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Abstract

Quantum computers and simulators have the potential to improve our understand-
ing of physics, material science, chemistry, and biology by providing a window into
the dynamics of quantum many-body systems that appear in these fields. In addi-
tion to growing our knowledge of fundamental science, an increased understanding of
these systems could lead to technological innovations in energy, industrial processes,
and medicine. There are several different quantum hardware platforms and simu-
lation modalities, however, which can be used to perform quantum simulations of
many-body dynamics. This thesis seeks to uncover guidelines to a seemingly simply
question: how do we answer useful questions using quantum simulators? Answer-
ing this involves learning what are good questions to ask quantum simulators, which
questions should be asked to which platforms, and how we should ask each question
(digital, analog, or hybrid simulation). We develop intuition for these guidelines by
exploring three quantum simulation contexts: Bose-Fermi mixtures, dissipative spin
chains, and nuclear magnetic resonance (NMR) spectroscopy experiments.
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The information revolution of the late 20th century was built on the first gener-

ation of quantum technology, with the semiconductor transistors underlying modern

computers, lasers used in optical communication, and nuclear magnetic resonance

(NMR) used in drug development and medical MRI machines intrinsically reliant on

quantum effects. Due to improvements in semiconductor fabrication and the experi-

mental control of lasers, we are now poised to enter a new chapter of the Information

Age: one built on the next generation of quantum technology. These devices will

controllably manifest properties such as quantum coherence and entanglement which

can be exploited for applications in computing, sensing, and communication. In ad-

dition to catalyzing discovery in various scientific disciplines, this technology will

complement classical information systems and enable improvements in medicine, ma-

terial science, industrial processes, and cryptography. Making this ‘quantum leap’,

however, requires a fundamentally interdisciplinary effort. Physics, computer science,

electrical engineering, and material science are required to develop high fidelity con-

trollable quantum devices, while many of the early applications of these devices are

in chemistry, biology, and artificial intelligence. As quantum technology is still in

its adolescence, achieving a practical advantage will likely require co-design of the

quantum device or algorithm and its intended application, thus necessitating even

closer collaboration between different fields.

Quantum computers and simulators, in particular, have received a lot of attention

in both academia and industry due to their potential to catalyze progress in physics

and material science, chemistry and drug development, as well as optimization and

machine learning [124, 290, 24]. For example, a sufficiently powerful quantum com-

puter may allow us to reverse engineer how bacteria do nitrogen-fixation and produce

ammonium cheaply [295]. The current industrial process is an inefficient alternative

which is responsible for 5% of the world’s natural gas production, representing about

2% of the world’s energy use, with this has serious environmental and economical con-

sequences [341]. Quantum computers would also allow us insight into the electronic

structure of materials such as perovskites, organic polymers, and high-temperature

superconductors, which in turn, may enable technological advances that greatly in-
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crease the viability of clean energy sources like solar, wind, and fusion.

In the above mentioned applications, quantum computers are often believed to

have a formal advantage compared to classical computers: there exist quantum algo-

rithms addresing critical bottlenecks of the application that are exponentially faster

than known classical algorithms. This advantage, however, relies on delicate quan-

tum properties such as coherence and entanglement which are washed out by noise

resulting from interactions between the qubits and their environment. Theoretically,

it is known that a noiseless quantum computer can be built out of a much larger

noisy quantum system using error correction protocols. Even optimistic estimates,

however, place such a noiseless fault-tolerant quantum computer (FTQC) at least

10-20 years away.

It is an open question whether the noisy intermediate scale quantum (NISQ) com-

puters and analog quantum simulators available in the near-term can offer a formal

exponential advantage, or even a practical speed-up compared to classical algorithms

for any real application in science or industry. A common opinion in the quantum

community is that the first useful task a NISQ computer may perform is the simula-

tion of quantum dynamics [68, 290, 24, 80]. For example, digital quantum simulation,

accomplished by discretizing the dynamics into several gates, is a flexible approach

with controllable error that can improve our understanding of spin systems [203, 309],

quantum chemistry [175, 274], biochemistry [328], and high energy physics [148, 243].

The strength of digital quantum simulation is that any Hamiltonian describing the dy-

namics of the system can be implemented, including Hamiltonians with complicated

and long-range interactions that are necessary for quantitatively accurate descriptions

of high-temperature superconductors, quantum chemistry, and optimization prob-

lems [80]. This approach also can simulate quantum dynamics with an arbitrary low

error for a polynomial cost in computation time. The downside, however, is that gen-

eral purpose digital quantum simulation requires fault-tolerant quantum computers,

which come with an enormous hardware and runtime overhead.

Analog quantum simulation, accomplished by engineering the native dynamics of

a quantum system to mimic a target system of interest, has also shown promise in
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the study of quantum many-body systems in condensed matter physics, quantum

chemistry, and high energy physics contexts [124]. Systems of ultracold atoms, for

example, may be used to simulate models of high temperature superconductivity [38],

the electronic structure of molecules [10], and lattice gauge theories [19] in addition to

topics of fundamental interest such as quantum magnetism and topological phases of

matter [135, 311]. Trapped ion systems have proven useful in simulating the dynamics

and equilibrium properties of various models of quantum magnetism [36, 260], super-

conductivity [331], and vibronic modes of molecules, [335]. Superconducting circuits

have been explored in the study of both equilibrium and dynamical properties of a

range of quantum many-body systems, including Bose-Hubbard physics [157], models

of quantum magnetism [151], disordered systems [305], and dynamical lattice gauge

theories [235].

The benefit of analog quantum simulation is a direct, resource-efficient simulation

of quantum systems that can be performed in the relatively near-term. The down-

sides are that analog simulators can only realize a limited set of models that can

be natively realized and programmed, and even computations of these models are

limited by control, calibration, and decoherence errors in the hardware [80]. While it

is therefore unclear whether analog simulators can perform a practically useful com-

putation that is intractable on classical computers, there is some hope that such a

practical quantum advantage may be achievable for qualitative physics questions of

fundamental interest. Specificaly, ultracold atoms in optical lattices may be able to

capture the dynamics of the Fermi-Hubbard model better than the best classical al-

gorithms, thereby granting qualitative insight into the behavior of high-temperature

superconductors. The argument for such an advantage arises from using Hamiltonian

verification procedures to quantify the control and calibration errors in the analog

quantum simulator and then using Lieb-Robinson bounds relying on the local nature

of interactions in the Hamiltonian to bound the propagation of these errors [116].

Developing other applications where analog quantum simulators may be useful re-

quires an understanding of (1) how to engineer the dynamics of different platforms to

realize a wider array of models, and (2) how correlations spread in both closed and
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open quantum systems with different interaction profiles in order to bound errors in

these platforms.

Each quantum hardware platform has its advantages and disadvantages, with cer-

tain simulation contexts being a more natural fit on specific platforms [80]. Ultracold

atoms in harmonic potentials or optical lattices are well-suited for simulating systems

of bosons and fermions that comprise solid-state systems. Gases of ultracold atoms in

harmonic potentials are well-suited for examining interacting Bose gases, interacting

Fermi gases, and Bose-Fermi mixtures as examined in Part II of the thesis. When

optical lattice potentials are used to trap the atoms, they naturally realize Hubbard

models for bosons and fermions, which are paradigmatic models describing the physics

of many strongly correlated quantum systems including high-temperature supercon-

ductors [38]. While atomic platforms can already reach large numbers of particles and

therefore simulate thermodynamically large many-body systems, they have no local

control and can only perform analog simulation of a limited set of locally-interacting

models that are naturally realized in the system. When the atoms are coupled to an

optical cavity, this tunability can be partially alleviated and they can realize interest-

ing magnetic spin models with different interaction profiles, as examined in Part III

of the thesis. Ultracold atoms trapped in optical tweezers and excited to Rydberg

states fully resolves the tunability issues and allows for both digital and analog quan-

tum simulation of a range of spin models, with the added benefit of easily admitting

complicated interaction geometries. However, zero-point motion of the atoms and the

necessity of increasingly powerful lasers to scale the platform have currently limited

systems to a few hunderd atoms.

Trapped ion and superconducting quantum simulators are explored in Part IV of

the thesis. Trapped ions are suited for both digital and analog quantum simulation

of a range of magnetic spin models. They benefit from natural implementations of

long-range interactions leading to the ability to realize a diverse array of interaction

graphs [86, 233]. However, heating of motional modes of the ion chain limits the

systems to about 50 ions in a chain, with complicated architectures required to scale

to larger systems [80, 124]. Superconducting systems are well-suited to both digital
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Figure 1: Different contexts of quantum simulation of quantum many-body
dynamics.

and analog simulation of interacting systems of spins and bosons. They are limited

to local interactions, but can be fabricated to realize different interaction geometries.

These systems have fast dynamical time scales compared to atoms and ions (MHz

vs kHz), but correspondingly shorter coherence times. Superconducting devices also

benefit from fast local control and readout, but require consistent calibration.

In order to make progress in answering practically useful questions using quan-

tum simulators, we must improve our understanding of which platforms suit different

application contexts, and when a digital, analog, or hybrid simulation approach is

appropriate. In this thesis, we explore three contexts of quantum simulation of many-

body dynamics through which we can shed light on these questions (see Fig. 1). In

Part II, we investigate the unitary dynamics of closed systems of Bose-Fermi mix-

tures using ultracold atom quantum simulators. In Part III, we study the dissipative

dynamics of open spin chains using cavity-QED quantum simulators comprised of

cold atoms trapped inside an optical cavity. In Part IV, we examine a quantum sim-

ulation application of practical utility: NMR spectroscopy. The dynamics of NMR
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systems can be modeled as purely unitary, purely dissipative, or a combination of

both depending on the experimental protocol. We explore the suitability of trapped

ion and superconducting quantum simulators, as well as digital, analog, and hybrid

simulation approaches for different NMR contexts. In Part V, we synthesize key

lessons learned and open questions that emerge from the connections between top-

ics explored in Parts II-IV. The material in this thesis corresponds to the work in

Refs. [319, 320, 321, 322, 323, 324, 325, 326].
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Part II

Dynamics of closed systems:

Bose-Fermi mixtures
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Chapter 1

Introduction

Every observed subatomic particle in nature is either a boson or a fermion. Bosons

typically correspond to force carriers, such as photons associated with electromag-

netism, while fermions typically carry mass and correspond to matter. In many-body

systems, the emergent degrees of freedom can be bosonic, fermionic, or in special

cases anyonic. Most quantum many-body systems that appear in both physics and

chemistry can thus be described as mixtures of bosons and fermions. A canoni-

cal example is given by semiconductors and other solid-state systems, where many

important properties such as transport are determined by the interaction between

electrons (fermions) and phonons (bosons).

Quantum degenerate gases of bosons and fermions have emerged as a leading

quantum simulation platform to study several such quantum many-body systems as

they provide a highly controllable setting to investigate different prototypical mod-

els [39]. Bose gases have been used to study Bose-Einstein condensation (BEC) and

superfluidity [37], the Mott insulator to superfluid transition [134], Luttinger liq-

uids [180], quantum Hall physics [45], localization physics [301, 31], and quantum

magnetism [168]. Fermi gases have been used to investigate pairing in conventional

BCS superconductors [38], the BEC-BCS crossover [385], high temperature supercon-

ductivity [38], the equation of state in extreme systems like neutron starts [265], and

itinerant ferromagnetism [170].

Given the success of exploring purely bosonic and fermionic many-body systems
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using degenerate Bose and Fermi gases, it is natural to consider degenerate Bose-

Fermi mixtures and the simulation applications they open up. Such platforms would

enable investigation of electron-phonon and strongly correlated electron systems in

condensed matter physics [226, 184], the electronic structure of molecules in quantum

chemistry [10, 11], and lattice gauge theories in high-energy physics [73], which also

relate to the low-energy behavior of some condensed matter systems with normal

and/or topological order [19]. Ultracold quantum gases forming Bose-Fermi mixtures

are well isolated from their environment and are widely tunable to different limits of

the system [39], thus providing a promising analog quantum simulation platform to

examine the unitary dynamics of various closed quantum many-body systems.

In the limit that either the Bose or Fermi quantum gas is much more dilute than

the other, we can describe the system in terms of an impurity particle from the mi-

nority gas interacting with a bath formed by the majority gas. Such impurity systems

are closely linked to a concept that has proved essential to understanding Bose-Fermi

mixtures, and quantum many-body systems more generally: the quasiparticle. The

original manifestations of this concept was the polaron. A polaron is an impurity

that has been dressed by a cloud of excitations of the surrounding bath which, in

equilibrium, results in a renormalization of its mass, energy, and other properties. A

toy analogy can be made to a ball rolling around a rubber sheet; the ball creates a

deformation in the sheet that moves along with the ball and modifies its motion. The

ball represents the impurity and the deformation in the sheet represents the cloud of

particles in the many-body bath that dresses the impurity. Depending on whether

the excitations dressing the impurity are bosonic or fermionic, we call the resulting

quasiparticle a Bose polaron or a Fermi polaron.

Landau introduced the original manifestation of the polaron in 1933 when he

examined an electron getting trapped by a crystal lattice [199]. The codification

of an electron trapped by a crystal lattice as a phonon-dressed quasiparticle called

a polaron was done by Pekar in 1946 and then further developed in a joint paper

between Pekar and Landau in 1948 [282, 198]. While the initial treatment of the

polaron was in the strong-coupling regime, it was soon extended to the weak coupling
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regime by Fröhlich [119]. Since these original investigations, it has been discovered

that polaronic physics is relevant to a variety of modern fields including supercon-

ductivity [4, 91, 141, 184], organic transistors [161], and biophysics [287]. Polarons

also serve as an archetype upon which we can build an understanding of other types

of quantum impurity problems [317]. As polarons are a paradigmatic quasiparticle,

investigating their ground state properties, their far-from-equilibrium dynamics, and

any connection between the two may help elucidate the non-equilibrium behavior of

quasiparticles which characterize other quantum many-body systems [339]. Therefore,

studying the mobile impurity limit of a Bose-Fermi mixture is a promising avenue to

gain insight into the dynamics of closed quantum many-body systems more broadly.

Understanding the dynamics of a mobile impurity in an interacting quantum

many-body medium is still challenging, however, due to the necessity of including

entanglement between the impurity and excited states of the environment in a wide

range of energy scales. Recently, ensembles of ultracold atoms have emerged as a

versatile analog quantum simulation platform that is well suited to enabling inves-

tigation of polaronic physics. Control of host atom species allows specification of

fermionic or bosonic statistics and effective spin degrees of freedom. Additionally,

tunability of the interaction strength between the impurity and host atom through

Feshbach resonances and powerful measurement techniques including radio frequency

(RF) spectroscopy, Ramsey interferometery, absorption imaging, and time-of-flight

imaging enable a detailed study of these systems.

This toolbox has been instrumental in several fundamental experimental studies

of polaronic physics. In a one-dimensional quantum gas, for example, polaronic renor-

malization of the impurity mass has been studied in Ref. [61]. Additionally, a mobile

impurity pulled through a one-dimensional quantum gas by gravity was shown to

exhibit Bloch oscillations on top of a finite drift velocity in the absence of a periodic

lattice [251]. In a three-dimensional Bose gas cooled into a Bose-Einstein Condensate

(BEC), the radio-frequency (RF) spectrum [158, 172, 377] and Loschmidt echo [339]

of the polaron quasiparticle formed by the impurity and BEC has been probed as a

function of interaction strength, but experiments have yet to examine quantities that
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are sensitive to the finite momentum of the impurity.

The ability to perform analog quantum simulations of polaronic systems in ultra-

cold atoms has motivated a bevy of theoretical studies as well. The first theoreti-

cal studies of Bose polarons in a cold atoms context were done using the Fröhlich

model, suitable for weak impurity-bath coupling [246, 78, 350, 60, 363], and later

extended to beyond Fröhlich terms that allow investigation of the strong-coupling

regime [293, 72, 280, 333, 174, 136]. Much of this initial theoretical work focused on

characterizing the quasiparticle nature of the equilibrium polaron through quantities

like the energy [293, 332, 334] and effective mass [333, 137, 139]. Further study was

done to understand the non-equilibrium dynamics of polarons [48, 312, 83, 138, 182,

83, 334, 142, 204, 97, 43, 267, 65, 98] and examine experimentally relevant protocols

including harmonically trapped and oscillating BECs [61, 140, 254, 253, 256]. Much

recent work has been focused on extending the previous results to the case of finite

temperature [217, 143, 103, 114] and multiple impurities [360, 255, 263].

A wide variety of theoretical methods have been used in these works. Varia-

tional approaches have been used to predict RF spectra, average values of differ-

ent observables, spatial density profiles, and even systems with multiple impurities

[334, 360, 97, 333, 332]. T-matrix approximations have also been used to study the

RF spectra while confirming the importance of beyond-Fröhlich terms in the Hamilto-

nian at strong interactions [293]. Renormalization group methods have been used to

examine trajectories and the effect of quantum fluctuations on top of the mean-field

solution [139, 140, 137, 142]. Markovian master equations have been used to study

thermalization dynamics and polaron formation [204, 267], while finite temperature

effects have also been studied with diagrammatic techniques for strong coupling [143]

and perturbation theory for weak coupling [217]. Non-perturbative methods have also

been used to examine impurity dynamics in harmonically trapped 1D BECs [254, 253]

and the subsonic-supersonic dynamics of weakly interacting impurities [43]. Quan-

tum Monte Carlo computations have also been used to study the energy and other

properties of the Bose polaron [280, 281]. Efforts to study the strong coupling regime

by moving beyond Bogoliubov theory have also been made [98].
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In this part of the thesis, we explore how analog quantum simulations performed

in ultracold atoms can shed light on a gap in the literature on Bose polarons: the

dynamics of a fast mobile impurity in a weakly-interacting BEC. The novel behavior

we uncover using the theoretical treatment described in Chap. 2 gives insight into how

friction manifests in quantum many-body systems, Chap. 3, and has implications for

experimental protocols seeking to measure basic quasiparticle properties such as the

polaron’s effective mass, Chap. 4. We discuss how these effects can be observed in

ultracold atom platforms, thus giving an example of how analog quantum simulations

can elucidate the dynamics of closed quantum many-body systems.
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Chapter 2

Bose Polaron Model

In this chapter we develop a theoretical model describing a finite momentum impurity

interacting with a surrounding BEC and derive equations of motion for the dynamics

of the system. Specifically, we consider an impurity atom immersed into a weakly

interacting BEC of ultracold atoms near the inter-species Feshbach resonance, which

can be used to tune the impurity-boson interaction. In the first section, we lay out the

treatment for a homogeneous system without trapping potentials or external forces.

In the second section, we show how the local density approximation can be used

to extend the formalism for realistic trapping potentials and external forces. The

formalism developed in these sections enables study of the dynamics investigated in

Chap. 3 and Chap. 4 respectively.

2.1 System

We consider a system contained in a three-dimensional box, 𝑑 = 3, of length 𝐿 in

each dimension, with periodic boundary conditions.

2.1.1 Hamiltonian

The microscopic Hamiltonian of entire system,

𝐻̂ = 𝐻̂0 + 𝐻̂IB (2.1)
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consists of two parts:

𝐻̂0 =
∑︁
k

𝜀𝐼k𝑑
†
k𝑑k +

∑︁
k

𝜀𝐵k 𝑎̂
†
k𝑎̂k +

1

𝐿𝑑

𝑔BB

2

∑︁
k,k′,q

𝑎̂†k+q𝑎̂
†
k′−q𝑎̂k′ 𝑎̂k (2.2)

represents free impurities in an interacting Bose gas, and

𝐻̂IB =
1

𝐿𝑑
𝑔IB

∑︁
k,k′,q

𝑑†k′+q𝑑k+q𝑎̂
†
k𝑎̂k′ (2.3)

represents the interaction between the impurities and the Bose gas. The boson cre-

ation (annihilation) operator in the momentum space is 𝑎̂†k (𝑎̂k); the same for the

impurity is 𝑑†k (𝑑k). The boson, 𝜀𝐵k , and impurity, 𝜀𝐼k, kinetic energies, are

𝜀𝐵k =
k2

2𝑚𝐵

, 𝜀𝐼k =
k2

2𝑚𝐼

. (2.4)

Here, 𝑚𝐵 (𝑚𝐼) stands for the boson (impurity) mass. The microscopic Hamiltonian,

as defined by Eq. (2.1) contains an arbitrary number of the impurity particles. For

our work, however, we are interested in the states containing only one impurity.

