OPTIMAL ALGORITHMS FOR BYZANTINE AGREEMENT

by
PAUL NEIL FELDMAN

B.A. Mathematics, Yale University
(1983)

Submitted to the Department of Mathematics
in Partial Fulfillmen? of the Requirements
for the Degree of
DOCTOR OF PHILOSUPHY IN MATHEMATICS
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1988

© Massachusetts Institue of Technology 1988

Signature of Author .- -

Department of Mathematics

Certified by__ -

May 13, 1988

Frank T Leighton

Professor of Applied Mathematics

Certified by__

Silvio Micali

Professor of Computer Science

Accepted by__

Thesis Supervisor

Professor Willem V R Malkus, Chairman
/Committee o&]\pp]ied Mathematics

Accepted by, .y -

r p‘,‘,ﬁ‘,.‘ s .
Profgs elgason, Chairman

Departmental Graduate Committee

g EE

AUG 19 288
s

T Y'Y)

Abstract

We exhibit randomized Byzantine agreement algorithms achieving optimal running time and
fault tolerance.

Our algorithms do not require trusted parties, preprocessing, non-constructive arguments, or
cryptography.

For a synchronous, complete network with private communication lines, our Byzantine agree-
ment algorithm runs in constant expected time, against all types of adversaries considered in
the literature.

We remark that a modification of our solution enables an asynchronous network to reach
Byzantine agreement in constant expected running time. The only previously known solution

OPTIMAL ALGORITHMS FOR BYZANTINE AGREEMENT
by
PAUL NEIL FELDMAN

B.A. Mathematics, Yale University
(1983)

Submitted to the Department of Mathematics
on May 13, 1988 in Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy in Mathematics

had exponential expected running time in the worst case.

Thesis Supervisor: Silvio Micali

Title: Professor of Computer Science

.3-

Acknowledgement

The thesis represents joint research with my advisor, Silvio Micali. I wish to thank Pro-
fessor Micali for his vast contribution to my development as a computer scientist. It has been
an honor and a pleasure to do research with him. His broad experience in the field and his keen
insight in pinpointing the fundamental open questions have been invaluable assets. His concern
for clear presentation of results has influenced this thesis beyond measure.

I also thank the other members of my thesis committee, Tom Leighton, Nancy Lynch,
Ron Rivest, and David Shmoys. Special thanks are due to David Shmoys for going above and
beyond the call of reader. His very careful reading and constructive criticisms led t¢ numerous

improvements in the presentation of both formal and non-technical sections. Nancy Lynch.

helped formalize certain points which had been vague in previous drafts. Many valuable insights
were gained in conversations with Michael Ben-Or, Benny Chor, Danny Dolev, Cynthia Dwork
and Shafi Goldwasser.

I cannot imagine a more stimulating place for theoretical computer science than the MIT
Lab for Computer Science. Working with the professors, graduate students and visitors has
been a most enjoyable way of acquiring familiarity with a broad class of research areas and
approaches. I owe a great deal to the theory group in general. Beyond academics, I owe thanks
to Baruch Awerbuch, Bard Bloom, Claude Crepeau, Ray Hirschfeld, and Mark Reinhold for
helping me in various aspects of typesetting.

Financial support for this research has been provided by NSF Grant DCR-84-13577 and
AROC Grant DAALO03-86-K-0171.

Last but not least, I thank my teachers, family and friends for their counsel, their exam-
ple, and their encouragement through this and all my endeavors.

-4 -

Table of Contents

Section 1. Introduction

1.1 Previous Solutions

1.2 Our Result
Section 2. Preliminaries

2.1 Model of Computation

2.2 Faulty Processors

2.3 Analysis of Probabilistic Protocols

2.4 Complexity of a Protocol

2.5 Definition of Byzantine Agreement

2.6 Organization
Section 3. Verifiable Secret Sharing

3.1 Secret Sharing

3.2 Verifiable Secret Sharing (With Broadcast Channels)

3.3 A Simple VSS (Using Broadcast Channels)
Section 4. Our BA Protocol

4.1 A Graded-broadcast Primitive

4.2 From (One-Bit) BA to General (Multi-Bit) BA

4.3 Graded Verifiable Secret Sharing

4.4 BA from Common Coins

4.5 A Common Coin Protocol

4.6 The BA Protocol
Section 5. A 1/3-Resilient, Error-Free Graded-VSS
Section 6. Conclusion

Appendix
Section 1. Optimizing the Expected Time per Agreement
1.1 A Faster VSS
1.2 A Faster, Fairer Common Coin Protocol
1.3 The Expected Running Time
1.4 Computational and Communication Complexity
Section 2, Asynchronous Byzantine Agreement
Section 3. BA Starting With Secure Authentication Schemes

1. Introduction

The problem of Byzantine agreement (BA) was introduced by Pease, Shostak and Lam-
port [Pease, Shostak and Lamport 1980]. It may be the most important problem in distributed
computation among fallible processors. Processor faults may range from simple mistakes to
total breakdown to skillful adversarial intent. Trying to maintain a common view of the world is
difficult when one does not know whom to trust. BA is a key step in this direction: it enables all
good processors (those that follow the protocol) to coordinate themselves. Consider a situation
in which each processor holds an initial value. Informally, for any set of initial values, BA

should give us the following properties:
(1) Consistency: All good processors adopt a common value.

(2) Meaningfulness: If all good processors start with the same value, then they adopt that value.

Moreover, these properties should hold even if some processors are malictously faulty,
and try to ensure that they will not be satisfied. In general, good processors do not know which
are the faulty processors. Faulty processors may coordinate their messages in such a way as to

try to mislead the good processors into disagreement.

The classical example which led to the name Byzantine agreement is the problem of coor-
dinating divisions of an army. There is one commanding general; each division is led by a lieu-
tenant. It is possible that the general and/or some minority of the lieutenants are traitors, and
wish that the army suffer a crushing defeat. Each division may attack or retreat. The basic
assumption is that an attack by all loyal lieutenants will probably succeed, but any partial attack
will get trounced. A proper general would never order a partial attack, but a treasonous general
might. The loyal lieutenants must have some way of reaching a common decision, attack or
retreat (consistency). Moreover, when the general is loyal, his orders should be carried out

(meaningfulness).

More generally, BA is required whenever a value must be broadcast in a situation where
all communication is person-to-person. When a processor tries to broadcast a message by send-
ing it to all other processors, a processor receiving the message does not know whether or not
all other processors received the same message. If the otner processors are queried, and some
of them report getting different versions of the message, it is not clear whether the fault lies in
the sender or the receivers or both. In such a situation, one version must be selected and
agreed upon as the ‘‘real’”’ message, or we throw out the message entirely; this is the primary
application of a BA algorithm. If the algorithm lacks consistency, then a faulty broadcaster
might mislead some of the processors into computing the wrong function, working with the
wrong data, etc. An algorithm without meaningfulness could enable faulty processors to halt

progress by invalidating good broadcasts.

-6 -

BA is needed for many contemporary situations. For example, components of an
automatic pilot must make decisions based on readirgs from numerous gauges, which may
give, say, contradictory readings of altitude. It would not be pleasant if the left engine shut off
for landing, while the right engine aborted the idea to land and turned on full force. Geologists
may have to reach consensus on the timing of shock waves recorded at various locations, even
though the clocks are not perfectly synchronized; they must select one peak from each seismo-
graph to correspond to the same tremor. Party bosses who have pledged allegiance to different
candidates in simultaneous primaries may have to consolidate forces and decide to back one of

them.

The examples we are most concerned with come from distributed computing, where large
numbers of processors must work togetker on a problem. A major problem in such computer
systems is the unreliability of the processors, which way cause them to deviate from a specified
protocol. There are many senses in which a processor may fail to follow a protccol. A
“benevolent’’ faulty processor, when it broke down, would cease communications. If all faults
are benevolent, then all delivered communications are from good processors. More realistically,
we might expect a faulty processor to continue communicating with some processors but not
with others, corresponding to broken communication links. Alternatively, there might be ‘‘ran-
dom?”’ errors in its communications, for example, if a memory register was shortcircuited; it is
likely that such errors would occur only in certain subroutines. Effectively, the processor is
running its own version of the protocol it is supposed to be running. Most generally, a proces-
sor might send messages maliciously, intending to wreak havoc on the network. (The fact that
systems crash from time to time suggests thav faults which we would expect to be random
sometimes end up being malicious.) Furthermore, when different people control different pro-

cessors, then we must be prepared for malicious deviation.

Sometimes, a faulty party may be satisfied if it can delay agreement. Consider negotia-
tions between nations in a cartel trying to agree on a new policy regarding production quotas
and pricing policy. Imagine that a few countries prefer the status quo to either of the two alter-
natives being voted on. Their desire might be to simply delay agreement as long as possible.
Let us assume that these countries represent the swing votes (i.e., there is no majority without
them). They might vote one way to half the countries, and the opposite way to the others, and
thereby cause disagreement on which policy was decided on. They can further confuse the
issue by simply not sending any votes to certain countries, and claiming not to have received
votes from others. For such situations, we need some way to reach a decision everyone will

agree on; we need a Byzantine agreement protocol (BAP), and a quick one.

The above problems are not limited to voting. Any time processors try to cooperate, they

must have a way to resolve discrepancies. As it is hard to predict what type of faults will occur

-7 -

in a real network, perhaps the best way to guarantee success in this endeavor is to prepare for
the worst possible scenario. For our problem, we have nothing to lose by doing worst-case

analysis, since we shall see that even the worst case can be handled efficiently.

1.1 Previous Solutions

The fundamental parameters of a BA protocol are: n, the size of the network; and ¢, the
maximum number of faulty processors. In the most important and difficult case, t==0(n); we
call this the worst scenario. Enormous attention has been devoted to the BA problem, and
many weaker scenarios (e.g., t=0(Vn)) have been considered; we address the worst scenario.
We also adopt a worst-case analysis regarding the adversary that may coordinate the faulty pro-

cessors; this shall be formalized in the next section.

The worst scenario is actually the most realistic. In any production line, quality does not
increase with quantity; at best, we may hope that the frequency of defects is a fixed percentage.
In many cases, we may intentionally increase the network size to decrease the chance that the
fraction of faulty components sigaificantly exceeds the expected value. The same reasoning
applies to the case where people are deliberately malicious. We would expect a group of 1000
people to have ten times as many who would like to beat the system as a group of 100; during a
mid-season strike, all players of a team currently in first place may stand to gain from stalled
negotiations, whether there are nine or ninety players on the team. Of course, the best
justification for restricting attention to the worst scenario is the fact that our solution is optimal

for all scenarios.

Remark 1: When we speak of optimal running times, we shall always mean within a constant
factor. By contrast, optimal fault tolerance implies exactly matching the proven bound on the

number of faulty processors tolerable by a BA protocol.

For deterministic protocols, [Pease, Shostak and Lamport 1980] prove that no BAP can
tolerate n /3 faults. They also show that BA can be reached in {+1 rounds of communication for
any t<n/3, but using exponential communication. Dolev, Fischer, Fowler, Lynch and Strong
[Dolev, Fischer, Fowler, Lynch and Strong 1982] present a 2¢t+3 round BAP with polynomially
bounded communication for any ¢t<n /3. This protocol is optimal, up to a constant factor in the
running time. Fischer and Lynch [Fischer and Lynch 1982] show that t+1 rounds is a lower
bound on the running time of any deterministic BAP. (Srikanth and Toueg [Srikanth and
Toueg 1984] present a 2¢+1 round protocol; Coan [Coan 1987] shows how to achieve running
times between {+1 and 2¢, at the expense of ircreased communication complexity.) Thus, we

must resort to probabilistic solutions for faster running times.

-8-

Randomization for reaching BA was first used by Ben-Or [Ben-Or 1983} and then perfected
by Rabin [Rabin 1983] using the idea of a common coin, a wol that has been essential to all sub-
sequent solutions. A probabilistic BA algorithm tolerating t <n /3 faults and running in expected
time O(t/logn) was found by by Chor and Coan [Chor and Coan 1985]. Although this algorithm

beats the lower-bound for deterministic protocols, the running time is high in the worst scenario.

Faster algorithms (also tolerating (n- 1) /3 faults) are known if both cryptography is used (in
which case we must assume a computationally-bounded adversary) and a ‘‘trusted party’’ ha:
suitably initialized the network. Three main protocols are known. [Rabin 1983] showed that if a
trusted dealer distributes, beforehand, O(d) pieces of information to each processor, then d
Byzantine agreements can be reached subsequently, each in expected constant ti~.e. Bracha [Bra-
cha 1985] shows, by a non-constructive argument, how a properly initialized network may reach
an unlimited number of agreements, each in expected tim: O(logn). Building on [Bracha 1985],
Feldman and Micali [Feldman and Micali 1985] finally show how a properly initialized network

can reach an unlimited number of agreements, each in constant expected time.

It is important to notice that the above three algorithms all require cryptography, even if the

lines in the network guarantee private communication.

The assumption of a trusted dealer (though available only for a limited amount of time) is
very strong. If a single totally reliable processor would be available throughout the protocol, BA
would be trivial: merely adopt his value! In [Feldman and Micali 1985], the nuthors succeed in
eliminating this bold assumption: they show how the networl: can ‘‘initialize itself’’, with: at
trusted parties or non-constructive arguments, by running an initial deterministic agreement.
(This requires O(t) rounds of pre-processing.) Howe /er, preprocessing is also a strong assump-
tion. The first agreement is often the most important one (e.g., whether or uot to hold a meet~
ing). For many applications, sucu as a nework which gains or luses processors, we cannot
assume preprocessing. Thus, there is a need to be able to reach fast BA from scratch, ie.,
without preprocessing or a trusted dealer. None of the previous algorithms achieve this goal in
the worst scenario. The most sophisticated BA from scratch in the literature is presented by
Dwork, Shmoys and Stockmeyer [Dwork, Shmoys an-i Stoclkimeyer 1986], zlthough it does not
address the worst scenario: there exists a constant ¢ such that whenever ¢ <(¢n /logn), their pro-

tocol runs in constant expected time.

1 In [Rabin 1983|, secure signature schemes are required. In [Bracha 1985} and [Feldman and }icali
1985], processors must commit themselves to values by revealing encryptions of them; cryptography is used
to hide the values until they are to be -evealed.

1.2 Our Result

We exhibit protocols to reach BA jfrom scratch in constant expected time, tolerating
(n-1)/3 faults. Our protocols simultaneously achieve optimal running time and optimal fault
tolerance; this follows from the result of Karlin and Yao {Karlin and Yao 1987}, who extend
the bound of [Pease, Shostak and Lamport 1980} to show that even probabilistic BA protocols

cannot tolerate n /3 bad processors.

Given private channels,? our protocols are non-cryptographic, and withstand even an

adversary with infinite computing power.

Our basic protocol may be adapted to run in asynchronous networks. In Feldman [Feld-
man 1988], we present the asynchronous version of our protocol, which runs in constant
expected asynchronous time. This protocol tolerates up to t <n /4 faults. We remark that using
cryptography, and assuming a computationally-bounded adversary, we can regain optimal fault

tolerance ¢t <n /3 in the asynchronous case as well.

In [Feldman 1988], it is shown how to compile any protocol assuming private channels to
a cryptographic protocol that does not assume private channels, which performs just as the ori-
ginal protocol. Our compiled BA algorithms are optimal in the cryptographic setting. This fol-
lows from the work of Dolev and Dwork [Dolev and Dwork 1987], who extend the result of
[Karlin and Yao 1987] to the setting in which cryptography may be used against a polynomial-
time adversary. They show that n /3 faulty processors may not be tolerated, unless the network

has previously agreed on public keys for signatures.

For the cryptographic scenario in which the network has previously agreed on public keys
for signatures, an extension of our algorithm reaches BA in constant expected time whenever

the majority of processors are good [Feldman 1988].

2. Preliminaries

2.1 Model of Computation

We consider a network N of n processors with identities 1,2,...,n, where n>4. For con-
venience of discourse, we shall often refer to processors as players; the variables ¢,h,¢ and j
will denote identities of players. Each processor is an tnteractive probabdlistic polynomial-time Tur-
ing machine, as we explain. This consists of a finite state control; read-only input tapes;
exclusive-read, exclusive-write work tapes; exclusive-write output tapes; and an exclusive read-

only random tape.

