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Abstract

In most practical marine applications, offshore structures are located in areas of strong
currents and are subject to vortex induced vibration. In most situations, the tension
on a long flexible cylinder is no* constant along its length due to external forces acting
on the structure. The purpose of this thesis is to establish an accurate response
prediction model for a non-constant tension cable in a spatially varying flow.

The governing equations for the spatially varying tension cable are presented and
used to solve for the systems natural frequencies and mode shapes. Given these rela-
tions, the modal damping ratios for the mainly excited modes are found. With these
damping values a response prediction model based on a Greens function approach is
presented.

The response model is tested for small values of tension variation and approaches
the results of the corresponding constant tension case. The spatially varying ten-
sion Greens function is examined under various conditions. The function is seen to
be significantly dependent on damping and to a lesser extent on tension variation.
Quantitative examples showing how changes in these parameters effect Greens func-
tion response are included. Finally, results of a practical application for a 2000 foot
long production riser are presented.
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Chapter 1

Introduction

Many offshore structures are located in areas of strong currents and are subjected
to vortex-induced vibration. The dynamic response of the structure must be inves-
tigated to ensure first that resonant phenomena will not cause excessive stresses and
ultimately failure, and second that the dynamic response does not compromise the
performance of the system.

Many previous cases involving vortex-induced vibration phenomena have been
examined, including vibration of constant tension cables in uniform flows, and most
recently the flow-induced vibration of a constant tension cabie in a sheared flow.
Ocean currents are seldom spatially or directionally uniform and can excite different
cable modes at spatially varying frequencies. The doctoral thesis of T.Y. Chung [1]
addressed the problem of developing a more accurate response prediction model which
took into account the effect of a spatially varying flow.

The subject of this paper is to expand on that prediction model and account for
cases in which the tension on the cable varies spatially. In most practical cases the
tension on a flexible cylinder is not constant along its length due to drag forces and
the cables own weight.

In chapter two some basic background in flow-induced vibration is given. In chap-
ter three the governing equations for the non-constant tension cable are presented,
and from these equations the characteristic mode shapes and frequencies are found.

In chapter four the hydrodynamic damping model is presented, and the equivalent
3



damping constants and modal damping ratios are determined. In chapter five a re-
sponse prediction model making use of the Greens function for the cable is used to

arrive at the frequency response spectrum.



Chapter 2

Background

2.1 Flow Around Circular Cylinders

When a fluid flows around a stationary circular cylinder the flow separates and vortices
are shed in the wake. As a result of this vortex shedding a periodic wake is formed
causing an unsteady pressure distribution which causes the cable to oscillate in the
out of plane direction with respect to the fluid flow. The ultimate configuration of
vortices downstream in the wake is asymmetrical [Von Karman fig(2.1)]. The vortices
are shed into the wake 2t the vortex shedding frequency f,, which is a function of
flow velocity V, cylinder diameter D, and Reynolds number, R, = pV D /u. Then,
fe = S,%, where S; is the Strouhal number which depends on Reynolds number as
shown in figure (2.2).

Due to the uneven pressure distribution on the cable a periodic lift force acts on
the body. Through dimensional analysis this force can be found to depend on a local

lift coefficient Cp, and the group p,V2D. The lift force can then be written as ,
1
Fp(z,t) = -2-pwV2DC,,(z, t) (2.1)

The lift force is not purely sinusoidal, but periodic. The exact solution includes

higher harmonics of different amplitudes.
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2.2 Effects of Cylinder Moticon in a Uniform Flow

All marine cables have some degree of flexibility and will oscillate under the effects
of vortex shedding. It has been shown that the cables own motion directly effects
the vortex shedding process, hydrodynamic damping and overall cable dynamics. An
important hydrodynamic phenomena related to cylinder motion is that of lockin.
Lockin occurs when the frequency of motion and fi juency of vortex shedding are
synchronized. When synchronized there is a decrease in damping and a corresponding
increase in dynamic response. This concept will be developed further in chapter four.

The response of cylindrical structures in uniform flows is characterized by a broad
lockin bandwidth. This bandwidth depends primarily on the ratio of cylinder mass to
displaced fluid mass and on the reduced velocity which is defined as V//(f,D), where V
is the flow velocity, D is the cylinder diameter, and f,, is the natural frequency of the
structure. The lockin bandwidth depends to a lesser extent on structural damping.
For the purposes of calculating natural frequencies and reduced velocity an added

mass coefficient of 1.0 is used in this thesis.



Chapter 3

Governing Equations

3.1 Forces

The governing equations are derived under the basic assumption that the cable motion
is normal to the direction of fluid fiow, and that the out of plane dynamic solution of
the cable with respect to fluid flow can be decoupled from the in plane motinn. The
forces acting on a segment of cable (fig 3.1) can be decomposed into two basic areas,

the weight, buoyancy and tension forces, and the fluid hydrodynamic forces.

3.1.1 Weight and Buoyancy
Hydrostatic Force

As shown in figure 3.1, the hydrostatic force is always perpendicular to the cable axis.
To define an effective tension along the length of the cable it is convenient to add
and subtract the corresponding hydrostatic forces acting on the cable as shown in
figure (3.2). Then, by lumping together all the hydrostatic forces pointing towards
the interior of the cable element, we obtain the buoyancy force normal to the cable

element as;

B = B,[cos ¢ + s%]ds (3.1)

where B, = py, - g - A, P, and P, are the hydrostatic pressures acting on the segment
ends, p,, is the mass density of water, A is the cable cross-sectional area, and ds is

the cable segment length.



Weight

It is possible to define the weight acting on a segment of cable, ds, as
W = mg{— cos ¢f — sin ¢t)ds (3.2)

Having defined the buoyancy force it is now also possible to define a net weight per
unit length in water. We assume for simplicity that the volume per unit length of the
cable is constant. For the vertical cable configuration of figure 3.3 the weight per unit

unstretched length in the fluid,w, can be written as,

W= 1mg— py-Ag (3.3)

Tension

In specifying tension we would like to include the spatially varying effects of buoyancy
and weight. This results in a spatially varying tension T'(s) whose vertical compo-
nent can be specified by a constant tension component added to a spatially varying
component such that

To(s) =T. + w-s (3.4)

where s is the length along the cable with its origin at the cable bottom and w is the
weight per unit length in water defined previously.

Given the vertical cable configuration of figure 3.3 we see that the spatially varying
tension, T(s), is made up of a constant tension component T, defined at s =0 and a

spatially varying part which varies as the weight per unit length in the fluid w.

3.1.2 Hydrodynamic Forces
Fluid Drag force

To obtain the drag force, the separation principle is used. The drag force or a cylinder
element ds in length is separated into a normal drag component , proportional to the

square of the relative normal velocity and a tangential drag, proportional to the

10



Figure 3.1: Forces acting on cable element

il



Figure 3.2: Hydrostatic forces
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square of the relative tangential velocity.

(i) The tangeniial drag on a segment ds is,
1 o
F, = EpCava,glv,dds t (3.5)

Where v,, is the relative velocity of the cable with respect to the flow in the £ direction.

