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ABSTRACT

This thesis describes an intelligent manufacturing system that can make
decisions about the process in light of the uncertain outcome of these
decisions and attempts to minimize the expected economic penalty
resulting from those decisions. In particular, it uses weld bead grinding
as an example of a previously unmodelled process with significant
process variation. The requirernents of the weld bead grinding task are
to accurately grind off a weld bead within the factory time constraints so
that it be indistinguishable from the parent material while avoiding
buming the material. Previous work indicated that the grinding process
was incapable of removing an entire weld bead. and that the cut depth of
seemingly identical passes could vary as much as 20%, although the
mean cut depth was predictable. The need for multiple passes, the pcor
predictability of those passes, the task requirements, and the process
constraints conspire to make planning and controlling weld bead
grinding a formidable problem. A three tier hierarchical control system
has been developed and tested which can plan an optimal sequence of
grinding passes, dynamically simulate each pass, execute the planned
sequence of controlled grinding passes, and modify the pass sequence as
grinding continues. The top tier plans the grinding sequence for each
weld bead, and is implemented using Stochastic Dynamic Programming,
selecting the volumetric removal and feedspeed for each pass in order to
optimize the satisfaction of the task requirements by the entire grinding
sequence within the equipment, task, and process constraints. The
output of the planner is the optimal grinding policy in a table lookup
form given the initial volume of material remaining and the amount of
time remaining until the deadline. The resulting optimal policies have
quite complex structures, showing foresight, anxiety, indifference, and
aggressiveness, depending upon the situation. The second tier is used to
plan force trajectories of individual passes that will result in the
volumetric removal required by the top tier. It is implemented using a
numeric simulation of a controlled grinding process based on a novel
dynamic grinding model. The bottom tier is a real time digital force
control system which executes the force trajectory planned by the second
tier. The force control system has a 3 Hz bandwidth and can control
forces up to 90 N. The entire weld bead grinding planning and control
system was implemented on a microcomputer controlling a laboratory
grinding setup.

Thesis Supervisor: Dr. Daniel E. Whitney, Lecturer in Mechanical
Engineering
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1. INTRODUCTION

This thesis describes a iiicthod for implementing intelligent automation for
manufacturing. Intelligent automation refers to both the automated hardware that
performs the manufacturing process, and the software for making the decisions
required for manufacturing. As the manufacturing tasks to be automated become more
complicated or less predictable, the range of choices becomes broader and more
complex than those that are typically faced by modern control systems, and this
requires more intelligence of the control system.

The system elements required for automation can be broken down into four
areas: tools or actuators to perform the task, sensors to monitor the performance, task
goals to define what is to be acccmplished, and strategies to coordinate the actuators
and the sensors to bring about those task goals. Some manufacturing tasks have not
been automated because they require capabilities or skills in one or more of these
elements that are beyond those generally available in conventional control hardware
and software. A manufacturing engineer at a large automobile plant stated that "the
problem [of implementing advanced manufacturing] is not usually the equipment or
the workforce, it's with the controls. We can't get them both smart and reliable. [The
controls] just can't handle the process variance. I got sources of variance all over the
place ... We do Taguchi studies all the time. and I've only had two work right— actually
find and reduce the variance. The others just told us that it's not [due to] the
hypotheticals [variables]."! This thesis is about designing controllers that can handle
the process variance.

The necessary levels of capabllity are displayed by the human workers, who are
able to perform such automation-resistant tasks. Their senses are adequate to the task,
and are well-integrated. Their muscles, serving as actuaters, are perhaps poorly suited
to a manufacturing environment, but allow them to use other better suited mechardcal
tools. However, most of all, humans excel at formulating strategies for achieving
loosely-specified goals. They are capable of planning actions, predicting their
outcomes, recognizing situations, replanning actions, and dealing with contingencies
‘'on-line’ as the process proceeds. They can recognize and adapt to changes in the

lpersonal communication.
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behavior of the process. They know when and how to be careful with a precess that can
go awry, and can embody this knowledge in their strategies for performing or operating
the process. Such advanced capablilities are well-suited to, and indeed required for, the

performance of many difficult tasks.

Automation implementation fafls when its implementation of one or more of
these capabilities is not up to the task. There is currently much research and progress
in the fields of actuator and sensor technology. Formulating and understanding the
task goals and creating the required strategies needs more development. Creating task
goals for automation is a difficult problem, and is not explicitly addressed here. Well-

defined goals are, however, crucial to the success of automation implementation.

This thesis addresses the planning and control issues. Planning of strategies is
usually done by evaluating the results of predictions of the consequences of putative
actions. However, for automation, predictions require models of the process, and such
models can be difficult to construct and have poor predictive accuracy for complex
tasks. There are two approaches to solving this problem: 1) model the process better,
2) deal beiter with poor models. This thesis uses primarily the second method to attack

the problem of bringing automation to more complex manufacturing tasks.

The rematinder of this chapter identifies the scope of the problem that this thesis
addresses. Then the type of problem to be solved will be identified, and the reasons why
this is a difficult problem will be given. Previous approaches to solving this type of
problem will be described, and followed by a description of a new approach to such
problems. Then the test case used to demonstrate this approach will be described, and
reasons why it is a particularly difficult example of this class of problems will be given.
The last section in this chapter is an outline of the remainder of this thesis

1.1 ScoreE

This thesis deals with factory-floor decision making, but only with a specific
type of decisions made on the factory floor whose effects are felt over a certain range of
time. There are many types of decisions made on the factory floor, but they can be
divided roughly into decisions that affect the entire factory and those that affect
individual processes. Factory control decisions are those that are made either for the
factory as a whole, or are inter-process decisions. This thesis is concerned with process

control decisions, the decisions that are required to operate individual processes.
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These decisions can be further sorted by the time span over which they apply. This is

illustrated in Table 1-1.

Factory Control Process Control
Long Term Inventory Control Workstation monitoring
{days to weeks production rate Change worn tool,
or months) staffing decisions shut machine down

Medium Term

MRP

Task Completion

(minutes to days) batch size make another pass;

_ try again or quit

Short Term work routing or Task Recipe

(seconds to scheduling robot trajectory,

hours) material movement assembly sequence

Very Short Term Machine Control
(milliseconds control motor speed,

to minutes) control reactor temp

Table 1-1 Decision Time Frame for Factory-Wide and Individual Machine Tasks

The first column lists factory control decisions according to their time span.
Inventory control is concerned with parts stocking and ordering policies, accounting
for long lead times and unknown demands. The long lead times make this a long term
decision. MRP is Materials Requirements Planning, which time-phases the production
requirements given the delivery schedule for finished goods, the recipe for making the
finished goods from raw materials, and the time required at each workstation to build
the product. This plans the day-to-day routing of work within the factory, and forms
links among the sales department, the raw materials receiving department, and the
shipping department. The day-to-day planning aspect of MRP makes it a medium term
decision-support system. Work routing or scheduling comes into play when there are
identical workstations to which work can be assigned on a minute-by-minute basis.
Although some MRP systems can perform this function, it is also often left to a local
controller, and can have a strategy as simple as "route the next job to the first available

workstation.” This is typically the shortest term inter-process decisicn in a factory.

The second column lists individual process control decisions. The longest term
decisions are typically concerned with monitoring and handling slow process
variations, such as wear, replacement of raw-material supply, and malfunctions. When

the task is iterative, i.e. of the "repeat ... until done" type, there i{s a medium term
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decision regarding whether to repeat the steps or declare the process done. Such
decisions occur after each :teration. This lles somewhere between the long term
(workstation monitoring) and the short term (task recipe) decisions. The next level of
decisions is the task recipe type, which determines the sequence and type of actions to
be performed to complete one step of the manufacturing process. Examples of this type
are the sequence and trajectories of the robot motions required to perform one step of a
process (e.g. those required to install an automobile windshield), or the assembly
sequence for a product. These sequences are often prerecorded and replayed unaltered,
but real-time alterations are sometimes required, such as when the windshield needs to
be guided into its frame. For process controls, the boundary between the medium term
and short term decisions is frequently coincident with the boundary between decisions
made at discrete times and decisions made more on a continuous basis. A windshield
installation robot might be guided by analog controls operating continuously in the
short term, but the medium-term decision to make another iteration is inherently
discrete. High-speed digital computers have made it possible to effectively implement
the continuous control in discrete form. The decision time span can thus be measured

by the system cycle frequency, in units of Hertz [Hz].

Systems making such medium term decisions operate roughly over the range
from 0.1 Hz to 10 Hz, depending on the process. At this point decision-making begins 1o
make the transition into control; the shortest term process decisions are generally
better described as controls rather than individual decisions, even though these too are
frequently implemented digitally as decisions made at discrete tirnes. Examples of very
short term decision-making are motor speed control by varying the input voltage, and
temperature control via a thermostat. These operate over the range of frequencies from
roughly 1 Hz to 10,000 Hz. Note that the process control decisions are usually much
shorter term than their factory control counterparts. The point here is that decisions
made in a factory can be broken into inter- and intra-process decisions, and that these
break down further into similar time hierarchies. The level of the hierarchy will be
used as an indicator of control complexity, and the control task will be broken down

according to the hierarchy.

It should be noted that the selection of the appropriate types of machines and the
required sequence of manufacturing steps to build a product or part is also called
process planning. This does not appear in Table 1-1 because it is typically done off-line

well before production starts as part of planning the implementation of the
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manufacturing line. This thesis deals primarily with decisions made during
production.

The time spans illustrated in Table 1-1 are by no means definitive nor are all
time spans applicable to every process, but most processes can be fit into this
framework. In particular, the medium term process control decisions usually occur
only for iterative or repetitive tasks, and there are processes for which there are no long
term decisions. Note that there are fewer applications for longer-term decisions,
probably both because there has been little perceived need for longer term planning and
control, and because longer term tasks tend to be too complicated to be worthwhile

automating. The shorter term decisions seem to be the most frequently required.

The process control (and to some extent the factory control) can be further
classified according to the predictability of the process by the current or best available
process model. This is depicted in Figure 1-1 below. The ideal case is labelled.
"noiszless,” and represents the situation in which the model perfectly predicts the
bekavior of the process. The next level of predictability is labelled "some noise,” and
represerits the case in which the model predicts the process fairly well, but cannot
account for some aspect of the process' behavior, other than to classify it as being due to
some unpredictable "noise.” The worst case considered here is when the model can only
roughly predict the behavior of the process. This is labelled "poor model."

Long

increasiong
Term &

Automation
Difficulty

Mecd
Term

Decision Time Span

Noiseless Some Noise Poor Model
Process Unpredictability
Figure 1-1 Process Predictability vs. Decision Time Span
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The shaded area illustrates the type of tasks that have been easily automated, or
are well-automated to date. The degree of automation difficulty increases from lower
left to upper right. In general, very short term decisions tend to be based on very well
defined criteria, and have been well-automated via modern control theory. Advanced
control theory, in the guise of both robust and adaptive control, has been extending the
boundary at the lower right, allowing more accurate control of poorly-modelled or

noisy processes under certain specific assumptions and restrictions.

The region that this thesis acidresses is hashed. It deals with a longer term, more
complex type of decision making than advanced control theory is suited for, yet does
not specifically address the complex process modelling problems of the very long term
decision level. The goal of this work is to extend the frontier of automation in this area.

1.2 PROBLEM STATEMENT

The problem, then, is to increase the level of manufacturing automation to
include some level of automatic on-line decision-making about complex and poorly
modelled manufacturing processes. The decision-making studied is restricted to that
needed for individual process planning and control. In particular, the automation of a
poorly-modelled batch manufacturing process which is iterative in nature will be
illustrated. The techniques described herein are adaptable to other processes, such as
continuous-flow or non-iterative processes, but these were not studied in detail. The
poorly-modelled multi-stage process studied was deemed to be a problem with suffic 1t
difficulty to be a good test case. This test case is robotic weld bead grinding, described in
further detail in Section 1.6.

1.3 WHAT MAKES THIS PROBLEM HARD

To muke decisions, the consequences of each choice must be evaluated. This
requires the ability to predict the behavicr of a manufacturing system or process, and
so the ability to predict the outcome of a particular choice. But predictions can be
inaccurate, especially for complex processes — which are the ones which are most iikely
not to have been automated already — so planning and control! decisions must be made
in light of uncertainty. This is not easy, because one must evaluate each outcome of
each choice, its probability, and its effects, and then put a value on that choice before
the choice with the best value can be selected. It becomes harder when the process has
several stages or is iterative. Then the output of one step or stage is the input of the next
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stage, and the prediction errors from individual stages propagate throughout the
process. Planning must be done on the entire process, not just each step. The available
choices multiply, making the decision-making problem harder.

1.4 PREVIOUS APPROACHES TO SOLVING THIS PROBLEM

Previous approaches to planning for poorly-modelled complex processes have
been either to model the process better beforehand, change the process into an easier
one to model (particularly by reducing process variation), or to make the planner robust
despite the inaccurate model. When you study a process, you have to decide how to go
about the study, and how much time and effort to put into the study. Redesigning a
process to make it easier to plan for is particularly recommended when this involves
reducing process variation. However, this may be impractical or too expensive.

It is easier to try to tweak the process parameters in search of a more predictable
process. Genichi Taguchi {1]! reduces the process variation via the optimization of
process parameters. For simple processes he accounts for the effects of the variation of
the parameters via the process model, and seeks to reduce their effect on the overall
process variation. For complex processes, he demonstrates an efficient experimental
method for selecting suboptimal process parameters to reduce the process variation.
This is the Taguchi study mentioned in the introduction, and has promise for some
processes, and is a recommended {irst step in most cases, but can only affect the process
variation to the degree that it is controllable through the process parameters. This
thesis starts where Dr. Taguchi's methods leave off, to enabie one to better control

unpredictable processes.

Advanced control theory has attacked this problem in two ways. The first
technique is robust control, an extension of linear contrcl theory. by which the
controller is made more robust against differences between the actual system behavior
and that of the process model. The controller is designed to reject a certain class of
errors, and steadfastly manipulates the process to attain the desired outputs. Most such
controllers can guarantee stability given bcunds (in the frequency domain) on the
modelling error, and can make limited promises about the quality of the control given
other information about the modelling error. Examples are sliding-mode control [2]

INumbers in brackets refer to references found at the end of the thesis.
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and loop transfer recovery [3]. The second technique is adaptive control theory [4]. in
which the controller adjusts itself as the process changes. Such control can be more
robust than linear robust control, but can make fewer general promises. In fact, a
restricted stability guarantee is the most that many such techniques can offer.
Adjustment is done in one of two ways: either a set of gains is changed according to the
error between the process output and the model output, or the process is monitored and
the model is adjusted on-line via system identification theory [5]. These techniques are
generally only applicable to the shorter term processes which have simple task
specifications, hecause they require the process to be modelled by simple difference or
differential equations.

More complex requirements can be handled by adaptive control for
optimization. This comes closest to the techniques described in this thesis, but is good
for only single-step processes or one phase of a process, but not multi-step processes.
Some examples pertinent to grinding are to be found in [6-8]. The first two describe two
approaches for the optimization of the metal removal rate given a steady-state process
model. They automatically select optimal metal removal rate subject to burning and
suriface finish constraints based on a static process r: odel. The system that Amitay
implements automatically controls the grinding power at the burning constraint. The
burning constraint is computed using the process model and theory described by
Malkin. Shibata's work is similar to Amitay's in that the workpiece dimension and
tool life are optimized in a heuristic manner by controlling some parameters and
monitoring others. These optimize a process using a model, and control part of the
process separately, but do not account for the process variation explicitly. That is, they
do not use the process model to learn anything about the structure of the variation, and
therefore cannot utilize such knowledge to help control the process.

There has been much work in determining optimum process parameters for
single stage systems. Ermer (9] derived optimum cutting conditions for a deterrninistic
machining problem with constraints using geometric programming. Ermer and Wu {10]
compute the cheapest cutting speed for turning without constraints. Their problem was
made stochastic by poorly known coefficients in the tool wear model. Iwata et al. [11]
consider the optimization of a cutting process when the coefficients in the linear
constraint equations were uncertain. They used the technique called “chance-
constrained programming” to find the optimum feeds and speeds while insuring that
chance of violating the process constraints be less than a specified value. This involved
computing the probabllity that a constraint be violated due to the variation in one of
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the constraint coefficients. The resulting deterministic optimization problem was
solved by a nonlinear programming technique. Hati and Rao [12] extended this method
to show the effects of constraint parameter variations on the machining cost. They
later applied the same technique to cold rolling[13]. All these methods connot be
applied to multi-stage systems.

There has been some work in optimizing multi-stage systems. Hitomi [14]
analytically determined near-optimum cutting speeds for each stage of a multi-stage
machining system without constraints. His method was restricted to the optimization
of a single control, however. He later considered finding the optimum NC machining
sequence under simple deterministic constraints using a branch and bound
technique.[15] This was an early attempt at process planning that took only machining
time into account when deciding when to drill and when to mill, etc. Rao and Hati (16}
considered the deterministic problem of finding the optimum cutting conditions for a
multi-stage process involving a specified sequence of operations performed on different
machines. The muilti-stage problem adds an extra constraint that the bottleneck
process must not be kept idle. This, too, is solved via a nonlinear programming
technique. In fact, all of the previous work in multi-stage optimization could not be

extended to solve stochastic problems.

1.5 THE APPROACH OF THIS THESIS

The approach described in this thesis is to divide the system into hierarchical
levels of complexity, usually time-hierarchical, corresponding to those illustrated in
Table 1-1. Each level has its own model of the process for which its planner or
controller is designed. The planning or control problem of each level is solved
independently of the lower or higher levels, which are assumed to have done their job in
a manner that can be modelled simply. Each lower level typically operates at a higher
temporal frequency than the level above it, is less complex, and has generally better
defined goals and process models. Higher levels deal with more complex processes and
tasks. Therefore these levels seem more to plan strategies and give advice than to

compute control laws and give commands.

And, as the processes get more complex, the differences between the models and
reality increase, and it becomes less efficient (in terms of time and money spent) to try
to improve the process model. Thus, the control strategy must account for more
uncertainty in its ability to predict the process. This is done by making a simple model

19



of the process variation and its costs and optimizing these costs. Each level requires its
own process model for predicting the consequences of choices made at that level, and
for predicting the probability of each possible outcome. A penalty is associated with
each outcome, according to how well the outcome meets specifications and satisfies
constraints. Each choice is evaluated by the expected penalty corresponding to its
outcomes. The stochastic planning or control problem then becomes a penalty
minimization problem, which is solved by an appropriate analytical or numerical
method. In particular, multi-stage processes can be planned using stochastic dynamic
programming. This technique can handle arbitrary constraints upon the controls and
the state space, and can handle arbitrarily defined cost functions (not just linear).

1.6 TEST CASE

The example considered in this thesis is the grinding of weld beads such as those
that remain on the extericr of an automobile after its roof is attached to the door
pillars. For cosmetic and structural reasons the resulting weld bead must be ground
smooth with the parent material so as to be undetectable after painting. This implies
dimensional accuracies of less than 0.1 mm. Weld bead grinding is currently done by
humans wielding heavy grinders, and is a tiring and dirty job. It is also unhealthy due
to the easily breathable grinding grits. This type of grinding is illustrated in Figure 1-2

below.

Direction of

Grinder grinder motion
Grinding Disk ":7 /

Weld Bead

Parent Material

Figure 1-2 Weld Bead Grinding
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This is a difficult problem for several reasons which will be outlined here. A
detailed description of the weld bead grinding task requirements and issues will be
given in Chapter 3. The most common method for controlling ground skapes is to
rigidly control the geometry between the workpiece and the grinding disk. However, it
is difficult to locate the auto body to the same degree of precision as is required of the
final weld contour, so a grinding system which relies on absolute geometry would be
impractical. All the relative position sensors studied, both tactile and remote, would
have difficulty actually measuring the position to the disk tip to the required accuracy,
or could not handle the complex contours of the weld bead and parent material.

Therefore geometrical control was unsuitable.

The only option remaining was to control the grinding process. Until now, this
type of grinding has not been well studied. There were no models that could predict the
resulting shape carved into the weld bead given the initial weld bead shape and the
grinding conditions such as the wheel sharpness, grinding feedspeed, wheelspeed, and
applied grinding force, nor could a controlled proflie be created. When a grinding model
with these capabilities was creaied as part of this thesis, it could not accurately predict
the final shape because it relied on estimated empirical coeflicients. Controlling the
grinding process was going to be difficult.

In addition, there are several constraints on the grinding process that make it a
complex process to contrel. Limitations on the amount of material that can be removed
during any one grinding pass make weld bead grinding a multi-pass process. The entire
sequence of passes must be planned at one time to insure good results. The results of one
pass become the initial conditions of the next, so the unpredictabilily of any one pass
makes planning the enure sequence of passes very difficult.

The fInal aspect of weld bead grinding that makes it a good test case is the fact
that the control issues break down nicely into the hierarchical structure described
above. The weld bead grinding hierarchy is divided into planning the entire sequence,
planning individual passes, and executing each pass. This, the process
unpredictability, and the multi-stage planning problem make weld bead grinding a
complex process for control.

1.7 THE AM OF THIS THESIS

This thesis describes an intelligent manufacturing system that can make

decislons about the process ir light of the uncertain outcome of these decisions. This
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system attempts to minimize the expected economic penalty resulting from those
decisions. In particular, it uses weld-bead grinding as an example of a previously
unmodelled process with significant process variation. A hierarchical control system
has been developed and tested which can plan an optimal sequence of grinding passes,
dynamically simulate each pass, execute the planned sequence of controlled grinding
passes, and modify the pass sequence as grinding continues. The sequence is optimized
to insure that the weld-bead is accurately ground off while avoiding burning the
material and avoiding overtime, by making overall risk-averse decisions that trade off
the risks of violating these requirements among each other.

The remainder of this thesis will describe what is needed for a manufacturing
controller with such decision-making capability, and how these are illustrated in the
test case grinding system. Chapter 2 describes in general the elements of an intelligent
manufacturing system. The corresponding elements that are pertinent to grinding are
then discussed in detail in the following chapters. Chapter 3 describes the weld bead
grinding problem in detail, presenting the task requirements and the control issues
that arise. It then describes the hierarchical control structure used to deal with those
requirements and issues. Chapter 4 gives a history of grinding process models and then
describes the grinding process model used for planning the grinding pass sequence.
Chapter 5 shows how the manufacturing decision-making for a multi-stage process can
be implemented in a dynamic program, and how this was done for planning the
grinding sequence. Chapter 6 then shows how individual grinding passes are planned
using a dynamic grinding model. Chapter 7 shows how these passes were executed using
force control, and how the force control system was implemented. Chapter 8 follows

with conclusions and recommendations.
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2 THE ELEMENTS OF AN INTELLIGENT
MANUFACTURING SYSTEM

This chapter will describe, in general, what parts of an intelligent
manufacturing system are required, and how they are obtained. The word 'system' here
refers to all the hardware, the software, and the concepts needed to creatc a
manufacturing line. The generic ideas and techniques described in this chapter will be
demonstrated using the real example of weld bead grinding in the following chapters.

This chapter starts by describing conventional techniques for controlling a
complex process, such as defining a process hierarchy and designing controllers for
each level of the hierarchy. The elements required for designing each level's controller,
such as task goals and process models, will be briefly described, with particular
attention paid to the requirements for the more complex levels. Then the causes for
imperfect performance will be identified and shown to be unavoidable in many
instances, particularly for complex processes. The problem of automating such
complex processes thus becomes one of optimizing the process perforrmance within this
hierarchical structure, by reducing or ameliorating the effects of imperfect
performance. But before this optimization can take place, a means for comparing
process performance under different conditions must be developed. So a scheme for
comparing process outputs using penalty functions will be presented flirst, followed by a

brief discussion of the formulation of the problem as an optimization problem.

2.1 HIERARCHY

The first step is to break up the process into a hierarchy in which the levels are
differentiated chronologically or by complexity. In order to automate each level of a
process, one needs to have: 1) task criteria, to define the goal of the level, 2) a process
model suitable for that level, 3) control of some variables in the process, 4) ability to
measure pertinent variables in the process, 5) a planner with strategies for controlling
the process to get the job done, and frequently 6) an optimizer, to find the best way to
satisfy the task criteria. These are elements of the process structure discussed in the

previous chapter.

Breaking up a task into a hierarchy is a venerable technique for simplifying a
job, in this case, the planning or control task. All levels above and below the current



hierarchy level being planned are assumed to have done their job, though perhaps not
perfectly. This reduces the range of concerns that each planner or controller has to deal
with, and allows each type of decision to be made by a specific controller or planner.
For the purposes of planning and control, the levels of the hierarchy correspond to the
decision time spans illustrated in Table 1-1.

Each level of the system is made up of a process model, sensors and actuators, a
control strategy, and goals for that control strategy. The goals are the input to this
level. The outputs of the level are the desired results, which hopefully match the desired
goals. The control strategy is either designed with a model of the process in mind, or

uses a process model during control. This is depicted below:

Controllabie
Inputs
Control
Strategy PROCESS
or State Variables
Policy
shoulc:i agree Observable
i Outputs

-lllib

Desired

Sensors

Results

Figure 2-1 A Single Level in a Process

Defining such a hierarchy is a well-trod path, and designing controllers for each
of these levels as described above would be routine. However problems of imperfect
process performance at the top level and below make the planning problem particularly
hard at the top level. In the particular case of the robotic weld-bead grinding system the
actuator for the first level — level two — is not very accurate: experimental weld bead
grinding results have varied as much as 20% from those desired. So there is a real
possibility that a grinding pass won't take off the amount of material that this level's
controller had planned. For weld bead grinding this could be worse than overrunning a
deadline. The grinder could possibly grind right through the weld bead and into the
parent material below, creating costly damage. Or it might not grind enough off. All
these possibilities must be weighed by the controller/planner at this level. It must plan
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in light of an uncertain process, with the knowledge that these plans may not be
executed perfectly. These requirements are beyond the abilities of the planners and
controllers of the lower levels. The process and its decision criteria are too complex to
be planned or controlled by the techniques that worked for the lower less-complex
levels. A new type of planner is required — one that can find the best sequence of

decisions given the above criteria and a poorly predictable process.

The next section will discuss, for completeness, what is meant by 'process
performance’ for a given level of the hierarchy — satisfying task geals. This is followed
by a discussion of imperfect process performance, and following that is a section
describing how the imperfect performance can be rated.

2.2 THE TASK GOALS

Once the hierarchy of the process has been identified, the planner or controller
for each level can be created. The first issue to be settled can be stated as: what is the
planner or controller for this level trying to do? One starts with the manufacturing
problem for each particular level, typically working {from the highest level on down.
What is it that this level must do? How is the performance of this task going to be
measured? What are the task completion criteria? If the task is cleaning glassware,
how is ‘clean’ going to be measured? What conditions should be avoided? The
implementation of the task criteria is called the task specifications in this thesis.
These must be specified in terms of the ava‘lable sensors, so that the status of the task
can be determined from some combination of the sensor readings. So an important
assumption early in the system design process is that of the availability of sensors to
measure the desired outputs. Therefore one required element of an intelligent
manufacturing system is an algorithm or formula for expressing each of the task
specifications in terms of the sensor readings. In the glassware example, the task goal
is “clean glassware," and a task specification might be "no visible difference between
glassware that is known to be clean and the glassware in question,” or "dirt mass less
than 0.1 mg." I this formula is designed correctly, satisfying the task specifications
will assure that the task goals will be satisfied.

Creating the task specifications from the task goals is one of the most difficult
and important tasks when implementing a manufacturing process. The specifications
are important because they guide the implementation of the manufacturing system — in

particular the selection of the process — and this determines the resulting task
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performance. It is easy to go astray here. Having a certain process in mind, it is
tempting to create biased specifications and overlook other, possibly better, processes.
The two glassware specifications above are biased toward processes that remove visible
dirt and processes that remove dirt mass, respectively. Only after the specifications are
determined should the actual process be selected. This is an old and well-discussed
topic, and out of the scope of this thesis, which assumes that the the task specifications,
the process, the actuators, and the sensors have alreadv been selected by the time a
planning and control system must be developed. This thesis concentrates upon the the
structure of the control system and its strategy for satisfying the task specifications.