The Hamiltonian (2.2) can be transformed in according to the standard Bogoli-

ubov theory [285]; using the linear transformation

𝑎̂k = 𝑢k𝑏̂k − 𝑣k𝑏̂†−k, k ̸= 0 (2.5)

with the coefficients 𝑢k, 𝑣−k =
√︁

𝜀𝐵k +𝑔BB𝑛0

2𝜔k
± 1

2
we get

𝐻̂0 =
∑︁
k

𝜀𝐼k𝑑
†
k𝑑k +

∑︁
k

𝜔k𝑏̂
†
k𝑏̂k (2.6)

for the terms in Eq. (2.2) relative to the FMGS energy of the condensate. The

operators 𝑏̂†k (𝑏̂k) create (annihilate) Bogoliubov quasiparticles with momentum k

and dispersion

𝜔k =
√︁
𝜀𝐵k (𝜀𝐵k + 2𝑔BB𝑛0). (2.7)

Here, 𝑛0 = 𝑁/𝐿𝑑 is the gas density (we let it be equal to the condensate density
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for the observables discussed in the paper), and 𝑁 is the number of bosons. The

dispersion (2.7) yields the sound velocity

𝑐 =

√︂
𝑔BB𝑛0

𝑚𝐵

. (2.8)

It also sets the healing length

𝜉 = (2𝑚𝐵𝑔BB𝑛0)
−1/2 (2.9)

at which the transition between the particle and phonon regimes of the BEC excita-

tions occurs. The 𝑠-wave scattering length, 𝑎BB ≥ 0, sets the value of the coupling

strength 𝑔BB in Eq. (2.2):

𝑔BB =
4𝜋𝑎BB

𝑚𝐵

. (2.10)

The Hamiltonian (2.3) represents the impurity-boson interaction potential in a

way that is uniform in momentum space and, therefore, requires a regularization to

be physically meaningful. We implement the regularization procedure commonly used

in the existing literature [293, 332, 334]: we impose a sharp ultraviolet (UV) cutoff Λ

onto the the momentum space of the problem. The interaction parameter 𝑔IB and the

impurity-boson scattering length 𝑎IB are connected through the Lippmann-Schwinger

equation

𝑔−1
IB =

𝜇

2𝜋
𝑎−1
IB −

1

𝐿𝑑

Λ∑︁
k

2𝜇

k2
. (2.11)

Here,

𝜇 =
𝑚𝐼𝑚𝐵

𝑚𝐼 +𝑚𝐵

(2.12)

is the reduced mass of the two-body impurity-boson system. We stress that the

second term in Eq. (2.11) renormalizes 𝑔IB, thus giving a meaning to the interaction

term (2.3) in the Λ→∞ limit. The observables from our paper are evaluated for Λ

large enough to be viewed as if we took the Λ→∞ limit.
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2.1.2 Lee-Low-Pines transformation

Now we take our model defined in the laboratory reference frame and write it in

the mobile impurity reference frame. These reference frames are connected with the

Lee-Low-Pines transformation,

𝒮 = 𝑒𝑖R̂impP̂ph , (2.13)

named after the original work [207]. Here, R̂imp is the position operator of the impu-

rity. Any operator 𝒪̂ defined in the laboratory frame takes the form

𝒪̂LLP = 𝒮𝒪̂𝒮† (2.14)

in the mobile impurity reference frame. Note that we constrain our system to the

case of a single impurity.

The total momentum of the system

P̂ = P̂imp + P̂ph (2.15)

is conserved. In the above expression, the impurity momentum P̂imp and total phonon

momentum P̂ph are given as

P̂imp =
∑︁
k

k𝑑†k𝑑k (2.16)

P̂ph =
∑︁
k

k𝑏̂†k𝑏̂k. (2.17)

The final Hamiltonian 𝐻̂LLP after the transformation reads:

𝐻̂LLP ≡ 𝒮𝐻̂𝒮† = 𝐻̂0,LLP + 𝐻̂IB,LLP (2.18)

where

𝐻̂0,LLP =
∑︁
k

𝜔k𝑏̂
†
k𝑏̂k +

1

2𝑚𝐼

(︃
P̂imp −

∑︁
k

k𝑏̂†k𝑏̂k

)︃2

(2.19)

46



and

𝐻̂IB,LLP = 𝑔IB𝑛0 + 𝑔IB
√
𝑛0

1√
𝐿𝑑

∑︁
k ̸=0

𝑊k

(︁
𝑏̂k + 𝑏̂†−k

)︁
+ 𝑔IB

1

𝐿𝑑

∑︁
k ̸=0,k′ ̸=0

𝑉
(1)
k,k′ 𝑏̂

†
k𝑏̂k′ +

1

2
𝑔IB

1

𝐿𝑑

∑︁
k ̸=0,k′ ̸=0

𝑉
(2)
k,k′

(︁
𝑏̂−k𝑏̂k′ + 𝑏̂†k𝑏̂

†
−k′

)︁
(2.20)

Here, the interaction vertices satisfy the relations

𝑊k =

√︂
𝜀k
𝜔k

(2.21)

𝑉
(1)
kk′ ± 𝑉 (2)

kk′ = (𝑊k𝑊k′)±1 (2.22)

Note that the lab frame impurity momentum operator P̂imp that appears in Eq. (2.19)

commutes with the Hamiltonian 𝐻̂LLP in the Lee-Low-Pines frame. We recognize it

as the total momentum P̂ that commutes with the lab frame Hamiltonian 𝐻̂ given

in Eq. (2.1). Therefore, we can replace P̂imp with the quantum number P; dynamics

under this model will decouple into sectors indexed by P. As the system is spherically

symmetric, there is no preferred orientation of P and hence physical quantities will

only depend on the magnitude

𝑃 = |P| . (2.23)

The first term in Eq. (2.19) describes a weakly interacting BEC where excitations are

Bogoliubov phonons with dispersion 𝜔k. Enacting the Lee-Low-Pines transformation

allows us to eliminate impurity degrees of freedom in the Hamiltonian at the cost of

introducing an additional interaction term between phonons that show up in second

term of Eq. (2.19). The effective interaction strength 1
2𝑚𝐼

of this term is set by

the impurity mass and vanishes for heavy impurities as the co-moving frame of the

impurity and the original lab frame coincide.

After the Lee-Low-Pines transformation, the part of the original Hamiltonian rep-

resenting the impurity-boson interaction turns into Eq. (2.20) which contains terms

describing impurity-mediated interactions between the bosons. The linearized part

of Eq. (2.20) constitutes the Fröhlich model which is suitable for describing weakly
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interacting polaronic systems. The term linear in phonon operators describes the

impurity exciting phonons directly out of the condensate. If the impurity interacts

strongly with the bosonic bath, it can also mediate scattering between phonon exci-

tations; this is the physics included in the quadratic terms in Eq. (2.20) and these

terms are required for the study of strongly interacting polaronic systems beyond the

Fröhlich model [332, 317].

2.1.3 Equations of motion

We derive equations of motion for the system for the system state by approximating

the true wavefunction with a single variational wavefunction and then time-evolving

this variational state according the the Hamiltonian (2.18). Formally, we use Dirac’s

time-dependent variational principle to derive equations of motion for the coefficients

defining the variational state [167]. The finite momentum ground state (FMGS) is

found by evolving the variational state in imaginary time while quench dynamics can

be studied by evolving the state in real time. Our trial wavefunctions are coherent

states of the form

|Ψcoh(𝑡)⟩ = 𝑒
∑︀

k 𝛽k(𝑡)𝑏̂
†
k−H.c. |0⟩ (2.24)

as used in the literature (e.g. [332, 334, 360]). Note that H.c. means Hermitian

conjugate. Here, 𝛽k(𝑡) are the coherent state amplitudes and |0⟩ denotes the vacuum

of Bogoliubov phonons (which is the FMGS of the BEC) in the co-moving frame

of the impurity. We use want to derive equations of motion for the coherent state

amplitudes corresponding to time-evolution in the Lee-Low-Pines frame

|Ψcoh(𝑡)⟩ = 𝑒−𝑖𝐻̂LLP𝑡 |0⟩ . (2.25)

To derive the equations of motion, we first construct the classical action 𝒮 =
∫︀
ℒ(𝑡)𝑑𝑡

where

ℒ(𝑡) = ⟨Ψcoh(𝑡)| 𝑖𝜕𝑡 − 𝐻̂LLP |Ψcoh(𝑡)⟩ (2.26)
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is a classical Lagrangian calculated by projecting the true many-body wavefunction

onto the submanifold of Hilbert space spanned by our chosen class of trial wavefunc-

tions. The least action principle then gives the standard Euler-Lagrange equations of

motion

𝑑

𝑑𝑡

𝜕ℒ
𝜕𝛽̇k
− 𝜕ℒ
𝜕𝛽k

= 0 (2.27)

which describe the dynamics of the variational parameters 𝛽k(𝑡) and 𝜑(𝑡). The explicit

expressions for these equations of motion are

𝑖𝛽̇k = 𝑔IB
√
𝑛0𝑊k + Ωk𝛽k + 𝑔IB

(︀
𝑊k𝜒

+
𝛽 +𝑊−1

k 𝜒−
𝛽

)︀
(2.28)

where we have defined

𝜒±
𝛽 =

1

2

∑︁
k′

𝑊±1
k′ (𝛽k′ ± 𝛽*

k′) (2.29)

Ωk = 𝜔k +
k2

2𝑚𝐼

− 1

𝑚𝐼

k (P−Pph) (2.30)

and Pph =
∑︀

k′ k′ |𝛽k′|2 follows from Eq. (2.17) and Eq. (2.24). Similarly, we

can relate the interaction parameter 𝑔BB to the boson-boson scattering length 𝑎BB by

solving the two-body boson-boson scattering problem. As the boson-boson interaction

is weak, we can use the Born approximation rather than the full Lippman-Schwinger

equation to get 𝑔BB = 4𝜋
𝑚𝐵
𝑎BB.

At this point, we are ready to study the FMGS or quench dynamics of the system

by evolving the equations of motion in imaginary time or real time respectively.

The FMGS can alternatively be studied by calculating the analytical saddle point

solution to Eq. (2.28) as done in Sec. 2.1.4 below. However, this approach does not

allow us to study the Cherenkov regime as the saddle point solution assumes that the

variational parameters 𝛽k are real; for large enough total momentum, this is not true.

Nonetheless, the saddle point solution is still useful to predict the effective mass of

slow polarons.
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Figure 2: The dependence of the mass enhancement 𝑚*/𝑚𝐼 given by the
equation (2.36) on the inter-species scattering length 𝑎−1

IB for 𝑃 = 0.1[𝑚𝐼𝑐].

2.1.4 Saddle Point Solution

Here, we derive the saddle point solution of the equations of motions (2.28). We set

the left hand side of the first equation to zero and obtain the following equation which

defines the saddle point

𝑔IB
√
𝑛0𝑊k + Ωk [𝛽] 𝛽k (2.31)

+ 𝑔IB𝑊k

∑︁
k′

𝑊k′𝛽k′ = 0

The equation for the imaginary part of the variational parameter always has a

trivial solution Im𝛽k = 0. Further we imply that in the stationary state 𝛽k is real.

To solve the equation for the real part of 𝛽k we rewrite the equation (2.31) such

that we obtain a closed equation for 𝜒 =
∑︀

k𝑊k𝛽k and solve this equation to get an

analytical expression for the coherent state amplitudes 𝛽k (2.31):

𝛽k = − 𝑊k

Ωk [𝛽k]

2𝜋
√
𝑛0

𝜇𝑟𝑒𝑑

(︀
𝑎−1
IB − 𝑎−1

* [𝛽]
)︀ (2.32)
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We introduce the shift of the Feshbach resonance 𝜇𝑟𝑒𝑑

2𝜋
𝑎−1
* [𝛽] ≡ ∑︀Λ

𝑘

(︁
2𝜇𝑟𝑒𝑑

𝑘2
− 𝑊 2

𝑘

Ωk[𝛽k]

)︁
.

Note that this is just a formal solution, where 𝑎−1
* [𝛽] and Ωk [𝛽] are functionals of

𝛽k.

We substitute the solution for 𝛽k to the functionals Pph [𝛽] and 𝑎−1
* [𝛽] and obtain

two closed integral equations which fully describe the stationary state of the system

in the long-time limit

Pph =
4𝜋2𝑛0

𝜇2
𝑟𝑒𝑑

(︀
𝑎−1
IB − 𝑎−1

*
)︀2 (2.33)

×
∑︁
k

k𝑊 2
k(︁

𝜔k + k2

2𝑚𝐼
− k

𝑚𝐼
(P−Pph)

)︁2
𝑎−1
* =

∑︁
k

(︃
4𝜋

|k|2
− 2𝜋𝜇−1

red𝑊
2
k

𝜔k + k2

2𝑚𝐼
− k

𝑚𝐼
(P−Pph)

)︃
(2.34)

We solve these equations numerically for any given total momentum of the system P

and given interaction 𝑎−1
IB .

The energy of the system simplifies in the case of fully real 𝛽k to

𝐸pol =
1

2𝑚𝐼

(︀
P2 −P2

ph [𝛽]
)︀

+
2𝜋

𝜇red

𝑛0

𝑎−1
IB − 𝑎−1

*
. (2.35)

The energy of the stationary state is divergent at 𝑎−1
IB = 𝑎−1

* . Note, that even for

the finite momentum P, the energy of the system is a UV-convergent quantity. This

directly follows from the equation (2.35) where all entries including 𝑎−1
* and Pph are

fully UV-convergent.

We calculate the effective mass by using the quasi-classical correspondence prin-

ciple. In the stationary state the velocity carried by the the impurity, P𝐼/𝑚𝐼 , should

coincide with the velocity of the polaron, P/𝑚* where 𝑚* is the effective mass of the

polaron. Recalling that the momentum of the polaron carried by the impurity is the

difference between the total momentum of the system and the momentum carried by

the bosons so P𝐼 = P−Pph, we obtain the following expression for the effective mass
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of the polaron
𝑚𝐼

𝑚* = 1− |Pph|
|P| . (2.36)

The dependence of the polaron mass is shown in Fig. 2 across the Feshbach resonance.

In contrast with the Fröhlich model where mean-field solution gives linear dependence

of the effective polaron mass as a function of the interaction, accounting for the the

two boson scattering terms in the Hamiltonian (Eq. (2.20)) provides a non-linear

dependence of the effective polaron mass as a function of the interacting strength

𝑎−1
IB . The effective mass diverges as the shifted Feshbach resonance is approached

𝑎−1
IB → 𝑎−1

* ± 0. The effective mass is infinite exactly at the resonance point.

2.1.5 Observables

The trial wavefunction |Ψcoh(𝑡)⟩ is characterized by the coherent state amplitudes

𝛽k; the square |𝛽k|2 of these amplitudes can be used to calculate a number of phys-

ical quantities that we can use to understand the system. The structure of the trial

wavefunction captures the essential physics of the polaron system over a range of

interaction strengths as it allows a large occupation of phonon modes, 𝑏̂k, with the

number of these excitations increasing for strong interactions [332, 334]. Entangle-

ment between the impurity and host atoms is captured as these phonon excitations

are defined in the Lee-Low-Pines frame. However, the wavefunction Eq. (2.24) does

not explicitly account for correlations between different excitations, which are only

implicitly accounted for when the dynamics of the true many-body wavefunction is

projected onto the variational manifold. At strong interactions, these correlations be-

come relevant as the number of excitations becomes sizable; this fact may account for

the numerical discrepency in the critical momenta between the FMGS and dynami-

cal protocols as see in Fig. 3 in the next chapter. Promoting the trial wavefunction

Eq. (2.24) to a full Gaussian state [337], amounting to including terms quadratic in

𝑏̂k in the exponential, may resolve this quantitative discrepency. We leave such an

extension to future work as the coherent state wavefunction is sufficient to gain deep

insight into various observables of interest in the system.
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Recalling that P is the total conserved momentum of the system, two such quan-

tities that are relevant to both the FMGS and quench dynamics are

𝑁ph(𝑡) =
∑︁
k

|𝛽k|2 (2.37)

and

Pph =
∑︁
k

k |𝛽k|2 (2.38)

where expectations are taken over |Ψcoh(𝑡)⟩. These quantities are the average to-

tal phonon number and the average total phonon momentum. There are also two

distribution functions that are useful to understand the system:

𝑛ph(k) =
1

𝑁ph

⟨
𝑏̂†k𝑏̂k

⟩
(2.39)

=
1

𝑁ph

|𝛽k|2

and

𝑛imp(p) =
⟨
𝛿
(︁
P̂imp − p

)︁⟩
(2.40)

= 𝑒−𝑁ph(𝑡)𝛿 (P− p) + 𝑛̃imp(p)

where

𝑛̃imp(p) =
𝑒−𝑁ph(𝑡)

(2𝜋)3

∑︁
r

𝑒−𝑖(P−p)r
(︁
𝑒
∑︀

k|𝛽k|2𝑒𝑖kr − 1
)︁
. (2.41)

The first function, Eq. (2.39), describes how individual phonon occupation is dis-

tributed over momentum space on average. The second function, Eq. (2.40), describes

the impurity’s momentum distribution and contains two terms. The first term is a

delta function at p = P corresponding to a coherent part of the distribution while

the second term, Eq. (2.41), represents the incoherent part of the distribution. The

expression in Eq. (2.40) can be derived as follows. The distribution of total phonon
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momentum is:

𝑛ph,tot(p) = ⟨Ψcoh| 𝛿
(︁
P̂ph − p

)︁
|Ψcoh⟩ (2.42)

= ⟨𝜓| 1

(2𝜋)3

∑︁
r

𝑒𝑖r(P̂ph−p)|𝜓⟩ (2.43)

=
1

(2𝜋)3

∑︁
r

𝑒−𝑖p·r𝑒
∑︀

k|𝛽k|2(𝑒𝑖k·r−1) (2.44)

=
1

(2𝜋)3

∑︁
r

𝑒−𝑖p·r𝑒−𝑁ph+
∑︀

k|𝛽k|2𝑒𝑖k·r (2.45)

We can manipulate the expression into a more illuminating form as follows:

𝑛ph,tot =
1

(2𝜋)3

∑︁
r

𝑒−𝑖p·r𝑒−𝑁ph+
∑︀

k|𝛽k|2𝑒𝑖k·r (2.46)

=
𝑒−𝑁ph

(2𝜋)3

∑︁
r

𝑒−𝑖p·r
[︁
𝑒
∑︀

k|𝛽k|2𝑒𝑖k·r − 1 + 1
]︁

(2.47)

= 𝑒−𝑁ph
1

(2𝜋)3

∑︁
r

𝑒−𝑖p·r (2.48)

+
𝑒−𝑁ph

(2𝜋)3

∑︁
r

𝑒−𝑖p·r
[︁
𝑒
∑︀

k|𝛽k|2𝑒𝑖k·r − 1
]︁

(2.49)

= 𝑒−𝑁ph𝛿 (p) + 𝑛̃ (p) (2.50)

where the weight of the first term 𝑒−𝑁ph corresponds to how connected the system is

to the free impurity and the second term

𝑛̃ (p) ≡ 𝑒−𝑁ph

(2𝜋)3

∑︁
r

𝑒−𝑖p·r
[︁
𝑒
∑︀

k|𝛽k|2𝑒𝑖k·r − 1
]︁

(2.51)

corresponds to particle momenta distributed over an incoherent background. Now we

want to derive the impurity’s momentum distribution. Using P̂ = P̂ph + P̂imp, we
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have

𝑛imp (p) = ⟨𝜓|𝛿
(︁
P̂imp − p

)︁
|𝜓⟩ (2.52)

= ⟨𝜓|𝛿
(︁
P̂− P̂ph − p

)︁
|𝜓⟩ (2.53)

= ⟨𝜓|𝛿
(︁
P− P̂ph − p

)︁
|𝜓⟩ (2.54)

= ⟨𝜓|𝛿
(︁
P̂ph − [P− p]

)︁
|𝜓⟩ (2.55)

= 𝑛ph,tot (P− p) . (2.56)

In the third line we have replaced P̂ → P as the total momentum P̂ is fixed for

a specific |𝜓⟩; the Lee-Low-Pines frame block-diagonalizes by total momentum. We

realize that the impurity’s momentum distribution 𝑛I (p) is given by the phonon

momentum distribution 𝑛ph,tot(p) with the domain of the phonon momentum function

mapped from p → P − p. We can salso use this result to traightforwardly compute

the distribution for impurity momenta with magnitude 𝑝 ≡ |p| as

𝑛imp(𝑝) =
∑︁
p′

𝛿 (|p′| − 𝑝)𝑛imp(p′) (2.57)

which corresponds to examining spherical shells of the full three-dimensional distri-

bution 𝑛imp(p).

When examining the FMGS specifically, we are also interested in examining the

energy and quasiparticle residue which are given in Eq. (2.58) and Eq. (2.59) below:

𝐸 =
⟨
𝐻̂LLP

⟩
=

1

2𝑚𝐼

(︀
P2 −P2

ph

)︀
+
∑︁
k

Ωk |𝛽k|2+𝑔IB
(︀
𝜒+
𝛽 +
√
𝑛0

)︀2−𝑔IB (︀𝜒−
𝛽

)︀2 (2.58)

𝑍 = |⟨0|Ψgs
coh⟩|2 = 𝑒−𝑁ph . (2.59)

where the average is taken over the FMGS trial wavefunction |Ψgs
coh⟩ and |0⟩ is the state

corresponding to a non-interacting impurity immersed in a BEC. The quasiparticle

residue characterizes how much bare impurity character is leftover in the interacting

FMGS; it can therefore be used to probe the breakdown of the quasiparticle picture.
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A natural generalization of the FMGS quasiparticle residue to the case of quench

dynamics is the Loschmidt echo

𝑆(𝑡) = ⟨0|𝑒𝑖𝐻̂free𝑡𝑒−𝑖𝐻̂LLP𝑡|0⟩ (2.60)

where

𝐻̂free =
∑︁
k

𝜔k𝑏̂
†
k𝑏̂k +

P̂2

2𝑚𝐼

(2.61)

is the Hamiltonian for the free impurity immersed in a BEC. Utilizing Eq. (2.25), we

have

𝑆(𝑡) = 𝑒
𝑖
[︁

P2

2𝑚𝐼
𝑡
]︁
𝑒−

1
2
𝑁ph(𝑡). (2.62)

The Loschmidt echo therefore represents the overlap between the state during time

evolution and the original bare impurity. The Fourier transform of the echo can also

be used to compute the RF absorption spectrum [332].