(ii) The normal drag on a segment ds is,
F, = —-;-pCanv,,,|v,,.|ds fl (3.6)

Where v, is the relative velocity of the cable with respect to the flow in the #

direction.

Structural Damping Force

The force on an element ds is modelled as a linear function of the local velocity of the
cable.

F,=—-r, v, -ds (3.7)

where r, is the linear structural damping constant per unit length.

Inertia Force

In addition to the drag force, the cable is subject to a fluid force which involves a
fluid inertia component related to the added mass, m,. The added mass for cables in
the presence of currents has been the subject of much research (Lighthill),(Lenskii).
It is known that many factors effect the value of added mass for a cylinder in a cur-
rent, among these being the vortex shedding process, separation and cable vibration
frequency. For simplicity, it is suggested that the added mass force on the element in

the direction normal to the cable is given as:

ov,
Fa = —ma-zt—ds (3.8)

and it is assumed that m, = prz, where D is the diameter of the cable in feet.

14




3.2 Governing Equations

The general form of governing differential equation for transverse motions of the cable

can be written as,

%y 0Oy d*y 8T ay
Mg +Cg) ~ T — 550 = f(s.t) (3.9)

where y is the cable deflection in the 2 direction.

To arrive at a solution of the governing equations it is necessary to make several
assumptions. The first is that the ratio of the wave speed of the elastic or longitudinal
waves is large compared to that of the transverse waves. This is valid for most
cable applications where the amount of cable stretching is small. The elastic wave
speed is typically 20 times larger than the transverse wave speed. It can then be
assumed that the solution consists of a part which is fast oscillating in space associated
with transverse out of plane motions and a part which is slowly oscillating in space
associated with the elastic wave motions.

The two solutions indicate corresponding physical mechanisms of dynamic behav-
ior of the cable. The cable can either oscillate in the form of a taut wire (fast solution)
around the static solution with small tangential displacements, or it can oscillate by
changing the static configuration (slow solution) causing significant tangential dis-
placements. For the case of vortex shedding phenomena we are concerned with the
fast out of plane motions of the cable.

The second assumption is that the static quantities involved are slowly varying in
space compared to the transverse oscillations. It turns out that this is typically true
for the case of flow induced vibration. Under these conditions the governing equations

can be written in non-dimensional form as [4];

—mL*w?l dIy wl
T =% T cosd, Py (3.10)

—(m + ma)L2w2P o dd, _ dp, T,
Tc —Tl do do T sm¢o¢l (3.11)

15




where;
T.:Non varying static tension (defined at cable anchor)

T,(c): Equilibrium tension of static configuration (Stretched condition), where % =

wLsin ¢o-

T:1(o): Spatially varying dynamic tension component

¢: Angle between cable and horizontal

¢,: Static component of ¢

¢1: Dynamic component of ¢

s : Length along cable

o: Non-dimensional Lagrangian coordinate, (s/L)

q : Non-dimensional tangential displacement, (x/L) % direction
p : Non-dimensional normal displacement, (y/L) # direction

Regarding tension variation, the dynamic component, T;(o), is a second order effect
resulting from cable strain. Since we are not concerned with the dynamic streching
characteristics of the cable this force can be neglected. We will be concerned only
with the static component of variation, T,(co) which is dependent on cable mass and
buoyancy per unit length.

The transverse equation for a string with variable tension is given by:

T, (s) =¥ (3.12)




Non-dimensionalizing the length variable, o = s/L, and substituting y = ye™* into
3.12 we obtain
20 Y) + LM (0)wPy = 0 (3.13)
do" " ' do )

This equation is suitable to be solved using a WKB asymptotic analysis. For a
detailed derivation see, [4], in which a WKB solution is used to solve 3.10 and 3.11.
Then the leading order approximation expressed dimensionally for the fast out of

plane dynamics of the cable,ignoring lift force excitation and damping, becomes:

y= Tj—,(i—)ﬁlcle‘w + Coe™"] (3.14)

From this point on the subscript “o” will be dropped and the tension will be assumed

to be a linear function of length along the cable which varies as weight per unit length

in the fluid.

3.3 Natural Frequencies and Mode Shapes

This is the homogeneous solution for the fast out of plane dynamics of the cable.
Applying the proper boundary conditions to these equations makes it possible to
solve for the natural frequencies of the cable and to determine the corresponding

mode shapes. Starting with the derived equation of motion,

1 o oW
y=- ) m [C1e" + C, ] (3.15)

Where;
T(s)=T.+w-s
m, = total mass per unit length, (m + m,)
W = [ —-wds__
s V/T(e)/m.

w=frequency of vibration (rad/sec)

17




The simple case of a cable pinned at both ends has been chosen such that the

boundary conditions are,

y(s=0)=0 (3.16)
y(s=L)=0 (3.17)

Satisfying the boundary condition at s=0 gives,

_ 1

§=0) = ———
y(s =0) T

[C1+ Cy) (3.18)

resulting in C; = —C,.

Using this result and applying the second boundary condition at s=L gives,

y(s—L)——l—sin/L—%s—-O (3.19)
‘\‘/ T(L) /m, 0 \ T(S)/mg
To satisfy zero displacement at s=L
L wds
sin / ——| =0 3.20
L, O /m‘] (3.20)
L d
f L E—y (3.21)
0 T(s)/m:
Evaluating this integral results in,
nmw = wn%,/m‘[(Tc + w-L)}/? — (T.)*7? (3.22)
And from this the natural frequencies are found to be,
Wn = il (3.23)
V(T + w-L)'/? — (T2)'/?)

18



From the previous results the characteristic mode shapes are found to be,

°  wpds
¢n = sin —_— 3.24
b e @20
b = sinlun o R{(T. + wes)V? — (L)) (3.25)

Experiments have been conducted on a 57 foot long cable under a constant tension of
349 pounds and the resulting natural frequencies and response spectrums were mea-
sured [1]. The same cable properties will be used, only taking into account spatially
varying tension. For the case of linearly varying tension we test two cases for different
values of tension variation, w. For the first case, w was chosen to be 1.0 Lbs./ft. and
T. was 349 Lbs. For the chosen cable length of 57.3 feet this resulted in a tension vari-
ation from 349 pounds at the cable anchor to 406 pounds at the surface, an increase
of 16.4 percent. The fundamental frequency obtained for this case was 0.96 Hz.

We next chose a tension variation value of 0.1 Lbs./ft. which resulted in a tension
ranging from 349 pounds to 355 pounds. The resulting fundamental natural frequency
was found to be 0.92 Hz. One would expect that for such a small tension variation
the natural frequency would approach that of the constant tension case. The corre-
sponding value for a constant tension cable of 349 pounds also 57 feet long was 0.92
Hz. We see that for a low tension variation factor the linearly varying tension value of
natural frequency corresponds to that of the constant tension case. From this we can
assume that the natural frequency and mode shape models derived for the linearly

varying tension cable are accurate.
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Chapter 4

Hydrodynamic Damping Model

In a sheared flow, the vortex shedding process excites the cable through a complex
interaction. To describe the dynamic response of the system an accurate damping
model is needed. The prediction model should be such that at any particular location
the lift force should have a band limited spectrum centered on the dominant local
vortex shedding frequency. This local spectrum is correlated to the force at neighbor-
ing locations through a parameter known as the correlation length, L.. For details on
the hydrodynamic damping of flexible cylinders see {3].

