
Parallel Retrieval Algorithms For Semantic Nets
1

Hae Jin Baek

SUBMITTED TO THE DEPARTMENT OF

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

BACHELOR OF SCIENCE

 1 t the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1986

© Hae Jin Baek, 1986

The author hereby grants to M.I.T. permission to reproduce and to distribute
copies of this thesis document in whole or in part.

Signature redacted
Signature of Author

Department of Flectricll Bagindeding and Covnpubet Science
. ~ March 11, 1986

Sighature redacted
x Professor fobert H. Halstead, Jr.

Signature redacted Thess Segervisor

Certified bv

Accepted by
David Adler

Chairman, Department Committee

(“os TECHJU: " 18 1986arARIES
Archive

)

Parallel Retrieval Algorithms For Semantic Nets

pS

Hae Jin Baek

Submitted to the Department of Electrical Enginerring and Computer Science
on March 11, 1986 in partial fulfillment of the requirements for

the degree of Bachelor of Science in Computer Science

Abstract

Semantic Nets are used in representing complex relations between data. Their

use in natural language processing data bases, image recognition networks, and expert
systems is constrained by their retrieval times. One way of reducing retrieval times

is through the use of parallel machines. One such multiprocessor system, Concert, is

currently being developed by the Real Time Systems Group at M.I.T..
This thesis documents the experiments to determine the effects of parallelism on

information retrieval times. Various benchmark queries were used on two semantic

nets to ascertain this. |

The results show that parallelism properly implemented can significantly enhance
retrieval times for semantic nets.

Name and Title of Thesis Supervisor:

Robert H. Halstead, Jr.

Assistant Professor of Computer Science and Engineering

2

Acknowledgements

My deepest gratitude goes to Professor Halstead without whose suggestions, pa-

tience, and encouragement, none of this would have been possible. I would like to

thank Boris Katz, David Chanen, and Bob Frank, whose work with Semantic Nets

offered the starting point for this research. I would also like to thank the members of

the CONCERT project for their help with CONCERT.

Warmest thanks also goes to Cary Ching, Rich Roth, and Yona Kaplan, who

provided an endless resource of names for my databases.

Table of Contents

Chapter I Introduction

Motivation |

The Problem and The Method
Thesis Overview

1.1.

L.2.
1.3.

Chapter II The Semantic Net Algorithms

Data Structures

The Retrieval Algorithm
Scenarios

Potential Opportunities For Parallelism

2.1.
2.2.
2.3.

2.4.

Chapter III Experimental Results

3.1.
3.2.

The Benchmarks . .

The Programs

3.2.1. The Family Tree Network
3.2.2. The School Network
Measurements
Discusssion

3.3.
24

Chapter IV Conclusion

Appendix A Source Code Listings

References

0

‘)

|

3

16

21]

21

24

24

25
26

928

37

33

3]

5

Table of Illustrations

Figure 2.1. Using a link as a subject

Figure 2.2. The Atom’s Property List
Figure 2.3. Function matching-links
Figure 2.4. Function filter-links .

Figure 2.5. The Removal Functions
Figure 2.6. The Pull Functions

Figure 2.7. Parallel Removal Function: Version I
Figure 2.8. Parallel Removal Function: Version II
Figure 2.9. Parallel Filtering Function . . ,

Figure 2.10. Extraction Algorithm: Parallel Version
Figure 3.1. Example of a family data base
Figure 3.2. Example of a school data base
Figure 3.3. Parallel Version Combinations
Figure 3.4. Cousins Program

Figure 3.5. Grandchildren Program . .

Figure 3.6. Class-Professors Programs
Figure 3.7. Student-Professors Program
Figure 3.8. Student Grades Program

Figure 3.9. Program Summary: Inputs and Outputs
Figure 3.10. Graph: Cousins Programs

Figure 3.11. Graph: Grandchildren Programs .

Figure 3.12. Graph: Class-Professors Programs
Figure 3.13. Graph: Student-Professors Programs
Figure 3.14. Graph: Student-Grades Programs

LO

 |

3

'4

LO

—y

8

\

J

22

23

24

2H

206

27
27
28

29

30

31

32

4

~n
 nN —

Chapter I

Introduction

1.1. Motivation

Semantic Nets are used as the basic framework for large databases in many A.L

fields. They serve to store information in expert systems, natural language parser data

bases, and image recognition networks [3, 4, 8]. Because of their complexity and size,

processing information can sometimes be a monumental feat. The current retrieval

algorithms rely on single-processor machines, resulting in very long processing times.

One answer to speeding up processing may come with multiprocessors, which may one

day replace single-processor machines because they provide faster performance times.

This desire to keep semantic nets up to date with advancing technology has led to

this research. The purpose of this research is to make use of the parallel processing

techniques available to speed up the processing times for semantic net retrievals.

1.2. The Problem and The Method

There exist many internal representations of a semantic net [2], and there is a

corresponding retrieval algorithm best suited for each one. Focusing on one internal

representation that is widely used, and identifying suitable opportunities for paral-

lelism in the retrieval algorithms, this research will examine the effects of parallel

techniques on the retrieval times.

Currently The Real Time Systems Group of M.L.T.’s Laboratory For Computer

Science has a multiprocessor system called CONCERT [1]. CONCERT can be run

with any number of processors up to 15. CONCERT runs MultiLisp [6], a parallel

version of LISP. Multilisp contains a construct called future which allows the parallel

execution of operations. Calling a future of an expression immediately returns a

place holder which is replaced by the result of the evaluation when it is completed.

This eliminates waiting for an expression to be evaluated before evaluating the next

expression, thus allowing many evaluations to occur simultaneously.

Using two example semantic net data bases, different parallel versions of the

retrieval algorithms, with futures placed in various strategic locations, have been

tested on CONCERT. Measurements were taken during the execution of a number of

example queries designed to test all possible paths of the algorithms. Each test uses

a varying number of processors. The results of the experiment show the effects of

parallel processing techniques on these retrieval algorithms.

1.3. Thesis Overview

Chapter 2 introduces the semantic net algorithms and discusses the data struc-

tures involved. Chapter 3 examines the algorithms and identifies possible places where

futures would be helpful. Chapter 4 presents the results of the experiment. Chapter

5 concludes by discussing the outcome of the experiment.

QQ

Chapter II

The Semantic Net Algorithms

The semantic net is used to store a series of symbolic relationships. The retrieval

algorithms used for testing were taken from a natural language database, developed

by Boris Katz and Patrick Winston at M.I.T.’s Artifical Intelligence Laboratory [7],

and is written in Multilisp.

2.1. Data Structures

Each symbolic relationship which consists of a subject, relation, and object:

SUBJECT RELATION OBJECT

is internally represented as a link, which consists of six fields. The fields are subject,

relation, object, subject-of, object-of, and truth-value . The subject, relation, and object

fields contain the subject, relationship, and object of the link respectively. The subject-

of and object-of fields point to the list of links that this particular link is a subject of

and object of respectively. The truth-value can be true, false, or unknown according

0

to how the link is entered. It is true if the relationship is valid, false if invalid, and

unknown if there is a question of its validity.

The subject and object fields can have as its value an atom or another link,

thereby allowing nested link structures. The relation can only be an atom. An atom

is the basic single object in Lisp.

When a relationship is entered, a link is created with the corresponding subject,

relationship, and object in its proper fields. If the subject is another link, then the

whole enclosing link is placed in the subject-of list of the subject-link. For example

the link

[SUBJECT1 REL1 OBJECT1 | REL2 OBJEC T2

has a link as its subject, so the whole REL2 link will be placed in the subject-of list

of the subject RELI link, as shown in Figure 2.1.

oBJ SUB-OF OBJ-OF TRUTH

(g SUBI REL! [oan | | | | TRUE

G SUB REL OBJ SUB-OF OBJ-OF TRUTH

(| | REL2 | OBJ2 | | TRUE | 0)

Figure 2.1. Using a link as a subject

If the subject or object is an atom, then associated with the atom is a property

list with slots for subject-of and object-of lists of links. The enclosing link is placed

in the correct slot of the subject atom or object atom’s property list. Associated with

10

each relation atom is a property list containing all links that this atom is the relation

of. Figure 2.2 illustrates the link representing the relation “John loves Mary” and the

property list associated with the subject John.

JOHN LOVES MARY |

IN => plist

Fisal [a

(subject-of : JOHN LOVES MARY|..)

2.2. The Atom’s Property List

The subject-of and object-of lists provide a record-keeping system that keeps

track of the instances of various atoms, links, and nested structures. This makes

processing much easier since the whole net does not have to be searched for a certain

value.

2.2. The Retrieval Algorithm

Queries take many forms. Either one or two of the slots can be questioned, i.e.,

at least one of the slots must be known and it must be an atom or link, but the other

slots can be atoms, lists of atoms, or lists of other links. With at least one known

atom, the resulting list of links contain specific information about that atom. If the

other slots are also atoms or links, then the resulting information is more specific, since

more information was known beforehand, the possible range of answers were narrowed

down. If the other slots were lists of links, then the resulting list of links would contain

information about all the elements in those given links, ¢.e., it would produce a union

of the resulting links produced by successive queries called with each element of the

list. For example, all of the following are legal queries:

71 LOVES MARY | (727 777 MARY

[JOHN 77? MARY | [JOHN 777 777]

JOHN LOVES 777 | 192? LOVES 777 |

which would be satisfied by

JOHN LOVES MARY |

The retrieval algorithm first checks if the subject is known, and if it is an atom.

If it is, it then finds all links that this atom is a subject of by conveniently extracting

the subject-of list from the atom’s property list. It then filters the relation and object

slots by matching the value given in the query to the ones in the retrieved links, and

discarding the links that do not match. Unknowns are treated as wildcards, which

match all. The resulting list of link(s) should have the same known values as the

query with all unknowns filled in.