The FMGS quasiparticle residue 𝑍 is connected to the Loschmidt echo at infinite

time

|𝑆 (𝑡∞)| ≡ lim
𝑡→∞
|𝑆(𝑡)| = 𝑍. (2.63)

after an initial quench from a noninteracting state |0⟩. We can derive this result as

follows. Consider a quench from the FMGS |0⟩ of the non-interacting state (associated

with energy 𝐸↓) to an interacting state with dynamics determined by Hamiltonian

𝐻̂↑. Let
{︀
|𝑛↑⟩ ;𝐸𝑛

↑
}︀

be the eigenstates and energies of 𝐻̂↑. The quasiparticle residue

is defined as 𝑍 ≡ |⟨0|0↑⟩|2 and the Loschmidt echo of a state |𝜓 (𝑡)⟩ after the quench
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is defined as 𝑆 (𝑡) ≡ 𝑒𝑖𝐸↓𝑡 ⟨0|𝜓 (𝑡)⟩. Inserting the identity 𝐼 =
∑︀

𝑛 |𝑛⟩ ⟨𝑛|, we have

𝑆 (𝑡) = 𝑒𝑖𝐸↓𝑡 ⟨0|𝜓 (𝑡)⟩ (2.64)

= 𝑒𝑖𝐸↓𝑡 ⟨0|𝑒−𝑖𝐻̂↑𝑡|0⟩ (2.65)

= 𝑒𝑖𝐸↓𝑡
∑︁
𝑛

𝑒−𝑖𝐸𝑛
↑ 𝑡 |⟨0|𝑛↑⟩|2 (2.66)

= 𝑒−𝑖(𝐸0
↑−𝐸↓)𝑡𝑍

(︃
1 +

1

𝑍

∑︁
𝑛>0

𝑒𝑖(𝐸
0
↑−𝐸𝑛

↑ )𝑡 |⟨0|𝑛↑⟩|2
)︃

(2.67)

= 𝑒−𝑖𝜔0
↑↓𝑡𝑍

(︃
1 +

1

𝑍

∑︁
𝑛>0

𝑒𝑖𝜔𝑛𝑡 |⟨0|𝑛↑⟩|2
)︃

(2.68)

where we have defined 𝜔0
↑↓ ≡ 𝐸0

↑ − 𝐸↓ and 𝜔𝑛 ≡ 𝐸0
↑ − 𝐸𝑛

↑ . We then have

|𝑆 (𝑡)| = 𝑍

(︃
1 +

1

𝑍

∑︁
𝑛>0

𝑒𝑖𝜔𝑛𝑡 |⟨0|𝑛↑⟩|2
)︃

(2.69)

×
(︃

1 +
1

𝑍

∑︁
𝑛>0

𝑒−𝑖𝜔𝑛𝑡 |⟨0|𝑛↑⟩|2
)︃

We know that 𝜔𝑛 < 0 is a monotonic function of 𝑛 and we can index the summation

and eigenstates |𝑛↑⟩ with it.

|𝑆 (𝑡)| = 𝑍

(︃
1 +

1

𝑍

∑︁
𝜔𝑛<0

𝑒𝑖𝜔𝑛𝑡𝑓 (𝜔𝑛)

)︃
(2.70)

×
(︃

1 +
1

𝑍

∑︁
𝜔𝑛<0

𝑒−𝑖𝜔𝑛𝑡𝑓 (𝜔𝑛)

)︃

where 𝑓 (𝜔𝑛) ≡ |⟨0|𝜔𝑛⟩|2. By the Riemann-Lebesgue lemma, we have

lim
𝑡→∞

⃒⃒⃒⃒
⃒∑︁
𝜔𝑛<0

𝑒𝑖𝜔𝑛𝑡𝑓 (𝜔𝑛)

⃒⃒⃒⃒
⃒→ 0 (2.71)

which immediately yields

lim
𝑡→∞
|𝑆 (𝑡)| = 𝑍 (2.72)

and we see that the Loschmidt echo must asymptote to the quasiparticle residue at
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infinite time for all system conditions (initial momentum and interaction strengths).

2.2 Local Density Approximation

In Sec. 2.1, we described the Hamiltonian used to model a single finite-momentum

impurity immersed in a BEC, the variational method and choice of coherent state

ansatz used to derive dynamical equations, as well as observables and distribution

functions that we use to characterize the system. Here, we extend the treatment to

external potentials (such as harmonic traps) and forces via the local density approx-

imation (LDA). Such potentials are relevant to many experimental set-ups as well as

the protocols proposed in Ch. 4 to probe basic polaronic properties such as effective

mass.

2.2.1 External Potentials and Forces

Consider applying an external potential 𝑉𝐼 (r) (with associated force F𝐼 (r) ≡ −∇𝑉𝐼 (r))

on the impurity. This potential is represented by adding the term 𝑉𝐼 =
∑︀

r 𝑉𝐼 (r)𝜓† (r)𝜓 (r)

to the initial microscopic Hamiltonian Eq. (2.1). The LDA assumes that the length

scale the force F𝐼 (r) varies over is large compared to the length scale of the polaron

wavepacket and so we can consider F𝐼 (r) as spatially homogeneous (F𝐼 (r) → F𝐼).

In this case, it can be shown that the effect of the external potential is to send

P → P (𝑡) = P + 𝑡F𝐼 ≡ P0 + 𝑡F𝐼 in the Hamiltonian Eq. (2.18). The total system

momentum now changes with time as P (𝑡) = P0 +
∫︀ 𝑡

0
𝑑𝜏F𝐼(𝜏), but the initial mo-

mentum P0 is conserved in the sense that states with different initial momentum P0

do not mix during time-evolution.

Relying on the LDA assumption that the length scale the force F𝐼 (r) varies over is

large compared to the length scale of the polaron wavepacket, we can reintroduce the

position dependance of the force through the expected value of the impurity’s position

R𝐼 ≡ ⟨R𝐼⟩. This means we can substitute F𝐼 → F𝐼 (⟨R𝐼⟩) ≡ −∇𝑉𝐼 (r) |r=R𝐼
and

now include position-dependent potentials that result in position-dependent forces.

The expected value of the impurity’s position itself depends on time as 𝑑
𝑑𝑡
R𝐼 (𝑡) =
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1
𝑚𝐼

⟨
P̂𝐼

⟩
= 1

𝑚𝐼

(︁
P (𝑡)−

⟨
P̂ph

⟩)︁
= 1

𝑚𝐼
(P (𝑡)−Pph (𝑡)).

Finally, recognizing that multiple external potentials/forces acting on the impurity

can be taken into account by letting F𝐼 →
∑︀

𝛼 F𝐼,𝛼 where 𝛼 labels the force, our

equations of motion are:

𝑖𝛽̇k =

(︃
𝜔k +

|k|2
2𝑚𝐼

− 1

𝑚𝐼

k · (P−Pph [𝛽])

)︃
𝛽k (2.73)

+ 𝑔IB
√
𝑛0𝑊k + 𝑔IB

(︀
𝑊k𝜒

+
𝛽 +𝑊−1

k 𝜒−
𝛽

)︀
𝜑̇ = 𝑔IB𝑛0 + 𝑔IB

√
𝑛0𝜒

+
𝛽 +

1

2𝑚𝐼

(︀
P2 −P2

ph [𝛽]
)︀

(2.74)

Ṗ =
∑︁
𝛼

F𝐼,𝛼 (2.75)

Ṙ𝐼 =
1

𝑚𝐼

(P−Pph [𝛽]) (2.76)

It is important to note that the LDA assumption about length scales of the external

potential versus the polaron wavepacket breaks down when the external potential

changes sharply in space; this usually happens at the edges of the potential (e.g.

edges of a harmonic potenital or potential imposed by an inhomogeneous BEC). We

assume that the validity of the LDA in the middle of most relevant potentials (’volume’

effect) dominates regions of invalidity at the edges of these potentials (’surface’ effect).

Additionally, other parts of the derivation (Bogoliubov approximation, etc.) start

breaking down at the edges as well so there are multiple problems if surface effects

become relevant.

2.2.2 Inhomogeneous BEC

While making the Bogoliubov approximation in the derivation of the Hamiltonian,

we assumed that the condensate density 𝑛0 = 1
𝐿𝑑

⟨
𝑎̂†0𝑎̂0

⟩
was independent of position

and time meaning that the BEC is homogeneous. If we want to consider experimen-

tally realistic situations in which the BEC is confined by a trap, we need to take

into account a spatially inhomogeneous BEC density. We again invoke the LDA as-

sumption that the BEC density varies on a length scale that is large compared to
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the polaron wavepacket; we can then take it as constant throughout the derivation

of the Hamiltonian and equations of motion while reintroducing dependence on the

average impurity position at the end. Consider the position-dependent density to be

represented by 𝑛0 (R). We reintroduce this position-dependence in the equations of

motion to finally get:

𝑖𝛽̇k = 𝑔IB
√︀
𝑛0 (R𝐼)𝑊k (2.77)

+

(︃
𝜔k [𝑛0 (R𝐼)] +

|k|2
2𝑚𝐼

− 1

𝑚𝐼

k · (P−Pph [𝛽])

)︃
𝛽k

+ 𝑔IB
(︀
𝑊k [𝑛0 (R𝐼)]𝜒

+
𝛽 +𝑊−1

k [𝑛0 (R𝐼)]𝜒
−
𝛽

)︀
𝜑̇ = 𝑔IB𝑛0 (R𝐼) + 𝑔Λ

√︀
𝑛0 (R𝐼)𝜒

+
𝛽 +

1

2𝑚𝐼

(︀
P2 −P2

ph [𝛽]
)︀

(2.78)

Ṗ =
∑︁
𝛼

F𝐼,𝛼 (2.79)

Ṙ𝐼 =
1

𝑚𝐼

(P−Pph [𝛽]) (2.80)

where 𝑊k [𝑛0 (R)] =
(︁

𝜀𝐵k
𝜔k[𝑛0(R)]

)︁ 1
2 , 𝜔k [𝑛0 (R)] =

√︀
𝜀𝐵k (𝜀𝐵k + 2𝑔BB𝑛0 (R)), and 𝜀𝐵k =

|k|2
2𝑚𝐵

. When implementing an inhomogeneous BEC in our simulations, we use a

Thomas-Fermi profile for 𝑛0 (R) assuming a harmonic trap with parameters typical

of experimental set-ups (see Appendix ??).

2.2.3 Impurity Potentials and Forces Included in Simulation

Impurity’s trapping potential

Let us fix the direction of the external force (F = 𝐹e𝑥) and assume the impu-

rity/polaron is initially at rest (P = 0). For a harmonic confining potential with

frequency 𝜔 in the direction of motion (direction of the applied force), we have a

potential 𝑉𝐼 (𝑥𝐼) = 1
2
𝑚𝐼𝜔

2
𝐼𝑥

2
𝐼 . This gives a force 𝐹𝐼 (𝑥𝐼) = −𝑚𝐼𝜔

2
𝐼𝑥𝐼 where 𝑥𝐼 is the

average position of the impurity in the direction of the confining potential.
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Polaron energy potential

Consider an impurity (not subject to any additional potentials or forces) in a spatially

homogeneous BEC that happens to be in the polaron ground state |𝜓𝑝𝑜𝑙 [P]⟩ with

associated energy 𝐸𝑝𝑜𝑙 [P]. Here P is the total system momentum which is a conserved

quantity. Using our treatment of the system, we can give an expression for the polaron

ground state energy (see Eq. (2.35)):

𝐸𝑝𝑜𝑙 (P) =
1

2𝑚𝐼

(︀
P2 −P2

ph [𝛽]
)︀

+
2𝜋𝑛0

𝜇𝑟𝑒𝑑

(︀
𝑎−1
IB − 𝑎−1

* (P)
)︀ (2.81)

where the resonance shift is given as:

𝑎−1
* (P) =

2𝜋

𝜇𝑟𝑒𝑑

∑︁
k

(︃
2𝜇𝑟𝑒𝑑

|k|2
− 𝑊 2

k

𝜔k + k2

2𝑚𝐼
− k

𝑚𝐼
· (P−Pph)

)︃
(2.82)

If we also include a spatially inhomogeneous BEC density 𝑛0 (R), the ground state

energy has position dependance both through the total momentum and the BEC

density. In accordance to the LDA, we have:

𝐸𝑝𝑜𝑙 [P (𝑡,R (𝑡)) , 𝑛0 (R (𝑡))] =
1

2𝑚𝐼

(︀
P2 −P2

ph [𝛽]
)︀
+

2𝜋𝑛0 (R)

𝜇𝑟𝑒𝑑

(︀
𝑎−1
IB − 𝑎−1

* [P, 𝑛0 (R)]
)︀ (2.83)

𝑎−1
* [P (𝑡,R (𝑡)) , 𝑛0 (R (𝑡))] =

2𝜋

𝜇𝑟𝑒𝑑

∑︁
k

(︃
2𝜇𝑟𝑒𝑑

|k|2
− 𝑊 2

k [𝑛0 (R)]

𝜔k [𝑛0 (R)] + k2

2𝑚𝐼
− k

𝑚𝐼
· (P−Pph)

)︃
(2.84)

where we have made the position dependence explicit. We will assume that the

polaron adiabatically follows its ground state. The phase 𝑒−𝑖
∫︀ 𝑡
0 𝐸𝑝𝑜𝑙[P(𝜏,R𝐼(𝜏)),𝑛0(R𝐼(𝜏))]𝑑𝜏

it picks up during time-evolutions looks like a time-dependent gauge transformation

which can be equated to an additional external potential. In the context of the LDA,

this amounts to including a force F𝑝𝑜𝑙 = −∇̄𝐸𝑝𝑜𝑙 as one of the F𝛼 in the equation

of motion for the total momentum Ṗ =
∑︀

𝛼 F𝛼. We read off the density-dependent
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effective potential as

𝑉𝑝𝑜𝑙 (R) ≡ 𝐸𝑝𝑜𝑙 (R) =
2𝜋𝑛0 (R)

𝜇𝑟𝑒𝑑

(︀
𝑎−1
IB − 𝑎−1

* [𝑛0 (R)]
)︀ (2.85)

𝑎−1
* [R] =

2𝜋

𝜇𝑟𝑒𝑑

∑︁
k

(︃
2𝜇𝑟𝑒𝑑

|k|2
− 𝑊 2

k [𝑛0 (R)]

𝜔k [𝑛0 (R)] + k2

2𝑚𝐼

)︃
. (2.86)

This potential results in the force F𝑝𝑜𝑙 (R𝐼) = −∇̄𝑉𝑝𝑜𝑙 (R) |R=R𝐼(𝑡) acting on the po-

laron (which we can take as being centered around the position of the impurity). In the

BEC frame, this force changes the total system momentum P→ P+
∫︀ 𝑡

0
𝑑𝜏F𝑝𝑜𝑙 (R𝐼(𝜏))

(which is the polaron momentum) rather than directly affecting the impurity momen-

tum P𝐼 as the impurity trapping potential does. We can include both types of forces

in the same expression for Ṗ in the equations of motion, however; after the Lee-Low-

Pines transformation, potentials that affect the total system momentum and those

affecting the impurity momentum both appear in the Hamiltonian in the same way.

2.2.4 Oscillating BEC

In some cases of interest, the BEC may itself be undergoing dynamics such as os-

cillations. When deriving the Hamiltonian and equations of motion, we implic-

itly made the assumption that we were in the co-moving frame of the BEC. One

can see this as we chose the k = 0 mode of Bose atoms to form the condensate

(𝑎̂†k=0 ∝
√
𝑛0 ≡

√
𝑛k=0). If the BEC was moving (e.g. with momentum q) and we

were working in the lab frame, then the k = q modes would form the condensate

(as it is the zero momentum modes in the Bose gas’s frame of reference that forms

the BEC). If we want to consider a BEC that is accelerating with respect to the

lab frame, we still work in the co-moving frame of the BEC to keep our derivation

intact; the cost, however, is to include ficticious forces on the impurity arising from

this non-inertial frame.

Let the (inertial) lab frame be labeled by L and the (non-inertial) comoving frame

of the BEC be labeled by B which has an origin rL,B (𝑡) relative to L . If the BEC

is oscillating in one direction with its position given by r𝐵𝐸𝐶 (𝑡) = (𝑥𝐵𝐸𝐶 (𝑡) =
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𝑎𝑅𝑇𝐹,𝑥 cos (𝜔𝐵𝑡) , 0, 0), then we only get the ficticious force associated with linear

motion and the impurity in the comoving BEC frame feels a force

FB = FL −𝑚𝐼
𝑑2r𝐵𝐸𝐶

𝑑𝑡2
(2.87)

= FL +𝑚𝐼𝑎𝑅𝑇𝐹,𝑥𝜔
2
𝐵 cos (𝜔𝐵𝑡) e𝑥

where F𝐿 correspond to other forces it would feel if the BEC was stationary and e𝑥 is

the basis vector in the 𝑥-direction. The equations of motion calculated previously stay

the same, but we must now include the ficticious force F𝑓 = 𝑚𝐼𝑎𝑅𝑇𝐹𝜔
2 cos (𝜔𝑡) e𝑥

as one of the forces F𝐼,𝛼 in the equation for Ṗ. The quantities R𝐼 , P, P𝑝ℎ [𝛽] =∑︀
k k |𝛽k|

2, and P𝐼 = P − P𝑝ℎ [𝛽] are all calculated in the non-inertial comoving

frame of the BEC. The BEC density 𝑛0 (R𝐼) and forces that depend on it are also

calculated as usual using 𝑛0 (R) |R=R𝐼(𝑡) where R𝐼 (𝑡) is the position of the impurity

in the comoving BEC frame as just mentioned. After making these calculations in the

BEC frame, we can examine the position of the impurity in the lab frame R̃𝐼 through

the transformation R̃𝐼 (𝑡) = R𝐼 (𝑡) + r𝐵𝐸𝐶 (𝑡) = R𝐼 (𝑡) + (𝑎𝑅𝑇𝐹,𝑥 cos (𝜔𝐵𝑡) , 0, 0).
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Chapter 3

Quantum Cherenkov transition of

finite momentum Bose polarons

Armed with the formalism in Sec. 2.1, we investigate the motion of a finite mass

impurity injected into a three-dimensional quantum Bose fluid as it starts shedding

Bogoliubov excitations. Theoretical work has previously been done on fast impurities

immersed in a BEC, including BECs flowing supersonically across an infinite-mass

defect [59], supersonic impurities in a 1D quantum liquid [248], and a semiclassical

treatment of weakly-interacting supersonic impurities in a 3D BEC [83]. The vari-

ational approach in Sec. 2.1 allows us to go beyond the semiclassical treatment and

allow study of a finite mass impurity across a wide range of interaction strengths.

Previous works using variational states primarily studied the system at zero momen-

tum or finite momentum with an effective repulsive interaction between the impurity

and the BEC [334, 97, 360]. Here, we focus on the case of an effective attractive

interaction between the impurity and the BEC.

We uncover a transition in the dynamics as the impurity’s velocity crosses a criti-

cal value which depends on the strength of the interaction between the impurity and

bosons as well as the impurity’s recoil energy. We find that in injection experiments,

the two regimes differ not only in the character of the impurity velocity abatement, but

also exhibit qualitative differences in the Loschmidt echo, density ripples excited in

the BEC, and momentum distribution of scattered bosonic particles. The transition is
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a manifestation of a dynamical quantum Cherenkov effect, and should be experimen-

tally observable with ultracold atoms using Ramsey interferometry, RF spectroscopy,

absorption imaging, and time-of-flight imaging. This quantum Cherenkov effect can

be thought of as a velocity-dependent frictional force on the impurity that is modified

by entanglement between the impurity and host atoms.

The nontrivial dependence of frictional forces on the velocity of moving objects is

common to many classical systems, from sliding friction between solid bodies to drag

forces in hydrodynamics. Electrodynamics provides an even more striking example,

where a charged particle moving through a medium dissipates energy through light

emission only if its velocity is above the speed of light in the medium, a phenomenon

known as Cherenkov effect [40]. A similar effect in quantum mechanical systems can

be found when a particle travels through a superfluid. When the impurity particle

is moving at a constant velocity, as is the case when it is so heavy that its recoil

can be neglected, the Landau criterion states that the particle will only dissipate

energy by generating excitations in the medium if it is traveling above the speed of

sound of the superfluid. Therefore, for an infinite mass object, the speed of sound

of the superfluid BEC sets a kinematic scale according to the Landau criterion, with

a conical wavefront of Bogoliubov excitations emitted as the relative motion of the

system exceeds this velocity [17, 59, 109, 126, 127]. An impurity with finite mass,

however, should exhibit dynamics that is far more complex. Specifically, it would

recoil due to interactions with the surrounding quantum gas, yielding novel physics

beyond the kinematic picture. Quantum fluctuations become highly relevant to the

dynamics of even slowly moving impurities with finite mass [142].