The fluid damping forces acting on the cable come about as a result of the free
stream velocity, ¥V, and the cross-flow cable velocity, . A damping force per unit
length can then be assumed to be proportional to the relative velocity squared,
fig.[4.1].

Fp = %PwCDD(Vz + %) (4.1)

and the component of force in the y direction becomes,

F,= —Gin/V? + j? (4.2)

where G = -zl-prDD and D is the diameter of the cable. The damping force given
above is a non-linear function of §. It is convenient to find a linear equivalent damping

constant such that the dissipative force may be expressed as

Fyl = —R(:B)il (4.3)
20



Where F; and F,, are not necessarily equal and R(x) is is the equivalent hydrodynamic
damping constant per unit length.

An estimate can be obtained for the linear equivalent damping constant , R(x),for
harmonic oscillations by equating the energy lost per cycle of the non-linear damp-
ing force to that of the equivalent linear damping force. The expression for energy

dissipated per cycle can be written as,

2%

Eds'a = oh'_o ndia(t)dt (4.4)
2%

= [** Fo-yat (4.5)
2x

- '[o “° R(z)ildt (4.6)

—2 /0 % Gyt VT T gt (4.7)

For values of |g2|s"—’2(£l the linear equivalent damping takes the form,

R(z) = GV[1+ 3 -3-224] (4.8)
= yGV(z) (4.9)

where « is a factor to account for the cables own motion, i, and varies from 1.0 to
1.3. Technically, the value of « should also be a function of x because # is a function
of x. For the sake of simplifying the damping estimate, though, we have chosen a
lower bound value for v of 1.0. More serious errors occur in attempting to partition
the cable into forced and damped regions.

This is a cornmon way of describing fluid drag forces acting on bodies. This model,
however, does not take into account the effect the vortex shedding process itself has on
the motion. In regions for which the vortex shedding and cylinder motion are found to
be correlated power flows into the system. In the power-in region the vortex- induced
exciting forces are in phase with the cable velocity, §. Portions of the cable where
the lift force is uncorrelated to the cable velocity results in a damping region. The

damping model must be able to distinguish between these regions both as a function

21



Figure 4.1: Drag force vector deccmposition
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of frequency and location.
Damping for a Finite Length Cable

For short cylinders excited in their low modes it is appropriate to calculate the
individual modal damping constants and damping ratios. The linear equivalent modal

damping constant, Ry ,, is calculated as,
Run = / R(z)n?(2)dz (4.10)

The mode shapes ¢, have already been calculated as,

bu = sinluam P2 (T, + wes)* — (L)) (4.11)
2 2
¢ = sinz[p,,mf/’;(Tc +w-8)'/? - u,,m,ll’z—u;(T,)l/z] (4.12)
_1- cos|2pnm,' P2 (T, + w-s)'/? - 2unm,1/"'§- (T.)'7 (4.13)
5 .
1 cos(u)cos(v) + sin(u) sin(v
Where,
u= 2;:,.m¢1/2%(Tc + w-s)l/2

v = 2#nmt1/2%(Tc)l/2

Now Rjn can be calculated. However, this modal damping constant does not, as
yet, account for the power-in, power- out regions discussed previously. To account for
this effect the corellation length must be incorporated as a limit in the integration.

To accomplish this we define,

(Bns)mas = [ R()énd (4.15)

23



For the case of a sheared flow a more accurate model for modal damping is,

Ripn = H(Rhn) s (4.16)
where the coefficient H is defined as,
o V@) + [,V (@) ()i )

Iy V(2)$a*(z)dz ’

where H<1 for all cases and z,, is the most favorable location for a resonant condition
to exist between the vortex shedding process and mode n. L, is the correlation length
which is the seperation distance that causes the excitation at two locations to drop
below a specified value.

Now we may assume a shear velocity profile which increases linearly from zero to
a maximum value such that V(z) = V,(£), where V, is the peak velocity in the shear.

Given this relation we can now write,
R(z) = yGV,z/L , (4.18)

and by substitution into equations 4.15 and 4.16 the modal damping values can be
calculated for the linear shear profile.

In the excitation model presented by Chung [1] the spatial cross-correlation of the
lift force spectrum is probabilistically defined as a Gaussian random process with the
correlation length as the standard deviation. Simply stated there is a portion of the
cable 2L, in length in which most of the power for mode n will flow into the system.
Outside of this region will account for the dominant source of hydrodynamic damping
for mode n.

Ramberg and Griffin measured wake velocity signals behind the vibrating flexible
cables using hot wire anemometers in an open jet wind tunnel and they calculated
the cross-correlation coefficient of the wake velocity signals (Ramberg and Griffin). It

was found that for the portion of a vibrating cable over which the vortex shedding
24



and vibration frequencies are locked together, the spatial cross-correlation coefficient
between any two locations in the wake behind that portion approached unity, being
limited only by turbulence. In this case, the correlation length in the excitation
model will be infinite. However, in a sheared flow case several modes can be excited
simultaneously by the flow and the correlation length should be finite. At two adjacent
resonant locations, X,, and X, for the nth and (n+1)th mode, respectively, in a
sheared flow the wake will not be significantly correlated.

The correlation length used here is the span corresponding to haif the modal
spacing in vortex shedding frequency. For the linear shear flows considered here the

correlation length coefficient, [, is specified as;

le = —o— (4.19)
where;
L. = the correlation length
L = the cylinder length

N = the number of modes excited by the sheared flow

For very long cables in sheared flows where N is very large, the ratio of the power-in
region for each mode to total cylinder length, 2L./L, will be very small and H=1.
It is now possible to relate the linear equivalent modal damping constant to the

corresponding modal damping ratios.

Rh,n,max
$nmaz = oM, (4.20)
Where M, is the modal mass defined as -'5;5
$n = ann,maz (4.21)

If for the moment we assume a constant tension acting on the cable then it is

possible to simplify the relation for ¢,. For the constant tension cable the following
25



relations can be written,

nTT

— et — 2
@ = sin I (4.22)
G= %p.,,CDD (4.22)
R(z) = qGVP% (4.24)
L
R, = /o R(2)$a3(z)dz (4.25)
R,
¢ = o M (4.26)
_ 7CDVr(wp/wn)
= e 2 (4.27)

V, ; Reduced velocity
w, ; Peak excitation frequency
If 2 low value of tension variation is substituted into equation 4.15 then that result

can be seen to approach the corresponding values obtained from 4.27.

26



Chapter 5

Response Prediction Model

An accurate response prediction model consists of four basic elements: a structural
model, a damping model, an excitation force model, and a solution technique. The
structural model and hydrodynamic damping model have .. "~eady been presented, and
the excitation force model is that which was developed by T.Y. Chung [i]. In this
chapter a response prediction method is proposed for the vortex-induced vibration of
a non-constant tension cable in a sheared flow based on a Green’s function approach.

