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Abstract

Bringing massive connectivity to low-cost, low-power ocean sensors is important for
numerous oceanographic applications (across climate/weather modeling, marine biol-
ogy, aquaculture, and defense). However, standard IoT technologies (e.g, Bluetooth,
WiFi, GPS) cannot operate underwater, which has left 70% of our planet (the ocean)
beyond their reach. In this thesis, I describe how we can change this reality by in-
troducing IoT technologies that are inherently designed for the ocean. Specifically,
I show how by rethinking the entire IoT technology stack in the context of oceans,
we introduced low-cost (< $100), net-zero-power, scalable connectivity technologies
that seamlessly operate underwater and pave the way for massive underwater sensing,
networking, localization, and machine learning.

The thesis makes four fundamental contributions: First, it introduces ultra-wideband
underwater bacskcatter, a technology that enables scalable, battery-free underwater
communication. Second, it demonstrates how we can push the network throughput of
underwater backscatter through a family of techniques including higher-order modu-
lation techniques, self-interference cancellation, and multi-access protocols. Third, it
shows how we can leverage our underwater backscatter nodes to enable a battery-free
underwater GPS for localization and navigation. Finally, it demonstrates the feasi-
bility of battery-free inference and machine learning in underwater environments by
developing a task-specific deep neural network (DNN) model and deploying it on our
battery-free underwater nodes.

I deliver these contributions by designing and building new algorithms, systems
and protocols for ultra low-power and scalable underwater sensing, networking, local-
ization and inference. I also implement and evaluate these systems in real underwater
environments (including rivers and lakes) and challenging weather conditions (includ-
ing snow and rain), and discuss how they pave the way for new applications in ocean
climate monitoring, underwater navigation, ocean exploration, robotics, aquaculture,
and marine discovery.

Thesis Supervisor: Fadel Adib
Title: Associate Professor of Media Arts and Science
and Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Energy-efficient underwater networking has recently witnessed mounting interest from

academia and industry due to emergent needs for its environmental, defense, and in-

dustrial applications [63, 41, 37, 44]. Concerns about the impact of climate change

on ocean health have prompted oceanographers and climatologists to seek sensor net-

works that can be used to monitor ocean vital signs such as carbon balance, coral reef

conditions, and biodiversity [52, 58, 72]. On the defense front, DARPA launched the

“Ocean of Things” program in 2017 to propel the development of low-cost, low-power

distributed sensor networks that can enhance maritime situational awareness [17].

Major industry players – including Google, Microsoft, and Honeywell – have also

become increasingly interested in deploying such networks to monitor underwater in-

frastructures ranging from oil and gas pipelines [28] to submerged datacenters [103].

Despite major advances in underwater technologies, existing proposals remain far

from the vision of a low-cost, low-power distributed architecture for a subsea IoT. The

majority of today’s systems rely on point-to-point communication between modems

that require at least 50-100 Watts for data transmission [95, 60], a power level that

quickly drains the batteries of underwater sensors and limits their lifetime. Early

workarounds for this high power consumption problem involved heavy duty-cycling

which strangled the data rates to within few to tens of bits per second [42, 40]. Recent

work on underwater wireless charging [31, 62] and backscatter [37] promises to extend

battery life and to reduce the power consumption of underwater communication to

16



(a) Batteryless underwater sensor (b) Testing in Charles River

Figure 1-1: Underwater Battery-less Sensor. (a) shows one of our batteryless
sensors harvesting energy from sound to power up and communicate. (b) shows two
students dipping multiple batteryless nodes in the Charles River at the MIT Sailing
Pavilion in Cambridge, MA.

sub-milliWatt levels; however, these systems are still limited in their throughput,

operational range, and scale. For example, the state-of-the-art system for underwater

backscatter is limited to 3 kbps and a maximum distance of 10 m [37].

This thesis presents new systems, algorithms, and protocols to enable ultra-low-

power and scalable underwater sensing, networking, localization and inference.

The combination of these algorithms and hardware-software systems enables us

to sense the underwater environment at scale at extremely low power using low-cost

acoustic sensor nodes. Fig. 1-1(b) shows one of our underwater sensor nodes being

tested in the Charles River in Cambridge, MA. Our sensors have three key properties

that make their designs particularly powerful: First, they operate entirely based on

energy harvested from underwater acoustic signals, which allows them to operate at

net-zero power. Second, these sensors employ underwater backscatter for communi-

cation, a technology that consumes six orders of magnitude lower power than prior

underwater acoustic modems. Third, their communication and sensing capabilities

are robust, as evidenced through our implementation and extensive evaluation in real

underwater environments.
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Figure 1-2: Underwater Backscatter. The figure depicts the operation principle
of underwater backscatter communication.

1.1 Underwater Bacskcatter

The systems developed in this thesis rely on a low-power communication method

called underwater backscatter. In this section, we provide a primer on underwater

backscatter by briefly describing the principle, and we refer the interested reader to

[37] for more details.

Underwater backscatter systems typically consist of a projector, a hydrophone

receiver, and a network of batteryless nodes. For simplicity, let us focus on a single

backscatter node, as shown in Fig. 1-2. The projector transmits an acoustic signal

on the downlink. The backscatter node harvests energy from the downlink signal to

power up, and it communicates by modulating the reflections of impinging acoustic

signals. A remote hydrophone can sense these reflections and use them to decode the

transmitted packets from the backscatter node.

In order to harvest energy and modulate acoustic reflections, underwater backscat-

ter nodes rely on piezoelectric resonators. Piezoelectric materials transform sound

into electrical energy, enabling these sensors to harvest energy and power up. Once

powered up, they can modulate their acoustic reflections by changing the impedance

across the terminals of the piezoelectric transducer. Prior designs change this impedance

by simply toggling a switch between the terminals of the piezoelectric resonator. By

18



Figure 1-3: Backscattered BPSK Signal. The figure plots the amplitude of the
BPSK backscattered signal as a function of time.

switching between reflective and non-reflective states, they can communicate bits of

zero and one.

Fig. 1-3 shows the received signal by a hydrophone in one of our experimental

trials. The figure plots the amplitude as a function of time. At around 2.1s, the

amplitude jumps because the projector starts transmitting. Shortly thereafter, we can

see that the received signal starts alternating between two amplitudes, corresponding

to the two reflective states of the backscatter node. The hydrophone can map these

amplitude changes to bits of zero and one, and use them to decode the packets

transmitted by a backscatter node. This standard backscatter modulation scheme is

inherently limited to only two reflection states.

Prior to this thesis, research on underwater backscatter demonstrated its feasi-

bility as a communication modality, but was significantly limited in its scalability,

throughput, and sensing capabilities. For example, state-of-the-art prior systems

could achieve throughputs of only a couple of kbps and operate at ranges of few me-

ters. My thesis builds on this foundational past work and is the first to show how

underwater backscatter can be scaled toward massive battery-free underwater net-

working and sensing that achieve orders of magnitudes higher throughput and range,

and are capable of new sensing applications that were not feasible before.
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Transducer BaseMold

Top Cap

Inner Piezo Outer Piezo

Transducer BaseMold

Top Cap

Inner Piezo Outer Piezo

(a) Pre-potting Components (b) Potted Transducer

Figure 1-4: Fabricated 𝑈2𝐵 transducer. (a) shows the different components of a
𝑈2𝐵 transducer prior to potting. (b) shows one of our potted 𝑈2𝐵 transducers which
was tested in the Charles River.

1.2 Systems Developed

My thesis contributes four main systems for scalable networking and sensing with

underwater backscatter.

1. Ultra-Wideband Underwater Backscatter: I present 𝑈2𝐵, a technology

that enables ultra-wideband backscatter in underwater environments. In contrast

to prior approaches for underwater backscatter whose bandwidth (and throughput)

was limited by their resonance, 𝑈2𝐵 synthesizes a large number of resonances to

enable ultra-wideband operation. At the core of its design is a novel metamaterial-

inspired transducer for underwater backscatter (see Fig. 1-4 for a sample fabricated

node). 𝑈2𝐵’s design also introduces new backscatter algorithms that enable long

operational range and higher throughput for underwater backscatter. In Chapter 2, I

explain how we designed and fabricated 𝑈2𝐵 nodes and tested them in a river across

different weather conditions, including snow and rain. I also describe our empirical

evaluation, which demonstrated that 𝑈2𝐵 can achieve throughputs of up to 20 kbps,

and an operational range up to 62 m. In comparison to the state-of-the-art prior

system for underwater backscatter, this design achieves 5× more throughput and 6×

more communication range. Moreover, our evaluation of 𝑈2𝐵 represents the first ever

experimental validation of underwater backscatter in the wild.
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2. Higher-Order Modulation for Underwater Backscatter: While 𝑈2𝐵 nodes

increase the bandwidth of underwater backscatter, their throughput remains lim-

ited by their simple binary modulation scheme. To overcome this limitation and

enable higher spectral efficiency, I present PAB-QAM, the first underwater backscat-

ter design capable of achieving higher-order modulation. PAB-QAM exploits the

electro-mechanical coupling property of piezoelectric transducers to modulate their

reflection coefficients. Specifically, by strategically employing reactive circuit com-

ponents (inductors), we demonstrate how PAB-QAM nodes can modulate the phase

and amplitude of acoustic reflections and realize higher-order and spectrally-efficient

modulation schemes such as QAM. In Chapter 3, I elaborate on how we designed

and built a prototype of PAB-QAM and empirically evaluated it underwater. Our

empirical evaluation demonstrates that PAB-QAM can double the throughput of

underwater backscatter without requiring additional power, spectrum, or cost. Ad-

ditionally, Chapter 3 introduces strategies for concurrent transmissions, full-duplex

communication and self-interference cancellation for scalable, reliable and robust un-

derwater networking. Such increased throughput paves way for various subsea IoT

applications in ocean exploration, underwater climate monitoring, and marine life

sensing.

3. Underwater Backscatter Localization: Chapter 4 presents the design and

demonstration of the first underwater backscatter localization (𝑈𝐵𝐿) system. Our

design explores various challenges for bringing localization to underwater backscatter,

including extreme multipath, acoustic delay spread, and mobility. We describe how

an adaptive and context-aware algorithm may address some of these challenges and

adapt to diverse underwater environments (such as deep vs shallow water, and high

vs low mobility). We also present a prototype implementation and evaluation of

𝑈𝐵𝐿 in the Charles River in Boston, and highlight open problems and opportunities

for underwater backscatter localization in ocean exploration, marine-life sensing, and

robotics.
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Figure 1-5: Design of battery-free inference on underwater edge nodes: The
system harvests energy from sound and powers up an on-board sensor. The sensor
records animal sounds and feeds them to the processor for inference

4. Underwater Battery-Free Machine Learning: Finally, Chapter 5 of this

thesis demonstrates how we can enable inference on battery-free edge devices in un-

derwater environments. The key question that this chapter addresses is the following:

Can we design and build battery-free devices capable of machine learning and infer-

ence in underwater environments? An affirmative answer to this question would have

significant implications for a new generation of underwater sensing and monitoring ap-

plications for environmental monitoring, scientific exploration, and climate/weather

prediction. To answer this question, this chapter explores the feasibility of bridging

advances from the past decade in two fields: battery-free networking and low-power

machine learning. Our exploration demonstrates that it is indeed possible to en-

able battery-free inference in underwater environments. Chapter 5 explains how we

designed a device that can harvest energy from underwater sound, power up an ultra-

low-power microcontroller and on-board sensor, perform local inference on sensed

measurements using a lightweight Deep Neural Network, and communicate the infer-

ence result via backscatter to a receiver. Fig. 1-5 shows the system architecture for

our device, which includes energy harvesting, edge processing and inference, acoustic

sensing, and underwater backscatter. We tested our prototype in an emulated ma-

rine bioacoustics application, demonstrating the potential to recognize underwater

22



animal sounds without batteries. Through this exploration, we also uncover chal-

lenges and opportunities for making underwater battery-free inference and machine

learning ubiquitous.

This remaining chapters discuss the above four systems in chronological order of

developments. The techniques presented in these chapter lay the foundation of an

ongoing exploration of how we can design and build a battery-free subsea IoT for

applications in ocean exploration, marine life sensing, and underwater climate change

monitoring.
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Chapter 2

Ultra-Wideband Underwater

Backscatter

We present Ultra-wideband Underwater Backscatter (𝑈2𝐵), a system that enables

scalable and ultra-low power underwater networking. The system brings the bene-

fits of Ultra-Wideband (UWB) technology to low-power underwater communication.

UWB is a mature technology in radio frequency (RF) communication1 and has been

used to extend communication range [24], boost throughput [65], and scale radio

networks via concurrent transmissions [35, 36]. However, existing UWB RF systems

cannot be used for underwater communication because RF attenuates exponentially

in water. This is why today’s underwater communication systems primarily rely on

acoustic signals, which have good propagation properties in water [33, 90].

Bringing UWB to underwater backscatter faces multiple challenges. First, un-

derwater communication nodes, including backscatter nodes, rely on resonant piezo-

electric transducers. These transducers have high efficiency when transmitting and

receiving sound at their resonance frequency, but their performance quickly degrades

as the frequency moves away from resonance. Hence, they are limited to narrow band-

widths. Second, backscatter communication is inherently full-duplex and suffers from

self-interference between the transmitted signal and the backscatter response. This

1A communication system is defined as UWB if its bandwidth is larger than 20% of its center
frequency [92].

24



problem is exacerbated for UWB backscatter since UWB signals are typically below

the noise floor making it more difficult to detect and decode them in the presence

of strong self-interference. Finally, scaling underwater UWB backscatter to multiple

nodes will introduce new forms of interference and require new mechanisms to dis-

entangle interfering signals and decode them in frequency-selective and time-varying

underwater environments.

At the heart of 𝑈2𝐵’s approach to overcoming these challenges is a metamaterial-

inspired transducer design for underwater backscatter. Metamaterials are artificial

materials (or material composites) that exhibit properties which would otherwise not

occur in nature. In the context of 𝑈2𝐵, we needed to develop a backscatter transducer

that exhibits wideband properties.

Before we describe our new transducers, let us understand why traditional low-

power designs have a limited bandwidth. Fig. 2-1(a) shows a typical underwater

transducer consisting of a piezoceramic cylinder. Piezoceramic cylinders are used for

transmitting and receiving sound underwater because they can transform sound to

electric signals, and vice versa. The geometry of these transducers determines their

resonance frequency. In the above figure, the resonance frequency is determined by the

thickness, radius, and material composition of the piezoceramic cylinder. (By analogy,

guitar strings have a resonance frequency that is determined by their thickness, length,

and material). Existing underwater communication systems leverage this property to

maximize the efficiency of backscatter and energy harvesting by transmitting sound

at the resonance frequency of the transducer.2 However, the signal-to-noise ratio

(SNR) and energy harvesting efficiency significantly degrade outside this frequency

(as shown in Fig. 2-1(a)). In principle, it is possible to use a non-resonant transducer;

however, such a design is undesirable as it would be inefficient and would further limit

the range and SNR of underwater communication [74, 19].

