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ABSTRACT

Modern theories of critical phenomena have been developed to a very high degree of
sophistication. However, the application of these methods to the study of phase transitions in
real materials, rather than model systems, is still generally conducted on a phenomenological
level. Unfortunately, there are a number of issues that cannot be resolved on this basis.

Progress in the tractability and accuracy of ab initio total energy methods has made
possible the ‘ab initio statistical mechanical’ approach to structural phase transitions which is
formulated in this thesis. In this approach, a realistic microscopic mode! for the material is
developed where the parameters, rather than being deduced from experiment, are obtained
directly from ab initio total energy calculations. The model Hamiltonian is constructed so that
the free energy functional appearing in the statistical mechanical theory can be straightforwardly
derived. Once the problem is cast in this form, techniques such as momentum space
renormalization group can be applied to obtain information about the transition temperature and
critical properties.

The 670K rocksalt-Thombohedral structural phase transition in the IV-VI narrow gap
semiconductor GeTe is chosen as the prototype for the implementation of this approach. First,
the use of b initio pseudopotential total energy calculations to study the structural properties of
GeTe, as well as the the other group IV tellurides SnTe and PbTe, is discussed in detail.
Methodological issues such as the use of fully relativistic pseudopotentials and convergence in
various calculational parameters are examined. The calculated lattice constants, bulk moduli and
cohesive energies of the high-temperature rocksalt form are obtained. The character of the
bonding in these materials is investigated through the examination of band structures and
valence charge densities, and the effects of the rhombohedral distortion corresponding to the
low temperature phase are studied. Calculated structural properties are seen to compare
favorably with available experimental data, showing that the method provides an accurate
description.

The results of these total energy calculations form the foundation for an ab initio statistical
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mechanics study of GeTe. Starting from an anharmonic lattice Hamiltonian, a model
Hamiltonian which includes coupling of the order parameter to long-wavelength strain is
constructed. The parameters appearing in the model are fitted to the calculated total energies of
a set of appropriately chosen crystal configurations. A Hubbard-Stratonovich transformation
yields an n=3 model with cubic anisotropy and strain coupling. This is analyzed using a
momentum space renormalization group approach. Values for the transition temperature and
critical properties are obtained which are seen to compare favorably with available experiments,
and insight is gained into the microscopic origin of the behavior at the transition. This provides
an encouraging prospect for future ab initio statistical mechanical studies of the finite
temperature properties of solids.

Thesis Supervisor: Dr. J.D.Joannopouios
Title: Professor of Physics
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L INTRODUCTION

The central object in equilibrium statistical mechanics, the partition function, is in principle
obtained by summing over the microscopic configurations of a system with weights obtained
from the energy of the configuration. For a real material, both the energy calculation and the
summation can be very difficult, and the need for such a direct construction of the partition
function is circumvented by approaches using simplified Hamiltonians, such as the Ising
model, or by using Landau-Ginzburg-Wilson free energy functionals as a starting point. In
either case, there appear a few parameters which for applications to real systems are determined
phenomenologically, without explicit connection to the microscopic physics of the system.
However, even when a reasonably microscopic model Hamiltonian could be found, the
accuracy to which the configuration energies need to be known was, before recent
developments, beyond the scope of the available calculational techniques and computing
capabilities.

In the last few years, the understanding of the structural properties of real materials has
improved considerably as a result of the development of ab-initio total energy techniques which
rely on density functional theory. The rest of this introduction will be devoted to a brief
discussion of these techniques, followed by a description of the basic concepts of structural
phase transitions, the current state of the application of modermn statistical mechanics techniques
to these systems, and finally, an overview of the research in this thesis, in which we formulate
a synthesis between a microscopic chemical understanding of the solid obtained from ab-initio
methods and the analysis of the transition through modern techniques of critical phenomena,

and discuss its realization for a particular case.



(A) AB-INITIO CALCULATIONS OF THE STRUCTURAL PROPERTIES OF SOLID3

A crystal is a collection of electrons in a field generated by a periodic array of atomic nuclei
(point charges +Ze). The calculation of the properties of a crystal is a complicated
quantum-mechanical many-body problem of which a complete solution is impossible.
However, if we are willing to settle for finding the total energy and electronic charge density of
the ground state (with specified ionic positions), the problem can be solved, at least
approximately, and the resulting information is directly useful in extracting predictions about
the measurable properties of solids.

The theoretical framework of these calculations comes in two parts. The complicated
many-body nature arising from the electron- electron interactions is reduced to an equivalent
one-body problem through density functional theory (DFT)!2. Also, the problems of dealing
with a strong electron-nuclei interaction are eliminated to a large extent by explicitly eliminating
the low lying electronic 'core' states, which do not contribute to the solid-state properties, from
the problem by using the pseudopotential approximation3. As we shall see, both components
of this approach preserve the eb initio nature of the results in that stiil no input is necessary
beyond the positions and charges of the nuclei.

The central result of density functional theory is the Hohenberg-Kohn thesrem: the total
ground state energy of an interacting electron system in an external potential v(r) can be
expressed as a universai functional of the charge density p(r). 1t is usual to decompose the
functional as follows:

Elp(0)] = Jar vinp(o) + 2 far pop(eier! + Gloeo)
where the third term contains the quantum-mechanical kinetic energy and the exchange and
correlation energies of the interacting electrons.

The proof of this theorem is based on the quantum-mechanical variational principle, and
thus has the additional feature that E[p(r)] is a functional which attains its minimum for the

‘correct’ p(r} corresponding to the given v(r). Thus an equation relating v(r) and p(r) can be
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obtained by setting 8E/Sp to zero, subject to the constraint that N=[drp(r). By far the most
convenient represention of p(r), which has the added benefit of treating the kinetic energy
quantum-mechanically, is

P(x) = Ty, ¥V, (1)

where the y, (r) are the wavefunctions of the non-interacting electron gas system which has the
charge density p(r) in its ground state. Then the variation OE/dy_ gives rise to the following

system of Schrodinger-like equations, called the Kohn-Sham equations®:

[(12)V2 + v, (), (®) = v, (1)

which is precisely that of a system of non-interacting electrons in an effective one body

potential given by

Verr(D) = v(r) + Jdr'p(r)/ir-r'| + SE_[plSp (),

where we have written G=T, . +E, .

In principle, the density functional method could yield thé total energy and charge density
exactly. In practice, however, the explicit functional dependence of E, . on p(r) is unknown
and thus an approxiinate form must be used. The most widely used form is the local density
approximation (LDA)® in which E, _ is written as Jdr e (p(r))p(r) and the function €, I8
obtained from knowledge of the properties of the homogeneous electron gas8. This form is
very simple to calculate with and turns out be a surprisingly accurate representation of the true
functional, as will further be discussed below.

Thus, through DFT, the probiem has been reduced to a system of one-body Schrodinger

equations which, because of the dependence of Vg ON P(r), must be solved self-consistently.

One could now proceed directly using the appropriate nuclear charges for the material of
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interest to perform an all-electron total energy calculation. For the kinds of results we will be
interested in, which involve small energy differences between similar crystal configurations,
such an approach has some serious drawbacks. These arise from the fact that while the low
lying 'core electrons' dominate the total energy and, through the requirements of orthogonality,
force a very highly structured wavefunction for the valence electrons in the core region, they
basically are unaffected by the solid state environment and thus do not enter into energy
differences-- that is, they can be regarded as a 'frozen core.' Consequently, the total energies
have to be calculated to high precision and the basis sets needed to achieve the proper
description of the valence wavefunctions in the core region are large or complicated.

These problems are solved by the elimination of the explicit appearance of the core
electrons through the pseudopotential approximation3, in which the all-electron problem is
mapped to that of the valence electrons moving in an effective external field in which the Jowest
lying levels reproduce the valcnce electron eigenvalues and the charge density in the interstitial
region, outside the ion cores. The construction of this effective field can be effected in a
number of ways, and indeed is somewhat arbitrary. The scheme which is currently most
widely used” preserves the ab initio character of the all-electron calculations by superimposing
jonic pseudopotentials which are constructed from ab initio calculations for the constituent
atoms. More precisely, the ionic pseudopotential reproduces the valence eigenvalues and
wavefunctions outside some chosen core radius obtained from an all-electron calculation for a
given atomic reference configuration. To do this exactly in general requires a non-local (angular
momentum dependent) ionic pseudopotential. The norm-conserving character of these ionic
pseudopotentials is crucial for the self-consistent density functional calculations and in
determining their transferability into different crystal environments®?,

The prinary practical problems which limit the complexity of the systems that can be

studied and the accuracy of the calculations are the size of the basis set in which the

one-electron wavefunctions are expanded and the density of k-point sampling in the
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computation of quantities, such as p(r), which involve averaging over the Brillouin zone.
While a variety of basis sets can be used, one advantage of using the pseudopotential
approximation is that it is usually possible to use a plane wave basis. Dcspite the fact that it is
generally larger than sets of basis functions tailored for a specific problem, there is a payoff in
flexibility (different atomic arrangements are treated in an unbiased way) and simplicity (ease in
computing matrix elcments and charge densities). The effects of the limitations on basis set and
k-point set size can be systematically investigated by raising the cutoffs and checking the
convergence of the total energy differences of interest.

With this scheme and currently available computers, it is possible to compute ground-state
total energies for a wide variety of materials and for quite complicated structures. From the
location and curvatures of energy minima can be obtained predictions for structural properties
such as the lattice constant, cohesive energy, bulk modulus, elastic constants and even phonon
frequencies, surface reconstructions, and atomic relaxations at defects, at zero temperature and
in temperature regimes where energy considerations are expected to dominate. Indeed, there is
already a large body of work in which these predictions compare favorably with experimental
observations!®. In addition, examination of the valence charge density, the bandstructure and
individual terms contributing to the total energy provides microscopic insight into the nature of
bonding in the materials and the factors favoring structural changes.

The quantitative success obtained in these studies suggests that the approximations
involved must be very good. In the case of . the local density approximation, this is particularly
surprising. Although the density functional scheme is exact in principle, here a functional
derived from results for a homogeneous electron gas is being applied to systems which are
highly inhomogeneous, including ionic and covalently bonded solids. The situation was at first
made even more mysterious by the failure of attempts to improve the functional by including
higher order terms in a gradient expansion!!. However, some understanding of the success of

the LDA has been achieved. In the case of systems with nearly constant density, the validity of
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linear response gives an independent expression which is over a range of q approximated better
by the LDA than by gradient correct’ons'2. Also, the LDA satisfies exactly the sum rules
required by charge neutrality!3. Lastly, v, .(r) and n(r) for certain systems obtaine 1 through
constructions which include some many-body effects (within the GW approximation) are
negligibly different from those in the LDA4.

In contrast, the pseudopotential scheme is inherently approximate. The validity of the
frozen core approximation, which is in fact an independent approximation buried in the
pseudopotential, has been examined in detail!3, The transferability of the pseudopotential is
good by construction: the norm conservation ensures that the logarithmic derivative of the
wavefunction with respect to energy is exactly reproduced outside the cutoff radius, and thus
that the scattering properties of the ion are well reproduced in different crystal environments®.
Remaining problems can be dealt with by changing the choice of atomic reference
configuration, and in cases where the core and valence charge distributions overlap in space,
the errors due to the linearization of the exchange-correlation petential can be eliminated by
storing the charge distribution of the frozen core!.

When performing these density functional calculations, it is very important not to lose sight
of their intrinsic limitations. For example, although the ground state charge density is correctly
given, the wavefunction is not a Slater determinant of the y, used in the construction of the
Kohn-Sham equations. Also, in general the one-electron eigenvalues €, have no physical
significance despite their resemblance to the bands observed in experiments such as
photoemission, and in particular, there is no theoretical basis for the idea that the difference of
e, will yield the correct fundamental gap for a semiconductor like Si, and indeed it does not'.

Since the construction of a DFT actually only depends on the existence of a variational
principle, one can in fact imagine a DFT for excited states, but with a functional which is
quantum number dependent and at present unknown. The situation for a density functional

theory for systems at finite temperature is somewhat brighter!”, since one can use the existing
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results on a homogeneous electron gas at low but finite temperature to construct an appropriate
local density functional. However, since this scheme has seen very little practical use!8 it is
difficult to judge the reliability of the finite-temperature LDA, particularly in strongly
inhomogeneous semniconducting materials where the gap at T=0 is incorrectly given by DFT.
In the absence of a practical scheme for obtaining electronic contributions to the entropy,
ab initio calculations for finite temperature properties are confined to situations where the lattice
contribution to the entropy dominates, since this can be obtained within the Born-Oppenheimer
approximation keeping the electrons at zero temperature. Thus, natural candidates for an
ab-initio study can be found among systems which undergo structural phase transitions as a

function of temperature, which will be discussed in the next section.
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(B) STRUCTURAL PHASE TRANSITIONS

Phase transitions in solids can occur as a result of varying external parameters such as
temperature, pressure, and magnetic field. They are characterized by a quantity called the order
parameter, which distinguishes the disordered phase, in which it is zero, from the ordered
phase, where it takes on non-zero values characterizing a broken symmetry!?, The order
parameter is an thermal expectation value of some combination of the microscopic degrees of
freedom of the system. The transition can be classified according to the nature of the operators
as an electronic transition, e.g. magnetic or superconducting, or as a structural transition, in
which the ordering occurs in the ionic parameters. The latter can be considered to include
ferroelectric transiticns, in which the order parameter is the electrical polarization and thus
involves both electronic and ionic operators.