2 Communication channels that guarantee private communication.

-10 -

A communication link from processor t to j is an output tape of processor 1 which is also
an input tape of j; we shall assume it is labelled /;;. Processor 1 sends a message to j by writing
it on ;. This link is exclusive-write for ¢ (i.e., no processor other than i can write to it). If it
is exclusive-read for j, then we call it a private channel. We shall assume the network is com-

plete with private channels; there is a private link from each processor to every other processor.

A broadcast channel is an output tape of one processor that is an input tape of all proces-
sors, i.e., everyone can read what is written to the tape. We do not assume broadcast channels

(instead, we shall show how to simulate them).

We assume a synchronous network. This says that all communications are sent during time
intervals defined by pulses of a clock accessible to all players. The period between the r-th and
r+1st pulses is called the r-th round. For each 1,5, and r, we let m;;, denote the characters ¢
writes on link /; in the r-th round, and call this the r- th round message of ¢ for j. Processor j
inputs m,; at the r+1-st pulse.

Implicit in the model is the fact that every processor knows the sender of each received
message. This is a prerequisite for BA; if, instead, messages arrived ‘‘unlabelled”’, a single bad
processor could impersonate n processors, making itself the majority and making BA impossi-
ble. Also implicit in the model is that the identities of all processors are commonly known to

all processors.

The random tape is an infinite string of bits selected with independent uniform probability
which are read as input sequentially. Reading a bit on the random tape enables a processor to
enter either of two states with probability 1/2. We define the (initial/instantaneous)
configuration of a processor as its (initial/current) state and the contents of all tapes ezcluding

the random tape.

A (distributed) protocol is an n-tuple of programs (i.e., finite state controls).® We may
view each processor 1 as reserving three special tapes for each protocol P. One tape stores the
common parameters; these values are the same for all processors at the start of P. As we are
considering a BA from scratch, the only ‘“‘given’’ common parameter will be n, the size of the
network. (To simplify the definition of polynomial-time computation given below, we assume
that n is written in unary). Other common parameters to P may be specified by the code of a
protocol @ which calls P (as described below).

Remark 2: In presenting the code for protocols, we shall sometimes find it expedient to define

additional common parameters in terms of already defined common parameters. If a protocol @

3 We may view the i-th program as a multi-valued function F; whose arguments correspond to the input
tapes, work tapes, and the initial unread section of the random tape of processor i; the values returned by F,
are written on the output tzpes and work tapes of processor i.

- 11 -

calls many executions of P to be run, it may index these executions by assigning an additional
common parameter, which we call an ezecution label, to each execution. An execution label

for P does not appear in the code of P.

A sccond tape stores i’s private input (e.g., a value 1 received from the commanding gen-
eral, or #’s output from some other protocol). We define i’s fnput to P to consist of the com-
mon parameters and ¢’s private input to P. The third tape is an output tape which is not a
communication link, on which #’s (private) output of P is written. All tapes, other than the
common parameter tape, the private input tape, and the random tape, are initially blank; ¢

starts P in a distinguished state Start.

We impose conditions on the initial configuration of a processor to guarantee that events
that shouid be indepeadent truly are. Consider a protocol @ that calls protocol P; @ specifies
the values of ¢’s input to P. We implicitly assume that all relevant return information for pro-
cessor 1 (e.g., the step of @ from which P was called, the current state of 1, the value of all
variables in Q) is appended to f’s input to P. Processor ¢ surrounds the return information for
@ by special characters; 1 does not read between these characters until terminating P. All tape
cells ¢ accesses during P, other than ¢’s input to P and random tape cells, are blank when 1
starts P. Upon ending P, 1 erases all tape cells accessed during P, other than the private output
of P. At this time, 1 reads the return information and resumes executing Q. We allow nested

calls of protocols.

We shall also need the idea of ‘“hiding away’’ information for a future call of a protocol.
During a protocol P, a processor may store an input for a protocol Q. This stored input is not
erased upon ending P; however, it may only be accessed by Q. We shall used stored inputs in
compound protocols P=(@Q,R), where @ and R are component protocols. The common param-
eters of P are the common parameters of @ and R. The private input to P is the private input
to Q; during @, private inputs may be stored for R. A call of P starts @ alone; R may be

called, from @ or any other protocol, at any subsequent time (or possibly never).

A processor is polynomial— time if the number of computational steps it takes in any round
is bounded by a polynomial in the length of its input. That is, there exists a polynomial Q such
that Q(k) is an upper bound on the uumber of computational steps the processor may perform
in a round, when its input has length k. (Since we assume that the unary representation of n is
a common parameter, k >n.) Notice that Q(k) is an upper bound on the length of any mes-
sage when the input has length k.

2.2 Faulty Processors

We say that proc:ssor ¢ is good in an execution of a protocol P if 1 follows every step of
P correctly. Processor 1 is considered faulty, or bad, if it deviates from P in any way. The
most general (and difficult to overcome) kind of faulty behavior occurs when the faulty proces-
sors are selected and coordinated by an adversary. Informally, an adversary is an algorithm that
may act on a network running a protocol and can corrupt (make faulty) a fixed fraction of the
Processors.
Definition 1: Let A be an interactive probabilistic Turing machine; let r be a constant between
0 and 1. We say that A is an r— adversary if A may act on any network of n processors, run-

ning any protocol F, as follows:

(1) A has read-access to every communication link that is not a private channel.

(2) A may corrupt any t<r-n processors: when A corrupts processor i, A gets read-access to

all of 1’s tapes and seizes exclusive-write control of t’s output tapes.
(3) Dynamicity: A may corrupt processors at arbitrary times during P.

(4) Scheduling (often referred to as rushing in the literature): All d-th round messages sent by
uncorrupted players are written at the start of the d-th round. A immediately inputs all non-
private channel messages, and private channel messages sent to corrupted players. Upon cor-
rupting the sender or intended recipient of a private channel message during this round, A
immediately inputs the message. A may corrupt additional processors (but not more than ¢
overall) and may output the round-d messages of the bad players at arbitrary times during

round d.
(5) A can perform an unlimited number of computational steps instantaneously.

Remark 3: A processor is considered faulty for the mere act of allowing another party to read

its internal tapes, as this is not part of any protocol.

In effect, a corrupted processor ¢ becomes an extension of A; A may replace t’s finite state

control with any other finite state control.

Property (3), dynamicity, is an important capability when acting on a randomized protocol. For
deterministic protocols, A’s optimal strategy may be calculated beforehand. For randomized
protocols, the optimal strategy may change during the protocol. For example, consider a proto-
col which randomly selects a leader for some task. A dynamic adversary can wait until the

selection is completed, and then corrupt the leader!

We consider the resdiency of a protocol to be the greatest fraction of bad players it can
tolerate.

- 13-

Definition 2: Let P be a protocol satisfying a set of properiies ¥. We say that P is r— residient

(with respect to W) if ¥ is satisfied when any r-adversary acts on P.

(The set of propertics will always be clear from context). ¥ need not hold when a more
powerful adversary acts on P. When we mention an (unspecified) adversary acting on an r-
resilient protocol P, any staiements made need only apply to an r— adversary. (For every pro-
tocol we present, r will be a constant; in describing some protocols appearing in the literature,

we shall stretch our definition to let the resiliency be a function of n.)

We shall let ¢, an upper bound on the number of faulty processors (for which the protocol
should work correctly) be a common parameter of P; since n is a common parameter of P, and
the resilience of P is a property of P, such a bound is specified in terms of previously defined
common parameters. A protocol calling P may itself specify a smaller uppe: bound ¢; if @, a
1/4-resilient protocol, calls P, a 1/3-resilient protocol, @ may specify that t<n/4 (since if
t>n/4, @ is not guaranteed to work, anyway).

We let good denote a processor that is uncorrupted throughout the entire execution of a
protocol or compound protocol P. (Often, it will be simpler and sufficient to prove statements
concerning the good processors, even though these statements nold for all currently uncor-
rupted processors.) A processor that correctly terminates P is good, although the converse need
not be true. Good processors cannot directly observe the corruption of a processor, although in

some cases they may be able to deduce it from subsequent messages (or the lack thereof).

The start of a protocol P is the earliest round in which an uncorrupted processor starts P.
(Usually, all uncorrupted processors start P at the same time.) A protocol terminates, or ends,
as soon as every good processor terminates. A protocol is terminating if for any input, there
exists a finite upper bound on the number of rounds until it ends. It is jointly terminating if all
good processors always terminate in the same round. A compound protocol is jointly terminat-
ing if each of its components is. The duration of an execution of P is the time interval from

the start of P to the end of P (or forever, if P never ends).

2.3 Analysis of Probabilistic Protocols

A rich theory of probabilistic uniprocessor algorithms has been developed. Probabilities
are naturally taken over the random bits read by the processor. It is less obvious how to define
the probabilities for a distributed protocol on which an adversary acts. Ideally, we would like
these probabilities to be properties of the protocol, and independent of the actual adversary.

We observe that the entire execution of a protocol P is determined by:

(1) The adversary A acting on P, and its configuration at the start of P. (Note: since A may
read all tapes of bad players, we shall consider A’s configuration to include the configurations

- 14 -

of corrupted players.)

(2) The inputs to P of all players that are uncorrupted at the start of P.

(3) All random bits read during the duration of P (any bits read before the start of P would
only affect the initial configurations).

(By assumption, all other tapes are initially blank.)

Let E be an event. For fixed A and fixed values of the initial configurations (i.e., of all
uncorrupted processors and A), ((1) and (2) above), the probability that E occurs during P is
computed over all random tapes (i.e., of uncorrupted players and A). Whereas these probabili-
ties do depend on A and A'’s initial configuration, we can prove bounds on the probabilities

which are valid for any adversary.

Definition 3: Let P be an r-resilient protocol. We say that E occurs tn P with probability at least p
if for any r- adversary A, for any set of initial configurations, the fraction of random tapes for
which E occurs is at least p. An immediate and crucial consequence of our definition is that if
P and Q are protocols of disjoint (non-overlapping) duration, and events Ep and Eg occur dur-
ing P and @ with probabilities at least p and ¢ respectively, then the probability that both
occur is at least pg. These events are, in general, not, independent, since the initial
configurations of the latter protocol may depend on events whick transpire in the former;
nevertheless, we may multiply the bounds on the probabilities, since they hold for any initial
configurations.

Similarly, at any time during P, all future events in P are determined by A, the instan-
taneous configurations, and the unread portions of all random tapes. Let E be an event which
may occur after time 7. In a particular execution of P, we say that E is fized at time T if for
the actual instantaneous configurations of all uncorrupted players at time T, for any A and any
instantaneous configurations of A at time T, for all possible (unread sections of the) random
tapes, E later occurs. The probability that E is fixed at time T is computed over random bits
read from the start of P until T.

2.4 Complexity of a Protocol

There are three complexity measures of a distributed protocol; in general, they are func-
tions of the size of the network, the adversary acting on it, the initial configurations, and all
random tapes. One measure is the global (distributed) running time, that is, the number of
rounds of communication before the protocol terminates. The communication complezily is the
total number of bits good processors send during the protocol. Finally, the (local) computation
complexity is the number of bit operations performed by good processors. For an r-resilient

protocol, we define these complexities to be the maximum expected values (averaged over all

- 15 -

possible random tapes) for any r- adversary, for any initial configurations.

For BA. which is primarily a distributed problem, research has concentrated on minimiz-
ing the global running time, provided that the communication and computation complexity
remain polynomially-bounded. Our solution runs in O(1) expected global time, and thus is
optimal.

We now give the formal statement of the problem.

2.5 Definition of Byzantine Agreement

In most situations for which BA is needed, the values to be agreed upon may have arbi-
trary length. Nevertheless, it is known that the problem of reaching Byzantine agreement on
arbitrary values easily reduces to reaching agreement on binary values (see Section 4.2); we

define this latter problem as BA.

Definition 4: Let P be a protocol in which each good player ¢ has a private input bit, B;. Each ¢
that correctly terminates outputs a bit, d;. P is a BA protocol if

1) For any ¢ and j that correctly terminate. d;=d;.
j
(2) If B;=B; for all good players ¢ and j, then for each ¢ that correctly terminates, d; =B;.

Our definition does not require that the protocol terminate. A BAP is interesting only if it
terminates with positive probability. In light of Remark 2, a BA protocol is interesting only if

has positive resiliency.

2.6 Organization

In Section 3, we present verifiable sccret sharing, an interesting protocol in its own right,
but one which apparently cannot be used to reach BA. In Section 4, we build a BAP from
modular protocols. The first is a simple primitive used to weakly simulate broadcasts. This
primitive is used to adapt verifiable secret sharing to a form which may be employed to reach
BA. We then define a common coin protocol, and show a rather involved reduction from a
common coin protocol to the adapted verifiable secret sharing. Finally, we show that BA is

reducible to a common coin protocol.

For simplicity, we first present a 1/4-resilient verifiable secret sharing. The reductions of
Section 4 are (at least) 1/3-resilient; accordingly, this gives a 1/4-resilient BA protocol. In Sec-
tion 5, we present a 1/3-resilient verifiable secret sharing, which yields an optimal, 1/3-resilient
BAP. All protocols we present run in constant expected time. In the appendix, we analyze the
complexity of the most efficient implementations. There, we also state results concerning asyn-

chronous and cryptographic versions of our protocols.

- 16 -

3. Verifiable Secret Sharing

Verifiable secret sharing is a very useful and powerful protocol. It may be run on a broad-
cast network, i.e., a network in which each processor has a broadcast channel. In Section 4, we
shall define and present a weaker version of verifiable secret sharing which does not require a
broadcast network. In this section, in which we briefly survey the development of verifiable
secret sharing, we shall assume a broadcast network. (We also retain the zssumption that the

network is complete with private channels.)

3.1 Secret Sharing

The concept of secret sharing was introduced by Shamir [Shamir 1979] and independently
by Blakely [Blakely 1979]. Simply stated, secret sharing allows a distinguished processor, the
dealer, to give a ‘‘time-release’’ message to a network of n processors, at most ¢ of which may

be bad. We shall assume that t<n /2.

A secret sharing is a compound protocol, (Share,Recover). In Share, the dealer privately
sends a ptece of a secret message to each processor. Each processor saves the piece he receives
as a stored private input to Recover. Any piece, by itself, is useless; in fact, any collection of ¢
pieces provides no information about the secret. However, any n~t players, by running
Recover, can recover the secret. If ¢+ bounds the number of bad players, then we see that the
secret may not be recovered without the cooperation of (at least) one good player. By contrast,
the pieces of the good players alone determine the secret. We propose a formal definition of
secret sharing geared towards motivating verifiable secret sharing. We shall only use secret
sharing in situations in which the dealer randomly selects the secret to be shared from an inter-
val; we simplify the definition accordingly.

Definition 5: Let P={ Share,Recover) be a)ointly terminating compound protocol to be exe-
cuted on a broadcast network, including as common parameters:! the identity of the dealer, h;

and the number of possible secrets, m. Player 1 outputs an element of [0,m- 1], a;, at the end

of Recover. P is a secret sharing if the following properties are satisfied:

(1) (Recoverability) Let E, be the event that all good processors output o in Recover. If the
dealer correctly terminates Share, then there exists 0 €[0,m— 1] such that E, is fixed at the end
of Share.

(2) (Unpredictability) Let A be an adversary acting on P which never corrupts the dealer and
outputs a value 7€[0,m- 1] (as its prediction of the secret) before the start of Recover. Then
the probability that E, is fixed at the end of Share (i.e., A’s prediction is correct) is 1/m.

1 We need not list n and ¢, which are common parameters of every protocol.

-17 -

Intuitively, the secret is o whenever E, is fixed at the end of Share. A good dealer ran-
domly picks o €[0,m—1] to be the secret.

[Shamir 1979] proposes an elegant secret sharing scheme. Consider, as an additional com-
mon parameter, a prime p, where p>n, p>m; all calculations shall take place in Z,, a finite
field of p elements. (Note: we may specify p to be the ieast prime exceeding m~1 and n.) The
dealer uniformly chooses a t—th degree polynomial?, S, whose constant term, S(0), is between
0 and m— 1. This implicitly defines the secret as o ==S5(0). Processor ¢ receives the value of §
evaluated at 1, i.e., S({), as his piece of the secret, and saves this as a s *ored private inpu. to
Recover. In Recover, all good players broadcast their pieces. Using polynomial interpolation, it
is easy to find S, and hence o, from the first t+1 pieces (actually, any set of t+1 pieces may bt
used).