To overcome the bandwidth limitation while maintaining high efficiency, 𝑈2𝐵 syn-

thesizes different forms of resonance through the multi-layer (metamaterial) design

2While past systems have tried to shift the resonance electrically [37], they can only do so by a
small amount (around 2-3kHz) but remain limited by the mechanical resonance of the piezoceramic
cylinder’s geometry.
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(a) Traditional Single-Layer Resonator

(b) 𝑈2𝐵’s Metamaterial Design

Figure 2-1: 𝑈2𝐵 Synthesizes Resonances to Achieve UWB Performance. In
each of (a) and (b), the left figure shows the transducer architecture, the middle
figure shows the SNR as a function of frequency, and the right figure shows one of
the vibration modes – or eigenmodes – of the active layers.

shown in Fig. 1(b). The design alternates between active (piezoelectric) layers and

passive (polymer) layers. It makes use of two kinds of resonance: the first (shown

in blue and yellow) is similar to that of standard transducers and arises from the

primary resonance of each individual piezoceramic layer. The second and more in-

teresting, kind of resonance arises from the passive coupling between the different

active layers. Even though the polymer layers are themselves passive, by sandwiching

them between two piezoceramic layers, we impose new constraints on how the active

layers may stretch and squeeze concurrently. This coupled interaction yields addi-

tional resonances that fill in the gaps between the first two types of resonances, thus

resulting in wideband operation (depicted by green curves in Fig. 2-1(b)). Each of

these resonances corresponds to a complex vibration mode – called eigenmode. The

combination of these eigenmodes allows 𝑈2𝐵 to achieve high-efficiency backscatter

over a wide bandwidth. In 2.2.1, we explain this multi-layered design in detail, and

in 2.3.1, we describe how 𝑈2𝐵 can independently or jointly activate different layers

for communication and energy harvesting.
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A major benefit of UWB RF technologies is that they can extend the communi-

cation range between two nodes by allowing them to decode packets that are received

below the noise floor [77]. Specifically, a UWB transmitter can apply a spread-

spectrum code (e.g., CDMA) before transmitting its packet, and a UWB receiver can

correlate with the same code to boost the received signal and decode packets that are

orders of magnitude below the noise floor.3 In the context of underwater backscatter,

however, the communication range is not only limited by the noise floor, but also by

the strong self-interference between the transmitted and received signals (since the

nodes communicate by modulating the reflection of a continuous downlink signal sent

from a remote transmitter). This self-interference limited past systems’ operational

range to within a few meters [37].

To overcome this challenge, 𝑈2𝐵 exploits the multi-resonant wideband transducer

and shifts the backscatter response to an out-of-band channel. Specifically, 𝑈2𝐵’s

ultra-wide bandwidth allows it to divide its available spectrum to multiple orthogonal

frequency channels and to use separate channels for downlink and uplink communi-

cation. Let us assume the downlink packet is transmitted at 40 kHz. The backscatter

node can leverage the non-linear nature of backscatter to shift the uplink response

to a different center frequency, e.g., 20 kHz. A remote receiver that obtains both the

strong downlink (at 40 kHz) and weak backscatter uplink (at 20 kHz) can simply

filter out the downlink signal in hardware. This approach allows it to cancel self-

interference and decode the weak backscatter packet even if it is orders of magnitude

weaker than the transmitted signal or the noise floor.

𝑈2𝐵’s design builds on the above primitives to address many of the limitations of

prior low-power subsea IoT proposals. Beyond increasing the communication range,

it uses the wide bandwidth to boost throughput and increase the number of frequency

channels available for communication, thus scaling the subsea IoT to dozens of nodes.

We implemented a prototype of 𝑈2𝐵 and tested it in a river and indoor pools.

We mechanically fabricated our metamaterial transducers in-house; our fabrication

process (detailed in 2.3) involved designing and 3D printing the molds, stacking

3By analogy, GPS receivers use such coding mechanism to decode signals with SNRs of -20 dBm.
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(electrically and mechanically) piezoceramic transducers, and curing the transducers

under high-pressure environments. Our prototype evaluation was performed with

integrated energy-harvesting micro-controllers as well as with software radio-based

nodes (USRP N210 [22] with LFRX daughterboards [2]). Our empirical evaluation

across around 400 experimental trials demonstrated the following results:

• In comparison to single-layer backscatter nodes, 𝑈2𝐵’s design boosts the through-

put from 3kbps (of the state-of-the-art system) to more than 20 kbps. Such

throughput is considered on the high end of underwater communication sys-

tems, and can enable new applications such as streaming low-resolution images

(e.g., for coral reefs or aquafarms).

• 𝑈2𝐵’s self-interference cancellation approach allows it to mitigate the direct sig-

nal from the projector. Practically, we show that it enables us to communicate

at up to 60 m.

Contributions: 𝑈2𝐵 is the first system that enables ultra-wideband underwater

backscatter. Its design introduces a novel metamaterial-based transducer that syn-

thesizes multiple resonances to achieve wideband operation. The design brings various

capabilities to the subsea IoT domain, including out-of-band self-interference cancel-

lation and multi-channel communication. The Chapter also demonstrates a prototype

implementation and evaluation in challenging real-world environments.

2.1 The Narrowband Problem

We start by explaining why existing solutions for underwater backscatter have a

limited bandwidth. Then, in 2.2, we explain how 𝑈2𝐵 overcomes this problem by

introducing an ultra-wideband design.

2.1.1 Underwater Backscatter

Recall from section 1.1 that in underwater backscatter the backscatter node commu-

nicates by modulating its reflections. Specifically, it can send bits of zero and one by
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alternating between reflective and non-reflective states.

The signal-to-noise ratio (SNR) of the received signal is determined by the dif-

ference between the reflective and non-reflective states. It is given by the following

equation:

𝑆𝑁𝑅 =
|𝑃reflective − 𝑃non-reflective|2

|𝑁 |2

where 𝑃reflective and 𝑃non-reflective refer to the pressure received by the hydrophone4 in

the reflective and non-reflective states and 𝑁 refers to the amplitude of noise. The

square indicates the power.

We can simplify the above equation by rewriting it as a function of the reflection

coefficient Γ and the incident pressure 𝑃incident as follows:

𝑆𝑁𝑅 = |Γreflective − Γnon-reflective|2
|𝑃incident|2

|𝑁 |2
(2.1)

To modulate the reflection coefficient of sound, underwater backscatter nodes rely

on piezoelectric materials. Specifically, by opening and shorting the terminals of that

material (via a switch as shown in Fig. ??), they can toggle between the two reflective

states, thus enabling backscatter communication.

2.1.2 The Resonance Bottleneck

While using piezoelectric materials enables underwater backscatter, it limits the band-

width of underwater communication. Specifically, piezoelectric materials must be

operated at a specific resonance frequency – also called the natural frequency of the

material. At resonance, they vibrate with a large amplitude, which leads to high

efficiency in sending and receiving sound. A popular example of resonance is how an

opera singer can break glass with her voice [69, 71]; in particular, when the singer’s

voice matches the resonance frequency of the glass, the glass vibrates with higher

and higher amplitudes and eventually breaks [69, 71]. Similarly, when piezoelectric

materials are excited by their resonance frequency, they generate stronger signals.

4Note that the amplitude of the electric field in RF is replaced by the amplitude of the pressure
wave in acoustics.
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(a) At 𝑓 = 𝑓𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 (b) At 𝑓 ̸= 𝑓𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒

Figure 2-2: Single-Layer Eigenmode. The figure shows the amplitude of the
piezo vibration across its body when it is excited (a) at resonance, and (b) outside
resonance. The vibrations are visualized as a heat map where red and blue represent
high and low vibration amplitudes respectively.

To gain more insight into the bandwidth problem, we simulated a piezoceramic

cylinder’s vibration at different frequencies and measured the amplitude of vibration.

Fig. 2-2 visualizes the amplitude as a heatmap over the cross-section of the piezoelec-

tric cylinder.5 The heatmap shows the largest amplitude of vibration in red and the

lowest amplitude of vibration in blue. Fig. 2-2(a) shows that when the cylinder is

excited by its resonance frequency, it expands and shrinks in the radial direction with

a large amplitude; this radial vibration is called an eigenmode and the corresponding

frequency is called an eigenfrequency. Fig. 2-2(b) shows that when the same cylinder

is excited by a frequency far from its resonance, the vibration amplitude is very small.

This simulation verifies that operating at resonance is necessary to achieve high ef-

ficiency in transmitting and receiving sound. What is less clear – and has not been

well-studied in past work – is why resonance limits the underwater backscatter band-

width of piezoelectric materials. The rest of this section focuses on understanding

this problem.

The impact of resonance on SNR. Recall from Eq. 2.1 that the SNR depends

on the difference between the reflection coefficients in the two backscatter states.

The reflection coefficient itself is a function of the acoustic impedances of water and

the piezoelectric material. Mathematically, the reflection coefficient can be described

5We used the COMSOL Multiphysics software [1] to simulate the vibrations of the piezoceramic
cylinder.
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Figure 2-3: Backscatter and Resonance. The figure plots the absolute value of
the difference in the reflection coefficient (between open and short cases) as a function
of normalized frequency and as a function of the normalized imaginary component of
piezo-transducer impedance.

using the following equation:

Γ =
𝑍𝑝𝑖𝑒𝑧𝑜 − 𝑍𝑤𝑎𝑡𝑒𝑟

𝑍𝑝𝑖𝑒𝑧𝑜 + 𝑍𝑤𝑎𝑡𝑒𝑟

(2.2)

where 𝑍𝑝𝑖𝑒𝑧𝑜 and 𝑍𝑤𝑎𝑡𝑒𝑟 refer to the acoustic impedances of the piezoceramic cylinder

and water. During backscatter, the terminals of the piezoelectric are opened and

shorted, resulting in different piezoelectric impedances 𝑍𝑝𝑖𝑒𝑧𝑜 across the two states.

This, in turn, modulates the reflection coefficient and enables backscatter.

Next, we would like to understand the impact of frequency on the SNR. Fig. 2-3

plots the absolute value of the difference in reflection coefficients (between open and

short cases) as a function of frequency and as a function of the impedance of 𝑍𝑝𝑖𝑒𝑧𝑜.

We make the following remarks from the figure:
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• At the resonance frequency, the difference in reflection coefficients between

the two states is maximized, resulting in the highest SNR. The SNR degrades

quickly outside resonance.

• The figure also plots the difference in reflection coefficients as a function of the

imaginary part of the impedance. It demonstrates that the SNR is maximized

when the imaginary component of the impedance is zero. Intuitively, the imagi-

nary part is zero when the vibration of the cylinder’s wall and the acoustic wave

are in-phase (i.e, the phase 𝜑 of the complex impedance is zero). In reference to

the opera singer analogy, when the singer’s voice and the glass vibrate in-phase,

the glass’s amplitude increases.

We can also show this mathematically. The impedance is a function of the

cylinder’s mass 𝑀 , its stiffness 𝐾, and its resistance 𝑅. Formally, we show

in the appendix that the backscatter acoustic impedance can be given by the

following equation:

𝑍𝑝𝑖𝑒𝑧𝑜 = 𝑅 + 𝑗𝜔

(︂
𝑀 − 𝐾

𝜔2

)︂
The above equation reaffirms that the absolute value of the impedance is min-

imized when its imaginary part is zero. The equation also shows that the

resonance frequency is 𝜔 =
√︀

𝐾/𝑀 .

• The figure repeats the same simulation for different resistance values 𝑅, which

correspond to different damping coefficients. While more damping leads to lower

SNR, it does not impact the resonance frequency.

Before we move on to describe ’s approach to overcoming this narrowband prob-

lem, it is worth reflecting on the difference in effective bandwidth between underwater

piezoelectric backscatter and RF backscatter (e.g., RFIDs). RF backscatter operates

at a much higher center frequency (𝐺𝐻𝑧) than acoustic/ultrasonic backscatter (∼

tens of 𝑘𝐻𝑧). As a result, a communication bandwidth of 20 kHz for piezoacous-

tic backscatter would be of the same order as its center frequency, but that same

bandwidth would be less than 1% the center frequency of RF communication. As
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per Fig. 2-3, this makes it significantly more difficult for piezo-acoustic backscatter

than for RF backscatter to achieve high SNR across the same bandwidth (since the

absolute value of the difference in reflection coefficient is a function of the normalized

frequency).

(I)
(II)

(III)
(I) (II) (III)

(IV) (V) (VI) (VII)

Figure 2-4: Eigenmodes and Eigenfrequencies of 𝑈2𝐵’s Metamaterial De-
sign. The figure in the top left shows the vibration amplitude across the different
eigenfrequencies. (I)-(VII) depict the eigenmodes associated with some of the eigen-
frequencies. The vibration amplitude for each of these eigenmodes is visualized as
a heatmap across the body of the transducer, where red indicates a high amplitude
vibration and navy blue indicates low amplitude vibration.

2.2 Ultra-wideband Meta-material Design

So far, we have explained why existing solutions for underwater backscatter suffer

from a narrow communication bandwidth. In this section, we describe how 𝑈2𝐵

overcomes this challenge via a metamaterial design, and how its design boosts the

throughput, range, and scale of underwater backscatter networking.

2.2.1 Coupled Eigenmodes

A strawman solution to the bandwidth problem is to connect multiple piezoelectric

cylinders, each having a different resonance frequency. However, such an approach
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would result in bulky and costly nodes, and it does not scale well to a wide bandwidth

since it requires adding a new cylinder for each frequency. The design would also

suffer from a directionality problem since placing multiple cylinders side-by-side would

mimic a fixed antenna array (beamforming) behavior.

To provide a scalable, cost-effective, compact, and omnidirectional solution, 𝑈2𝐵

adopts a multi-layer architecture that alternates between active and passive layers.

This architecture is shown in Fig. 2-1(b) and consists of two active piezoelectric layers

and a passive polymer layer sandwiched between them.

Despite its apparent simplicity, 𝑈2𝐵’s multi-layer design has powerful properties

that enable it to operate over a wide bandwidth. First, because its layers are concen-

tric, the transducer does not suffer from a directionality problem. Second, because

the polymer between the two active layers is mechanically compliant (i.e., flexible),

it allows the inner and outer layers to vibrate independently to some extent. This

enables the overall structure to inherit the Eigenfrequency and Eigenmode of both

Piezoelectric layers without suffering from the problems of the strawman approach

described earlier. Finally, even though the polymer itself is flexible, it imposes new

constraints on how the two layers can vibrate with respect to each other, thus result-

ing in a coupled behavior. This coupling provides additional degrees of freedom that

lead to new Eigenmodes and Eigenfrequencies that would not be present in any of

the individual active piezoelectric layers.

We simulated 𝑈2𝐵’s design at different frequencies and show some of the resulting

Eigenmodes and Eigenfrequencies in Fig. 2-4. Similar to our earlier visualization, we

overlay a heatmap of the vibration amplitude on the cross-section of each of the two

layers. Consider mode (I) in the center top of the figure. This mode results from

exciting the transducer at a frequency of 20 kHz, and it corresponds to the original

radial vibration of the outer piezoelectric cylinder. Notice how, in this configuration,

the outer layer exhibits large vibrations, while the inner layer is relatively static. This

verifies that 𝑈2𝐵 can indeed inherent the eigenmode of its active layers.