If the subject is not known or is not an atom, it then checks the object, then the

relation, filtering out the other two slots in the same manner. This simple algorithm

is implemented in the matching-links function shown in Figure 2.3. The filtering

of the other two slots is done by filter-links, shown in Figure 2.4, which is called by

matching-links. Filter-links is an intermediary function which takes as arguments

filter, which is the desired known value, links, which is the list of links to search

through, and filter-function, which is used to extract the correct slot from each link in

the list of links. Filter-links calls remove-if-not-equal or remove-if-not-member

depending on the type of the argument filter; it calls remove-if-not-member if filter

is a list. These two remove-if-not-xxx functions, shown in Figure 2.5, handle the two

different kinds of matching: equality and membership. Remove-if-not-equal tests

equality of atoms and remove-if-not-member tests membership in lists.

[t is important that the relation slot is checked last because it is more likely that

a particular relation will exist in more links than a particular subject or object. In

other words, the relation-of list for a given relation will usually be much larger than a

19

subject-of or object-of list for a given subject or object, which means more matching.

Given there is one known atom, if any of the other two slots is a list, then matching is

done by checking for the membership of a value (from the retrieved links) in this list.

(defun matching-links (subject relation object)

(cond ((and (not-wild subject)
(or (atom subject) (link-p subject)))

‘filter-links object
(filter-links relation (subject-of subject) link-relation-fn)

link-object-fn))

((and (not-wild object)
(or (atom object) (link-p object)))

(filter-links subject

(filter-links relation (object-of object) link-relation-fn)

link-subject-fn))
(and (not-wild relation)

(or (atom relation) (link-p relation)))
filter-links object

(filter-links subject (relation-of relation) link-subject-fn)
link-object-fn))

(t (error “At least one of the match arguments must be atomic”))))

Mieure 2.3. Function matchine inks

So there are three possible paths down the matching function: (1) the subject is

a known atom or link, (2) the object is a known atom or link, or (3) the relation is the

only known atom. Each of the three paths filters the other two remaining slots. The

first two paths are very similar but the third one may prove to be slower because the

192

(defun filter-links (filter links filter-function)

(cond ((eq filter *wildcard*)links)
((or (atom filter) (link-p filter))
(remove-if-not-equal filter links filter-function))

‘(listp filter)
(remove-if-not-member filter links filter-function))))

Fieure 2.4. Function nlter-iinks

(defun remove-if-not-equal (filter links filter-function)

(cond ((null links) nil)
((eq (filter-function (car links)) filter)
(cons (car links)

(remove-if-not-equal filter (cdr links) filter-function)))

(t (remove-if-not-equal filter (cdr links) filter-function))))

(defun remove-if-not-member (filter links filter-function)

(cond ((null links) nil)

((member (filter-function (car links)) filter)
(cons (car links)

(remove-if-not-member filter (cdr links) filter-function)))

(remove-if-not-member filter (cdr links) filter-function))))t

Figure 2.5. The Removal Functions

starting list of links, which result from extracting the relation-of list for an atom, will

| A

usually be very large.

The result of matching-links is a list of links. It is sometimes necessary to

extract the subject or object out of the links depending on what the query asked for.

For example, in the case of the parent query: Who are Fallon’s parents?, what is

desired is (Blake Alexis) instead of the whole list

([BLAKE PARENT — OF FALLON | [ALEXIS

The functions for pulling subjects or objects out of a

will also provide opportunities for parallelism.

PARENT — OF FALLON |)

list of links. shown in Figure 2.6,

(defun pull-subjects (links)

(if (null links)
nil

(cons (link-subject (car links))

(pull-subjects (cdr links)))))

(defun pull-objects (links)

(if (null links)
nil

(cons (link-object (car links))
(pull-objects (cdr links)))))

Figure 2.6. The Pull Functions

2.3. Scenarios

Lets consider a semantic net representing a family tree, with information such as

parents and siblings. This semantic net needs only three kinds of relationships because

- 158

the other family relationships such as aunts, uncles, grandparents, or cousins can be

derived from the relationships PARENT, SIBLING-OF and SEX. The number of links

will vary with the size of the family.

Parents are entered as:

BLAKE PARENT — OF FALLON |

ALEXIS PARENT — OF FALLON

and for asserting fatherhood, motherhood, sisterhood, etc..., we assert the sex.

[BLAKE SEX MALE |

[ALEXIS SEX FEMALE |

[FALLON SEX FEMALE |

Siblings as:

FALLON SIBLING — OF STEVEN

[ADAM SIBLING — OF STEVEN |

You don’t need a children relation because to find the parents of someone, you

need only specify the child and the relation PARENT-OF

(27? PARENT — OF FALLON |

This eliminates redundant storage of data.

A typical query would be to find someone’s grandparents can be represented.as

[777 PARENT _ OF [7?? PARENT — OF FALLON | |

to find FALLON ’s grandparents.

The program to do so is:

(defun grandparents (child)

(pull-subjects
(matching-links *wildcard* PARENT-OF

(pull-subjects
(matching-links *wildcard®* PARENT-OF child))))

16

2.4. Potential Opportunities For Parallelism

The opportunities for parallelism lie in the matching functions, since all the time

is spent filtering through the links. The sequential matching function must match each

link one at a time, which amounts to a linear search down the list of links. The ideal

parallel version of this function would match all links in parallel, eliminating the need

to wait for the end of the linear search.

An obvious location for a future in remove-if-not-equal is right before the first

recursive call to itself, as shown in Figure 2.7. Since the function returns a cons cell,

this future will provide a place holder for the cdr of the cell, and because the results

of the recursive p-remove-if-not-equal evaluation are not needed right away, the

function p-remove-if-not-equal will work well.

'defun p-remove-if-not-equal (filter links filter-function)

(cond ((null links) nil)
((eq (filter-function (car links)) filter)
{cons (car links)

(future (p-remove-if-not-equal
filter (cdr links) filter-function))))

 gLr (p-remove-if-not-equal filter (cdr links) filter-function))))

Figure 2.7. Parallel Removal Function: Version 1

One might also suggest a future before the second recursive call to p-remove-if-

not-equal but this is not a good idea. This way, the function would return a future

whose value was also a chain of futures. It is always a good idea to refrain from

returning just a future [51.

Upon closer examination. it is evident that the recursive call to itself happens in

je

both branches of the conditional, ¢.e., it happens independently of a successful match.

Exploiting this fact, Figure 2.8 provides another way to use futures for this function.

[n p2-remove-if-not-equal the future call works well because the future value will

not be touched inside the program. It will either be built in at the end of the resulting

list, or returned as the result. Although p2-remove-if-not-equal can result in a

chain of futures, it is designed to get results back to its caller as soon as possible, even

while the matching is still in progress [6].

(defun p2-remove-if-not-equal (filter links filter-function)

(if (null links)
nil

((let ((rest (future

(if

(p2-remove-if-not-equal filter (cdr links) filter-function))))

(eq (filter-function (car links)) filter)
(cons (car links) rest)
rest))))

Figure 2.8. Parallel Removal Function: Version II

In the functions for testing equality the second parallel version should not make a

big difference from the first version because eq is a quick operation. This style might

make a bigger difference in remove-if-not-member because member must search a

list.

Another place to look for possible parallelism is the place where the matching

functions are called. It is a good idea in this case to place a future before the first call

to the remove-if-not-xxx functions in filter-links , as shown in Figure 2.9.

There is also a place for futures in the pull-subjects and pull-objects functions.

i R

(defun p-filter-links (filter links filter-function)

(cond ((eq filter *wildcard*) links)

((or (atom filter) (link-p filter))
(future (remove-if-not-equal filter links filter-function))

((listp filter)
(future (remove-if-not-member filter links filter-function))))

Ty rn 2 9. Parallel Filter Function

Each of these recursive functions also returns a cons cell, the cdr of which is computed

by a recursive call to itself. For the reason stated earlier, a future can be placed just

before the recursive call, as shown in Figure 2.10.

‘defun p-pull-subjects (links)

(if (null links)
nil

(cons (link-subject (car links))
(future (p-pull-subjects (cdr links))))))

[igure 2.10. Extraction Algorithm: Parallel Version

10

20

Chapter III

Experimental Results

The semantic nets used for testing were (1) one representing the family hierarchy

as described above and (2) a school database consisting of information such as classes,

professors, students, and grades.

The family tree net is an example of a deep network with few kinds of relations

but many links. All the links in this network contain atoms for subject and object

slots; there are no nested link structures. This network contains 482 objects and 1667

links. Figure 3.1 shows sample entries in this data base. Note that all slots contain

single atoms.

These data bases were randomly generated, and saved in a file, so the same data

base was used for all versions of the tests.

The school database provides an example of a network with many kinds of rela-

tions, offering deeply nested link structures. This net contains 192 objects and 2931

links. This contains many fewer objects than links because it uses the same links over

again, as other subjects and objects. Figure 3.2 shows sample entries in this school

data base. Note the nesting of the links as in the GRADE and ROOM relation links.

21

[blake sex male] [alexis sex female]

[fallon sex female] [steven sex male]

[danny sex male] [mary sex female]

[jason sex male] [sable sex female]

monica sex female] [miles sex male]

Jeff sex male] [francesca sex female]

[blake parent-of fallon] [alexis parent-of fallon]

[blake parent-of steven] [alexis parent-of steven]

(fallon sibling-of steven] [steven sibling-of fallon]

jason parent-of monica] [sable parent-of monica]

[jason parent-of miles] [sable parent-of miles]

miles sibling-of monica] [monica sibling-of miles]

[jason parent-of jeff] [francesca parent-of jeff]

[fallon parent-of danny] [jeff parent-of danny]

[fallon parent-of mary| [jeff parent-of mary]

mary sibling-of danny] [danny sibling-of mary]

Figure 3.1. Example of a family data base

3.1. The Benchmarks

To summarize the different versions of the matching algorithms, there are three

versions of the remove-if-not-equal functions

sequential, p — remove, and p2 - remove,

three versions of the remove-if-not-member functions

sequential, P — remove, and p2 — remove,

29

. [melissa course [algebra term fall85] | grade bj

[[henry course [algebra term fall82] | grade aj

| [susan course [algebra term spr8l] | grade {]

[[danny course [algebra term fall86] | grade d]

I [christine course [algebra term spr85] | grade c]

| [phillip course [algebra term spr83] | grade bj

[[tanya course [algebra term fall8l] | grade a]

[[greg course [algebra term spr80] | grade f]

[[bliss course [algebra term fall85] | grade d|

[richard course [algebra term fall82] | grade c]

[[monica course [algebra term spr81] | grade bj

| [howard course [algebra term fall86] | grade aj

[[catherine course [algebra term spr85] | grade f]

[[crissie course [algorithms term spr83] | grade b]

[[ralph course [algorithms term spr84] | grade a

[[nancy course [algorithms term fall8G] | grade f]

[[avery course [algorithms term fall86] | grade d]

. [gifford teaches [algorithms term fall84] | room 12-266]

{ [quillan teaches [algorithms term fall83] | room 9-423]

. [kingery teaches [algorithms term fall86] | room 9-423]

[[eager teaches [algorithms term spr83] | room 9-423]

[[king teaches [algorithms term spr85] | room 26-231]

 |caruso teaches [algorithms term spr84] | room 51-114]

, [abelson teaches [algorithms term spr81] | room 4-149]

igure 3.2. Example of a school data base

29

and two versions of the extraction functions

-111 and p — pull.

