
MIT Open Access Articles

Unified Configuration Setting Access
in Configuration Management Systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Raab, Markus, Denner, Bernhard, Hanenberg, Stefan and Cito, J?rgen. 2020. "Unified
Configuration Setting Access in Configuration Management Systems."

As Published: https://doi.org/10.1145/3387904.3389257

Publisher: ACM|28th International Conference on Program Comprehension

Persistent URL: https://hdl.handle.net/1721.1/146219

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146219

Unified Configuration Setting Access in
Configuration Management Systems

Markus Raab
TU Wien

Vienna, Austria

Bernhard Denner
Thales

Vienna, Austria

Stefan Hahnenberg
University of Duisburg-Essen

Duisburg-Essen, Germany

Jürgen Cito
TU Wien, Austria

MIT CSAIL

Cambridge, MA, USA

ABSTRACT

The behavior of software is often governed by a large set of con-

figuration settings, distributed over several stacks in the software

system. These settings are often manifested as plain text files that

exhibit different formats and syntax. Configuration management

systems are introduced to manage the complexity of provision-

ing and distributing configuration in large scale software. Globally

patching configuration settings in these systems requires, however,

introducing text manipulation or external templating mechanisms,

that paradoxically lead to increased complexity and, eventually,

to misconfigurations. These issues manifest through crashes or

bugs that are often only discovered at runtime. We introduce a

framework called Elektra, which integrates a centralized config-

uration space into configuration management systems to avoid

syntax errors and avert the overriding of default values, to increase

developer productivity. Elektra enables mounting different con-

figuration files into a common, globally shared data structure to

abstract away from the intricate details of file formats and config-

uration syntax and introduce a unified way to specify and patch

configuration settings as key/value pairs. In this work, we integrate

Elektra in the configuration management tool Puppet. Additionally,

we present a user study with 14 developers showing that Elektra

enables significant productivity improvements over existing config-

uration management concepts. Our study participants performed

significantly faster using Elektra in solving three representative

scenarios that involve configuration manipulation, compared to

other general-purpose configuration manipulation methods.

ACM Reference Format:

Markus Raab, Bernhard Denner, Stefan Hahnenberg, and Jürgen Cito. 2020.

Unified Configuration Setting Access in Configuration Management Sys-

tems. In 28th International Conference on Program Comprehension (ICPC

’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3387904.3389257

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7958-8/20/05. . . $15.00
https://doi.org/10.1145/3387904.3389257

1 INTRODUCTION

Configuration settings can be seen as decisions in programs de-

ferred to later stages of the software development process. They

drive the run-time behavior of our programs. Values for these con-

figuration settings are, in most cases, manifested as plain text files

with vastly different formats and syntax. While several common

formats have emerged (e.g., YAML, JSON, XML), most applications

impose further restrictions on certain aspects of the configuration

file’s syntax (e.g., INI) [34]. Configuration management systems,

such as Puppet [17] or Chef [23], are introduced to manage the

complexity of provisioning and distributing configuration in large

scale software systems. They enable automation of software infras-

tructure, through definition of desired system properties in source

code. Manipulating configuration settings, against all intuition, is a

source of complexity in configuration management systems [40].

Challenges in Managing Configuration Settings

Globally patching configuration settings that reside in plain text

files requires introducing text manipulation or templating mecha-

nisms that lead to increased complexity. Additionally, the configu-

ration management system has no inherent knowledge of syntax

rules for different configuration file formats. Problems that are

introduced through illegal values for configuration settings cause

syntax rule violations that are only detected at a very late stage [39].

Manipulating only a subset of settings, i.e., partial configuration

editing, through text manipulation introduces further possibilities

for syntax errors [29]. These issues manifest through crashes or

bugs that are often only discovered at runtime [39].

Unified Configuration Setting Manipulation

To mitigate these challenges, we propose Elektra providing unified

configuration setting access. Elektra introduces a key/value abstrac-

tion that reads and writes configuration settings without requiring

the developer to perform lower-level file manipulations [7, 27]. We

extend the core programming language of configuration manage-

ment system Puppet with language constructs that enable partial

manipulation of configuration files through well-known key/value

assignments. The extension, called KDB, combines the flexibility

of general purpose configuration manipulation methods through

a unified interface for different formats, while still preserving val-

idation for specific syntax rules. Dealing with the intricacies of

different configuration file formats is relayed to a configuration

331

2020 IEEE/ACM 28th International Conference on Program Comprehension (ICPC)

library with a rich set of existing plugins. Our contribution is pro-

viding unified access of partial manipulation of configuration files

within the configuration management system.

User Study

To investigate the effectiveness of KDB, we conducted a user study

with 14 software developers working on three large configuration

management scenarios. We measure productivity (i.e., time it took

to finish the tasks) as a proxy for usability of the abstractions and

dealing with misconfigurations (similar to existing studies in soft-

ware engineering research [8, 13, 19, 30, 36]). Our baseline were two

general-purpose configuration manipulation abstractions (Augeas

and ERB), and two specific abstractions for particular configura-

tion file types (INI and HOST). The results show that our proposed

system enables significant productivity improvements compared to

the general-purpose methods and that the productivity differences

to the specific methods were inconclusive (i.e., they did not show a

significant difference either way).

2 BACKGROUND

2.1 Configuration Management Languages –
Puppet

Configuration management tools allow developers to define de-

sired system properties in order to configure computing resources

automatically. While there has been substantial theoretical work

on configuration management [3, 4, 12], many systems in the past

few years have been developed in industry, such as Puppet [17] or

Chef [23]. They provide abstractions for managing several kinds

of underlying computing resources, such as package dependencies,

permissions, and also configuration files – the focus of our study.

These systems are often modeled as domain specific languages

(DSL), that also encourage developers to build further abstractions.

Puppet is implemented as an embedded DSL in Ruby. Beside Pup-

pet specific language constructs, the Puppet DSL contains very com-

mon elements, such as variables and conditional statements [16].

In the following, we briefly describe the main language constructs

that are important to understand our proposed approach.

Resources are the main abstractionmechanism in Puppet. Each in-

dividual characteristic of a computer system is treated as a resource,

e.g. each single file, each package, user, directory but also parts

of files or settings of configuration files. Each resource is clearly

defined by its resource type, such as “file”, “package”, “user”, a

type-unique resource identifier, such as file or package name, and

a variable amount of properties, which define the desired resource

state. An example is shown in Listing 1, which includes two re-

source declarations. The first declaration uses the resource type

“file” with the unique resource ID /etc/resolv.conf and defines five

parameter. Therefore, this resource declaration describes a desired

state for the file /etc/resolv.conf with the specified properties. The

second resource declaration is of type “package” with the unique

resource ID “firefox”. This declaration instructs the Puppet agent

to ensure the package “firefox” is installed.

manage a single file

file { "/etc/resolv.conf":

ensure => "file",

owner => "root",

group => "root",

mode => "0644",

content => "nameserver 8.8.8.8"

}

install a package

package { "firefox":

ensure => "installed"

}

Listing 1: Resource declaration examples

Multiple resource declarations can be grouped by classes and

modules, which help to organize Puppet source code. An agent

running on the target system, called managed node, ensures all

defined resources are in the desired state, otherwise certain actions

will be initiated to enforce this state, e.g. installing dependencies,

creating user accounts or updating the content of files [15, 35].