2.3 IMPERFECT PROCESS PERFORMANCE

Imperfect process performance refers to a condition in which the output or
result of a process does not satisfy the process specifications or does not produce the
desired process output. Examples are inaccurate dimensions from a part-forming
process such as holes drilled off-center or out of round, incomplete welds, or products
that do not themselves produce the desired output, such as a power supply that does not
produce the desired voltage.

There are many causes of imperfect process performance, but they can be
grouped into four basic causes: 1) equipment failure either in the process or its control
systemn, 2) inadequate inputs, such as substandard materials, 3) the process is incorrect,
inadequate, or poorly designed for the task, 4) the process control is poorly designed or
inadequate for the task. This thesis will concentrate upon improving the process
control, and will assume that the process has been correctly selected for the task and
implemented, that there are no breakdowns, and that the inputs to the process are
within specifications. In particular, this thesis will describe techniques to ameliorate
two causes of controller error: 1) imperfect process models, and 2) imperfect actuators

Or sSensors.

It is clear that a good process model is useful for good planning or control, but
process models can never be perfectly accurate. Inaccuracy here refers to the fact that
there will always be aspects of the behavior of the p-ocess that its model can't explain or
predict. This is also called modelling error. Note that this can occur whenever there is
a difference between the model and the actual process, whether by intentionally
ignoring known model details in favor of a simpler, less cumbersome model, or through

ignorance of some aspect of process behavior. Overcoming ignorance through more
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detailed modelling tends to be both expensive and cumbersome, and can take valuable
time. The resulting fiscal and convenience tradeoffs usually cause the model to be
inaccurate to some degree. This is especially true for more complex tasks where the
modelling is most difficult. A second element of inaccuracy is that there are often
external influences on the process that cannot be predicted by any model and cannot be
avolded. This is referred to as external process noise. For these two reasons, modelling
errors will usually be present and must be dealt with. A successful automation
implementation must therefore include planners and controllers that can perform
their duties despite the inaccuracy of the models for which they were designed. This
idea is the basis of this thesis, which will show how to create a planner that accounts

for the imprecision of its model's predictions.

The actuators and sensors for one level of the process are often sublevels
themselves. Thus the inaccuracy of the sublevel's model is likely to cause the
performance of the upper level to be imperfect or unreliable. Thus other levels which
rely upon the performance of sublevels should make their plans with this in mind. The
planning techniques that this thesis describes can make use of statistical knowledge
about the performance of lower levels. Thus planners can be developed that not only
can plan with inaccurate process models, but can also anticipate both unreliable

information from lower levels and the plan's unreliable execution by lower levels.

2.4 RATING THE OUTPUT OF A PROCESS ViIA PENALTY FUNCTIONS

At this point we now have 1) task specifications, 2} a process to perform the
task, 3) sensors to monitor the process, and 4) actuators to manipulate the process.
What is needed is a controller or planner with a strategy to use the sensors' outputs to
determine how the actuators are to manipulate the process to achieve the task
specifications. For complex levels of processes, this will be done by using the process
model to predict the behavior of the process when a particular control is applied, and
comparing the process output to the task specifications. For the more complex levels of
the hierarchy, the comparison scheme must be able to measure diflerent outputs of an
unreliable process. Then the strategy can choose the appropriate or best control to
attain the task goals.

The planning or control task is necessary at every level of the process, and has
been well-implemented for the simpler levels. It is the implementation of the planner

at the higher levels that concerns us here. A common technique for doing this is via
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weighted penalty functions. Each pertinent task specification is expressed
quantitatively in terms of sensor data, and converted by means of a suitable
mathematical expression into a value or a penalty which decreases as the condition
becomes more desirable. These penalties are then given weights relative to one another

so that a single number can be computed as a measure of overall task performance.

Current practice calls for specifying tolerances for process parameters such as
specifying that a chemical reaction must be maintained at 100+0.5 °C. This is depicted
in Figure 2-3 below.

..................... o I
<4 Aq 1< A, P
>
z, Z
Figure 2-3 Tolerance Penalty Model

Any value outside of this range is deemed out-of-tolerance, and charged a
monetary penalty. This is fllustrated in Figure 2-3 and is called a penalty function or a
loss function. The horizontal axis describes the output value of a system or process, z,
and the vertical axis describes the resulting penalty, $(z), expressed in monetary terms.
The desired output value of 100°C is marked by zg in the figure. The tolerance range of
$0.5°C is represented by Ag in the figure. If a process consistently (i.e. deterministically)
outputs a particular value, the process can be rated by the corresponding penalty.
Algebraically, this can be expressed as:
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o =3 (2.1)
where: @ = the penalty assigned to the process
z = the process output
$(z) = the penalty function

For the tolerance range scheme, this becomes:

_ {0 if [z-z9| <A
" lAg If |z-zg| 2 A9
where:  Ag = the penalt;” for an out-of-tolerance output

(2.2)

Prof. Genichi Taguchi[l] has espoused a different technique for measuring
process outputs, generating a value which he too expresses in real monetary units.
Dr. Taguchi argues that the above tolerance scheme is an inappropriate measure for
several reasons. First of all, most processes are stochastic and never produce a single
consistent output value. Processes can and do output consistent mean values, but are
almost never permitted to consistently output an undesired mean value, because the
mean can nearly always be adjusted to the desired value. The problem, he argues, is not
one of having a process output that is consistently out of tolerance. It is in outputs that
stray randomly from the desired value, both beyond and within the tolerance limits.

If the process produces random output, it is common to penalize it only
according to the fraction of outputs that exceed the tolerance multiplied by the charge
for being out-of-specification:

p=fAg (2.3)
where: f = the fraction of the output outside of the tolerances

Or, the process can be measured by statistical techniques, such as the ratio of the
tolerance range to the standard deviation of the process output. This number will be
large for good processes. Taguchi disagrees with these metrics.

Taguchi's argument goes as follows: 1) A process that ylelds 100.51°C is only
marginally different from one that ylelds 100.49°C, though processes that yield these
two results would score very differently under the tolerance range scheme. 2) Penalty
functions should at least be continuous because systems that perform nearly the same
should score nearly the same. 3) It Is more realistic to choose smooth penalty
functions. 4) The simpler the form of the penalty function, the better. It is not efficient
to try to model the penalty function accurately. Rather, determine the value of a few
points and draw the simplest (i.e. lowest-order polynomial) curve through it. Start by
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assigning a zero (0) penaity to a process output occurring right at the desired value. In
most cases, one also knows a penalty for an output right at the tolerance limits, being
the same as that charged for out-of-tolerance results in the tolerance scheme. This
yields two more points (one at the lower tolerance limit, and the other at the upper
tolerance limit) for a total of three points. The simplest curve that can generally be
passed through three points is a parabola, as llustrated in Figure 2-4 below.

<4——Parabolic

Figure 24 Taguchi's Penalty Function

This has the effect that deviations frem the desired value within the tolerance
range are charged smaller penalties than a linear penalty function would, and
deviations outside of the tolerance range are penalized more than a linear charge
would. For one-sided situations in which the smallest value is best and a negative value
is undefined (e.g. the amount of foreign matter remaining after a cleaning process), a
parabola is still used for consistency. An alternative derivation is to consider
expressing the penalty function in a Taylor series expanded about the desired value xg,

such as equation 2.4 below.

— )2
$(z) = $(z0) + %(zo)@ + g—jg?(zo)(i;?;)t .. (2.4)

Here, $(z) is the penalty function. By definitiun, $(zg) = 0, and since the least
penalty is to be at zg, %ZO) = 0 identically. This leaves a penalty function in the form:
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$(z) o k(z—z0)2 (2.5)

If the penalty is Ag at a distance Ag from the destred value (see Figure 2-4), then k can be
computed by substituting Ag for $(z) and Ag for (z-zg) to obtain:

Ao
k= E (2.6)

An important point to remember is that the actual form of the penalty function usually
does not affect the resulting value of the penalty enough to merit a study to determine
the function to a high degree of accuracy. The parabolic penalty function is good enough
in most cases, and even a linear penalty function is arguably a good approximation to
the real penalty function.

If the two data points at the tolerance limits are unavailable, alternative data
points can be determined efliciently by finding a point at which some action must be
taken. For example, consider the manufacture of parts that must later be assembled. If
the parts deviate from the specified size, there arises the possibility that they might not
fit together. Determine the dimension at which the two parts won't fit together if one of
them has that dimension. Evaluate the options then. How much will this situation
cost? If a part has to be scrapped, the penalty becomes the scrapping cost. If a part has
to be repaired, the penalty should be the repair cost. Include the inspection or assembly
line disruption costs. If the firm is a retailer or supplier, the penalty would be the
repair-on-site or warranty costs, and should include an estimate of the loss-of-business
or loss-of-reputation costs, both difficult to determine precisely, but which can be
estimated. Taguchi reports that this usually yields higher penalties for out-of-
specification processes than the firm had previously estimated, and he calls this the
cost of quality, although it is perhaps better termed the 'cost of poor quality'.

If a fallure can only be described in probabilistic terms, then use that
information to formulate the model. For example, if there is only information that a
lathe tool has a 50% chance of chattering at a given feedspeed, then apply 50% of the
cost of chattering to that feedspeed. In the above assembly of two parts example, the
probability of a misfit can be computed given the dimensional statistics. The expected
cost can be computed from these statistics and the cost of an actual misfit [17]). Complex
cost analyses are not required; this is a first-order cost estimate.

Multiple process outputs are penalized individually as above, and the sum of
these penalties is used as the process metric. Weighting among the outputs is achieved

by expressing the penalties in common monetary terms. Process constraints and
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conditions to be avoided can be dealt with in a similar manner and summed to the

overall penalty function.

Dr. Taguchi recognizes that the output of processes is usually probabtlistic, and
that it is nearly always possible to adjust the mean of a process to the desired value, so
he uses just the variance of the process to compute the penalty. If the process variance is
02, the penalty, o, assigned to that process is computed as:

Ao
= o2 2.7
» _!'AO (2.7)

However Taguchi's method is too restrictive because it assumes that all process
outputs can be adjusted so that the mean output is at the destired value. This is not
generally the case, and limits this method to single-stage processes in which the process
is executed. is expected to have its mean output at the desired value, and then the
ensemble output is evaluated. There are, however, multi-stage processes in which a sub-
step or partial step is executed and must be evaluated by how closely a destred final goal
is reached. This occurs in iterative processes, which must be operated on a "repeat one
step until a final goal s reached close enough” basts. Each step is evaluated by the same
final goal criterion. But the intermediate steps may not be expected to yield results at
the final desired value because to have an intermediate step attempt to satisfy the final
goal in one jump may violate other constraints. Dr. Taguchi's metric requires that the
mean value of the output of a process be cornpared with the desired final output, and
thus cannot measure the intermediate steps of multi-step processes. Weld bead
grinding, described in more detail in Chapter 3, is such a multi-step process.

A technique that avoids this restriction is to compute the expected penalty,
using the penaity function and the probability distribution for the final output. This
can be computed as follows:

= [pl2) $(z) dz (2.8)
Vz

where:  p(z) = the probability that the output z will occur
$(2) = the penalty charged for an output z

This is illustrated in Figure 2-5 below, which compares this technique to
Taguchi's. The horizontal axis depicts the output value. The vertical axis deplcts
simultaneously the penalty and the probability that the corresponding output will
occur.
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Figure 2-5 Computation of the Expected Penalty vs. the Taguchi Method

This technique is more flexible than Taguchi's, because is uses the entire
probability density function (PDF) to evaluate the output, and can rate the output of
intermediate steps. It is also conceptually more appealing, since expected penalties are
a more appropriate way to compare probabilistic outcomes. The statistics of the
process describe what can happen to the process, and the resulting expected penalty
function can be used to evaluate the consequences of process control decisions.
However, this method needs a probability function for the process outcome, and as this
subject belongs more in the realm of process modelling than it does in penalty
modelling, detailed discussion of this will be postponed until the next section.

Thus three techniques have been presented that will yleld a single number, a
penalty, to describe the performance of a system or process. These involve constructing
a penalty function that maps process outputs to penalties that can be used to compare
one process output to another. Such penalties usually increase the further the output
varies from that desired. A simple quadratic form for the penalty function has been
proposed. If the process yields the same output time after time, it is charged the penalty
corresponding to that output. If the process is stochastic, two other techniques have
been proposed for evaluating the resulting penalty. The first assumes that the process
can be adjusted to have its mean output coincide with the desired output, and evaluates
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the penalty at one standard deviation from that output. The second makes no
assumptions about the mean output value, and evaluates the expected penalty. This
thesis will use this last implementation of the penalty function for evaluating the
outputs of higher levels in the hierarchy.

2.5 THE PROCESS MODEL

We now have task goals for each level, task specifications to describe these goals,
and the makings of a scheme to measure how well an unreliable process satisfies these
goals. The next step is to design a planner or controller to use this measurement te
manipulate the process to satisfy the specifications. However the form and structure of
such a planner is strongly related to the form and structure of the particular process or
level of a process it is to control. And the probability density function required by the
penalty function scheme is also strongly dependent upon the nature of the process. So
this section will briefly describe types of process models, and will discuss the
generation of probability density functions for the outputs of processes.

Types of Process Models

Process models are needed at all levels of the planning/controlling system.
These models can vary widely in detail and complexity from level to ievel within a
particular manufacturing system, and from system to system. The basic requirement
of a process model for planning or control is that it relates variables which can be
externally controlled to variables which are indicative of the desired output. Process
models can be classified into two types, static and dynamic. Dynamic process models
use differential or difference equations to describe the behavior of the process as a

function of time. Dynamic processes can also be described using a discrete model in the
form:
Xk+1 = Flxg.ug.k)
¥k = Glxy,ug,t) (2.9)

where: xi = a vector of the state variables at time k

uy = a vector of the inputs to the process at time k

k = the time index

¥k = the vector of outputs at time k

F(xk,uk.k) = the function describing the behavior of the state variables

G(xy.uk.k) = the function describing the outputs



Such a model divides time into discrete increments, with each increment having an
index k. Thus the state of the process after one time increment has passed is a furniction
of the current state, the current control, and the current time. Such a model clearly
fllustrates the concept of a state transition, which will be used extensively in Chapter 5.
Digital computers must use discrete models to describe dynamic systems, and so such
models are becoming increasingly common.

These models can be used to describe continuous processes, but are particularly
suited to describing staged processes. Multi-pass cutting operations (like grinding) are
one such type of staged process. One can't evaluaie the condition of the workpiece as a
whole until after an entire pass has been completed, so it is appropriate at one level to
think of the process in terms of discrete events or stages, one grinding pass at a time. Of
course, the cutting process itself — the microscopic moment-by-moment action of the
cutting tool upon the grains cf material — can be modelled by a continuous dynamic or
static model. Thus the whole process can be modelled on two (or more) different levels.
The former model considers the workpiece as a whole from pass to pass. This is useful
for planning the sequence of cuts. The latter considers the process on a much finer level
of detail, both spatially and chronologically. This type of model would be useful for
active feedback control of the position of the cutting head. for example. Other types of
staged processes are iterative metal bending, batch chemical processes, and inventory
control.

Static models do not use differential equations, but generally use algebraic

relationships such as:
y = H(u.t) (2.10)

Such a model would be appropriate if no differential equations (or equivalently,
discrete models) are required to adequately model the process. Each type of model is
appropriate in certain cases, though static models tend to be simpler to work with.

Modelling Error

As was stated earlier, due to tradeoffs there will always be inaccuracy in the
process models. The modelling error and the external noise can combine to make a
process poorly predictable. Obviously some processes are easily modelled with
accuracy and are not susceptible to external influences and so are highly predictabie.
These processes are generally easily automated. The problem remains as to what to do

with those processes that are poorly modelled or have lots of process noise.
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Dr. Taguchi has two recommendations for dealing with noise-sensitive
processes. The first involves redesigning the process (via parameter adjustment) to
obtain a less noise-sensitive process. The second is to identify the most critical noise
sources (typically random variation in material or parts quality) and reduce those
variations (by specifying tighter tolerances on those parts). He describes a method in
which the first technique can be accomplished cheaply via efficient experimentation,
and recommends that this method be applied first because it is cheaper and can be more
effective than the second method. The second method is stymied #f the noise sources
cannot be adjusted or controlled eastly.

Sometimes it is possible to model the modelling error and external process
noise stochastically as a single process noise (both internal and external noise,
internal noise referring to the modelling error). Modelling the noise can be done by
hypothesizing a cause for the noise, couching this in a stochastic variable €. The
discrete dynamics might then look like:

Lk+]1 = Flxk.uk.ek. k)
¥k = Glxk.uk.ek.t) (2.11)

The presence of the noise can be modelled in any part of the dynamics. Note that this
can be done with the other types of process models as well. Such a model makes the
output a stochastic variable. The remaining problems are to figure out the statistics of
the noise ei, and to figure out how to propagate those statistics into those of the output
Yk-

Getting the form of the probability function for the output can be difficult,
especially if statistics are available only for characteristics imbedded within
functions, as considered above. In this case, the probability density function must be
propagated through the function that relates the lower-level characteristics to the
output (17]. This can be extremely difficult, if not impossible, to do analytically in the
general case, and is usually quite time-consuming to do numerically with accuracy by
techniques such as a Monte-Carlo analysis. When the PDFs of the imbedded
characteristics and the output can be approximated by the Normal PDF, it is possible to
propagate PDFs through a limited number of functions, as is described in the sequel.

Propagating Probabllity Denslty Functions

First the propagation of general PDFs will be described, and then the specific

case when the PDFs are all assumed to be Gaussian. Consider a static monotonic



function z = f(x), where the PDF of x is an arbitrary (i.e. not necessarily Gaussian)
function p(x). Let the PDF of z be q(z). Then:

@ = ptota) | 292 (2.12)

where:  ¢(z) = £ 1(2). the inverse of the function f(x)

This is the basic form for propagating PDFs through functions. For a proof and
extensions to non-monotonic functions (i.e. functions whose inverses are not one-to-
one), see any fundamental probability textbook, such as [18].

When the PDFs can be approximated by the Gaussian PDF, only the mean and
variance are required for a complete description of the PDF, and these can be
propagated through functions by at least three techniques: 1) maximum likelihood
estimators, 2) moment generating functions, or 3) partial derivative methods. The
latter method will be briefly described in the following. For more details and
applications of all three methods, see [17].

Conslder the function of two variables, z = f{x,y). Expand a particular value of z,
z1. about its sample mean value mg!:

az oz
zl=mz+3;8x1+5?8y1 (2.13)

where:  the derivatives are evaluated at the mean values of x and y, mx and my,
respectively.

8x; = the variation of x from its mean for point 1

8y; = the variation of y from its mean for point i

The variation of z can be written as:

oz 0z
&y = zi-my = &ﬁxi+wﬁy1 (2.14)

IThe true mean and variance will be described by ux and 6x. The sample mean is defined

as:

1 D

my = YXi

Ny

and the sample variance is defined as:
n
1
Sx=q (my-x1)2
i=1



The mean value of z is the function {lx.y) evaluated at the mean values of x and y:

mgz = f(mx .my)

The variance of z is derived as follows:

(2.15)

?11' ) Z&xl +2—-—25X15Yl+ (dy) ZBW]
(dx Sx +( ) 5

(2.16)

The third equality is true since ZB:qSyl — 0 ff x and y are independent. This technique

i=1

can be used to propagate m::‘ans and variances through a variety of functions. It should

be noted that the resulting probability density funciion, p(z) will be Gaussian, in
general, only when the function f{) is linear. However, the resulting PDF will often be
well-approximated by a Gaussian PDF, particularly for small variances. The Gaussian

approximation will be good enough for our purposes in most cases, since the penalty
function with which it will be used is only an approximation itself. Table 2-1 gives
mean and variance propagations for a few simple functions of X and Y independent:

Table 2-1 Selected Propagations of Mean and Variance

Function |Mean, m, Varlance, 8,2 Correlated Variancel, s,2
Z=X+Y | my+my S + sy? sx2 + Sy + 2r S8y
Z=X-Y - my sx2+sy2 sx2+sy2—2rsxsy
2 2 2

- 2. 2 2.2, 2.2 2 SY S 2
Z=XY My My M“Sy + My“sx” + Sx“sy mzmy ( P +mxlr%';7)“+r)
z=5 X — e S e — X

Y my myzk myz + SyJ ) my (mx * my mx my )

Operations with one variable constant can be propagated by using the expressions
above and substituting s=0 for the constant variable. Extensions to functions of more

1r is defined as the coefficient of correlation, which = O if the variables are independent,

and = 1 {f the coefficients are completely linearly dependent upon each other
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than two variables are similar, and extensions to other functions are possible through
the application of formulas (2.15) and (2.16). Note that the results for Z = X/Y are
approximations which ignore higher-order terms of ratios s/m, and that the PDF of Z
in this case will not be Gaussian, but approaches Gaussian for small ratios of s/m.

Often the form of the output probability distribution is known, or can be
estimated from experimental data, or can be hypothesized. Then a probability density
function of the desired form can be constructed which has the mean and variance as
propagated above. This technique has the flexibility of using the knowledge of the
probability density function if it is available. If there is no such candidate PDF, then a
Gaussian PDF can be hypothesized as good as any.

For example, a Gaussian PDF would be inappropriate for modelling stochastic
material removal processes, since for these processes material can only be removed and
never added. A Gaussian probability density function is defined over the entire set of
real numbers, in particular for all negative numbers, and so would be incorrect for
modelling the amount of material removed after a cutting process, which cannot be
negative. It would be more appropriate to use probability density functions defined
only over the set of positive real numbers, such as the Rayleigh or Log-Normal
probability density functions for this purpose. This is an approximation, to be sure, but
it is an approximation of the same order of accuracy as was that of the penalty function.
See Chapter 3 for a more detatled description of the application of this technique to the
dynamics of weld bead grinding.

But what characteristics are to be propagated? What fills the roles of X and Y in
Table 2-1 above? There are two types of characteristics that can be propagated. The
first is a process parameter that is historically known to vary with a given PDF. This is
common for material properties such as metal strengths and hardnesses, material
compositions, fluid viscosities, and empirical model coefficients. If these can be
independently measured over a period of time, their statistics can be computed, and In
some cases, their PDFs. The second type of propagatable characteristic is a known poor
actuator or sensor performance. For example, consider a chemical reaction process
whose Input variables are elements like reagent composition, flowrate, and
temperature. A reaction planner controls the quality of the output by commanding the
second two inputs according to plan. A variable reagent composition is the first type of
characteristic. However, the flowrate and temperature are themselves controlled by
servo subsystems. An imperfect temperature control subsystem might not be able to

control the temperature exactly as the planner specified; the temperature varies
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somewhat, apparently stochastically to the planner. It may be possible to collect the
statistics of the temperature. They may even be correlated or a function of the process
variables, a fact that a Taguchi analysis or other similar series of experiments could
reveal, and could be exploited by a planner such as that described in Chapter 5. Detalls
of such a controller vary greatly with the application, and few general statements can
be made.

This section described some common types of process models. These were
classified into two types, static and dynamic. Dynamic models use differential
equations or discrete state transition equations to describe the behavior of processes.
Static models generally use algebraic relationships and are generally simpler and
easier to use than dynamic models. There are tradeoffs in how complex a model to
build, both with its ease of use and with the effort required to build an accurate model.
One must stop model development at some point with a somewhat inaccurate model.
This makes the model an inaccurate predictor of the process’ behavior. There are also
uncontrollable and unpredictable external noises to a process that also make it
difficult to predict. These can be ameliorated, but only at cost. Knowledge of the
statistics of the prediction inaccuracy can help in planning or controlling that process,
to guide it towards desirable behavior and to keep it away from undesirable behavior.

2.6 THE PROCESS PLANNER

Given task specifications well-defined in terms of the sensor output and a
suitable model for the process, the next step is to determine the strategy for
manipulating the actuators to achieve the task goals. This can take on many different
forms depending on the model and the task goals. For lower-level tasks such as DC
motor speed control, this can be implemented in analog electrical hardware, and would
be called a controller. Higher-level tasks may require more sophisticated abllities such
as hypothesizing situations, forecasting consequences of decisions, planning with
those forecasts, etc. Such requirements can be satisfied by techniques such as lookup
tables (for output X choose input Y), system identification, adaptive control, nonlinear
computer simulation of dynamics, heuristic rule-based planners, Al. expert systems,
etc. There are many such techniques, and each has its own appropriate uses, whether
the process is static or dynamic, whether the model accurately describes the process or
not, and whether external noise aflects the process greatly or not. For each of these

cases, different levels of complexity may be required of the planner/controller.



Consider simple processes that are modelled statically. If the model is a good
representation of the process, then a simple rule-based controller may suffice. For
example, consider the control of the depth of cut in a turning or other common NC
process. The depth of cut is controlled by the geometrical position of the cutting tocl. If
the device is physically rigid. the model for the cutting process is "all material on one
side of the cutting edge will be removed"”, and is simple and accurate. The control
scheme can be correspondingly simple. If the modei has been simplified, or otherwise
cannot accurately predict the process behavior, then a more complex controller may be
required, using for example heuristics. Consider, for example, a simple peg-into-hole
insertion task which has been geometrically modelled, but does not consider friction or
treats frictional effects as uncontrollable external noise affecting the position of the
inserted part. A heurlistic to overcome this problem might be to experimentally note the
conditions under which friction causes a problem and write rules to avoid those
conditions. Such a rule might be: "do not insert at an angle greater than X degrees.” A
more advanced approach would be to accurately model how the friction physically
affects the parts during the insertion process, and to design a controller capable of
eliminating or rejecting the frictional effects.!

As the goals and process become more complex, the solution strategies become
more complex, particularly if the process model becomes inaccurate. Examples of more
complex static tasks are assembly sequence planning, workpiece routing through a job
shop, inventory control, and grinding pass planning. Artificial intelligence and expert
systems have been used to solve such problems through their ability to imitate human
judgement and sort through a complex set of rules. Artificial intelligence has been
applied to process planning for machining operations, applying rules for the selection
of appropriate tools and machining parameters to create particular features of a part,
and for the selection of the correct machining sequence.[{19] Fuzzy logic[20] has been
applied to problems with requirements and criteria that can be expressed in varying
degrees. Whereas threshold logic states in a binary fashion whether a condition is
satisfied or not, fuzzy logic allows a condition to be partially satisfied. Fuzzy logic uses
expert-derived curves to define the degree of satisfaction of the condition and uses this
to determine the degree of action to take. Optimization theory has been applied to

1The Remote Center Compliance is a successful example of this approach, developed
after a study of the mechanics of part insertion. It is a controller implemented in
passive mechanical hardware, and is particularly elegant in its simplicity.
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solving work-routing and inventory control problems.i21] Both analytic and numeric
solutions have been found. under varying assumptions. Optimization solutions are
discussed in more detail in the next section.

The control of simpler (lower-level) dynamic processes has attained a high
degree of sophistication, and there is a plethora of knowledge about this topic. When
there are good process models, the controller need only be designed for performance and
robustness to external noise. When the model is less accurate, more advanced
controllers can be applied. Such controllers must exhibit robustness to modelling
errors as well as to external noise. More complex (upper-level) dynamic processes may
Tequire nonlinear control theory or computer simulation of their dynamics as part of
the planning/control process.

Such a planner is good for short and very short term processes, for which the
task goals are simple ones like: "make the system follow a certain trajectory as closely
as possible." More complex tasks often require the resolution of tradeoffs that can't be
handled by the limited techniques of advanced control theory. Such tasks more often
need a planner that finds the best plan among alternatives, rather than finding a plan
that satisfies simple objectives. This is where the techniques of this thesis are most
applicable.

