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ABSTRACT
In running volumetric Denial-of-Service experiments on DeterLab,
we have faced challenges regarding the collection and handling of
experiment results without impinging on the performance of the
experiments themselves. In this paper we report on our findings
with respect to both the collection and handling of data from our
experiments, based on challenges of both performance and scale. To
instrument experiments with minimal interference with results, we
use simple packet capture, in contrast with DeterLab’s supported
real-time collection and insertion of experiment data, which is pro-
hibitively slow for our high-volume and many-experiment use case.
The contribution of this work is a comparison of two approaches
to experiment grouping and analysis driven by the example of
our experimental requirements of high-volume and performance
sensitivity.

CCS CONCEPTS
• General and reference→Measurement; Performance; Ex-
perimentation; • Information systems→ Relational database
model; Database performance evaluation; • Security and privacy
→ Denial-of-service attacks.
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1 INTRODUCTION
In this paper we present a novel framework for collecting and an-
alyzing data from high-volume Denial-of-Service (DoS) flooding
attacks in security experimentation testbeds. The design and im-
plementation of our framework is motivated by our heavy use of
DeterLab for DoS-resilience research in the IoT space, but we have
observed that this framework is a good fit for other high-volume
networked experiments [4]. DeterLab is effective for launching
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security experiments on physical machines, but its data measure-
ment, storage, and analysis is ill-fitting for high-volume and many-
experiment use cases. Our experiments produce 1GB of network
data on average (10GB in the largest case) and we run roughly 100
experiments. We group experiments together and analyze them at
the group level to draw conclusions about the DoS-resilience of
different configuration parameters of our system, as shown in Table
2. Most of our experiment sizes come from Gbps attack rates poten-
tially lasting minutes. We are able to efficiently process our many
high-volume experiments by employing low-overhead instrumen-
tation, leveraging parallelism, and choosing good storage methods
for experiment results. In particular, we propose two ways to store
experiment groups: file-based and database-assisted, preferring the
latter for more scalable experiment groupings.

In what follows, we provide background on DeterLab and our
security experiments in Section 2, discuss the design choices, trade-
offs, and implementation considerations of our framework in Sec-
tions 3 and 4, evaluate the performance and usability of the frame-
work in Section 5, discuss future work and applicability of this
framework to other experiments in Section 6, and finally conclude
in Section 7.

2 BACKGROUND
This section provides background information on DeterLab and
the nature of the experiments we run. We highlight why these
experiments pose a challenge for measurement and storage, and
how they are applicable to other cybersecurity experiments.

2.1 DeterLab
DeterLab allows researchers and educators to allocate real machines
connected with real, physical networks for the purpose of running
cybersecurity experiments without leaking any malicious traffic
out to the Internet [4]. Real machines are important for accuracy
of experiment results to mirror the real deployments they simulate.
Leaking malicious traffic is dangerous because it could victimize
organizations and is illegal [18].

DeterLab offers tools for running experiments, such as the MAGI
orchestrator, which provides "a workflow management system for
DeterLab ... and control and data management for experiments"
[10]. The MAGI orchestrator includes a data management layer to
store experiment data in MongoDB, a scalable collection-oriented
NoSQL database [8, 9, 17]. The MongoDB instance is allocated
on hardware separate from experimentation machines and is the
only option for data storage. MAGI’s approach to experimentation
couples data measurement with database insertion at experiment
run-time [9]. The large data volume in our experiments, along with
the instrumentation overhead, make it infeasible to insert data into
the database in real time.
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Figure 1: Diagram depicting a standard topology of devices
which we use in DeterLab to launch experiments. All nodes
are real physical server machines and network links repre-
sent real physical interconnects.

2.2 Security Experiments
Critical to the successful operation of our network of devices is
the proxy referenced in the topology in Figure 1. The goal of our
security experiments is to protect this proxy from DoS attacks.
Table 1 shows configuration parameters of interest for testing DoS-
resilience impact. The proxy is an especially attractive attack target
because its availability is critical to the end-to-end operation of
clients. The proxy is exposed to attacks spanning two protocols.
Repeatedly processing many messages makes the proxy susceptible
to volumetric attacks.

A well-positioned attacker, as in Figure 1, can launch a flood-
ing attack through the proxy, which will exhaust critical proxy
resources. These are critical to maintain availability and good per-
formance from the perspective of clients [16]. Consequently, we
design this proxy to maximize availability and client performance,
especially in the face of an attack. We focus on managing proxy
memory, latency, connections, and other critical resources in our
larger security research, where we also explore topologies and con-
figurations other than those in Figure 1 and Tables 1 and 2. In this
work, we focus on instrumentation, grouping, and storage of exper-
iments. Below we discuss the experiments’ setup and measurement
considerations.

2.2.1 Experiment Setup. We assume that clients are resource con-
strained devices (e.g., IoT devices like home security cameras, moni-
toring systems, and sensors) that communicate with an origin server
that uses HTTP to serve content. Since clients are constrained, they
cannot communicate using HTTP directly. Instead, they speak CoAP,
a REST-based application-level protocol optimized for constrained
machine-to-machine communication [24].