Beside resource types and classes, the Puppets DSL also includes

the concept of functions. Functions have a unique name, can take

an arbitrary number of arguments and one return value as result.

In Puppet, they are often used for type checking, type conversions

and string manipulations.

2.2 Configuration File Manipulation

We briefly describe different existing, state-of-the-art methods that

facilitate manipulation of configuration files. The examples we

show are implemented as abstractions within the Puppet DSL, but

have similar implementations in other common configuration man-

agement systems, such as Chef.

2.2.1 Templating – ERB. Puppet has a built-in function, which

is quite useful for defining contents of files: “template()”. The

function enables rendering of strings based on ERB templates. ERB

(Embedded Ruby) is a special feature of Ruby to embed Ruby code

in text files. This embedded code is evaluated during template

parsing, which defines the result in a dynamic way. The function

“template()” takes a file name as a string argument, defining the

path to the used template file and returns the rendered template

result, which can be directly used by the “file” resource type, for

example. Listing 2 shows an example ERB template to define the

content of the UNIX resolver configuration file.

<% if @dns_search != '' %>

search <%= @dns_search %>

<% end %>

<% @dns_servers.each do |server| %>

nameserver <%= server %>

<% end %>

Listing 2: Example ERB template

The corresponding use of such a template within a “file” re-

source declaration is shown in Listing 3.

332

class dns($dns_search , $dns_servers) {

file { "/etc/resolv.conf":

ensure => "file",

content => template("listing_2.tmpl")

}

}

Listing 3: Example ERB template use

As one can see in Listing 2, Ruby code fragments are enclosed

by the special tags ’<%’ and ’%>’. Everything else is treated as nor-

mal text. Puppet allows us to use its local class variables (here

“$dns_search” and “$dns_servers”) within the template as Ruby

instance variables. Listing 2 demonstrates simple uses of conditions

(“if. . . ”) and loops (“each do. . . ”).

Defining content of configuration files by ERB templates is pow-

erful. It enables variable substitution, conditions, loops and much

more, as it is based on Ruby code execution for generating the

resulting file content. Since it is possible to define any form of text

content, the resulting output is not tied to any special format or

syntax. Therefore, the expressibility is very high. However, syntax

validation of special configuration formats is not in the scope of

this method. Therefore, it is quite easy for Puppet developers to

generate configuration files with an invalid syntax.

This form of content definition is primarily driven by the tem-

plate functions, which have to be used together with a Puppet

resource type to ‘transfer’ the result to the target configuration file.

As already said, the resource type “file” is often used for this pur-

pose. However, it is not possible to manage partial manipulations of

a file with this construct. Therefore, default values are not preserved

using this method, leading to potential security vulnerabilities.

2.2.2 Partial Configuration Setting Manipulation – Augeas. The

emergence of many different configuration file formats made auto-

mated modification of configuration files difficult. Augeas [18] is

a library that uses lenses [2] to manipulate configuration files. It

allows developers to retrieve and modify configuration values of

different configuration files, which adhere to supported formats, by

a standardized API.

Puppet has built-in support for the Augeas API, and can be used

with the “augeas” resource type. Listing 4 shows an example ap-

plication of this resource type, modifying the file /etc/puppet/pup-

pet.conf. This example sets the configuration option “server” of

section “main” to the value of the variable “${server}” and adds a

comment line directly before the “server” configuration option.

This method is one of the most advanced strategies for automatic

modification of configuration files. Modifications are done on a per-

configuration setting basis. Therefore, it allows the user to leave

default values untouched. Further, through the XQuery-like syntax

for referencing sections around a specific configuration setting,

it also facilitates modifications of surrounding regions, especially

comment lines within a configuration file.

augeas { "puppet -server" :

context => "/files/etc/puppet/puppet.conf/

main",

changes => [

"set server ${server}",

"set #comment[following -sibling\

:: server]\

[last()] 'central puppet server '"

]

}

Listing 4: Augeas example

2.2.3 Format Specific Abstractions – INI and HOST. A more spe-

cialized way for modifying configuration files are methods, that

take care of the concrete format and syntax of configuration files.

A prominent example of such a resource type is the “ini_setting”

type, defined by the module puppetlabs-inifile. This module allows

modifying single settings in configuration files respecting the INI-

file format.

ini_setting { "puppet -server":

ensure => 'present ',

path => "/etc/puppet/puppet.conf",

section => "main",

setting => "server",

value => "example.com"

}

Listing 5: “ini_setting” example

Listing 5 shows an example application of the “ini_setting”

resource type. This example will modify the value of the setting

“server” within the section “main”. If this configuration setting

does not exist in the defined file, the setting will be added. One

important thing to mention here is, that this resource type treats

each setting within an INI-based file as a single resource instance.

Therefore, it facilitates partial modifications of configuration files

in simple way, while ensuring the correct syntax of the file.

Besides the “ini_setting” resource type, Puppet has built-in

support for modifying important configuration files of UNIX-based

systems. The resource types “host”, “user” and “mailalias” are

examples here.

For instance, “host” manages entries in /etc/hosts database (used

in our study). Each of these resource types, respects the format of

its corresponding configuration files and treats each setting as a

single resource instance.

As we have seen, each of the described methods automatically

ensures the compliance of the underlying syntax of the configura-

tion file. Additionally, each method manages files partially, through

modifying dedicated entries or regions. Therefore, it it possible to

preserve default values. However, in terms of expressibility this

method is quite limited, as, for instance, none of these modules is

able to add comments to the corresponding settings.

3 UNIFIED ACCESS FOR
CONFIGURATION SETTINGS

We briefly introduced common ways to deal with configuration

files in configuration management systems. They range from flexi-

ble, general purpose methods, such as templating (ERB) or partial

manipulation of configuration files (Augeas) to very rigid, format

specific abstractions (INI and HOST).

333

We propose an approach that provides unified configuration

setting access by introducing a key/value abstraction into configu-

ration management systems that can deal with specifics of different

configuration file formats through modularization. It combines the

flexibility of general purpose methods through a unified interface

for different formats, while still preserving validation for specific

syntax rules.