In a structural transition, the crystal distortion is usually strongly coupled to other degrees
of freedom in the system such as strain. This leads to the concept of secondary order
parameter, which is a quantity which is not in itself critical but in which ordering is induced by
the non-zero primary order parameter?’. These considerations are important when looking at
the structural changes between the high and low temperature phases, and also when examining
the critical behavior of the system, especially the phase diagrarn and other nonuniversal
quantities.

As discussed above, within a ground-state density-functional approach it is only structural
transitions which are accessible, and moreover, only those systems where the transition is
driven by lattice entropy rather than electronic entropy. This is clearly the case in a system
where there is a gap for electronic excitations which is larger than the transition temperature.
Other possibilities exist-- for example, charge density wave systems with a short coherence
length?!, In constrast, the martensitic transitions in the A-15 ccmpounds Nb,Sn and V,;Si are
cases in which the electronic contributions to the entropy seem to dominate?2,

There is a further classification of the lattice-driven structural phase transitions which
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reflects properties of the microscopic potential and has a corresponding phenomenological
signature due to differences in the dynamics of the soft mode?3. At one end of the spectrum are
the order-disorder transitions, for which the high temperature phase is microscopically
distorted, though the thermal averaged distortion is zero. This corresponds to a strongly
anharmonic, deep double-well potential for local distortions, and a diffusive character for the
soft mode which arises from the hopping between wells. In such a case, it is natural to use a
discrete spin picture to model the system. At the other extreme of behavior are the displacive
transitions, in which the distribution of atomic positions is a phonon-like single peak about the
average position, which corresponds to a weakly anharmonic lattice potential and phonon-like
excitations with a temperature dependent dispersion relation. In this picture, the transition
occurs when the frequency of the phonon mode whose polarization vector corresponds to the
atomic displacements of the transition decreases to zero.

Experimental studies of structural phase transitions focus on the detection of the occurrence
of the transition and the measurement of various quantities as the external parameters are varied
around the transition point. Static structural determinations are used to study the order
parameter in the ordered and disordered phases. These methods include x-ray diffraction and
elastic neutron scattering?4, which probe the order on long length scales, and LEED
spectroscopy?, which is useful for detecting symmetry changes on surfaces. EXAFS yields
information about the local order and in particular, can distinguish between displacive and
order-disorder transitions?6, Dynamic structural determinations, such as inelastic neutron
scattering?, Raman scattering and infrared spectroscopy?3, probe the characteristics of the
collective modes, in particular, their frequencies and linewidths. Lastly, measurements of
thermodynamical and mechanical quantities such as the specific heat, response functions and
elastic constants can be used further to characterize the transition.

Structural phase transitions have been found to occur in numerous and widely diverse

systems. Surfaces provide many examples of transitions in two dimensions. Phase transitions
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between different surface reconstructions occur for many clean metal and semiconductor
surfaces, including Si(100), Si(111), W(001) and Mo(001)?’. In addition, phase transitions
can occur in the ordering of physisorbed and chemisorbed surface layers, either driven by
adsorbate-adsorbate interactions or by modifications by the adsorbate of the interactions which
drive the reconstructions of the substrate layer. Interesting examples of adsorbed layer systems
include rare gas atoms on graphite, O and Se on Ni(111), and H on W(100) and Mo(100)2%.
There is also a rich variety of systems in three dimensions. These include transitions
between different forms of polymorphic crystals, among which are silica®®, ice?® and tin3C.
Ionic molecular crystals such as LIKSO, show interesting effects due to the coupling between
the translational and rotational degrees of the components®!32, and some, such as Rb,ZnCl,,
possess incommensurate phases>3. Another example of long-period ordering (which,
however, may be a kinetic rather than an equilibrium phenomenon) is a polytypic material such
as ZnS, which occurs in about 200 different forms all composed of structurally identical layers
which appear in a variety of stacking orders34. Ferroelectrics are a group of materials which
share certain characteristic properties because the ordering in local atomic rearrangements gives
rise to local electrical polarization. Related systems are antiferroelectrics and ferrozlastics, in
which the electrical polarization is induced by a transtion in the strain degrees of freedom?3,
Another class of transitions which primarily involves local rearrangements of atoms are
ordering transitions in metal and semiconductor alloys. In the latter, the fabrication of strained
alloys in heterostructures permit the observation of additional types of ordered phases3>-6,
Martensitic transformations, on the other hand, do not involve atomic rearrangements within
the unit cell but rather the development of long wavelength strains which change its shape.

Examples include the A-15 compounds Nb,Sn and V,5i, mentioned earlier, and B-NaN,>".
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(C) LANDAU THEORY, THE RENCRMALIZATION GROUP AND STRUCTURAL
PHASE TRANSITIONS

As described above, the pheromena of interest 2t a phase transition include the behavior of
the order parameter, correlation functions and thermodynamic quantities such as the specific
heat and susceptibility. Close to a second-order transition, in the so-called critical region, these
quantities are observed to scale according to simple power laws specified by the critical
exponents. The values of the exponents in general are independent of the details of the system,
being related only to the nature of the order parameter, the spatial dimensionality and the
symmetry.

A Landau theory of the phase transition is constructed based on these three pieces of
information!?, as follows. The free energy is expahded as an analytic function of a symmetry
breaking quantity. such as the charge density, whose observed value is obtained by minimizing
this expression. From this can be deduced that in a second order transition, the order parameter
transforms according tc n irreducible representation of the symmetry group of the
high-symmetry phase, and thus the permitted ordered phases can be obtained. Because of the
assumption of analyticity, it turns out that the critical exponents are fixed at the so-called
‘classical’ values. A similar expansion in invariants, where now the order parameterisa -
function of position, yields a Landau- Ginzburg- Wilson Hamiltonian, in terms of which the
free energy can be expressed as a functional integral. Evaluating the functional integral via the
stationary phase approximation recovers the Landau theory.

The universality and possible nonclassicality of the critical exponents have a natural
explanation in a renormalization group (RG) treatment of the phase transition, which is
designed to incorporate the effects of fluctuations®®32, Given the basic information, a
Hamiltonian is constructed. Then, by integration over a subset of the degrees of freedom of the
system, a new partition function is obtained and cast in the same form as the old, but where the

Hamiltonian has a new set of parameters which are expressed in terms of the old by recursion
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relations. The recursion relations are used to generate flow diagrams in Hamiltonian parameter
space.

The fixed points play a central role in determining the properties of the transitions that a
system will undergo. To describe a second order transition, the fixed points are located, their
stability studied, and critical exponents extracted. First-order transitions can be identified from
the topology of the flows or the absence of stable fixed points. From this information a phase
diagram can be constructed.

Nonuniversal aspects of critical behavior are also of interest. These depend on the actual
values of coupling for a particular system, and can be also obtained within a RG analysis. The
simplest is the location of a particular system in the phase diagram, and from that the value of
the critical temperature. Crossovér phenomena, where the system is governed by a certain fixed
point in one part of the critical region, and then by another (or becomes first order) closer to
criticality, can be studied. Lastly, the thermodynamic quantities can be obtained by evaluating
the scaling functions via RG40,

This approach, while very powerful in understanding the origin of universality and
classifying critical phenomena, has some weaknesses with respect to the study of behavior of
specific materials. First, the emphasis is on global topology of flows and propexrties of fixed
points, rather than accurate interpretation of the behavior of a system with a given microscopic
Hamiltonian not necessarily in an L-G-W form. Thus, ambiguities in phenomenologically
identifying the critical behavior for a particular system cannot be resolved, and such an analysis
cannot give insight into the chemical origin of the couplings, which is useful in the design of
model systems for a specific behavior. The calculations of nonuniversal properties are more
involved and less technically developed than issues of universal behavior. In particular,
universality leads to a natural emphasis on relevant variables, while irrelevant variables can

significantly modify nonuniversal properties before they renormalize to zero?!.
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(D) OVERVIEW OF RESEARCH

The questions which are left open by the statistical mechanical approach are related to the
determination of the relative sizes of the various interactions permitted by symmetry. In striving
to understand the behavior of a specific material, we can address this problem by using as a
starting point an appropriate microscopic Harniltonian.

Because this in some sense is the most natural approach to the statistical mechanics of real
systems, several attempts have been previously made to carry out such a program. Phase
transitions on the Si and Ge(100) surfaces have been examined using a semi- empirical
tight-binding total energy method*2. Transitions in the fluorine-based perovskite RbCaF,,
using a Gordon-Kim total energy method, have been studied within the anharmonic crystal
model*3. These schemes suffered from the lack of accuracy of the total energy methods.
Recent work on Zr * used an accurate ab initio total energy method, but the self-consistent
phonon treatment of the model chosen did not permit the examination of critical behavior.

It is crucial to formulate the procedure so that the tractability and accuracy of the various
steps are ensured. Clearly, the full microscopic Hamiltonian for the electrons and ions, though
completely specified in terms of fundamental constants, is impossible to work with. A lattice
Hamiltonian obtained through the use of the Born-Oppenheimer approximation, while certainly
providing a correct description of the transition(s) of the system, requires far too complex a
specification. However, for studying a particular transition, a model Hamiltonian with
relatively few parameters can be obtained by identifying the degrees of freedom, called local
modes, which are important for describing the transition. Then, a simple model Hamiltonian is
developed by expanding in symmetry invariant combinations of the local mode variables, and
keeping only those interactions which are significant based on an understanding of the
chemistry of the system and information about the properties of the lattice potential, obtained
either phenomenlogically or ab initio. '

Up to this point, this procedure does not differ much from the analogous approach to the
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Landau- Ginzburg- Wilson free energy functional. The key difference lies in that, for a specific
material, the coefficients in the model Hamiltonian can be determined from first principles by
doing total energy calculations for a small number of configurations and carefully establishing
the relationship between crystal configuration and local mode configuration energies. The
correct description of the calculated energies, as well as the low lying configurations whose
energies were not calculated directly, results then from the physically correct nature of the
model Hamiltonian.

Using this simple microscopic Hamiltonian, one then can derive a Landau- Ginzburg-
Wilson frec energy functional, either by a coarse graining procedure or a Hubbard Stratonovich
transformation. With this step, the problem is cast into a form suitable for the application of
powerful statistical mechanical techniques such as RG, and the extensive work done in this
area can be exploited to obtain information about the specific material we are interested in.

In this thesis I describe the implementation of this approach for a particular structural phase
transition-- the 670K rocksalt - thombohedral transition in the IV-VI narrow gap
semiconductor GeTe. This system is an appropriate choice for a prototype study because of its
structural simplicity and because the pseudopotentials for Ge and Te are both highly
transferable and well behaved. The use of ab initio pseudopotential total energy calculations to
study the structural propertics of the group IV tellurides is discussed in Chapter 2, which
describes the calculations on SnTe and PbTe, and Chapter 3, which describes those for GeTe.
For all three materials, the calculated lattice constants, buik moduli and cohesive energies of
the high-temperature rocksalt form are compared with experiment, showing that the method
provides an accurate description. The character of the bonding in these materials is investigated
through the examination of band structures and valence charge densities, and the effects of the
rhombohedral distortion corresponding to the low temperature phase are studied. Chapter 2
also includes discussion of the use of fully relativistic pseudopotentials and the importance of

relativistic eff=cts in the structural properties and bandstructure of SnTe and PbTe. Chapter 3
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focuses more specifically on the issues which are relevant to the calculations used in the
construction of the model Hamiltonian for the GeTe transition. In particular, the calculational
accuracy of the effects of distortions on the total energy is investigated. This chapter also
includes a discussion of the problems which, because of the approximate nature of the total
energy method, arise in this contexi-- the underestimates of the fundamental gap and the
equilibrium volume. In Chapter 4, the ab initio statistical mechanics study of GeTe is described
in detail. The model Hamiltonian is constructed using ab initio pseudopotential total energy
calculations. A Hubbard-Stratonovich transformation yields an n=3 model with cubic
anisotropy and strain coupling. This is analyzed using a momentum space RG approach and
values for the transition temperature and critical properties are obtained which are seen to
compare favorably with available experiments. Lastly, in Chapter 5, I discuss the prospects for
further ab initio statistical mechanics studies, identifying some systems of interest and
important questions which can be addressed by these techniques, and also discuss some

theoretical issues which could lead to an increase of the scope of such studies.
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CHAPTER II:

AB INITIO RELATIVISTIC PSEUDOPOTENTIAL
STUDY OF THE ZEROC TEMPERATURE
STRUCTURAL PROPERTIES OF SnTe AND PbTe
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I. INTRODUCTION

Understanding of the physics of the IV-VI compourds (Ge, Sn, Pb)-

(8, Se, Te) has greatly improved over recent years. The initial focus was
on the band structures of compounds with rocksalt structure: PbS, PbSe,
PbTe, and at high temperature, SnTe and GeTe. These are semiconductors, with
a narrow gap of several tenths of an eV at the L point. The band edges are
highly nonparabolic, and the orderingof the levels at L is composition
sensitive and determines the temperatur;and;nessure coefficients of the
band gap. These features, which are important for calculating transport
properties, have been studied extensively both experimentally and with a
variety of band structure techniques including APW, OPW, KKR and EPM.1

The IV-VI compounds and pseudobinary alloys are observed to crystallize

in orthorhombic, rhombohedral and CsCl structures, as well as rocksalt,

as a function of composition, pressure and temperature. The tendency of
the telluride compounds towards a transition from the rocksalt structure
to a rhombohedral structure (Fig. 1) with decreasing temperature is of
particular experimental2 andtheoretical3 interest. In addition to being
the simplest possible structural type of ferroelectric transition, with
two atoms per unit cell in both the high temperature and low temperature
structures, it is associated with an easily identifiable soft mode (the
TO k=0 phonon) and is second order. However, attempts at a fully
quantitative understanding of this transition are hindered by experimental
and theoretical difficulties inherent in the materials.