The interesting combinations that were tested are:

Comb#
)

2

member-fn

S

P1

P2

P2

 ~ 9

equal-fn
)

P1

P2

P1

P1

pull-fn
~

we

2

P

bp

L

-

>

Figure 3.2. Parallel Version Combinations

The function matching-links is responsible for handling the different combi-

nations of the algorithms mentioned above. Combination 0 was implemented by

matching-links, 1 by p-matching-links, 2 by p2-matching-links, and 3 by p3-

matching-links. Combination 3 uses the first parallel version of the equal function

(Figure 2.7) to test the assumption stated earlier that there should not be a significant

difference between versions 2 and 3 for equal-fn because equal is a quick operation

and the overhead of unecessary futures are eliminated.

Combination 4 was derived after conclusion of the tests for combinations 1-3. The

equal-fn and member-fn were taken from the winning combination (combination

3), and joined with the sequential version of the pull-fn to measure the effects of

parallelism in the pull functions.

94

3.2. The Programs

3.2.1 The Family Tree Network

The possible queries for a family tree network can pertain to parents, children,

sisters, brothers, cousins, and various other family relationships. The ones chosen for

testing are cousins and grandchildren.

To find someone’s cousins, first their parents are found, then the parents’ siblings,

then their siblings’ children. The query program is shown in Figure 3.4.

(defun cousins (child)

(pull-objects
(matching-links (pull-objects

(matching-links (pull-subjects
‘matching-links *wildcard*

PARENT-OF

child))
SIBLING-OF

wildcard))
PARENT-OF

*wildeard™)))

igure 3.4. Cousins Program

This query has the effect of first filtering the relation and subject on the OBJECT

FALLON which produces 2 links since FALLON has 2 parents. Then the list of links

if filtered on the relation SIBLING-OF and the relation PARENT-OF which means

filtering through long property lists.

=

(defun grandchildren (parent)

(pull-objects (matching-links
(pull-objects (matching-links parent

PARENT-OF

wildecard))
PARENT-OF

wildcard)))

Figure 3.5. Grandchildren Program

Finding grandchildren is simply a matter of getting childrens’ children, as shown

in Figure 3.5.

3.2.2 The School Network

The possible queries for a school network can pertain to various combinations

of professors, classes, students, classsrooms, and grades. The queries for testing are

finding the professor of a certain class, finding the professors of a student, and obtaining

a student’s grades in a class.

The program to obtain the professor of a class is shown in Figure 3.6. Figure

3.7 shows the program to find the professors of a given student, and Figure 3.8 shows

the program to obtain the grades of a student for a class. The program student-

grades only has 4 combinations because, since it does not contain any pull functions,

combination 4 would be the same as combination 3.

3.3. Measurements

Measurements were taken of the query programs described above: 5 programs

with 5 different combinations each, except for the student-grades program which

had only 4 combinations. These five queries were chosen from all the eligible queries

26

(defun class-professor (class term)

(pull-subjects (matching-links *wildcard*
TEACHES

(matching-links class TERM term))))

Figure 3.6. Class-Professors Programs

(defun student-professors (student)

(pull-subjects
(matching-links *wildcard*

TEACHES

(pull-objects (matching-links student
COURSE

wildecard)))))

Figure 3.7. Student-Professors Program

by simulating runs on the VAX and picking the ones that offered the most diverse

results. Each query was run with the same inputs at all times, and the outputs ranged

from one link to a list of thirteen elements. Figure 3.9 shows the inputs and outputs

to the five queries.

CONCERT was used to measure performance times using 1, 2, 3, 4, and 5 proces-

sors. Measurements were taken by using the time function available on the CONCERT

Multilisp. Query times which appeared to have included garbage collection were dis-

carded and re-run. Two to three times were averaged to obtain the numbers which

were used to plot the graphs shown in Figures 3.10 to 3.14. The numbers were plotted

 2)

(defun student-grades (student class term)

(matching-links (matching-links student
course

(matching-links class TERM term))

GRADE

wildcard)))

me
1 ire 3.8. Student-Grades Program

on log-log graphs to show results of speedup effectively. CONCERT using 8 proces-

sors was used to measure times for cousins, p-cousins, p2-cousins, grandchildren,

p-grandchildren, p2-grandchildren, and p3-grandchildren. The rest of the num-

bers for 8 processors were obtained by using the simulations on the VAX. The times

obtained from the simulations were usually about 2-3 times faster than the CON-

CERT results (for queries where the actual CONCERT times were known), so they

were scaled up for comparison with CONCERT times by multiplying the simulated

time by—the actual time for 1 CONCERT processor divided by the VAX simulated

time for 1 processor. This method was checked by comparing the scaled simulated

times to known CONCERT times, and they were very similar.

The simulated times on the graphs are shown by plotting symbols drawn in dashed

lines while the actual CONCERT times are represented by plotting symbols in solid

lines.

3.4. Discusssion

Upon examination of the graphs, the sequential and first parallel versions of the

programs follow an almost identical path. This indicates that the first parallel version

does not make a significant improvement on the retrieval time from the sequential

version. The fact that the parallel version is always higher than the sequential can

- 928

Query Program I: Cousins

input: “angeli”

output:(corinne hillary linda carol quentin jesse estelle zeke)

Query Program II: Grandchildren

input: “willis”

output:(roscoe toni avery dawn billie lee duke brett althea maureen

stanley cary carlos chauncy neville perry trisha fred diego)

Query Program III: Class-Professor

input: (english fall85)

output:(quillan)
Query Program IV: Student-Professors

input: “blake”

output:(quillan fisher rosenweig weitzman saloner carrol

reiche yurek halstead beck wnek katz corbato)

Query Program V: Student-Grades

input: (blake computers spr80)

output:| [blake course [computers term spr80] | grade A]

Toure 3.9. Program Summary: Inputs and Outputs

be explained by the overhead associated with the future calls, while providing no real

speedup in time.

In all the graphs, the second and third parallel versions produce very similar

results, the lines are very close together, even overlapping in some cases. This result is

based on the earlier hypothesis that that the two versions of remove-if-not-equal are

similar because eq is a quick operation. In the class-prof graph, since the times are

much smaller than the rest, the lines are less steep than in the rest of the graphs. This

20

I
L
0
0
Q
[]

Combination # 0
Combination # 1
Combination # 2

Combination # 3
Combination # 4

Dashed represent simulated results

'

= £2) ~ CN £\

ASN WIT WP
- NCS ~~ L~ LL” >

NE]
SEN Ll

5

in

}

—

7

CPU
seconds

(log)

2

++ +t
3 4 5 be 10

Number of Processors

GraphI: Cousins Programs
Figure 3.10

iC

1

~ 0) co—Q
CaN S

i
1
y 4

"

Ro

3
-

i

L
O

Combination # 0
Combination # 1

Combination # 2
Combination # 3

Combination # 4

Dashed represent simulated results

0
0
[]

4 >

v
\

Xa
—

x!
ol

1

J

CPU
seconds

(log) ! | toa
3 1 5 f 10

Number of Processors

Graph II: Grandchildren Programs

Figure 3.11

{ .

}

L
O

Combination # 0
Combination # 1
Combination # 2

Combination # 3
Combination # 4

Dashed represent simulated results

O
Q

U

oN

7

CPU
seconds

(log)

 |>. Nd
- ~ N AR

GA) ” ”ASP Ln
— TZ ~ «/

IN
3 NN~N LN

- =

NOESY
I “Lt

[>—
+

o£

/ 4 rl 5 R 0

Number of Processors

Graph III: Class-Professors Programs

Figure 3.12

v3

10
L
0
0
Q
J

~NNJ Sdn- ”~

 -_

2 ”~

C2)

3 2— S(x
_/RRRAT23 ¢

—— . -EN2)
12

4
A

Combination # 0
Combination # 1
Combination # 2
Combination # 3

Combination # 4

Dashed represent simulated results

5 Bw OQ N
-

ET

v

n
“i

CPU
seconds

(log)
+ { 3

Q 10

Number of Processors

Graph IV: Student-Professors Programs

Figure 3.13

{

1) | L
O
0

 Aq

Combination # 0
Combination # 1

Combination # 2

Combination # 3

Dashed represent simulated results

AL
N

AS
\

A RNB R> A < ED res mati ANA,RA [~~ Wao, 4 5< </

N
\)

3,
Ng;~\J &

£

CPU
seconds

(log)
=

C a Q 10

Number of Processors

Graph V: Student-Grades Programs
Figure 3.14

can happen because each time matching-links is called in class-prof , it produces

only one link, therefore the opportunities for parallelism are not as great as in the

other queries which often produce a list of many links as an outcome of a call to

matching-links . |

In the cases where the best programs were tested, the results were almost identical

to the corresponding p-3 parallel versions. This may be explained by the fact that the

largest answers consisted of lists of 19 elements, not enough to exploit the parallelism

available in the pull-subjects and pull-objects functions.

In graph 1 and graph 2, the best parallel versions, which are alterations of the

combination 3 functions in both cases, the lines fall faster as the number of processors

increase than in the other graphs. This is surprising since cousins contains three in-

stances of pull-objects and grandchildren contains two instances of pull-objects.

This might indicate that in cases where the pull functions and matching-links al-

ternate, the added overhead of the futures in the pull functions might not be worth

it.