INI HOST. . . .

Figure 1: Overview of a Unified Configuration Setting Access

approach facilitated through configuration language exten-

sion Elektra

3.1 Overview and Workflow

Figure 1 gives an overview of our approach and shows KDB, a

language extension for configuration management system DSLs,

that interfaces with a general purpose configuration library, called

Elektra.1 We briefly describe the workflow of our approach:

• The configuration space Elektra can be viewed as a central
interface using key/value abstractions that provides access

to all configuration setting values regardless of their specific

formats and allows for their manipulation. Applications can

use Elektra to manage configuration settings without ever

requiring the use of a configuration file. Also Administra-

tors can directly use Elektra, e.g., to debug the results of a

configuration management system run.

• The process of mounting is required to lift a particular con-
figuration file into Elektra. As soon as a file is mounted, users

can manipulate settings in Elektra and they are transitively

1https://www.libelektra.org/

manifested through partial manipulation in the file, preserv-

ing default settings. The bidirectional transformations from

and to configuration files are provided through models in

Elektra (i.e., plugins in the general purpose configuration

library). Mounting within the configuration management

system is only necessary if the application did not already

mount the configuration file during installation.

• We extend the existing core language of Puppet by two key-

words kdbkey and kdbmount that correspond to interac-

tions with Elektra.

Dealing with the intricacies of different configuration file for-

mats, including their validation, is now handled by a configuration

library with a rich set of existing plugins and modular system. Our

contribution is providing unified access of partial manipulation

of configuration files within the configuration management sys-

tem by extending its core language with a well-known key/value

abstraction.

To facilitate the definition of all required aspects of a key in

Elektra, our kdbkey construct, requires the following attributes:

• name: defines Elektra’s key and defaults to the resource’s

title.

• value: represents the value of a key.

• ensure: defines the existence of a key (i.e. present or absent).

• check: appends metadata to the key, which are enforced by

plugins in Elektra. For example, data types can be used to

restrict possible values.

The kdbmount construct requires the following attributes to

express a valid mount point in Elektra:

• name: defines Elektra’s key used for mounting and defaults

to the resource’s title.

• file: defines which configuration file is used for that mount

point.

• plugins: list of Elektra’s plugins (together with the plugin’s

configuration settings).

• ensure: defines if the mount point should exist or not.

Listing 6 shows a full example of how a value can be changed

within a space-separated INI file.

kdbmount { 'system/sw/myapp ':

ensure => 'present ',

file => '/etc/myapp/config.ini',

plugins => {

ini => { separator => ' '},

enum => {}

}

}

kdbkey { 'system/sw/myapp/key':

ensure => 'present ',

value => 'changed '

}

Listing 6: Example kdbmount and kdbkey resource declaration
with plugin configuration

334

3.2 Implementation

Our approach is designed to generalize beyond specificities of con-

crete systems. The overview figure shows two different implementa-

tion options: Puppet and Chef for configuration management tools,

as well as INI and HOSTS as different configuration file formats.

We chose to implement our initial prototype with Puppet (due to its

popularity). The result of this implementation is a Puppet extension

that we have published as open source software on GitHub, includ-

ing more detailed documentation on the aforementioned language

constructs (see Section 4.5).

Puppet directly uses the configuration space Elektra. Elektra pro-

vides key/value manipulation methods, but it does not implement a

key database in the traditional sense. Instead it directly writes into

different configuration files of the system. The key database can be

seen as virtual file system but with key/values instead of files.

The keyword kdbkey enables us to directly manipulate keys and

values within configuration files. Plugins in Elektra take care that

the structure of the configuration files are preserved.

The keyword kdbmount mounts a configuration file to the key

given as argument. After mounting, the whole content of the con-

figuration file resides in subkeys of the given key.

The implementation challenge of Elektra is to find a specification

language that systematically describes configuration access. The

simple-to-use kdbmount is the result of these efforts to find such a

specification language, implemented in Elektra [26]. Elektra pro-

vides a way to specify a mapping from every configuration file for-

mat to key/value pairs by assembling and configuring plugins [28].

Configuration management tools, but also other applications, then

use Elektra’s plugins for configuration access.

Elektra describes syntactical and semantical content of the files.

For some plugins, the specification is predefined. For example, the

hosts plugin automatically checks IPv4 and IPv6 addresses for va-

lidity. This is the case because the hosts plugin states which data

type it expects for which key/value pair. Separate operating-system-

dependent network validation plugins then actually enforce valid

configuration values.

4 EVALUATION

To evaluate whether the proposed technique has measurable bene-

fits for user’s productivity, we designed and executed a randomized

controlled trial that is described in detail in this section.

4.1 Research Question and Initial
Considerations

We want to answer the following research question:

RQ: Which approach of configuration file manipulation provides

the best results if compared in terms of usability and main-

tainability? Does the proposed solution have an advantage

over existing methods?

To properly design the user study, we refine this high level re-

search question by making it more precise and transform it into a

testable hypothesis. One indisputable difference between different

techniques is the needed time to fulfill a task. The use on devel-

opment time as a measurement for the benefit of a technique has

been applied in multiple experiments in the past (such as for the

benefit of a visualizations [6, 13], the benefit of a syntactical con-

struct [32] or the benefit of a programming language construct (see

for example [19, 36]).

Therefore, we formulate the following null hypothesis:

H0: There is no difference in completion time for a given mainte-

nance scenario using the approach KDB in comparison to

other general-purpose partial manipulation.

Currently, only two general-purpose partial manipulation methods

are available: Augeas and KDB. In practice, most manipulation

methods are specialized to a single configuration file format. It

would be unrealistic to claim that a general-purpose method can be

better than these specialized method. Nevertheless, we also added

these manipulation methods in the evaluation to see how these

tools compare.

Finally, we expect that different subjects differ widely with re-

spect to the time they require to solve a given scenario. As a con-

sequence, it is from our perspective desirable to test each subject

under all conditions. In such a so-called within-subject design the

absolute differences between solution times of different subjects

becomes negligible and only the differences within each subject

become relevant for the analysis.

4.2 Scenario Description

The whole experiment consists of three scenarios in two or three

variants. This section describes the scenarios in more detail.

4.2.1 Scenario 1: JSON Configuration for App calculator.
The goal of this scenario was to finish a Puppet module that con-

figures the fictional application “calculator”. This application

expects a configuration file in JSON format, with four settings in

total. The Puppet module for this application was already prede-

fined, whereas, only the configuration filemanagementwasmissing,

which had to be added by the participants. The main module class

“init.pp” already defined four parameters, one for each configura-

tion setting. This task had to be solved in two different variants:

• Variant ERB: Resource Type “file” and ERB Template: The

participants were asked to solve this task by using the re-

source type “file” only. The content of the configuration file

should be defined by an ERB template. The task description

contained an example of JSON-style configuration file.