Next, consider mode (III) in the top right of the figure. This mode is interesting be-

cause both the inner and outer piezos exhibit large radial vibrations as demonstrated
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by the red and yellow central regions in both of them. This eigenmode corresponds

to the scenario where both layers vibrate by bending in opposite directions to each

other. Physically, this mode arises from the fact that both piezoelectric cylinders

have the same height, which results in a bending mode vibration that is enhanced by

stacking them together.6

It is important to note that not all eigenmodes of this multi-layer design have

a simple physical interpretation. In particular, the bottom row of Fig. 2-4 shows

a number of Eigenmodes which would not have been possible without the coupling

between the two active layers. In mode (V), for example, we can see that the internal

layer itself splits into two concurrent radial modes in the top and bottom half of the

cylinder. Such a vibration mode would not be natural for a single-layer piezoelectric

cylinder in the absence of coupling.

The top left of Fig. 2-4 plots the vibration amplitude as a function of frequency.

Surprisingly, the figure demonstrates that 𝑈2𝐵 has a large number of eigenmodes

between 20 kHz and 60 kHz due to its coupled multi-layer design. Mathematically, it

is possible to derive these eigenmodes by solving the following differential equation,

along the different degrees of freedom of this meta-material structure [56]:

𝑑𝑒𝑡(𝜔2𝑀 −𝐾) = 0

To solve this differential equation, we used the COMSOL Multiphysics software [1],

and we defined the coupling between the layers (both active and passive) by apply-

ing continuity constraints on both pressure and velocity across the boundaries. The

wealth of resonances arising from this multi-layer design signals that 𝑈2𝐵 would in-

deed exhibit the desired ultra-wideband behavior. Specifically, the presence of multi-

ple Eigenmodes and Eigenfrequencies would ensure that the backscatter SNR remains

sufficiently high over a wide bandwidth.

Experimental Validation in a River. Next, we would like to empirically verify

that 𝑈2𝐵 exhibits wideband behavior. We ran an experiment to compare the SNR
6Note that this bending mode would also exhibit for each cylinder alone, but would be weaker

than the radial mode (I).
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Figure 2-5: Characteristic Curve for Single and Multi-layer Designs. The
figure plots the characteristic curve for single-layer (in red) and multi-layer (in black)
designs as a function of frequency.

of a 𝑈2𝐵 node to that of a state-of-the-art underwater backscatter node, PAB, which

uses a single-layer piezoelectric resonator. Our experiments were performed in the

river which had a depth of around 4 m. In these experiments, the acoustic transmitter

sends a downlink signal at a frequency of 37.5 kHz. The backscatter node modulates

this signal at different rates, and the hydrophone measures the SNR of the received

signal at the corresponding frequency. (The design of the backscatter node is detailed

in 2.3).

Fig. 2-5 plots the SNR of the received signal as a function of frequency for both

single-layer (PAB, in red) and multi-layer (𝑈2𝐵, in black) designs. The figure plots

the exact values of the measured SNR with dotted-dashed lines, and the smoothed

SNR curves with solid lines. In particular, since the experiment is performed in a river

(i.e., an uncontrolled testing environment), the communication channel is impacted

by various factors – including wind, river current, and depth – and changes rapidly

over time. These changes in the channel impact the result by creating high-frequency

variations that can be seen in the exact values of the resulted SNR. Therefore, we

rely on the smoothed/averaged version of the SNR, shown with the solid line, to

characterize the performance of the two designs.

We make the following observations:

• First, the overall SNR of a 𝑈2𝐵 node is higher than that of the single-layer

node, PAB, across all frequencies. The increased SNR results in higher chan-
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nel capacity – which enables achieving higher throughputs (as we demonstrate

empirically in 2.4.1) – and enables communication over further distances (as we

demonstrate empirically in 2.4.2).

• Second, in the single-layer PAB design, the backscatter SNR is relatively limited

to around 20 kHz (from 10-30 kHz); outside this band, the SNR significantly

decays due to being far from resonance. The limited bandwidth in PAB’s design

limits both the throughput and the available spectrum for communication. In

contrast, 𝑈2𝐵’s multi-layered design exhibits stronger SNR performance over a

wide bandwidth due to its coupled resonance modes. Specifically, the backscat-

ter signal’s SNR in 𝑈2𝐵 remains sufficiently high across the entire band span-

ning 10 kHz to 60 kHz.

• Interestingly, 𝑈2𝐵 achieves higher SNR than PAB even between 10 kHz and

30 kHz. There are two reasons for this improvement. First, the acoustic

impedance matching for 𝑈2𝐵 is higher than that of PAB; this is because the

added polymer layer in 𝑈2𝐵 reduces its density, making its acoustic impedance

closer to that of water. Second, even though the downlink frequency in this re-

gion is close to only one of the active piezoceramic layers, the other layer would

still vibrate, thus enhancing the overall efficiency of 𝑈2𝐵.

𝑈2𝐵 It is worth noting that the backscatter performance is not frequency flat

and exhibits a dip around 35 kHz. This behavior mimics the theoretical simula-

tion in the top left of Fig. 2-4, which also exhibits a dip around that frequency.

𝑈2𝐵 Another point worth noting is that the single-layer node exhibits a small

peak around 55 kHz. This peak is corresponds to the bending eigenmode due

to the length (rather than radius) of the cylinder. This corresponds to mode

(III) in Fig. 2-4, and is reinforced in the multi-layer structure due to coupling.
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Figure 2-6: Exploded Transducer View. The figure shows the exploded transducer
view and the layered piezoceramic structure for 𝑈2𝐵.

2.3 Fabrication & Implementation

In this section, we first explain the fabrication process of 𝑈2𝐵, then elaborate on our

overall setup.

2.3.1 Mechanical Fabrication

Fig. 2-6 shows an exploded view of our transducer design. The transducer consists of

a layered piezoceramic structure. We purchased two different types of piezoceramic

cylinders from Steminc [3] to build 𝑈2𝐵. The outer piezoceramic cylinder has a

nominal resonance frequency of 17 kHz and has an outer radius of 27mm, inner radius

of 23.5mm, and height of 40mm [82]. The inner piezoceramic cylinder has a nominal

resonance frequency of 30 kHz and has an outer radius of 18mm, inner radius of

15.5mm, and height of 20mm [81]; we stacked two of the inner piezoceramic cylinders

and soldered them together to obtain the same height as the outer cylinder. We then

soldered wires to the inner and outer surfaces of each of the cylindrical layers, resulting

in a total of four terminals for each 𝑈2𝐵 transducer. To couple the vibration of the

two piezoceramic cylinders, we filled the space between them with polyurethane. It

is very important to ensure that this polyurethane coupling layer is entirely filled

38



such that it is in contact with the walls of both piezoceramic layers. Otherwise, the

possible delamination may significantly deteriorate the coupled vibration mode.

The fabrication process of 𝑈2𝐵 starts by 3D printing the base and cap of the

transducer. Then, we laser cut a polyurethane gasket with 2mm thickness to match

the size of each of the two cylinders. We placed the gasket and then the piezoce-

ramic cylinders in their designated locations on the base, then screwed and tightened

the cap and base together. This design process ensures that the inside of the in-

ternal piezo remains air-backed even after dipping a 𝑈2𝐵 node in the water. This

design methodology, referred as air-backed design, has been shown to yield to better

performance [37].

Next, the capped piezocylinders were placed inside the 3D printed mold, and we

poured the polyurethane WC-575A mixture from BJB enterprise into the cylinder

mold [4]. We used a transparent cylinder mold to ensure that the outer surface

of the entire structure is covered by the polyurethane mixture, which is needed to

insulate it from the surrounding environment. Notice that the transducer base, as

shown in Fig. 2-6, has several openings in the region sandwiched between the two

piezoceramic cylinders. These openings guide the poured polyurethane polymer to

completely fill the gap and spacing between two piezoceramic layers. Afterwards, the

structure is placed for 12 hours inside a pressure chamber at a pressure of 60psi to

remove any bubbles from the polyurethane solution. We also experimented with using

a vacuum chamber instead of a pressure chamber to remove the bubbles; however,

this approach was less effective in removing the bubbles because of the high viscosity

of the polyurethane mixture.

Fig. 1-4 shows the transducer before and after potting. In Fig. 1-4(a), the in-

ner and outer piezoceramic cylinders are placed on the transducer’s base, and are

separated by empty space (this separation is eventually filled with the polyurethane

mixture for coupling); the figure also shows the outer mold and top cap of the trans-

ducer. Fig. 1-4(b) shows the potted transducer with four electrodes; the electrodes

are connected to the inner and outer surfaces of each of the two piezoceramic layers.

This enables experimenting with different configurations for backscatter and energy
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harvesting. The total cost of each fabricated node is around $120, which includes the

cost of the outer piezo ($41) and the cost of the two inner piezos ($35 each).

2.3.2 Hardware Design

To communicate via backscatter, underwater nodes short and open two terminals of a

piezoelectric transducer as shown in Fig. ??. While a single-layer transducer has only

two terminals (positive and negative terminals of the piezoceramic cylinder), 𝑈2𝐵’s

multi-layer design has four terminals – two for each of its active layers. This provides

different options for backscattering by shorting and opening any of the two terminals.

To enable backscatter while at the same time allowing 𝑈2𝐵 to continuously harvest

energy, we determined that the best approach is to connect the modulating transistor

across the terminals of the outer layer while connecting energy harvesting circuit

across the terminals of the inner layers. This approach allows 𝑈2𝐵 to continuously

operate without the need to alternate periods of energy harvesting and backscatter.

Aside from the front-end, 𝑈2𝐵 adopts a similar approach to prior designs in terms of

rectification for energy harvesting.

In terms of communication protocols, 𝑈2𝐵 adopts similar techniques to prior

backscatter designs, where the downlink projector encodes bits via PWM and uplink

(backscatter) communication is performed via FM0 modulation. In our evaluation, we

experimented with both energy-harvesting backscatter and battery-assisted backscat-

ter. Since energy-harvesting is not the focus of this Chapter, most of our results are

reported from battery-assisted backscatter designs. The power consumption for 𝑈2𝐵

is similar to PAB [37], which ranges from 120𝜇W to 500𝜇W. It is important to note

that that battery-assisted nature does not discount the importance of backscatter

since, being the lowest-power communication technology, it would significantly ex-

tend the battery life of underwater communication.
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2.3.3 Evaluation Setup

Our evaluation setup is composed of three main components: an acoustic projector,

a hydrophone receiver, and a number of 𝑈2𝐵 nodes. Since we explained the design

and fabrication of 𝑈2𝐵 in previous section, below we will explain the other two main

components along with the environment where testing is performed.

(a) Transmitter. To generate an acoustic signal, we used one of our in-house

fabricated 𝑈2𝐵 transducers (discussed in the previous section) as a projector. To

drive the node as a projector, a sine wave with the desired amplitude and frequency

is first generated using the Siglent SDG1032X arbitrary waveform generator [75].

Next, the output of the signal generator is fed to an XLi2500 Two-channel 750W

power amplifier [16]. The output of the amplifier is connected to the terminals of the

outer piezo in differential mode.

(b) Receiver. To record the signal, we used omnidirectional Reson TC 4014 hy-

drophone [86] (flat response from 15 Hz to 480 kHz) with the sensitivity of -180dB re:

1𝑉/𝜇𝑃𝑎 in the differential mode. The output of the hydrophone is connected to USRP

N210 [22] and the data is collected with a sampling rate of 1MSps. To capture the

differential output of the hydrophone, we used two LFRX daughterboards [2] whose

grounds are connected together. Our decoding is performed offline in MATLAB.

(c) Testing Environments. Unless otherwise noted, all of our experiments were

performed in a river. In the river, we chose the test location based on a number of

factors including accessibility, depth, and water current. Some of our experiments

were performed on rainy and snowy days. While changes in weather impacted the

SNR and channel coherence time, 𝑈2𝐵 was capable of operating correctly across

different weather conditions.

2.4 Results

To evaluate the performance of 𝑈2𝐵, we performed controlled and uncontrolled ex-

periments in the river as described in 2.3.3. Our experiments tested 𝑈2𝐵’s through-
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Figure 2-7: SNR vs Bitrate. The figure plots the median SNR as a function of
bitrate for both 𝑈2𝐵 (in red) and PAB (in blue) at two different downlink center
frequencies: 20 kHz (dashed line) and 40 kHz (solid line). The error bars represents
the 25𝑡ℎ and 75𝑡ℎ percentile and the dotted gray horizontal line represents the SNR
needed to get a BER of 10−2.

put, communication range, and its ability to enable concurrent transmissions. We

performed around 400 experimental trials in total. We varied the backscatter rate,

location, and depth of 𝑈2𝐵’s transducers throughout these experiments.

2.4.1 Throughput

First, we are interested in evaluating 𝑈2𝐵’s throughput, and comparing its through-

put to the state-of-the-art underwater backscatter system, PAB. To evaluate 𝑈2𝐵’s

ability to communicate across different bitrates, we fixed the locations of the projec-

tor, hydrophone, and backscatter node, and we varied the backscatter bitrate. We

repeated the same evaluation for both 𝑈2𝐵 and PAB. We also tested each of them at

two different downlink center frequencies: 20 kHz and 40 kHz. In each of our exper-

imental trials, the hydrophone receives the backscatter node’s packet and computes

the SNR of the received signal. The SNR is computed as the ratio of the signal power

(i.e., the square of the channel estimate) to the noise power.

Fig. 2-7 plots the median SNR as a function of the bitrate for PAB (in blue) and

𝑈2𝐵 (in red) at the two center frequencies mentioned earlier. The dotted horizontal

line in the figure represents the SNR needed to achieve a throughput of 10−2, which
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is considered a standard threshold for reliable underwater communication [96]. We

make the following remarks:

• 𝑈2𝐵 maintains high SNR (i.e., above the dashed lines) at throughputs up to

20 kbps. In contrast, the PAB baseline cannot achieve good SNR above 5 kbps.

These results are in line with those reported for PAB [37] and demonstrate

that 𝑈2𝐵 increases the throughput by about 4−5× in comparison to the state-

of-the-art baseline. This result is expected because 𝑈2𝐵’s transducer enjoys a

much wider bandwidth as we demonstrated experimentally in Fig. 2-5. 𝑈2𝐵

The baseline, PAB, performs better when the downlink frequency is at 20 kHz vs

at 40 kHz. This behavior is also expected according to the characteristic curve

in Fig. 2-5, which showed that the system has a higher SNR around the 20 kHz

region, which matches its primary resonance.7 In contrast, 𝑈2𝐵 performs better

when the center frequency is 40 kHz, a result that is also expected since it has

high SNR between 10 kHz and 60 kHz according to its characteristic curve.

• Both 𝑈2𝐵 and PAB follow similar SNR curves when the downlink frequency is

at 20 kHz. This is also expected since their characteristic curves are much closer

in the bandwidth surrounding 20 kHz. Here, 𝑈2𝐵 achieves slightly higher SNR

because it is more efficient even at lower frequencies as described in 2.2.1.

• Beyond 20 kbps, the SNR drops close to 0 dB for both 𝑈2𝐵 and PAB. This is

expected because the backscatter node becomes inefficient beyond 60 kHz (i.e.,

40 kHz center frequency + 20 kHz backscatter rate) which can also be seen from

the characteristic curve in Fig. 2-5.

2.4.2 Range

We would like to evaluate the range at which we can reliably communicate with

𝑈2𝐵. In this experiment, we varied the distance between the backscatter node and

the hydrophone/projector pair. The hydrophone and projector were co-located (1m
7Note that the SNR from Fig. 2-5 is that of a single-carrier as described in 2.2, which is different

from the communication SNR described in this section.
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Figure 2-8: Backscatter SNR vs Distance. The figure plots the backscatter SNR
as a function of distance for different coding rates. Error bars indicate standard
deviation, and solid lines indicate smoothed curves.

apart) and the backscatter device was moved further away (up to 62m round trip).