In this chapter, we examine (i) the lowest energy state of the system at finite

momentum, which we refer to as the finite momentum ground state (FMGS), and (ii)

the stationary state following temporal evolution of the impurity in an initial plane-

wave state after interactions with the gas are quenched on. In both scenarios, we find

that the impurity-gas interaction determines a critical system momentum, Pcrit, upon

which the system exhibits a transition between two qualitatively different regimes.

We observe that Pcrit coincides for the FMGS and dynamical quench transitions. At
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small and intermediate interaction strengths, Pcrit is set by the effective mass of the

polaron. The recoil energy scale vanishes in the infinite impurity mass limit, where

we recover the Landau criterion with 𝑃crit = |Pcrit| equivalent to the impurity mass

times the BEC’s speed of sound.

Below Pcrit, the polaron state overlaps with the free impurity and the impurity

travels at an average velocity slower than the BEC’s speed of sound, with this ve-

locity depending on the momentum of the system. Above Pcrit, the polaron state

is orthogonal to the free impurity and the impurity travels at the speed of sound

with the rest of the system’s momentum carried by long wavelength Bogoliubov ex-

citations. The finite momentum quantum transition we observe draws parallels to

the classical Cherenkov effect, in that the impurity injected into a medium above a

medium-dependent critical velocity saturates to a finite universal speed at late times

while generating a cone of excitations in the medium.

This chapter is organized as follows. We start by giving a summary of results in

Sec. 3.1. In Sec. 3.2, we study the Cherenkov transition in the FMGS using imaginary

time dynamics of the equations of motion. In Sec. 3.3, we examine manifestations

of the transition in real-time dynamics. We close with a discussion in Sec. 3.4. The

material in this chapter corresponds to the work in Refs. [326] and [325].

3.1 Summary of Results

While we primarily show results for the case case of impurities and bosons having

equal mass, the transition we uncover and corresponding phenomenology holds for a

wide range of mass ratios (see Sec. 3.3.5).

(I) FMGS Transition. If we pick an interaction strength and calculate the FMGS

energy as a function of total momentum P, we find that this relation is initially

quadratic and then discontinuously becomes linear. We posit that the energy-momentum

relation of a finite momentum impurity immersed in a weakly interacting BEC has
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Figure 3: Quantum Cherenkov transition of a finite momentum impurity interacting
with a weakly-interacting 3D BEC. (a) Phase diagram. The black solid line marks
the numerically extracted critical momentum from the discontinuity in the second
derivative of the FMGS energy. The black dashed line marks the predicted
transition value 𝑚*𝑐. The critical momentum describing the transition between
subsonic and Cherenkov regimes increases with interaction strength and is related to
polaronic mass enhancement. The red diamonds represent the numerically extracted
transition points in the long time limit of the quench dynamics. Panels (b) and (c)
illustrate the impurity’s momentum magnitude distribution in each regime. Note
that we have introduced Gaussian broadening of the 𝛿-peak in the distributions by
hand; in reality we get a 𝛿-peak at |Pimp| = 𝑃 with a weight 𝑍. The mass ratio is
𝑚𝐼/𝑚𝐵 = 1 and we use a momentum space UV cutoff Λ = 9.27[𝜉−1] where 𝜉 is the
healing length of the BEC.

the form

𝐸 (P) =

⎧⎪⎨⎪⎩
P2

2𝑚* , if |P| ≤ |Pcrit|

𝑐P, if |P| > |Pcrit|
(3.1)

where

|Pcrit| = 𝑚*𝑐. (3.2)

Note that 𝑚* is the effective mass of the polaron which depends on the strength of
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the interaction between impurity and Bose atoms while 𝑐 is the speed of sound in

the BEC which depends on the strength of the interaction between Bose atoms. We

see that on the polaron side of this transition (|P| < |Pcrit|), the FMGS energy is

quadratic with total momentum, with the polaron’s effective mass 𝑚* being defined as

the curvature of the energy around |P| = 0. On the Cherenkov side of this transition

(|P| > |Pcrit|), the energy depends linearly on total momentum. The slope of the

linear spectrum gives us the ‘polaron velocity’, which is the semiclassical velocity

that a polaron FMGS needs to reach in order to enter the Cherenkov regime. We

find this velocity equals the average velocity of the impurity as it must, and both are

equal to the speed of sound 𝑐 regardless of interaction strength. Momentum in this

regime is shed into Bogoliubov excitations of the BEC.

By examining the full distribution function for individual phonons and the impu-

rity’s momentum (describing quantum fluctuations around the mean), we see evidence

of quasiparticle breakdown at the transition, indicated by a vanishing quasiparticle

residue. The phonons present in this regime have very low momentum and there is a

dramatic increase in the number of phonons at the transition; the system redistributes

momentum into these phonons in order to fix the impurity’s average velocity to the

BEC speed of sound. It is the large number of phonons in the Cherenkov regime that

makes the quasiparticle residue vanish.

We identify the coherent part of the impurity’s momentum distribution, repre-

sented by a delta function peak at the value of the total system momentum. The

weight contained in this part corresponds to the quasiparticle residue in Eq. (2.59).

The shape of the remaining incoherent part of the distribution is illustrated in Fig.

3. These features of the impurity’s momentum distribution can be directly probed in

time-of-flight measurements.

We find that the quasiparticle residue sharply drops to zero at the critical mo-

mentum, which we take as a signature of quasiparticle breakdown in the supersonic

regime. We also see the incoherent part of the distribution become sharply peaked

at the critical momentum before broadening out again. This can be understood by

the reasoning given in [267] that at the critical momentum, the impurity travels at
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the same speed as the phonon excitations and therefore the phonons cannot dissipate

momentum away. Another way to think about this effect is that the available phase

space to excite phonons vanishes as the impurity approaches the speed of sound [43].

We establish that the FMGS as a function of total momentum has a transition at

a critical momentum set by the effective mass of the polaron in the subsonic regime

(see Fig. 3). The transition occurs when the polaron velocity reaches the speed of

sound.

(II) Dynamical Transition. We can also run the equations of motion in real time

for various subsonic and supersonic momenta and examine the behavior of the system.

The Cherenkov transition of the FMGS manifests in the dynamical behavior of various

observables here. The Loschmidt Echo (dynamical equivalent of the quasiparticle

residue) remains finite in the subsonic regime but has a power law decay to zero at

long times in the Cherenkov regime for weak and intermediate interactions. This

behavior is due to a logarithmic increase of total emitted phonon number at long

times in the supersonic regime. Nielsen et al. and Boyanovsky et al. also predict this

behavior in the Cherenkov regime [267, 43], but find an exponential decay instead of

a power law; we attribute this difference to their use of the Markov approximation.

The dynamical transition is also evident in the behavior of the average impurity

velocity. Initially supersonic impurities have an average impurity velocity which ex-

hibit a power-law decay towards 𝑚*𝑐 at long times, though convergence is slow; this

is related to the divergence in the damping rate described in [267, 43] as the impu-

rity approaches the critical momentum and cannot dissipate momentum through the

phonon excitations. We therefore see that the Loschmidt echo and average impurity

velocity both exhibit power-law decays in the supersonic regime with the onset of this

behavior depending on interaction strength through a polaronic mass renormalization

effect.

Similar to the classical Cherenkov effect, we also see the transition manifest in the

density of the host liquid. For sufficiently fast impurities, we find a shock wave and

wake in the density of the host liquid, with this modulation traveling along with the

impurity. In comparison to previously studied shock waves in superfluids generated
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Figure 4: (a) The spectrum of Bogoliubov excitations (‘phonons’) in the BEC; the
low energy spectrum is linear with such phonons traveling at the BEC speed of
sound 𝑐. At larger momenta, the phonon dispersion becomes quadratic. (b) FMGS
energy of the interacting impurity-BEC system. We find that the spectrum is
initially quadratic (subsonic regime) and then discontinuously becomes linear
(Cherenkov regime) at a criticial momentum (green dotted line), after which
momentum is shed into Bogoliubov excitations. The FMGS energy-momentum
relation therefore behaves in an opposite manner to the phonon dispersion which is
first linear and then continuously becomes quadratic. For panel (b), the FMGS
energy is computed for 𝑎−1

IB = −4.46/𝜉 and a mass ratio of 𝑚𝐼/𝑚𝐵 = 1. We use a
momentum space UV cutoff Λ = 9.27/𝜉.

by constant velocity heavy obstacles [59] or density defects [101, 152, 368], the dy-

namics of the density cone we observe is modified by the entanglement between the

impurity and host atoms; this entanglement is included in the theoretical treatment

of the system via the Lee-Low-Pines transformation [207] and results in additional

interaction between Bogoliubov excitations (see Chap. 2 for details). We therefore

call this density modulation a polaron shock wave.

3.2 FMGS Transition

Here, we perform evolution of the system in imaginary time 𝜏 by running Eq. (2.28)

with 𝑡→ 𝜏 = −𝑖𝑡 in order to numerically determine the FMGS. We examine charac-

teristics of the FMGS of the system as we vary the total system momentum P. We
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Figure 5: FMGS energy of an impurity immersed in a weakly interacting BEC. (a)
The FMGS energy is initially quadratic (subsonic regime) and then becomes linear
(Cherenkov regime) above a critical momentum where the critical momentum is
indicated by the vertical green dotted line. The energy is plotted in units of |𝐸crit|
which is the value of energy at critical momentum. Panels (b) and (c) show the first
and second derivatives of the energy respectively; they confirm the functional form
of the system’s energy-momentum relation hypothesized in Eq. (3.1). These two
curves are also normalized by |𝐸crit|. Note that panels (a), (b), and (c) correspond
to an interaction strength 𝑎−1

IB = 4.46/𝜉. (d) Polaron group velocity and average
velocity of the impurity in the Cherenkov regime (in units of 𝑐). The polaron
velocity is given by the red ‘x’s; each ‘x’ corresponds to the constant plateu
illustrated by the dashed red line in panel (b) which is computed for a specific
interaction strength. The average impurity velocity is computed independently and
confirmed to equal the polaron velocity as the Hellmann-Feyman theorem indicates.
We see that the polaron velocity equals the BEC’s speed of sound regardless of
interaction strength, thus confirming half of the energy-momentum relation we
hypothesis in Eq. (3.1). (e) Effective mass of polaron in units of 𝑚𝐼 . Each point
corresponds to the average value near 𝑃 0 illustrated by the dashed blue line in
panel (c) which is computed for a specific interaction strength. The effective mass
increases with interaction strength, but the group velocity does not. The mass ratio
is 𝑚𝐼/𝑚𝐵 = 1 and we use a sharp UV cutoff Λ = 9.27[𝜉−1].

find that the FMGS energy initially has a with quadratic dependence on P for small

momenta and then undergoes a discontinuous transition to linear dependence on P.
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Figure 6: FMGS and dynamical observables that witness the quantum Cherenkov
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is 𝑚𝐼/𝑚𝐵 = 1.

The critical momentum increases for larger impurity-boson interaction strengths. In

Fig. 3, we plot the phase diagram. Note that the system is spherically symmetric

so physical quantities will only depend on the magnitude of the total momentum 𝑃 ,

Eq. (2.23).

We posit that system’s FMGS energy-momentum relation follows Eq. (3.1) with

the critical momentum of the transition being given by Eq. (3.2). Examining the

FMGS energy and its derivatives gives evidence for this hypothesis. In Fig. 5 (a)-(c),

we confirm that for a fixed interaction strength, the energy is clearly quadratic at

low momenta and then becomes linear. The system therefore behaves as a massive

quasiparticle with effective mass 𝑚* = ∇2
P𝐸 before the critical momentum Pcrit. We

call this regime the subsonic regime. Fig 5 (e) shows the effective mass for different

interaction strengths; we see that it increases for stronger interactions which is the
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expected mass-renormalized effect.

We call the linear energy-momentum regime the Cherenkov regime. In Fig. 5 (d),

we plot the polaron’s group velocity, defined as

vpol (P) = ∇P̃𝐸

⃒⃒⃒⃒
P̃=P

(3.3)

and find that it is equal to the BEC’s sound speed (2.8) regardless of interaction

strength. The Hellmann-Feynman theorem tells us that the average impurity velocity

defined as

vimp (P) =
⟨P̂imp⟩
𝑚𝐼

(3.4)

must be equal to the polaron’s group velocity vpol which we also confirm in the figure.

The simulation-derived polaron velocity and average impurity velocity are within 2%

of the BEC’s sound speed. These velocities transition from an interaction-dependent

subsonic value to the speed of sound when 𝑃crit is crossed, as illustrated in Fig. 6(a).

The low energy phonons that dress the impurity in the Cherenkov regime by definition

have a group velocity 𝑐. We therefore have a physical picture in this regime of the

impurity moving on average at the speed of sound along with low-energy phonons

traveling at the same speed. The fact that the group velocity of the low-energy part

of the phonon dispersion equals the group velocity of the high-energy part of the total

system is not obvious a priori.

Next, we examine the critical momentum at which the transition occurs. In Fig.

3(a), we see that the transition happens at larger momentum for stronger interaction

strengths. Note that the transition line in the figure is computed from the discon-

tinuity in the second derivative of the energy. We also plot the predicted transition

line given by Eq. (3.2) and see that it reasonably matches the true transition. Thus,

we conclude that the transition occurs when the polaron’s group velocity reaches the

BEC’s sound speed; the amount of momentum needed for this to occur increases for

stronger interactions due to the polaronic mass-renormalization of the impurity.

We gain further insight into the transition by examining the impurity’s momen-

tum magnitude distribution, Eq. 2.57. The three-dimensional momentum distribu-
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Figure 7: Distribution of impurity’s momentum magnitude in FMGS. (a) Subsonic
regime (𝑃 = 0.5𝑚𝐼𝑐). (b) Cherenkov regime (𝑃 = 3.0𝑚𝐼𝑐). Note that we have
introduced Gaussian broadening of the 𝛿-peak in the distributions by hand; in
reality we get a 𝛿-peak at |Pimp| = 𝑃 with a magnitude corresponding to the
quasiparticle residue 𝑍. (c) Magnitude of 𝛿-peak, 𝑍, and full width at half
maximum (FWHM) of incoherent part of the distribution for different values of
total system momentum 𝑃 . The impurity-boson scattering length is
𝑎−1
IB = −4.46/𝜉−1 and the impurity-boson mass ratio is 𝑚𝐼/𝑚𝐵 = 1.

tion, Eq. (2.40), is comprised of a 𝛿-peak with magnitude given by the quasiparticle

residue, 𝑍, and an incoherent part, 𝑛̃imp(p). The momentum magnitude distribution,

Eq. (2.57), is therefore also comprised of a 𝛿-peak with magnitude 𝑍 and an incoher-

ent part. In Fig. 7(a) and (b), we illustrate examples of 𝑛imp(𝑝) in the subsonic and

Cherenkov regimes respectively. In Fig. 7(c), we plot the magnitude of the 𝛿-peak and

full width at half maximum of the incoherent part of the distribution as a function

of total system momentum. We see that the magnitude of the 𝛿-peak, given by the

quasiparticle residue, is finite at low momenta corresponding to the subsonic regime,

and then sharply decays to zero upon crossing the Cherenkov transition. We can

understand the behavior of the quasiparticle residue as the system producing an ‘in-

finite’ number of low energy phonons in the Cherenkov regime and therefore having a

vanishing overlap with the bare non-interacting impurity. At the transition point, the

width of the incoherent part of the distribution becomes much narrower. As stated

in [267], the system almost acts like a momentum eigenstate of a non-interacting

impurity at the transition as phonons cannot dissipate momentum away from the im-

purity; the available phase space of excitations vanishes as the impurity approaches

the speed of sound [43]. This feature of the momentum magnitude distribution can
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be used to diagnose the FMGS transition in experiments via time of flight imaging.

In summary, the FMGS of the system exists either in a subsonic regime where the

system truly behaves as a dressed quasiparticle with an effective mass, a quadratic

energy-momentum relation, and non-zero quasiparticle residue or in a Cherenkov

regime characterized by the impurity traveling at the speed of sound along with a large

number of low energy phonons and a vanishing quasiparticle residue (quasiparticle

breakdown). The critical momentum at which the transition occurs depends on the

interaction strength and corresponds to the polaronic mass renormalization of how

much momentum needs to be input into the system to get the impurity to travel at

the speed of sound.

It is important to note that while the quasiparticle residue goes strictly to zero in

the Cherenkov regime regardless of interaction strength, this effect becomes difficult to

detect in practice at strong interactions where sufficiently large numbers of phonons

are excited. Even in the subsonic regime where the residue is always finite, the

large number of phonons makes this finite residue increasingly small. Therefore, at

sufficiently strong interactions, the quasiparticle residue by itself cannot be used to

distinguish between the subsonic regime and the Cherenkov regime.

3.3 Dynamical Transition

We take a non-interacting impurity propagating through a BEC in its FMGS and

instantly switch on (quench) the impurity-BEC interaction at time 𝑡0 = 0. We

then evolve the system by running Eq. (2.28) in real time. Recall that the total

momentum P of the system is conserved and this momentum initially resides on the

non-interacting impurity; the initial velocity of the impurity is

vimp(𝑡0) =
P

𝑚𝐼

. (3.5)

Hereafter, the initial impurity velocity and the total system momentum are used

interchangeably depending on the context of the discussion.
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Figure 8: (a) Loschmidt echo at relatively weak interaction (𝑎−1
IB = −8.92/𝜉).

Curves from the subsonic regime saturate to a finite value at long times. Curves in
the Cherenkov regime decay to zero as a power-law at long times. (b) Loschmidt
echo at strong interaction (𝑎−1

IB = −1.78/𝜉). Curves for sufficiently fast impurities
also exhibit power-law decay. (c) Average speed of the impurity at relatively weak
interaction (𝑎−1

IB = −8.92/𝜉). Curves from the subsonic regime saturate to different
subsonic values at long times. Curves in the Cherenkov regime all approach the
speed of sound at long times. (d) Average speed of the impurity at strong interaction
(𝑎−1

IB = −1.78/𝜉). Curves approach the speed of sound for sufficiently fast impurities
velocity. The mass ratio is 𝑚𝐼/𝑚𝐵 = 1 and we use a sharp UV cutoff Λ = 13.91/𝜉.

The finite momentum transition of Sec. 3.2 also manifests in the dynamics of the

system after the impurity is quenched from a non-interacting state to an interacting

state. We find a qualitative change in the long-time value of the Loschmidt echo,

Eq. (2.60), and of the average impurity velocity as P crosses a critical value Pdyn
crit .

We then discuss how Pdyn
crit is related to Pcrit for the FMGS transition studied in

section 3.2.
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Figure 9: Loschmidt echo dynamics. The black dotted line is a visual guideline for
the power-law decay of the Loschmidt echo in the Cherenkov regime. The
impurity-boson scattering length is 𝑎−1

IB = −8.92/𝜉−1 and the impurity-boson mass
ratio is 𝑚𝐼/𝑚𝐵 = 1.

3.3.1 Loschmidt Echo

The orthogonality catastrophe defined by the vanishing 𝑍 in Sec. 3.2 gives a natu-

ral motivation to examine the Loschmidt echo, Eq. (2.60), which characterizes the

dynamical transition and can be experimentally measured using Ramsey interfer-

ometry on the impurity atom [183, 63]. We can express the Loschmidt echo as

𝑆(𝑡) = 𝑒
𝑖 𝑃2

2𝑚𝐼
𝑡 ⟨0|Ψ(𝑡)⟩ where |Ψ(𝑡)⟩ is the wavefunction of the interacting system

at time 𝑡.

Figures 8(a) and (b) illustrate its characteristic behavior for different initial im-

purity velocities, vimp(𝑡0), at weak and strong interactions, respectively. We see that

|𝑆(𝑡)| saturates to a non-zero value at long times for small momenta and undergoes

a power-law decay to zero as we cross some critical momentum Pdyn
crit . This power-law

decay in the dynamical overlap corresponds to a logarithmic growth in the phonon

number in the supersonic regime: per Eq. (2.62), we see that

𝑁ph (𝑡) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
constant, if |P| ≤

⃒⃒⃒
Pdyn

crit

⃒⃒⃒

log 𝑡, if |P| >
⃒⃒⃒
Pdyn

crit

⃒⃒⃒ (3.6)
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in the 𝑡 → ∞ limit. Physically, it is the divergence of 𝑁ph which causes the decay

of the Loschmidt echo. The increase in phonon number in the supersonic regime

is the essence of the Cherenkov radiation phenomenon. Its divergence with time is,

however, not obvious a priori. We expect that the coherent state variational ansatz

employed in our work captures the leading terms in the behavior of 𝑁ph, as given by

Eq. (3.6). Therefore, going beyond our ansatz, for example, by taking into account

squeezing correlations between phonon modes [337], may only introduce subleading

corrections to Eq. (3.6).

The power-law decay of the Loschmidt echo in the Cherenkov regime is illustrated

clearly Fig. 9. The power-law behavior is reminiscent of the dynamical response

in systems featuring orthogonality catastrophe, discussed for example in Ref. [183].

This form of the decay also confirms that the time evolution of the system is non-

Markovian, as the use of the Markov approximation leads to an exponential decay

of 𝑆(𝑡) and does not capture the dependence of 𝑃crit on the impurity-gas coupling

strength [204, 267, 43].