The size of the networks does not seem to make a difference in the ability of the

parallel algorithms, since there are no striking differences between graphs 1 and 2 and

graphs 3, 4, and 5

1

- 26

Chapter IV

Conclusion

The results of this experiment show a future for parallelism in the retrieval al-

gorithms applied to semantic networks. The tests proved more successful for queries

that must manipulate a lot of data than for queries that did not have to process as

much information, as shown by the graphs in the last chapter.

Although the results conclude no significant difference in speedups due to the

difference in size of the two networks, the networks used were not as large as most

useful semantic nets would be. This was due to the constaints of space and time from

working on the VAX. A truly useful knowledge-based system would be much too large

to use on an experimental scale. Given that parallelism is more useful when there

are more opportunities for it, retrieval in the larger networks should be enchanced

significantly. Given more time, this hypothesis could be a possible extension of this

research

27

Appendix A

Source Code Listings

2

VX: /usr/hjb/access.l 2/21/86 06:26:41 Page |

;33; -%- Mode: LISP; Syntax: Common-lisp; Package: MULTILISP; -x-
::::This defines database structures and their access functions.

:;;Free variables.

(setf assertion-window t)

;defvar xwildcardx ®'x*wldcardx)
{defvar xthings* nil)
{defvar xrelations* nil)
{defvar xlink-countx 0)
(defvar xtimex 0)

:; Macros to access various slots of the link array

(defmacro link-subject (1) *(aref ,1 0))
{defmacro link-relation (1) *(aref ,1 1))
(defmacro link-object (1) ‘(aref ,1 2))

{defmacro link-subject-of (1) *(aref ,1 3))
(defmacro link-object-of (1) “(aref ,1 4))
{defmacro link-truth-value (1) *(aref ,1 5))
(defmacro link-time (1) *(aref ,1 6))
(defmacro relation-of (r) ‘(get ,r ’relation-of))

{defun link-subject-fn (1) (link-subject 1))
!defun link-relation-fn (1) (link-relation 1))
(defun link-object-fn (1) (link-object 1))

 + Rewrite car and cdr to run on the VAX Multilisp.

(defun my-car (1)
{cond ((consp 1) (car 1))

(t nil)))

(defun my-cdr (1)
(cond ((consp 1) (cdr 1))

(t nil)))

:; Function to create a link given the subject, relation, and object.
;; Truth value is unknown if not given.
+; Subject-of and object-of lists start out nil.

(defun make-link (subj rel obj &optional (truth *unknown))
{let ((m (make-array 7)))
(setf (link-subject m) subj)
.setf (link-relation m) rel)
;setf (link-object m) obj)
'setf (link-truth-value m) truth)
'setf (link-subject-of m) nil)
'setf (link-object-of m) nil)
n))

:; Functions in common lisp not existing in MLISP defined here

;; endp: returns true if argument is null.
(defmacro endp (n) ‘(null ,n))

;; link-p: returns true if the arguement is a link (array).
(defmacro link-p (n) *(arrayp ,n))

;; listp: returns true if the argument is a list.
(defun listp (n)

(cond ((null n) t)
((not (atom n)) t)
(t nil)))

;: rest: returns the cdr of the argument 1 which is expected to be a list.
(defmacro rest (1) ‘(cdr ,1))

;; adjoin: returns a list that is the union of the two arguments: item and list
{defun adjoin (item list)

(if (member item list) list (cons item list)))

VX: /usr/hjb/access.] 2/21/86 06:26:41 Page 2

:; unless: first evaluates p, if the result is not nil, then a is not evaluated
;; and nil is returned. Otherwise, a is evaluated and the result of a is returned
(defmacro unless (p a)

‘(cond ((not ,p) ,a)
(t nil)))

+; when: first evaluates p, if the result is nil, then a is not evaluated,
;; and nil is returned. Otherwise, a is evaluated and the result of a is returned.
fdefmacro when (p a)

‘(cond (,p ,a)
{(t nil)))

;; when2: first evaluates p, if the result is nil, then a and b are not evaluated,
;; and nil is returned. Otherwise, a and b are evaluated in order, and the
;; result of b is returned.
(defmacro when2 (p a b)

‘(cond (,p ,a ,b)
(t nil)))

:; Format-links: takes as argument a list of links
;; and prints each link of the list.
(defun format-links (story)

{do ((1 (car story) (car story))
(story (cdr story) (cdr story)))

((null 1))
(format-link 1)))

;; Format-link: prints a line feed, and then the link.
!defun format-link (link)

(princ "
’)

{bracket link)
t)

;; Bracket: prints a link as a string with brackets delimiting the link.
.defun bracket (link)

(cond ((Vink-p Tink)
princ “[")
bracket (link-subject Tink))
princ " "y
.princ (get-truth link))
‘bracket {link-relation link))
princ " ")
‘bracket (link-object link))
(princ " J "))

{(null link))
{t (princ tink))))

i; Get-truth: returns the printing character equivalent of the truth
1; value of the argument link.
+3 Returns: + if true

- if false

33 ? if unknown
{defun get-truth (link)

(let ((truth-value (link-truth-value link)))
(cond ((equal truth-value true) ’+)

{(equal truth-vaiue ’false) ’-)
{(t ’?))))

 , ; Make-object: if the argument object is not already an object in
.; the network, it makes it one, and places it in the universal list of things.
(defun make-ob ject (object)

(unless (subject-of object)
(push object *thingsx))

ob ject)

VX: /usr/hjb/access.l 2/21/86 06:26:41 Page 3

.;;This is where assertion making is done. General strategy is to find
;;all links with appropriate subject, link, and object,
s;then find the most recent or make a new link, if none
; 3; if same, do nothing
(defun get-link (s r o &optional (links (subject-of s)))

(if links
(let ((1ink (car links)))

(cond ((and (eg s (link-subject 1ink))
(eg r (Tink-relation 1ink))
(eq o (1ink-object link)))

(princ nxn)
link)

.t (get-link s r o (cdr 1inks)))))))

1; Build-link: takes as arguments the subject, relation and object, and
 3; optional truth value, and creates a link for them.
i; Also establishes the subject-of and object-of lists when
,; the subjects or objects are links themselves.
"defun build-Tink (s r o &optional (truth-value *unknown))

(let ((link (make-1ink s r 0 truth-value)))
(unless (link-p s) (record-object s))
(unless (link-p o) (record-object o0))

+; ADDITION HERE:

(SETF (GET R ’RELATION-OF) (PUSH LINK (GET R ’RELATION-OF)))

(if (link-p s)
(setf (link-subject-of s) (push link (link-subject-of s)))
(setf (get s ’subject-of) (push link (get s ’subject-of))))

{cond ((Yink-p 0)
(setf (link-object-of 0)

(push link (link-object-of 0))))
((forbidden-thing? o)
NIL)

7
(setf (get o ’object-of)

(push link (get o ‘object-of)))))
(setf xlink-countx (addi *link-countx))
‘princ "an
LINK))

;; Record-relation: keeps track of relation atoms by adding them to the list of relations.
(defun record-relation (r)

(unless (member r *relationsx)
(push r xrelationsx)))

;; Record-object: keeps track of objects by adding them to the list of
(defun record-object (0)

(unless (or (subject-of o) (object-of 0))
(push o *thingsx)))

objects

;; My-assert: this function is used to assert the truth-value of a link
(defun my-assert (s r o new-truth-value &aux old-truth-value)

(let ((link (get-link s r 0)))
(when link (setf old-truth-value (1link-truth-value 1link)))
{cond ((not link)

(setf link (build-link s r o new-truth-value)))
i(eq new-truth-value old-truth-value))
"(eq unknown old-truth-value)
[setf (link-truth-value link) new-truth-vatue)
(setf (link-time Tink) *timex))

(t (setf link (build-link s r o new-truth-value))))
link))

(defun affirm (s r 0) (my-assert s r o ’true))

(defun deny (s r o) (my-assert s r o ’false))

{(defun question (s r o) (my-assert s r o unknown))

{(defun consider (s r o) (my-assert s r o 'unknown))

VX: /usr/hjb/access.] 2/21/86 06:26:41 Page 4

;; Subject-of: Extracts the list of links that thing is a subject of.
{defun subject-of (thing)

(cond ((link-p thing)
{link-subject-of thing})

0
(my-get thing ’subject-of))))

;; Object-of: Extracts the list of links that thing is an object of
(defun object-of (thing)

(cond ((link-p thing)
(link-object-of thing))

fT
(my-get thing ’object-of})))

;; Pull-Subjects: Takes a list of links and returns a list of all the subjects of the
;3 links in the list.
(defun puli-subjects (links)

(if (null links)
nil
(cons (link-subject (car 1links))

(pull-subjects (cdr links)))))

;; Pull-Objects: Takes a list of links and returns a list of all the objects of the
;3 links in the list.
{defun pull-objects (links)

(if (null links)
nil
{cons (link-object (car links))

(pull-objects (cdr links)))))

3; Matching functions

(defun remove-if-not-equal (filter links filter-function)
{cond ((null links) nil)

((eq (filter-function (car links)) filter)
(cons (car links) (remove-if-not-equal filter (cdr links) filter-function)))

(t (remove-if-not-equal filter (cdr links) filter-function))))

(defun remove-if-not-member (filter links filter-function)
(cond ((null links) nil)

((member (filter-function (car links)) filter)
(cons (car links) (remove-if-not-member filter (cdr links) filter-function)))

(t (remove-if-not-member filter (cdr links) filter-function))))

(defun filter-links (filter links filter-function)
;; EFFECTS: space saver, filter-slot is ‘subject
(cond ((eq filter *wildcardx) links)

((or (atom filter) (link-p filter))
(remove-if-not-equal filter links filter-function))

r(listp filter)
(remove-if-not-member filter links filter-function))))

;3 This macro returns true if the ‘thing’ is not a wildcard and not nil.
(defmacro not-wild (thing)

‘(and ,thing (not (eq ,thing *wildcardx))))

;; Function to format print the links.
(defun show-matching-links (subject relation object)
(let ((V1inks (matching-links subject relation object)))
(format-links links)
links))

VX: /usr/hjb/access.] 2/21/86 06:26:41 Page 5

(defun matching-links (subject relation object)

REQUIRES: At least one of the args must be atomic

 EFFECTS: Will take subject object and relations that are either
~~ atoms or nil or predicates or a list of atoms or a list of links.

