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“Abstract

Ion Bernstein wave experiments are carried out on the Alcator C tokamak to study wave
excitation, propagation, absorption, and plasma heating due to wave power absorption.
It is shown that ion Bernstein wave power is coupled into the plasma and follows the
expected dispersion relation. The antenna loading is maximized when the hydrogen
second harmonic layer is positioned just behind (to the low field side of) the antenna.
Plasma heating results at three values of the toroidal magnetic field are presented.
Central ion temperature increases of AT;/T; 2 0.1 and density increases An/n < 1 are

observed during rf power injection of up to 180kW at a frequency of 183.6 x 10851 for
plasmas within the density range 0.6 x 1020 m—3 <7, <4 x 102 m—3 and magnetic fields
2.4 > w/Qy > 1.1. The density increase is usually accompanied by an improvement in
the global particle confinement time relative to the Ohmic value. The ion heating rate
is measured to be AT;/ Py~ 2-4.5eV/kW at low densities ~ 1 x 1020 m—3. At higher
densities fie > 1.5 X 1029 m~3 the ion heating rate dramatically decreases. It is shown
that the decrease in the ion heating rate can be explained by the combined effects of
wave scattering through the edge turbulence and the decreasing ion energy confinement
of these discharges with density. The effect of observed edge turbulence is shown to
cause a broadening of the rf power deposition profile with increasing density. It is shown
that the inferred value of the Ohmic ion thermal conduction, when compared to the
Chang-Hinton neoclassical prediction, exhibits an increasing anomaly with increasing
plasma density. This increasing anomaly, which may result from the presence of the

ion temperature gradient driven instability, can essentially account for the observed ion
heating rate behavior.

Thesis Supervisor: Dr. Miklos Porkolab
Title: Professor of Physics
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12 Chapter 1: Introduction

CHAPTER

Introduction

1.1: Plasma Physics

1.1.1: Introduction

Plasma physics can be defined as the study of the behavior of interacting charged
particles in large numbers. The key words are interacting and large numbers. There
must be a large enough number of particles so that the cumulative effect of overlap-

" ping long range electric and magnetic forces is a factor in determining the statistical

properties of the particles; yet, not so many particles that the near neighbor forces
dominate the dynamics. Plasma physics is sometimes described as an extreme form
of the many body problem. Throughout the study of plasmas, the subtleties in its
statistical mechanics and kinetic theory have offered considerable challenges to physi-
cists and mathematicians and some fundamental questions have in fact not yet been
completely resolved.

The plasma state is sometimes described as the fourth state of matter, a term which
was coined by W. Crookes[llin 1879. Although somewhat imprecise, this term follows
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from the idea that on constant addition of heat, a solid will usually transform to a
liquid, then to a gas, then the gas will ionize and become a plasma. This same concept
had perhaps its earliest beginnings with the ancient philosophers who conceived of the
universe as composed of four elements: earth, water, air, and fire. Quite obviously they
must have had in mind the four states of matter represented by these elements rather
than the basic substances of chemistry.

The spectacular growth of plasma research during the last three decades has been

' caused not so much by interest in the field per se but rather by its exceptionally large

range of overlap with other branches of science and by its many applications in modern
technology. The best known and probably most challenging application of plasma
physics is controlled fusion. Some of the less publicized although clearly very important
uses of plasma physics include the direct conversion of thermal into electrical energy,
for instance in the thermionic plasma diode; new developments of intense x-ray and
neutron bursts; and the acceleration of charged particles in collective fields.

1.1.2: Thermonuclear Fusion

Thermonuclear fusion refers to the process where the nuclei of two atoms become so
close to each other that they combine to form a third, heavier nucleus. In this reaction,
some of the mass from the initial nuclei is converted into a quantity of energy far
greater than the energy initially required to bring about the fusion reaction. Ordinary
atoms very rarely undergo fusion because the electron cloud surrounding each atom
keeps the individual nuclei too far away from each other. Fusion can occur, however,
in a plasma when the fuel atoms are heated to such an high temperature that they
become ionized, that is, the electrons are no longer bound to the nuclei. The nuclei
in a plasma are free to move about independently of the electrons and interact with
each other through binary collisions where the dominant force is the Lorentz force.
This force is repulsive due to the like charges of the nuclei and tends to keep them
well separated. Under certain situations however, the nuclei can come so close together
that the nuclear force, which is attractive, overcomes the repulsive Lorentz force and
the nuclei then fuse together.

Thermonuclear plasma fusion power production relies on the idea that it is possible
to create a system in which a plasma is undergoing so many fusion events that useful
power, substantially greater than the system operating power, can be extracted. The
sort of plasma which is ideal for fusion power production must have both a high fusion
rate and the ability to sustain this high fusion rate. These two criteria can be expressed
in terms of the plasma density, temperature, and energy confinement time.

For example, a plasma which consists of a number density of n; incident nuclei and
ng target nuclei in a Maxwellian velocity distribution at temperature T has a fusion
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reaction rate given by -
R = ninsuo(u). (1.1.1)

Here, u = |v; — vy4| is the relative speed of the interacting particles, o(u) is the cross
section? for a fusion collision, and the bar indicates averaging over the particle velocity
distribution. If the incident and target nuclei are the same, the product n;n; in Eq. 1.1.1

is replaced by 1/2n?[2]. The value of uo(u) has been measured for various types of

fusion reactions(3las a function of temperature, and depending on the reacting ions,
typically achieves its maximum value for a temperature greater than 10keV. For a
deuterium—tritium fusion reaction, F(u_) reaches a maximum value of 9 x 1018 cm3s—1
at a temperature of 80 keV. Simple consideration of Eq. 1.1.1 thus indicate that a high
reaction rate is possible for a high density plasma with a temperature not far from the
value corresponding to the maximum of uo(u).

Sustaining a high fusion rate in a plasma relies on the balance of input power and
power loss. Power enters the plasma through fusion reactions, Ohmic heating, and
any additional auxiliary power inputs; power loss results from radiation, transport,
instabilities, and certain anomalous processes. In order for the power loss to be less
than or equal to the input power, the product of the plasma density, n, and the energy
confinement time, 75, must exceed a critical value. This product is known as the Lawson

Product(?] and has a critical value which is dependent on the plasma temperature and
reacting ions. For a deuterium—tritium reaction, the minimum critical value of nrg is
6 x 1019 m—3—5 This is the value for a breakeven condition. A fusion device must exceed
the Lawson n—tau value by a considerable amount to be a useful source of power.

The hope of controlled fusion is to create sources of energy that are literally in-
exhaustible, sources which will supply beyond our needs, even at an increased rate of
demand, for centuries to come. Two fundamentally different approaches to controlled
fusion are presently being researched. These are inertial confinement and magnetic con-
finement. There are two methods of magnetic confinement; closed configurations and
open configurations depending on whether the magnetic field closes upon itself or not.
The most successful of either of these magnetic configurations to date is the tokamak
(from the Russian acronym for this kind of machine, the concept for it was originally

developed by physicists in the USSR[4]). This device uses magnetic field lines in the
shape of a torus to confine the plasma particles and Ohmically heats the plasma by

t Recall that the differential scattering cross section is given by the total number of parti-
cles crossing the area that subtends a solid angle d2 at the target, divided by the incident
flux. The total cross section is obtained by integrating the differential cross section over
dn.
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~ inducing a la.rge'toroida.l current to flow through it. The Alcator C tokamak, previously
at the Massachusetts Institute of Technology, is one such tokamak experiment designed
to study a high density plasma in a large magnetic field. The various experiments and
studies conducted on Alcator C and many other tokamaks throughout the world will
hopefully provide insight into the physics and engineering aspects of building a working
fusion reactor '

1.2: Motivation for this Thesis

It has been thought for some time that heating a tokamak plasma solely via an
induced toroidal plasma current is not sufficient to bring the plasma to ignition tem-
peratures. Although this limitation is not certain, its possibility has inspired much
research into auxiliary methods of heating the plasma. Some of these methods include
neutralized ion beam injection, relativistic electron beams, and rf (radio frequency)
waves ranging in frequency from Alfvén waves to waves near the electron cyclotron fre-
quency. One particular wave heating method in the ion cyclotron range of frequencies
which has received much attention lately and looks very promising utilizes the directly
launched ion Bernstein wave.

Plasma heating via the ion Bernstein wave is an attractive heating scheme because
it is possible to use a waveguide launching structure which can easily be accommodated
between the toroidal field coils in a tokamak. In addition, power sources in the ion cy-
clotron range of frequencies are relatively inexpensive and efficient. Also, ion Bernstein
waves can heat at high harmonics allowing a waveguide launching structure to be kept
small in size. Finally, ion Bernstein waves heat the bulk ions and are accessible to the

plasma for a wide range of parallel wave numbers!S].

At this time it is still too early to say for sure whether ion Bernstein wave heating
is a good possibility for auxiliary heating of fusion type devices. More details of the
wave heating mechanisms, parametric processes, and coupling in high density, high
temperature, and large magnetic field plasmas must still be understood. At the time of
this writing, two new ion Bernstein wave experiments are presently in their early stages.
These are planned for the PBX tokamak at the Princeton Plasma Physics Laboratory
and the D-III-D tokamak at the General Atomic Company in San Diego. Hopefully,
the results of these experiments will improve the understanding of ion Bernstein waves
as a possible auxiliary heating scheme.

t The abbreviation rf will henceforth be used to indicate oscillations in the radio frequency
range of frequencies.
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1.3: Scope of this Thesis

Ion Bernstein wave experiments were conducted on the Alcator C tokamak during
the year of 1986. The purpose of the experiments was mainly to study the charac-
teristics of ion Bernstein waves as an auxiliary heating scheme in a high density, high
magnetic field plasma. In addition to this, ion Bernstein wave propagation, coupling,
and wave power absorption physics were studied. The experiments were performed
near the end of the Alcator C program at MIT and unfortunately, many interesting
results which appeared during the 1986 experiments could not be studied in greater
detail. '

This thesis presents the experimental study of ion Bernstein waves in the Alcator C
tokamak and attempts to explain through detailed analyses the causes for the experi-
mentally observed results. In particular, the behavior of the antenna-plasma coupling,
wave propagation and power absorption, and the plasma response to ion Bernstein
wave power injection are analyzed within the context of current plasma theories.

The antenna-plasma coupling was studied by measuring the antenna radiation re-
sistance as a function of plasma density, magnetic field, and rf power. The radiation
resistance exhibited a maximum when the hydrogen second harmonic layer was located
just behind (toward the low field side of) the antenna. The radiation resistance in-
creased with line-averaged density up to a density of i, =~ 2.6 x 1020 m—3, above this
density the radiation resistance decreased. A weak dependence on rf power was ob- -
served in the radiation resistance. When the rf power was increased by a factor of three
(50kW to 150kW) the radiation resistance decreased slightly by about 20%. These
measurements are compared with the results of an antenna—plasma coupling model
developed by M. Brambilla. This model, which is based entirely upon linear plasma
wave theory, predicts the observed dependence of the radiation resistance on magnetic
field over a narrow range of fields. The density dependence of the radiation resistance
may be reproduced by the model. The discrepancy outside of the narrow field range
may result from certain parametric processes which can occur near the antenna sur-
face where the electric field energy density is large compared to the plasma thermal
energy density. The physics contained in the model is described and the similarities
and differences between the predicted and measured values are discussed.

Ion Bernstein wave propagation and absorption was studied in the plasma using a
CO,, laser scattering diagnostic system. Dr. Y. Takase was responsible for operating this
important diagnostic during the ion Bernstein wave experiments. The correct disper-
sion relation was verified by mapping out the perpendicular wave vector as a function
of the minor radial position. The scattered signal showed a nearly linear dependence
on the rf power coupled into the antenna system. Power absorption was investigated
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across the w/Qy = 1.5 (w/Qp = 3) layer for two different magnetic field regimes. The
CO3 scattered signal showed a large attenuation across this layer suggesting ion Bern-
stein wave power absorption. At the higher field, broad and downshifted frequency
spectra were observed by the scattering system indicating the possibility of nonlinear
processes (parametric decay for example) in addition to wave power absorption.
Central ion temperature increases of AT;/T;0 2 0.1 and density increases of An/n<1
were observed during rf power injection of up to 180 kW for plasmas within the density
range of 0.6 x 102 m~—3 < 7, < 4 x 102 m~3 and magnetic fields within the range
4.8T<By<11T. Although the greatest ion heating was observed at a central magnetic
field of 9.3 T, heating occurred over a broad range of magnetic fields 2.4>w/Q g (o) > 1.1

(w/2r = fo = 183.6 x 108s~1) and did not show a strong dependence on having a
particular ion cyclotron resonance located near the plasma center. The density increase
was usually accompanied by an improvement in the global particle confinement time
relative to the Ohmic value and the ion temperature increase appeared to show rf power
thresholds which were dependent on the magnetic field and agreed with the theoretical
predictions within experimental error. Near densities of 7ie < 1 x 1029 m—3 rf power
injection typically produced an ion heating rate of AT;/ P ~ 2—4.5e¢V /kW. At higher
densities, fie > 1.5 x 1029 m—3, the heating rate decreased to 0.5eV/kW.

Several density dependent mechanisms are considered which may explain the de-
crease of the ion heating rate. For example, wave power attenuation due to edge colli-
sions which becomes worse at higher densities can be shown to have a negligible effect
on the wave power. The nonlinear power threshold increases with density but cannot

“account for the heating rate decrease at the low magnetic field. COg laser scattering
results show that low—frequency edge plasma turbulence increases with density. This
suggests that turbulence may scatter the ion Bernstein wave power and broaden its
radial power deposition profile. It is shown by ray tracing and power absorption mod-
eling that a normalized scattering amplitude of 7ie =fie/ne = 0.3 is sufficient to broaden
the power deposition from being centrally peaked to nearly uniform over the poloidal
cross—section. Unfortunately, accurate measurements of 7i, are not available for the ion
Bernstein wave data. Another effect which may contribute to the decrease in the ion
heating rate is that the global energy confinement time in these discharges, which is
increasing linearly with density at low densities, begins to saturate at higher densities.
This saturation is caused by increased coupling between the ions and electrons and
an increasing anomaly in the ion thermal conduction compared to the Chang—Hinton
neoclassical prediction. The mechanism causing the increasing anomaly may be due to
increased ion thermal transport caused by ion temperature gradient driven instabilities.
It is shown that the increasing ion thermal conduction anomaly causes the ion energy
confinement to degrade with increasing density contributing to the observed decrease
in the ion heating rate.
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1.4: Thesis Outline

The first part of this thesis is intended to outline the general characteristics of
ion Bernstein waves for both the reader who is entirely unfamiliar with this particular
plasma oscillation as well as one who is quite familiar with plasma waves in general.
Properties of the wave ranging from its dispersion in homogeneous plasma to ray tracing
and power deposition in a weakly inhomogeneous plasma are described in Chapter 2.
The remaining chapters and their subjects are as follows. The third chapter describes
the MIT Alcator C tokamak, the ion Bernstein wave antenna system, and additional
equipment and diagnostics important in the ion Bernstein wave experiments. Chapter
4 presents the experimental results. The heart of the experimental analyses and inter-
pretation is given in Chapter 5. Finally, Chapter 6 reviews the results, presents the
conclusions, and offers suggestions for future work. - :
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CHAPTER 2

Description of lon
Bernstein Modes

2.1: Introduction

The study of ion Bernstein modes originated out of the early work on electrostatic
modes in a magnetized plasma which is discussed in detail by E. P. Gross[I](1951),
V. A. Bailey(2(1951), G. V. Gordeyev[3](1952), I. B. Bernstein[4/(1958), and H. K.

Sen[5](1952). Bernstein (1958) first obtained the dispersion relation for ion Bernstein
waves and showed that there are two types of waves depending on the departure from
exact perpendicular propagation across the magnetic field. One type, known as a pure
ion Bernstein wave, propagates almost perpendicularly to the magnetic field so that the
electrons are nearly stationary. The other type called a neutralized ion Bernstein wave,
propagates at an angle to the magnetic field which is close to perpendicular; however,
the electrons are not stationary but move along the magnetic field lines so as to be in
Boltzmann equilibrium with the wave potential. This wave is also referred to as an
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electrostatic ion cyclotron wave. These two domains of wave propagation are separated
by a region where the waves are electron Landau damped. Neutralized ion Bernstein

waves have been observed by E. R. Ault and H. Ikezil®, J. P. M. Schmitt[7], and Y.
Ohnuma, S. Miyake, T. Sato, and T. Wataril8]. Pure ion Bernstein waves were first

observed by J. P. M. Schmitt(%)in a potassium Q-machine plasma column. Schmitt
excited the waves with a long wire carefully positioned along the magnetic field line in

the center of the plasma column. S. Puri{19first suggested using directly launched ion
Bernstein waves to heat a tokamak plasma. Experimental study of directly launched ion

Bernstein waves was first done by Skiff et al[11,12,13] o the Princeton ACT-I torus.
Plasma ion heating using directly launched ion Bernstein waves was first done by Ono

et al.l14on the JIPPT-II-U tokamak in Japan and then similar heating experiments

were performed on the PLT{15land ALCATOR C[18] tokamaks. The experiments on
JIPPT-II-U showed ion heating at odd half-integral harmonics of the ion cyclotron
frequency. Two theories of nonlinear plasma heating by ion Bernstein waves have been

suggested by Abel17land Porkolabl18lto explain this result.

A general intuitive understanding of ion Bernstein mode characteristics can be
obtained by considering small amplitude wave perturbations near the ion cyclotron
frequency in an infinite, homogeneous, fully ionized, finite temperature, and magnetized
plasma. A simplified plasma of this sort provides a way to examine these modes in a
detailed way without introducing the complications of an inhomogeneous plasma. The
intuition developed in this simplified theory can then be useful in generalizing the
theory of ion Bernstein modes to inhomogeneous plasma.

The ion Bernstein mode is essentially a sound-like mode which propagates at fre-
quencies between the harmonics of the ion cyclotron frequency. Consequently, the
mode can only exist in a finite temperature plasma where the cliarged particles cir-
culate about the magnetic lines of force on orbits with finite gyro-radii. These orbits
cause the particles to behave not as point charges, but rather as charges smeared out
over the particle’s gyro—orbit. Finite temperature allows the particle to sample a region
of the plasma rather than a single point. The results are that the particle experiences
an average of the electromagnetic plasma fields over one gyro—orbit and the particle
may come into resonance with the plasma fields under certain conditions. Although
present in any finite temperature plasma, these effects are especially important for the
ion Bernstein mode because the mode’s wavelength perpendicular to the lines of force
is of the same order of magnitude as the ion gyro—orbit radius. As a result, an ion can
experience significantly different electromagnetic fields at different points in its gyro—
orbit; this difference is strongly dependent on the ratio of the wave frequency to the
particle’s gyro—frequency.



22 Chapter 2: Description of lon Bernstein Modes

The outline of this chapter is as follows. Section two outlines the governing equa-
tions for waves in a plasma. Section three describes the linearization of the governing
equations and outlines the procedure for deriving the wave equation in an homoge-
neous plasma. The dielectric tensor is also given in detail in section three. Section four
discusses the characteristics of the three ICRF modes by analyzing a simplified wave
equation. Section five discusses in particular, the ion Bernstein wave characteristics.
Section six gives a brief review of the recent models which describe ICRF wave propa-
gation in an inhomogeneous plasma; special attention is given to the Brambilla model.
Section seven describes ion Bernstein wave ray propagation and damping. Finally, sec-
tion eight gives a review of nonlinear plasma wave effects on the ion Bernstein wave and
discusses nonlinear wave absorption processes important for the ion Bernstein wave.

2.2: Electromagnetic Wave Propagation in a Plasma

Wave propagation in a plasma is described by the following Vlasov—Maxwell equa-

tions:
V-E=4mp : (2.2.1)
V-B=0 ' (2.2.2)
1B
VXE= —:E (2.2.3)
10E 4n

VxB=-72r+—J (2.2.4)

Ofa 1 1 Ofa _
5 T - Via +— [F + 9a(E + -V X B)] v = (2.2.5)

The subscript a refers to the particle species, mq is the mass, and g, is the charge.
Equations 2.2.14 are the standard Maxwell equations that describe electromagnetic
phenomena. Equation 2.2.5 is the collisionless Boltzmann equation or Vlasov equa-
tion which describes the motion of the single particle distribution function fu(r,v,t)
in phase space and offers a precise description of the plasma in the fluid limit. A
probabilistic interpretation of f, is as follows: The probability of finding a particle
within the phase space volume A3rA3v centered around the phase space point (r,v) is
P(r,v,t,A3r, A3v) = fu(r,v,t)A3rA3v/N where N is the total number of particles in
the system. The quantity F in Eq. 2.2.5 contains all nonelectromagnetic forces (which
satisfy Vy - F = 0) such as gravity and will be neglected here.
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The local particle space density is obtained by integrating f, over v

/ B folr, v, t) = na(r, b). (2.2.6)

The total charge and current densities are obtained from f, through the following
constitutive relations

p(r,t) = pext + Z 9a / d3v falr,yv,t) (2.2.7)
J(r,t) = Jext + E da / d3v v fa(r,v,t) (2.2.8)

where pext and Jext are the externally imposed charge and current density. The Maxwell
equations determine the fields E and B which then determine the single particle distri-
bution function f, through the Vlasov equation. The distribution function f, deter-
mines the charge and current densities, which are sources of the electromagnetic fields,
closing the system of equations.

Particle collisions enter the Boltzmann equation through the term (Qg{)cou which

'ma.y be added to the right side of Eq. 2.2.5. The time required for a region of plasma

particles of volume lfn fp (where [, ¢, is the collisional mean free pa.th)' to equilibrate

is denoted as . This time is typically of the same order as the collision time between
two particles of type a, T ~ 1/vo where v, is the collision frequency. Collisions may
be neglected in describing plasma modes provided that the typical mode wavelength
A << l;psp and the mode frequency fo = wo/27 >> vq.

2.3: Linear Plasma Wave Theory

2.3.1: Introduction

The system of equations (Egs. 2.2.1-5) is implicitly nonlinear due to the product
of E and B with f4 in Eq. 2.2.5. A solution can be obtained for small amplitude linear
modes by assuming perturbations of electromagnetic field and plasma quantities about
a zero order equilibrium solution. An appropriate perturbation parameter, €, is the
ratio of the perturbed wave energy density to the plasma thermal energy density. A
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small value of € indicates that the equilibrium plasma parameters and particle orbits
are not affected much by the presence of the wave.

A quantity Q can thus be expanded in € as
Q(r,v,t) = QO(r, v,t) + eQ®)(r, v, t) + &Q@(r,v,t) + - (2.3.1).

First order quantities describe wave propagation, damping, and growth of a small
amplitude wave. Second and higher order quantities describe nonlinear effects such as
wave—wave coupling and wave-wave-particle coupling. These higher order nonlinear
phenomena are discussed in more detail in section 8 of this chapter.

2.3.2: First Order Wave Equation

The zeroth order Vlasov equation is written as,

©
Dl’;t = [aat +v. V4= (v X By) - v.,] f@=0 (2.3.2)

where & is the operator in braces and indicates differentiation along the unperturbed

single particle phase space trajectory. The solution for f{ is an arbitrary function of
the constants of motion for a single charged particle moving in a background magnetic
field Bg. Collisions are usually important in determining the form of the zeroth order
distribution function. This is because there is no short time scale 1/w introduced by
the wave frequency at this order which would ordinarily justify ignoring collisions.

Equating terms from Eq. 2.2.5 which are proportional to € gives

@ £
Dét: - :‘G (E® + lv x BW). ‘f (2.3.3).

The solution for S is obtained by integrating Eq. 2.3.3 along the unperturbed particle
orbits(1%], The result for F) is expressed in terms of this integral as
(1) — 9 t ! | m@) ’ ) (! 4 af )
fa(r’v’t)——m— dat' |[EM(x, t)+-v x BW(x',¢)]| -
-0

a

(2.3.4).

The details of evaluating this type of integral are given in Ref 19. Once f®)(r,v,t) is
known, the perturbed current density is obtained through the relation

JO = Eq“ f d3vvid(r,v,t) (2.3.5).
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This current is the self-consistent source of the perturbed electric field in the first order
wave equation[1®] obtained from Egs. 2.2.14

1 32 47 9
VXV )y . RO = _____ [ JO (1)
X X EW 4+ 35 E 29 [ +J “t] (2.3.6).

The wave equation together with the equation for the perturbed current completely
describe linear waves in a fluid plasma. These equations, in general, are quite difficult to
solve; however, a completely analytical solution can be obtained by assuming that the
plasma is homogeneous and that the zeroth order distribution function is a Maxwellian.
These assumptions are not far from being realistic and they provide a starting point
for understanding the complex nature of this wave equation.

2.3.3: The Wave Equation in an Homogeneous Plasma

The plasma is assumed to be homogeneous with only a zeroth order static magnetic
field oriented in the Z direction with a negligible zeroth order electric field and current,
Bo=B¢ 2, Jg=0, Eg=0. As a result, there are only two constants of the particle motion

and £ is a function of the particle velocity parallel to the background magnetic field el
and the energy perpendicular to the field v2 Collisions are important in determining

the analytic form of f{’ and when included, the most general solution for f? is a
Maxwellian distribution of velocities. Often, in rf heating and neutral beam heating
experiments, a two temperature Maxwellian velocity distribution is observed

1 —v2 /p3 1 —vi/v3
—_——e V1 /YL ——— Vi ta) 2.3.7
(o2, ) (o2, )1/ (2.3.7)

fq(:o)(sz.’ .,,") =Ny

where vfa_L = 2T, | /mq and vfa" = 2T,|/ma are the thermal speeds of the plasma
particle perpendicular and parallel to the background magnetic field and n, is the

particle number density. A two temperature distribution function is more general and
does not introduce much additional complication into the analysis.

In addition to assuming that the plasma is homogeneous in space it is also assumed
to be stationary in time. This means that a nonlocal physical quantity (a quantity
such as the electric field which depends on long range particle fields in addition to local
fields), is not explicitly dependent on its space-time position (x,¢) but is only dependent
on the separation between its space-time position and that of other plasma particles
(x’,¢'). This allows Fourier decomposition in space and Laplace decomposition in time
of the electromagnetic and plasma quantities. A quantity Q(r,t) and its transform
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Q(w,k) are related through the following equations[zo]as

Q(r,t) = / duw f d3k Q(w, k)eiler—wt) (2.3.8)

(2 (22
Qw, k) = @ )2 / dt / &3z Q(r,t)e—tkT-wt) (2.3.9)
Applying this transformation to the wave equation gives

drriew
e (O (2.3.10)

kxkxBO 4+ < [E(i) + —.1(1)] =-—
C

It is possible to express J() in terms of E®) through Eq. 2.3.5 and therefore Eq. 2.3.10
can be solved for E®). From this point onward, all quantities will be considered trans-
formed quantities, unless specifically stated, and they will be represented without a
tilde (7).

2.3.4: Dielectric Tensor

Equation 2.3.10 expresses three algebraic equations for the three transformed elec-
tric field components. The second term on the left side of Eq. 2.3.10, the term which
contains the displacement and particle currents, can be rewritten as a 3 x 3 matrix
multiplying the electric field which is represented as a column vector. This matrix is
defined as the dielectric tensor K;; and is defined here as19]

KB =E + —1J; (2.3.11)

To obtain an explicit form for K;;, the coordinate axis is first positioned so that Z is
along the equilibrium magnetic field and k lies in the z—z plane. The vector k is now
expressed as k = k) X + kZ where L and || refer to the orientation with respect to the

magnetic field. The tensor K;; is obtained by performing the integrals in Eqgs. 2.3.4-5
and can be represented in matrix form[21las

—|+E Z/ 2'UJ_d'UJ_/ dv)|

a n=—00
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2 .03 2
"Tg:J,EPM 0 InJtPra 50 T3Qna
X | —i%Fay | JoJtPra  QalviJalPra  —ifa¥ 10} InttQna (2.3.12)

2 .
%‘”"J?;Pna zﬂav _Lv"J ,;J:‘PM QavﬁJ ﬁQm

where,

w2 v w
— pa L 1l
Ppo =2m (wﬂa) @ — Q- k"v" (2.3.13)

(2.3.14)

| is the unit matrix, w/2x = f is the wave frequency, J, is the Bessel function of order
n with argument kv, /Qq, and J}, is the derivative of J, with respect to its argument.

The wave equation can now be written asl(19]

4miw

LR — “1.
G,JEJ- ="z J,(m) (2.3.15)
where G;; is represented in matrix form as
ch - ﬂﬁ sz Kzz + n_Ln"
G= Kyz Kyy — n? Ky (2.3.16)
Kzz + nJ_n" sz Kzz - n_zL

and n = %"- andn; = %‘- are the parallel and perpendicular indices of refraction.
In the absence of external driving currents, Eq. 2.3.15 becomes

G4E) =0 (2.3.17)
and nontrivial solutions for E(*) exist only if
det [G(w, k)] = 0. (2.3.18)

Equation 2.3.18 describes the possible normal modes of plasma oscillation, w(k), with
k being complex, denoting spatial growth or damping of the mode. Once w(k) is
known, one can solve for the eigenvectors of Eq. 2.3.17; these represent the electric
field polarization of each mode.
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The elements of the tensor K can be easily obtained for an isotropic (T = Ty)
Maxwellian zero order distribution function and are given here as follows

(- <] (02 2
Kez=1+ Ea: ,.Z_:m ﬁ:—afne"’“ CoaZ (Cna) (2.3.19)
oo w2
Kpy=—i za: ,.g_:mnﬁ [In — I1] e %002 (Cna) (2.3.20)
S u_)?ﬂ ‘ba 4 Qa
Kpz = — ;ng—:mn B Ine™"(0aZ' (¢na) Ero (2.3.21)
oo w2
Kyy=Kea+d. 3 B e [In - I] e (00 Z (¢na) (2.3.22)
K . - :’?E 1] ,—ba ' k) via
yz = —1 Z Z w2 [I‘n - In] e " *CoaZ (Cna)z_na- (2.3.23)
s 2
Ki=1-% % fﬁzne-baco,,gmz'(cm) (2.3.24)

with, Kyz = —Kzy, Kzz = Kz, and K:y = —Ky;. In the above relations, the plasma
frequency is defined as

4mnqaq?
wi, = ﬁ, (2.3.25)
In is the modified Bessel function of order n with argument b, = kipﬁ where p,, is the
particle Larmor radius

=1 %a

P = Va0

The cyclotron frequency if defined as Qo =gqB/(mqc). The plasma dispersion function

of Fried and Conte(2lis written as Z (¢na) and has the argument
_w—nil,

Cna =

(2.3.26)

e (2.3.27)

Derivatives of functions are denoted with a prime such as I, or Z’ (¢na); these deriva-
tives are taken with respect to the argument of the function.
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2.4: The Three ICRF Modes in a Warm Plasma

2.4.1: Introduction

The term ICRF, which represents Ion Cyclotron Range of Frequencies, is used to
refer to the electromagnetic frequency range near the ion cyclotron frequency or its
first few harmonics. The following discussion will direct the study of Eq. 2.3.18 to
the three modes in the ICRF (fast mode, slow mode, and ion Bernstein mode) for an
homogeneous, isotropic Maxwellian, and magnetized plasma.

2.4.2: Approximations to the Wave Equation

Equation 2.3.18 represents an analytical, yet still somewhat complicated form of
the dispersion relation. Analysis of the dispersion relation is facilitated by first making
several approximations. These approximations greatly aid the analysis of the dispersion
relation while still retaining the basic physics of the three plasma modes.