To find the value of the critical momentum
⃒⃒⃒
Pdyn

crit

⃒⃒⃒
, we fit the long-time tail of

|𝑆(𝑡)| with a power-law,

|𝑆(𝑡)| = const× 𝑡−𝛾, 𝑡→∞. (3.7)

We do the fit over the time range 80 ≤ 𝑡/𝜉𝑐−1 ≤ 90 for all values of interactions

available from our numerical simulation. Then,
⃒⃒⃒
Pdyn

crit

⃒⃒⃒
is identified as the momentum

upon which the exponents become nonzero. We see that the critical momentum

always corresponds to an initial velocity of the impurity, Eq. (3.5), that is above the

speed of sound,

|vimp,crit(𝑡0)| =

⃒⃒⃒
Pdyn

crit

⃒⃒⃒
𝑚𝐼

≥ 𝑐. (3.8)

The equality is only reached in the limit of vanishing impurity-boson interaction, and

the value of |vimp,crit(𝑡0)| increases with the strength of the interaction.

Finally, we extrapolate our data for |𝑆(𝑡)| to find the value of |𝑆(𝑡∞)|, Eq. (2.63),
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for various initial impurity velocities by making use of the fitting formula (3.7). When

the exponent 𝛾 is zero, |𝑆(𝑡)| saturates to a finite value. When 𝛾 is nonzero, |𝑆(𝑡)|
decays to zero. We illustrate this behavior in Fig. 6(d). We see that |𝑆(𝑡∞)| has

a discontinuous drop to zero between adjacent data points as the initial impurity

velocity crosses the value (3.8).

The discontinuous behavior of |𝑆(𝑡∞)| in the vicinity of |Pdyn
crit | identifies a dynam-

ical transition. At the same time, |𝑆(𝑡∞)| is determined by the FMGS quasiparticle

residue 𝑍, Eq. (2.63). We find in section 3.2 that this residue has a discontinuity at

|Pcrit| and therefore signals the subsonic-Cherenkov FMGS transition. A comparison

between |Pdyn
crit | and |Pcrit| is given in Fig. 3(a), where we plot critical points of the

dynamical transition on top of the FMGS phase diagram. We see that the qualita-

tive behavior of the critical line is the same for this dynamical transition compared

to the FMGS, but quantitatively there is disagreement at stronger interactions. Per

Eq. (2.63), however, we expect quantitative agreement of the transition line:

|Pdyn
crit | = |Pcrit| . (3.9)

The fact that our numerical data does not exactly fulfil Eq. (3.9) at strong interactions

may be due in part to different UV cutoffs being used for FMGS simulations versus

quench dynamics; a smaller cutoff was used in the former to ensure that the imaginary

time dynamics saturated within the limitations of available computational resources.

Another contribution to the quantitative discrepancy may arise from limitations of

the coherent state ansatz; higher order correlations between phonon modes are not

explicitly captured and these correlations could become more relevant at stronger

interactions. Using a full Gaussian state ansatz which includes squeezing on top of

the coherent state could improve the agreement between the critical lines as discussed

in Sec. 2.1.5.

80



Figure 10: Mean phonon number distribution 𝑛ph(k) at different times for a weakly
interacting (𝑎−1

IB = −8.92/𝜉) and initially supersonic impurity (𝑣imp(𝑡0)/𝑐 = 1.8). (a)
Immediately after the quench we do not build up excitations as enough time hasn’t
passed. (b) & (c) We do not build excitations until enough time has passed to excite
phonons in the phase space allowed by Fermi’s golden rule (FGR). (d) - (f) We
build up excitations exactly around this FGR phase space (which contracts over
time as the impurity gets slower). The mass ratio is 𝑚𝐼/𝑚𝐵 = 1 and we use a sharp
UV cutoff Λ = 13.91/𝜉.
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3.3.2 Comparison of Dynamics with Fermi’s Golden Rule

As a check of our methods, we examine whether our variational wavefunction agrees

with expectations from Fermi’s golden rule physics at weak interactions. In Fig. 10,

we plot the mean phonon number distribution 𝑛ph,ind(k) at different times for a weakly

interacting supersonic impurity; this check gives insight into the power-law decays

that were discussed. The green dot (initially off-screen to the right at short times)

is the average impurity momentum with the gray ’x’ being the average total phonon

momentum. The gray lobe in the plots corresponds to the phase space shell of phonons

that can be excited according to Fermi’s golden rule (FGR) if we limit ourselves to

the Fröhlich model. The green lobe corresponds to the accessible momentum shell

that the impurity would scatter to after such an emission. The blue star gives a

reference for the speed of sound; the impurity stays supersonic so its average impurity

momentum is always larger than this. The region inside the blue circle corresponds

to the part of phase space where phonons have energy corresponding to the linear

part of their Bogoliubov spectrum (“linear excitations”). The region outside the red

circle corresponds to the phonon excitations that are accessible to the system at a

given time based on the timescale set by their energy. Longer wavelength phonons

(closer to |k| = 0) become accessible at later times.

We see that we excite phonons around the FGR phase space lobe but only after

enough time has passed to access those phonons; in the plots this corresponds to the

portion of the gray lobe that is outside the red circle. As time elapses, the impurity

slows down towards the speed of sound and the FGR phase space lobe therefore

contracts; we thus see phonons excitations build up in the entire area swept out by

the FGR lobe.
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3.3.3 Average Impurity Velocity

Motivated by the fact that the impurity velocity acts as a signature of the FMGS

transition, we also examine the dynamical impurity velocity

vimp (𝑡) =
⟨P̂imp(𝑡)⟩

𝑚𝐼

. (3.10)

in an effort to further understand the dynamical transition. Recall that the FMGS

transition is characterized independently by a discontinuity in the quasiparticle residue

and a discontinuity in the second derivative of the energy. Naturally, the average

FMGS impurity velocity, Eq. (3.4), has a cusp at a point where the second derivative

of the energy is discontinuous. This cusp can equivalently be used as a signature

of the transition. The FMGS transition and dynamical transition are connected

through the equivalence of the quasiparticle residue 𝑍 and the asymptotic behavior

of the Loschmidt echo |𝑆(𝑡∞)|, Eq. (2.63). It is therefore natural to check whether

there is a link between the FMGS impurity velocity and the asymptotic value

vimp (𝑡∞) ≡ lim
𝑡→∞

vimp (𝑡) (3.11)

of the average impurity velocity vimp (𝑡) after a quench. Unlike Eq. (2.63), we do

not have an analytic formula connecting vimp (𝑡∞) and the FMGS impurity velocity,

Eq. (3.4). Our numerical analysis suggests that

vimp (𝑡∞) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
constant < 𝑐, if |P| ≤

⃒⃒⃒
Pdyn

crit

⃒⃒⃒

𝑐, if |P| >
⃒⃒⃒
Pdyn

crit

⃒⃒⃒ (3.12)

which indicates that the asymptotic average impurity velocity witnesses the dynamical

transition, just as the ground state impurity velocity witnesses the FMGS transition.

Our numerical analysis allowing the extrapolation of vimp (𝑡∞) is similar to the

analysis of the Loschmidt echo in Sec. 3.3(a). Figures 8(c) and (d) illustrate the

characteristic behavior of vimp (𝑡) for different initial impurity velocities, vimp(𝑡0), at
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weak and strong interactions, respectively. We see that the average impurity velocity

decays to a subsonic value for smaller initial velocities, and decays towards the speed

of sound for larger initial velocities. To find the asymptotic value of the impurity

velocity, vimp (𝑡∞), we separately consider the case where the velocity, vimp (𝑡) with a

power-law, has saturated to a value below 𝑐 in the simulated time window, and the

case where it has not. In the former case, we take vimp (𝑡∞) to be the average of the

last few values of vimp (𝑡). In the latter case, we fit the long-time tail of vimp (𝑡) with

a power-law,

vimp (𝑡) = 𝑐× 𝑡−𝛾, 𝑡→∞. (3.13)

We do the fit over the time range 80 ≤ 𝑡/(𝜉𝑐−1) ≤ 90 for all values of interactions

available from our numerical simulation.

The extrapolated values vimp (𝑡∞) for various initial impurity velocities are shown

in Fig. 6(c). We find that the final impurity velocity is monotonic; it increases with

initial impurity velocity until some critical |vimp,crit(𝑡0)| after which it saturates to 𝑐.

For weak interactions, this critical initial velocity is seen to be the same as the critical

transition point of the Loschmidt echo. For stronger interactions, however, there is a

discrepancy in the critical initial velocities. We expect this discrepancy is due to the

numerical difficulty of extrapolating vimp (𝑡∞).

3.3.4 Host liquid density distribution

The density of atoms of the host liquid, 𝑛𝑎 (r, 𝑡), shows qualitative differences on the

two sides of the dynamical transition. In the subsonic phase, the impurity generates

a rounded wave in the host gas density which propagates outwards faster than the

impurity’s motion. In the Cherenkov phase, the impurity generates a shock wave

and wake in the host liquid density, with this modulation traveling along with the

impurity even at late times. We illustrate the typical Cherenkov and subsonic patterns

in Fig. 11(b) and (c) respectively, where we plot the integrated density, 𝑛𝑎 (𝑥, 𝑧, 𝑡) =∫︀
𝑑𝑦 𝑛𝑎 (r, 𝑡), at a specific time 𝑡 = 40 𝜉/𝑐 in the frame of the impurity propagating

in the 𝑧-direction.
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Figure 11: Quantum Cherenkov transition of a mobile impurity interacting with a
3D BEC. (a) Phase diagram depicting subsonic and Cherenkov regimes. The black
squares mark the critical total system momentum, 𝑃crit, numerically extracted from
the discontinuity in the second derivative of the FMGS energy. The black solid line
is an interpolated guideline for the transition. The black dashed line depicts 𝑚*𝑐,
where 𝑚* is the polaron’s mass, and 𝑐 the BEC’s speed of sound. For weak and
intermediate interactions, the dashed and solid lines coincide. The red diamonds
show the numerically extracted transition points for the long time limit of the
dynamical protocol. Panels (b) and (c) illustrate the real-space density distribution
of atoms in the host liquid in each regime. The distributions are plotted at time
𝑡 = 40 𝜉/𝑐 in the frame of the impurity propagating in the 𝑧-direction. The
impurity-boson mass ratio is 𝑚𝐼/𝑚𝐵 = 1.

We can also integrate the real space density distribution of the host liquid plotted

in Fig. 11(b) and (c) across the direction perpendicular to the impurity’s motion.

Specifically, in Fig. 12, we plot 𝑛𝑎 (𝑧, 𝑡) =
∫︀
𝑑𝑥 𝑑𝑦 𝑛𝑎 (r, 𝑡) at a specific time 𝑡 = 40 𝜉/𝑐

in the frame of the impurity propagating in the 𝑧-direction. Panels (a) and (b) in

Fig. 12 are typical patterns of the density in the subsonic and Cherenkov regimes

respectively. We see a peak at the origin in both panels corresponding to the position

of the impurity. In Fig. 12(b), representing the density in the Cherenkov regime, we

see a shock wave followed by the first oscillation of the wake. The shock wave appears

at approximately one healing length in front of the impurity (𝑧 = 𝜉). Both integrated

densities, 𝑛𝑎 (𝑥, 𝑧, 𝑡), depicted in Fig. 11, and 𝑛𝑎 (𝑧, 𝑡) =
∫︀
𝑑𝑥𝑛𝑎 (𝑥, 𝑧, 𝑡), depicted in
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Figure 12: Integrated host liquid density distribution in direction of impurity
propagation. (a) Subsonic regime (𝑃 = 0.5𝑚𝐼𝑐). (b) Cherenkov regime
(𝑃 = 3.0𝑚𝐼𝑐). The dashed black rectangle highlights the shock wave in front of the
impurity. The distributions are plotted at time 𝑡 = 40 𝜉/𝑐 in the frame of the
impurity. The impurity-boson scattering length is 𝑎−1

IB = −4.46/𝜉−1 and the
impurity-boson mass ratio is 𝑚𝐼/𝑚𝐵 = 1.

Fig. 12, are directly visible in experiments via absorption imaging.

In the Supplementary Videos of Ref. [326], we show the time-evolution of 𝑛𝑎 (𝑥, 𝑧, 𝑡)

for different interaction strengths and initial momenta. For interactions weak enough

that an initially supersonic impurity decays towards 𝑐 slowly, we observe the genera-

tion of a shock wave whose cone angle gradually becomes shallower as the impurity

slows down. This dynamically changing cone angle, resulting from a changing Mach

number 𝑣imp (𝑡) /𝑐, occurs due to finite recoil in the system which is not present in

the classical limit of an infinitely heavy impurity. For strong interactions, the average

velocity of an impurity in the Cherenkov regime quickly decays to 𝑐 as it gets entan-

gled with the host liquid. The impurity maintains a shallow shock wave and wake

as it travels with constant average velocity 𝑐 through the host liquid. Initially super-

sonic impurities that are in the subsonic regime, however, stop generating a shock

wave and wake as time progresses. The existence of a persistent shock wave at late

times therefore depends on how much velocity an initially supersonic impurity loses

as it gets entangled with the host liquid. This dependence of the observed Cherenkov

effect on the velocity of the entangled impurity highlights the quantum nature of the
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Figure 13: Dynamical quantum Cherenkov transition for different impurity-boson
mass ratios.

transition arising from the impurity’s finite mass and ensuing recoil.

If we make the boson-boson interaction in the host liquid weaker, the speed of

sound decreases. In the limiting case of a non-interacting Bose gas, the system exhibits

an orthogonality catastrophe where the FMGS quasiparticle residue will vanish for

any choice of system parameters, a prediction that is consistent with Ref. [144].

3.3.5 Phase transition at different mass ratios

While we have focused on the case of equal impurity and boson masses so far, the

dynamical transition exists for a range of mass ratios. In Fig. 13, we show the

dynamical transition points 𝑃crit, depicted by the red diamonds in Fig. 3(a), for

various impurity-boson mass ratios. We see that for a fixed interaction strength,

heavier impurities have a smaller critical momentum closer to 𝑚𝐼𝑐; interactions must

be stronger to appreciably renormalize the mass of heavy impurities. In the limit

of an infinitely heavy impurity and finite interaction strength, the interactions have

a negligible effect and the transition occurs at the point of the classical Cherenkov
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transition, 𝑃crit → 𝑚𝐼𝑐.

3.4 Discussion

We find a quantum Cherenkov transition that exists for all impurity-boson mass ratios

and interaction strengths. In the limit of infinite 𝑚𝐼 , we recover the kinematic Lan-

dau criterion for an macroscopic classical obstacle propagating through a superfluid.

Finite 𝑚𝐼 introduces the impurity’s recoil energy as a relevant scale, thus making

the quantum nature of the impurity important to the physics of the transition. For

weak and intermediate interactions, the transition can be described in terms of mass

renormalization by applying the Landau criterion to a polaron quasiparticle with ef-

fective mass 𝑚*. For stronger interactions, however, we find that this description is

no longer sufficient as 𝑃crit is larger than 𝑚*𝑐, and the momentum dependence of the

FMGS energy, Eq. (3.1), can no longer be captured by just 𝑚*. In contrast to the

classical Cherenkov effect, a mobile quantum impurity injected into a quantum liquid

expresses whether it is in the Cherenkov regime only at late times.

The existence of a finite momentum transition in other impurity systems, and

whether the FMGS and dynamical manifestations of such a transition occur at the

same point, can provide insight into how dynamical behavior can be classified. For

example, the finite momentum behavior of an impurity interacting repulsively with

a one-dimensional Fermi gas has been examined [248, 181, 122]. There, a FMGS

transition exists as momentum is increased, while a dynamical quench protocol similar

to the one in our work exhibits a crossover. Specifically, in the one-dimensional

gas studied in Ref. [122], the behavior of the post-quench long time limit of the

average impurity velocity, 𝑣imp(𝑡∞), is a smooth and non-monotonous function of the

initial velocity 𝑣imp(𝑡0); it never reaches the speed of sound in the gas. Furthermore,

𝑣imp(𝑡∞)→ 0 as 𝑣imp(𝑡0)→∞. This behavior may be associated with the prevailing

role of a few initial central collisions between the impurity and host particles in

the one-dimensional gas; such collisions take away virtually all momentum from the

impurity. In contrast, for the three-dimensional gas studied in our work, small-angle
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collisions play an important role, thus ensuring that the impurity may have 𝑣imp(𝑡∞)

remain far from zero for any arbitrarily high initial impurity velocity as shown in

Fig. 6(c). Two-dimensional gases may have collisions in-between these two cases, and

therefore we have no a priori conclusions about the behaviour of 𝑣imp(𝑡∞) for large

initial velocities in these systems.

Experimentally, the transition we observe can be detected through time-of-flight

imaging of a dilute impurity gas immersed in a BEC. We have established that the

width of the impurity’s momentum distribution acts a signature of the transition in

the FMGS. Alternatively, Ramsey interferometry or RF spectroscopy, as detailed in

Ref. [63], can be used to detect the dynamical transition as the onset of a power-law

decay in the Loschmidt echo signifies the critical point. Absorption imaging of the

density distribution of host atoms would directly reveal the polaron shock wave and

wake of sufficiently fast impurities. We assume a homogeneous BEC in the vicinity of

the impurity, which can be realized using a sufficiently large box trap. The dynamical

quantum Cherenkov transition we uncover provides a route to experimentally pinpoint

the characteristic dynamical properties of impurities immersed in quantum liquids,

which would grant insight into the far-from-equilibrium behavior of quantum many-

body systems.
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Chapter 4

Experimental probes of finite

momentum Bose polarons

Early experimental work on Bose polarons focused on gaining coherent control of im-

purities immersed in cold Bose gases [316, 344, 310, 120]. Later experiments studying

polarons in three dimensional BECs have primarily characterized the polaron energy

and probed quasiparticle breakdown due to finite temperature effects using RF spec-

troscopy [172, 158, 377]. For Bose polarons in one dimension, impurity trajectories

have been examined to give an indirect signature of the effective mass [61]. How-

ever, no direct measurements of a Bose polaron’s effective mass have yet been made

in 1D and no experimental investigations of the effective mass have been made at

all in 3D BECs. Theoretical predictions for the polaron’s effective mass show large

quantitative and qualitative discrepencies; for example, they disagree on whether the

effective mass diverges at strong impurity-boson interactions or whether it stays finite

[293, 137, 72]. Experimentally probing the quasiparticle nature of the impurity-bath

system through effective mass measurements as well as exploring when this quasipar-

ticle picture breaks down is therefore a fruitful line of inquiry. In this chapter, we

discuss experimental protocols that can be used to study polaronic mass renormal-

ization.

We leverage the formalism in Sec. 2.2 to describe the dynamics of experimentally

viable setups involving slowly varying traps and other external forces. In Sec. 4.1, we
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discuss a dynamical protocol to measure the effective mass of a Bose polaron in a ho-

mogeneous BEC. In Sec. 4.2, we discuss a protocol involving dipole oscillations of the

BEC and the resulting dynamics of the impurity both for the case of a homogeneous

BEC and an inhomogeneous BEC resulting from a harmonically trapped Bose gas.

We find that the dynamical transition discussed in Chap. 3 manifests in both these

protocols as well. Specifically, We find that the protocol in Sec. 4.1 runs into errors

introduced by supersonic impurities, while the protocol in Sec. 4.2 exhibits locking

of the impurity onto the motion of the BEC due to Cherenkov physics. This latter

protocol, however, shows a more robust signature of mass renormalization for attrac-

tive impurity-boson interactions as well as evidence of quasiparticle breakdown for

repulsive impurity-boson interactions. Examination of the physics of fast impurities

therefore gives insight into the design of experimental protocols intended to study

quasiparticles in impurity-bath systems. For example, if seeking to use a protocol

like the one in Sec. 4.1 to measure the effective mass of a polaron, the initial impurity

velocities and magnitude of the external force should be limited so that the impurity

doesn’t end up supersonic. Additionally, protocols similar to Sec. 4.2 are often used

to study hydrodynamics and collective modes of Bose-Fermi mixtures, but we see that

in the limit of dilute impurities it is predominantly sensitive to Cherenkov physics.

The material in this chapter corresponds to the work in Ref. [323].

4.1 Effective Mass Protocol

Here, we discuss a protocol involving the application of a constant external force to

the impurity in order to measure the effective mass of a polaron. The protocol is

as follows (Fig. 14). We initialize the system in a polaron ground state. Then we

impart a known amount of momentum ∆P =
∫︀ Δ𝑡

0
𝑑𝜏F(𝜏) to the impurity using an

external force F(𝑡). The application of this force will change the impurity’s velocity

by ∆v. The ratio 𝑚* = |∆P| / |∆v| of the momentum imparted to the system and

the impurity’s change in velocity therefore represents the inertia in the polaron state

and can therefore be interpreted as the effective mass of the polaron. Specifically, we
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initial polaron:

impart
momentum:

accelerated polaron:

measure velocity:

Figure 14: Protocol to measure effective mass. (a) First we apply an external force
on the impurity for a fixed amount of time and calculate the total momentum
imparted to the system. (b) We then calculate the change in velocity of the impurity
after the final velocity has saturated. (c) Taking the ratio of momentum imparted
to the system and the impurity velocity difference gives us the effective mass.

apply a constant external force of fixed magnitude 𝐹 for a time ∆𝑡 which imparts a

momentum ∆𝑃 = 𝐹∆𝑡 to the system. We then measure the change in the impurity’s

speed ∆𝑣 (in the direction of the external force) and compute the effective mass as

𝑚* = 𝐹∆𝑡/∆𝑣. We assume a homogeneous BEC in this protocol to more clearly

showcase certain physics; trap effects can be easily included in the LDA formalism.