2.7 THE OPTIMIZER

Planning for complex processes can be difficult because of the complexity of
cholces a planner faces when trying to manipulate the process to attain the task goals.
The goals are not always binary; they can be satisfied to varying degrees. Some cholices
satisfy the task goals better than others. So the planning problem can be formulated as
an optimization problem whose solution not only yields a plan that can attain the
goals, but will attain the goals as well as possible. The choices can be made via
straightforward optimization (for static models), and optimal control theory (for
usually linear, dynamic models). When the models get complex, more elaborate
optimization schemes (Linear or Dynamic Programming) can be used.

Optimization requires a criterion to be minimized or maximized. This criterion
must be expressible mathematically in terms of process model variables. These criteria
express desired goals of the process, either in reference to end results or in reference to
the manner in which the process is operated. Examples of such criterla are: minimize

total energy expended in the process, or minimize the wear in the process, or minimize
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the time required to complete the process, or minimize the variation in the process
output. These usually can be expressed as a penalty function in economic terms: the
cost of the energy, wear, time, or output variation. This also allows varicus criteria to
be traded-off against each other where several are applicable. Penalty functions were
discussed in detail earlier in this chapter. Sormne criteria are better expressed as
constraints which the optimizer operates within. The optimizer then becomes a
planner, selecting the controllable parameters to attain an optimal process plan within
the constraints of getting the task completed as desired.

The planner for the top level of the weld bead grinding system is such an
optimizer. It secks to minimize the penalties associated with such task goals as:
1) minimize overgrinding, 2) minimize undergrinding, 3a) absolutely no overtime, or
3b) minimize oveitime, 4} do not burn the workpiece. Criteria 3a and 4 are constraints
within which the optimizer must find a solution. The other criteria are expressed as
penalty functions to allow one to be traded off against another. It uses a stochastic
static version of the grinding model to generate a plan for grinding, using the mean
grinding force and the feedspeed as the process controls. This planner accounts for the
fact that the uncertain result of one step of its grinding plan will be the initial condition
for the next step of its plan. Details of this planner are given in Chapter 5.

2.8 CHAPTER SUMMARY

This chapter has presented the elements required for extending the inteiligence
of manufacturing control systems, and has introduced techniques for implementing
these elements. The presentation began with a description of the common technique of
breaking up the manufacturing problem into a decision term-based hierarchy, and
dividing each level of that hierarchy into functional elements. Then it was shown how
this procedure and fundamental modelling tradeoffs will generally lead to a
manufacturing system whose output varies from the desired output, and that this
variation is generally worse for more complex levels of the hierarchy. Thus such levels
require planners or controllers that can plan with uncertain process models. Such
planners then will require a scheme for comparing plans that have uncertain
outcomes. This chapter presented such a scheme, which uses an expected penalty to
compare process outputs in terms of the goal of that level's tasks. This is comnputed via
quadratic penalty functions and the process output's probabitlity density function,

propagated through the process model if necessary. This penalty function is used by an
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optimizing process planner which can find the best process plan to achieve the level's
goals. This optimizer is a form of process planner that is specialized for complex levels
of the hierarchy. Less compiex levels of the hierarchy can use planners and controllers

developed by other workers in fields such as modern control theory.

The techniques introduced here will be demonstrated in a real application (weld
bead grinding) in the following chapters. The grinding process will be modelled
hierarchically, and specific models for each level of the hierarchy will be developed.
Controllers and planners will be developed for each level of the hierarchy, with

particular attention paid to the most complex level's controller.

The next chapter describes the weld bead grinding problem and the hierarchical
structure of the control system developed for it. The following two chapters describe the
most complex level of the hierarchy, first presenting the grinding model, then
describing the controller. The two chapters after those each discuss one of the lower

levels of the hierarchy.
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3 INTELLIGENT GRINDING SYSTEM OVERVIEW

The remainder of this thesis will demonstrate the application of the general
techniques discussed in Chapter 2 to the problem of weld bead grinding. This chapter
will present an overview of the weld bead grinding problem and its issues. The process
hierarchy will be defined, and the goals, issues, and elements of each level of this
hierarchy discussed briefly. Subsequent chapters will fill in the details of each level.

A particular example of weld bead grinding considered is the removal of weld
beads that remain on the exterior of an automobile after its roof is welded to the door
pillars. For cosmetic and structural reasons the resulting weld bead must be ground
smooth with the parent material so as to be undetectable after painting. This is
currently done by humans wielding heavy grinders, and is a tiring and dirty job. It is
also unhealthy due to the airborne grinding grits. This type of grinding is illustrated in

Figure 3-1 below.
Grinder \
Grinding Disk \
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Motion
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Parent Material
—

Figure 3-1 Weld Bead Grinding

3.1 WELD BEAD GRINDING TASK REQUIREMENTS
The requirements for the weld bead grinding task are:

1. Remove the entire weld bead accurately This means that when the
grinding system is done there should be no weld bead material remaining,
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a conditions called undergrinding, nor should the grinder have removed
too much material, called overgrinding. If there is material remaining at
the end of grinding, the job is not complete, and some other agent —
another grinding system or human grinder — must complete the task. This
is costly due to the extra equipment and/or manpower required.
Overgrinding can cause costly damage to the parent material beneath the
weld. In the case of weld beads on automobile bodies, current practice calls
for the resulting damage to be tagged for repair after the entire car has been
completed. As a result, overgrinding is generally more expensive than
undergrinding[22].

Surface contour and finish In some cases (automobiles, for instance), the
final goal is to have a surface smooth enough to be undectectable after
painting. This requirement has two paris: a contour smoothness
requirement, and a surface finish requirement. The contour smoothness
requirement insures that the weld bead blend in with the parent contour so
that the transition from weld bead to parent material be undetectable, and
that the final shape be aesthetically acceptable. This implies dimensional
accuracies of less than 0.1 mm. The surface finish requirement insures
that the microscopic finish of the resulting ground surface have a low
surface roughness, also for aesthetic purposes. Note that the surface
cannot have too fine a surface finish either, since paint will have trouble
sticking to it.

Weld bead path The grinding system must be able to handle weld beads
having complex three-dimensional paths, such as one on a car body or
casting.

Time considerations The weld bead grinding system must respect factory
scheduling constraints. In particular, it is important that the grlndlhg
system not take too long to complete its task. Timing requirements can be
softened when there are work-in-process buffers both upstream and
downstream of the grinding workcell. However the benefits of buffers are
offset by the fact that buffer sizes are frequently reduced because they
require valuable room on the factory floor, imply extra work-in-process
inventory, and allow large amounts of poor quality work to accumulate
before discovery. Reduction of infericr quality inventory ts a fundamental
principle behind Just-In-Time manufacturing (JIT), which is now gaining
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popularity worldwide. Where there is no buffer befere or after the grinding
cell, a time constraint in the fortn of a deadline can be imposed. If there is
some bufier space, the deadline constraint can be relaxed and a lateness
penalty can be imposed.

5. Burning In grinding it is possible to temper the metal {f too much heat
builds up. This is known as burning, and will be describec in more detail
in the following chapter. Burning results in a structurally weak weld, and
must be avoided. Avoiding burning is therefore a constraint on the weld
bead grinding process.

The first three requirements are primarily geometrical. The first requirement
refers to the total volume of the weld bead remaining, and differs from the second
requirement, which refers to the final shape. It is possible to have a smooih contour
that still contains too much material. The contour smoothness requirement can be
addressed as a practical issue by using a flexible grinding disk. However, there are no
grinding models which predict the three-dimensional shape of the weld bead. The
grinding model described in this thesis is a two-dimensional model, and was derived
for a rigid grinding disk. A model for predicting the surface finish is described in the
following chapter, and can be used by the top level controller. The weld bead path
requirement calls for the implementation of the grinding system on a 6-axis robot.

3.2 IMPLEMENTATION ISSUES

Further study of this grinding problem uncovers issues which affect the
implementation of the control system:

1. Position control cannot be used It is difficult to locate many workpleces
such as automobile bodies to same degree of precision required of the final
weld contour, so a grinding system which relies on absolute geometry
would be impractical. A grinding system that depends on relative
geometries would need to use a rigid disk of known dimensions (and a
monitoring scheme to track those dimensions as the disk wears). It would
also need to rely on either a relative position sensor between the grinder
and the workpiece or bracing strategies. A system based on a relative
position sensor (see Figure 3-2) must close the loop through the
compliances of all the robot's joints, making it difficult to maintain the

required dimensional accuracy. It would also require a sensor capable of
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Weld Bead

Figure 3-2

accurately determining the distance between the grinding disk and the
parent surface during grinding. A sensor that felt the location of the
surface would have difficulty with the complex contours of the auto body
sheet metal and with weld beads paths that described complex three-
dimensional curves through space. On the other hand, a remote sensor
could not 'see’ the spot where grinding was taking place directly
underneath the grinder. Looking just behind this spot would involve some
time delay, and this would degrade control performance. A visual sensor
could be blinded by the grinding sparks if it looked too near the spot where
grinding was taking place., and moving it far enough away to avoid
blinding would mean too much time delay. Another applicable sensor is
an acoustic sensor, which would not have the required resolution over the
required range. We know of no remote sensors that could do the job. There
also remains the problem of determining the relative location along the
weld bead without relying on absolute geometric information.

Relative Robot Arm
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Generic Relative Position Sensor

A bracing strategy [23] would have to be designed to avoid damaging the
surrounding sheet metal while controlling the substantial grinding forces.

See Figure 3-3 for an {llustration of an implementation of a bracing



strategy. Bracing strategies would alse be vulnerable to dirt getting caught
between the brace and the workpiece and ruining the accuracy of the
system, and would have the same problems that tactile position sensors
have with complex parent material and weld bead contours.

Robot Arm
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Actuator Arm tow rri
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Grinder
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/ Surface of
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Material

—

Elevation
Figure 3-3 Bracing Strategy

Preliminary studies of this type of grinding (see the next chapter for
details) indicated that it would be possible to control the grinding process
via the grinding force. The grinding force could then be controlled via
position control and a known compliance. This would require far less
dimensional accuracy than either of the pure position control schemes.
Our working group had much experience with force sensors and thelr
application in robotics and assembly. So it was decided to try to control
the grinding process via the grinding force.

2.  Multiple grinding passes are required The early studies of this type of

grinding also indicated that there was an inherent physical limit to the
material removal rate of the grinding process, and this necessitated
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multiple grinding passes to grind a weld bead smooth. This mandated the
medium-term type of decisions mentioned earlier, particularly, how many
grinding passes to make, and how much material to remove during each
pass, and when to declare that the job is done. This is the responsibility of
the grinding sequence planner. The time and geometrical requirements
can bring about a fundamental tradeoff for this planner near the end of a
grinding sequence: what to do if the weld is not completely ground and the
deadline is near. The options are: a) quit now with the job unfinished, or
b) grind some more and finish late. The grinding sequence planner must
be able to weigh the risks and benefits of these two alternatives and make
the best decision.

3. rinding is poorl redictable All grinding models have empirical
coefficients that vary with varying workpiece material properties and disk
properties. These coeflicients can be estimated before a grinding pass only
with limited accuracy. Previous research indicated that the cut depth of
steady state grinding passes performed under the same nominal
conditions varied from 10-20%. Thus the results of a grinding pass are
poorly predictable. Any planning system for grinding must take this into
account, and plan grinding passes that avoid the risks of violating the task
requirements listed above.

3.3 SYSTEM STRUCTURE

The above considerations lead to a hierarchical control system such as that
shown in Figure 3-4.
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This is the top level of the hierarchical controller in the terminoiogy of the
previous chapter, corresponding to a medium term planner, and is responsible for
deciding the number and type of grinding passes for a given weld. This is done by
specifying the cut depth and feedspeed for each grinding pass in a sequence. This level
must create grinding sequences that limit the risk of overgrinding and undergrinding,
avoid burning the workpiece, and satisfy the time requirements. Before each grinding
pass this level must determine the amount of time and material remaining, decide what
cut depth and feedspeed to use, and communicate these requirements to the lower
planning and control levels. This level is also responsible for maintaining estimates of
the empirical model coefficlents. The grinding model used by this planner and its
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history are described in the next chapter, and the planner itself is described in detail in
the chapter following that.

Pass Planner

This is the second level of the hierarchical control system, corresponding to a
short term controller. It computes the desired weld bead contour given the material
removal requirements, and uses this, the current model coefficients, and the current
contour shape toc generate the grinding force trajectory as a function of time. This force
trajectory is then commanded to the force controller for execution. This controller is
described in detail in Chapter 6.

Force Controller

The force controller commands the robot or force actuator to follow the desired
force trajectory, and corresponds to the very short term controller of the previous
chapter. This force controller was implemented using a one dimensional actuator in a
grinding test stand for this thesis. Real time robot force control for flexible disk
grinding was demonstrated by Tate [24]. In both cases force control was achieved using
position control and a known compliance. This is described in detail in Chapter 7 of
this thesis. The position control loop can be considered as yet a lower level controller,
and is analyzed in Apperdix B.

3.4 CHAPTER SUMMARY

This chapter presented a control system hierarchy for the weld bead grinding
problem. It derived that structure from the nature of the weld bead grinding problem,
its requirements, and issues that arose on closer investigation. The task requirements
were that a three dimensfonal weld bead must be entirely removed, leaving a smooth
surface contour and finish, and that this must be done within a specified amount of
time and without burning the workpiece. Further inspection of the problem indicated
that multiple grinding passes would be required, that these could not be predicted
accurately, and that it would not be possible to control the grinding process to the
desired accuracy via the position of the grinding disk. The resulting control scheme
was based upon controlling the grinding force at the lowest level of the hierarchy. The
next level up would decide what force trajectory to use to remove a specified amount of
material from the weld, and the top level would decide how much material to remove

and with how many grinding passes. This top level was responsible for insuring that
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most of the task requirements be met, and was designed to make plans that account
explicitly for the poor predictability of the grinding process. The resulting plans avoid
as well as possible the possibility of violating any of the task requirements.

Given this hierarchy, the remaining chapters describe from the top level down
how they were implemented. The next two chapters describe the grinding sequence
planner, with an entire chapter devoted to describing the grinding model used by this
planner, and the remaining chapter describing the implementation of the sequence
planner. The next two chapters describe the implementations of the grinding pass
planner and the force controller, respectively.






4. THE GRINDING PROCESS MODEL

This chapter will derive the weld bead grinding process model starting from
previous research and first principles. This model is used in three forms in this thesis,
corresponding to three levels of the weld bead grindirg precess. The first section
describes previous related work in modelling grinding. The second section derives the
static grinding model used by the medium term planner.

4.1 PREVIOUS GRINDING RESEARCH

Grinding, in its varlous forms, has been studied for many years, coming as an
outgrowth of metal cutting theory. One of the earliest of modern treatments of metal
cutting is due to Merchant [25-27], who studied the mechanics of metal cutting on a
microscopic scale. This work investigated the physics of the chip-tool interface
modelling the chip shear plane and the resulting force system. Metal cutting theory
proved a fertile topic as other workers extended Merchant's model [28][31,32,34].

Static Grinding Models

Shaw and others extended this work to include grinding. Marshall and Shaw
[29] instrumented a grinder and noted the empirical relationships between the grinding
forces, disk speed, feedspeed, depth of cut, grit material and size, specimen hardness,
and dressing technique. They interpreted their data in terms of the specific energy
required to remove the material, and experimentally related that energy to the size of
the resulting metal chips, and compared this energy to that required by micromilling
and lathing [30]. This work relied heavily upon a geometrical model for the cutting edge
path during one type of grinding, and was later extended to other types of grinding in
[33]. An adaptation of this work for computer simulation was described in [46].
Merchant's metal cutting theory was later applied in three dimensions at the grit level
in [35]). These models are primarily microscopic, attempting to describe grinding at the
chip-grit level only.

Hahn [39-43] started at the microscopic level, characterizing the processes that
occur a the grit level, and relating this to macroscopic variables, such as the grinding
force and the material removal rate. His work concentrated primarily upon precision
grinding, in which a cylindrical surface is ground to a precise diameter and finish. This
type of grinding is {llustrated in Figure 4-1. Both the workpiece and the grinder are held
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compliantly, both rotate, and are fed toward each other. The two elements 'mutually
machine’ one another, with the harder grinding disk wearing more slowly. The contact
area between the grinding disk and the workpiece, where the grinding was taking place,
is called the contact patch. The force perpendicular to the contact patch is called the
normal force, and the force tangential to the contact patch is called the tangential force.

Contact Patch

Grinding Disk
Workpiece

Feed

Figure 4-1 Precision External Grinding

Hahn described three processes that take place at the raicroscopic level during
grinding: Rubbing, Ploughing, and Cutting. In rubbing, no material removal takes
place, but energy is expended in material deformation. Ploughing causes material to be
sloughed off on either side of the abrasive grain, and yields low metal removal rates.
The cutting process causes a chip to form directly in front of the grain and to peel off,
ylelding large metal removal rates.

These processes dominate at different force levels between the grinding disk and
the workpiece. The normal force correlates well with the material removal rate. At low
normal force levels, the rubbing process dominates, and no material removal occurs.
At higher force levels, the ploughing process takes over, and generates a small amount
of metal removal per énergy input. At even higher force levels, the cutting process
dominates, and generates stil] higher metal removal rates. The thresholds for the
transitions from rubbing to ploughing to cutting are 1-wer for easy-to-grind (ETG)
materials than for hard-to-grind (HTG) materials, Hahn called the ratio of the volume
rate of material removal to the normal force the metal removal parameter, which is
indicative of the efficiency of the grinding process. This parameter decreases as wear
flats develop on the abrasive grains and the disk dulls. He called the ratio of the



tangential force to the normal force the grinding coefficient of friction, and found it to
be roughly constant. Hahn showed empirical relationships between the disk dressing
conditions, the composition of the disk, and the metal removal parameter for ETG
materials. Hahn also correlated high surface finishes with high grinding forces giving
an empirical relationship derived from curve-fitting of experimental data, and showed
how this grinding model derived for external grinding of cylindrical pieces could be
adapted to internal grinding and flat workpieces via an equivalent diameter.

Malkin [44] approached grinding from an energy point of view, dividing the
energy input into sliding (i.e. rubbing), plowing, and chip formation (cutting) specific
energies. He experimentally determined the sliding energy by piotting the tangential
grinding force vs. the wear flat area, and extrapolating to zero wear flat area. This
intercept was the cutting component of the force, and the remaining force was the
sliding force component. The specific energies were easily computed by multiplying
these tangential forces by the linear disk velocity and dividing by the volumetric
removal rate. This specific cutting energy was then correlated experimentally with
both the workpiece feedspeed and with the cut depth, decreasing with the increasing
values of both feedsp.ed and cut depth. This was explained by further dividing the
cutting energy into p .wing energy and chip formation energy. For small cut depths,
the grinding grains participated mostly in plowing, yielding relatively little material
removal. When the feedspeecd was increased, "the maximum undeformed chip thickness
also increases, thereby resulting in relatively less plowing and a decrease in specific
cutting energy.” He then stated that "about 75 percent of the total chip formation energy
goes into shearing, with the balance associated with friction." The shearing energy
could be approximated by the melting energy of the metal. Some of that shearing
energy, and nearly all of the friction energy, heated up the workpiece. His data showed
that this results in a total of about 55% of the chip formation energy and 75% of the
plowing energy being conducted as heat to the workpiece.

So these two researchers have developed similar macroscopic models for
grinding, dividing the energy used into that which goes to metal removal and that
which does not. Their models related the grinding power to the material removal rate
via experimentally determined coefficients: '

M=K]1 Q+K2 (4.1)
where:  Q = the volumetric metal removal rate [mm3/s]

IT = the power delivered to the contact patch [W]
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K1. Ko are experimentally determined coeflicients

Meanwhile, other researchers were evaluating Kj and K9 as functions of the
feedspeed, disk speed, geometry, disk composition, and disk dressing conditions for a
variety of types of grinding [36-38,45). This generally resulted in empirical relations
for steady-state grinding obtained from curve fitting of experimental data. For
example, Malkin {44] reported that for the grinding of steel K; was very nearly constant
at 13.8 J/mm3, and that Ko was given by:

Ko = le + Ilg] (4.2a)
Mp1=waj Vt (4.2b)

vy
Ig] = w(ag + a3—2T,-t-ﬁ-)aR Vi (4.2¢)

where:  Ilp] = power due to plowing [kW]
INg] = power due to sliding [kW]
w = width of grinding patch, [mm)]
a] = 9.62x10"7 kW/mm?
Vi = tangential disk speed, = wR, [mm/s]
o = grinding disk rotation rate, [rad/s]
R = grinding disk radius, [mm]
ag = 7.55x10"% kW.s/mm?
az = 2.1 kW-s/mm3

aR = real contact area per unit width, = AV2Rd
A = total disk surface area / total grit wear flat area

Such relations were derived for other variables as well. Disk wear was modelled
by several researchers in this manner, as were surface finish conditions. Malkin used
his results to model workpiece burn, a condition which is associated with undestrable
metallurgical damage resulting from excess heating of the workpiece. The metal
becomes discolored with tempering, and austenite is formed, followed by martensite
formation as the region cools. The surface of the material shows increased hardness,
due to the presence of the martensite. He computed the burning constraint by
calculating the sum of local peak surface temperatures associated with individual
grains and the temperature of the grinding zone in the vicinity of the contact patch. His
burning model was:

'Ii'ﬂ
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@ = (9.0x109)d + (4.1x104)(Dd) /4 v1/2 (4.3)
where: @ = energy flux [in.-1b/in2)
d = cut depth [in]
D = disk diameter [in]
Vr = feedspeed [in/sec]

Snagging

Snagging is a general term for manual ‘clean-up' grinding operations. It is used
for cleaning castings, smoothing flame cut edges, preparing surfaces for welding, and
smoothing weld beads [49]. Snagging is done using the face of rubber-backed paper
grinding disks, and using either the edge or the face of rigid grinding disks. Grinding
with the face of the disk is easier to control. This differs from the previously described
processes which use the edge of the grinding disk solely. Some research on snagging
with automation in mind has been recently reported [47-50]. These follow the lines of
the previous research for other types of grinding, and obtain similar results.

In particular, Kenwood studied rigid resin-bond disk grinding, also referred to
as 'hard' disk grinding. He noted the power vs. volumetric removal rate of equation
(4.1). He also noted the phenomenon called glazing, in which the grinding grits get
progressively duller, and the disk gradually becomes incapable of removing metal. He
discovered that the normal process of grit pullout was not occurring due to insufficient
local grinding pressure. The pullout process continually resharpens the wheel as new
sharp grits are exposed. Individual grits were not experiencing enough force to extract
them because the contact patch area was larger than that which would ordinarily occur
in manual grinding. This was caused by the fact that the test apparatus held the grinder
too steadily in one orientation, and did not generate the edges on the disk and
workplece that a human grinder would. Grit pullout was found to occur above a critical
grinding power, and this coincided with an increase in the grinding coefficient of
friction p and the disk wear rate, and the grinding power. Grinding coefficients of
friction varied between 0.25 and 0.4. K] was found to be about 10.-16. J/mm3, a figure

which agrees with Malkin.

Ivers substituted a rubber-backed coated abrasive paper disk, also called a
'flexible’ disk, fer the hard disk used by Kenwood. These disks have one layer of grits
glued to a paper disk, and show an initial fast wear regime, followed by slower attritious
wear regime, in which wear flats form on the grits and the grits gradually wear down to

the paper surface. Ivers found a power vs. volumetric removal rate relationship that
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was similar to Kenwood's. His coeflicients were in the neighborhood of K = 8.4 J/mm3
and Ko = 30 W for 36 grit disks grinding steel, and K} = 15. J/mm3 and Ky = O W for
80 grit disks grinding steel. Grinding coefficients of friction were in the neighborhood
of 0.8. Ivers also noted that it was possible to achieve very high quality surface finishes
using coarse grinding disks. In experiments using 36 grit grinding disks, Ry values!
less than one micron were obtained. Micrcscopic inspection of the ground surface
revealed that the last grit that cuts largely determines the surface finish as if it were the
only grit cutting. The high quality finishes were due to very uniform and slow
feedspeeds. He developed a model that partially predicts the surface finish given the
individual grit cut depth, the disk rotation rate w, and the feedspeed Vr.

Both Kenwood and Ivers noted two important aspects of weld bead grinding: 1)
restrictions upon the volumetric removal rate imply that several grinding passes must
be made to completely remove the weld bead. and 2) the results of apparently
identically set-up grinding passes can vary as much as 10-20%. These will be
important factors in determining the structure of the medium term controller described
in Chapter 5.

For hard disks, one restriction in the removal rate is in rapidly increasing disk
wear rates for increasing volumetric removal rates. This leads to an economic tradeoff
between the cost of disk replacement and the cost of extra grinding time for slower
removal rates. Material removal rates for both hard and flexible disks are limited by
the same metal burning modelled by Malkin (equation (4.3)). Ivers derived a similar
expression for the maximum temperature, though using cruder assumptions. He found
that it was proportional to the grinding power and inversely proportional to the square
root of the feedspeed. This appeals to the intuition that the peak temperature rise would
increase with friction power and increase with the time that the power source lingers
near any one spot.

1R, i1s defined as the average absolute value deviation from the mean:
L

Ra =%OI| f(x)-m| dx

where: flx) = the surface profile, m = the mean of {{x) over [0,L], L = the sample length
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4.2 THE STATIC GRINDING MODEL

This section will derive the static grinding model using the material removal
and coefficient of friction relations. This model is used by the medium term planner to
predict the average results of a grinding pass. For convenience, these relations are

repeated here:

M=K) Q+K»p (4.4a)
Q=wsVr (4.4b)
M=0RFt (4.4¢)
Ft=pFn (4.4d)

where: Il = power delivered to the contact patch [W]

Q = the volumetric material removal rate [mm3/s]
K) = specific grinding energy {J/mm?3]
Ko = wasted power [W]
w = weld bead width [mm)]
8 = cut depth [mm]

‘ Vi = the feedspeed [mm/s]
o = the grinding disk rotation rate [rad/s]
R = the grinding disk radius [mm]
Ft = the component of the grinding force tangential to the disk [N]
Fn = the component of the grinding force normal to the disk [N]

p = the grinding coeflicient of friction [dimensionless]

The first equation expresses the empirical power vs. volumetric removal rate
relationship. The second equation represents the conservation of volume for
rectangular cutting area of dimensions w x § perpendicular to the feed velocity vector.
The third equation computes the power delivered to the contact patch. The fourth
equation is the empirical grinding coeflficient of friction relation. These equations can
be combined to yield a single equation giving the steady-state cut depth as a function of
the process coeflicients and normal force, feedspeed, and disk rotation rate:

oRpuFp-Ko
) ==K wvVi (4.5)
To avoid unnecessary divisions which take more time than multiplications on a digital

computer, the cut depth was computed as:

Ci1C3Fph+Co
6= Vi (4.6)




Ko
OF'W
Cs=—

This is the equation used by the medium term planner to predict the mean cut
depth. This is used to predict the amount of material remaining in the weld bead after a
grinding pass is completed via the simple expression:

Xf=X1-8 4.7)
where: Xy = the average initial weld bead height after a pass
Xj = the average initial weld bead height before a pass

Thus the amount of material remaining in the weld bead is equivalent to the average
weld bead height for a weld bead with a rectangular cross section of fixed height and
width. This average height is referred to as the state of the weld bead in the remainder
of this thesis. Xj represents the initial state of the grinding pass, and Xf represents the
final state of the grinding pass.

A slight modification is required when the grinder motor cannot maintain a
constant rotation rate o. In this case a steady-state motor model must be incorporated
into the above equation:

m:coo-ﬂRFt (4.8)
where: @, = the free-spinning disk rotation rate [rad/s]

B = the motor constant, [rad/s-N-mm)]

This expression indicates that the motor rotation rate is a linear function of the shaft
torque, and is a good model for the air motor that currently powers the grinder in our
laboratory. This expression can be substituted for o in equation (4.6) using equation
(4.4d) to express Ft in terms of Fh. A dynamic motor model is possible, but is not
suitable for the planner at this level.