At each distance, we applied a CDMA-style code and measured the received signal’s

SNR after coding. To deal with the low power of the backscatter response, we applied

codes of different lengths: 30s, 60s, and 120s. We repeated each experiment at least

3 times at each rate and distance.

Fig. 2-8 plots the SNR as a function of distance for each of the coding rates. We

make the following remarks:

• The figure shows that 𝑈2𝐵 nodes can be used to communicate up to 60 m (SNR

>3dB).8 Such range represents more than 6× improvement over the baseline

(PAB) [37].

• The SNR decreases with distance across different coding rates. This is expected

because the signal power decays with distance. Moreover, the trend follows the

theoretically expected decay resulting from the round-trip path loss.

• Applying longer codes enables us to communicate over further distances. Specif-

ically, 30s, 60s, and 120s codes can communicate up to 32m, 48m and 60m
8Note that we used the 3 dB threshold here instead of the 7 dB one since we use coding.
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respectively. Moreover, since our USRP receiver is limited to a 14-bit ADC, it

would be possible to communicate over longer ranges with higher-bit ADCs due

to the higher dynamic range.

2.5 Conclusion

Motivated by recent advances in underwater backscatter and ultra-low power net-

working, this Chapter introduces a new design, 𝑈2𝐵, that marks a significant step

forward in this domain. The design bridges recent advances in metamaterials to the

underwater backscatter problem, and demonstrates significant improvements over

state-of-the-art proposals. As the research evolves, we hope that these techniques

would enable truly ubiquitous subsea IoT systems that can be used for climate change

monitoring, marine life sensing, and ocean exploration.
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Chapter 3

Pushing the Network Throughput of

Underwater Backscatter

In this chapter, we ask the following question: Can we bring higher-order modulation

to underwater backscatter sensors while maintaining their battery-free nature? A

positive answer to this question would allow us to achieve higher throughput while

maintaining the ultra-low-power and low-cost nature of backscatter communication.

To understand the difficulty in achieving higher-order modulation with underwater

backscatter, let us first briefly recall how existing backscatter sensors operate. These

sensors differ from traditional communication modems in that they do not expend

their own energy for transmission. Instead, they communicate by modulating the

reflections of existing underwater acoustic signals. Specifically, they transmit bits

of ‘0’ and ‘1’ by switching between reflective and non-reflective states. A remote

receiver can sense these acoustic reflections to decode the transmitted packets from

the backscatter node.1

While the backscatter approach described above enables ultra-low-power com-

munication, it suffers from limited modulation capabilities. In particular, existing

underwater backscatter nodes, like that shown in Fig. 3-1(a), can alternate between

only two reflective states (as discussed in section 1.1). This can be done by toggling a
1Note that such reflections can be omnidirectional. Moreover, backscatter nodes apply a code on

their transmissions, thus enabling a receiver to use this code in order to isolate their packets from
other unmodulated reflections in the environment.
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Figure 3-1: PAB-QAM (a) shows one of our potted PAB transducers (b) shows the
schematic design for PAB-QAM.

switch (transistor) on and off between the two terminals of their piezoelectric trans-

ducer. As a result, they cannot realize higher-order modulation schemes like QAM

(Quadrature Amplitude Modulation) which require modulating both the phase and

the amplitude of their transmissions. Unfortunately, this limitation has prevented

prior designs from achieving higher throughputs via higher-order modulations.

We present PAB-QAM , the first underwater backscatter sensor design capable of

higher-order modulation. PAB-QAM exploits the electro-mechanical coupling prop-

erty of piezoelectric transducers in order to achieve complex reflection coefficients

and realize a larger number of reflection states. Fig. 3-1(b) shows the schematic of

our design for PAB-QAM , which consists of a piezo-electric transducer connected

to a multi-load switching network. At a high level, the system is able to achieve

multiple reflection states by toggling between different complex load impedances 𝑍𝑖

connected between the terminals of the backscatter sensor node. Specifically, the

electrical impedance of the load determines the vibration amplitude and phase of the

piezo-electric resonator (i.e. reflection). A receiver can sense these different reflection

states and use them to decode the transmitted messages. Hence, by enabling more

than two reflection states, this design allows us to transmit multiple bits per symbol,

thereby achieving higher throughput than prior underwater backscatter designs.

In the rest of this chapter, we describe the theoretical and practical aspects of

the design and implementation of PAB-QAM . We also present an empirical evalua-
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tion that demonstrates how our approach can double the throughput of underwater

backscatter communication, thus paving way for richer sensing applications in the

context of subsea IoT. Finally, we demonstrate how we can enable robust full-duplex

backscatter communication by employing self-interference cancellation and we also

describe how our design can scale to a large number of nodes using a MAC protocol

with concurrent transmissions.

3.1 System Design

3.1.1 Enabling QAM Backscatter

In this section, we describe how PAB-QAM builds on prior underwater backscatter

designs (as discussed in 1.1) to achieve higher-order modulation. Recall that the

challenge in achieving higher-order modulation is that existing underwater backscatter

systems can only switch between two states, reflective and non-reflective. However,

in order to achieve higher-order modulation, one needs to be able to switch between

more states.

To overcome this challenge and realize a larger number of reflection states, PAB-QAM

exploits the electro-mechanical coupling properties of piezoelectric transducers. Specif-

ically, the reflection properties of a piezoelectric material are determined both by the

material itself (and geometry), and by the electrical load connected to it. In particular,

due to the coupling between the electrical and mechanical components of piezoelec-

tric materials, changing their electric loads would result in changing the amplitude

and phase of their vibration. Since each vibration mode results in a different reflec-

tion state, this allows us to encode more than two types of symbols (i.e., more than

1 bit/symbol). Interestingly, the reflective (closed switch) and non-reflective (open

switch) states of prior underwater bacskcatter designs correspond to two special cases

of this interpretation, where the load impedance is 0 and ∞ respectively.

Mathematically, we can describe the backscatter signal as a function of the reflec-

tion coefficient Γ. The reflection coefficient itself can be expressed as a function of
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Figure 3-2: Backscatter Constellation. This figure plots the constellation points
of the received backscatter signal for: (a) BPSK backscatter, and (b) PAB-QAM .

the source impedance 𝑍𝑠 (i.e., that of the piezo) and load impedance 𝑍𝑙 (i.e., that of

the electrical load) through the following equation:

Γ =
𝑍𝑙 − 𝑍*

𝑠

𝑍𝑙 + 𝑍*
𝑠

(3.1)

Since the source impedance 𝑍𝑠 is constant for a given carrier frequency, we need

to modify the load impedance 𝑍𝑙 to obtain different reflection coefficient values. This

can be done by choosing reactive components (e.g., inductors) as impedance loads.

Fig. 3-1(b) shows how such a design can be realized in practice by having a switch

that can toggle between unique reactive loads.

The above description demonstrates how one can achieve random backscatter re-

flection states. In practice, we would like to strategically choose these states to achieve

high spectral efficiency and high modulation depth (i.e., to separate the reflection co-

efficients in order to increase their resilience to noise). To make this more concrete,

we ran an experiment using a prior (open-close) backscatter design [37]. Fig. 3-2(a)

plots the constellation of the received symbols in the I/Q plane. The plot shows that

the received clustered are diametrically opposite at +/-1. This matches the expected

constellations from standard BPSK modulation.

When adopting higher-order modulations, we would like to similarly separate
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the symbols from each other by the maximum possible distance in the I/Q plane.

Such separation can typically be achieved by implementing higher-order modulation

schemes like Quadrature Amplitude Modulation (QAM) [91]. Thus, we strategically

chose the inductor values of the impedance loads in our implementation such that

they resulted in QAM constellations. Then, we ran an experiment with a PAB-QAM

node, and we plot the constellation of the received symbols in Fig. 3-2(b). The

plot shows PAB-QAM can indeed encode four different symbols spanning the four

quadrants of the I/Q plane – i.e QAM. Thus, it can assign two bits to each symbol

(reflection state), which in turn allows it to achieve twice the throughput compared

to standard underwater backscatter systems, as we demonstrate empirically in 3.2.

Few additional points are worth noting:

• So far, our discussion has focused on the implementation of QAM by using

multiple complex loads. In principle, this same idea can be extended to achieve

other high-order modulation schemes such as PAM, PSK, 16-QAM, etc.2

• An alternative way to achieve higher throughput is to increase the switch-

ing/backscatter rate. However, such an approach may be less desirable for

multiple reasons: first, backscattering at a higher rate would consume more

energy because the oscillator would need to run at a higher frequency. Sec-

ond, higher backscatter rate would require larger bandwidth; however, since

piezo-transducers are typically narrow-band, this would result in lower SNR

(signal-to-noise ratio). Finally, since the underwater channel is frequency-

selective, spreading the signal over a wider bandwidth would complicate the

decoding process [84, 10]. Despite these drawbacks, one might still want to

adopt higher rates for certain data-intensive applications. In such scenarios,

one can combine PAB-QAM with recent ultra-wideband underwater backscat-

ter designs (discussed in Chapter 2) [25] as two complementary mechanisms to

boost throughput.

2It is worth noting that prior work has demonstratted QAM for RFIDs [88]. PAB-QAM is
inspired by this line of work and brings higher-order modulation to underwater backscatter.
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• Finally, it is worth noting that our above discussion has ignored the impact of

the channel on the constellations. In practice, one can estimate and invert the

channel using standard channel estimation techniques from the communication

literature [91]. This is typically done by transmitting a training sequence in

the preamble 𝑝𝑛, and estimating the channel ℎ from the received signal 𝑦𝑛 as

follows:

ℎ =
∑︁
𝑛

𝑦𝑛.𝑝
*
𝑛 (3.2)

Once the channel is estimated, it can be used to decode the payload of the

packet.

3.1.2 Self-Interference Cancellation

Backscatter communication is inherently full duplex, since the backscatter node com-

municates by modulating the reflections of a downlink signal. As a result, the hy-

drophone receives a strong downlink signal from the projector as well as a weak

backscatter reflection from a low-power node. Unfortunately, the projector’s direct

signal can overwhelm the receiving hydrophone and prevent it from detecting the

weak backscatter response. Note that increasing the transmit power from the projec-

tor would not solve the problem because it boosts both the downlink signal as well

as the backscatter response. In fact, boosting the transmit power would saturate the

analog-to-digital converter (ADC) of the receiver and prevent it from being able to

sense the backscatter response even if the backscattering node is nearby.

To better understand this challenge, let us assume that the projector transmits the

downlink signal at 𝑓𝑐 = 40 𝑘𝐻𝑧. Additionally, let us assume that the backscatter node

wishes to transmit a packet 𝑝(𝑡) on the uplink. To do so, the node can simply apply

𝑝(𝑡) across the backscatter switch, resulting in the following signal being received by

the hydrophone:

𝑦(𝑡) = 𝐼 cos(2𝜋𝑓𝑐𝑡) + ℎ𝑝(𝑡)𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡)
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(a) Self-interference Cancellation (b) FDMA MAC

Figure 3-3: Mitigating Interference and Scaling and the Size of PAB-QAM
networks. The figure plots the power of the signal received by a hydrophone as a
function of frequency. (a) shows how PAB-QAM can eliminate the downlink self-
interference (in green) and retain a backscatter response (in red). (b) shows how
PAB-QAM can scale to multiple nodes by assigning a different frequency channel to
each of them.

where 𝐼 is the amplitude of the direct path from the projector and ℎ is the chan-

nel from the backscatter node to the receiver. Because 𝐼 >> ℎ, we will have self-

interference which limits the ability to sense the backscatter response of a faraway

node.

To overcome this challenge, 𝑃𝐴𝐵−𝑄𝐴𝑀 leverages its wideband front-end, shifts

the backscatter response out-of-band, and filters out the strong in-band downlink

signal as shown in Fig. 3-3(a). Specifically, rather than just applying 𝑝(𝑡) across the

backscattering switch, it can apply 𝑝(𝑡) cos(2𝜋𝑓𝑜𝑡) to shift the response away from

the downlink signal in the frequency domain. In such a scenario, the received signal

by the hydrophone is given by the following equation:

𝑦(𝑡) = 𝐼 cos(2𝜋𝑓𝑐𝑡) + ℎ𝑝(𝑡)𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡)𝑐𝑜𝑠(2𝜋𝑓𝑜𝑡)

= 𝐼 cos(2𝜋𝑓𝑐𝑡) + 0.5ℎ𝑝(𝑡)𝑐𝑜𝑠(2𝜋(𝑓𝑐 − 𝑓𝑜)𝑡)

+ 0.5ℎ𝑝(𝑡)𝑐𝑜𝑠(2𝜋(𝑓𝑐 + 𝑓𝑜)𝑡)

So, the received signal contains the downlink frequency at 𝑓𝑐 and the backscatter

response at 𝑓𝑐−𝑓𝑜 and 𝑓𝑐+𝑓𝑜. Assuming 𝑓𝑜 = 25 𝑘𝐻𝑧, then the backscatter response

is at 15 kHz and 65 kHz, while the downlink signal remains at 40 kHz as shown in
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Fig. 3-3(a). Thus, the receiver can simply apply a low-pass filter whose cutoff is

30 kHz to eliminate the downlink signal. This leaves it with only the backscatter

response at 15 kHz allowing it to easily decode it.

Few points are worth mentioning about PAB-QAM ’s approach for self-interference

cancellation:

• First, by mitigating the strong downlink signal, the projector can transmit

higher power and receive a stronger response from further away backscatter

node. We can also place a low-noise amplifier (LNA) after the filter but before

the ADC to further improve the sensitivity of our receiver to a further away

node.

• In our above discussion, we employed a low-pass filter to eliminate the down-

link signal. Alternatively, it is possible to employ a high-pass filter (e.g., around

50 kHz in the above example) to mitigate self-interference. In such an imple-

mentation, the receiver retains the backscatter response at 65 kHz and can still

decode it. Naturally, it can also employ a notch filter around 40 kHz and retain

both 15 𝑘𝐻𝑧 and 65 𝑘𝐻𝑧 to obtain an even better SNR.

• One might wonder whether it is possible to simply apply a notch filter without

shifting the backscattered response out of band. While this is possible in theory,

in practice, it would require a very high-Q filter which may be infeasible and it

would result in mitigating not only the self-interference, but also the backscatter

response [49].

• Another interesting question is whether applying 𝑓𝑜 = 25 𝑘𝐻𝑧 would defeat the

purpose of backscatter since it is of the same order of the downlink frequency

𝑓𝑐 = 40 𝑘𝐻𝑧. Recall that the primary benefit of backscatter is that the receiver

does not need to amplify its own generated signal since it communicates by re-

flecting a powerful downlink signal. In practice, we found that if the hydrophone

is placed very close to a PAB-QAM node, it would indeed sense a much weaker

signal at 𝑓𝑜 in comparison to a much stronger response at 𝑓𝑐 − 𝑓𝑜 and 𝑓𝑐 + 𝑓𝑜.

This verifies the benefits of backscatter despite the apparent concern.
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3.1.3 Scaling to Many Nodes

Next, we describe how PAB-QAM can scale underwater backscatter networks to a

larger number of nodes. At a high level, the system employs an FDMA style MAC

protocol to enable concurrent transmissions. It divides the overall available bandwidth

into different sub-channels and allocates each sub-channel to a different backscatter

node.