Equation 2.3.18 is first expanded to only a few terms in two parameters. The first
parameter, by, is small when the plasma is considered to be warm so that a charged
particle’s Larmor radius is small compared to the perpendicular wavelength of a plasma

wave. This allows the modified Bessel function to be expanded for small argiment(23]

Io(ba)e™ba =1 —by + z-bﬁ + -+ 0(b3), | (2.4.1)

Li(ba)e=b= = %ba - %bi 4o 4 O(B), (2.4.2)

L(ba)e b= = %b’i + -+ 0(b3), (2.4.3)
by —ba Co ba 2k+n 1

In(ba)e b, =e b kgo (?) m ' (2.4.4)

The second expansion parameter is k"vte/w which, when small, indicates that the

wave parallel phase velocity is much greater than the electron thermal velocity. This
condition assures that the electrons cannot move quickly enough along the lines of force
to short out the parallel electric field (E") of the plasma wave. This limit is known as

the cold plasma or fluid limit as opposed to the isothermal limit (k"'vte Jw >>1). This

29
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description is also true for the ions; however, fluid ions do not affect the wave character
as significantly as the electrons. As a result, the plasma dispersion function Z({na)
can be expanded in the asymptotic limit for real argument (nqo as

1 . 3 15
2%, Haa 8Ga

Z(lna) = — c; [1 + +-- ] +iv/me$na (2.4.5).

According to the above limits, the dielectric elements are approximated as

3w2 N2 :
Kezg~S— { P2 ba
=5 D\ @ -

—i[(1 = ba)L{, +bald] } (2.4.6)

K iD—i Z{ i AL b
~ —iD —1i
i = w(w? - 02)(w2 - 402)by

— i [(1 —2ba)L, + balg,] } | (2.4.7)

w2 N2 k Q
Kpg~n—Sd_Zpace Clly o ; "l g pi- 2.4.8
- g{("’z‘ﬂﬁ)z ko g e (248)

w2 02(w? + 802)
Kpy~S-— { px o X __p
w8 = 2\ At - )R- 40D

— i [2baLoq + (1 + ba)L, + bal,] } (2.4.9)

o ky Q. w2, (02 — 3w?)
O Pyt
a [

+iFLvta 12— 3ba)Lh, — (1 - 3be)LE (2.4.10)
20, |2 “

wezgﬂi
a
1
+i3 {Lge + ba [~Loq + L1t }} (2.4.11)

where S, D, and P are the Stix[18] parameters defined here as
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2
S§=1-Y" _Ypa_ (2.4.12)
a
ay |
D=Y"_Ypa Q& (2.4.13)

2
P=1-— E :’? (2.4.14)

' 2

LE = %“"-‘/T; [e-fr’m- + e-¢3m] (2.4.15)
- 2

L = ~22 (o0 /r [¢mae=ha + C-mae™¢2ma]. (2.4.16)

replaced with a +. [t is pointed out that since the sum over cyclotron harmonics is
only carried out to the second harmonic in Egs. 2.4.6-11, the basic physics is retained

It is next useful to assume that the plasma jon kinetic pressure is small compared
to the total magnetic pressure (i.e., low beta approximation)

8mn; T
B = B; t

<<1 (2.4.17).

The effect of K,: and Ky is small in this case and both of these elements can be
neglected. In addition, the finite B; terms (terms Proportional to b,) in all of the
dielectric elements except K 5 can be neglected. This can be Jjustified since the finite
B term in K2z is essential for the existence of the ion Bernstein mode, whereas the
finite 3; terms in the other dielectric elements only produce order B; corrections in the
already existing fast and slow plasma modes,

2.4.3: Ion Cyclotron Dispersion Relation

The dispersion relation, Eq. 2.3.17, with the above approximations now takes the

following form/[24]

Tn§ +Ant —Bn2 1o 0 (2.4.18
L L L

where
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1w?v2 3w2_02
T= ‘—-’3{ s +i[L}, - LE } 2.4.19
o 2 Qg c2 (w2 - Qg)(mg - wz) [ lx 2a] ( )
A =S® _T(S® 4 p® — "ﬁ) (2.4.20)
B = (§™ - nf)(S™ + PO — TP®) — DM (2.4.21)
C=P® {(S® ~nf)? - D2} (2.4.22)
and

S®=5+i ) L, (2.4.23)

a=ion
D®=D-i } Lj, (2.4.24)

a=ion
P® =P “E%Li:a- (2.4.25)

[+ 4

Note that the sum over a is carried out for the ion species only except for P(*) which
includes Landau damping from the electrons. Equation 2.4.18 is written as a cubic in
'nﬁ_ since the parallel wave number k) (n") is generally specified as a boundary condition
which is determined by the antenna structure, while the dispersion relation determines
ni. Beyond this point the superscript (*) will be dropped from the Stix parameters
and the Landau damping term will be assumed to be included.

Equation 2.4.18 describes three plasma modes. Each mode consists of one electric
field polarization (eigenvector) associated with two equal but oppositely directed per-
pendicular wave vectors (the equation is unchanged for n; = —n | ). For example, the
electric field for the mode M is written as

E,
Ep(z,2,t) = (E,,) [eiki-’ + ce-*m] eilkyz—wt) (2.4.26)
‘ 5/,

where (Ez, Ey, E;) s is the eigenvector of the mode and C is an arbitrary complex
constant. In a cold plasma where T is identically zero Eq. 2.4.18 describes the well
known fast wave and slow wave modes. These are the electromagnetic modes one
obtains in an anisotropic dielectric medium, the anisotropy arising from the D. C.
magnetic field. When the plasma has finite temperature, T (Eq. 2.4.19) is nonvanishing
and a third sound-like mode results which is the ion Bernstein mode. This mode is
described as sound-like since most of the wave energy is in the sloshing motion of the



Section 2.4: The Three ICRF Modes in a Warm Plasma 33

ions and only a small fraction of the energy is in the electric and magnetic fields. This
will beAshown later in section 2.5

A\ 2
In a high density plasma where (%_E) >> 1 the three modes are well separated in

nﬁ_ and the solutions to Eq. 2.4.18 can be approximated as

nilr>g (2.4.27)
B
nd|s~ 1 (2.4.28)
A B
n?|g~ T3 (2.4.29)

Here, the subscripts F, S, and B represent the fast, slow, and ion Bernstein wave
modes. In general, P >> S, D, and, assuming that S — nﬁ # 0, Egs. 2.4.27-29 can be

simplified further to

2 g __D?
"’.LlF ~S— n" - :S-'——Tﬁ (2.4.30)
(S —n2)P
n?|g~ _s"_ | (2.4.31)
S P 1
2. _S_ P o 179 9
nilpx -z +gnl+s [D?+ 75 (s -n)]. (2.4.32)

2.4.4: Electric Field Polarization

The electric field polarization of the modes can be approximated from the above
dispersion relations as

D ’ P(S—n3)
3 o .
= Wi i
Ep~E,r 1 i Bs~Eyg 1 i Eg~Eyp 1 . (2.4.33)
i ﬂJ_ﬂ.“D iﬂ_x_(s—ﬂ’“) _inLn“
P(S-nj Dy b

The fast wave electric field is elliptically polarized in the z—y plane and has a small
component in the % direction. This mode is partly longitudinal and partly transverse
as

|- E|p ~ i X E|p. (2.4.34)
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where i1 is the unit vector in the direction of n= ﬁk. The value of nﬁ_ for the slow wave

is large and negative for w 2 §);, thus the wave is evanescent (cut—off) in the L direction.
The electric field has a large E; component, a somewhat smaller E, component and a
very small Ey component. This mode is also partly longitudinal and partly transverse
as can be seen from

|- E|s ~ |i X E|s. (2.4.35)

The ion Bernstein wave has a large and positive value of nﬁ_ indicating that the wave has
a slow phase velocity (compared with the velocity of light ¢) across the magnetic field.
The wave electric field has its largest component in the X direction, a somewhat smaller
component in the Z direction and a very small electric field along the y direction. The
wave is almost entirely longitudinal as can be seen from

|f-E|g >> | X E|p. (2.4.36)
The wave field and wave vector are nearly parallel and can be simply related as
E~ —tk¢=-V¢ (2..4.37)

which shows tha_t this mode is electrostatic in nature.

The above is only a brief description of the characteristics of the three basic ICRF
modes in a warm plasma. The next section focuses on the ion Bernstein wave and
discusses its characteristics in greater detail.

2.5: lon Bernstein Waves

2.5.1: Introduction

As was indicated earlier, the ion Bernstein wave is primarily electrostatic in nature
so that
IB®| = |n X EW| << |[EM)|. (2.5.1)

and the wave magnetic field energy is smaller than the wave electric field energy by a
factor of the plasma ;. Using the electrostatic character of the ion Bernstein wave a
simplified dispersion relation can be derived starting from the Vlasov—Maxwell equa-
tions. The details of this derivation are given in Ref. 19. Detailed characteristics of the
ion Bernstein mode are obtained by studying this dispersion relation numerically and
analytically. The remainder of this section will describe the characteristics of the ion
Bernstein mode by studying the behavior of the electrostatic dispersion relation.
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2.5.2: Electrostatic Dispersion Relation

For an isotropic Maxwellian distribution of velocities the electrostatic dispersion -

relation can be written as[19]

. %2 b
e(k,w) =1+ ; ;2—”?: [ k"vt E In(ba)e % Z(Cra)| = (2.5.2)
where -
k4 vi,
ba = 621-& ‘ (2.5.3)

and the other terms are defined in section 2.3. Equation 2.5.2 is the dispersion rela-

_tion of magnetized warm electrostatic plasma modes and gives a relation between the

frequency w and wave number k of the wave. When the frequency w is near the ion
cyclotron frequency, e(k,w) describes electrostatic ion Bernstein modes.

Equation 2.5.2 can be rewritten exactlyl1?] as
1 (12 2
(le,w) = 73 {k"K,, + k3 Koz + 2kyk _LK,,} | (2.5.4)

where expressions for K;;, Kz;, and K, ha.vé already been given. In terms of S, P,
and T, which were given in section 2.4, € is approximated as

(kL) = % [P+ (s+n3T)} (2.5.5)

where the terms from K, have been neglected. Setting this to zero (for normal modes)
and solving for nﬁ_ gives
P

n? ~ —% + §n’lzl (2.5.6)

This is almost exactly the same result as that obtained from the fully electromagnetic
dispersion relation (Eq. 2.4.32). It is expected that both results agree for small k p;
since this is equivalent to §; << 1 and electromagnetic eflects are negligible in this
regime. Once again, this dispersion relation is only valid for |w| < 2Q;.

2.5.3: Wave Propagation and Wave Damping

Figure 2.1 shows a plot of w/Qy vs. k| py for the electrostatic ion Bernstein wave
in a hydrogen plasma. The figure shows that the ion Bernstein wave propagates be-
tween integral harmonic bands of the hydrogen ion cyclotron frequency. At the higher
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frequency end of each band the mode is cut—off (k;, = 0) and at the lower frequency
end of each band the mode experiences a resonance (k| — oo) with the hydrogen ions.
It is assumed that the applied frequency fo = w/27 is real and any wave damping or
growth arises from an imaginary part in k; so that the wave damps or grows spatially.
In a collisionless plasma, a finite value of k" is necessary for k; to acquire a nonzero
imaginary part. The effect of increasing k) is shown in Fig. 2.2 . Each sub—figure
shows the ion Bernstein wave dispersion relation in a hydrogen plasma with 1% deu-
terium (np/n(y,p) = 0.01). The value of k| is zero for the first sub—figure and its
value is increased in steps until w/ k"vte = 1.5. Figure 2.3 shows the corresponding
value of the perpendicular group velocity dw/0k;. As the wave approaches (toward
decreasing w/{ly) the location of an hydrogen harmonic, it’s perpendicular group ve-
locity decreases. As a result, the wave energy density increases and wave power may be
absorbed, transmitted, reflected, or converted to another plasma wave through some
linear or nonlinear process. In the region between the dispersion curve (e = 0) and the
upper cyclotron harmonic in each band, € is positive. Between the € = 0 curve and the
lower harmonic, € is negative. As the value of k| is increased (and electron shielding

becomes important) the entire dispersion curve shifts upward toward the region of € >0.

Figure 2.4 shows a comparison between the electrostatic and electromagnetic ion
Bernstein wave dispersion relations as a function of 8;. The difference is most apparent
when 3; exceeds about 0.25 and is seen most significantly in the value of Im(k, ). Above
Bi ~ 0.25, the electrostatic approximation overestimates the electron Landau damping
due to the neglect of important electromagnetic terms in the dispersion relation.

In a low density (w;.-/ﬂ? << 1), low temperature plasma, the ion Bernstein wave

becomes an electron plasma wavel25]with the dispersion relation

2—-11.2‘1’?E (2.5.7)
ﬂ_L—- "wz. «Js

This dispersion relation is shown graphically in Fig. 2.5 . Near an ion cyclotron har-
monic where finite Larmor radius effects are most important, the dispersion curve is
unaffected. This shows that the electron plasma wave is insensitive to finite tempera-
ture effects.
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Figure 2.1 —(a) Dispersion relation of the ion Bernstein wave in a hydrogen
plasma. (b) Perpendicular group velocity of the ion Bernstein wave. Plasma
parameters: ng =2 X 109m~3, Ty =900eV, T. =1600eV, f = 183.6 x 10%s~1,
k) =0.1 cm™1,
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Figure 2.3 —The effect of increasing k; on the ion Bernstein wave dispersion
relation. (a) k) = 0. (b) ky = 0.08. (c) ky = 0.16. (d) ky = 0.32. Plasma
parameters: n, =2 X 10 m=3, Ty =900eV, T. =1600eV, f = 183.6 x 10851,
np/nu4p = 0.01.
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Figure 2.3 —The effect of increasing ky on the ion Bernstein wave perpendicular
group velocity. Plasma parameters are the same as in Fig. 2.2 . (a) k) = 0. (b)
k" = 0.08. (C) k" = 0.16. (d) k“ = 0.32.
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Figure 2.4 —Electromagnetic and electrostatic ion Bernstein wave dispersion
relation for several values of 8. (a) Ay = 0.25, Tup = 900eV, T, = 1800 eV.

(b) By = 0.5, Ty,p = 1800eV, T, = 3600eV. (c) By = 0.75, Tu,p = 2700 eV,

Te = 5400eV. (d) Bx = 1, Tu,p = 3600eV, T, = 7200eV. Plasma parameters:

ne =7 x 101 m—3, f =30.5 x 10°s~1, k) =0.03cm™1.
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Figure 2.5 —(a) The electron plasma wave dispersion relation and (b) perpendic-
ular group velocity in a pure hydrogen plasma. Plasma parameters: Ty =40 eV,
Te =40eV, ne =4 x10°*m—3, f =183.8 x 109s—1, ky =0.1 cm™1.
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In a high density plasma where wpi/f1; >> 1 the ion Bernstein dispersion relation

is approximated for a single ion species plasma as [28]

2 _ 2
= ] +nﬁG(w,B) (2.5.8)

and n_zL is a linear function of the inverse ion temperature. The function G is only
dependent on the frequency w and the magnetic field B. Typically, the first term
on the right of Eq. 2.5.8 is much larger than the second (the second term is ignored
in Ref. 26). This result allows the ion Bernstein wave to be used as a temperature

diagnostic[zei 27] by relating the measured value of n to the local ion temperature. If
the magnetic field is held constant, changes in T; can be measured.

If the magnetic field is reduced to zero the ion Bernstein wave becomes a Bohm
and Gross wavel28lwith the dispersion relation

e(w,k)—l—E—E[ % — ] (2.5.9)

This is a similar limit obtained when the frequency w becomes large compared to the
electron cyclotron frequency but not large compared to the electron plasma frequency.

All of the approximations made to the ion Bernstein wave dispersion relation
(Eq. 2.5.2) so far assume that both the ions and electrons are in the fluid limit (see
subsection 2.4.2). The electrostatic ion cyclotron wave dispersion relation (also called
the neutralized ion Bernstein wave) can be obtained by assuming the fluid limit for the
ions (kvti/w << 1) and the isothermal limit (w/kjvte << 1) for the electrons. The
dispersion relation in this case is written as

w2 w? Q?
e(w,k) = { 14+ — ) [02 kJ_ 02] } (2.5.10)

where C2 = Z?Te/m,- is the plasma sound speed and Z; is the atomic charge of the

ion species. This mode is only weakly electron and ion Landau damped. This can be

understood by noticing that the Landau damping term in Eq. 2.5.2 is proportional to
¢oa €xp[—¢Z,). This term is linearly small in (o4 for g << 1 and exponentially small
in Cga for (9o >> 1. Thus, for the electron and ion limits assumed, the Landau damping
is negligible. It is pointed out that for values of {p, between either the isothermal or
fluid limits, (g exp[—(?,a] may no longer be small and Landau damping can become
strong.
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2.5.4: Linear Wave Damping

Linear ion cyclotron damping and electron Landau damping of ion Bernstein waves
is most clearly explained by considering the damping process in an inhomogeneous
magnetic field as is the case in a tokamak. In such a geometry, the radial dependence
of the magnetic field causes the damping region to be radially localized and separated
from undamped regions nearby (such as the wave launching region).

The ion Bernstein mode within an inhomogeneous plasma is properly described
with a complicated integral equation. The plasma is inhomogeneous and Fourier and
Laplace transforms are not useful in the direction of the inhomogeneity. In spite of
this mathematical difficulty, a good approximation to the complete solution can be ob-
tained. The ion Bernstein wave has a perpendicular wave length A | which is typically
much smaller than the scale lengths of tokamak plasma parameters, especially within

the central plasma, and this justifies application of the WKB approxima.tion[zg]to the
electric field. Note that the WKB approximation is different than the weakly inhomo-
geneous approximation which is discussed in the next section. The physical essence
of the WKB approximation is that the fractional change in the wave vector k (due to
changes in plasma parameters) over a distance of about one wavelength is small. This
is expressed mathematically as

1 b))
J(z‘l) az‘l

Ink; (z,)] <1 ‘ (2.5.11)

where i,j = z,y, orz. Using the WKB approximation, the spatial dependence of the
electric field can be written as

E(z,z) = E(zq) k'L(E:O)) e tkiz e 'f- ki (=) da! (2.5.12)

where k| () is obtained from the local dispersion relation e(k , k||,w, z) and all plasma
quantities are evaluated at the position 2. The WKB approximation given in'Eq. 2.5.11
leads to no reflection of power as the ion Bernstein wave propagates through the plasma.
A good estimate of local power absorption (for one spectral component) can be made
over a region extending from position zg to z using this approximation. This is done

- by calculating the total power in one spectral component as a function of z which is
given approximately by

2 ae(z)

Py o(z) = Sy u(z) A= |EJ.k,w( )| (2.5.13)
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where Sy ,(z) is the ion Bernstein wave energy flux and A is the effective area of a

wave phase front. Within the WKB approximation, the strongest spatial dependence
" in Eq. 2.5.13 comes from the term |E_ |2 and has the form exp[Im k (2)]. The spectral
power as a function of z can thus be written from Eq. 2.5.13 as

-2 :o dz Im(k  (=)]

Py u(z) = P(zo) e

From this, the power transmitted and absorbed is easily obtained. Fig. 2.6 (a) is a

(2.5.14)

plot of k_2L/5 for the ion Bernstein wave, fast wave, and slow wave as a function of the

toroidal major radius for a plasma with 1% deuterium. The value of k_zL is obtained
by solving the electromagnetic dispersion relation for an homogeneous plasma at many
spatial locations radially across the plasma. The dotted lines correspond to (Im ki)l/ 5
and represent spatial damping. Fig. 2.6 (b) is a plot of P(z)/P(z¢) corresponding
to Fig. 2.6 (a). This is obtained by evaluating Eq. 2.5.14 for the value of Im[k  (z)]
for the ion Bernstein wave shown in Fig. 2.6 (a). . Linear power absorption of ion
Bernstein waves due to ion cyclotron damping is very strong even at large ion cyclotron
harmonics. Figure 2.7 shows the effect of increasing the deuterium concentration on
the ion Bernstein wave ion cyclotron absorption.

Electron Landau damping can be approximated the same way as for ion cyclotron
damping (Eq. 2.5.14). Landau damping is typically not as localized as the narrow ion
cyclotron absorption region. A more careful and detailed look at power absorption
will be given in section 2.7 where ray tracing and the associated change in k| due to
toroidal effects can be incorporated in evaluating the power absorption.

2.5.5: Wave Energy

The energy in the ion Bernstein wave is mainly in the kinetic motion of the ions as
they slosh back and forth in the wave potential. This is why the mode is sometimes
described as a sound-like mode. This can be seen by examining the terms in the
full expression for the k and w spectral component of the energy flux of a wave in a

dispersive me_dium[19]

wpe . Oe(k, w)
8w kw 0k

c
Sxw=—Ex w X Bxu—

- Ey - 2.5.15

The first term in Eq. 2.5.15 represents wave electromagnetic flux or Poynting flux; the
second term represents wave energy in particle motion. A comparison of the magnitude
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Figure 3.6 —(a) Dispersion relation of ICRF modes in a tokamak plasma. The
imaginary part of k:_/’ (dotted lines) indicates linear wave damping. (b) Nor-
malized power evaluated from the WKB approximation. Power absorption is due
both to electron Landau damping and ion cyclotron damping. Plasma parame-
ters: plasma current = 250kA, Bo =7.6 T, f = 183.6 x 10%s~1, k = 0.16 cm™!,
fie0 = 2 X 102 m—3 (parabolic radial profile), T;o = 900 eV, T.o = 1600 eV (both
T; and T, have parabolic radial profiles).
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of these two terms for the ion Bernstein wave can be made as follows. Using the Faraday
law and the approximation to the ion Bernstein wave polarization from Eq. 2.4.32, the
electromagnetic term can be written as

Eku X Bk,w = 2|Ey| n"n (2.5.16)
Using the approximation to Kzz (Eq. 2.4.6), the plasma term can be written as

3e(k w)

Btw' i

S
‘Ey, =—-2n L—|Ey| —’1 (2.5.17)

An approximate expression for Sy , for the ion Bernstein wave is now

Suw > 25| Byl 2 D2n L[ad+ S] 3. (2.5.18)

The ratio of electromagnetic energy to plasma kinetic energy is approximately n|2| /S.

Typically, this ratio is small compared to unity and the kinetic term dominates over
the electromagnetic term.

Another characteristic of the ion Bernstein wave is that it is a backward wave in
the direction perpendicular to the background magnetic field. This means that the
perpendicular phase velocity and group velocity are antiparallel. This is easy to see
graphically by examining a plot of the dispersion relation such as in Fig. 2.1 . The
perpendicular phase velocity of a wave described by a point on the € = 0 curve (w is
chosen not to be close to a cyclotron harmonic) is proportional to the slope of a line
connecting that point and the origin. Analytically, this is written as

a w
2. Vpp = Hw. (2.5.19)
The perpendicular group velocity is proportional to the slope of a line which is tangent

to the € =0 curve and runs through the point corresponding to the wave. Analytically,
this is approximated from Eq. 2.4.32 as

ZVg= i
"= BE,
L
2w wdS wor] !
_E[2+ EE—T&U] (2.5.20)

~— [ﬁ - 1] (2.5.21).



Section 2.5: lon Bernstein Waves 51

The term inside the square braces is positive definite for w < 22; therefore it is clear
that vy - Vg1 < 0 indicating that the wave is indeed backward.

It is often convenient, when considering a wave packet trajectory, to calculate the
ratio of the perpendicular and parallel group velocities and to define this ratio to be

. the tangent of an angle 6, thus

tan@ = 9L, (2.5.22)
Yyl
This can be approximated as
Sk,

It is easy to see that the propagation angle is a function of Ky (unlike lower hybrid

waves).

2.5.6: Inhomogeneous Plasma

A self-consistent analysis of wave propagation and damping in an inhomogeneous
plasma is very important in understanding and interpreting plasma heating and con-
finement experiments which use radio frequency power. The analysis should include the
excitation of plasma modes by an antenna structure, the propagation of these modes
through an inhomogeneous and dispersive medium, and the resulting power deposition
due to Landau damping, cyclotron damping, or collisional damping. Such analysis
predicts quantitatively the antenna—plasma coupling and the radial power deposition.
Antenna coupling information is useful for designing an antenna which preferentially
excites one mode and couples power to the plasma efficiently. The information regard-
ing power deposition is essential for studying the time evolution of particle distributions
as well as the evolution of the macroscopic plasma parameters such as the temperature.

As stated earlier, the correct description of modes in an inhomogeneous plasma is
given by a complicated integral equation. However, assuming that the plasma is weakly
inhomogeneous allows one to develop a tractable model for this problem. Physically,
the meaning of weakly inhomogeneous is that the fractional change in the magnitude
|@| of a plasma quantity @ over one Larmor radius is small compared to unity. Math-
ematically, this condition is expressed as

vIQl| _ pi
[~/

where p; is the Larmor radius of the ion and [, is the scale length of the inhomogeneity.
This permits the dielectric tensor (as well as the Vlasov equation) to be expanded in a

Pi

<<1 (2.5.24)
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Taylor series with the expansion parameter k) p;. In the case of ion Bernstein waves,
the electric field is usually the quantity which exhibits the largest fractional change
over one Larmor radius. The reader is referred to references 13, 24, 30, 31, 32, 33, 34,
and references therin, for further details of applying this approximation to the problem
of waves in an inhomogeneous plasma. The weakly inhomogeneous approximation is
usually not as strict as the WKB approximation except in regions where k| p; is close
to unity.

The general characteristics of ion Bernstein waves in a weakly inhomogeneous
plasma are nearly the same as in an homogeneous plasma because the wavelength of the
wave is very short compared to the typical scale length of a plasma inhomogeneity. For
example, the mode is still sound-like, is primarily longitudinal, and is damped linearly
at cyclotron harmonics. One new feature that the inhomogeneous plasma modification
describes is the mode conversion of the ion Bernstein wave to a fast wave and vice—

* versa. The inhomogeneous plasma model also gives a more quantitative result to the
coupling, propagation, and linear absorption problem.

The remaining part of this section will briefly outline some of the current models

used to describe inhomogeneous plasmas and will mention some of the features of these
models.

2.5.7: Weakly Inhomogeneous Plasma Models

Sy et al.[24] suggest a completely analytical model which describes the problem of
a current sheet in a vacuum exciting waves in a slab plasma. The only inhomogeneous
region in this model is the transition from vacuum to plasma which is treated as a step
discontinuity. Coupling to the fast, slow, and ion Bernstein modes is calculated. The
dielectric tensor element K. retains the only finite Larmor radius effect. The main
physics involved in this model lies in formulating one additional boundary condition
required at the vacuum—plasma interface. There are three outward propagating modes
in the plasma which must match onto two modes in the vacuum, thus five boundary
conditions are required. Four of these conditions come from the usual continuity of
the tangential electromagnetic field quantities. The details of the fifth boundary condi-
tion (the z derivative of E; at the vacuum-plasma interface) are not clearly explained.
According to the authors, however, it can be derived by integrating the wave equa-
tion across the vacuum—plasma boundary. This apparently involves the assumption of
a certain value for the dielectric tensor on the vacuum—plasma boundary. Enforcing
mathematical consistency to the resulting equation produces the required boundary
condition. This additional boundary condition seems to reflect more of the particular
choice of boundary discontinuity than of the actual physics of the problem. The incon-
sistency of this model is that the additional boundary condition is derived from a wave
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equation which assumes a weakly inhomogeneous plasma; yet, the boundary condition
is derived at a severe discontinuity. In spite of this inconsistency, the model predicts
general characteristics of antenna loading which agree qualitatively with experiment.
- This result suggests that this simple analytical model may contain much of the essential
physics of the antenna—plasma coupling problem. However, the model is not reliable
and may only give correct results within a limited regime of plasma parameters.

Fukuyama, Itoh, and Itoh[3031] have formulated a generalization of the Sy et
al. model. In their model, the plasma is stratified into many homogeneous slabs with
discontinuous plasma parameters from one slab to the next. The wave boundary condi-
tions between slabs can also be obtained, according to the authors, by integrating the
wave equation across a slab boundary. This is a similar but more general approach as
was taken in the Sy et al. model. Although this model may be an improvement to the
single slab plasma in the Sy et al. model, the boundary conditions between slabs are
derived from a wave equation which assumes a weakly inhomogeneous plasma and this
again is inconsistent with the severe discontinuity between slabs. This model also pre-
dicts antenna loading and plasma electric fields which have the general characteristics
of the experimentally observed values.

Skiffl13] describes a model for waves in an inhomogeneous plasma which consists
~of a self-adjoint wave equation. The self-adjoint property is imposed to uniquely de-
termine the procedure for expanding the dielectric in terms of the operator pi%. The
plasma spatial dependence is arbitrary except that all profiles must be continuous and
must satisfy the weakly inhomogeneous criterion. Boundary conditions are obtained
from the Maxwell equations except where these conditions would predict unobserved
behavior. In this case, modified boundary conditions are used which predict the ob-
served behavior. The solution for the electric field spatial dependence is obtained by
numerically integrating the wave equation through the inhomogeneity and imposing
the boundary conditions. As a result of the self-adjoint property of the wave equation
this model does not include wave damping . The lack of wave damping is not severe and
generally can be approximated rather well by imposing an outward radiation condition
on any wave power which reaches the absorption region. The Skiff model shows quite
good agreement with the measured loading from an ion Bernstein wave antenna in the
ACT-I torus at Princeton (see Ref. 13).
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2.6: Description of the Brambilla Coupling Model

2.6.1: Introduction

Brambilla[3%|has developed a coupling model and a computer code implementing
the model which quite successfully calculates the antenna plasma loading for the ion
Bernstein wave experiments on Alcator C. Because of its availability and reliability,
the Brambilla code was used to model and study the antenna-plasma coupling charac-
teristics of the Alcator C ion Bernstein wave antenna. It is not necessary to describe
the Brambilla model in great detail here since this is done in Ref. 35. The following
discussion however, will outline some of the important physical features of the model
and will mention some of the numerical procedures used in the computer code.

2.6.2: Physical Features of the Coupling Model

The toroidal geometry is approximated by a slab model where the coordinates
(z,y, z) correspond to the radial, poloidal, and toroidal directions, respectively. Cur-
vature and shear of the magnetic field lines are neglected. The plasma parameters are
assumed to vary only in the z direction and the static magnetic field is in the z direc-

~ tion. The wave field is decomposed along y and z (ignorable coordinates) as a double
Fourier sum. The toroidal and poloidal wavenumbers n, = ck,/w and ny = cky/w are
discretized as in the equivalent toroidal problem:

c

ng = wRTn¢ (2.6.1)
[+
ny = Emg (2.6.2)

where ny and my are integers and Ry and a are the major and minor radius of the
plasma, respectively. Figure 2.8 shows the antenna and plasma geometry used in the
model. The spatial profiles in the main plasma region and scrape—off region can be
arbitrarily specified. The direction of antenna current and Faraday shield are also
arbitrary. The current in the antenna is assumed known'! and the vacuum solution
(the solution within the region between the plasma and the antenna back plane) is
expressed in terms of the plasma surface impedance matrix. This matrix expresses
the linear relation between the electric and magnetic field components at the plasma

1 Because the current is assumed known, the field solution is obtained in a non-selfcon-
sistent manner.
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surface. Thus,

Ey(0) = Z11B:(0) + Z12By(0) (2.6.3)
Ez(0) = Z21B:(0) + Z22By(0) (2.6.4)

All quantities in Eqs. 2.6.3 and 2.6.4 are functions of n, and ny and (0) indicates
evaluation at the plasma—vacuum interface. The surface impedance matrix elements
Z;j contain all of the physics of wave propagation through the inhomogeneous plasma
and are obtained by solving the wave equation in the plasma.

The wave equation used in the Brambilla model includes electron Landau damp-
ing, ion cyclotron damping, and a form of collisional damping. The equation, which
is formally sixth order in 8/0z, is solved twice (with two linearly independent initial
conditions) to give two independent solutions. A linear combination of these solutions
is then constructed to satisfy the boundary condition far away from the antenna (ra-
diation condition or reflecting wall). The method of solving the wave equation uses a
finite element discretization with cubic Hermite interpolating functions. Numerically,
this method can be more accurate than a multistep method (for example, a Runge-
Kutta method). An additional advantage of this method is that the energy equation
is automatically satisfied to a high accuracy. The details of this method are given by
Brambilla in Ref. 36.