• Variant KDB: Resource Types “kdbmount” and “kdbkey”:

Now the same task had to be solved using the resource

types “kdbmount” and “kdbkey” only. The “config.pp” al-

ready suggested a Elektra mount point for the configuration

file.

Scenario 2: Hosts File Manipulation. The goal of this scenario

was, to write Puppet code to manipulate a Hosts file. Participants

were asked to add two new entries and update two existing entries.

Each entry consists of an IP-address, a hostname and one alias

name. This scenario had to be solved in three different variants:

• Variant HOST: Resource Type “host”: This variant had to be

solved with the Puppet built-in resource type “host”, which

is specially designed to manipulate Hosts files.

335

• Treatment AUG: Resource Type “augeas”: The same task had

to be solved with the resource type “augeas” only. The task

description contained an example of how the Augeas Hosts

lens transforms a Hosts entry to its internal representation.

• Variant KDB: Resource Types “kdbmount” and “kdbkey”:

This variant for Scenario 2 had to be solved with the re-

source types “kdbmount” and “kdbkey” only. As for method

AUG, the task description contained an example of how the

Elektra hosts plugin transforms a Hosts entry to Elektra’s

internal representation of the configuration space.

Scenario 3: Samba Configuration File Manipulation. The aim

of this scenario was to manipulate the existing Samba configura-

tion file /etc/samba/smb.conf, an INI-style configuration file with

multiple sections. The participants were asked to modify three

settings in the main section “global” and to add two new share

sections, each with three settings. The Puppet module code was

already predefined and the participants had to extend the empty

file “config.pp” with Puppet code to manipulate the configuration

file in question. Again, this task had to be solved in three variants.

• Variant INI: Resource Type “ini_setting”:
We asked the participants to solve this task only with the

resource type “ini_setting”.

• Variant AUG: Resource Type “augeas”:
The same task had to be solved with the resource type

“augeas” and its built-in lens for the Samba configuration

file. A sample representation of Samba lens was added to the

task description.

• Variant KDB: Resource Types “kdbmount” and “kdbkey”:

This method required to solve this task using the resource

types “kdbmount” and “kdbkey”. The task description did

not say anything about the Elektra storage plugin that can

be used or how the internal representation may look like. It

was up to the participant to find this information.

4.3 Study Participants

Our experiment was conducted with 14 subjects who are master

students recruited from a computer science department. We asked

subjects about prior knowledge of the technologies and techniques

used in the study to get a better understanding of their skill level

in order to avoid introducing bias in the study. We aim to recruit

subjects with a variety of backgrounds in software development and

system administration. Three subjects had no experience, ten with

basic experience and one subject had good system administration

experience. None of them was a professional system administrator.

Four subjects stated, that they already knew Puppet and have done

minor experiments with it. The majority did not know Puppet

before this user study. One subject had also experience with another

CM-tool2). The majority of our participants (10 subjects) stated,

that they have good software development experience. 3 subjects

were professional software developers and one subject just had

basic programming experience. However, 8 subjects have never

used Ruby, 4 of them had minimal experience, and 2 use Ruby on a

regular basis. The ERB template system was never used before by

13 subjects. However, 4 subjects have used other template systems

2Slack CM: https://github.com/jeviolle/slack

before. Elektra was not known by 7 subjects, 3 subjects already

experimented with it and one was using it on a regular bases. The

experiment included 3 participants who are part of the Elektra’s

developer community.

Augeas was unknown by 12 subjects and only two subjects had

already experimented with it. However, XPath, a central concept

of Augeas, has been already used by 9 subjects, whereas 5 subjects

did not know XPath. In contrast to this, all subjects state that they

already used regular expressions once or on a regular basis. All

subjects already modified a configuration file by hand. From the

subjects, 11 have worked with JSON, 9 with INI-style files, 7 with

Hosts, and 4 with YAML.

4.4 Environment and Protocol

When designing a software experiment, it is important to consider

and try to control all influencing variables of this experiment. This

allows us to measure the effect of one explicitly changed variable

(the experiment factor) [37]. Therefore, the experiment environ-

ment was designed to control as many influencing variables as

possible:

• Same source editor for all participants: We used the Atom3

text editor in version 1.15.0 with Puppet syntax highlighting

and automatic syntax checking.

• A new system environment for each task method: Puppet

agent executions of earlier programming tasks do not have

any influence on later Puppet agent executions.

• Puppet language and resource type guide: A Puppet intro-

duction guide was written, including important language

concepts as well as a reference and examples of all resource

types used during the experiment. The content of this guide

was presented to all participants before the experiment was

started. In addition, it was allowed to use this guide as a

reference during the experiment. Therefore, each subject

had a printed version of this guide available.

• Same hardware for all experiments: The whole experiment
was conducted on equally equipped machines with the same

screen size and resolution. We used machines with an Intel

Core i5-6600 CPU at 3,30GHz with 16GB RAM connected

to monitor with a resolution of 1920 x 1080 and a diagonal

viewing size of 60,45 centimeters.

• Automatic time measurements and information recording:
The experiment environment was designed to record as

much information as possible. For each programming task,

the environment recorded the task duration time, as well as

additional information such as amount of script executions,

source code changes or test results.

• Upper time limit for each programming task: The experiment

environment tracked the time for each experiment. Once the

upper time limit of 75 minutes (=4500 seconds, determined

from pilot data) was reached, the experiment supervisor was

notified about this.

Before the experiment was started, all participants were intro-

duced into the Puppet language based on the introduction guide. As

already stated earlier, participants were allowed to use this guide

as a reference during the whole experiment. In addition to this

3https://atom.io/

336

guide, a task description paper was handed out to all subjects. After

the subjects were introduced to Puppet, the experimenter assigned

each subject to a group in round-robin fashion to ensure balanced

groups and started the experiment environment.

4.5 Study Reproducibility

To ensure reproducibility of our study, we created a replication

package containing the environment and setup in the form of a

Docker container [5]. Additionally, an anonymized form of the

measured data (Section 4.6) in combination with all analysis scripts

for the statistics tool R [10] can be found in an online appendix4.

We also published our implementation as an open source project5.

4.6 Measurements and Analysis

This section presents the measured results and subsequent analy-

sis. Section 4.6.1 shows all measured results and basic descriptive

statistics. Section 4.6.2 presents our analysis steps to determine

differences in significance between the used methods.

4.6.1 Descriptive Statistics. Table 1 shows the collected duration

times in seconds. Each row contains all measured times for one

subject. For example, subject 1 required 604 seconds for Scenario 2

with method HOST and 505 seconds with method KDB.