If nil then that slot in a link will
be considered a wild card and all fillers will satisfy a match there
If a predicate is there than all fillers which satisfy the predicate
will match. If an atom then only fillers which are EQ will match.

. RETURNS: Matching links in a list.

(cond ((and (not-wild subject) (or (atom subject) (link-p subject)))
(filter-links object

(filter-links relation (subject-of subject) link-relation-fn)
1ink-object-fn))

: If RELATION was null then just leave mlinks unaltered since null
.; matches all relations.

((and (not-wild object) (or (atom object) (1ink-p object)))
(filter-links subject

(filter-links relation (object-of object) link-relation-fn)
link-subject-fn))

((and (not-wild relation) (or (atom relation) (link-p relation)))

; : relation is the only thing specified as atom.

(filter-Tinks ob ject
(filter-links subject (relation-of relation) link-subject-fn)
link-object-fn))

(T (error "At least one of the match arguments must be atomic”))))

(defun convert-query (glist &optional (dont-show nil))

EFFECTS: Will convert a list like:
(GET-LINK JOHN WANT (GET-LINK JOHN EAT WH)) to:
(matching-1links :subject ’ john :relation ‘want

:object (matching-links :subject ’john :relation ’eat))
If dont-show is nil than show the links formatted. If T then don’t
show them formatted. This prevents showing nested queries.

RETURNS: A list of the links satisfying the query

{if (eq (car qlist) ’'get-link)
(let ((query-list nil)

(subject (second glist))
«relation (third glist))
{object (fourth glist)))

(cond ((and (not (atom subject)) (eq (car subject) ’get-1link))
(push (convert-query subject T) query-list))

((not (or (eq subject ’wh)
(eq subject ’'who)))

(push subject query-list)))
(cond ((and (not (atom relation)) (eq (car relation) ’get-link))

(push (convert-query relation T) query-list))
{(not (or (eq relation ’'wh)

(eq relation ’'who)))
{push relation query-1list)))

(cond ((and (not (atom object)) (eq (car object) ’get-1link))
(push (convert-query object T) query-1list))

{(not (or (eq object wh)
(eq object ’who)))

(push object query-list)))
{if dont-show

{apply #’matching-links (reverse query-1list))
(apply #°’show-matching-links (reverse query-1ist}))))

{error "Improper argument to Convert-query")))

VX: /usr/hjb/access.] 2/21/86 06:26:41 Page 6

(defun tell (g-list)
{convert-query g-list))

;; Statistics: tells how many objects and links in the network.
(defun statistics ()

(princ "
"here are ")

(princ (length xthingsx))
(princ " objects and ")
(princ xTink-countx)
{(princ " links")
"FE)

 33; This is for rapid link creation.

(defmacro r (&rest rest) (list ’'record-aux ’rest))

(defmacro a (&rest rest) (list ’record-aux “(cons ’a rest)))

(defmacro d (&rest rest) (list ‘record-aux (cons °d rest)))

(defmacro q (&rest rest) (list ’record-aux ’(cons ’q rest)))

(defun record-aux (s)
(cond ((null s) nil)

{(atom s) *’,s)
((endp (rest s)) (record-aux (first s)))
{((= 3 (length s)) (cons ’affirm (mapcar #’record-aux s)))
(t (cons (let ({tag (first s)))

(cond ((equal tag 'a) ’affirm)
{(equal tag ’'d) ’deny)
((equal tag ’q) ’question)))

(mapcar #’record-aux (rest s))))))

(defun forbidden-thing? (thing)
(or (numberp thing)

(listp thing)))

(defun my-get (item prop)
(cond ((forbidden-thing? item)

NIL)
(T (get item prop))))

VX: /usr/hjb/parallel.l 2/21/86 06:09:17 Page 1

3; -%- Package: MULTILISP; Syntax: Common-1lisp -x-
3; This file contains the parallel retrieval algorithms.

;; COMBINATION # 1
;; remove-if-not-member: P1
;; remove-if-not-equal : P1
53 pull-xxx : P

;+ P-filter-links:

arguments:
filter - the object to search for
links - the list of links to be searched
filter-function - the function to extract the correct slot of the link

effects:
If filter is a wildcard then nothing is done, else
the list of links are searched
for links with elements matching filter.

is This version calls future of the matching function.
{defun p-filter-links (filter links filter-function)

(cond ((eq filter *wildcardx))
((or (atom filter) (link-p filter))
(p-remove-if-not-equal filter links filter-function))

[(listp filter)
{p-remove-if-not-member filter links filter-function))))

;3 P-remove-if-not-equal
arguments:

filter - the object to search for
links - the list of links to be searched
filter-function - the function to extract the correct slot of the link

effects:
given the list of links, removes all the links whose filter-function

. slot values are not equal to filter.
;; This version calls a future of the recursive call to itself.
(defun p-remove-if-not-equal (filter links filter-function)

{cond ((null links) nil)
{(eq (filter-function (my-car links)) filter)
{cons (my-car links)

(future (p-remove-if-not-equal filter (my-cdr links) filter-function))))
(t (p-remove-if-not-equal filter (my-cdr links) filter-function))))

-+ P-remove-if-not-member

arguments:
filter - the object to search for
links - the list of links to be searched
filter-function - the function to extract the correct slot of the link

effects:
jJiven the list of links, removes all the links whose filter-function

] slot values are not members of the list filter.
;; This version calls a future of the recursive call to itself.
vdefun p-remove-if-not-member (filter links filter-function)

(cond ((null links) nil)
[(member (filter-function (my-car links)) filter)
(cons (my-car links)

(future (p-remove-if-not-member filter (my-cdr Tinks) filter-function))))
{(t (p-remove-if-not-member filter (my-cdr links) filter-function))))

VX: /usr/hjb/parallel.l 2/21/86 06:09:17 Page 2

:; P-matching-1links
+ arguments:

subject - the subject of the link
relation - the relation of the link

object - the object of the link
effects:

first checks the subject, relation, then object,
obtains a list of links to start with, and filters
them matching on the other two slots.

 , This version calls p-filter-1links.
(defun p-matching-links (subject relation object)

(cond ((and (not-wild subject) (or (atom subject) (link-p subject)))
(p-filter-links object

(p-filter-links relation (subject-of subject) link-relation-fn)
link-object-fn))

i; If RELATION was null then just leave mlinks unaltered since null
+; matches all relations.

((and (not-wild object) (or (atom object) (1link-p object)))
(p-filter-links subject

(p-filter-links relation (object-of object) link-relation-fn)
link-subject-fn))

((and (not-wild relation) (or (atom relation) (link-p relation)))

;; relation is the only thing specified as atom.

(p-filter-links object
(p-filter-links subject (relation-of relation) link-subject-fn)
link-object-fn))

(T (error "At least one of the match arguments must be atomic”))))

1; COMBINATION # 2
.; remove-if-not-member: P2
.; remove-if-not-equal : P2
+s pull-xxx : P

 3 P2-remove-if-not-equal
arguments:

filter - the object to search for
links - the list of links to be searched .
filter-function - the function to extract the correct slot of the link

effects:
given the list of links, removes all the links whose filter-function

* y slot values are not equal to filter.
;; This version calls a future of the recursive call to itself.
(defun p2-remove-if-not-equal (filter links filter-function)

(if (null links)
nit
(let ((rest (future (p2-remove-if-not-equal filter (my-cdr links) filter-function))))

(if (eq (filter-function (my-car links)) filter)
(cons (my-car links) rest)
rest))))

VX: /usr/hjb/parallel.l 2/21/86 06:09:17 Page 3

+; P2-remove-if-not-member

arguments:
filter - the object to search for
links - the Tist of links to be searched
filter-function - the function to extract the correct slot of the link

effects:
given the list of links, removes all the links whose filter-function
slot values are not members of the list filter.

;; This version calls a future of the recursive call to itself.
‘defun p2-remove-if-not-member (filter links filter-function)

(if (null links)
nil
(let ((rest (future (p2-remove-if-not-member filter (my-cdr links) filter-function))))

(if (member (filter-function (my-car links)) filter)
‘cons (my-car links) rest)
rest))))

P2-filter-links:
arguments:

filter - the object to search for
links - the list of links to be searched
filter-function - the function to extract the correct slot of the link

effects:
If filter is a wildcard then nothing is done, else
the list of links are searched
for links with elements matching filter.

iv This version calls future of the matching function.
(defun p2-filter-links (filter links filter-function)

(cond ((eq filter *wildcardx))
{(or (atom filter) (link-p filter))
(p2-remove-if-not-equal filter links filter-function))

((listp filter)
(p2-remove-if-not-member filter links filter-function))))

P2-matching-1inks
arguments:

subject - the subject of the link
relation - the relation of the link

object - the object of the link
effects:

First checks the subject, relation, then object,
pbtains a list of links to start with, and filters
them matching on the other two slots.

al This version calls p2-filter-links.
(defun p2-matching-links (subject relation object)

(cond ((and (not-wild subject) (or (atom subject) (link-p subject)))
(p2-filter-links object

(p2-filter-links relation (subject-of subject) link-relation-fn)
link-object-fn))

+3 If RELATION was null then just leave mlinks unaltered since null
i; matches all relations.

[(and (not-wild object) (or (atom object) (link-p object)))
(p2-filter-1links subject

(p2-filter-links relation (object-of object) link-relation-fn)
1ink-sub ject-fn))

((and (not-wild relation) (or (atom relation) (link-p relation)))

i; relation is the only thing specified as atom.

