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ABSTRACT
Sorting is one of the most fundamental algorithms in Com-

puter Science and a common operation in databases not just

for sorting query results but also as part of joins (i.e., sort-

merge-join) or indexing. In this work, we introduce a new

type of distribution sort that leverages a learned model of

the empirical CDF of the data. Our algorithm uses a model

to efficiently get an approximation of the scaled empirical

CDF for each record key and map it to the corresponding

position in the output array. We then apply a deterministic

sorting algorithm that works well on nearly-sorted arrays

(e.g., Insertion Sort) to establish a totally sorted order.

We compared this algorithm against common sorting ap-

proaches and measured its performance for up to 1 billion

normally-distributed double-precision keys. The results show

that our approach yields an average 3.38× performance im-

provement over C++ STL sort, which is an optimized Quick-

sort hybrid, 1.49× improvement over sequential Radix Sort,

and 5.54× improvement over a C++ implementation of Tim-

sort, which is the default sorting function for Java and Python.
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1 INTRODUCTION
Sorting is one of the most fundamental and well-studied

problems in Computer Science. Counting-based sorting algo-

rithms, such as Radix Sort, have a complexity ofO(wN )with
N being the number of keys andw being the key length and

are often the fastest algorithms for small keys. However, for

larger key domains comparison-based sorting algorithms are

often faster, such as Quicksort or Mergesort, which have a

time complexity of O(N logN ), or hybrid algorithms, which

combine various comparative and distributive sorting tech-

niques. Those are also the default sorting algorithms used in

most standard libraries (i.e., C++ STL sort).

In this paper, we introduce a ML-enhanced sorting algo-

rithm by building on our previous work [28]. The core idea

of the algorithm is simple: we train a CDF model F over a

small sample of keysA and then use the model to predict the

position of each key in the sorted output. If we would be able

to train the perfect model of the empirical CDF, we could

use the predicted probability P(A ≤ x) for a key x , scaled to

the number of keys N , to predict the final position for every

key in the sorted output: pos = FA(x) · N = P(A ≤ x) · N .

Assuming the model already exists, this would allow us to

sort the data with only one pass over the input, inO(N ) time.

Obviously, several challenges exists with this approach.

Most importantly, it is unlikely that we can build a perfect

empirical model. Furthermore, state-of-the-art approaches to

model the CDF, in particular NN, would be overly expensive

to train and execute. More surprising though, even with

a perfect model the sorting time might be slower than a

highly optimized Radix Sort algorithm. Radix Sort can be

implemented to only use sequential writes, whereas a naïve

ML-enhanced sorting algorithm as the one we outlined in

[28] creates a lot of random writes to place the data directly

into its sorted order.

In this paper, we describe Learned Sort, a sequential ML-

enhanced, sorting algorithm that overcomes these challenges.

In addition, we introduce a fast training and inference algo-

rithm for CDFmodeling. This paper is the first in-depth study

describing a cache-efficient ML-enhanced sorting algorithm,

which does not suffer from the random access problem. Our
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Figure 1: Sorting with the perfect CDF model

experiments show that Learned Sort can indeed achieve bet-

ter performance than highly tuned counting-based sorting

algorithms, including Radix Sort and histogram-based sorts,

as well as comparison-based and hybrid sorting algorithms.

In fact, our learned sorting algorithm provides the best per-

formance even when we include the model training time as

a part of the overall sorting time. For example, our exper-

iments show that Learned Sort yields an average of 3.38×

performance improvement over C++ STL sort (std::sort)[16],

5.54× improvement over Timsort (Python’s default sorting

algorithm [45]), 1.49× over Radix sort[51], and 1.31× over

IS
4
o[2], a cache-efficient version of the Samplesort and one

of the fastest available sorting implementations [40].

In summary, we make the following contributions:

• We propose a first ML-enhanced sorting algorithm, called

Learned Sort, which leverages simpleMLmodels tomodel

the empirical CDF to significantly speed-up a new variant

of Radix Sort

• We theoretically analyze our sorting algorithm

• We exhaustively evaluate Learned Sort over various syn-

thetic and real-world datasets

2 LEARNING TO SORT NUMBERS
Given a function FA(x), which returns the exact empirical

CDF value for each key x ∈ A, we can sort A by calcu-

lating the position of each key within the sorted order as

pos ← FA(x) · |A|. This would allow us to sort a dataset

with a single pass over the data as visualized in Figure 1.

However, in general, we will not have a perfect CDF func-

tion, especially if we train the model just based on a sample

from the input data. In addition, there might be duplicates

in the dataset, which may cause several keys to be mapped

to the same position. In the following, we describe an initial

learned sorting algorithm, similar to the one of SageDB[28],

that is robust against imprecise models, and then explain why

this first approach is still not competitive, before introducing

the final algorithm. To simplify the discussion, our focus in

this section is exclusively on the sorting of numbers and we

only describe the out-of-place variant of our algorithm, in

Algorithm 1 A first Learned Sort

Input A - the array to be sorted

Input FA - the CDF model for the distribution of A
Input o - the over-allocation rate. Default=1

Output A′ - the sorted version of array A
1: procedure Learned-Sort(A, FA, o)
2: N ← A.length
3: A′ ← empty array of size (N · o)
4: for x in A do
5: pos← ⌊FA(x ) · N · o ⌋
6: if empty(A′[pos]) then A′[pos] ← x
7: else Collision-Handler(x )
8: if o > 1 then Compact(A′)
9: if non-monotonic then Insertion-Sort(A′)
10: return A′

which we use an auxiliary array as big as the input array.

Later, we discuss the changes necessary to create an in-place
variant of the same algorithm in Section 4.1 and address the

sorting of strings and other complex objects in Section 4.2.

2.1 Sorting with imprecise models
As discussed earlier, duplicate keys and imprecise models

may lead to the mapping of multiple keys to the same out-

put position in the sorted array. Moreover, some models

(e.g., NN or even the Recursive Model Index (RMI) [29]) may

not be able to guarantee monotonicity, creating small mis-

placements in the output. That is, for two keys a and b with

a < b the CDF value of a might be greater than the one of

b (F (a) > F (b)), thus, causing the output to not be entirely

sorted. Obviously, such errors should be small as otherwise

using a model would provide no benefits. However, if the

model does not guarantee monotonicity, further work on

the output is needed to repair such errors. That is a learned

sorting algorithm also has to (1) correct the sort order for

non-monotonic models, (2) handle key collisions, and prefer-

ably (3) minimize the number of such collisions. A general

algorithm for dealing with those three issues is outlined in

Algorithm 1. The core idea is again simple: given a model we

calculate the expected position for each key (Line 5) and, if

that position in the output is free, place the key there (Line

6). In case the position is not empty, we have several options

to handle the collisions (Line 7):

(1) Linear probing: If a position is already occupied, we

could sequentially scan the array for the nearest empty

spot and place the element there. However, this technique

might misplace keys (like non-monotonic models) and

will take increasingly more time as the array fills up.