Based on this data, we computed descriptive statistics, shown in

Table 2. The first row contains the sum of all subjects for each task

and method. So all subjects together required 23317 seconds for

Scenario 1 with method ERB. The maximum, minimum, arithmetic

mean, median and standard deviation for each task and method

is shown in the next five rows. Based on this, we also calculated

the difference between the total task duration time between two

methods. For Scenario 1, this is done by calculating the difference

between method ERB and method KDB. For Scenarios 2 and 3, we

did the same for each method combination. The same calculation

was done for the arithmetic mean, which is shown in row number

eight. The last row contains the number of occurrences, where the

difference between two methods of one subject is less than zero.

For example, for Scenario 1 we can see, that 3 subjects required less

time to solve the task with method ERB than with method KDB.

A first glance of these calculations already gives us a good

overview of our experiment results. The majority of subjects (79%)

solved Scenario 1 faster, when they were using our proposed ap-

proach. A similar situation can be seen for Scenarios 2 and 3 be-

tweenmethod AUG - KDB and HOST/INI - AUG. Here, the situation

is evenmore clear: all subjects (100%) solved Scenarios 2 and 3, when

they were using method HOST or INI, than with method AUG. All

subjects required less time for Scenario 2, when using method KDB

compared to AUG. Only one subject was faster with method AUG

compared to KDB for solving Scenario 3. However, if we look in

Table 1, we can see, that subject 14 required only 2 seconds more

to solve Scenario 3 with method KDB compared to method AUG.

To visualize these first tendencies of duration times between

each method, we have created box plots for each scenario. Figure 2

shows the box plot for Scenario 1.

The duration in seconds is shown on the X-axis, whereas on

the Y-axis we see the different treatment levels (variants). The box

4Omitted for double blind review - hosted on Zenodo
5http://puppet-userstudy-results.libelektra.org

●

ERB

KDB

1000 2000 3000 4000

duration (sec)

Figure 2: Box plot for Scenario 1

represents the 25%, the 50% (also know as median) and 75%-quantile.

This means, half of our duration times is within the box and the

other half is outside the box. The marks next to the box, called

whiskers, represent the 10% and 90%-quantile [37]. Small circles

outside the whiskers show outliers.

The box plot for Scenario 2 (Figure 3) strengthens the assumption,

that subjects were usually faster when they used Elektra.

●HOST

AUG

KDB

1000 2000 3000 4000

Task 2.1

duration (sec)

●INI

AUG

KDB

1000 2000 3000 4000

Task 2.2

duration (sec)

● ●

●

H/I

AUG

KDB

1000 2000 3000 4000

Task 2.1 + 2.2

duration (sec)

Figure 3: Box plot for Scenario 2

The box plot for Scenarios 2 and 3 (Figure 3) shows even greater

differences between the used methods. The box-plots for method

AUG are particularly interesting. In both Scenarios 2 and 3, there

is no overlap with the other two methods. It even seems that the

maximum time limit of 4500 seconds has cut-off at the AUG boxes,

as the 75% and the 90%-quantile are both 4500 seconds. This is a

result of the fact, that 6 subjects (43%) hit the time limit for Scenario

2 with method AUG and 4 subjects (29%) for Scenario 3. 3 subjects

hit the time limit for both scenarios.

This great difference is not seen between method KDB and

HOST/INI, whereas the for Scenario 2 we can assume that our

subjects were usually faster with method HOST. The situation for

Scenario 3 seems to be slightly different. The majority was usually

faster when using method INI, however some subjects required less

time with method KDB, since the 10% and 25%-quantile of method

KDB are both smaller than those of method INI.

4.6.2 Testing for Significant Differences. A classic test method for

intra-subject experiments is the paired T-test, which tests if the

means of two treatment levels of one subject are not significantly

different [37]. However, this statistical test has the precondition,

that the differences between the treatment levels for each subject

should be normally distributed [20]. Testing a distribution for nor-

mality can be performed by the Shapiro-Wilk test [11, 31]. An

337

subject
Scenario 1 Scenario 2 Scenario 3

ERB KDB HOST AUG KDB INI AUG KDB

1 1283 557 604 3962 505 710 3276 406

2 3397 948 1456 4500 4500 1557 4500 1750

3 2269 4382 728 4500 2838 953 4215 1703

4 3507 1561 828 3173 1881 1361 3786 1522

5 513 609 191 2114 662 476 1547 384

6 1202 494 298 2458 607 733 1555 410

7 994 844 275 3870 601 600 1483 385

8 1783 350 366 4500 537 394 4500 331

9 658 937 389 2610 800 505 4500 649

10 1789 1130 347 4500 1428 348 2312 1397

11 2371 1188 1334 1978 691 685 1915 1151

12 1599 1247 643 4500 2750 838 4500 1429

13 717 385 287 4281 1253 440 1157 309

14 1235 426 245 4500 2226 385 895 897

Duration values in seconds

Table 1: Experiment results

function
Scenario 1 Scenario 2 Scenario 3

ERB KDB HOST AUG KDB INI AUG KDB

Sum 23317 15058 7991 51446 21279 9985 40141 12723

max 3507 4382 1456 4500 4500 1557 4500 1750

min 513 350 191 1978 505 348 895 309

arith. mean 1665.5 1075.57 570.79 3674.71 1519.93 713.21 2867.21 908.79

median 1441 890.5 377.5 4121.5 1026.5 642.5 2794 773

std. dev. 941.56 1021.02 400.11 990.54 1191.49 365.42 1438.54 561.22

Δ Sum 8259

HOST - AUG: -43455 INI - AUG: -30156

HOST - KDB: -13288 INI - KDB: -2738

AUG - KDB: 30167 AUG - KDB: 27418

mean diff. 590

HOST - AUG: -3104 INI - AUG: -2154

HOST - KDB: -949 INI - KDB: -196

AUG - KDB: 2155 AUG - KDB: 1958

#(diff. < 0) 3

HOST - AUG: 14 INI - AUG: 14

HOST - KDB: 12 INI - KDB: 8

AUG - KDB: 0 AUG - KDB: 1

Table 2: Descriptive Statistics

alternative to the paired T-test is the Wilcoxon signed rank test,

which also can be used, if the differences of our samples are not

normally distributed [20, 21, 37]. However, Prechtelt [25] mentions

that testing for a normal distribution is often a dangerous thing. A

statistical test is most meaningful, if the null hypothesis is rejected,

i.e., the tested sample is not normally distributed. Furthermore,

such tests are rather sensitive, if the sample is small [25].

