3, t) = C_z[(z' -t)3+zg]’ (2.207)

where the velocity v = (vy,v2) = (1,0). The exact solution is imposed as (time-
dependent) boundary conditions at inflow (z; = 0), while outflow conditions are
specified at the rest of the domain boundary. The initial condition at time (¢ = 0)
corresponds to the situation where half the Gaussian pulse is inside the domain.
At time ¢t = 3 the pulse has been convected across the domain so that half
the pulse remains inside the domain. At this moment we calculate the discrete
M'-error || @ — ), |j1,61- We use a small time step At in order for the temporal
error to be negligible compared to the spatial error. Fig. 21 demonstrate that
erro'r || @ — 8 ||l1,cz decreases exponentially fast as the polynomial degree N is
increased for fixed K = 9. This is also expected due to the smooth nature of
the solution. Note that in this test problem we actually solved the convection-

diffusion equation (2.141) with a Peclet number equal to 107. The magnitude
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and thickness of the normal boundary layer at outflow is therefore of order
0(1077), which is negigible compared to the smallest discretization errer in Fig.

21.

Finally, we remark that the two-dimensional results can easily be extended to
solve three-dimensional convection or convection-diffusion problems in complex

geometry by using tensor-product forms and isoparametric mappings.

2.6 Navier-Stokes Equations

We present here a combined semi-implicit /fully-explicit method for the solu-
tion of the three-dimensional, unsteady, incompressible Navier-Stokes equations
based on the elliptic, convective, and Stokes schemes described in the previous

sections. We consider the equations
—uViu+pu + Vp=—p(uViu +f in 0, (2.208)
—V:.u=0 inQ, (2.209)
with rigid wall no-slip boundary conditions of the form

u=0 on aN. (2.210)

The presence of the advective term in (2.208) gives rise to many numerical
difficulties not present in the steady or unsteady Stokes problem. First, the
advective term render the equations unsymmetric and nonlinear, significantly

complicating any solution algorithm. As discussed in Section 2.5 we treat the
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advection term explicitly using a third-order Adam-Bashforth scheme. Second,
the convective-diffusive balance can lead to large numerical errors and strin-
gent resolution requirements in the limit of small viscosity. As demonstrated
in Section 2.5 the spectral element convection operator (2.192-2.193) introduces
minimal numerical diffusion and dispersion, and the high-order discretization
procedure oﬁ'erg good resolution properties of boundary layers. Third, the non-
linearity is directly responsible for unsteadiness, transition, and turbulence, all
of which give rise to a wide range of temporal and spatial scales that must be
resolved (or modelled) if accurate numerical solutions are to be obtained. Again,
the geod resolution properties of a high-order (spatial) discretization scheme is

attractive in the context of solving problems with smooth solutions.

Our algorithm for solving (2.208-2.210) is based on a combined semi-implicit/
fully-explicit discretization procedure. The main reason for this splitting is
due to computational efficiency. In a fully explicit treatment the time-step
restriction is closely connected to the spectrum of the discrete spatial opera-
tors. The maximum eigenvalue of the second-order viscous operator scales likz
Amaz(4) ~ O(N*) where N is the polynomial degree in the high-order spectral el-
ement discretization, while the maximum eigenvalue of the first-order advection
operator scales like Amsz(C) ~ O(N?). Note that X here refers to an eigenvalue
with respect to the mass matrix B and not with respect to the identity matrix

1.

For low Reynolds number flow calculations the second-order viscous operator
results in the most stringent time-step restriction in order to maintain numerical

stabslity, however this restriction is not necessary in order to obtain an accurat=
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solutions. For these problems we choose to use a semi-implicit algorithm based
on implicit treatment of the Stokes problem and explicit treatment of the non-
linear terms. As long ae the Courant condition {2.177) is satisfied, the choice of

time-step is based on accuracy requirements.

For high Reynolds number flow calculations the advective term results in
the most stringent time-step restriction. As explained in Section 2.5 the (local)
Courant number must be less than a fixed value (of order one) for the whole
computational domain. Note that this time-step restriction is required both for
accuracy and stability. For convection-dominated flow problems a fully explicit
time-stepping procedure is therefore natural. A rough estimate for when the-
algorithm should switch from a semi-implicit to a fully explicit scheme can be
obtained from looking at the scaling of the maximum eigenvalues of the discrete
viscous and convective operators. This scaling argument leads to the conclusion
that the switching should nccur at a Reynolds number Re ~ O(N?); with the
polynomial degree typically taken to of the order of 10, this gives a Reynolds
number of the order of 160. In the actual implementation of the algorithm for
solving the Navier-Stokes equations, this switching is done automatically and

results in savings in terms of computational cost.

v

The discrete equations in the case of a semi-implicit treatment of (2.208-

2.210) can be written as:

2
pAYT + 0Byt - D™ =oBul +p) 0, C" Wl + BT, (2211
=0

- Dyt =, (2.212)

where 0 = p/At, n denotes the time-step number, underscore refers to nodal
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values (vectors and matrices), ¢+ = 1,2,3 denotes the spatial directions, and
summation over repeated indicies is assumed. Here, a first-order Euler backward

time discretization scheme is used for the unsteady Stokes equations.

The corresponding discrete equations in the case of fully explicit treatment
of (2.208-2.210) is given as:
2
oBul*! — Dip™*"! = —pAul + 0Byl +p) «C '} +Bf}, (2:213)
q=0

— Dt =0, (2.214)

In this case a first-order Euler forward time diﬂcretizatiop scheme is used in the

treatment of the unsteady Stokes equations.

We are now ready to demonstrate the accuracy of the spectral element dis-
cretization (2.211-2.214). As a first test problem we consider the following exact
two-dimensional solution to the time-dependent, incompressible Navier-Stokes

equations (Kim and Moin [31)):

u = (u3,u3) = (—cosz, - sinz; - e ¥ sinz, - cosz; - e7%) (2.215)
1 —4t
p= —Z(co.stl + cos2z;) - e, (2.216)
The problem is solved on a domain @ =] — 1,1[?, imposing time-dependent

velocity boundary conditions according to (2.215), and with initial conditions
corresponding to the exact velocity (2.215) at time ¢ = 0. The domain is broken
up into K = 4 eimilar spectral elements, each element being of order N. A
typical solution is shown in Fig. 22 together with the corresponding spectral
element discretization. First, we simulate until a fixed time ¢t = 1 using different

time steps At, while keeping N large enough such that the spatial errors are
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negligible compared to the temporal errors. As can be seen from Fig. 23 the
scheme is clearly first order in time. Next, we simulate until a fixed time ¢ = 0.5
using different spatial resolutions (N = 3,4,5), but now keeping the time step
small enough in order to insure that temporal errors are negligible. The results
shown in Fig. 24 indicate that the spectral element method gives exponential

cenvergence as the order of the elements, N, is increased.

The next test problem illustrates the effect of aliasing errors due to the
nonlinear advection term. In the past various forms of expressing the nonlinear
term have been used. Among the various alternatives are the convective form,
u-Vu, the conservative (or divergence) form, V-(uu), the skew-symmetric form,
1u-Vu+1V.(un), and the rotational form, w x u+1V | u |?, where w = V x u
is the vorticity. The first three of these forms have already been discussed in

Section 2.5.

For the past decade the rotation form has been a preferred choice for tran-
sition and turbulence, see Orszag [49], Canuto, Hussaini, Quarteroni, and Zang
[14], mainly due to good conservation properties and economical implementa-
tion. The rotational form semi-conserves (global) kinetic energy for inviscid flow
also in a discrete implementation, and requires evaluation of fewer derivatives.
Recent work by Horiuti [30] and Zang [68], however indicates that the rota-
tional form is less accurate than the skew-symmetric form. The test problem we

present here supports this conclusion.

We consider a (simulated) bouyancy-driven flow in a two-dimensional square

cavity. The domain together with the spectral element discretization is shown in
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Fig. 25. We impose no-slip wall velocity boundary conditions, and specify zero
initial conditions for the velocity at time ¢ = 0. The external forcing function is
f = (f1, f2) = (—10z;,0). The density of the fluid is taken to be unity, p = 1,
while two different values for the viscosity is used, p = 0.03 and p = 0.01. We
simulate until a fixed time ¢ = 1 using K = 9 spectral elements, while varying
the order of the elements, N. At this final time the Reynclds number is about
30 in the case of g = 0.03, and about 170 in the case of u = 0.01.

At time ¢ = 1 we compute the jump in the spatial derivatives, g?;‘;:,i =
1,2;7 = 1,2, at the four-element junction indicated in Fig. 25. Since the
computed velocity field is in ¥*, only C°continuity is enforced across elemental
boundaries, while continuity of the derivatives are accomplished as part of the
convergence process (N => oo). In Fig. 26 and Fig. 27 we plot the standard

deviation of these jumps,

= (3 3 1 T i, 211)

as function of the polynomial degree, N, both for Re ~ 30 and Re ~ 170. For
each of the two Reynolds numbers a comparison is made between the rotational

form and the skew-symmetric form.

In both cases the skew-symmetric form gives the best results. At Reynolds
number Re ~ 30 the difference between the two methods is not so large, except
for N ~ 6 where the error for the skew-symmetric formulation makes a sudden
drop; at this particular resolution the flow structure is essentially resolved. If
we think of the flow structure in terms of spatial frequencies, the energy in this

spectrum is essentially zero above a certain cut-off frequency. Until the spatial
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resolution is high enough, aliasing errors due to the evaluation of the nonlinear
term is incurred, together with dispersion errors for the highest wave numbers,

see Section 2.5.

At Reynolds number Re ~ 170 the difference between the two formulations
is more significant. A 1% error in the derivatives is obtained with N = 8 using
the skew-symmetric formulation, while N = 10 is required for the rotational
form. This translates inte a 35% reduction in terms of total number of degrees-
of-freedom. The results also clearly indicate that we need higher resolution to
resolve the flow structure in this case compared to the lower Reynolds number

case; smaller spatial scales have to be resolved and the cut-off frequency is higher.

Note that both the rotational form and the skew-symmetric form result in
convergent approximation schemes, in the limit as N = co the two formulations
should give roughly the same error. What is more interesting is to compare the
two formulations when the flow structure is marginally resolved. This partic-
ular numerical experiment supports the conclusion reported in Zang [68] that
the rotation form produces aliasing errors that are more damaging than those

produced by the skew-symmetric form.
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Chapter 3

Speactral Element Iterative Solvers

In Chapter 2 we discussed the spectral element discretization of elliptic, parabolic
and hyperbolic equations, and demonstrated the rapid rate at which the dis-
crete solution converges to the exact (smooth) solution as the resolution (N)
is increased. However, this result is useless unless we can construct methods
by which we can efficiently invert the resulting systems of algebraic equations
(2.211-2.214). Here, we define efficiency in terms of computational work re-
quired to achieve some fixed accuracy. Our conclusions in Section 2.1 regarding
the choice of optimal discretization h = (K, N) were based on the the use of
optimal solvers (resolution independent convergence rate); the purpose of this
chapter is to develop such solvers. In particular, we discuss the iterative solu-
tion techniques we apply in order to invert the algebraic equations resulting from
spectral element discretization of elliptic and saddle Stokes problems. These so-
lution techniques are then applied to solve the fully discretized Navier-Stokes
equations (2.211-214). In Chapter 2 we demonstrated the good convergence
properties afforded by the spectral element method; we now demonstrate that

the resulting systems of discrete equations can also be efficiently inverted.