To understand how PAB-QAM supports concurrent transmissions, let us consider

a simple network with two backscatter nodes 𝐴 and 𝐵, and let us assume that the

projector wants to allocate channels centered at 𝑓𝐴 and 𝑓𝐵 to these two nodes, as

shown in Fig. 3-3(b). To do so, the projector needs to instruct each of the two nodes

to shift by the appropriate frequency in order to occupy their respective channels.

Hence, it sends a downlink command signal, instructing node 𝐴 to apply a shifting

frequency of 𝑓𝑐−𝑓𝐴 and node 𝐵 to apply a shifting frequency of 𝑓𝑐−𝑓𝐵, which would

result in the desired shifts as shown in the figure.

Mathematically, the hydrophone receives the following signal:

𝑦(𝑡) = (𝐼 + ℎ𝐴𝑆𝐴(𝑡) cos(2𝜋(𝑓𝑐 − 𝑓𝐴)𝑡) + ℎ𝐵𝑆𝐵(𝑡) cos(2𝜋(𝑓𝑐 − 𝑓𝐵)𝑡)) cos(2𝜋𝑓𝑐𝑡)

This results in a shifting behavior similar to that described in 3.1.2, as demon-

strated in the figure. Subsequently, the receiver can simply apply a bandpass filter

around 𝑓𝐴 and 𝑓𝐵 to decode the two concurrent transmissions. The same idea can be

extended to a large number of nodes, each occupying a different subchannel 𝑓𝑖.

Due to the on-off switching nature of backscatter communication, the resulting

backscatter signal is a square wave (rather than a simple cosine). One challenge, here,

is that the harmonics of the square wave may interfere with other nodes by overlap-

ping with their channels. To this end, the projector can pre-determine orthogonal

channels (i.e., ones whose harmonics don’t interfere) in its channel allocation process.

Moreover, PAB-QAM adapts its MAC protocol to maximize the spacing between the

allocated channels, thus minimizing interference.
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Figure 3-4: Packet Structure. This figure shows the different fields of the downlink
and uplink packet.

3.1.4 From PHY to Higher Layers of the Networking Stack

Now that we have discussed how PAB-QAM works at the physical layer, we describe

how we can extend it to the higher layers of the networking stack.

Packet Structure: First, we describe the packet structure of underwater backscat-

ter networks. Fig. 3-4 shows the different components of the uplink (backscatter node

to hydrophone) and downlink (projector to backscatter node) packets in PAB-QAM .

Each packet consists of a preamble, header, payload, and CRC. The preamble con-

tains a training sequence, which is used for synchronization and channel estimation.

The training sequence is followed by a header which contains the source ID, node

destination ID, and control information. On the downlink, the control sequence may

contain a specific time slot or frequency channel for communication. On the uplink,

the control sequence is typically the modulation and coding rate of the payload. Note

that the preamble and header for the uplink packet is typically in BPSK (or FM0

modulation), while the payload can be in a higher-order modulation scheme. Each

packet ends with a CRC sequence which is used to verify if the entire packet was

received correctly.

Multiple Access Control (MAC): Our system incorporates a MAC protocol to

scale PAB-QAM to multiple nodes while minimizing interference. The MAC protocol
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is arbitrated by the downlink projector. In its simplest form, the projector implements

time division multiple access (TDMA) by leveraging the node ID field in the packet

header. Specifically, at the beginning of each communication session, the projector

can select the node it wishes to communicate with. If multiple backscatter nodes

receive the downlink packet, only the node whose ID matches the header field would

respond with its sensor data on the uplink, thus avoiding interference. Alternatively,

the projector may implement other MAC protocols such as frequency division multi-

plexing (FDMA) (as discussed in 3.1.3). In such scenarios, the projector would use

the control sequence field in its downlink packet to assign different frequency channels

to different backscatter nodes. Upon decoding the downlink packets, each backscatter

node can tune its oscillator to the corresponding frequency channel before starting

transmissions.

3.2 Experimental Results

To assess the benefits of higher-order modulation, we evaluated the overall throughput

of our proposed design and compared it to prior work in underwater backscatter in

both simulations and empirical evaluation.

3.2.1 Simulation Results

First, we evaluated the performance of our system in simulation. We simulated its

throughput at 521 different SNR values ranging from -15dB to 40dB. At each SNR

value, we performed 50 simulation trials, each with random additive white gaussian

noise (AWGN). For each SNR value, we averaged the throughput across all simulation

trials. We repeated the same evaluation for PAB-QAM and PAB (our baseline) and

at two coding rates: 1/2-rate and 3/4-rate. Across all these trials, we fixed the

backscatter link frequency (oscillator) to 3 kHz.

Fig. 3-5 plots the throughput as a function of SNR for 4-QAM (in blue) and

BPSK (in red). The dashed lines correspond to a 1/2-rate code while the solid lines

correspond to 3/4-rate code. We make the following remarks:
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Figure 3-5: Throughput vs SNR (Simulations). The figure plots the throughput
of QAM (blue) and BPSK (red) as a function of SNR with different code rates. For
any given code rate, 4-QAM achieves twice the throughput when compared with
BPSK.

• All modulation schemes start from 0 throughput at low SNRs, then increase with

SNRs until they reach a plateau. At high SNRs, PAB-QAM outperforms the

baseline (i.e., BPSK). Specifically, for all SNR values beyond 10dB, PAB-QAM

achieves twice the throughput compared to prior underwater backscatter mod-

ulation schemes at the same rate.

• For certain low SNR values (between 0dB and 5dB), it may be more desirable to

use BPSK than QAM. This is expected since, at the same power level (SNR),

BPSK is more resilient to noise than QAM because it has larger minimum

distance between its constellation symbols.

3.2.2 Empirical Results

Next, we evaluated our system by performing real world experiments in a controlled

underwater environment (a medium-sized water tank). In these experimental trials,

the projector was configured to transmit a downlink signal at a carrier frequency

of 20kHz, and we measured the throughput of the backscatter node on the uplink.

We performed experimental trials at three different SNR regimes: low, medium, and

high (representing different SNR regions of Fig. 3-5). To achieve different SNRs, we
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Figure 3-6: Throughput vs SNR (Empirical). The figure plots the normalized
throughput of QAM (blue) and BPSK (red) as a function of SNR. The error bars
represents the 25𝑡ℎ and 75𝑡ℎ percentile respectively.

changed the location of the backscatter node and/or the power transmitted by the

downlink projector. For each configuration (of power and location), we repeated the

same experimental trial for both PAB-QAM and our baseline (BPSK). We performed

120 trials in total.

Fig. 3-6 plots the median normalized throughput for both QAM and BPSK as a

function of SNR. Specifically, we normalized the throughput by the highest achieved

median throughput of PAB-QAM at high SNR. The error bars represent the 25𝑡ℎ and

75𝑡ℎ percentile respectively. We make the following remarks:

• At high SNR, PAB-QAM achieves twice the throughput of BPSK. This is ex-

pected because higher-order constellations such as QAM allow us to transmit

more bits per symbol (i.e. 2 bits instead of 1 in case of BPSK) which increases

our throughput by a factor of 2. Moreover, this result matches the expected

performance based on our simulations in section 3.2.1.

• For low SNR values, BPSK achieves slightly higher throughput than 4-QAM.

This is also expected (and matches simulations) because BPSK is more resilient

to noise since it has larger minimum distance between two adjacent symbols in

its normalized constellation.
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These results demonstrate the importance of PAB-QAM ’s ability to achieve higher

order modulation. They also show that it may be desirable to incorporate bit rate

adaptation schemes in underwater backscatter in order to enable them to gracefully

scale their bit rate to channel conditions.

3.2.3 Self-Interference Cancellation Performance

Recall that PAB-QAM employs self-interference cancellation in order to mitigate the

direct path from projector to hydrophone and enable communication with further

away nodes. Specifically, by canceling self-interference, the projector can transmit

signals at a higher power (without saturating the hydrophone) and receive stronger

SNR from the backscatter node.

To assess the benefit of self-interference cancellation, we ran two kinds of experi-

ments: one with and one without the filtering mechanism described in 3.1.2. In each

kind of experiment, the projector transmits a downlink signal at 40 kHz, and the

backscatter node is set to shift its response out-of-band by 20 kHz. The projector,

hydrophone, and backscatter node were all placed within a short distance of about

1 m in order to better understand the effect of the direct bath and the benefits of

self-interference cancellation. In each of the two experiments, we increased the trans-

mitted power (voltage) fed into the power amplifier, and we measured the SNR of the

received backscatter signal.

Fig. 3-7 plots the SNR as a function of the input voltage to the transducer. We

make the following observations:

• Without self-interference cancellation, the SNR starts around 15 dB but experi-

ences a sharp decline around 50 V and plateaus around -7dB beyond 80V. This

is because when the input voltage to the transducer exceeds 50V, the receiver’s

ADC clips, preventing us from being able to decode the received packet. In

such scenarios, the strong self-interference pushes the backscatter signal outside

of the dynamic range of the receiver, and the backscatter signal becomes unde-

tectable. As a result, the system can achieve reliable communication (i.e., BER
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Figure 3-7: Self-Interference Cancellation. The figure plots the median SNR with
(red) and without (blue) self-interference cancellation as a function of transmitter
voltage. The error bars represent the 10𝑡ℎ and 90𝑡ℎ percentile. The dotted line
represents the SNR needed to get a BER value of 10−2.

below 10−2) only for low values of transmitter voltages.

• With self-interference cancellation, the SNR starts around 2 dB and continu-

ously increases with increased transmit voltage, following the theoretically pre-

dicted improvement in backscatter SNR. This is because a higher transmit volt-

age results in a stronger reflection, which in turn leads to high backscatter SNR.

This result demonstrates that self-interference cancellation can indeed mitigate

the direct path and keep the backscatter response within the dynamic range

of the receiver’s ADC. This result also demonstrates that PAB-QAM ’s self-

interference cancellation mechanism allows increasing the backscatter SNR and

indicates the potential to communicate with further away backscatter nodes.

• Interestingly, at low transmit voltage, the configuration without self-interference

cancellation outperforms that with self-interference cancellation. Specifically,

the SNR around 20V is around 15 dB without cancellation but only 2 dB with

cancellation. This is because the low-pass filter adds an insertion loss which

degrades the receive SNR. Note that it is straightforward to overcome this loss

by adding an LNA at the receiver (or by amplifying the transmit signal).

• One might wonder whether self-interference cancellation is indeed useful if the
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highest SNR with amplification (i.e., 120V) is similar to that with no amplifi-

cation (i.e., 20V) in the absence of cancellation. Note, however, that this is due

to an reduction in SNR arising from the filter’s insertion loss. By accounting

for this loss and adding an LNA, the received signal with cancellation would

be around 13dB higher than the highest backscatter SNR without cancellation

and results in increasing the communication range.

3.2.4 Scaling Performance

Finally, we would like to evaluate PAB-QAM ’s ability to scale to a large number of

nodes and enable concurrent decoding. Recall from 3.1.3 that PAB-QAM employs

an FDMA-based mechanism that allows it to allocate different frequency channels to

different backscatter nodes and decode each independently.

To evaluate this capability, we ran a controlled experiment in an indoor pool whose

dimensions are 3m×4m×1.5m. In each experimental trial, we varied the number of

backscattering nodes from 1 to 10. Each node was assigned a different frequency

channel as per the protocol described in 3.1.3. The hydrophone receives the concurrent

responses, applies appropriate software-based filters to isolate them, and decodes each

of them separately. We repeated each experimental trial at least 10 times for each

number of nodes. For any given number of nodes, we varied the location of the nodes

across different trials to average out the effect of the frequency selective channel.

Fig. 3-8 plots the median BER and SNR as a function of the number of nodes.

We make the following observations:

• The SNR starts at around 18 dB for one node and gradually drops as we add

more PAB-QAM nodes to the environment. This gradual degradation is due to

the residual interference caused by neighboring nodes. Nonetheless, even with

10 nodes, PAB-QAM can achieve a median BER of 10−1. This result shows

that PAB-QAM can indeed scale up to 10 concurrent nodes despite their close

proximity (and interference), thus demonstrating a 5× improvement over the

state-of-the-art baseline (PAB) [37].
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Figure 3-8: BER and SNR vs Concurrent Transmissions. The figure plots the
median BER and SNR as a function of the number of concurrent transmissions. The
error bars represent the 25𝑡ℎ and 75𝑡ℎ percentile.

• It is also interesting to note here that the BER doesn’t change much as we add

more nodes. This is because we operate these nodes at a relatively low bitrate

of 100 kbps.

• Finally, it is worth noting that the above performance is achieved even though

all the nodes are in close proximity. It is possible to scale the system to more

concurrent transmissions by exploiting spatial reuse.

3.3 Conclusion

This chapter presents PAB-QAM , the first underwater backscatter design capable of

achieving higher-order modulation. This design marks an important step forward in

ultra-low-power underwater networking by demonstrating the potential of doubling

the throughput of backscatter communication nodes through QAM modulation. As

underwater backscatter continues to evolve, we hope that it will pave way for ultra-

low-power and low-cost subsea IoT for ocean monitoring, scientific exploration, and

marine life sensing.
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Chapter 4

Underwater Backscatter Localization

There is significant interest in low-power and distributed underwater localization sys-

tems for environmental, industrial, and defense applications [53, 87, 42, 18]. Cli-

matologists and oceanographers are interested in deploying such systems to obtain

location-tagged ocean measurements for constructing subsea heatmaps [53], under-

standing ocean processes [70], and developing accurate weather and climate prediction

models [64]. Marine biologists are interested in such systems for tracking schools of

fish and studying their behavior and migration patterns [42, 14]. Accurate and low-

power localization is also a key enabler for various underwater robotic tasks including

navigation, tagging, and object manipulation [51, 18].

Unfortunately, prior designs for underwater localization remain far from the vision

of a low-power, low-cost, and scalable architecture. Since standard GPS signals do

not work in water,1 most existing underwater positioning systems rely on acoustic

signals [12, 13, 46]. These systems typically require their nodes to repeatedly trans-

mit acoustic beacons (which are used by a remote receiver for triangulation). Such

repetitive transmissions can quickly drain a sensor’s battery, thus requiring a frequent

and expensive process of battery replacement [21, 20]. To avoid this problem, existing

localization systems either heavily duty-cycle their transmissions [98, 23] or tether the

localization beacons to a large power source on a ship or submarine [100, 43]. Unfortu-

nately, such workarounds prevent these systems from accurately tracking fast-moving

1GPS relies on RF signals which decay exponentially underwater [61, 85].

63



objects (like fish or drones) and/or scaling to large areas of the ocean.

We introduce Underwater Backscatter Localization (𝑈𝐵𝐿), an ultra-low power

and scalable system for underwater positioning. 𝑈𝐵𝐿 builds on our recent work

in underwater networking (discussed in section 1.1), which has demonstrated the

potential to communicate at near-zero power via acoustic backscatter [37, 25]. By

bringing localization to underwater backscatter, 𝑈𝐵𝐿 would enable us to build a

long-lasting, scalable, battery-free underwater GPS.