As a result of this, we have decided to perform the Shapiro-Wilk

test to check for a normally distributed sample. Regardless of its

result, we performed both hypothesis tests, the paired T-test and

the Wilcoxon test, in order to see if the results of both tests largely

differ. However, since both results were comparable, we only report

the outcome of the Wilcoxon test.

Hypothesis Theorem 1:Null hypothesisH0 of theWilcoxon signed

rank test: the median difference of the paired samples is zero. Al-

ternative hypothesis: the difference is not zero [21].

Hypothesis Theorem 2: Null hypothesis H0 of the Shapiro-Wilk

normal distribution test: the tested sample is normal distributed.

Alternative hypothesis: it is not [11].

The null hypothesis for the Wilcoxon signed rank test can be

expressed as: the required effort to solve the scenario with method

X is the same as for method Y.

Based on the null hypothesis/alternative hypothesis from our

statistical tests, we can make decisions on a certain significant level

α . We use a significance level of α = 0.05 for the analysis.
Table 3 shows the calculated p-values for each test and each

method grouping. The null hypothesis is rejected if the calculated

338

Scenario Methods Wilcoxon test H0 rejected Faster

S1 ERB - KDB 0.02 yes† KDB

S2 HOST - AUG 6 × 10−6 yes HOST

S2 HOST - KDB 0.005 yes HOST

S2 AUG - KDB 4 × 10−4 yes KDB

S3 INI - AUG 3 × 10−5 yes INI

S3 INI - KDB 0.7 no Inconclusive

S3 AUG - KDB 3 × 10−4 yes KDB
† Result of Wilcoxon test used, since test for normality was rejected. How-

ever, the result of the paired T-test is very close to our chosen significance

level

Table 3: Hypothesis test results

p-value is less than the significance level α = 0.05. If this is the case,
the difference of the compared methods is statistically significant,

i.e., the probability of the alpha error is less than 5% (based on our

chosen value for α). If we cannot reject the null hypothesis, the
probability of the alpha error is greater than 5%. The decisions to

reject or accept H0 is based on the Wilcoxon signed-rank test, as

we had to reject the null hypothesis for the normality test in all

cases.

As a result from these tests, we are able to conclude, that there

are, with exception of two cases, always significant differences

between the Puppet file manipulation methods used during this

user study. We highlight these findings with an additional column

(“Faster") that indicates which of the approaches is significantly

faster.

From the box plot for Scenario 1 (Figure 2) we can assume, that

our subjects usually were faster when they used method KDB to

solve this task. The hypothesis test underpins this assumption,

as we can also reject the null hypothesis based on the Wilcoxon

signed-rank test.

The box plots for Scenarios 2 and 3 show that there are large

differences between the times spent to solve these scenarios when

subjects used method AUG or the specialized methods HOST or

INI. The statistical hypothesis tests clearly underpinned this initial

observation. A similar situation, however not that dramatically, is

seen between the methods AUG and KDB. Also for this case we

can conclude that the difference between these two methods is

significant. Therefore, our subjects had to spend much more time

to solve Scenarios 2 and 3 when they were using method AUG in

contrast to the other two methods.

The remaining method combination for Scenarios 2 and 3 . Based

on the Wilcoxon test we can conclude, that for Scenario 2 the

difference between method HOST and KDB is significant. Thus,

our subjects required more time to solve Scenario 2 when they

were using method KDB. The same is not true for Scenario 3. Here

we can see, that our statistical hypothesis test does not reject the

null hypothesis. This means, that there is no significant difference

between these two methods. However, directly concluding that the

opposite is true and both methods are equal would be a wrong

and dangerous conclusion. A statistical hypothesis test gives us a

clear statement, if the null hypothesis is rejected [25]. From the

box plot in Figure 3 we already can see this behaviour. Usually

our subjects required more time to solve Scenario 3 with method

KDB in contrast to method INI. However, there are cases where

subjects were faster with method KDB. Also, the fastest time to

solve Scenario 3 was achieved with method KDB. This makes the

result of this combination inconclusive. It seems that there are more

factors involved in this situation, which require more investigation.

4.7 Threats to Validity

While we carefully considered our experiment design to reduce

threats to validity as far as possible, there are still a number of

limitations that need to be discussed.

4.7.1 External Validity. To have general conclusions, it is essen-

tial that the approach can be generalized to other configuration

management system. To address this issue we implemented further

prototypes of our proposed approach for Chef and Ansible. The

prototypes showed that setting key/values within these configu-

ration management systems would work similarity. Therefore, we

assume that user studies conducted with the other configuration

management systems would lead to similar results.

An important matter is whether the scenarios are representative.

In the study design, we particularly focused on realistic tasks. We

used different types of applications and configuration file formats

for exemplary scenarios.

Although rare, some configuration files are not only data but

may be mixed with scripts. While such configuration files also can

be transformed to key/values by executing the script, manipulating

configuration settings within such configuration files may interfere

with the present code. We exclude such configuration files with

scripts from our claims.

Other configuration management systems work fundamentally

different in many aspects. When it comes to configuration file

manipulation, however, they use similar methods, like Augeas. So

we think that our results are generalizable to other configuration

management systems which also include Augeas.

4.7.2 Internal Validity. Documentation handed to the participants

influences the subjects’ performance. To mitigate this issue, we only

gave essential documentation of similar length for each method.

Within-subject design easily produces learning outcomes that

influence succeeding tasks. We addressed this problem by randomly

assigning the methods within the scenarios.

Helping participants might influence time in an uncontrolled

way. Thus, we did not provide any help while subjects worked on

the scenarios. Participants, however, might get frustrated if they

cannot finish tasks. Thus we provided them with the solution after

they reached the timeout of 4500 seconds.

Different environments change outcomes in different ways. Next

to a controlled lab environment, we also fixed the used editor and

the window layout.

The completion of a task was automated by tying it to success

of a unit test. While the unit tests were written with great care, it is

possible that suboptimal solutions were still accepted. Furthermore,

there is a danger that participants used prohibited methods. We

addressed these issues by manual inspection of samples.

4.7.3 Construct Validity. Users of configuration management sys-

tems might use a convenience layer and might not directly use

a generic method as proposed by Augeas (method AUG) or our

approach (method KDB). From our experience, we rarely see this

339

happen. For example, Augeasproviders6 lists only 17 such modules

compared to over 200 Augeas lenses. Thus we claim that our time

measurement, where we directly used generic methods is realistic.

5 DISCUSSION

The results of this user study showed, that there are significant pro-

ductivity differences between the compared Puppet configuration

file manipulation methods.

Key/Value abstractions vs Templating and Partial Manip-

ulation. The experiment results for Scenario 1 indicated, that the

proposed solution has a significant impact on development pro-

ductivity and therefore, helps to reduce the required development

time. At least this result is valid for more complex configuration

file formats, such as the used JSON format. Subjects often reported,

that they have struggled with syntactical issues while they were

implementing the ERB template for Task 1 using method ERB.