We informally argue why unpredictability (2) should hold, i.e., the adversary’s prediction

is independent of the secret. Let A be an adversary that does not corrupt the dealer, and out
puts a value 7€ Z,, before the start of Recover. The pieces of the bad players alone specify nei-
ther S nor o. In fact, the pieces of bad players are uniformly distributed, independent of the
secret. This is because the dealer chose S uniformly; for any 0 €Z,, for any t-tuple of bad
players, {51,...,4}, for any t-tuple of elements of Z, {q,,...,q;}, there is a unioue ¢-th degree
polynomial S such that S(0)=o and S(j;)=g; for eact 1<f<t. Since A’s view (all his
inputs) have a distribution independent of o, the same is true of his output, and hencze 7=0
with probability 1/m.
Remark 4: Since the pieces of any ¢ players have uniform distribution independent of the
secret, this applies a fortiori to any smaller set of pieces. Formall,, let d <t, and consider a set
of d bad players {j,,...,74}, and their pieces {g,,...,¢4}. Let G denote the first t— d good players
(i.e., of smallest index), {g,,...,9;-4}- For any o, for any (t-d)-tuple of elements of Z,
{v1,---,v_ 4} (corresponding to the pieces of G), there is a unique S such that S(0)=o and
S(jy)==q; for each 1<f<d and S(g,)=v, for each 1<f <t-d. Thus, for any secret, there
are p'~¢ polynomials consistent with the secret and the pieces of any d bad players; since all
polynomials are equally likely to be chosen, the secret is independent of the pieces of the bad
players.

As outlined, this scheme does not satisfy recoverability (1), due to the possivility of dirty
pieces (i.e., incorrect evaluations of the polynomial). That is, even if the dealer properly shared
a secret o, bad players may interfere with good players trying to recover the secret. The inter-

polation used to recover the secret requires that all valuations of the polynomial are correct. If a

2 We let ‘4-th degree polynomial’” denote a polynomial of degree at most {. Accordingly, there is a 1/p
chance that the leading coefficient of S is 0.

- 18 -

single value is wrong. then the interpolation will give the wrong result. Good players, without
knowing S, cannot distinguish correct values from in .rrect values. Therefore, if bad players
Lroadcast incorrect values, good players may use them in the ° terpolation and y«: the wrong
result.

Remark 5: When ¢ <n /3, the secret ‘“shines through’’ the dirty pieces, but it may be infeasible
to recover it. If the dealer properly gives shares of a polynoinial S, then during Recover, at least
n—t good players broadcast pieces lying on S. Since at most ¢ of tnese may lie on any other
t—th degree polynomial, regardless of what the bad players broadcast, at most 2¢ pieces overall
may lie on any other ¢-th degree polynomial Q. Since n >3t¢, S interpolates more than 2t of
the pieces broadcast; this condition uniquely defines S as the corrcct polynomial, and hence the
secret is well-defined as S(0). Uwnfortunately, when ¢t=0(n), this polynomial may be hard to
find. If a random set of t+1 players is chosen, the probability that all are good, in which case
the interpolation returns the correct polynomial, vanishes exponentiall in n. When t>n/3,
the correct polynomial is not even determined by n pieces, ¢ of which are incorrect, and hence

no amount of computation can guarantee recovery of the secret.

If cryptography may be used, .ignatures coula overcome the problem of dirty pieces. Assume
we have schema for signing messages such that any playe: can verify whether a certain string
represents £’s signature of a message, but no player other then A can produce a valid
h-signature of any message. Given such a echeme, a good dealer overcomes the problem of
dirty pieces by signing all pieces of the secret. When the secret is to be recovered, any piece
with an invalid signature is ignored; only good pieces, given and signed by the dealer, are used

to recover the secret.

Our definition of secret sharing admits a problem limiting its possible applications,
namely, non-ezistence of secret: if the dealer is bad, the pieces he gives might not lie on a t-th
degree polynomial. In this case, the secret is not even defined; any two sets of t+1 pieces,
when interpolated, could yield different values for 5(0). Signatures would not help, since a bad
dealer could properly sign dirty pieces. (Even if the dealer correctly terminates Share, but is
corrupted before pieces are broadcast in Recover, he may give dirty, properly signed pieces to
bad players, who then interfere with recovery of the secret.) The very goal of secret sharing - to

commit the dealer to a value in advance - has been defeated.

3.2 Verifiable Secret Sharing (With Broadcast Channels)
Chor, Goldwasser, Micali, and Awerbuch [Chor, Goldwasser, Micali, and Awerbuch

- 19 -

1985] introduced the notion of verifiable secret sharing (VSS). This is an enriched secret shar-
ing free of the problems mentioned above. It appends a dectsion protocol to the sharing proto-
col,® in which the players decide whether or not the secret is well-defined. The decision proto-
col must not enable the adversary to predict the secret better than random guessing. The
recovery protocol must guarantee, with a high level of confidence, that any well-defined secret

is recovered, no matter what the bad players do.

Definition 6: Let P={Share /Decide,Recover) be a jointly terminating compound protocol to be
executed on a broadcast network, including as common parameters: the identity of the dealer,
h; a confidence parameter, k; and the number of possible secrets, m. Each good player ¢ out-
puts “Accept’’ or “‘Reject’’ at the end of Share /Decide; he outputs an element of (0,m- 1], a;,
at the end of Recover. P is a VSS if the following properties are satisfied:

(1) (Unanimity) All good players terminate Share/Decide with a common output
(Accept/Reject).

(2) (Acceptance of good secrets) If the dealer correctly terminates Share /Decide, then all good
players terminate Share /Cecide by accepting.

(3) (Recoverability) Let E, be the event that every good player ¢ that accepts in Share /Decide
outputs o in Recover. With probability at least 1- 2%, there exists a value o €[0,m-1] such
that E, is fixed at the end of Share /Decide.

(4) (Unpredictability) Let A be an adversary acting on P which never corrupts the dealer and
outputs a value 7€[0,m- 1] (as its prediction of the secret) before the start of Recover. Then
E, is fixed at the end of Share /Decide (i.e., A’s prediction is correct) with probability 1/m.

Remark 6: We have adopted the simplest definition of VSS which we can use. Technically,
cryptographic VSS schemes do not satisfy our definition, since they must allow the adversary to
predict the secret with a slight advantage. When the dealer correctly terminates Share /Decide,
the event of property (3) (E, is fixed at the end of Share /Decide for some o) is guaranteed to
hold. Recall that all bounds on probabilities apply for any r- adversary A, for any fixed initial
configurations; the probabilities are computed over all random tapes. By our convention, a VSS

P is r-resilient if these properties are satisfied for any r— adversary acting on P.

[Chor, Goldwasser, Micali, and Awerbuch 1985] gave the first of various cryptographic
VSS schemes. Based on a cryptographic assumption, they present a VSS with resiliency
(1/logn). Benaloh [Benaloh 1986], Goldreich, Micali and Wigderson [Goldreich, Micali and
Wigderson 1986], and Feldman [Feldman 1987) gave cryptographic 1/2-resilient VSS schemes.

3 From a technical standpoint, the sharing protocol is just longer, and has new properties. For clarity, we
present the added steps as a separate protocol.

-20-

Chaum, Crepeau and Damgaard [Chaum, Crepeau and Damgaard 1988], and independently
Ben-Or, Goldwasser and Wigderson [Ben-Or, Goldwasser and Wigderson 1988] found the first
non-cryptographic VSS schemes, which tolerate up to (n—1)/3 bad processors.

Zero-knowledge proof techniques, as introduced by Golwasser, Micali and Rackoff
[Golwasser, Micali and Rackoff 1985], may be used to ensure that the secret is well-defined.
Benaloh [Benaloh 1986] was the first to design a VSS based on this observation; the protocols
of [Chaum, Crepeau and Damgaard 1988] and [Ben-Or, Goldwasser and Wigderson 1988] are
clever extensions of his method. The underlying idea of zero-knowledge proofs is captured by

the following game.

Alice claims that she speeds to work, taking less than an hour on the thruway, every day;
Bob suspects that Alice never spends less than an hour on the thruway. (We take it as given
that one of the above is the case.) Bob asks her to save the time-stamped tickets she gets on
entering and exiting the thruway. Alice is afraid that if Bob sees exactly how fast she goes, he
won'’t let her borrow the car anymore, so she refuses to show him two tickets for the same day.
Instead, she proposes the following game. Alice specifies an hour, and declares that both tickets
are stamped in that hour. Bob may ask to see either ticket, entrance or exit, but not both. If
the tickets are stamped over an hour apart, Bob has half a chance of catching her; on the other
hand, if he doesn’t catch her, he is not thoroughly convinced. Therefore, he asks to try again
tomorrow (and the next day...). If Alice is telling the truth, she will never get caught, nor will
Bob ever see how fast she went. If she is lying, Bob will almost certainly catch her fairly soon.

We play a similar game regarding a secret, which we identify with the polynomial used to
share it (as in [Shamir 79]). Besides sharing the main secret S, the dealer shares pairs of test
secrets (T,,T,+S). These have the property that if S is not properly shared, at least one of
each pair of test secr:ts is not properly shared. The players randomly pick one test secret of
each pair to be revealed. A good dealer ‘“‘passes’ without revealing anything about S; a bad

dealer who did not share the main secret properly is caught with overwhelming probability.

[Ben-Or, Goldwasser and Wigderson 1988] show how a special case of Shamir’s scheme
overcomes the problem of dirty pieces using error correcting codes. We now give a simple ver-

sion of their protocol.

3.3 A Simple VSS (Using Broadcast Channels)

We present a 1/4-resilient VSS, based on the protocol of |Ben-Or, Goldwasser and
Wigderson 1988], which we call SimpleVSS. (In Section 5, we present a 1/3-resilient version;
that protocol is self-contained, i.e., does not rely on error correcting code techniques.) We shall

assume that the confidence parameter, k, is at least 4. StmpleVSS uses two additional common

.91 -

parameters:* a prime p, such that p>m and p=1 mod n; and a primitive n-th root of unity
mod p, w. (Le., w*=1 mod p, w541 mod p for d <n.) All calculations are done in Z,,.

Notation: When processor j is instructed to broadcast a message X', we may let X denote what
is written on j’s broadcast channel in that round, since it is the same for all processors. Such a
broadcast is proper if it has the correct form (e.g., j was supposed to broadcast a message that
round, X has the right length, etc.). Lowercase variables remain internal to a processor. Vari-

ables internal to processor ¢ will sometimes carry the subscript ¢ to facilitate the comparison of

internal variables of different processors.

To simplify analysis of protocols, we assume that whenever processor ¢ should perform an
instruction for all j, this includes j=1. For example, when ¢ sends a message to all players, he
also sends a message to himself; any count of how many processors sent a certain message to 1
will include ¢ (when applicable). A distinguished processor follows the code for all players in

addition to his special code.

Any step of a protocol (e.g., the last) that consists solely of internal computation does not
require a separate round, as it may be merged with the next round \e.g., of any subsequent pro-

tocol). Accordingly, such steps receive labels such as ‘‘Step 1.5"".

Protocol SimpleShare
Common Parameters:
n, the size of the network (in unary)
t, an upper bound on the number of bad players(t<n /a)
h, the identity of a distinguished processor, the dealer
k, the confidence parameter
m, the number of possible messages
p, a prime congruent to 1 mod n (p>m); all calculations are in Z,
w, an n-th root of unity mod p

Private Input for Every Player ¢: None

4 For our application, in which m=n, we may spscify that the smallest possible values for p and w are to be
used; each processor could compute these values itself. By a result of Linnik [Linnik 1944), the smallest pos-

sible p is bounded by a polynomial in n (if we assume the ERH, p=0(n®logn)), hence p and w are
polynomial-time computable functions of n.

Additional Code for Player h

Step 1: Uniformly pick a t-th degree pclyno-
mial S such that 0<S5(0)<m. Uniformly
and independently pick t—th degree poly-
nomials Tyy,... g, Top,.... Tp. For each i,

send S(w‘):Tll(wc')""rle(w.‘))
To(w*),..., Tai (w') o1 the ;rivate channel
to player 1.

Code for Every Player ¢

Step 1.5: Let s,tyy,...,t1,801,...,4ax denote the
values privately received. (Set them to 0,

if a proper message was not received.)

Protocol SimpleDe-ide

Step 2: For each j:if (5,Q;,...,Qx) was not
properly broadcast, set each Q;=0. For
each 1<f<k: if Q;=0, set Py=Ty; if
Qy=1, set P,=T,+S. Broadcast
(Pi1yee-sPar)-

Step 1: Randomly pick & bits, @Q,..., Qu-
Broadcast (1, Q;y,..., Q).

Step 3: Check tha. the dealer ;ave a proper
broadcast. For each (j,Q;),...,Qz) prop-
erly broadcast in Step 1: for each f, check
that Pj; is a t—th degree polynomial, and
that Py (w')=t;+Q;-s. If all of these
check, broadcast ‘‘Goodpiece’’; and set
Si=s; otherwise, set 5;=0 .

Step 3.5: If at least n—t players broadcast
“Goodpiece”, output ‘‘Accept’’; other-
wise, output ‘‘Reject’’. Save S; as a stored
private input to SimpleRecover.

Protocol SimpleRecover

Common Parameters:

n, the size of the network (in unary)

t, an upper bound on the numaber of bad players(t<n /4)

m, the number of possible messages

P, a prime congruent to 1 mod n (p=m); all calculations are in Z,

w, an n-th root of unity mod p

(Stored) Private Input for Every Player : S;, a value from SimpleShare /Decide

Code for Every Player ¢
Step 1: Broadcast (1,5;).

Step 1.5: For each improper broadcast of
(7,5;), set S;=#. Find (using standard
error correcting code techniques) the
unique ¢—th degree polynomial U interpo-
P lating at least n— 2t of the points (w",S,-);
if none exists, set U=0. Let a; be U(0)
reduced ® mod m. Output q;.

Theorem 1: SimpleVSS is a 1/4-resilient VSS.

Proof: Property (1), unanimity, holds because acceptance depends only upon the number of mes-

sages ‘“Goodpiece’’; these are broadcast, so all players receive the same number of thein.

Property (2), acceptance of good secrets, holds because an uncorrupted dealer follows the proto-

col, so every good player broadcasts ‘“Goodpiece’’.

We preface the proof of property (3), recoverability, by a brief discussion of error correcting

code techniques [Peterson and Weldon 1982].

The most common application of error correcting codes arises when we wish to transmit
codewords (messages of a special form) over an unreliable channel. Suppose that all possible
codewords have ¢ bits, and any two possible codewords differ in at least 2d+¢+1 bit positions. If
at most d bits are switched (flipped) by the channel, and at most ¢ bits are not received at all,
then when we send a codeword, it is the closest codeword to the string actually received, i.e., it is
the only codeword that can be derived by flipping at most d bits and filling in up to e more.
Error correcting codes provide a polynomial time algorithm to find the closest codeword. A simi-
lar technique may be used when codewords consist of c-tuples of values in Z,. If any two code-
words differ in at least 2d+e+1 values, then we may recover a codeword even if d of the values
are incorrect and ¢ are missing. For our application, c=n, d=¢ and e=t. A codeword is an n-
tuple of evaluations of a t-th degree polynomial at the n-th roots of unity. Any two codewords
may agree in at most ¢ positions, hence they disagree in at least n— ¢, which is at least 3¢+1.
Therefore, the above technique may be used to recover a ¢ th degree polynomial from its values

at the n-th roots of unity, if at most t of these values are incorrect and another ¢ are missing.

5 A bad dealer may have picked S such that S(0)>m.

- 24 -

We refer to (Tj;,5+Tjy) as test secret pasr if, and Q;y as query bit f. If Q;; is properly broad-
cast, we call Ty +Qj, 'S the selected test secret jf .

Lemma 2: Let E be the event that
(a) The secret is accepted (i.e., by the good players), AND

(b) The main pieces (i.e., of the main secret) of all good players that broadcast ‘“Goodpiece’’ do
not lie on a t-th degree polynomial.

E occurs with probability at most 27*.

Proof: Let G be any fixed set of n-2¢t players. Let U denote the minimum degree polynomial
interpolating the main pieces of good players in G; let U;, denote the minimum degree polyno-
mial interpolating the pieces they received from the dealer for test secret pair jf. Suppose that
the degree of U is greater than t.