Before explaining how 𝑈𝐵𝐿 works, let us understand why it cannot easily adopt

traditional underwater localization techniques. State-of-the-art underwater localiza-

tion systems rely on computing the time-of-arrival (ToA) between two nodes [99, 11].2

In these systems, a transceiver sends out an acoustic pulse, and waits for a response

from the transponder beacon. The time difference between the initial pulse and the

reply is used to determine the separation between the two nodes (by multiplying it

with the sound speed in water). Unfortunately, this ToA estimation technique does

not work for battery-free nodes. These nodes require an additional wake-up time to

harvest energy from acoustic signals before they can start backscattering. This wake-

up time cannot be determined a priori and varies with location and environment. As

a result, it adds an unknown offset to the time difference between the transmitted

and received pulse, preventing us from accurately estimating the ToA and using it

for localization.3

To overcome this challenge, 𝑈𝐵𝐿 adopts a time-frequency approach to estimate

the ToA. Specifically, instead of estimating the ToA entirely in the time domain,

it also collects frequency domain features by performing frequency hopping. Since

time and frequency are inversely proportional, hopping over a wide bandwidth would

enable 𝑈𝐵𝐿 to estimate the ToA with high-resolution [48, 93, 6]. Transforming this

idea into a practical underwater localization system still requires dealing with multiple

confounding factors:

2In contrast, using angle-of-arrival typically requires expensive and bulky antenna arrays and
results in poorer accuracy than ToA [34].

3Note that an approach that introduces pauses between a reader’s transmissions is also undesir-
able since the backscatter node requires continuous signals to stay awake [37].
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• Multi-path: When acoustic signals are transmitted underwater, they repeat-

edly bounce back and forth between the seabed and the water surface before

arriving at a receiver. Such dense multipath reflections make it difficult to

isolate the direct path to a backscatter node for ToA estimation.

• Delay Spread: The slow speed of sound propagation spreads out the above

multipath reflections over time, resulting in a large delay spread. This delay

spread causes different backscatter bits – even from the same node – to interfere

with each other. As we show in 4.1, such inter-backscatter interference is unique

to acoustic backscatter and exacerbates the ToA estimation problem.4

• Mobility: Performing accurate localization becomes more challenging for mo-

bile nodes (fish, drones). This is because mobility distorts the estimated fre-

quency features (due to Doppler shift [91]) and because frequency hopping in-

creases the latency of localization, during which a mobile node may have moved

to a new location.

Addressing the above challenges simultaneously requires satisfying competing de-

sign requirements. For example, reducing the backscatter bitrate would increase the

separation between symbols in a packet (thus mitigating inter-symbol interference),

but it also slows down the channel estimation process, making it difficult to localize

fast-moving objects. In a similar vein, dealing with multipath and mobility results in

conflicting design constraints (for the bitrate and hopping sequence). We argue that

designing a robust underwater backscatter localization system requires context-aware

algorithms that can adapt their bitrates and hopping sequence to their operating do-

mains. In 4.2.2, we describe the fundamental constraints arising from these different

challenges and how our design of 𝑈𝐵𝐿 aims to strategically adapt to its surrounding

environment.

We implemented a proof-of-concept prototype for 𝑈𝐵𝐿 and tested in a river. Our

prototype consists of a mechanically fabricated backscatter node and a custom-made

4In contrast, in RF backscatter localization, due to the high propagation speed, all multipath
reflections arrive in the same backscatter state [48, 47].
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PCB with a micro-controller and backscatter logic. Our experimental evaluation

across three different locations demonstrates the feasibility of achieving centimeter-

level accuracy using 𝑈𝐵𝐿. Our empirical evaluation is complemented with simula-

tions that demonstrate how the system can adapt to different speeds and multipath

environments.

This chapter presents the first design and demonstration of underwater backscatter

localization. Our design can deal with unique challenges that arise from the interac-

tion between underwater multipath and acoustic backscatter, and it can can adapt

to various underwater conditions (depth, mobility). The chapter also contributes a

proof-of-concept implementation and evaluation of underwater backscatter localiza-

tion.

4.1 The (New) Problem

Before describing 𝑈𝐵𝐿’s design, it is helpful to understand why underwater backscat-

ter localization poses new challenges that are different from prior work in RF backscat-

ter localization (e.g., RFID localization [32, 94, 48, 47]). To answer this question, in

this section, we provide background on underwater acoustic channels, then explain

how these channels pose interesting new challenges for backscatter localization.

Underwater Acoustic Channel. The underwater channel is a confined environ-

ment bounded with air on one side and sediment on the other side as shown in

Fig. 4-1(a). When acoustic signals are transmitted underwater, they can travel over

very long distances (tens to hundreds of kilometers [83]) due to two factors: (1) the

small attenuation of sound in water; and (2) the fact that sound entirely reflects off

the air/water and water/sediment boundaries because of the large impedance mis-

match between these media. Thus, an acoustic signal travels on various paths from

a transmitter to a receiver, most of which involve multiple reflections off the air and

water boundaries. As a result, the receiver obtains multiple copies of the signal, which

we refer to as underwater multi-path.

Impact of Multipath on Underwater Backscatter. To understand the impact
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(a) Multipath in underwater channel

(b) Backscatter signal in deep and shallow water

Figure 4-1: Multipath and Underwater Backscatter. (a) shows how sound
propagates underwater, repeatedly reflecting off the surface and seabed. (b) shows a
received backscatter packet in deep (low multipath) and shallow (dense multipath)
water.

of the underwater channel on acoustic backscatter, we simulated backscatter commu-

nication in two different environments corresponding to deep water (depth>200m)

and shallow water (depth<10m). In both of these environments, the backscatter

node and the receiver are separated by the same distance (4 m).

Fig. 4-1(b) shows the received backscatter signal in each of these two scenarios.

In deep water (black plot of Fig. 4-1(b)), the received signal shows clear transitions

between reflective and non-reflective states. Recall that these states encode bits

of 0’s and 1’s that are used to communicate data. In contrast, in shallow water

(orange plot of Fig. 4-1(b)), the backscatter response is highly distorted and the

transitions are significantly obscured.5 It is worth noting that the difference between

these two scenarios is not due to difference in the signal-to-noise ratio, since the

5We observed similar behavior when empirically testing our system in a real river.
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distance separation between the backscatter node and the receiver is the same in

both cases.

Instead, the difference between the two different scenarios arises from the mul-

tipath reflections mentioned earlier. Specifically, in deep water, the direct path is

much stronger than the reflected paths because it travels a smaller distance and ex-

periences less attenuation (4m vs 200m). In contrast, in shallow water, the direct

path and reflected paths have similar lengths and thus have similar amplitudes; this

leads to interference between subsequent symbols (i.e., between different backscatter

states). Unless this distortion is accounted for, it will be difficult to estimate the

wireless channel in the frequency domain (which 𝑈𝐵𝐿 needs for localization).

This inter-symbol interference (ISI) is unique to underwater backscatter and does

not exhibit in RF backscatter.6 The difference between RF and acoustic backscatter

arises from significant disparity between the speed of RF in air (3 × 108m/s) and

that of sound in water (1, 500m/s). In RF backscatter, the nearest reflector that may

cause ISI is more than 3 km away (i.e., significantly attenuated), while in acoustic

backscatter even a reflector that is 1.5 m away can cause ISI. This difference motivates

a new principled approach for underwater localization that differs from standard RF

backscatter localization techniques.

4.2 UBL

𝑈𝐵𝐿 is an accurate underwater localization system for ultra-low-power and battery-

free nodes. The system can achieve centimeter-scale positioning even in multipath-

rich underwater environments. To locate a backscatter sensor, 𝑈𝐵𝐿 performs the

following steps:

• A 𝑈𝐵𝐿 reader sends a query searching for backscatter nodes in the environment.

• When a node replies, 𝑈𝐵𝐿 sends a downlink commands specifying the backscat-

ter bitrate.
6Note that ISI is known in wireless communication, and standard protocols like OFDM can be

used to address it [91]. However, OFDM is too complex for battery-free underwater nodes.
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• As the node replies, the reader performs frequency hopping to estimate the

node’s channel over a wide frequency.

• Finally, 𝑈𝐵𝐿 uses the acquired bandwidth to estimate the time-of-arrival (ToA)

to the backscatter node and uses the ToA for localization.

Since prior work has demonstrated the ability to query and command an under-

water backscatter node [37], in this section, we focus on how 𝑈𝐵𝐿 uses frequency

hopping to estimate the ToA (4.2.1) and how it selects the bitrate and hopping se-

quence (4.2.2).

4.2.1 Backscatter ToA Estimation

𝑈𝐵𝐿 performs localization by estimating the time-of-arrival (ToA) of a backscatter

node’s signal. ToA estimation is particularly useful in multipath-rich environments.

Specifically, in the presence of multiple reflections, a receiver can determine the direct

path as the one having smallest ToA (since it travels along the shortest path).

The main challenge in backscatter ToA estimation arises from the random wake-

up time of battery-free nodes. Specifically, recall from ?? that battery-free nodes

need to harvest energy in order to power up before they can start backscattering.

Moreover, this wake-up delay varies with distance and environment; thus, it cannot

be determined a priori.

To overcome this challenge, instead of estimating ToA directly in the time domain,

𝑈𝐵𝐿 does so in the frequency domain. Since time and frequency are inversely related,

a wide bandwidth can be used to separate different paths and identify the direct path

as the one that arrives earliest. Specifically, the resolution to determine the direct

path is given by the following equation:

resolution =
𝑠𝑝𝑒𝑒𝑑

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

Thus, for a bandwidth of 10kHz, 𝑈𝐵𝐿 can localize the node to within 10 cm. In

the rest of this section, we describe the different steps of 𝑈𝐵𝐿’s ToA estimation
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approach.7

Stage 1: Wideband Channel Estimation. 𝑈𝐵𝐿 estimates the backscatter chan-

nel over a wide bandwidth by performing frequency hopping. Specifically, it transmits

a downlink signal at a frequency 𝑘 and obtains the backscatter response. Once the

receiver obtains the response 𝑦𝑡, it performs the following two steps:

1. First, it cross-correlates the received signal with the known backscatter packet

preamble to determine the beginning of a packet, denoted 𝜏 *, using the following

equation:
𝜏 * =𝜏

∑︁
𝑡∈𝑇

𝑦𝑡+𝜏𝑝𝑡 (4.1)

where 𝑝𝑡 is the known preamble and 𝑇 is the length of the preamble. By

identifying the beginning of the packet, this correlation can be used to eliminate

the wake-up lag.

2. Subsequently, 𝑈𝐵𝐿 estimates the backscatter channel 𝐻𝑘 using the packet’s

preamble. This can be done using standard channel estimation as per the

following equation:
𝐻𝑘 =

1

𝑇

∑︁
𝑡∈𝑇

𝑦𝑡+𝜏*𝑝𝑡 (4.2)

where 𝑦𝑡+𝜏* corresponds to the received signal shifted to the beginning of a

packet.

𝑈𝐵𝐿 repeats the above procedure for different frequencies (each time hopping to

a different frequency and computing the corresponding channel) until is has obtained

the channels for across a wide bandwidth [𝐻1, 𝐻2, . . . 𝐻𝑁 ].

Stage 2: Obtaining the Time-Domain Channel. After concatenating the differ-

ent frequencies, 𝑈𝐵𝐿 performs an inverse Fourier transform (IFFT) on the channels.

This allows it to obtain an expression of the channel in the time domain. Importantly,

this time-domain representation is independent of the random wake-up time since it

is obtained entirely from the channel estimates.
7We note that this technique is similar to that employed in [48] and will be adapted in 4.2.2 to

underwater backscatter.
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Figure 4-2: Range estimation via frequency hopping. (a) shows how 𝑈𝐵𝐿 can
isolate the direct path in the time domain using the frequency-hopping localization
method and (b) shows the effect of the wake-up lag on conventional ToA based local-
ization schemes.

One might wonder whether eliminating the wake-up lag would also eliminate the

impact of the round-trip delay on the channel estimates. In practice, this does not

happen because 𝑈𝐵𝐿 estimates the channel in the frequency domain. To see why this

is true, consider a simple setup with a single line-of-sight path from the backscatter

node to the receiver. Here, the baseband received signal 𝑦𝑡 can be expressed as:

𝑦𝑡 = 𝑒𝑗2𝜋𝑓𝑐𝜏𝑟𝑏(𝑡− 𝜏𝑟 − 𝜏𝑤) (4.3)

where 𝜏𝑟 and 𝜏𝑤 correspond to the round-trip delay and wakeup lag respectively.

By shifting the received signal in the time domain (by 𝜏𝑟 + 𝜏𝑤), 𝑈𝐵𝐿 eliminates

the delays in the time domain but not the impact of the round-trip delay on the

frequency-domain channel. Hence, it is able to recover this delay upon performing an

IFFT.

To demonstrate this idea in practice, we simulated the localization problem where
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a 𝑈𝐵𝐿 reader and a backscatter node were separated by 4 m in a deep underwater

environment. Fig.4-2(a) plots the channel amplitude as a function of distance after

performing the above procedures. The plot demonstrates a clear peak amplitude in

the channel around 4 m, which is aligned with the actual distance of backscatter

node. Note that because the simulated environment corresponds to a deep sea where

multipath is distance with respect to the line of sight, the plot does not show other

peaks from nearby reflections in the environment.

Next, to investigate the effect of wake-up lag on 𝑈𝐵𝐿’s ToA estimation approach,

we simulated localization after introducing different time delays (betweem 0-30 ms),

and compared the outcome of 𝑈𝐵𝐿 with that of conventional time-domain methods

for localization. Fig. 4-2(b) plots the percentage error in distance estimation as a

function of the wake-up lag for both schemes. The figure shows that while 𝑈𝐵𝐿’s

error remains small irrespective of the wake-up lag, conventional (time-based) ToA

estimation systems are significantly affected by this delay and suffer from a large

margin of error. This demonstrates that 𝑈𝐵𝐿’s ToA estimation approach is robust

to the random wake-up lags of battery-free backscatter sensors. In 5.2, we empirically

verify this result as well.

4.2.2 Adaptive Backscatter Localization

So far, we have described how 𝑈𝐵𝐿 can estimate the ToA robustly despite a random

wake-up lag. However, the above description focused on deep sea environments with

little multipath. In this section, we describe how 𝑈𝐵𝐿’s design can be extended to

deal with extreme multipath and mobility in underwater environments.

Dealing with Extreme Multipath

To understand the impact of extreme multipath, we repeated the same simulation of

as our earlier experiment but this time in shallow water (depth of 4 m) rather than in

deep water. Fig. 4-3(a) plots the signal amplitude as a function distance. Unlike the

previous experiment, we are unable to see a sharp peak around 4 m, making it difficult
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(a) Shallow water, Bit-rate: 2 kbits/s (b) Shallow water, Bit-rate: 100 bits/s

Figure 4-3: ToA Estimation in shallow water. This figure shows how multipath
affects the localization ability for 𝑈𝐵𝐿. (a) shows that at a high bit-rate of 2 kbits/s,
𝑈𝐵𝐿 fails to localize the object. (b) shows that operating at a lower bit-rate of
100 bits/s in multipath rich environments yields better performance.

to robustly estimate the time-of-arrival in extreme multipath environments. This is

because inter-symbol interference (ISI) makes it difficult to obtain accurate channel

estimates. This challenge can be seen visually in the orange plot of Fig. 4-1(b).