The user study also showed, that method AUG is difficult to use.

On average subjects required more than 6 times longer to complete

Scenario 2 with method AUG compared to method HOST and more

the 2 times longer compared to method KDB. This is a result of the

complexity of the resource type “augeas”. Users have to be aware

of its XPath like notion of specifying key names, the specific trans-

formations to its internal representation of the configuration values

and specific behaviour of the used lens. Especially new Puppet

users require a lot of time to use this method effectively.

Usability in Specific Interfaces vs Flexibility in General-

ized Interfaces. Scenarios 2 and 3 were designed to compare four

different partial file manipulation methods. Two very specific meth-

ods, HOST and INI and two general methods, KDB and AUG. Our

expectation was that the specific methods would require a shorter

time to complete the tasks, as both resource type APIs are adopted

to their underlying configuration file format. The resource type

“host” of method HOST has three main elements that reflect the

elements of a Hosts entry: “name”, “ip” and “host_aliases”. There-

fore, it is very clear to a user, how to write the resource declaration

to manage one particular Hosts entry with given values. The more

general methods are at a disadvantage here, as users have to figure

out which keys have to be manipulated.

The situation for method INI is similar.

The resource type “ini_setting” has four main attributes: “path”

to specify the target configuration file, “section”, “setting” and

“value”. This makes it also very clear to a Puppet user how to write

a resource declaration to manipulate a specific setting within a

defined INI configuration file.

Our expectations were confirmed by the results of the user study.

Subjects usually required less time to implement Scenarios 2 and

3 when they used a format specific method. The measured time

differences between method HOST and the methods KDB and AUG

are significant. Therefore, we can conclude that Puppet users will

be most productive when they use the resource type “host” to

manipulate Hosts entries.

The measured difference between method INI and KDB shows

a similar trend. However, this difference is not significant. In fact,

6http://augeasproviders.com/providers/

some subjects (43%) required less time using method KDB compared

to method INI.

6 RELATEDWORK

Other configuration libraries, such as Apache Commons Configu-

ration [9, 24], differ from our chosen approach by not being intro-

spectable via configuration management tools. Thus they do not

provide a key/value interface for configuration and specifications.

We are not aware of any existing system (both in academia and

industry) that has attempted to introduce unified access to a variety

of configuration files by a modular specification language. We thus

give an overview of related approaches to reduce misconfigurations.

Xu et al. [41] surveyed approaches to reduce misconfiguration.

Nagaraja et al. [22] tries to find misconfiguration but avoids a

completely duplicated production environment.

ConfErr [14] tries to inject misconfiguration into applications.

However, because it is not guided by any specifications, it has little

chances in actually finding misconfigurations. Spex [40] improved

this idea and guides the process of finding misconfiguration by

source code analysis. Spex complements our approach as it is used

for construction of validation rules.

AutoBash [33] and ConfAid [1] require availability of predicates

testing the application on the productive system.

Xu et al. [38] argue that configuration settings must be reduced

in the first place. We agree with this notion and see it as necessary

step for sustained reduction of misconfiguration.

Zhang et al.[42] try to detect problematic error messages.

7 CONCLUSION

Existing methods for configuration file manipulation in config-

uration management systems suffer from a variety of problems.

Format-specific methods of managing configurations use different

abstractions for every format and have limited expressibility, while

general purpose methods of editing configuration lead to hampered

productivity due to the higher likelihood of introducing errors.

We proposed an approach that unifies the best of both worlds

by extending the core language of configuration management sys-

tems with language constructs that enable partial manipulation

of configuration files through well-known key/value abstractions.

The newly introduced language constructs provide unified con-

figuration setting access as a general-purpose method, while still

providing validation and preservation of default settings.

We conducted a user study showing that developers using our

approach are significantly faster in common configuration manage-

ment scenarios compared to other general-purpose configuration

manipulation methods (ERB Templates and Augeas). Specialized

manipulation methods, such as “HOST” or “INI” not surprisingly

have an advantage in absolute task times to provide a solution to

the scenario. However, statistical testing shows, for instance, that

the results of comparing our approach with “INI” is inconclusive,

i.e., it does not show significant differences in productivity.

ACKNOWLEDGEMENT

The last author was funded by the Swiss National Science Foun-

dation (SNSF) under project Automated Synthesis and Repair of

Infrastructure Code (no. 178036).

340

REFERENCES
[1] Mona Attariyan and Jason Flinn. 2010. Automating Configuration Troubleshoot-

ing with Dynamic Information Flow Analysis. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (OSDI’10). USENIX
Association, Berkeley, CA, USA, 1–11.

[2] Aaron Bohannon, J Nathan Foster, Benjamin C Pierce, Alexandre Pilkiewicz,
and Alan Schmitt. 2008. Boomerang: resourceful lenses for string data. In ACM
SIGPLAN Notices, Vol. 43. ACM, 407–419.

[3] Mark Burgess. 1995. CFEngine: a site configuration engine. In The USENIX
Association, Computing Systems, Vol. 8.

[4] Mark Burgess. 2003. On the theory of system administration. Science of Computer
Programming 49, 1âĂŞ3 (2003), 1 – 46. https://doi.org/10.1016/j.scico.2003.08.001

[5] Jürgen Cito, Vincenzo Ferme, and Harald C Gall. 2016. Using Docker contain-
ers to improve reproducibility in software and web engineering research. In
International Conference on Web Engineering. Springer, 609–612.

[6] Jürgen Cito, Philipp Leitner, Martin Rinard, and Harald C. Gall. 2019. Interactive
production performance feedback in the IDE. In Proceedings of the 41st Interna-
tional Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May
25-31, 2019. 971–981. https://doi.org/10.1109/ICSE.2019.00102

[7] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.
In ACM SIGOPS operating systems review, Vol. 41. ACM, 205–220.

[8] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik. 2014.
How Do API Documentation and Static Typing Affect API Usability?. In Proceed-
ings of the 36th International Conference on Software Engineering (ICSE). ACM,
632–642.

[9] Apache Software Foundation. [n.d.]. https://commons.apache.org/configuration/.
Accessed February 2017.

[10] The R Foundation. 2017. R: The R Project for Statistical Computation. https:
//www.r-project.org/

[11] Asghar Ghasemi and Saleh Zahediasl. 2012. Normality Tests for Statistical
Analysis: A Guide for Non-Statisticians. International Journal of Endocrinology
and Metabolism 10, 2 (2012), 486âĂŞ489. https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3693611/

[12] John A Hewson, Paul Anderson, and Andrew D Gordon. 2012. A Declarative
Approach to Automated Configuration.. In LISA, Vol. 12. 51–66.