Earlier spectral element elliptic solvers were based on direct inversion tech-

niques like static condensation (Korczak and Patera [33]) and fast Poisson solvers
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(Patera [52]), which are efficient solution techniques for a certain class of prob-
lem:.. A direct method has, however several limitations and is much less flexible
than an iterative solution method. First, the memory requirements for a di-
rect method scales like O(K{N?3), compared to only O((K¢N?) for an iterative
method. Here, K, is the number of elements in a typical spatial direction, N
is the order (pelynomial degree) of each spectral element, and d is the number
of spatial dimensions. In order to solve large three-dimensional problems, it is
virtually required to use iterative solution procedures due to the severe memory
requirements associated with direct solvers. Second, even the operation count
O(K N%+1) associated with a matrix-vector product evaluation may favor an it-
erative approach rather than using a direct method. In particular, this will be
true if an optimal iterative solver (resolution-independent convergence rate) is
used to solve large three-dimensional problems. Third, the choice of inversion
algorithm is most important in the context of solving time-dependent problems
where the advantage of using a direct solver relies on the fact that the large
initial work is amortized over many solves. This approach offers little flexibility
in changing the time step dynamically according to stability or accuracy require-
ments, nor does it allow for solving problems where the geomet.y is changing as
a function of time like free surface problems or moving boundary problems. As
adaptive mesh techniques become more important this will also favor iterative
solvers. Fourth, in a parallel architecture environment iterative techniques are
attractive as they generally require much less communication between processors

than direct solvers.

The success of an iterative solution algorithm relies strongly on two important
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issues: rapid convergence rate and efficient matrix-vector product evaluation.
The convergence rate determines how many (or few) iterations are required to
obtain 2 solution, while the work assocciated with one matrix-vector product
evaluation essentially determines the work per iteration. The product of the
number of iterations and the work per iteration gives the total work required
to obtain the discrete solution. The computational complexity associated with
matrix-vector product evaluation is particularly important in the context of
high-order discretization procedures where tensor-product factorization (Orszag
[51]) is virtually required, in fact, the tensor-product factorization is the key to
the efficiency of spectral techniques, and we shall discuss this important issue in

more detail in the next section.

Mote that a high-order discretization scheme like the spectral element method
typically results in large-range couplings and therefore larger band-widths than
a low-order method, however the structure or the set of algebraic equations
is closely related to our particular choice of basis to represent the high-order
polynomial subspace Py x. The interpolant Gauss-Lobatto Legendre basis in
(2.19) offers C°-continuity with minimal inter-elemental couplings; combined
with Gauss-Lobatto Legendre quadrature it also offers minimal intra-element
couplings (the mass matrix ie diagonal). In essence, the particular choice of

basis gives an optimal structure for the algebraic system of equations.

In this chapter we consider two iterative solution techniques: preconditioned
gradient iteration (Golub and van Loan [25]) and spectral element multigrid
(Rgnquist and Patera [57], Maday and Muiioz [39]). Both of these techniques

rely on the assumtion that the system of equations be linear symmetric positive-
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definite. This is indeed satisfied for the discrete Laplacian A in (2.43) or the
discrete Helmholtz operator H in (2.79); both operators resuit from spectral
element discretization of linear self-adjoint elliptic problems. The Stokes prob-
lem (2.105-2.106) constitute a saddle problem, but as we shall see in Section 3.4
we can use a Uzawa algorithm to decouple this saddle problem into two linear
symmetric positive-definite forms which are efficiently inverted by applying the
iterative solution techniques in a nested fashion. In the context of solving the
full Navier-Stokes equations, the convective term is treated explicitly; the reason
for this is partly because this procedure greatly simplifies the numerical treat-
ment of the nonlinear term, and partly because the resulting set of equations
can be solved using the efficient solution techniques for elliptic and saddle Stokes

systems.

We now make some final remarks regarding incomplete iteration. A direct
solver offers the discrete solution in a firite number of arithmetic operations,
with all operations carried out to machine precision. For a given machine there
is no choice as regards how accurate we should solve the algebraic system of
equations; the error incurred in the discrete soiution will be the machine ac-
curacy multiplied by some constant which depends on the condition number of
the system matrix. In ar iterative solver, however, the choice of criterion for
when to stop iterating is an important issue. One way to proceed is to iterate
until the residual has been reduced by several orders of magnitude and then
hope for the best. This is not very satisfactory, and can lead to unnecessary
computational work. What we need is a relation between the error incurred |

in the discrete solution due to incomplete iteration and the residual, and then
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use this relation to choose a stop criterion. This approach offers the discrete
solution to a specified accuracy at the least amount of computational cost. The
issue regarding incomplete iteration will be addressed in a not so future paper

(Maday, Meiron, Patera and Rgnquist [37]).

3.1 Tensor-Product Forms

We consider here a non-constant coefficient Laplace operator in three space
dimensions,

-V-(pVu)=7f in Qe R® (3.1)
u=20 on 91, (3.2)

where x = (zi1,Z3,23). Assuming that 0 is broken up as 0 = U, O =
lak, ai[x]be, by [X]ck, €}, the spectral element discretization of (3.1-3.2) is given
by

Auv=Bf, (3.3)

where

K N N N
A= "> > 3 Algimntian  Vo,B,7€{0,..,N}*.  (3.4)
n=0

k=1 1=0 m=0
The elemental sums in (3.4) can be written as (for simplicity we assume cubic
elements with ay —a, = b, — b = ¢, —cx = 2)
N N N

k, b __ k k
a4 = Z Aaﬁqlmnu’lmn
1=0 m=0 n=0

N
= Z P:mquaDqlsﬂm51ﬂqu’mPn"fmn
=0
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N
+ Z Plkqgsaquﬂqu&mPIpqpnuzkmn
q=0

N
+ z ijmqsalsmeqaDqlplpmpqufmn- (3-5)
q=0

The three terms on the right hand side of (3.5) represent 8(pdu/dz;)/dz;, i =
1,2,3, respectively, and pf,, = p(£&},, £2;,£3,). The discretization (3.4)-(3.5) is

a direct extension of the two-dimensional schemes described in Section 2.2.

It is important to realize that the computational complexity and memory
requirement in implementing a high-order method is essentially determined from
the treatment of the matrix-vector products (3.4). A naive evaluation of (3.5)
requires O (N°) operations per element, as we must sum over I, m,n € {0, ..., N}®
for a,B,7 € {0, ..., N}*; this naive operation also requires O (N®) storage as the
matrix A:p.,‘m is, in general, full. This operation count and storage is clearly
prohibitive, in particular when compared to a low-order (k-type) method for
which the equivalent operation count and storage both scale as O (N3). However,
the key point in the evaluation of the matrix-product (3.5) is to realize that each
of the terms on the right-hand side can be factored as (we consider here only
the first term)

N N
[qgo Dya{plp,pep8P+ [g Dyujs,|]] o, B,7 € {0,..,N}. (3.6)
The computational complexity in evaluating (3.5) is now reduced to an oper-
ation count of only O(N*), and the memory requirement is reduced to O(N®)
since only the elemental vectors p*, u*, together with the one-dimensional deriva-
tive operators are needed. This tensor-product factorization is the key to the

efficiency of spectral methods, as first recognized by Orszag [51].
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In the general case the operation count and memory requirement scale as
O(KN%*1') and O(KN*) for a d-dimensional problem; for the same total num-
ber of degrees-of-freedom (K N?) a high-order method requires N times as much
work as a low-order finite element method (N = 1). The reason why high-
order methods are competitive with low-order methods is the fact that for suf-
ficiently smooth solutions and sufficiently stringent error requirements, a high-
order method needs far less degrees-of-freedom than a low-order method in order

to meet these requirements, see Section 2.1.

We now make several comments regarding the sum factorization technique.
First, we realize that this factorization follows from the tensor-product basis
defined in (2.42). Second, we note that to evaluate the matrix-vector products
(3.4) the elemental matrices A* are never formed, but rather ”computed on
the fly”. Third, the operation count O(KN%t!) in R4 does not require any
prior numerical integration, that is, the numerical quadrature is part of the
evaluation. Fourth, the operation count does not rely on the differential operator
being separable, as we placed no restriction on p(x). Fifth, the operation count
persist also for the isoparametric case; as regards computational complexity,
the geometric factors enter into the equations in a fashion similar to the non-
constant coefficient term p(x). This implies that the operation count holds even

for time-dependent geometries.
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3.2 Preconditioned Conjugate Gradient Itera-

tion

Conjugate gradient iteration is a standard iterative inversion technique (Golub
and van Loan [25]) which is easy to implement, and works for symmetric positive-
definite matrices. The preconditioned conjugate gradient iteration for the system

(3.3) takes the form:

(3.7)

Pryy = Imt1 +bmp,,

where m refers to iteration number, r,, is the residual, p,, is the search direc-
tion, P is the preconditioner, g, is a vector associated with the preconditioning
(gm = p,, in case of no preconditioning, that is, P is the identity matrix), and
(+,-) denotes the discrete scalar product. It is clear that the critical step as
regards computational complexity is the matrix-vector product A p, which can
be evaluated in O(K N4*1) operations in R? using the tensor-product methods

described previously.
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The number of iterations required to achieve convergence scales like /%%,
where x4 = M, _/)A. is the condition number of A, and M4,, and M4, are
the maximum and minimum eigenvalues of A, respectively. Since the condition
number increases with the resolution (K, N), it is important to find a good pre-
conditioner as regards efficiency. A good preconditioner should be specirally
close to A, but at the same time be easy to invert. Earlier work used a pre-
conditioner based on the incomplete Cholesky-factorization of an h-type finite
element approximation defined on the Gauss quadrature points (Maday and Pa-
tera [40|, Fischer [18]), however this choice is not the most attractive in the
context of parallel architectures (Fischer, Rgnquist, Dewey, and Patera [17]). In

the following we shall therefore simply use the diagonal of A as a preconditioner,

that is, P = D = diag(A). For the spectral element equations it can be proved

that (Maday and Mufioz [39))

Kp-14 ~ O(K:N‘), (3.8)
k4 ~ O(KIN®), (3.9)
kp-14 ~ O(KIN?), (3.10)

thus implying that the solution of (3.3) will require O(K;N) iterations. Here
K, is the number of elements in a typical direction. Note that the condition
number of DA is a factor O(N?) less than for B~' A, which is the matrix

resulting from a spectral collocation discretization.