(p2-filter-links object
(p2-filter-links subject (relation-of relation) link-subject-fn)
link-object-fn))

[T (error "At least one of the match arguments must be atomic”))))

VX: /usr/hjb/parallel.l 2/21/86 06:09:17 Page 4

 ; COMBINATION # 3
-; remove-if-not-member: P2
 ; remove-if-not-equal : P1
5 pull-xxx : P

v+ P3-filter-links:

arguments:
filter - the object to search for
links - the list of links to be searched
filter-function - the function to extract the correct slot of the link

effects:
If filter is a wildcard then nothing is done, else
the list of links are searched
For links with elements matching filter.

is This version calls future of the matching function.
{defun p3-filter-links (filter links filter-function)

(cond ((eq filter xwildcardx))
{(or (atom filter) (link-p filter))
(p-remove-if-not-equal filter links filter-function))

f(listp filter)
(p2-remove-if-not-member filter links filter-function))))

P3-matching-1inks
arguments:

subject - the subject of the link
relation - the relation of the link
object - the object of the link

effects:
first checks the subject, relation, then object,
sbtains a list of links to start with, and filters
them matching on the other two slots.

ry This version calls p3-filter-links. ,
vdefun p3-matching-links (subject relation object)

(cond ((and (not-wild subject) (or (atom subject) (link-p subject)))
(p3-filter-links object

(p3-filter-links relation {(subject-of subject) link-relation-fn)
link-object-fn))

v3 If RELATION was null then just leave mlinks unaltered since null
;; matches all relations.

f(and (not-wild object) (or (atom object) (link-p object)))
(p3-filter-1links subject

(p3-filter-links relation (object-of object) link-relation-fn)
link-subject-fn))

((and (not-wild relation) (or (atom relation) (link-p relation)))

 3 relation is the only thing specified as atom.

(p3-filter-1links object
(p3-filter-links subject (relation-of relation) link-subject-fn)
link-object-fn))

(T (error "At least one of the match arguments must be atomic”))))

VX: /usr/hjb/parallel.l 2/21/86 06:09:17 Page 5

;; PARALELL PULL FUNCTIONS

;3 P-pull-subjects
33 arguments:
13 links - the list of links of which to obtain the subject elements
1; effects:
+3 returns a list of the subjects of each link in the list of links.
;3 This version calls the future of the recursive call to itself.
(defun p-pull-subjects (links)

(if (null links)
nil
{my-cons (link-subject (my-car links))

(future (p-pull-subjects (my-cdr 1links})))))

:: P-pull-objects
;; arguments:
5% links - the list of links of which to obtain the object elements
;; effects:
13 returns a list of the objects of each link in the list of links.
;: This version calls the future of the recursive call to itself.
(defun p-pull-objects (links)

(if (null links)
nil
‘my-cons (link-object (my-car links))

(future (p-pull-objects (my-cdr links))))))

(defmacro p-get-subjects (object &optional (relation *wildcardx))
*(pull-subjects (p-matching-links *wildcardx ,relation ,object)))

‘defmacro p-get-objects (subject &optional (relation *wildcardx))
*(pull-objects (p-matching-links ,subject ,relation *wildcardx)))

VX: /usr/hjb/familytest.] 2/21/86 06:31:38 Page 1

:33 -%- Package: MULTILISP; Syntax: Common-lisp -*-

;: The list of male names.
(defvar lott ‘(blake jane alexis fallon michael joan crystal steven jeff claudia

andrew phillip sable cary yona richard cecil monica bliss
francesca amanda dominique ken howard carla cherly catherine
anthony daniel david greg patrick jennifer donald gene
~obert henry james ted cora cory paul eric))

(defvar m-names ‘(blake michael eric james jeff ronald donald paul gene ted robert
anthony tony ken howard richard greg phillip danny henry andrew
gary sam kevin thomas fred dennis brett harry eddie
jack charles frank rick max harrison leo gerald george
nurray arthur avery ralph scott boris martin allen brian raymond
oren timothy timmy craig peter bobby oliver alberto leonard harvey
hank eugene lowell franklin walter benjamin douglas brad nathan
hershel harold bart alexander bartholomew adam cain abel victor
anotonio vincent burt ernie bruce felix oscar matthew lincoln
othello hamlet vladimir diego bjorn mats mikhail jamal gavin
archie archibald guillermo roman vadim cyrano nathaniel
everett efrem elijah sidney
dane zeke zachary ross rusty lee broderick rodrigo rocky
abraham noah lenny tyberius salvador caesar chuck roland raoul
aaron fabian hugh herbert hughbert ozzie randolph irving
irvin ben rodney gordon morris melvin duncan dunbar bernie
myron byron brant earl eliot isaac stanley alessandro ricardo
monty russel nicholas carter barney basil benedict boyd
bruno calvin carlyle chauncy claude clayton clifford cornielius
~yrus demetrius derrick drew dwight ebenezer enrico
perry terry tony jim dick manny carlos laurence larry
charleton roger christopher william billy marty dominic
~andy harley jonathan don
alfred dean lucas karl kirk kyle jesse hal conrad ramsey todd van
cary joshua luke mark john cecil patrick joseph sean
~udolph stuart quincy pierce sumner wyatt winston willis winfred
#illard rupert raphael samson theodore kent clark bertrand
averett ethan elijah chester chauncy burl justin barabas lancelol
ian immanuel ivan humphrey isaiah lance lester homer horace herman
dirk duke dorian darius ernest elbert omar neville norman norton
moss rollo rolph roscoe roy tristan noam neil reuben
-eynold roderick rufus rutherford samuel vernon vaughn ulysses
terence terrel thaddeus thurston tobias ward waldo vergil
wesley warren wilfred wayne rex octavius obadiah nat newton
murdoch quentin ludwig huntington lionel geoffrey ezra ichabod
ignatius troy marmaduke johann sebastian franz sayan cabot
spike fonzie clay curtis jock tug marshall marcel dale bud
elroy cleon cleotis antony popeye dexter wally arty grant
apollo mercury zeus poseiden socrates plato spartacus spock
anton anatolie horatio hannibal hodge ivor jarvis jason jed))

;; The list of female names.
(defvar f-names “(alexis fallen claudia crystal amanda yona sable francesca laura

jennifer cherly carla cora catherine monica bliss tanya
christine susan melissa mary leslie robin mona teresa
saulette toni frances fanny greta ingrid charlotte
sherri carrie loni sue mary-ann donna millicent annabelle
kim nancy crissie olga inga maria pattie lori lauren
nichelle ellen betty karen jill ann polly helen linda joanne
astelle ethel edith marion ruth rose allison alice
sharon joan sandra debbie lola tara grace ali
jretchen matilda madeline trisha galia jackie suzanne sandy rosanne
roxanne bambi angeli candi thespina lissa lisa liza wendy hea
carolyn cindy stephanie kamala carol jessica alyssa krisztina holly
samantha bertha heidi lorna sheree gwinneth cecelia eva ava rickie
suzzette martha marta angelica amy penelope lynn aprohidite
+enus desiree sherry quinn trudy lolita stacy tracy shirley shiela
dara sara melinda nicoletta nadine marchia janice emily rhoda valerie
joy deborah phyllis bess gloria jeannie mildred florence tanya (judith
rhonda brenda brandi mandy mindy paula pauline jean jamie
rebecca julia rachel leah diane diana dina esther marie georgette
lois louise rosalyn louella myrna monique gwendelyn bobbie leana
leona clarise claire charlene marlene arlene ursala natashia
june violet viola petunia petula donna doris priscilla ailish colleen
collette dorothy carmen molly vivienne tess anastasia greer eleanor
nelena alena alona cissy kelly dionne zena myrtle constance katrina
nillary agnes agatha wilma veronica farla dana nickie darla carling

VX: /usr/hjb/familytest.] 2/21/86 06:31:38 Page 2

darlene martina hannah gabriela billie sylvia estelle valencia ronnie
wanda althea rita vera megan maureen maura maren kay farrah jacqueline
shelley tiffany pearl opal ruby margaret maggie peggy madge marge
fila lillian lilliette olive florence flora dawn fern avril amelia
nellie frieda sally janet tina albertina harriet bunita buffy aretha
celeste didi mimi gigi dolly mame glenda patsy linda miriam marilyn
audrey anita hazel ida nora noreen kimberly corinne nadia eunice
julianne virginia andrea mickie maude risa nina mina alexandria
anabelle appolonia vanity charity hope cher liz trixie coco lydia
cleopatra tammy temi demi ally becky blair whitney belinda blanche
Jail shira sheena marca marisa shann barbara shannon sonny mabel
'otte dotty tuesday whilhemina eve lucy pamela))

;: FILE I/0 ROUTINES

;; Free variables

(defvar dynasty-filename "vx:/usr/hjb/dynasty. links")
(defvar dynasty nil)

73 This function writes a link onto a file (f) in parenthesis.
(defun write-link (link f)

(princ " (" f)

(let ((subject (link-subject link)))
(cond ((link-p subject)

(write-link subject f))
(t (princ subject f))))

(princ " " f)

(let ((relation (link-relation 1link)))
(princ relation f))

(princ " " f)

(let ((object (1link-object 1ink)))
(cond ((link-p object)

(write-link object f))
(t (princ object f))))

(princ ") " f))

;3 This function prints a carriages return then writes the link in the file (f).
(defun write-affirm (tink f)

(princ *

f)
(write-link link f)
link)

3 Assert-link

is given a list representing a list (link), this function
;; makes the list into a real link.
(defun assert-link (link &aux subject relation object)

({setq subject (my-car 1link))
(setq relation (cadr 1link))
[setq object (caddr 1link))
{cond ((atom subject))

f(listp subject) ;; affirm links
(setq subject (assert-link subject))))

{cond ((atom object))
{(listp object)
(setq object (assert-link object))))

affirm subject relation object))

3 Read-file
.; This function reads in a file (given fname) and
©; assumes the object is a list of lists (representing links)
;3 and makes links out of each one.
.defun read-file (fname)

(let ((f (infile fname)))
{let ((11 (read f)))

‘close f)
{mapcar assert-link 11))

=)

END OF FILE I/0 ROUTINES

VX: /usr/hjb/familytest.l 2/21/86 06:31:38 Page 3

 3 Count
 3 This function returns the number of elements in 1.
‘defun count (1)

(cond ((null 1) 0)
(t (+ 1 (count (my-cdr 1))))))

+; Get-rand
;; This functions generates a random number from 0 to n
(defmacro get-rand (n)

*(% (rand) ,n))

5; Getn

i; This macro obtains the index-th element of array 1
(defmacro getn (1 index)

‘(aref ,1 ,index))

3; Setn

;; This macro sets the index-th element of array 1 to be value.
(defmacro setn (1 index value)

‘(setf (aref ,1 ,index) , value))

(defmacro when5 (a b cde f)
*(cond (,a ,b ,c ,d ,e ,f)))