(2) Chaining: Like in hash-tables, we could chain elements

for already-filled positions. This could be implemented

either with a linked list or variable-sized sub-arrays, both

of which introduce additional performance overhead due

to pointer chasing and dynamic memory allocation.
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Figure 2: The sorting rate for different collision handling
strategies for Algorithm 1 on normally distributed keys.

(3) Spill bucket: We could use a “spill bucket” where we

append all the colliding elements. This technique requires

to separately sort & merge the spill bucket.

We experimented with all three methods and found that

the spill bucket often outperforms the other methods (see

Figure 2). Thus, in the remainder of the paper, we only focus

on the spill bucket approach.

After all items have been placed, for non-monotonic mod-

els we correct any mistakes using Insertion Sort over the

entire output (Line 9). Note that, any sorting algorithm could

guarantee correctness, however we choose Insertion Sort

because it performs well when (1) the number of misplaced

elements is small and (2) the distance of misplaced elements

from their correct positions is small.

From Algorithm 1, it should be clear that the model quality

determines the number of collisions and that the number of

collisions will have a profound impact on the performance.

Interestingly, the expected number of collisions depends

on how well the model overfits to the observed data. For

example, let us assume our CDF model is exactly the same

model as used to generate the keys we want to sort (i.e., we

have themodel of the underlying distribution), the number of

collisions would still be around 1/e ≈ 36.7% independently of

the distribution. This result follows directly from the birthday

paradox and is similar to the problem of hash table collision.

However, if the model overfits to the observed data (i.e.,

learns the empirical CDF) the number of collisions can be

significantly lower. Unfortunately, if wewant to train amodel

just based on a sample, to reduce the training cost, it is mostly

impossible to learn the perfect empirical CDF.

Hence, we need a different way to deal with collisions.

For example, we can reduce the number of collisions by

over-provisioning the output array (o in Algorithm 1), again

similar to how hash tables are often over-provisioned to

reduce collisions. However, this comes at the cost of requiring

more memory and time to remove the empty space for the

final output (Line 8). Another idea is to map keys to small

buckets rather than individual positions. Bucketing helps

significantly reduce the number of collisions and can be

combined with over-allocation.

Figure 3: Radix Sort[51] can be implemented to mainly use
sequential memory access by making sure that at least one
cache line per histogram fits into the cache. This way the
prefetcher can detect when to load the next cache-line per
histogram (green slots indicate processed items, red the cur-
rent one, white slots unprocessed or empty slots)

Algorithm 1 is in many ways similar to a hash table with a

CDF model FA as an order-preserving hash-function.
1
Yet, to

our surprise, even with a perfect zero-overhead CDF model,

Algorithm 1 is not faster than Radix Sort. For example, as a

test we generated a randomly permuted dataset containing

all integer numbers from 0 to 10
9
. In this case, the key itself

can be used as a position prediction as it represents the offset

inside the sorted array, making the model for FA just the iden-

tity functionpos ← key; a perfect zero-overhead oracle. Note
that we also maintain a bitmap to track if the positions are

filled in the output array. To our astonishment, in this micro-

experiment we observed that the time taken to distribute the

keys into their final sorted position, despite a zero-overhead

oracle function, took 38.7 sec and Radix Sort took 37.5 sec.

This performance trend is due to the fact that this permuta-

tion step makes random and unpredictable array accesses,

which hurt CPU cache and TLB’s locality and incur multiple

stalls (see Line 6 in Algorithm 1), whereas our cache-efficient

Radix Sort implementation was memory-access optimized

and mainly used sequential memory accesses[51]. The Radix

Sort implementation achieved this by carefully adjusting the

number of radices to the L2-cache size and while it made sev-

eral passes over the data, it still outperformed our idealized

learned sorting algorithm.

Based on the insights discussed in this section regarding

random memory access, collision handling, and monotonic-

ity, we developed a cache-efficient Learned Sort algorithm,

which is explained in the next section.

2.2 Cache-optimized learned sorting
Our final Learned Sort algorithm enhances Algorithm 1 with

the idea from the cache-optimized Radix Sort. In fact, in case

the number of elements to sort is close to the key domain

1
Note, that existing perfect or order-preserving hash-functions can not be

used in our context because of their very slow training and execution time,

which is also the reason why there does not exist a single sorting algorithm

using them. Similarly our problem is NOT related to local-sensitive hashing

either as sorting keys is in a single dimensional space.
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Figure 4: Cache-optimized Learned Sort: First the input is partitioned into f fixed-capacity buckets (here f = 2) and the input
keys are shuffled into these buckets based on the CDF model’s predictions. If a bucket gets full, the overflowing items are
placed into a spill bucket S . Afterwards, each bucket is split again into f smaller buckets and the process repeats until the
bucket capacity meets a threshold t (here t = 6). Then, each bucket is sorted using a CDF model-based counting sort-style
subroutine (Step 2). The next step corrects any sorting mistakes using Insertion Sort (Step 3). Finally we sort the spill bucket
S , merge it with B, and return the sorted array (Step 4).

size (e.g., 2
32
for 32-bit keys) the run-time of our Learned Sort

algorithm is almost identical to Radix Sort. However, in case

the number of elements is much smaller than the key domain

size, Learned Sort starts to significantly outperform even

the optimized Radix Sort implementations as well as other

comparison-based sorts. The reason is that, with every pass

over the data our learnedmodel can extractmore information

than Radix Sort about where the key should go in the final

output, thus overcoming the core challenge of Radix Sort

that the run-time heavily depends on the key domain size
2
.

The basic idea of our algorithm is visualized in Figure 4:

• We organize the input array into logical buckets. That is,

instead of predicting an exact position, the model only

has to predict a bucket index for each element, which

reduces the number of collisions as explained earlier.

• Step 1: For cache efficiency, we start with a few large

buckets and recursively split them into smaller ones. By

carefully choosing the fan-out (f ) per iteration, we can
ensure that at least one cache-line per bucket fits into

the cache, hence transforming the memory access pat-

tern into a more sequential one. This recursion repeats

until the buckets become as small as a preset threshold

t . Section 3.1 explains how f and t should be set based

on the CPU cache size.

• Step 2: When the buckets reach capacity t , we use the
CDF model to predict the exact position for each ele-

ment within the bucket.

2
Obviously, themodel itself still depends on the key domain size as discussed

later in more detail.

• Step 3: Afterwards we take the now sorted buckets

and merge them into one sorted array. If we use a non-

monotonic model, we also correct any sorting mistakes

using Insertion Sort.

• Step 4: The buckets are of fixed capacity, which mini-

mizes the cost of dynamic memory allocation. However,

if a bucket becomes full, the additional keys are placed

into a separate spill bucket array (see Figure 4 the “S”-

bucket symbol). As a last step, the spill bucket has to be

sorted and merged. The overhead of this operation is

low as long as the model is capable of evenly distribut-

ing the keys to buckets.

Algorithm 2 shows the pseudocode of Learned Sort. The

algorithm requires an input array of keys (A), a CDF model

that was trained on a sample of this array (FA), a fan-out

factor (f ) that determines the ratio of new buckets in each

iteration, and a threshold (t ) which decides when to stop the

bucketization, such that every bucket fits into the cache.