The conjugate gradient iteration is a well-decumented iterative method, and
we shall here not elaborate the discussion any further. For numerical results

we refer to the next section where we use convergence histories to compare the
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preconditioned conjugate gradient iteration with the spectral element multigrid

techrique.

3.3 Spectral Elemnent Multigrid

Over the past decade multigrid methods have had tremendous impact on
the computational efficiency of elliptic solvers (Brandt [10], Hackbush and Trot-
tenberg (28], Brand, Lemke, and Linden [9]). The multigrid kernel of recursive
high-wavenumber smoothing and coarse-grid correction results in an effectively
reso’ution-independent convergence rate, which in turn translates into compu-

tational economies.

Multigrid techniques were initially applied primarily to finite difference tech-
niques, but have more recently been cast in a geometrically flexible variational
finite element context (Bank and Douglas [5]; Maday and Munoz [39]). How-
ever, despite the advantages of multigrid techniques for both finite-difference
and finite-element discretizations, application of multigrid techniques to (non-
periodic) spectral (Gottlieb and Orszag [27]), spectral element (Patera [53], Ron-
quist and Patera [56], Maday and Patera [40]), and p-type finite element meth-
ods (Babuska and Dorr [4]) has been rather limited. Zang, Wong and Hussaini
(69,70] have applied the multigrid techniques to multi-dimensional Chebyshev
approximations; however, the success of their technique is primarily due to the
good preconditioning properties of h-type incomplete decompositions (Orszag

[51], Deville and Mund [16]), and not to the multigrid process per se.
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In this section we describe an extension of variational h-type multigrid to an
intra-element Legendre spectral element multigrid procedure. We demonstrate
that essentially resolution- independent convergence rates can be achieved with
only diagonal (Jacobi) smoothers, which are highly parallelizable and consider-
ably simpler than previous incomplete-decomposition spectral multigrid proce-

dures.

3.3.1 Nested Spaces

We consider here the three-dimensional Poisson equation in 2 domain 0 with

homogeneous Dirichlet boundary conditions on the domain boundary 812,
-Viu=;F inQ (3.11)
u=0 on 90. (3.12)

The equivalent variational form is: Find v € X such that

a(u,v) = (f,v) VveX, (3.13)
where
X =X, (3.14)
and
afu,v) = L VuVydQ, (3.15)
(f,v) = /n fvdQ. (3.16)

The standard spectral element discretization procedure starts by breaking up

the domain N into K elements,

0 =uf,0. (3.17)
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The discrete equations are then generated by applying tensor-product Gauss-
Lobatto Legendre numerical quadrature of the variational form (3.13) restricted

to the subspace X, and the discrete problem becomes: Find u;, € X}, such that
apcr(va,va) = (f,va)reL Yoy € Xj, (3.18)

where the finite-dimensional subspace X C X is defined as
X, =XnNY,, (3.19)

Ya=Pvx()={® € II’(n); ®in, € P(1)} . (3.20)

and Py (f1:) is the space of all polynomials of degree less than or equal to N

with respect to each spatial variable z;, z;, and z;.

We are here interested in solving the problem (3.11-3.12) based on the spec-
tral element discretization corresponding to a given discretization pair A =
(K,N). However, to compute the discrete solution uy, € X, we shall apply
an intra-clement multigrid concept where the spectral element discretization of
(3.11-3.12) is associated with a set of nested spaces X, with discretization pairs
h;j = (K, Nj). The nested spectral element spaces X5, C Xs, C ... C X}, are
defined as

Xn;,=XNYy Vie{1,..,J} (3.21)
Ya; = Pn;x(Q) V5 e{1,..,J}, (3.22)
with j = 1 the coarsest mesh and j = J the finest mesh. We will typically
choose Nj;; = 2N,. The objective is to compute the solution u, on the finest
mesh, that is, N = N;. Note that the nested spaces correspond to intra-element

multigrid in the sense that the subdomains {I; remain invariant. This intra-

element, multigrid concept preserves the natural kierarchy of the spectral element
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method; restriction operators and prolongation operators and associated data
structures are easily and efficiently defined within the structured (1.; the tight
coupling within the elements allows the technique to be readily parallelized
within the context of a medium-grained paradigm (McBryan and Van de Velde
[44], Fischer, Rgnquist, Dewey, and Patera [17]); the coarse (j = 1) grid is
naturally provided as a low-order (e.g., N = 1) finite element mesh defined on

the macro-elemental *skeleton.”

We consider now the implementation of the spectral element discretizations
associated with the nested spaces Xh;. To represent a function wy ; € Yh; we use

a tensor-product interpolant basis through the Gauss-Lobattc Legendre points

N; N; N;
Wh; (r1,72,73) = U,‘_1 Z E Z w,m ky ’(rl)hN’ (Tz)hN (r3), (3.23)
1=0 p=0¢=0
where X = (Z1,%3,23) € 0 => r = (r1,r2,73) € A X A X A, and A =] — 1,1].

The interpolant basis (3.21) is also used to represent a function w,, € X}, but
in addition we must also require the function to be continuous across elemental
boundaries and satisfy the homogeneous boundary conditions. Expressing the
discrete solution up; € Xj,, the testfunctions vn; € X»;, and the data f € Y,
in terms of the basis (3.21) and choosing vj; to be nonzerc at only one global

collocation point, the discrete formulation (3.i6) becomes

N; N; N;j N; N; N;j
5.5

Z Z E ZAaﬂ'rlN“ln = Z Z Z 2: Baﬂ'rlm Ipg Vep € {0,...,N;}*
k=1 =0 p=0qg=0 k=1 =0 p=0¢=0 ( )
3.24
Aly o = ALFBIEBIE o B2 4SS BEE 4 BRI BIY AT (3.25)

aﬁvin 8p e Ap e Bp g :

Big.,, = Bi' By BIE, (3.26)
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where the one-dimensional operators Al¥, B2 are defined in (2.25) and
(2.26), respectively. The only difference in notation is the extra superscript j
which is introduced in order to associate the correct space X},; corresponding to
the discretization pair h; = (N;, K). The sets of discrete equations can also be

written in matrix form as

A =Bf Vvie{,..,J} (3.27)

Next, we need a smoothing operator that is effective in eliminating the high

wavenumbers on a given mesh. To this end, we use a standard diagonal Jacobi

smoother,
D¥ =), diag(4Y), (3.28)
where
T 45
; X A’x
Al = —_— = Vx € X,,.. 3.29
maz maz{lT dtag( A-.J )l} _)_(_ h; ( )

The eigenvalue ), ,, is used to normalize the spectrum of the smoother so that
all the eigenvalues are less than one in absolute value, which is an obvious re-
quirement for convergence. Note that the choice of (3.28) rather than incomplete
Cholesky used in previous spectral multigrid investigations (Zang, Wong, and
Hussaini (69,70], Phillips [54]) has many advantages: (3.28) is very easily formed
and inverted, even in complex geometry; (3.28) is completely parallelizable, un-
like the incomplete decomposition. Also note that the maximum eigenvalue in
(3.29) can be efliciently evaluated by a power iteration method; this work is eas-
ily amortized over future iterations, in particular for time-dependent problems

or nested-elliptic Stokes solvers (Maday and Patera [40]; Rgnquist and Patera

[55]).
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We then need to define a resiriction operator that takes a residual on Xh:. 1
and projects it onto Xj,;. To effect this projection we follow the usual precedure
of representing the lower-order basis in terms of the higher-order basis, which

gives the elemental multi-dimensional restriction operator

Rig 1o = BRI RGEREE

afqlpg — (1]
vy e {1,...,J —1}, Vk € {1,...,K}
Vapq € {0, ..., N;}3, Vipg € {0,...,N;11}°, (3.30)
where
Rif = hi(g"™). (3-31)
Note that the muliti-dimensional restriction operator (3.30) is given in terms

of the one-dimensional operators (3.31) in tensor-product form. Given the

elemental residuals r’z.lvk €Y,

a i+19
+LE _ Lk Niga Niaa Nits JiHLE i1
';3‘1 = Wapy Z E Z Aaﬁ'ﬂm .
1=0 p=0 q¢=0
Vk e {1,...,K} ,Vapvy € {0,...,N;n }>, (3.32)

for some data w] ;1 * and iterate 7415 the restricted global residual (which will
enter as the inhomogeneity at the next multigrid level) is then calculated using
the sum-factorization technique described in Section 3.1,

K Ni1NjpiNin

-'f=2 Z Z ) Raﬂ'ylpq P

=1 I=0 p=0 ¢=0

Njt1 Nj41 Njt1
=31 R B R
Vapq € {0, ..., N;}°, | (3.33)



which can be expressed in global form as
v = R (3.34)

In Rgnquist and Patera [57] it is shown that if r’t! = ¥} f,’;,‘;l"‘ = 0, then the

restriction defined by (3.33) will also vanish.

Lastly, we require a prolongation operator that, given a z/ € X, ;» extends
the function 2’ onto Xn;41- From the definition of the restriction operator in

(3.30-3.31) we readily see that the correct choice for prolongation is

. N; N; N; . N
j 1, — .' .l
z‘JP.: - Z E z Rl,maﬁ'y %pq
a=0 =04=0
Vk € {1,...,K}, Vipg € {0,...,N;11 }3, (3.35)

which is again defined on an elemental basis. The global statement of (3.35) is
g4 = (’)"Z, (3.36)

where it is seen that, as is usually the case in variational multigrid, the prolon-

gation operator is the transpose of the restriction opertor.

3.3.2 Multigrid V-cycle

We now consider a simple V-cycle for solution of
Al =4’ (3.37)
which corresponds to the spectral element discretization (3.18) of the problem

(3.11-3.12) on the finest mesh j = J. We first set the V-cycle iteration counter

91



! = 0, and choose an initial guess u’(?). At the highest level, we then perform
+ MG(J, wht), g",m)
@) = 20

l=1+1; go to *

Here MG(j, 2,w, m) is our multigrid algorithm (a simplified form of the proce-
dure in Bank and Douglas [5]), and 2m is the number of smoothings on level 7

per V-cycle.

The MG algorithm is readily defined in terms of the operators of the previ-
ous section. Although in practice all operations arec performed elementally, for
convenience we describe the algorithm in terms of global operators. Any opera-
tor or vectors for which the multigrid level is not indicated may be assumed to

be at level ;.

Algorithm MG(j,2,w,m) :

If =1 solve Az=w

If 7#1
(a) Form restdual: r=w - Az
(6) Smeoth: 20 = 2,0 =
D (1) = p () 4 (™ n=0,..m-—1

plntl) — w— A 2(nt1) n=0,..m-—1



(¢) Restrict residual : wl= R
(d) €' =0;MG(j — 1,67 ,w'" !, m)
(e) Prolong correction: z=z+ (ﬁj"l)rf"l

(f) Form residual : r

[

w—4z

(9) Smooth: 2O =2,/ =
D ") = p ") 4 ¢ n=0,..m-1
rH) — g — A gD n=0,..m—2

2= zm

(k) End.