;; This macro results in true if the child is an orphan and has no
;3 children of its own.
(defmacro homeless (child father mother)

*(and (not (eq ,child ,father))
(not (eq ,child ,mother))
(null (get-subjects ,child ’parent-of))))

;; This macro results in true if a and b are not siblings or cousins.
(defmacro not-closely-related (a b)

‘(and (not (member ,b (siblings ,a)))
(not (member ,b (cousins ,a)))))

(defmacro make-male (m)
‘(write-affirm (affirm ,m sex ’male) dynasty))

(defmacro make-female (f)
‘(write-affirm (affirm ,f ’sex ’female) dynasty))

;; Starter

;; This function takes a list and returns an array containing the same elements.
(defun starter (names &optional (n (length names)))

(let ((mm (make-array n)})
(do ((i 0 (add1 i)))

((eq i n))
(setf (aref mm i) (my-car names))
(setq names (my-cdr names)))

mm)

(defmacro evenp (n)
‘(eq (% .n 2) 0))

VX: /usr/hjb/familytest.l 2/21/86 06:31:38 Page 4

+; This function randomly generates a person.
(defun get-child (n mnames fnames &aux person)

(cond ((evenp n)
{setq person (getn fnames n))
{make-female person))

(t
(setq person (getn mnames n))
{make-male person)))

person)

-; This function randomly generates a family using the relations
, ; parent-of, sibling-of, and sex.
(defun family (p mn fn &optional (tt p) &aux father mother child)

(setq dynasty (outfile dynasty-filename))
{princ " (" dynasty)
(Tet ({(children nil)

(mnames (starter mn))
(fnames (starter fn)))

1do ((n 0 (addl n)))
((eq n tt))

{setq father (getn mnames (get-rand p)))
(setqg mother (getn fnames {(get-rand p)))
(princ father)
[princ mother)
(cond ((and (not (eq father mother))

(not-closely-retated father mother))
(do ((i 0 (addi i))

(stopp (get-rand 7)))
(eq i stopp))

(setq child (get-child (get-rand p) mnames fnames))
(when5 (homeless child father mother)

(setq children (cons child children))
(write-affirm (affirm father 'parent-of child) dynasty)
(write-affirm (affirm mother ’parent-of child) dynasty)
fmake-male father)
{make-female mother)))

(make-siblings children)
(setg chiidren nil)))))

(princ ") " dynasty
(close dynasty))

;;3 This function creates sibling relations given a list of names.
(defun make-siblings (children &aux (others children))

(if (and children others)
(do ((child (my-car children} (my-car children))

(children (my-cdr children) (my-cdr children)))
((nu1l child)
(do ((sib (my-car others) (my-car others))

(others (my-cdr others) (my-cdr others)))
{(null sib))
(cond ((not (eq child sib))

(write-affirm (affirm child ’sibling-of sib) dynasty)))))))

;; This function prints the elements in an array (a).
(defun format-array (a)

(do ((n 0 (add1 n)))
((eq n (array-length a)))

(print (aref a n))))

VX: /usr/hjb/familytest.] 2/21/86 06:31:38 Page 5

+: TESTS

33 CHILDREN

i; Children: returns the list of children of a parent p

;; Sequential Version.
(defun children (p &optional (pp *wildcardx))

(pull-objects (matching-links p ’parent-of pp)))

;; Combination #1

(defun p-children (p &optional (pp *wildcardx))
(p-pull-objects (p-matching-links p ’parent-of pp)))

;; Combination #2
(defun p2-children (p &optional (pp *wildcardx))

(p-pull-objects (p2-matching-links p ’parent-of pp)))

;; Combination #3

{defun p3-children (p &optional (pp *wildcardx))
(p-pull-objects (p3-matching-links p ’parent-of pp)))

; ; SIBLINGS: returns the siblings of a person (c).

;+ Sequential Version
(defun siblings (c &optional (pp *wildcardx))

(pull-objects (matching-links c ’sibling-of pp)))

;; Combination #1

(defun p-siblings (c &optional (pp *wildcardx))
(p-pull-objects (p-matching-links c ’sibling-of pp)))

;; Combination #2
(defun p2-siblings (c &optional (pp *wildcardx))

(p-pull-objects (p2-matching-links ¢ *sibling-of pp)))

;; Combination #3
(defun p3-siblings (c &optional (pp *wildcardx))

(p-pull-objects (p3-matching-links c¢ ’sibling-of pp)))

;; COUSINS: returns the list of cousins of a person (c).

;; Sequential Version
(defun cousins (child)w

(pull-objects
(matching-Tinks

(pull-objects
(matching-1inks

(pull-subjects
(matching-1inks *wildcardx ’parent-of child))

’sibling-of *wildcardx))
'parent-of xwildcardx)))

;; Combination #1
.defun p-cousins (child)

(p-pull-ob jects
(p-matching-links

{(p-puli-objects
{p-matching-1links

(p-pull-subjects
(p-matching-1inks *wildcard* ’parent-of child))

*sibling-of *wildcardx))
parent-of *wildcardx)))

VX: /usr/hjb/familytest.] 2/21/86 06:31:38 Page 6

;; Combination #2
(defun p2-cousins (child)

(p-pull-objects
(p2-matching-Tinks

(p-pull-objects
(p2-matching-1inks

{p-pull-subjects
(p2-matching-links *wildcardx ’parent-of child))

‘sibling-of *wildcardx))
'parent-of *wildcardx)))

;; Combination #3
(defun p3-cousins (child)

(p-pull-objects
(p3-matching-1inks

(p-pull-objects
(p3-matching-1links

p-pull-subjects
(p3-matching-1links *wildcardx ’parent-of child))

'sibling-of *wildcardx))
'parent-of *wildcardx)))

; 3 GRANDCHILDREN: returns the grandchildren of a person pp.

;; Sequential Version
(defun grandchildren (p &optional (pp *wildcardx*))

(children (children p) pp))

;; Combination #1

(defun p-grandchildren (p &optional (pp *wildcardx))
(p-children (p-children p) pp))

;; Combination #2

(defun p2-grandchildren (p &optional (pp xwildcardx))
(p2-children (p2-children p) pp))

;; Combination #3
{defun p3-grandchildren (p &optional (pp *wildcardx*))

(p3-children (p3-children p) pp))

;; Macros for ease of use.

{defmacro males () ‘(pull-subjects (matching-links #*wildcard* ’sex ’male)))
(defmacro females () ‘(pull-subjects (matching-links *wildcardx ’sex ’female)))
(defmacro fathers () *“(pull-subjects (matching-links (males) ’parent-of xwildcardx)))
{defmacro mothers () *(pull-subjects (matching-links (females) ’parent-of *wildcard¥)))

(defmacro father (c) ‘(parents ,c (males)))
.defmacro mother (c) ‘(parents ,c (females)))
.defmacro sisters (c) ‘(siblings ,c (females)))
.defmacro brothers (c) ‘(siblings ,c (males)))
,defmacro sons (c) ‘(children ,c (males)))
‘defmacro daughters (c) ‘(children ,c (females)))
(defmacro grandfathers (c) ‘(grandparents ,c (males)))
.defmacro grandmothers (c) ‘(grandparents ,c (females)))
‘defmacro grandsons (c) ‘(grandchildren ,c (males)))
(defmacro granddaughters (c) ‘(grandchildren .c (females)))

(defmacro count-kids (p) ‘(length (children ,p)))
vdefmacro all-parents () *(pull-subjects (matching-1links *wildcardx ’parent-of *wildcardt)))

VX: /usr/hjb/familytest.] 2/21/86 06:31:38 Page 7

i; This function returns the average number of children in a family.
;; Useful for evaluating the semantic network.
{defun avg-children (&optional (pp *wildcardx))

{if (null pp) (setq pp (all-parents)))
(Tet ((num 0))

(cond ((listp pp)
(do ((p (my-car pp) (my-car pp))

(pp_(my-cdr pp) (my-cdr pp)))
{{null p))

(setq num (+ num (count-kids p))))
(/ num (length pp)))

(t (count-kids pp)))))

;; THE BEST TESTS

(defun best-p-children (p &optional (pp *wildcardx))
(puli-objects (p-matching-links p ’parent-of pp)))

(defun best-p2-children (p &optional (pp *wildcardx))
(pull-objects (p2-matching-links p ’parent-of pp)))

(defun best-p3-children (p &optional (pp *wildcardx))
(pull-objects (p3-matching-links p ’parent-of pp)))

{defun best-p-siblings (c &optional (pp *wildcardx))
(pull-objects (p-matching-links c¢ ’sibling-of pp)))

{defun best-p2-siblings (c &optional (pp xwildcardx))
(pull-objects (p2-matching-links c¢ ’sibling-of pp)))

(defun best-p3-siblings (c &optional (pp *wildcardx))
(pull-objects (p3-matching-links c¢ ’sibling-of pp)))

(defun best-p-parents (c &optional (pp *wildcard*))
(pull-subjects (p-matching-links pp ’parent-of c)))

1defun best-p2-parents (c &optional (pp *wildcardx))
(puli-subjects (p2-matching-links pp ’parent-of c)))

|defun best-p3-parents (c &optional (pp *wildcardx))
{pull-subjects (p3-matching-1links pp ’parent-of c)))

(defun best-p-cousins (c &optional (pp *wildcardx))
(p-children

(p-siblings
(pull-subjects

(p-matching-1links *wildcardx ’parent-of c))) pp))

(defun best-p2-cousins (c &optional (pp *wildcardx))
{p2-children

(p2-siblings
(pull-subjects

(p2-matching-tinks *wildcardx ’parent-of c))) pp))

(defun best-p3-cousins {(c &optional (pp *wildcardx))
(p3-children

(p3-siblings
(pull-subjects

(p3-matching-links *wildcardx ’parent-of c))) pp))

(defun best-p-grandchildren (p &optional (pp *wildcardx))
{(p-children (p-children p) pp))

(defun best-p2-grandchildren (p &optional (pp *wildcardx))
(p2-children (p2-children p) pp))

vdefun best-p3-grandchildren (p &optional (pp *wildcardx))
(p3-children (p3-children p) pp))

VX: /usr/hjb/schooltest.l 2/21/86 04:23:53 Page |

+33 -X%- Package: MULTILISP; Syntax: Common-lisp -%-
133 This file contains the programs to run and test the school network.