The model predicts the fraction of power coupled into both the ion Bernstein wave
and the fast wave; the slow wave is cut—off for the cases of interest. The power which
is electron Landau damped, collisionally damped, or ion cyclotron damped is also
calculated. Typically, the fraction of power coupled into the fast wave is not more than
10-20% and depends on the magnetic field at the antenna. On one hand, for the case
of optimal ion Bernstein wave coupling (w/S; ~ 1.95) the fast wave power fraction is
small (< 20%). On the other hand, for the case of poor coupling (w/2; 2 2.1) the
fast wave power fraction can reach values as high as 90%. More details of the coupling
measurements and interpretation of the code results will be given later in Chapter 5.
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Figure 2.8 —Antenna—plasma geometry used in the Brambilla model. From M.
Brambilla (Ref. 36).
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2.7: Ray Propagation and Damping

2.7.1: Introduction

The ideal way to obtain the power deposition profile of radio frequency power
absorption in a toroidal plasma is to solve for the exact electromagnetic fields within

the entire torus. Power deposition is then easily calculated from the energy equation[37]

ow +V.S=-J-.E. : (2.7.1)
ot
The term on the right is the total power density absorbed by the plasma, W is the
instantaneous stored energy in the electric and magnetic field, and S is the Poynting
vector.

Solving the Maxwell equations in a hot, inhomogeneous, magnetized, and toroidal
plasma is a complicated problem and only simplifications to the full problem have been
solved. In the case of ion Bernstein wave heating, the wavelength is relatively short
in the perpendicular direction (direction across the magnetic field) thus, ray tracing
techniques, which rely on the validity of the WKB approximation, can be used to predict
power flow and absorption in the bulk plasma. The following section is a discussion of
the model used to calculate ion Bernstein wave ray tracing and power absorption in

Alcator C.

2.7.2: Theory of Ray Tracing

The theory of ray tracing and power absorption has been discussed previously by

several authors [19: 38, 38] | Numerous authors [40: 41 42, 43, 4] have studied wave prop-
erties in a plasma using ray tracing codes which numerically implement the theory. The
following discussion will review some of the important results of toroidal ray tracing,
making use of the formalism of the previous authors and noting specific application to
Alcator C where possible.

Figure 2.9 shows the geometry in which the ray tracing equations are expressed.
A point in the plasma is specified by the three coordinates p, §, and ¢. At this
same location, the ion Bernstein wave vector k is expressed in terms of the conjugate
momentum coordinates k,, m, and n where

kp=k-p; m = pk - 6; n=Rk ¢ (2.7.2)
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and R = Ry + pcosf (see Fig. 2.9 ). The wave vector can now be written as

k =kyp+ %é + =4 (2.7.3)

n
R

The WKB approximation allows the dispersion relation to be expressed in the
homogeneous form and evaluated with the local values of the plasma parameters. In
the same spirit of this approximation, a coordinate system is constructed at each point
along the ray so that the local magnetic field direction is along the Z (or parallel
||) direction. The # axis is then positioned along the component of the wave vector
perpendicular to £ (this defines the perpendicular L direction). The components of the
wave vector k are then given as '

ky(kpym,n) = 2B (2.7.4)

k (kpym,n) =k —k; (2.7.5)
and all points along the ray trajectory satisfy

D(p,0,¢,k 1, k),w) =0 (2.7.6)

where D represents the dielectric function or dispersion relation. It has been shown

previously[38] that the function D has the property of a Hamiltonian describing the
trajectory of the ray in p, 6, and ¢ space with momenta k,, m, and n. The equations
of motion for the ray are

oD /8D _ ok,

Ly (2.7.7)
?3? gf - %’t" (2.7.8)
‘;—g %D - %’: (2.7.9)
%g ?ED - _% (2.7.10)
gﬁ ‘gf - —% @)
D /9D _ _5¢ (2.7.12)

an/ 8w ot
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Figure 2.9 —Tokamak geometry used for ray tracing.
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It is now assumed that the plasma has no explicit dependence on ¢ (neglect tor-
oidal field ripple) and that there is no radial component of the magnetic field (neglect
equilibrium Shafranov shift and assume concentric circular flux surfaces). As a result,
the toroidal momentum n is a constant of the motion and the magnetic field can be
written as

B = By + Byb. (2.7.13)

The explicit expressions for k| and k, are now

Ky = (koBy + kyBy) /|B]

_ ITIB—I [mBo Eﬂ] (2.7.14)
/
ky = [kf, + (%’)2 + (%)2 - kﬁ] 1 2. (2.7.15)

Using these equations, the k,, m, and n derivative operators in Eqs. 2.7.7-12 can be
cast into the following form

a a
ok, = 2o | (2.7.16)
8 2 8 1B, 8
—==(= +-L— 2.7.17
om p ( ) Gk, p|B| Ok ( )
) _ 2 07} 1 B¢ 0
o =% (&) o . TRIBoR, (2.7.18)

This form is preferable since D is expressed as a function of k, and k| and now the
momentum derivatives are also expressed in terms of k; and k|- The next step is to
carry out all the necessary derivatives of the dispersion relation and obtain analytic
forms of the ray equations. The equations used for Alcator C ion Bernstein wave ray
tracing were derived assuming an isotropic Maxwellian distribution function with an
MHD equilibrium having no Shafranov shift and concentric circular flux surfaces.

The solution to the ray equations is generally best obtained by numerical methods.
The equations are numerically integrated forward in time after specifying the initial
conditions. The six ray equations are first order ordinary equations and in principle,
it is necessary to specify the six starting values of the ray position and momentum.
Since the initial conditions must also satisfy the dispersion relation, only five initial
conditions can be freely chosen. Usually, these are the three space coordinates and two
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components of k. The launching structure typically determines kg and ky; k, is then
calculated by solving D = 0.

The ray equations are integrated nuinerica.lly using the algorithm described in Ref.
45. This is a variable order and completely variable step size version of the Adams

formulas(45: 48] in a predictor corrector combination. The accuracy of the integration
can be estimated by calculating the variation of D(x,k,w) from zero, normalized to
the largest term in D(x, kg, wq) (where kg and wq satisfy the dispersion relation ex-
actly). Typically, this variation is found to be < 10~3. Figure 2.10 shows the toroidal
and poloidal projection of the ray trajectories of a bundle of ion Bernstein wave rays
which are launched from the low field side of the tokamak. To understand the spatial
trajectory of a single ray, it is helpful to write out the velocity components of the ray.
These are as follows:

By By
—Iil-‘vs" - 2kgvgJ_; 1J¢ = —-l—B—lvsll - 2k¢v8-l- (2.7.19)

vp = —2k,vg; vg =
where vy and vg|| are the perpendicular and parallel group velocities, respectively. At
the plasma edge where the density and temperature are low, the parallel group velocity
dominates over the perpendicular velocity so it is easy to see that the ray begins to
propagate along the magnetic field line. The ratio of vy to vy is just B4/By. The
parallel group velocity is a function of k| and in exceptional cases, for k" very small,
the ray may propagate radially. As the ray propagates along the field line, the magnetic
field increases and the poloidal mode number m changes in a way which decreases the
magnitude of k. When m achieves a value of —nq where g is the local toroidal safety

factor
pB

1= B, (2.7.20)

k) =0 and the group velocity in the || direction becomes zero. As a result, the ray reflects
toroidally; m continues to change, k|| reverses sign, and the ray begins to propagate
toroidally in the reverse direction. The change in § momentum m is driven by the 8
derivative of D. Since the only 6 dependence in D is of the form pcos§, the rate of
change of m can be simply expressed as -

om o 8D
8t  O(pcosb)

psin . (2.7.21)

and m is stationary when the ray crosses the 8 = 0 plane. At 8 = 0, m achieves its
largest magnitude and then begins to decrease bringing k" toward zero for another
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toroidal reflection. Roughly speaking, the ion Bernstein wave ray bounces back and
forth toroidally as it propagates radially into the plasma.

It is a bit worrisome that k" becomes zero at the toroidal bounce points. This
means that the parallel wavelength increases to co and the WKB approximation may
not be valid here. In theory, this is true and ray tracing is not completely valid for the
ion Bernstein wave. An exact wave solution is required to estimate how far beyond the
WKB bounce point the ray might tunnelf . The edge region presents another location
where ion Bernstein wave ray tracing is not entirely justified. Here the scale length of
the plasma parameters is small and the WKB method is not a good approximation.
This difficulty is overcome in the Brambilla code by treating the edge region with a
full wave analysis. The full wave solution gives the relative magnitude of the spectral
components of the wave entering the plasma. The ray tracing method can then be used
to accurately propagate these spectral components into the inner plasma.

2.7.3: Linear Power Absorption

Following the discussion of Brambilla[47lthe toroidally averaged power transport
equation is given as

dPr(kz) _E e;,w ) EA(k, w) " Ckw

= P.(k;) (2.7.22)
dt dt Qg(" : Tk,w) m
Here, €4 is the antihermitian part of the dielectric tensor
1
A= [t
4= [e e ] (2.7.23)

ey . is the unit electriﬁ field polarization vector, K = (k,z, + kg)l/ 2, and Ty v, and
do/dt are defined as

c w , O
Tk,w = ; [k - eiw(k . ek,‘,)] - :ek’w . E "exw (2.7.24)

v= (k,ﬁ + "‘Tf é) / [k§ + (?) 2] (2.7.25) |

t+ The scale length of the plasma parameters along the parallel direction is on the order
of the tokamak major radius (for ¢ on the order of unity) and tunneling may be small
in this case. If this is true, ray tracing (and the WKB approximation) may still be
approximately valid even at the toroidal bounce points.
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(a)

Poloidal Ray Projection

(b)

Toroidal Ray Projection

Figure 2.10 —Ion Bernstein wave ray trajectories. (a) Poloidal projection. (b)
Toroidal projection. The numbers indicate the ma, jor or minor radial locations in
centimeters. Plasma parameters: By = 7.6 T, ng = 2.25 x 1020 m~3, Ty =900eV,
T. = 1600 eV, plasma current = 250 kA.
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do oH o0H 6H

Z = - (kp-ar’; +QO‘) -a—w' (2.7.26)
and

H=ef, € e, (2.7.27)

where e is the hermitian part of the dielectric tensor
1
H_ t
e =3 [e+ € ] . (2.7.28)

The numerator in Eq. 2.7.22 is proportional to the local damping decrement and the
denominator is proportional to the projection of the direction of power flow onto the
normal to the phase front. This calculates the effective surface area across which the
power flows. '

It was shown earlier (subsection 2.5.4) that for the ion Bernstein wave, power ab-
sorption can be estimated by a simple WKB model. A more accurate power absorption
calculation can be obtained by solving the power transport equation (Eq. 2.7.22) with
the ray equations. This procedure allows the value of k| to change as the ray propagates
into the plasma center. The local value of k| can then be used to calculate the damp-
ing of the wave power along the ray trajectory. Usually, the radial width of significant
power absorption is small (for ion cyclotron absorption) and k|| doesn’t change much
within this region. However, the ray equations are necessary to determine the value of
k“ at the time the ray reaches the absorption layer and this value can be significantly
different than the initial k". The complete absorption calculation is done as follows.
A coupling model is first used to determine the power coupled into the plasma as a
function of k4 and kgy. This result is referred to as the kg, kg power spectrum. Then
the power spectrum is discretized and a large number of rays are selected so that each
ray represents the average kg, kg, and power associated with a discrete portion of the
spectrum. Finally, the ray trajectories as well as the power deposition is calculated. A
check on the accuracy can be made by increasing the number of rays which are traced
and checking the constancy of the power deposition.

The power deposited in the plasma is now known as a function of radius. It is
not important to keep information regarding the poloidal and toroidal dependence of
absorbed power since it is assumed that the transport of energy in these coordinates
is fast compared to transport of energy in the radial direction. Thus, the energy can
be averaged poloidally and toroidally. The important physics lies in the radial power
deposition and its effect on radial energy and particle transport.

Now that ion Bernstein wave power deposition can be calculated, it is important to
consider the potentially detrimental effect of impurities on ion Bernstein wave power
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absorption. The plasma generally has very low concentrations ny,,/ne < 0.01 of
carbon, oxygen, molybdenum, iron, cobalt and other non-hydrogen elements generally
referred to as impurities. It is possible that a particular cyclotron harmonic of one of
the ionization states of an impurity will be resonant with the ion Bernstein wave power
somewhere between the antenna and the region of intended power absorption. This
situation is detrimental if impurity power absorption occurs in the outer radial portion
of the plasma. In this case, any power absorbed by the impurity is essentially lost (i.e.,
it is not important to the main plasma power balance). Impurity power absorption can
occur for the following condition

w Zr w
—| <K ——m< — 2.7.29
nH 2 AI nH 1 ( )

where ) is the value of g at the launch point (1) or the intended absorption

1,
point (2) (it is assumed that R; > Rj); Zj is the impurity charge and depends on the
ionization state; A; is the impurity atomic mass number; and m is an integer which
indicates the resonant cyclotron harmonic of the impurity. Figure 2.11 is a summary of
the ion Bernstein wave power absorbed in one pass due to linear impurity absorption.
The magnetic field geometry is shown in Fig. 4.9 (b). Each impurity is assumed to have
an unusually high spatially uniform concentration of njy,p/ne=0.01. This concentration
is an higher upper bound. It is clear from the figure that all of the impurities absorb
only a very small fraction of the total power and therefore neither influence the total
power balance nor affect the ion Bernstein wave propagation. The point corresponding
to 4N16 is an extreme case due to the small value of ky (the power spectrum contains
very little power at this small value of k"). Some impurities not shown in the figure
such as molybdenum and other ionization states of iron and chromium have fractional
power absorption less than 10—3. As was mentioned earlier, a small part of the power
coupled into the plasma with the ion Bernstein wave antenna is in the form of the fast
wave. Due to warm plasma effects the fast wave can also be absorbed on the impurities.
A calculation of this absorbed power shows that it is negligible compared to the power
which is absorbed from the ion Bernstein wave. This result can be understood by
recalling that fast wave harmonic absorption at harmonic m 1 , unlike ion Bernstein

t The ion cyclotron harmonic is defined here as the number m where m =w/Q;. Therefore
w=£2; denotes the first harmonic or fundamental ion cyclotron resonance. The alternative

~ definition, not used here, defines w = 21; as the first ion cyclotron harmonic.
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wave absorption, is proportional to (k p;)2(™~1) (where k p; << 1)[48] and absorption
on impurities usually occurs at high harmonics m 2 3.

The conclusions reached at this point concerning ray propagation and power ab-
sorption are as follows. Ion Bernstein wave ray trajectories begin by following the
magnetic field lines at the plasma edge while slowly moving radially into the plasma.
The magnitude of kj decreases initially and may oscillate around the value of zero.
Each time the value of k) becomes zero the ray reaches a toroidal bounce point where
it reflects toroidally. As the ray bounces toroidally it propagates into the plasma center.
Linear power absorption is accurately evaluated by calculating the local value of k| in
the absorption region. This calculation is done by solving the ray equations together
with the power transport equation. Linear absorption due to impurities is negligible
and power absorption due to low harmonics of hydrogen or deuterium is very strong.

2.8: Nonlinear Power Absorption

2.8.1: Introduction

The linear theory of plasma waves is obtained by assuming that the ratio of wave
energy density to plasma kinetic energy density is small. When this condition is vio-
lated, higher order terms in the perturbation expansion of the Maxwell-Vlasov equa-
tions become important. Keeping these higher order terms in the wave theory gives rise
to various nonlinear plasma wave effects. One obvious region where nonlinear effects
might be important in a tokamak for ion Bernstein waves as well as other waves is at
the plasma edge near the coupling structure. Here, the energy density of the antenna
fields is high and the plasma thermal energy density is low. Another potential region
of nonlinear effects, particularly for the ion Bernstein wave, is near an harmonic of a
plasma ion species. Here, if the ion species has a large enough concentration, the ion
Bernstein wave group velocity decreases significantly as w/{); approaches (from larger
values of w/(2;) the harmonic number. This causes the wave power to pile up, increas-
ing the energy density in the wave. If the wave energy density becomes comparable to
the local thermal energy density then nonlinear effects may become significant.

It is possible to obtain a good description of nonlinear plasma effects by constructing
a theory which treats the nonlinear terms as a perturbation to the linear theory. This
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Figure 2.11 —Jon Bernstein wave power absorption in one pass for a variety of
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method rests on the validity of the weak turbulence approximation which is discussed
in Ref. 49. This approximation will be assumed throughout this section.

This section reviews some of the important results of nonlinear plasma wave theory
and discusses their application to ion Bernstein wave power absorption in a tokamak
plasma. The matrix element, which appears in the spatial mode equation and which
describes the intensity of the nonlinear interaction is given and some numerical results
of integrating the spatial mode equation to calculate power absorption are shown.

2.8.2: lon Bernstein Wave Nonlinear Effects

Two nonlinear effects of the ion Bernstein wave will be considered here. One is
the self-interaction of the wave at an odd half-integral cyclotron harmonicl!8] and
the other is the decay of the wave into another ion Bernstein wave and a nonreso-
nant qua.simode[5°]. Both of these interactions have been discussed in the literature

[50, 18, 51, 52, 53] There is also a third nonlinear effect of the ion Bernstein wave which
gives rise to power absorption and results from particle trapping. This has been de-
scribed by Abell7] and will not be discussed here. References 49, 51, 52, 53, 54, and

references therin, are quite useful for the reader who wishes to study the details of these
processes. ' :

The goal of most nonlinear plasma wave theories is to obtain a wave kinetic equation
which describes the space and time dependence of the electric fields involved in the
nonlinear process. Once this equation is obtained, the electric field can in principle
be calculated. Using the electric field solution, one can determine the depletion of the
incoming wave as it transfers its energy to other waves or plasma particles through the
nonlinear process. The following outline of nonlinear plasma wave theory and major
results pertinent to the ion Bernstein wave follows the discussion of Rosenbluth, Coppi,

and Sudan(54 for nonlinear plasma effects on electrostatic waves.

In the electrostatic approximation, the electric field and wave potential are related

by |
E=-V¢ (2.8.1)

and the energy density of a Fourier wave mode k can be expressed as

IEk|2w Oe
8w Radn

Uy = (2.8.2)

where |Ey| is the wave electric field amplitude and € is the dielectric function. The
corresponding momentum density is given by
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_ [Byf?, Oe
Pu= hlep (2.8.3)

It is assumed that w = wg + ty where ¥ << wg. It is convenient to define an effective
occupation number

_ |Ek|2 O¢ |
k= 8n aﬂn

which is positive definite. Then expressions for energy and momentum density become

(2.8.4)

Uy = wi N Sy (2.8.5)
Py = kN Sy (2.8.6)
where
Sk = sgni. (2.8.7)
Bwg

The weak turbulence a.ppro:n'ma.tion[49] is assumed, hence, the energy in the waves
considered is small compared to the total energy of the system.

Nonlinear Landau damping is a process where two waves mix to produce a virtual
beat wave. Resonant particles then interact with this beat wave through the usual
process of cyclotron or Landau damping. The goal in a theory describing this is to
calculate the scattering of a wave k” by a shielded or ‘dressed’ particle into a wave k.
The condition for a particle in a strong magnetic field to be in resonance with waves k
and k” is

w' +w-—- (kﬁ + k")v" = mﬂ.,- (2.8.8)

where (); is the ion cyclotron frequency and m is an integer. Considering the waves
and particles to be a statistical system, the principle of microscopic detailed balance
can be used to derive a kinetic equation for Ny. The actual derivation of the kinetic
equation requires explicit use of the Vlasov equation.

Applying the principle of detailed balance, the rate of change of Ny is given by
summing the rate of creation and destruction of Ny

BNy
Bt

= [Creation Process + Destruction Process]. (2.8.9)

It can be shown that a stationary state for Ny (N = constant) is achieved for a
Maxwellian distribution of velocities for the particles and a Planck energy distribution
for the waves.

In the classical limit, Ny >> 1 and for Ny << Ny, the wave kinetic equation
becomes
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ON,

Wk = |Viw(E)|? F(E) Nyeo. (2.8.10)
This describes a wave k" scattering from a distribution of particles f(E) where the
parameter E represents the particle energy, k is the wave vector of the scattered wave,
and Vi y«(E) is the matrix element which describes the strength of the interaction. The

matrix element contains all of the physics of the wave-wave—particle interaction and

has been calculated from the Vlasov equation by Rosenbluth and Rostoker[55]. Using
their result one finds that the scattering from the particle is the sum of two terms.
The bare particle (without shielding) gives the usual Compton scattering term and the
shielding cloud gives the other term. These two terms tend to cancel each other in the
limit of small k| p;; however, the scattering can become significant for k) p; > 1.

Once the wave-wave-particle scattering is known the next step is to obtain an
equation for the spatial dependence of the pump wave Ey and the scattered wave Ej,.

Porkolab and Chang!52] have obtained these equations for modes with finite k). More

recently Porkolabl18] has given the spatial mode equation for Ey as

OEy _ 1 9 :
9z +ayEy = 6e/akJ_Lk'l‘"|E""| Ey (2.8.11)

where oy is the linear spatial damping rate of the wave in the z direction

ay = 8{576(21 : (2.8.12)
The quantity Ly y« is the nonlinear matrix element and is given by
Lype— mQ; wh; —W Pl (w' — m)?/(kjvei)?] (2.8.13)
: kjow Qf 4v/7 noxT;
where W is
W = i A - BC/D (2.8.14)

B (¢ LI ¢

and the energy and momentum of the quasimode or virtual wave which resonates with
particles is given by
W =w+uw"; k=ktk" (2.8.15)

The quantities A, B, C, and D are given by
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A= f °° dgf’—-" To(2)75(2)Tg—m(2") T s (") (2.8.16)
B= / df 9 7(2)m(2') Tpm(z") (2.8.17)
C=B(pp— .s) A (2.8.18)
— *° E 2¢.,1
D= /0 &% I3 (2.8.19)
where
- v2 2T,
g§)=e"3¢ €= 21%?‘_; v = P (2.8.20)
and .
' i "
_ kgzL; = kl,l.n”_:L; M= ’“Q‘:l. (2.8.21)

The value of |W| is plotted as a function of k| p; in Fig. 2.12 for three values of m.

2.8.3: Self-Interaction of lon Bernstein Wave

A wave with frequency w = ZQQ; can interact with itself to yield nonlinear Landau
damping or instability. Only the case of m—odd is allowed by the dispersion relation.
In this case,

K =2k w=2%=m (2.8.22)
and Eyn = —FEy. Equation 2.8.11 can now be written as

OEy

5. T okPx+ Q(z)|Ey|>Ey =0 (2.8.23)

where Q(z) in a radially varying magnetic field has the form

2
Qo) = Qoe 5 = Ml Wl o 7@ (2.8.24)
-t 2k)ve; 4/7 0} ZemnonT; o

Typically ay is small (ay << 1/Az where Az is the length of the nonlinear interaction
- region) and Eq. 2.8.23 predicts a threshold value in the pump electric field which is
required to produce at least a ~40% reduction in the pump field amplitude after passing

through the nonlinear interaction region. Porkolab!52] has obtained an expression for
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Figure 2.12 —Numerically calculated values of |W| as a function of k 1 p; for
m =3,5, and7.
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the threshold power flux necessary in the pump wave to cause at least a ~ 63% power
absorption in the case where k is slowly changing through the interaction region (the
quantity W is nearly constant). Porkolab points out that in the presence of impurities
or a minority such that

A
4 _1m (2.8.25)
m; 2n

where Z;, (m;) is the charge, (mass) number of the impurity or minority, m is the odd
integer describing the self interaction, and n is any positive integer, the ion Bernstein
wave dispersion relation can be significantly modified and this can reduce the threshold
power. The reason for this is that J¢/8k | is reduced by the presence of the minority
species and W becomes a strong function of position within the interaction region. In
this case, the spatial dependence of Ey from Eq. 2.8.23 is best evaluated numerically.
Figure 2.13 shows the spatial dependence of the pump wave power for both the cases of
no minority and deuterium minority for several initial pump powers. In the numerical
calculation, the threshold power is defined as the power necessary to produce a 63%
power flow into the nonlinearly absorbing species. The wave power is assumed to spread
out over an area S =2A where A is the antenna surface area (~ 100cm?2). In the case of
deuterium minority, the linear cyclotron absorption on deuterium (w = 3Qp) competes
with the nonlinear absorption at w = 1.5Q0y. When the nonlinear power threshold
is exceeded, the nonlinear absorption depletes a large fraction of the incoming pump
power before linear damping begins to occur.

2.8.4: lon Bernstein Wave Decay

Another nonlinear process related to self-interaction and described by precisely the
same physics is the decay of an ion Bernstein wave into another ion Bernstein wave and
a quasimode. This process has been described by Porkolab in Ref. 50. The application
of this process to ion Bernstein wave heating becomes important when the quasimode
is resonant with a particular plasma ion species. For example, an ion Bernstein wave
with w/y = 1.6 might decay into another ion Bernstein wave with w/Qg = 1.1 and
a quasimode at w/y = 0.5. If the plasma contains deuterium, the quasimode will be
resonant with the deuterium first harmonic. The result is that the deuterium species
will absorb power from the pump ion Bernstein wave. The strength of this interaction
is determined by the value of |W| given in Eq. 2.8.14.

To study this decay process in a tokamak geometry near w = 1.5Qy the value of
|W| was computed numerically for a pump wave with w/Qy = 1.5 + , a decay wave
with w/Qyx =1+ =, and a quasimode with w/Qy; =0.5 for 0 <z < 0.35. Since the pump
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Figure 2.13 —(a) Nonlinear power absorption of ion Bernstein waves in a pure
hydrogen plasma at the hydrogen 3/2 harmonic for several initial powers. A small
fraction of power is absorbed by electron Landau damping. (b) Power absorbed
by hydrogen (nonlinearly) and deuterium (linearly) for 5% and 10% deuterium
concentrations. The presence of deuterium reduces the threshold power. Plasma
parameters: ngo = 1.5 X 1022 m~3, T;p = 900eV, T.o = 1600eV, Bo = 7.6 T,

f=183.6 x 109s~1, J = 0.16cm™1.
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depletion occurs from the nonlinear interaction with the deuterium species, the values
of k| p; used in evaluating |W| must be given by the values of k) pp corresponding
to the values of w/lyg. The result is that the value of |IW| increases monotonically
and becomes very large (compared to the value of |W| for the self-interaction process)
as z approaches zero. An estimate of the threshold power for 63% power absorption
by the deuterium species can be made by solving the spatial mode equation for the
pump wave (Eq. 2.8.11) simultaneously with the spatial mode equation for the decay

wavel52]. The initial value of the decay wave is given by the thermal fluctuation level
of this wave in the plasma. The calculated threshold power (~ 50kW) is of a similar
magnitude as the threshold power for nonlinear power absorption by self-interaction.
Because of the similarity in threshold of the two processes it is possible that as the ion
Bernstein wave power propagates from the low field side of the plasma to the high field
side, power may be absorbed by the deuterium species through the decay process (at
w/Qy 2 1.5) before the ion Bernstein wave power reaches the self-interaction region
(w/Qy ~ 1.5).

Both the nonlinear self-interaction and decay processes can be important in inter-
preting the experimental results. Since both nonlinear processes are distinguishable,
it may be possible to determine how significantly each contributes to the pump power
absorption. The analysis of the experimental results in terms of the power absorption
mechanisms is discussed in Chapter 4.

2.9: Conclusions

This chapter describes the characteristics of the ion Bernstein wave in a range
of plasma parameters. The difference between the electromagnetic and electrostatic
wave descriptions is shown to be significant for 8y 2 0.25. Ion Bernstein wave energy,
dependence on k), wave damping in the WKB approximation, and characteristics in
an inhomogeneous plasma are described. The Brambilla coupling model is outlined.
The ion Bernstein wave ray tracing and power absorption model used for Alcator C is
also described. Power absorption due to plasma impurities is shown to be negligible.
Finally, nonlinear self-interaction and decay of the ion Bernstein wave is shown to be
important for Alcator C parameters.
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CHAPTER 3

Description of the
Experimental Apparatus

3.1: Introduction

This chapter describes the experimental apparatus used in the ion Bernstein wave
experiments. The first section describes the Alcator C tokamak and lists some of the
important operating paramaters. The second section gives a brief description of the
plasma diagnostics involved in the experiment. Finally, section three describes the ion
Bernstein wave antenna system. Special focus is given to the electrical design and
characteristics of the antenna structure. Ohmic power dissipation is estimated from
the measured radiation resistance and the peak voltage in the system is calculated for
a given power. A brief discussion of the matching network is also presented.
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3.2: The Alcator C Tokamak

The combination of a strong toroidal field and an Ohmic heating plasma current
are the basic ingredients of a plasma confinement device known as a tokamak. The
Alcator (ALto CAmpo TORus, or high field torus) tokamak concept, initially proposed
by Coppi (1970), is an approach to magnetic toroidal confinement which utilizes a very
high magnetic field and a high density plasma in a somewhat small and compact device.
A large, pulsed, toroidally directed magnetic field and toroidal plasma current are used
to confine the plasma particles. The induced plasma current also serves to Ohmically
heat the plasma. Figure 3.1 (a) shows the geometry of a tokamak device, Fig. 3.1 (b)
shows an artist’s rendition of Alcator C, and Table 3.1 lists some of the main operating
parameters of the Alcator C tokamak.

Table 3.1
Alcator C Parameters

Major Radius: Ry =64cm
Minor Radius: a=16.5cm

Toroidal Magnetic Field: Bt € 13 Tesla
Plasma Current: in < 800kA

Plasma Density:

0.3x 1020 < f, <20 x 1020m—3

Electron Temperature: Te <3keV
Ion Temperature: T; < 1.5keV
Energy Confinement Time: 7g < 50ms

Lawson Product:
Ohmic Heating Input Power:

Duration of Discharge:

nTg < 68 x 1019m—3—
Py, < 1.5MW
Tplasma =~ 300600 ms
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Figure 3.1 —(a) The geometry of a tokamak device. The plasma is confined in
the shape of a torus with magnetic fields. The (r,8) plane is the poloidal plane.
The coordinate r is the minor radius, R is the major radius, # is the poloidal
angle, ¢ is the toroidal angle, and the Z-axis lies along the vertical centerline. On
Alcator C, a = 16.5cm and Rg = 64cm. (b) The Alcator C tokamak (cut—away

view).
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3.3: Plasma Diagnostics

3.3.1: Introduction

An rf plasma heating experiment which is designed to affect global plasma param-
eters relies heavily on diagnostic measurements which can observe changes in plasma
characteristics and properties. A diagnostic is a device which is specially designed to
measure one or more particular plasma observables such as the line-averaged density,
central ion temperature, visible hydrogen spectral emission, plasma edge potential,
and others. A diagnostic serves at least two important functions. First, it provides
information which can be used to confirm or modify present models of basic physical
processes or extend the regimes of applicability of these models. Second, it provides
information about the response of the plasma to experiments which affect the whole
plasma. The ion Bernstein wave heating experiment relied heavily on a number of
plasma diagnostics. A brief description of these is given in what follows.