In order to implement the recursive MG-algorithm in FORTRAN, a spe-
cial program (also written in FORTRAN) has been been developed in order to
produce the multigrid source code. This concept of using a ”pre-compiler” to
generate the actual source code might be useful in the more general context of

implementing complex numerical algorithms.

3.3.3 Convergence Rate

In the previous section we discussed how the condition aumber of the system
matrix A effects the convergence rate of the conjugate gradient iteration. The
key contribution of the multigrid algorithm is that it successfully addresses the

conditioning problem, which is particularly important for high-order methods.

93



The way this is achieved is essentially by a careful combination of smoothing

iterations and coarse grid corrections.

To predict the multigrid convergence rate in the case of spectral element
discretizations we start by looking at the (Jacobi) smoothing steps (b) or (g)
in the MG-algorithm. The error ¢ in the solution z on grid 5 can be written
as (any operator or vector for which the multigrid level is not indicated may

assumed {0 be at level j)
et =[I-DAle* n=0,.,m-1 (3.38)
Using an eigenfunction expansion for the error,

€= Z c.'t,[); (3.39)
where

A8, = Mdiag(A)y,, (3.40)
we get the following reduction in error component e; with wavenumber );

€t = (1 — u)e? (3.41)
wheve p is defined as

A

Amas

b= (3.42)

Using the result (3.10) from the previous section we get
0< phmin <p<1 (3.43)
where

1
Kp-14 ~ O(K’N3

HBmin = )- (3.44)
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From (3.36-3.42; - realize that the high-wavenumber error components, that
is, error components corresponding to normalized eigenvalues close to one are
damped quickly, while low-wavenumber components are damped at a rate p =

1— O(N~?) for large n and N.

In the multigrid algorithm only a few smoothing iterations are performed
per V-cycle. Assume that the solution after m smoothing steps is 2/ < X,
with an error ¢/ € X,,. In steps (c), (d) and (e) a coarse grid correction to
the solution is computed. In the one-dimensional case it can be shown (Bank
and Douglas [5]) that if we solve exactly on the coarse grid, the coarse grid

correction is an orthogonal projection of the error from X} ; to Xy, with respect

hj—y
to the ay;{-,-) inner product. After the correction the error ¢’ will then belong
to the space ¢/ € Xk, N Xa,, which is associated with the high-wavenumber
error components. This remaining error is reduced efficiently by performing
more smoothing steps, however, in the multi-dimensional case, the smoothing
operation introduces new low-wavenumber errors into the solution and thus more
V-cycles are needed. It is this interaction between smoothing and coarse grid

correction which makes the multigrid algorithm so effective. Instead of the slow

convergence rate associated with the plain Jacobi smoothing (3.38), we obtain

et = (1 - w)e} (3.45)
where
Pha<m<1 (3.46)
and .
J j-1
yi = Amie _ Ao (3.47)

Moz Mooz
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In the one-dimensional case it can be proved (Maday and Mufioz [39]) that
M . ~ N}; assuming that N;/N;_; = 2 and substituting into (3.47) gives

i (Ny/2R

1
Bmid ™ TN T 1

(3.48)

Hence, we see that the effect of the coarse grid correction is to effectively lower
the condition number on mesh j from O(K}N?) to 4, independent of the mesh
7. If the number of smoothings m < 3 it can be proved (Maday and Mufioz [39])
that a multigrid convergence rate p = 0.75 results, sndependent of the resolution

h; = (K, Ny).

In the two-dimensional case it can be shown (Maday and Muiioz [38]) that

Hmi¢ 18 not independent of NV like in the one-dimensional case, but scales like

C
Hmid ~ 75 (3.49)

where C is a constant. The multigrid convergence rate will now be dependent
of the polynomial degree N,

p1-S (3.50)

however it is sndependent of the number of elements K. Note that if intra-
subdomain multigrid is used in the context of interface relaxation for the domain
decomposition method (Funaro, Quarteroni, and Zanolli [20]) this independence

of K will no longer be true.

The convergence rate (3.50) can be improved by using Chebyshev acceleration
(Ames [1]). We multiply the smoother in (3.28) with a constant 7 which can be
different for each smoothing iteration, and rewrite (3.38) and (3.41) as

§n+1 - [!._ (fn+l)—12—l—4]£n n=0,..,.m-—1 (3.51)



and

S =(1- (")) n=0,..m-1, (3.52)
implying that
e =[[1(1 - (") ] € = Qm(ma)es. (3.53)
n=1

where Qn(p) is a polynomial of degree m. We then formulate the following

optimization problem: Find coefficients v",n = 1,...,m such that
mez, Qm(n) = min for Bmia S p <1,

and Qn<1  Vu€|[0,pumi, (3.54)

subject to the consistency constraint that Q,,(0) = 1. Note that we minimize
Qm () over a range of u associated with error components belonging to the
space X,t,_ , N Xj, rather than minimizing over the whole spectrum of error
components. As the low-wavenumber components are efficiently removed by
the coarse-grid correction operation, the solution to the minimization problem
(3.54) should give a betier multigrid convergence rate than minimizing Q,, over
the entire spectrum. This acceleration procedure is similar, but a little more

intuitive than the one discussed in Bank and Douglas [5].

The solution to the problem (3.54) can be extended from Ames [1] as the

polynomial

2(1-4)
Tm(—.l + l—l‘l::")
T"'(_l + 1—:.-.'4)
where T, (z) is the Chebyshev polynomial of degree m. It is seen that although

Qm(s) = (3.55)

we are minimizing Q,,(p) only in the range ppmig < # < 1, Qn(r) < 1 also for
values of u in the range 0 < g < ftniq, thus assuring that the low-wavenumber

error components are not amplified. Using the expression (3.49) for gz we can
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derive an average convergence rate for the m smoothing steps which is valid for

large polynomial degrees N,
p=1- 2(%)‘/’. (3.56)

Comparing (3.56) with (3.50) shows that the work to achieve a fixed accuracy
will be reduced by a factor /N when applying the Chebyshev acceleration.

3.3.4 Computational Complexity

We now present operation counts for the general (rectilinear) problem in
R%. As explained in Section 3.1, the reason for choosing tensor product spaces,
quadratures, and bases is to allow for rapid evaluation of the discrete Laplacian
and restriction operators by sum factorization (Orszag [51]). We can easily show
that to evaluate the discrete Laplacian in R¢ on mesh j, that is, to evaluate the

left hand side of (3.4), requires
Wi = K(2d)N#*! (3.57)

operations. (For simplicity we include only multiplicaticas in our operation
count.) Note that we have included in (3.57) only the leading-order terms; a di-
rect stiffness surnmation requires only O (K N;-"l) operations, while a collocation
operation requires O(K Nf) operations. Both of these operations are generally
small compared to the elemental matrix multiplies. [The factor 2 in (3.57) is,
in fact, present only in non-rectilinear geometry; however, we retain it here for

generality.]
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The computational complexity for the restriction (and hence prolongation)
operation (3.33) is derived in a similar fashion to the Laplacian. We find that
that the leading-order operation count for restriction of the residual from mesh

J to mesh 5 — 1 is given as
j N | d+1
Wi =K[3_ (G)IN;* (3.58)
n=1 2

where we have again neglected the O(K N;-"l) operation count associated with
the direct stiffness operation. Note that the work to evaluate the restriction
is less than that for the Laplacian, as the size of the problem shrinks as each

directional sum is performed.

We can now readily evaluate the (leading-order) work required per V-cycle

on mesh j; as
Wi={(@@m+1)Wi+2Wi+.} Vje{2..J} (3.59)

where the first term derives from steps (a), (b), (f), and (g) of MG(j,,-,m),
while the second term derives from steps (c) and (e). By neglecting the re-
striction and prolongation work, and the work on all the coarser meshes j =
1,..,J — 1, including the exact coarse-solution work, we arrive at the following

simle expression for the total work per V-cycle (Rgnquist and Patera [57]),
Wy = (2m + 1)W]. (3.60)
We now make some final comments regarding spectral element multigrid

in the context of vectorization and parallelism. In the above discussion we

assume that the scaling of the computational work in terms of operation count



is representative for the scaling of the work in terms of actual cpu time, however
this will only be true on serial machines. If the matrix-vector product operation
is vectorized, this will give higher speed-up on the finer meshes due to the
longer vector-lenghts. Hence, the assumption about neglecting the work on the
coarser meshes {j # J) may not be valid. In particular, the elemental matrix-
vector products on the coarsest mesh will typically have vector-lengths of order
unity. It should also be noted that even if the computational cost associated
with the coarser meshes (5 # J) can be neglected, on a parallel machine the
communication cost may be of the same order for a coarse mesh as for a fine
mesh, especially if the start-up cost associated with sending messages is high.
This may deteriorate the load-balancing, and thus the total potential speed-up
using a multigrid strategy. However, continuous improvements in hardware lead
us to believe that the muitigrid concept will survive also in a parallel architecture

environment.

3.3.5 One-Dimensicnal Results

We consider first the spectral radius of the multigrid iteration matrix cor-
responding to the J = 2 (two-grid) algorithm applied to the one-dimensional

version of the problem (3.11-3.12). Defining the iteration error () as
el =gyl — 0, (3.61)

and the norm

Il e fll= (97 47eM)2, (3.62)
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it can be shown (Bank and Douglas [5] that
1< 1< o) 11 9 1 (3.63)
where p(M) is the spectral radius of the mulvigrid iteration matrix
M = (I - LT[D’]'L)™ - (I - LT[R’ -YF[a’ Y- R L)

-(L-LF[D']' Ly, (3.64)
and L, LT are defined by the Cholesky decomposition of the positive definite
symmetric matrix 47,

AJ

LLT. (3.65)

From (3.60) we know that the total work is best represented in terms of number

of A’ matrix-vector products, and we thus define a new iteration counter ! =

(2m + 1), for which -
Il ™ i< 5 1)) P |, (3.66)
where
7 = [p(M)]/Cm+), (3.67)

The "work-deflated” spectral radius p allows us to compare various multigrid

schemes while keeping the computational work constant.

In Table I we present p for various m, K, and N; (with N; = 2V; in all
cases). Also indicated is the condition number of A7, k, for each h = (K, Ny).
The most important fact to note from Table I is that the multigrid convergence
rate p is bounded from above well below unity, and is sensibly indepenclent of X
and N;. Furthermore, there is an optimal number of smoothings which appears

to be on the order of m = 3, except for the K = 1 "pure spectral” case. These

101



numerical results are all in good agreement with the theoretical results given in

(3.48) and Maday and Muiioz [39)].