The proxy forwards CoAP to HTTP (and back) to bridge the com-
munication gap. It receives CoAPmessages from clients on its ingress,
translates from CoAP to HTTP in-memory, and sends the result on
its egress [5]. A typical experiment comprises multiple trials where
clients send synchronously and repeatedly to the origin server,
via the proxy, for a fixed period of time while an attacker runs
simultaneously for a subset of that time period.

Experiment ID Attacker CoAP Server Protocol Timeout
1 N UDP HTTP 20 sec
2 N DTLS HTTP 20 sec
3 N UDP HTTPS 20 sec
4 N DTLS HTTPS 20 sec
5 Y UDP HTTP 20 sec
6 Y DTLS HTTP 20 sec
7 Y UDP HTTPS 20 sec
8 Y DTLS HTTPS 20 sec
9 N UDP HTTP 5 sec
10 N DTLS HTTP 5 sec
11 N UDP HTTPS 5 sec
12 N DTLS HTTPS 5 sec
13 Y UDP HTTP 5 sec
14 Y DTLS HTTP 5 sec
15 Y UDP HTTPS 5 sec
16 Y DTLS HTTPS 5 sec

Table 1: Sample experiments with realistic varied configura-
tion parameters.

Experiment IDs Description
1-4,9-12 Vary timeouts for clients without attack
5-8,13-16 Vary timeouts for clients with attack
9-16 Vary transport protocols only

Table 2: Groupings of experiments for analysis about con-
figuration parameters. An experiment can be in multiple
groupings.

2.2.2 Measurement. We choose quality-of-service (QoS) metrics at
the clients which directly reflect client performance and indirectly
reflect the proxy’s ability to maintain liveness. We use the QoS met-
rics below to compare DoS-resilience of experiments with different
configuration parameters:

• The distribution of client message round-trip-times (RTT).
• The number of successful and failed client requests.
• The number of retransmitted client messages.

It is insufficient to record only the client-side metrics above. For
example, to diagnose why RTTs are slower than expected, we need
knowledge about communication between devices, as well as CPU
and memory profiling data. In particular, we must trace each mes-
sage across each hop of the topology. This additional data is also
helpful for:

(1) Computing the overhead associated with more secure but
likely less performant configurations.

(2) Strengthening conclusions of improved DoS-resilience by
verifying behavior from non-client devices.

(3) Identifying configuration changes that can optimize DoS-
resilience.

(4) Comparing the impact of attacks on different devices in the
system.

(5) Debugging our orchestration and data collection code.

3 DESIGN
In this section we describe the design of our collection, analysis,
and storage framework. We break up the design into the following
parts: collecting data with minimal overhead (3.1), transferring
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experiment data efficiently (3.2), transforming experiment data
(3.3), and storing experiments (3.4). For each of these, we discuss
the requirements, trade-offs, and design decisions.

3.1 Data Collection and Measurement
We want to collect the minimum amount of data necessary to vali-
date correctness of experiments and draw conclusions about the
DoS-resilience of configuration parameters. We must do so while
incurring minimal instrumentation overhead in order to avoid in-
terfering with experiment results. We are interested in measuring
client QoS metrics, in addition to tracking network messages and
metrics like memory and CPU utilization. Some of our client QoS
metrics come from application-layer information while other are
derived from network messages at the clients. We restrict our dis-
cussion to the measurement of network messages.

One approach is to use application-level logging. On high-volume
devices like the proxy, attacker, and origin server, such logging is
extremely resource-intensive and can redirect execution away from
the application, which interferes with experiment results. Instead,
we employ low-level network monitoring for the ingress and egress
of each device in the experiment. Whereas in application-level log-
ging we could choose exactly which columns to output, recording
full network traces requires a separate decoding step. Correctness
of experiment results is more important for us, so we choose the
latter. While an experiment is running, we use the tcpdump utility
to listen on the DeterLab experiment network interfaces of each
device (not the control network), and output a pcap file when the
experiment completes. We evaluate the overhead of tcpdump in
Section 5.1.

3.2 Efficient Data Transfer
DeterLab resources are limited and widely shared, and storage
quotas are particularly small at 10GB. Consequently, we efficiently
transfer experiment data to a dedicated machine for processing
and analysis. Network bandwidth is the limiting factor for us, so
compressing the data in-flight results in better transfer performance
than sending one file at a time or in parallel. The scp utility exposes
the -C flag for compressing data in-flight only which addresses this
need [26]. However, we are additionally interested in "shelving"
experiments to retain the original data in a storage-efficient form.
Consequently, we manually compress and decompress experiments
before and after the transfer.

3.3 Transform Experiment Data
Experiment data from DeterLab comprises packet captures, met-
rics (e.g., CPU, memory), logs, configuration parameters, etc, and
is therefore not directly amenable to analysis using the metrics
referenced in Section 2.2.2. We describe in steps below how we
consolidate and transform this data to the desired format.

3.3.1 Consolidating Metadata. DeterLab experiment configuration
parameters are found in different locations and have different for-
mats. For example, the NS-2 experiment topology is on a control
node and the dynamic configuration in bash is on the DeterLab
file system. We consolidate these into one configuration file with a
single format, namely JSON because of its readability and ease of

command-line parsing with the jq utility [11]. Other formats like
YAML are good alternatives.