Stochastic Model

To evaluate the expected cost for the grinding pass, a probability density
function for the terminal state of that grinding pass is needed. The static grinding
model above is used to compute the mean value of the terminal state. This model is
extended in the following to describe the probabilistic variation of the terminal state.
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As stated above, both Kenwood and Ivers noted a significant variation in the cut
depth for identical grinding conditions. The variation of the cut depth can be attributed
to randomness in either K; or p. These can be propagated through the dynamics using
the relations in Table 2-1 to obtain:

attributing randomness to Cj:

C3FN

or attributing randomness to Cap:

ag= \—}?602 (4.9Db)

or attributing randomness to y:

Cl0RF
a§ =-anq_l (4.90)

where: o, = the standard deviation of z, where z = §, C}, p, etc.

and the terminal state standaid deviation is given by:
OX; =3 (4.10)

The above is strictly true only for probability density functions (PDFs) described
completely by their mean and standard deviation and which propagate linearly
through linear equations, such as the Normal PDF. However, a Normal PDF for Cj or p
yields a Normal PDF for the cut depth, and this implies a finite probability for a
negative cut depth (i.e. adding material by grinding). which does not make physical
sense. We must restrict the PDF for the cut depth to satisfy the constraint that § = 0.
Two PDFs come to mind: the log-normal and the Rayleigh. However, these do not
propagate easily through the dynamics. An approximate solution is to propagate the
mean and variances for Gaussian PDFs and use a Rayleigh or Log-Normal PDF having
the resulting mean and variance for the cut depth distribution. See Figure 4-2 for a
comparison of these PDFs and Table 4-1 for their formulae and expressions for their

means and variances.

All three PDFs were implemented for the medium term planner (see Chapter 5).
It was discovered that the planner was insensitive to the PDF shape as long as the mean
and variance could be selected independently. As a compromise between the expected
probability density function shape and ease of computation, the Rayleigh PDF was



selected to represent the stochastic state transition function. Judging from
experimental grinding data, this PDF has about the correct shape.

Within the computer, the Rayleigh PDF can be easily scaled from a template
shape to yield a PDF of any desired mean. This is useful frcm a computational
standpoint. However the variance is dependent upon the mean, and this at first seems
to violate the criterion that the mean and variance be independent. Within certain
limits, the mean and variance can be made independent by first computing a PDF with
the desired varlance, and then translating the PDF toward higher cut depths to attain
the desired mean. Of course, this does not work if the translation must be towards
lower cut depths to attain the desired mean, since this would result in negative cut
depths, similar to those which made the Normal PDF unsuitable. In this case, the PDF
is scaled down to yield the desired mean, with the origin of the PDF coinciding with zero
cut depth. This technique resulis in two different PDF shapes: one in which the mean
and variance are independent, and one in which they are dependent. Fortunately, the
cut depth variance is dependent upon the mean only for very small cut depths. Where
the variance is small, the planner is primarily sensitive to the cut depth variance and
relatively insensitive to the cut depth mean. As stated earlier, the planner showed only
minor differences between the different PDF shapes when this translation technique
was used with the Rayleigh PDF.
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Table 4-1 Formulae for Probability Density Functions
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4.3 CHAPTER SUMMARY

This chapter derived the grinding process model used by the sequence planner.
It was based on cutting process and grinding models that are decades old. This model

was static, one dimensional, and stochastic.

It relates the mean and variance of the

probability density function of the average weld bead height given the grinding force
and feedspeed used during the grinding pass and the initial average weld bead height.
This model will be used in the grinding sequence planner described in the next chapter.






5. PLANNING WELD BEAD GRINDING SEQUENCES

5.1 INTRODUCTION

This chapter describes the implementation of the grinding sequence planner. It
describes the planner's task and shows that this is a sequential decision making
problem. Then it describes the solution technique used, stochastic dynamic
programming, by first describing deterministic dynamic programming, and showing
how this can be used for planning deterministic grinding sequences, then adapting the
dynamic programming algorithm for planning stochastic grinding sequences. The
chapter continues with an analysis and characterization of the grinding policies
produced by the sequence planner. The influence of three different constraints on the
grinding process is explored: a fixed deadline, a weld bead burning constraint, and a
lateness penalty.

The Grinding Sequence Planner's Task

The problem that this planner addresses is how to plan the number and type of
grinding passes reguired to completely remove a weld bead of initial known height.
This planner addresses several of the issues and requirements listed in Chapter 3 such
as insuring that the weld bead be accurately ground off, that the time considerations be
satisfled, and that the final surface finish requirements be met. It must plan within the
constraints of the capabilities of the grinding equipment and process (e.g. grind within
the power limits of the grinder and without burning the workpiece).

This planner uses the static grinding model described in the previous chapter.
The variables under control during each grinding pass are the feedspeed and the
grinding force. These are called the controls. Note that the terms material remaining
and weld bead height are used interchangeably in this chapter because they represent
the same thing at this level of the control hierarchy. This material is removed in stages
during successive grinding passes, with the amount of material removed being a
function of the controls applied during each pass. In addition, varying the feedspeed
changes the completion time of a grinding pass for a fixed pass starting time. The set of
feedspeeds selected for the entire sequence must satisfy the time considerations.

Selecting the feedspeeds for every pass is tantamount to selecung the number of
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grinding passes. The problem then is to select the feedspeeds and grinding forces for
each pass in a sequence of passes so that the entire weld is ground off within the
required time.

State Transitions

The dynamic programming technique is based on a concept known as a state
transition. This concept was introduced briefly in Chapter 2, and will be described here
in the weld bead grinding context. The term state refers to the condition of the weld at a
particular time, i.e., both the volume of material remaining and the amount of time
remaining. Consider a weld in a particular state. Call this state the initial state. This
is illustrated in Figure 5-1 as state A. Application of a particular set of controls during
a grinding pass converts the weld to a different state, the terminal state, when the
grinding pass is done. This grinding pass is called a state transition, and is illustrated
in Figure 5-1 as an arrow or directed arc connecting state A to state B, say, for one
particular force and feedspeed applied during that grinding pass. If more grinding force
is applied, more metal is removed, and the terminal state has less material remaining,
such as for state C. If instead, the same grinding force is applied, but a slower feedspeed
is used, the terminal scate occurs later since the grinding pass takes longer, as in state
D. Note that since slower grinding passes remove more material than faster passes,
state D has less material remaining than state B, even though the same grinding force is
used.
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A serles of passes comprises a grinding sequence. The state of the weld bead at
the end of the sequence is called the final state. Some grinding sequences may take too
long, or not remove the right amount of material. A technique for finding a good
grinding sequence is to assign penalties for not satisfving the task specifications, and
solve for the best sequence of grinding passes to satisfy the task requirements and
constraints. Figure 5-2 is an illustration of two possible sequences. The requirements
for the grinding system and physical limits to the grinding process constrain this
selection. It is the nature of these requirements and constraints and how they aflect the

decision process which make the solution to this problem non-trivial and interesting.
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Figure 5-2 Two Grinding Sequences in State Space
Sequential Decision Making

This problem can be thought of as a sequential decision making problem, in
which a series of decisions is to be made and the results of previous decisions affect
future decisions. The decisions are the choices of state transitions to take given the
initial state before each pass. This reduces to choosing the feed speed and normal force
to apply during the next pass. Such a problem can be solved either numerically, using
discrete approximations to the functions involved, or analytically. Both solution
techniques have their advantages and disadvantages. The numerical technique suffers
from the inherent problem of not being able to accurately represent a continuous
situation with discrete values, and a lack of insight from the solution, but can handle a
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wide range of mathematical functions and operations with relative ease. The
analytical solution yields both insight and exact answers in many cases, but can fail
when faced with a equation that is difficult to solve. This chapter will present both the
numerical solution and an analysis of its behavior for further insight.

Due to the multiple passes and multiple decisions available at each pass, a very
large number of state transition sequences is possible. An exhaustive search for the
optimal sequence would be prohibitively expensive. However, the multiple-stage
decision-making problem lends itself well to solution via a technique known as
dynamic programming, which will be described in the next section.
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5.2 DYNAMIC PROGRAMMING

This section will show how dynamic programming! can be used to plan the
grinding sequence. First, a simplified formulation of the grinding problem will be
presented in order to demonstrate the basic dynamic programming algorithm. This
stmplified formulation will gradually be elaborated until all the details of the grinding
sequence planner's problem are included.

A Simplified Grinding Problem Formulation

A simplified problem formulation for planning grinding sequences will now be
presented to make the explanation of the sequence planner easier. For the simplified
formulation, the problem is restricted to one of finding the optimal cut depth for each
grinding pass when all the passes take a unit amount of time. Thus we need only select
the optimal grinding force, since the feedspeed is a constant. This is equivalen: to
selecting the mean cut depth, which is linearly related to the normal force for fixed
feedspeed. In this simplified problem there will be a maximum number of grinding
passes, and the actual amount of time each pass takes will not be a concem. The end of
the last grinding pass will be referred to as the deadline. The independent variable is
the index number of the current grinding pass. In dynamic programming, the values of
the independent variable are referred to as stages. Later the independent variable will
be changed to the time remaining until the deadline (or until the planning horizon) and
the grinding passes will be allowed to take different amounts of time. Later in this
thesis grinding will be allowed after the deadline. For now it is simpler to think in
terms of grinding passes governed by a single control, and state transitions occurring as
discrete, non-overlapping events.

In many dynamic programming problems there are a finite number of states to
consider, and a finite number of choices. This is not the case in grinding, for which
there is a continuum of allowable states and controls. To make the problem tractable
for the dynamic programming solution, the number of allowable states must be
restricted to a countable set, located in regions of interest in the state space (typically,

though not necessarily, evenly spacedj. In this case, one might chcose amounts of

The reader is referred to Appendix A for a brief tutorial on dynamic programming.
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material remaining in a cluster around zero material remaining and zero time
remaining, the destination state, and disperse other states to adequately describe
amounts of material remaining likely to be encountered during a series of grinding
passes. The optimal controls will be selected to minimize the penalty function, and
these must be allowed to take on values in the set of real numbers. For computer
implementation of the dynamic programming algorithm, the values of the controls
will be restricted to the set representable by double precision floating numbers.

Penalty Function

The penalty to be minimized is the sum of a deadline charge (according to the
state of the weld when the grinding is done) and in-path charges accrued during grinding
in a particular sequence from that initial state:

P(Xi |Uvpasses) = CXp +  2G[Xpass.Upass.pass) (5.1)
V passes
where: P(Xj) = penalty for grinding sequence initial state Xj
C(X) = deadline charge for grinding sequence terminal state Xf

V passes refers to every pass in the grinding sequence between Xj and X

Xpass = the state at the beginning of each pass
Upass = the control applied during each pass
G(X,U,p) = In-path charge for grinding pass p, with initial state X (before

the pass), and control U applied during the pass

The function G represents charges accrued during each grinding pass not directly
assoclated with the state of the weld bead when all grinding is finished. These are
termed in-path charges. Such charges are imposed, for example, if it is desirable to
weight system wear and tear via penalizing certain wear-intensive controls. In the case
when grinding after the deadline is permitted, in-path charges will be used to penalize
the extra time used after the deadline. In the discussion immediately following , the
function G is zero identically; there will be no charges assoclated with either particular
controls or particular intermediate states. Therefore, the charges are entirely a
function of the final state of a grinding pass. and this final state is a function of the
controls, U, via the state transition function. It is by selecting these controls that the
algorithm tries to minimize the penalty function P(Xj).

Deadline charges reflect the fact that undergrinding the weld (material
remaining at the deadline), or overgrinding the weld lexpressed as a negative amount of
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material remaining at the deadline) are both undesirable. The three deadline charge
functions used for planning weld bead grinding are illustrated in Figure 5-3. These were
obtained using the techniques described in Chapter 2 of this thesis for estimating the
costs of undesired results. The first charge function is a simpie piecewise constant
function, similar to the threshold penalty model described in Chapter 2. For this
charge function, any overgrinding is heavily charged, while significant undergrinding
is less severely charged. There is no charge in a small region just to the right of zero
material remaining. This models a tolerance region, and gives the dynamic program a
sufficiently broad low-penalty target state to shoot for. The second charge function is a
plecewise linear function, with a steeper charge curve for overgrinding than for
undergrinding. The third charge function is a plecewise parabolic function in the style
of Taguchi's cost functions. In addition, combinations of these functions were
implemented, using the negative material remaining part of one function with the
positive material remaining part of another. The differences in results from using any
of these functions or their combinations was unremarkable, differing only slightly in
degree of controls applied and resulting penalties. This figure illustrates the generic
shapes of these functions only; the actual values used were arbitrary, and were not
derived from real cost data.

Charge, $
4

/Plecewlse Quadratic

f jPiecewise Linear

i
o
./ ‘/Pxecewlse Constant
U

Material

$ Remaining
Overgrind 0 Undergrind at Deadline

Figure 5-3 The Deadiine Charge Functions for Planning Weld Bead Grinding

Since no in-path charges are accrued, the dynamic programming algorithm
attempts to select the grinding controls to minimize just this particular deadline state
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charge. Thus the dynamic programming algorithm tries to select the grinding sequence
to avoid a final overground or underground state. Note that the deadline charge is the
same as the deadline penalty; when at the deadline, no further grinding passes can be
attempted, so the penalty is merely the deadline charge for that state. The algorithm is
primed by loading the deadline charges into the penalty function for each amount of
material remaining in the stage corresponding to the deadline.

The algorithm maintains an optimal penalty function J(X.pass stage index) that
holds the least penalty P(X| Uypasses) that can be assessed for a grinding sequence
starting at that initial state (grinding pass and material remaining). This function is
often referred to as the optimum penalty-to-go, or simply the penalty-to-go. This is
similar to the total time to the parking lot assoclated with each intersection in the
skiing example. The basic dynamic programming algorithm can be written as:

For 1 = final pass to first pass
For all states X(i) € {legal states for pass i}
The optimal control u*(i) is the control which minimizes:

G(X(1), ul), 1) +IXKqli+1), 1)

where: Xfli+1) = F(X(1), uli), 1)
and X@) = the state of the weld at the beginning of pass i
u(l) = the control applied during pass 1
X((i+1) = the state of the weld after the grinding pass i
FX, u, 1) = the state transition function which ylelds the state of the

weld after pass i given the weld state X before the pass and the
control u applied during the pass

JXJ) = the optimal penalty for state X at the beginning of pass |
The resulting optimal penalty for each state X(1) is given by:

J(XW) =GX(M). u*l). 1) + IXK*(1+1). 1) (5.2)
where:  Xp*(i+1) = F(X(1), u*(1)

Figure 5-4 shows the values of such a penalty function in the state space at a finite set of
material-remaining values and time stages. This is the form in which the computer
stores the penalty function. Generally the penalty function is treated as a sampled
continuous function, and may be referred to elsewhere in this text (especially in figures)
as a continuous function. The shape of the penally function when time is held constant
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will be referred to from time to time for explanatory purposes. This is a one-
dimensional function: penalty as a function of material remaining. It will also be
referred tc as a time-slice of the penalty function.

Time Material
Remaining Remaining
[s] [mm]
| -0.5 | 0.0 | 0.5 ] 1.0 | 1.5
12. 5.00 0.00 0.09 0.18 0.25
10. 5.00 0.00 0.12 0.20 0.31
8. 5.00 0.00 0.16 0.23 0.36
6 5.00 0.00 2.21 0.44 0.62
4. 5.00 0.00 0.27 0.56 0.89
2 5.00 0.00 0.36 0.77 1.30
0 5.00 0.00 1.00 2.00 3.00
Figure 5-4 The Computer Representation of the Penalty Function

Dynamic Programming for Planning Grinding Passes

For the grinding problem, the dynamic programming algorithm proceeds
backwards in time from the deadline to the present, determining (in reverse order) the
optimal control sequences starting from progressively earlier states and ending at the
deadline. The first step is to consider the final grinding pass, the state transition from
the penultimate stage to the final stage. Consider a particular penultimate state (see
Figure 5-5). Call the corresponding stage the decision stage, since the algorithm at this
point only considers decisions whose effects are felt from this stage on.

The algorithm searches over the legal control space to find the control that
yields the best state transition from the current state to the deadline. The legal control
space consists of all controls that satisfy the constraints at this initial state. In this
simple problem formulation, the only control is the cut depth, which must at least
satisfy the constraint that the cut depth be positive. The quality of the state transition
is measured only by the penalty associated with the f{inal state of the transition. Some
sort of numerical minimization scheme is used to find the control that ytelds the least
final state penalty. That is, a candidate control s evaluated by computing the terminal
state of the state transition, and then looking up the termtnal state penalty from the
optimal penalty-to-go function. This continues until the optimal control yielding the
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minimum interpolated penalty is obtained. This is how the optimal penalty is
computed for that particular state. The optimal control for that state is stored for
future reference in a form similar to that of the penalty function.

This procedure is repeated for every amount of material remaining in the
countable set of states at that particular stage. The optimal control to be used during the
last grinding pass is obtained for each amount of material remaining at that stage. The
penalty costs accrued for the optimal passes have also been recorded in the optimal
penalty function. The best way to proceed in the last grinding pass from the any
amount of material remaining and what penalties will be assessed for starting from

those states is now known.
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Figure 5-5 Dynamic Programming: The First Steps

Now the algorithm considers the next previous grinding pass (the penultimate
pass, starting from the 2nd-to-last stage and terminating at the next-to-last stage). The
decision stage is now the one prior to the previous decision stage. See Figure 5-6. All
passes starting from here terminate at the penultimate stage, whose optimal penalty
function was just computed. So the algorithm can do the same thing it did last time: for
every possible amount of material remaining, the control is found which yields the
least penalty for the terminal state of the grinding pass, which now happens to occur at
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the beginning of the last pass. The penalty function for states at the beginning of the
next pass is used as the terminal charge for this pass. This optimal control and the
corresponding optimal penalty are recorded. This penalty is now the optimal penalty
for proceeding from this state all the way to the deadline. This procedure is continued
as far back in time as desired. Working backwards in time insures that the penalty
function for a particular stage is evaluated before it is needed for earlier stages that are
considered later in the algorithm.

In this formulation, the optimal penalty for state X is identical to the deadline
charge of the final state in the optimal sequence passing through X. By selecting the
proper controls, the algorithm merely tries to ensure that the optimal final state is
reached. Thus in this simplified formulation, all the grinding sequences that can do so
will terminate at the optimal final state at the deadline. It is both in the constraints on
the grinding process dynamics and in randomness in the actual process dynamics that
this problem becomes interesting. The latter limits knowledge of the actual
intermediate and final states. This is discussed in more detall in Section 5-3. The
former limits the abllity of grinding sequences to reach the optimal final deadline
state. This is discussed in more detall in Section 5-4.
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Figure 5-6 Dynamic Programming: The Second Step
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The optimum control combinations are stored in a manner similar to the
optimal penalties. The result is a table of advice as to what control combination is
optimum at any possible state of the weld bead. This table can be referred to before a
grinding pass is attempted by noting how much time and material are left, and looking
up the corresponding optimal control (some sort of interpolation scheme may be used
for times and amounts of material remaining that do not exactly correspond a member
of the finite set used in the algorithm). The table becomes relevant and useful in the real
world situation where the actual outcomes of grinding passes are different from those
intended. As described for the skiing example, when unexpected outcomes occur, the
optimal paths need not be recomputed. Rather, the solution from dymamic
programming algorithm contains the opttmal paths from every state to the deadline.
No matter what the outcome of the previous pass, we stmply refer to the table to see what
to do next. Figure 5-7 illustrates this use of the dynamic programming solution for
feedback control. The first pass illustrated took off more material than had been
planned. The next pass is planned by looking up the optimal plans for passes starting
at the first pass' actual termination state. The second pass here took off less material
than planned. This process is continued until the last stage or time deadline is reached.
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Figure 5-7 Feedback Control from the Dynamic Programming Solution
Variable Feedspeed

The above is a solution for the case in which the grinding pass duration is
constant, implicitly requiring a constant feedspeed. This limitation can be removed if
the stages represent intervals of time, rather than integral grinding passes. The
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independent (stage) variable is now the tiine remaining or the time-to-go. See
Figure 5-8 for an {llustration of the new state space. Then a grinding pass can end
anywhere in the set of time stages located after the decision stage. This allows for
different passes to have different feedspeeds. Now the planning problem contains a new
choice: from the given initial state, should the material be removed in one long
grinding pass, or several short grinding passes ? The constraint that all grinding
passes must be completed by the deadline must still be satisfied by the grinding plan.

The search for the optimal control is now performed over the two dimensional
state space defined by the two controls: the grinding force, and the feedspeed. Different
feedspeeds cause the grinding pass to terminate at different final stages. The
appropriate penalty function is the one corresponding to the final stage of each
grinding pass. A continuously variable feedspeed implies that the grinding passes can
end between the discretized time stages. The penalty function can be interpolated at the
appropriate pass termination time for the amount of material remaining. This
requires a two-dimensional interpolation: one interpolation for the time remaining,
and one for the material remaining. In Figure 5-8, the penalty function at t = 3s is used
in evaluating the short, fast pass, at the amount of material remaining indicated by xgf.
However, the penalty function interpolated at t = 1.4s is used for evaluating the long,
slow pass, at the amount of material remaining {ndicated by xf.

In the implementation of the sequence planner the feedspeeds were restricted to
a finite set. This was done both to avoid having to interpolate in the time dimension
within the optimal penalty function and to avoid having to search over a continuous
range of feedspeeds to find the optimal feedspeed. The feedspeeds were instead selected
to correspond to grinding passes that last an integral number of time stages. To
compute the expected penalty. the cost function at the terminal tirne stage need only be
interpolated in the material remaining dimension. The search for the optimal
feedspeed 1s done more eastly and quickly over a small set of possible feedspeeds. This
is an approximation to the reality of continuous feedspeeds, but, as will be shown in the
analysis of results later, it is a good model since the resulting grinding policies are
discontinuous in the time domain. The results from this tmplementation compare well

with those obtained when the feedspeed was allowed to take on continuous values.
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5.3 STOCHASTIC DYNAMICS

The state transitions for grinding are individual grinding passes, and are
determined by the cut depth and the pass duration. The cut depth is a function of the
controls, but is unpredictable. However, the variations can be described in
probabilistic terms, so these state transitions are called stochastic. Stochastic
grinding models were described in Chapter 4. See Figure 5-9 for an illustration of a
stochastic state transition. The probability distribution of the cut depth is also a
function of the controls. Now the planner must plan sequences that not only avoid
overgrinding, undergrinding, burning, poor surface smoothness, and finishing late, but
must avold the possibility of these occurrences. This is done using the same dynamic
programming solution scheme by modifying the penalty computation.
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Figure 5-9 Stochastic State Transition

Stochastic Dynamic Programming

In order to obtain the penalty associated with a particular stochastic grinding
pass, the result of that pass is evaluated as the expected result, via an integration of the
product of the penalty J and the corresponding probability density function. This
technique was introduced in Chapter 2 of this thesis. Here, the integrand is the product
of the penalty as a function of the terminal state of the grinding pass, J(Xf, terminal
stage), and the probability density function for the terminal states assoclated with the
initial state and the controls used, p(Xf IXi. controls), performed over ail pcossible final
weld bead heights for that grinding pass. This is deplcted in Figure 5-10.
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Figure 5-10 Computing the Expected Penalty of a Stochastic State Transition

The evaluation is:

E{JXt).ty} = [JpW)aJ
VvdJ

= IJ (x(to.tg p(Xctp |Xttp. FN. ve) axtp (5.3)
vX(t
where:
X(t;) = the amount of material remaining before the pass
X(tp) = the amount of material remaining after the pass
tq = the time at the beginning of the pass
tf = the time at the end of the pass = t; + LVg
L = the length of the weld bead
FN = the grinding normal force
V¢ = the feedspeed
J(t.X) = the penalty function at time t for material remaining X
pXy = the probability density function of the pass terminal state X

The rest of the dynamic programming algorithm remains unchanged. The only
difference is in the evaluation of the penalty for the candidate grinding pass.

Note that this integration yields the expected penalty for the given initial state
and controls used. This is not, in general, the same as the penalty for the expected final
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state. When the probability density function is skewed and/or the penalty function is
nonlinear, the expected value of the penalty will not, in general, be the same as the
penalty of the expected value:

E[J(X(tf).t[)} # J(E(X(tn) .tf) (5.4)

In terms of our problem, this means that the expected penalty for a grinding pass
given the initial state and controls will not, in general, be the same as the penalty for
the expected terminal state. It may seem desirable to plan an expected terminal state
with a very low penalty (i.e. very small amounts of material remaining), but this may be
too risky. If the grinding variance is large, there is a high probability that overgrinding
will occur, making such a plan too dangerous. This integration computes the riskiness
of the plan as the expected penalty for that plan. Computing the penalty function via
this integration allows this stochastic dynamic programming (SDP) algorithm to trade
off high probabilities of low risk (an expected terminal state with a moderate penalty)
with low probabilities of high risk (having a small possibility of overgrinding). The
SDP algorithm is average risk averse, selecting controls which yield expected final
states having moderately high penalties, but low average risk when all possible final

states are considered.

The algorithm is listed below:

For time = deadline to beginning
{
For all possible amounts of material remaining

(

For all control combinations

{
If control is within constraints

{
Get probabllity density function for

the material remaining at the end
of the grinding pass, P(Xg)

Get expected penalty of the grinding pass

}

Select the control combination with least penalty
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Store the control in the optimal control function
Store its penalty in the penalty function

)

Implementation

The SDP algorithm is a dynamic programming algorithm with a stochastic
state transition function. The state space consists of the time remaining until a fixed
deadline (the independent variable) and the material remaini:g in the weld bead. Time
remaining is discretized typically in 2 s stages; material remaining is discretized
variously, typically in O.1mm intervals from -1 mm (an overgrind condition) to 2 mm
(some material still remaining on the weld, an undergrind condition). Penaities are
assigned to the final state of the weld, according to the amount of material remaining
when the deadline is reached (to penalize either a final overground or an underground
condition). See Figure 5-3 tor tiie shape of such a penalty function. Overground
conditions are penalized mcre heavily .han underground conditions because the cost of
repairing the damage from an overground condition is assumed to be greater than the
cost of taking the time to grind off the rest of the weld in an underground condition.



5.4 GRINDING POLICIES WITH A FIXED DEADLINE

The following discussion explains the results obtained from the stochastic
dynamic programming (SDP) algorithm when no grinding is allowed after the deadline.
The complementary case when grinding is allowed after the deadline will be considered
in a later section. This discussion starts with some basic characteristics of the solution
pertaining to the shape of the penalty function, the selection of the cut depth, and the
choice of feedspeeds. The results will be described first with a few constraints on the
controls, then the effects of other control constraints will be explored. Note that this is
a qualitative analysis of the optimal grinding policies, and cannot yleld the actual
control values except where the optimal controls lie on the constraint boundary in
control space. The quantitative policies obtained from the SDP algorithm will be
compared with the qualitative policies described in the following.

Penglty Function Shape

The analysis of the sequence planner results begins with a description of the
generic shape of the penalty function. A useful concept for analysis is the shape of the
penalty function taker: in slices at given time stages. The manner in which the shape of
the penalty function changes as time progresses determines what state transitions are
optimmum from different states. The term peunalty funciion will often refer to a slice of
the penalty function at a particular time stage. This will also be referred to as a time
slice of the penalty function.

Figure 5-11 illustrates a typical optimal cost function J(X.t). This figure
displays three dimensions of information. Two axes give the status of the weld bead—
the amount of time and material remaining— when the decision for the next grinding
pass is made. Time progresses from lower right to upper left (time remaining increases
in the opposite sense). The vertical axis indicates the optimal penalty function for that
state. The target state of zero material remaining at the deadline is located at the
intersection of the three axes. The shaded areas are time slices of the optimal penalty
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function at selected time stages. It can be shown that if the deadline state penalty
function is convex!, then every time slice of the penalty function will be convex. [1]

A Optimal
Penalty

Material
Remaining

Time
Remaining

Figure 5-11 The Optimal Penalty Function

The states of a grinding sequence comprise a state trajectory. Two optimal
trajectories are shown in Figure 5-11 as dashed lines. When there are no in-path
charges, states along an optimal trajectory will have the same penalty. Think of the
Penalty associated with a certain state as the expected score for the final fate of the
grinding sequence that passes through that state. The goal of the planner is to optimize
this final fate. States along the optimal trajectory will have the same expected optimal
fate. Thus, optimal trajectories have constant heights along the optimal penalty
function's surface.