Our work estimate (3.60) assumes that the exact-solution work on the coars-
est (§ = 1) mesh is negligible. This will clearly only be true if Ny ~ 0(1), which
in turn requires several multigrid levels to be used, J > 2. We now demon-
strate that the convergence rates of Table I for J := % are also indicative of
performance for J > 2. In particular, we present convergence histories for the
one-dimensional version of (3.11-3.12) in which the inhomogeneity f is chosen

such that the solution is given by
1 .
u= Ees(’"l)sm(mwz) T€A=]-1,1]. (3.68)

Note that u contains sufficient high and low wave numbers so that, neither Jacobi
iteration nor coarse-grid solution alone is sufficient to provide rapid convergence.

All results presented are for the particular (but representative) discretization

K=8,N;=12 (With Njy1 = 2N;).

In Fig. 28 we plot ||| & ||| as a function of I for the J = 2 and J = 3
multigrid algorithras. The results indicate that the spectral radius for the J = 2
case is indeed a good predictor for the actual performance both for the J = 2
and J = 3 case, thus suggesting that the multigrid convergence rates will be
insensitive to the number of multigrid levels. In Fig. 29 we also compare the
convergence history for the J = 3 multigrid scheme with pure Jacobi smoothing
and unpreconditioned conjugate gradient iteration, where the saving due to

multigrid are clearly seen.
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3.3.86 Two-Dimensional Results

* Consider now the two-dimensionai Laplace equation on a rectilinear domain
1 =] - 0.5,0.5[x] — .25,.25], with imposed Dirichlet boundary conditions on
the domain boundary 80 such that the solution is given as u = 0.5 + z. The
initial guees for the solution in the interior is taken to be zero. The fact that
the solution can be exactly represented by a first-order polynomial does not
affect the multigrid convergence rate, however it allows us to monitor the error
||| #—uy ||| which will be entirely due to incomplete multigrid convergence, with

no contribution from discretization errors.

in the first test we use two grids (J = 2) in the multigrid algorithm. The
discretization on the fine mesh is h; = (K, V;) = (50, 8) while tha discretization
on the coarse mesh is ky = (K, N;) = (50,4), see the two finest grids in Fig. 30.
We apply Chebyshev sacceleration in the smoothing iteration on the fine mesh,
with 10 smoothings per V-cycle, that is, m = 5. In Fig. 31 we plot the con-
vergence histories for the multigrid algorithin and the preconditioned conjugate
gradiert iteration. For comparison we also include the maultigrid convergence
history without the Chebyshev acceleration. On the horizontal axis we plot the
number of matrix-vector products on the fine mesh, thus neglecting the exact
coarse-solution work. The convezgence rate for the MG-algorithm is impressive
compared to the CG-algorithm, especially in the context of the Stokes solvers
discussed in the next section where the residuals in the inner elliptic solves only

need to be reduced by a few orders of magnitude.

We now change the discretization to h; = (K,N;) = (50,12) and h; =
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(K, N1) = (50,3), that is, the polynomial degree N is increased with a factor
of 1.5 on both meshes. In Fig. 32 we see that the convergence rates have
decreased both for the multigrid algorithm and the conjugate gradient iteration.
To achieve a fixed (high) accuracy, the number of matrix-vector products have
increased with a factor ~ 1.5 for the conjugate gradient iteration, consistent
with the fact that the number of iterations scales like the square root of the
condition number (3.10), that is, the number of iterations is proportional with
N;. The increase in work for the multigrid algorithm is about ~ 1.2, consistent

with the result (3.56) that the work should scale as /N,

Next, we investigate how the convergence rate depends on the number of
elements K. The same testproblem is again solved with J=2 grids, for dis-
cretizations (K = 50, N; = 12) and (K = 8. N; = 12), with N, = 2N;. The
convergence hietories plotted in Fig. 33 demonstrate the imporiant result that
the multigrid convergence rate is indepe'.dent of the number of elements K,

consistent with (3.56).

With only two meshes (J = 2) the assumption about neglecting the exact
coarse-solution work is not good. We therefore repeat the first test, but now
using J = 4 grids. The discretizations in the multigrid algorithm will then
be: hy = (50,8), hs = (50,4}, ks = (50,2), and h; = (50,1) with the coarsest
mesh (7 = 1) corresponding te an h-type finite element discretization on the
macro-elemental skeleton, see Fig. 30. The multigrid convergence history is
plotted in Fig. 34, demonstrating almost no change from the (J = 2) result
plotted in Fig. 31. Like in the ore-dimensional case this result suggest that

the convergence rate is almost insensitive to the number of meshes used. We
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have also included in Fig. 35 the multigrid convergence history for the case of
imposing zero Neumann boundary conditions on the two horizontal edges of 412,
suggesting that the convergence rate is also insensitive to the imposed boundary

conditions.

The two-dimensional resuits presented here are all based on discretizations
where the computational domain is broken up into the rectilinear spectral ele-
ments with aspect ratio equal to unity. Preliminary tests using spectral elements
with aspect ratio different from unity indicate that the convergence rate dete-
riorates significantly even for an aspect ratio equal to two. We are currently
working on making the cbnvergence rate more robust for deformed and elon-

ageted elements.

3.4 Stokes Solvers

In this section we consider solution of the algebraic systems resulting from
spectral element discretization of the steady and unsteady Stokes equations;
however the solution aigorithms we present are equally appropriate also for

other variational discretization procedures.

3.4.1 Steady Stokes Solvers

We consider first the solution of the steady Stokes problem in a domain

1 € R4, with Dirichiet velocity boundary conditions on the domain boundary
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a1,

—uVu+Vp=f for xe N, (3.69)
—V.u=0 for x €11, (3.70)
u = up(x) for x € 0N (3.71)

The variational discretization of the Stokes problem (3.69-3.71) can be writ-

ten in the general form
pAw,—Dip=Bf, i=1,..d, (3.72)

— D,u; =0, (3.73)

where summation over repeated indicies is assumed, and underscore refer to
nodal values. In the three-dimensional case (d = 3), u = (u;,u,,us) is the
velocity, f = (f y”» L) is the prescribed force, p is the pressure, A and B are
the discrete Laplacian and mass matrices, respectively, and D = (D,, D,, D;) is
the discrete gradient operator. It is assumed that all boundary conditions are
incorporated into the matrix operators. Equations of the form (3.72-3.73) arise
in any variational discretization of (3.69-3.71); the particular form of the discrete

operators for the case of spectral element discretizations is given in Section 2.4.

Our approach to solve the algebraic system (3.72-3.73) is to use a global itera-
tive decoupling procedure, which is an extension of the classical Uzawa algorithm
used in finite element analysis (Arrow, Hurwicz, and Uzawa [2]; Glowinski [23];
Temam [61]; Girault and Raviart [22]; Bristeau, Glowinski and Periaux [12]).
The main reasons for choosing this approach are: it is more efficient in terms

of computational complexity and memory requirement than a direct approach
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(Yamaguchi, Cheng and Brown [67]; Bathe and Dong [6]), especially for large
three-dimensional problems; it is a more attractive decoupling algozithm than
the Poisson equation approach (Glowinski and Pironneau [24]; Kleiser and Schu-
mann [32]) insofar that it requires no rediscretization of the original problem

(3.69-3.71), and no pressure boundary conditions.

By formally solving the momentum equations for the velocity, and then ap-
plying the incompressibility constraint (3.73), we arrive at the following discretely

equivalent statement

_ -1
-Sp=D;,A"Bf, (3.74)
pAu;=Dp+Bf. i=1,..,d (3.75)
where
S=D;A"'Df (3.76)

is a positive semi-definite symmetric matrix. In essence, (3.74-3.76) corresponds
to a decoupling of the original symmetric saddle problem (3.72-3.73) into two
symmetric positive-definite forms. Note that since the system (3.74-3.76) is
equivalent to (3.72-3.73), the theoretical error estimates discussed in Section 2.4

directly apply.

To solve the system (3.74-3.76) we first solve (3.74) for the pressure p, and
then (3.75) is solved for the u; with p known. Since the system matrices S and A
both are symmetric positive-(semi)definite, standard elliptic solvers like conju-
gate gradient iteration or muitigrid techniques can readily be applied. Although
the steady Stokes pressure matrix S is completely full due to the embedded

inverse A™! (thus clearly necessitating an iterative approach), the important
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fact to realize is that S is extremely well-conditioned. This can be motivated
by noting that S is essentially the product of two first-order gradient operators
”divided” by the second-order Laplacian, suggesting that S is identity-like as

regards its spectrum.

The above discussion motivates our approach to invert S based on a nested
global inner/outer iterative procedure. The outer iteration is a preconditioned

conjugate gradient iteration of the form {see Section 3.2)

P to=D;A7'Bf + g,=B 1,

1

&

am = —(g,,,m)/(p,5SP,_)

Umt1 = Ym + GmP,,
Tmil =Tm +amSp (3.77)
~ -1
Inyr = B tmn

Prnyy = Imt1 T bmp,

where we have used the diagonal mass matrix B associated with the pressure
mesh (M,) as a preconditioner. The motivation behind this choice of precondi-
tioner is the fact that the variational equivalent of the identity operator is the

mass matrix associated with the scalar product (-, ) ¢.

The inner iteration is associated with the evaluation of the the matrix-vector

product S g in the outer conjugate gradient iteration,

=Diq i=1,..d (3.78)
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Az; =y, i=1,..,d (3.79)
S q= D;z;. (3.80)

We note that each matrix-vector product evaluation is composed of tensor-
product matrix multiplications and d standard elliptic Laplacian solves in R4.
To invert the discrete Laplacian A we use conjugate gradient iteration or spectral
element mulitigrid as described in Section 3.2 and 3.3. If the condition number
of the matrix ﬁ—lﬁ is order unity, we see that the above algorithm requires
only order d elliptic solves, and is therefore an ideal decoupling of the Stokes
problem. Finally, we note that the residual r in the outer conjugate gradient
iteration is precisely the discrete divergence —D;u;. This is a useful result as it
allows for direct control of the discrete divergence when specifying the tolerance

for the outer iteration.

Full Fourier Case

We now consider the conditioning of S in more detail, and present theoret-
ical and numerical resulis for the spectrum of this operator. We start by first
considering the trivial case of Fourier discretization in R¢, in which we choose

the aporoimation spaces X, and M} to be
X, = M;, (3.81)

M), = span{e®*, | ki |< K Vi =1,...,d} - (3.82)

where k = (ky, ks, ks) is the wavevector, x = (z1,22,73) € (1, and K is the

maximum wavenumber in each spatial direction. Reality is imposed by conjugate
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symmetry. For this Fourier discretization it is clear that

B=>1 (3.83)
D = ik; (3.84)
d
A= —k =) kjk;, (3.85)
~

from which it follows that S = I independent of K. For the Fourier case the

Uzawa algorithm is perfectly conditioned as might be expected.