3.3.2: Perpendicular lon Temperature

Perpendicular ion temperature was measured using a charge exchange neutral an-

a.lyzer[l]. The analyzer provided central plasma ion temperature and ion energy dis-
tribution measurements. Located toroidally one port away (60°) from the antenna,
the analyzer viewed the plasma from the low field side of the torus. Radial temper-
ature profiles were obtained on a shot-to—shot basis (requiring about 10-20 shots to
determine a profile) by scanning the analyzer viewing angle in the upward direction
(direction of the ion grad—B drift); the profiles were assumed to be symmetric about
the plasma center. Particle flux from only hydrogen or deuterium could be analyzed
during a single shot; however, switching from hydrogen to deuterium could be done
on a shot-to-shot basis. The analyzer was calibrated over an energy range of about
0.5keV to 10keV. The ion temperature was obtained by making a linear fit to the
computed quantity log [J,-(E,-) /V'E;] where J; is the measured ion particle flux and E;
is the ion energy. A typical single measurement error in the ion temperature was about
50eV; however, repeated measurements on identical discharges could reduce this error.
In some cases, the ion flux could be described with two temperatures, one typically
somewhat higher than the other. This occurred when a fraction of the plasma ions
were hotter than the bulk ions. ‘

83
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3.3.3: Central Electron Temperature and Density

Central electron temperature and density were measured with a Thompson laser

scattering system[z]. The laser light was produced from a Nd:YAG laser source op-
erating at a wavelength of 1.06 um and providing a 1 Joule pulse every 20 millisec-
onds. The system has operated successfully over a density range of 0.5 x 102°m~3 to
7.0 x 1020 m—3 and a temperature range of 500eV to 3000eV. A typical error in the
electron temperature is about +£100eV, but can become as high as about +£500eV. The
error in the central density is typically about 0.1 x 1020 m—3,

3.3.4: Line—Averaged Electron Density

Line-averaged electron density was measured with a phase modulated laser interfer-

ometer system[3]. This type of system is insensitive to laser power amplitude variation
and gives a resolution which is independent of phase. Laser light is produced from two
optically pumped CH3OH (methyl alcohol) lasers which operate at the 118.8 um line.
Plasma in the density range of 102°m~3 < n, < 20 x 102 m—3 produces a phase shift
of 1.0 < ¢/2m < 20 for a plasma radius of 12cm and a nearly parabolic density profile.
The Alcator C system had the capability of measuring the line-averaged density profile
at several different radial locations. For the small size plasma (r = 12 cm was typical
during the ion Bernstein wave experiments) only three density viewing chords passed
through the plasma, one in the center, one near the plasma inner edge, and one near
the plasma outer edge.

3.3.5: Plasma Impurity Level

The impurity level of the plasma was determined by measuring the visible brems-

strahlung plasma emission[4]. The effective jon charge of the plasma is denoted as Z g
and is defined by

z: n;Z2
Zﬁ E : ';f' (3'3.1)
1 .

where n; and n. are the densities of the ion species and electrons and Z; is the ion charge
number. The instrument measured the line integral brightnesses of the continuum
radiation (in the wavelength region near 5360 A) from up to 20 chords at different
radial locations. The value of Z.g was then inferred from the measured radiation.
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3.3.6: MHD Activity

Magnetohydrodynamic (MHD) activity was monitored with a soft x-ray diagnostic
described in Ref. 5. The device consisted of a detector system which could image
the poloidal cross section of the plasma’s soft x-ray emissivity. Typically, only the
soft x-ray emission from a central chord was monitored during the ion Bernstein wave
experiments.

3.3.7: Edge lon Impurity Temperature

The edge ion impurity temperature (r/a ~ 0.9-1.0) was determined by measuring
the Doppler broadening of far UV lines from radiation emitted by impurities in the
plasma edge[G]. Typically, radiation emitted from OV and OVII was monitored during

some of the ion Bernstein wave experiments. Unfortunately, these measurements were
not carried out routinely during ion Bernstein wave experimentation.

3.3.8: Edge Plasma Density, Temperature, and Floating Potential

An unshielded double Langmuir probe was constructed to measure the plasma
floating potential, electron density, ion temperature, and plasma radial electric field in
the scrape—off region. The separation of the probes was about 2-3 mm and the probes
could scan a radial distance of 4-5cm (3—4 temperature scrape—off lengths). Another

probe containing both a Langmuir probe and a gridded energy analyzer[7]wa.s used to
measure the edge conditions also. This probe, separated by a limiter from the double
probe, measured similar plasma edge characteristics as the double probe.

3.3.9: Plasma Radiation Power Loss

Plasma power loss by radiation was monitored with a bolometer a.rray[s] . This array
contained 16 detectors and provided a radial profile of plasma emission. Bolometer data
is only available for some of the ion Bernstein wave heating experiments.

3.3.10: CO, Laser Scattering

A COg2 laser scattering system was used on Alcator C to measure the density

perturbations resulting from both coherent plasma waves and plasma turbulencel®]. Dr.
Y. Takase was responsible for operating this diagnostic during the ion Bernstein wave
experiments. The experimental and theoretical details of this type of measurement are
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discussed in References 10, 11, 12, and references therein. The wavelength of laser light
A = 10.6 um was chosen so that refraction, reflection, absorption, and emission by the
plasma did not obscure the measurement. The laser frequency was significantly greater
than the electron plasma and electron cyclotron frequencies. The scattering of laser
light is mainly due to the electron motion since the ion acceleration in the laser electric
field is reduced by the electron to ion mass ratio. The scattered power is therefore
proportional to the magnitude of the electron density perturbation. The scattering
angle is determined by the conservation of wave energy and momentum expressed as

ko +k=k, (3.3.2)
wo+ w = w, (3.3.3)

where kg, wq refer to the incident laser radiation and k,, w, refer to the radiation scat-
tered from density perturbations with frequency w and wave vector k. For scattering
from ion Bernstein waves or edge turbulence, |kg| ~ |k,| since w << wg and k must
therefore be nearly perpendicular to kg. In this case, the scattering angle is quite small
(cos_l[f(O : f‘a] < 6°).

A schematic of the CO; scattering diagnostic set—up to measure density perturba-
tions associated with ion Bernstein waves is shown in Fig. 3.2 . The horizontal location
of the scattering volume can be altered by moving the lens—mirror assemblies L2-M2
and L3-M3 horizontally. Similarly, the vertical location can be changed by adjusting
the lenses L2 and L3 vertically. The angle ¢,, which selects the wave number of the
density perturbation to be observed, is determined by the position of M1. Scattering
experiments to measure low—frequency density fluctuations require a different experi-
mental set—up which is shown schematically in Fig. 3.3 . In this case, the scattering
volume is typically the entire vertical length of the main beam through the plasma.
Scattering angles down to ¢, ~ 0 (k ~ 0) can be studied for this case.

3.4: lon Bernstein Wave Antenna System
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Figure 3.2 —The experimental setup of CO; laser scattering experiments from
ion Bernstein waves. (from Y. Talkmse Ref. 9.)
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Figure 3.3 —The experimental setup of CO; laser scattering experiments from
low—frequency fluctuations. (from Y: Takase Ref. 9).
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3.4.1: Introduction

The purpose of the Alcator C ion Bernstein wave antenna system is to efficiently
carry power from the source to the antenna structure where it can be coupled to the
plasma in the form of ion Bernstein wave power. The system can be divided into two
major parts:

I. Antenna structure

I1. Transmission line and matching network.

Figure 3.4 is a schematic of the entire antenna system. The antenna structure consists
of the T-shaped antenna inside of the vacuum chamber. The transmission line and
matching network consists of the stub tuner system and transmission line connecting
the tuner system and antenna.

Power was supplied to the antenna system from one of three amplifiers. A low
power linear amplifier could supply up to 2kW of continuous rf power in the frequency
range of about 2MHz < fy < 200 MHz. For powers up to 80 kW and then up to
450kW two nonlinear amplifiers with slightly adjustable frequency (+10%) were used.
No power above 180 kW was used during the ion Bernstein wave experiments due to
voltage breakdown problems and plasma disruptions. The remainder of this section
will discuss the details of items I and II.

3.4.2: Antenna Coupling Structure

Ion Bernstein waves were launched from a stainless steel, center fed, T-shaped
movable loop antenna with the center conductor aligned along the direction of the edge
magnetic field and surrounded by a double layer, molybdenum coated Faraday shield.
Figure 3.5 shows a schematic of the antenna. The outer dimensions of the antenna
structure are: width 4 cm, length 25 cm, and height 4cm. The option of a ceramic
cup between the inner and outer shield is shown in the schematic; however, all data
reported here was obtained without the ceramic cup. This type of antenna has been

used previously for slow wave excitation in mirror devices [13, 14], ion Bernstein wave
excitation in ACT—I[15], and ion Bernstein wave heating experiments at JIPPT-II-
Ul16], Schmitt[17)also used a long wire antenna to excite ion Bernstein waves.

The wave excitation studies on ACT-I[15] confirm that ion Bernstein waves are
best excited when the antenna current is close to being parallel to the direction of
the background magnetic field (as opposed to being perpendicular as is the case for
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Figure 3.4 —The Alcator C antenna system. Power entering the stub tuners
passes through the high VSWR region, through the DC break and into the vacuum
break. From the vacuum break, power enters the antenna feed and flows into the
antenna.
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Figure 3.5 —Schematic of the Alcator C ion Bernstein wave antenna.
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fast wave launching). This result can be understood intuitively by considering the
polarization of the antenna and ion Bernstein wave electric fields. The electric field
excited in the plasma by the antenna can be expressed in terms of the scalar and vector
potentials whose sources are the charge and current in the antenna. The direction of
this electric field is mostly parallel to the antenna center conductor and therefore is
also parallel to the background magnetic field. The dispersive property of the plasma
acts mainly to reduce the magnitude of the penetrating electric field due to the large
value of K,;. The field within the plasma arising from the antenna excitation can
be decomposed into a linear combination of the electric fields from all possible plasma
oscillations; the oscillations with electric field polarization mainly along the background
magnetic field will contribute the most to this linear combination. The ion Bernstein
wave at the plasma edge is the only propagating wave with an electric field polarization
mainly parallel to the background magnetic field (E.;/E; > 1 for k" > 0). Therefore,

the dominant term in the linear decomposition will come from the ion Bernstein wave.
The slow wave is excited in the vacinity of the antenna due to the antenna reactive
fields. The slow wave is evanescent and therefore carries no power; however, it may
produce some local power absorption. Most of the power can be shown to couple into
the ion Bernstein wave and the remaining power will couple into the fast wave and
possibly certain parasitic modes which propagate in the plasma edge region.

There are two dimensions of primary importance in an ion Bernstein wave metal
loop coupler. The antenna height which is the distance between the central conductor
and return conductor (back plane) and the antenna length. The distance between
the central conductor and return conductor determines the magnitude of the antenna
current necessary to couple a fixed amount of power into a particular plasma. Current
flowing in the return conductor tends to reduce the magnetic field flux from the current
flowing in the center conductor. The electric field along the return conductor also
tends to reduce the electric field along the center conductor. As a result, to keep
the electric and magnetic fields which penetrate into the plasma constant (and thus
keep the power which is coupled into the plasma approximately constant) the antenna
current and voltage must increase as the the separation between the center and return
conductors decreases. A higher voltage and current for a smaller antenna height means
more Ohmic loss and more likely a chance of breakdown. Too great of a separation

makes the characteristic antenna impedance so large that it is difficult to match to it
with a feed transmission line.

The antenna length partly determines the amount of ion Bernstein wave pcmfer
which is electron Landau damped. The k" power spectrum of the ion Bernstein waves

which efficiently couple into the plasma is determined by the antenna geometry (length
mainly) and the plasma coupling function(18]. The plasma coupling function acts as a



Section 3.4: lon Bernstein Wave Antenna System 93

filter to the antenna Fourier current spect;’umf . The general result is that less power
is electron Landau damped for a longer antenna assuming that fl >> mwvie where [ is
the antenna length, f is the driving frequency, and vy, = (2Te/me)l/2.

Based on the above simple considerations it can be concluded that a good ion Bern-
stein wave loop coupler must have a current element aligned along the local magnetic
field, a large separation between the central and return conductors, and an antenna
length which minimizes the electron Landau damped power. Although these parameters
were optimized for the Alcator C antenna, it was primarily the space and engineering
constraints which determined the final antenna dimensions.

3.4.3: Electrical Transmission Line Model

The voltage and current characteristics of the antenna are best understood in terms
of an electrical transmission line model. Before discussing the specific aspects of the
Alcator C ion Bernstein wave antenna it is useful to review some results of standard
transmission line theory.

Using the distributed element model for a transmission line shown in Fig. 3.6 the
limiting differential equations corresponding to this model for the voltage V' and current
I are |

v _aI
~5 = L5 +HI (3.4.1)
I 8V

where L, C, and R are the inductance, capacitance, and resistance per unit length of
the transmission line system. These two equations combine to yield a second order
partial differential equation for the voltage ’

8%v  8%v ov
LC—ét—z' ) + RCE- =0. (3.4.3)
The power source has a real frequency f = w/27 so that the time dependence of all
quantities can be expressed by the function exp[—iwt]. Solving Egs. 3.4.1 for the voltage
and current spatial dependence gives

+ The standard treatment of this problem is not self-consistent. The antenna current is
assumed known and the antenna—plasma coupling problem is then solved to obtain the

k), power spectrum.
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A

Figure 3.8 —Distributed element model used to derive the transmission line

equations.

Y
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Viz) =V [+ + Teike] (3.4.4)
I(=) = % [eft= — remike] (3.4.5)
where
k=wVLC [1 + i%] 2 (3.4.6)
Z =2, [1 + i%] e (3.4.7)
Zo= g (3.4.8)

The quantity I is defined as the voltage reflection coefficient and Z is the characteristic
impedance of the transmission line. It is pointed out that the analytic expression which
is to be used for evaluating a quantity Q(z,t) numerically is

Q(z,t) =Re [Q(z)e_i“'t] . (3.4.9)

A transmission line may either terminate with a load, expressed as an impedance
Z7,, or encounter a transform to another transmission line with characteristic impedance
Zy at the locationt z = 0. In either case! a fraction of power is reflected and a
fraction is absorbed (or transmitted) at £ = 0. The voltage reflection coefficient, which
determines the fraction of power reflected, is given by

Zr, -2
= 7.+ 2 (3.4.10)
where
_V(==0)
2= T oo (3.4.11)

1 The location is completely arbitrary, however it is chosen to be at £ =0 since this choice
simplifies the resulting expressions.

1 The remainder of this discussion assumes that the transmission line is terminated in a
load. Power dissipated by the load is then written as Pgy;e. This development is equiv-
alent for an impedance transform in which case Pg;,, represents the power transmitted
into the transmission line with characteristic impedance Z; .
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The transmission line equations can be combined to give an equation for the tem-
poral and spatial dependence of the power
9 9 [ 1

~—pP=_= 5

o 5 LI? + %CVZ] — RI? (3.4.12)

where P = VI. The term on the right of Eq. 3.4.12 in square brackets represents the
stored magnetic and electric energy; the second term on the right represents Ohmic
loss along the transmission line. Assuming quantities of the form of Eq. 3.4.9 and time
averaging Eq. 3.4.12 over one period gives

- . 1_.
EP = —ERI I (3.4.13)
where P =Re(3VI*) is the time averaged power. Assuming that I' =0, Eq. 3.4.13 can

be solved to give the spatial dependence of P(z) as
P(z) = Pye~=R/%0, (3.4.14)

(where it is assumed that R/ (koZo) << 1). Py = %IVolz/Zg is the power which is
propagating in the +z direction at z=0. An equation for P(z) in a coaxial transmission
line with inner radius a, outer radius b, and transmission line material of conductivity o
can be obtained by solving the Maxwell equations. This has been done in Ref. 19 and

the result is
P(z) = Pye~ 27" (3.4.15)
where
c 1141
- —_—a b
7= 2m%08 h% (3.4.16)
and the skin depth 6 is
5= < (2)"* 3.4.17
- =) (34.17)

Equating the two expressions for P(z) gives a relation for R in terms of the transmission
line material conductivity for a coaxial transmission line as

2y = z%' (3.4.18)

If T' # 0 the solution to Eq. 3.4.13 is slightly more complicated and is written as
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P(z) = Py [e=F/%0 _|[|2e*R/Z%0 1 Zﬁm (i;r-(e'z“”” - 1))] (3.4.19)
0 0

The quantity P(z) represents the difference between the power flowing in the +z di-
rection and the reflected power (from the load at = 0) flowing in the —z direction at
the position z. Equation 3.4.19 gives the spatial dependence of the dissipated power.

When R = 0 and the Ohmic loss is negligible, the power dissipated by the load is
given by Eq. 3.4.19 as

11
Pim=57 Vol? [1-- |r|2] (3.4.20)
=P, [1 - |r|2] . (3.4.21)

where the two terms in square brackets represent the power flow towards the load (Pj)
and the power reflected away from the load Py|T'|2. Since Py or Pg;,, is usually a known
quantity, Eq. 3.4.21 can be used to determine the value of |Vy|. The quantities V(z)
and I(z) are now determined to within an arbitrary phase factor.

A measure of the severity of mismatch between the transmission line of charac-
teristic impedance Z and the load of impedance Zj, is indicated by a quantity called
the voltage standing wave ratio (VSWR). This is the ratio of the maximum voltage
- magnitude to the minimum voltage magnitudet and is given by

1+ I

VSWR = T[T

(3.4.22)

A VSWR value of unity means that the transmission line is terminated with a matched
load and no power is reflected at the load in this case. In situations where a matching
network is placed somewhere between the load and the power source the reflected power
is sometimes called the circulating power. The reflected power then circulates back and
forth between the load and matching network. An expression for the circulating power
can be given in terms of the dissipated power as

T2

ir = Pg; . 4.2
P = Paim 1173 (3:4.23)
In terms of the VSWR, the circulating power is written as
_ (VSWR —1)2
Peir = P —ece. (3.4.24)

t This can easily be obtained analytically by calculating the two zeros of & |V (z)|.
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It is clear from both Eqgs. 3.4.23-24 that a severe mismatch (|I'| ~ 1) can establish a very
large circulating power. This power can set up large voltages in the transmission line
carrying this circulating power. The maximum voltage achieved in the high circulating
power region is ’

Vinax = V2P5aZ0VSWR (3.4.25)

where Vipax is the peak voltage (as opposed to the root mean square value). This
voltage is important since the region of high circulating power must be designed to
withstand breakdown from this maximum voltage.

3.4.4: Electrical Analysis of the Antenna

Actual values of C, L, and R are necessary in order to apply the preceeding trans-
mission line model to the antenna. Neither C nor L were measured so their values must
be estimated. Radiated power from the antenna is included in the transmission line
model by an increased value of R. The value of R is chosen so as to give the correct
power dissipation due to both the antenna Ohmic loss and any radiated power loss. Its
value can be inferred from the measured radiation resistance.

Throughout the antenna electrical analysis the antenna magnetic field is approxi-
mated as the magnetic field of a conductor above a finite ground plane (similar to a
stripline transmission line). The electric field is approximated as the the electric field
of a coaxial transmission line mode. Approximating the fields in this way gives electric
and magnetic fields which lie in a cross—sectional plane of the antenna but which are not
perpendicular to each other. This means that there must be electric and magnetic field
components perpendicular to the cross—sectional plane of the antenna which have been
neglected. There are two parameters which roughly indicate the accuracy of this simple
approach. The first parameter is R/(k9Zg) where R is determined from both Ohmic
and radiation loss. A small value for this parameter indicates that the radiation effects
are small and that the antenna fields do not deviate much from the true transmission
line fields. The second parameter is 1 — vy/c where vy is the speed of electromagnetic
wave propagation along the direction of the antenna central conductor. A small value
of this parameter indicates that the neglected electric and magnetic field components
(perpendicular to the antenna cross-sectional plane) are small and that the approxi-
mate fields are not far from realistic. Both of these parameters are essentially small
for the Alcator C antenna and justify the approximations to the antenna electric and
magnetic fields.

The quantity C is proportional to the energy density in the electric field. An
estimate of C can be made by approximating the antenna electromagnetic mode as a
coaxial TEM mode. The electric potential for a TEM mode is obtained by solving the
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two dimensional La.pla.cé equation in the cross—section of the antenna. This was done

numerically for the antenna geometry using a computer code called J ASONI[20], Figure
3.7 shows the potential contours and electric field energy density for the antenna. The
capacitance per unit length was computed from this method to be

1 _
C = ~(80). (3.4.26)

The quantity L is proportional to the magnetic field energy density. Its value was
estimated by approximating the antenna as a center conductor above a finite back

plane, without the Faraday shield. The inductance per unit length is estimated? from
Ref. 21 to be

4 _
L = —(0.26) s2—cm ™2, (3.4.27)

The characteristic impedance is now calculated to be

Zy = +/L/C = 68 Ohms (). (3.4.28)
and the phase speed of wave propagation along the antenna is
1
= —— = 0.69c. 3.4.29
vy TC C ( )

The value of Zy was not measured; however, the value of vy was measured by deter-
mining the spatial dependence of the antenna current with a movable current probe.
Measured this way, the phase speed was found to be vgmens =2 0.65c. This measurement
has a 10% error associated with it. The estimated value from Eq. 3.4.29 is within the
experimental error indicating that the electrical model is quite accurate.

The value of R can be calculated in terms of the measured radiation resistance
R;p4. To obtain this value, Eq. 3.4.19 is used first to express the dissipated power in
one arm of the antenna. This is given approximately by

Re(Pgiss) %-ZI;IVoI2 (zﬂo) [1 + %"l—)] (3.4.30)

where | = 25cm, Zg = 68, I' = —1, and it is assumed a priori that Rl/Z << 1. It
is now possible to obtain an equivalent radiation resistance from the above expression.

t+ The magnetic field energy density can in principle be obtained numerically from JASON
since the electric potential and magnetic field in the antenna cross section are propor-
tional. This method was not followed due to the difficulty of numerically expressing the
boundery condition far away from the antenna.
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(a)

(b)

Figure 3.7 —(a) Electric potential contours for the Alcator C ion Bernstein wave
antenna. (b) The electric field energy density contours corresponding to (a).
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Radiation resistance is defined in terms of the dissipated power as
12
Pyigs = §|I| R.od (3.4.31)

= %m2 [Rant + Rop) (3.4.32)

where I is the peak current reached at some point in the antenna, Pg;., is the total
power dissipated, Rant is proportional to the radiated power and Ry, is proportional
to the Ohmic power loss. The forward and reflected powers were measured using
directional couplers at a location near the matching network. The dissipated power
and radiation resistance therefore includes Ohmic power loss in the antenna and along
all of the transmission line connecting the matching network and antenna. The fraction
of this power which is dissipated by antenna radiation is proportional to R,nt and the
fraction of power dissipated by Ohmic loss in the antenna and between the antenna
and the matching network (where the power is measured) is proportional to Roy. The
value of Rqy, is approximately given by the antenna system loading in a vacuum (when
no plasma is present). The power radiated by the antenna into the plasma can now be
written as

Pont ~ Pdiﬂ [1 - h] . (3.4.33)
The peak current occurs at # = 0 where I' = —1 and has a value given by Eq. 3.4.5
of Imax ~ 2Vy/Zp. Two antenna arms dissipate twice as much power as is shown by
Eq. 3.4.30 and give the contribution to R from only antenna radiated power expressed
in terms of R4 as

R~43x10"2cm™! [R_pq — Rvac]- (3.4.34)

It can now be verified that indeed Rl/Zj << 1 as was assumed.

The part of R which results from Ohmic loss in only the antenna is a small fraction
of the total Ohmic loss since the antenna elements are silver plated and the antenna
length is small compared to the length of the entire transmission line. Its value, in prin-
ciple, can be estimated by calculating the Ohmic loss due to the finite conductivity of
silver. Since the antenna is not a simple transmission line and the true electromagnetic
fields within the antenna are complicated, this calculation will not be done! for the an-
tenna. Rather, the Ohmic loss is better estimated from the measured vacuum radiation
resistance. The vacuum radiation resistance results from Ohmic loss in the antenna,

t In fact, if the antenna geometry is appraximated as a cylindrical coaxial transmission line
and a coaxial electromagnetic mode approximation is made for the antenna fields, the
calculated Ohmic loss is within a factor of two of the value estimated from the measured
vacuum radiation resistance. :
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antenna feed, the coaxial cable between the matching network and the antenna, and
Obmic loss in the vacuum chamber. Since the antenna characteristic impedance is
~ 34() and the antenna feed characteristic impedance is ~ 30 () the antenna and feed
are essentially matched. In addition, the 30} feed is matched to the remainder of
the transmission line system (at 50 {2) with a quarter wave impedance transformer.
This means that the circulating power is approximately the same in all regions of the
antenna system. As a result, the Ohmic power loss per unit length of transmission
line is approximately proportional to (1/a +1/b)(Zo+/7)~! (see Eq. 3.4.16) where o is
the conductivity of the transmission line material and a and b are the inner and outer
radii of the transmission line respectively. The transmission line system is entirely
copper (excluding the antenna and antenna feed) and has a length of approximately
20 meters. The Ohmic loss in the vacuum chamber is difficult to estimate; however,
an upper bound on the antenna Ohmic loss R can be estimated by assuming that the
vacuum chamber loss is negligible. Therefore, to a very rough approximation, the an-
tenna represents less than 10% of the total Ohmic power loss. The contribution to R
from antenna Ohmic loss is therefore

R<43x103cm ! Rypc. (3.4.35)

This gives a total value for the antenna resistance per unit length (for Repg ~ 1.5902
and Ryac ~0.3Q) of R < 5.3x10"2Qcm™1.

The antenna electrical characteristics can be summarized at this point as follows.
The measured phase speed of electromagnetic waves along the antenna is 0.65c, the
characteristic impedance of each half of the antenna is about 68§}, and the Ohmic
contribution to the antenna loading is very small compared to the radiation loading.
For a total dissipated power of 100 kW, the voltage between the antenna center and
return conductors reaches a maximum of about 1.3kV and the maximum current at
the antenna end is about 408 Amperes. The electric field along the direction of the
antenna center conductor is approximately 1.1kV /cm for the same power.

3.4.5:; Ahtenna Current Probes

Current probes were placed at each shorted end of the antenna halves. The probes
consisted of a coaxial cable filled with a magnesium oxide dielectric with the center
conductor rapped into a small lJoop and electrically connected to the outer conductor.
The probe was oriented so as to intercept the magnetic field flux produced by the
antenna current. Since each probe was placed at a minimum voltage position on the
antenna it was not necessary to correct for any capacitive effects on the probes. The
purpose of the probes was to measure the antenna current from which the radiation
resistance could be calculated. A typical value for the antenna current was about 400
Amperes for a power of 100kW.
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3.4.6: Antenna Movement

A bellows assembly supported the antenna and allowed it to be moved radially
(closér to the plasma) and rotated to change the alignment of the center conductor
with respect to the toroidal magnetic field. Moving the antenna radially produced
observable and repeatable changes in the radiation resistance and in the hydrogen ion
heating rate (ATy/P,). No significant changes were observed when the antenna was
rotated up to 20° from being aligned to the magnetic field.

3.4.7: Faraday Shield

The two purposes of the Faraday shield are to polarize the electric field entering
the plasma and to keep plasma particles from entering the antenna interior. One
disadvantage of having the Faraday shield present is that the shield reduces the total

magnpetic flux which couples to the plasma[zz]. This can reduce the antenna~plasma
coupling and increase the voltage within the antenna. This effect was measured for the
Alcator C antenna. It was found that the first shield only reduced the initial flux by
about 10% and the first and second shields together reduced the initial flux by about
30%.

3.4.8: Overview of the Transmission Line and Matching Network

Power entered the antenna from a 302 coaxial section of silver plated transmission
line. The value of 302 was chosen because it minimizes the voltage between the inner
and outer conductors for a given power and because this impedance is nearly matched
to the antenna impedance. The feed passed through a gap in the toroidal magnet and
connected onto a quarter wave long section of transmission line which transformed the
impedance from the 30 ) antenna feed to the 50} vacuum feed-thru. The feed-thru
acted as a vacuum to air transition. After the feed—thru, the 50 ) transmission line
connected to a DC break which electrically insulated the power system and antenna
operator controls from the tokamak potential. Finally, the transmission line passed
through a matching network which served to electrically match the antenna system to
the power system. The remainder of this section will discuss the power flow between
the matching network and antenna and present the characteristics of the matching
network (see Fig. 3.4 ).
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3.4.9: Power Flow in the High VSWR Region

The region of transmission line between the matching network and antenna contains
a large amount of circulating power. This power is attenuated due to the finite conduc-
tivity of the transmission line. The Ohmic loss, which amounts to nearly 20% of the
incoming power, is proportional to the ratio of Rvac to Ryad since Ryac is proportional
to an approximate upper bound on the power Ohmically dissipated by the transmis-
sion line. A value of R for the transmission line can be estimated from Eq. 3.4.19 by
requiring that 20% of the power is Ohmically dissipated in the line. The result for R is

R~14x10"4Qcm™1. (3.4.36)

where the length of the line is 20 meters and the reflection coefficient at the antenna is
estimated to be '~ 0.978. The value of R can also be calculated from Egs. 3.4.16 and
3.4.18. The conductivity of copper at 20° is

c? -8\ __.-1
oou = 1518 (17x10 ) sec™?. (3.4.37)
At a frequency of f = 183.6 MHz the skin depth is

§=4.8x10"*cm. (3.4.38)

The velue of 7 is calculated from this to be

o = 1.6 x 10~ 6cm™? (3.4.39)

where a and b are measured to be

a=4.84cm
(3.4.40).
b=112cm
The resistance per unit length is calculated from Eq. 3.4.18 as
R=16x10"*Qcm™" (3.4.41)

The two independently evaluated values of R are quite close confirming that most of
the Ohmic power loss occurs in the transmission line and only a small amount in the
vacuum chamber and antenna structure. It is an easy matter now to estimate the peak
voltage in the transmission line system for a total dissipated power of 100 kW. Using

Eqgs. 3.4.22 and 3.4.25, the maximum voltage, when no plasma is present, is estimated
to be 30kV.
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3.4.10: Matching Network

The purpose of the matching network is to transform the antenna system impedance
to the impedance of the transmission line coming from the power system (50 €2). This
was done in the ion Bernstein wave antenna system by attaching three stub tuners
in parallel with the main transmission line. A stub tuner consists of a transmission
line terminated with a movable short. The location of the short in each stub tuner
could be adjusted over a distance of about A/2 (at a frequency of 180 MHz). Each stub
tuner was separated from the other by a section of main transmission line slightly less
than A/8 in length. The transmitter frequency was adjustable (about +10%), and over
this range of frequencies the phase of the antenna load could vary considerably due
to the long length of transmission line between the matching system and the antenna.
Consequently, it was necessary to use three stubs rather than two. Figure 3.8 shows a
scatter plot of the region in the complex I plane! accessible to a system of two stub
tuners. The scatter plot is obtained by evaluating I' for a discrete set of tuner settings
spanning all possible positions of the tuners. In general, this sort of system cannot
access the entire range of |I'| < 1. There is some redundancy for three stubs, but the
entire range of |I'| < 1 is accessible. During experimental operation, the stub nearest
to the power system was generally set to a fixed position and the other stubs were
adjusted for tuning.

In principle, it is possible to calculate from the load impedance Zj, the correct stub
positions for a match. This can be done by measuring the amplitude and phase of the
forward and reflected powers in the high VSWR region near the matching network.
From this, the exact value of Z, can be calculated. Once Zj, is known, the exact stub
positions can be obtained numerically.