1Convex means that all points on a line segment joining any two points on the cost

function curve are above the curve.
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For increasing amounts of time remaining (i.e. nearer the beginning), the
penalty function flattens out, indicat'ng that, given more time, the system can usually
improve the state of the weld. A little grinding will almost always help the situation by
ylelding a lower amount of material remaining at the deadline which yields a lower
deadline charge. Another way of thinking about this is that a weld bead state with a lot
of material and time remaining s just as good as one with little material remaining at
the deadline, since an optimal grinding sequence can use the remaining time to reduce
the amount of material remaining. However, grinding won't help the situation if it
must be done with a high probability of overgrinding the weld bead. The penalty at
0.0 mm remaining will always be the minimum for any given time stage (since the
algorithm will choose to do no grinding and just wait for the deadline) and if there are
no in-path charges, this penalty will be the same for all time. Note that grinding will
never help an overground condition, so it s best not to grind at all when the weld bead is
already overground. Therefore the time slices of the optimal penalty function do not
change shape with time in the overground region of the state space. These are shown as
identical triangles in the above figure.

Optimal Cut Depth

Now consider the situation in which the length of the grinding pass is fixed, as
in the simple problem formulation of the previous section. The fixed pass length
determines the slice of the penalty function that will be used for computing the expected
pass penalty. For any given initial state there is a singie optimal cut depth that results
in the minimum expected penalty. Varying the cut depth changes the position and
shape of the PDF for the material remaining at the end of the grinding pass. It can be
shown that there is one cut depth that minimizes the integral for the expected penalty.
This cut depth locates the mean of the PDF near the minimum of the penalty function.
Figure 5-12 is an fllustration of the grinding planner's state space. It shows four
dimensions of data: the amount of material remaining on the horizontal axis, the
amount of time remaining on the vertical axis. Superimposed on the vertical axis are
also the optimal penalty function slice for the time stage at the end of the grinding pass
and the PDF for the amount of material remaining after the pass. The planner chnses
controls to move and reshape the PDF to optimize the expected terminal penalty. The
actual location of the mean of the PDF is determined by this optimization. For the
particular deadline charge functions used in the SDP programs, the mean of the PDF for

the material remaining at the end of the grinding pass will lle somewhere in the
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underground region. This is typically around 50% of the weld bead height before the
start of the pass, depending on the accuracy of the process and the shape of the penalty
function; the algorithm prefers to err on the cheaper side of the penalty function, and
this occurs on the underground region for all the deadline charge functions used. Note
that the fact that the algorithm suggests removing a constant fraction of the material
remaining is to be expected since the state transition function (the cut depth) is nearly
independent of dimension and the penalty function is very nearly self similar.2

Time
Remaining ?

Probability, A "Remove Fraction F of Weld"
Penalty
PDF of Penalty
Terminal Function
= —\\( State Slice
o
E

' J Material Remainin
F x X g

Figure 5-12 Cut Depth Fraction is Independent of the Amount of Materlal
Remaining

In general, the algorithm first tries to select controls that yield the optimal cut
depth. When it is possible to do this with several different controls, the algorithm
selects controls based on second-order effects, such as the shape of the PDF. In
particular, if the time-slice of the penalty function is convex, a narrower PDF will yleld
a lower expected penalty than a wider PDF having the same mean. In addition, if the
terminal state is near the zero material remaining axis, a narrower PDF will enable the

mean terminal state to get nearer the zero material remaining axis without having the

2Independence of dimension in this context means that the final state PDF has the
same shape irrespective of size. Both the mean cut depth and its standard deviation
are scaled by nearly the same factor of the controls. Self-similarity of the penalty

function means that it looks about the same regardless of the range it is viewed over.
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tails of the PDF penetrate toc far into the overground region. That is, more accurate cut
depths make it easier to remove more of the weld bead. Therefore, if the desired mean
cut depth can be attained by several sets of controls, the algorithm will select the set of
controls which ylelds the narrowest PDF. If the time-slice of the penalty function is
linear, the expected penalty will be the penalty of the mean, and there will be no
difference in penalties from two PDFs having the same mean but different variances.
The algorithm will be indifferent to the choice of controls that yielded the two PDFs.
There is another type of second-order effect having to do with the fine structure of the
optimal penalty function, but an explanation of this must wait until some of the SDP
results are explained. However, it should be reiterated that such second-order effects
come into play only after the optimal mean cut depth has been achieved.

Reachable Terminal States

It is instructive to see how constant lines of grinding force and feedspeed appear
in the material- and time-remaining state space, for these delimit the region in the
state space where the expected terminal state can lie. The steady-state cut depth model
derived in the previous chapter was:

C1CaFN + C
8=m1n(0.1—3v1;1—2) (5.5)

where: 8 = the mean or expected value of the cut depth, = E(5}

This means that the constant cut depth curves in the control space are linear, and all

C
pass through the point [Vf, FN] =[O. --CT(Z:E] See Figure 5-13 for a diagram of this

)
control space. Note that the slope of the lines is TiCs i.e., increasing cut depths

correspond to increasing slopes. The higher cut depths are associated with higher
normal forces and lower feedspeeds.

The feedspeed is determined by the difference in time between the start and the
end of the pass, therefore specifying the time stage at the end of the pass is equivalent to
specifying the feedspeed. The termination time for a grinding pass is given by:

l[=t1+'\"1;?+tR (5.6)

where: tf =the time at the end of the grinding pass
ty =the time at the start of the grinding pass
L = the length of the weld bead
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tR = the time required for system reset (e.g. to reposition the robot arm back
at the beginning of the weld bead, or to perform calculations
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Figure 5-13 Control Space

Therefore for a given initial state, lines of constant feedspeed are equivalent to lines of
constant termination time. Solving equation (5.5) for Vf and substituting into equation

(5.6) yields an equation for lines of constant grinding force:

L3
tr= C—lcm+ tR (5.7)

These are illustrated in Figure 5-14. The origin of the § vs. tf state space is the initial
state. The shaded area depicts the region of possible expected terminal states. That is,
this is the region of states that could represent the time remaining and material
remaining after one grinding pass. The boundaries of this region are due to the
maximum and minimum feedspeeds, the maximum normal force, and the fact that
grinding cannot add material to the weld bead. This region has a different shape when
the burning constraint is applied. See the section on the burning constraint later in
this chapter for more detalls.

The region of states attainable after any grinding pass within a sequence of
grinding passes is similar to that illustrated below, with the exception that there is no
constraint corresponding to the minimum feedspeed constraint indicated below. This
is illustrated in Figure 5-15 below, where the region of expected terminal states for any
pass in a grinding sequence is superimposed upon the state space. Note that the
extension of the maximum grinding force boundary is stepped, due to the reset time

between passes, and that the small, diagonally-filled triangular regions are reachable if



the algorithm is allowed to simply wait. (This option was not given to the SDP
algorithm.)
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Figure 5-14 Expected Terminal State Region

The region of attainable states can be used to roughly characterize regions in the
grinding state space. These are {llustrated in Figure 5-16, and described separately
below.

Note that the boundary between the regions containing initial states that can't
reach the target state and can reach the target state is actually stepped, corresponding to
the steps in the maximum normal force boundary below. This is a minor detail, and the
boundary between these two regions will be shown as a diagonal line from here on, for

simplicity.
Already Overground

When the weld bead is already overground, the planner decides not to grind any
more because there is no grinding sequence that can help the situation.
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Not Enough Time

Near the deadline there is a region of states for which there is not enough time to
complete a single grinding pass. The sequence planner is instructed not to plan to start
grinding passes from these states either. Rather, the grinding policy here is to simply
walit until the deadline, and be penalized the charge for the amount of material
remaining in the initial state.

Cannot Reach Target State

When there is too much material left and not enough time, the system cannot
reach the desired target state of no material remaining at the deadline even if it grinds
with the maximum grinding force for every pass in the grinding sequence. The planner
will choose the grinding sequence that can get the mean mean amount of material
remaining of the final state as close to zero as possible. This will generally be a
sequence of maximum cut depth grinding passes timed to finish at the deadline. These
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states will have a larger penalty-to-go than would have been charged had any grinding
sequence been able to reach the target state.
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Figure 5-16 Target State Reachability
Can Reach Target State

The remaining region in the figure represents states for which the target state is
reachable. These states will have a near-zero expected penalty because there is a good
chance that the target state will be reached in grinding sequences starting at these
states. For these states the algorithm has some choice as to which set of controls to use,
so the second-order effects come into play here. The most common second-order effect
is the selection of the feedspeed to yield the narrowest terminal state PDF, and is
described in detall in the following section. The optimal grinding policies in each of
these regions will be described in the sections following the next sectior.



Second-Order Effects: Optimal Feedspeed

In Chapter 4 when the variation of the cut depth was attributed to a variation in
the coefficient of friction, the grinding process model yielded a standard deviation for
the cut depth PDF equal to:

C3F
o5 = 3—;1%‘ (5.8)
Thus lines of constant o§ radiate away from the origin in the control space, with steeper
lines representing greater standard deviations. This is fllustrated in Figure 5-17. It can
be seen that, for a given cut depth, the cut depth standard deviaticn decreases with

increasing feedspeed. So faster passes are more accurate. The same is true for
variations attributed to Ca and p; all indicate that faster passes are more accurate.
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Figure 5-17 Optimum Standard Deviation in Control Space

There is another more subtle effect operating here. The penalty for the faster
pass is computed {rom an earlier time-slice of the optimal penalty function than the
slower pass. As has been described, the optimal penalty function generally decreases
with increasing amounts of time remaining because when there 1s more time to grind,
the flnal state of the grinding sequence will be nearer to the target state So even if the
faster pass had the same PDF shape, it would have a lower penalty. Both second order
eflects make faster passes more attractive.

Note that Ivers' surface finish model indicates that the slowest feedspeed yields
the highest quality surface finishes, so a low feedspeed may be a better choice for the
last pass. It is easy ty implement such a consideration as an in-path charge for the final



pass in the SDP algorithm. Passes whose terminal states are those for which no more
grinding is recommended would be charged inversely to their feedspeeds, to account for
the expected final surface finish. Depending on the structure of the associated charge
function, this would tend to bias the passes near the deadline to longer feedspeeds, and
effectively widen the region in which no pass is started because a final quick pass would
be charged more than ordinarily. However, this was not implemented in the SDP

program due to time constraints.

Consider the basic tradeoff between many fast passes and fewer slower passes.
This is {llustrated in Figure 5-15. Which is better? Consider the example of selecting
the optimal controls at a certain initial state. Should the system take one long pass, or
two shorter passes, or several even shorter passes? If the normal force that results in
the optimal cut depth can be selected without constraint, the algorithm always suggests
using the shortest possible grinding pass.
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Figure 5-18 Cholice of Feedspeed for Stochastic Dynamics

However, {f time is required to reset the equipment or perform computations

between grind'ng passes, then a grinding sequence with more frequent grinding passes
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will spend proportionally more time resetting than one with fewer passes. But when the
amount of time used is not directly penalized via in-path charges, the algorithm sees
the deadline only as a constraint, and attempts to plan a grinding sequence that
finishes within that deadline. In other words, it will plan the largest number of passes
that will {it into the available time, because ithese will be faster and therefore more
accurate. In the figure, all the grinding passes illustrated are operating at the maximum
possible force. For simplicity both multiple-pass sequences consist of identical
grinding passes. (This is not generally the case, but, for the moment, grinding
sequences will be described with identical passes. ) The grinding sequences that consist
of one and two grinding passes complete the grinding early. The five-pass sequence
finishes right on time. Grinding sequences with more passes would not finish on time
because too much time would be used in resetting the equipment. When there are no in-
path time charges, there is no advantage to finishing early, so the planner opts for the
most accurate grinding sequence that finishes by the deadline, and in this case, it is the
sequence with the fastest passes.

Grinding Policies in the Region that Can Reach the Target State

The above second-order eflects can be used to derive a qualitative description of
the optimal grinding policies in the region of the state space containing initial states
that can reach the target state. Consider first nitfal states whose amounts of material
remaining are quite close to zero. These states are {llustrated in Figure 5-19 as two sub-
regions filled with vertical and diagonal lines. Superimposed on the state space in each
sub-region is a typical initial state with its region of possible expected terminal siates.
A grinding pass starting from any initial state in these two sub-regions can reach zero
amount of material remaining with a variety of controls; the region of possible
terminal states straddles the zero material remaining axis. For these states the second-
order effects described above are tmportant. The optimal set of controls is the one that
ylelds the terminal state near the intersection of the maximum feedspeed control
boundary and the zero material remaining axis. This is indicated by a black dot in the
figure. Note that the possibility of overgrinding requires that the optimal terminal
state actually have a small amount of material remaining. The corresponding optimal
cut depth throughout this sub-region is a fraction of the initial material remaining (see
Figure 5-12 and the discussion tmmediately preceding it). This fraction is nearly
censtant throughout these two sub-regions, and approaches unity, but decreases with

decreasing process accuracy. The same grinding policy is optimal throughout each sub-
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region. Other second order effects slightly affect the policies in each sub-region. These
will be discussed later.
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Figure 5-19 Optimal Policies in the Reachable Region

Consider the sub-region of initial states nearest to the zero material remaining
axis, indicated by the area filled with vertical lines tn Figure 5-19. The optimal policy
is to grind with the maximum feedspeed and with a normal force that will yield the
optimal cut depth. Now consider the region of initial states having even more material
remaining, depicted as a diagonally filled area in the figure. The line of zero material
remaining still passes through the region of terminal states, so the optimal cut depth is
still attainable. However, the maximum grinding force and a non-maximum feedspeed
must he used in order to attain the optimal cut depth The line separating these two sub-
regions is called the maximum normal force threshold. The same second-order effects
apply. so the fastest feedspeed possible is used. The same optimal fraction of the
material remaining is suggested as a cut depth, so this sub-region shares the same

fractional cut depth as the sub-reglon nearer the zero material remaining axis. Since
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the feedspeed is discrete in the cusrent implementation of the planner, the normal force
may vary slightly in the SDP output from fis maximum tn order to mainiain the
optimal cut depth. though this is not the true optimal control.

The result is that. when considering increasing amounts of material remaining
in this sub-region. the optimum feedspeeds decrease inversely proportional to

increasing amounts of material rensaining for all time stages. Using x as the amount of
mwaiertal remaining. and F as the fraction of the average weld bead height that is the
optiimal cut depth, the opttmal feedspeed for amounts of material remaining above the
monmal force threshold can be expressed as:

C1C3FN Max + C
vy =130 Max » €2 5.9

where: x = the amount of mitial material remaining
F = the fraction of material to be removed within this time band

The wumeralor ts a constant; the optimal feedspeed is inversely proportional to the
smipoun! of material rematning.

For even more amounts of matcrial remaining in the reachable region, no
icrinal state with zerc material rematning is reachable in one grinding pass. Passes
siarting here will terminate in the above described sub-regions. Here second order
eflects deminate. and. in general, the optimal grinding policy is to use the maximum
possible feedspeed and a grinling force that yields a terminal staie within the same
reachable region. The planmer is quite mdifferent to the feedspeed here, as
coniradicting second-order effects (1o be explained later) compete to determine the
optimal conirol.

Optimal PoEsies in the Region of Initial States that Cannot Reach the Target State

Consider the region of inftia! states that cannot reach the target state in any
legal grinding serquence. Figure 5-20 indicates that the best possible terminal state 1s
one that is reached using the maximumn possible grinding force and the slowest legal
feedspeed.Thatls,thebatgmldmgpassisonethatlsmnedtoﬂmshnghtatthe
deadline and remove as much material as possible. This is only true for the sub-region
of intlial ststes (indicated by the shaded region in the figure) which can finish a pass at
the dead":.:c. Note that the penalty function slice at the deadline is linear. If the fin~*
statr »: ¢ nough away fromn the zero material rematning axis so that the tails of its
PDF .%: it extend into the overground region, the expected p=aalty will be the penalty



of the mean final state. Thus contours of equal penalties, called iso-penalty contours,
are very nearly straight lines having the same slope as the maximum normal force
constraint on the region of terminal states. This fact will be used to explain the optimal
policies in the remainder of the unreachable regio::
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Figure 5-20 Optimal Policies in the Unreachable Region

When there is even more time remaining, a single pass cannot finish right at the
deadline, but must finish within the previous sub-region. These tnitial states are
indicated by the darker-filled region in the figure. However. the iso-penalty contours
there are nearly parallel to the maximum grinding force constraint, so although it is
optimal to use the maximum grinding force, the planner is almost indifferent to the
choice of feedspeed because none yields a much better penalty than the other. In theory,
for small amounts of time remaining in this sub-region, the best terminal state should
be one between the two black dots for the rightmost initial staie, marked by the
question mark in the figure, because the iso-penalty contours are parallel to the
maximum normal force constraint there. Any feedspeed resulting in such a terminal
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state will yield about the same penalty. So.in this part of the sub-region, the algorithm
should be indifferent to the feedspeed. As the initial state has more time remaining in
this sub-region, the range of indifference narrows to the point at the lower left corner of
the region of expected terminal states, representing a grinding pass with maximum
normal force and minimum feedspeed. The local iso-penalty contours begin to take on
the slope cf a line drawn from the initial state to this terminal state, and this grinding
policy becomes the optimal policy for the remainder of the region of initial states that
cannot reach the target state. Recall that the lower feedspeed passes waste less time
during equipment resets, so a series of long passes will remove more material than a
series of fast passes given the same amount of time remaining. So the algorithm should
be biased towards long passes In this region. The second-order effects described above
do not generally apply because the time-slices of the penally functions are all very
nearly linear, except for the part of the region nearest the zero material remaining axis,

where they do apply.
Time-Banded Solution Structure

The minimum time required for a grinding pass generates second-order effects
for initial states that can reach the target state. This, in turn, creates an interesting
structure in the SDP results. The explanation of this structure starts first with a
detailed investigation of the optimal policles described above and the resulting optimal
penalty function.

As indicated above, the SDP algorithm does not attempt to start a grinding pass
if the pass cannot be completed before the deadline. Hence {f the maximum feedspeed
requires 6 seconds to complete a pass, no passes are initiated in the last 6 seconds. Call
the region in the state space 6 seconds prior to the deadline the no-grind band. This is
fllustrated in Figure 5-21 below. The optimal penalty function is constant with respect
to time in those 6 seconds, and is indicated in the figure by thin vertical lines marked
with penalty costs. These thin lines represent iso-penalty contours. If there are no in-
path time charges, there is no apparent advantage in having a grinding pass end in any
time; all time stages are equivalent.

Call the 6 seconds previous to the no-grind band, band 1. In this band all time
stages are similar; they each are capable of completing a grinding pass that terminates
somewhere within the no-grind band, and the penalty functions for the stages in the no-
grind band are identical. Recall that faster passes are more accurate, so the algorithm
suggests using the highest possible feedspeed for passes terminating in the no-grind
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band when the choice is available. Figure 5-21 illustrates band 1 with variously shaded
regions in the state space. Consider a grinding pass starting at thie state marked A in the
figure. This state has less material remaining than the maximum normal force
threshold, so a grinding pass starting here can have the optimal cut depth with a cholce
of feedspeeds. The fastest feedspeed is selecied and the grinding pass terminates near
the zero material remaining axis within the no-grind band. Because a grinding pass
starting here can terminate near the zero material remaining axis, the initial state is
charged a very low optimal penalty, say, $0.01. All initial states with the same amount
of material remaining as state A will terminate near the zero material remaining axis
somewhere in the no-grind band using the fastest feedspeed possible. The SDP
algorithm suggests cut depths that are constant with respect 1o time across this band,

and the optimal penalty function is constant with respect to time here as well.

The optimal penalty function is very small and flat for amounts of material
remaining in the band below the maxdimum normal force threshold because these states
can reach the target state with equal ease. There Is a slight trend towards higher
penalties for more amounts of material remaining, since these states require larger cut
depths and experience correspondingly larger variances. The result is that there is a
discontinuity in the penalty function between these two bands, and that the optimal
penalties in band 1 are significantly lower than those of the no-grind band, making
band 1 a favorable place to terminate a grinding pass.

Time .. l@g Maximum Fp
Remaining Threshold

Band 1

No Grind
Band
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Figure 5-21 Time-Banded Structure of Solution
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Now consider the initial state labelled B.in the figure. Grinding passes starting
here can have the optimal cut depth, but will have a slightly higher optimal penalty due
to the broad PDF associated with a large cut depth. However, grinding passes starting at
states C and D are in the unreachable region, and are optimally executed using the
maximum grinding force and a feedspeed timed to finish at the deadline. The optimal
feedspeeds are indicated by the degree of shading in the figure, with the progression

from the darkest shade to the lightest shade representing the faster to slower
feedspeeds.
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For the next prior 6 second band (band 2 in Figure 5-22) the pattern repeats
itsell. Note that if grinding passes terminate in band 1, the optimum cut depth fraction
will be smaller because the time-slice of the optimal penalty function is flatter near the
zero-material remaining axis. So if the algorithm suggests removing 57% of the
material remaining in band 1, it might suggest removing only 49% of the material
remaining in this band. Removing a higher percentage of the material remaining in the
later bands can be regarded as indicating the algorithm's increasing anxiety at the
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approaching deadiine. The smaller cut depth fraction also means that the maximum
cut depth will be optimal for larger amounts of material remaining than it did in the
previous band. Therefore the maximum normal force threshold for this band will fall
further to the right in the figure than it did for the previous band.

Grinding passes starting from initial states beneath the maximum normal force
threshold such as state E again use the maximum feedspeed. The grinding pass starting
at state F is similar to that of state B, with its terminal state falling near the corner
formed by the zero material remaining axis and the boundary between the no-grind
band and band 1. The high penalties in the no-grind band act like the deadline
constraint (indeed many optimization schemes, including the SDP algorithm,
implement constraints using very high penalties). The planner is easily able to find
better places in the state space to terminate grinding passes. Thus it is better to
terminate a grinding pass starting at state G on the boundary between the no-grind band
and band 1 rather than having it finish near the zero material remalning axis but
inside the no-grind band. State H is within the unreachable region, and the policy here
is a continuation of the policy for this region: grind with maximum force and a
feedspeed timed to finish at the deadline.

Note that the penalties for any stage in a band are less than the penalties for
comparable amounts of material remaining in a later band nearer the deadline since
there is time to improve the weld bead via grinding. Recall also that the optimal
penalty function becomes shallower with increasing amounts of time remaining (see
Figure 5-11).

This banded structure extends through time The bands have a width equal to
the time required for the shortest possible grinding pass (the fastest feedspeed). The
optimal grinding policy can be summarized with a few rules:

1. If the target state is reachable, attempt to get on a grinding schedule using
the maximum grinding force and the maximum feedspeed. Time the first
pass so that such a grinding schedule will be possible all the way to the
deadline.

2. If the amount of material remaining is under the normal force threshold,
attempt to remove a fixed fraction of the material remaining, called the
optimal cut depth.
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3. The optimal cut depth gets larger with less time remaining until the
deadline.

4. If the target state is not reachable, and one grinding pass can terminate at
the deadline, grind with the maximum normal force and time the pass to
finish at the deadline.

5. In all other cases, grind with the maximum normal force and use the

slowest feedspeed.

Figure 5-23 illustrates the results obtained from the SDP algcrithm. This figure
has four parts. or windows. Each window maps some aspect of the solution onto the
state space using different colors3 to represent different degrees of each aspect of the
solution. Thus each window shows three dimensions of information. The time
remaining is plotted along the vertical axis, with the deadline at the bottom. The
material remaining is plotted along the horizontal axis, with negative amounts of
material remaining representing the overground region at the left, and the underground
region at the right with positive amounts of material rernaining. The discretized nature
of the state space is apparent in these figures. The top two windows illustrate the
optimal controls. The upper left window shows the optimal feedspeed policy. and the
upper right shows the corresponding normal force. The color at each point in the state
space indicates the feedspeed of normal force to be used for that initial state. The lower
left window {llustrates the fraction of the material remaining to be removed. That is, it
displays the ratio of the cut depth to the amount of material remaining. The lower right
window displays the optimal penalty function.

This figure shows the basic solution structure illustrated in Figure 5-16, and the
banded solution structure described above. There is a blank no-grind area both in the
overground region and just prior to the deadline. The lower left window shows the large
regions beneath the maximum normal force threshold as having a constant fractional
cut depth. It also shows how the fractional cut depth decreases with increasing time
remaining. The upper right window shows that the normal force increases smoothly in
this region up to the normal force threshold, and then remains at the maximum
normal force everywhere else. This window also shows how the maximum normal

force threshold moves to the right with increasing time remaitning.

3In monochrome reproductions, these colors will reproduce as varying shades of grey.
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The lower right window f{llustrates the details of the optiral penaliy function.
It shows that the optimal penalties are constant with respect to time in the no-grind
reglon, and that the reachable region has a very low optimal penalty. The right side of
Figure 5-24 shows the same optimal penalty function scaled to show the fine details
within the reachable region. It {llustrates how the optimal penalty function is constant
with respect to time within each time band. The left side of this figure is a repeat of the
optimal feedspeeds from the figure above to aid in identifying the banded solution

structure.
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Figure 5-24 Details of the Optimal Penalty Function in the Reachable Region

This section analyzed the weld bead planning problem with a fixed deadline and
linear material costs. It derived qualitative optimal grinding policies and verified that
the SDP algorithm did yield equivalent quantitative optimal grinding policies.
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5.5 GRINDING POLICIES WITH A LATENESS PENALTY

This section explores the effects on the grinding policy if grinding is permitted
after the deadline. Theoretically the state space now extends indefinitely in both
directions of time. As a practical matter, it is extended to allow grinding only for a
limited period of time after the deadline. As will be evident in the seque¢l, this
limitation will affect the grinding policies only in an atypical case. The remainder of
this section will describe the modifications that must be made to the problem
formulation ‘o tmplement this new time requirement, and will obtain a qualitative
description of the optimal grinding policies.

Lateness Charges and the Quit Now Option

To express the undesirablility of violating the deadline, a lateness charge will be
assessed commensurate with the time overrun. Figure 5-25 {llustrates a typical

plecewise linear lateness charge.

Charge, $ 4

Slope =5, [$/s]

Time

Overtime Os Remaining, [s]

Figure 5-25 Lateness Charge

This type of problem is known as an optimal stopping problem [51], in which the
algorithm can choose to stop at some point and incur a penalty or continue and attain a
lower penalty by stopping later. In this case the SDP algorithm is given an additional
choice, called Quit Now, to enable it to terminate grinding sequences at specific points
in time and thus limit the lateness charge assessed. When there were no charges placed
upon the time used, the algorithm could stmply chose to grind with zero force and wait
for the deadline. Now the algorithm must be able to declare when the grinding sequence
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has ended, so that the appropriate charge can be assessed. Thus the lateness charge is

only assessed when the Quit Now option is chosen rather than a grinding pass.
Cheap and Expenive Time

When linear charges are assessed for both lateness and the amount of material
remaining, the iso-charge curves for the sum of the lateness and material remaining
charges are straight lines in the grinding state space. Such iso-charge curves are
{llustrated in Figurc 5-26. T ote that these curves become iso-penalty curves only when

the Quit Now option is chosen for all states along the curve.

. Time Remaining

Deadline Material Remaining
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Figure 5-26 Iso-Charge Curves in the Grinding State Space
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Note that the curves are more closely spaced in the overground region of the state space,

indicative of the higher charge for overgrinding than for undergrinding.