Claim: The probability that all players in G are good and broadcast “Goodpiece’’ is at most
g kn/2,

Proof: We may restrict ourselves to the case where all players in G are good. For every j and f,
either Uy or Uy+U (or both) is not a t-th degree polynomial. We say Q is lucky if
Ujy+Qjs-U is a t—th degree polynomial. Say that a polynomial V fits, or is consistent with, a
piece t;; held by player ¢ if and only if V/(w‘)=tﬂ. If, during SimpleDecide, an unlucky query bit
Qjs is properly broadcast, then no matter what t— th degree polynomial the dealer reveals as Py,
it does not fit the pieces of selected test secret jf of all members of G, and hence not all
members of G broadcast ‘“Goodpiece’. Thus, either every properly broadcast query bit is lucky,
or some member of G does not broadcast “'Goodpiece”. Each query bit picked by a member of
G (or any good player) is picked randomly, and is lucky with probability 1/2 (or 0, if neither
choice is lucky). Since over half of the players are in G, they pick (and properly broadcast) over
half of the query bits; the chance that all are lucky is at most 2~ #*/2, QED

We now observe that if the secret is accepted, at least n— 2t good players broadcast ‘‘Good-
piece’’. We have just shown that the chance that any fixed set of n— 2t players are good and
broadcast ‘“‘Goodpiece’’, even though their main pieces do not lie on a t-th degree polynomial,

is at most 2-*¥*/2, We may overestimate the chance that such a set exists by multiplying by the
number of sets of n— 2¢ players, (n—n2t]' The product is (n:'m)?""/2<2"2""‘/2=2"(""/2)52"’
(for n>4, k>4). Finally, we observe that if E occurs, such a set must exist; this proves the

lemma. QED

Say a player is satisfied if he is good and broadcasts “Goodpiece’’. Consid-r the case when
the secret is accepted and (b) does not occur: that is, the main pieces of all satisfied players lie on

a t-th degree polynomial. Since there are at least n— 2¢ satisfied players, there is a unique such

- 95 -

t—th degree polynomial, U. In this case, in StmpleRecover, at most t of the non-null values
broadcast may be incorrect (i.e., those of the bad players); additionally, up to t good unsatisfied
players may broadcast # . Therefore, the error correcting technique is guaranteed to return U for
every good player. To finish the proof of (3), we observe that o = U(0) is determined at the end
of StmpleShare [Decide .

For property (4), unpredictability, we consider the adversary’s view on SimpleShare /Decide .
This consists of the main pieces of bad players, test pieces of bad players, query bits, revealed
test polynomials, and ‘‘Goodpiece’”’ messages. Consider any set of t players {j,,...,s }, any

ordered t-tuple of elements of Z, representing their main pieces, {81'1""’61}}’ any set of query bits

@11,-- Quk, and any set of t-th degree polynomial representing the revealed test polynomials
Pyy,...,Py. For any possible secret o, there is a unique polynomial S consistent with the main
pieces of these ¢ players such that S(0)=0. S, in conjunction with A’s view, determines each
shared test polynomial, Ty =P, - Q; ‘S, which determines all test pieces. All good players
broadcast ‘‘Goodpiece’’. It follows that for any o, there is exactly one choice of polynomials
S,T11,.., T which is consistent with A’s view. Since all polynomials are chosen uniformly and
independently, all secrets are equally likely, given A’s view, so A’s prediction is independeni of

t-d

o. (As befcre, if d<t players were corrupted, p possible K +1-tuples of polynomials

correspond to each possible secret, so all are equally likely.) QED

4. Our BA Protocol

We are ready to build the BAP. We first present a simple primitive which gives a weak
simulation of a broadcast channel. Using this primitive, we design a protocol with virtually the
same properties as VSS. We define a common coin, and give a rather involved reduction from a

common coin to our adaptation of VSS. Finally, we show that BA is reducible to a common coin.

4.1 A Graded-broadcast Primitive

A broadcast channel is a very useful feature in a network; a processor receiving a message
on a broadcast channel is guaranteed that all other processors are receiving the same message.
Broadcast channels may be used for much more than VSS; in particular, it is trivial to reach BA
in a broadcast network, e.g., each processor broadcasts his input value, then outputs the majority
value broadcast (with, say, default 0 in case of a tie). We shall define a Graded— broadcast primi-
tive, which is nearly as powerful as a broadcast channel, and shall use it as a stepping stone

towards BA.

Crusader agreement, as introduced by Dolev [Dolev 1982] and refined by Turpin and Coan
[Turpin and Coan 1984), simulates an unreliable broadcast channel. Basically, sending a message

- 926 -

using Crusader agreement is like sending a message on a broadcast channel in which some mes-
sages may not get delivered: recipients of the message are guaranteed that all other recipients
receive the same messages. However, recipients have no guarantee that any other player receives
the message. We introduce Graded- broadcast to partially resolve this problem. As in Crusader
agreement. for any message sent using Graded— broadcast, all received messages are the same.
The added feature is that when a good player sends a message using Graded— broadcast, all good

players can verify that all good players receive the same message.

Definition 7: Let P be a jointly terminating protocol including as a common parameter h, the
identity of a distinguished processor, the sender. Only the sender has a private input, o. Each
good player i outputs a pair (code;,value;), where code; is 0, 1, or 2. We say that P is a

Graded— broadcast if the following conditions are satisfied:

(1) If ¢ and j are good players, and code; 40 and code;5£0, then value;=value;.
(2) If ¢ and j are good players, then |code,— code; |<1.

(3) If the sender is good, then for every good player 1, code;=2 and value;—oc .

Notation: Let distribute denote an instruction to send a particular message to all processors. (As

mentioned earlier, a player sends messages to himself and counts himself in all tallies.)

Protocol Grade- Cast

Common Parameters:
n, the size of the network (in unary)
t, an upper bound on the number of bad players(t<n /3)
h, the identity of a distinguished processor, the sender
Extra Private Input for Player k: o, a binary string
Private Input for Every Player i: None

Additional Code for Player & Code for Every Player ¢
Step 1: Distribute o .

Step 2: Let V; denote the Step 1 message
received from k. Distribute V;.

Step 3: If a common string Z was received as
the Step 2 message of at least n— ¢ players,
distribute Z; otherwise, send no messages.

Step 3.5: Let tally, denote the number of
players that sent z to 1 in Step 3.

a) If for some =z, tally,>2(+1, set
value;=—z and code;=2.

b) If for some =z, 2t>tally,>t, set
value;=z and code;=1.

c¢) If for all z, tally, <t set value;=
and code;=0.

Output (code;, value;).

Theorem 3: Grade— Cast is a 1/3-resilient Graded- broadcast protocol.

Proof: We first show that value; is well defined in Step 3.5 . The key to proving this is showing
that if ¢ and j are good players that distribute X and Y respectively at Step 3, then X=Y. We
show this by a simple counting argument. Assume that at least n— ¢t players send X to g in Step
2. Suppose w of these players are bad, where w<t, so at least n— {— w good players send X in
Step 2. Therefore, at most (n- w)-(n—t— w)=t good players can distribute any other value at
Step 2. Thus, if X5£Y, at most t good players and hence at most 2¢ players overall send Y to
in Step 2. Since t<n/3, 2t<n-t, so if j is good, he does not distribute Y in Step 3.

We have shown that all good players that distribute in Step 3 are distributing a common
message X. Thus, any Y3£X may be distributed only by bad players, and hence value; is well
defined in Step 3.5. Moreover, any good ¢ that decides according to 3.5a or 3.5b will set
value;=X, proving property (1) of Definition 7. Property (2) follows from the fact that if any
good player ¢ sets code;=2, then at least 2¢+1 players send X to 1 in Step 3, and at least ¢t+1 of
these players are good, so all good players -eceive X from at least t+1 players, so they all decide
according to 3.5a or 3.5b. Property (3) is easily verified, since if h is good, all good players
receive and redistribute o in Steps 2 and 3. QED
Notation: In Grade- Cast, we say that i accepts if code;=2; ¢ semi- accepts if code;=1; 1 rejects
if code;=0. We say i acknowledges if code;>0. We shall use this notation for all protocols in

which a graded, three-level decision is made.

We shall let Grade— Cast denote an execution of Grade— Cast; an instruction for player ¢ to
Grade- Cast V is equivalent to sayiag that the network runs Grade— Cast with common parame-
ter ¢, in which 1’s private inputis V.

In general, when a protocol instructs & to distribute V, it would be misleading to let V denote
the message ¢ receives, since this suggests that every good player receives the same value. When
h is instructed to broadcast V (on a broadcast channel), we have seen that this notation is
justified, since we may define V to be whatever A broadcasts. When a protocol instructs k to
Grade- Cast V, we shall likewise let V denote the unique non-null output value; of any good
player ¢ (if one exists). A player rejecting the Grade- Cast does not output this value (but rather

@), but such a player never accesses V in any case.

- 928 -

4.2 From (One-Bit) BA to General (Multi-Bit) BA

In the general BA problem, each processor holds an arbitrary input value. Standard
Crusader agreement reduces the general BA problem to BA as defined in Definition 4 (reaching
agreement when all inputs are bits). The reduction is even simpler using (all but the first step
of) Grade— Cast.

Definition 8: Let P be a protocol in which each processor ¢ has a private input, o ;. Each 1 that
correctly terminates outputs a value, a;. P is a multi-bit BA protocol if

(1) For any ¢ and j that correctly terminate, a;=a;.

(2) If 0 =0 ; for all ¥ and j uncorrupted at the start of P, then a; =0 ; for every correctly ter-
minating ¢.

Theorem 4: ([Dolev 1982], [Turpin and Coan 1984]) Let P be a BA protocol running in
(expected) time F(n) on a network of size n. Then there exists a multi-bit BA protocol Q run-
ning in (expected) time F(n)+O(1). If P is r-resilient, then the resiliency of Q is min(1/3,r).

Proof: Consider the following protocol for multi-bit BA.

Protocol @
Common Parameters:
n, the size of the network (in unary)

t, an upper bound on the number of bad players(t<n/3)
Private Input for Every Player i: ¢, a binary string

Code for Every Player ¢

Step 1: Execute steps 2,3, and 3.5 of Grade— Cast, setting Vi=o; in Step 2; let (code;,value;)
denote the private output. If code;=2, set B;=1; otherwise, set B;=0.

Step 2: Run P, using B; as private input. Let d; be the private output.

Step 2.5: If d;/=1, then set a;=value,; otherwise, a;=f . Qutput a;.

The key to the proof is the observation that the properties regarding the outputs of

Grade- Cast apply for any sender, in particular, a sender that sends o; to player 1.

If the good processors cutput 1 in P, then some good processor j must start P with B;=1.
This implies that code;=2, so all processors that correctly terminate Qp acknowledge the same
message in Grade— Cast and output it in Qp. If all processors that correctly terminate Qp start
with the same input to Grade- Cast, z, they all end Grade— Cast with output (2,z). Therefore,

- 29 -

they all start P with bit 1, hence they all end P with bit 1, and output r in @Qp. QED

4.3 Graded Verifiable Secret Sharing

Our definition of VSS requires that all good processors reach a common decision regarding
the acceptability of a secret; for this, broadcast channels (or BA) are needed. Obviously, we can-
not use VSS as a tool to reach BA! Fortunately, we find that a weaker version of VSS which
does not require broadcast channels is sufficient to help reach BA in constant expected time. We
call this weaker version Graded-VSS, for in it, the players reach a graded decision (as in
Grade— Cast). A player may accept, semi-accept, or reject the secret. A player that semi-accepts
has concluded that the; dealer is bad, but nevertheless knows that the secret is recoverable.
Graded-VSS retains all the properties of VSS, with the exception of unanimity, which is weak-
ened to semi-unanimity: if any good player accepts, all good players acknowledge. (We highlight
this one difference by calling this property 1'.)

Definition 9: Let P=(Graded— Share /Decide,Graded- Recover) be a jointly terminating com-
pound protocol including as common parameters. the identity of the dealer, h; a confidence
parameter, k; and the number of possible secrets, m. Each good player f outputs accept; €
{0,1,2} at the end of Graded- Share/Decide, and outputs a¢,€(0,m-1] at the end of
Graded— Recover. We call P a Graded— VSS if the following properties are satisfied:

(1) (Semi-unanimity) If any good player i outputs accept;=2 in Graded— Share /[Decide, then
accept; >0 for every good player ;.

(2) (Acceptance of good secrets) If the dealer correctly terminates Graded— Share /Decide, then
each good player j outpats accept;=2.

(3) (Recoverability) Let E, be the event that every good player ¢ that sets accept; >0 outputs o
in Graded— Recover. With probability at least 1- 2-% there exists a value o €[0,m- 1] such that
E, is fixed at the end of Graded— Share /Decide.

(4) (Unpredictability) Let A be an adversary acting on P which never corrupts the dealer and
outputs a value 7€[0,m- 1] (as its prediction of the secret) before the start of Graded— Recover.
Then E, is fixed at the end of Graded- Share [Decide (i.e., A’s prediction is correct) with proba-
bility 1/m.

The Graded-VSS protocol we exhibit below is based on SimpleVSS. However, there are two
key differences:

(1) The employment of Grade- Cast in place of broadcasts.

(2) The branched responses to Grade- Casts in the decision protocol.

-30-

We briefly discuss these changes. The power of broadcast channels guaranteed that for any
good processors h and t, for every broadcast received by 1, h received the same broadcast. For
any broadcast requiring a specific response -- for example, in StmpleDectde, the dealer reveals test
polynomials corresponding to the broadcast of query bits -- if A does not give the proper

response, ¢ concludes that & is faulty. What happens without broadcast channels?

We may be tempted to try substituting, in place of an instruction to broadcast V, an
instruction to distribute V, followed by a Crusader agreement on the value distributed. Although
this would guarantee that 1 would not receive 2 different value than A4, it is possible that i would
receive a value, and A would receive nothing. Thus, a non-response from h proves nothing; this
attempted simulation fails. The substitution of Grade- Cast instructions, with branched
responses, will succeed; the three-level acceptance code is the crucial feature. It guarantees that
any Grade— Cast accepted by ¢ is acknowledged by h. Consider any response h is required to
make to a proper broadcast in VSS. If, in Graded- VSS, the corresponding Grade— Cast is
accepted by any good player 1, then h acknowledges the same Grade- Cast, and makes the
appropriate response. A Grade- Cast semi-accepted by ¢ did not come from a good player, and
hence A (who may not have acknowledged such a Grade—- Cast) is not penalized for not respond-
ing.

We employ this substitution in Stmple VSS and get SimpleGraded— VSS. StmpleShare, which
does not use broadcasts, is unchanged. Although pieces are broadcast in SimpleRecover, it
suffices to distribute them. The essential changes are in the decision protocol. There are three
reasons why we only have semi-unanimity. Firstly, players may differ slightly on the acceptability
of Grade- Casts of the dealer. Secondly, players may disagree on whether or not a query vector
was acceptably Grade- Cast. Thirdly, players may disagree on which players distributed “Good-
piece’’. This substitution technique also works for the 1 /3-resilient VSS we present in Section 5.!

Protocol SimpleGraded— Share

Common Parameters:
n, the size of the network (in unary)
t, an upper bound on the number of bad players(t < n /4)
h, the identity of a distinguished processor, the dealer

k, the confidence parameter

1 More generally, this substitution works for every VSS scheme in the literature. We believe that this tech-
nique may be used to convert any VSS to & Graded-VSS. We do point out that in theory, a VSS scheme
might require the full power of broadcast cha..nels or BA. Although one may contrive a protocol to embed
BA, we cannot conceive of a case where this is needed to achieve properties (1'), (2), (3) and (4).

-31-

m, the number of possible messages

p, a prime congruent to 1 mod n (p>m); all calculations are in Z,

w, an n-th root of unity mod p

Private Input for Every Player ¢: None

Additional Code for Player h

Step 1: Uniformly pick a t-th degree polyno-
mial S such that 0<S5(0)<m. Uniformly
and independently pick ¢-th degree poly-
nomials Ty,,...,Tw. For each ¢, send
S(w'), Tyy(w'),..., Tu(w') on the private
channel to player 1.

Code for Every Player ¢

Step 1.5: Let s,t;,...,tsx denote the values
privately received.