Step 1: The algorithm starts by allocating a linear array

B that is of the same size as the input A (Line 5). This will be

logically partitioned into n buckets, each of fixed capacity

b (Lines 3-4). We record the bucket sizes (i.e. how many

elements are currently in the bucket) in an integer array I ,
which has the same size as the current number of buckets (n).
Then, the algorithm shuffles each key into buckets by using

the model FA to predict its empirical CDF value and scaling it

out to the current number of buckets in that round (Line 14).

If the predicted bucket (at index pos) has reached its capacity,
then the key is placed in the spill bucket S , otherwise, the key
is inserted into the bucket (Lines 15 - 19). Here, we calculate

the bucket start offset as pos · b and the write offset within
the bucket as I [pos]. After one iteration, each bucket will be
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logically split further into f smaller buckets (Lines 20-21)

until the buckets are smaller than threshold t (Line 11). Note
that, in order to preserve memory, we reuse the arraysA and

B by simply swapping the read and write pointers (Line 22)

and updating the bucket splitting parameters (Lines 20-21).

Step 2: When the bucket capacity reaches t , we switch to

a model-based Counting Sort-style routine (Lines 23-38) to

map the items to their final positions. We again do that using

the model, which now predicts the exact index position, not
the bucket. That is, we first calculate the final position for

every key (Line 28) and store in array K the count of keys

that are mapped to each predicted index (Line 29). The array

K is then transformed to a running total (Line 31). Finally, we

place the items into their final position using the cumulative

counts (Lines 32-38), which is similar to the Counting Sort

routine[7, pp.168-170]. As we only sort one bucket at a time

and want to keep the array size of K small, we use an offset

to set the start index of the bucket in Lines 28-36.

We switch to the model-based Counting Sort for two rea-

sons. First, and most importantly, it helps improve the overall

sorting time as we are able to fully utilize our model’s pre-

cision for fine-level predictions. Second, it helps reduce the

number of overflows (see Section 3.1.2 for more details).

Step 3: After the last sorting stage we remove any empty

space and, for non-monotonic models, correct any potential

mistakes with Insertion Sort(Line 40).

Step 4: Finally, because we used a spill bucket (S) for
the overflowing elements in Stage 1, we have to sort it and

merge it with the sorted buckets before returning (Lines 42-

43). Provided that the sorting algorithm for the spill bucket

is stable, Learned Sort also maintains the stability property.

2.3 Implementation optimizations
The pseudocode in Algorithm 2 gives an abstract view of the

procedure, however, we have used a number of optimizations

at the implementation level. Below we describe the most

important ones:

• We process elements in batches. First we use the model

to get the predicted indices for all the elements in the

batch, and then place them into the predicted buckets.

This batch-oriented approach maintains cache locality.

• As in Algorithm 1, we can over-provision array B by a

small factor (e.g., 1.1×) in order to increase the bucket

sizes and consequently reduce the number of overflowing

elements in the spill bucket S . This in turn reduces the

sorting time for S .
• Since the bucket sizes in Stage 2 are small (i.e., b ≤ t ),
we can cache the predicted position for every element in

the current bucket in Line 28 and reuse them in Line 34.

• In order to preserve the cache’s and TLB’s temporal lo-

cality, we use a bucket-at-a-time approach, where we

Algorithm 2 The Learned Sort algorithm

.

Input A - the array to be sorted

Input FA - the CDF model for the distribution of A
Input f - fan-out of the algorithm

Input t - threshold for bucket size

Output A′ - the sorted version of array A
1: procedure Learned-Sort(A, FA, f , t )
2: N ← |A | ▷ Size of the input array

3: n ← f ▷ n represents the number of buckets

4: b ← ⌊N /f ⌋ ▷ b represents the bucket capacity

5: B ← [] × N ▷ Empty array of size N
6: I ← [0] × n ▷ Records bucket sizes

7: S ← [] ▷ Spill bucket

8: read_arr← pointer to A
9: write_arr← pointer to B

10: // Stage 1: Model-based bucketization
11: while b ≥ t do ▷ Until bucket capacity reaches the threshold t
12: I ← [0] × n ▷ Reset array I

13: for x ∈ read_arr do
14: pos ← ⌊Infer(FA, x ) · n ⌋
15: if I [pos] ≥ b then ▷ Bucket is full

16: S .append(x ) ▷ Add to spill bucket

17: else ▷ Write into the predicted bucket

18: write_arr[pos · b + I [pos]] ← x
19: Increment I[pos]

20: b ← ⌊b/f ⌋ ▷ Update bucket capacity

21: n ← ⌊N /b ⌋ ▷ Update the number of buckets

22: PtrSwp(read_arr, write_arr) ▷ Pointer swap to reuse memory

23: // Stage 2: In-bucket reordering
24: offset← 0

25: for i ← 0 up to n do ▷ Process each bucket

26: K ← [0] × b ▷ Array of counts

27: for j ← 0 up to I [i] do ▷ Record the counts of the predicted positions

28: pos ← ⌊Infer(FA, read_arr[offset + j]) · N ⌋
29: Increment K [pos − offset]

30: for j ← 1 up to |K | do ▷ Calculate the running total

31: K [j] ← K [j] + K [j − 1]

32: T ← [] ▷ Temporary auxiliary memory

33: for j ← 0 up to I [i] do ▷ Order keys w.r.t. the cumulative counts

34: pos ← ⌊Infer(FA, read_arr[offset + j]) · N ⌋
35: T [j] ← read_arr[offset + K [pos − offset]]

36: Decrement K [pos − offset]

37: Copy T back to read_arr[offset]

38: offset← offset + b

39: // Stage 3: Touch-up
40: Insertion-Sort-And-Compact(read_arr)

41: // Stage 4: Sort & Merge
42: Sort(S )
43: A′ ← Merge(read_arr, S )

44: return A′

perform all the operations in Lines 11-40 for all the keys

in a single bucket before moving on to the next one.

The code for the algorithm can be found at http://dsg.csail.

mit.edu/mlforsystems.

2.4 Choice of the CDF model
Our sorting algorithm does not depend on a specific model

to approximate the CDF. However, it is paramount that the

model is fast to train and has a very low inference time
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Algorithm 3 The inference procedure for the CDF model

Input FA - the trained model (FA[l ][r ] refers to the r th model in the l th layer)

Input x - the key

Output r - the predicted rank (between 0-1)

1: procedure Infer(FA, x )
2: L ← the number of layers of the CDF model FA
3: M l ← the number of models in the l th layer of the RMI FA
4: r ← 0

5: for l ← 0 up to L do
6: r = x · FA[l ][r ].slope +FA[l ][r ].intercept
7: return r

to keep the overall sorting time low. Thus, models such as

KDE[43, 47], neural networks or even perfect order-preserving

hash functions are usually too expensive to train or execute

for our purposes. One might think that histograms would

be an interesting alternative, and indeed histogram-based

sorting algorithms have been proposed in the past [7, pp.168-

177]. Unfortunately, histograms have the problem that they

are either too coarse-grained, making any prediction very

inaccurate, or too fine-grained, which increase the time to

navigate the histogram itself (see also Section 6.8).