A variety of experimental techniques have been developed to study
structural transitions and soft mode behavior in ferroelectrics.4 The
application of these techniques to PbTe, SnTe and GeTe is complicated by
the free carriers arising from defects in the crystals. While the nature

of various defects, especially in PbTe, is itself quite an active area
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of study,l for the purposes of thié discudsion the important defects are
Group IV or Te vacancies. The electronic states associated with these
vacancies lie deep in the bands so the free carriers do not freeze out at
any temperature.5 The crystal properties are very sensitive to the
presence of the defects. 1In SnTe, variations in Tc from <0K to 100K are
well correlated with free carrier concentration.6’7
The change in crystal structure with temperature has been studied
directly in SnTe and GeTe using X-ray diffractions’9 and elastic neutron
scattering.lo The distorted structures are described by a rhombohedral
Bravais lattice of angle a (equal to 60° in the. fcc structure) and a
basis with atoms at ao(O, 0, 0) and ao(.5—r, .5-1, .5-7). Thus 1
parameterizes the sublattice displacement, i.e., the amplitude of the frozen-in
optic phonon as shown in Fig. 1. 1t and a appear to be continuous at the
transition temperature, indicating a second order (or at most very weakly
first order) transition.
The temperature dependence of the soft mode frequency has been

11,12,13

measured using inelastic neutron scattering, far infrared

14,15

spectroscopy in PbTe and, in the rhombohedral phase, Raman

6,16,17 The temperature dependence is observed to obey a

scattering.
Curie-Weiss law
w? «(T-T ) T>T
c c
w? =(T -T) T<T
c [d
with values Tc>0 for SnTe and GeTe and Tc<0 for PbTe. Thus in PbTe the
tendency towards instability csan be studied even though no actual transition
takes place. Other relevant measurable quantities include an anomalous
resistivity near the transition due to large thermal populations of the

18,19

soft phonons, and specific heat, which shows a mean field like jump

near T..20
c
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In the Cochran-Anderson soft mode theory of ferroelectricity,m’z2

the stability of the lattice is studied by looking at its normal modes.

In a lattice which exhibits a structural transition, some modes near the
zone center are imaginary in the harmonic approximation. The strongly
temperature dependent renormalization of the phonorn frequency by anharmonic
terms stabilizes the lattice for T>Tc‘ Thus, within this theoretical
framework the ianvestigation naturally divides into two parts.

First, the mechanism which makes the symmetric structure unstable at
zero temperature must be analyzed and a quantitative model developed which
at least reproduces chemical trends. The large EO,Z* and mixed ionic/
covalent nature of the bonding in the tellurides suggest that resonant
p-bonding results in a large electron~phonon coupling which drives the instability.
Several empirical pseudopotential models based on this idea have been

24,25,26 One interesting result which emerges from the analysis

25

developed.
of Littlewoodza and Porod and Vogl™™ is that the lattice instability is

not a consequence of the narrow bandgap, but results from a combination of
crystal geometry and the balance between ionicity and covalency.

Second, finite temperature effects must be incorporated into the
theory. This is done by finding a model Hamiltonian to describe the
anharmonic processes which stabilize the structure at high enough
temperatures. In an anharmonic lattice model, a Hamiltonian which includes
the coupling of the soft mode to the rest of the phonons is solved in
quasi-harmonic or self-consistent-phonon approximations.27 A local mode
model formulates the problem in real space, using as degrees of freedom
the amplitudes of atomic displacements corresponding to the soft mode
within each unit cell and solving in mean field theory.28 These models

reproduce qualitatively the temperature dependence of the soft mode, but

have difficulties quantitatively.29 A nonlinear shell model which includes
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the nonlinear quartic polarizability of the chalcogenide ion30’31 succeeds,
with relatively few empirical parameters, in quantitatively reproducing the
terperature dependence of the oft mode as well as certain anomalies in the
phonon dispersion relations.

All t.eoretical descriptions of the electronic and structural properties
of the IV-VI materials have relied on empirical input. Experimentally it is
known that the properties of the materials depend strongly on defect
concentrations and extrapolation to a pure system is not well understood.
Thus, empirically derived theoretical parameters implicitly contain defect
effects, usually in some complex way.

In this paper, we undertake the first ab initio theoretical
investigation of the electronic and structural properties of SnTe and
PbTe. We present results of relativistic pseudopotential totaluenergy
calculations in the local density approximation (LDA) for rocksalt structures
and rhombohedral structures with various values of the parameters T and a.

A nonrelativistic approach has previously been applied to study bulk crystals,

32,33,34 35,36,37,38

phonons, defects and surfaces in metals, semiconductors

39,40,41,42

and insulators with considerable quantitative success.43 With

the‘inclusion of relativistic effects to 0( gi 2) and the very high accuracy
calculation possible because of the simplicit; of the structure, we can
expect similar success in SnTe and PbTe.

In Section II, we discuss the application of the relativistic pseudopo-
tential total-energy method to this system. In Sections III and IV, we
present and discuss the results in the rocksalt structure for lattice
constant, bulk modulus, cohesive energy, pseudocharge density and band
structures. In Section V, we look at results in distorted structures

for stability against distortion, pseudocharge density and bandstructures.

In Section VI we discuss the TO k=0 phonon in PbTe. Finally, in Section VII
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we summarize our results and make some concluding remarks.

II. METHOD

The theory and practice of self-consistent pseudopotential total
44 45

energy calculations have been thoroughly discussed elsewhere. The
total energy can be written in the following form:
= [ ' '
Et:ot Ekin +E ei +E H + Exc +E ii (1

where Ekin is the total kinetic energy of the electrons; E'ei is the
electron-ion interaction energy; E'H is the Hartree energy; Exc is the
exchange correlation energy; and E&i is the ion-ion interaction energy.
This expression is evaluated in the momentum space formalism.46 The
primes indicate that the separately divergent q=0 contributions are excluded.
We use the relativistic nonlocal atomic pseudopotentials for Sn, Pb and Te
given by Bachelet, Hamann & Schluter47 (BHS) shown in Fig. 2. Exchange and
correlation are included through the LDA using the CAPZ parametrization.48
Eigenfunctions are expanded in the plane wave basis {|§,+ ¢ >: k + E)2<E11.
The effect of plane waves with E; < (k + 6)2 < E; is included using Lowdin
perturbation theory.49 Brillouin zone averages are performed using the
special k-point scheme of Monkhorst and Pack.50 E'ii is obtained using
the method described in Ref. 35. Computations were done on an IBM 370/3033
in single precision for Section III and IV and in double precision for
Sections V and VI.

The method used by BHS to construct atomic pseud&potentials which
contain all relativistic effects to 0( gz 2) was first introduced by

51,52 e
’ The point is that although all-electron calculations in

Kleinman.
a heavy atom must be done using the Dirac equation, the valence electron
wavefunctions outside the core region can be well described by retaining

only the major component of the Dirac wavefunction. The radial wavefunction
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obeys an effective Schrodinger equation outside the core. By performing
a normconserving pseudization on the all-electron Dirac atom, pseudopotentials
an are obtained, where the nodeless solution of the Schrodinger equation
specified by a given sz matches the corresponding major component of the Dirac
wavefunction outside the core region. Errors of 0(fe2\?) occur in the
decoupling of the major and minor components and in ti; neglect of the
contribution of the minor component to the charge density outside the core.

The use of these pseudopotentials in crystal calculations involves

only a straightforward modification of the nonrelativistic scheme

V= >:|2>vz<z| - £|£j>vzj<lji (2)
L 23

so that the number of nonlocal potentials increases and the size of the
plane wave basis must be doubled (|§> + |ﬁ+>, |i¢>). In practice, these
changes require a substantial increase in computational effort, both in
setup of the Hamiltonian matrix and in diagonalization. However, all
relativistié effects except spin-orbit splitting can be included by writing

o L L2
V= ilv(v ton * ¥ sob D)<t (3)

and neglecting sto, which restores the problem to its nonrelativistic
size.. For a semiconductor, inclusion of Vso in first order perturbation
theory does not change the charge density, and if higher order corrections
are unimportant the total energy is approximately unaffected. These scalar
relativistic (SR) potentials are used for all calculations unless otherwise
specified. We examine the effects of this approximation by comparing
fully relativistic (FR) and SR results for some test cases. We also
compare SR calculations to results in PbTe and SnTe obtained using atomic
pseudopotentials (Fig. 2) constructed using nonrelativistic (NR) atomic
calculations and the parameters of Table 1.

The accuracy of the computation of pseudocrystal total energy is mainly

limited by 1) the representation of the wavefunctions in terms of a finite
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basis set and ii) the approximation of Brillouin zone averages using z
finite sample of k-points. The smallness of the unit cell makes possible
a high level of convergence using available computaticn facilities (IBM
376/3033). Convergence is evaluated by looking at changes in energy
differences between different structures, rather than at the absolute
value of energy. For the calculations in the RS structure, good convergence
in lattice constant and bulk modulus (typical errors in energy differences
n10"* Ryd) was achieved with El = 10.5, E, = 16.5 Ryd (v250 plane waves in
basis set) and 10 k-points (single precision). Cal ulations in distorted
structures required better energy resolution (v2-3 x 10 ° Ryd) and so
larger k-point sets (usvally 32 k-points but up to 60) were necessary.

The results of total energy calculations are generally insensitive to the
precise form of the local density functional45 but we could not test this
because only relativistic atomic potentials calculated with CAPZ were
available.

A calculation of the total energy of the free pseudoatoms is required
to determine the cohesive energy. The observed term values for the atomic
ground state are 3Po for Sn and Pb and 3P2 for Te. The total energies of
the scalar relativistic pseudoatoms are calculated, a spin polarization
correction is made and the spin-orbit energy lowering is obtained in first
order perturbation theory in Gso' We neglect the mixing of terms by the
spin-orbit interaction, although in Pb the spin-orbit perturbation (0.892 eV)
is even larger than the energy lowering from the spin polarization (0.669 eV),
and in Sn and Te the spin orbit correction is only about a factor of three

smaller than the spin polarization correction.

ITI. ROCKSALT STRUCTURE

SnTe above its transition temperature and PbTe are observed to crystallize
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in the rocksalt structure, which can be described as an fcec Bravais lattice
of conventional side a with a basis of a Pb or Sn atom at ao(0,0,0) and a
Te atom at ao(.S,.S,.S). A given rocksalt structuge is specified completely
by a single parameter - the volume per atom V = f%-n To obtain the
equilibrium lattice constants, bulk moduli and cohesive energies of SnTe and
PbTe in the RS structure, total energies per atom are calculated at several

values of V near Vex and fitted to a cubic polynomial. Calculated points

pt
deviate from the fitted curve by flO-“ Ryd/atom. The results for NR and SR
SnTe are shown graphically in Fig. 3. The minimum of the NR curve occurs

at a lower value of V than that of the SR curve, and has noticeably higher
curvature at the minimum, corresponding to a larger bulk modulus. The NR
curve is shifted upwards in energy from the SR curve by about 0.2 Ryd/atom.
In Fig. 4, the various terms contributing to the total energy of SR SnTe

are plotted as a function of V. As the structure is expanded, Ekin decreases
slightly, while Exc and E'H show a small increase. The dominant changes are
the increase in the Ewald energy E'ii’ wvhich depends only on the lattice
structure and ionic charges and favors low atomic volumes and high
coordination number, and the electron-ion interaction energy E'ei’ which
decreases as charge moves from the interatomic regions to become more
localized around individual ionms.

The Etot(v) results for NR and SR PbTe are shown in Fig. 5. Here, the
minima and curvatures of the NR and SR curves are very similar; however, the
overall shift of the NR energies up from the SR energies is about 0.4 Ryd/atom,
twice as large as the shift in SnTe. The contributions to Etot(v) of SR PbTe
are plotted in Fig. 6. The same trends are evident as in SR SnTe, though
there are quantitative differences responsible for the differentv0 and B.