A system to measure the amplitude and phase of the forward and reflected powers
was constructed for the ion Bernstein wave experiments. The system was tested in the
lab for several tuner configurations and produced accurate enough results so that the
correct tuner positions for a match could be determined. The system failed, however,
on the ion Bernstein wave transmission line system due to errors in evaluating the
forward and reflected powers and their phases. These errors were due to uncertainties
in long cable lengths and power attenuation factors in the cables. It can be justified
that small errors in the forward and reflected powers will strongly upset the calculation
of the stub positions for a match. This follows by considering the properties of the
antenna system as a high Q cavity. The total stored energy in the cavity will exhibit a

t The load impedance Z; which can be matched to the power system with the particular
tuner configuration is related to I' by Eq. 3.4.10.
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Figure 3.8 —Scatter plot of the accessible complex I' (reflection coefficient) for

a two stub tuner system.
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maximum at the correct stub settings. At constant frequency and dissipated power, the
stored energy in the cavity is a function of the three stub lengths l;, where j = 1,2,3.
The width of the stored energy peak expressed in terms of the cavity parameters (I;)
is given approximately by Al; ~ (2mkoQ) ! where kg =wq/c. Thus, the measurements
must be accurate enough to give the stub lengths to within Al;. A large value of @
therefore requires very accurate measurements to correctly evaluate the stub positions.

3.5: Conclusions

This chapter describes the diagnostics used on Alcator C which were important for
the ion Bernstein wave experiments. In addition, the physical and electrical properties
of the antenna system have been calculated and the voltage and current inside the
antenna structure have been reported. Finally, the properties of the three stub tuner
system have been discussed.
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CHAPTER 4

Io_n Bernstein Wave
Experimental Results

4.1: Introduction

Ion Bernstein wave experiments were performed on Alcator C to study wave ex-
citation, propagation, absorption, and plasma heating due to wave power absorption.
Since the Alcator C tokamak was designed to mainly study the confinement physics of
high density, high temperature plasmas, most of the ion Bernstein wave experiments
emphasized the various aspects of plasma heating rather than the aspects of wave cou-
pling and propagation. As a result, the majority of the discussion in this chapter and
the succeeding one will focus on the heating results.

Ion Bernstein waves were launched from a stainless steel, center fed, T—shaped,
movable loop antenna with the center conductor aligned along the direction of the
toroidal magnetic field and surrounded by a double layer, molybdenum coated Faraday
shield. The experiments were conducted under the following conditions: rf frequency

//v
/
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fo=183.6 MHz; plasma minor radius (set by molybdenum limiters) a=0.115m, 0.12m,
or 0.125m ; major radius Ry = 0.64 m; hydrogen majority plasma with a deuterium
minority 0.1% <np/(ng+p) < 20%; toroidal magnetic field strength 4.8 T < By <11T;
line-averaged electron density 0.6 < i < 4 x 1029 m~3; P < 180kW; plasma current
160kA < Ip < 290kA; and Z.g ~ 14.

This chapter begins by presenting the wave propagation and absorption results.
These results confirm that ion Bernstein wave power was coupled into the plasma and
followed the expected dispersion relation. Following this, the antenna—plasma coupling
and wave excitation measurements are presented. The radiation resistance shows the
strongest dependence on magnetic field and plasma density. Weaker dependences are
seen with the injected rf power and antenna orientation. Similarly, the presence of the

ion Bernstein wave in the plasma, as measured by CO; laser sca.tteringh], shows its
strongest dependence on plasma density and magnetic field. Finally, heating results at

three values of the toroidal magnetic field[2lare presented. lon Bernstein wave power
injection at powers P, < 180kW produced both significant ion heating (AT; < 380eV)
and improvements in global particle and central impurity confinement times by a factor
of up to 3 at densities 7ie 2 1 x 1029 m—3, At higher densities (fie 2 2 x 102°m —3), the
heating ceases to be efficient and the particle confinement time is no longer enhanced.

4.2: lon Bernstein Wave Propagation and Absorption

4.2.1: Wave Propagation

Figure 4.1 (a) shows the perpendicular wave-number spectrum of ion Bernstein
waves obtained at /a = —0.16 (z = R— Ry) from a shot-to—shot scan of the scattering
angle using the CO5 scattering set—up shown in Fig. 3.2. The dispersion relation
obtained from the scattering data is shown in Fig. 4.1 (b). The points in Fig. 4.1 (b)
are obtained by scanning the scattering volume horizontally at fixed plasma parameters.
The value of k| _is obtained from the peak in the measured k| spectrum [see Fig. 4.1 (a)]
and py is evaluated from the measured value of Ty at the toroidal midplane. The
agreement between the theoretical and experimental dispersion relations confirms that
the scattered signal originates from ion Bernstein waves near the toroidal midplane.
The magnitude of the CO4 scattered signal at £ = +5.1 cm exhibits a nearly linear
dependence on the rf power as is shown in Fig. 4.2 . This further confirms that ion
Bernstein wave power was coupled into the plasma.
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Figure 4.1 —(a) A typical k; spectrum of the ion Bernstein wave. Plasma
parameters: Hydrogen, B=7.6 T, I, = 250kA, fi. =2 x 102° m—3, (b) Dispersion
relation obtained from a spatial scan of the scattering volume. The solid curve
represents the theoretical dispersion relation. Plasma parameters: Hydrogen, B =
7.6 T, I, = 290kA, fi. = 2.3 x 102° m—3, '
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Figure 4.2 —Dependence of CO, scattered power on rf injected power at By =

7.6 T. There is a small off-set in the scattered power which has not been included;

including this off-set would show sero scattered power for gero rf injected power.
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4.2.2: Wave Power ‘Absorption

Absorption of ion Bernstein wave power due to ion cyclotron damping is predicted
by linear theory to occur where w = nw,; (n integer, j ion species). Nonlinear Landau
damping may occur where w = (2m + 1)w,; (m integer) and is predicted to dominate

linear da.mping[3] even in the presence of a minority species. The details of ion Bernstein
wave power absorption through either mechanism have been given in sections 2.7 and
2.8. Calculated values of the nonlinear threshold power for a single ion species plasma
at several central magnetic field values are in the range Py, ~ 1040kW and are given
in Ref. 4.

Power absorption of the ion Bernstein wave across the w/Qy = 1.5 layer[l] was
studied in a nearly pure hydrogen plasma (np/n. << 0.01) using CO; laser scattering
techniques. The radial profile of the scattered power, shown in Fig. 4.3 , exhibits a
strong initial radial attenuation near the plasma outer edge. This attenuation, which
is observed at all densities, may result from the toroidal spreading of the ion Bernstein
wave packet (see Fig. 2.10). Farther into the plasma the scattered power shows a large
attenuation across the w/{ly = 1.5 layer. This may be an indication of nonlinear power
absorption on the hydrogen or linear absorption on the deuterium.

Power absorption was also investigated at B ~ 9.3 T across the w/Qlp = 3 layer
located close to the antenna Faraday shield (see Fig. 4.9). The almost complete ex-
pected absorption at this location is confirmed by the scattering measurements shown
in Fig. 4.4 . The data in Fig. 4.4 was obtained by measuring‘the scattered power at
a fixed scattering location as the magnetic field was increased on a shot-to—shot ba-
sis. A large attenuation (by a factor of 40) of the scattered signal from ion Bernstein
waves was observed when the w/flp = 3 layer was placed between the antenna and the
scattering volume. Although Fig. 4.4 suggests wave power absorption, the possibility
of parametric decay of the ion Bernstein wave at the w/{dp = 3 layer cannot be ruled

outl8]. This is the situation where the ion Bernstein wave decays into a lower frequency
ion Bernstein wave an an ion quasimode. Since the CO; scattering measurement was
set up to detect density perturbations only at the pump ion Bernstein wave excitation
frequency the lower frequency ion Bernstein wave would be unobservable. Thus, rather
than power being absorbed on the ion species through either linear or nonlinear mech-
anisms at the w/Qp = 3 layer, the wave power may undergo a frequency downshift
and continue propagating into the plasma both unimpeded by the w/dp = 3 layer and
undetected by the laser scattering system. At high magnetic fields (By > 9T) such as
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this, very broad (0.98 < f/fo < 1.02) and downshifted frequency spectra were observed
confirming the possibility of nonlinear processes.

4.3: Wave Excitation and Antenna—Plasma Coupling

4.3.1: Wave Excitation

Studies of local plasma parameters on wave excitation were made by moving the
antenna radially (with respect to the plasma) under fixed plasma parameters. Both the
scattered signal from ion Bernstein waves and the ion temperature increase achieved
a maximum value when the antenna Faraday shield was located 0.5 cm behind the
limiter edge. The density scrape—off length is typically on the order of 0.5cm. The
loading resistance (shown in Fig. 4.5 ), on the other hand, increased monotonically as
the antenna was moved radially closer to the plasma. .

4.3.2: Antenna—Plasma Coupling

Antenna-plasma coupling studies were performed with the antenna placed about
0.5cm behind the limiter edge. Figure 4.6 shows the radiation resistance and scattered
signal as a function of magnetic field. A peak in the radiation resistance is observed at
about 7.6 T which corresponds to the peak in the scattered CO; signal. It is expected
that efficient direct launching of ion Bernstein waves should occur when the w/Qz~1.99

layer is placed just behind the antennal6l. A nearly field independent background
loading of about 12 is observed on either side of the peak. This background may be
caused by power dissipation localized near the antenna or by non-resonant excitation
of the ion Bernstein wave at a frequency which may be outside the detection range of
the CO5 scattering system.

Figure 4.7 shows the measured value of the radiation resistance and scattered power
as a function of line-averaged density. The radiation resistance increases with density
until about 7ie ~ 2.8 X 102 m—3 and then begins to decrease. The scattered power on
the other hand, is maximized at 7ie ~ 1.1 x 1029 m—3 and decreases to either side of this
density. The expected behavior of the scattered power is complicated and is discussed



Section 4.3: Wave Excitation and Antenna—Plasma Coupling 117

10 T 1 T T T i
~~ B ' -
3 C 1/ -

- ® -

- S - ® : ° i
a [ ! o i
a. L | ® ® -
| .L . 1 L 5 &

(0 0]
o
@

Figure 4.4 —Scattered power at z/a = +0.85 as a function of B near 9.3 T
showing the strong attenuation of the ion Bernstein wave as it crosses the w/Qp=3
layer. Plasma parameters: Hydrogen majority with deuterium minority, fie =
0.65 x 1030 m—3,



118 Chapter 4: lon Bernstein Wave Experimental Results

o111 T T T 1

14— —

.2 g =

08— | B | —

0.6 r () ' —'

04— -

0.2 | | —

ol L 11
11.4[11.5 (1.8 12 122 124 126 128 13

LIMTER  ANTENNA POSITION (cm)

RADIATION RESISTANCE (OHMS)

Figure 4.5 —Antenna loading as a function of antenna radial position for Bg =
7.6T.



Section 4.3: Wave Excitation and Antenna—Plasma Coupling 119

15'|1|I|rlrt|r||r|lIrl[rrTI]rrrlltrT

~ Q :

= :

< :

.

0 -

N -

al 3

i 1EY T A ETE

2.0_lrrr[rrrt|lrtrrtlrl[lrrrrrrttrlll -

(b =

- ® -

c o ..00 ‘ .

v1'.0 —9 60 oo . o o9 ° =

% : :

O.5F gm=vacuum. . . ...

00:lllllllLlllLlllljllllllllllllllllq
6.0 7.0 8.0 9.0

B (T)

Figure 4.6 —(a) CO; scattered power and (b) Loading resistance as a function of
magnetic field. Plasma parameters: Hydrogen, Ip, = 290kA, fi, = 2.3 x 102°m—3,



120 Chapter 4: lon Bernstein Wave Experimental Results

in section 5.3. The departure of the expected behavior from the measured behavior may
result from ion Bernstein wave scattering from low—frequency edge density fluctuations
(see section 4.4.7) or parametric processes. The density at which the wave excitation
frequency is equal to the lower hybrid frequency is about ne ~ 4 x 1017m=3. It is
thought that the density near the antenna is always somewhat higher than this value.

The antenna loading showed a weak dependehce on the rf input power. The overall
trend was that the loading decreased (~ 20%) as the total input power increased from
50kW to 150 kW. This may also suggest that certain nonlinear effects such as those
already mentioned or plasma density modification near the antenna by ponderomotive
forces is occurring.

Antenna loading was studied as a function of the orientation of the antenna central
conductor with respect to the edge magnetic field. Over a range of +20° no measurable
effects on the radiation resistance were observed.

4.4: Heating Experiments

4.4.1: Introduction

Central ion temperature increases (AT;/T; 2 0.1) of the Hydrogen majority com-
ponent were observed on Alcator C during rf power injection for magnetic fields in the
range 4.8T < By < 11T. Figure 4.8 shows the hydrogen ion temperature increase
(T — Top) as a function of toroidal magnetic field for all of the ion Bernstein wave
experimental data. Although the greatest ion temperature increase was observed at
Bo=9.3T, heating occurred over a broad range of magnetic fields (2.4 >w/Qg(g) 2 1.1)
and was not strongly dependent on having a particular ion cyclotron resonance located
near the plasma center. The majority of heating studies were conducted in discharges
at Bo~T7.6T, 5.1 T, and 9.3 T, having an axial safety factor value g(0) < 1.

Figure 4.9 shows the location of the hydrogen and deuterium cyclotron harmonics
in the poloidal cross section for three magnetic fields. At 7.6 T, rf power absorption is
predicted to occur either linearly on deuterium at the w/Qp = 3 layer, located about
3.4cm to the high field side of the plasma center (z/a = —0.3), via ion cyclotron damp-
ing, nonlinearly on hydrogen at the w/fly = 1.5 layer (same location) via nonlinear
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Landau damping through ion Bernstein wave self-interaction (see section 2.8), or non-
linearly on deuterium near the w/{2 ~ 1.6 layer via nonlinear Landau damping through
ion Bernstein wave decay (see section 2.8). At 9.3 T, rf power absorption in the plasma
‘interior is predicted to occur nonlinearly on deuterium at the w/Q0p = 2.5 layer located
about 4.5 cm to the high field side of the plasma center, via nonlinear Landau damping
through self-interaction. At a central field of 5.1 T, rf power absorbtion is predicted to
occur linearly via ion cyclotron damping on deuterium at the w/Qdp = 5 layer located
6.8cm to the low field side of the plasma center, or nonlinearly on hydrogen at the same
location (w/fly = 2.5 layer) via nonlinear Landau damping through self-interaction.

4.4.2: Heating Results at 7.6 Tesla

At a central magnetic field strength of By = 7.6 T and 72, ~ (0.8 — 1) x 1020 m—3,
np/nu+p ~ 10% the central hydrogen temperature increased by an amount ATy ~
200 eV and the line—averaged electron density increased by ~ 20% with 100 kW of
power injected into the antenna system. A mass-resolving charge exchange neutral
analyzer which was scanned radially on a shot-to—shot basis measured the hydrogen and
deuterium ion temperature profiles shown in Fig 4.10 which were centrally peaked in
both the Ohmic and rf heated portions of the discharge. Figure 4.11 shows the temporal
behavior of the plasma parameters during the discharge. The energy distribution for
hydrogen showed a thermal spectrum both before and during rf power injection. The
deuterium component also exhibited a thermal energy spectrum during rf injection with
an effective temperature (obtained from deuterium particle flux at energies E >4keV) of
approximately 1.3keV on axis, somewhat hotter than the background heated hydrogen
temperature of 0.9keV. It is possible to estimate that the collisional power transfer from
the heated deuterium component to the background hydrogen is < 30kW; however, this
estimate is strongly dependent on the fraction of deuterium in the discharge and also on
the radial temperature profile and is uncertain to within a factor of 2. Nevertheless, a
power of 30kW transferred from the deuterium into the hydrogen species can produce
a temperature increase of ~ 175eV if the plasma confinement during rf injection is
assumed to remain the same as in the Ohmic phase.

In principle, the amount of rf power flowing into the hydrogen or deuterium species
can be estimated from the rate of increase of the ion temperature at the onset of rf
power injection. For the simple situation where only the main species ion temperature
increases by AT; in a time Att, the power flow into the ions is P = U;AT;/(T;At)

t The time At must be small compared to an energy confinement time (15 ~ 5-10 ms) for-
this estimate to have meaning.
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where U; is the total stored ion energy in the Ohmic plasma. When estimated for
several of the ion Bernstein wave heated discharges, the calculated value of the power
is close to the measured power injected into the antenna system. This estimate is crude
for a number of reasons. First, the ion temperature is typically averaged over a 5ms
time period. When averaged over a shorter time period, the temperature is somewhat
choppy making it difficult to carry out this type of calculation. Second, the density and
temperature profiles are not well known making it difficult to accurately determine the
ion stored energy. Third, at the onset of rf power injection, the plasma density typically
increases; this also contributes to the increase in ion stored energy. This effect can, in
principle, be accounted for by determining the rate of density increase; however, due to
experimental uncertainties, this only increases the uncertainty in the overall estimate
of the power flow into the ions. Nevertheless, within experimental error, the estimate
is within the expected range.

Figure 4.12 shows that the ion temperature increase at B = 7.6 T follows an ion
heating rate of 2.3eV/kW at i, <1 x102°m—3. It is pointed out that this heating rate
is calculated by dividing the ion temperature increase by the total rf power entering
the antenna system. The actual power which is ultimately coupled into ion Bernstein
waves will be somewhat less that this total power due to Ohmic losses in the system.
The hydrogen temperature increase appears to show a power threshold of 35kW at the
onset of jon heating which is consistent with the threshold estimated for 63% single

pass absorption of the injected rf power[4] There is also a power threshold of about

30kW for the high energy deuterium component[7]shown in Fig. 4.13 . The data in
Fig. 4.13 shows that the hydrogen and deuterium central temperatures converge at a
nonzero value of Py. The existence of a power threshold for Ty > Ty suggests that a
nonlinear heating mechanism is operative on the deuterium species. Two possibilities
for this mechanism are nonlinear Landau damping via ion Bernstein wave decay (see
section 2.8) near the w/Qy ~ 1.6 layer located 0.6 cm to the low field side of the
plasma center (z/a = 0.05), and nonlinear Landau damping via self-interaction at
the w/Qp = 3.5 layert. The power absorbed per pass at the w/fdp = 3.5 layer via
self-interaction is negligible. This has been verified numerically from the equations in
section 2.8. Power absorbed via the decay process can amount to a significant fraction
‘of the pump power. The threshold power for 63% power absorption via the decay
process in one pass is estimated to be in the range of about 30kW. Power not depleted

} This layer, not shown in Fig. 4.9 (b), lies between the low field plasma edge and the
w/Qp = 3 layer at z/a = 0.56.
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by either of these two mechanisms is damped nonlinearly by hydrogen at the w/Q2y=1.5
layer, linearly by deuterium at the w/Qp = 3 layer, or linearly by electrons through
Landau damping.

4.4.3: Heating Results at 5.1 Tesla

At a central magnetic field strength of By = 5.1 T the w/wy = 5/2 (w/wp = 5)
resonance layer is located at z/a = 0.3. The temporal evolution of a typical discharge
at this field is shown in Fig. 4.14 . The ion temperature increase in this regime shows
a heating rate of 2.2eV/kW, (see Fig. 4.12 ) similar to the 7.6 T case. The calculated
power threshold is ~ 30kW, in good agreement with experimental observations (there
was no observable heating below this power). At By =5.1T, the temperature increase
of the hydrogen majority and deuterium minority ions is thermal (Ty = Tp) and
is independent of deuterium concentration, suggesting that nonlinear absorption on
hydrogen is dominant in this regime.’ '

4.4.4: Heating Results at 9.3 Tesla

The most efficient heating is observed when the magnetic field is increased to high
values (Bg 2 9T). This regime has not been explored in previous experiments and
here, the analysis is somewhat more complicated. For example, at a field of By =9.3T
the w/Qp = 5/2 minority subharmonic resonance layer is located on the high magnetic
field side of the plasma axis at z/a = —0.18 (@ = 0.12m). However, the w/Qy = 3/2
and w/Slp = 3 layer is at z/a = 0.85, approximately 2 cm in front of the antenna (see
Fig. 4.9 (c)). Ray tracing and power absorption calculations show that ion Bernstein
wave power should be completely absorbed by either the linear or nonlinear mechanism
at the plasma edge (z/a = 0.85). Using CO; laser scattering techniques, a strong
attenuation in wave power at frequency fo and perpendicular wavelength in the range
40<k; <140cm~1lis observed|l] across the w/flp = 3 layer (see Fig. 4.4 ). However,
as is shown in Fig. 4.12 , an ion heating rate of 4.1 eV/kW at fie = 1 x 1020m~3 is
observed with a very low power threshold (P, < 10kW within experimental error). To
further complicate matters, the deuterium component has a two temperature energy
spectrum with a superthermal component at Tp=2keV. The radial temperature profile
of the deuterium, shown in Fig. 4.15 , is centrally peaked on the plasma axis. The
temporal temperature evolution of the hydrogen and deuterium temperatures, shown
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in Fig. 4.16 , indicates that the deuterium achieves its maximum temperature before
the hydrogen, and both exhibit a slow decay time of about 5ms after rf power shut—off,
indicating central nonlinear rf heating of the deuterium species at the w/Q0p =>5/2 layer.
The two temperatures displayed in Fig. 4.16 were obtained on separate but similar

- discharges. The power flow from deuterium to hydrogen in this case is estimated to be
20-40kW with large uncertainty.

To explain the energetic deuterium component, at least a fraction of the rf power
must penetrate to the plasma interior. One possible mechanism for this is the variation
in the toroidal field caused by the toroidal field ripple. The presence of the access
port in Alcator C perturbs the toroidal field current causing a toroidal field ripple of
about 2-4% near the antenna feed. Consequently, the w/Qp = 3 layer may be located
2cm in front of the antenna at the port location but may be positioned behind the
Faraday shield at either end of the antenna, away from the port (the port is 4 cm
wide and the antenna is 25 cm long). Thus, power from either end of the antenna
may freely propagate to the plasma center and heat the deuterium. Another possible
mechanism, already mentioned in section 4.2.2, is that the ion Bernstein wave may
undergo parametric decay into another ion Bernstein wave of a lower frequency and an

ion qua.si—mode[s]. The lower frequency ion Bernstein wave could not be detected by
the COg scattering system and would not suffer power absorption at the w/{0p =3 layer
(this layer would be outside of the plasma). The lower frequency ion Bernstein wave
could freely propagate into the inner plasma and deposit its power at the w/Qp = 2.5
layer (which would be located slightly on the low field side of the plasma center for
this wave). Nonlinear absorption by the deuterium minority species is possible above
a threshold power of ~ 30kW for np/nyg = 0.02 (the threshold power is inversely
proportional to the deuterium concentration).

4.4.5: Enhancement of Global Particle Confinement

Improvements in 7p, the global particle confinement time, of up to 3 times its value
in the Ohmically heated plasma are often observed for fi, < 2.5 x 1020 m—3. The global
particle confinement time, 7, is calculated by dividing the total number of electrons N,
by S — dN./dt, where S is the source rate of electrons at the plasma edge as inferred
from H, measurements. Figure 4.17 shows a strong dependence of Tp(xf) /"'p(Ohmic)

on target plasma density with a maximum value of 3.4 at fie = 0.6 x 102°m~—3 and
decreasing to unity for fie >2.5% 1020 m—3. Improvements in Tp are observed over a wide
" range of toroidal fields 4.8 T < B < 10.4 T; however, the most significant improvement
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in 7p occurs in the 9.3 T regime where the w/Q0p = 3 resonance layer is located at
the plasma edge. Here, the line—averaged electron density typically increases by up
to 100% and the source rate S (as determined from H, measurements) decreases by
about 30% during IBW injection. Several non-rf discharges in which the density was
increased by gas puffing alone were compared with rf discharges. Figure 4.18 shows a
comparison of the line-averaged density and Hy emission for an rf heated discharge
and a gas puff discharge at By =9.3T. The H, measurement was made at the gas feed
port, the antenna port, and at a limiter. All three measurements show a decrease in
the H, signal at the onset of rf power. However, in the absence of rf power injection,
the H, intensity shows a fractional increase which is larger than the fractional increase
in the density (due to gas puffing), indicating decreasing particle confinement in the
absence of rf power injection.

4.4.6: Enhancement of Central Impurity Confinement

Central impurity confinement times were also observed to increase by' factors of
2-3 during IBW injection[s]. This was measured by injecting trace amounts of Silicon
using the laser blow—off technique!®]. The brightness of He-like Si (an ionization state
which exists in the center of these discharges) is observed to decay at a significantly
slower rate in rf heated plasmas. Figure 4.19 shows the brightness of silicon emission
as a function of time for the Ohmic and rf phase of the discharge. Typical values of
Ts;i corresponding to before (Ohmic), during, and after ion Bernstein wave injection in
the 9.3 T regime are 7, 16-20, and 6 ms. The Z.g is typically constant or decreasing
during rf injection in these discharges.

4.4.7: Density Dependence of the lon Heating Rate

A systematic study of ion heating versus target density was carried out. A strong
decrease in the ion heating rate was observed for target plasma densities 7i 2 1.1 x
102°m—3, and as shown in Fig. 4.20 , significant increases in the ion temperature were
not seen for target demsities fie > 2.5 x 102°m~3 and at rf powers Py < 100 kW
(4.8T < By < 11T). The increases in T; for fie > 2.5 x 1020 m—3 are within the
experimental error of AT; ~ 0. In particular, at high densities it was difficult to inject
more than ~ 100kW from the antenna (antenna power density P/A ~ 1kW/cm?).
The large scatter in the data in Fig. 4.20 appears on a day-to—day basis whereas the
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during Ohmic plus ion Bernstein wave heating at Bo = 9.3 T.
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error bar represents typical scatter within a single day. The large scatter is thought
to result from day-to—day variations in the plasma edge conditions which affect the
antenna-plasma coupling. It is pointed out that the envelope of the data in Fig. 4.20 is
what exhibits the maximum achievable ion heating rate; this envelope exhibits a trend
toward decreasing ion heating rate with increasing density. There is a lack of data near
fie ~ 2 X 1020 m—3 which may account for the apparent increase in heating rate above
this density. It is assumed that more data near this density would only confirm the
decreasing trend in the heating rate with density. The envelope also seems to show
a decrease in heating rate below i, ~ 0.75 x 102°m—3, Unfortunately there is not
sufficient data below this density to confirm a decreasing trend in the heating rate.

Several mechanisms which have a density dependent effect on the heating rate have
been considered to explain the ion heating rate decrease. For example, wave power at-
tenuation due to edge collisions becomes worse as the density is increased. Theoretical
estimates of collisional damping indicate that edge absorption is negligible even for an
edge density and temperature of ne(r = a) ~ 1 x 1020 m—3, T, ~ T; ~ 50 eV, char-
acteristic of high density discharges. The nonlinear power threshold, which increases
linearly with increasing plasma density, may account for some of the decrease in heat-
ing rate. However, the decrease is more sudden than expected and linear damping of
ion Bernstein waves on the deuterium minority should still occur even at high density.
Another effect which may partly account for the decrease in the heating rate is that
the energy confinement time in these discharges, which is proportional to density at
low densities, begins to saturate above fi, ~ 1.5 x 1020 m—3. This saturation is caused
by both increased coupling between the electrons and ions and an increasing anomaly
in the ion thermal diffusivity. Thus, the ion energy confinement time degrades as the
density is increased and this contributes to the observed decrease in the ion heating
rate. The details of the ion confinement will be discussed in the following chapter.

COg, scattering results [see Fig. 4.7 (a)] suggest that the decrease in the ion heating
rate may partially be attributed to inaccessibility of the ion Bernstein wave to the
plasma center due to scattering from low-frequency edge density fluctuations (7/n 2 0.3
at r/a ~0.9) as the target density is increased. To investigate the possibility that low—
frequency edge density fluctuations may impede the ion Bernstein wave power from
propagating into the plasma interior, the CO; scattering diagnostic was reconfigured
as shown in Fig. 3.3. Low—frequency density fluctuations, integrated up to 5cm~1 in
wave number and up to 400kHz in frequency, were observed along a chord located
at z/a = +0.83. Figure 4.21 (b) shows the value of P,./fi2 [which is proportional
to (fie/ne)? for a fixed density profile] plotted as a function of 7ie. The quantity 7ie -
indicates the absolute amplitude of the low—frequency density fluctuation. The absolute
magnitude of fie/ne could not be determined with accuracy in these measurements;

however, based on earlier measurements!19it is estimated to be in the range of 0.1-0.5
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at a density of i ~ 2 x 1020 m—3. The correlation between figures 4.21 (a) and (b)
suggest that edge turbulent scattering may affect the wave accessibility to the plasma
center. A detailed calculation to study the turbulent scattering of ion Bernstein waves
will be given in Chapter 5.

4.4.8: Energy Confinement in 9.3 Tesla Discharges

Figure 4.22 shows the change in total stored energy, AW} versus the change in total
input power, A P; during ion Bernstein wave heating at B=9.3 T. When calculating the
total stored energy and input power, the temperature and density profiles are assumed
constant in both the rf and Ohmic heated portions of the discharge. All discharges rep-
resented in the figure have initial Ohmic energy confinement times, 75(o})=5.6+0.8ms,
and rf confinement times, 7g() = 6.5+ 1.2ms. The incremental energy confinement

time, which is defined as AW;/AP,, has an average value of 15.5 ms, for discharges
with very low deuterium concentration and ranges between 3.9 ms and 17.5 ms for
discharges with np/ng4p < 20%. The improvement in T (with respect to the ini-
tial Ohmic confinement time) during rf heating results from the large increase in total
plasma energy caused by both strong heating of ions and nearly doubling the plasma
density. The Ohmic confinement time at densities similar to those reached during rf
injection is Tg(op) = 8.8 £ 1.2ms. At B = 7.6 T there are also improvements in 7g

during rf injection (with respect to the initial Ohmic 7z).

The results obtained at 9.3 T show some remarkable similarities to H-mode type

d.ischa.rges[u]. For example, the energy and particle confinement times improve, the
stored energy and line-averaged density increase, and the H, signal decreases. There
are also some marked differences: No clear L-mode phase or delay time to H-mode
transition, no measured power or lower density threshold, no separatrix, and no indi-
cation of edge localized modes (ELMS). Nevertheless, under similar conditions, typical
incremental confinement times during fast wave heating are only 3-5 msl12], indicating
that ion Bernstein wave launching produces H-mode like behavior.

4.4.9: Plasma Edge Conditions at 9.3 Tesla

In order to gain a better understanding of the underlying physics, attempts were
made to determine the near edge ion temperature (r/a =~ 0.9) as a function of plasma
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density during rf injection. These results were obtained from CO; scattering at B =
9.3 T by fitting the ion Bernstein wave dispersion relation to the measured value of

k _]_[13' 4], The maximum edge ion temperature occurred at the same density as the
minimum in edge density fluctuations and the maximum in particle confinement im-
provement (fie =~ 1 x 1029 m~3). This is also the same density where the central ion
heating is most efficient (see Fig. 4.20 ). The edge ion temperature at these densities
showed an increase with time during the rf pulse (by up to 50%). At higher densities
(fie > 2 x 1029 m—3) the edge ion temperature was significantly lower. There is a large
uncertainty in the actual value of the edge ion temperature which is due to compli-
cations caused by the presence of the minority deuterium species and the proximity
of the w/lp = 3 layer to the scattering volume. At the lower densities, an edge ion
temperature near the estimated upper bound of T; (=~ 300eV) may yield v} <1 (with

large uncertainty), where v} is the neoclassical ion collisionality pa.rameter[15],

v = Lﬁgz (4.4.1)
Bpvy;mie /
where vy; = 1/2T;/m;, Bp is the poloidal magnetic field, and
: E a2
p1g 3L VL (4.4.2)
t 4y/rn;ZetlnA

The nearly collisionless regime for ions (v} < 1) may be in agreement with the recent
theoretical prediction of Hinton for H-mode type phenomena[ls].
Measurements of the OV temperature at r/a~ 1.0 and By = 7.6 T were made using

a vacuum ultraviolet spectrometer[17]. The measurements showed an increase in the
OV temperature from 75€V to 95€V for a density increase from 7ie =0.9 x 102°m—3 to
1.5x1020m—3, At higher Ohmic densities (fie > 2.2 x 1020m—3) no change was observed
in the OV temperature from its Ohmic value of 65eV. Spectroscopic measurements at
By =9.3T are not available.