Certainly many model architectures could be used, how-

ever, for this paper we use the recursive model index (RMI)

architecture as proposed in [29] (shown in Figure 5). RMIs

contain simple linear models which are organized into a

layered structure, acting like a mixture of experts[29].

2.4.1 Inference. Algorithm 3 shows the inference procedure

for an RMI architecture. During inference, each layer of the

model takes the key as an input and linearly transforms it

to obtain a value, which is used as an index to pick a model

in the next layer (Line 6). The intermediate models’ slope

an intercept terms are already scaled out to the number of

models in the next layer, hence avoiding additional multipli-

cations at inference time, whereas the last layer will return a

CDF value between 0 and 1. Note, that the inference can be

extremely fast because the procedure uses simple data depen-

dencies instead of control dependencies (i.e., if-statements),

consequently making it easier for the optimizer to perform

loop unrolling and even vectorization. Hence, for each layer,

the inference requires only one addition, one multiplication,

and one array look-up to read the model parameters[29].

2.4.2 Training Procedure. Algorithm 4 shows the training

procedure, which can be on a small sample of the input ar-

ray. The algorithm starts by selecting a sample and sorting

it using an efficient deterministic sorting algorithm – e.g.,

std::sort - (Lines 2-3), creating a 3D array to represent a tree

structure of training sets, and inserting all <key, CDF> pairs

into the the top nodeT [0][0]. Here the empirical CDF for the

training tuples is calculated as its index in the sorted sample

over the sample size (i/|S |). Starting at the root layer, the

algorithm trains linear models working its way top-down.

Figure 5: A typical RMI architecture containing three layers

Algorithm 4 The training procedure for the CDF model

Input A - the input array

Input L - the number of layers of the CDF model

Input M l
- the number of linear models in the l th layer of the CDF model

Output FA - the trained CDF model with RMI architecture

1: procedure Train(A, L, M )

2: S ← Sample(A)

3: Sort(S )
4: T ←[][][] ▷ Training sets implemented as a 3D array

5: for i ← 0 up to |S | do
6: T [0][0].add((S [i], i/ |S |))
7: for l ← 0 up to L do
8: form ← 0 up to M l do
9: FA[l ][m] ←linear model trained on the set {t | t ∈ T [l ][m]}
10: if l + 1 < L then
11: for t ∈ T [l ][m] do
12: FA[l ][m].slope← FA[l ][m].slope · M l+1

13: FA[l ][m].intercept← FA[l ][m].intercept · M l+1

14: i ← FA[l ][m].slope ·t + FA[l ][m].intercept
15: T [l + 1][i].add(t )
16: return FA

The CDF model FA can be implemented as a 2D array where

FA[l][r ] refers to the r th model in the l th layer of the RMI.

For the root model, the algorithm uses the entire sample as

training set to calculate a slope and intercept term (Line 9).

After it has been trained, for each of the training tuples, the

root model predicts a CDF value and it scales it byM l+1
(the

number of models in the next layer) (Line 12-13). Then, it dis-

tributes these tuples into multiple training subsets that will

be used to train each of the linear models in the subsequent

layer. Each tuple goes to a training subset at index i , which is

calculated in Line 14 by using the slope and intercept terms

of the parent model. This partitioning process continues un-

til the second-to-last layer of the RMI, and each of the newly

created training subsets is used to train the corresponding

linear models in a recursive fashion.

2.4.3 Training of the individual linear models. One way to

train the linear models is using the closed-form of the uni-

variate linear regression with anMSE loss function. However,

when using linear regression training, it is possible that two

neighboring linear models that are in the last layer of the

CDF model predict values in overlapping ranges. Hence,
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Figure 6: Mapping time for various fan-out values (log scale)

the resulting prediction is not guaranteed to be monotonic,

increasing the time that Insertion Sort takes at the end of

Algorithm 2. One way to force the CDF model to be mono-

tonic is to use boundary checks for the prediction ranges

of each leaf model, however, this comes at the expense of

additional branching instructions for every element and at

every iteration of the loop in Line 10 of Algorithm 2.

Thus, we opted instead to train the models using linear

spline fitting which has better monotonicity. Furthermore,

this method is cheaper to compute than the closed-form of

linear regression and only requires to fit a line between the

min and max key in the respective training sets.

From the perspective of a single model, splines seem to

fit much worse than other models. However, recall that we

use several linear models as part of the RMI, which overall

maintains a good level of approximation of the CDF even for

highly skewed distributions. Therefore, in contrast to [29],

using linear splines, provides bigger advantages because (1)

it is on average 2.7× faster to “train” than the closed-form

version of linear regression, and (2) it provides up to 35% less

key swaps during Insertion Sort.

3 ALGORITHM ANALYSIS
In this section we analyze the complexity and the perfor-

mance of the algorithm w.r.t. various parameters.

3.1 Analysis of the sorting parameters
3.1.1 Choosing the fan-out (f ). One key parameter of our

algorithm is the fan-out f . On one hand, we want to have a

high fan-out, as it allows us to leverage the model’s accuracy

to the fullest extent. On the other hand, in order to utilize

the cache in the optimal way, we have to restrict the number

of buckets, as we otherwise can not ensure that we can

append to a bucket without causing a cache miss. Ideally,

for all buckets we would keep in cache the auxiliary data

structures, as well as the next empty slot per bucket.

In order to understand this trade-off, we measured the

performance of Learned Sort with varying fan-out values

(Figure 6) using a random array of 100M doubles, which is

large enough to not fit in any cache level. The minimum of

this plot corresponds to the point where all the hot memory

locations fit in the L2 cache (f ≈1-5K). Empirically, the fan-

out value that gives the best trade-off for the particular cache

size in this setup is 1K. Hence, like in the cache-efficient

Radix-Sort implementation, this parameter has to be tuned

based on the available cache size.

3.1.2 Choosing the threshold (t ). The threshold t determines

the minimum bucket capacity as well as when to switch to a

Counting Sort subroutine (Line 11 in Algorithm 2). We do

this for two reasons: (1) to reduce the number of overflows

(i.e., the number of elements in the spill bucket) and (2) to

take better advantage of the model for the in-bucket sorting.

Here we show how the threshold t affects the size of the spill
bucket, which directly influences the performance.

If we had a perfect model every element would be mapped

to a unique position. Yet, in most cases, this is impossible

to achieve as we train based on a sample and aim to restrict

the complexity of the model itself, inevitably mapping differ-

ent items to the same position. Then our problem becomes

that of randomly hashing N elements onto N unit-capacity

buckets (i.e., t = 1). That is, the model that we learn behaves

similar to an order-preserving hash function as a randomly

generated element from this distribution is equally likely

to be mapped onto any bucket. This holds for any distribu-

tion of the input array A, since its CDF function FA) will
be uniformly distributed between [0, 1] [13]. Since we are
using N buckets, the k th bucket will contain the value range

[(k − 1)/N ,k/N ) and the probability of the k th bucket being
empty is (1 − 1/N )N , which is approximately 1/e for large N .