3.3.2 Decoding Packet Captures. We are primarily interested in
decoding HTTP(S) and CoAP(S) messages. We leverage the rich
community of packet dissectors in tshark (the command-line equiv-
alent of Wireshark) for both these purposes [27, 33]. In particular,
for each HTTP and CoAP message, we use tshark to extract the
minimal set of protocol-specific options needed to conduct analysis
on the experiment, which are highlighted in Table 6 in Appendix
A. For messages in protocols that use transport-layer security, like
CoAPS and HTTPS, we configure tshark to decrypt message con-
tents through the -o keylog_file and -o psk options which take
in a key-log file containing session secrets and pre-shared keys,
respectively [27]. Both the key-log files and pre-shared keys are
recorded and bundled in the data sent to the processing machine.

3.3.3 Transforming Data Semantics. There remain semantic issues
with tshark output data. We detail the most relevant ones and our
solutions to them below.

IP Addresses. tshark outputs source and destination IP ad-
dresses, but our analysis is concerned with the roles that devices
play. Thus, we map IP addresses to device roles using the mapping
from the consolidated configuration file in Section 3.3.1.

Message Observers. tcpdump does not track which device ob-
served which messages. Thus, we name each capture with the
device role that captures it.

Timestamps.We record timestamps using UNIX epoch time for
simplicity, but to compare timestamps in the experiment, we only
care about offsets from the initial starting time. Thus, we normalize
all timestamps relative to each trial’s minimum timestamp.

3.3.4 Tracking Messages. Recall from Section 2.2.2 that we must
trace each message on its journey through the devices in the topol-
ogy. Examples of the communication patterns of interest to us are
illustrated in Figure 6 in Appendix A. These messages all corre-
spond to the same high-level client transaction, and their creation
is triggered by the first message that the client sends. But given
many messages in multiple transactions, classifying messages into
groups of the same transaction is challenging. This is because mes-
sages traverse many different nodes, potentially repeatedly, and a
transaction’s requests and responses span different protocols.

We assign each message an integer identifier which we call the
message_marker such that any messages that are marked with the
same message_marker correspond to the same transaction. For this,
we use the CoAP token field, because it uniquely identifies a CoAP
request/response pair. We must also confirm that every packet in
our traces is correctly marked with this identifier. Within CoAP this
is simple because it partitions each request/reply into CoAPmessages
each of which corresponds to a single UDP packet and contains the
token of its CoAP request/reply pair. For HTTP(S) the token is
concatenated with the URI and carried throughout the topology.
Thus, every packet in the traces has the correct message_marker
either in the packet header for CoAP-related packets or in the URI
for HTTP-related packets, and can be collected into the appropriate
transaction for detailed analysis with respect to that particular
message_marker.
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3.4 Experiment Storage
We consider two approaches to grouping experiments as in Table 2:
reading transformed data directly from files, and reading indirectly
from a database. The following are desirable properties and fea-
tures which reduce memory consumption while sacrificing minimal
performance: parallelism, redundancy elimination, selection and
predicate push-downs, physical independence, query plan optimiza-
tion, and loading large data from disk in RAM-size chunks. These
properties are provided by most databases. We design the file-based
and database-assisted approaches to have many of these properties.
Nevertheless, these approaches involve significant implementation
decisions and trade-offs as we show in Sections 4.3, 5.5, and 6. We
expand on the two approaches below.
3.4.1 File-Based Approach. In the file-based approach, we com-
bine experiment data from a set of experiments into a directory
with the name of the supplied group. We store three files: com-
bined configurations, metrics, and experiment results (i.e., observed
messages). We store data in a column-oriented format with com-
pression enabled, which respectively enable readers to read only
the columns of interest without incurring the cost of reading an
entire row (we assume rows are wide), while compression keeps the
on-disk storage minimal and can improve performance. We discuss
implementation and evaluation in Sections 4 and 5.

3.4.2 Database-Assisted Approach. We choose two different kinds
of databases, a mature relational database and a modern OLAP
database, both of which offer the properties described in Section 3.4.
While the OLAP database has much better performance, we still
assess the viability of a traditional relational database for grouping
experiments. Among traditional databases, we compare PostgreSQL
and MySQL. Though PostgreSQL is a little slower for reads, it
achieves much better write performance than MySQL and supports
parallel queries whileMySQL does not [15, 22]. The former is critical
for us as we need to bulk write data into the database, while the lat-
ter is particularly helpful for performance. Consequently, we choose
PostgreSQL. Among OLAP databases, we compare ClickHouse and
Apache Pinot [2, 6]. While both are open source, columnar, and
support good performance, ClickHouse more closely resembles
traditional database semantics like joins and primary keys. For this
reason, we choose ClickHouse. We discuss trade-offs in Section 6.1.

For each experiment group, we allocate, populate, and query a
separate database, where each database is accessible by a single
server. This maintains the same read and write structure across ex-
periment groups for both PostgreSQL and ClickHouse. Normalizing
experiment data into tables and adding primary and foreign keys
where relevant, we arrive at the schema in Figure 2. We choose
this schema to keep tables small for performance. We achieve this
by treating each primary key for a row as an identifier for its
unique combination of column values, which explicitly disallows
duplicate rows. The event and node_metric tables are notably not
duplicate-free because they include (potentially duplicated) obser-
vations made by an observer (ref. observer_id). On PostgreSQL,
we partition disk pages for the event and node_metric tables by
the most frequently used and least selective field, the observer_id,
in order to achieve good read query performance. For ClickHouse,
tables use the MergeTree engine, and we store both the event and
node_metric tables in order of observer_id). We represent each

message as a template sent between devices by choosing node_id
for the src_id and dst_id in the message table. Conversely, we
use deployed node ID dnid as a reference when the node’s experi-
ment context is relevant. We discuss optimization, configuration,
and evaluation of these approaches in Sections 4 and 5.