Edge floating potential measurements in the scrape—off layer 1.05 < r/a < 1.2 were

also made using a double Langmuir probe and a gridded energy analyzer18]. Both
probes were toroidally separated from the antenna by a limiter and were at different
poloidal locations. During rf power injection, the floating potential, measured with
respect to the vacuum chamber wall, usually decreased from an initial Ohmic value of
~ —2V to ~ —10V but almost never decreased to less than ~ —17V. In the same
region T, ~ 10-30eV. The variation of the potential inside the limiter edge is not
known.
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Laser scattering measurements have confirmed that ion Bernstein wave power was
launched into the plasma using a metal loop coupler. The ion Bernstein wave was
identified by mapping out the dispersion relation and the scattered power varied lin-
early with the injected rf power. Wave launching was optimized when the w/Qy = 2
layer was placed just behind the antenna central conductor. The peak in radiation
resistance correlated with this magnetic field value. Wave attenuation, possibly due to
power absorption, was observed at the w/Q0y = 1.5 layer at By =7.6 T and By =9.3T.
The scattered signal from ion Bernstein waves and the ion heating rate maximized at
fle ~ 1.1 x 1020 m—3, whereas the scattered signal from low-frequency edge density
fluctuations was minimized at this density. At Py < Pgy very efficient ion heating
(ReAT;(0)/ Py < 45eV/kW1019 m—3) was demonstrated via ion Bernstein wave injec-
tion. An improvement in the global particle, and central impurity confinement times
(by factors of up to three) accompanied this type of rf heating. The consequence of
these results was the attainment of good global energy confinement. The decrease in
ion heating rate at higher densities can be explained by a combination of energy con-

‘finement saturation, scattering of ion Bernstein waves by edge density fluctuations, and
reduced nonlinear absorption with increasing density.

145



146

Chapter 4: lon Bernstein Wave Experimental Results

10.

11.

12.

13.

14.

15.
16.
17.
18.

REFERENCES

Y. TAKASE, et al., Phys. Rev. Lett., 59, 1201, (1987).
J. D. Mooby, et al., Phys. Rev. Lett., 60, 298, (1988).
M. PORKOLAB, Phys. Rev. Lett., 54, 434, (1985).

M. PORKOLAB, et al., Plasma Phys. and Contr. Nucl. Fusion Res. (IAEA 11th Int.
Conf., Kyoto, 1986) IAEA-CN—47/F-II-2.

M. PORKOLAB, J. D. Moobpy, AND C. FIORE, Bull. Am. Phys. Soc., 32, 1939,
(1987).

. M. BRAMBILLA, in Application of Radio—Frequency Power to Plasmas-1987, edited

by S. Bernabei and R. W. Motley, AIP Conference Proceedings No. 159 (American
Institute of Physics, New York, 1987).

C. FIORE, et al.in Application of Radio—Frequency Power to Plasmas-1987, edited
by S. Bernabei and R. W. Motley, AIP Conference Proceedings No. 159 (American
Institute of Physics, New York, 1987).

H. L. MANNING, J. L. TERRY; et al., Bull. Am. Phys. Soc., 31, 1587, (1986).

E. S. MARMAR, J. L. CEccHI, AND S. A. COHEN, Rev. Sci. Instrum., 46, 1149,
(1975).

R. L. WATTERSON, R. E. SLUSHER, AND C. M. SURKO, Phys. Fluids, 28, 2857,
(1985).

F. WAGNER, G. BECKER, K. BEHERINGER, et al.,, Phys. Rev. Lett., 49, 1408,
(1982).

T. D. SHEPARD, in Application of Radio—Frequency Power to Plasmas—1987, edited
by S. Bernabei and R. W. Motley, AIP Conference Proceedings No. 159 (American
Institute of Physics, New York, 1987).

G. A. WURDEN, M. ONo, AND K. L. WONG, Phys. Rev. A, 26, 2297, (1982).

H. PARK, P. S. LEE, W. A. PEEBLES, N. C. LUHMANN, JR., Nucl. Fusion, 25,
1399, (1985).

F. L. HINTON AND R. D. HAZELTINE, Rev. Mod. Phys., 48, 239, (1976).
F. L. HINTON, Nucl. Fusion, 25, 1457, (1985).

R. D. BENJAMIN, et al., Bull. Am. Phys. Soc., 31, 1157, (1986).

A. WAN, MIT Plasma Fusion Center Report PFC/RR-86-13 (1986).



147



148 Chapter 5: Analyses of the Experimental Results

CHAPTER 5

Analyses of the
Experimental Results

5.1: Introduction

This chapter presents the detailed analyses performed in order to explain the causes
for the observed results in the ion Bernstein wave experiments. In particular, the
behavior of the antenna—plasma loading, ion Bernstein wave propagation through edge
turbulence, and the plasma response to rf power injection is analyzed in the context of
current plasma theories.

Antenna-plasma loading is analyzed in the first part of this chapter by compar-
ing the observed behavior with simulated results from the Brambilla coupling model.
Simulations of the antenna loading are performed by varying three plasma parameters;
the toroidal field, central density, and edge density. Good agreement is found between
the measured and simulated antenna loading over a narrow range of magnetic field
values. The simulated loading is found to be strongly dependent on the edge plasma
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density. Within the magnetic field range of good agreement, the density dependence
of the simulated antenna loading may also agree with the measured dependence.

The remaining part of this chapter presents a detailed study of two density depen-
dent mechanisms which together can explain the decrease in the observed ion heating
rate with increasing plasma density. The first mechanism is the scattering of ion Bern-
stein wave power as it passes through a region of edge plasma turbulence. Observation
confirms that the amplitude of the edge turbulence increases with increasing density.
The primary effect of this mechanism may be to broaden the power deposition profile.
It is shown that a fluctuation amplitude of about fie =fie/ne~0.3 at ie =2x102°m 3 is
sufficient to broaden the power deposition from being centrally peaked (0.1 < p/a < 0.3)
to nearly uniform across the plasma cross—section (0 <p/a<1). The second mechanism
is the effect of the density dependence of the ion energy confinement. It is shown that
in the Ohmic portion of the ion Bernstein wave discharges, the inferred ion thermal
conductivity becomes increasingly anomalous compared to the neoclassical conductiv-
ity as the plasma density is increased. This increasing ion thermal conduction anomaly
causes the ion energy confinement to degrade with increasing plasma density. The
effects of the increasing ion thermal conduction and the broadening of the power de-
pbsition profile with density are shown to cause a decrease in the ion héating rate with
density corresponding to the measured behavior.

5.2: Antenna—Plasma Coupling

5.2.1: Introduction

Antenna-plasma coupling refers to the ability of an antenna to transmit power into
the plasma. If the antenna current and voltage must be extremely high to couple rf
power to the plasma (Vo >> +/2ZPg;,, see Eq. 3.4.25), then the coupling is said to
be poor and this is usually marked by a very small value of the radiation resistance
(Read << Zg where Zj is the antenna characteristic impedance). Coupling to ion
Bernstein waves was measured as a function of antenna position and orientation as
well as plasma density, central magnetic field, and injected rf power. The strongest
dependence of the coupling was observed on the magnetic field, central density and
edge density; weaker dependences were observed on the antenna orientation to the
edge magnetic field and the injected rf power.

A computer code, developed by M. Bra.mbilla[l] to compute ion Bernstein wave cou-
pling, was used to model and interpret the experimental coupling results from Alcator
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C. This code has already been described in section 2.6 and a more detailed description
of the code is given by Brambilla in Ref. 2. Only central density, edge density, and
magnetic field dependence of the antenna loading were studied here with the Brambilla
code. The dependence of the antenna loading on the antenna position predicted by
the code is discussed by M. Brambilla in Ref. 2. Section 4.3 presents the observed
behavior of the antenna loading on P, and antenna orientation. The measurements
and code results are comparable in certain plasma regimes; however, there are large
discrepancies in other regimes. The disagreement may be caused by nonlinear wave
phenomena which can occur near the antenna. These phenomena are not included in
the Brambilla model and may cause additional loading which depends in a complicated
way on the plasma parameters. These discrepancies between the measurements and
theoretical prediction leads one to believe that there is still much which is not yet fully
understood about high power ion Bernstein wave antenna—plasma coupling,.

The radiation resistance, as defined in section 3.4.4, is given by Eq. 3.4.31 as twice
the ratio of the total dissipated power to the square of the maximum current in the
antenna. The power dissipation occurs through both Ohmic loss in the transmission
line system and radiation loss into the plasma. The Ohmic part of R .4 is estimated
from the measurements to be ~ 0.3 and is independent of plasma parameters. The
actual radiation loading, which should be compared with the Brambilla model, is given
by the difference between the total loading and the vacuum loading.

This section presents a comparison of the measured antenna-plasma coupling with
simulations of the coupling over a range of plasma densities and magnetic fields. The
similarities and differences between the measured and simulated values are discussed
and some general conclusions are reported.

5.2.2: Simulation Parameters

Simulations of the antenna—plasma coupling were done using the Brambilla code for
the plasma parameters listed in Table 5.1. Radiation resistance is calculated for only
radiation loading; no Ohmic loading is included. A typical k, (k") power spectrum is
shown in Fig. 5.1 . The coupling is calculated for k; < 120cm~! and ky < 25 cm™1.
The high k, components can represent an important fraction of power which is coupled
into ion Bernstein waves even though this power may eventually Landau damp. An
outward radiation condition is imposed at z/a = —0.25 (x = —3 cm) since this is
the approximate location where the power is expected to be absorbed. The density
for which the excitation frequency fy is equal to the lower hybrid frequency is n. ~
4 x 1017 m—3; this is about a factor of 2 below the lowest density assumed possible at
the antenna Faraday shield for both the simulations as well as the experiment. As a
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result, ion Bernstein waves are directly launched by the antenna and do not undergo a

mode transformation process at the lower hybrid layer[3].

5.2.3: Simulation Results

Figure 5.2 shows a series of curves at four different central densities. Each curve
connects points with the same ratio of central to edge density and gives the calculated
radiation resistance as a function of magnetic field. The curves all exhibit a peak in
R_.4 at a field of 7.25-7.3 T corresponding to w /Sy = 1.99-1.98 at the antenna Faraday
shield. The data in Fig. 4.6(b) exhibits a peak in R, ,q when w/Qy =1.9 at the Faraday
shield. The disagreement between the measured and simulated values of the magnetic
field which correspond to the peak in R_,4 can possibly be resolved by considering
two effects. First, the toroidal field at the antenna is slightly distorted due to the
presence of the access port in the toroidal magnet; however, this distortion is partially
. compensated giving a field in the vicinity of the port which is about 2-4% lower than
expected. To account for the 24% lower field, the central field must be about 2—4%
higher than expected. Thus, the central field predicted by the Brambilla model for
best coupling (7.25 T-7.3 T) is translated into a central field of 7.4 T-7.6 T when the
field ripple is taken into consideration. A second effect which may contribute to the
discrepancy in the field values is that the Brambilla model assumes that the plasma
density within the antenna is zero. As a result, the ion Bernstein waves are, at the
earliest, launched from the surface of the Faraday shield (a plasma wave is undefined
unless ne # 0). It is possible that in reality the waves are launched from within the
antenna (from the center conductor for example) where the plasma density is not zero
but finite. If this were the case, efficient launching of the ion Bernstein wave (which
occurs at w/Qy = 1.99) might occur at a slightly higher field when the w/Qy = 1.99
layer is pushed into the antenna. In this case, the peak in R;,4, shown in Fig. 5.2 ,
would actually occur at a higher field (nearly 2% higher if the waves are launched from
- the central conductor). Combining the effects of the toroidal field ripple and launching
the wave from within the antenna can account for the discrepancy in the measured
and simulated values of By at the peak in R 4. Figure 5.3 shows a comparison of the
measured antenna loading (with the 10 background loading subtracted off) with the
simulated loading (assuming that the peak is at 7.6 T); the simulated value exhibits a
much stronger dependence on the magnetic field than the measured value.
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Figure 5.1 —The k; (k;;) power spectrum of the Alcator C ion Bernstein wave
antenna calculated from the Brambilla coupling code.
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Table 5.1
Simulation Plasma Parameters

Major Radius: Rg =64cm
Minor Radius: a=125cm
Vertical Radius: b=a=125cm
Faraday Shield—Plasma: 0.0cm
Central Conductor-Faraday Shield: 1.3cm
Central Conductor-Wall: 1.85cm
Central Conductor Width: l4cm
Antenna Length: 25cm
1.5

v LC Within Antenna:

Central Density:

1-3.5 x 1020 3

Edge Density: 0.025-0.35 x 1020 m—3
Central Electron Temperature: 1.8keV
Edge Electron Temperature: 0.05 keV
Central Ion Temperature: 1.0keV
Edge Ion Temperature: 0.05 keV

Magnetic Field: By =7.15T-7.7T
Length of Near Field Region: 16 cm
Width of Scrape—off (S.0.) Layer: 0.5cm
S.0. Density Gradient: 0.5cm
S.0. Elec. Temp. Gradient: 1.0cm
S.0. Ion Temp. Gradient: 10cm

Plasma Composition:

90% H with 10% D
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Figure 5.8 —Comparison of Ryaq versus By for a simulation (corrected for tor-
oidal field ripple) with ng = 3.5 x 10 m=3, ngg. = 0.1no, with the mensured
value (with the 1 background subtracted out).
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Another observation of the simulated value of R, 4 is that the width of the simulated
peak in Fig. 5.2 is smaller than the measured width. This also may be caused by the
toroidal field ripple. The location of the w/y = 1.99 layer intersects the Faraday
shield at several toroidal locations due to the toroidal localization of the ripple in the
vicinity of the port. Thus, the transition from efficient to inefficient wave launching
would be smoothed out over a range of toroidal fields.

The simulated values of R,,q for the plasma parameters in Table 5.1 are all some-
what higher than the measured values. An high edge density of 0.6 x 102 m—3 and
central density of 1 x 102 m~3 (not included in Table 5.1 and not shown in Fig. 5.2 )
give a simulated value of R4~ 1.3(Q, nearly the measured value. Outside the magnetic
field of efficient coupling! the simulated value of R,,4 departs by up to an order of mag-
nitude (smaller) than the measured value which exhibits a nearly constant background
loading of about 1{). The cause of this background loading may result for example,

from nonlinear effects!4 5 €] near the antenna. Simulated values of the electric field
near the antenna are found to become large enough (E; 2 1kV /cm), even under efficient
coupling conditions, to permit parametric decay of the ion Bernstein wave into another
ion Bernstein wave at a slightly downshifted frequency and a low—frequency ion quasi-
mode. This process would create an additional channel for the antenna power to couple
to and might increase the antenna loading. Unfortunately, spectral measurements over
a wide frequency range are not available to verify the presence of the downshifted ion
Bernstein wave or the ion quasimode. Edge collisional absorption may also produce

additional loading but a calculation of this shows that it is nearly negligible.

Figure 5.4 shows the simulated fraction of power coupled into the fast ICRF wave
as a function of magnetic field. The fraction of power coupled into the ion Bernstein
wave is the difference between the fast wave power fraction and unity. At the field
value of ~ 7.25 T, Fig. 5.4 shows that the fraction of power coupled into the ion
Bernstein wave is maximized and < 20% of the power flows into the fast wave. At
a slightly lower field both the fast wave power fraction increases dramatically (and
R,,q decreases dramatically). M. Brambilla suggests that this is due to the sudden
difficulty of exciting an ion Bernstein wave with a very short wavelength (w /2y ~ 2.02
thus k| pg >> 1). The coupling model is not accurate for k; pyg > 1 but the trend
of sudden poor coupling may still be theoretically correct. As the field is increased
from By ~ 7.25T, Fig. 5.4 shows that the fast wave fraction increases slowly (and
R,.q decreases slowly). M. Brambilla suggests that this may be due to the gradual
increasing difficulty of coupling to a shorter wavelength ion Bernstein wave.

t Efficient coupling corresponds to the location where R,g4 is maximized.
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5.2.4: Density Dependence of the Antenna Loading.

The measured density dependence of R .4, shown in Fig. 4.7(b), increases almost
linearly with density to a maximum and then decreases. Simulated values of R4 for
cases with a constant ratio of edge to central density are shown in Fig. 5.5 . These all
exhibit a monotonic decrease with density. The apparent departure of the simulation
results from the measured value of R.,q may be resolved by considering two effects.
First, it may not be realistic to assume that the ratio of the edge to central density
remains constant over the range of central densities. If the edge density near the an-
tenna remaines nearly constant or decreases slightly as the central density is increased,
the simulated value of R, ,q would increase with density as does the measured valuef.
Eventually, the edge density would begin to increase as the central density continued to
increase causing the simulated value of R,,4 to begin decreasing. Thus, the measured
density behavior of R,,q may be caused mainly by the edge density behavior. Unfor-
tunately, there are no edge density measurements within the vicinity of the antenna
to confirm this. Nonlinear processes may once again play a role in determining the

" density dependence of the antenna loading. It is difficult to accurately determine the
expected density dependence of the nonlinear process without working out the details
of the nonlinear theory which will not be included in this study.

Near the toroidal field of good coupling (R,,q is maximized) the fraction of power
coupled into the fast ICRF wave is between 7% and 25%. This fraction shows only weak
dependence on the central density; the strongest dependence is on the edge density.

5.2.5: Conclusions

The measured loading to ion Bernstein waves is maximized when the w/Qy ~ 1.90
layer is placed at the Faraday shield surface. This result is reproduced well by the
Brambilla model. The precise value of R,,4 from the model agrees with the measured
value for a high edge density compared to the central density. A large background
loading of ~ 1} persists at magnetic fields not corresponding to w/f0y ~ 1.90. This
background may result from nonlinear wave processes occurring near the antenna which
could introduce additional loading. Near the magnetic field of maximum antenna load-
ing, the fraction of power coupled into the ICRF fast wave is small (< 20%). The
observed density dependence of the loading is reproduced with the model provided the
edge density is assumed to remain nearly constant or decrease until the line-averaged

1 M. Brambilla has shown that the important parameter in the density dependence of Ry
is the value of the edge density rather than the density gradient.
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density increases to 7ie =~ 2.6 X 1020 m—3; then the edge density must start increas-
ing. A large electric field near the antenna, even in the regime of efficient coupling, is
predicted by the Brambilla model. This large field and the slight power dependence
of R,,q support the possibility of nonlinear effects which might produce loading not
included in the Brambilla model.

5.3: Scattering From Density Fluctuations

5.3.1: Introduction

Evidence to suggest that ion Bernstein wave penetration into the plasma may be

affected by scattering from edge turbulence[7]is shown in Fig. 5.6 . The edge density
fluctuation amplitude [Fig. 5.6 (b)] exhibits a minimum at a line-averaged density of
fie ~ 1.1 x 1029 m~3 and increases for both higher and lower densities. This behavior is
inversely correlated with the amplitude of the scattered signal from ion Bernstein waves
in the plasma center [Fig. 5.6 (a)] and with the hydrogen ion heating rate AT;/P
(Fig. 4.20). Both the ion heating rate and the scattered signal from ion Bernstein
waves show a decrease in their value for densities above fie 2 1.1 x 1020 m—3. Below
fie ~ 1.1 x 102 m~—3 it is difficult to tell for certain whether the heating rate also
decreases. The data at fie ~ 0.6 x 1029 m—3 suggests that the heating rate is down
by about a factor of 2; however, more data at lower densities would be necessary in

order to confirm this with certainty. The absolute value of 'r'iI could not be measured

accurately; however, ba.sed on earlier measurements(8lit is estimated to be in the ra.nge
0.1-0.5 at ie =2 x 102°m

In order to investigate the effects of edge density turbulence on ion Bernstein
wave propagation, a ray tracing model was developed and used to solve the wave ki-
netic equation describing ion Bernstein wave scattering from density turbulence. The
method used to solve the kinetic equation is described as a Monte Carlo direct sampling

simulation!®]. This type of method has been used previously by Bonoli[1%to model the

turbulent scattering of lower hybrid waves. Onol”] has described the theory of turbulent
wave scattering for ion Bernstein waves, fast waves, and lower hybrid waves.

t Recall that #fie = fie/ne is the normalized fluctuation amplitude; 7. is the absolute
magnitude of the density fluctuation.
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This section discusses the details of the scattering process and presents the method
used for modeling the effect of plasma turbulence on ion Bernstein wave propagation
in Alcator C. The results of this model will be presented and discussed.

5.3.2: Expected Behavior of 7i.

Figure 5.6 (a) shows the scattered power from ion Bernstein waves in the plasma
center as a function of density. The scattered power is proportional to the integral of
#2 over the scattering volume consisting of the region defined by the intersection of the
CO, laser beam and the plasma. It is important to determine the expected behavior
of 712 in order to tell how strongly the data in Fig. 5.6 (a) deviates from this.

The normalized electron density fluctuation amplitude 7. can be written in terms of
the wave electric field amplitude E and the dielectric tensor elements. This expression
has been given in Ref. 11 as

—_—— —

. 2
R Tle . € [wz . W sz _ n" ] nJ_EI (5.3,1)

Ne meCw ‘93 we Kzz — nﬁ - n_2L ‘"'_21_ - K.,

where we = |¢|. The electric field amplitude |E;| is related to the wave power P as

_w O o9
P= o Bl (5.3.2)

where S is the wave surface area. The precise behavior of 7, with density is complicated
since it depends on the dominant term(s) in Eq. 5.3.1 and on the electric field. To
partly simplify the analysis of Eq. 5.3.1 it is assumed that the antenna is operating
under good coupling conditions, i.e. the total power coupled into ion Bernstein waves
is essentially independent of density. In this case, P in Eq. 5.3.2 is constant with
density. In addition, the perpendicular wave vector k| is independent of density (see
Eq. 2.4.32). The dielectric constant, € is proportional to the density for the range
of densities considered here (see Eq. 2.5.5), thus 8¢/8k, is also proportional to the
density. The wave surface area S depends on the extent to which the ion Bernstein
waves have spread by the time they reach the scattering volume. The scattering volume
extends over the length of the plasma in the poloidal cross section, therefore wave
spreading in the poloidal cross section does not affect the integrated scattered power.
Wave spreading in the toroidal direction does however affect the integrated scattered
power since the scattering volume has finite toroidal extent. Toroidal wave spreading
is primarily determined by the value of n|| and weakly by the derivatives of the plasma

parameters. This can be seen from Eq. 2.7.19 which shows that the wave spreading
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is determined by the group velocity ratios in the p, 6, and ¢ direction; these ratios
are essentially density independent. The toroidal wave spreading is approximately
independent of density provided the profile of the plasma parameters remains nearly
constant with density. This is a good assumption. In addition, the n|| power spectrum
remains relatively constant over the density range considered. It can therefore be
concluded that S is essentially independent of density. It is pointed out that the CO,
laser scattering system can only observe waves with wave vector k perpendicular to the
incident laser kg; it is possible that the fraction of observable wave power may change
with density. This is difficult to determine, but based on numerical simulations of ion
Bernstein wave ray trajectories, the effect seems to be negligible. It can be concluded
at this point from Eq. 5.3.2 that for constant P, |E;| is approximately proportional to
e 1/2,

The dominant term in Eq. 5.3.1 for the densities considered here is primarily de-
pendent on the value of ny| with a weaker dependence on the plasma density. The

first term in Eq. 5.3.1, w?/w?2, describes the density perturbation resulting from the
E, wave field. This term is independent of density and is of comparable magnitude
to the second term for low densities (fie ~ 1 x 1020 m—3). The second term describes
the density perturbation resulting from the Ey component (which drives the Ey X By
particle drift) and can be approximated as

) Ky

-_— —

we Kz —nﬁ —n_zL

(5.3.3)

where D is defined by Eq. 2.4.13. Since nﬁ_ is on the same order as K,,, the third
term, which gives the density perturbation due to E., cannot be approximated. For
small n)| (<< 1), the second term, which increases approximately linearly with density,
determines the overall behavior of #.. For example, when n| = 0.1 the value of 72
increases by a factor of 20 as the density increases from 7ie = 1 x 102°m—3 to 4 x
1029 3. In this case, the data in Fig. 5.6 (a) indicates that the observed ion Bernstein
wave power is strongly reduced with increasing density compared to the expected value.
For large values of | (> 1), the third term, which decreases with density, determines
the behavior of 7i. The dotted line in Fig. 5.6 (a) shows the overall expected value
of Pacat (ox 7i2) for n) = 5 normalized to the observed value of Pecat at fie = 1.1 X
1020m—3, The decrease in the expected value of P,cat With density is not quite as
‘strong as the measured decrease. In this case, the data at high density indicates that
the ion Bernstein wave power is only weakly reduced from what is expected. The CO,
laser scattering system preferentially observes ion Bernstein waves with small | since

most of the wave power which enters the scattering volume must propagate nearly
perpendicularly to the antenna surface.
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5.3.3: Theory of lon Bernstein Wave Scattering

Onol”) has previously described the theory of wave—wave interaction between ion
Bernstein waves and density turbulence. It is useful to discuss several of the important
features of this interaction in preparation for discussing the method used to model the
wave scattering from turbulence. The following gives some of the important results of
the theory of ion Bernstein wave scattering from Ref. 7.

Since the measured frequency of the density fluctuations is small compared to the
ion cyclotron frequency, the frequency shift in the scattered ion Bernstein wave can be
neglected. Also, the parallel wave number can be considered to be conserved since k | of

the ion Bernstein wave is typically much larger than the average k” of the fluctuation.
When this condition is not satisfied, the parallel coupling can be shown to be negligibly
small. The main effect, therefore, of the scattering can be well represented simply by
a rotation of the ion Bernstein wave vector k| through an angle .

The scattering angle £ is defined so that k -k/, =|k, |2cos 8 where k; and k/| are
the incident and scattered perpendicular components of the ion Bernstein wave vector,
respectively. The mode coupling equation for this interaction is given as

i(5) " B i kK WEL () erp [-ilwn— )] (534)

where V is the matrix element which describes the strength of the coupling between
the ion Bernstein wave and the fluctuations.

The probability per unit time of scattering k;, by an angle between § and 8 + df3
is given by[7' 10]

P(B,t) = ai’/";a (%) _2|V|25¢ [2k0 sin (g)] dg. (5.3.5)

where S, represents the functional form of the density fluctuation wave number spec-

trum. It has been found expeﬁmenta]ly[u]tha.t the function S, is well approximated
by the expression

2
Se(6) = ¢ lfclexp [—g—g] (5.3.6)

where & is the root-mean-square (rms) value of the fluctuation wave number spectrum.
A scattering length definition, suggested in Ref. 13, which does not depend on the
approximation {2 << k3 is
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de \? 1
= (o)

" Bl . 28,.1""
x { / V|25, [2]:0 sin —] sin? —dﬂ} N (5.3.7)
—_ 2 2
This definition gives the perpendicular distance traveled by the lowest nonvanishing
eigenfunction of Eq. 5.3.4 (in the random phase approximation) by the time it decays
to ~ 63% (1/e) of its initial amplitude. When £gp; is fixed, the scaling of L, is
appraximated in Ref. 7 as

L, « /T;/(Bolae|?) (5.3.8)
and is independent of the plasma density.

A simple picﬁure of the scattering process follows by considering the effect of a
density perturbation (turbulence) on the wave equation (Eq. 2.3.6)

2 .
VXV xXE®D+ ‘;LZK \E® = —47’”.1,‘;. (5.3.9)

A normalized density perturbation # modifies the plasma contribution to the tensor K
so that

K=(Ko—I)[1+#]+]1 (5.3.10)

where K is the unperturbed dielectric tensor (Ko — 1 is proportional to density) and
the turbulent density perturbation is assumed to be the same for the ion and electron
species. In the absence of external currents, Eq. 5.3.9 can be written as

2
Go-E® = —ﬁ% [Ko — 1] - E®. (5.3.11)

The left side of Eq. 5.3.11 is the standard homogeneous wave equation and the right
side describes the second order (nonlinear) coupling between the density perturbation
7 and the plasma wave E(*). Noting the similarity between this equation and the inho-
mogeneous wave equation (Eq. 2.3.15) leads one to consider the right side of Eq. 5.3.11
as an external current perturbation which does work on the plasma wave. Considered
this way, it is easy to see that the right side of Eq. 5.3.11 will influence the wave energy
giving rise to a long time scale variation in the wave energy amplitude. Rewritten as
an energy equation (kinetic equation) Eq. 5.3.11 gives the time rate of change of wave
energy density. The wave energy density in the ion Bernstein wave is depleted, due to
turbulent scattering, at a rate which is dependent only on 7i; all of the plasma density
dependence remains in the wave energy density.
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5.3.4: Numerical Procedure

The numerical study of the scattering process proceeds as follows. The Brambilla
coupling model is first used to obtain the expected ky and k. power spectrum. A
typical k. spectrum (ky is integrated over) is shown in Fig. 5.1. The power is peaked
near k; >~ 0.18cm™1 (characteristic of the antenna geometry) and has smaller peaks at
higher k,. This spectrum is then divided into 106 regions, each with a corresponding
power, ky (kg), and k; (kg). The toroidal ray tracing code, described in section 2.7, is
next used to advance a ray (representing one region of the power spectrum) in time by
At. The probability of a scattering event occurring in time At where the ion Bernstein
wave vector is rotated through any angle —7r < 8 < 7 is given by the expression

Pyt = At /_ " P(B,1) dg. (5.3.12)

The value of At is selected so that Pyy, <<1. This prohibits multiple scattering events
during the time interval At. A random number np with uniform distribution between
0 and 1 is generated. If Py, > np the ray is scattered, otherwise the ray is advanced
another unit in time by At and P, is again calculated and compared with a new
random value of np. If the ray is to be scattered, a random angle 3 is generated with
the distribution
P(B)

JZ P(B)ds’

This is done numerically by generating a random number ng with uniform distribution
between —m < ng < m. The scattering probability P(ng) is calculated for this number.
A second random number ny is then generated with a uniform distribution between 0
and 1. I P(ng) < np the random number ng is accepted as the scattering angle 3.

G(B) = (5.3.13)

If P(ng) > np, this process is repeated again with two new random numbers ng and
np until a random number ng is selected. Once a scattering angle is determined, the
wave vector k is rotated through this angle. To carry out the rotation on only the
perpendicular component of k it is helpful to rewrite the vector k = k,p + kgé + k¢$
in new coordinates as

k = kpp + kg, ;b X p+ Fyb (5.3.14)

where b is the unit vector in the direction of the total local magnetic field. The per-
pendicular part of k is represented by the first two components in Eq. 5.3.14; this part
is rotated by the angle 8 to give k. The new wave vector k' is then transformed back
to the p, é, and $ coordinate system to resume the ray tracing. The rotation operation
can be written compactly as
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k' =T !RTk (5.3.15)

where the operator T represents a coordinate transformation and R is a standard
rotation operator. Written for each component, this gives

k;, = kpcos 3 — k0b¢ sin8 + k¢bg sin 8 (5.3.16)
kf = kpbg sin B + kg(b3 cos B + b) + kgbgby(1 — cos 5) (5.3.17)
kjy = —kpbgsin B + kgbgby(1 — cos B) + ky(bf cos B + b3) (5.3.18)

where by = By/|B| and by = By/|B|. The ray tracing calculation is now resumed; the
ray is advanced in time by At and the probability of scattering is once again calculated.

5.3.5: Powér Deposition

Linear power deposition is calculated by Eq. 2.7.22, the power transport equation.
This equation is included in the set of ray equations and is numerically integrated along
the ray as the ray is traced. The difference in ray power from one time step to the
next is equal to the power deposited locally in the plasma in that time step. The radial
power deposition profile is calculated numerically by first dividing the minor radius
into 50 equal divisions or bins. Each bin represents a radial shell centered around the
magnetic axis. As each ray is traced, the power absorbed between each time step is
stored in the radial bin corresponding to the present location of the ray. This process
is repeated for each ray. Once all of the rays are traced, the power deposited in each
bin is summed and normalized to the total launched power. The result is the radial
power deposition profile.