Protocol SimpleGraded— Deesde

Step 2: For each j: if the Grade— Cast of
(4,Qj1,---,@Qa) was acknowledged, for each
1<f<k, set Ry;=@Qy; otherwise, set
Rjy=0. Let Py=Ty+Rj;S. Grade— Cast
P,y Pos

Step 1: Randomly pick k¥ query bits, @;y,..., Q.
Grade~ Cast(1,Qiy,..., Qi)-

Step 3: Check that h’s Grade- Cast is accepted
and proper. For each proper, accepted
Grade- Cast of (4,Qj,-.., @) (from Step
1), for each 1<f <k, check that Pj is a
t—th degree polynomial, and
Py (w')=t; +Q; -s. If these all check, dis-
tribute ‘‘Goodpiece’’ and set S;=3s; other-
wise, set S;=§ .

Step 4: If at least n— ¢ messages ‘‘Goodpiece”’
were received, distribute ‘‘Passable’’

Step 4.5: (a) If at least 2¢+1 messages ‘‘Pass-
able”’ were received, set accept;=2.
(b) If between t+1 and 2t messages
‘“Passable’’ were received, set accept;=1.
(c) Otherwise, set accept;=0.

-39-

Output accept;. Save S; as stored private input
to StmpleGraded-- Recover.

Protocol StmpleGraded— Recover

Common Parameters:
n, the size of the network (in unary)
t, an upper bound on the number of bad players(t<n /4)
m, the number of possible messages
p, a prime congruent to 1 mod n (p>m); all calculations are in Z,
w, an n-th root of unity mod p
(Stored) Private Input for Every Player 1: S;, a value from StmpleGraded—- Share /Decide

Code for Every Player ¢
Step 1: Distribute (,S;).

Step 1.5: Lct the set of received pieces be
{(1,d,),...(n,ds)}, where d;=# if nothing
was received from player ;. Find the
unique ¢-th degree polynomial U interpo-
lating at least n~ 2t of the points (wj,d,~)
(if none exists, U=0). Let a; be U(0)
reduced mod m. Output a;.

Theorem 5: SimpleGraded-VSS is a 1/4-resilient Graded-VSS.

Proof: Property (1') (semi-unanimity) is immediate, since if any good player accepts, he receives
at least 2¢+1 ‘‘Passable’’s, so all good players receive at least t+1 ‘‘Passable’’s, so they all ack-

nowledge.

For properties (2), (3), and (4), we can apply the same proof used for SimpleVSS, by checking
that the substitution of Grade- Casts for broadcasts suffices. For property (2) (acceptance of
good secrets), the crucial fact is that if 4 and ¢ correctly terminate SimpleGraded— Share /Decide,
any proper Grade— Cast of (j,Qy,...,Qa) accepted by i is acknowledged by A, and hence prop-
erly answered by k, so 1 distributes “Goodpiece”’. Since at least n— ¢ players are good, each good

player distributes ‘‘Passable’’.

In the proof of property (3) (recoverability) for SimpleVSS, we only used the fact that if the
dealer fails to properly respond to a query bit of a good player, then no good player sends
““Goodpiece”. This is also true for SimpleGraded- VSS, since all good players accept the
Grade- Cast of the query bits of every good player. SimpleRecover does not rely on the fact that

pieces are broadcast, just the fact that at most 2¢ received pieces are incorrect, of which at most ¢

-33-

k

are non-null. Thus, the same argument shows that with probability at least 1-27% either the

secret is rejected by all good players, or it is fixed at the end of Graded- Share /Decide.

Property (4) (unpredictability) still holds, since, as in SimpleVSS, the view of any r— adversary is

determined by values with a uniform distribution independent of 5(0).

Notation: We shall refer to an execution of Graded- Share/Decide as a stored secret. A stored
secret is passable if at least one good processor acknowledges. A stored secret is recoverable if,
for some o0 €[0,m-1], E, is fixed at the end of Graded— Share /Decide, i.e., no matter what the

bad players do, every good player that acknowledges the secret outputs o in Graded— Recover.

4.4 A Common Coin Protocol
[Rabin 1983] showed that the problem of reaching BA is reducible to finding a common

coin protocol. Intuitively, a common coin may be viewed as a random, unpredictable bit which,
somehow, suddenly becomes a common input of all players. For example, the parity of the
Monday’s market closing (Dow Jones average) is reasonably unpredictable on Monday morning,
but anyone may read it in Tuesday’s newspaper. This bit need not be perfectly random and

unpredictable, as indicated by the following definition.

Definition 10: Let P be a jointly terminating protocol in which each good player ¢ outputs a bit
d;. We say that P is a common cotn protocol if for a constant p >0, for any b€ {0,1}, with proba-
bility at least p, d;="> for all good processors 1. (We say P is p— fair.)
We call an execution of P a common coin; the common coin is unantmously b if d;=1b for every
good player 1.

(In Section 4.5, we will present a reduction from BA to a common coin protocol.)

How may one design a common coin protocol? Our method will be to consider the tallies in
a ‘“random election’’. Random elections of a different flavor were used in the agreement proto-
cols of Chor, Merritt and Shmoys [Chor, Merritt and Shmoys 1985] and Dwork, Shmoys and
Stockmeyer [Dwork, Shmoys and Stockmeyer 1986] to obtain a common coin in “more

benevolent’’ scenarios.

In the election, each player is both a voter and a candidate. Unlike standard elections, a
candidate chooses which votes he wishes to accept. Each player uses Graded-VSS to share n
secret votes, one for each candidate, chosen randomly and independently mod n. Each candidate
must accept (both in the formal and informal sense!) a set of at least n—t votes. Subsequently,
all secrets are recovered. The tally for j is the sum of the votes j accepted, reduced mod n. If
some candidate has tally 0, the common coin is 0; if no candidate has tally 0, the output bit is 1.

- 34 -

Remark 7: If a tally includes unrecoverable votes, it may be undefined. Therefore, any candi-
date accepting non-passable votes is scratched during Vole. This is the utility of the three-level
acceptance. Every vote accepted by a good candidate is acknowledged by all good players, so
each good player knows that the vote is passable.

A bad player may select the values of his votes non-randomly. However, each candidate must
accept at least n—t votes, some of which were shared by good players and hence were picked

randomly, hence the tally of every candidate is random.

Remark 8: If each of k independent random variables (in our application, tallies) has probability
g /n of being 0, then the probability that none are 0 is (1- g /n)*, which approximates e~ *¢/* for
large n. We shall state, without proof, bounds on such quantities valid for any n >4.

Thearem 6: Let (Graded— Sharc [Decvde,Graded— Recover) be a Graded-VSS run.ng in time
F(n) on a network of size n. Then there exists a .27-fair common coin pirotocol ruuning in time

F(n)+0(1). If the Graded-VSS is r-resilient, then the common coin is min(1/3,r)-resilient.

Consider the following protocol. We consider as a common parameter k=loglOn? (log

denotes logarithm to the base 2).

Protocol Vote

Common Parameters:
n, the size of the network (in unary)
{, an upper bound on the number of bad players(t<n /3)
k=logl0n?, the confidence parameter

Private Input for Every Player ¢: None

Code for Every Player ¢

Step 1: For each 1<k <n, for each 1<j<n, run Graded- Share /Decide, specifying as common
parameters: h= dealer; n= the number of possible secrets; k¥ = confidence parameter; and
J as an execution label (denoting that this vote is for 7, we shall refer to this execution as
secret h,j). Let accepty; denote the output of Graded— Share /Decide. (Note: Graded— VSS
surely utilizes stored private inputs, but they are only accessed by Graded— Recover, hence
they do not appear in the code for Vote; we treat Graded— VSS as a black box satisfying
Definition 9.)

Step 2: Let A; denote accept; for each ;. (Note: by convention, lowercase variables remain
internal). Grade— Cast the list (Ay;,..., Ay).

Step 2.5: For each j, if j°s Grade— Cast is accepted, and (m‘ax (Ayj— accepty;) <2) and (A4;;=2

for at least n— ¢ values of k), set candidate;=1; otherwise, set candidate;=0.

-35-

Step 3: For each h and j, run Graded- Recover on secret h,j. Let v, be the output.

Step 3.5: For each j such that candidate;=0, set tally;=§ . For each j such that candidate;=1,

set tally,;= E v,-,.,-] mod m. If tally;=0 for some j, set d;=0; otherwise, set d;=1.
A:A‘,-Q

Output d;.

We first give an overview of how the election works. The Grade- Cast of 1’s list indicates
which votes are to be included in ’s tally, namely, each secret h,i for which A,;=2. A good

player 1 keeps candidate ; by setting candidate;=1 if three conditions are met:
(1) ¢ accepts the Grade— Cast of j’s list;

(2) 1 acknowledges every secret that j accepts;

(3) s accepts at least n—t votes.

If any of these fail, ¥ scratches candidate j by setting candidate;=0. We say that j is totally
scratched if all good players scratch j; otherwise, 5 is in the running. If 7 is in the running, then
1’s list accepts at least n— ¢ votes, all of which are passable (acknowledged by a good player), and
all good players acknowledge the Grade— Cast of j’s list.

For every pair of good players (1,5), i accepts j’s Grade— Cast, j accepts all secrets dealt by
good players, and ¢ acknowledges every secret that j accepts, so { sets candidate;=1 (i.e., 1 keeps
J).

Intuitively, the tally of every candidate in the running should be a sum of recoverable
secrets (i.e., the value was fixed at the end of Graded- Share [Decide). Each such tally includes a
vote by a good player; accordingly, all tallies are random, independent of each other, and
unpredictable to the adversary. The probability that any particular player in the running has tally
0is 1/n. Since a good candidate is kept by all good players, if any good player has tally 0, all
good players output 0 as the common coin. If no player in the running has tally 0, then all good
players output 1 as the common coin. Since there are at least 2n /3 good players, and at most n
players may be in the running, each of these events has probability exceeding .27. If j, a bad
candidate in the running, has the only tally 0, the coin may not be unanimous. In this case, good

players that keep j output 0, and good players that scratch j output 1.

Reality is a fair approximation to this intuition. There is a small chance that a passable
secret is not recoverable; the adversary may be able to affect a tally including such a secret even
after secret recovery has begun. We must show that the adversary’s ability to affect and predict
tallies is small enough to guarantee that the probability that the coin is unanimously 0 (1)

remains large enough.

- 36 -

Proot’ of Theorem 8: We show that Vote has the desired properties. Let A be any r— adversary

acting on Vote. Let E be the event that some passable secret is not recoverable.
Claim 1: E occurs with probability at most .1.

For each h,j, let E,; be the event that secret h,j is passable but not recoverable. By pro-
perty (3) of Graded-VSS, the probability of E,; is at most 2-* <1/10n2. The probability that this

happens for at least one of the n? secrets shared in Vote is at most n%1/10n?=.1.

Claim 2: When E holds (i.e., E does not occur), for every j, there exists a value tally; such that
for each good player f, tally;; is either tally; or @ .

Any good player g that scratches j sets tally,;=# . All good players that keep 7 ack-
nowledge a common list for j, Ajjr--Anj. If 5 is not totally scratched, then every secret j
accepts is passable; given E, every passable secret is recoverable. Therefore, for each h,j such

that A,;=2, there exists a value v,; such that vij=1v); for every good player . If ¢ keeps 7, then

tally;=(3, vy;) mod n = Y u;) mod n; this sum is the same for all good processors f
hi Ay =2 h: Aym=2

that keep ;.

Suppose that the adversary can arrange that for some player j in the running, the probabil-
ity that tally; is fixed to be O at the start of Recover exceeds 1/n. Notice that tally;=0 if and
only if the first vote j accepts from a good dealer is the negative of the sum of all other votes J
accepts. Thus, knowledge cf all other secrets would permit A to correctly predict a good secret
with probability exceeding 1/n, which is impossible (by property (4) of Graded-VSS). We actu-
ally must show that each tally has probability 1 /n of being 0, independently of all other tallies.

Let j),...,Ja denote all players in the running in increasing order of identities. For 0< f <a,
let E;, denote the event that tally,-‘yéo for all 1<d<f. (Note: £; is true by tautology.) For

0<d<a, let p; be the probability of E,; for 1<d<a, let ¢4=p4/p4_1, the conditional probability
of E, given E,_,.

Claim 3: Assume E holds. Then for each 1<f<a, ¢g=1-1/n.

Let j=j,. Since at least n—t votes are accepted by j’s list, there is a good player h such
that A;;=2. The unpredictability property of Graded-VSS guarantees that for any r— adversary A
that predicts v,; before Graded— Recover is run on secret h,j, the prediction is correct with pro-

bability 1/n. In particular, unpredictability still applies even if the network runs Graded- Recover

for every secret g,1 except for &, ;.

To make our argument precise, we define a (contrived) protocol Vote' as follows. The only
difference between Vote' and Vote is that in Vote!, if player 1 receives a message ‘“‘Delay (h,7)”
sent by any processor in Step 2, ¢ does not run Graded— Recover for secret (h,7). (We call Vote'

contrived because no good player sends a “Delay”” message; the code anticipates and invites a

-37-

specific faulty behavior.) An adversary A acting on Vote' can easily arrange that all secrets except
h,j are recovered in Step 3, by having a bad player distribute ‘“Delay (h,5)"’ in Step 2. A can
compute all tallies other than ;’s, and z=y,;- tally,, in Step 3 of Vote'.

Vote and Vote' are identical through Step 2. All tallies are determined by the end of Step 2
in Vote, and hence in Vote' as well. Thus, if A acts the same through Step 2 in both, the proba-

bilities of E; are the same in both cases. We proceed by induction.
Let S; be the statement: ¢,=1-1/n for 1<d<f. S, is true by tautology. For 1<f<a,

d
pa=]] ¢s, so if S;_, is true, then pro1=(1--1/n)/~'>0. A acting on Vote' may predict 4; 8S

=l
follows.
(1) When E;_, occurs, A outputs z. Notice that (z=v,) <>(tallyy=0)=>E, does not occur.
Given E;_,, E; is equivalent to the event z7£v,;; we denoted the conditional probability of this
event by ¢;.

(2) When E;_, does not occur, A outputs a random number mod n; this prediction is correct
with probability 1/n.

Overall, A’s prediction is correct with probability (p,_)(1-¢/)+(1-p;_;)(1/n)=
1/n+(ps-1)(1-1/n-¢;). By unpredictability (property (3) of Graded-VSS), this probability is
1/n. Since p;_;>0, ¢,=1-1/n. Thus, S;-1=>8;; since Sy is true, so are S,,...,5,, proving the
claim.

Thus, when E holds, the probability that no candidate in the running has tally 0 is at least
(1-1/n)®. Since a<n, p,>(1-1/n)*>.3. When this happens, all good players output 1. The
probability that no good candidate has tally 0 is at most (1- 1/n)""¢; since t<n /3, this is at most
(1-1/n)?"A<.7. Thus, the probability that some good player has tally 0 is at least .3. When this
happens, all good players output 0. Finally, we recall that £ holds with probability at least .9, so
the coin is .27-fair. QED

4.5 BA from Common Coins

[Rabin 1983 shows that BA is constant-expected-time reducible to a common coin proto-
col. The following theorem adapts the ideas of [Rabin 1983] and subsequent papers to our

scenario.

Theorem 7: Let P be a p-fair common coin protocol. Then there exists a jointly terminating pro-

tocol @p with the following properties:
(1) Each good player s has a private input bit B; and outputs a bit b,.

(2) For any b€ {0,1}, if B;=b for each good player t, then b;="b for each good player 1.

- 38 -

(3) With probability at least p, there exists b € {0,1} such that b;=1) for each good player 1.
(4) The running time of Qp exceeds that of P by 1 round. Also, if P is r-resilient, then the
resilience of Qp is min(1/3,r).

Effectively, an execution of Qp reaches BA with probability at least p; if the network starts

Qp in agreement, it stays in agreement.

Proof: Consider the following protocol. Each good player ¢ has a private input bit B; and outputs

a bit b;.

Protocol Qp
Common Parameters:
n, the size of the network (in unary)
t, an upper bound on the number of bad players(t<n/3)
Private Input for Every Player 1: B;, a bit

Code for Every Player ¢
Step 1: Distribute B;.