4 IMPLEMENTATION
In this section, we discuss our implementation decisions regarding
the components referenced in Section 3. We make a key decision to
prioritize high performance through parallelism, bulk operations,
and low-level optimization via frameworks wherever possible. For
flexibility, we use shell scripts to process and group experiment
data. An experiment directory contains a metadata directory and
one directory for each trial, each of which contains captures, met-
rics, and logs. We now detail the implementation aspects of the
framework.

4.1 Compressing Data Transfer
We move all experiment files into one directory then zip-compress
the experiment directory (the Linux zip command). We invoke the
processing script for each experiment as separate processes. We
scp the compressed data directory to the processing machine, and
on arrival, we unzip the data directory for processing.

4.2 Data Transformation
We decompose implementation specifics for how we transform
data into three elements, discussed here with reference to one
experiment for simplicity. Note that these processing elements can
take place in parallel.

4.2.1 Consolidating Metadata. We consolidate the configuration
of each experiment by combining the experiment topology, De-
terLab virtual and physical experiment mappings, the run-time
configuration parameters, and the trials (which are each stored as a
separate directory) into a single config.json file. We store it in the
metadata directory of the experiment directory. The experiment
topology is a network-simulator file with the .ns extension. From
it, we parse device-to-address mappings and attack rate (which are
defined using the tb-set-ip and set command respectively). The
experiment information is a text-based output which summarizes
machine allocations. From it, we parse the allocated hardware and
operating system for each device. Finally, the dynamic experiment
configuration is a bash script, which we evaluate and expose via
source.

4.2.2 Decoding Packet Captures. We launch a separate process to
decode and decrypt each packet capture using tshark as described
in Section 3.3.2. We pass secret keys as arguments from the experi-
ment directory. We name each input packet capture with the role
of the device on which it was captured. The output of the decoding
preserves this device role name so that later data transformation
can programatically add the observer to the experiment results.

4.2.3 Transforming Data Semantics and Tracking Messages. We
implement transformations with attention to performance and sim-
plicity. In particular, we analyze each experiment trial in a sepa-
rate process since message_markers are scoped to the trial level.
We make use of polars, which is currently the most performant
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Figure 2: Diagram of the schema for the databases for grouping and analysis of experiments. Tables are normalized, redundancy-
free, and partitioned where relevant.

dataframe library, to implement this processing in an "embarrass-
ingly parallel" fashion [29]. To mark messages, we group transac-
tions by the token value as in Section 3.3.4, and assign each token
an index. This index is the message_marker. It starts at 1 and goes
up by 1 for each transaction. We store the output using parquet,
which uses the arrow columnar format, with snappy compression
[1, 3]. parquet is "designed for efficient data storage and retrieval"
and it provides "enhanced performance to handle complex data in
bulk" [1]. We leverage it for increased read & write performance,
along with reduced storage space.

4.3 Experiment Storage
We implement both file-based and database-assisted experiment
grouping. In this case by making heavy use of polars for its fast
I/O capability, since it is from 14.6 to 18.9 times faster than pandas
[31].

4.3.1 File-Based. We represent a group of experiments as a direc-
tory of three files: configurations, metrics, and experiment results.
For each file, we read the data from all experiments into a single
process, make necessary modifications, and write the result to the
group directory in the appropriate file. We only include configu-
ration parameters that are relevant for analysis. To disambiguate
which results and metrics come from which experiment, we add
the trial and experiment identifiers as additional columns to the
data before we write. The metrics file and configurations are ex-
pected to be small, while the experiment results file is expected to
be quite large. This is because it contains each message from all
experiments with all the columns from Table 6 in denormalized
form. We write the files out using the parquet format with snappy
compression to satisfy the column-oriented and compressed storage
format requirements.

4.3.2 Database-Assisted. We use PostgreSQL and ClickHouse data-
base servers with the schema shown in Figure 2 and described in
Section 3.4. To load data into each database, we read all experiment
and trial data into memory using polars. We insert experiment

results into the redundancy-free tables first by scanning unique
message template data and configuration data from the disk, which
consumes little memory. Having obtained table IDs, we then read
the subset of data for the event table while pushing down replace-
ment of the newly obtained database IDs. This step can consume
a substantial amount of memory, but we read a small number of
columns.

Due to the number of events, the main bottleneck for this ap-
proach is inserting data into the event table. We use the ClickHouse
driver’s insert_dataframe method to insert event data in bulk
from the dataframe in memory [25]. For PostgreSQL, we use the
COPY FROM command, which "is optimized for loading large num-
bers of rows" [21, 23]. For even better performance, we drop the
event table’s foreign-key constraints and change it to unlogged
before we COPY, and reinstate these afterwards [21]. Further, we con-
figure the PostgreSQL server to choose parallel query plans when it
is beneficial and optimize workers. We set max_worker_processes,
max_parallel_workers, max_parallel_workers_per_gather,
and max_parallel_maintenance_workers to a number slightly
higher than the number of cores, 30 for us. We set
maintenance_work_mem to a fairly large number, 1GB for us [22].
We COPYmetrics into the node_metric table similarly to the event
table. Since the observer_id field has few possible values and
low selectivity in read queries, we improve read query perfor-
mance by hash partitioning the event and node_metric tables
by observer_id.