If we apply the force for a short enough period of time to keep the impurity in

the subsonic regime, the impurity velocity saturates to a constant value (Fig. 15(a)).

We can determine the effective mass of the polaron by reading off the final velocity

of the impurity and dividing the known momentum imparted to the system by this

velocity (Fig. 15(b)). As a check, we can compare the ‘measured’ effective mass in

our simulation with that calculated using the saddle point solution to the equations of

motion (see Sec. 2.1.4). We see that the measured effective mass matches the saddle
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Figure 15: Effective mass protocol fully in subsonic region. (a) Average impurity
speed. The impurity velocity increases linearly while the constant external force is
applied. The impurity-boson interaction is 𝑎−1

IB = −9.39/𝜉−1 and an external force of
𝐹 = 0.212𝜋𝑐

𝜉2
is applied for ∆𝑡 = 0.5/(𝜉𝑐−1) to impart momentum ∆𝑃 = 0.8/(𝑚𝐼𝑐).

(b) Mass enhancement. We confirm that the proposed protocol correctly yields a
larger effective mass as we increase interaction strength. The system parameters
used were a mass ratio of 𝑚𝐼

𝑚𝐵
= 1.7, a momentum cutoff Λ = 36.60/𝜉, and an initial

polaron state with total momentum 𝑃0 = 0.15/(𝑚𝐼𝑐).

point calculation fairly well, especially at weak interactions. For strong interactions,

we see increasingly large discrepancies that are likely due to non-adiabatic effects

during the dynamics of the protocol. While the LDA is exact for an external constant

force, the changing of total system momentum in time is likely done too quickly for

the impurity’s dressing cloud to appropriately adjust into the correct polaron state.

We do not see this issue for weak interactions as the impurity is not as strongly

dressed. Another way to understand this error is to think of the time-dependent

total momentum as a series of infinitesimal quenches; for strong interactions, short

time scattering drops the impurity to slower final speeds than would be expected

in the ground state. This undershoot in final velocity causes the overshoot in mass

enhancement between the force protocol and saddle point solution that we see in Fig.

15(b).

If we repeat this protocol after applying the force long enough to speed the im-
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Figure 16: Effective mass protocol partially in supersonic region. (a) Average
impurity speed. We see curvature corresponding to dissipation as the external force
accelerates the impurity past the speed of sound. The impurity-boson interaction is
𝑎−1
IB = −9.39/𝜉−1 and an external force of 𝐹 = 0.212𝜋𝑐

𝜉2
is applied for ∆𝑡 = 0.5/(𝜉𝑐−1)

to impart momentum ∆𝑃 = 4.6/(𝑚𝐼𝑐). (b) Mass enhancement. There is error in
the ’measured’ effective mass at weak interactions. The system parameters used
were a mass ratio of 𝑚𝐼

𝑚𝐵
= 1.7, a momentum cutoff Λ = 36.60/𝜉, and an initial

polaron state with total momentum 𝑃0 = 0.15/(𝑚𝐼𝑐).

purity up into the supersonic regime, we get different results for weak interactions.

We see dissipation represented by a curvature in the velocity as soon as we cross the

speed of sound (Fig. 16(a)) which leads to the measured effective mass values drifting

from the values determined from the saddle point calculation (Fig. 16(b)). The error

with the saddle point calculation is roughly equivalent at strong interactions in both

Fig. 15(b) and Fig. 16(b) because the effective mass has increased and the impurity

is not actually supersonic in either case. We therefore see that Cherenkov physics

rears its head and disrupts the effective mass protocol if the experimental setup is

not sufficiently cold so the thermal velocity of impurities is near the speed of sound

and/or if the force is applied for long enough that the impurity becomes supersonic.
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4.2 BEC Oscillation Protocol

Cherenkov physics also plays an important role in an experimental protocol where we

induce dipole oscillations of the BEC and examine the dynamics of the impurity as

the interspecies interaction strength is increased.

The protocol is as follows (Fig. 17). We trap both the impurity and the BEC

using harmonic traps. A second (displaced) harmonic trap which preferrentially af-

fects the BEC is adiabatically turned on; this causes the condensate density to shift.

The first trap affecting the BEC is then suddenly turned off which kicks the BEC

into performing dipolar oscillations at the frequency of the second harmonic trap.

We assume the impurity is minimally affected by this adiabatic protocol (the bare

impurity trap remains unchanged) and before the BEC starts oscillating, enough time

has passed for it to form a polaron state with the surrounding atoms. We can then

’measure’ time traces of the impurity’s average position. From these trajectories,

we can compute the frequency response of the impurity’s motion as well as velocity

time traces (both in the lab frame and the BEC frame). The interaction between the

impurity and the BEC causes the BEC oscillations to act as a drive for the impurity.

We assume that the inhomogeneous BEC density in the presence of a harmonic trap

is given by the following Thomas Fermi profile:

𝑛0 (R) = 𝑛𝑇𝐹 (R) + 𝑛𝐺 (R) (4.1)

𝑛𝑇𝐹 (R) = 𝑛𝑇𝐹,peakmax

[︃
1−

(︂
𝑥

𝑅𝑇𝐹,𝑥

)︂2

−
(︂

𝑦

𝑅𝑇𝐹,𝑦

)︂2

−
(︂

𝑧

𝑅𝑇𝐹,𝑧

)︂2

, 0

]︃
(4.2)

𝑛𝐺 (R) = 𝑛𝐺,peak𝑒
−
(︂

𝑥
𝑅𝐺,𝑥

)︂2

−
(︂

𝑦
𝑅𝐺,𝑦

)︂2

−
(︂

𝑧
𝑅𝐺,𝑧

)︂2

(4.3)

where R = (𝑥, 𝑦, 𝑧). The parameters for the density profile as well as other quantities

in the system is given in Table 4.1.
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Figure 17: Dipole oscillation protocol. The BEC is confined in a harmonic trap, a
second trap is adiabatically turned on, then the first trap is turned off which kicks
the BEC into dipole oscillations set by the frequency of the second trap. The
impurity is depicted as the blue dot and is trapped in its own harmonic potential
(not shown) which remains unchanged during this protocol.

Parameter Value
Impurity mass (𝑚𝐼) 39.96 𝑢
Boson mass (𝑚𝐵) 22.99 𝑢

Boson-boson scattering length (𝑎BB) 52 𝑎0
Bare impurity trap frequency (𝜔0) 150 Hz

BEC density Thomas Fermi radii (𝑅𝑇𝐹,𝑥,𝑅𝑇𝐹,𝑦,𝑅𝑇𝐹,𝑧) (14.4,11.5,95.7) 𝜇𝑚
BEC density thermal Gaussian waists (𝑅𝐺,𝑥,𝑅𝐺,𝑦,𝑅𝐺,𝑧) (95,29,12) 𝜇𝑚

BEC peak density (Thomas Fermi) (𝑛𝑇𝐹,peak) 6× 1013 𝑐𝑚−3

BEC peak density (thermal) (𝑛𝐺,peak) 0.9× 1013 𝑐𝑚−3

BEC oscillation frequency (𝜔𝐵𝐸𝐶) 80 Hz
BEC oscillation amplitude (initial displacement) 10 𝜇𝑚

Table 4.1: Oscilation Protocol Parameters.

4.2.1 Homogeneous BEC

We first consider the case of a homogeneous BEC; the BEC is still oscillating but the

density of the condensate is constant as if its trap was flat and infinitely wide. In

reality, a homogeneous BEC is a good approximation if 𝑅𝐼,𝑥 ≪ 𝑅𝑇𝐹,𝑥, 𝑅𝐺,𝑥, meaning

that the impurity’s position 𝑅𝐼,𝑥 (in the direction of the BEC’s oscillation) is always

one to two orders of magnitude smaller than the width of the BEC’s density profile,

which is set by the Thomas-Fermi radius 𝑅𝑇𝐹,𝑥 and thermal width 𝑅𝐺,𝑥 in this direc-

tion. In this case, the condensate has a uniform density from the perspective of the

impurity.

In Fig. 18, we plot the frequency spectra 𝐼 (𝜔) of the impurity’s trajectory as

a function of interspecies interaction strength. To this end, we calculate the impu-

rity trajectory 𝑅𝐼,𝑥 (𝑡) along the BEC oscillation axis and take its Fourier transform
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𝐼 (𝜔) =
∫︀∞
0
𝑑𝑡𝑒−𝑖𝜔𝑡𝑅𝐼,𝑥 (𝑡). Note that we compute the spectrum from the impurity’s

trajectory in the lab frame. In Fig. 18(a) and Fig. 18(c) we plot the frequency

spectra for negative and positive scattering lengths respectively. We see that the

impurity initially oscillates at its bare trap frequency for weak interactions, and then

eventually locks on to the BEC as interactions strength is increased. In Fig. 18(b)

and Fig. 18(d) we plot the spectra when we artificially turn off phonon dynamics

for negative and positive scattering lengths respectively. The phonons in the polaron

state we initialize in are frozen and the impurity only feels the LDA potentials of its

bare trap and the ficticious force from the BEC’s oscillation. As the impurity has

no way to talk to the BEC through phonons, we of course see that the impurity just

oscillates at its bare trap frequency. Therefore, phonon dynamics leads to locking in

the same way in the same interaction range for both negative and positive scattering

lengths.

We can gain insight into the cause of locking by looking at the average impurity

velocity in the BEC frame (Fig. 19). For weak interactions, the BEC’s oscillation

drives the impurity to be supersonic the majority of the time. As interaction strength

is increased, phonon emission allows the impurity to dissipate its momentum and the

onset of locking coincides with the impurity being able to dissipate momentum quickly

enough that it always remains subsonic. Cherenkov physics is therefore sufficient for

the impurity motion to lock onto the frequency of the oscillating BEC.

In Fig. 20. we plot the dissipation constant 𝛾 computed by fitting the effective

oscillator model described in Appendix 4.2.3 to the impurity trajectory. We see that

at weak interactions, we recover the expected result from Fermi’s golden rule; the

dissipation should scale quadratically with the scattering length as the rate of phonon

emission from the Fröhlich term of the Hamiltonian is proportional to the square of

the interaction constant. This indicates, as the figure confirms, that negative and

positive scattering lengths should behave identically in this regime. Differences in the

two cases only start arising at stronger interactions.
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Figure 18: Frequency spectra of impurity trajectory in homogeneous oscillating
BEC. (a) Negative scattering lengths and full dynamics. (b) Negative scattering
lengths and phonon dynamics turned off. (c) Positive scattering lengths and full
dynamics. (d) Positive scattering lengths and phonon dynamics turned off. We see
that the phonon dynamics causes the impurity to lock onto the BEC for both
negative and positive scattering lengths.

4.2.2 Harmonically Trapped BEC

Now we can examine the case where the density variation of the BEC due to its trap is

appreciable over the region that the impurity explores. The polaron energy potential

(Sec. 2.2.3) must now be included. The frequency spectra of the impurity trajectory

are given in Fig. 21. In Fig. 21(b) we plot the spectra when we artificially turn

off phonon dynamics for negative scattering lengths. We see an additional frequency

line that exactly corresponds to a harmonic approximation to the effective impurity

potential created by the combination of the bare impurity trap potential and the

polaron energy potential. A white line corresponding to this harmonic approximation
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Figure 19: Average impurity velocity in BEC frame for negative scattering lengths.
As we go from (a)-(d), the interaction strength is increased and we see that the
impurity becomes increasingly confined to the subsonic region. The orange dotted
line gives a reference of what the impurity would do if it only saw its bare trap.
Note that 𝜉𝑐−1 = 0.11ms.

is drawn for reference. The impurity is driven by the BEC’s motion and also oscillates

according to this effective mean-field potential.

In Fig. 21(a), we turn on phonon dynamics (which are always physically present)

and see that they cause a red-shifting of the mean-field potential. This red-shifting is

due to increased mass renormalization of the impurity for stronger interactions and

is thus a signature of the initial polaron undergoing oscillatory dynamics. Let us

take the effective mean-field potential in the absence of phonon dynamics (due to the

bare impurity trap and polaron energy potential) to be 𝑉𝑀𝐹 (𝑥𝐼) = 1
2
𝑚𝐼𝜔

2
𝑀𝐹𝑥

2
𝐼 ; the

frequency 𝜔𝑀𝐹 is what is plotted as the white reference line in Fig. 21(b). We can

estimate the mass-renormalized frequency 𝜔̃𝑀𝐹 by equating 𝑉𝑀𝐹 (𝑥𝐼) to 1
2
𝑚*𝜔̃2

𝑀𝐹𝑥
2
𝐼
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Figure 20: Dissipation constant fit in a homogeneous oscillating BEC. At weak
interactions, both negative and positive scattering length trajectories have the same
dissipation constant. Example data points are given by the green squares and red
X’s showing a quantitative match. The dashed green line (dotted red line) shows a
quadratic fit to the dissipation constant for negative (positive) scattering lengths;
the dissipation depends quadratically on interaction strength for weak interactions.
The quadratic fit was done between |𝑎IB| ∈ [0, 50]𝑎0 .

where 𝑚* is the effective mass of the initial polaron state calculated through Eq.

(2.36). This renormalized frequency 𝜔̃𝑀𝐹 = 𝜔𝑀𝐹

√︀
𝑚/𝑚* is plotted as the white

reference line in Fig. 21(a) and we see that it matches the red-shifted spectral line.

We therefore see that dipole oscillations of a BEC can be used as a probe of the

effective mass of attractive polarons.

Next, we examine the positive scattering case. Fig. 21(d) shows the case where

phonon dynamics are artificially turned off for comparison. We find that the impurity

dynamics is unstable and the impurity spends most of its time being supersonic even

at strong interactions (not shown). This instability can be thought of as resulting

from the large amount of phase space accessible to the impurity when it is not damped

by phonon emission and can therefore access high velocities.

When we turn on phonon dynamics (21(c)), the dynamics gets stabilized and

we see that the impurity locks onto the BEC. There is also a DC shift that can be
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Figure 21: Frequency spectra of impurity trajectory in harmonically trapped
oscillating BEC. (a) Negative scattering lengths and full dynamics. The mean-field
potential gets red-shifted due to mass renormalization (white line). (b) Negative
scattering lengths and phonon dynamics turned off (no mass renormalization). We
see a clear frequency line corresponding to the mean-field potential (white lines). (c)
Positive scattering lengths and full dynamics. The impurity dynamics is stable and
exhibits locking onto the BEC. (d) Positive scattering lengths and phonon dynamics
turned off. The impurity dynamics is unstable.

understood by looking at the impurity trajectory plots in the BEC frame shown in

Fig. 22. We see that as interaction strength is increased, the impurity locks onto

the BEC’s motion but bounces between the edges of the BEC. At sufficiently strong

interactions, it stops bouncing and gets localized around one edge of the BEC which

corresponds to the DC shift. This behavior is consistent with what is seen for repulsive

impurity-boson interactions in 1D where the locking of the impurity onto an edge of

the BEC was interpreted as a breakdown of the polaron quasiparticle picture [254].

The bare impurity trap and the BEC combine to form a double well potential for
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Figure 22: Impurity trajectory in the BEC frame for different interaction strengths.
We see that as interaction strength is increased from (a)-(d), the impurity locks
onto an edge of the BEC. Note that 𝜉𝑐−1 = 0.11ms.

the impurity where for strong enough interactions the impurity gets stuck in one of

the wells [254]. We can think of the phonon dynamics as limiting the phase space

available to the impurity. After the impurity gets pushed to the edge of the BEC due

to strong repulsive interactions it either slides down its bare trap potential towards

the BEC as the BEC moves away from it or gets pushed up its bare trap potential as

the BEC moves towards it. In either case the impurity is essentially stationary (with

respect to the BEC) and does not have enough energy to enter deep into the BEC.

4.2.3 Effective Oscillator Model

Here, we describe an effective driven-dissipative harmonic oscillator model used to fit

simulation data in order to gain insight into the relative strength of various physical

103



mechanisms in the system. Assume the BEC is oscillating in the 𝑥-direction, the

bare trap on the impurity is in the same direction, there are no other forces acting

on the impurity that push it in the 𝑦- or 𝑧-directions. Also assume that the initial

momentum P0 of the impurity only points in the 𝑥 direction as well (P0 = (𝑃0, 0, 0)).

Then the impurity only moves in the 𝑥 direction; without loss of generality, the

impurity position in the BEC frame is R𝐼 (𝑡) = (𝑥 (𝑡) , 0, 0) and the impurity position

in the lab frame is R̃𝐼 (𝑡) = (𝑥𝐿 (𝑡) , 0, 0) where 𝑥𝐿 (𝑡) = 𝑥 (𝑡)+𝑥𝐵𝐸𝐶 (𝑡) and 𝑥𝐵𝐸𝐶 (𝑡) =

𝐵0 cos (𝜔𝐵𝑡) is the position of te BEC’s peak density1.

We would like to write down an effective model for 𝑥 (𝑡) (or equivalently 𝑥𝐿 (𝑡)). The

effects we want to consider are the potential on the impurity due to the inhomogeneous

BEC density, dissipation through Cherenkov radiation, the bare impurity trapping

potential, and the ficticious force due to the non-inertial BEC frame. Assuming a

harmonic trap on the BEC, the density of the BEC becomes position dependant and

the polaron energy 𝐸𝑝𝑜𝑙 becomes position dependent (through its density dependence)

and acts as an effective harmonic potential on the impurity. Specifically, we can Taylor

expand the potential 𝑉𝑝𝑜𝑙 (𝑥) ≡ 𝐸𝑝𝑜𝑙 (𝑥) in the BEC frame around the peak density of

the BEC (assumed at 𝑥 = 0 in the BEC frame) to get 𝑉𝑝𝑜𝑙 (𝑥) = 1
2

(︁
𝑑2𝐸𝑝𝑜𝑙

𝑑𝑥2 |𝑥=0

)︁
𝑥2 +

𝒪 (𝑥3). Defining 𝛼 ≡ 𝑑2𝐸𝑝𝑜𝑙

𝑑𝑥2 |𝑥=0 and dropping higher order terms, this gives a harmonic

potential 𝑉𝑝𝑜𝑙 (𝑥) = 1
2
𝛼𝑥2 that acts on the impurity with an associated force 𝐹𝑝𝑜𝑙 (𝑥) =

−𝜕𝑉𝑝𝑜𝑙

𝜕𝑥
= −𝛼𝑥. We can model the effect of dissipation through Cherenkov radiation

using a damping term 𝐹𝑑𝑎𝑚𝑝 = −𝜉𝑥̇ which acts on the impurity’s position in the BEC

frame. The harmonic bare impurity trap acts on the impurity’s position in the lab

frame and takes the form 𝑉𝑡𝑟𝑎𝑝 (𝑥𝐿) = 1
2
𝑚𝜔2

0𝑥
2
𝐿 with an associated force 𝐹𝑡𝑟𝑎𝑝 (𝑥𝐿) =

−𝑑𝑉𝑡𝑟𝑎𝑝

𝑑𝑥𝐿
= −𝑚𝜔2

0𝑥𝐿. We can rewrite this trapping potential in the BEC frame as

𝐹𝑡𝑟𝑎𝑝 (𝑥) = −𝑚𝜔2
0 (𝑥+ 𝑥𝐵𝐸𝐶). Lastly, we have a ficticious force 𝐹𝑓𝑖𝑐𝑡 = −𝑚𝑥̈𝐵𝐸𝐶 that

acts on the impurity in the non-inertial BEC frame. Newton’s equation of motion in

the BEC frame thus reads

𝑚𝑥̈+
(︀
𝑚𝜔2

0 + 𝛼
)︀
𝑥+ 𝜉𝑥̇ = 𝑚

(︀
𝜔2
𝐵 − 𝜔2

0

)︀
𝐵0 cos (𝜔𝐵𝑡) (4.4)

1In accordance to the definition in the previous section, we have 𝐵0 = 𝑎𝑅𝑇𝐹,𝑥
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In the lab frame this can be rewritten as

𝑚𝑥̈𝐿 +
(︀
𝑚𝜔2

0 + 𝛼
)︀
𝑥𝐿 + 𝜉𝑥̇𝐿 (4.5)

= 𝛼 [𝐵0 cos (𝜔𝐵𝑡)] + 𝜉 [−𝜔𝐵𝐵0 sin (𝜔𝐵𝑡)]

Note that in the lab frame equation of motion, we get an additional driving term

𝜉𝑥̇𝐵𝐸𝐶 proportional to the damping coeffficient. This term comes from the fact that

the Cherenkov damping is really acting as friction in the BEC frame and and there-

fore drags the impurity around in the original lab frame. We now have the physical

interpretations in the lab frame that the impurity trap acts as a standard harmonic

potential, the polaron potential 𝐸𝑝𝑜𝑙 both renormalizes this frequency as well as pro-

vides an external driving force at the BEC frequency 𝜔𝐵, and Cherenkov radiation

causes both a damping term as well as an external driving force at the BEC frequency

𝜔𝐵. Therefore we can generally have driving contributions at 𝜔𝐵 due to both the po-

laron potential as well as the Cherenkov radiation. Locking to the BEC frequency 𝜔𝐵

at strong interactions can therefore be due to either of these effects or a combination

of them. Fitting the data to this model to estimate 𝛼 and 𝜉 will allow us to compare

the relative strengths of the effects.