The physical parameters extracted from the fits are given in Table 2

for comparison with the corresponding experimental values. PbTe is observed
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to remain rocksalt down to the lowest temperatures at which measurements

-~

have been made, with a value of Tc~ -100 K extrapolated from the Curie-Weiss
temperature dependence of the TO k = 0 phonon. The calculated SR lattice
constant agrees with the observed room temperature value to within 2% and

the calculated and observed bulk moduli agree to 5%. For SnTe, the

comparison with experiment is less definitive than for PbTe, since pure
samples do not crystallize in the rocksalt structure at low temperature.

Thus we compare results calculcted in the rocksalt structure with data

taken at 300 K or at low temperature in samples in which the transition
temperature is suppressed by the defect concentration. The calculated SR
lattice constant agrees with the experimental value to 41%. The SR calculated
bulk modulus is higher than any of the available experimental values but the
variation in these is so large that the value of a more quantitative comparison
is doubtful. We also include in the table results of FR calculations which
help to support our claim in Section II that a scalar relativistic description
is adequate for the calculation of total energy differences between different
structures.

The calculated FR cohesive energy is off from experiment by 36% for PbTe
and 20% for SnTe. Neglecting the spin-orbit interaction entirely gives
nearly equal cchesive energies for SnTe and PbTe, while the experimental
value for PbTe is leV/pair lower than for SnTe. Thus, part of the error can
be attributed to the treatment of the spin-orbit interaction in the atomic
calculations. Errors due to the use of the local density functional are

also expected to be significant.

IV. ROCKSALT BANDSTRUCTURES AND CHARGE DENSITIES
In Fig. 7 we present the bandstructures of SnTe and PbTe calculated

at V0 for NR, SR and FR potentials. The general features compare favorably
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with previous calculations. Since we are primarily interested in calculating
total energies, which involves averaging valence band properties over the
Brillouin zone, we have not studied in detail features of the bandstructure
such as level ordering and gap structure in the immediate neighborhood of L.

A comparison of the SR and FR bandstructures shows ihat while the spin-orbit
interaction certainly has a significant effect on the bandstructure, it mainly
acts to 1ift the degeneracies within groups of scalar relativistic levels. The
spin-orbit spiitting of the upper valence banu at M increases only 30%, from
0.88 eV to 1.2 eV, in going from SnTe to PbTe, suggesting these levels have
mostly Te p character, where Te has an atomic spin-orbit splitting of 1.2 eV.

The direct gap at L 1s 0.4 eV in both FR SnTe and FR PbTe.

A comparison of SR and NR bandstructures shows some differences in
the level orderings, especially near L. In fact, NR SnTe is not even a
semiconductcr, but rather a semimetal. Another important effect is the
relativisti: enhancement of the s-p splitting due to the Darwin term,
which is clearly manifested in the atomic eigenvalues. 1In the crystal,
the splitting between the two lowest bands, which are s-1like and the next
three, which are p-like, is significantly larger in the SR case than in
NR. The 1owering.in energy of the s levels is responsible for the large
shift in Etot for NR vs. SR potentials observed above. However, as we have
seen, this increased splitting does not have a significant effect on the
calculated equilibrium properties since only the p-levels are significant
in bonding.

Total valence charge densities in the (100) plane for PbTe and SnTe
are shown in Fig. 8. The results for PbTe can be directly compared with
the EPM charge densities of Ref. 53. In the EPM calculation, the charge density
smoothly increaseé from the interstitial region to reach its maximum at the
atomic origin, with roughly the same peak value on the Pb atom as on the Te.
In the current calculation, because of the repulsive nature of the

pseudopotentials, the charge density is zero at the atomic origins, increasing
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tc a maximum on a shell around the atom, and then decreasing into the
interstitial regions. The shell arcund the Pb aégm is broad and 1is at
nearly half the nearest meighbor distance, while the shell around the Te
is much more sharply peaked and more tightly bound. The position of the
peak in the charge density outside the core 1s consistent with the expected
behavior of 5s and 68 electrons. '

Next we examine the charge densities of PbTe band by band (Fig. 9).
The band by band breakdown in SnTe is very similar and will not be shown.
Band 1 is almost pure Te s, with the charge density reaching its maximum
on a shell at about one-quarter the nearest neighbor distance. Band 2 is
mostly Pb s, with some Te p. This Pb charge shell represents the more
tightly tound portion of the total charge associated with the Pb, though it
still has a larger radius than the Te s shell. Bands 3 and 4 are predominantly
Te p as indicated by the lack of spherical symmetry in the charge distributions
around the Te atoms. The charge around the Te atom in band 5 appears nearly
spherically symmetric, but guided by the bandstructures, the angular
decomposition of the wavefunctions in Ref. 53 and the occurrence of the
peak at the radius of the other p bands rather than the s band, we conclude
it to be also mainly Te p. Band 6, the lowest conduction band, is Pb p and

Te s.

V. RHOMBOHEDRAL STRUCTURE

In this section, we dilscuss results of total energy calculations in the
rhombohedral structure which can be obtained by a small distortion of the
rocksalt structure (see Fig. 1). The rhombohedral Bravais lattice with
symmetry axis along (111) is characterized by V and a, the angle between the
primitive vectors (equal to 60° in the fcc structure). The basis consists

of a Pb or Sn atom at ao(0,0,0) and a Te atom at ao(.S—T,.S—T,.S—T). The
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3-D structural parameter space is too large to be explored completely. A
reasonable simplification is to fix V at the equilibrium volume obtained

in the rocksalt calculations, which reduces the parameter space to D = 2,
making calculations feasible.

In Fig. 10, we investigate the stability of the rocksalt structure
against the 1 distortion only, holding o fixed at 60°. It is important to
note that while the energy lowering driving the instability in SnTe appears
small (1.1 x 10 “ Ryd), it is quit;adefinite and moreover 1s expected to be
small, considering that Tc ~ 100 K. PbTe is stable against this distortion,
though the phonon is soft. The plots of the contributions to Etot(T) in
SnTe and PbTe are very similar (Fig. 1). The Ewald energy E' and the

i1

electronic energies E and E', favor the more symmetric structure, while

kin

the electron-ion energy E'e

H

4 acts to drive the instability. These trends

are consistent with the resonant p-bonding picture. The qualitative

difference in the Etot(r) curves for SnTe and PbTe is the result of a
subtle quantitative change in these competing contributions. The values of
the contributions at t = 0.000 and T = 0.015 for SnTe and PbTe are given
in Table 3.

In order to investigate the full 2-D parameter space, we extended our
calculations to a mesh of (a,T) values, plotting out Etot(a,T) surfaces for
PbTe and SnTe which are shown in Fig. 12. The ¢ distortion in SnTe is

further stabilized by a change in a. The fit minimum is 7t = .015 and

a = 59.5° which is in very reasonable agreement with the obéerved vaiues T= 5.008
and o = 59.878° given that the relevant energy differences are an order of
magnitude smaller than those required for the calculation of the lattice

constant and bulk modulus. In particular, distortions in 7 are energetically
unfavorable at all values of & near 60°, while an estimate for the shear

elastic constant C44 from the relation

2V, , (Aa)? (4)

= g- ¥ 1=0) = 2
AEtot(Aa =a- 3 T 0) 8




36

yields a value of 5 x 10" dynes/cm? consistent with the observed value

of 1.5 x 1011 dynes/cmz, 4

Close examination of the behavior in PbTe of
Etot(o(,'t'=0.000) for oo near 60° shows that the global minimum occurs right
at k= 60°, making the rocksalt structure an extremum as it must be by
symmetry. Also, there is some indication of a local minimum about 10'4 Ry
higher at & = 60.4°, though good resclution of tnis feature is beyond the
accuracy of the current calculation.

Our success in obtaining the correct chemical trend of the instability
is supported by calculations of total energies of rhombohedrally distorted
GeTe, which show the same kind of instability as in SnTe with an enerpy gain
about an order of magnitude larger, which is reasonable since the observed
Tc in GeTe is 670 K compared to 100 K in SnTe. Study of the changes in
charge density of SnTe with distortion in t (Fig. 13) shows a movement of
charge into the shorter bond and a deformation of the charge associated with
the Te ion. The FR bandstructure for rhombohedral SnTe is shown in Fig. l4.
The new features resulting from the distortion are the splitting of the
bands into spin polarized levels through the breaking of inversion symmetry
arising from the 1 distortion, and the division of the eight L ﬁoints into
the two inequivalent sets {(111), I1D)} and {d11), (111), (11I), (1I1),
Gy, (111)} by the rhombohedral distortion in the (111) direction. We have
not made a comparison of NR and SR potentials in the rhombohedral structure,
but it would probably show a stabilizatioa of the rocksalt structure through
the relativistic s-p splitting enhancement, which makes s-p hydridization
unfavorable. Tests show that the inclusion of spin-orbit splitting preserves

the qualitative features of this discussion.

VI. TO PHONON IN PbTe

In PbTe, although the calculation shows the rocksalt structure is
stable, the TO k = 0 phonon is unusually soft. Its frequency can be
obtained from a frozen phonon calculation, which is particularly simple in

this case since the atomic displacement vectors are already known and the
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of Veff(T) yields a harmonic approximation to the phonon frequency, but Veff
is quite anharmonic and thus to compare to experiment we need the

renormalized phonon frequency. In the self-consistent phonon approximation,

with a polynomial fit

. - 2 2 by 4 6 6
Veff(t) bo + 3a° blr + 9ao b2 + 27ao b31
w obeys
- 2 -
2452 = b + M corn dws, + 45 P3" [_3_ +1 2 + cochZ(m))]
Muw 2 2 (Mw)?'2 4 sinh? (hub, 2
2

where M is the reduced mass of the ions. We use this equation with T = 0

and include only a constant coupling tc a single optical branch. Very large

k-point sets (44 k-points) are required to obtain convergence of W Our SR
i B ]

values for the bare and renormalized phonon frequencies are 3lecm and 35cm

135

respectively, to be compared with the experimental value of 26cm . The

theoretical values are in reasonable agreement with experiment given that the

frequencies are so low, i.e. that the relevant energy differences are so
small. Amonc the effects we have left out are defects, which according to
current models should raise the phonon frequency from its value in the
perfect cnystal.z Also, FR calculations with 19 k-points indicate that the

inclusion of spin-orbit splitting tends to lower the frequency.

15
In a recent experiment, the Gruneisen parameter was measured to be about

twice as large (19.6) as predicted values of ch would imply. We have
dp w,

determined a value for the mode Gruneisen parameter y = afg-a%g from
calculations of the TO phonon frequency at four different values of V

(Fig. 15). The rocksalt Etot(v) calculations are used to determine V(P) and B,
the bulk modulus. The result is a Gruneisen parameter of about 7. Since

the result is quite sensitive to the quantitative accuracy cf the several
quantities in the expression,.this should be regarded as a very rough

estimate and should not be used to determine definitely whether or not the

observed large Gruneisen parameter is an intrinsic property 6f the material.

(5)

(6)
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On the other hand, what these calculations definitely show is that
mTO(P) is very close to linear. This is important because it would rule
out explanations for the large Gruneisen parameter which require a strong

nonlinearity of wTO(P) at small P.

VII. SUMMARY AND CONCLUDING REMARKS
We have presented relativistic self-consistent pseudopotential
calculations of the electronic structure and total energies of PbTe and SnTe
in the rocksalt and rhombohedral structures. Specifically, we have calculated
both bandstructures and fully self-consistent ab initio charge densities.
The latter were found to differ significantly from previous calculations.
The structural properties calculated include equilibrium lattice parameters,
bulk moduli, cohesive energles. phonon frequencies and the shear elastic
constant. Good agreement with experiment was obtained. In addition, we found wTO(P) to

be linear at small P, which is of interest in interpreting a recent experiment.

We discussed the sizes of numerical errors in Section II. An estimate
of the accuracy te which the properties of the pseudocrystal reproduce those
‘of the fully interacting electron-ion system is much harder to obtain. The
validity of the frozen core approximation and the transferability of the
pseudopotentials can be estimated by comparing pseudoatom results with
all-electron calculations for different atomic configurations. The accuracy
of the LDA in approximating the true functional is also difficult to estimate.

One hope is that, in calculating energy differences between similar structures,

the errors cancel out to some degree. In the final analysis, the validity
of the approximations and rough sizes of errors are judged by agreement
with appropriate experimental quantities.