5 EVALUATION
In this section, we evaluate the components of the design discussed
in Sections 3 and 4. For both the file-based and database-assisted
experiment grouping approaches, we compare the performance and
usability of their writes and reads. Throughout this section, we refer
to a characteristic grouping of twelve experiments that run atop the
cloud topology shown in Figure 1. This grouping is detailed in Table
3. Our dedicated data processing machine is a cloud VM running
Ubuntu 20.04.2 LTS on our lab’s local OpenStack [19] deployment.
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Exp ID Attack Rate HTTPS CoAPS Uncompressed MB Compressed MB Compression Ratio Messages Observed
1 100 Mbps N N 958 139 6.89 6,591,720
2 500 Mbps N N 947 137 6.91 6,423,676
3 100 Mbps Y N 962 395 2.44 6,365,357
4 500 Mbps N Y 448 144 3.11 1,730,159
5 100 Mbps Y Y 462 345 1.34 1,719,109
6 100 Mbps N Y 434 141 3.08 1,695,051
7 500 Mbps Y N 456 342 1.33 1,683,775
8 500 Mbps Y Y 435 325 1.34 1,610,971
9 0 Mbps N N 13 1.8 7.22 44,021
10 0 Mbps Y N 14 7.8 1.79 43,709
11 0 Mbps N Y 14 3.9 3.59 43,401
12 0 Mbps Y Y 15 9.7 1.55 43,161

Total - - - 5,158 1991.2 - 27,994,110
Table 3: Details about a grouping of 12 low-to-moderate volume experiments which vary attack rate and protocols using the
cloud topology in Figure 1. The first 8 run an attacker while the last 4 do not. These experiments involve one client sending for
100 seconds and one attacker sending for 20 seconds, for 3 trials.

Figure 3: Bar graph comparing average compression ratio of
different capture protocol distributions in various encryption
scenarios. Encryption tends to lower the compression ratio.

Figure 4: Line graph comparing average capture decode time
versus attack duration for various capture types. There is a
linear relationship between attack duration and decode time.

Volume Proxy Server Attacker Receiver Client
High 166 sec 100 sec 128 sec 101 sec 11 sec

Medium 117 sec 87 sec 76 sec 9 sec 11 sec
Low 15 sec 13 sec - 10 sec 11 sec

Table 4: The average decoding times in seconds for different
packet captures in experiments with varying volume of traf-
fic. There is no attacker decoding entry for low volume since
low volume experiments do not involve attack traffic.

Table Name Row Count PgSQL Storage CH Storage
event 27,994,110 1,394 MB 207.1 MB

node_metric 45,935 4,552 kB 135.7 kB
message 99 24 kB 1.29 kB

deployed_node 60 32 kB 945 B
experiment 12 32 kB 3.41 kB
coap_message 6 32 kB 357 B

node 5 32 kB 382 B
http_message 2 32 kB 569 B

Total 28,040,229 1,399 MB 207 MB
Table 5: Table sizes and row counts for the experiments from
Table 3 grouped in PostgreSQL (PgSQL) and ClickHouse (CH).
CH consumes significantly less storage than PgSQL.

Figure 5: Bar graph comparing the average completion
times of four representative single-experiment read queries,
while varying the experiment grouping method. ClickHouse
mostly completes faster than file in-memory.
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The machine has 24 CPU cores of type Intel(R) Xeon(R) CPU E5-
2699 v4, running at 2.20GHz. It has 48GB of RAM, realized via three
16GB DIMM RAM chips, and a 300GB volume backing a ext4 file
system.

5.1 Measuring Messages
We verify that CPU and memory utilization are not heavily affected
by logging packets via tcpdump. To do this, we compare experi-
ments with the highest attack rate, 1Gb/s, with attacks up to 100
seconds, as we expect them to have the highest overhead. In experi-
ments with a 50 second attack, running without tcpdump produces
3,596 messages with an average of 68.59 requests per second (RPS),
while using tcpdump produces 3,601 messages with an average of
68.49 RPS. With an attack of 100 seconds, running without tcpdump
produces 2,685 messages with an average of 92.07 RPS, while using
tcpdump produces 2,670 messages with an average of 92.88 RPS.

At the origin server, the CPU overhead of tcpdump-logging is
0.66% on average and 2.7% in the worst case, while the memory
overhead is 7.5MB on average and 11.66MB in the worst case. At
the proxy, CPU overhead is at worst 0.9%, while worst case memory
overhead is 66MB. We assign the proxy and origin server relatively
powerful hardware on DeterLab, each having 8 cores and 16GB of
RAM. Consequently, we find this overhead minimal and acceptable.