This means that approximately N /e buckets will be empty

at the end of the mapping phase, and all of these elements

will be placed in the spill bucket. Using s to denote the size

of the spill bucket, we have E[s] = N /e .
In the general case, our problem is that of randomly hash-

ing N elements into N /t buckets, each with capacity t ≥ 1.

Then, the expected number of overflowing elements is:

E[s] =
N

tet

t−1∑
i=0

(t − i) · (t)i

i!

Capacity Overflow Capacity Overflow
1 36.7% 25 7.9%

2 27.1% 50 5.6%

5 17.5% 100 3.9%

10 12.5% 1000 1.3%

Table 1: Bucket capacity (t ) vs. proportion of elements in the
spill bucket (E[s]/N ).

Table 1 represents the proportion of the elements in the

spill bucket for various bucket capacities. Empirically, we

found that we can maximize the performance of Learned Sort
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when the spill bucket contains less than 5% of the elements,

therefore, we set the minimum bucket capacity to be t = 100.

3.1.3 The effect of model quality on the spill bucket size. The
formula that we presented in the section above shows the

expected size of the spill bucket when the model perfectly
learns the underlying distribution. However, in this section,

we analyze the expected size of the spill bucket for an ap-

proximation model that is trained on a small sample of the

input.

For this analysis, we again assume that we can treat the

sample as independently generated from the underlying dis-

tribution, and that we use unit-capacity buckets. For simplic-

ity, we also linearly transform the input space into the range

[0, 1]. Let f (x) be the CDF of the underlying distribution and

д(x) be our approximation that is learned from the sample.

In the mapping phase, the keys in the range [a,b] will be
mapped to N · (д(b) −д(a)) buckets. Whereas, in expectation,

there will be N · (f (b) − f (a)) keys present in the range

[a,b]. The difference between the number of elements that

are actually present in that range and the number of buckets

that they are mapped to, leads to bucket overflows.

For a small range of input keysdx , the number of elements

in the array within this input range [x ,x+dx ) will be propor-
tional to f ′(x)dx but our approximation will map them to

д′(x)dx buckets. So the problem turns into hashing f ′(x)dx
elements into д′(x)dx buckets of unit capacity. The number

of empty buckets, which is same as number of overflowing el-

ements, in this input range will be д′(x)e−f
′(x )/д′(x )dx , which

will be integrated over the input range [0,1]. This gives us the

following equation for measuring the number of overflowing

elements w.r.t. the model’s quality of approximation:

E[s] = N ·

∫
1

0

д′(x)e
−f ′(x )
д′(x ) dx

Using Jensen’s inequality[25], it can be shown that this num-

ber is always greater than N /e with equality occurring when
f ′(x) = д′(x). This shows that, for small samples, learning

the underlying distribution leads to lesser elements in the

spill bucket. A qualitative aspect of the formula above is that

one needs to approximate the derivative of the CDF function

(the PDF function) in order to minimize the expected size of

spill bucket, and therefore maximize performance.

3.1.4 Choosing the sample size. We now discuss how the

model quality changes w.r.t increasing sample size. We ap-

proximate the CDF of an element in a sample by looking at its

position in the sorted sample. This empirical CDF of the sam-

ple is different from its CDF in the distribution that generated

the sample. The Dvoretzky-Kiefer-Wolfowitz inequality[12]

is one method for generating CDF-based confidence bounds

and it states that for a given sample size n the difference

between empirical CDF and real CDF is proportional to

Figure 7: Sorting time for various sampling rates of 100M
normally-distributed keys (log-log scale).

O(1/
√
n). So, as the sample size increases the accuracy of

its empirical CDF improves making the model better.

On other hand, a large sample increases the training time

creating a trade-off between model quality and runtime per-

formance. Figure 7 shows the trend of the time to sort the

array (Sorting Time) and total time (Training and Sorting)

w.r.t the sample size, while keeping the other parameters

constant. In the figure, as sample size increases we can see

the sorting time decreases because a larger sample leads to a

better model quality. However, the training time keeps on

increasing with the sample size. We empirically found that a

sampling rate of 1% provides a good balance in this trade-off

as is evident from the graph.

3.2 Complexity
Stage 1 of the sorting algorithm scans the input keys se-

quentially and for each key it uses the trained CDF model to

predict which bucket to go to. This process takes O(N · L)
time, where L is the number of layers in the model. Since we

split the buckets progressively using a fan-out factor f until

a threshold size t , the number of iterations and the actual

complexity depend on the choice of f and t . However, in
practice we use a large fan-out factor, therefore the number

of iterations can be considered constant.

On the other hand, Stage 2 of the algorithm uses a routine

similar to Counting Sort, which is a linear-time sorting proce-

dure with respect to the bucket capacity (t ), hence accounting
for an O(N ) term. Assuming that the CDF model is mono-

tonic, the worst case complexity of Stage 3 is O(Nt) due to
the fact that we use Insertion Sort and we have a threshold on

the buckets. Otherwise, the worst case for a non-monotonic

model would be O(N 2). However, the constant term of this

stage depends on the model quality: A good model, as the

one described above, will provide a nearly-sorted array be-

fore the Insertion Sort subroutine is called, hence making

this step non-dominant (refer to Figure 13).

Finally, as in the touch-up stage, the performance of Stage 4

also depends on the model quality. Assuming we employ a

traditional, asymptotically optimal, comparison-based sort-

ing routine for the spill bucket S , this stage’s worst-case
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complexity isO(s log s)+O(N ) (O(N ) for the merging step).

Then again, a good model will not permit the size of the spill

bucket to inflate (empirically ≤ 5%), which makes this step

pretty insignificant in practice (see also Figure 13).

The space complexity of Learned Sort is in the order of

O(N ), given that the algorithm uses an auxiliary memory

for the buckets, which is linearly dependent on the input

size. The in-place version introduced in Section 4.1, however,

only uses a memory buffer that is independent of the input

size, therefore, accounting for an O(1) space complexity.

4 EXTENSIONS
So far we only discussed the Learned Sort implementation

that is not in-place and does not handle strings or other

complex objects. In this section, we provide an overview of

how we can extend the Learned Sort algorithm to address

these shortcoming, whereas in the Evaluation section we

show experiments for an in-place version as well as early

results for using Learned Sort over strings.

4.1 Making Learned Sort in-place
The current algorithm’s space complexity is linear with re-

spect to the input size due to the requirement from the

mapping stage of the algorithm. However, there is a way

of making the algorithm in-place, (i.e., have constant mem-

ory requirement that is independent on the input size).

The in-place version of the mapping stage would group

the input keys into blocks such that all the elements in each

block belong to the same bucket. The algorithm maintains

a small buffer equal to the block size for every bucket. The

algorithm iterates over the unsorted array and maps the

elements into their respective buffer and whenever a buffer

space fills up it is written onto the already scanned section

of the array. These block are then permuted, so that blocks

from the same bucket are stored contiguously. Note that

this type of approach is very common for designing in-place

algorithms such as in [2], and we show results in Section 6.6.