Finally, we note that we have found that for these materials, it is a
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valid approximation to neglect spin-orbit splitting in total enmergy calculations

resulting in a great savings in computational effort. Tats {s
important for the application of this technique to more complicated problems,

e.g., pseudobinary alloys, defects such as vacancies and impurities, phonon
calculations for k # 0, and discussion of finite temperature effects. The
possibility of doing first principles calculations on these materials should
help in sorting out the variety of physical effects which determine their
properties and thus in realizing their potential as simple systems for the

study of structural transitionms.
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VIII. APPENDIX

More extensive convergence tests, conducted after the
completion of the work described in this paper, showed that the
results for E(T) giver in Fig.10a for SnTe at the calculated
equilibrium volume are not converged with respect to k-point set
sizw. In fact, the converged results shown in Fig.16 are
qualitatively different in that the energy curve is flat in the
neighborhood of 7T=0 within the accuracy of the calculation
rather than having a minimum at finite T. Thus we cannot with
this method make a firm prediction of a distorted structure at
T=0, the existence of which is clearly indicated by experiment.

What went wrong? Allowing V and 0 also to vary leads to only
tiny adjustments in these parameters and negligible energy gain.
Rather than simply blaming it on the pseudopotential
approximation and the LDA, we have been able to identify at
least one important contributing factor. The prediction for the
lattice constant is 1.5% smaller than the experimental value.
While for most properties, this small discrepancy has a
negligible effect, it can have a significant effect on the
distortion energy, changing the delicate balance between the
distorted and the rocksalt structures in favor of the latter.
This is suggested by the experimental observation that dT_ /dp <
0, showing the favoring of the rocksalt structure by the
pressure- induced compression.

In Fig.16 we also show E(T) calculated at the experimental
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lattice constant 6.30A, with a minimum around © = 0.015, showing
that the effect of the volume change is significant.
Unfortunately, this prediction of a distorted structure at T=0
is no longer completely ab initio, and a first principles study
of the 100K structural phase transition is not possible.
Fortunately, because the distortion energy is an order of
magnitude larger, the problem is not a serious one in GeTe,

which will be the subject of future investigations.
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Figure 1: The low temperature rhombohedral structure of SnTe and GeTe can
be obtained as a small distortion of the rocksalt structure by a) displacing
tﬁetwoftc sublattices relative to each other by at (111), corresponding

to a frozen-in k = 0 optic phonon, followed by b) a rhombohedral shear in the
(111) direction which changes the rhombohedral angle from its fcc value of

60° to o.

Figure 2: Nonlocal ionic pseudopotentials for Sm, Pb and Te. In the top row

47

are shown the fully relativistic potentials constructed by BHS ° which are

nonlocal in j and 1, requiring five different potentials 81/ P1/2° P3/p»
d3/2, d5/2. Scalar relativistic s, p, d potentials are obtained from the
»~ _ 1 -~ ~
weighted average V, = 201 (%szl + (E+l)v”tl) and are not shown here.
' 2 2
In the bottdm row are shown the nonrelativistic pseudopotentials constructed

according to Ref. 55, with detailed information given in Table 1. 1In all

crystal calculations, the p potential is used as the local potential.

Figure 3: ' Total energy (in Ry) in the rocksalt structure as a function of
volume per atom (in (Br)3)for SnTe. Each vertical tick equals 10 3 Ry.

The upper data points are calculated using the NR potentials. The lower
points are obtained using the SR potentials. Cubic polynomial fits are shown

as solid lines.

Figure 4: Contributions to the SR total energy of SnTe in the rocksalt

structure as described in the text. Each vertical tick equals 0.1 Ry.

Figure 5: Total energy in the rocksalt structure as a function of atomic

value for PbTe. Same convention as in Fig. 3.

Figure 6: Contributions to the SR total energy of PbTe in the rocksalt

structure. Same convention as in Fig. 4.
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Figure 7: Pseudopotential bandstructures in the rocksalt structure of

a)-c) SnTe and d)-f) PbTe. For each material, three calculations are shown:

NR, SR, and FR recpectively.

Figure 8: Total valence pseudocharge densities plotted in the (100) plane
of the rocksalt structure for a) SnTe and b) PbTe, in units of electrons

per unit cell.

Figure 9: Band-by-band pseudocharge densities plotted in the (100) plane of
the rocksalt structure of PbTe for a)-e) bands 1-6 respectively, in units of

electrons per unit cell.

Figure 10: Total energy in Ry of SnTe (V = 203.0(Br)3) and PbTe
(V = 210.0(Br)3) as a function of T with o fixed at 60°. Each vertical
tick equals 10 3 Ry. Fits to polynomials cubic in 12 are shown as solid

lines.

Figure 11: Contributions to the total energy at a = 60° as a function of

T for SnTe and PbTe. Same convention as in Figure 4.

o= - = o - o=
Figure 12: Contour plot of the fit AEtot(a, T) = Etot(a, T) Eto (a = 60", v = 0.00

t
for a) SnTe and b) PbTe. Energies shown are in units of 10 9 Ry.

Figure 13: Total valence pseudocharge densities in (110) plane of SnTe for
a) T = 0.000 and b) Tt = 0.015. This section is advantageous since it slices
through the bonds like the (100) section and the atoms stay in the plane
for t # 0.000. Charge densities are given in units of electrons per unit

cell.

Figure 14: Pseudopotential bandstructure of SnTe with & = 59.5 and T = 0.015
using fully relativistic potentials. The levels near the gap at the L and

T points are compared in the detail.
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Figure 15: wTO(V) in em ~! in PbTe. The range in V corresponds to a range
in P frem O to 8 kbar. The solid line is a good fit to the four calculated
points. The calculation was done with 19 k-points.

Figure 16: Total energy in meV/atom as a function of T for SnTe
at the calculated equilibrium volume (solid cirdies) and the
experimentally observed volume (vertical crosses). Calculations

were performed with a 44 k-point set.




49

0s°T

08°1

08°T

Se°1

071

L8°1
d

(°n*e =ﬁv,uu

8C°1

LTAR

%1
s

(88€18°0-“E%TZ8°0-)
191€8°0~
(02859°0-°282£9°0-)
91989°0-~
(0€669°0-£Z%0L°0~)

€T0TL 0
|4

*sesayluazed ur uaAfd smojeopnasd
OT2STAaTIRT31-UOU Byl Jo sanfeauadia LBasus ayg

(TEETL T-“89L6L°T-)
86GZL T~

(00Z%€*1T-°90T12S * 1-)
YISE 1~

(80%0%° T~*%S09%" T-)
m«moq.am

(26TZ5°2-)
LSEOY T~

(9189T°2~)
96188 °T-

(%20S0°2-)
9.296° T~
8

,Amm uy) sonreAuadfg

P d s

sz 0Pss 2"t
d

sz 0Psz0%c°

d
sz°0%ss 0°1°
uorIvIN3FIUO0D

9L

q4

us

¥4 SHYE 343l jJo 3soyl yira paieduod 3ie mojeopnasd
*STeTIU330d 9Y3l JO SSPUMOTTEYS pue Ssauyloows 3yl 9aztwrado o3

pPaisn{pe ‘c¢ 33y UF PaqIidsap 193jdweaed SNIPEI DICO ay3 st "z

*uor3IeINITJUOD OFWOIR ITIUTS B WOIF PIIBTNOTED
dae sTefilusjod p pue d ‘s

91 pue qq ‘us 103y srer3Iualodopnasd OFISTATIBTIIUOU JO UOTIONIIEUOY :T 219®l




50

LS

*spunodmod 3y3

O UOT3TWIC JO SIEIY pue g¢ SIUAWST3 Y3 JO SIFTI3UL SATS3YOD WOIF PaUTRIGO ST A810ud SATSIYOD (B

(00€) 29%°9

pg (103 700° 3 95470 Mwasce €7%°9 (el’? -
s%°0 62°9 %9 ?%968 "TTI-
8%°0 T€°9 [ANA 16288° 11—
8%°0 1€°9 1A GL8SY°TT-
Noaxw.ev Lv°0
ﬁoAMoomV <%0
09 10) 9770 mmosoc Lze"9
mmﬁzoomvmnm.o.mnm.o “wwAMoV G6Z°9 Awn.m -
15°0 £2°9 6°9 06218 1T~
6%°0 12°9 ¢L 1808 ° 11~
6S°0 ?T°9 S°L »Te09° 11~
" (zequ) ) (A®) 4£813us aATsaYOD “wo3le/ Ay
snynpou Jyynq JUBISUOD 9ITIFBT uf £813us TEISAIAD

3dx?
yd

s

dN 3144

3dxa

b: K¢

4s

¥N a1us

‘S9NTBA TBJUaWIlIadxd 03 paiedwod ‘sTejiualodopnasd ofmole (¥d) OFISTATIBTRI £1TIn3 pue (yS)

OFISTATIBTAL 18IS ‘ (YN) OTISTATIE[2IuouU SULSN PaIeTnoTed 9144, PUB JLUS Jo sa13xadoad Twan3onilg

‘7 9TqRlL




51

J03

S0E88°TT- |  62€88°TI- 86808°TT- | 8808 'TI- 3
(2912 21~ | Z9LTT TI- 60sSE'zT- | 2699€°zT- | TT.3
€9€2T°€~ | - 9620T°6- 90818°2- 98962~ | T°.@
91££9°0 62999°0 STE29°0 0€9T9°0 Ha
L1282~ $8618°2- 980€8" 2~ Li8z8tz- | 'a
60425 °€ 05225°€ ZIL6Y°E 6czev'e | T
610" =2 000°0=2 CTO =2 000°0=2
e e
e e
*891qd pue 3IUS UT SAINIONIIS ku.uoumﬁvl,p pue Pa3ioisTpun oy AS1sue TE3I0103 SUOTINGTIIUOD :¢ ITqeL




52

Figure 1



Z @xndgg

(17D}
_




-11.598

s
o
- O
>, -11.603
Ll -1i.805p- |
i . SR /
@ / ]
' @
-11.808- \0....,/' ¢§
| | | 1& N |

80 190 200 2I0 220
Atomic volume (a.u.)

Figure 3



“Energy (Ry/atom)

55

- SnTe SR

| L1 ] |

180 190 200 210 220 230

Atomic volume (a.u.)

Figure &



Etor (Ry)

-11.454

56

-11.499

-11.878}-

-11.8831

\

&Q_,G a
I 1

|9O 200 20 220 230
~ Atomic volume (a.u.)

Figure 5




57

e

ISO 200 210 220 230 240
- Atornic volume (a.u.)

Figure §



it i

J;r ;k_._ ”(_LEE ?... _mF -...un_ Sl R e S B :;, .ji:rlli‘rii};s itrj.....!!}hi I A

duur..]aJ?ﬂJ e, 11]..!!:]-.

bl e e R

I @andyg

A ey > e AIS <EID G ane o anh o)

D GEBRS) CEAD G GRED GEb CEN WIS GAD GNP GED D oD «

BT




PGS AP GED WD GO WP GUP GED TR 9= o

1S aluS (a)




N = m;.m_ |
4 9] uUS(9)




{ 23n833

UN 2L0d

(P)

(A9)



¢ ®3n8TJ

4S =14d(@)

(N3) 3



e
-
Fes
>
x
X
— X
LQL-‘

® O NO N O

, r\\n'm_
44 31dd(})













67

b

,_ QM... @ﬂ

P




B T e S e e R T A D R s B s ksl

L2

TR S

e A ey

3

_ &y
CAUE
. .

)
o < ;
0 - )




P d) Pbie

BAND 4

o
SRl
iz

g

|

C/

| | 69
= '
o
;

=
|

C

=)
|
A - \Wiad

Pb |



70

e) PbTe BAND 5

(

@

o et et Lt e s e T i S Yot e i R e ey Sttt e S il
R e e e I R e il B ey A e T e




d
.
1

) . ‘b. . "
) L Cee) D)

&&&

;ﬁ; 1\1\1 i .- ! -m A

ot




0T ®@andyg

. 1 N
GO0 $00 €00 200 100 O __ GO0 P00 €00 200 IO ©
w _ _ _ 881~ _ i _ i
- \Ds@\luzg 0\0-01.6"0@8._ [-
- 4 _
—088’l _n._..._._ - %3
. —S0811-7
>y
. - =
8- -
21dd 84S 3lugS .
| L] [ _ _ L O8l-




LA R A T =
R e

1 i
300 GO0 HO0O €00 200 100 O 90’0 GO0 YO0 €00 200 100 .o.w..;

T T 1T T 1T 8¢~ 1T 1

Sy

1
N3 — dra-

le2- 62-
Uxm G O Oma GOy O e¢ uxm i o0 1|t|i
L2

i

m
®
13 &L
9 3 —60-<
- " y MW
_ S | I.N.Oa W
: A . 3
IM o —
s . m.m . JM o 20

c
X
L
N0
M
c
XX
L)
19

VEITS 9%t




i Bl
e AT

2T sanlyg

6%

009

74

m\n

\ \.v_\.l

000S U5 (0 vo_m




75

2T @Ind1g

|

090G Ov Ot

|

0 o 0

000

1 000  Y¥sS 219d(9)

p—— e

009




(a) T=0.000




7
O15

7

T‘-‘-'O.