5.2 Compressed Data Transfer
We have found that compressing experiment data is highly benefi-
cial for transfer performance. From Table 3, we observe that zip
compresses experiments with a median compression ratio of 2.76
and average compression ratio of 3.38. Interestingly, the maximum
compression ratio of 7.22 (and other close ratios) corresponds to
experiments that send network traffic in plain-text. Conversely,
the minimum compression ratio of 1.33 (and other close ratios)
corresponds to experiments with DTLS enabled for CoAP and TLS
enabled for HTTPS.

Figure 3 reports the average compression ratio for individual
packet captures, and shows that encryption tends to lower compres-
sion ratios. This agrees with the idea that securely encrypted con-
tent should be indistinguishable from random bits. CoAP-dominant
capture compression ratios are unaffected because we make use of
a single pre-shared key for DTLS encryption. We have empirically
observed that these worst-case compression ratios only add a few
more seconds to the end-to-end transfer. Even in this worst case,
compressed transfer is 33% faster than uncompressed transfer. With
network bandwidth as our bottleneck, we find compressing the data
in-flight highly beneficial.

5.3 Decoding Messages
Each experiment in the grouping from Table 3 has multiple trials
and clients, and each produces a capture for each device in each
trial. This results in 168 different packet captures to process. Packet
captures from experiments with higher volume take longer to pro-
cess, ranging from 4.01s for those with no attacker, up to 177.81s for
those with the strongest attacks. This is the most expensive step in
the data processing and storage framework, but because we decode
each packet capture in its own process, the processing machine is
able to run relatively efficient analysis in parallel. In particular, it

processes all 168 packet captures in 2 minutes and 52 seconds. If
the processing were sequential instead, it would take the machine
approximately 17 minutes.

Because the proxy sees each message multiple times and speaks
multiple protocols, its packet capture is the most computationally
expensive to analyze, as in Table 4. In fact, for medium and high-
volume attacks, the proxy capture decoding time dominates the
overall decoding times. The difference is less pronounced for low-
volume attacks; proxy captures decode in 15 seconds on average,
while the server and client decode in 15 and 11 seconds respectively.
For medium and high-volume attacks, where proxy decode times
are respectively 117s and 166s, the second most expensive capture
decoding times are 87s and 128s (74% and 77% of the proxy decoding
time) respectively.

We evaluate the scalability of capture decoding in Figure 4, where
we run the maximum attack rate of 1Gb/s on DeterLab while in-
creasing the duration of the attack. We observe that there is a linear
relationship between average decode time and attack volume. The
proxy has a larger constant of proportionality since it sees twice
the amount of messages as other devices. For the heaviest attack
and the largest capture, the average decoding time is 6 minutes. We
address this in Section 6.

5.4 Transforming Data
Transforming and combining packet capture data is relatively fast
when using polars. The minimum transformation time is 9.4s, the
median is 17.8s, the average is 19.6s, and the maximum is 36.0s.
The fastest transformations correspond to the lowest-volume ex-
periments while the slowest transformations correspond to the
highest-volume experiments. Running the transformations in paral-
lel is again highly beneficial, taking a total of 40 seconds to complete
across all experiments. Compared to the sequential completion time
of 3 minutes and 55 seconds, running transformations in parallel
completes in a sixth of the time.

5.5 Experiment Storage
We evaluate the time and storage to group processed experiments
together for both the file-based and database-assisted approaches.

5.5.1 File-Based. Grouping the experiments from Table 3 with the
file-based approach completes with a rate of 3.96 seconds per GB,
totalling 19 seconds to complete. On completion, the three files
in the group’s directory, which are stored as snappy-compressed
parquet files, occupy a total of 903.2MB of storage space. Most
of the storage comes from the 903MB-sized results.parquet file.
metrics.parquet occupies 224KB and configurations.parquet
occupies 8KB of storage. The resultant grouping occupies less than
half the storage of compressed experiments before processing, and
nearly a sixth of the uncompressed version. At its peak, file-based
grouping uses 7.69GB of RAM. This approach is not likely to scale
when experiments jointly occupy more disk space than available
RAM. We discuss this in Section 6.

5.5.2 Database-Assisted. The PostgreSQL database-assisted ap-
proach takes an average of 2 minutes and 9 seconds to group the
experiments referenced in Table 3. 69% of the time (90s) is spent
executing the COPY command on the event table. 19% of the time
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(24.5s) is spent running ANALYZE on the database to optimize later
read queries, 10% of the time (13s) is spent reading experiment data
into memory and massaging it, and the remaining 2% (2.5s) is spent
setting up the database before data insertion.

The COPY phase is the largest bottleneck in grouping. This is
slower than the file-based approach by a factor of 6.8. Interestingly,
the average and peak memory usage are 14% and 74% more than the
file-based approach, totalling 8.75GB and 13.35GB respectively. The
higher average memory usage comes from materializing data in-
memory before COPYing, while the higher peakmemory usage likely
comes from PostgreSQL’s lazy garbage collection policy during the
COPY phase.

ClickHouse takes an average of 24.9 seconds to group the ex-
periments in Table 3. 14% of the time (3.68s) is spent reading and
formatting event data in memory, and 41% of the time (10.37s) is
spent sending event data to the database. 39% of the time (9.75s)
is spent reading and filtering message data, while the remaining
6% of time (1.5s) is spent reading data in memory and populat-
ing the remaining tables. Impressively, the ClickHouse grouping
completes in a fifth of the PostgreSQL grouping time, and is only
30% slower than the file-based approach. The peak memory usage,
8.74GB, is comparable with PostgreSQL’s average of 8.75GB and
consumes two thirds of PostgreSQL peak’s memory usage. Click-
House grouping consumes 14% more memory than the file-based
approach.