Consider a state after the deadline in the underground region of the state space
&s is {llustrated in Figure 5-27a In this figure, the slope of the iso-charge lines is steeper
than the slope of the maximum normal force constraint on the region of expected
terminal states. Therefore there will be some terminal state that has a lower charge
than the initial state. The terminal state with the least charge is the one associated
with the maximum cut depth, and is marked with a solid dot in the figure. Therefore the
policy anywhere in this region is to grind with the maximum grinding force and
minimum feedspeed until the entire weld bead is removed, because the time used by such
a grinding pass will be penalized less than the penalty reduction from removing more
material from the weld bead. Time is cheaper than the material, so this Quit Now
charge function is called cheap time.
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Figure 5-27b illustrates the complementary situation. The iso-charge curves
have a lower slope than the maximum grinding force constraint. Here, none of the
terminal states after a grinding pass have lower charges than the init!al state. No
matter what type of grinding pass is made, none will result in a lower charge than the
Quit Now option. The time required by any grinding pass will result in higher charges
than can be recouped by the amount of material removed. This Quit Now charge
function is called expensive time. Quit Now is the optimal policy throughout the
underground region after the deadline.

Note that the cheap time charge function results in penalty function contours
nearly parallei to the maximum grinding force constraint. This is due to the fact that
the penalty assigned to the initial state is the expected charge of the terminal state.
Since the grinding policy in uniform everywhere (except near the zero material
remaining axis), the opiimal penalty contours will have the same slope everywhere.
This cannot be reproduced in the finite state space of the SDP program, because there
will be end effects near the maximum time Imit. The algorithm cannst consider long
grinding passes near this time limit because the terminal states of such passes fall
outside of the state space. The solution structure given by the SDP program appears
similar to the fixed deadline case discussed in the previous section, and is not the
correct solution to the problem. This is a limit to the numerical solution technique
that is not seen by the analytical solution described above. However, this is not a
problem because the more usual case is expensive time, primarily due to the magnitudes
of the numbers involved. Equation (5.7) gave the slope of the maximum grinding force
constraint as m Typical values of the grinding parameters are:
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K| = 10J/mm3 R=85mm C) = 1x10"4mm?2/N
Ko = 100W ©=80Hz =500rad/s Co = -0.8mm?2/’s
w=12.5mm p=0.3 C3=1x103s!

to yield a slope of 313 s/mm. The slope of the Quit Now charge contours can be
computed as:

slope = %x_ (5.10)

where:  $x = the charge for material remaining, [$/mm]
$¢ = the charge for overtime, [$/s]

Assumed values are $x = $1.00/mm and $; = $1.00/s, to yield a slope equal to 1 s/mm,
which is far lower than the slope of the maximum grinding force constraint. Note that
even though these charges are guesses, it is the ratio of the two that determines the
optimal grinding policy, and it is hard to imagine a case in which one second of time
would be charged 300 times less than one millimeter of material remaining. The
remainder of this discussion analyzes the optimal policies for the expensive time case.

Insufficient Time

Consider now the states just prior to the deadline, Hllustrated by the darkest
region in Figure 5-28. The optimal policy throughout this region is Quit Now. In all
these states, there isn't enough time to complete a grinding pass by the deadline, so all
the terminal states of grinding passes started from initial states in this region will land
after the deadline in regions whose policy is Quit Now. Consider first the expected
terminal state region of the middle initial state. All the terminal states have higher
charges than the initial state, so the optimal policy here is to Quit Now. Consider next
the initial state to the right. Here the charge for Quitting Now is the same as for making
one grinding pass at the maximum grinding force and feedspeed. This is the boundary
of this region; the algorithm is indifferent to either policy on the boundary. Consider
now the leftmost initial state. This has as much time remaining as the rightmost
initial state, but the maximum force/feedspeed terminal state ltes in the high-charge
overground region. No terminal state yields a lower charge than the initial state, so the
optimal policy here is Quit Now. The resulting optimal penalty function is identical to
the Quii Now charge function, indicating equal penalties for the same amount of

material remaining, and no charge for time before the deadline.
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Figure 5-28 Insufficient Time Region

Slightly Late

Now consider the remainder of the initial states for which a grinding pass
cannot be completed by the deadline.
Figure 5-29. The optimal policy throughout this region is to make one pass with the
maximum grinding force and feedspeed, because the resulting terminal state will have a
lower charge than any other terminal state or than the charge assessed for quitting at
the initial state. These states can take advantage of the ability to finish late. The

resulting iso-penalty contours are parallel to the iso-penalty contours for underground

states after the deadline.

Final States have
Equal Penaltles:
Policy is
Indifferent
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Consider first those states with the lease amount of time remaining,
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state via any legal grinding sequence

Figure 5-30

These states can finish a grinding pass
before the deadline, and #t is optimal for them to do so via a grinding pass using the

indicated by the darkest region in the figure.

having a slope

which varies from the slope of a line drawn between the initial staie and the varying

terminal states along the maxtmum feedspeed constraint.

The resulting iso-penalty contcurs are slightly curved

maxtmum grinding force and the feedspeed timed to finish the grinding pass right on

the deadline

112



Deadline

Optimal
Final
State

Figure 5-30 The Remainder of the Unreachable Region

For states with even more time remaining, indicated by the slightly lighter
region in the figure, no grinding pass can finish at the deadline, so a multiple grinding
pass sequence must be executed. The terminal state {o this grinding pass will be along
the maximum grinding force constraint. However, the optimal feedspeed is hard to
select, because they yleld nearly identical terminal state penalties. The algorithm fs
indifferent to the feedspeed in the remainder of this region because the optimal penalty
contours are nearly parallel to the maximum grinding force constraint line.

The Reachable Region of the State Space

The remaining region of the state space can reach the target state, and has no
need to use any overtime. Therefore the optimal grinding policies are much the same as
those derived for the fixed deadline case in the previous section. The entire solution
region is shown in Figure 5-31.
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Figure 5-31 Entire Solution Structure for Allowed Overtime

Figure 5-32 shows the corresponding graphical output from the SDP program.
Again, the SDP program yields quantitative results equivalent to the qualitative
results above. In particular, the program yielded the value of the optimal cut depth
which the analysis could not yield. The next section will continue to elaborate the

problem given to the planner with another detail from the real problem, the buming
constraint.
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5.6 EFFECTS OF THE NO-BURN CONSTRAINT

One of the constraints on the grinding process is that the weld must not be
burned as a result of the grinding. Burning occurs during vigorous grinding. Part of the
energy of grinding goes to heating the workpiece[44] directly adjacent to the contact
patch between the grinding disk. This heating process moves along with the grinding
disk as it passes along the weld. Thus the peak temperature of the weld bead is a
function of both the instantaneous power supplied to the grinding disk and of the
feedspeed. The instantaneous power is proportional to the grinding force, thus the
constraint on the peak metal temperature translates into a constraint on grinding force
and the feedspeed. This constraint has the form[50]:

FN € CB VWVt (5.11)
where: Vf = the feedspeed
FN = the grinding force
CB = a constant

See Figure 5-33 for the shape of this constraint in the control space. This
constraint says that for a given grinding force, there is a minimum feedspeed that
avoids metal burning, and the minimum feedspeed increases as the square root of the
grinding force.

Now, as the desired optimal cut depth increases, the burning constraint limits
the grinding force to smaller and smaller values. The dynamic programming
algorithm can no longer choose the maximum grinding force and the associated fastest
feedspecd. Now a lower grinding force and slower feedspeed along the burn-constraint
curve must be chosen. This ylelds higher cut depth variances and therefore higher
expected penalties. In addition, the maximum possible cut depth is lower when the burn

constraint is considered than with just the maximum force constraint.

This new constraint can be mapped into the state space by substituting
equations (5.5) and (5.11) into (5.5) to nbtain the equation of one boundary delimiting
the region of possible terminal states in the state space:

= tyt
5='\/—E'L R )CaCp + Co R (5.12)
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Figure 5-33 Burn Constraint in Control Space

Figure 5-34 illustrates the shape of such a region. The darker shade indicates the region
of possible expected terminal states under the burning constraint. The flgure illustrates
the actual shape using the values used to compute the slope of the iso-penalty contours
in the overtime zone in the previous section (see equation 5.10) and tg = 0. This figure
fllustrates cut depth rather than amount of material remaining, and grinding pass
duration, rather than time remaining, because the shape of this region is independent
of time- and material remaining. The lighter shade indicates the area that would be

included if the no-burn constraint were not applied

Cut Depth, [mm]
<o.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0

R 14
Grinding

Pass

Duration, [s]

Figure 5-34 Possible Terminal States under the No-Burn Constraint

The analysis techniques of the previous section could be used to determine the

qualitative optimal grinding policy, but the analysis becomes difficult with the curved
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boundary on the region of possible expected terminal states. This is the type of problem
that a numerical solution can solve and an analytical solution has difficulty solving.

Note that because the curved boundary can be approximated by a straight line,
an approximate analytical solution similar to that of the previous section is possible.
The solution is the same as before in the reachable region of the state space for amounts
of material remaining below the maximum normal force threshold. The changes begin
when the constant cut depth line intersects the burn constraint curve in the control
space. (See Figure 5-33). At this point the previous optimal solution yielded a region in
the state space in which the grinding force was held constant at the maximum value and
the feedspeed decreased smoothly to give the optimal cut depth. The shape of this region
changes subtly from that of the previous solution (since the change in cut depth
variance changes with the change in cut depth in a different manner from before). Thus
the optimal cut depth no longer scales up to be a fixed fraction of the material
remaining above the normal force threshold. Rather, this fraction decreases with
increasing material remaining, since this requires cut depths with more variance than
before. In addition, the maximum legal cut depth is less for this solution than for the
force-constrained solution, hence the suboptimal cut depth region occurs at lower levels
of material remaining. In the region of initial states that cannot reach the target state,
the time-banded structure observed previously breaks down. The algorithm becomes
indifferent to the choice of feedspeed. This is primarily due to the alignment of the
optimal penalty contours with the no-burn constraint boundary in the region of
expected terminal states. In this case, the difference in penalties resulting from
different feedspeeds is of the same order of magnitude as tke roundoff error in
computing the expected penalty. This is a case in which the numerical solution
produces incorrect answers where the analytical solution would not. Figure 5-35

illustrates the results from the SDP algorithm.
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5.7 A MORE COMPLEX GRINDING PROBLEM

The grinding problem formulation is now extended to include the quadratic
charge functions described in the previous chapter. In particular, the amount of
material remaining is charged using the piecewtse quadratic function, and the amount
of overtime is similarly charged quadratically, rather than linearly. The no-burn
constraint remains in force. Analysis of the resulting optimal policies is very diflicult,
and is not attempted here. Figure 5-36 shows typical results from the SDP algorithm.

Because the reproduction of the color figure below may not show the solution
structure clearly, this structure is illustrated below in monochrome in Figure 5-37.
This solution is similar to the previous solution, with some small differences. Now the
Quit Now region starts after the deadline, since the quadratic lateness charge function
doesn't penalize much for being a little late, but penalizes a lot if the sequernce finishes
more than a little late. So it is optimal to make one last fast grinding pass if there is a
lot of material left and no time remaining at the deadline.

In the time band just prior to the deadline with lots of material remaining, the
optimal policy is to make one last pass, even though this means finishing a little late.
For little material remaining, the optimal policy is to leave well-enough alone and Quit
Now. For somewhat more material remaining the optimal policy is to make one
grinding pass using the fastest feedspeed, in order to finish as early as possible. The
dividing between these two regions within this band is now roughly a diagonal line,
suggesting that the grinding system should Quit Now with elther very little material
remaining or very little time remaining in this band, but not both. For even more
material remaining the algorithra gets more aggressive, suggesting that all passes
starting in this region of the time band should end at the same late time.

The remainder of the state space displays the same type of policy structure as the
previous results, with the same target state reachable/unreachable regions. In the
reachable region the optimal policy for initial states near the zero material remaining
axis calling for maximum feedspeed passes and norrnal force tailored to obtain the
optimal cut depth. For somewhat more material remaining, the familiar banded
structure appears. For initial states in the other bands of the unreachable region, the
algorithm is similarly indifferent to the feedspeed, but always suggests using the
maximum normal force. Thus the analysis of the optimal policies for linear time and

material remaining charges and no no-burn constraint nor motor model is able to yield
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some insight into the optimal policies for this problem with quadratic charges, no-
burn constraint, and motor model. And the analysis yields more believable results
where the algorithm becomes indifferent because of numerical problems. However the

analysis could not yleld the values of the normal force to use near the zero material
remaining axis.

alime Remaining

Band 3

Quit
Now

Band 2

Band 1

Slightly Late

Deadline

Material Rmining

Quit g
Now

Figure 5-37 Summary of the Optimal Policles for Quadratic Time and Material
Charges

5.8 CHAPTER SUMMARY

This chapter described the implementation of the long term grinding sequence
planner, which planned the sequence of grinding passes required to remove the weld
bead safely and accurately. This planner determined the number of grinding passes and
how much material should be removed during each pass and at what feedspeed. The
solution scheme used was Stochastic Dynamic Programming set up to optimize an

expected penalty function by the selection of the normal force and feedspeed given the
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initial time remaining and material remaining before each grinding pass. This penalty
function measures how well the entire grinding sequence satisfies the weld bead
grinding requirements and satisfies the task constraints. The stochastic results of a
grinding pass were predicted using a probabilistic model that propagated the
probabllity density function of a grinding model coefliclent to the probability density
function of the amount.of material remaining after the pass.

A qualitative description of the optimal grinding policies for linear charges was
obtained through detailed analysis. The resulting policies were dominated by grinding
passes which attempted to reach the target state of no material remaining at the
deadline. Where this could be done in different ways, second-order effects determined
the optimal policy. These second-order effects included selecting the shortest possible
pass because faster passes were more accurate than slower passes, and a time-banded
structure due to the minimum time that a grinding pass could take. The SDP algorithm
was verified to yield the quantitative equivalent of these policies when the time
deadline was rigid and when grinding was allowed after the deadline, except where the
difference in penalties charged for different feedspeeds was smaller than the

algorithm's numerical accuracy.

With the SDP program verified, more complex grinding requirements and
constraints were solved by the algorithm. These involved including a no-burn
constraint, a motor model, and quadratic time and material costs. The optimal
policies could not easily be analyzed, but were described.

123



124



6 PLANNING INDIVIDUAL GRINDING PASSES

The previous chapter described a grinding sequence planner that decides what
average cut depth and what feedspeed to use for each grinding pass. These are sent as
commands to the second level of the control hierarchy, the pass planner, which
converts the average cut depth command into a force trajectory. This chapter describes
the individual pass planner.

The conversion of cut depth to force trajectory is done in two stages. First the
average cut depth requirement is converted into a total volumetric removal
requirement, and this is converted to a disk tip trajectory using the weld bead contour.
This is described in the next section. Then a dynamic simulation of a controlled
grinding process is run to obtain the required force trajectory. Since tie grinding
process is simulated, the controller can be omniscient and knows the values of all the
process model states at all times. This enables it to control the resulting contour shape
very accurately. A by-product of this simulation is the grinding force used during this
simulated control. This grinding force is then commanded to the third levei of the
control hierarchy. |

This chapter is organized as follows. The first section describes the conversion
from average cut depth to actual cut depth. The next sections describe the development
of the controlled grinding siinulation, starting with a review of the history of dynamic
grinding models, the derivation of the dynamic grinding model used by the planner, its
implementation in a computer simulation, the experimental verification of that
simulation, and finally the conversion of the simulation to a grinding pass planner.
The final section presents results from actual planned grinding passes.

6.1 COMPUTING THE DISK TIP TRAJECTORY

The model used by the grinding sequence planner is one-dimensiona«l; it
assumes the workpiece to have a constant length and width, and computes the change of
height as a function of time. The height really represents the total volume remaining in
the weld bead, and is a useful measure for how close the grinding is to being finished.
However, the grinding pass planner must deal with a two dimensional contour, so it is

necessary to convert that change of volume to a {inal contour shape.
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This is done by converting the cut depth required by the sequencs planner into a
change of volhume via the simple relation:

AV=8wL {6.1)
where: AV = the change of vehume, foomd)
& = the average cut depth required by the sequence planner, {mm}
w = the average weld bead width, fomm]
L = the weid bead length, fom)

The next step is to compute a final rontour so that the grinding pass will remove the
requisite vohmme from the given initial contour. The final contour shape is chosen to be
parallel to the parent material. Refer to Figure 6-1 for an fllustration of this
computation.

Initial Contour

Initial Contour Dips Too Low
Disk Tip Trajectory

y 4
I 4 I' Surface of ;:I:;ii ng Volume
Parent Maierial After Pass Removed
datum
Elevation

gae 6-1 Costputing the Final Contour

The location of the final contour is adjusted vertically untfl the computed difference in
vohune between the initial and fina! contours matches the desired volume change. The
volume difference is computed via a numerical integration. The final contour location
is solved for quickly using a binary search scheme. The pertinent relations are:

L
avin) = |e(zix) — z1tx) + m) dx (6.2a)



N is the value of 1 that solves the equation:

AV(M) = AVdes (6.2b)

Z((x) = min(zf(x) + N, Zy(x)) (6.2¢)
where: x = the horizontal coordinate
Zjy(x) = the initial contour
zf(x) = the desired final contour shape

AV(n) = the volume difference between the initial and final contours
1 = vertical adjustment to the contour height
AV{es = the desired change in volume, = 8w L

z for z>0
€2 = {0 for z<0

N = the vertical adjustment required to attain AVdes
Zi(x) = the final contour height at the location x along the weld bead. in the
required vertical location
Equation (6.2a) computes the volume change for a grinding pass with the initial
contour Zj(x) and final contour zf{x)+n. Equation (6.2b) solves the first equation to
obtain the adjustment n needed to yield the volumetric change required by the sequence
planner. Equation (6.2¢) yields the final contour, accounting for the points in the
initial contour that dip below the desired final contour.

In the laboratory simulation, the desired final contour shape was a horizontal
line (zf{x) = 0) for use with steel bars simulating weld beads. Having the final contour
parallel to the parent material improves the accuracy of the one-dimensional material
removal assumption made in the sequence planner's grinding model. It also makes the
pass planner's job easier in the future, since the simulation works faster and more
accurately with flat contours. However, it is not always possible to have a final contour
parallel everywhere to the parent material because the initial contour can dip too low.

The desired final contour zf(x)+H (N.B. in general, z{(x)+H #Z{(x)) is used as a
trajectory for the grinding disk tip in the controlled simulation. If a grinding pass is

controlled so that the disk tip follows along this trajectory, the required volume of
material AVdeg will be removed.
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6.2 MOTIVATION FOR THE DYNAMIC IMODEL

Grinding is a dynamic process with several levels of detail. The grinding
sequence planner can ignore the short- and very short term details of the grinding
process behavior because these occur faster than the sequence planner need be bothered
with. However, for the grinding pass planner, there are some behavioral detalls that
cannot be ignored. The details involve the time response of the grinder to variations in
the initial contour height and to the force applied to the grinder. The output of this
level, the shape of the resulting contour, does not react instantaneously to these
variations. Such behavior can only be modelled with a differential equaticn.
Therefore a dynamic grinding model is needed for planning individual grinding passes.

6.3 PREVIOUS DYNAMIC GRINDING MODELS

The previous grinding models described steady-state grinding: there was no
attempt to describe the grinding process as a function of time. Such a dynamic grinding
model is needed for planning the force trajectory. There have been relatively few
dynamic grinding models. The following is a summary of a dynamic grinding model
that is similar to the model developed for weld bead grinding, and is one of the few
dynamic grinding models in the literature.

Hahn considered the time evolution of the shape of the workpiece during
precision internal grinding[52]. The goal of such grinding was to create a concave
cylindrical surface having a precise center and radius. The mechanism studied was a
grinder mounted on a cross-slide of known mass and stiffness. This is shown in
Figure 6-2.
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Figure 6-2 Internal Grinding System (from Hahn)
where: Fp = the grinding force
Ks = the stiffness of the cross-slide

res = the cross-slide radtal position, measured from the center of rotation of
the workpiece

rd = the grinding disk radial position, measured from the center of rotation of
the workpiece

i = the grinding coeflicient of friction, = Ft/Fn

Ft = the component of the grinding force tangential to the grinding disk
8 = the cut depth per disk rotation [mm]

Q = the workpiece rotation rate [rad/s]|

re K1HRw
Qrgw

Q
== [rev
n 2nl /s]

Assuming that rg(t) changes slowly, so that its absolute value could be
approximated by a constant, r, the equations (6.5) through (6.6) could be combined to
obtain a first-order differential e juation describing the time evolution of the diameter
of the workpiece.

d

-%: I'n Kglres — 1d)

_ KjuRo nis

= —Q W (res — 1d) (6.7)

Hahn solved this equation for a known r¢g(t) trajectory (a constant feed rate

followed by a 'sparkout' period of no cross-slide movement) and known initial
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workplece radius to obtain a final workpiece diameter. He then derived an expression
for the error in the final diameter as a function of the variation of the initial diameter,
for fixed grinding process parameters.

In a much later publication [53], Hahn reported no further progress for this
research. A literature review failed to uncover any other attempts at dynamic shape
control via grinding. There is abundant research in dynamic modeiling of the grinding
process for chatter [54-56]. However, this work concentrated solely on the chatter

problem, and there appears to be no extension towards dynamic shape control.

There is some similarity between multiple-pass weld bead grinding and Hahn's
model of precision grinding (equation (6.11)). In Hahn's model, the results of grinding
during one rotation were inputs to the next rotation. In weld bead grinding, individual
passes correspond to rotations of the workpiece in precision grinding. However, the
dynamic excitation of the rotating workpiece is absent in weld bead grinding. In weld
bead grinding the excitative forces come from the initial contour and have a continuous
frequency distribution. Thus the stabllity and fiequency response analysis techniques
used by Hahn are inapplicable for weld bead grinding. The next section describes the
dynamic grinding model used by the pass planner.

6.4 THE DYNAMIC GRINDING MODEL

The static grinding model is suitable for the medium term planner, but is not
accurate enough for planning individual grinding passes. This section will derive the
dynamic grinding model from the static model and first principles.

The dynamic model includes a rotational spring model for the support of a rigid
massless grinder, with linear relationships between the grinding normal force and the
tangential force, and between the instantaneous material removal rate and the
instantaneous power supplied to the contact patch. Figure 6-4 is a schematic of the
model and defines the terms. The assumption that the grinder is massless is acceptable
because it was found that the rotational accelerations of the grinder were insignificant,
and that the resonant frequency of the spring-mass system was in the neighborhood of
several hundred Hertz, whereas the natural frequency of the grinding process occurs at
much lower frequencies (from 2-10 Hz). At these low frequencies the spring-mass
system of the grinder acts as if it were only a spring.
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Figure 6-4 Schematic for the Dynamic Grinding Process Model

The derivation is as follows. The angle of the disk is related to the grinding force
through the spring model.

K
Fn = & (60-0) 6.12)
where: 0 = the deflection of the grinder from its relaxed position 6, {rad]

Kgs = the spring stiffness [N-mm/rad]
Fn = the grinding force normal to the contact patch [N]
R* = the average contact patch radius [mm]

The grinding force is one of the factors determining the grinding power. The
equations (4.4a-d) can be used to obtain an equation for the material removal rate
given the disk rotation rate and disk angle:

0 - K
Q’muKS(xgl—e) 2 (6.13)

Now the material removal rate, Q. is determined by the position and velocity of
the disk, and, in particular, by the position and velocity of the contact patch, where all
the grinding takes place. Q is derived in a fluid mechanics approach by assuming that
all the material that the contact patch runs into is removed through the contact patch
'portal’. The material removal rate is therefore given by the dot product of the contact

patch area, A, with the net velocity vector of the contact patch. The velocity vector is a
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vector sum of the feedspeed, Vr, the rate of change of the grinder fly height, dH/dt. and
the rotational velocity of the grinding disk, d6/dt. See Figure 6-5 for the vector sum.

Grinding
Contact Disk
Patch
Vv, .
. -H
-H cos o
Figure 6-5 Vector Sum for the Contact Patch Velocity
The resulting expression for the material removal rate is:
Q=A(R‘%+ Vi sing — %l;—lcose) (6.14)

where: H = the height of the center of rotation of the grinder [rmm]

Equating this expression with equation (6.13) ylelds a nonlinear first-order dynamic
equation in 6:

do_ 1 (0uKs(00-6) - Ko dH
&"R—‘( AR — Vfsind + 3 cosd (6.15)

The desired output is the height of the trailing edge of the grinding disk, y:
y=H-Rsind (6.16)

Equations (6.15) and (6.16) comprise the dynamic grinding process model. The
state variable is the grinder angle 6(t). The controls are the feedspeed Vilt), the grinder
fly height H(t), and the grinder rotation rate w(t).
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6.5 VERIFICATION OF THE DYNAMIC GRINDING MODEL

The next step was to verify this dynamic grinding model by comparing
simulation results to experimental results. This section will describe the simulation
first, then the experimental setup. and then will show the comparison of the results.

Dynamic Grinding Simulation

A computer program was created to dynamically simulate the grinding process
model in equations (6.15) and (6.16). The heart of the simulation was a numerical
integration scheme for solving differential equaticns. The scheme used was a fourth
order Runge-Kutta algorithm with an adaptive stepsize control [57]. The simulation
was programmed in C using the Lattice® C compiler to run under the MS-DOS operating
system on an IBM PC/XT. It required less than 128K of memory.

The inputs to the simulation were the initial two-dimensional contour, the
model parameters (the spring stiffness Kg. the coefficient of friction p, the grinding
specilic energy K], the wasted power K, the relaxed disk angle 8y, and the disk radius R),
the disk rotation rate w, the feedspeed Vy, the disk initial two-dimensional position,
and the finish time. The finish time could also be specified as a horizontal position on
the contour beyond which no grinding was allowed; the simulation automatically
stopped when the contact patch reached this point. When the electric grinder was
replaced with a less-powerful air grinder, a motor model in the form of equation (3.16)
was implemented. The motor model coeflicients B (torque effect) and wg (free rotation
ratej were added to the list of input model parameters. The simulation also required an
accuracy parameter which was used to control the stepsize, and needed an initial
stepsize guess. Default values for all input parameters were read from an ASCII file, and
could be easily edited both in the file with a text editor before the simulation was run
and within the simulation program after the default file was read (but before the
simulation actually began). The input contour was obtained via a tactile sensor (see the
next section describing the experimentation for a description of this sensor) and was
read from its own file in ASCII for easy review. The simulation output a similar file
representing the contour after the grinding pass was complete. The input and output
formats were the same so that several consecutive grinding passes on one sample could
be simulated easily. It was also possible to save an intermediate contour file at any
polnt during the simulation. This was useful for capturing the behavior of the grinding
disk as it encountered local hills and valleys in the contour.
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During the simulation, a graphic display was maintained showing the
interaction of the disk with the contour and instantaneous values of interest such as
the elapsed time, the position and angle of the disk, the grinding force, the grinding
power, the volumetric removal rate, and the contact patch location and area. This was
useful for observing the behavior of the grinding system in action and for monitoring
the progress of the simulation. An example of this display is shown in Figure 6-6.
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9.80dg | 22w f
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Grinder N
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Disk Face
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—
Workpiece /
Contour
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Figure 6-6 Graphic Simulation Display

At the end of the simulation the program wrote an ASCII file containing the
time history of some of these variables (the grinding force, power, volumetric removal
rate, contact patch area, and the disk angle). Both the contour and output history files
were readable by a plot program, with hardcopy output capabilities. The simulation
program could also read the filenames for the input contour, the input default
parameter, the output ccntour, and the output history from a list file to facilitate
running batches of simulations.

The most difficult aspect of the simulation was in locating the contact patch and
computing its area. It is inherently awkward to use a digital computer to simulate the
geometrical interaction between the disk face and an arbitrary contour. Contours were
represented by discrete points along the surface, with linear interpolation between the
daia points. The cutting face of the grinding disk was represented in two dimensions by
a line segment drawn at the angle 8 to the horizontal, of length R. During the course of
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the simulation, the grinder was advanced into the contour. This necessitated a
recomputation of the contact patch area using the relative position of the disk and the
contour. There were four types of disk-contour relative positions: 1) disk and contour
not touching, 2) contact patch extending to the tip of the disk, 3) contact patch
somewhere along the disk, but not including the tip of the disk, and 4) multiple contact
patches. These are fllustrated in Figure 6-7.