(b)

Figure 13




9T oandpz

/8

2’6
L6

0}
.—.OO

‘m_

M n_ 9]US _oﬁmc_onEocm




(‘"D WiOLD Jad awn|oA

o 902 J02 802 €0 O

79

L o ok e e T P e R e N R o S e N



e ey

0.02

80

.01

0




81

CHAPTER III:

STRUCTURAL PROPERTIES OF GeTe AT T=0




82

X. Introduction

The structural properties of the group IV tellurides GeTe,
SnTe and PbTe are of interest because these compounds have a
lattice instability which results in a rocksalt-rhombohedral
transition at finite temperature for SnTe and GeTe. Recently
we reported the application of the ab-initio pseudopotential

total-energy method to the study of the structural

properties of the IV-VI compounds SnTe and PbTe at T=0!.
Here, we present the extension of this work to the analogous
compound GeTe. In particular, we discuss calculations of the
lattice constant, bulk modulus, cohesive energy, total
charge density and band structure for the high temperature
rocksalt form, and then study the distortions corresponding
to the observed low-temperature rhombohedral structure and
resulting changes in the bandstructure. This work forms the
foundation of an ab-initio study of the structural
transition in GeTe, to be reported elsewhere?.

The format of this paper is as follows. In Sec.II we give
information about the computation of total energies and
bandstructures. In Sec.III and Sec.IV. we give the results
of calculations in the rocksalt and distorted structures,
respectively. Sec.V contains a discussion of various issues
pertaining to the calculations and their interpretation, and

concluding remarks.

TR v

T




&3

LI, Method

As described previously!, we obtain quantum mechanical total
energies of various ionic configurations of GeTe using the
self-consistent ab-initio-pseudopotential total-energy
method with the local density approximation (LDA) in the
momentum space formalism. For total energies and
self-consistent potentials, we use the spin-orbit averaged
pseudopotentials of Bachelet, Hamann and Schluter?® (Fig.1)

while for bandstructures, the spin-orbit splitting is

included. We use the Ceperley- Alder- Perdew- 2Zunger form?

for the exchange-correlation potential. Brillouin zone

averages are performed using the special ELpoint scheme of

Monkhorst and Pack? with 73=343 points in the full BZ.

Wavefunctions are expanded in a basis set of plane waves

with energy less than E,=10.5 Ry, while the effects of plane

waves with energy above E; and below E, =16.5 Ry are

included using Lowdin perturbation theory®. Computations
were performed using an IBM 370/4381 with 8-byte word

length.

I1I. Results: Rocksalt Structura
At temperatures above T ~670 K, GeTe is observed to

crystallize in the rocksalt structure®’'. By calculating

E(V) at various atomic volumes V (Fig.2a)and fitting to a

A T
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polynomial quadratic in V we can extract the lattice
constant and bulk modulus of a hypothetical rocksalt form at
T=0, given in Table I. After making a rough thermal
exéansion correction of -~1.5% to the experimental lattice

constant values also given in Table I, corresponding to a

linear thermal expansion coefficient of 20x10°¢ for T>Tg’we

see that the calculated values are ~1% too small. Though
there are no measurements of the bulk modulus for GeTe, the
calculated value of 0.51 Mbar is, as expected, roughly the
same as measurements in . 'Te and PbTe, which fall in the
range 0.4-0.5 Mbar.?-1° |

By calculating the energies of free Ge and Te
pseudoatoms, we obtain 6.9 eV/pair for the cohesive energy
of GeTe, compared to the experimental value 6.1 eV/pairll-12,
The overestimate can mostly be attributed to difficulties in
calculating the free atom energy, both from the use of the
LDA and from the approximate treatment of the spin-orbit
interaction energy, as discussed previously!l.

In order to study convergence, in addition to
calculations with energy cutoffs (10.5Ry, 16.5Ry) and 73
k~points (set A), we include in Fig.2 and Table I the
results of calculations with (10.5Ry, 16.5Ry) and 63
k-points (set B) and (11.5Ry, 18.0Ry) and 6> k-points (set
C) . The convergence of the lattice constant i= excellent.

The examination of the convergence of the bulk modulus is
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complicated by uncertainty in our fitted values, arising
from two sources. First, because of discrete changes in the
basig set at each k-point as V changes, there ig scatter in
the calculated E(V) points, the amplitude of which depends
both on the energy cutoffs and the k-point set. Secondly,

the given comparisons include only volumes in the narrow
range 168 a33 to 180 a33. since for smaller volumes the bands

cross near L, a point included in the 6* k-point set, and
the crossing at this volume is prokably an artifact of the
IDA band-gap underestimate. Thus the set A result of 0.51
Mbar is the most reliable; and direct comparison with the
calculated energies in set B and C given in Fig.2, with
allovance for the larger scatter in these sets, indicates
that the convergence should be considered acceptable.

The general features of the calculated bandstructure at

v

in = 169 ag3, showun in Fig.3, compare well with previous

empirical-pseudopotential-method calculations!3-1%, We see
that rocksalt GeTe is a narrow-gap-semiconductor with the

gap at 1=0.04 eV, spin-orbit splitting of the upper valence
bands at I’ of 0.78eV and a secondary maximum or saddle point

along F-K at (0.3) (2%/2,) (1 1/4 -1/4), 0.25 eV below the

valence band maximum at L. Unfortunately, measurements of
the gap in rocksalt GeTe are not currently available,. so no

direct comparison with experiment is possible. Howsver, our
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calculated value of 0.04 eV will almost certainly prove to
be an underestimate. This is due in part to the generic
underestimate of band gaps in density-functional
calculations and in part to the use of the energy-minimizing
volume rather than the larger experimental value for the
volume, for which a calculation of the bands at L gives a
gap of 0.12 eV,

The total scalar-relativistic pseudocharge density, shown
in Fig.4, reflects the mixed ionic/covalent bonding also
characteristic of SnTe and PbTel. The charge transfer from
Ge to Te is less than that from Pb to Te, indicating that
the bonding in GeTe is less ionic, while in GeTe the
deviation from spherical symmetry of the Te ion, associated
with covalent bonding, is siightly more pronounced than in
PbTe.

The difference between GeTe and PbTe is particularly
apparent in the band-by-band charge densities shown in
Fig.5. The lowest four bands are similar in the two
compounds-- the first is Te s-like, the second Ge (Pb)
s-like, and the third and fourth are Te p-like. However, the
fifth band, which is a mixture of Ge(Pb)-p and Te-p, has
much more charge associated with the cation in the case of
GeTe, while the lowest conduction band, a roughly equal
mixture of Pb-p and Te-s in PbTe, is predominantly Ge p-like
in GeTe. The increased involvement of Ge-p levels is

probably associated with the greater instability of GeTe

A —————— ooy
B e e e e e e e P
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against the distcrtions corresponding to the rhombohedral

structure, described below.

The observed low-temperature structure of GeTe can be

considered as a distortion of the rocksalt structure by the

relative displacement of the two fcc sublattices by a;7(111)

and a subsequent rhombohedral shear along (111) which

changes the rhombohedral angle from its fcc value of 60° to

o (Fig.6) . The first question we address is the stability of

the rocksalt structure against this distortion. First, we

vary T, holding 0 at 60° and volume at the rocksalt
structure energy minimum 169 2.u. (Fig.7). We see that the
energy gain from this distortion alone is significant. Since
this distortion energy is particularly sensitive to k-point

convergence, we show the calculations explicitly for three

sets of increasing size (63=196,73=343,93=729) with enexgy

cutoffs (10.5Ry,16.5Ry). In a polynomial fit to E(%T), the
quadr tic coefficient is converged to about 10%. On the
other hand, energy convergence is extremely good.
Calculations with cutoffs of (11.5Ry,18.0Ry) and 63 k-points
(set C of Table I) coincide with points calculated with the

lower energy cutoff on the scale of the figure, with the
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deviation increasing with T to a maximum of 1 meV at T =

0004.

Next, we vary @, with t=0 and volume=169 a.u. (Fig.8) . The

rocksalt structure is seen toc be stable against rhombohedral

shear, and we obtain a va..e for the shear elastic constant

of the rocksalt structure, C,,=1.8x10!! dyne/cm?. Since there
is no experimental measurement of C4q for GeTe, we compare

the calculation to the SnTe value C,=~1.4x10'! dyne/cm? 1§,

finding reasonable agreement. We demonstrate convergence in
k-point set and basis set size by including the results of
other calculations (sets B and C of Table I) in the figure.
Again, because the shape of the unit cell is changing, we
see some scatter in the points which, as in the rocksalt

structure, is especially noticeable for set B. Otherwise,

the convergence appears to be good, with C,, converged to

about 10%.

Finally, we study a range of values of T and & to
determine the zero-temperature equilibrium lattice

parameters. The results are fit to within 10™? Ry and the

fit is shown in Fig.9 as a contour plot. The resulting

lattice parameters are a = 58.8° and T = 0.025 to be

compared with the experimental values (57.9°,0.026)!7 and
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(58.0°, 0.034)7.

The bandstructure at the minimum-energy configuration is
shown in Fig.10. Because inversion symmetry is slightly
broken, the bands are spin—split. For this distortion, we
find a gap at L of 0.4 eV, with a secondary valence band

maximum 0.18 eV lower at T, and another maximum or saddle

point 0.27 eV lower along 'K . Tunnelling spectroscopy

gives a value of 0.1-0.2 eV for the fundamental gap!?. Since
the gaps at L and T and the existence of an indirect gap are
quite sensitive to the distortion, our overestimate of the
gap might be accounted for by the difference between the
structural parameters of the calculated minimum-energy
configuration and those of the thin polycrystalline films in
which the tunnelling experiments were performed.

We have studied the trends in band edges at L and T with

distortion in more detail. For @& = 60°, as T increases the

conduction band minima increase and the valence band maximum

at L decreases slightly, while the valence band maximum at T

decreases strongly. For T = 0, as 0 decreases, the gaps at L

and T increase slightly and the levels at L drop while those

at T rise, keeping the weighted average constant. Fitting

the results for varying a to a straight line, we can obtain

the shear deformation potential constant, defined as Z =
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(V3/2) (A/¢), where A is the L-T energy splitting and ¢ is
the deviation of & from 2m/3. Our calculated value = = 10

eV is comparable to E = 5-7 eV derived from measurements of

the anisotropy of the resistivity below T 20-21,

V. Discussion

The lack of complete experimental data on elastic
constants and bandstructure of GeTe is partly a conseguence
of the intrinsic limitations on the quality of samples and,
for rocksalt GeTe, the high temperature at which the form
exists. These limitations arise because the range of
homogeneity of the alloy does not include the stoichiometric
composition, but lies on the Te-rich side??"2¢, The Ge
vacancies and other lattice defects, in addition to possibly
modifying the structural properties of the material

directly, give rise to a large concentration of free holes.

In fact, tunnelling spectroscopy shows that €, lies 0.4-0.5

eV below the top of the valence band!?, and Hall

measurements?® typically show p~1020-102! cm-2,

The effects of non-stoichicmetry can be important in the
comparison of experimental and calculated quantities.
~example, in going from the rocksalt to the rhombohedral

structure, there is an energy gain “rom the redistribution
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of holes among the L and T maxima, called the ‘inter-valley
Jahn-Teller effect.'?® The lowering of C,, for typical hole

concentrations is measured in SnTe to be as large as 35%!6,
and is expected to be important in GeTe as well. |
Aside from the use of finite basis and k-point sets, the

most important approximations in the calculation are the
pseudopotential and local-density approximations. As
mentioned earlier, the use of the LDA overestimates the
cohesive energy of GeTe due to the inaccuracy in the
calculation of the free-atom energy. Moreover, since density
functional theory underestimates the gaps in semiconductors,
we fill the five lowest bands completely, even when the gap

is slightly negative. This occurs for small volumes in the
rocksalt structure or fer the rhombohedral structure when %

is 0 and & is not equal to 60°. By the same token, it is

reasonable, even when we use this method to study finite
temperature properties, to keep the electrons at zero

temperature despite the fact that our calculated gap for the
rocksalt structure is <kT_.. Finally, as is known from

experience in a variety of systems!®, this method
underestimates the lattice constant. Though this
underestimate is not in itself very significant, when we
determine the structural parameters of the rhombohedral form

the errors in the calculation of the distortion energy are

-
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convoluted with the volume error. Since a decrease in volume

should favor the more symmetric rocksalt structure and
dT./dp is observed to be negative, the result is that for

Aall three materials, GeTe, SnTe and PbTe, the stability of
the rocksalt structure is greater than that inferred from
experiment.

In summary, we have calculated and studied the
convergence of lattice parameters, elastic constants and
bandstructures of the rocksalt and rhombohedral forms of
GeTe, and obtained good agreement with experimental
measurements, when available. We conclude that the ab—inipio
scalar relaéivistic pseudopotential total—-energy method can
be used to provide an accurate description of the structural

properties of GeTe.
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Table I. Minimum crystal energy, lattice constant and bulk
modulus in the rocksalt structure extracted from quadratic
polynomial fits to calculations done with three different
sets of energy cutoffs and k-points, compared to experiment.