4.2 Learning to sort strings
The primary focus so far has been on sorting numerical

values and extending our CDF model for strings creates a

number of unique challenges. While we are still investigating

on how to best handle strings and many existing work on

ML-enhanced data structures and algorithms so far only

considers numeric values [11, 29, 55], we outline an early

implementation we did for strings, which also has a very

compelling performance (see Section 6).

Our string model has an RMI architecture, but represents

strings as input feature vectors x ∈ Rn where n is the length

of the string. For simplicity, we can work with fixed-length

strings by padding shorter sequences with null characters.

Then, one way to train the CDF model is to fit multivariate

linear regression models (w.x+b) over the feature vectors in
each layer of the model. However, this strategy is computa-

tionally expensive as it would take O(n) operations at every
layer of the model. As a workaround, we could limit the

characters considered by the model, however that might lead

to non-monotonic predictions. If we consider C1,C2, ...,Cn
to be the ASCII values of characters in the string, then we

can obtain a monotonic encoding of strings by calculating

C1

256
+

C2

256
2
+ .. + Cn

256
n . This value is bound to be between zero

and one, monotonic, and can potentially be used as a CDF

value. This prediction would have been accurate if the ASCII

value of each character was uniformly distributed and inde-

pendent of the values of the other characters in the string.

This is not always the case, so we transform the encodings

to make their distribution uniform.

In the training phase, we take a sample from the array and

encode the strings using their ASCII values and use them to

map strings into the buckets. If the bucket sizes are uneven,

we readjust the encoding ranges falling into these buckets

by making a linear transformation of the slope and intercept

terms of respective models. Then we re-map the strings into

another layer of buckets after this linear transformation. This

re-mapping step continues until we obtain evenly distributed

buckets. Similar to the numeric algorithm we split the array

into finer buckets until a threshold size after which point

we use std::sort. Some promising preliminary results on this

approach are shown in Section 6.4.

4.3 Duplicates
The number of duplicates (i.e., repeated keys) is a factor that

affects the run-time behavior of our algorithm as our model

will always assign the same bucket to the key, which, per

definition, increases the number of collisions and the number

of keys placed into the spill bucket. Consequently, the spill

bucket inflates and Stage 4 of the algorithm takes longer to

execute, since it relies on a slower algorithm.

As a remedy, we incorporated a fast heuristic in our al-

gorithm that detects repeated keys at training time. While

building the CDF model, the algorithm looks at the frequen-

cies at which equal keys appear in the training sample and,

if it is above a certain threshold, it adds these keys to an

exception list. Then, at sorting time, if the algorithm comes

across an element whose key is in the exception list, it skips

the bucket insertion step and only merges the repeated keys

at the end of the procedure. However, in the absence of du-

plicates, we found that this additional step only introduces a

small performance overhead (<3%), which is a tolerable cost

for the average case.
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5 RELATEDWORK
Sorting algorithms are generally classified as comparison-
based or distribution-based, depending on whether they rely

only on pairwise key comparisons to come up with a sorted

order, or rather make some assumptions or estimations on

the distribution of the keys.

Comparison sorts: Some of the most common compari-

son sorts are Quicksort, Mergesort, and Insertion Sort. While

they all have a lower bound of Ω(N logN ) comparisons in

the average case, their performance in practice depends also

largely on factors such as memory access patterns, which

dictate their cache efficiency.

The GNU Standard Template Library in C++ employs In-

trosort [38] as its default sorting function (std::sort) [16],

which combines the speed of Quicksort in the average case

with the optimal worst case of Heapsort and the efficiency

of Insertion Sort for small arrays. Introsort was also adopted

by the standard library of the Go language[17] and that of

the Swift language until version 5[1].

Samplesort is another variant of Quicksort that uses mul-

tiple pivots that are selected from a sample from the input

array (note, that this does NOT create a histogram over the

data). Thus, the elements are arranged into partitions in a

finer-grained way that enables early termination of recur-

sion when a certain partition contains only identical keys.

One of the most recent and efficient implementation of Sam-

plesort is the Super Scalar Samplesort initially introduced in

[48] and then later on again with an in-place and improved

implementation in [2] (IPS
4
o). The strongest point of this im-

plementation is the use of a binary search tree to efficiently

discover the right partition for each key, and the avoidance

of conditional branches with the help of conditional instruc-

tions provided in modern processors.

Java’s List.sort() function[23] and Python’s built-in sorting

function[45] use a hybrid of Mergesort and Insertion Sort,

called Timsort[36]. Timsort combines Insertion Sort’s ability

to benefit from the input’s pre-sortedness with the stability

of Mergesort, and it is said to work well on real-world data

which contain intrinsic patterns. The procedure starts by

scanning the input to find pre-sorted key sub-sequences and

proceeds to merge them onto the final sorted output.

It should be noted, that most open-source DB systems

implement their sorting routines building upon Quicksort or

Mergesort, depending on whether the data fits in memory

or if the ordering needs to be stable[37, 39, 46, 52].

Distribution sorts comprise the other major group of

sorting procedures and they include algorithms like Radix

Sort, Counting Sort, and Histogram Sort. Radix Sort is ar-

guably the most commonly used one, and it works by calling

the Counting Sort subroutine for all the keys by scanning a

given number of digits at a time. The Counting Sort subrou-

tine calculates a count histogram of all the keys based on the

selected digits, transforms that into a cumulative histogram

by generating running totals, and then re-orders the keys

back into a sorted order based on these calculated counts.

Radix Sort’s time complexity is O(d · (N + r )), where d is

the number of passes over the data (i.e., the number of digits

divided by the radix size), N is the input size, and r is the
range of each key (i.e., 10 raised to the power of radix size).

Note that, in order to use Radix Sort with IEEE-754 floating

point numbers, it is first necessary to shift and mask the bit

representation. While Radix Sort is highly sensitive to the

key length, which dictates the number of passes, it is never-

theless a very efficient sorting algorithm for numerical types,

that is very well-suited for multi-core procedures[6, 22, 40],

and SIMD vectorization [50].

Most related to Learned Sort is Histogram Sort[4]. How-

ever, Histogram Sort implicitly assumes a uniform distribu-

tion for the input data as it allocates n variable-sized buck-

ets and maps each key x into a bucket Bi by calculating

i = n · (x − xmin)/(xmax − xmin). It then sorts these buckets

using Insertion Sort and merge them in order.

SIMD optimization: There has been a lot of work on

enhancing traditional sorting implementations with data

parallelism in SIMD-enabled CPUs[5, 14, 26], as well as the

use of adaptive and cache-sensitive partitioning techniques

for multi-core or multi-processor implementations [3, 6, 9, 21,

50]. Nevertheless, there has not been much recent innovation

in the algorithmic space for sorting and we found that IS
4
o,

one of our baselines, is one of the most competitive openly

available implementations.