[13] Niklas Hollmann and Stefan Hanenberg. 2017. An Empirical Study on the Read-
ability of Regular Expressions: Textual Versus Graphical. In IEEE Working Confer-
ence on Software Visualization, VISSOFT 2017, Shanghai, China, September 18-19,
2017. 74––84. https://doi.org/10.1109/VISSOFT.2017.27

[14] Lorenzo Keller, Prasang Upadhyaya, and George Candea. 2008. ConfErr: A tool
for assessing resilience to human configuration errors. In Dependable Systems
and Networks With FTCS and DCC, 2008. IEEE, 157–166.

[15] Spencer Krum, William Van Hevelingen, Ben Kero, James Turnbull, and Jeffrey
McCune. 2013. Pro Puppet (second edition ed.). Apress.

[16] Puppet Labs. 2016. Puppet 4.8 reference manual âĂŤ Documentation âĂŤ Puppet.
https://docs.puppet.com/puppet/4.8/reference/index.html

[17] James Loope. 2011. Managing Infrastructure with Puppet: Configuration Manage-
ment at Scale. " O’Reilly Media, Inc.".

[18] David Lutterkort. 2008. AUGEAS - a configuration API. In Proceedings of
the Linux Symposium, Vol. 2. 47–56. http://www.landley.net/kdocs/ols/2008/
ols2008v2-pages-47-56.pdf

[19] Clemens Mayer, Stefan Hanenberg, Romain Robbes, Eric Tanter, and Andreas
Stefik. 2012. An empirical study of the influence of static type systems on the
usability of undocumented software. In Proceedings of the 27th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25,
2012. 683––702. https://doi.org/10.1145/2384616.2384666

[20] John McDonald. 2015. Paired T-Test, Handbook of Biological Statistics. (7 2015).
http://www.biostathandbook.com/pairedttest.html

[21] John McDonald. 2015. Wilcoxon Signed-Rank Test, Handbook of Biological
Statistics. (7 2015). http://www.biostathandbook.com/wilcoxonsignedrank.html

[22] Kiran Nagaraja, Fábio Oliveira, Ricardo Bianchini, Richard P. Martin, and Thu D.
Nguyen. 2004. Understanding and Dealing with Operator Mistakes in Internet
Services.. In In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI’04), Vol. 4. 61–76.

[23] Stephen Nelson-Smith. 2013. Test-Driven Infrastructure with Chef: Bring Behavior-
Driven Development to Infrastructure as Code. " O’Reilly Media, Inc.".

[24] Milan Nosál and Jaroslav Porubän. 2012. Supporting multiple configuration
sources using abstraction. Open Computer Science 2, 3 (2012), 283–299.

[25] Prechelt, Lutz. 2000. Kontrollierte Experimente in der Softwaretechnik: Potential
und Methodik. Springer.

[26] Markus Raab. 2016. Elektra: universal framework to access configuration
parameters. The Journal of Open Source Software 1, 8 (dec 2016). https:
//doi.org/10.21105/joss.00044

[27] Markus Raab. 2016. Improving System Integration Using a Modular Configura-
tion Specification Language. In Companion Proceedings of the 15th International
Conference on Modularity (MODULARITY Companion 2016). ACM, New York, NY,
USA, 152–157. https://doi.org/10.1145/2892664.2892691

[28] Markus Raab. 2016. Improving System Integration Using a Modular Configura-
tion Specification Language. In Companion Proceedings of the 15th International
Conference on Modularity (MODULARITY Companion 2016). ACM, New York, NY,
USA, 152–157. https://doi.org/10.1145/2892664.2892691

[29] Markus Raab and Gergö Barany. 2017. Challenges in Validating FLOSS Configura-
tion. Springer International Publishing, Cham, 101–114. https://doi.org/10.1007/
978-3-319-57735-7_11

[30] Guido Salvaneschi, Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini.
2017. On the Positive Effect of Reactive Programming on Software Comprehen-
sion: An Empirical Study. IEEE Transactions on Software Engineering (TSE) (2017).

[31] S. S. Shapiro and M. B. Wilk. 1965. An Analysis of Variance Test for Normality
(Complete Samples). Biometrika 52, 3/4 (1965), 591–611.

[32] Samuel Spiza and Stefan Hanenberg. 2014. Type names without static type
checking already improve the usability of APIs (as long as the type names
are correct): an empirical study. In 13th International Conference on Modular-
ity, MODULARITY ’14, Lugano, Switzerland, April 22-26, 2014. 99––108. https:
//doi.org/10.1145/2577080.2577098

[33] Ya-Yunn Su, Mona Attariyan, and Jason Flinn. 2007. AutoBash: Improving Config-
uration Management with Operating System Causality Analysis. (2007), 237–250.
https://doi.org/10.1145/1294261.1294284

[34] Blazej Swikecicki and Leszek Borzemski. 2018. How Is Server Software Configured?
Examining the Structure of Configuration Files. Springer International Publishing,
217–229. https://doi.org/10.1007/978-3-319-67220-5_20

[35] James Turnbull. 2007. Pulling Strings with Puppet. Apress. https://doi.org/10.
1007/978-1-4302-0622-4

[36] Phillip Merlin Uesbeck, Andreas Stefik, Stefan Hanenberg, Jan Pedersen, and
Patrick Daleiden. 2016. An empirical study on the impact of C++ lambdas and
programmer experience. In Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016. 760––771.
https://doi.org/10.1145/2884781.2884849

[37] Claes Wohlin, Per Runeson, Martin HÃűst, Magnus C. Ohlsson, BjÃűrn Reg-
nell, and Anders WesslÃľn. 2000. Experimentation in Sortware Engineering: An
Introduction. Kluwer Academic Publishers.

[38] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. 2015. Hey, You Have Given Me Too Many Knobs! Un-
derstanding and Dealing with Over-designed Configuration in System Soft-
ware. In Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 307–319. https:
//doi.org/10.1145/2786805.2786852

[39] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early Detection of Configuration Errors to Reduce
Failure Damage. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16). Savannah, GA, USA.

[40] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do not blame users for miscon-
figurations. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 244–259.

[41] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling Con-
figuration Errors: A Survey. ACM Comput. Surv. 47, 4 (July 2015), 70:1–70:41.
https://doi.org/10.1145/2791577

[42] Sai Zhang and Michael D. Ernst. 2015. Proactive Detection of Inadequate Diag-
nostic Messages for Software Configuration Errors. In Proceedings of the 2015
International Symposium on Software Testing and Analysis (ISSTA 2015). ACM,
New York, NY, USA, 12–23. https://doi.org/10.1145/2771783.2771817

341