Table 5 shows database table sizes after grouping. The event
table is the dominant storage factor, holding nearly 28 million rows.
The total storage size is 1,399MB for PostgreSQL, which is respec-
tively 70% and 27% of the storage required for the compressed
and uncompressed pre-transformed data. This is 35.45% more stor-
age than the file-based approach. The ClickHouse total storage is
207MB, which is respectively 4% and 10% of the storage required
for the compressed and uncompressed pre-transformed data. This
is 22.9% of the storage required for the file-based approach.

5.6 Query Performance
We now compare average read query performance for file-based
and database-assisted groupings. For database-assisted grouping,
we compare PostgreSQL and ClickHouse with equivalent schemas,
while for file-based grouping, we compare lazy and in-memory
reads. In the in-memory model, we execute every query on the
full experiment data memory-resident after reading it from disk
once at startup. In the lazy model, we interleave disk reads with
computation pushdown for every query using the polars Lazy
API [30]. We compare queries that are computationally expensive,
using four representative queries, as shown in Figure 5. Numeric
completion times for each query are wall-clock times from Jupyter
notebooks which we average over five trials. We restart database
server and notebook processes before each query.

The first query summarizes the number of messages and active
time for each node in every trial and experiment. The lazy file read
method is the slowest, taking 7.76s to complete. In-memory and
PostgreSQL reads respectively take 1.45s and 824ms to complete.
ClickHouse, the fastest, completes in 220ms. This summary query
produces only max and min aggregations over the event table’s
observe_timestamp column, which databases and parquet files

traditionally maintain to different extents. These results show that
database reads take better advantage of these statistics.

The second query enumerates every client message’s send time,
receive time, response code, and round-trip-time, alongwith request-
per-second statistics. The approaches’ completion times are ordered
just as in the first query: lazy file reading completes in 14.8s, while
in-memory, PostgreSQL, and ClickHouse reads respectively com-
plete in 753ms, 446ms, and 253ms. This query involves multiple
joins and filters, rendering it quite complex for a disk-based read to
complete efficiently.

The third query measures the effective attack rate as a function
of time. Lazy file reading completes in 6.74s, while in-memory, Post-
greSQL, and ClickHouse reads respectively complete in 1.47s, 2.12s,
and 575ms. Note that the completion time order of in-memory and
PostgreSQL reads is swapped for this query. The aggregations in
this query involve a distinct count and a sum, where the former
is more difficult to maintain in a DBMS than in-memory. We con-
jecture that this is why, for this query, in-memory reads slightly
outperform PostgreSQL reads, completing 31% faster.

The fourth and final query is a summary of the round-trip-time
along each hop for each attack message, all the way from the at-
tacker to the receiver. Lazy file reading completes in 23.5s, while
in-memory, PostgreSQL, and ClickHouse reads respectively com-
plete in 5.86s, 22.4s, and 7.44s. This query is the only one where
in-memory outperforms ClickHouse, completing 21% faster. We at-
tribute this difference to the large number of output records which
this query selects. In particular, it is faster to bulk-modify and
stream a large number of records column-wise and in-memory
than it is to read this data from disk first.

In summary, ClickHouse reads significantly outperform Post-
greSQL reads among database-assisted groupings, while in-memory
reads significantly outperform lazy file reads among file-based
groupings. ClickHouse outperforms optimized in-memory reads
with polars for queries which produce few output records, while
queries which produce many output records benefit from memory-
resident data, thus avoiding the cost of disk reads. Nevertheless,
ClickHouse, like most databases, regulates its own memory us-
age, resulting in little risk of running out of memory. This is in
stark contrast to reading data with polars, where we have hit the
out-of-memory limit many times as we conducted our research.

6 DISCUSSION
In this section we discuss the performance (6.1), usability (6.2), and
scalability (6.3) of the file-based and database-assisted approaches to
storing experiment groups, and other stages of experiment analysis.

6.1 Performance
We are able to measure network events without instrumentation
overhead, at the cost of noticeably slow processing, with the two
largest bottlenecks being packet decoding and insertion into the
database. The cost of decoding packet captures is discussed in
Section 5.3. A first approach to improving decoding performance
would be to partition large packet captures and process them in
parallel, then combine the resulting outputs at the end. Even better,
tcpdump supports the option to rotate output capture files using
the -G and -C flags [28]. The decoding step can further benefit from
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high performance packet capture decoders like [20] and [12], but
which support decryption and decoding CoAP. Alternatively, it is
possible to capture packets with tshark directly. Our preliminary
experiments found that this has high overhead, but future work
could make this a viable option.

The second biggest bottleneck is the time to insert data into
PostgreSQL, despite using the COPY command. To our knowledge,
there is no substantially faster way of loading this data into Post-
greSQL. We’ve shown that ClickHouse is an excellent alternative
to PostgreSQL, providing comparable write performance and better
read performance than the in-memory file-based approach [6].

6.2 Usability
Regarding the usability of cryptographic secrets, we store pre-
shared keys and key-log files in plaintext since we are building
an academic prototype. In a realistic setting, one shouldn’t leak
keys or key-log files. A good option can be to embed decryption
secrets into the pcapng packet capture format, which enables this
capability [32].