Hashing functions In a way, the CDF model might be

regarded as an order-preserving hash function for the in-

put keys, such as [8, 32]. However, order-preserving hash-

ing is unsuitable for sorting since it does not provide fast

enough training and inference times, and, to the best of our

knowledge, there does not exist any sorting algorithm that

uses order-preserving hashing for sorting. Similarly, locality-

sensitive hashing [54, 56, 57] can also not be used for sorting

a single numeric value as we are concerned with sorting

a single dimension rather than efficiently finding similar

items in a multi-dimensional space. Finally, perfect hash-

ing’s objective is to avoid element collisions, which would

initially seem an interesting choice to use for Learned Sort.

However, perfect hash functions grow in size with the input

data, are not fast to train, and most importantly, usually not

order-preserving [10].

ML-enhanced algorithms There has been growing in-

terest in the use of Machine Learning techniques to speed

up traditional algorithms in the context of systems. Most

notably, the work in Learned Index Structures [29] intro-

duces the use of an RMI structure to substitute the traditional
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Figure 8: The sorting throughput for normally distributed
double-precision keys (higher is better).

B+ tree indexes in database systems, a work that was fol-

lowed up later on by [11]. In addition, other ML algorithms,

as well as reinforcement learning, have been used to tune

system parameters or optimize query execution plans in

[27, 30, 34, 35, 58]. Finally, this new research trend has also

reached other system applications outside databases, such as

in scheduling [33], congestion control [24], and frequency

estimation in data stream processing [20].

6 EVALUATION
The goal of this section is to:

• Evaluate the performance of Learned Sort compared to

other highly-tuned sorting algorithms over real and syn-

thetic datasets

• Explain the time-breakdown of the different stages of

Learned Sort

• Evaluate the main weakness of Learned Sort: duplicates

• Show the relative performance of the in-place versus the

out-of-place Learned Sort

• Evaluate the Learned Sort performance over strings.

6.1 Setup and datasets
As baselines, we compare against cache-optimized and highly

tuned C++ implementations of Radix Sort [51], Timsort [18],

Introsort (std::sort), Histogram Sort[4], and IS
4
o [49] (one

of the most optimized sorting algorithms we were able to

find, which was also recently used in other studies [40] as

a comparison point). Note that we use a recursive, equi-

depth version of Histogram sort that adapts to the input’s

skew as to avoid severe performance penalties. While we are

presenting only the most competitive baselines, we have, in

fact, conducted measurements against Mergesort, Heapsort,

Insertion Sort, Shell Sort, Quicksort, and one of its improved

variants – PDQS[44]. However, we did not consider them

further as their performance was always worse than one of

the other baselines. Note, that for all our experiments we
include the model training time as part of the overall
sorting time unless mentioned otherwise.

We evaluate the performance of our algorithm for nu-

merical keys on both synthetic and real datasets of varying

precision. For the synthetic datasets we generated the fol-

lowing distributions:

• Uniform distribution with min=0 and max=1
• Multimodal distribution that is a mixture of five normal

distributions whose PDF is shown in the histogram below

the performance charts in Figure 9

• Exponential distributionwith λ = 2 and scaled by a factor

of 10
6
(80% of the keys are concentrated in 7% of the key

domain)

• Lognormal distribution with µ = 0 and σ = 1 that has an

extreme skew (80% of the keys are concentrated in 1% of

the key range)

We also use real-world data from OpenStreetMap[42]

and sort on 100M longitude and latitude compound keys

(osm/longlat) that are generated using the transformation

longlat = 180 · lon + lat, as in [11], as well as on their

respective node IDs (osm/id). In addition, we use an IoT

dataset [15] to sort on the iot/mem and iot/bytes columns

(10M keys), which represent the amount of available memory

and number of input bytes to a server machine at regular

time intervals. Thirdly, we use the Facebook RW dataset

(fb/rw) to sort on 1.1M collected user IDs from a random

walk in the Facebook user graph[31]. Finally, we show re-

sults from TPC-H benchmark data on the customer account

balances (tpch/bal - 3M keys), and order keys (tpch/o_key
- 30M keys) for a scale factor of 20, which are of course not

real but represents data which are often used to evaluate

the performance of database systems. All datasets were ran-

domly shuffled before sorting. We display the distribution of

these datasets with histograms below each result in Figure 9.

All the experiments are measured on a server-grade Linux

machine running on Intel
®
Xeon

®
Gold 6150 CPU@2.70GHz

with 376GB of memory, and compiled with GCC 9.2 with

the -O3 flag for full optimizations
3
. The model we used for

training was always 2-layers and contained 1000 leaf models,

trained with a uniformly selected 1% sample of the array.

3
Intel Xeon and Intel Xeon Phi are trademarks of Intel Corporation or its

subsidiaries in the U.S. and/or other countries. Other names and brands

may be claimed as the property of others. ©Intel Corporation.

Software and workloads used in performance tests may have been opti-

mized for performance only on Intel microprocessors. Performance tests,

such as SYSmark and MobileMark, are measured using specific computer

systems, components, software, operations and functions. Any change
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(A) synthetic, 64-bit floating points

(D) synth & real, 32-bit integers

(B) real/benchmark, 64-bit floating points 
(high precision)

(C) real/benchmark, 64-bit floating points 
(low precision)

100M 100M 100M 100M

100M 100M 1.1M 30M

100M 10M 10M 3M

100M 10M 10M 3M

Histogram Sort

Figure 9: The sorting rate of Learned Sort and other baselines for real and synthetic datasets containing both doubles and
integers. The pictures below the charts visualize the key distributions and the dataset sizes.

6.2 Overall Performance
As the first experiment we measured the sorting rate for

array sizes varying from 1 million up to 1 billion double-

precision keys following a standard normal distribution, and

compare it to the baseline algorithms that we selected as

described in Section 6.1. The sorting rate (bytes per second) is

shown in Figure 8 for Learned Sort and our main baselines, in

addition to SageDB::sort[28]. As it can be seen Learned Sort
achieves an average of 30% higher throughput than the

next best algorithm (IS
4
o) and 55% as compared to Radix Sort

for larger data sizes. However, when the data fits into the

to any of those factors may cause the results to vary. You should con-

sult other information and performance tests to assist you in fully eval-

uating your contemplated purchases, including the performance of that

product when combined with other products. For more information go to

www.intel.com/benchmarks.

Benchmark results were obtained prior to implementation of recent

software patches and firmware updates intended to address exploits referred

to as "Spectre" and "Meltdown". Implementation of these updates may make

these results inapplicable to your device or system.

L3 cache, as it is the case with 1 million keys (roughly 8MB),

Radix sort is almost as fast as Learned Sort. However, as soon

as the data does not fit into the L3 cache, the sorting rate

of Learned Sort is significantly higher than Radix or IS
4
o.

Furthermore, Learned Sort’s cache optimization enables it

to maintain a good sorting throughput even for sizes up to

8GB.

6.3 Sorting rate
To better understand the behaviour of our algorithm, we

compared Learned Sort against our other baselines on (A)

synthetic data with 64-bit doubles generated from different

distributions, (B) high precision real-world/benchmark data

with 64-bit doubles, which have at least 10 significant digits,

(C) low precision real-world/benchmark data with 64-bit dou-

bles, with reduced floating point precision, and (D) synthetic

and real-world data with 32-bit integers.