Energy “k-point mimimum crystal lattice bulk
cutoffs(Ry) set energy (Ry/atom) constant (A) modulus (Mbar) ;
(10.5,16.5) 73 -12.22884 5.85 0.51 |
(10.5,16.5) 63 -12.22818 5.83 0.41
(11.5,18.0) 63 -12.22734 5.87 0.60

EXPERIMENT _— 6.01(670 K)7 --
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Figure Captions

1. Ab-initio non-local relativistic atomic pseudopotentials

for Ge and Te as calculated by Bachelet, Hamann and

Schluter3,

2. Total energy of the rocksalt structure, in meV/atom, as a
function of varying atomic volume. The points shown are
calculated with (a) set A cutoffs, (b) set B cutoffs and (c)
set C cutoffs. For each set, the minimum of the parabolic
fit shown as a solid line is selected as the zero of energy.

3. Pseudopotential bandstructure of GeTe in the rocksalt

structure with atomic volume 169 ag3, including spin-orbit

coupling. In units of 2r/a,, I' = (0,0,0), L = (1/2,1/2,1/2),

W= (1,1/2,0), K= (1,1/4,-1/4) and X = (1,6,0). The gap of
0.04 eV at L is too small to be visible on this plot. ihe
energy of the top of the valence band is indicated by a
dashed line.

4. Total pseudocharge density of rocksalt GeTe with atomic

volume 169 ag® in the (100) plane. Densities are given in

units of electrons per two-atom unit cell.

5. Band-by-band pseudocharge_densities of rocksalt GeTe in
the (100) plane for (a)-—{e) bands 1-6, respectively, in
units of electrons p~r unit cell. Positions of Ge and Te
atoms are the same as in Fig.4.

6. Rhombohedral structure of.GeTe is obtained from the
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rocksalt structure by a two-step distortion: (a) relative

displacement of the two fcc sublattices by a,t(111) aud (b)

rhombohedral shear along (111).

7. Total energy in meV/atom of GeTe as a function of T with

a fixed at 60°. The filled circles are'points calculated

with 73 k-points, vertical crosses with 6 k-points and

diagonal crosses with 9% k-points. The fit to the points

calculated with 73 k-points to a polynomial quartic in 72 is

shown as a solid line. For each set, the calculated value at

T = 0 is selected as the zero of energy.
8. Total energy in meV/atom of GeTe as a function of & with

T = 0. The filled circles are points calculated with set A

cutoffs, vertical crosses with set B and diagonal crosses
with set C (see Table I). The solid line is a parabolic fit
to the points in set A. For each set, the mimimum of a

parabolic fit is selected as the zero of energy.

9. Contour plot of the fit to AE _ ia,T) = E, . (0,T) -

E,.. (0=60°,7=0) . Energies shown are in meV/atom.

10. Pseudopotential bandstructure of GeTe in the

rhombohedral structure with atomic volume 169 ag3 and
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distortions 0=58.8° and 1=0.025, including spin-orbit

coupling. In units of 2n/a,, I' = (0,0,0), T =

(1/2,1/2,-1/2), L = (1/2,1/2,-1/2), W = (1,1/2,0), K =
(1,1/4,-1/4) and X = (1,0,0). The energy of the top of the

valence band is indicated by a dashed line.




ub st A AIRTC R AT e R S AR M PP R B b o 2

L 4 obinasd2
A i }....!.r-«\xt]fl..«!il.l et BRI el e

100




191

170
VOLUME (q.u.)

Fig. 2

(AW A9¥INT VIOL







103




104




135

BAND 3




(b) BAND 2










109




110

’ Figoe.



111

I . . 1 i
To) @) . To!
T

(AW AD¥INT VIOL

Fig.7



112

(hew) A9¥3NT TWIOL

RHOMBOHEDRAL ANGLE «

Fig.8

A




113

58.0 -

HOEWOHY

1

ITICE DISPLACEMENT

SUB







A T R D e A N R e
T A do e

T s U Bt e s s W 4 gt U A
=y Wlook TR ez FRETHEIS
SRR J?gaé,r@ﬁ?ﬁqfﬂ_@ﬁﬂ i

N St T oL L T

=
(D)
)
s
@)
Z
Q
-
%)
2
=
» 2
= <
s
(o™
m
©,
-]
=
%)
E

CHAPTER IV:
THEORY OF




116

L. _INTRODUCTION

In the application of modern concepts of critical
pPhenomena to the study of finite~temperature phase
‘transitions in real materials, the calculation of the
transition temperature and other non-universal critical
properties is essential. This requires the combination of
detailed microscopic quantitative knowledge of the
properties of the material under consideration with an
appropriate statistical mechanical treatment.

One way to obtain these properties is through
first-principles total energy calculations. Previous
attempts to calculate transition temperatures!-? have used
total energy methods which rely on approximations limiting
their accuracy and range of applicability. In contrast, the
ab-initio pseudopotential method has been seen to be highly
accurate in describing the zero-temperature structural
properties of a wide variety of systems3, including group IV
tellurides?. In the present study of the structural phase
transition of bulk GeTe, we combine this self-consistent

method with a rencrmalization-group-theory (RG) approach to

calculate T_ and predict other critical phenomena associated

with the transition, in excellent agreement with available
experimental data.
At high temperatures, the IV-VI narrow gap semiconductor

GeTe has the rocksalt structure. At low temperatures the




117

system exists in a rhombohedral structure. This structure,

shown in Fig.l, can be described as a rocksalt structure

slightly distorted by freezing in a k=0 optiq phonon along
the [111] direction, corresponding to the order parameter of
the transition, with a subsequent shear relaxation along
[111], corresponding to the secondary order parameter.
Experimental studies of the transition and their
interpretation are somewhat difficult because of the high
transition temperature and intrinsic limitations on the
quality of the sample. The latter arises because the
compound GeTe is not in the range of homogeneity of the
alloy, which for a nominal stoichiometric composition
results in the coexistence of free Ge with a 50.3% Te
phase®~?. This phase exhibits the rhombohedral-rocksalt
transition and contains free holes arising mainly from Ge

vacancies. The temperature dependence of the order parameter

near the transition has not been observed, as it has in the

analogous compound SnTe using elastic neutron scattering®.

A T R R
iy ‘-‘Fm%]ﬁg;@

However,transition temperatures in the range 625 K to 700 K

kiR,

have been extracted from measurements of the temperature
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dependence of the volume and rhombohedral angle @ using
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x-ray diffraction® %11, calorimetric determinations of the
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heat evolution associated with the transition!? and studies

of anomalies in the thermal expansion®7/13715 and electrical
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discontinuities in volume and O have been detected at the

transition, suggesting that it may be weakly first order.
Our theoretical investigation of this transition proceeds
in three steps. In section II, we show how to manipulate the
full anharmonic lattice Ramiltonian into a form with a
tractable number of coupling constants. In section III we
determine the coupling constants for GeTe using
pseudopotential total energy calculations for various
structural configurations. Finally, in section IV we

describe a renormalization-group calculation implemented in

momentum space which yields T_ and the critical properties

associated with the transition. Section V contains a
discussion of the approximations in this approach and the
considerations relevant to its application to
finite-temperature structural transitions in other systems,

and concluding remarks.

As the starting point of a first-principles study, we seek
a microscopic Hamiltonian for the system which incorporates
a correct desription of the features leading to the
structural transition!®. For GeTe, it is appropriate to use
an anharmonic lattice Hamiltonian!®?° in which only the
ionic degrees of freedom appear explicitly, and the

electronic effects are included in the Born-Oppenheimer
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approximation. However, even if this Hamiltonian is
simplified by expanding to fourth order about the prototype
configuration (the rocksalt structure), it is_still too
cbmplicated for calculéting numerical values of the
coefficients or for evaluating the partition function and
obtaining thermal properties. The local mode approximation??
provides an intuitively appealing way of obtaining an
equivalent model Hamiltonian with a simpler form and a
greatly reduced number of parameters. For each unit cell,
the local mode variable is defined as the projection of
local ionic displacements onto the polarization vectors of
the k=0 optic modes, referred to the mean positions in the
high-temperature structure. The Hamiltonian is expanded in
symmetry allowed powers of the local mode variables, with
on-site terms kept up to some arbitrary order and intersite
interactions to quadratic order only.

To a large extent, the requirement that the local mode
have the lattice symmetry restricts the possible
definitions. The approximation of purely local
anharmonicity, essential for obtaining a Hamiltonian with a
small number of parameters, necessitates that the precise
choice >f local mode incorporate a physical understanding of
the lattice instability. The charge flow and energy gain
resulting from the symmetry breaking by the distortion of

the six equivalent nearest-neighbor bonds of the rocksalt

structure involves primarily Te p-like states???, while the
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main anharmonic contribution to the energy originates in the

nonlinear Te polarizability.?3 Thus, for GeTe, the best
choice of local mode emphasizes the distortion of the Te ion

environment:

-

E, = a, M (ATpl - X AT I/6)
n.n i
where a;, is the length of the side of the fcc conventional

unit cell and the displacements AY are measured relative to

the rocksalt structure.

Before giving the explicit approximate expression for the
model Hamiltonian H_, which will be used in the

calculation, we study its properties using the exact form,

obtained from the relation:

exp (-BH,, ({E,}) = I[H(dc‘iin exp(—BHm({Ei),{E'si})

where G, = a,"! (ATl +n§jA'fGej/6) and H,, ({},18,}) is the

full anharmonic lattice Hamiltonian. We note that at fixed

{§i}, H 4 in principle depends on the energies of a 3N/2

dimensional space of ionic configurations and the
temperature.

However, to a good approximation the situation is much

simpler. We decompose H as follows:

lat
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H (1§}, {0, }) = H ({§)) + H({o,}) + H({§1},{o,}).

Because the physically important anharmonicity is associated

with the {§}, it should be sufficient to include the {6,}

in the expansion of H,,, up to quadratic order only. The
Gaussian integration over the {Gi} replaces {3;} by the

values which minimize Hj, at fixed {§}, and therefore the

coefficients of H , are independent of temperature in this

approximation.

The relation of Hmm({gi})'to the energies of ionic

b -
configurations H,, ({§},{6,}) can be further simplified by

keeping only the lowest order term in H,,
Id3kV“B(E)0“(E)§B(-E). Then, with &(K) nonzero, only the
minimization with respect to the component of 3}4§) which
transforms according to the same representation of the group
of X is nontrivial. For small X, however, V(K) vanishes like

k?, so there we keep instead the term proportional to

Ja3xfak 1 voPrBydo® (R) EB (R 1) EY(K-K*) which describes the lowest

-y

order coupling of & to long-wavelength strain. Rather than
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integrate this term out immediately, we will for the time
being keep the long-wavelength strains explicitly in order

to study the physics arising from this coupling.

The construction of H for the GeTe transition proceeds

mod
as follows. The local mode variables sit on the sites of an
fcc lattice and only cubic-symmetry invariants appear in the
expansion of the Hamiltonian. We truncate the onsite
potential at fourth order in the local mode variable but
keep isotropic terms to eighth order. Intersite interactions
up to second order are included, since the constraints
imposed by the sharing of Ge atoms by first and second
neighbor local mode octahedra suggest the coupling is
important. The lowest order terms involving long-wavelength
strain fields are included explicitly, as discussed above.

Carrying out this construction, we obtain the following

explicit form for H_ ,. The expression for the onsite

potential is:

Zi{m'é(ﬁi)ﬁ + uol'é’(ﬁ'iw + voz(lga(ﬁy + D|€(ﬁi)|6 + El'&}ﬁi)la},

with the first neighbor intersite interactions:

-1/2Zi{€x(§'i)£a12§X(§'1+a03/2) + a,3E (R, +a,d/2)
def(sxe{,(sx£2)t  dej(z§z2)}
+ a3 (@ %) @9E R +a,d/2)
def(+x+}
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+ a,y(d- %) (d- z)§ (Ri+a 3/2)}+cyc parm. }
de{(tx*z)l

and second neighbor intersite interactions

-1/ 221{§ &) [0, 38 ® +a,d) + b, 38, R, +a,d)]+cyc.pernm. },
defexd defty, 13}

where EG&) is the local mode variable at the fcc lattice
site 13:1.

With the strain tensor 2;3= (SuB/Sxa + 8ua/5x5)/2, the

lowest order terms which describe long wavelength strain
deformations and their coupling to the order-parameter

are:

Q) Jas r[CnZe 2(F)/2 + Cp,Ley, (Fepy(F) /2 + C“EeaB (%)
o ke’

o2eaq (F) 18,12/3-9, Xieoq (T8, B, o~ gyeqy (F) (§, 2-1&,17/3)] .
d d‘ﬁ ’ ’ of ’
These expressions define the model Hamiltonian

coefficients &, v, v,, D, E, a,, a,, a;, b;+2b,, C,,, Cypr

Cyqr 9or 9;s,2nd g, which will be calculated in the next

section.