Vortex induced vibration of long cylinders ir uniform flows can be predicted well
on the basis of experimental data. For the case of a cylinder in a shear flow a mode
superposition approach is often used. The amplitude of each mode is determined us-
ing information from experimental results in uniform flows. Under the assumption of
small damping, the total response amplitude is obtained by sum of squares superposi-
tion of resonant modes. Thic model, however, cannot account for spatial attenuation
observed in the response in highly sheared flows where non-resonant modes become
important in the total response. The mode superposition response model must use
the non-resonant modes to accurately predict the response. If the Green’s function
is available it gives more accurate and efficient results because it is equivalent to
summing an infinite number of modes.

Equation 3.15, which has been used to solve for the system natural frequencies
and mode shapes, constitutes the homogeneous linear dynamic equation. The voriex-

shedding related forces constitute the inhomogeneous ternis of the equations of mo-
27



tion. Equations [3.9,10,11] can be used to construct the system Green’s function
which will provide the forced dynamic response.

The general form of the Green’s function is found to be 2]

inh 0. fuds h !
Slore) = sinh V-L—T( E—sinh [, 7":',-(.)/"‘. 0<s < (5.1)
/1Y \y T(s)T(z) sinh f} ﬁ;

]
Olor) = it M (5.2)
iu /e ‘/T(S)T(z) smhfovf;%:

In a linear one dimensional continuous system the displacement response spectrum at

a location may be determined from the following integral equation;

Syy(s,w) = /;L dz/: dz'Syzq0(z, 2, W)G(8,7)G* (8, 2') (5.3)
Syy(s,w); Displacement response spectrum at location s
Stz420(Z, z',w); Lift force spectrum
G(s,x); Green’s function due to an excitation at the point s = x
G*(s,z'); Conjugate of the Green’s function due to an excitation at the point s = x’
If the Green’s function is solved for the case of no damping and a linearly varying

tension is substituted into the expressions we obtain a purely real solution of,

sin B sm o

sind w\/—\/T(s)T(az

sin Dsin E
sin A w\/—\/T(s T(z)
(T. + w-L)"* - (T.)'/?)
(T, + ws)/* ~ (T)
(T. + w-L)"/* — (T. + w-z)"/?]
(T. + wz)'* — ()]

G(s,z) =

0<s<z (5.4)

G(s,z) =

z<s<L (5.5)
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E=w /'_m;;f;[(Tc + w.L)l/z —(T. + w..g)l/zl

We see that this results in a pure sinusoid, and one would expect the responge shape
to match that of the characteristic mode shapes, which is the case.
For our case iv is necessary to account for damping, and this is accomplished by

incorporating the damping within the complex frequency which is defined as,

2 _ 2 sw(r +r,)

~Tmrm) (5.6)

w; Real frequency

r; Hydrodynamic damping constant
r,; Structural damping constant

m; Structural mass per unit length

m,; Added mass per unit length

Taking into account the system damping requires expanding the Green function
into its real and imaginary components to make it possible to perform the necessary
numerical integration. This expansion results in a complex equation involving the
hyperbolic cosine and tangent functions. The tanh is a numerically stable function,
however the hyperbolic cosine function becomes numerically unstable for large argu-
ments. Therefore, it is necessary to manipulate the Green’s function into the form
below in order to minimize numerical inaccuracies due to the hyperbolic functions.

The real and imaginary components of the Green’s function then become,

GR(s,z) = Zz—zhﬁ%cosh(ﬁ)cl (5.7)
GI(s,z) = %ﬁ% cosh(¢3)C; 0<s <z (5.8)
GR(s,z) = Eg—::—g—g—:—%—cosh(qS)Cs (5.9)
GI(s,z) = %:%cosh(qs)cu z<s<L (5.10)
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Where ql, q2, q3, g4, and g5 result from an expansion of the complex frequency,
u.(see Appendix A). And C; ,C3, Cs and C; are composed of all terms not involving
the hyperbolic cosine.

It is interesting to investigate the behavior of the Green’s function for different
modes and different values of damping and compare these values to the corresponding
results for the constant tension cable. We choose 2 small tension variation, (w = 0.1) ,
such that for equivalent damping and frequency conditions the linearly varying tension
Greens function approaches the corresponding constant tension Green’s function.

We first examine the case of very low damping for a frequency very close to the
characteristic frequency of the third mode. We expect to see oscillatory behavior
similar to the one obtained from the third characteristic mode shape determined
previously. A damping ratio of 0.01 was chosen, and the cable was excited at s = 0.5-L
at a frequency very near that of the third mode natural frequency. From figure 5.1 we
see that the corresponding Green function oscillates in a shape very near that of the
third mode. This solution would be expected for the case of very low damping at a
frequency near resonance. The next situation examined was that of a very high mode
number with relatively high damping for the given mode; (n = 100, ¢ = 0.1). For this
case we see a much greater attenuation in the shape of the Green’s function for this
highly damped case as well as a significant reduction in amplitude. The cable behaves
as if it were infinite in length. The final case looked at was that of an intermediate
mode number; (n = 10, ¢ = 0.1). See figures 5.1 - 5.3.

It was also interesting to see what effect a larger tension variation would have on
the Green’s function. Two cases were tested. The values of n and damping ratio were
10 and 0.1 respectively. Figure 5.4(a) corresponds to a linear tension variation of
w = 10 Lbs/ft and figure 5.4(b) corresponds to a variation of 50 Lbs./ft. From these
plots one can see that the Green’s functions are no longer symmetric. The increased
tension variation has effectively changed the phase speed ¢, over the length of the

cable. Therefore in portions of the cable where tension is greater it can be seen that
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Figure 5.1: Greens function response (n = 3,¢ = 0.01)
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Constant Tension Cable (Te =349 Lbs)
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Figure 5.2: Greens funclion response (n =100,¢ =0.1)
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wave speed is also greater (i.e. A is larger).

The Green’s function magnitudes were ploted as a function of non- dimensional
length along the cable, (s/L), for both slowly varying (w = 0.1) and constant tension
cases and one can see that they match nearly exactly. Slight discrepancy would be due
to the different way in which damping is used for the two different Green'’s functions.

The Greens function is an exact solution equivalent to summing an infinity of
modes, but one would expect that for conditions near resonance the response of the
system would be dominated by that particular resonant mode. This can be shown
through a modal analysis technique whereby a unit force is applied at s = 0.5-L and
the response at this location is calculated and compared to the corresponding response
obtained from the Green function. The modal analysis technique proceeds as follows.

First we use the separation of variables principle which provides a solution of the

form

y(z,t) = na(t)dn(z), (5.11)

then the modal time response solution can be written as;

Mnﬁn + Cn'in + Kot = Nn(t) (5'12)

Given a forcing function, f(z,t) = §(z — L/2)et, we can calculate the modal forcing

term, N,(t), as;

[ ¥ #(2,8)dn(z)dz (5.13)

Substituting the previously described forcing function into this equation results in,

Na) = ¢ [ “ 6(c — L/2)én(z)dz (5.14)

= e“t¢,(z = L/2)
— piwt
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Figure 5.3: Greens function response (n = 10,¢ = 0.1)
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Lincarly Varying Tension (T, = 349 Lbs.,w = 100 Lbs/[i)
0.001$
0.001
0.0005
0 | | | 1
0.0007 .l q ) 1
Linearly Varying Tension (T. =349 Lbs.,,w =150 Lbs/ ft)
0.0006 - -
0.0001 |- -
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0 1 1 . 1 1 J
0 02 04 0.6 0.8 I g /L

Figure 5.4: Creens function response (n = 10,¢ = 0.1)
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The corresponding transfer function for this system can be written as

M

= B (5.15)
(- 2% + (¢ £)?)