Let us divide by mass in the BEC frame ODE to get

𝑥̈+ 2𝛾𝑥̇+
(︀
𝜔2
0 + 𝛽

)︀
𝑥 (4.6)

=
(︀
𝜔2
𝐵 − 𝜔2

0

)︀
𝐵0 cos (𝜔𝐵𝑡)

where we have defined 2𝛾 ≡ 𝜉
𝑚

and 𝛽 ≡ 𝛼
𝑚

. The driven-dissipative oscillator model

above will either be underdamped, critically damped, or overdamped depending on

whether the quantity 𝛾2−𝜔2
0−𝛽 is less than, equal to, or greater than zero respectively.

Equivalently, we can define the damping ratio 𝜌 ≡ 𝛾√
𝜔2
0+𝛽

which determines whether

we are underdamped, critically damped, or overdamped depending on whether 𝜌 < 1,

𝜌 = 1, or 𝜌 > 1 respectively. We can solve the ODE in each of these cases subject to

initial conditions 𝑥0 ≡ 𝑥 (𝑡 = 0) and 𝑣0 ≡ (𝑡 = 0) of the impurity in the BEC frame
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and then convert the trajectory back to motion in the lab frame. The resulting lab

frame trajectories are:

𝑥𝐿,𝑈𝑛 (𝑡) = 𝑐1,𝑈𝑛 cos (𝜔𝑡+ 𝑐2,𝑈𝑛) 𝑒−𝛾𝑡 + 𝑔 cos (𝜔𝐵𝑡+ 𝜙) (4.7)

𝑥𝐿,𝐶𝑟 (𝑡) = (𝑐1,𝐶𝑟 + 𝑐2,𝐶𝑟𝑡) 𝑒
−𝛾𝑡 + 𝑔 cos (𝜔𝐵𝑡+ 𝜙) (4.8)

𝑥𝐿,𝑂𝑣 (𝑡) =
(︀
𝑐1,𝑂𝑣𝑒

𝜈𝑡 + 𝑐2,𝑂𝑣𝑒
−𝜈𝑡
)︀
𝑒−𝛾𝑡 + 𝑔 cos (𝜔𝐵𝑡+ 𝜙) (4.9)

where we have defined

𝜔 =
√︁
𝜔2
0 + 𝛽 − 𝛾2 (4.10)

𝜈 =
√︁
𝛾2 − 𝜔2

0 − 𝛽 (4.11)

𝑑 =
(𝜔2

𝐵 − 𝜔2
0)𝐵0√︁

(𝜔2
0 + 𝛽 − 𝜔2

𝐵)
2

+ 4𝛾2𝜔2
𝐵

(4.12)

𝛿 = arctan

(︂
2𝛾𝜔𝐵

𝜔2
𝐵 − 𝜔2

0 − 𝛽

)︂
(4.13)

𝑔 =
√︁
𝑑2 +𝐵2

0 + 2𝑑𝐵0 cos 𝛿 (4.14)

𝜙 = arctan

(︃
sin 𝛿

cos 𝛿 + 𝐵0

𝑑

)︃
(4.15)

which all only depend on 𝛾 and 𝛽. The constants 𝑐1 and 𝑐2 for each case are equivalent

to specifying initial conditions and are given in terms of 𝑥0, 𝑣0, and the above defined
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quantities:

𝑐1,𝑈𝑛 =

√︃
(𝑥0 − 𝑑 cos (𝛿))2 +

1

𝜔2
0 + 𝛽 − 𝛾2 (𝑣0 + 𝜔𝐵𝑑 sin (𝛿))2 (4.16)

𝑐2,𝑈𝑛 = −1 * arctan

[︃
1√︀

𝜔2
0 + 𝛽 − 𝛾2

𝑣0 + 𝜔𝐵𝑑 sin (𝛿)

𝑥0 − 𝑑 cos (𝛿)

]︃
(4.17)

𝑐1,𝐶𝑟 = 𝑥0 − 𝑑 cos (𝛿) (4.18)

𝑐2,𝐶𝑟 = 𝛾𝑥0 + 𝑣0 + 𝜔𝐵𝑑 sin (𝛿)− 𝛾𝑑 cos (𝛿) (4.19)

𝑐1,𝑂𝑣 =
1

2𝜈
[(𝜈 + 𝛾) (𝑥0 − 𝑑 cos (𝛿)) + (𝑣0 + 𝜔𝐵𝑑 sin (𝛿))] (4.20)

𝑐2,𝑂𝑣 =
1

2𝜈
[(𝜈 − 𝛾) (𝑥0 − 𝑑 cos (𝛿))− (𝑣0 + 𝜔𝐵𝑑 sin (𝛿))] (4.21)

We only need parameters 𝛽 and 𝛾 as well as initial conditions 𝑥0 and 𝑣0 to completely

determine the solution. The parameters 𝜔0, 𝜔𝐵, and 𝐵0 are specified by the exper-

imental set-up. At extremely weak interactions, the impurity initially oscillates at

the bare impurity trap frequency 𝜔0. We therefore expect to be in the underdamped

case at weak interactions with 𝛽 and 𝛾 approximately equal to zero. As we move to

stronger interactions, either 𝛽,𝛾, or both will increase and if we achieve locking, we

are left with the 𝑔 cos (𝜔𝐵𝑡+ 𝜙) part of the trajectory. Here, the angle 𝜙 gives the

phase delay of the impurity behind the BEC’s oscillation.

4.3 Summary

We have found that the Cherenkov physics discussed in Chap. 3 can play a prominent

role in common ultra-cold atom experimental protocols involving finite momentum

impurities immersed in a weakly interacting BEC. An understanding of these effects

can give guidance on designing more effective experimental protocols to probe quasi-

particle properties like effective mass as well as quasiparticle breakdown. In one such

protocol where an external force is applied to dynamically measure a polaron’s effec-

tive mass, we see accurate results when the impurity is kept subsonic and interactions

with the BEC are relatively weak. When impurities are supersonic, the polaron quasi-
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particle picture becomes invalid and it remains unclear how a renomarlized impurity

mass can be meaningfully defined, as discussed in [325]. In this protocol, impurities

that are driven to be supersonic exhibit dissipation that introduces measurement er-

rors. For strong interactions, even when the impurity is kept subsonic, non-adiabatic

effects can introduce errors in the effective mass measurement. Therefore impurities

must be kept sufficiently cold and slow in such protocols to extract meaningful results.

The other experimental protocol we discussed is to induce dipole oscillations of

the BEC and examine the dynamics of the impurity. We see that such oscillations

with amplitudes on the order of the BEC’s width can drive the impurity to be super-

sonic; dissipation due to phonon emission is then sufficient to cause the impurity to

lock onto the motion of the BEC for strong enough interactions. When the spatial

variation of the BEC density becomes visible to the impurity (as is the case in usual

experiments), the impurity picks up additional frequencies in it’s trajectory aside

from just the drive of the BEC’s oscillation. For negative scattering lengths, we see a

frequency corresponding to the mean-field potential that gets increasingly red-shifted

as interaction strength is increased; this is a signature of mass-renormalization of

the impurity. For positive scattering lengths, we see stable locking of the impurity

onto an edge of the BEC; this is related to a vanishing phase space available to the

impurity and is connected to a breakdown of the polaron picture. Dipole oscillation

experiments may therefore be a more robust probe of both quasiparticle quantities

like the effective mass as well as quasiparticle breakdown.

Ultra-cold atom experiments such as those discussed in this section have the tan-

talizing possibility of probing quasiparticles in Bose-Fermi mixtures as we transition

from a very dilute minority gas, where we consider single impurity atoms, to gases

with equal densities. While each limit is theoretically tractable, described by single

polaron physics and hydrodynamics respectively, the intermediate regime is difficult

to analyze. Experiments would be able to shed unique insight in this regime, includ-

ing, for example, systems where quasiparticles start to interact with each other.
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Part III

Dynamics of open systems:

Dissipative spin chains
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Chapter 5

Introduction

Closed quantum many-body systems such as the Bose-Fermi mixtures of Chap. 3

model settings where we can neglect the interaction between the degrees of freedom

of interest and other degrees of freedom belonging to the environment around the

system. In many cases, however, including platforms being developed for quantum

technologies such as computing and sensing, this interaction significantly influences

the dynamics of the system. Coupling between such ‘open’ systems and their en-

vironment induces dissipation, which often causes a loss of entanglement between

the degrees of freedom, and quantum information in the system more broadly, via

dephasing and decoherence.

While dissipation usually decoheres the system, it can also be used to prepare

correlated quantum states with interesting phenomenology or utility as a resource

for quantum information processing [92, 107, 362, 93, 155, 52]. Compared to the

conventional use of unitary processes to manipulate a system, the irreversiblity of

dissipative dynamics makes it more robust to variations in the initial state and al-

lows for simpler control protocols. The advent of quantum simulators opens up the

opportunity to study dissipative dynamics in many-body systems in a controllable

fashion, while developing the ability to engineer dissipation to produce scientifically

interesting phenomenology or technologically useful quantum resources.

Realizing the potential of such dissipation engineering, however, has been chal-

lenging, with experiments thus far using a combination of unitary operations and
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dissipation to produce and stabilize entangled states of a small number of qubits [22,

220, 228]. Purely non-unitary preparation of correlated states typically requires dis-

sipation that is non-local in space and can lock the phases of two or more adjacent

particles [92]. Correlations generated by such dissipation, even with spatial profiles

involving only neighboring particles, can endow a system with exotic character such

as non-trivial topological properties [93, 21, 20, 165, 353], quantum critical points

without equilibrium counterparts [107, 153, 236, 240], and integrability revival in the

presence of a drive [202, 296]. Investigating the dynamics of correlations in many-

body systems with non-local dissipation is therefore a promising way to gain insight,

for example, into the growth of quantum fluctuations and entanglement in open sys-

tems [67, 56, 166].

Before discussing correlations in open systems, however, it is helpful to calibrate

ourselves using the extensive literature on correlation dynamics in closed systems. In

integrable closed many-body systems, correlations are paradigmatically understood

to spread due to entangled pairs of quasiparticles in an initial non-equilibrium state:

excitations travel at a finite velocity across the system, with quantum information

thereby spreading in a linear light-cone [56, 247, 57, 67, 257, 3]. Such behavior is

ubiquitous in generic short-range interacting systems [219] unless the propagation of

quantum information is suppressed by slow dynamics or ergodicity breaking [7, 1, 89,

314, 379, 308, 318, 361, 340, 186, 213].

Systems with long-range interactions circumvent the constraints imposed by lo-

cality and permit remote degrees of freedom to build up correlations which respect

only a milder notion of causality [147, 149, 176, 108, 364, 130, 117, 249, 55, 212,

112, 354, 355]. Specifically, in such systems, the effect of a local perturbation does

not generally decay exponentially fast outside a linear light-cone. This feature makes

long-range interactions an important ingredient in several theoretical and experimen-

tal topics of current interest, such as fast quantum-state transfer [111, 354] and fast

scrambling dynamics [145, 26]. Additionally, the cooperative nature of dynamics in

long-range interacting systems earns them a special place in the realization of exotic

nonequilibrium states of matter [209, 307, 229].
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Both short- and long-range interactions with variable strengths can be realized

in several atomic and molecular platforms [36, 375, 298, 381, 262, 194, 87], as well

as in optical platforms for simulating quantum many-body physics such as photonic

waveguide, circuit QED, and cavity QED systems [35, 231, 215, 157, 359, 129, 352,

128, 106, 132, 239, 162, 156, 84, 270, 115, 222, 185, 208, 201, 357, 271, 356, 238,

192, 258]. Photonic or atomic losses are an essential aspect of these platforms, thus

requiring coherent and dissipative dynamics to be treated on the same footing. These

quantum simulators therefore provide a fitting setting to study correlation dynamics

originating from both coherent and dissipative processes.

The case of correlations spreading due to variable range coherent interactions, and

the effect of local and collective dissipation on said correlations, has been addressed in

a number of platforms at the interface of condensed matter and many-body quantum

optics [241, 53, 30, 15, 242, 371, 223, 277, 278]. The case of correlations spreading due

to analogous non-local dissipative processes, however, is more poorly understood. Ex-

perimental implementations of non-local dissipation with long-range spatial profiles

have been proposed in atomic platforms [273, 276], but with limited tunability of the

profile, and thereby of the generated correlations and accessible effects. For example,

dissipation with a power-law spatial profile may enable the realization of exotic phe-

nomena such as purely non-unitary many-body quantum synchronization [51, 50] or

novel non-equilibrium critical states that would be otherwise inaccessible [94]. The

ability to easily tune the spatial profile of dissipative channels would therefore open

new avenues and applications of dissipation engineering.

In this part of the thesis, we explore how quantum simulators can be used to study

the dynamics of correlations generated by dissipation with a widely tunable spatial

profile. First, in Chap. 6, we show how a variable spatial profile non-local dissipa-

tion channel can be implemented using a cavity-QED quantum simulator. Specif-

ically, we show how a system of cold atoms trapped inside a single-mode optical

cavity can be used to simulate a spin chain with effective dynamics described by

such a channel. Spatially correlated dissipation naturally arises in atomic ensembles,

where it manifests as cooperative phenomenon such as superradiance and subradi-
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ance [12, 150]. These ensembles can be geometrically controlled to selectively emit

into specified modes by tuning the mean atomic separation with respect to the photon

wavelength [338, 244]. The tunability of correlated emission considered in Chap. 6,

realized using a magnetic field gradient and a Raman drive with appropriately chosen

sideband frequencies, can be considered a synthetic version of the geometric control in

atomic ensembles. Cavity QED platforms with this synthetic control therefore allow

us to study the non-equilibrium dynamics of quantum correlations beyond conven-

tional cooperative emission phenomenon.

In Chap. 7, we present the formalism of nonequilibrium spin wave theory extended

to dissipative systems, and derive equations of motion for any translationally-invariant

spin chain undergoing a combination of coherent and dissipative dynamics when the

dissipation can be described via Lindblad channels. This formalism constitutes the

methodological core of this part of the thesis and is used to analyze the correlation

dynamics of the dissipative spin chain of interest in Chap. 8. We study non-local

dissipation with both short- and long-range spatial profiles, and find that the system

exhibits novel spatio-temporal correlation patterns which we compare to dynamics

generated by spin-exchange Hamiltonians with similar interaction profiles in unitary

quantum simulators.

Furthermore, we investigate how the behavior of this dissipative channel can be

modulated via a uniform external field, implemented either directly with a magnetic

field or effectively using an optical field, for dissipation engineering applications. We

find that control over the spatial profile and uniform field can be exploited to engi-

neer the profile of correlations in the system, which we show by tailoring the spatio-

temporal window over which correlations are present, creating oscillating packets of

correlations, and sending the system towards an increasingly squeezed state. The abil-

ity to shape correlations enables the manipulation of entanglement dynamics, which

we demonstrate by generating entanglement that preferentially enhances metrological

sensitivity to a desired spatial mode of an external field.

The work in this part of the thesis, corresponding to Refs. [319] and [320], explores

how quantum simulators can be used to study the correlation dynamics of open

114



many-body quantum systems and compares them with the established paradigm of

correlation spreading in closed systems. We also take a step towards utilizing non-

local dissipation in quantum simulators to engineer the far-from-equilibrium dynamics

of quantum information, with potential applications in quantum metrology, state

preparation, and transport.
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Chapter 6

Cavity-QED implementation

In this chapter, we show how to implement a non-local dissipation channel using an

analog quantum simulator consisting of cold atoms trapped in a single-mode optical

cavity. Specifically, we engineer a simulator for the dynamics of a translationally-

invariant, one-dimensional many-body quantum spin system (spin chain) undergoing

both unitary dynamics and Markovian dissipation with an arbitrary spatial profile.

Such interacting spin systems serve as paradigmatic models of magnetic materials and

are also relevant to a range of other condensed matter systems [168]. The far-from-

equilibrium dynamics and transport in many such systems is still not fully understood,

and can be hard to analyze theoretically depending on how strongly correlated the

system becomes. Non-local dissipation channels that generate correlations can make

the dynamics richer a the cost of increasing the analysis difficulty. Cold atom quantum

simulators provide a natural platform to study dynamics in these systems, thereby

granting insight into how non-local dissipation can be used to generate novel physics

or as a resource for metrological applications.

The state of the system, 𝜌, evolves according to the quantum master equation in

Lindblad form

𝜌̇ = 𝑖
[︁
𝜌, 𝐻̂

]︁
+ 𝜅

∑︁
𝑛,𝑚

𝑓𝑛,𝑚

(︂
𝐿̂𝑛𝜌𝐿̂

†
𝑚 −

1

2

{︁
𝐿̂†
𝑚𝐿̂𝑛, 𝜌

}︁)︂
, (6.1)

where 𝐻̂ is the Hamiltonian characterizing unitary evolution, 𝐿̂𝑛 is the jump operator
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Figure 23: Experimental realization. Spin degrees of freedom are encoded in the
internal states of atoms trapped in a leaky optical cavity. A magnetic field gradient,
B(𝑛), and a classical Raman beam, Ω(𝑡), with multiple sidebands (inset) are used to
generate a desired spatial profile, 𝑓(|𝑛−𝑚|), of non-local dissipation.

characterizing the loss channel, and 𝑛,𝑚 = 1...𝑁 index the sites of the chain. Here,

𝑓𝑛,𝑚 is the spatial profile of the dissipation and only depends on the difference |𝑛−𝑚|.
Independent dissipation, corresponding to 𝑓𝑛,𝑚 = 𝛿𝑛,𝑚, and collective dissipation,

corresponding to 𝑓𝑛,𝑚 = 1, are the two commonly considered scenarios. The former

is a common source of decoherence in experiments, while the latter can generate

collective entanglement useful for quantum metrology [261, 343, 189, 179, 82, 297,

177]. Both these loss channels are spatially homogeneous and therefore cannot cause

correlations to spread in space.

The case of tunably non-local dissipation can be understood as interpolating be-

tween independent and collective loss. For example, consider a short-range spatial

profile, 𝑓𝑛,𝑚 = 𝑒−|𝑛−𝑚|/𝜒, where 𝜒 is the length scale of the profile. If the system is

comprised of atoms coupled to a common cavity mode, with dissipation arising from

photons leaking out of the cavity, detection of a leaked photon does not allow one to

discern which specific atom emitted the photon. Instead, such a photon can only be

traced back to a neighborhood of atoms comprised of approximately 𝜒 sites. As 𝜒 is

decreased or increased, we recover independent and collective dissipation respectively.

Figure 23 schematically depicts how to realize non-local dissipation of spin-1/2

systems using cold atoms trapped in a single-mode optical cavity. The spin states
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are encoded in the hyperfine levels of the atoms and the cavity photon mode allows

the atoms to communicate with each other, through both coherent interactions and

non-local dissipation. There are three key components to this construction. First, a

magnetic field gradient makes the energy of the hyperfine levels site-dependent and

thereby endows the system with spatial resolution [27, 358, 271]. Second, a classical

Raman beam with multiple sidebands provides control over atomic transitions be-

tween different spin states [162, 27]. The frequencies of the sidebands can be chosen

so that communication between atoms via the cavity mode only depends on the dis-

tance between atoms, thereby enforcing translational invariance. The amplitudes of

the sidebands determine the rate of internal atomic transitions and dictate the like-

lihood that two atoms a fixed distance apart communicate with each other, thereby

setting the spatial profile of the dynamical channel. Third, cavity photon losses are

large enough that the coherent spin-exchange contribution to dynamics is negligible

and only dissipative dynamics remains. The three ingredients described above can

be used to construct non-local dissipation channels with a variety of jump operators

𝐿̂𝑛. Experiments will generally suffer from additional local dissipation arising from

spontaneous scattering of individual atoms into free space; we derive conditions for

the robustness of our set-up to such losses in Sec. 6.3.

6.1 Non-local losses

Here, we give an experimental construction of a non-local dissipator corresponding

to a 𝐿̂𝑛 = 𝑆−
𝑛 loss channel with a translationally invariant spatial profile 𝑓(|𝑛−𝑚|),

as described in Eq. 6.1. Our proposal is motivated by experiments employing clouds

of 87Rb atoms coupled to a single photon mode in an optical cavity. In previous

works, the cavity mode can be employed as a resource to mediate spin-exchange

coherent interactions among the atoms [84, 85], which can be accompanied by col-

lective dissipation depending on the cooperativity of the cavity. Here we work in a

complementary limit and engineer incoherent spin emission with spatial resolution.