Single Contact

One Contact Patch along Disk,
Patch Extending not including
to Disk Tip Disk Tip

Grinding Disk
No Contact

with Contour

\ Multiple

Contour Contact
Patches

Length along workpiece
Elevation

Figure 6-7 Types of Contact Patches

The complexity required to handle multiple contact patches and their relative
rarity ruled out implementing such a capabllity. The differences between types 1, 2, and
3 correspond to the need to locate O, 1, or 2 intersections of the contour with the disk
face in order to locate the contact patch. This required software to identify the type of
contact patch, and then to search over the contour for the requisite intersection(s) with
the disk face. This had to be done each time the numerical integration scheme needed a
dynamics computation, which, for the integration scheme used, is 11 times per
integration step. Intelligent search methods were employed to speed up processing time.
It was found that techniques such as computing the contact patch area only once per
integration step or estimating its value for some of the computations reduced accuracy

to unacceptable values and even caused some integration stability problems.
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The integration algorithm paused {from time to time and updated the contour
shape and the graphic screen display. The contour shape was updated by vertically
truncating every point on the current contour down to the corresponding point directly
beneath it on the disk face. Truncation was also performed upon points between the
current location of the disk tip and the disk tip location from the last truncation.

It was found that the simulation would chatter if truncation were performed
after each integration step. This was due to the Runge-Kutta integration scheme which
computed the dynamics at several (the same 11 dynamics evaluations mentioned above)
intermediate positions before actually updating the disk location. When there had been
a recent truncation, some of the trial positions were likely to have little or no contact
patch area, while others had substantial contact patch area. This would confuse the
algorithm, causing it to settle uncertainly upon a lower value of contact patch area than
that of the previous integration step. The smaller area then caused the disk to swing
faster and farther into the contour in order to maintain a similar volumetric removal
rate. This, in turn would result in a larger contact patch area than was computed by the
last integration step, so the algorithm would slow the disk swing down. As the
algorithm hunted for an equilibrium disk angle in this manner, the disk face would
cross back and forth across the discontinuity in the contour formed at the old contact
patch location where the contour had been truncated last, and would never settle down.
The result was an inaccurate conitour. The adaptive stepsize algorithm, meanwhile,
would do its best to maintain accuracy, but there is no numerical integration scheme
that can handle such discontinuities well.

Experimental Verification

The dynamic model was verified experimentally by Kurfess [58]. A schematic of
the experimental apparatus is shown in Figure 6-8. This equipment was slightly
modified for demonstrating the hierarchical control system described in this thesis.
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Figure 6-8 Experimental Setup for Grinding Model Verification

The hardware consisted of a grinder mounted in a milling machine-based test
stand. An Astek FS6-120A 6-axis force/torque sensor was mounted in the milling
machine quill. Attached to that was an engineered rotational compliance in the form
of a fixed pivot and a calibrated linear spring mounted on a moment arm. This was the
implementation for Ks. The grinder was mounted onto the other side of this
compliance. The grinding disks used were 7 inch diameter x 1/,4 inch thick NorZon III
QBDA resinoid bond grinding disks manufactured by the Norton company. The disk
rotation rate was measured with a magnetic tachometer mounted on the grinding disk
shaft. The milling machine quill was rotated at an angle so that 6p was 20°. The weld
bead was simulated with a bar of cold rolled steel having a 0.5 inch square cross section
and a Rockwell B hardness of 93.

The use these bars rather than real weld beads was a convenience, and was not
due to any fundamental limitations of the grinding model or hardware. The fixed width
of this workpiece eliminated the need to measure the weld bead width and to simulate a
variable weld bead width so that a two dimensional model was valid. Todtenkopf
described a robot based grinding system capable of measuring and grinding three-
dimensional weld beads [59]. The measuring system was a structured-light vision

system that could handle non-rectangular cross-sections. However, this system could
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only handle planar parent surfaces and roughly linear weld beads. His work was
primarily a demonstration of sensor technology and integration, and low frequency
robotic force control. His work paralleled that of this thesis, and is compatible with the
sequence and pass planners described here. However, for efficiency the pass planner in
this work and the control hardware was developed separately, and designed ior
workpieces with rectangular cross sections. A modification in the pass planner for
varying average weld bead width could be easily implemented.

For this thesis, the workpieces were mounted onto a variable speed feed table
whose position was measured with a linear variable differential transducer (LVDT).
During grinding the grinder remained stationary, tilting slightly about the pivot, while
the sample was fed past it. Before and after each grinding pass the surface profile was
measured in three dimensions using a tactile surface scanner consisting of three
vertically mounted LVDTs. The workpiece was passed beneath the scanner with the
LVDTs lightly dragging across the surface, one LVDT passing down the center and the
other two along each edge of the workpiece. This scanner was retracted during grinding.

With this equipment it was possible to measure workpiece profiles before and
after a grinding pass, and measure the grinding force in three dimensions and power
consumed during a grinding pass. The force sensor data yielded the normal and
tangential forces Fp and Ft, so an estimate of p was possible. The grinding power was
computed via the tachometer's measurement of , the known disk radius R, and the
tangential force F{. The volumetric removal rate was computed using the surface
scanner data from before and after the grinding pass. The grinding power required at a
particular time was related to the volume of material removed at a particular distance
along the contour via the feed table position measurement. Several grinding power vs.
volumetric removal rate data points were used to estimate K; and K2 via a least-squares
fit to a straight line. Details of these calculations can be found in [58]. It was found that
the force data were quite noisy due in part to imperfectly balanced grinding disks, so
most data had to be low-pass filtered heavily. Cocfficients of friction p ranged from 0.3
to 0.37. The specific grinding energy K) was estimated at 12.8 J /mm3, and the wasted
energy Ko at 114 W, with a coeflicient of correlation of 0.81. The estimates of these
coefficients and the input contour were then input to the simulation to see if it could

repeat the results of the grinding pass. Typical results are shown in Figure 6-9 below.
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Figure 6-9 Typical Profile Comparison

It was found that the dynamic simulation predicted the final contour to within
10% of its actual value, once an allowance was made for the wear of the grinding disk.
Most of the error was due to the implementation of the simulation (integration and
roundoff errors, mostly) and not to the grinding model. However coeflficients did vary
significantly from grinding pass to grinding pass, and this would have caused
significant contour shape prediction errors if the data from previous grinding passes
were to be used to estimate the grinding c2#flicients before a grinding pass. Thus the
results of a grinding pass are not perfectly predictable, and any controller that uses the
simulation for planning individual passes will not achieve the desired volumetric
removal rate. This is one of the reasons why the grinding sequence planner needed to

plan with the possibility of imperfect plan execution by the pass planner.

This section described the verification of the dynamic grinding model used by
the short term controller. This verification toox the form of a comparison between
results from simulations and experiments. The simulations were implemented on a
digital computer using a numerical integration algorithm, and required careful
modelling of the geometric interaction between the disk face and the contour.
Verification experiments were carried out on an instrumented grinding test stand in the
laboratory using steel bars to simulate weld beads. The simulation was able to predict
the results of a grinding pass with a 10% error {f the grinding coeflicients had been
computed from data gathered from that pass, and showed errors of as much as 50% if

the coefficients were estimated from the data from several previous passes.
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where: H = the elevation of the center of the grinding disk
e = the vertical error between the disk tip and its desired trajectory
Gj}. G = user-selected gains

The gains were set by trial and error to obtain a very fast deadbeat controller. The
resulting final contours were very close to the desired final contours. Actual grinding
passes planned with this controller are given in the next section. This system worked
fine except when the desired cut depth was too deep and too much power was required
from the grinder. In simulations disk tip would not cut deep enough, so the controller
would push down harder. This would slow the air motor down, and reduce its cutting
abllity, further exacerbating the situation. The controller pushed down more, until the
grinder stalled. This situation was carefully avoided in experiments by limiting the
power required of the grinder to 80% of its maximum power.

A variant on this scheme was tried. Rather than adjust the vertical position of
the grinder, the tilt angle of the grinder was varied by changing 69, the relaxed disk
angle. This varied the grinding force by winding up the rotational compliance. This
was only simulated since there wasn't time to build the required hardware. The results
were as good as those obtained in simulation by controlling the grinder height. Note
that this technique was unsuitable for robotic grinding systems using a simple
structured-light vision system mounted on the robot wrist along with the force sensor,
such as Todtenkopf's, because these require a fixed camera angle that tilting the robot
wrist would ruin.

6.7 RESULTS OF PREPLANNED GRINDING PASSES

This section will present actual expermental results of preplanned grinding
passes. The first step was to verify the grinding simulation since there was an
important equipment change since Kurfess' verification. Kurfess used an electric
grinder, which was powerful, but heavy enough to seriously limit the effective
measurement range of the force sensor. The electric grinder was replaced by a lighter
weight and less powerful grinder powered by an air motor. The linear torque-speed
curve of the air motor (equation 3.16) was included in the simulation and required
verification. In addition, the air hose supplying the new motor made the compliance
nonlinear, so it was decided to experimentally determine the compliance curve (torque
vs. angle) and implement this in the simulation as a table lookup. This too needed to be
verified.
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Figure 6-11 illustrates the results from this verification. A grinding sample
with an irregular profile was scanned and the resulting profile was input to the
simulator along with process model coefficients estimated from previous grinding
passes. The simulation was run with the simulated controller gains set to zero so that
the grinder would remain at the same height. A comparable grinding pass was run with
the force controller turned off. Figure 6-11a compares the actual end of pass contour
with the simulated end of pass contour. This is a side elevation view of the workplece.
Grinding begins at the left side of the figure and proceeds to the right. A portion of the
contour after the 175 mm position was not ground to provide a fiduciary point for
comparing contours accurately. (The software considered the weld bead to start at
0 mm and end at 150 mm.) The simulation and the actual grinding pass shared the
same initial contour. The actual and simulated contours match quite well.
Figure 6-11b compares the actual grinding force to the stmulated grinding force. The
actual force is noisy, but is well predicted by the simulation in its low-freqgency content.
Figure 6-11c compares the actual air motor rotation rate response to the simulated

response. Again, the simulation accurately predicts the actual grinding pass.
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Figure 6-11a  Simulation Verification: Workpiece Profile Comparison
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Figure 6-11c Simulation Verification: Air Motor Response Comparison
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With the simulation verified, the next step was to execute a preplanned grinding

pass. Again, the before-pass contour was measured and input to the simulation. This

time, however, the slmulation was given the desired final contour and run with non-

zero gains, so that the simulated controller would attempt to generate this desired final

contour. The desired final contour was generated using the techniques described in

Section 6.1 in order to yleld the volumetric removal suggested by the SDP program for

this particular initial contour. Thus the following results are indicative of how well the
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bottom two levels of the control hierarchy follow the advice given by the top level
planner. Figure 6-12a is a comparison of the contours before and after the pass. The
contour marked simulation is both the desired contour requested of the simulated
control system and the simulated final contour: the overlap of the two contours
indicate that the individual pass planner did do its job well. Note that these two
contours coincide with the contour before the grinding pass from O mm to 42 mrn along
the weld bead; no grinding is intended here.

However, the actual contour after the grinding pass indicated that grinding did
occur in this region. Figure 6-12b shows why. This figure illustrates the desired
grinding forces as output by the individual pass planner along with the actual forces
that occurred during the grinding pass. The force control system did not execute the
grinding pass well. Note that the force sensor indicates that the grinding force was
oscillatory about zero force for the first two seconds, positive for half of a cycle
andnegative for the other half of a cycle. The negative force indicates that the grinder
was pulled (or accelerated) towards the workpiece. This is unexplained. This makes the
utility of the force sensor in a vibratory environment quesiionable. However, the
contour indicates that grinding did take place during this period. Note that the force
response shows a didtinct phase lag behind the desired force. This is due to the fact that
the force controller's bandwidth had to be reduced to reduce the effect of noise upon the
control response. This is described in more detall in the next chapter. Figure 6-12¢
shows that the motor response no longer matched the simulated response. Part of this
is due to the fact that the motor model ignores some motor dynamics, and part of it is
due to the fact that the actual torque did not match the simulated torque. This
demonstrates that the results of grinding passes ars unpredictable, in this case, due
more to poor execution rather than to poor planning.
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6.8 CHAPTER SUMMARY

This chapter described the development, implementation, and results from the
individual pass planner. This planner was based upon a simulation of a dynamic
grinding model. This dynamic model was an extension of a static model, modified to
include the effects of the two-dimensional geometrical interaction of the rigid grinding
disk with the weld bead. The first step to planning an individual grinding pass was to
determine the shape of the final contour to yleld the volumetric removal rate suggested
by the top level pPlanner. The second step was to use a simulation of a controlled
grinding process to generate the corresponding grinding force trajectory. The
simulation of the controlled grinder was necessary because it could determine the shape
of the weld bead during ‘grinding’' and adjust the grinding force to obtain the desired
shape. It was not possible to measure the shape of the weld bead quickly enough during
actual grinding to enable effective control. The results indicated that the individual
Pass planner worked as Planned, but that the €xecution of the desired force trajectory
did not go as planned. The next chapter will show why this occurred.
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7. CONTROLLING THE GRINDING FORCE

This chapter will describe the implementation of the very short term force-
control system, the lowest level of the control hierarchy. The description is in four
parts: a description of the elements of the force control system, a description of the
dynamic model of the force control system, the development of the controller, and the
performance of the system.

7.1 THE FORCE CONTROL SYSTEM

This section describes the components the force controller. These were a
vertical position actuator, a compliance through which the position actuator generates

the force, the force sensor, and the computer in which the controller was implemented.

The actuator for this controller was a box mounted between the variable speed
feed table and the workpiece. The top of this box was a platform whose vertical position
was precisely controlled. This is shown in Figure 7-1 below. See also Figure 6-8 for a
diagram of the entire experimental apparatus.
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Figure 7-1 The Force-Controlled Grinding System
The platform was mechanically constrained to move only in the vertical
direction by precision linear slides, and was quite stiff to any other sort of motion,
either side-to-side translations or rotations. This platform was driven by a low-
backlash ball-screw arrangement that was, in turn, driven by a low inertia printed-
circuit moving-coil DC motor (Motocraft MCM-1040). This motor appears partially
obscured on the left side of the box in the photo. The DC motor was controlled closed-
loop by an analog controller (ElectroCraft LA5600) using feedback from both a
tachometer mounted on the motor shaft and a position sensor (LVDT) measuring the
vertical position of the platform. The position LVDT is the vertical cylinder mounted
on the right side of the box. The motor controller itself was controlled from an IBM
PC/XT computer (not shown) via a digital-to-analog (D/A) output. The computer
received force feedback via an RS-232 serial communications line from the 6-axis force
sensor (Astek FS6-120A-600) mounted between the milling machine quill and the
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rotational compliance. The force sensor is at the top of the photo, with the letters "BW"
visible.

The platform pushed the workpiece against the air-powered grinder, visible in
the background of the photo. The resulting grinder rotation was opposed by the
rotational compliance, mounted between the grinder and the force sensor, generating
the force required for grinding. Also visible in the photo are the horizontal feed table,
upon which the box is mounted, and the surface profile scanner, consisting of the three
vertical LVDTs in the toreground mounted on the L-shaped bar. The vertical position
actuator was designed and constructed for this thesis; the remainder was constructed
by Ivers[50] and Kurfess [58]). The force control system comprises the vertical table, its
drive motor, the motor controller, the rotational compliance, the force sensor, and the

computer. The system block diagram is shown in Figure 7-2 below.

Fy ° o | Vertical X E
.._’Q_r Computer Lo D/A |—p] Position |—»iCompliance —p
(N] + [N [Vl | Actuator |[mm] [N]

< Force Sensor < y
Figure 7-2 Force Control System Block Diagram

7.2 THE FORCE CONTROL SYSTEM MODEL

Modelling the force control system consisted of modelling each of the
subelements individually, and then modelling how they interact. The plant controlled
by the computer consisted of the vertical position control loop, the compliance, and the
force sensor. These are described separately in this section.

The Compliance

The rotetional compliance was well-modelled with a linear rotational spring
model. This was experimentally verified by accurately rotating the grinder and
measuring the torque. The data from this experiment was fit to a straight line via a

least-squares analysis, and is shown in Figure 7-3 below. The compliance could be
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adjusted by moving the linear spring to a position with a greater moment arm, but was
typically left at 6x10° N-mm/rad.
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Figure 7-3 Rotational Compliance Model Curve Fit

Since the rotational motion of the rotational compliance was in fact quite
small, it was possible to linearly relate the grinding force to the platform position

(assuming constant contact between the workpiece and the grinder). The geometry is
shown in Figure 7-4.

Grinding Disk

Elevation
Figure 74 Geometry Relating Small Motions of Grinder and Platform
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In the figure, 8p represents the disk angle for which the rotational compliance is
undeflected . The corresponding platform position is Xg. The platform moves up by an

amount 8X, and the grinder rotates a corresponding amount 88. For small rotations 86,
the platform deflection 8X is given by:

68X = R cosfg 80 (7.1a)
and the linear stiflness of the grinder seen by the table is given by:

Ke= 29 (7.1b)

where: Kg = the rotational stiffness, [N-mm/rad]
Kx = the linear stiffness, [N/mm)]
R = the disk radius, [mm]

The Vertical Position Control Loop

The vertical position control loop was modelled using models of the motor and
its analog controller obtained from published data and experimentation. See
Appendix A for details. The resulting model was: '

X Kg(s+2)

Xe 83+ 0182 + aps + 03

(7.2)

where: X = the actual platform position [mm]
X = the commanded platform position[mm|

and the coefficlents Kg, z, o], o2. and a3 were constants, and functions of the published
data and experimental results. This i turn was well-approximated by a system with
unit steady-state gain and two poles, one at 9 Hz, and one at 40 Hz:

X B1B2
o= —— 3
AR AT (7.3)

where: B} =2r(9 Hz)
B2 = 2n{40 Hz)

This model ignores high frequency de:ails of both the model described by equation (7.2)
and of unmodelled high frequency dynamics such as the platform rcsonances in
various tilting modes which occurred in the vicinity of 80 Hz and 400 Hz and a 220 Hz
vibration due to backlash in the right-angle gearbox connecting the motcr shaft to the
ball-screw shaft. In addition, it was discovered that there was significant stiction in
the DC motor. This stiction caused the motor to hesitate slightly during direction

151



reversals, and was verified experimentally (via a spin-down test) and by simulation to
be equivalent to about 4.8 N in grinding normal force. The motor friction model is
shown in Figure 7-5 below.

Friction
4 Slope =
0.12 N-s/ mm
48 N —
B~
Platform Velocity
Slope = |
0.12 N-s/ mm —4.8 N
Figure 7-8 DC Motor Friction Reflected to the Position Actuator Cutput

The Force Sensor

The force sensor dynamics were determined by its construction. The heart of the
force sensor was an X-shaped plece of metal. The center of the X was connected to the
grinder via the rotational compliance. The four arms were connected to the milling
machine via a circumferential ring. Strain gauges mounted along the arms measured
the stress in each arm. The signals from the strain gauges passed through a 120 Hz
3-pole Butterworth filter, and then were sampled at 480 Hz by a microprocessor inside
the force sensor. This microprocessor further filtered the signals with a programmable
digital 2-pole low-pass filter, then multiplies the signals by a calibration matrix to
obtain the three force and three moment components. These are then output to the RS
-232 port at a user-selectable rate. The bandpass of the digital filter is automatically set
to satisfy the Nyquist criterion for the data output through the RS-232 port.

Little is known of the overall force sensor dynamics. For example, the
manufacturer knows of no frequency response tests of the 6-axis force sensor used in
this thesis. The force control algorithm was operated at a 60 Hz sample rate; this was
the sample rate selected for the force sensor as well, so the programmable digital filter

within the force sensor was automatically set to have a 30 Hz bandpass. Therefore the
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dominant dynamics of the force sensor were assumed to be those of the digital low-pass
filter, 1.e., that of a 2-pole 30 Hz low-pass filter.

7.3 DIGITAL FORCE CONTROL DESIGN

The force controller was implemented digitally in the computer. The design
methods and implementation were straightforward and conventional. The input to the
controller was the grinding normal force measured by the force sensor. This was
compared to the desired force to yleld a force error, and this error was input to a discrete
implementation of a proportional-plus-integral (PI) controller. The output of the
controller was a command voltage that was sent to the motor controller via the D/A
port.

The PI controller was selected for several reasons: 1) it could be easily
implemented in a discrete form, 2) it was simple, and therefore could be quickly
executed in the computer, 3) it would have zero steady-state error, 4) it could partially
overcome the effects of the stiction. The transfer “anction description of the PI

controller is:

U = [+ 2] Et9 (7.4)

where: U(s) = the frequency domain representation of the input to the motor
controller

E(s) = the frequency domatn representation of the error between the desired
and actual force

Kp = the proportional gain
K| = the integral gain

The Heaviside operator s used in the description of the continuous controller's
dynamics was replaced by its Tustin approximation in discrete dynarnics {60]:
S=s=— (7.5)

where: T = the sample time period, = (1/60) second
z = the time delay operator

The resulting control algorithm was easily implemente., in the digital computer as:

Ek+1 =&k + ek
K
ug = (K|T) Ek + [Kp*—gl] ek (7.6)
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where: ug = the tnput to the motor contreller ai sample k
ex = the error signal at sample k
&k = an auxiliary variable

The resulting force control system block diagram is shown in Figure 7-6 below.
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Figwe 7-6 Force Control System Block Diagram

The controller gains were hitially selected via analysis and simulation of the
linear dynamics above, neglecting the effects of the right-angle gear box backlash and
the motor stiction. However, when this was tmplemented, the stiction effects produced
an unsatisfactory response. As a result, the gains had to be selected by trial and error.
A typical step response of the system is shown in Figure 7-7. Note that this data was
obtained with the grinder motor off, and a lateral bearing placed between the grinding
disk and the platform to allow the grinder to tilt freely.

154



60

SO

40

30

Force [N]

20

— Gommarided For¢e
-~ Actual Fdrce

10

Time [s]
Figure 7-7 Force Control Step Response (No Grinding)

When operating with a rigid disk, the grinder added a lot of noise to the force
signal. The dominant frequency component of this noise occurred at the rotational
frequency of the disk and was due primarily to the disk surface not being perpendicular
to the shaft The magnitude of the noise component corresponded very well to the
magnitude of force that would be generated if the platformn were displaced a distance
equal to the disk face runout. It was very difficult to mount the rigid disks square to the
shaft. After much effort, it was only possible te reduce the magnitude of this component
of the noise by half. (This noise did disappear when the rigid disk was replaced by a
flexible disk, but the planner was designed specifically for the rigid disk.)

When the air motor was used, its rotation rate varied from 50 Hz down to as low
as 20 Hz when grinding. Thus the bandwidth of the force controller had to be reduced to
as low as 0.2 Hz in order to eliminate the effect of this noise on the controller. If the
bandwidth of the force controller were higher, its response to the oscillatory noise
input would be 180 degrees out of phase, leading to instability as the delayed resbonse
would add to the noise force.. Therefore the bandwidth of the force controller had to be
kept quite low. This, in turn, led to poor execution of grinding plans. Figure 7-8
fllustrates the step response of the force control system.
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8 CONCLUSIONS AND RECOMMENDATIONS

8.1 THESIS SUMMARY

This thesis describes an intelligent system for planning weld bead grinding. The
intelligence was embodied in the planning and control system. The requiremnents for
the weld bead task are that an arbitrary three-dimensional weld bead must be ground
off so that it be undetectable from the parent material within the time constraints of
the factory and without burning the weld or the parent material. Being undetectable
implies that the final weld bead contour blend in with the contour of the parent
material and that the final surface finish be not too coarse yet not too smooth. The
three-dimensional shape requirement refers to both the path that the weld bead traces
across the parent material and the shape of the weld bead itself. The former implies
that a robotic grinding system be employed. The latter makes demands upon the sensor
technology and the grinding process model. A vision system capable of measuring the
three-dimensional contour of a weld bead has been demonstrated. The limitations on
the force and feedspeed capabilities of the robot and the requirements that the robot
reset its position and perform computations between passes are also constraints on the
grinding system. The grinding sample and process model have been restricted to two
dimensions for simplicity. The grinding process is incapable of removing typical weld
beads in one pass, due in part to the no-burn constraint, and is poorly predictable , due
in part to inadequate models and in part to uncontrolled random variation of process
parameters. The need for multiple grinding passes, the poor predictability of those
passes, the limitations of the robot, and the task requirements make planning and
controlling weld bead grinding a formidable problem.

Controller Hierarchy

The nature of the weld bead grinding task made the planning and control job
suitable for a three tier hierarchical control system, with the longest term planning
function at the top of the hierarchy and shortest term feedback control system at the
bottomn. The top level determines the number and length of each grinding pass and the
volume of material to be removed during each pass given the time remaining until a
deadline and the initial weld bead volume. The middle level pianner plans the details
of each grinding pass, determining the grinding force trajectory required to satisfy the
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top level planner's volumetric removal requirements for each pass. The bottom level
then executes the plans made by the upper levels, grinding with the feedspeed
commanded by the top level planner and executing the normal force trajectory planned

by the medium level planner.
Top Level Planner

The problem faced by top level planner was formulated as an optimization
problem, with penalties assigned to grinding sequences which do not satisfy the task
requirements or which violate process constraints. This planner takes into
consideration the random behavior of the weld bead grinding process via a stochastic
grinding model that yields the probability density function of the volume of the weld
bead after a grinding pass as a function of the controls applied during the grinding pass.
This model was based on a static, deterministic grinding model. The poor
predictability of grinding passes requires the planner to think in terms of possibilities
of satisfying the task requirements and risks of violating the constraints, and must be
able to replan grinding sequences that are likely to turn out other than planned. This
planner plans sequences of grinding passes that balance the task requirements against
the risks in a table-lookup form that does not need to be replanned when grinding
passes go awry. A system capable of making such a decision can be called intelligent.

The stochastic results of grinding passes were handled by computing the
expected penalty of the entire grinding sequence. The multi-pass nature of the weld
bead grinding task made the planning problem faced by the top level ideal for
implementation using Stochastic Dynamic Programming to optimize the expected
results of the grinding sequence. The solution is generated in a table-lookup form,
giving the optimal grinding policy as a function of the initial time and amount of
material remaining. This table lookup allows the planner to operate in a feedback
control mode, giving advice for the next pass only after the results from the previous
pass are known, rather than planning out an entire grinding sequence in advance. Of
course, whenever the grinding process changes significantly, the entire solution must
be regenerated. However, this is not expected to occur frequently for grinding, because
the most common changes in the grinding process— the disk sharpness and the material
grindabllity— vary slowly with time.

The stochastic dynamic programming algorithm was implemented on an
IBM PC/XT microcomputer and programmed in the C language. Its results were verified
for simple problem formulations by comparing them with the results obtained from
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detailed analysis of the simplified problem. The full problem formulation (minus the
surface finish constraint) was solved.

Middle Level Planner

The middle level planner first computes the contour after the grinding pass that
will result in the removal of the volume of material required by the top level planner
for each pass, then computes the force trajectory needed to do this. This level uses a
more detailed grinding model, capable of predicting the grinding system's behavior
during one pass over a short enough time period to accurately predict the resulting
shape of the weld bead given the grinding force trajectory used during the grinding pass.
This dynamic model is an extension of the static grinding model, and is based on fluid
mechanics principles. It was experimentally verified to yleld the contour shape after
the grinding pass. The middle level planner uses a simulation of this model plus an
omniscient controller to generate the force trajectory required to yleld the required
final contour. The simulation was also implemented in C on the same IBM PC/XT
computer, and was complex due to the complexity of digitally modelling the geometric
interface of the grinding disk face with the weld bead.