Near resonance we know that w &~ w,, and the resulting transfer function is;

a
N

i
n_ XK.
N (5.16)

And finally by substituting values for modal stiffness and modal forcing function into

this relation we obtain;

1

_ 1 (5.17
2MWr2n (5.17)

7| =

Next, we do an example choosing to test the third mode case. Choosing corre-
sponding values of natural frequency, modal mass, and damping ratio ii is possible
to compare the value from the above expression to the value of the magnitude of the
Greens function when taken at third mode conditions.

Substituting the appropriate third mode parameters for the linearly varying ten-
sion cable, (w = 0.1), into the above relation yields a result of 0.027. The value
obtained by substituting the same parameters irto the non-constant tension Greens
function was 0.0276. The constant tension cable was also tested for the same con-
ditions. Third mode values of natural frequency and damping were substituted into
the modal displacement expression resulting in a value of 0.027. Substituting the
corresponding values into the constant tension Greens function resulted in a value of
0.0279. These values all corresponded to within 2 percent of each other. Therefore the
non-constant tension Greens function can be assumed 4o be accurate for conditions
near those of lightly damped resonant modes.

Having established the form of the non-constant tension Greens function it was

interesting to see which parameters effected the Greens function for the linearly vary-
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ing tension case and how changes in these parameters effected the magnitude of the
resulting Greens function.

In examining the form of the Greens function, it was found that the parameters
which it was mostly dependent on were the damping per unit length and tension
variation. The tension variation coefficient which is dependent on weight per unit
length in the fluid, cable length, and constant tension component, T, and is defined
a‘s,

3= —— (5.18)

We proceeded by fisst seeing what effect variation of tension coefficient would
have on the magnitude of the Greens function. The coefficient was varied between
0.02 and 2.0 and all other parameters of the function (damping, frequency..) were
held constant. It was seen that for values of a less than 0.2 the constant tension
response and the linearly varying response were effectively the same. For values of a
above about 0.2 the Greens function was seen to become asymmetric due to changes in
phase velocity along the length of the cable, and the resulting response values for the
linearly varying tension case began to differ significantly from those of the constant
tension cable.

Next we examined the effect changes in damping had on the magnitude of the
Greens function. The damping per unit length was allowed to vary wlile all other
parameters (coefficient, frequency..) were held constant. This was done fer frequencies
close to those of the mainly excited modes, (1-4 for this case), and it was found that
the Greens function dependency on damping was of the form of equation 5.17. The
constant tension Greens function was see to be equally dependent on damping

For low coeftcients of tension variation (a < 0.2) it has been shown that the Greens
functions for the constant tension and linearly varying tension cases are essentially
the same. From this, one would also expect that for the same small tension variation
the corresponding response spectra for the constant tension versus linearly varying

cases would also be equivalent.
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A computer model has been developed which calculates response spectra for the
linearly varying tension cable located in a sheared current profile. This computer
model was used for the cable described in chapter three. Figures 5.5, 5.7 and 5.11
give the necessary computer input parameters for both the constant tension and
linearly varying tension cases tested. The cable, which had dimensions of 57.3 feet
in length and 1.125 inches in diameter, was located in a linear shear profile with
velocities ranging from 0.0 ft/sec at s/L = 0.0 to 2.15 ft/sec at 8/L = 1.0. The input
parameters to the model include the physical properties of the cable, the velocity
profile characteristics, as well as all necessary coefficients (drag, added mass, lift).
The output (figures 5.6, 5.8 and 5.12) consists of the displacement and acceleration
spectra for a specified response location as well as the rms displacement values for
the given response point.

Several cases were examined for the above cable. In the first the tension variation
was chosen to be very small. In doing this we attempt to show that for sufficiently
small coefficient of variation the linearly varying tension cable can be treated as if it
were under constant tension. The second case involves a greater tension variation for
which we expect to see more significant changes in the response values of the linearly
varying cable as compared to the constant tension case.

Figures 5.9 and 5.10 (a) and (b) are the displacement and acceleration spectra
for the constant tension cable (a) and the linearly varying tension cable (b). The
coefficient of tension variation for (b) was 0.02 and the constant tension components
for both cases was 349.0 pounds. One can see from the respective displacement and
acceleration spectra that if superimposed on one another they are effectively the same.
For both the constant tension and linearly varying cases the mainly excited modes
were found to be 1-4 which corresponded to mainly excited frequencies ranging from
0.92 to 3.71 Hz. From the spectra it is obvious that the total response is dominated
by values in this frequency range , with the corresponding resonant peaks occuring at

the natural frequencies for excited modes 1-4.

38



In the next case the tension variation was chosen such that it would effect the
response of the linearly varying tension cable more significantly. When a tension
variation coefficient of 0.82 (w = 5.0Lbs/ft) was substituted into the model it was
found that the mainly excited modes for the system were also 1-4, but the fundamental
natural frequency increased to 1.084 Hz. as opposed to 0.92 for the constant tension
cable. The resonant peaks were seen to shift accordingly (see figures 5.13 and 5.14) and
the rms displacement at the corresponding location increased to 0.692 inches versus
0.587 for constant tension. This result shows that for tension variation coeflicients
above 0.2 the linearly varying component of tension plays a significant part in the
total response.

Up until this point we have been comparing results from the linearly varying ten-
sion cable to the constant tension cable in an attempt to show that for low values
of tension variation results for the non-constant tension cable would converge to the
values obtained for the constant tension case. We found this to be true; values of
natural frequency, damping, RMS displacement, and displacement and acceler#tion
spectra for low tension variation (a < 0.2) all were within 1 percent of the corre-
sponding constant tension results. It was also shown that for coefficients of variation
greater than 0.2 the linearly varying component of tension became significant in the
response and the more complicated spatially varying tension model was necessary to
accurately predict the response.

Now we would like to see how the model responds to a more practical application.
The cables examined previously have been of relatively small dimensions (57 feet
long, 1.125 inch diameter) and have only been excited in their first 4 - 6 modes. We
now wish to examine the behavior of the more realistic situation of a linearly varying
tension marine cable subjected to a shear current. The example is a 2000 foot long
pipe with an outside diameter of 9.625 inches and an inside diameter of 8.375 inches.

These parameters resulted in a weight per unit length of 60.0 pounds per foot and

a corresponding tension variation, (taking into account buoyancy), of 28.6 pounds per
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.631

.15
.6025
.025
.125

frequency resolution in Hz. (delf)

no. of frequency points, fmax = np*delf

spacial resolution

cable length in feet, L

cable outside diameter in inches

density of the surrounding fluid in Lb/ft**3
cable weight per foot in air in Lbs./ft.

added mass coefficient

constant tension in Lbs.