Semi-Periodic Problem

Next, we return to the analysis of the semi-periodic problem, see Section 2.4.
This problem includes boundaries, and is thus much more instructive than the
full Fourier case, yet it is sufficiently simple to allow for a complete analysis. The
semi-periodic problem corresponds to the domain (I = (z,y) =] — 1, 1[x]0, 27|,

with semi-periodic boundary conditions of the form
Vyelo,2r]  u(-ly)=u(l,y) =0 (3.86)
vze]-1,1  u(z,0) = u(z,27), (3.87)
and associated spaces
X =X43(] - 1,1[; span{e™, |k |< K}) (3.88)
M = £2(Jo,2x];spen{e™, |k |< K}) N {¢ € £*(Q); /n $d =0}. (3.89)

We now write the velocity, the pressure and the data as a Fourier series in the

periodic y-direction,
K

u(z,y) = ;—z.:/c 0*(z)etv, (3.90)
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p(z,y) = gZK-:K P (z)e™, (3.91)

X
fiz,y) = 3 f*(z)e™, (3.92)
k=-K
and use the orthogonality of the Fourier modes to reduce the variational form of

the steady Stokes problem to a series of decoupled (continuous) problems. It can
then be shown (Maday and Patera [40]; Maday, Meiron, Patera, and Ranquist

[37]) that the spectrum of the continuous operator B 'S = § is

s 1k
Ao (k) = 2  sinh2k (3.93)
1 k
AL (k) = 2 T sinhok (3.94)
Mlk)y=1  I>1, (3.95)

with only one non-unity eigenvalue for each boundary.

The decoupled (continuous) equations for each Fourier mode k is now dis-
cretized using spectral elements in the non-periodic z-direction (Maday, Patera,
and Rgnquist [42]), and we arrive at a set of algebraic equations of the form
(3.72-3.73), which is then decoupled into the form (3.74-2.76). We now present
numerical results demonstrating the good conditioning of the (préconditioned)
pressure matrix B_lﬁ for the semi-periodic problem; in what follows, Af(k),

x5 (k) will refer to the spectrum and conditioning of E—l S.

We begin by plotting in Fig. 36 the A’(k) for the spectral element dis-
cretization h = (X, N) = (4,7) and wavenumber k = 1. The agreement with
the continuous operator spectrum is seen to be virtually exact. In Fig. 37

we again plot Af(k) with A = (K,N) = (4,7), but now for a wavenumber
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k = 12. The low modes of the system are again in good agreement with the
continuoﬁs spectrum, however at this large value of k¥ the discrete system can
no longer resolve exactly the higher modes, resulting in a cluster of eigenvalues
at A3 ~ 1.2. If we investigate the spectrum for k¥ = 12, but now using a dis-
cretization h = (K, N) = (4,14), we see in Fig. 38 that the cluster of numerical

eigenvalues has almost disappeared due to the higher spatial resolution in z.

We plot in Fig. 39 x5(k) as a function of k for the spectral element and
continuous operators. For small and moderate k& the two curves coincide, how-
ever as k => oo the resolution becomes too low and the two curves diverge. For
finer resolutions (e.g. larger N) the spectral element and the theoretical results
agree over a larger range of wavenumbers, as expected from Fig. 37 and Fig. 38.
For large wavenumbers k the condition number x5 (k) for the spectral element
discretization is larger than the value predicted by the continuous analysis, how-
ever the value is still of order unity as required for fast convergence of the outer

iteration.

Multi-Dimensional Case

We consider now the Uzawa decoupling procedure as applied to multidi-
mensional spectral element approximations. In particular, we consider a three-
dimensional problem (3.69-3.71) in a domain 01 defined by z; €]0,2T], z; €
] — 1,1], zs =] — 1,1] where I’ can be interpreted as the aspect ratio of the
system. The prescribed force f is such that the exact solution is given by

u = (uy,us,us) = ((1—z3)(1 — £3),0,0) and p = sinwz, /T - coswz; - cosmzs. For
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multi-dimensional problems the calculation of spectra is a difficult task, and we
therefore instead produce convergence histories from which appropriate condi-
tion numbers can be inferred. In particular, we shall plot the residual || r ||o,¢
(essentially the root mean square of the divergence) as a function of the number

of iterations, m, in the outer conjugate gradient iteration (3.77).

In Fig. 40 we plot || r |lo,¢ a8 a function of m for an aspect ratio I' = 1 and
for spectral element discretizations corresponding to K = 8, N = 7 and 10. The
initial convergence rate is almost independent of N, however the asymptotic
convergence rate does appear to be a weak function of N, in good agreement
with the theoretical bound derived in Maday, Patera, and Rgnquist [41]. The
implication of this result is that the constant in the inf-sup stability condition
due to Babuska (3] and Brezzi [11] is a weak function of N, that is, in the

multi-dimensional case weak spurious modes might exisi, see Vandeven [64].

In Fig. 41 we repeat the numerical experiment of Fig. 40, but now keeping
the discretization parameter h = (K, N) fixed and varying the aspect ratio I'. As
expected from the semi-periodic case, the convergence rate is somewhat lower
for T' = 3 as compared to I' = 1, however the effect is small. These results
demonstrate that the good conditioning of the guasi two-dimensional (semi-

periodic) model problem do, indeed, extend to multi-dimensional problems.

In all the previous examples preconditioned conjugate gradient iteration was
used in the nested inner/outer pressure iteration. In Fig. 42 we show a steady
Stokes test problem where preconditioned conjugate gradient iteration in the

outer pressure iteration is combined with spectral element multigrid for the
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inner L

see Fig.

placian solves. The test problem is again creeping flow in a "wedge”,

12, but now with the tip of the wedge removed. The spectral element

discretization (K = 40, N = 8) is shown in Fig. 42a, and the solution in form

of streal

mlines is shown in Fig. 42b. Note that the strength of the second eddy

is almoit identical to the case when the tip of the wedge is present, see Fig. 12.

Int
able to

his test problem we have removed the tip of the wedge in order to be

break up the computational domain into spectral elements with aspect

convergence rate of the spectral element multigrid algorithm deteriorates signif-

ratio aIproxima.tely equal to unity, see Fig. 42a. As discussed in Section 3.3 the

icantly

as the aspect ratio of the elements become much different from unity.

For thiF particular steady Stokes test problem the total speed-up using multi-

grid with J = 4 meshes instead of preconditioned conjugate gradient iteration

for the
that d

the co

comp

3.4.2

inner Laplacian solves was about 2.5 (timings on a CRAY-XMP). Note
e to the more inefficient vectorization of the matrix-vector products on
er meshes j = 1, 2, and 3 compared to the finest mesh (5 = 4), the

ational cost on the coarser meshes (5 # J) cannot be neglected.

Unsteady Stokes Solvers

In Section 2.4.2 we derived a set of algebraic equations (2.134-2.135) resulting

from a spectral element discretization of the implicitly treated unsteady Stokes

probleh (2.124-2.127). For reasons of efficiency and rigor, our approach to solve

the sys

tem (2.134-2.135) will again bz based on a global iterative technique.

Proceeding in the same fashion as for the steady Stokes case, we arrive at the
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following decoupled system equivalent to the saddle problem (2.134-2.135),

~ 8™ = D;H g} (3.96)
Hu' =Dfp™ +g}  i=1,..d (3.97)

where
Sy = D;H™'D} (3.98)

is the unsteady Stokes pressure operator analogous to the steady operator S
defined in (3.76),
H=pA+ LB (3.99)

is the discrete Helmholtz operator, and

B(f? + = i=1,..,d (3.100)

At w
represent the inhomogeneities associated with an implicit Euler backward time
integration procedure. The advantages of the formulation (3.96-3.98) are simi-
lar to those for the steady problem; it represents a complete, general velocity-
pressure decoupling which is discretely equivalent to the original discretization
(2.134-2.135). First, we solve (3.96) for the pressure, and then (3.97) is solved

for each velocity component u*! with p**! known.

As for the steady Stokes problem the matrix S; is completely full, and thus
solving (3.96) requires an iterative approach. Unfortunately, wheras the steady
pressure operator S is naturally well-conditioned (E_lﬁ is identity like), the

same is not true for S;. In particular, for large time steps we can express S; as

At =00, 8;=>-S (3.101)

‘l:!i-'
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and is thus well-conditioned, however, for small time steps S; goes to the pseudo-

Laplacian E,

At
At=>0, S, TE’
where
E =D;B™'D} (3.104)

is poorly conditioned. The matrix E is, in fact, the discrete consistent Poisson
operator resulting from spectral element discretization of the ezplicitly treated
unsteady Navier-Stokes problem (2.208-2.210). The algorithm described for the

steady case therefore needs to be modified.

Earlier spectral element solvers used a two-level Richardson inrer /outer iter-
ation scheme to solve the discrete unsteady Stokes and Navier-Stokes equations
(Rgnquist and Patera [55]; Maday and Patera [40]). We shall here use a similar
approach as Cahouet and Chabard [13], where we precondition the unsteady

pressure operator S, directly. The preconditioner we use is

-1 #-1 4 -1
= —F 3.
P B + L (3.105)

which can be motivated by looking at the two limits of very small and very large

time steps. In both of these cases we expect P~!S; to be close to the identity

operator.

Full Fourier casc

We shall now give a more convincing argument for the particalar choice

(3.105) as a preconditioner for S; by considering the Fourier discretization (3.81-
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3.82) in R%. From (3.83-3.85) it follows that the spectrum of S, is given as
k2

— 4 2\1-1 -
L AR— F (- 3.106
—akt T £ [+ = (—F%)] (3.206)

= At

while the spectrum of the preconditioner (3.105) becomes
p-t p 2
= —(—k%)]. 3.107
A = ot Lo (h) (3.107)
In the Fourier case we therefore obtain
NP8 = q, (3.108)

implying that the unsteady pressure operator is perfectly preconditioned.

Multi-Dimensional Case

Our approach to invert the unsteady pressure operator is the same as for the
steady case, namely a nested global inner/outer iterative procedure. Given the

preconditioner (3.105) the outer conjugate gradient iteration takes the form

li

Py to=DH'Bg +S.p; ¢=P'ry; p,=4q;

T4l = Im +amSe P (3.109)
91 = P Im+1

b = (‘_Im_,.pzm-t-l)/(gm’fm)

Pny1 = Lot + bmpp,
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where we for convenience have dropped the superscript n referring to the par-

ticular time step.

The inner iteration associated with the evaluation of the matrix-vector prod-

uct S,q in the outer iteration now becomes

y=Diq i=1,..,d (3.110)
Hz =y, t=1,..d (3.111)
S:q = D;z;, (3.112)

where the discrete Helmholtz operator H is inverted by conjugate gradient, iter-
ation or spectral elernent multigrid. We note that the structure in the solution
procedure is similar to the steady case, however the computational complexity
associated with the preconditioning in the outer iteration is very different. For
the steady case the inversion of the diagonal mass matrix B is trivial, wheras
the unsteady case requires the inversion of the pseudo-Laplacian E. If we count
the inversion of the E-matrix as one standard elliptic solve, each iteration in
the outer conjugate gradient iteration takes d + 1 standard elliptic solves, as
compared to d for the steady case. If the condition number of the matrix P~*S,
is order unity, we see that the algorithm (3.109) to compute the pressure again
requires only order d elliptic solves. Once the pressure is known, another d

elliptic solves is required to compute the velocity (3.97).