;; The list of fall terms names.
(defvar xfali-term-namesx ‘(fall80 fall181 fal182 fal183 fall84 fall85 fall186))

;; The list of sprint term names.
{defvar xspring-term-names* ‘(spr80 spr81 spr82 spr83 spr84 spr85 spr86))

;3 The list of professor names.
{defvar *prof-names* ‘(jones smith halstead terman davis katz hulsizer king french

carrol lewis feld corbato matttuck tucker
kingery weitzman saloner eckaus fisher dornbusch
kaledin yurek wuensch kalanji toomre eager ogilie modgliani
roylance wnek sadaway ring witt rosensweig moran gifford sussman
abelson troxel ward helgason quillan macdonald scotti
beck von-novak vezza ford
zdonik caruso newman dewald iuliano roth kaplan reiche))

i; The list of course names.
!defvar *course-namesx ‘(english calculus physics chemistry geology history

biology economics computers accounting literature
psychology philosophy algebra algorithms))

;; The list of possible grades.
{defvar xgrade-listx ‘(AB CD F))

;; The list of possible class rooms.
(defvar *room-listx (3-321 34-101 26-100 10-250 4-120 4-149 9-423 43-418 51-114

51-329 13-100 26-231 38-166 38-500 12-266 18-3062 7b-111))

;; Free variables.
(defvar *xrooms#* nil)
(defvar xprofsx nil)
(defvar xfall-termsx* nil)
(defvar *spring-terms* nil)
{defvar xgradesx nil)
[defvar xnum-ftermsx (length xfall-term-namesx))
|defvar xnum-sterms* (length xspring-term-namesx))
[defvar *num-profsx (length *prof-namesx))
{defvar xfilenamex* "vx:/usr/hjb/school. links")

;; This function randomly assigns terms to a class (c) and write the
;3 link onto the file (ff).
(defun assign-terms (c ff &aux (nn *num-ftermsx))

(let ((result nil)
(link nil))

(do ((i 0.(add1 i)))
((eq i (- nn 2)))
!setq link (write-affirm (affirm c ’term (getn xfall-termsx* (get-rand nn))) ff))
(if (not (member link result))

(setq result (cons link result))))
(do ((i 0 (addl 1)))

(eq i (- nn 2)))
(setq link (write-affirm (affirm c ’term (getn xspring-terms* (get-rand nn))) ff))
(if (not (member link result))

(setq result (cons link result))))
{starter result)))

;; This function randomly assigns professors to classes given in c-array
;» and write the links onto the file (ff).
(defun assign-prof (c-array ff)

(let ((result nil)
(temp nil))

(do ((i 0 (addl1 i)))
({eq i (array-length c-array)))
(setq temp (write-affirm (affirm (getn *profs* (get-rand *num-profs*))

teaches
(getn c-array i)) ff))

(if (not (member temp result))
(setq result (cons temp result))))

(starter result)))

VX: /usr/hjb/schooltest.] 2/21/86 04:23:53 Page 2

;; This function randomly assigns courses to a number of students denoted
:; by numstu. Courses given in ccs. The links are written onto the file (ff)
(defun assign-stu-course (numstu ccs ff)

(let ((fem (starter f-names))
(mal (starter m-names))
result nil)
‘mlink nil)
.flink nil)
numc (array-length ccs)))
 (1 0 (add1 i)))
(eq i numstu))
.setq flink (write-affirm

(affirm (getn fem i) course (getn ccs (get-rand numc))) ff))
.setqg mlink (write-affirm

(affirm (getn mal i) ’course (geth ccs (get-rand numc))) ff))
if (not (member mlink result))

(setq result (cons mlink result)))
(if {not (member flink result))

(setg result (cons flink result))))
(starter result)))

;; This function randomly assigns rooms to designated classes given in
:; prof-course. The links are written onto the file (ff).
(defun assign-rooms (prof-course ff)

(let ((nums (array-length prof-course))
(num-rooms {array-length xroomsx)))

(do ((i 0 (addl i)))
((eq i nums))
(write-affirm

(affirm (getn prof-course i) ’room (getn *rooms* (get-rand num-rooms))) ff))))

;; This function randomly assigns grades to designated students and classes
;; given by stu-course. The links are written onto the file (ff)
{defun assign-grades (stu-course ff)

(let ((nums (array-length stu-course)))
(do ((i 0 (addl i)))

((eg i nums))
(write-affirm (affirm (getn stu-course i) ’grade (getn xgradesx (get-rand 5))) ff))))

;; This function randomly generates data for a school data base.
.; With relations such as: term course grade (class-)room professor
‘defun set-up (&optional (numx 61) &aux classes profs studs school)

(setq school (outfile xfilenamex))
.princ "(" school)
Isetq xprofsx (starter x*prof-namesx))
{setq xfall-terms* (starter xfall-term-names¥))
{setq *spring-terms* (starter xspring-term-namesx))
[setq *rooms* (starter xroom-listx))
(setq *gradesx (starter xgrade-listx))
(do ((cc (my-car *course-namesx) (my-car *course-namesx))

Jxcourse-names* (my-cdr xcourse-namesx) (my-cdr *course-namesx)))
 (null cc))
.setq classes (assign-terms cc school))
.setq profs (assign-prof classes school))
.setq studs (assign-stu-course numx classes school))
.assign-rooms profs school)
(assign-grades studs school))

(princ”) " school)
(close school))

VX: /usr/hjb/schooltest.] 2/21/86 04:23:53 Page 3

 3; VERSION TESTS

i; Test I
(defun class-prof (class term)

(pull-subjects (matching-links *xwildcard*
teaches
(matching-links class "term term))))

{defun p-class-prof (class term)
(p-pull-subjects (p-matching-1links xwildcardx

teaches
{p-matching-1inks class ’'term term))))

(defun p2-class-prof (class term)
(p-pull-subjects (p2-matching-links *wildcardx

'teaches
«p2-matching-links class "term term))))

‘defun p3-class-prof (class term)
(p-pull-subjects (p3-matching-links *wildcardx

'teaches
(p3-matching-links class 'term term))))

 3 Best cases for test I

(defun best-p-class-prof (class term)
(pull-subjects (p-matching-links *wildcardx

teaches
(p-matching-links class ’term term))))

(defun best-p2-class-prof (class term)
(puli-subjects (p2-matching-links *wildcardx

teaches
(p2-matching-links class ’term term))))

(defun best-p3-class-prof (class term)
(pull-subjects (p3-matching-links *wildcardx

teaches

(p3-matching-links class "term term))))

(defun stu-prof (stu)
(pull-subjects (matching-links *wildcard*

teaches
(pull-objects (matching-links stu ’course *wildcardx)))))

(defun p-stu-prof (stu)
(p-pull-subjects (p-matching-1links *wildcardx

'teaches
(p-pull-objects (p-matching-links stu ’course *wildcardx)))))

tdefun p2-stu-prof (stu)
(p-puli-subjects (p2-matching-links xwildcardx

teaches
(p-pull-objects

(p2-matching-links stu ‘course xwildcardx)))))

{defun p3-stu-prof (stu)
(p-pull-subjects (p3-matching-1inks *wildcardx

teaches
(p-pull-objects

(p3-matching-links stu ’course *wildcardx)))))

3 Test II

VX: /usr/hjb/schooltest.] 2/21/86 04:23:53 Page 4

; Best cases for Test II

(defun best-p-stu-prof (stu)
(pull-subjects (p-matching-1inks x*wildcardx

teaches
(pull-objects (p-matching-links stu ’course xwildcardx)))))

(defun best-p2-stu-prof (stu)
(pull-subjects (p2-matching-links *wildcardx

teaches
(pull-objects

(p2-matching-1inks stu ’course *wildcardx)))))

'defun best-p3-stu-prof (stu)
(pull-subjects (p3-matching-1links *wildcardx }

’teaches
(pull-ob jects

{p3-matching-1links stu °course *wildcardx)))))

; Test III

.defun st-grades (stu class term)
(format-links (matching-links (matching-links stu

course
{matching-1links class ’term term))

‘grade
*wildcardx)))

(defun p-st-grades (stu class term)
(format-1inks (p-matching-links (p-matching-1links stu

'course
(p-matching-links class ’term term))

‘grade
twildcardx)))

[defun p2-st-grades (stu class term)
(format-1inks (pz2-matching-links (p2-matching-links stu

‘course
(p2-matching-links class ‘term term))

'grade
xwildcardx)))

(defun p3-st-grades (stu class term)
(format-links (p3-matching-links (p3-matching-links stu

course
.p3-matching-links class ’term term))

‘grade
xwildcardx)))

References

1] Anderson, T.L., The Design of a Multiprocessor Development System, M.I.T. Lab-
oratory for Computer Science TR-279, 1982.

[2] Brachman, R.J., “On the Epistemological Status of Semantic Networks”, prepared
in part at Bolt Beranek and Newman Inc. under contracts supported by the
Defense Advance Research Projects Agency and the Office of Naval Research.

[3] Brachman, R.J., “What ISA and isn’t: An analysis of taxonomic links in semantic
networks,” IEEE Computer, Special Issue on Knowledge Representation, 1983.

[4] Brachman, R.J., R.E. Fikes, and H.J. Levesque, “KRYPTON: A functionsal ap-
proach to knowledge representation,” IEEE Computer, Special Issue on Knowl-
edge Representation, 1983.

5] Gray, S. L., “Using Futures to Exploit Parallelism in Lisp,” M.S. thesis, M.L.T.
Department of Electrical Engineering and Computer Science, 1986.

[6] Halstead, R.H., “Multilisp: A Language for Concurrent Symbolic Computation,”
ACM Transactions on Programming Languages and Systems 7:4, Oct. 1985, pp.
501-538.

[7] Katz, B., and P. H. Winston, “Parsing and Generating English Using Commuta-
tive Transformations,” A.I. Memo No. 667, Artificial Intelligence Laboratory of
M.I.T.. 1982.

8] Winston, P. H., Artificial Intelligence, 2nd. Ed., Addison-Wesley, Reading, MA.
1084.

“61-