Step 2: For each j, let ¢; be the bit received from j in Step 1 (¢;=0, if a proper message was
not received). Let count; denote the number of j such that ¢;=1. Run P; let d be the out-
put.

(a) If count;<t then set b;=0.
(b) If count;>2t then set b;=1.
(¢) If neither (a) nor (b), set b;=d.

Output b;.

We first observe that if B;=0 for all good players ¢, then for every good player j,
count;<t, hence j sets b;=—0 in Step 2a. Likewise, if B;=1 for all good players 1, then for every
good pleyer j, count;>n~t, hence j sets bj=1 in Step 2b. This proves property (2). Notice that
for any B,,...,B,, for any good players ¢ and j, count;— count; is at most the number of (neces-
sarily bad) players that send the bit 1 to ¢ and 0 to J, and this is at most t. Therefore, if ¢ exe-
cutes Step 2b, j cannot execute Step 2a. Thus, all good players that execute Step 2a or 2b exe-
cute the same substep, and output a common bit 6. This b is determined by the messages sent
at Step 1, before the start of P. With probability at least p (taken over random bits read during
P), all good processors end P with output b, in which case all good processors end @Qp with out-
put b. (If no good processor executes 2a or 2b, then all good processors end Qp with a common

bit if and only if the coin is unanimous, which has probability at least 2p.) This proves property

-39-

(3). Properties (1) and (4) follow by inspection. QED

We have shown how to use a common coin to protocol to reach BA with a positive, con-
stant probability; moreover, if the network starts in agreement, it stays in agreement. We may
iterate this procedure: namely, the processors repeatedly run Qp, using their outputs of the a-th
execution as their private inputs to the a+1-st execution. If the good players reacl: agreement in
any iteration, agreement is always maintained. Let the expected number of iterations until agree-
ment is reached be X. Since the probability that disagreement is maintained on any particular
itcration is at most 1- p, tndependently of the fact that no previous iteration reached agreement,
X<1+(1- p)X, s0o X<1/p.

We have shown that tndefinitely iterating Qp brings the network into agreement in a con-
stant expected number of iterations. After any finite number of iterations, there is a non-zero
probability that the network is still not in agreement; thus, this approach would not allow for pro-
cessors to terminate. We can enable processors to stop iterating Qp by utilizing proofs of agree-
ment. Basically, we add steps to the protocol enabling processors to deduce that the network has
reached agreement, at which point they terminate.

We recall the defining properties of a BA protocol.
(1) For any 1 and j that correctly terminate, d;=d;.
(2) If b;=1b; for all good players 1 and j, then for each ¢ that correctly terminates, d; =b;.
Theorem 8: Let P be a common coin protocol. Let F(n) be the running time of P on a network
of size n. Then there exists a BA protocol BAp with expected running time O(F(n)). If P is
r—resilient, then the resilience of BAp is min(1/3,r).
Proof: Consider the following protocol. Each player ¢ has a private input bit B; and outputs a bit
b;.

Prml BAP

Common Parameters:

n, the size of the network (in unary)

t, an upper bound on the number of bad players(t<n /3)
Private Input for Every Player 1: B;, a bit

Code for Every Player ¢ »* Comments
Step .5: For every 1<j<n, initialize ¢;=0.

Step 1: Distribute B;.

- 40 -

Step 2: For each j, if y sent a bit in Step 1, reset
¢; to that bit. Let count; denote the number of 5 ** This corresponds to Qp
such that ¢;=1. Run P; let d be the output.
(a) If count; <t then reset B;=0.
(b) If count;>2t then reset B;=1.
(¢) If neither (a) nor (b), reset B;==d.

Step 3: Distribute B;.

Step 3.5: For each 7, if 5 sent a bit in Step 3, reset

¢; to that bit. Let count; denote the number of j ** Fix the common coin to be
such that ¢;=1. ** 1, if there is a strong
(a) If count;<t then reset B;=0. *=x majority for 1, terminate.

(b) If count;>2¢ then reset B;=1 and go to Step 5.
(¢) If neither (a) nor (b), reset B;=1.

Step 4: Distribute B;.

Step 4.5: For each j, if 5 sent a bit in Step 4, reset

¢; to that bit. Let count; denote the number of j *x Fix the common coin to be
such that ¢;=1. *% 0; if there is a strong
(a) If count;<t then reset B;=0 and go to Step 5. ** majority for 0, terminate.

(b) If count;>2t then reset B;=1.
(¢) If ueither (a) nor (b), reset B;=0.

Return to Step 1.

Step 5: Distribute B;. Let b;=B;. Output b;. Terminate.

Observe tha: all good processors that have not branched to Step 5 are all in the same Step
(since the only branch they (may) have performed is from Step 4.5 back to Step 1, which all do
in unison).)

Claim: Suppose, at the beginning of some iteration of Step 1,3, or 4, for some b€ {0,1}, B;=b
for each good processor i. Then every good j keeps B;=1b for the rest of the protocol.

Proof: Assume that at the start of an iteration of Step 1, 3, or 4, B;=1 for every good player 1.
Observe that if processor g has correctly terminated, then the last bit that g distributed was
B;=1, so if j is good, j has (internally) set ¢,=1 and never changes ¢, (since g sends no more
messages). Every good player i that has not terminated now distributes B;=1, so any good
player j (that has not yet terminated) sets ¢;=1 at the next step, and hence count;>n-t.
Therefore, j follows the instructions of Step (2b), (3.5b), or (4.5b), all of which leave B;=1.
Thus, B; never changes. Moreover, this shows that all good processors branch to Step 5 after

- 4] -

the next time they reach Step 3.5, and output 1.

Likewise, if B;=0 for all good players 1, then for each good j, the next time count; is com-
puted it is at most ¢, and hence j follows the instructions of Step (2a), (3.5a), or (4.5a), all of
which leave B;=0. Similarly to before, all good processors branch to Step 5 after the next time
they reach Step 4.5, and output 0. Property (2) follows by observing that if all good processors
start with input b, then B;=0 for all good ¢ in the first iteration of Step 1.

To show property (1), consider the earliest time at which a good processor ¢ branches to
Step 5. If ¢ branches from Step 3.5b, then count; >2t, so for every good j, count;>t, so j resets
B;=1 in Step (3.5b) or (3.5c). Then by our claim, all good processors wiil output 1. This con-
stitutes a proof of agreement on 1. Likewise, if branches from Step 4.5a, then count;<t, so for
every good j, count;<2t, so j resets B;=0 in Step {4.5a) or (4.5c), so by the claim, all good
processors will output 0.

All that remains to show is that BAp terminates in expected time O(F(n)). In each itera-
tion of Steps 1-4.5 the good processors end Step 2 in agreement with probability at least p, so the
expected number of iterations is at most 1/p. All good processors terminate, at the latest, on an

iteration in which all good processors end Step 2 in agreement. QED

As suggested in the proof, the good processors need not terminate simultaneously. In fact,
[Fischer and Lynch 1982] prove that it is impossible to have a fast BA which guarantees that all
processors finish in the same round! However, we have seen that all good processors terminate at

most one iteration after the first good processor terminates.

We now show that the unpredictability of the coin is crucial. Let P and BAp be as above.
Call an adversary A privdeged if A has an input tape on which the the sequence of common coins
is written (for simplicity, we assume that all good processors will always output P with a common
bit).
Thearem 9: There exists a privileged 2/n-adversary A acting on BAp such that for some set of
input bits B,,...,B,, the protocol never terminates.
Proof: Without loss of generality, assume that the first common coin is 0, and that B;=1 for
exactly 2¢ values of ¢, 1<i<n. A corrupts player n. A initializes Jteration—1. We need only

specify how A determines the communications of the corrupted player, in Steps 1,3, and 4.
Step 1: Player n sends the bit 1 to players 1,2,...,¢ and the bit 0 to players t+1,...,n—1.
Step 3: Player n sends the bit 1 to players 1,2,...,2¢ and the bit 0 to players 2t+1,...,n—1.

Step 4: A inputs the Iteration+1-st coin, b, then resets Iteration= lteration+1. If b==0, player n
sends the bit 1 to players 1,2,...,2¢ and the bit 0 to players 2t+1,...,n—1. If b=1, player n sends
the bit 1 to players 1,2,...,t and the bit 0 to players t+1,...,n-1.

- 492 -

We show that the network never reaches agreement. In the first iteration of Step 2, players
1,2,...,t compute cour.is of 2t+1, and reset to 1; players ¢t+1,2,...,n-1 compute counts of 2¢, and
reset to the first commor coin, 0.

In Step 3.5, players 1,2,...,2t compute counts of t+1, and reset to 1; players 2¢t+1,2,...,n-1

compute counts of ¢, and reset to 0.

We break the analysis of Step 4.5 into two cases.

Case 1: If the next common coin is 0, then after step 4, players 1,2,...,2¢t compute counts of

2t+1, and reset to 1; players 2¢+1,2,...,n- 1 compute counts of 2¢t, and reset to 0.
Case 2: If the next common coin is 1, then after step 4, players 1,2,...,t compute counts of 2¢+1,
and reset to 1; players t+1,2,...,n— 1 compute zounts of 2¢, and reset to 0.

In Case 1, the processors will start the next iteration just as they started the first iteration,
and hence they will not reach agreement on the next iteration, either. In Case 2, in the next
iteration of Step 2, players 1,2,...,t compute counts of t+1, and reset to the next common coin,
1; players t+1,2,...,n- 1 compute counts of t, and reset to 0. At that point, the network is in the
same state as it was in Case 1. Thus, by following the above program, A ensures that the net-

work never reaches agreement.2 QED

4.6 The BA Protocol

We now recall the theorems we have proven, and put them together to exhibit a BA proto-

col running in constant expected time with constant resiliency.
Theorem 8: Grade- Cast is a 1/3-resilient Graded- broadcast protocol.

Recall that Grade— Cast has 4 Steps, three of which takes 1 round each; the last is “free’’.
Theorem 5: SimpleGraded-VSS is a 1/4-resilient Graded-VSS.

Overall, SimpleGraded-VSS has 2 Grade-Cast instructions, 3 steps which require 1 round
each, and 3 free steps, hence its running time is 9 rounds.
Theorem 6: Let (Graded- Share /Decide ,Graded- Recover) be a Graded-VSS running in time
F(n) on a network of size n. Then there exists a .27-fair common coin protocol running in time

F(n)+0O(1). If the Graded-VSS is r-resilient, then the common coin is min(1/3,r)-resilient.

Protocol Vote, as constructed by the proof of Theorem 6 by using SimpleGraded- VSS has

running time 12 rounds and is 1/4-resilient.

2 If the first common coin is 1, agreement may be indefinitely delayed if exactly ¢ good players have input bit
1. If agreement is to be reached on a2 value n was supposed to distribute, then A can specify the initial input
bits.

- 43 -

Theorem 8: Let P be a common coin protocol. Let F(n) be the running time of P on a network
of size n. Then there exists a BA protocol BAp with expected running time O(F(n)). If P is
r—resilient, then the resilience of BAp is min(1/3,r).

Protocol BAy,,., as constructed by the proof of Theorem 6, is 1/4-resilient . The expected
number of iterations is at most 1/.27. Each iteration takes 15 rounds, so the expected running

time is at most 1+ (15/.27) <57 rounds.

We remark that it is easy to convert BAy,, into a terminating protocol. Namely, each pro-
cessor keeps track of how many iterations of the common coin have been run. If, after the n-th
iteration, a processor sees a proof of agreement on a bit b (branches to Step 5), it outputs b but
does not terminate yet. Three rounds after the end of the n-th common coin, each processor
(that had not terminated before the n-th common coin) runs the deterministic BAF of [Dolev,
Fischer, Fowler, Lynch and Strong 1982|, using its current bit as private input,and terminates in

2t+3 more rounds; any player that had not yet output a bit does so now.

Conceivably, the deterministic BAP may fail, due to non-participation by good Pprocessors
that already terminated. However, if any good processor terminated before the n-th common
coin, then it saw a proof of agreement for a bit b, so all good processors see a proof of agree-
ment on b, at the latest, following the n-th common coin. Thus, all output b without waiting
for the determunistic BAP. If all good processors run the deterministic BAP, then it is
guaranteed to work. (If some processors saw a proof of agreement on b following the n-th com-
mon coin, they need not wait for the result of the deterministic BAP, since all good processors

will have private input b, and hence all will output b.)

The probability that the protocol has not terminated after n common coins is at most AN
so appending the deterministic agreement adds at most (n)(.7")<1 to the expected running

time.

5. A 1/3-Resilient, Error-Free VSS

Of all protocols presented so far, only SimpleGraded-VSS has resiliency less than 1/3.
Thus, if we can demonstrate a 1/3-resilient Graded-VSS, this immediately gives a 1/3-resilient
BAP. In this section, we present a 1/3-resilient VSS; the conversion to a Graded-VSS is straight-

forward, as before.

In this VSS, every passable secret is recoverable. In it, each player receives both a piece
and a dual piece of the secret. We offer a conceptual overview of the purpose of dual pieces.
Each piece of the secret is a function defined on a versical line; each dual piece is a function
defined on a horizontal line. Each vertical line intersects each horizontal line at a point. We say

that a piece fits a dual piece if they determine the same value at this intersection. A good plaver

- 44 -

accepts his piece if and only if it fits the dual pieces of all other players. Any incorrect piece may
fit at most ¢ correct dual pieces. In the recovery protocol, each player reveals (distributes) his
piece and dual piece. A revealed piece is correct if and only if it fits at least 2¢+1 revealed dual

pieces.

Our protocol, BestVSS, is based on the protocol of [Ben-Or, Goldwasser and Wigderson
1988]. We present the underlying VSS which assumes broadcast channels; We first describe the
ordinary secret sharing underlying the VSS. To share a secret in [0,m-1], the dealer selects a
bivariate polynomial S(z,y) of degree ¢ in z and in y, such that 0<5(0,0)<m. Let 0=290,0).
Let S%y) denote the (univariate) t-th degree polynomial 5(0,y). S%y) may be used to share
the secret o by the secret sharing outlined in Section 3.1. Accordingly, 1’s piece of the secret is
S9(1). In fact, we shall share the secret by giving even more information to player ¢. In particu-
lar, 1’s piece is the ¢-th degree polynomial in z obtained by restricting S(z,y) to y=1, which we
call S;(2)==5(z,1). Notice that $%(1) is the constant term of S;(z), so ¢ gets no less information
in this scheme. It follows that a properly shared secret can be recovered from any t+1 good

pieces.

t’s dual piece of the secret is the ¢—th degree polynomial in y obtained by restricting
S(z,y) to ="+, which we call $*(y)=25(1,y). ¢’s piece Si(z) intersects ;'s dual piece S7(y) at
the point (7,7); if the dealer, 1, and j are good, then S:(7)=5(¥)=5(4,f). We shall have to
prove that the pieces and dual pieces of the bad players alone specify neither S(z,y) nor §%y)

noro.

Since every passable secret is recoverable, the confidence parameter is not needed.
BestVSS does use, as a common parameter, a prime p exceeding n and not less than m (which
we may specify to be the least such prime; for m <n, this may be computed in time polynomial

in n).

Protocol BestShare

Common Parameters:
n, the size of the network (in unary)
t, an upper bound on the number of bad players(t < n/3)
h, the identity of a distinguished processor, the dealer
m, the number of possible messages
p, aprime (p>n,p>m); all calculations are in Z,
Private Input for Every Player i: None

- 45 -

Additional Code for Player A Code for Every Player ¢

Step 1: Uniformly pick a t-th degree polyno-
mial, S(z,y) such that 0<5(0,0)<m. For
each t, let S(z)=9z,0) and
S'(y)=25(t,y). Send S;(z),S'(y) on the
private channel to player .
Step 1.5: Receive Uj(z) and U'(y) on the
private channel from 4. Begin BestDecide.

Protocol BestDecide

Step 1: For each j, send U;(5) and U'(j) on
the private channel to player j.