We now make some final remarks regarding the E-matrix. Since the E-matrix
is essentially a second-order operator with Neumann boundary conditions, the
convergence rate is slower than for the inversion of a standard Laplacian 4 or

Helmholtz operator H with Dirichlet (velocity) boundary conditions. This has
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also been our experience from numerical simulations. To this end, standard
conjugate gradient iteration has been used to invert E, although a multigrid

approach is in good progress.

To demonstrate the effect of the preconditioner P, we plot in Fig. 43 the
convergence history for the residual || r ||o,¢ in the outer iteration (3.109). The
residual is here monitored during the first time step in solving the (simulated)
buoyancy-driven flow in the two-dimensional square cavity shown in Fig. 25.
These results clearly indicate that the condition number for S, is indeed of

order unity.

3.4.3 Navier-Stokes Solvers

As dicussed in Section 2.6 we use a combined semi-implicit/ fully explicit
method to solve the incompressible Navier-Stokes equations; the particular time
stepping procedure depends on the Jow field (Reynolds number). The semi-
implicit algorithm is based on implicit treatment of the unsteady Stokes problem
and explicit treatment of the nonlinear advective term. The solution algorithm
for the Navier-Stokes equations can in this case be viewed as an implicit un-
steady Stokes scheme with an "augmented” forcing term including the explicit
convective contributions. The decoupled equations for the pressure and veloc-
ity therefore become the same as (3.96-3.98), with the inhomogeneity g7 now

expressed as

2
g = B(f} + Z’%yj‘) + Y o C*? i=1,..,d (3.113)

q=0
In (3.113) C is the convection opertor derived in Section 2.5.
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In the fully explicit algorithm (high Reynolds numbers) we follow the same
decoupling approach as before, and we arrive at the following decoupled system

equivalent to the saddle problem (2.213-2.214),

~-Ep*™*' =D;B'g} (3.114)
B n+l —_ DT n+-1 n . 1 d 3 115
Duw, =L;p + 9; t=1,..a, ( . )

where E is the pseudo-Laplacian defined in (3.104), and the inhomogeneity qr

given as
p 2
% =B+ ppu) +Au + 2% a,C" P i=1,..,d. (3.116)
q=

We note that in the fully explicit case there is only one elliptic solve per time
step, as only the pseudo-Laplacian E needs to be inverted. No nested iteration

is required since the inversion of the diagonal mass matrix B is trivial.
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Appendix A
Appendix: Legendre polynomials and

Legendre-Lagrangian interpolants

The Legendre polynomials, L,(z2), satisfy the singular Sturm-Liouville problem,

2a- z)dL;z(") +n(n+1)La(z) =0,
L) =1, (A1)

they are orthogonal with respect to a unity weighting,
1 2
/  Ln(2)Ln(2) d2 =

2m+1
and they satisfy the following three-term recurrence relation,

Omn,y (A.2)

(n+1)La(2) = (2n + 1)2Lp(2) — nLa—y(2),
Ly(2) = 2,
Ly(2) = 1. (A.3)

In the Legendre spectral element method the N + 1 local Gauss-Lobatto

Legendre collocation points are defined as

n = -1 (A.4)
Ly(%) = © t=1,.,N—-1, (A.5)
zy = +1, (A.6)
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where prime denotes differentiation. With this choice of collocation points, the

nodal Lagrangian interpolants, k;, can be written as
(1-2")Ly(2)
anLn(z)(z — 2)’

where oy = N(N + 1). The Lagrangian interpolants h;(z) have the properties

hi(z) = (A7)

of being N** order polynomials, and satisfying the relation

hJ(z‘) = 6‘.1' Vi,j € {Oa ooy N}za (A‘B)
where 6 is the Kronecker delta symbol. The first property follows from the fact
that the numerator is a polynomial of degree N + 1, while the denominator is a

first-order polynomial. The property (A.7) is easily proven by using L’Hopital’s
rule, and then applying (A.1).

From the properties of the Lagrangian interpolants, any N** order polyno-
mial, u(2), on z €] - 1,1[ can be writien as
N
u(2) =3 hi(z)u(z;). (A.9)
§=0
The recurrence relation {A.3) is used to evaluate the Lagrangian interpolants,
k;, given by (A.7). It should be noted that (A.3) is subject to round-cff errors

for high-order expansions, but for the (relatively) low-order expansions used in

spectral element calculations this is not a serious problem.

The first derivative of the polynomial u(z) at the nodal points 2; is given by

N N
w(z) =3 hj(z)u(z) = 3 Diju;, (A.10)
j=0 =0
where u; = u(z;), prime denotes differentiation, and the nodal interpolant

derivative matrix, D, is defined by

D.',' = %(z.) (A.ll)
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Using the expression (A.7) for the Lagrangian interpolants, the matrix elements

D;; can be written as

- Ln(=) ., A
% LE-ar P (419
Dy =0, $+#0,N (A.13)
Do = —axn/4, (A.14)

Dy = +azv/4 (A.15)
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Tables and Figures
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Table 1. Table of the work-deflated J=2 multigrid matrix
spectral radius p for various values o K, N,, and
smoothings m. The condition number of the A" matrix, £, is
also given for each case. The convergence rate is extremely
insensitive to h-(K,NJ), in particular for K>1 and moderate

NJ.
K=1
m.\NZIN.i 8l4 1216 1618 19110 41119
1 .745 .775 .788 .772 .839
2 .702 .736 .752 .733 .810
3 .685 .720 .737 L7117 .798
4 .675 L7111 .728 .708 .791
5 .669 .706 .723 .703 .787
10 .657 .694 .712 .691 .778
K 35 103 232 381 3630
K=4
m\N, IN, 8la 1216 1618 19110 41119
1 .759 .179 .790 .773
2 .718 .741 .754 .734
3 .701 .725 .739
4 .709 .720 .730
5 .727 .733 .738
10 .791 .788 .787
K 1151 3665 8469 14023
K=8
m\Nlel 8la 1216 1618 19110 41119
1 .760 .779 .790
2 .719 .741 .754
3 .702 .726 .739
4 .710
5 .731
10 .794
K 4603 14622 33828
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Figure 1. A plot of the solution u(z) to the convection-diffusion equation
ouze+u, = f,u(0) =1, u(1) = 0, with data f = 1.5mcos(6wz)—0.457*sin(67z),
and a = 0.05.
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Figure 2. The plot shows the trajectories of optimal discretization pairs h =
(K, N) when solving a given problem in R%, d =1 (O), d =2 (O), d = 3 (4),
to a specified error tolerance € =|| v — uy ||;. Here, K is the number of elements
and N is the polynomial degree. The filled symbols show optimal discretizations
for fixed € = 8-1073 for d = 1, 2, and 3.
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Figure 3. A plot of the computational work W as a function of the discretiza-

tion k = (K, N) when solving a two-dimensional problem (d = 2) to a specified

tolerance € = 8. 1073,

The computational work is given relative to the the

optimal discretization where W is normalized to unity.
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Figure 4. A plot of the maximum pointwise error in the spectral element solu-
tion of the differential equation (2.7) as a function of the total number of degrees-
of-freedom, N;. In this test case A = 0, p(z) = €%, f(z) = e*(cos z — sin ), for
which the solution is u(z) = -—-sinz on z €]0,7[. The domain is divided into

K = 2 spectral elements of equal length. Exponential convergence is achieved

~ as the polynomial degree of the fixed elements is increased.
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Figure 5. The two-dimensional computational domain is broken up into three

rectilinear elements 1,, {1z, and {1s.
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Figure 6. Each quadrilateral spectral element is mapped into a local (r, s)-
system: (z,y) € N = (r,8) €] — 1, 1]%
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Figure 7. The domain and spatial discretization for solution of the Poisson
equation (2.45) with f = 0. Dirichlet boundary conditions are imposed on 912
such that the solution is u(z;,z2) = sinz; - e*2. The domain is divided into

K = 4 spectral elements.
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Figure 8. A plot of the maximum pointwise error in the Legendre spectral el-
ement solution to the Poisson equation (2.45) as a function of the total number
of degrees-of-freedom in one spatial direction, N;. Here, the data f = 0 and the
solution u = sinz; - e~*2. Exponential convergence is achieved as the degree of

the elements, N, is increased for fixed number of elements, K = 4.
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(A)

lu = up [l cr

Figure 9. A plot of the maximum pointwise error in the Legendre spectral
element solution to the Poisson equation (2.45) as a function of the total num-
ber of degrees-of-freedom in the z;-direction, N;. Here, the data f = 0 and the
solution u = sinz; - e~*2. The problem is solved for three different geometries
and discretizations, (A), (B), and (C), where the element numbering is indicated.
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Figure 10. A plot of the staggered mesh for K =1 and N = 7. Examples of

the one-dimensional Lagrangian interpolants h; and h; are also shown.
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Figure 12. A plot of the maximum pointwise error in the solution to the two-
dimensional steady Stokes problem (2.81-2.82) with non-homogeneous boundary
conditions as a function of the total number of degrees-of-freedom in one spatial
direction, N;. The problem is defined on the domain 02 =] —1, 1[* with the exact
solution given as u = (1 —z3%,0), and p = sinrz-sinwz,. The domain is broken
up into K = 4 similar spectral elements. Exponential convergence is achieved
as the degree N of fixed elements is increased.
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(a) (b) (c)

Figure 12. Creeping flow in a wedge. The imposed velocity boundary condi-
tions are no-slip conditions on the two vertical side walls and a unit horizontal
velocity on the top side. Fig. 12a shows the spectral element discretization
(K = 30, N = 8), while (b) shows the solution in form of streamlines. For com-

parison a flow visualization from an experiment by Taneda [59] is included in (c).
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Flow

%

Figure 13. The plot shows a particular spectral element discretization (K = 26,
N = 6) when solving steady Stokes flow past a sphere (axisymmetric). The
length of the domain is 30 (axial direction) and the height is 15 (radial direc-
tion). The radius of the sphere is a = /2.
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Figure 14. A plot of the relative error in the drag as a function of the poly-
nomial degree NV (for fixed K = 26) for Stokes flow past a sphere. Exponential

convergence is obtained as N is increased.
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Figure 15. The error in the velocity u, = (u3,4,u2,) and the pressure py as
a function of the total number of degrees-of-freedom (Gauss-Lobatto Legendre
points) in the z;-direction, N;, when solving the test problem (2.115-2.117). The
total interval A =] — 1,1 is divided into K = 2 spectral elements A; =] — 1,0]
and A; =|0,1[. Exponential convergence is achieved as the polynomial degree,
N, i3 increased.
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The error in the pressure p, as a function of the total number

of degrees-of-freedom (Gauss-Lobatto Legendre points) in the z,-direction, N,

when solving the spectral element equations corresponding to the test problem
(2.118-2.121). The error is given for v = 3 (A) and for v = 5 (0). The total
interval A =] — 1,1] is not divided into subintervals, that is, K = 1. Algebraic
convergence is achieved asymptotically (the plot is log-log), although for small

N significantly faster convergence is observed.
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Figure 17. A plot of the spectrum 2); /T NK of the convection operator (2.171)
for the spectral element approximation (2.172) with K = 10 and N = 9 (Q),
and for the linear-basis finite element method (K =90, N = 1) {A). The exact

solution is given by the solid line.
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Figure 18. Stability regions for Adam-Bashforth methods. Method of order k
is stable inside the indicated region.
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Figure 19. A plot of the maximum eigenvalue Ap,z(C) of the discrete con-
vection operator C in (2.173) for different values of K and N. The maximum
eigenvalue is scaled with K N2,

152



/\maz : A-'17111,1;'13.