Strouhal no.

Number of points specifying velocity profile
location(x/L), velocity(ft/sec) for first point
location and velocity for all succeding points
turbuience std deviation about mean velocity in ft./sec
structural modal damping ratio

drag coefficient

drag coefficient amplification due to vibration

mean square lift coefficient
2nd harmonic lift coefficient
3rd harmonic lift coefficient
4th harmonic lift coefficient
5th harmonic lift coefficient
correlation length (1/2N or lc/L)

Figure 5.5: Sample input data (Constant tension cable)
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* Surmmary of cable properties

tension=

cable length=

diameter=

added mass
fundamenal
structural

349.0(1bs)

57.3 (feet)

1.1250(inches)
coeff.= 1.0

natural freq.=
modal damping ratio=0.0030

0.923(hz)

* User specified sheared flow profile

locat:ion(x/L)

0

* Total damping ratio and frequency for the mainly

mode
mode
mode
mode

1.00

no.
no.
no.
no.

nnounou

[

oW N

flow velocity(ft/sec)

0.
2.15

damping ratio=0.235
damping ratio=0.131
damping ratio=0.068
damping ratio=0.045

* Computational resolution

resolution in space=0.050L
resolution in frequency=0.250 (hz)

* Response at location =0.125L

rms displ.=0.582(in)

frequency=
frequency=
frequency=
frequency=

rms displ./dia.=0.518

excited modes

0.92 Hz
1.85 Hz
2.77 Hz
3.69 Hz

Figure 5.6: Input/Output data (Constant tension)
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0.25 frequency resolution in Hz. (delf)

100 no. of frequency points, fmax = np*delf

0.05 spacial resolution

57.25 cable length in feet, L

1.125 cable outside diameter in inches

62.4 density of the surrounding fluid in Lb/ft**3
0.5764 cable weight per foot in air in Lbs./ft.

1.0 added mass coefficient

349. constant tension in Lbs.

0.1 linearly varying component of tension (Lbs/ft)
0.17 Strouhal no.

2 Number of points specifying velocity profile
0.0,2.15 jocation (x/L), velocity(ft/scc) for first point
1.0,0.0 location and velocity for. all succeding points
0.25 turbulence std deviation about mean velocity in ft./sec
0.003 structural modal damping ratio

1.0 ‘drag coefficient

1.0 drag coefficient amplification due to vibration
0.631 mean square lift coefficient

0.1 2nd harmonic lift coefficient

0.15 3rd harmonic lift coefficient

0.0025 4th harmonic lift coefficient

0.025 sth harmonic lift coefficient

0.125 correlation length (1/2N or 1lc/L)

Figure 5.7: Sample input data (Linearly varying tension)
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* Summary of cable properties

constant tension component= 349.0 lbs

linearly varying component of tension = 0.1 lbs/ft
cable length= 57.3 ft

diameter= 1.1250 in

added mass coeff.= 1.0

fundamenal natural freq.= 0.926 Hz.

structural modal damping ratio=0.0030

* User specified sheared flow profile

location (x/L) flow velocity(ft/sec)
0. 0.0
1.00 2.15

* Total damping ratio and frequency for the mainly excited modes

mode no.= 1 damping ratio= 0.234 frequency= 0.93 Hz
mode no.= 2 damping ratio= 0.131 frequency= 1.85 Hz
mode no.= 3 damping ratio= 0.068 frequency= 2.78 Hz
mode no.= 4 damping ratio= 0.044 frequency= 3.71 Hz

* Computational resolution

resolution in space=0.050L
resolution in frequency=0.250(hz)

* Response at location = 0.125L

rms displ.=0.587(in) rms displ./dia.=0.522

T

et ey e L A

Figure 5.8: Input/Output data (Linearly varying tension)
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0.1 - | Constant Tension Case (T, = 349.0)
o.M
0.001
0.0001
1e-05

1¢-06

1¢-07

1¢-08 |~

te-09 { -

Linearly Varying Case {w =0.1,T. = 349.0)

001 |-

0.1
000 -
le-05 |~
le 06 1~

fe 07 =

[ (R \/

1e-019 . | .
0 ’ H NU

Figure 5.9: Displacement spectra
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0.1
0.01
0.001
0.0001
1¢-05
le-06
1¢-07
1e-08

1e-09

0.1
0.0!
0.001

0.(XH

te-0S |-

te-06
e 7
fe-08

te-0

=

Constant Tension Case (T, = 349.0)

Linearly Varying Case (w = 0.1,T; = 349.0) _

"

20 AN

Figure 5.10: Acceleration spectra
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COOMMOOMON
Mmoo ON

v

.

0.0025
0.025
0.125

3

frequency resolution in Hz. (delf)

no. of frequency points, fmax = np*delf
spacial resolution

cable length in feet, L .

cable outside diameter in inches

density of the surrounding fluid in Lb/ft*%3
cable weight per foot in air in Lbs./ft.

added mass coefficient

constant tension in Lbs.

linearly varying component of tension (Lbs/ft)

Strouhal no.
Number of points specifying velocity profile

5 location(x/L), velocity(ft/sec) for first point

location and velocity for all succeding points

turbulence std deviation about mean velocity in ft./sec

structural modal damping ratio

drag coefficient

drag coefficient amplification due to vibration
" mean square lift coefficient

2nd harmonic lift coefficient

3rd harmonic lift cocefficient

4th harmonic lift coefficient

5th harmonic lift coefficient

correlation length (1/2N or lc/L)

Figure 5.11: Sample input data (Linearly varying tension)
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* summary of cable properties

constant tension component= 349.0(1lbs)

linearly varying coefficient of tension = 5.0
cable length= 57.3 (feet)

diameter= 1.1250(inches)

added mass coeff.= 1.0

fundamenal natural freq.= 1.084(hz)
structural modal damping ratio=0.0030

* user specified sheared flow profile

location (x/L) flow velocity(ft/sec)
0. 0.0
1.00 B 2.15

* Total damping ratio and frequency for the mainly excited modes

‘mode no.= 1 damping ratio= 0.183 frequency= 1.08 Hz
mode no.= 2 damping ratio= 0.105 frequency= 2.17 Hz
mode no.= 3 damping ratio= 0.040 frequency= 3.25 Hz
mode no.= 4 damping ratio= 0.060 frequency= 4.33 Hz

* Computational resolution
resolution in space=0.050L

resolution in frequency=0.250(hz)

* Response at location =0,125L

rms displ.=0.672(in) rms displ./dia.=0.598

Figure 5.12: Input/Output data (Linearly varying tension)
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o1 - Constant Tension Case (T, = 319.0)

0.01

0.001

0.0001

le-05

le-06

1c-07

le-08

le-09

01 |- Linearly Varying Case (w = 5.0,T. = 3490.0)

001 |-
0.001 |-
0.0001
le-05 |-
1e-06 (—

1e-07 |-

te-0R }—-

1
10

le-0Y
0

[ =
o
)
<

Figure 5.13: Displacement spectra
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0.1 |- Constant Tension Case (T, = 349.0)

00! -
0.001 |-
g's?[Hz.
1¢-05 |-
le-06 |-

12-07

le-08

[ —

le-09

0.1 |-

0.01 |~

0.001 |~

0.0001

1¢-05 |-

1c-06 |-

1c:07 }-

1¢-08 |

Linearly Varying Case (w = 5.0,T, = 349.0)

ic-09

0 10
Figure 5.14: Acceleration spectra
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foot, (a2 = 0.57), necessitating the use of the linearly varying tension model.