It is the random selection of scattering angles and the random decision of whether
to scatter the ray which makes this particular method a Monte Carlo direct sampling
simulation. In principle, as the number of rays traced becomes infinite, the power
deposition profile converges to the solution of the wave kinetic equation Eq. 5.3.4.
Since this is a statistical method of solving the kinetic equation and the number of
rays traced is finite (106), the error in the resulting power deposition is proportional
to N—1/2 where N is the total number of rays traced. For the cases modeled here the
error is about 10%.

The right side of Eq. 2.7.22 (the power transport equation) is for the most part
numerically straightforward to calculate. One minor complication arises from the vector
dot product of » and T. The vector v represents the component of k in the poloidal

plane (normalized to kg + k%) and is expressed in terms of the unit vectors 5 and 6.
The vector T is expressed in terms of the instantaneous Cartesian coordinate system

/!
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of the ray defined by the coordinates

g=k, (5.3.19)
j=:ixi=bxa (5.3.20)
i=k (5.3.21)

It is helpful in calculating the product v - T to transform v to the Cartesian system on
the ray. The components of v in this system (Eqgs. 5.3.19-21) are given here as

1 1 [4 B

Vg = Z—Kk_l_ kp + koB_; (szg - ng¢)] (5.322)
1 1 T B,

T AKK | ”|B| (Bzko — Bokg) — koko g, BI] (5.3.23)

_1 1 [ ,2Bg ko N _ . B
Vg = AKki -kokp |B| |B| (sza Bok¢) (k¢ klel)] (5.3.24)
where
2

A= k_2 Ko+ Bz (Bzkg — Byky) ] (5.3.25)

K= (K +k ) (5.3.26)

Finally, it is useful to verify that the kinetic equation is valid throughout the plasma
region of interest. This is true provided that the coherence length of the ion Bernstein
wave ljgw is greater than the correlation length of the fluctuations ~1/£p. If this is true,
coherent phase effects between individual Fourier turbulent modes can be neglected.
This condition is satisfied within a wide margin throughout the plasma.

5.3.6: Numerical Results

Monte Carlo solutions to the kinetic equation were obtained numerically for the
following plasma parameters: 0.5 x 102°m—3 < i, < 2 x 1029m~3, T; = 900eV,
T. = 1800eV, I, = 250kA, By = 7.6 T, np/ne = 0.1, and 0 < 71, < 0.5. The density
and temperature profiles were parameterized as

ﬂl’b

)" (5.3.27)

)2] o (5.3.28)

‘"(P) = Nedge + (M0 — Tedge) [1 -

T(p) = Tutge + (To ~ Tutge) |1 (

QI
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where ap =1.2, ar =2, nedge = 7x108m—3, and Teqge =40€V. The power deposition
profile was calculated as a function of plasma density and scattering amplitude. The
radial density fluctuation profile is modeled as a Gaussian with a peak at p/a = 0.95
and has a radial full width at half maximum of 2cm. Although accurate measurements
of the turbulent radial profile were not available in the ion Bernstein wave experiments,

the profile characteristics were inferred from earlier measurements(8].

Linear power absorption was calculated for electron Landau damping and ion cy-
clotron damping on the deuterium species. Nonlinear damping mechanisms were not
included in this calculation. Once the power in a single ray was attenuated to less than
1/1000 of the initial power, that ray was assumed completely absorbed and another ray
was then traced. Each ray was individually traced for a time g which was long enough
so that unimpeded by fluctuations and undamped, a ray could cross the poloidal cross
section slightly more than once. Some rays which underwent many scattering events
still had a fraction of their initial power undamped after time ty. This power was
discarded and not included in the total radial power deposition. As a result, the total
absorbed power was always less than unity but greater than 0.8. In principle, tracing
the rays for a longer time would cause the remaining power to become randomly dis-
tributed over the radial cross section and wouldn’t change the main conclusions of this
study.

Rays which scattered into radial locations p > pg where pg is the radial starting
position of the ray, were assumed to be absorbed at the plasma edge. Figure 5.7 shows
the effect of increasing the scattering amplitude on ion Bernstein wave rays at a plasma
central density of 1.5 x 1029°m~3.  The histograms indicate the absorbed power
density.t The large power density at p ~ 2-3 cm is due to absorption at the w/Qp = 3
layer located at £ = —3.4 cm. The width of the absorption peak is characteristic of the
spread in k) of the rays. The remainder of the absorption results from electron Landau
damping and exhibits & minimum near  ~ 7 cm. This is the location where rays with
the majority of the power encounter a toroidal bounce point (k” ~ 0) and there is very
little electron Landau damping here.

As the scattering amplitude is increased, the power reaching the plasma center
(p/a < 0.5) is noticeably decreased. This is caused (in this model) by an increasing
fraction of power which is both deposited at the plasma edge as well as absorbed on the
electrons via electron Landau damping. The power deposited at the plasma edge results
from rays which are scattered out of the plasma. The reason for the increased electron
Landau damping is two—fold. First, the scattered rays may undergo multiple passes

1 The power density is the total power deposited in a bin divided by pAp/V where p is
the radial location of the bin, Ap is the width of the bin, and V = p;jAp;.
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| through the electron Landau damping region as the direction of their ray trajectory is

changed at each scattering event. Second, the value of k", although not changed by
a scattering event, can increase due to toroidal effects as the ray trajectory is altered

in a scattering event. M. Bra.mbi]la[14]suggests that ion Bernstein wave ray tracing,
in general, overestimates the power which is electron: Landau damped. This can be
shown by comparing a ray tracing calculation with a full wave calculation. Considering
this, it is possible that the scattered rays do not undergo increased damping on the
electrons but may eventually find their way to the w/{dp = 3 layer where they damp on
the ions (deuterium ions in this model). The primary effect of scattering in this case
would be to spread the power reaching the absorption layer over a wider radial region.
This effect can be approximated from the numerical results by simply assuming that
the calculated radial power density (shown in Fig. 5.7 and 5.7) represents the power
deposited into the ions. The total power deposited in the plasma region for p/a < 0.5
is then used as a means of estimating the effect of the wave scattering on ion Bernstein
wave propagation. A scattering amplitude of about 30% is sufficient to prevent a
large fraction of the ion Bernstein wave power from penetrating to the plasma center.
Figure 5.8 shows the effect of increasing the fluctuation amplitude on ion Bernstein
wave propagation at a higher central density. The effect is essentially the same; a 30%
value of 7, is sufficient to prevent much of the power from reaching the plasma center.

Figure 5.9 (a) shows the predicted fraction of power which propagates into the inner
1/2 of the plasma as a function of density; the measured scattering amplitude is shown
for comparison in Fig. 5.9 (b). The curve in Fig. 5.9 (a) is obtained as follows. An
upper bound of 40% is set for 7, which corresponds to the value of 10 in arbritrary
units for 42. This upper bound is selected according to the measurements in Ref. 8.
Values of i, corresponding to each density are obtained from the data in Fig. 5.9 (b).
Using these values of i, the amount of power reaching the inner 1/2 of the plasma
is calculated by solving the kinetic equation using the Monte Carlo method already
outlined. The power reaching the plasma region where p/a < 0.5 decreases by about a
factor of four when the density increases from 7ie =1 x 102°m~3 to 3 x 102°m~3. The

upper bound of 40% for 7, may be too high. If it is assumed to correspond to 10%

for example, the power reaching the inner 1/2 of the plasma remains as high as about
60%, even at the highest density.
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Figure 5.7 —Ion Bernstein wave poloidal ray trajectories and radial power depo-
sition_as a function of increasing fluctuation amplitude for a plasma line-averaged
density of 1.5 x 102°m—3 and By = 7.6 T. R represents the minor radial position.
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sition as a function of increasing fluctuation amplitude for a plasma line—averaged
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plasma region p/a < 0.5 as a function of plasma line-averaged density. (b) Mea-
sured fluctuation power and corresponding assumed fluctuation amplitude as a
function of plasma line—-averaged density.
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5.3.7: Conclusions

The kinetic equation describing ion Bernstein wave scattering from turbulence has
been solved using a Monte Carlo direct sampling simulation. The radial power depo-
sition profile has been calculated as a function of edge density fluctuation amplitude.
It is found that the power reaching the plasma center (p/a < 0.5) is only dependent
on the normalized fluctuation amplitude and that a value of fi, ~ 0.3 is sufficient to
significantly reduce the ion Bernstein wave power reaching the central plasma.

An upper bound on the measured value of 7ie = 0.4 at fie = 3 x 102 m~—3 gives a
decrease of about a factor of four in the wave power which reaches the inner half of the
plasma (p/a < 0.5) as the density increases from fie =1 x 1029m—3 to fie =3 x 1020 m—3.
This decrease primarily results from a broadening of the power deposition profile. A
lower peak value of 7. at fie = 3 x 102 m—3 would produce less broadening of the
power deposition profile. The scattering results provide a method for determining the
expected rf power deposition profile as a function of plasma density. This profile can
now be used to describe the rf ion power source in a particle and energy transport
model. This is carried out in the following section.

5.4: Plasma Power Balance Analysis

5.4.1: Introduction

" It has been shown previously[ls' 16,17] that at high densities, the global energy
confinement time on Alcator departs from the lower density neo—Alcator scaling 75
fie R2-04g1-04 and becomes saturated. An anomaly in the ion thermal diffusivity x; of
three to five times greater than the Chang-Hinton neoclassical prediction is sufficient
to account for the observed confinement behavior in these high density plasmas. Ion
Bernstein wave heating experiments showed that large increases in the ion temperature
resulted with low rf powers (compared to the Ohmic power) for relatively low density
plasmas (i < 1.1 x 10200m~—3). In contrast to this, the ion heating rate in higher
density plasmas is substantially reduced. To understand the effect of plasma energy
confinement on the rf heating rate it is important to analyze the power balance charac-
teristics of the rf heated discharges. This section describes the model used to analyze
the plasma power balance and presents the results and interpretation of this analysis
when applied to a set of rf heated discharges. Only data at the 7.6 T and 9.3 T magnetic
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field regimes is a;nalyzed; the changes in plasma parameters during rf injection at the
5.1 T regime are within experimental error and therefore no conclusions can be drawn
from this data.

This section begins by describing the model used for the time dependent transport
analyses. The model is then used to analyze the Ohmic portion of a set of discharges
in both the 7.6 T and 9.3 T field regimes. The goal of the analysis is to understand
the ion behavior. The electron behavior is only monitored due to its necessity in
calculating the electron—ion power flow from collisions. The analyses show that in both
magnetic field regimes, anomalous ion thermal conduction, relative to the neoclassical
value, is required to explain the observed Ohmic ion temperature behavior and this
anomaly increases with plasma density. The discharges are then analyzed during rf
power injection. The fraction of rf power assumed to be deposited in the plasma is
estimated from measured ion temperature profiles to be between 30% and 60% of the
total rf power entering the antenna system. The rf power deposition profile is obtained
from the scattering results given in section 5.3. The ion temperature behavior during rf
power injection at 9.3 T can be explained by assuming that the ion thermal conductivity
remains nearly equal to the value in the Ohmic portion of the discharge. The ion
temperature behavior at 7.6 T can be explained by assuming that the ion thermal
conductivity remains nearly Ohmic-like! but increases slightly at low densities and may
decrease some at high densities. These results suggest that at 7.6 T, the ion losses are
typically enhanced at low densities at the onset of rf power injection; at high densities,
the ion losses may be reduced. At the 9.3 T field regime, ion losses are typically
maintained at the onset of rf power injection except at the highest densities. This
contrasting behavior between the two field regimes may be caused by the differing power
deposition profile in both field cases and by the characteristics of the ion temperature
gradient driven instability.

5.4.2: Analysis Technique

Energy and particle transport analysis of the data is carried out using a modified

version of the ONETWO[18] transport code. Inputs for this code are the parameterized
electron and ion temperature profiles, electron density profile, plasma current, Z.g,
and the resistive loop voltage, which are supplied at usually 9 and up to 19 instants
of time before and during the time of rf power injection. The ion thermal conductiv-
ity is assumed to have the neoclassical form and the code determines an anomalous
conduction factor which reproduces the measured central ion temperature.

1 Ohmic-like ion thermal conduction during rf power injection indicates that the ion ther-
mal conduction anomaly is equal to the Ohmic value at the equivalent rf density.
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Since an accurate measurement of the electron density profile was not available
from the ion Bernstein wave experimental data, the profile was approximated as a
parabola to the power ay where ay, is adjusted to give the measured ratio of central
to line-averaged density. Thus, ay, is given by

fie _ v T(an+1)
Neo 2 P(a,, + g)

(5.4.1)

where I'(z) is the standard Gamma function. In most of the density interferometer
data, only three of the interferometer chords which passed through the small size plasma
recorded a signal above the noise level. Abel inverting these chord measurements to
obtain a profile provided no better accuracy than the parabolic approximation.

The electron temperature profile was also approximated due to the lack of profile
measurements. The T, profile was assumed to be a parabola to the power ar. An esti-
mate of the value of ar can be obtained in terms of the plasma central and edge safety
factor ¢ = pBo/(RoBp) as follows. The Ohmic heating electric field Ep and the value
of Z g are assumed to be uniform across the plasma. The electron temperature profile
determines the conductivity and therefore the current profile. Since the conductivity

is proportional to Tjl /2 the current density can be written as

3
J(p) =0p [;::Eg;] ’ Eo (5.4.2)

where o is evaluated using the central electron temperature. The electron temperature
profile is parameterized as

zo)=t0)1- (&) (5:43

where the edge electron temperature is set to zero for simplicity. Integrating the Am-
pere equation using the current density in Eq. 5.4.2 gives the poloidal magnetic field

By(p) = By(a)> {1 -[1-(®)] Il_‘;m“} (5.4.4)

where the poloidal field at p = a is

Saz ] (5.4.5)

By(a) = Jo— [— +1
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and Jy = 09Ey is the current density on the magnetic axis. The toroidal safety factor
has a value on axis (p = 0) of

q(0) = ROI;‘:ZG) [3‘;" + 1] = ¢(a) [&ﬂ + 1] - (5.4.6)

giving an expression for ar as

ar=2 [% - 1] . (5.4.7)

The physical processes included in the power balance analysis are ion and electron
heat transport, particle transport, magnetic diffusion, neutral transport, and radia-
tion. The analysis is carried out in 1-D geometry (all quantities are functions only
of the space coordinate p) assuming concentric flux surfaces. The diffusion equations
considered in the transport model are

one 18 _
5 T . ap”r° = Se (5.4.8)
30 18 . 5 '
EaneTe = ;a_pp [’neXea—pe - -2-T¢P¢] + Pop — Pei — Prad,
. 6
+— o E n;T; (5.4.9)
j=ion
30 168 orT; 5
r. 8
~ 3 E n;T; (5.4.10)
J=ion
18By OE
el | (5.4.11)

Here, T, ; is the electron or ion radial particle flux; S is the electron source rate (from
all processes); Xe,i is the electron or ion thermal diffusivity (the thermal conductivity
is kj =njx;); Pop is the Ohmic heating power density. The collisional power exchange
between the electron and ions, P, is given by .

P, = —ne E (Te (5.4.12)

j=ion

where
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_2m.4 TranJ?e‘ilnA.
W mi 37 i

(5.4.13)

P,pq is the local radiated power density, and Pcx is the charge exchange loss. The last
term on the right side of Egs. 5.4.9-10 represents an additional power exchange between

the ions and the electrons(!®and is typically small compared to the other terms.

Boundary conditions for the electron and ion temperature and density are taken -

from plasma edge and scrape-off measurements. The total plasma current is used as
the boundary condition for the magnetic diffusion equation.

A single impurity species is assumed to be present, either oxygen or molybdenum.
The electron and ion fluxes are assumed ambipolar and are related as

Te= Y ZT;. (5.4.14)

j=ion

The impurity temperature is set equal to the main ion species temperature. The
total source rate Se; in Eq. 5.4.8, is determined with the help of a neutral transport
package. An input value for the global particle confinement time 'r,i,“ provides the
necessary boundary condition for the source calculation. Radiated power is calculated
for bremsstrahlung and line radiation due to the assumed impurity species.

The magnetic diffusion equation is solved assuming classical resistivity and using
the total plasma current input Iy(t) as the boundary condition. The value of Z.g is
adjusted to match the experimental loop voltage. The resulting value can then be
compared with the measured value for consistency. The measured inputs are averaged
over any sawtooth effects, thus the calculated values of the transport coefficients include
the time averaged eflects of sawteeth. For the majority of discharges analyzed, the g=1
surface is approximately at the magnetic axis of the plasma [g(p = 0) ~ 1].

The ion heat transport equation is solved assuming an ion thermal diffusivity of
the form

xi(p;t) = W(t)xi**(p, ) + Dpf(q) (5.4.15)
where x7°°(p,t) is the Chang-Hinton neoclassical d.iﬂ"usivity[zo], Dy is the Bohm diffu-

sivity, and ‘
1- —L— g¢<1
flg) = { TSV (5.4.16)
0 g>1

is used to model the time-averaged effect of sawtooth activity. The time dependent
anomaly factor W(t) is dynamically adjusted to reproduce the measured central ion
temperature and the ion temperature profile is determined by the transport equations.

181
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5.4.3: Anomalous lon Thermal Conduction

The ion thermal conduction anomaly is essentially an indication of how different
the measured ion temperature is than what is expected based on neoclassical theory.
Typically, ion power losses are anomalously high causing the measured ion temperature
to be lower than expected. To analytically investigate the effect of anomalously low ion
temperature on the the neoclassical multiplier W, it is useful to construct an approxi-
mate analytic expression for W. This can be obtained by considering the power balance
near the magnetic axis. Since the form of the ion thermal conductivity is assumed to
be neoclassical and W is adjusted so as to give the central ion temperature, it is the
characteristics of the transport near the plasma center which should be considered in
determining the value of W. The value of g(0) is assumed to be greater than or equal
to unity in this analysis (i.e. there are no sawteeth present in the discharge). The
neoclassical ion thermal conductivity is given in Ref. 19 as

2
K; = nix; = n;Kae'/ 2%" (5.4.17)
1

where p?o = 2m,-T,-c2/(Zi2eng), 7; is given by Eq. 4.4.2, e = p/ Ry, and

1 €3/2(c2/by)v;,€3/2
Ky =Kg{ 73 4 £ (cg/ba) 72 } (5.4.18)
14 agu;/” + by, 1+ cov4.€

The numerical constants in Eq. 5.4.18 are K3 =0.66, az =1.03, b, =0.31, and c2 =0.74.
The ion thermal conductivity in the discharges to be considered is essentially in the
plateau regime (1 << ¥, << €~3/2) for p < 0.5cm (a =~ 12.0cm). This region near
the magnetic axis is not pathological since its size is much larger than an ion Larmor
radius at a toroidal magnetic field of 7.6 T (pyg ~ 0.06cm). Near the magnetic axis,
especially at p = 0, the limiting value of x{*° is written as

K 1 v3(0)
Re0(0) = g—2———-H~ 5.4.19
XI(0) = gy (5419)
where {1;9 is the gyrofrequency evaluated using the toroidal field on axis. Since the
ion thermal diffusivity is explicitly independent of the collision frequency? , it has no
explicit Z.g dependence. Its main dependence is given by 1}-(0)3/ 2/(Z;Bo)2.

t This is the case where particles which dominate the diffusion have a collision time which
is on the order of the time it takes a circulating ion to complete one poloidal orbit. Thus,
the collision frequency ».; can be approximately replaced with 1/r. where 7. is the
period for one complete poloidal orbit. This time is only dependent on plasma geometry,
magnetic field, plasma current, and ion temperature.
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A simple physical argument can be given to explain the basic dependence of the
ion thermal diffusivity on the magnetic axis. The diffusion is dominated by circulating
particles which undergo a pitch angle scattering after completing half of a poloidal
orbit. The approximate deviation of a particle from its flux surface during half of
a poloidal orbit is ér = pjge. In the limit of € << 1, ér ~ V2p; = quii/QY; where
); is the cyclotron frequency for the toroidal field. The time between collisions is
approximately 7; ~ mRoq/vi;. The fraction of the particles contributing to the diffusion
is approximately unity. Constructing a diffusion coefficient from the step size and the
step time gives D ~ qud./(mRoN2) which is within a factor of order unity of the limiting
form (Eq. 5.4.19). .

An approximate expression for W can be obtained by writing out the ion power
balance at p =0 as

19 oTi
W =~ —Peil p=0 / 2 5p lZ "J'X?ma—;] (5.4.20)
p=0

j=ion

where the charge exchange and convective power loss has been neglected? and i indi-
cates the main ion species.

The expression for the electron—ion power flow is

T. - Tj

Z.
Pe; ne(O) E (’_";-) Zj"’j(o) lnAej T3/2

j=ion

(5.4.21)

where p; is the atomic mass number of the j ion species. The ratio Z;/u; is unity
for hydrogen and about 1/2 for the impurity ion. A Z.g different than unity has a
minor effect on the behavior of P,;, mainly by adjusting the ion species densities. The
hydrogen and impurity densities in a two ion species plasma with an impurity having
atomic number Z; are given by

nyg = ne {—Z;:_z;“ ] (5.4.22)
[ Zg-1
n; =ne [Zz(zz 5] (5.4.23)

If the impurity is molybdenum, for example, Z; = 32 and if Z.g = 3, Eqs. 5.4.22-23
give nyy/ne = 0.94 and n;/ne = 0.002. Thus, the variation in the hydrogen density

1 This is justified for the data considered here provided n(0) 2 1.5 x 1020 m—3,
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over a range of 1 < Zg < 3 is only 6% at most, indicating that the behavior of W is
relatively insensitive to the value of Z.g. The primary dependence of P,; is given by
ne(0)n;(0)(Te — T;)/ T3 /2 where only the main ion species contribution is kept.

The behavior-of W can now be simplified to
ng L

3/2 2T
nefl}/—lao:;

W — - (5.4.24)

where all quantities are evaluated on the magnetic axis. An estimate of §27;(0)/8p?
is T;(0)/a2 where a, is the ion temperature profile scale length. An estimate of P.;
can be obtained from Eq. 5.4.20 by setting T; = T;*° where T[**° is the expected ion
temperature due to neoclassical transport. In this case, W is unity and

T - T; 1 s/2 Te—T;
Poi = P g e e gmazly e (5.4.25)
1]
This gives an overall estimate for W of
_ (TRoN52 (g, \? T,-T;
Woc( T ) (a,::o ) Tg‘_ Thes" (5.4.26)
1] .

Equation 5.4.26 shows that the value of W can depart from unity through three effects.
First, an anomalously low ion temperature gives rise to a lower neoclassical conductive
power loss causing the value of W to increase so as to compensate for this. Second,
a lower T; increases the electron-ion power flow. The value of W must increase in
response to this so as to carry away the excess power through the ion conduction loss
channel. Third, a broader ion temperature profile indicates that a, > a2*° and implies
a higher ion thermal conduction. Within the approximations considered and assuming
that a,/a}® is weakly dependent on the value of W, Eq. 5.4.26 confirms that the value
of W is essentially a measure of the anomaly in the central ion temperature.

5.4.4: Ohmic Discharges at 7.6 Tesla

Analysis at the 7.6 T regime was done for 14 discharges which spanned a density
range of 0.75 x 102°m~—3 <#, < 2.8 x 1020 m~3, Figure 5.10 shows the inferred value
of the ion thermal conduction anomaly in the Ohmically heated portion of these dis-
charges as a function of the line-averaged density. The total plasma current ranges
between 230kA and 290 kA with an Ohmic input power Pop = 550 & 100kW. The
value of Z.g is shown in Fig. 5.11 and exhibits the behavior of a decreasing value
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with increasing density. The ratio of central to line-averaged density is typically about -
1.2-1.4 (corresponding to a, ~ 0.6) indicating a broad density profile. The ion con-
duction anomaly is nearly constant at a value close to unity (within the error) for low
density discharges but then begins to increase with density. Figure 5.12 shows a plot
of the absolute magnitude of the neoclassical ion thermal diffusivity [calculated from
the measured values of n;(0) and T;(0)] on the magnetic axis versus the line-averaged
electron density.

Figure 5.13 shows the individual components of the integrated ion power flow at
p/a = 0.75. Each power shown is normalized to the total integrated Ohmic input
power at p/a = 0.75. Most of the power flow important to the description of these
discharges appears to take place within p/a =0.75. Limiting the analysis to within this
region excludes the power flow in the edge region which can be dominated by errors
resulting from uncertainties in the boundary values. The power loss through convection
is typically about 10%Pg), and remains relatively constant with density. The power
loss through charge exchange and ionization is less than 5%Pp), and decreases from
a positive value to a negative value with density. The power loss through conduction
increases nearly linearly with density and follows the electron—ion power source which
also increases with density. The conduction and convection power loss are comparable
for fie < 1.5 x 1022 m—3, In this region, improvements in the particle confinement time
can have a significant effect on the overall ion power balance. At higher densities, the
particle confinement time is not as important.

5.4.5: Rf Heated Discharges at 7.6 Tesla

The rf power source is modeled in the shape of an annulus with power distributed
across the annulus area according to the power deposition profile estimated from the
scattering results (see Figs. 5.7 and 5.8 ). The fluctuation amplitude is assumed to be
~ 40% at fie = 3 x 102 m~3, consistent with Fig. 5.9 (b). The total rf power which
actually flows into the hydrogen comes from both collisional power exchange from the
heated deuterium and possibly from direct rf power absorption on the hydrogen. The
power flow from the heated deuterium to the hydrogen has been estimated from the
data in Fig. 4.10 to be ~ 30%P,t . The power deposited directly into the hydrogen

t Py is used to indicate the total rf power entering the antenna system.
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Figure 5.10 —Inferred value of the ion thermal conduction anomaly during
Ohmic heating as a function of line-averaged density. B = 7.6 T.
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Figure 5.11 —Ohmic Zg value measured from visible bremsstrahlung as a func-
tion of line-averaged density. Bo = 7.6 T. '
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cannot be obtained from the data and must be estimated from the characteristics of the
absorption mechanism. On one hand, if rf power absorption on the deuterium occurs
via ion Bernstein wave decay (see section 2.8.4), the quasimode at w = 0.5y, which
contains ~ 30% P, damps on the deuterium. The lower frequency ion Bernstein wave
at w = (1+ 2)Qy (¢ << 1), contains ~ 60%P,s? and damps on the hydrogen. In this
case, the total power which flows into the hydrogen is estimated to be ~ 90%P,¢. On
the other hand, if rf power absorption on the deuterium occurs via linear damping at

"the w = 3§2p layer, the power absorbed directly by the hydrogen via self-interaction
near w = 1.5Q0y can be as low as ~ 0%P,¢. In this case, the total power which flows
into the hydrogen is ~ 30%P,s. A total power flow into the hydrogen of 60% P, which
lies between both extremes, was used to model the rf portion of the discharges.

Figure 5.14 shows a comparison of the inferred value of the ion thermal conduction
anomaly during the Ohmic heated portion of the discharge with the anomaly during the
Ohmic and ion Bernstein wave heated portion. The letters label points corresponding
to the same discharge. Notice that at low densities, the density during rf power injection
is somewhat higher than during the Ohmic heating phase. Assuming that 60% P, flows
into the hydrogen, the ion thermal conduction anomaly can remain nearly Ohmic-like
to explain the observed ion temperature behavior. There is a small increase in the ion
thermal conduction at low densities (by a factor of ~ 1.5) which is just outside of the
error bars. This may indicate that x; degrades at the onset of rf power injection at
low densities. At higher densities, x; appears to improve although the improvement is
within the error bars.

There is some uncertainty in both the amplitude of the total power which flows into
the hydrogen and in the edge density fluctuation amplitude. The effect of reducing the
total power to 30% P, while keeping the fluctuations the same, is shown in Fig. 5.15 .
The figure shows that the ion thermal conductivity can still remain nearly Ohmic—
like to explain the ion temperature increase. The slight increase in the ion thermal
conductivity at low densities is now < 1.5 times and the decrease at high densities
is more significant. This result still suggests that the ion thermal conduction may
increase slightly at low densities and decrease at high densities. The effect of reducing
the fluctuation amplitude to 0% while keeping the power flowing into the hydrogen at
60% Ps is shown in Fig. 5.16 . The rf power is mainly deposited between 1cm<p<4cm
without edge fluctuations. The ion thermal conductivity for this case shows a large
increase (2—4 times the Ohmic value) at low densities and is relatively unchanged at
high densities. If this power deposition model is correct, then the ion losses are strongly

1 This fraction of power is estimated from the Manley—Rowe nonlinear energy relations
(see Ref. 21).
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enhanced at the onset of rf power injection at low densities but are not cha.néed from
an already large value at high densities.

Several types of ion temperature simulations were made with the data at Bo=7.6T.
A simulation is carried out by assuming a constant value for the ion thermal conduction
anomaly W, and simulating the central ion temperature behavior. The anomaly used
in the simulation is assumed to be Ohmic-like (see Fig. 5.10 ) at the rf density. In most
of the 7.6 T cases the density increase was small (< 20%) and W, was nearly equal
to the initial Ohmic value. The cases with Wy, < 1 had the largest density increases
and were simulated with W, = 1.5. Figure 5.17 shows the results of two simulations
of AT;/ P, compared with the experimentally measured value. The first simulation is
made by assuming that no rf power flows into the ions but that the ion temperature in-
crease results only from an improvement in the global particle confinement time so that
7p(rf) = 1.57p(Oh) (independent of density). The measured behavior of 1p(rf)/7p(Oh)
(see Fig. 4.17) decreases with density (the maximum value is ~ 2) therefore, this sim-
ulation represents an approximate upper bound to the ion heating rate resulting only
from a 7p improvement. Ion heating rate simulations were also done assuming that
7p(rf) = 27p(Oh); in these cases, the simulated value of AT;/P¢ was approximately
twice that for 7p(rf) = 1.57(Oh). The second simulation in Fig. 5.17 is made by assum-
ing that the global particle confinement time improves as in the first simulation and
that 60% P, is deposited into the main ions in a radial profile given by the scattering
results (assuming that 7, = 0.4 at ie = 3 x 102 m~3). In both simulations, the value
of P used to calculate the quantity AT;/Py is the total measured rf power entering
the antenna system and AT; is the difference in ion temperature between the already
described simulation and a baseline simulation where Py = 0, 7p(rf) = 7p(Oh), and
W = Wgip. The simulations confirm that a nonzero source of rf power is required to ex-
plain the measured ion temperature behavior provided that the ion thermal conduction
doesn’t decrease relative to the Ohmic value at the onset of rf power injection.

Ion heating rate simulations of the data at Bg = 7.6 T' exhibit two important char-
acteristics. First, both simulations show a strong decrease in the ion heating rate as
a function of density. This results solely from the increasing ion thermal conduction
anomaly. In the first simulation where Py = 0, the power loss due to ion conduction
quickly becomes the dominant ion loss mechanism as the density increases. As a result,
decreasing the convection loss by improving 7, produces an increasingly smaller effect
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Figure 5.14 —The inferred value of the ion thermal conduction anomaly during
Ohmic and ion Bernstein wave heating as a function of line-averaged density
assuming that 60%F,¢ flows into the hydrogen and that the fluctuation amplitude
reaches a value of 40% at fie =3 x 102 m—3, The letter labels indicate data points
from the same discharge. By = 7.6 T.
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Figure 5.15 —The inferred value of the ion thermal conduction anomaly during
Ohmic and ion Bernstein wave heating as a function of line-averaged density
assuming that 30%F,s flows into the hydrogen and that the fluctuation amplitude
reaches a value of 40% at fie =3 X 1022 m—3, The letter labels indicate data points
from the same discharge. Bo = 7.6 T.
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Figure 5.16 —The inferred value of the ion thermal conduction anomaly during
Ohmic and ion Bernstein wave heating as a function of line-averaged density
assuming that 60%F,¢ flows into the hydrogen and that the fluctuation amplitude
has a value of 0. The letter labels indicate data points from the same discharge.
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Figure 5.17 —Simulated ion heating rate AT;/P,s as a function of line—averaged
density. In one case, Py = 0 and the ion temperature increase results only from
improved particle confinement. In the other case, 60%F,s flows into the hydrogen
with a profile given by the scattering results and the ion temperature increase
results from both improved particle confinement and rf power absorption. By =
7.6T.
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on the ion power balance. In the second simulation where 60%P,s flows into the hydro-
gen, the increasing anomalous ion conduction loss reduces the ion energy confinement
resulting in less of an ion temperature increase for a given rf input power.