We also observe three usability implications for the file-based
and database-assisted groups. First, as the size of data approaches
the available RAM, the file-based approach to grouping will run
out of memory, making this processing framework less usable.
However, the database will regulate the amount of RAM that it uses
and won’t be killed by the operating system. Second, SQL queries
are simpler to write and easier to read than hand-crafted polars
or pandas queries. We found that the traditional PostgreSQL SQL
dialect does not seamlessly translate to ClickHouse SQL, missing
key convenience features like the RETURNING clause and joining
multiple tables inline to avoid clunky pairwise joins [7]. Finally,
formalism in databases for structuring data combined with the
many decades of experience of building databases results in the
database-assisted grouping approach in general, and PostgreSQL
in particular, being less error prone.

6.3 Scalability
For both the file-based and database-assisted grouping approaches,
the loading phase involves reading experiment data into memory. If
the total size exceeds RAM, then we need to read data in memory-
sized batches, perhaps using the semantics of ChunkedArray from
Arrow [3]. If the experiment data exceeds the size of the disk (e.g.,
through dozens of long duration Gb/s attacks), then we need a
distributed storage solution.

For a database approach, we recommend Apache Pinot or Fire-
bolt instead of ClickHouse, since distributed databases are core to
their design [2, 6, 14]. Configuring, loading, and querying these
databases will not drastically differ from our PostgreSQL approach.
However, we expect the file-based approach to need more major
structural change to accommodate a distributed file system, such
as setting up a distributed cluster like Hadoop, and coming up
with a data layout plan that provides good read performance. A
distributed cluster likely offers even better performance than our
single-database approach, but we are interested in the design space
of computation on a single machine as it more closely matches the
constraints of our security research.

7 CONCLUSION
In this paper, we’ve proposed and evaluated methods for measuring,
processing, and storing groups of experiments to study the effect
of various system configuration parameters. The measurement pro-
cess relies heavily on network message monitoring, realized via
tcpdump. While we’ve shown it to incur little-to-no instrumen-
tation overhead, there is a significant trade-off in packet capture
processing performance. We’ve shown that processing data in bulk,
in parallel, and with lazy computation are highly beneficial.

Query read performance is generally better assuming database-
assisted grouping due to the normalization and partitioning schemes
we choose, but writing a group of experiments is 6.8 times slower
for PostgreSQL. ClickHouse is tolerably 30% slower. Despite this,
the database approach manages RAM more carefully and exposes a
more user-friendly interface for querying data than hand-crafted
programmatic queries. In addition, databases support certain fea-
tures of interest that the file-based approach does not, like multi-
user authentication, access control, and stricter semantics for trans-
actions.

While these approaches have served us well for moderately sized
experiment groupings, around 10GB, the approaches likely have
to change for much larger experiment groupings. In particular, at
much larger scale, the database approach we evaluated in this paper
likely translates more smoothly to high-performance distributed
OLAP databases like Apache Pinot or Firebolt [2, 14], while the
file-based grouping will likely need more structural change when
moving to a distributed file system. We recommend ClickHouse
for experiment groupings whose sizes are between our moderately-
sized tens of gigabytes and much larger, terabytes-sized ones, that
require a distributed storage solution.

We believe that our ideas about experiment data measurement
and storage can be beneficial for other users of DeterLab, especially
if they run high-volume experiments. We encourage the DeterLab
community to assess how to integrate these ideas within the exist-
ing infrastructure to support broader experimentation use cases.
Noting the limitation of theMongoDB cluster which DeterLabmain-
tainers currently provide, we recommend that maintainers increase
configuration access and experiment storage methods for users. To
facilitate reproducibility and extensibility, we have made our code,
scripts, and both raw and processed data publicly available through
the git repository in [13], along with instructions to reproduce our
results.
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A TABLES AND FIGURES

tshark Field ID Description
_ws.col.Time Packet UNIX epoch observation

timestamp.
_ws.col.Source Packet source IP address.
_ws.col.Destination Packet destination IP address.
_ws.col.Protocol Protocol that sent this packet.
_ws.col.Length Packet size in bytes.
coap.type The CoAP type of the packet.
coap.retransmitted Flag indicating if this packet is

a CoAP retransmission.
coap.code The CoAP code of the packet.
coap.mid The CoAP message ID of the

packet.
coap.token The CoAP token of the packet.
coap.opt.proxy_uri TheURIwhich the proxy should

forward the request to.
http.request Flag indicating if this is an

HTTP request.
http.request.method The method of this http request

(e.g., GET, POST, etc).
http.request.full_uri The URI which this request re-

quests.
http.response.code The response code attached to

this HTTP response.
http.response_for.uri The URI of the request that gen-

erated this response.
Table 6: This table contains all the fields we decode from
packet captures with tshark.

1. CoAP

Client Proxy Origin 
Server

2. HTTP 

3. HTTP 4. CoAP

1. CoAP
Attacker

Proxy Origin 
Server

2. HTTP 

3. HTTP 
Receiver 4. CoAP

Figure 6: Diagrams of client and attacker protocol commu-
nication sequences. Identifying each message’s originating
transaction is non-trivial.
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