The shear current profile for this case varied linearly from s/L = 1.0 to s/L = 0.75
with corresponding velocities in feet/sec of 4.0 and 3.8. The current profile for the
remainder of the cable decays exponentially from 3.8 feet/sec at s/L = 0.75 to 0.0
feet/sec at s/L = 0.0. The value of T, for this case was 100,000 pounds. Figure 5.15 is
the corresponding computer input file which includes all necessary input parameters.
Given the tension variation of 28.6 pounds per foot this resulted in a tension of 100,600
pounds at the cable anchor and 156,000 pounds at the surface. These properties
resulted in a natural frequency for the cable of 0.05 hertz, and the corresponding
Strouhal frequencies resulted in the mainly excited modes being 1 - 16. Damping
ratios for these modes varied from 72 percent for the first mode to about 3 percent
for the sixteenth mode. For a more detailed listing of output information see figure
5.16 which includes the more important program output information

Once again dominant response is seen in the frequency range corresponding to
that of the mainly excited modes. But also, one can see that significant contributions
come from non-resonant modes. The standard convention for this model is that the
spectrum bandwidth must include 5 times the highest Strouhal frequency. For this
case the highest Strouhal frequency is 0.84 Hz., therefore the bandwidth must include
(0.84)(5) = 4.2Hz. From the corresponding displacement and acceleration spectra
(figure 5.17) one can see that the significant response occurs in the 0 - 4 Hz. range.

The resulting rms displacement value for the location s = 0.875L from figure 5.16
is seen to be 5.929 inches. This response location is at a point on the cable where
the flow velocity is relatively large. If one were to choose a response location where
the profile is lower, say at s = 0.125L, then we would expect a lower response value.
This case was tested and the resulting rms displacement value was found to be 1.950
inches. From this one can see the significant effect a sheared velocity profile has on
system response.

The large cable also presents a new problem, that is, what effect if any does
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structural rigidity (EI) have on the response of the system. We examine this effect
by incorporating the tension and effective stiffness into the characteristic equation for
natural frequency. This is done by taking the simple constant tension cable equation

and using the average tension value from our case and the corresponding values for
E and I

The equation takes the form;

? Bl 4 n?TL */*

Wy = L=( 1r2EI) (5.19)
nin? Y2 p2r2Er 1/2

—(sz A) ( 77 +T) (5.20)
2i2py M2

= L > A( TiT +1) (5.21)

The leading term in equation 5.20 is seen to be the expression for the fundamental
natural frequencies for a string under constant tension. The term in parenthesis
represents what effect the stiffness terms have on natural frequency. If we choose
the corresponding parameters for sixteenth mode oscillation we see that including
the effects of stiffness reculted in an 8 percent change in natural frequency from the
case of the simple string. From this one can conclude that the effects of structural
rigidity (EI) on the response of the system are negligible and for our purposes can be

neglected.

51




2000 Foot Cable (Tension Variation = 28B.6 Lbs/ft.)

0.01

50C

0.01

2000
9.625
62.4
60.14

1.0
1.0e05
28.6

0.17

-

1.0 ,4.0
0.75,3.8
0.625,2.7
0.5,1.85
0.375,1.2
0.25,0.5
0.0,0.0

o
o
(=]
w

COO0OO0OO -

frequency resolution in Hz. (delf)

no. of frequency points , fmax=nptdelf

spacial resolution {delx/L)

cable length in feet ,L

cable outer diameter in inches

density of the surrounding fluid in lb/ft+*3
cable weight per foot in air in pounds/foot
added mass coefficient

lumped constant tension in pounds

coefficient of linearly varying tension (lb/ft)
Strouhal no.

number of points specifying velocity profile
location(x/L), velocity(ft/sec) for first point
location and velocity of each succeeding point

turbulence std deviation about inean velocity in ft/sec
structural modal damping

drag coefficient

drag coefficient amplification due to vibration

mean square lift coefficient

2nd harmonic lift coef.

3rd harmonic lift coef.

4th harmonic lift coef.

Sth harmonic lift coaf.

correlation length (1/2N or lc/L)

Figure 5.15: Input data (Linearly varying tension)
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* Summary of cable properties

constant tension component=100,000 (1bs)

linearly varying coefficient of tension = 28.6
cable length= 2000.0(feet)

diameter= 9.5250 (inches)

added mass coeff.= 1.0

fundamenal natural freq.= 0.053(hz)

structural modal damping ratio=0.0030

* User specified sheared flow profile

location(x/L) flow velocity(ft/sec)

1.00 4.00
0.75 3.80
0.63 2.70
0.50 1.85
0.38 1.20
0.25 0.50
0. 0.

* Total damping ratio and frequency for the mainly excited modes

. 197 frequency= 0.05 Hz
.411 frequency= 0.11 Hz
.275 frequency= 0.16 Hz
.208 frequency= 0.21 Hz
.167 frequency= 0.26 Hz
.140 frequency= 0.32 Hz
.121 frequency= 0.37 Hz
.105 frequency= 0.42 Hz
.093 frequency= 0.48 Hz
.C085 frequency= 0.53 Hz
.077 frequency= 0.58 Hz
.070 frequency= 0.63 Hz
.049 frequency= 0.69 Hz
.038 frequency= 0.74 Hz
.049 frequency= 0.79 Hz
.053 frequency= 0.84 Hz

damping ratio=
damping ratio=
damping ratio=
damping ratio=
damping ratio=
damping ratio=
damping ratio=
mode no.= damping ratio=
mode no.= damping ratio=
mode no.= 10 damping ratio=
mode no.= 11 damping ratio=
mode no.= 12 damping ratio=
mode no.= 13 damping ratio=
mode no.= 14 damping ratio=
mode no.= 15 damping ratio=
mode no.= 16 damping ratio=

mode no.=
mode no.=
mode no.=
mode no.=
mode no.=
mode no.=
mode no.=

VoI WA

== leNoRoNoNoNeNeleNoloNeNeNe)

* Computational resolution
resolution in space=0.010L

resolution in frequency=0.010(hz)

* Response at location =0.875L

rms displ.=5.929 (in) rms displ./dia.=0.61¢

Figure 5.16: Input/Output data (Linearly varying tension)
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Chapter 6

Summary

This paper set out to develop an accurate response prediction model for a non-constant
tension cable. Examples were done in which the response prediction model was tested
for the specific case of linear tension variation. Although this particular case was
chosen , the damping and response prediction models are also valid for more complex
tension variation (quadratic, exponential).