The second characteristic is that the simulated heating rate at low densities (as-
suming an Ohmic-like ion thermal conduction) is somewhat greater than the measured
rate at low densities. However, at higher densities, the simulated heating rate is slightly
less than the measured heating rate. The interpretation of these results is that at low
densities, rf power injection enhances the ion losses so as to degrade the ion thermal
conduction from its Ohmic-like value to a value which is 2-3 times the neoclassical
value. The ion thermal conduction at high densities is slightly reduced from its Ohmic~
like value at the onset of rf power injection. This interpretation is consistent with the
results shown in Fig. 5.14 . Assuming that either the fluctuation amplitude or the total
power which flows into the hydrogen is overestimated does not qualitatively change this
interpretation. At the onset of rf power injection, the low density discharges still show
an increase in the Ohmic-like ion thermal conduction and the high density discharges
still show either a slight decrease or no change from the Ohmic-like value.

Summarizing the results at 7.6 T, it is shown that within experimental uncertainty,
the inherent ion energy confinement characteristics of these discharges can explain
the ion temperature behavior. More specifically, assuming that 60%FP,s flows into
the hydrogen with a radial profile given by the scattering results, the ion thermal
conductivity must increase by ~ 1.5 times the Ohmic value (to 2-3 times the Chang-
Hinton neoclassical prediction) at the onset of rf power injection to explain the ion
temperature behavior in the low density discharges. At high densities, the Ohmic ion
thermal conductivity is already 4-7 times the Chang-Hinton neoclassical value and
may decrease slightly at the onset of rf power injection. A lower value of rf power or
fluctuation amplitude will produce qualitatively similar results.

5.4.6: Ohmic Discharges at 9.3 Tesla

Analysis at the 9.3 T regime was done for 8 discharges which spanned a density
range of 0.8 x 102°m—3 <71, <2 x 1020 m~—3. These discharges showed similar behavior
as the 7.6 T data; however, there were some marked differences. Figure 5.18 shows
the inferred value of the ion thermal conduction anomaly of the Ohmic portion of the
discharges as a function of line-averaged density. The Ohmic power is 450 &+ 60 kW.
This is slightly lower than the 7.6 T data due to a lower plasma current (~ 180kA)
and a slightly lower resistive loop voltage. The density dependence of Z.g is shown in
Fig. 5.19 . The ratio of central to line-averaged density is 1.4-1.9 (a, ~ 1.6) indicating
a somewhat more peaked density profile than in the 7.6 T discharges. The ion thermal
conduction anomaly is small (1-2 times the Chang-Hinton neoclassical prediction) at
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low densities and shows an increase at higher densities. The absolute magnitude of the
neoclassical ion thermal diffusivity on the magnetic axis in these discharges is somewhat
smaller (2300 cm?/s) than in the 7.6 T cases.

The individual components of the ion power flow are shown in Fig 5.20 (a). The
power is integrated out to p/a = 0.5 since most of the power flow in these discharges
seems to occur within p/a = 0.5. This is probably a consequence of the more peaked
profiles at higher g. The integrated power at p/a = 0.75 is shown in Fig. 5.20 (b) for
comparison. Convective power loss is typically < 10%Pgy. Power loss through charge
exchange and ionization is less than 5% Pgo),. The conductive power loss increases with
density and follows the electron—ion power source. Within p/a < 0.75, the convec-
tive and conductive power losses are comparable indicating that particle confinement
improvements can influence the ion power flow for nearly all of the cases considered.

5.4.7: Rf Heated Discharges at 9.3 Tesla

At this magnetic field, rf power absorption is expected to occur on deuterium and
hydrogen at the w = 3€p layer located < 2cm in front of the antenna and on the
deuterium at the w = 2.5§)p layer located near to the center of the plasma. Direct
power absorption on the hydrogen in the plasma center is not expected. The power
flow into the deuterium has been estimated in section 4.4.4 from Fig. 4.15 to be 20kW-
40kW or ~ 60%P,; the primary uncertainty in making this estimate lies in the value
of the deuterium concentration. The fraction of power deposited near the plasma edge
at the w = 3{lp layer cannot be determined from the data but can be estimated from
theoretical considerations. If rf power crosses the w = 3{)p layer via parametric decay
(see section 4.4.4), the lower frequency ion Bernstein wave at w ~ 2.8 0p contains (from
Fig. 4.15) about 60%P,. The quasimode at w ~ 0.2§)p contains ~ 5%P,; (estimated
from the Manley—Rowe nonlinear energy relations). The remaining power, ~ 35% Py, is
assumed to be deposited near the plasma edge at the w =3Qp layer. If rf power crosses
the w = 3€)p layer due to the toroidal ripple effect on the resonance layer location,
the power flow into the deuterium must still be ~ 60%P,¢f and the power deposited at
the edge in this case is ~ 40%P,. The deuterium exhibits a two temperature energy
spectrum and the fraction of deuterium in the superthermal component is estimated to
be ~ 30% of the total deuterium. Power conducted out by the high energy deuterium
component is estimated to be negligible due to the low deuterium density. Considering
this, a total power flow into the hydrogen from the deuterium of 60% P, was chosen to
model the rf portion of the discharges.
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The rf power source for this regime is also modeled in the shape of an annulus with
the power distributed according to the estimated power deposition profile. Once power
crosses the w = 3{)p layer, ray tracing calculations at this field give a power deposition
profile similar to the 7.6 T regime. Edge density fluctuations, measured for i > 1 x
1029m—3, are observed at 9.3 T; the measurements show a nearly identical behavior as
is observed in the 7.6 T regime [see Fig. 5.6 (b)]. The fluctuation amplitude is assumed
to be ~ 40% at fie = 3 x 1020 m—3. Figure 5.21 shows a comparison of the inferred
value of the ion thermal conduction anomaly during the Ohmic heated portion of the
discharge with the anomaly during the Ohmic and ion Bernstein wave heated portion.
The data points are plotted at the line-averaged density corresponding to either the
Ohmic or the Ohmic and ion Bernstein wave heated portion of the discharge. Within
the experimental error, an ion thermal conduction anomaly during rf power injection
which is approximately the Ohmic value, is sufficient to explain the ion temperature
behavior. This is in contrast to the 7.6 T data at low densities which showed that a
small increase in the ion thermal conduction during rf power injection is necessary to
account for the ion tempefa.ture behavior.

As in the 7.6 T regime, there is some uncertainty in both the amplitude of the total
power which flows into the hydrogen and in the edge density fluctuation amplitude. The
effect of reducing the total power to 30% Py, while keeping the fluctuations the same,
is shown in Fig. 5.22 . The figure shows that the ion thermal conductivity decreases
slightly from the Ohmic value at the onset of rf power injection. This result suggests
that the ion losses are reduced in comparison to the initial Ohmic losses at the onset
of the rf power. The effect of reducing the fluctuation amplitude to 0% while keeping
the power flowing into the hydrogen at 60%P,¢ is shown in Fig. 5.23 . In this case, the
ion thermal conduction can remain nearly Ohmic-like to explain the ion temperature
behavior. In each case, the results at the 9.3 T regime indicate that the ion losses
are either reduced or maintained compared to the Ohmic-like losses at the onset of rf
power injection.

Figure 5.24 shows the result of an ion temperature simulation where the particle
confinement is assumed to improve in accord with the data in Fig 4.17 and 60%P¢
- is assumed to flow into the hydrogen with a profile approximated from the scattering
results. The ion thermal conduction anomaly is assumed to be Ohmic-like. The particle
confinement improvement can explain up to ~50% (at low densities) of the observed ion
temperature behavior; however, a nonzero amount of rf power is required to account for
the complete ion temperature behavior. A number of the low density discharges (one
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Figure 5.22 —The inferred value of the ion thermal conduction anomaly during
Ohmic and ion Bernstein wave heating as a function of line—averaged density
assuming that 30%P,¢ flows into the hydrogen and that the fluctuation amplitude
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is included with the 8 cases analyzed here) with the highest ion heating rate showed a
slight peaking of the density profile during rf power injection.

The measured ion heating rate for several of the high density discharges was typi-
cally <0. This resulted because at the onset of rf power injection, the electron temper-
ature decreased markedly. At high densities, since the electrons and ions are strongly
coupled, the ion temperature fell below its Ohmic value in response to the electron
temperature. The electron temperature behavior resulted from impurity generation at
the onset of rf power injection. The rf power is typically Py > 110kW and impurity
generation increases with rf power and plasma density.

The ion heating rate simulation at 9.3 T shows a strong decrease as a function of
density and is similar in magnitude to the 7.6 T data indicating that the Ohmic ion
heating rate of the two magnetic field regimes is nearly identical. The decrease in ion
heating rate with density results once again from the increasing ion thermal conduction
anomaly. The simulated ion heating rate is typically lower than the measured heating
rate. The interpretation of this result is that Ohmic-like ion thermal conduction during
rf power injection used in the simulation is too large. This is consistent with the results
shown in Figs. 5.21 , 5.22 , and 5.23 . The ion losses are either improved or maintained
compared to the Ohmic-like losses at the onset of rf power injection.

Summarizing the results at 9.3 T it is shown that the inherent ion energy confine-
ment characteristics of these discharges can account for the observed ion temperature
behavior. Assuming that 60% P, flows into the hydrogen in a power deposition profile
given by the scattering results, an ion thermal conduction during rf power injection,
similar to the Ohmic value, is sufficient to explain the observed ion temperature behav- -
ior. Uncertainties in the total power flowing into the hydrogen and in the edge density
fluctuation amplitude do not qualitatively alter this conclusion.

5.4.8: Sensitivity of Results

Uncertainties in the experimental parameters can alter the results of the power
balance analyses. To determine the effects of the uncertainties, several test discharges
were constructed by varying the measured quantities of actual discharges within the
limits of experimental error. The primary sources of error are in the electron central
temperature and profile, electron central density and profile, and the absolute value
~ of the particle confinement time 7,. The error in the T, central value is estimated to

be about 10%[15]. The error in central electron density from the Thompson scattering
system is estimated to be about 15%, the error in the calculated profile is taken to be
15%. The error in the absolute magnitude of 73 is roughly estimated to be about 50%.
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Figure 5.24 —Simulated ion heating rate AT;/P;¢ as a function of line-averaged
density assuming an Ohmic-like ion thermal conductivity and that 60%P. flows
into the hydrogen with a profile given by the scattering results. The ion tem-
perature increase results from both improved particle confinement and rf power
absorption. Bg =9.3T.
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The resulting variation in the inferred ion thermal conductivity and the simulated ion

heating rate is shown by the error bars. The uncertainty in xi/ x;° is small at low

densities and large at high densities. At low densities, the electrons and ions are not

well coupled since the difference in their temperatures is large. A 10%-15% change

in the electron temperature and density does not produce a large effect on the ions.
This situation is different at high densities where the electron and ion temperatures

are much closer together and the value of P,;, which mainly influences the value of

W, is very sensitive to variations in T,. Within the experimental error it can still be

concluded that the ion thermal conduction anomaly in these discharges increases with

density.

5.4.9: Discussion

Previous authors(15 16: 22, 23] have indicated the presence of anomalous ion ther-
mal conduction on Alcator C and have shown that the anomaly increases with plasma
current. In addition, experiments on other tokamaks suggest the existence of anoma-
lously high ion losses. The results of the analyses of the ion Bernstein wave data show °
that the anomaly also increases with increasing plasma density.

It has been suggested that the cause of the anomalous ion thermal conduction may
arise from VT;—driven ion drift instabilities (e.g. the ion mixing mode or 7; mode).
This instability has been discussed by a number of authors|24 25, 26, 27, 28, 29, 30] 54

arises from ion drift modes which tend to mix hot and cold ion popula.t:ons The mode
becomes unstable when 7; exceeds a critical value 74 where

_ d(lnTy)

Aoy (5.4.27)

and 7t ~ 1.5. The mode tends to be excited by both a broad ion density profile
and a narrow ion temperature profile. Measurements of the propagation velocity of the

edge density fluctuations in a 16 cm Alcator C pla.sma,[szI indicate that at low densities:
(fie < 1.5 x 1029 m—3) the direction of wave propagation is in the electron diamagnetic
direction. Above this density (fie > 1.5-2 x 1029 m—3) the direction of propagation
changes to the ion diamagnetic direction. The minimum value of 72 in Fig. 4.21(b)
may represent the transition in propagation direction of the density fluctuations. The
fluctuations at higher densities possibly result from ion drift waves in the plasma and
their presence may indicate that the ion-mixing mode is operative giving rise to the
observed anomalous ion losses.
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The measured ion temperature and density profiles contain significant errors and
unfortunately cannot be used to estimate a meaningful value of ;. Nevertheless, pre-

vious estimates(15] indicate that 0.8 < ni(a/2) < 1.7 for gas fueled discharges. It is
interesting to estimate an upper bound for x; due to the enhanced transport from ion

temperature gradient driven modes. One estimate for the ion thermal diffusivity has
been given in Ref. 23 as

xi ~ T? (&) (ﬁ) DyF(r) (5.4.28)

rT rT

where 7, ! = d(InT})/dp, Dy, = cT;/eB, p; is the ion gyro-radius, 2w Rq is the relevant
connection length, T is of order unity, and F(r) is a function which represents the spatial
dependence of the amplitude. Estimating this near p/a ~ 0.5 for either magnetic field
regime for F' ~ 1 gives a value for x; which is 20-100 times larger than the neoclassical
value. This result additionally confirms the possibility of enhanced transport due to
ion temperature gradient driven modes. »

The behavior of the rf heated discharges at 7.6 T and 9.3 T may be understood in
terms of the rf power deposition profile and the characteristics of the ion temperature
gradient driven instability. For example, at low densities in the 7.6 T regime, rf power
deposition is peaked near the plasma center (1cm < p < 4cm). This may cause the ion
temperature profile to peak in the center, increasing the value of 7;, and leading to an
enhancement of the ion losses. At higher density, the power deposition profile becomes
spread over the plasma cross-section. This may cause the ion temperature profile
to increase in a more uniform way causing the value of 7; to remain nearly constant
or possibly decrease. The ion thermal conduction then remains nearly constant or
decreases in response. At the 9.3 T regime, rf power deposition occurs both at the
plasma edge (at the w = 3Qp layer) and near the center of the plasma. Power deposited
at the plasma edge may broaden the ion temperature profile causing the value of 7;
to decrease independently of the central power deposition profile. The ion thermal
conduction then decreases or maintains an Ohmic-like value at the onset of rf power
injection.

The different behavior of the rf heated discharges at 7.6 T and 9.3 T may indicate the
importance of favorably modifying the ion temperature profile with the rf power. The
9.3 T regime provides a natural way of doing this with the w = 3{lp layer located just
in front of the antenna. Although the ion heating is best at this high field regime, it is
only good at low densities. At high densities, the electron temperature drops markedly
at the onset of rf power injection causing the ion temperature to drop from its Ohmic
value. This behavior is attributed to increased impurity injection at high densities. The
7.6 T regime also exhibits decreases in the electron temperature at the onset of rf power
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injection at high densities, but the decrease is not as large as in the 9.3 T regime. The
presence of the w = 3Qp layer therefore, may be helpful at low densities for modifying
the ion temperature profile but may be detrimental at high densities by causing a
large impurity production. Another source of impurity production is the edge electron
heating due to the quasi-mode (as a result of parametric decay in front of the antenna

in the 9.3 T case) which would cause enhanced sputtering near the edge[s' 6,31,

5.4.10: Global Energy Confinement

Figure 5.25 shows the global energy confinement time during the Ohmic heating
phase and the Ohmic plus ion Bernstein wave heating phase for both field regimes. Al-
though numerous discharges showed a global energy confinement time during rf power
injection which was greater than the initial Ohmic value, the global energy confine-
ment time during rf power injection was always less than the confinement time of an
equivalent Ohmic discharge (at the same density) for both field regimes. The cause of
this is due to increased radiation loss from impurities. This is especially apparent in
the 9.3 T data which shows large electron temperature decreases (particularly at higher
densities) at the onset of rf power injection. The electron temperature also decreases
in the 7.6 T data; however, the decrease is not as significant as in the 9.3 T data. As a
result, the global energy confinement time during rf power injection is somewhat lower
(e ~ 8-10ms) at 9.3 T than at 7.6 T (g < 15ms).

5.4.11: Conclusions

Analyses of Ohmic discharges at 7.6 T and 9.3 T have indicated the presence of
anomalous ion thermal conduction which increases with plasma density. This anoma-
lous ion thermal conduction may be due to increased transport arising from 7; modes.
The ion temperature behavior at 7.6 T can be explained by assuming that ~ 60%P, is
deposited into the hydrogen in a profile given by the scattering results. At low densi-
ties, the rf power deposition profile, which is peaked near the plasma center, may cause
the ion temperature profile to peak. This may increase the value of 7; causing the ion
thermal conductivity to increase above the Ohmic-like value. At higher densities, the
power deposition profile is broadened as a result of the edge fluctuations causing the
value of 7; to remain equal to the Ohmic value or possibly decrease. The result is that
the ion thermal conduction remains nearly the same as the Ohmic value or decreases
slightly. The ion temperature behavior at 9.3 T can be accounted for by assuming that
60% P, is absorbed by the hydrogen in a profile given by the scattering, and that the

209
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Figure 5.25 —Experimental global energy confinement time during the Ohmic
and Ohmic plus ion Bernstein wave heated portions of the discharge as a function
of line—averaged density. (a) Bo = 7.6 T. (b) Bp = 9.3T.
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ion thermal conductivity remains nearly equal to the Ohmic value. Power deposition
near the plasma edge at the w = 3{)p layer may broaden the ion temperature profile
causing the value of 7; to decrease or remain constant. The ion thermal conduction
then remains constant or decreases in response. The decrease in the ion heating rate
with increasing density in both magnetic field regimes is essentially accounted for by
the increasing anomaly in the ion thermal conductivity as a function of plasma den-
sity. Uncertainties in the total power flow into the hydrogen and in the fluctuation
amplitude do not qualitatively alter these conclusions. Unfortunately, due to a lack of
accurate ion density and temperature profile measurements, more definitive statements
regarding 7; modes cannot be made.
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CHAPTER 6

Conclusions

6.1: Sumrhary

The previous chapters presented the experimental study of ion Bernstein waves in
the Alcator C tokamak and attempted to explain through detailed analyses the causes
for the experimentally observed results. In particular, the antenna—plasma loading,
wave propagation and power absorption, and the plasma response to ion Bernstein wave
power injection were analyzed within the context of current plasma theories. Also, the
characteristics of the ion Bernstein wave were discussed.

The ion Bernstein mode was shown to be essentially a sound-like plasma wave
which oscillates at a frequency near the ion cyclotron frequency or its harmonics. The
majority of the wave energy is in the ion kinetic motion. The wave length perpendic-
ular to the background magnetic field is on the same order of magnitude as the ion
Larmor gyro-radius. The wave can undergo strong linear damping at integral ion cy-
clotron harmonics. Two nonlinear power absorption mechanisms are mentioned. First,
nonlinear Landau damping via ion Bernstein wave self-interaction gives rise to power
absorption at odd-half integral ion cyclotron harmonics. This may be important at
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several magnetic field regimes studied in the experiment. Second, nonlinear Landau
damping on deuterium via ion Bernstein wave decay is considered. In this process, the
ion Bernstein wave decays into another ion Bernstein wave at a downshifted frequency
and an ion quasimode at w/Qyg = 0.5 (w/flp = 1). The ion quasimode is resonant
with the fundamental ion cyclotron frequency of the deuterium species. This process
is shown to be important at the 7.6 T regime.

Antenna—plasma loading measurements were made as a function of plasma density,
magnetic field, and rf power. The antenna loading exhibited a maximum of 1.5} when
the hydrogen second harmonic layer was placed just to the low field side of the antenna.
Outside of this magnetic field, the antenna loading was nearly constant at ~ 1. The
antenna loading increased with density until i ~ 2.6 x 1020 m—3; beyond this density,
the antenna loading decreased. The loading also showed a ~ 20% decrease in value as
the rf power was increased from 50kW to 150kW.

A COg laser scattering diagnostic system was used to study ion Bernstein wave
propagation and absorption in Alcator C. The ion Bernstein wave perpendicular wave
vector was mapped out as a function of minor radius and showed good agreement
with the theoretical dispersion curve. The amplitude of the scattered signal was nearly
linearly dependent on the rf power. Power absorption was investigated across the
w/Qp = 3 layer at both the 7.6 T and 9.3 T field regimes. The CO; scattered signal
showed a strong attenuation across this layer suggesting ion Bernstein wave power
absorption.

Ion Bernstein wave heating experiments were carried out in plasmas within the
density range 0.6 x 102°m~3 < #i, < 4 x 1029 m~3 and magnetic fields within the
range 4.8T < By < 11T. Central ion temperature increases of AT;/T; 2 0.1 and
density increases of An/n < 1 were observed during rf power injection of up to 180kW.
Although the greatest ion heating was observed at a central magnetic field of 9.3 T,
heating occurred over a broad range of magnetic fields (2.4 > w/ Qen(o) 2 1.1) and did
not show a strong dependence on having a particular ion cyclotron resonance located
near the plasma center. The density increase was usually accompanied by an improve-
ment in the global particle confinement time relative to the Ohmic value and the ion
temperature increase appeared to show rf power thresholds which were dependent on
the magnetic field and agreed with the theoretical predictions within experimental er-
ror. Near densities of fie < 1.1 X 1029m—3 rf power injection typically produced an ion
heating rate of AT;/ Py ~ 2-4.5¢V/kW. At higher densities, fie > 1.5 X 1020m~3, the
ion heating rate decreased to 0.5eV/kW.
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6.2: Results of Analyses

6.2.1: Power Absorption Mechanisms

The variety of possible rf power absorption mechanisms introduce a significant
complication in determining the operative absorption mechanism at each magnetic
field regime. A strong indication of nonlinear power absorption is the presence of a
measured power threshold for ATy # 0. A power threshold is observed at both the
7.6 T and 5.1 T regimes and may be present at the 9.3 T regime. In all three cases,
central ion heating is observed. In both the 7.6 T and 9.3 T regimes, there is clear
experimental evidence that the deuterium minority is heated by the rf power. The
35kW rf power threshold for ATp # 0 at 7.6 T may indicate that the deuterium
heating is nonlinear. This threshold suggests the possibility of ion Bernstein wave
decay where the quasimode is resonant with the deuterium first cyclotron harmonic.
The remaining power, not absorbed by this nonlinear mechanism on the deuterium,
is predicted to undergo nonlinear absorption on the hydrogen. Finally, any remaining
power not absorbed by either nonlinear process should be absorbed linearly by the
deuterium. The estimated theoretical power threshold for either nonlinear mechanism
is in good agreement with the measured threshold further supporting the possibility
that power absorption occurs through nonlinear mechanisms at 7.6 T.

The measured power threshold at 9.3 T is small (< 10kW) compared to the theoret-
ically estimated value of ~ 30kW. It is pointed out, especially in this field regime, that
the ion temperature behavior is influenced both by particle confinement improvements
(up to a factor of 3 from the Ohmic value) as well as rf power absorption. This com-
plicates the determination of the rf power absorption threshold. In this field regime,
absorption of rf power at the w/f2p = 2.5 layer is predicted to be the only central ab-
sorption mechanism at this field. However, the w/flp = 3 layer, located at the plasma
edge in front of the antenna, is estimated to cause complete power absorption by either
linear or nonlinear mechanisms. To explain the central deuterium heating, at least a
fraction of the rf power must penetrate to the plasma interior. Two mechanisms are
suggested which may explain this. Variation of the edge magnetic field due to the
toroidal field ripple may push the w/§)p = 3 layer behind the antenna center conductor
(away from the vicinity of the toroidal access port) allowing some rf power to propa-
gate into the central plasma from either end of the antenna. Also, ion Bernstein wave
parametric decay to a slightly downshifted (in frequency) ion Bernstein wave would
cause the w/Qlp = 3 layer to be shifted outside of the vacuum vessel for the decay wave.
It is pointed out that the plasma current is ~ 180 kA and is not enough in itself to
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significantly affect the location of the w/Qp = 3 layer; however, it contributes slightly
to pushing the layer further toward the plasma edge.

Power absorption is expected to occur nonlinearly on the hydrogen ion species at
the 5.1 T regime. The presence of a power threshold of ~25kW confirms that nonlinear
power absorption is operative. The theoretically estimated threshold is ~ 30kW, in
good agreement with the measured value.

6.2.2: Antenna Loading

The antenna loading measurements are compared with the results of an antenna-
plasma coupling model developed by M. Brambilla. This model, which is based entirely
upon linear plasma wave theory, predicts the observed dependence of the radiation
resistance on magnetic field over a small range of fields where the w/Qy = 2 layer
is positioned just behind the antenna. The large observed background loading, not
predicted by the model, may result from nonlinear wave processes occurring near the
antenna which could add additional loading. Near the field of maximum antenna
loading, the model predicts that a small ~ 15% fraction of power is coupled into
the ICRF fast wave. The observed density dependence of the loading is reproduced
well by the model provided the edge density is assumed to remain nearly constant or
decrease until the line-averaged density increases to i ~ 2.6 x 1020 m—3; then the
edge density must begin to increase beyond this density. Certain parametric processes
may occur near the antenna surface where the predicted electric field energy density is
large compared to the plasma thermal energy density. This large electric field and the
weak dependence of R, .4 on rf power support the possibility of nonlinear effects which
might produce loading not included in the Brambilla model.

6.2.3: lon Heating

The primary analyses of the ion heating centered around the density dependence
of the ion heating rate. Several density dependent mechanisms were considered which
together can account for the decrease in the ion heating rate with density. However, the
effect of edge collisional power absorption, which increases with density, was indicated
to be negligible. The nonlinear power threshold increases linearly with density; however,
this cannot explain the ion heating rate decrease with density at 7.6 T. Linear power
absorption on the deuterium should still be operative independent of density.

COg laser scattering measurements show that low—frequency edge turbulence in- -
creases with density. The turbulence can scatter the ion Bernstein wave power which
would broaden the radial power deposition profile. Scattering of the ion Bernstein
wave rays from edge turbulent fluctuations was modeled at 7.6 T using a Monte Carlo
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direct sampling simulation. It was found that in the absence of fluctuations, the power
deposition is peaked near the plasma center and approximately 80% of the injected rf
power reaches the plasma inside p/a < 0.5. A fluctuation amplitude of A, = 0.3 is
sufficient to reduce this power to ~ 20% and spread the power deposition profile across
the entire poloidal cross—section. Unfortunately, the absolute value of fie could not be
accurately determined from the experimental data. Nevertheless, using previous results
from earlier measurements of the fluctuation level from Alcator C, the scattering model
provided a way to calculate the power deposition profile. This profile was then used in
an energy and particle transport code.

The effect of ion energy confinement on the ion temperature behavior was also
analyzed. It was found that the Ohmic discharges at both the 7.6 T and 9.3 T regimes
exhibit an increasing anomalous ion thermal conduction relative to the Chang—Hinton
neoclassical prediction with increasing density. This increasing anomaly may be caused
by increased transport resulting from 7; modes. It was shown that the ion temperature
behavior at the 9.3 T regime can be accounted for by assuming that 60%P,¢ flows into
the hydrogen in a profile given by the scattering results, and that the value of the ion
thermal conduction remains nearly the same as the Ohmic value. The ion temperature
behavior at 7.6 T can potentially be explained by assuming that 60% P, is absorbed by
the hydrogen in a profile given by the scattering results. In addition, it is necessary to
assume that the ion thermal conduction increases by a factor of ~ 2 at low densities
and remains constant or decreases at high densities compared to the Ohmic value.
Uncertainties in the total absorbed rf power and in the fluctuation amplitude do not
qualitatively alter these results.

The difference in the behavior between the two field regimes was suggested to result
from the differing power deposition profiles in both regimes as well as the characteristics
of the 7; mode. At low densities, the power deposition profile is peaked near the plasma
center at 7.6 T. This may cause a peaking of the ion temperature profile, increasing the
value of 7;, and increasing the ion thermal transport. At higher densities, the power
deposition profile broadens. This may cause the value of 7; to remain unchanged or
slightly decrease, causing the ion thermal transport to remain constant or decrease
some. The power deposition profile at 9.3 T has a peak near the plasma edge at all
densities; within the plasma, the power deposition profile is peaked at low densities
and broad at high densities. The power deposition at the plasma edge may result in
a broader ion temperature profile at all densities, maintaining or even reducing the
value of 7;, which then causes the ion thermal conduction to remain nearly constant
or slightly decrease. There is no accurate ion temperature or density profile data to
support these claims; however, the effect of the rf power deposition profile on the
anomalous Ohmic ion thermal conduction suggests that the anomalous ion thermal
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conduction is determined by the ion temperature profile, a characteristic of the 7;
mode.

The results of the power balance analyses are significant since they suggest that
the ion heating behavior in this experiment is mainly a result of the plasma ion energy
confinement. The properties of the ion Bernstein wave coupling structure and the
wave characteristics do not seem to be strongly influential in affecting the ion heating
behavior. The results of this experiment suggest that for future ion heating schemes
on high density devices such as Alcator C (i.e., C-Mod and CIT), one must consider
the inherent ion energy confinement characteristics of the plasma when interpreting the
experimental results.

6.3: Suggestions for Future Work

Numerous suggestions can be drawn from this experiment regarding future ion
Bernstein wave experiments. For example, there is still much that can be learned
concerning high power ion Bernstein wave antenna-plasma coupling. It would be useful
to study the wave frequency spectrum near the antenna as a function of magnetic
field, plasma density, and rf power. This could confirm the presence of parametric
processes and establish their dependences on plasma parameters. Measurements of
plasma density, temperature, and rf electric field in the vicinity of the antenna would
also aid the study of antenna—plasma coupling.

Accurate measurements of the amplitude and radial profile of the low—frequency
edge turbulence is crucial for determining the accessibility of ion Bernstein wave power
to the plasma center. The ion Bernstein wave, due to its short wavelength, is very
susceptible to scattering from low—frequency edge density fluctuations. It was shown
earlier that a fluctuation amplitude of 71, = 0.3 is sufficient to reduce the power reaching
the plasma center by a factor of four in these experiments. Experimentally, the absolute
amplitude of 7i could not be determined and therefore it was not possible to estimate
quantitatively the power accessible to the plasma interior and its spatial distribution.
Knowledge of i, and its affect on wave power accessibility is important for deciding the
feasibility of plasma heating via the ion Bernstein wave in future high density, compact
devices.

Finally, future ion Bernstein wave experiments may benefit by combining rf power
injection with pellet injection. Fueling the Alcator C plasma by pellet injection has been
shown to reduce the initial Ohmic ion thermal conduction by a factor of 3-5, bringing
it to a value nearly equal to the Chang-Hinton neoclassical prediction. The ion heating
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rate from ion Bernstein wave power injection is shown to be greatly reduced at high
densities due to the large anomalous ion thermal conductivity. Pellet injection could
possibly reduce this large anomaly and may lead to a substantially higher ion heating
rate even at high densities when combined with ion Bernstein wave power injection.