Step 2: Let u;,v; denote the values received
from player j. For each j such that
Ui(5)5v; or U'(j)s%u;, broadcast
(4,5,U:(7),U*(5))-
Step 3: For each proper broadcast
(4,4,Ui(4), U'(4)) such that Uy(5)#4S(5,5)
or U'(7)#S(s,5), broadcast
(4,5:(2),5'(y)).
Step 4: If h gave a proper broadcast
(1,5:(2),5(y)), then reset Ui(z)=S5;(=),
U'(y)=5(y), and go to Step 4.5. Other-
wise, for each proper broadcast (of Step 2)
(9,7,Uy(4),U°(5)): if j gave a proper
broadcast (5,9,U;(9),U’(9)) and
U'(3)#£U(g) or U,(5)%U%(g), check
that h properly broadcast (g,S,(z),5(y))
or (7,5;(z),5(y)). Check that for each
proper broadcast (of Step 3)
(7,5(2),5°(¥)), S{(i)=U'(;) and
S§7()=U;(4). If all of these check, broad-
cast ‘‘Goodpiece’’.

Step 4.5: If at least n—t players broadcast
“Goodpiece’, output “Accept’’; other-
wise, output ‘‘Reject’’. Save U,-(:r),U‘(y)
as private retained input to BestRecover.

- 46 -

Protocol BestRecover

Common Parameters:
n, the size of the network (in unary)
t, an upper bound on the number of bad players(t<n/3)

m, the number of possible messages
p, aprime (p>n,p>m); all calculations are in Z,

(Stored) Private Input for Every Player i: U;(z),U*(y), polynomials received in BestShare

Code for Every Player ¢

Step 1: Distribute (i, U;(z),U'(y)).

Step 1.5: Initialize V=0. For each j, receive (j,V;(z),V’(y)) from j (set Vi(z)=Vi(y)=0if a
proper message was not received). For each j, set confirm;=1 if V;(g)=V?(5) for at least
2t+1 values of g. If there exists a set j),...,54; of indices such that confirm,-.=1 for each a,

then let the constant term of V,-. be u, for 1<a <t+1, and let V be the t-th degree poly-
nomial interpolating (ji,uy),...,(%+41,%4+1). Output V(0).

Theorem 10: BestVSS is a 1/3-resilient VSS.

To motivate the proof, we begin by assuming, for now, that all players ezcept the dealer are
angels, i.e., uncorruptable. The key idea is that the validity of a piece is determined by how well
it fits the dual pieces. For every ¢ and j, i’s piece “intersects’’ j’s dual piece at the point (7,9);
if ©’s piece and j’s dual are correct, S(j,{)=U;(j)=U(i). Player i computes this value, which
we call a subpicce, according to his received piece, and sends this to J; 7 computes its value
according to his dual piece and sends this to i. We say that i’s piece fits j’s dual piece if they

send the same subpiece to each other.

We first consider the pieces and dual pieces received by any t+1 angels, 1,2,...,t+1. (We
omit subscripts for simplicity; the angels’ identities are irrelevant.) We observe that any set of
t+1 pieces {U)(z),...Ui;1(z)} uniquely defines a t-th degree polynomial U(z,y) as follows. For
any fixed 2z, let U*(y) be the unique ¢-th degree polynomiall interpolating
{1, Ux(2))(2,Us(2)) (141, Ups(2)) }; set U(z,y)=U*(y).

In BestDecide, each pair of angels (1,7) exchange the subpiece corresponding to the inter-
section of 1’s piece and ;’s dual piece, Ui(s) and U7(i). If these are not the same, then they

broadcast their conflict (i.e., their differing subpieces) in Step 2. A conflict among angels

1 We have used U,(z),...U44(2) to define a function U(z,y). For fixed z, U(z,y) is a {- th degree polyno-
mial in y. Likewise, for fixed y, U(z,y) is a t~th degree polynomial in z. It follows that U(z,y) is a poly-
nomial whose degree in z and y each is at most ¢.

-

- 47 -

ezposes the dealer (proves that he is bad). Actually, for any t+1 pieces the dealer sent, U(z,y)
is well-defined; when the angels check that all pieces fit all dual pieces, they are merely checking

that the dealer sent the correct dual pieces for these pieces.

Let us add an angel g (wkere g >t+1); let U,(z) and U?(y) denote the piece and dual
piece he receives. U(z,y) has already been defined by the pieces of the first t-+1 angels, so if
the dealer is good, U,(z)=U(z,¢) and U’(y)="U(g,y). This implies that U,(z) fits Ui(y),
and Uj(z) fits U?(y) for every 1<j<t+1. If, for some j, either does not fit, j and g expose the
dealer. Thus, either the dealer sends to g polynomials U,(z) and U?(y) passing through
(7,U%(g)) and (5,U;(g)) respectively, for every 1<j<t+1, or he is exposed. Since there is a
unique t-th degree polynomial interpolating t+1 points, if the dealer is not exposed, we may
conclude that he sent the proper piece and dual piece to g. Obviously, the same applies for any
number of additional angels. The pieces of any t+1 angels determine U(z,y) and all other pieces
and dual pieces; if any other piece or dual piece is not given by U(z,y), it cannot fit the pieces

or dual pieces of those t+1 angels, and the dealer is exposed.

We now return to reality, in which not only the dealer, but any t<n /3 players may be cor-
rupted. A conflict between players g and j only implies that either the dealer OR g OR j is bad.
The dealer must resolve this conflict by revealing (broadcasting), in Step 3, the piece and dual
piece of g or j (or both). (Noie: If g broadcasts a conflict with 5, but ; does not broadcast a
conflict with ¢, then it is not clear whether ¢ or j is bad. The same applies if they broadcast
identical values. In such a case, the dealer need not respond. Bad players are at liberty to fabri-

cate and exchange values which do or do not fit; our only concern is that all conflicts between
good players are resolved.)
Player ¢ accepts his piece if the following conditions are met:

(1) the dealer resolves all conflicts;

(2) every revealed piece and dual fits ¢’s dual piece and piece;

(3) ¢ is not revealed.
The good players accept the secret if and only if at least n— ¢ players accept their pieces.

Recognition of dirty pieces follows from superiority of numbers. Namely, suppose that all
good players receive good pieces and dual pieces (i.e., consistent with a t— th degree polynomial).
In BestRecover, each player distributes his piece and dual piece. Since a piece is a t—th degree
polynomial, if it is not the correct one (which passes through all points of intersection with the
dual pieces of the good players, which number at least 2t+1), it may pass through at most { of
them. An incorrect piece may additionally fit dual pieces revealed by (at most ¢t) bad players,
hence it may fit at most 2¢ dual pieces overall. Thus, a piece is correct if and only if it fits at
least 2¢+1 revealed dual pieces.

- 48 -

This argument also proves that if the dealer reveals an incorrect piece or dual piece, the
secret is rejected. If a secret is acknowledged by any good processor, there are at least {+1
satisfied good players. An incorrect piece or dual piece could not fit the pieces or dual pieces of

more than ¢ satisfied good players.

If a good player 1 is revealed, 1 knows that the dealer is bad. Nevertheless, 1 resets his piece
and dual piece to whatever the dealer broadcast in Step 3, since if the secret is passable (accepted

by a good player), all revealed pieces are correct.

The unpredictability of the secret is not compromised by the system of conflicts. This is
because when the dealer is nc, every conflict involves a bad player, and any subpiece or piece
broadcast in the conflict or its resolution had been given to the bad player, and the bad player

could have broadcast his own piece in any event.

Proof of Theorem 10: Property (1), unanimity, holds because acceptance depends only upon the

number of broadcasts ‘“‘Goodpiece’’, and all players receive the same number.

Property (2), acceptance of good secrets, holds because an uncorrupted dealer corrects any
broadcast of an incorrect subpiece, and hence every conflict is properly resolved, so every good

player broadcasts ‘‘Goodpiece”’.

For (3) (recoverability), observe that if the secret is passable, then at least ¢--1 good
players are satisfied (broadcast ““Goodpiece”’). It follows that all their pieces and dual pieces fit
each other, hence they uniquely define a ¢—th degree polynomial U(z,y). Moreover, every
conflict between good players was resolved, and the pieces of the satisfied players fit every piece
and dual piece the dealer revealed, hence a good piece and dual piece have been given to every
good player, either privately in BestShare, or publicly in BestDecide. Therefore, in BestRecover,
for each good player ¢, at least 2¢+1 of the dual pieces 1 receives are correct. Therefore, i sets
confirm;=1 if and only if what ¢ receives as V; truly equals U(z,5). Therefore, the interpola-
tion is guaranteed to return U(0,0), regardless of what the bad players do. Since U(z,y) is deter-
mined during BestDecide, Ey(o,0) is fixed at the end of BestDecide .

The proof of (4), unpredictability, follows the approach used for SimpleVSS, but is more
complicated. It may help to view the selection and sharing of the secret in the following manner.
The polynomial S(z,y) may be randomly selected by picking (¢+1) random ¢- th degree polyno-
mials Sy 2)1---,5,(z) (for distinct yq,...,5,). This says that S(z,y) is determined by its values on
any t-+1 horizontal lines. Likewise, its values on any horizontal line y=y; are determined by its
values at any t+1 points on that line, 5(z0,%),-.-,5(21,%;). Thus, S(z,y) may be uniformly
selected by uniformly picking its values at (t+1)* distinct points such that t+1 of these points lie
on each of t+1 horizontal lines. Let the bad players be 1),..,4; let i;=0. Let
R={(4,4):0<k,;<t}; let R=R- {(0,0)} (all points of R except (0,0)). There exists a 1-1

- 49 -

correspondence between t—th degree polynomials S(z,y) and ordered (t+1)2~tuples of values in
Z,. We have just argued that for any secret 0 =25(0,0), the values of S at points of R are
chosen uniformly. We prove unpredictability by observing that all of A’s inputs are determined
by the values of S on R. Let 1€ {i},...,%}. Since R contains t+1 points with y-coordinate (z-
coordinate) ¢, i’s piece (dual piece) is determined by the values of S on R. All subpieces sent
to 1, Uy=25(g,) and U,;=S5(1,g), are determined by ¢’s piece and dual piece. Player i should
send these same subpieces, so if he sends anything else, the recipient merely broadcasts the
correct values, which A already knew. Likewise, if ¢ broadcasts incorrect values, the dealer
merely reveals what he already gave to ¢. Since good players do not conflict with other good
players, it follows that for any set of t bad players, all of A’s inputs are determined by the values
of S on R, which are uniformly distributed, independent of the secret chosen. (If only d players

are corrupted, then A’s view is determined by the values of S at (2d)(¢+1)- d® points in R, and

hence for any secret, there are m{**1- 9> ! polynomials consistent with his view.) QED

6. Conclusion

We have demonstrated a BAP with the maximum fault tolerance possible and running in
constant expected time. This settles a problem which has attracted quite a bit of attention. Our
solution assumes private communication channels. In [Feldman 88], we show that for a computa-
tionally bounded adversary, subject to an intractability assumption, cryptography may be used to
simulate private communication lines. We leave as an open problem the best BAP possible

assuming neither private communication lines nor cryptography.

- 50 -

Appendix
1. Optimizing the Expected Time per Agreement

1.1 A Faster VSS

We address the problem of optimizing the running time of Graded-VSS; we consider the
1/3-resilient protocol BestVSS of Section 5. Just as SimpleVSS, BestVSS may be converted to a
Graded-VSS by proper substitution of Grade— Casts for broadcasts. The proof that the modified
protocol has the desired properties follows just as for SimpleGraded- VSS. However, the fastest

version does not use the full power of Grade- Casts.

Protocol FastShare

Common Parameters:
n, the size of the network (in unary)
t, an upper bound on the number of bad players(t<n /3)
h, the identity of a distinguished processor, the dealer
m, the number of possible messages
p, aprime (p>n,p>m); all calculations are in Z,
Private Input for Every Player ¢: None

Additional Code for Player Code for Every Player ¢

Step 1: Pick a random polynomial S(z,y) such
that 0<.5(0,0) <m; for each ¢, send S;(z)
and S'(y) on the private channel to player
f.
Step 1.5: Receive Ui(z) and U’(y) on the
private channel from the dealer.

Protocol FastDecide

Step 1: For each j, send U(j) and U‘(4) on
the private channel to player j.

Step 2: Let uj,v; denote the values received
from player j. For each j such that
U(7)#v; or U'(j)5%u;, distribute
(i,J-,U;(J.),U'.(].))-

-51-

Step 3: Let {(g,5,Wy;,X;)} denote all proper
messages received in Step 2. YTor each
(g,7) such that W ;5£X, distribute
(9.5, Wigj X5)
Step 4: Let {(g,7,u;,,v;)} denote all proper
messages received in Step 3. For each
(9,5,4,v) received from at least t+1
players: if u3£S(g,5), then distribute
(9,5,(2),5%(y)); if v5£5(g,s), then distri-
bute (5,5;(z),57(y)).
Step 5: Let {(g,7,uy4;,/,)} denote all proper
messages received in Step 3. Let
Zi={(9./,(2).fo())} denote all proper
messages received from h in Step 4.
Check that for each {(g,7,u,v)} received
from at least n-t players, either
(5,062, 5o()) or (5us(2),fi(y)) was
received. Check that for each
(5,/i(2).£7(9)), fi{§)=U'(j) and
J(§)=U;(s). Check that Z; does not
include a triple (7,f:(z),f'(y)). If all of
these hold, distribute Z;; otherwise, set
Z;=0.

Step 6: Let z; denote the message received
from j at Step 5. If z;=2; for at least
n—t players j, then distribute Z,.

Step 6.5: For each z, let count, be the number
of players that sent z at Step 6.
(a) If, for some 2, count,>2t+1, then
set Z;=2z and accept;=2.
(b) Else, if for some z, count,>t+1,
set Z;=—2z and accept;=1.
(¢) Otherwise, set accept;=0.

Output accept;. Save Z;,Ui(z),U'(y) as
private retained input to FastRecover.

Protocol FastRecover

Common Parameters:

n, the size of the network (in unary)

-52-

t, an upper bound on the number of bad players(t<n/3)
m, the number of possible messages
p, aprime (p>n,p>m); all calculations are in Z,
(Stored) Private Input for Every Player i: Z;,U;(z),U*(y), values received in FastShare /Decide

Code for Every Player ¢

Step 1: Distribute (¢,U;(z),U*(y)).

Step 1.5: Initialize V=0. For each j, receive (j,f;(z),f’(y)) from j (set fi(z)=F(y)=01if a
proper message was mnot received). If Z; includes a triple (j,f';(z),f"(y)), set
filz)=1'5(z), f?(y)=1"(y) For each j, set confirm;=1 ifl f;(g)=7,7(j) for at least
2¢t+1 values of g. If there exists a set j),...,54; of indices such that conft'rm,-.=1 for each a,

then let the constant term of [, be u, for 1<a <t+1, and let V be the ¢t- th degree polyno-
mial interpolating (jh“l);“'r(.’.!-ﬂtul-i-l)' OUt‘put V(O)

Theorem 11: FastVSS is a 1/3-resilient Graded-VSS.

Proof: We begin with a counting argument to show that Z; is well defined in Step 6.5 of FastDe-
cide. Let ¢ and j be good players that distribute Z; and Z;, respectively, in Step 6. It must be
that at least n— ¢ players send Z; to 1 at Step 5 and at least n— ¢t players send Z; to j at Step 5.
Thus, at least n— 2¢ players sent Z; to ¢ and Z; to j. At least one such player is good, so Z;=Z;,.
Thus, all good players sending a message in Step 6 send a common message z, so any { ack-
nowledging the secret saves Z;=z.

Property (i'), semi-unanimity, is immediate, since if any good player accepts, he receives
some z from at least 2¢+1 players, so all players receive z from at least t+1 players, so they all

acknowledge.

Property (2), acceptance of good secrets, follows from the fact that an uncorrupted dealer
distributes a message Z which resolves all conflicts, at Step 4, and every good player redistributes
Z at Steps 5 and 6.

To prove (3), recoverability, observe that if any good player ¢ acknowledges the secret, at
least one good player ¢ sends a string z at Step 6, so at least n— 2¢ good players distributed z at
Step 5. Therefore, z resolves all conflicts betwean good players. What was argued regarding
satisfied players in BestVSS applies to the good players that distributed z. Namely, the pieces and
dual pieces of all such players are consistent with a t—th degree polynomial U(z,y). Moreover,
since the pieces of these players fit all pieces revealed in z, all such pieces and dual pieces are
also consistent with U(z,y). Hence, for every good player j, the unique piece and dual piece for
J determined by U(z,y) are either revealed in z or are held by ; himself. Therefore, in FastRe-

cover, 1 can distinguish good pieces from dirty ones, and recovers U/(0,0).