It was seen that for the case of spatially varying tension it was necessary to derive
more complex relations for the system natural frequencies and mode shapes based on.
the corresponding non-constant tension governing equations. From these relations it
was possible to determine the modal damping ratios and constants for the excited
modes. The system damping was seen to be a major factor in the system response,
therefore an accurate model taking into account spatially varying tension effects was
needed.

To accurately predict these damping values it was necessary to take into account
the effects the vortex shedding process had on the response. The parameter H was
defined which effectively partitioned the cable into a power-in region where the vortex
shedding and cylinder motion are correlated, and a power-out region where the cable is
damped. H was seen to be dependent on the correlatior length which is the separation
distance between two locations which causes the excitation to drop below a specified
value.

In testing the response prediction mcdel it was seen that for sufficiently small
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values of tension variation coefficient (a < 0.2) the linearly varying tension cable can
be effectively modelled as a constant tension case. The examples tested show that for
both Greens function and response spectra values, the slowly varying tension cable
and constant tension cable were equivalent for values of tension variation coefficient,
a, less than 0.2. For values of a above this it was seen that the constant tension
model no longer accurately predicted response values and that the more complicated
spatially varying model needed to be used.

Finally it was seen how the model responded when applied to a more practical
situation of a deep water marine cable. For the given cable, the tension variation coef-
ficient was calculated and it was found that it was necessary to use the linearly varying
tension model. For this cable configuration and current profile a significantly greater
number of modes were excited as compared to the cable examined previously. The
response spectra were calculated and corresponding rms response found for several
specified locations and it was seen that the sheared velocity profile had a significant
effect on the cable response values for different locations in the flow.

The model has been seen to be effective in calculating response values for cables
excited in their lower modes. Work is now being conducted to attempt to expand the
model such that it can effectively predict the response of cables which behave as if

they were infinite in length.
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Appendix A

Green’s Function Expansion

Given the general form of the Green function;

0<s<z

Vv o

ds L __ipds
C(s,2) = sinh Jg 27;’( i S o
ip\/T(s)T(z) sinh [y m
inh L ipds ipds
G(s,z) = it . 1 O )/msmhf Te)m ,2<s<L
m\/_#/T(s)T(z) smhfo W -

it ie possible to perform the following complex expansion:

. L 1uds ) 2
sinh ————— =sinh[ium 122 T.+w-L /2 _ T. 1/2
|y T = cinbliwm e ST+ L) = ()

Where we define A = y,mtl/’%[(Tc +w- L)I/2 — (T)Y?]

inh / _tuds sinh[ium.‘”%[('n +w-s)"? — (T.)/*]

0 /T(s)/m

B = ”'mtllz',%[(Tc +w- 8)1/2 _ (Tc)lh]

L
sinh / _tpds sinh[:’um,ll"'%[(Tc +w- L)Y — (T, + w-z)*?

z /T(s)/m

C = umdP2((T, + w- L)Y = (T, + w- )
L iud 2
sinh/ e =iy, /m,-u—,[(Tc +w-L)'* — (T, + w-s)"/?]

¢ \T(s)/mu
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D = py/mg|(T. + w~L)"’ - (To+ w-s)"’l

” mds —; -2 v /2

E = pym((T. + w-z)ll2 - (Tc)‘/’]

Then;
G(s,z) = sinh:B sml;ic 0<s<z
tum,1/? \:/ T(s)T(z) sinhtA
G(s,2) = smh tDsinhtE s<s<L
zu\/'_\/T(s)T(z sinh{A
sinhid = £25
sinhiB = 227
sinhiC = £
sinhiD = “D‘;'m
sinhiE = £25£=7, and then
(e‘B—g"B )(eso_,'-.'o) 1
G(s,z) = he.' 7 —=(A.10)
.(Lz?__‘). m /——m . T(s)T(.'t,)
_ sinBsinC
sind -y, /gy /T(s)T(z
G(s z) B (e|D_i;-0D)(¢|'B 2;—!5) 1
’ - ' A —g~iA [
(=) s/ T'(s) T (z)
_ sinDsinE 1

A T(o)T(D)ny/
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Next, we expand the complex frequency, u. We have already stated
that,

A = pFE((T. + w-L)Y? — (1)

= y-aa

p=w?+ i, and let mur = w?, and mui = 2.

Next, we expand the term aa into its real and imaginary components;
pl = aa-mur
gl = aa-muz
Which results in,
sin A = sin p1 cosh g1 + ¢ cos plsinh gl

The same is then done for terms B, C, D and E such that;

B = p-bb
p2 = bb-mur
g2 = bb-mus

sin B = sin p2 cosh ¢2 + 1 cos p2sinh ¢2,and

C = p-cc

p3 = cc-mur

60




g3 = cc-mut

sin C = sin p3 cosh ¢3 + ¢ cos p3 ginh ¢3

D = p.dd
p4 = dd-mur
g4 = dd-mui

sin D = sin p4 cosh ¢4 + ¢ cos p4sinh g4

E = p-ee

p5 = ee-mur

q5 = ee-mui

sin E = sin p5 cosh ¢5 + 1 cos p5 sinh ¢5

Performing the necessary complex expansions on these terms results in the usable

forms of the Green’s function as;

mur(nrl 4+ nr2) + mui(nil — ni2)

) e TG @) + )

mur(nil — ni2) — mui(nrl + nr2)
drl,/mg\‘/ T'(s)T(z)(mur? + mui?)

GRI(s,z) =

_ mui(nr3 + nrd) + mui(ni3 — ni4)

GRR(8,z) =
(4:2) dr2,/mi\ T(s)T(z) (mur® + mui?)

mur{ni3 — ni4) — mut(nr3 + nr4)
dr2./m; \y T (s)T(z)(mur? + mus?)
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(A.15)

(A.16)
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where;

nrl = sin p1 cosh ¢l{sin p2 cosh g2 sin p3 cosh g3 — cos p2sinh ¢2 cos p3sinh ¢3]
nr2 = cos pl sinh g1|cos p2 sinh g2 sin p3 cosh ¢3 + cos p3 sink ¢3sin p2 cosh ¢2]
nrd = sin pl cosh g1[sin p4 cosh g4 sin p5 cosh ¢5 — ccs p4 sinh ¢4 cos p5sinh ¢5

nr4 = cos pl sinh g1[cos p4 sinh g4 sin p5 cosh ¢5 + cos p5 sinh ¢5 sin p4 cosh g4
nil = sin pl cosh g1[cos p2 sinh ¢2 8in p3 cosh ¢3 + cos p3 sinh g3 sin p2 cosh ¢2]
ni2 = cos plsinh ¢1{sin p2 cosh ¢2 sin p3 cosh g3 — cos p2sinh ¢2 cos p3sinh ¢3

nt3 = sin pl cosh g1{cos p4 sinh ¢4 sin p5 cosh ¢3 + cos p5 sinh ¢5 sin p4 cosh ¢4

nt4 = cos pl sinh ¢1[sin p4 cosh ¢4 sin p5] cosh g5 — cos p4 sinh g4 cos p5sinh ¢5
dr1 = sin p1%cosh g1? + cos p1%sinh q1?

drl = dr2
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