Figure 9A shows that Learned Sort consistently outper-

forms Radix Sort by an average of 48%, IS
4
o by an average

Research 11: Machine Learning for Databases II  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1012



Figure 10: The sorting rate for various strings datasets.

of 27%, and the other baselines by much larger margins. The

same performance gain is also present for the high-precision

real-world datasets (Figure 9B). Note, that we achieve a sig-

nificant higher sorting rate for the tpch/bal data due to the

fact that it is smaller, and incurs more cache benefits.

On the other hand, we observed that Radix Sort’s perfor-

mance improves when the input keys have less precision

(Figure 9C). In this case, Learned Sort and all the other base-

lines algorithms remain unaffected, while Radix Sort gets

a 34% performance boost. This improvement results from

the fact that everything can be sorted on the most signifi-

cant bits. However, it is necessary to note that Radix Sort’s

performance does not surpass that of Learned Sort.

Finally, in Figure 9A we show that for integers Learned

Sort has an even higher throughput and, in some cases, even a

bigger benefit. For example, on the synthetic integer dataset

it is 38% better than IS
4
o and twice as fast as Radix Sort.

Whereas for the FB dataset and OSM IDs the performance

difference compared to IS
4
o is less because of the particular

distribution of values and duplicates (see Section 4.3).

6.4 Sorting Strings
Figure 10 show the preliminary sorting rate for strings for

our algorithm of Section 4.2 with respect to IS
4
o, std::sort,

and Timsort. In this experiment we excluded the training

time for the model. However, it should be noted, that many

real-world scenarios exists in which a dataset or a subset has

to be sorted several times. For example, within a database

recurring merge-joins operation or the sorting for the final

result, would allow to pre-train models as similar (but not

identical) subsets of the data might appear over and over

again. Note, that we excluded Radix Sort from this compar-

ison as it was significantly slower than any of the other

baselines. For the data we used:

• addr: A set of 1M address strings from the OpenAd-

dresses dataset (Northeast USA)[41].

• dict: A set of 479K words from an English dictionary[53].

• url: A list of 1.1M URLs from the Weblogs dataset[15]

containing requests to a webserver for cs.brown.edu

Histogram SortReference line

Figure 11: The sorting rate of Learned Sort and the other
baselines for varying degrees of duplicated keys andnumber
of spikes, as well as on different Zipf distributions. The ref-
erence line represents the sorting rate of Learned Sort where
there are no duplicates.

• bcmrk: 10M ASCII arrays generated using the code from

the SortBenchmark dataset[19]

• synth, synth_lo, synth_hi : A set of 1M randomly gen-

erated strings following a uniform distribution of a-z

characters at each position with characters having no

correlation, low correlation, and high correlation with

neighbouring ASCII values, respectively.

Overall, the experiment show that Learned Sort is also a

very promising direction for sorting complex objects, such

as strings. It should be noted, that building efficient models

for string is still an active area of research and probably a

paper on its own as it also have far reaching applications

for indexes, tries, and many other data structures and algo-

rithms. Finally, we would like to point out that if we include

the training time with the sorting time, Learned Sort still

dominates the other algorithms but by a margin of of 2-8%

rather than the 5-20% shown in Figure 9.

6.5 The impact of duplicates
The number of duplicates (i.e., repeated keys) is a factor that

affects the run-time behavior of our algorithm as our model

will always assign the same position/bucket to the key, which

increases the number of collisions and the number of keys

placed into the spill bucket. To study the impact of duplicates,

we first generate a normal distribution dataset (µ = 0 and

σ = 5) and afterwards duplicate a few randomly selected

keys n-times (referred to as spikes).

Figure 11 shows the performance of Learned Sort and the

other baseline algorithms for different combinations of the
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Figure 12: The sorting rate of Learned Sort and its in-place
version for all of our synthetic datasets.

number of spikes and number of duplicate keys, in addition

to three different Zipf distributions with parameters 0.25,

0.50, and 0.90. As the results demonstrate our technique

from Section 4.3 ensures that Learned Sort remains highly

competitive even for datasets with large degrees of duplicates.

Only for the most extreme cases with 50-80% of duplicates

IS
4
o is actually faster than Learned Sort.

6.6 In-place sorting
The performance of the in-place version described in Sec-

tion 4.1 is shown in Figure 12, and as observed, the sorting

rate drops by an average of 8-11% as compared to when the

mapping procedure directly uses fixed-capacity buckets.

6.7 Performance decomposition
Next, in Figure 13 we show the time spent in each phase of

Learned Sort. With 1% sample from the input, the training

procedure only accounts for ≈ 6% of the overall runtime. The

majority of time (≈ 80%) goes towards the model-based key

bucketization. Since the CDF model makes a nearly-sorted

order, the touch-up step with Insertion Sort makes up only

5% of the total time, and the spill bucket sorting only 2%,

which reconfirms the quality of the model predictions.

6.8 Using histograms as CDF models
Finally, in Figure 14 we run a micro-experiment to show

the performance of a version of our Learned Sort algorithm

that uses a histogram as CDF model. We also compare this

approach with Histogram Sort[4]. For both these algorithms

we show the performance using both, equi-width and equi-

depth histograms. The equi-depth CDF histogrammodel was

implemented as a linear array that records the starting key

for each bin and uses binary search to find the right bin for

any given key. On the other hand, for the equi-width version

we do not need to store the keys and we can find the right

bin using a simple array lookup.

As a reference the figure includes the RMI-based Learned

Sort as a dashed line at around 280MB/s. The figure shows

that the number of bins has a clear impact on the sorting rate

of the histogram based method. Surprisingly, the Histogram

Sort using equi-depth performs better than using our Learned

0% 20% 40% 60% 80% 100%

MergingSpill bucket sortingInsertion SortBucketizationTraining

Figure 13: Performance of each of the stages of Learned Sort.

Sort with a histogram as a model. The reason is, that the

additional number of passes over the data performed as part

of Learned Sort does not pay out for the imprecision of the

histogram-based models (consider, for example, Step 2 in

Algorithm 2). However, Learned Sort with an RMI model is

almost twice as fast. The advantage of using RMI models

comes from the fact, that it uses continuous functions to

quickly estimate the position for a key.

Figure 14: The sorting rate of Learned Sort algorithm on
100M normally-distributed keys as compared with (1) a ver-
sion of LS that uses an equi-depth histogram as CDF model,
(2) a version with an equi-width histogram, (3) Equi-depth
Histogram Sort, and (4) Equi-width Histogram Sort.

7 CONCLUSION AND FUTUREWORK
In this paper we presented a novel approach to accelerate

sorting by leveraging models that approximate the empirical

CDF of the input to quickly map elements into the sorted

position within a small error margin. This approach results

in significant performance improvements as compared to

the most competitive and widely used sorting algorithms,

and marks an important step into building ML-enhanced

algorithms and data structures. Much future work remains

open, most notably how to handle strings, complex types,

and parallel sorting.
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