2,0 T 1 T T T T T T T T T T T T T T T T

SR
I
O =

0 2 4 6 8 10 12 14 16 18 20

Figure 20. A plot of the product between the maximum eigenvalue of the
discrete convection operator, Amsz(C), and the minimum mesh spacing on the

computational grid, Azn,;,, for different values of K and N.
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Figure 21. A plot of the spatial discretization error || § — 6 ||;,cr for convection
of the two-dimensional Gaussian pulse (2.207), as a function of the polynumial
degree, N, for fixed number of elements, K = 9. Exponential convergence is

achieved as N is increased.
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Figure 22. The plot shows the spectral element discretization and a typical
solution for the velocity when solving the two-dimensional, unsteady, incom-

pressible Navier-Stokes equations with exact solution given by (2.215-2.216).
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Figure 23. A plot of the discretization errors || u—u, ||; (O) and || p—p, |1 (O)
as a function of the time step At when solving the two-dimensional, unsteady, in-
compressible Navier-Stokes equations with exact solution given by (2.215-2.216).
Here, the spatial errors are negligible compared to the temporal errors. The re-

sults indicate that the scheme is first-order accurate in time.
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Figure 24. A plot of the discretization errors || u —u, |1 (O) and || p—-p, |
(O) as a function of the total number of degrees-of-freedom, IV;, in one spatial
direction when solving the two-dimensional, unsteady, incompressible Navier-
Stokes equations with exact solution given by (2.215-2.216). Here the temporal
errors are negligible compared to the spatial errors. The results indicate that
the scheme gives exponential convergence as the order of the elements, N, is

increased.
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Figure 25. Simulated bouyancy-driven flow in a square cavity. The plot shows
the spectral element discretization together with a typical solution for the ve-
locity at time ¢ = 1. The error in the first derivative of the velocity is measured

at the indicated four-element junction.
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Figure 26. A plot of the error in the first derivative of the velocity, 4 in (2.217),
as a function of the polynomial degree, N, for fixed number of elements, K = 9.
The results compare the skew-symmetric form of the convection operator (&)
with the rotational form (). The error is measured at the four-element junc-
tion indicated in Fig. 25, and the flow field corresponds to a Reynolds number
of about 30.
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Figure 27. A plot of the error in the first derivative of the velocity, 4 in (2.217),
as a function of the polynomial degree, N, for fixed number of elements, K = 9.
The results compare the skew-symmetric form of the convection operator (&)
with the rotational form (). The error is measured at the four-element junc-
tion indicated in Fig. 25, and the flow field corresponds to a Reynolds number
of about 170. |
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Figure 28. A convergence history plot of ||| € ||| vs. I for the J = 2 (A) ar.?
J = 3 (O) multigrid schemes with K = 8, N; = 12, and m = 3 smoothings.
Here ||| & ||| is interpreted as the iteration error after each fine-mesh smoothing;
the solid symbols (A, @ for J = 2, 3, respectively) indicate the end of each
V-cycle. The solid line represents an upper bound on the J = 2 iteration error
based on p = 0.726.
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Figure 29. A convergence history plot of ||| € ||| vs. I for the J = 3 multigrid

scheme with m = 3 smoothings (A), as compared to plain Jacobi iteration (A),

and unpreconditioned conjugate gradient iteration ((Q). The final rapid conver-
~F L

gence of the conjugate gradient iteration is due to the fact that all of the modes

of the system have been exhausted.
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Figure 30. A plot of the J = 4 grids used in the spectral element multigrid
algorithm when solving the two-dimensional Poisson equation (3.11) with data
f =0 and solution © = 0.5 + z.
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Figure 31. A plot of the iteration error ||| & ||| as a function of I, the num-
ber of matrix-vector products Au on the fine grid (K = 50, N; = 8), when
solving the two-dimensional Poisson equation (3.11) with data f = 0 and so-
lution v = 0.5 + z. The plot compares convergence histories for the (J = 2,
m = 5) spectral element multigrid with Chebyshev acceleration (A), multigrid
without Chebyshev acceleration (O), and preconditioned conjugate gradient it-
eration (QO).
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Figure 32. A plot of the iteration error ||| ¢ ||| as a function of I, the num-
ber of matrix-vector products Au on the fine grid (K = 50, Ny = 12), when
solving the two-dimensional Poisson equation (3.11) with data f = 0 and so-
lution v = 0.5 + z. The plot compares convergence histories for the (J = 2,
m = 5) spectral element multigrid with Chebyshev acceleration (A), multigrid
without Chebyshev acceleration (0O), and preconditioned conjugate gradient it-
eration (Q).
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Figure 33. A plot of the iteration error ||| ¢! ||| as a function of I, the number of
matrix-vector products Au on the fine grid, when solving the two-dimensional
Poisson equation (3.11) with data f = 0 and solution u = 0.5 + z. The plot
compares convergence histories for the (J = 2, m = 5) spectral element multi-
grid with (non-optimal) Chebyshev acceleration for two different values of K,
K =8 (A) and K = 50 (A), with fixed Ny = 8.
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Figure 34. A plot of the iteration error ||| ' ||| as a function of 7, the number of
matrix-vector products Au on the fine grid, when solving the two-dimensional
Poisson equation (3.11) with data f = 0 and solution v = 0.5 + z. The plot
compares convergernce histories for spectral element multigrid with Chebyshev
acceleration when using J = 2 grids (A) and J = 4 grids (4). The convergence
history for preconditioned conjugate gradient iteration is also indicated (O).
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Figure 35. A plot of the iteration error ||| ¢f ||| as a function of I, the number of
matrix-vector products 4 u on the fine grid, when solving the two-dimensional
Poisson equation (3.11) with data f = 0 and solution u = 0.5 + z. The plot
compares convergence histories for spectral element multigrid with Chebyshev
acceleration (J = 4, m = 5) when imposing Dirichlet boundary conditions (4)
and mixed Dirichlet/Neumann boundary conditions (A). The convergence his-

tory for preconditioned conjugate gradient iteration is also indicated (Q).
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Figure 38. A plot of the spectrum A’ (k) of the preconditioned steady Stokes
pressure matrix E—l S, where S is the pressure matrix given in (3.76) and _B~_ is
the mass matrix defined on the Gauss pressure mesh. The spectrum (A} corre-
sponds to a spectral element discretization (K = 4, N = 7) for a wavenumber

k = 1; the agreement with the continuous operator spectrum A} of (3.93-3.95)
(Q) is very good.
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Figure 37. A plot of the spectrum AJ (k) of the preconditioned pressure ma-
trix _Bz—lﬁ. The spectrum (&) corresponds to a spectral element discretizition
(K =4, N = 1) for a wavenumber k = 12; for this large value of k the discrete

system can no longer resolve the higher continuous modes {Q).
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Figure 38. A plot of the spectrum A (k) of the preconditioned pressure ma-
trix B_—l S. The spectrum (A) corresponds to a spectral element discretization
(K = 4, N = 14) for a wavenumber k = 12; due to the higher spatial resolution
the agreement of the discrete spectrum with the continuous operator spectrum

(Q) is improved.
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Figure 39 A plot of the condition number x5 (k) for the spectral element op-
erator B~ S (&) and the continuous operator x* of (3.93-3. 95), as a function of
Fourier wavenumber k. The spectral element discretization X = 4, N =10is
used. For small and moderate k the two curves coincide, however as k = oo the

two results diverge due to the finite resolution of the spectral element mesh.
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Figure 40. A plot of the residual || r |lo,¢ (the root-mean-square of the di-
vergence) from (3.77) as a function of the number of outer conjugate gradient
iterations, m, when solving the three-dimensional steady Stokes problem with
solution u = [(1 — z%)(1 — 2%),0,0], p = sinwz,/T - sinwz, - cosmzs on the
domain 1 =] — 1,1[x] — 1,1[x]0,2T[ with ' = 1. The domain is broken up
into K = 8 equal spectral elements, with convergence histories shown for N =7

(A) and N = 10 (O). The convergence rate decreases slightly with increasing N.
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Figure 41. A plot of the residual || r ||o,¢ (the root-mean-square of the di-
vergence) from (3.77) as a function of the number of outer conjugate gradient
iterations, m, when solving the three-dimensional steady Stokes problem with
solution u = [(1—z3)(1—=3),0,0], p = sinwz, /I'- sin7x; - cosmz; on the domain
Q=] -1,1[x] — 1,i[x]0,2T{ with T' = 1 (O) and T = 3 (A). Both domains
are broken up into K = 8 equal spectral elements, each of order N = 10. The

convergence rate decreases slightly as the aspect ratio I' increases.
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Figure 42. Creeping flow in a "wedge” where the tip of the wedge is removed.
The imposed velocity boundary conditions are no-slip conditions on the two side
walls and at the bottom, with a unit horizontal velocity imposed on the top side.
Fig. 42a shows the spectral element discretization (K = 40, N = 8), while (b)
shows the solution in form of streamlines.

175



I 2 llo,c

;
]
10 ®000%00 . 3
- 0o 3
Z Oo .
R o o i
@]
100 B4 © 4
= O 3
: o :
- O -t
i o
1072 = A (@] E
- .
B 0 i
N (@] .
@]

-3 | _
107 g o E
- & 3
N (o) ]
N o .
0" g o
- A o .

10-5 I B A N T T T T A T S T I T U T T DT I T Y T T B
2 q 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 43. A plot of the residual | r |lo,¢ (the root-mean-square of the di-
vergence) from (3.109) as a function of the number of outer conjugate gradient
iterations, m, when solving for the first time step of the (simulated) buoyancy-
driven flow shown in Fig. 25. The plot shows the convergence history with no
preconditioning of the unsteady pressure operator S, (), and when using the
preconditioner from (3.105) (A).
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