To mitigate the impact ISI on ToA estimation, 𝑈𝐵𝐿 can command the backscatter

node to lower its bitrate. Intuitively, doing so increases the separation between any

two backscatter symbols, thus reducing the interference between the reflection of

the former with the direct path of the latter. From a communication perspective,

reducing the bitrate results in a more narrowband channel, which increases robustness

to frequency selectivity [91].

To test this idea, we repeated the same simulation, but this time at a bitrate of

100 bps instead of 2 kbps. Fig. 4-3(b) plots the resulting output for this experiment.

The figure shows a much sharper peak around 4 m than that obtained when the same

experiment was performed at a higher bitrate. The figure also shows a second peak

around 4.5 m, which corresponds to the first (primary) multipath reflection off the

surface and sediment. Note that both experiments used the same bandwidth and are

simulated at the same distance (i.e., the latter did not benefit from more resolution

or higher SNR). Rather the difference is localization robustness arises from the lower

bitrate. Formally, we can prove the following lemma. To ensure the inter-symbol

interference from any single path is no larger than 𝑘 dB, the backscatter bitrate must

be less than 𝑐
(100.05𝑘−1) 4𝑟

To prove this lemma, let us denote the largest delay caused
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by the reflected path as 𝑇𝑟 and the delay caused by the direct path as 𝑇𝑙. We further

assume that the power of the reflected path is attenuated by 𝑘 dB compared to the

power of the direct path. This gives us the following relation:8

𝑇𝑟 = 100.05𝑘 𝑇𝑙

Since 𝑇𝑙 corresponds to the round trip distance, it can be written as a function of

the separation 𝑟 and the speed of sound 𝑐 as 𝑇𝑙 = 2𝑟/𝑐. To ensure that any strong

symbol reflection arrives before the next symbol is received, the symbol period 𝑇𝑠 (or

bit period) should be greater than twice the largest delay 𝑇𝑑, which gives an upper

bound for bitrate 𝑅:
𝑅 ≤ 𝑐

(100.05𝑘 − 1) 4𝑟

Dealing with Mobility

Next, we are interested in extending 𝑈𝐵𝐿 to deal with mobility of underwater

backscatter (e.g., in tracking fish, AUVs). To understand the impact of mobility on

localization, we simulated the localization process in deep water for a node moving at

a speed of 0.3m/s. Fig. 4-4 plots the signal amplitude as a function of distance. Unlike

the earlier experiment in deep water (i.e., Fig. 4-2(b)), we are unable to see a sharp

peak around 4 m, making it difficult to robustly estimate the time-of-arrival in the

presence of mobility. This is because mobility causes a change in the channel estimates

over time. As a result, the resulting channel estimates [𝐻1(𝑡1), 𝐻2(𝑡2), . . . 𝐻𝑁(𝑡𝑁)]

cannot be coherently combined to obtain an accurate location estimate.

To mitigate the impact of mobility on ToA estimation, 𝑈𝐵𝐿 needs to reduce

the overall time required for localization. This can be done by commanding the

backscatter node to increase its bitrate and the reducing the number of frequencies in

the frequency hopping sequence. We can formalize the mobility constraint through

the following lemma.

To localize a mobile node moving with the speed of 𝑣, backscatter and frequency

8This comes from standard spherical loss 𝑃 ∝ 20 log10(1/𝑇 ).

74



 2  2.5  3  3.5  4  4.5  5  5.5  6

Si
gn

al
 A

m
pl

itu
de

Distance (m)

 2  2.5  3  3.5  4  4.5  5  5.5  6

Si
gn

al
 A

m
pl

itu
de

Distance (m)

(a) Deep water, Bit-rate: 1 kbits/s (b) Deep water, Bit-rate: 10 kbits/s

Figure 4-4: ToA Estimation in deep water with mobility. This figure shows
how 𝑈𝐵𝐿 can adapt to mobility in deep water environments . (a) shows that at a
bit-rate of 1 kbits, 𝑈𝐵𝐿 is unable to localize the object while the object is moving
with a speed of 0.3 m/s, so for better accuracy, it is desirable to operate at a higher
bit-rates to deal with mobility as shown in (b).

hopping properties should satisfy the condition of : 𝑅
𝑁𝑓𝐿𝑝

≥ 2𝑣𝐵
𝑐

where 𝑅 is the

backscatter bitrate, 𝑁𝑓 is the number of frequency in frequency hopping, 𝐿𝑝 is the bit

length of the preamble, 𝑣 is the relative speed of the mobile node , 𝐵 is the bandwidth

and 𝑐 denotes the speed of sound.

Lemma 4.2.2 is derived considering the fact that to localize a mobile node with

the resolution of 𝑥, frequency hopping process must be accomplished before the node

get displaced more than 𝑥. Assuming the backscatter bitrate of 𝑅 and preamble bit

length of 𝐿𝑝, the minimum required time to estimate the channel for each frequency

is 𝐿𝑝

𝑅
and the minimum required time for frequency hopping duration is 𝑁𝑓𝐿𝑝

𝑅
. To

localize the node, The duration of frequency hopping should be less than the time it

takes for the node move more than 𝑥. This gives us the following relation:

𝑁𝑓𝐿𝑝

𝑅
≤ 𝑥

𝑣
(4.4)

Additionally, the resolution 𝑥 is function of bandwidth and may be written as

𝑥 = 𝑐
2𝐵

, completing the lemma.

To test the relationship, we repeat the same experiment as above, but this time

with a backscatter bitrate of 10kbps. (Here, 𝐵 = 10𝐾𝐻𝑧, 𝐿𝑝 = 20, 𝑁𝑓 = 100, this

requiring a minimum bitrate of 8kbps according to the lemma). Fig. 4-3(b) plots
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the resulting output for this experiment. The figure shows a much sharper peak

around 4 m than that obtained when the same experiment was performed at a lower

bitrate, demonstrating that 𝑈𝐵𝐿’s adaptation enables it to accurately localize despite

mobility.

We make few additional remarks about how 𝑈𝐵𝐿 chooses its backscatter bitrate

and hopping sequence:

• Lowering the bandwidth (𝐵), decreases the resolution of localization. Therefore,

𝑈𝐵𝐿 always tries to exploit the full bandwidth allowed by the backscatter node’s

mechanical characteristics.

• Decreasing the bit length of the preamble (𝐿𝑝), leads to the lower SNR. 𝑈𝐵𝐿

utilize the preamble length of at least 20 bit to ensure the channel is estimated

reliably.

• The longest distance that can be localized is determined by the length of the

IFFT. Therefore, decreasing the 𝑁𝑓 , limits the range of the localization

4.3 Feasibility Study

In this section, we explain how we implemented and validated the feasibility of 𝑈𝐵𝐿

for underwater localization. Similar to the system design discussed in section 1.1 for

underwater backscatter [37, 25, 7], 𝑈𝐵𝐿’s implementation leverages a projector to

transmit an acoustic signal on the downlink, a backscatter node that decodes the

downlink signal and transmits a backscatter packet on the uplink, and a hydrophone

(Omnidirectional Reson TC 4014 hydrophone [86]) that receives and decodes the

backscatter packets. The projector and backscatter node were fabricated in house

from piezoceramic cylinders, following the procedure elaborated in our prior work

[37].

In our experiment, the projector was programmed to hop its carrier frequency from

7.5 kHz to 15 kHz (at 75 Hz intervals, each for 6 seconds). This range of frequency

is selected based on bandwidth of the backscatter node [37] and, subsequently, the
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Figure 4-5: Preliminary Results for 𝑈𝐵𝐿. The system was tested for three dif-
ferent ranges i.e. 24 cm, 34 cm and 44 cm respectively.

expected resolution is 10cm. To account for the effect of multipath in such shallow

environment, the backscatter bitrate of 100 bit/s is adopted. Notably, since the

node was relatively stationary in the water, the bitrate of 100 bit/s was sufficient

to estimate the channel. The received signal recorded by the hydrophone was then

processed by first estimating the channel at each of the frequencies, and subsequently,

the time-domain channel is computed to estimate ToA per our discussion in 4.2.1.

The outputs of 𝑈𝐵𝐿 for three different node locations are shown in Fig.4-5. The

x-axis corresponds to distance and the y-axis represents the normalized time-domain

channel amplitude. In this result, the ground truth is marked using red vertical lines

and the peak amplitude for each distance is within 10 cm from the ground truth.

Note that, due to the limited bandwidth , our resolution was 10 cm and to achieve

finer precision, 𝑈𝐵𝐿 can emulate a wider bandwidth.

4.4 Conclusion

To conclude, this chapter takes a first step toward ultra-low-power and batteryless

underwater localization. As the UBL evolves, we envision it will enable various ap-

plications in environmental monitoring, marine life understanding, and underwater

exploration.
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Chapter 5

Underwater Battery-Free Machine

Learning

In recent years, advances in battery-free sensing have enabled a range of novel applica-

tions including localization and environmental sensing. These advances have enabled

long-term use of wireless sensors without the need for power supplies or batteries,

hence enabling a transition towards a pollution-free sensing infrastructure for a vari-

ety of environmental sensing and monitoring applications such as detecting pollution

and monitoring biodiversity. These applications are not limited to smart cities and

urban environments, but also extend to climate change monitoring and environmental

sensing in uninhabited areas such as forests, mines, remote areas, and space [5, 97].

The vast majority of existing battery-free technologies have been designed for land

applications and very few have been engineered for the ocean. Only recently have

researchers started looking into battery-free sensors for underwater environments.

However, existing underwater battery-free technologies stop at energy harvesting for

powering up sensors and backscatter for communicating raw sensory data [38, 27, 29].

Meanwhile, research into energy-efficient edge-based machine-learning (ML) models

have enabled lightweight models to be used for on-device ML inference for a variety

of applications. There have been a number of advances in model reduction, compres-

sion, and layer-wise quantization for various objectives such as privacy, energy, and

efficiency [50, 8, 59]. A fundamental challenge that remains is to perform time-series

78



data analysis and ML on underwater battery-free sensors. One benefit of such capa-

bilities is that they would enable us to limit data transmission, hence increasing the

energy budget on underwater devices and their operation longevity. This is particu-

larly important for usages of underwater battery-free sensors in ambient and remote

monitoring applications for the ocean, where communication bandwidth is narrow

and the sources for energy harvesting are limited [79, 66].

In this chapter, we propose and present a new challenge, investigating the feasi-

bility of battery-free ML in underwater environments, where extremely lightweight

and task-specific deep neural network (DNN) models are executed on dedicated and

highly-efficient underwater sensor nodes. We further investigate the tradeoffs between

lightweight on-device analytics requirements for an exemplar case, which is marine

mammal recognition in the ocean. This use case has many applications including

monitoring biodiversity, understanding marine animal migration patterns, and even

supporting the discovery of new species [55].

Our investigation focuses on two critical aspects of underwater battery-free ML,

which are (1) the capability (i.e, model accuracy) of lightweight DNN models on the

tasks to be conducted in underwater environments, and (2) the feasibility of hosting

the DNN models on low-power underwater computational devices such as microcon-

trollers. Specifically on the task of marine mammal recognition, we design an end-

to-end pipeline (i.e, from recording sounds to classification results on an underwater

battery-free device) and evaluate our prototype’s accuracy and power consumption.

Our preliminary results indicate that, for a task of classifying four marine mammals,

lightweight DNN models can achieve decent accuracy. With the help of existing energy

harvesting technologies and customized circuit design, it is possible to run lightweight

ML on underwater battery-free devices. These results have important implications

for both the mobile and ML communities, and pose exciting new opportunities for

ubiquitous underwater battery-free ML.
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Figure 5-1: Overview of offline training and on-board inference. Initially, a high-level
model is trained, validated, and evaluated offline on pre-collected audio clips from
different marine mammals. A model with acceptable offline accuracy is converted to
a low-level model that can be supported by standard C libraries on a target battery-
free device. The converted model is then deployed in an end-to-end (, from sounds
received by a hydrophone to final classifications) marine mammal recognition pipeline
on the target device.

5.1 Underwater Battery-free Architecture

We design a wireless, battery-free underwater system to perform sensing and inference

on edge nodes and communicate with a receiver. To this end, we prototype a system

that can perform marine mammal recognition in the ocean. Fig. 1-5 shows the system

design for our prototype. The system harvests energy from underwater sound to power

up its processor and on-board sensor that captures animal sounds (5.1.1), performs

on-board inference (5.1.2), and transmits the result on the uplink via backscatter

(5.1.3).

5.1.1 Underwater Energy Harvesting

To enable battery-free operation, our sensor needs to harvest energy from ambient

underwater sources such as sound, waves, or temperature gradients. As discussed in

1.1, sound provides sufficient energy to power up low-power microcontrollers [38];

hence, we design our node to harvest energy from underwater sound. It is worth

noting that our node architecture is general and can be adopted to other underwater

ambient energy sources.

To harvest energy from sound, our node employs piezoelectric materials, which
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convert mechanical energy (i.e. sound) to electrical energy. Since the harvested signal

is typically an alternating current (sound is a wave), our sensor node rectifies it to

a DC voltage using a multi-stage rectifier. Once the node harvests sufficient energy,

it can power up an on-board microcontroller. The microcontroller has an integrated

ADC (analog to digital converter) which can be interfaced to a hydrophone (as shown

in Fig. 1-5). The ADC samples received sound and stores it in memory.

5.1.2 Battery-free Underwater Inference

The next stage in our design is to recognize animals from the recordings. To do this,

one option is to program the node to transmit its recordings to a remote receiver that

has a dedicated power source (e.g., an underwater drone or a coastal base station)

and perform inference there. However, such an approach is undesirable for multi-

ple reasons. First, since the throughput of underwater acoustic channels is limited,

transmitting the full recording would require our node to remain powered up for an

extended period of time, which will drain its harvested energy. Second, the limited

throughput would incur a large delay in data transmission, which is detrimental in

time-sensitive scenarios (e.g., detection of endangered species). Furthermore, if a de-

sired receiver is not within the communication range of our node, the node would need

to store the recording in its constrained memory, which limits its ability to process

new recordings.

To overcome these challenges, instead of transmitting the recordings for inference

at a powered base station, our node performs on-board inference, as we describe

in this section. This results in a lower-power, time-and-resource efficient, and more

scalable system design (as we show in 5.2).

Offline Training:

In order to have an accurate DNN model that can recognize marine mammals from

their sounds, we need to use pre-collected audio clips (obtained from publicly available

databases) to train the model until it achieves acceptable accuracy. Given the limited

81



memory and computational resources of battery-free devices, it is difficult to perform

the training process on them. Thus, we first train the high-level DNN models in a

centralized manner (, in the cloud) with offline training and validating data.

To ensure that our model would perform well on the target underwater battery-free

device, we introduce a number of pre-processing steps (, re-sampling, normalization,

and reshaping) as shown in Fig. 5-1. These steps are necessary because the audio

files (from databases) were collected using different equipment than our battery-free

nodes (, different ADC sampling rates and resolution). To mitigate the impact of

these differences, the raw data from pre-collected clips is re-sampled with the sample

rate of the nodes. The re-sampled data is then normalized and converted into a

spectrogram through Short-Time Fourier transform (STFT).

To make the models work on a battery-free device, the high-level models need to

be converted into a low-level model that satisfies the constraints of the architecture

and memory of the target device. Our model conversion process uses techniques such

as model compression and quantization to make the resulting low-level model work

on the target device independently without support from run-time libraries.