The values of the coefficients for GeTe are obtained by
fitting the model Hamiltonian to the energies of a variety

of local mode configurations. For the zero-strain
coefficients A, W, Vvor D, E, a,, a,, a; b;+2b, we must

consider configurations with the full fcc translational
symmetry (Fig.3a) as well as configurations with two
translationally inequivalent types of local mode variables
on fcc lattice sites. For the fcc lattice, there are only
two ways to divide the sites into two inequivalent
classes, giving rise to an arrangement with a tetragonal
unit cell (Fig.3b) and to one with a rhombohedral unit
cell (Fig.3c). In each type of unit cell, we study two
families of local mecde configurations, specified by a

fixed polarization vector at each inequivalent site and a

varying amplitude T. For each family, the energy as a

function of T determines one combination of coefficients

at each order. Unfortunately, the second neighbor

couplings b, and b, cannot be separately determined without

using still larger unit cells.

To obtain the strain coefficients Ciyr Cypr Caqr Gor

g,,and g,, it is sufficient to consider configurations in

which the local mode is uniform and only the lattice
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changes. We study three types of variation ccrresponding

to pure volume change (ex£=ey{=ezz), pure rhombohedral angle

change at fixed volume (e =€y y=€,,r e,,~e =e ), and

uniaxial strain (e,,) . The coefficients C,,, Cy,r C,y are
obtained from configurations with T = 0, while for 9or

g,rand g, a configuration with nonzero T must be included

at each e.

As discussed in Section II, the local mode configuration
energy can be taken as the minimum over the energies of
ionic configurations with the same translational and point
symmetries. The types of zero-strain ionic configurations
for which we must calculate the energy are specified in

Table I and Fig.4. For families (a), (b), (e) and (f) the

choice of T and the symmetry requirement completely

specify the ionic configuration, For families (c) and (d),
the symmetry requirement is less restrictive, resulting in

a one-dimensional space of ionic configurations, here

labelled by G, which must be searched for the energy

minimum.
The necessary calculations of the energies of ionic

configurations are performed using the self-consistent

ab-initio pseudopotential total energy method?! 25, We use
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the spin-orbit averaged relativistic nconlocal atomic
pseudopotentials fcr Ge and Te given by Bachelet, Hamann
and Schluter?¢. Exchange and correlation are included
through the local dénsity approximation using the
Ceperley- Alder- Perdew- Zunger parametrization?’.

Eigenfunctions are expanded in a plane wave basis with

energy cutoff E; = 10.5 Ry, and Lowdin perturbation
theory?® is used to include the effect of plane waves up to

Ey = 16.5 Ry. Brillouin zone averages are performed using

Monkhorst-Pack special Eonint sets??, The specific details

of the k-point sets for each configuration are included in

Table I. In previous work?! we have seen that this gives

extremely good basis set convergence, and the error is

dominated by K-point sampling. Computations were done on
an IBM 370/4381 with 8-byte word length.

Details of the minimization procedure relating local
mode corfiguration energies in families (c¢) and (d) to
ionic configuration energies are shown fully in Figs.5 and
6. The results for the energies of all the zero-strain
local mode configurations are shown in Fig.7. Energies of

configurations including strain are shown in Fig.8. We

include the results for smaller K-point sets in Fig.7 to
demonstrate the convergence. With the cutoffs used,

energy curvatures are determined to about 10% accuracy.
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The model Hamiltcnian parameters were obtained through a
two-step fitting process. First, the zero-strain
coefficients were fit to the zero-strain local mode

configuration energies, measured relative to the energies

at 1=0. Then, the strain parameters were fit to the

energies of strained configurations, holding the

zero-strain coefficients fixed and letting the a, in the

-9

definition of € vary with €. The quality of the fit can be

seen from the solid lines in Figs.7 and 8. The resulting

parameters are given in Table II.

1V. STATISTICAL MECHANICS

Given this microscopic Hamiltonian, the transition
temperature and critical properties follow from the
evaluation of the partition function. A systematic
approach begins with a Hubbard-Stratonovich transformation

on the partition function

g = I[Hdgilﬂ‘é’(f) exp [-BH ., ({E, 1,2 1)1

=Y
to introduce a field ¢i which couples linearly to the

ol -
order parameter. The trace over §; is expanded in ¢i and

ﬁ;(f) to give a functional of the same form as the original

Hamiltonian:
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BHas=Jd"’r{ (£, (T-T) I(E) 12 + [V(E) 12) /2

+(§f(aa¢a)2.‘d%(ag¢u) (Bpdg) ) /2 + TIF(E) I* + ¥ 5%(2)4 + 0(9%)

3

+ (en?)1 [§3§em(f)/3 + Cngemz(i’)/Z + T2, (D egy (D) /2
oL#p

+ Cyeegp® (T) = Fodiegy (T) 1F() 12/3 - §,Zegg ()0, () §g(F) -
op ok o«<p
5 %00 () B ()2 = 16(2)17/3)] } -

In anticipation of the RG analysis below, we have taken
the continuum limit, defined the length scale so that the

Brillouin zone is approximated by a sphere of radius 1 and

- - -h
normalized the ¢(r) so the |V¢(f)|2 term has coefficient

1/2. All the coefficients except r,, £ and h, which arise

from the quadratic intersite coupling, are now functions

of single-site traces ( and thus of B)

<0 ®)> = [0k exp(-BIAIEI24u, 18I H+v,ZE H4DIEI+EIEI)) p ()

jak exp(-B[A|€|2+uo|€|4+v0§§a4+n|E|6+E|E|°1)

Having manipulated the partition function into a
standard functional integral form, we now proceed to

evaluate it. The use of the stationary phase  approximation
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leads to a mean-field-theory transition temperature Tooms =

Ty = 29,2,/ (3r,(C,,+2C,,)) . For GeTe, we find T = 669 K
while the contribution from strain coupling contributes +4
K, giving T, .. = 673 K.

An estimate of the correction to the mean field value of

T, and information about the critical behavior can be

obtained through the renormalization group in the

€-expansion. Since the critical temperature dependence is

contained in the vanishing of T- T all other

c,mf!

coefficients in PHy, are evaluated at T_ . and their

temperature dependence is neglected in the following

discussion. The resulting values of the coefficents in PBHy

are given in Table III. This type of compressible

3-component model with cubic anisotropy has been studied

previously3®. For the present discussion, we write the
functional in the standard Landau- Ginzburg- Wilson form
with n=3, d=3 and cubic symmetry, including the
infinite-range intersite quartic couplings generated by
integrating out the homogeneous strain. This leads to:

BHLGW=Jd3r{ (£ (T=T¢ o) 15(2‘) 12 + |VO(D)12)/2 + ulB(D) 14 + v§¢a(f)4 +

0(9%) + (£2(3,0.)2 - h2(3ad ) (B,0a)) /2 }
o ot#@ﬂa *'P
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+ Jarcfasr (wo 2 (F) 20, (1) 2

+, 20, () 20g (T1) 24w, 28, () g (D) 0, (T g (F") )
ol<§ &<p
In analyzing this model, we neglect the higher order

anharmonicities and the anisotropic components of the
gradient terms since these are marginal or irrelevant
fields and will modify the flows significantly only in

extreme cases. Thus, we consider the differential

recursion relations to first order in € = 4-d in the

six-dimensional parameter space r=r (T-T, .()s U, v, w,, w,
and w,:

dr/dl = 2r + (81%) 1(20u+12v+4wy+4w,)/ (1+r)

du/dl = u - (8% lu(44u+24v)/(1+r)?

dv/dl = v - (8n?) lv(36u+48v)/(1+r)2.

dw,/dl = w, - (81t2)'1(2'4w°u+8w1u+24w0v+4w02)/(1+r)2.

dwl/dl =w - (81t2)'1(32w1u+8w0u+24w1v+2w12+4w0w1)/(1+r)2

dw,/dl = w, - (8n2)‘1(8w2u+2w22)/(1+r)2

By iterating the recursion relations numerically, we
examine the changes in the flows as the system moves along

the line in parameter space according to the physical

temperature T, and find a shift in T, of -16K, yielding T,
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= 657K.

An analogous treatment of the nearest neighbor Ising

model on a face-centered-cubic lattice gives a shift in T,

of -14%, comparable to that of -18% obtained from

numerical studies3! in d=3. The smaller shift in the

present case results from smaller ratios of the fourth

order couplings to r,, as determined by the several

independent microscopic coupling constants. To lowest

order, the strain-related fluctuation contribution to the

shift in T, can be estimated by mapping to an effective

cubic-anisotropy model“-?;r+(2uzrd(wb+wﬂ. 9=u, ¥=v, which
shows that at this level, the shift of 0.35K is
independent of w,. In fact, in the precsent case higher

order effects are also important since comparison of the

full flows with those in which we set w,=0 yields a

slightly larger contribution of 3K.
This RG analysis can also be used to understand the

observed first-order character of the transition. At the

vfixed points of the pure cubic-anisotropy model?? (w,=0),

the w, are relevant. There are new fixed points with w,*>0,

but these are not accessible to flows starting in the w;<0

region of parameter space, as in the present case where

R
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wy=-2.71%10"3, w,=-3.83x107* and w,=-3.60x10"2. The resulting

runaway behavior of the strain-generated couplings ig
associated in principle with the occurrence of a first

order transition. To see that this runaway, particularly

in w,, provides a plausible mechanism for the observed

character of the transition, consider that within mean
field theory, the effect of the strain coupling is to

shift the effective values of (u,v) towards the mean-field
phase boundary v, + Vv../3 = 0, from (0.018,0.013) to

(-6.1x107%,0.028) . This substantial shift suggests that
though the transition within mean field theory is still
second order, the strain effects could be large enough to
produce an observable discontinuity within RG, and thus

the transition is fluctuation-driven first-order.

Here we review the calculation to see where important
approximations and calculational inaccuracies enter and to
separate the features which are special to the GeTe
transition from more widely applicable aspects.

We started by assuming that the transition could be
described by a purely ionic Hamiltonian expanded about the
prototype structure. Although models have been proposed in

which the near-band-gap electronic states are the direct
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source of the temperature dependence?? 3!, it seems unlikely
that this effect could be significant compared to the
lattice anharmonicity in the case of GeTe. Defining a
local mode variable, we formally obtained a model
Hamiltonian that exactly reproduced the thermal behavior
of the original. Then we approximated the model by a
truncated expansion--local anharmonicity, no intersite
interactions beyond second neighbor, lowest order
local-mode-strain coupling-- with no temperature
dependence in the coefficients. Because the definition of
the local mode variable and truncation of the model
Hamiltonian (which is important in determining the
quantitative accuracy of the model) depends on the physics
of the GeTe transition, the details of this part of the
procedure would need to be rethought when applied to other
systems. In particular, although the local mode
approximation can be used to obtain model Hamiltonians for

both displacive and order-disorder structural

transitions!®, the large local anharmonicity in the latter
case probably implies that ncnlocal anharmonic terms must
also be included for a good quantitative description.
Therefore this approach is generally feasible only for
transitions, like that in GeTe, which have displacive
character.

In contrast, once we have obtained the numerical form of

the model, the statistical mechanical analysis depends
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mainly on the universality class of the transition. The

dropping of terms from H,,. and the validity of techniques

=
PN

such as the e-expansion rely less on the physics of GeTe

and are more subject to systematic improvement than the

approximations in the form of H ,. For example, the

fluctuations could be described using the full Green's

function instead of its gradient expansion, the analysis

could be carried to higher order in &, and the higher order
anharmonicities, anisotropic fluctuations and the terms
generated by the inhomogeneous strains could be included

explicitly in the recursion relation analysis. In fact, to

first order in € the sixth order anharmonicities can be
included in the analysis simply by introducing effective

values of u and v3>. For the zero-strain coupling case, we

£find (u, s Vee) shifts only slightly, from (0.018,0.013)

to (0.013,0.011), so that this correction cannot account
for the observed first order behavior.
The most important calculational errors enter via the

total energy calculations. As discussed in section 1V,

kK-point convergence makes the largest contribution to
errors at the level of ionic configuration energies,

resulting in uncertainty in the quadratic coefficients in
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H 4 of about 10%. Propagation through to T, shows that the
error in T, is slightly sublinear in the uncertainty in
the coefficents. At the level of H_ ,, we also were unable

to separate b, and b,. Since we expect both of these to be
positive, we introduce V € [0,1] with b, = v(b,+2b,), b, =

(1-v) (b,+2b,) /2. For the RG analysis, we chose v= 0.37

which is a reasonable value in view of the lack of strong
anisotropy of the first neighbor interactions and has the
additional advantage that f£f=0. If we had included £

explicitly in the RG analysis, it would be possible to

obtain quantitative bounds on T_(V). However, since T_ .

depends only on b,+2b,, T, should be fairly insensitive to

V. With the above considerations, we make an estimate of

the error in T, to obtain a final answer of 657 +/- 100 K.

Aside from T, and the character of the transition, a

number of other properties derivable within this framework
could be compared with experiment. Experimentally
observable quantities related to the strain, include
dT./dP, elastic constants and their discontinuity at the

transition, and the discontinuity of the thermal expansion
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- coefficient at the transition. These provide information
about the order-parameter strain couplings in the syst .
and could be calculated using our approach, although a
more refined treatment of the strain degrees of freedom
would be required than that given here.

In summary, we have studied the phase transition of GeTe
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