- 53 -

Property (4), unpredictability, holds as for BestVSS. For any possible secret, there is exactly
one polynomial consistent with the adversary’s view. (If only d players are corrupted, then there

are m(**+1-9* 1 polynomials consistent with his view.) QED

1.2 A Faster, Fairer Common Coin Protocol

We speed up the BA algorithm in three additional ways. Firstly, we improve the fairness of
the common coin. Secondly, we economize on rounds by eliminating the Grade— Cast from the
common coin protocol. Finally, we show that the common coin is unpredictable until secrets are
recovered; this allows us to begin the common coin protocol, and ‘“‘store’’ coins, in advance. To

accomplish this last objective, we define a compound common cotn protocol.

Definition 11: Let P=(@,R) be a jointly terminating compound protocol. Each good player
outputs a bit d; at the end of R. Let A be an adversary that acts on P and outputs a bit b before
the start of R. Let E, be the event that d;—v for every ¢ that correctly terminates R. We say
that P is a compound common coin protocol if for a constant p >0, with probability at least P, Ei_y
is fixed at the end of Q. (We say P is p- fair.)

We present FastCotn—=/(Ballot,Tally) as a compound common coin protocol. FastCoin
takes a common parameter m (to represent the range of votes and tallies), which we set to be

n/In(64/27) {where In denotes the logarithm to the base ¢).

Protocol Ballot

Common Parameters:
n, the size of the network (in unary)
t, an upper bound on the number of bad players(t <n/3)
m, the number of possible messages

Private Input for Every Player ¢: None

Code for Every Player ¢

Step 1: For each 1<h<n, for each 1<j<n, run FastShare /Decide, specifying as common
parameters: h= dealer; m= the number of possible secrets; and j as an execution label
(denoting that this vote is for j; we shall refer to this execution as secret h,j). Let accepty;
denote the output of FastDecide.

Step 2: For each j, let A; denote accepty. Distribute the list (Ay,,...,Ay).

Step 2.5: For each j, let List;=a,;,...,a,; be the message received from 7 (0,...,0 if a proper
message was not received). If (m:xx (ayj— aceepty;) <2) and (a,;=2 for at least n— ¢t values

-54-

of h), ‘hen set goodlist;=l, else set goodlist;=0. Save goodlist,,...,goodlist, ,List;,,..., List;, as
stored private input to Tally.

Protocol Tally

Common Parameters:
n, the size of the network (in unary)
t, an upper bound on the number of bad players(t <n/3)
m, the number of possible messages

(Stored) Private Input for Every Player ¢: goodlist,,...,goodlist, ,List;,,...,List,,, values from Ballot

Code for Every Player ¢

Step 1: For each j such that goodlist;=1, distribute (j,Lsst;). For each h and j, run FastRecover
on secret h,j. Let v,; be the output.

Step 1.5: For each j, if (7,Lst;) is received from at least n— t players, set candidate;=1; other-
wise, set candidate;=0. For each j such that candidate;=0, set tally;=@ . For each j such

that candidate;=1, set tally;=(Y, v,u-J mod m. If tally;=0 for some j, set d;=0; else,

set d;= 1. Output d;.

The usual counting argument shows that if g and ¢ are good players that keep j, then
List ;= List;;. Since, for FastVSS, every passable secret is recoverable, all tallies are well-defined.
(Note: we only consider tallies of candidates in the running, since only these tallies are relevant.)
If a candidate that correctly terminates Ballot has tally 0, then E; is fixed at the end of Beallot
(i.e., the common coin is unanimously 0). If no candidate in the running has tally 0, then E is
fixed at the end of Ballot. We must show that E, is fixed at the end of Ballot with probability at
least p, for ve {0,1}.

As in Vote, each player has probability 1/m of having tally 0, independently of all other tal-
lies. The following approximations are true in the limit as n—oo. (Since the deterministic BAPs
are faster for n <30, these approximations are fairly accurate for the range of values one might
feasibly encounter.) E, is fixed if no player in the running has tally 0; this has probability at least
(1-1/m)*, which tends towards ¢~ */™. E, is fixed if a good player has tally 0; the probability
that no good player has tally 0 is at most (1-1/m)**<(1-1/m)(®*”) which approaches
¢(-2R)(%/m) hence the probability that a good player has tally 0 is at least 1— e(-2/3)(n/m) T
optimize the fairness of the coin, we set these probabilities equal, which happens (approximately)
at m=n/In(64/27); the respective probabilities tend towards e "/M—=27/64> 42 and
1- e(-2R)n/m) —§_ 9/16=17/16>.43. Thus, we have outlined the proof of the following theorem:

-55-

Thearem 11: FastCoin=/{Ballot, Tally) is a 1/3-resilient, .42-fair compound common coin proto-

col.

1.3 The Expected Running Time

Since FastShare /Dececide takes 7 rounds, Ballot takes 8 rounds. The fast BA protocol is as
follows. As Step 0 (the first round), the network starts an execution of FastCoin; for each £ >0,
the network starts execution k+1 of FastCotn in round 4k. Protocol BAr,uc.in is begun in round
8; in general, the k-th iteration of Step 1 of BAfsucsin ©ccurs in round 4k +4, coinciding with the
end of the k-th execution of Bailot. In the k-th iteration of Step 2, Tally is run to expose the k-
th stored coin. The expected number of iterations needed until agreement is reached is at most
1/.42. BAr.ucois €nds by Step 5 of the first iteration in which agreement has been reached in
Step 2, so the expected running time is at most 4(1/.42)+8, which is less than 18. Subsequent
agreements may utilize stored coins, and need not wait for Ballot; since at most 1/.42 expected

iterations are needed, the expected time is at most (4/.42)+1<11.

We remark that further reductions in the expected running time are possible if we assume

t<n/4dortnfs.

1.4 Computational and Communication Complexity

Here we analyze the local communication /computational complexity and mention how to

minimize them.

Nearly all of the communication and computation is required for the Graded- VSS’s; in
FastCoin, each player shares n secrets. We modify FastCotn to CheapCoin by having each player
t share only one secret. o;=25;(0,0) will be i’s vote for all candidates, other than i himself, that

accept t’s vote.

The tally of any player in the running must include votes by good players, and is random.
If ¢ and j are good, then ’s tally includes o ;, but j’s tally excludes o j, hence they are indepen-
dent. However, the adversary may correlate tallies of bad players at will. For any adversary stra-
tegy, the chance that no good player has tally 0 is at most (1- 1/m)""¢; thus, with probability at
least 1- ¢2*”2™ some good player has tally 0, and E, is fixed.

The adversary’s optimal strategy to bias the coin is to attempt to cause some tally to be 0,
and prevent E, from occuring. The adversary can ensure that the tallies of ¢ bad players are all
different, in which case the chance that none is 0 is 1- t/m. The chance that no player in the
running has tally 0 then approximates ¢~ (*~*)/"(1-¢/m), in which case E, is fixed. This probabil-
ity is at least ¢=2"/™(1-1n /3m). For m=n/In(64/27), both probabilities are at least .4, so the

common coin is still .4-fair.

- 56 -

The communication complexity of FastVSS is dominated by Step 5, in which players distri-
bute Z; Z may contain the pieces and dual pieces of t revealed players. Since a piece, consisting
of t+1 coefficients in Z,, takes O(nlogn) bits, this amounts to O(n®logn) bits per secret per
link. Thus, CheapCoin takes O(n°logn) bits per channel overall. Since the expected number of

iterations of CheapCoin is constant, this is the expected complexity of protocol BAchcapcoin -

The computational complexity is dominated by FastRecover. For each piece fi(z), f checks
that it fits at least 2¢+1 dual pieces, ie., f;(g)=/9(s). Having found ¢+1 valid pieces, the
secret is recovered by polynnomial interpolation. The interpolation can be done in O(n?logn) bit
operations, but checking the pieces can require evaluating O(n) polynomials at O(n) points, tak-
ing O(n%logn) bit operations per secret; the overall complexity of BA Gheapcoin 15 thus O(n'logn)

bit operations.

2. Asynchronous BA

We can modify our algorithm to work in a totally asynchronous network. This is a network
in which messages may take arbitrarily long to be delivered, although every message sent by a
good processor eventually does get delivered. In the spirit of worst-case analysis, we assume that

the adversary determines when messages arrive.

Since a synchronous network is a special case of an asynchronous network, all upper
bounds for fault tolerance and lower bounds for running times for the synchronous case apply a
Jortiori to the asynchronous case. Perhaps surprisingly, Fischer, Lynch and Paterson |Fischer,
Lynch and Paterson 1983] show that no deterministic asynchronous BAP can tolerate the death
of even a single processor (i.e., the processor ceases all communications, which we consider to be

a ‘‘benevolent” fault). Thus, any solution must be randomized.

Essentially, only two asynckronous BAP’s are known. The synchronous algorithm of [Rabin
1983}, which assumes initialization by a trusted dealer, also works in asynchronous systems; how-
ever, this is not a BA from scratch. The only known asynchronous BAP from scratch is based on
the protocol of [Ben-Or 1983]. As for the synchronous version of his protocol, the expected
asynchronous running time (appropriately defined) is constant if the number of faults is small
enough; in the worst scenario (a constant fraction of the network is faulty), the expected running
time is exponential in n. Ben-Or’s protocol has resilience 1/5; Bracha and Toueg [Bracha and
Toueg 1983] extend the protocol to optimal fault tolerance t<n/3, but do not offer any improve-

ment in the running time.

In [Feldman 88], we show that the BAP of Chapter I can be adapted for asynchronous net-
works; the expected asynchronous running time is constant. In the synchronous case, we were

able to optimize fault tolerance and running time without using cryptography. By contrast, the

-57-

asynchronous protocol tolerates only ¢<n/4 faults without cryptography. Cryptography may be

used to regain optimal fault tolerance t=(n-1)/3.

3. BA Starting With Secure Authentication Schemes

[Dolev and Dwork 1987] show that there does not a exist a BA protocol, as we have
defined it, with resiliency exceeding 1/3, even given cryptography. However, if we assume that
the processors start with secure authentication schemes, then the problem is solvable for any resi-
liency. Pease, Shostak and Lamport 1980} present a t+1 round algorithm, where t bounds the
number of faults. Dolev and Strong [Dolev and Strong 1982] present a t+1 round algorithm
with polynomially-bounded communication and computational complexity, which is optimal for
deterministic algorithms. For this scenario, in which the processors start with secure authentica-

tion schemes, in [Feldman 88] we extend our protocol to a 1/2-resilient, constant expected time

BAP.

- 58 -

References

[Benaloh 1986] J. Benaloh, Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret,
Proceedings of Crypto 1986.

[Ben-Or 1983] Another Advantage of Free Choice: Completely Asynchroncus Agreement Proto-
cols, Proceedings of the Second Annual ACM Symposium on Principles of Distributed Comput-
ing, August 1983, pp. 27-30.

[Ben-Or, Goldwasser and Wigderson 1988 M. Ben-Or, S. Goldwasser, and A. Wigderson, Com-
pleteness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation, Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, May 1988.

(Blakely 1979] Safeguarding Cryptographic Keys, Proc. AFIPS June 1979 NCC Vol. 48, pp.313-
317.

[Bracha 1985] G. Bracha, An O(log n) Expected Rounds Randomized Byzantine Generals Proto-
col, Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, May
1985.

[Bracha and Toueg 1983] G. Bracha and S. Toueg, Resilient Consensus Protocols, Proceedings of
the Second Annual ACM Symposium on Principles of Distributed Computing, August 1983, pp.
12-26.

[Chaum, Crepeau and Damgaard 1988] D. Chaum, C. Crepeau, and I. Damgaard, Multiparty

Unconditionally Secure Protocole, Proceedings of the Twentieth Annual ACM Symposium on
Theory of Coraputing, May 1988.

[Chor and Coan 1985] B. Chor and B. Coan, A Simple and Efficient Randomized Byzantine
Agreement Algorithm, IEEE Transactions on Software Engineering, Vol. SE-11, No.6 1985.

[Chor, Goldwasser, Micali and Awerbuch 1985] B. Chor, S. Goldwasser, S. Micali, and B. Awer-
buch Verifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults, Proceedings
of the Twenty-fifth Annual IEEE Symposium on Foundations of Computer Science, October
1985.

[Chor, Merritt and Shmoys 1985] B. Chor, M. Merritt, and D. Shmoys, Simple Constant-Time
Consensus Protocols in Realistic Failure Models, Proceedings of the Fourth Annual ACM Sym-
posium on Principles of Distributed Computing, August 1985, pp. 152-162.

[Coan 1987] B. Coan, Achieving Consensus in Fault-Tolerant Distributed Computer Systems:
Protocols, Lower Bounds, and Simulations, PhD. thesis, MIT, 1987.

[Dolev 1982] D. Dolev, The Byzantine Generals Strike Again, Journal of Algorithms, Vol. 3,
No. 1, pp. 14-30, March 1982.

- 59 -

[Dolev and Dwork 1987] D. Dolev and C. Dwork, manuscript.

[Dolev, Fischer, Fowler, Lynch, and Strong 1982] D. Dolev, M. Fischer, R. Fowler, N. Lynch,
and H. Strong, An Efficient Algorithm for Byzantine Agreeinent Without Authentication, Infor-
mation and Control,Vol. 52, Nos. 1-3, pp. 257-274, Jan-March/1982.

[Dolev and Strong 1982] D. Dolev and H. Strong, Authenticated Algorithms for Byzantine
Agreement, IBM Technical Report RJ3416, March 1982.

[Dwork, Shmoys and Stockmeyer 1986] C. Dwork, D. Shmoys and L. Stockmeyer, Flipping Per-

suasively in Constant Expected Time, Proceedings of the Twenty-seventh Annual IEEE Sympo-

sium on Foundations of Computer Science, October 1986, pp.222-232.

[Feldman 1987] P. Feldman, A Practical Scheme for Non-Interactive Verifiable Secret Sharing,
Proceedings of the Twenty-seventh Annual IEEE Symposium on Foundations of Computer Sci-
ence, October 1987.

[Feldman 1988] P. Feldman, in preparation.

[Feldman and Micali 1985] P. Feldman and S. Micali, Byzantine Agreement in Constant
Expected Time, Proceedings of the Twenty-fifth Annual IEEE Symposium on Foundations of
Computer Science, May 1985.

[Fischer and Lynch 1982] A Lower Bound for the Time to Assure Interactive Consistency, Infor-
mation Processing Letters, 14(4), pp.183-186, 1982.

[Fischer, Lynch and Paterson 1983] Impossibility of Distributed Consensus with One Faulty Pro-
cess, JACM 32(2), pp.374-382, 1985.

[Goldwasser, Micali and Rackoff 1985] S. Goldwasser, S. Micali and C. Rackoff, The Knowledge
Complexity of Interactive Proofs, Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing, May 1985.

[Goldreich, Micali, and Wigderson 1986] O. Goldreich, S. Micali, and A. Wigderson, Proofs that
Yield Nothing but Their Validity and a Methodology of Cryptographic Protocol Design, Proceed-
ings of the Twenty-seventh Annual IEEE Symposium on Foundations of Computer Science, May
1986.

[Karlin and Yao 1987} A. Karlin and A. Yao, manuscript.

[Linnik 1944] Result quoted from Encyclopedic Dictionary of Mathematics, Second Edition, MIT
Press, 1987 123 D.

[Pease, Shostak and Lamport 1980] M. Pease, R. Shostak, and L. Lamport, Reaching Agreement
in the Presence of Faults, JACM 27(2), 1980.

[Peterson and Weldon 1972] Peterson and Weldon, Error Correcting Codes, Second Ed., MIT
Press, 1972.

- 60 -

[Rabin 1983] Randomized Byzantine Generals, Proceedings of the Twenty-fourth Annual IEEE
Symposium on Foundations of Computer Science, May 1983, pp.403-409.

[Shamir 1979] A. Shamir, How to Share a Secret, CACM Vol.22 No.11, 1979.

[Srikanth and Toueg 1984] T. Srikanth and S. Toueg, Byzantine Agreement Made Simple: Simu-
lating Authentication without Signatures, Cornell Technical Report 84-623, July 1984.

[Turpin and Coan 1984) R. Turpin and B. Coan, Extending Binary Byzantine Agreement to Mul-
tivalued Byzantine Agreement, Information Processing Letters, Vol. 18, pp. 73-76, Feb. 1984.