Bottom Level Controller

The boitom level controlled the grinding force via a known compliance by
controlling position. In the experimental setup, the grinder was mounted on a
rotational compliance and the workpiece was pushed up against the grinder. The
position of the workpiece was controlled with a DC motor-based actuator built for this
purpose, and the actuator was controlled from the computer through a D/A port and an
analog motor controller. The grinding force was measured by a 6-axis force sensor, and
the force control was implemented in the computer using conventional digital control
techniques. It turned out that rigid disk grinding is a very noisy process and is quite
difficult to control. The control problem was made more difficult by the fact that there
was significant stiction in the actuator and that no force was generated when contact
between the grinder and the workpiece was lost.

8.2 CONCLUSIONS

The planning and control scheme described above was tailored to the specific
structure and needs of the weld bead grinding task. However, many of the techniques
used are applicable to the planning and control jobs for other processes. In particular,
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the quadratic nature of the penalty function, and its evaluation as an expected penalty
for stochastic processes should be applicable to most real processes whose output can be
measured more or less continuously (i.e. not discretely, such as in an assembly process
where parts can be described as either assembled or unassembled) and !s random. The
control hierarchy is novel to grinding, and is a useful technique for adding more
intelligence to the control of any process. However, in order to implement the type of
intelligent hierarchical control system described in this thesis, each planner must
have an appropriate model for the process under its control. This means that the model
must describe the behavior of the process accurately over a fine enough time scale. Just
how accurate and how fine a time scale is a function of the process, and there will
always be tradeoffs between the model accuracy and its utility. If the process has
significant random variation, the model must be able to encompass this, and be able to
describe how this variation is affected by the controls, if at all. This gives the planner
control over the process variation, which might be used to advantage. It was possible to
do this for the weld bead grinding problem because the variation of the grinding process'
behavior was predictable via the grinding model. This thesis has shown how to use
process models for planning, and how to use stochastic process models for planning
unpredictable processes.

Application to Other Processes

The techniques described in this thesis can be used on a large class of processes.

The basic criteria for applicability are:

1. The output of the process must be measurable, or determined from a
combination of measurable quantities. Although applicable to processes
with discrete outputs (such as assembly, the results of which can be
specified as either “assembled” or “unassembled”), the penalty function

technique is better suited for continuous outputs.

2. The process results must be somewhat unpredictable, yet modellable
stochastically. The cause for the unpredictability can either be due to
inaccurate models or imperfect execution. In particular, the probability
density function of the output of the process must be modellable. Better
models allow for better-informed decisions.

3. The dynamic programming technique is applicable to multi-stage
processes where each stage can be described as a state transition. It is also
suited for optimal stopping problems, in which a process can be continued
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in an attempt to satisfy a certain condition, and the decision of when to
stop must be made.

The following are examples of other processes where the techniques of this thesis might
be applied.

Material Removal Processes

Most material removal processes can be planned using the techniques described
above for grinding, although most do not seem to be as unpredictable as grinding is
because they rely on the control of the position of a rigidly held cutter relative to a
rigidly held workpiece. Turning and milling fall into this category. Inaccuracy results
when either the tool or the workplece deflect due to high interaction forces. Such forces
can arise from high static loading, for example, when too great a cut depth is attempted,
or from dynamic forces due to tool chatter or workpiece runout. Additional
considerations are those of surface finish and tool wear, both of which are functions of
the feeds and speeds chosen for each cutting pass. There are many rmodels for
machining. Representative examples can be found in [61-64]. Most machining models
for cutting accuracy. finish, and tool wear are based upon poorly known or
unpredictable metal properties or empiricai constants. Predictions made using these
models will be inaccurate, and their accuracy dependent upon the controls selected.
Machining is generally a multi-pass operation, so it is quite similar to grinding, and
the techniques used above would be directly applicable.

Bending

When shaping metals by bending, a moment is applied to the workpiece and it
deflects past the elastic limit, and deforms plastically. When the moment is released,
the metal springs part of the way back to the original shape in an elastic manner. The
final shape is a function of the maximum applied moment and the properties of the
material, including the previous strain history via strain hardening, etc. If the final
shape is not the desired shape, it can either be bent again, or left as is. Therefore
bending is an optimal stopping problem. Hardt [65] has modelled the roll-bending
process, and has put it under a closed-loop control that is independent of the material
properties with some success. He reports errors of constant radius bends of under 3% of
the desired radius for the first bend.

This process can be planned using the stochastic dynamic programming
technique. Each bend is a state transition, with the final shape (e.g. the final radius)
being the state variable. The state transition is unpredictable either due to varying

161



material properties when the process is controlled open-loop. or due to the inaccurate
performance of the closed-loop control scheme. When controlled open-loop, the
variation of the material properties can be propagated through the bending process
model to obtain the output PDF. Some modelling would have to be done to determine
the output PDF under closed-loop control to see if it is correlated with the commanded
shape, if anything. The validity of this propagation would have to be verified. A related
problem is sheet metal die forming[66] in which a three-dimensional sheet metal die is
formed by pushing an array of pins against an initially flat sheet of metal. This, too, is
an iterative bending process. The bending problem fits nicely into the framework of the
stochastic dynamic programming technique for process planning.

Refining

In refining the desired output is the purity of the product. In petrochemical
refining the quality of the products is a function of the type of crude entering the
refinery, the processing parameters such as processing times, temperatures, pressures,
and flowrates, and other parameters pertaining to the processing equipment and
whatever chemical catalysts may be required. The process models are quite complex,
and are based on chemical engineering theory anad empirical relationships. These
models are typically implemented on computers which are consulted to decide the
process settings required to produce a given mix of products. The process models are
good, but not entirely accurate. The computer is instructed to output conservative
settings, to avoid the risk of producing poor quality products. The algorithm which
decides these conservative settings is in general proprietary, but is frequently based
upon arbitrary safety factors. There are three options when a substandard product is
produced: 1) recycle the product back through the refining process to improve the
quality, 2) blend the product with higher quality product to bring the average properties
up to par, and 3) demote the product to a lower standard of quality. Further decisions
that depend upon the operating parameters are when to recharge the catalyst and when
to service equipment[67]. In addition, the refining process is often a sequence of several
different processes, each of which must be planned. Because the allowable states and
decisions can vary with the stage, the dynamic programming technique is capable of
planning such processes.

The above three examples show that this dynamic programming technique is
quite powerful and capable of planning a variety of multi-stage stochastic processes.
The next section will describe how the resulting optimal policies can be described as
intelligent.
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Optimal Grinding Policies

The dertvation of the optimal grinding policies through detailed analysis would
be very difficult if the penalties were not linear, or nonlinear constraints were imposed,
and becomes increasingly inancurate as the accuracy of the process decreases. However,
the numerical Stochastic Dynamic Programming solution can easily handle such
penalties, constraints, and inaccuracies, and yleld quantitative results as well, at the
expense of less insight and restricted by quantization of the state space inherent in
Dynamic Programming (and many other numeric) solution schemes. It is interesting to
note that the numerical solution yielded quantitative optimal grinding policies which
could be described using the insight gained from the analysis of the simple problemi.
Such policies could be described using heuristic rules, such as “do not attempt to grind if
it is too late after the deadline or the weld has been overground already,” and “it's ok to
be a little late if there's still a lot of material left,” and “if there is very little material
left and plenty of time, try to take most of it off in one pass,” and “if there is more
material left and enough time, plan a sequence of passes that are the fastest possible
and finish right at the deadline with no material left,” and “if there is a lot of material
left and not enough time, grind as hard as possible, in order to wastc: as little time as
possible during equipment resets.” Such policies are particular to the formulation of
the weld bead grinding problem given to the planner, couched in the equations,
coefficients, constraints, and charge functions programmed into the algorithm. These
policies may not be extendable to other formulations. It is interesting to note that
theses grinding policies were not obtained from a human grinding expert nor from any
type of reasoning or inference engine. However, these policies are more advanced than
those typically obtained by modern control theory, and the planner that generated
them can be called intelligent.

8.3 RECOMMENDATIONS FOR FUTURE WORK

1. The SDP algorithm was tmplemented for easy modification for research
purposes, and not for speed or ease of use. There are many improvements
that could be made to the algorithm to make it faster and more accurate.
Noting that most of the grinding policy indicates that the controls should
be set to values on the boundary of the control space, a modification of the
algorithm to search only or search first along the boundary of the control

space.
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The search scheme was limited to discrete feedspeeds for speed and
simplicity. There is no reason why a two dimensional search could not be
implemented to yleld continuous feedspeeds. In fact, a variety of two
dimenstonal search schemes were implemented early in this research and
abandoned. These attempts included golden section searches, Powell's
method, and a Hooke&Jeeves pattern search. It was discovered later that
this was due to the time-banded nature of the optimal grinding policies
which made such a search difficult because few optimization algorithms
work both well and robustly when the function to be optimized is

discontinuous.

The force control with the rigid disk was quite difficult, and did not work
as well as hoped for. Much of this was due to the noise generated by the
rigid grinding disks which were difficult to mount perpendicularly to the
grinder shaft. The resulting noise was transmitted directly to the force
sensor via the pivot, and this evidently played havoc with the internal
sensor computations. A better hardware arrangement would have the
positions of the linear spring and the pivot exchanged, or the grinder
mounted on a vertically oriented linear slide with a linear compliance.
This would put a spring between the grinder and the force sensor to isolate
the force sensor from much of the grinder's vibrations. A second way to
improve the force control would be to increase the high frequency rolloff of
the controller to allow for higher bandwidth control while limiting the
effects of the grinding noise. Eliminating the stictton in the actuator
motor would also help. These enhancements were not attempted due to

time considerations.

It should be noted that quite good force control results were obtained using
a flexible grinding disk, because it absorbed much of the grinding noise.
However, the grinding mode! used in the simulation for planning the
grinding passes was specifically designed for the rigid disk. It should be
possible to construct a similar simulation for the flexible disk grinding.
Note that because the geometry of the flexible disk is much more vz rable,
it will be difficult to model this successfully. In particular, the position of
the grinder before actual grinding could be reproduced in the stmulation
because it was possible to accurately locate the grinder with respect to the
workpiece by touching the disk to a fiduciary point on the weld bead. This
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would be difficult to do with the flexible disk because the paper disk warps,
and cannot be easily modelled in two or even three dimensions, because
this warping is affected by humidity and temperature and is
uncontrollable and unpredictable.

However, a static grinding model may be serviceable for a pass planner.
This would involve computing the desired final contour shape as described
in Chapter 6, then computing the cross-sectional area of the weld bead as a
function of the length along the weld bead. Multiplying this by the
feedspeed would yield the desired material removal rate as a function of
the position along the weld bead. This could be converted into a desired
grinding force trajectory via the power vs. material removal rate
equations and the rotational compliance table lookup. A table lookup
would be required for the compliance because the flexible disk does not
have a linear compliance, and would have to be used as the force control
compliance because a softer spring would not generate enough grinding
force in a reasonable angular or linear displacement. Todtenkopf used a

simplified form of such a planner with some success.

The stochastic grinding model used in the sequence planner was not
scientifically verified. The probabilistic relationship between the
variation of the process model parameters and the actual cut depth was
never experimentally determined, nor was the shape of any PDF
determined. The relationships can be determined from experimental data
using correlation and analysis of variance (ANOVA) methods. The shape
of PDFs can be estimated from experimental data using either of two
techniques. The first technique involves expansion by kernel PDFs. An
arbitrary (usually Normal) kernel PDF is constructed for each data point
so that the mean of each kernel lies on a data point. The overall PDF is a
normalized sum of all the kernel data points. The second technique is to
sort the data and construct a cumulative probability function by fitting a
smooth curve (e.g. a Bezier or cubic spline function) through the points.
The PDF is obtained by differentiating the cumulative probability
function. The expansion by kernel technique is less accurate, but can be
used to update the PDF as the data arrive, so could be used to generate PDFs
on-line. The second technique is more accurate, but must be done at one

time.
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APPENDIX A: A DYNAMIC PROGRAMMING TUTORIAL

Dynamic programming is a powerful optirnization technique first developed by
Richard Bellman at the Rand corporation in the 1950s. [68] It has found widespread use
in diverse fields such as operations research and optimal control. However, it is not
generally taught in required engineering curricula, so a tutorial on the subject, based on
a related example, is presented here. The second sectionwill relate this simple example
to the problem of planning weld bead grinding.

A1 A SIMPLE DYNAMIC PROGRAMMING EXAMPLE

Consider the problem of finding the fastest route down a mountain at a ski
resort from a given point on the mountain. A map of the ski tralls {s shown in
Figure A-1. The destination is one of the three entrances to the parking lot at the
bottom, indicated by the three heavy circles. For speed, one must remain on the ski
trails and must only ski downward (climbing is rather slow). The trails meet at
intersections where one must decide the next trail to proceed on. These are indicated by
circles in Figure A-1, with letters identifying each intersection. Different trails have
different slopes and difliculties, and so take different amounts of time to ski down.
From past experience, it is known how long it takes to traverse each trail. These times
are marked along each trail in Figure A-1. The problem is to select the route down the
mountain that minimizes the total time required to get to the parking lot.

The solution is to first consider being at each of the intersections nearest the
destination, such as those marked A, B, and C in Figure A-2. From each of these
intersections consider all the routes to the destination, and pick the fastest route from
that intersection to the destination. Then note down the best route to take from each of
these intersections, and how much time it would take if you took each of those routes.
In Figure A-2 the optimal routes are shown as heavy lines with arrows, and the total

time to the destination is written adjacent to each intersection.
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Parking Lot
Figure A-1 A Ski Trail Map

Now consider each of the nearby intersections higher up. These are labelled D
through G in Figure A-2. From each of these intersections, find the fastest route all the
way to the destination. Note that if the optimal route down had previously been found
from each of the intersections A-C beneath this set of intersections, then the fastest
route to the destination from any one of the higher intersections, D-G, must include the
fastest route from one of the lower intersections A, B, or C, to the destination. Thus, in
this step one only needs to compute the optimal routes from the higher intersections to
the lower intersections The rest of the optimal route downward has already been
determined. This is called the principle of optimality. Here, for example, there are two
routes down from intersection D: head to either intersections A or B. The total travel
time via A would be 4 minutes along the trafl to A plus 2 minutes from there on down,
for a total of 6 minutes. Similarly the total travel time for the other route is 6 minutes
plus 1 minute, or 7 minutes. The optimal overall route is to head initially towards
intersection A, and then to proceed along the optimal route from there to the parking
lot. This is repeated for each of the intersections at this level before continuing on to
the higher intersections.
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Parking Lot
Figure A-2 Partial Optimal Route Solution

Now consider the set of intersections one level higher, H-K, in particular
intersection I. See Figure A-3. There are two routes down, towards intersections D and
E. The time to intersection D is 2 minutes, and the optimal time down from there is
6 minutes, so the total travel time along that route will be 8 minutes. Similarly, the
total time along the route towards intersection E would be 10 minutes, so the best route
is towards D, even though it takes longer to get to D than to E. Note that the principle of
optimality allows us to ignore the detalls of the optimal routes down from the next
lower set of intersections.

So, the algorithm is to start at the destination and work upwards one level at a
time, selecting the route with the shortest total time from each intersection all the way
to the destination. The principle of optimality makes the job easier, because the
optimal routes and times from all the lower intersections have already been identified.
The complete solution is shown in Figure A-3 below.
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Parking Lot

Figure A-3 Complete Optimal Route Soluticn

Now, for every intersection on the map, the local directions have been noted for
the fastest route from that intersection to the destination. When one skis down to an
intersection, one only have to look up the directions for that intersection in his notes to
know what trail to take next. For example, starting from intersection I, the optimal
route is to ski down the trail to intersection D, and then proceed optimally from there.
The optimal route from D tas worked out in the previous steps in the algorithm. Your
notes indicate that the total time from I to the bottom will be 8 minutes.

If one makes a wrong turn, his notes will contain the optimal directions from
whatever intersection he comes to, though this new route may no longer be along the
optimal route from your original location. For example, suppose one went {from I down
the trail to intersection E rather than to intersection A. The best route from there is
now towards intersection C, thence to the bottom. The total time to the bottom,
however, will be 10 minutes rather than 8 minutes.

This is the dynamic programming algorithm. The important thing to note is
that it yfelds the optimal route from every intersection to the bottom in the form of a
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table lookup of local directions from each intersection. This table lookup solution also
allows for optimal error recovery in case the original optimal path is strayed from. In
effect, this is an instantaneous optimal replan, and is a very useful characteristic for
planning real processes.

A.2 COMPARISON WITH THE PLANNING OF WELD BEAD GRINDING

Note that the weld bead grinding problem is similar to the skiing example.
Taking a grinding pass is similar to skiing along a trail; both are state transitions. The
grinding deadline is similar to the parking lot at the bottom. The state of the weld bead
(grinding pass and volume of material remaining) is similar to the intersection (height
and location left to right along the mountain). The choice of cut depth is similar to the
choice of trails. The criterlon to be minimized was the total skilng time in the skiing
example. For grinding, it will be a penalty function which measures how well the task
specifications have been satisfied. Finding the best grinding sequence is similar to
finding the best route down the mountain.
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APPENDIX B: MODELLING THE VERTICAL FORCE TABLE

B.1 INTRODUCTION

The purpose of this work is to find a suitable dynamic model of the vertical force
table so that a force controller can be designed for it. This requires knowledge of both
how the drive motor works and how its associated (position) controller works. A
schematic of the entire system is shown below. A DC motor drives a table up and down
through a ball-screw. This motor is controlled by an analog amplifier which uses both
velocity and position feedback to control the position of the table according to voltage
commands sent from a computer. The table pushes up against a compliance (in this
case, a flexible grinding disk), so the force generated is a function of the position of the
table. The force is measured by a force sensor, and is read in digitally by the computer.
The computer uses this measured force to send the appropriate position commands to
the amplifier to correct small force errors. The goal of this work is to model the
behavior of the table as a force actuator so that the appropriate force control algorithm
can be implemented in the computer.

B.2 THE MOTOR MODEL

The motor used in the vertical table was the Electro-Craft 1040 MCM DC moving
coil motor. It features a high torque to inertia ratio which makes it ideal for
servomechanism applications, and comes with a tachometer. The motor model is
typical for DC motors, having a LR electrical circuit driving a mass-damper mechanical
system. A back EMF generated by the spinning rotor is fed back from the mechanical
system to the electrical circuit. This is {llustrated in Figure B-1.
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Figure B-1 Motor Model Schematic

The model block diagram is shown in Figure B-2 below:

electrical mechanical
u 4 v 1 I T 1 ®
L —1 Kt P —
(vl V] sLm + Rm |[A] {in-1b] sJ+B [KRPM]
Ke
(V] back EMF

Figure B-2 1040 MCM Motor Model Block Diagram
The constants and variables are as follows:
J Rotational Inertial 4.06x10-5 in:1b-s2
B Viscous Friction 0.063 in-lb/kRPM
Lm Ammnature Inductance 0.09 mH
Rm Armature Resistance 0.7 w
KT Torque Constant 0.363 inlb/A
Ke Back EMF Constant 4.3 V/kRPM

1 This value is consistent with a system in which torque is measured in in:lb and
rotational acceleration is measured in rad/s2. To be consistent with the units of the
other constants, acceleration c¢hould be measured in kRPM/s and inertia in
in-lb-s/kRPM. To make the conversion, the value in the table should be multiplied
by (1min/60s)(2r rad/rev)(1000 rev/krev) to yield J = 4.25x10-3 inIb-s/kRPM.
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u Command Voltage v

v Armature Voltage v

I Armature Current A

t Rotor Torque in:1b
(0] Shaft Angular Velocity kRPM

A little block diagram algebra yields:

Y!
u & > Ll )
s“+A;s+C,
Figure B-3 1040 MC£ Motor Traxsfer Function
where:
K = KT/ILm J) = 9.49x109 kRPM/V.s2
Al = (Rm/Lm) + (B/J)
=7778s1 + 14.82 57! =7793.s°1
Ci = (Rm B + Ke KT1)/(Lm J)

=(4.41x10"2 + 1.56)/3.825x10°7
=4.195x105 52

The poles of this system are at -582. rad/s and -7211. rad/s, which can be
ascribed to the mechanical and electrical systems, respectively. The DC gain is 0.226
kRPM/V. Note that the terms containing the viscous friction term B are dominated by
the terms which with they are summed. Thus Aj can be approximated by (Rm/Lm) and
C1 by (Ke KT)/(Lm J). Note also that the motor can be adequately described by the
mecanical system alone, with the transfer function:

1/Ke
sTm+1

where: Tm=(RaJ)/(Ke KD =1.91ms. 1/Tm = 524. = 582.
1/Ke =0.233=0.226

B.3 SPEED-CONTROL SYSTEM

The controller for the motor is the Electro-Craft LA5S600 linear amplifier. It has
a notch filter at 4kHz to avoid exitation of the torsional resonance of the rotor-shaft
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combination. This notch filter is at frequencies well above those we are interested in,
so it will be amitted from the model. The controlier uses feedback from the tachometer
to control the speed of the motor. The simplified circuit diagram for the amplifier
connected to the motav is shown in Figure B-4 below:

Back EMF

Lm

Motor

2 v Rin
Figure B-4. Amplifier Circuit Diagrasn

Analysis of the left side of the circuit indicates that the transfer function from
Vcs to Vo is given by:

where: K9 =-GRaR3/Rin
za=1/CR36
Pa=1/CtfGRaR3+R3g) <z,
v=1/IRb+(1-GIR3] + 1/Ka + 1/GR3
G = the fraction that R3 is adjusted towards Rb.

The right hand side of the circuit is a current control loop. The voltage Vo
corrols the power transistor. The current 1 is contrelled proporticnally to this voltage
as long as rotor back EMF and voltage across the motor inductance and resistances
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don't overwhelm the 44v power supplyz. The motor current is grounded through a small
resistor (33m(2), and the resulting voltage drop is summed with Vo to give negative
voltage feedback. Thus the motor current is controlled proportional to Vo.

The block diagram is shown in Figure B-5 below. Note the extra controller pole.

| |MOTOR
Ve Rog s/z + 1 N Kp (0]
(v slp + 1 [A] sJ + B, [kRPM]
TACH
| -D
AMPLIFIER Rss (vl T

Figure B-6 Motor plus Amplifier Speed Control Block Diagram

ve is the command voltage into the amplifier. DT is the tachometer constant,
which was calibrated using a calibrated stroboscope and a precision voltmeter, and
found to be 3.09 V/KRPM. K3 is the combination of the gain of the Vo to I circuit and the
gain Ko (of the Ves to Vo circuit). R3g. R2g. and R53 are potentiometers that can be set
(in a limited range) in the amplifier. These were set to give a fast, deadbeat response,
with a DC (steady-state) gain of 0.4 kRPM/V.

The values of many of these constants are difficult to determine a priori, due to
the complexity of the circuit board, but the important constants, K3, pa. and za, can be
obtained through careful experimentation. Now Rag, R53, and K3 can be measured
directly when the motor is running at a constant speed. This is facilitated by the
existence of test points on the LA5600 circuit board, where we can measure the voltage
signals just beyond Rag and Rs53, and the voltage drop across the 33mQ resistor to get
the motor current. Thus we find that Rgg = 1.00, and R53 = 0.806. Subtracting the
signal just after Rog from the signal just after Rs3 gives the error signal e. Dividing the

2 This can occur at high rotor speeds, when the back EMF is high, or for high motor
torques, when the voltage drop across the motor resistance is high due to the high
current level, or when the current changes magnitude quickly, causing a high voltage
across the motor ceil inductance. If this occurs, the circuit becomes nonlinear.
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steady state motor current signal I by the steady state error signal gives the amplifier
DC gain, K3. This was found to be = 36.7 A/V.

Examining Figure B-5, we see that the transfer function from v¢ to o is given by:
P s
J—H(RmKsKT) (; + 1)

1 a

\Y
C B, ap p
2 1 a a
s+ P +— 4 =— B + B.+0o
( S B lea) Jl( 1 )

where: a =DTR53K3KT
= (3.09 V/kRPM)(0.806)(36.7 A/V)(0.363 inlb/A)
= 33.2 in'lb/kRPM.

J1 and B;] are constants supplied with the motor.3 The problem is how to
determine p, and z3. Note that we can write the transfer function as:

xg(_+1)

Ve s+2§Qs+Q

where: ( is the damping ratio

Q is the natural frequency, in rad/s
Kv is the system DC Gain, = 0.4 kRPM/V

Then pg is given by

3 B] has been experimentally verified by measuring the motor current at a range of
steady motor speeds. It was found that there is aiso a small amount of stiction, =0.168
in-lb/kRPM.
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and z; is given by:

7 =

Y 1,LQ-p,-B /)

The frequency response of this speed control system was obtained by connecting
the amplifier input to a voltage signal generator and measuring the speed via the
tachometer on an oscilloscope. The tachometer output was observed on an oscilloscope,
and the amplitude of the output signal was measured. The resulting frequency response
is shown in Figure B-6 below:

Magnitude [dB]
)

o
2o

10 102 103 104
Frequency [Hz]

Figure B-6a Speed Controi Frequency Response Magnitude
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Figure B-6b Speed Control Frequency Response Phase

The model was ohtained by trial-and-error, by varying the position of the ru.del
poles until a good curve fit was obtained. Thus, within the range of frequzncies
examined, the system is experimentally described by a weil-darnped pole {(=G.5) at
510 Hz, with the controller zero z; well above 1000 Hz. By the above calculations,
Pa = 1.312. rad/s = 209 Hz. Using the above calculations, the value of Ky is verified to be
0.403 kRPM/V, but z3 is computed to be 869. rad/s. In modelling the controller
circuitry, it was noted that pa < zg. This calculation is very sensitive to values in both
Pa and a, both of which are sensitive to error-prone measurements. It makes sense that
pa < za, since the purpose of these singularities is to function as a lag filter. The value
of R3g was set to give the highest frequencies for these singularities. For now, zg will be
assumed to be above the range of frequencies of interest, and effectively negiected.

B.4 POSITION CONTROL

Next, the motor was installed into the vertical position table. The motor drove a
right-angle gear box. which drove a ball-screw. The ball-screw, in turn, converted the
rotary motion into the linear vertical motion of the table. Now the inertias of the right-
angle drive, the ball-screw, and the table added to the inertia of the motor, thus
requiring recalculation of the J9 and Bg constants. The position of the table was also
fed back to the controller via a LVDT, and this signal was summed with the tachometer
signal. The block diagram of the position control system is shown in Figure B-7 below:
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Figure B-7 Vertical Table Position Control Block Diagram

Here, p is thé\pitch of the lead screw, 5 rev/in., x¢ is the command voltage, and x
is the vertical distance moved, in inches. DL is the calibration constant for the LVDT,
which was calibrated using a dial gauge and a precision voltmeter to be 41.878 V/in. J2
is the eyu'valent inertia seen by the motor. This includes the rotary inertias of the
motor, the coupling, the right-angle gear box, and the equivalent inertia of the tabletop
and all linearly-moving parts. The resulting inertia is increased to J2 = 9.313x10-

3 inlb's/kRPM.

The transfer function from x¢ to x is given by:

e = Rog X - Rs3DTw - DL X

( 10° kRPM) (60 )(p[rev/m]) s X
rev/min
s/z +1
60ps SJ +B S/p +1 3 €

S+
X R”B(Z—a+ )

X
C B, B B2 oB, D
3 2 201 2 , OB, LB
s+ s + Lt —"+—— Bs+D
( 2 sza Jz za) (12 12 z, LB
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where:

1()-:‘KTK3B2

B= (60 s/min) p J,

The values of p3 and z;3 can be better determined when comparing the results of
an actual frequency response test with the transfer function above. Values of pa and za
were estimated and tried in the above transfer function, until a reasonable curve fit was
obtained. In the Figure B-8 below, the results of the frequency response test are shown

as ‘actual’ data points, and the transfer function above. with pa = 1100 rad/s. and za
= 5000 rad/s, is shown as the 'theory’ curve.
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Figure B-8a Frequency Response Magnitude Comparison
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Figure B-8b Frequency Response Phase Comparison
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