On-board Edge Inference:

After the model is trained and converted, we can load the model parameters to

the memory of the target device and then use it for on-board inference. We use

the same pre-processing pipeline (normalization, STFT etc.) as for offline training

which was discussed in 5.1.2. One challenge with ultra-low-power microcontrollers

is that, unlike standard audio cards, their ADCs cannot sample audio with both

positive and negative amplitude. The lack of negative amplitude introduces another

discrepancy between the pre-collected audio files and sound recordings collected using

the microcontroller. To overcome this challenge, our design adds a clamping circuit

to hardware design in order to passively add a DC offset to our input signal before

we feed it to the on-board ADC. This DC offset is subsequently filtered in software

by applying a high-pass filter; this ensures that the DC offset does not bias the STFT

output or negatively impact the model performance.
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(a) MSP430FR5994 MCU development board (b) Potted Transducer

Figure 5-2: Prototype Hardware (a) shows the processor that our design uses for
on-board inference. (b) shows one of our potted transducers which can be used for
energy harvesting and communication.

5.1.3 From Inference to Communication

The last step in our design is to communicate the inference result to a remote re-

ceiver. To do this, we leverage underwater backscatter (discussed in section 1.1) to

communicate on the uplink, which allows us to reuse the same piezoelectric material

for both harvesting (5.1.1) and communication.

5.2 Feasibility Study

We evaluated our prototype in terms of both its model accuracy and its power re-

quirements.

5.2.1 Prototype Hardware

Backscatter node: Each backscatter node consists of a piezoelectric transducer

and a hardware controller as shown in Fig. 5-2. To build our transducers, we used

piezo-ceramic cylinders with a nominal resonance frequency of 17 KHz [80]. Similar to

fabrication techniques discussed in Chapter 2, the nodes were potted, encapsulated for

insulation and matching to water, and housed in 3D-printed mold and end-caps [67].

Hardware controller: The node hardware is used for energy harvesting, process-

ing/inference, and interfacing with a sensor (e.g., a hydrophone). Our harvesting

architecture consists of a standard multi-stage rectifier followed by a super-capacitor,

and low dropout voltage regulator which drives the digital logic unit. We imple-
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mented the logic on a MSP430-FR5994 microcontroller [89]. The microcontroller has

a 12bit-ADC, which samples the (sound) signal at the rate of 330 samples/sec and

stores a window of 512 samples in its SRAM. The microcontroller logic, including the

code for downlink and uplink decoding as well as the inference model, is all stored

in the FRAM. The classifier output is transmitted on the uplink by controlling the

backscatter logic which modulates the load impedance of the backscatter node to

change between reflective and non-reflective state.

Receiver: In addition to a backscatter node for energy harvesting and communi-

cation, our design uses a hydrophone (Omnidirectional Reson TC4014) that receives

and decodes the FM0 encoded backscatter packets [9] .

5.2.2 Offline Pipeline

For the evaluation, we used the Watkins Marine Mammal Sounds Database [68] and

chose the sounds from eight mammals including Atlantic spotted dolphins, bearded

seals, Beluga white whales, bottlenose dolphins, bowhead whales, harp seals, nar-

whals, and walruses. Overall we used 364 sound files and in each trial of our offline

evaluation, we shuffled and split them as 80%, 10%, and 10% for training, validating,

and testing. We re-sampled each file with the sample rate (330) of our prototype’s

input device. The decoded sound signals were first normalized to [−1.0, 1.0] and then

the first 512 signals were transformed into a spectrogram through STFT (window size

= 64, window step = 32).

We used TensorFlow to train high-level Keras models and then used Keras2C [15]

to convert them into low-level models that are supported by standard C libraries. This

library generates smaller DNN models than TensorFlow Lite does and requires fewer

third-party libraries when generating models. We used a lightweight convolutional

neural network (CNN) model as shown in Fig. 5-3. The spectrogram of normalized

input signals is first reshaped as a 2-D input layer with size of 𝑁×𝑁 . The input layer

is connected to a convolutional layer that has 8 filters, each of which has the kernel

size of 3 × 3 and strides of 2 × 2. The activated output of the convolutional layer is

flattened and connected to a dense layer, which outputs the probability distribution
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Figure 5-3: CNN structure for the classification task. The convolutional layer has 8
filters (size 3 × 3, strides 2 × 2) activated by ReLU. The dense layer is activated by
softmax.

of a classification.

5.2.3 Model Accuracy

We evaluated the offline accuracy of the model with different size 𝑁 of the input

layer and number of mammal classes, as these two hyperparameters affected the size

of the model. For 4-mammal classification, we used the data from Atlantic spotted

dolphins, bearded seals, beluga white whales, and narwhals. Fig. 5-4 shows the offline

accuracy distribution of each model hyperparameter configuration from 64 trials. For

4-mammal classification, the converted models when 𝑁 = 8 and 𝑁 = 16 can fit in

our prototype, while 𝑁 = 32 demands a larger model which didn’t fit in the memory

of our microcontroller. The average accuracy for 𝑁 = 16 and 𝑁 = 32 is 84% and

88% respectively. For 8-mammal classification, with 𝑁 = 32, the average accuracy is

76%, which requires larger memory than that on our prototype.

We further evaluated the model on the online data generated from the ADC on

our prototype. To this end, we deployed the converted 4-mammal classification model

into the pipeline on our prototype. We then randomly selected 16 raw sound files (4
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Figure 5-4: Distribution (boxplots and kernel density) of offline test accuracy CNN
models with different input layer size (N) and number of mammal classes (C). The
converted model of (N-16, C-4) can be deployed on our prototype.

samples for each mammal class) from the dataset. We used SIGLENT SDG 1032X

function generator [76] to convert raw sound files (animal sounds [68] of whales,

seals, dolphins, and narwhals) to analog signals that were fed to the ADC. For each

input signal, the microcontroller sampled the input analogue signal at 330 samples/s,

normalized it, and computed the spectrogram of the processed data before running

inference on it. The average accuracy of the online model was 63% (while random

guess is 25%) which is lower than the offline accuracy. The lower online accuracy

can be attributed to low number of testing samples and loss of data resolution during

sampling. Nonetheless, this result demonstrates that our prototype was successful in

on-board classification of four marine animals with a reasonable accuracy at extremely

low power, and this accuracy may be improved as the research evolves and with more

comprehensive online evaluation.
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5.2.4 Power Performance

Next, we used the MSP-EXP430FR5994 development kit board to evaluate the power

consumption of the microcontroller while it was running the end-to-end pipeline. We

computed the power as the product of the current and the voltage when the board was

connected to a power supply. We used SIGLENT SDG 1032X function generator [76]

to power on the board at 1.9 V. To measure the current, we connected Nordic Semi-

conductor’s Power Profiler kit [73] as an ammeter in series with the board. Table 5.1

shows the power consumption of each stage of the pipeline. At 1.9 V input voltage,

the microcontroller consumed 932 𝜇W during ADC sampling, 1.3 mW while running

inference on the data, and 902 𝜇W when it was backscattering the inference result.

These power measurements are in line with those expected from the microcontroller’s

datasheet. Since prior work has demonstrated the potential to harvest up to few milli-

watts from underwater acoustic and ultrasonic signals [30], these results demonstrate

that it would be possible for our node to operate entirely based on harvested energy.

Stage Power
(𝜇W)

Time
(s)

Energy
(mJ)

ADC Sam-
pling

932 1.6 1.49

Inference 1300 3.0 3.91
Backscatter 902 0.012 0.0108
Total Energy Consumption: 5.40 mJ

Table 5.1: On-board power and energy analysis of the battery-free inference prototype
with a data rate of 1 kbps and a sampling rate of 330 samples/s.

Since the power budget for ADC sampling and backscatter communication is sim-

ilar, one could argue that it may be more efficient to send the entire data to the base

station rather than performing the on-board inference. However, recall from 5.1.2

that this approach will be highly inefficient because of the limited throughput of the

underwater channel. To demonstrate this inefficiency, consider the following exam-

ple: For a backscatter node transmitting at 1 kbps (which is standard throughput for

underwater acoustic modems), it will take around 6.14 seconds to send 512 samples

of raw data (total # of bits = 512×12). The ADC consumes 1.49 mJ of energy to
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sample 512 samples at a sampling rate of 330 samples/s. This translates to 7.03 mJ

of required energy. On the other hand, performing on-board inference, which typi-

cally takes 3 seconds (consuming 3.91 mJ) then transmitting the 12-bit-long inference

result (consuming 0.0108 mJ) would require a total of 5.40 mJ, which makes send-

ing raw data 30.19% more power hungry than sending inference data. This result

demonstrates that battery-free edge inference is feasible, and that it makes on-board

inference both more efficient and faster, even with this preliminary inference model.

We envision that the gains can be significantly improved as the research evolves.

5.3 Conclusion

In this chapter, we proposed and prototyped battery-free ML inference in underwater

environments as an exciting challenge. We have shown that a lightweight CNN model

can achieve decent accuracy while its on-board energy requirements can be supported

by these devices. Our initial results indicate feasibility of performing sensing and

inference.
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Chapter 6

Conclusion

This thesis discussed the different algorithms, protocols and fabrication techniques to

enable salable underwater sensing, networking, localization and inference. Specif-

ically, this thesis delivers four fundamental contributions: First, it presents the

meta-material transducer design capable of performing ultra-wideband underwater

backscatter. Second, it demonstrates how the spectral efficiency of this design can

be improved by employing higher order modulation. Third, it introduces a tech-

nique for battery-free underwater positioning. Finally, it investigates the feasibility

of battery-free ML in underwater environments.

6.1 Looking Forward

We have only started scratching the surface of possibilities for using backscatter as

a low-power communication mechanism for underwater environments. While this

thesis has taken major steps in unlocking some of these possibilities, the presented

designs exhibit limitations which would be interesting to explore in the future. In this

section, we revisit these limitations and highlight some of the exciting open problems

and challenges for future research.
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6.1.1 Underwater Backscatter Localization

Chapter 4 introduces underwater backscatter localization, a technology for ultra-low-

power and scalable underwater positioning. Below, we highlight a number of open

challenges and opportunities that would enable underwater backscatter localization

to realize its full potential:

• From 1D to 3D: We demonstrated the feasibility of 1D localization by esti-

mating the distance between two nodes. There are various avenues to extend

𝑈𝐵𝐿’s design to 3D localization. Potential solutions include adding two or more

nodes (e.g., hydrophones) to perform trilateration or incorporating phased-array

transmitters or receivers for obtaining the angle-of-arrival (and combining it

with distance information).

• Mobility in Shallow Water: In 4.2.2, we described how 𝑈𝐵𝐿 can adapt its

bitrate and hopping sequence to deal with challenges arising from extreme mul-

tipath (in shallow water) or from mobility. Unfortunately, addressing both

types of challenges simultaneously leads to competing design requirements (as

the former requires designs with a lower bitrate, while the latter requires higher

bitrate). Developing underwater backscatter localization systems for such envi-

ronments is an important open problem to explore in the future.

• Long-range Backscatter Localization: 𝑈𝐵𝐿 inherits the range limitation of prior

underwater backscatter systems. Specifically, in contrast to traditional acoustic

communication which incurs one-way path-loss, backscatter suffers from a com-

bination of path-loss on the downlink and the uplink. The signal degradation

from round-trip path-loss has limited state-of-the-art designs to an operational

range of around 60 meters (as demonstrated in section 2.4.2) [25]. As underwa-

ter backscatter evolves to operate over longer ranges, we expect new challenges

to arise in the context of localization, which would need to be addressed in

future designs.

• Towards Tracking, Navigation, and Robotic Manipulation: 𝑈𝐵𝐿’s ability to lo-
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calize batteryless nodes is a fundamental primitive for a variety of other tasks

such as tracking, navigation, and robotic manipulation. For example, backscat-

ter nodes can be used to tag underwater objects or marine animals and track

them in real-time to understand mobility and migration patterns. Alterna-

tively, 𝑈𝐵𝐿’s localization primitive can enable novel navigation systems for

underwater drones (AUVs and ROVs) using batteryless GPS anchors. A third

application involves tagging underwater assets with backscatter nodes, and us-

ing their location to enable complex robotic manipulation tasks (e.g., grasping)

in underwater environments. Realizing this capabilities will require addressing

an exciting array of challenges with tools from a variety of disciplines ranging

from networking to robotic perception, learning, and control.

6.1.2 Underwater Battery-Free Machine Learning

In Chapter 5, we proposed and prototyped battery-free ML inference in underwater

environments as an exciting challenge for the community. Our initial results indicate

feasibility of performing sensing and inference. Future potential directions include:

• Battery-free on-device personalization:Our design assumed that the same low-

level model would be deployed on all battery-free devices deployed underwater.

However, when implementing battery-free ML at a large scale, we expect that

the sensed data by different underwater devices may differ at different locations

(e.g, animal sounds near or far from a coast) and with environmental factors

(e.g, temperature, pressure, multipath all impact sounds). Therefore, models

on the devices would need to be locally tuned to fit different testing data distri-

butions. Previous research [54] proposes to use early exit during offline training

so that an end-device can personalize a part of the model to improve its testing

accuracy. To enable such on-device personalization, light-weight model training

algorithms that can satisfy the computational constrains on battery-free devices

are needed.

• Model-optimized hardware/software design. Currently there are limited compil-
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ers that can build DNN models on ultra-low power MCUs (e.g, the MSP430

class) such as [78]. Co-design of task-specific hardware components alongside

the ability to compile advanced models for lower-power MCUs can enable a

wealth of new environmental monitoring applications. Specifically, one direct

approach is to adopt existing optimization techniques for online inference on a

target platform, such as post-training quantization [45, 57]. It can reduce the

sizes of on-board models and increase computational efficiency by avoiding float-

ing operations. Another “engineering” solution is to optimize the implementa-

tions of online inference for different target platforms by using hardware-specific

instructions and libraries that offer faster or more energy-efficient operations.

An auto-design pipeline for such individualization would be worthwhile consid-

ering the diversity of IoT devices and used low-power MCUs.

• Battery-free distributed ML training. Given the potentially large scale deploy-

ment of low-cost and low-pollution battery-free nodes in the ocean, another

future direction is to continuously sense data and train ML models in a decen-

tralized manner among participating nodes. This will enable life-long ML with

up-to-date data that reflects the changing nature of underwater environments,

which is critical for many application domains including climate change and bio-

diversity monitoring. Similar to on-device personalization, the key challenge is

to have light-weight ML training algorithms on the devices. Another challenge

is the difficulty of obtaining labelled data from underwater environments. One

option is to use unsupervised ML to only train feature extractors (e.g, autoen-

coders) that can help train classifiers on a cloud server [102]; another option

is to generate pseudo labels on local data through data augmentation [39]. In

addition, distributed/federated ML solutions that can coordinate devices, sta-

tions, and cloud servers are also needed to manage the local training tasks, to

make sure that they can satisfy the energy constraints of battery-free underwa-

ter devices.

Beyond these, various open problems remain in pushing the technological abil-
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ities of underwater backscatter in throughput, range, and sensing capabilities,

and in bringing the technology to real-world applications by developing end-

to-end systems for scalable underwater sensing, networking, localization, and

inference. As our understanding of these low-power underwater sensors evolve,

we envision that these sensors will become ubiquitous to enable a battery-free

subsea IoT.
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