The premise of our construction is to take a chain of atoms, each with three hyper-
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fine levels out of which two are degenerate, trap them inside an optical cavity, and

then apply a magnetic field gradient and a Raman beam to the system with several

sidebands of tunable frequency and amplitude (see Ref. [162] for a related implemen-

tation in photonic waveguides). The magnetic field gradient splits the degeneracy of

each atom such that its energy levels form a Λ-configuration; the energies are site-

dependent and make the atoms spatially distinct. The Raman beam couples one leg

of the Λ-configuration, while the cavity mode couples the other. The cavity mode

mediates communication between atoms at different sites, allowing for both coher-

ent atom-atom interactions as well as indistinguishable atomic losses. The choice of

frequencies and amplitudes of the sidebands comprising the Raman beam dictates

the probability that atoms at different sites communicate with each other through

the cavity photon, thereby setting the spatial profile which shapes both coherent

interactions and losses. If the cavity is made to be sufficiently leaky, the coherent

interactions are washed out and only dissipative dynamics with the desired spatial

profile remains.

We now give a detailed construction of the experimental implementation. We

consider a one-dimensional chain of 𝑁 atoms labeled by lattice index 𝑛 = 1, .., 𝑁 .

Each atom has two internal states |𝑔⟩𝑛 and |𝑒⟩𝑛. The state |𝑔⟩𝑛 belongs to a degenerate

hyperfine manifold which, under application of an external field, splits as |𝑔⟩𝑛 →
{|𝑠⟩𝑛 , |𝑔⟩𝑛}. We encode the spin 1/2 Hilbert space {|↑⟩𝑛 , |↓⟩𝑛} in this ground state

manifold. We take |𝑠⟩𝑛 to be the lower energy state and set its energy to zero without

loss of generality. The energy difference between |𝑠⟩𝑛 and |𝑔⟩𝑛 is given as 𝜔𝑔,𝑛 and we

will refer to the energy difference between |𝑠⟩𝑛 and |𝑒⟩𝑛 as 𝜔𝑒,𝑛. These energies are

position dependent since they inherit spatial dependence from the external applied

magnetic field gradient. In terms of the operators 𝜎̂𝑛
𝑎𝑏 = |𝑎⟩𝑛 ⟨𝑏|𝑛, with 𝑎, 𝑏 ∈ {𝑠, 𝑔, 𝑒},

the bare atomic Hamiltonian reads

𝐻̂a =
∑︁
𝑛

(︀
𝜔𝑒,𝑛𝜎̂

𝑛
𝑒𝑒 + 𝜔𝑔,𝑛𝜎̂

𝑛
𝑔𝑔

)︀
. (6.2)

We now dipole-couple the states |𝑠⟩𝑛 and |𝑒⟩𝑛 using a Raman driving field Ω̃ (𝑡) =
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∑︀𝑚𝑝−1
𝛼=0 Ω𝛼𝑒

𝑖𝜔𝛼𝑡 where 𝜔𝛼 represents each of the 𝑚𝑝 different drive frequencies and Ω𝛼

represents the Rabi frequency (beam amplitude) associated with those frequencies.

We can define the frequency 𝜔𝐿 ≡ 𝜔𝛼=0 as the main frequency and rewrite the driving

field in terms of the detunings 𝜔̃𝛼 ≡ 𝜔𝛼 − 𝜔𝐿 as Ω̃ (𝑡) = Ω (𝑡) 𝑒𝑖𝜔𝐿𝑡 where Ω (𝑡) ≡∑︀𝑚𝑝−1
𝛼=0 Ω𝛼𝑒

𝑖𝜔̃𝛼𝑡. Note that 𝜔̃𝛼 = 0 by definition. The dipole coupling between |𝑠⟩𝑛
and |𝑒⟩𝑛 is then described by the Hamiltonian

𝐻̂d =
∑︁
𝑛

(︂
Ω (𝑡)

2
𝑒𝑖𝜔𝐿𝑡𝜎̂𝑛

𝑠𝑒 +
Ω* (𝑡)

2
𝑒−𝑖𝜔𝐿𝑡𝜎̂𝑛

𝑒𝑠

)︂
. (6.3)

We now consider an optical cavity mode that dipole couples |𝑔⟩𝑛 and |𝑒⟩𝑛. The

photon mode, represented by the operator 𝑎̂, has a frequency 𝜔𝑐 and couples to atom

𝑛 through the single-photon coupling 𝑔. The bare photon Hamiltonian and the light-

matter coupling between atoms and photons are given respectively by

𝐻̂p = 𝜔𝑐𝑎̂
†𝑎̂, (6.4)

𝐻̂lm =
∑︁
𝑛

(︀
𝑔𝑎̂𝜎̂𝑛

𝑒𝑔 + 𝑔*𝑎̂†𝜎̂𝑛
𝑔𝑒

)︀
. (6.5)

The total density matrix of the system has dynamics given by the quantum master

equation in Lindblad form

𝑑

𝑑𝑡
𝜌 = −𝑖

[︁
𝐻̂, 𝜌

]︁
+𝒟leak (𝜌) . (6.6)

The last term is the dissipator corresponding to photon losses occurring with rate 𝛾

𝒟leak (𝜌) = 𝛾

(︂
𝑎̂†𝜌𝑎̂− 1

2

{︀
𝑎̂𝑎̂†, 𝜌

}︀)︂
. (6.7)

When the excited state |𝑒⟩ is largely detuned by ∆ = |𝜔𝑒−𝜔𝐿| from the other atomic

and photonic energy scales (∆≫ Ω𝛼, 𝑔), one can use a Schrieffer-Wolf transformation

to eliminate the state and write an effective Hamiltonian for the remaining atomic

Hilbert space. The light-matter interaction coupling at leading order in 1/∆ then
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becomes

𝐻̂lm = −
∑︁
𝑛

(
𝑔Ω (𝑡)

∆
𝑎̂𝜎̂𝑛

𝑠𝑔𝑒
𝑖(𝜔𝐿−𝜔𝑐−𝜔𝑔,𝑛)𝑡 +

𝑔*Ω* (𝑡)

∆
𝑎̂†𝜎̂𝑛

𝑔𝑠𝑒
−𝑖(𝜔𝐿−𝜔𝑐−𝜔𝑔,𝑛)𝑡). (6.8)

Defining, 𝜂𝛼 ≡ Ω𝛼𝑔
Δ

and 𝛿𝛼,𝑛 ≡ 𝜔𝛼 − 𝜔𝑔,𝑛 − 𝜔𝑐, the interaction Hamiltonian can be

written as

𝐻̂lm = −
∑︁
𝑛,𝛼

[︀
𝜂𝛼𝑎̂𝜎̂

𝑛
𝑠𝑔𝑒

𝑖𝛿𝛼,𝑛𝑡 + ℎ.𝑐.
]︀
. (6.9)

The cavity mode mediates communication between atoms. We now assume that the

cavity photon loss is large enough that

𝛾 ≫ 𝜂𝛼, 𝛾 ≫ 𝛿𝛼,𝑛, (6.10)

and therefore the cavity photon loss occurs on a timescale much faster than the

effective dynamics of the spins. The light field can then be adiabatically eliminated

and becomes enslaved to atomic operators [2]. The Heisenberg evolution of the light

field can then be expanded in powers of 𝜖, with 𝜖 = 𝜂𝛼/𝛾 or 𝜖 = 𝛿𝛼,𝑛/𝛾:

𝑎̂ (𝑡) = 𝑖2
∑︁
𝑛,𝛼

(︂
𝜂*𝛼
𝛾
𝜎̂𝑛
𝑔𝑠𝑒

−𝑖𝛿𝛼,𝑛𝑡

)︂
+ 2

∑︁
𝑛,𝛼

(︂
𝛿𝛼,𝑛𝜂

*
𝛼

𝛾2
𝜎̂𝑛
𝑔𝑠𝑒

−𝑖𝛿𝛼,𝑛𝑡

)︂
+𝒪

(︀
𝜖3
)︀
, (6.11)

Before using the above expression to replace the light field in the full Lindblad equa-

tion, Eq. (6.6), we can gain insight into the effective dynamics of the system after

elimination of the light field by performing this substitution for the equation of motion

of a single spin operator:

𝑑

𝑑𝑡
𝜎̂𝑛
𝑔𝑠 = 𝑖𝑎̂ 𝜎̂𝑛

𝑧

∑︁
𝛼

𝜂𝛼𝑒
𝑖𝛿𝛼,𝑛𝑡 → −𝜎̂𝑛

𝑧

∑︁
𝑚,𝛼,𝛽

(𝛾eff)𝛼,𝛽

(︂
1− 𝑖𝛿𝛽,𝑚

𝛾

)︂
𝑒𝑖(𝛿𝛼,𝑛−𝛿𝛽,𝑚)𝑡𝜎̂𝑚

𝑔𝑠 +𝒪
(︀
𝜖3
)︀
,

(6.12)

where we have defined (𝛾eff)𝛼,𝛽 ≡ 2𝜂*𝛼𝜂𝛽/𝛾. We see that the motion of the 𝑛th atom is

conditioned by the motion of the 𝑚th one, with (𝛾eff)𝛼,𝛽 setting the effective coupling

122



rate. The leading order contribution to the motion is dissipative dynamics with rate

(𝛾eff)𝛼,𝛽, with the subleading contribution being coherent dynamics with frequency

(𝛾eff)𝛼,𝛽
𝛿𝛽,𝑚
𝛾

. When the effective coupling constant, (𝛾eff)𝛼,𝛽, is much smaller than

the minimum detuning between the atomic transition frequencies, we can ignore the

off-resonant couplings and only consider the interaction between atoms 𝑛 and 𝑚 for

which 𝛿𝛼,𝑛 − 𝛿𝛽,𝑚 = 0. Specifically, we require

(𝛾eff)𝛼,𝛽 ≪ min{𝛿𝛼,𝑛 − 𝛿𝛽,𝑚}, (6.13)

where the minimization means the smallest nonzero value of 𝛿𝛼,𝑛 − 𝛿𝛽,𝑚. Formally,

Eq. (6.13) is derived by taking the long time average of (6.12), and then applying the

Sokhotski–Plemelj lemma to extract the singular part of the time integral (resonant

process) and the regular part (off-resonant processes). The contribution of the off-

resonant term becomes negligible when the condition (6.13) is satisfied (see Ref. [162]).

We can then safely restrict the dynamics to the resonance shell 𝛿𝛼,𝑛 = 𝛿𝛽,𝑚, which

can be restated as

𝜔𝑔,𝑚 − 𝜔𝑔,𝑛 = 𝜔̃𝛽 − 𝜔̃𝛼. (6.14)

In order to introduce spatial addressability in the system, we choose the site-dependent

energy shifts as 𝜔𝑔,𝑛 = 𝜇𝑛, which is implemented via an externally imposed linear

magnetic field. We also choose the sideband detunings as 𝜔̃𝛼 = 𝜇𝛼. After our choice

of sideband detunings, the resonance condition Eq. (6.14) reads

(𝛼− 𝛽) = (𝑛−𝑚) . (6.15)

This selection rule makes pairs of atoms at distance 𝑛 − 𝑚 apart interact. The

dynamics of a single spin, given by Eq. 6.12, then becomes

𝑑

𝑑𝑡
𝜎̂𝑛
𝑔𝑠 ≈→ −𝜎̂𝑛

𝑧

∑︁
𝑚,𝛽

(𝛾eff)𝛽+(𝑛−𝑚),𝛽

(︂
1− 𝑖𝛿𝛽,𝑚

𝛾

)︂
𝜎̂𝑚
𝑔𝑠, (6.16)

and we see that the effective coupling rate, (𝛾eff)𝛽+(𝑛−𝑚),𝛽, depends only on the dis-
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tance between atoms 𝑛 and 𝑚. The leading order term, corresponding to dissipative

dynamics, is therefore translationally invariant. The subleading coherent term, pro-

portional to 𝛿𝛽,𝑚/𝛾, however, does have explicit position dependence. We note that if

the condition in Eq. (6.13) is violated, then atoms on multiple sites can communicate

and even the dissipative dynamics will not be translationally invariant.

We now perform this same adiabatic elimination of the cavity photon on the

full Lindblad equation, Eq. (6.6), by replacing 𝑎̂ with the expression in Eq. (6.11).

Keeping terms up to 𝒪(𝜖2) in Eq. (6.11), the dissipator given by Eq. (6.7) becomes

𝒟leak (𝜌) ≈ 2
∑︁

𝑛,𝑚,𝛼,𝛽

(𝛾eff)𝛼,𝛽

(︂
1 + 𝑖

(𝛿𝛼,𝑛 − 𝛿𝛽,𝑚)

𝛾

)︂
×

× 𝑒𝑖(𝛿𝛼,𝑛−𝛿𝛽,𝑚)𝑡

(︂
𝜎̂𝑚
𝑔𝑠𝜌𝜎̂

𝑛
𝑠𝑔 −

1

2

{︀
𝜎̂𝑛
𝑠𝑔𝜎̂

𝑚
𝑔𝑠, 𝜌

}︀)︂
, (6.17)

while the coherent light-matter interaction, given by Eq. (6.9), becomes

𝐻̂lm ≈ −𝑖2
∑︁

𝑛,𝑚,𝛼,𝛽

(𝛾eff)𝛼,𝛽 𝑒
𝑖(𝛿𝛼,𝑛−𝛿𝛽,𝑚)𝑡

(︀
𝜎̂𝑛
𝑠𝑔𝜎̂

𝑚
𝑔𝑠 − 𝜎̂𝑛

𝑠𝑔𝜎̂
𝑚
𝑔𝑠

)︀
− 2

∑︁
𝑛,𝑚,𝛼,𝛽

(𝛾eff)𝛼,𝛽
𝛿𝛽,𝑚
𝛾
𝑒𝑖(𝛿𝛼,𝑛−𝛿𝛽,𝑚)𝑡𝜎̂𝑛

𝑠𝑔𝜎̂
𝑚
𝑔𝑠. (6.18)

We see that the first term in the above equation vanishes and we are left with

𝐻̂lm ≈ −2
∑︁

𝑛,𝑚,𝛼,𝛽

(𝛾eff)𝛼,𝛽
𝛿𝛽,𝑚
𝛾
𝑒𝑖(𝛿𝛼,𝑛−𝛿𝛽,𝑚)𝑡𝜎̂𝑛

𝑠𝑔𝜎̂
𝑚
𝑔𝑠. (6.19)

The master equation for the density matrix describing the system can thus be written

as

𝑑

𝑑𝑡
𝜌 ≈ 2

∑︁
𝑛,𝑚,𝛼,𝛽

(𝛾eff)𝛼,𝛽

(︂
1 + 𝑖

(𝛿𝛼,𝑛 − 𝛿𝛽,𝑚)

𝛾

)︂
×

× 𝑒𝑖(𝛿𝛼,𝑛−𝛿𝛽,𝑚)𝑡

(︂
𝜎̂𝑚
𝑔𝑠𝜌𝜎̂

𝑛
𝑠𝑔 −

1

2

{︀
𝜎̂𝑛
𝑠𝑔𝜎̂

𝑚
𝑔𝑠, 𝜌

}︀)︂
+ 𝑖2

∑︁
𝑛,𝑚,𝛼,𝛽

(𝛾eff)𝛼,𝛽
𝛿𝛽,𝑚
𝛾
𝑒𝑖(𝛿𝛼,𝑛−𝛿𝛽,𝑚)𝑡

[︀
𝜎̂𝑛
𝑠𝑔𝜎̂

𝑚
𝑔𝑠, 𝜌

]︀
. (6.20)
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If the condition Eq. (6.13) is satisfied, then we can restrict dynamics to the resonance

shell defined by Eq. (6.14) and the resulting Lindblad equation is

𝑑

𝑑𝑡
𝜌 ≈

(︂
4|𝑔|2Ω2

𝑀

𝛾∆2

)︂∑︁
𝑛,𝑚

𝑓𝑛,𝑚

(︂
𝜎̂𝑚
𝑔𝑠𝜌𝜎̂

𝑛
𝑠𝑔 −

1

2

{︀
𝜎̂𝑛
𝑠𝑔𝜎̂

𝑚
𝑔𝑠, 𝜌

}︀)︂
+

+ 𝑖

(︂
4|𝑔|2Ω2

𝑀

𝛾∆2

)︂∑︁
𝑛,𝑚

[︁
𝑓𝑛,𝑚𝜎̂

𝑛
𝑠𝑔𝜎̂

𝑚
𝑔𝑠, 𝜌

]︁
(6.21)

where

𝑓𝑛,𝑚 =
∑︁

(𝛼,𝛽);(𝛼−𝛽)=(𝑛−𝑚)

Ω𝛼Ω*
𝛽

Ω2
𝑀

𝑓𝑛,𝑚 =
∑︁

(𝛼,𝛽);(𝛼−𝛽)=(𝑛−𝑚)

𝛿𝛽,𝑚
𝛾

Ω𝛼Ω*
𝛽

Ω2
𝑀

. (6.22)

In the above equation, we define Ω𝑀 as the largest Raman sideband amplitude and

choose it as a representative scale for the drive. Note that the term in Eq. (6.20) that

is proportional to 𝛿𝛼,𝑛 exactly cancels the term proportional to 𝛿𝛽,𝑚 when we satisfy

the two-atom resonance condition Eq. (6.14).

Collating the conditions, Eq. (6.10) and Eq. (6.13), for adiabatically eliminating

the cavity photon, we have:

𝜂𝛼 ≪ 𝛾, 𝛿𝛼,𝑛 ≪ 𝛾,
𝜂𝛼𝜂

*
𝛽

min{𝛿𝛼,𝑛 − 𝛿𝛽,𝑚}
≪ 𝛾. (6.23)

Recall that in the third condition above, the denominator, min{𝛿𝛼,𝑛 − 𝛿𝛽,𝑚}, is a

minimization over processes with 𝛿𝛼,𝑛 ̸= 𝛿𝛽,𝑚. For any fixed 𝜂𝛼 and 𝛿𝛼,𝑛, a sufficiently

large cavity decay 𝛾 allows all three conditions to be simultaneously satisfied. Later,

we show that these conditions can be consistently satisfied by providing numerical

estimates using parameters from cavity QED experiments. We note that the condition

𝛿𝛼,𝑛 ≪ 𝛾 is satisfied by choosing a large cavity decay, 𝛾, and a non-zero 𝛿𝛼,𝑛. In fact,

we require that 𝛿𝛼,𝑛 ̸= 0 in order to preserve spatial structure in the dynamics. We can

see this by setting 𝛿𝛼,𝑛 = 0 in Eq. (6.11) to get 𝑎̂ (𝑡) = 𝑖𝜁𝜎̂𝑔𝑠 where 𝜎̂𝑔𝑠 =
∑︀

𝑛 𝜎̂
𝑛
𝑔𝑠 and

𝜁 = 2
𝛾

∑︀
𝛼 𝜂

*
𝛼. Single-atom resonant processes, characterized by 𝛿𝛼,𝑛 = 0, therefore
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only lead to collective dissipation of all spins in the system, arising from collective

emission of the cavity photon, rather than non-local dissipation with spatial structure.

Physically, we can interpret the set-up resulting in Eq. (6.21) as follows. Both

non-local dissipation and coherent interactions amongst the spins are mediated by

non-resonant virtual photons, corresponding to 𝛿𝛼,𝑛 ̸= 0, which satisfy the two-atom

resonance condition 𝛿𝛼,𝑛 = 𝛿𝛽,𝑚. The spatial profile of the resulting non-local dissi-

pation, 𝑓𝑛,𝑚 , is translationally invariant and represents leakage of a cavity photon

without certainty about which of the two atoms, 𝑛 or 𝑚, it came from. The spatial

profile of the coherent interaction, 𝑓𝑛,𝑚, represents a spin-exchange between the atoms

which is suppressed by a factor 𝛿𝛽,𝑚/𝛾 due to the highly lossy cavity. The conditions

in Eq. (6.23) represent a regime where the cavity loss, 𝛾, is large enough that: (i) the

effective dynamics of each individual spin, occurring through a Λ-process in the atom

with rate 𝜂𝛼, occurs slowly compared to the cavity photon loss so the photon only

serves to mediate coherent interactions and non-local emission from pairs of spins,

(ii) coherent interactions of the spins are suppressed, and (iii) the time-scale of the

effective non-local emission from pairs of spins, set by 𝜏 = 1/ (𝛾eff)𝛼,𝛽 ∝ 𝛾/𝜂*𝛼𝜂𝛽, is

slow enough that off-resonant two-atom processes (𝛿𝛼,𝑛 ̸= 𝛿𝛽,𝑚) average to zero and

only the resonant two-atom process remains. This resonant two-atom process is a

translationally-invariant non-local emission from pairs of atoms.

The quantity 𝑓𝑛,𝑚 = 𝑓 (|𝑛−𝑚|) only depends on the difference 𝑛−𝑚 and sets the

spatial profile of the non-local dissipation. We can design the desired translationally-

invariant profile 𝑓𝑛,𝑚 = 𝑓 (|𝑛−𝑚|) of the dissipator by exactly solving 𝑓 (|𝑛−𝑚|) =∑︀
(𝛼,𝛽);(𝛼−𝛽)=(𝑛−𝑚) Ω𝛼Ω*

𝛽/Ω
2
𝑀 . Later, we explicitly show how to numerically invert

this equation. Defining 𝜅 = |𝑔|2 Ω2
𝑀/(𝛾∆2) and relabeling the projection operators as

𝑆−
𝑛 = 𝜎̂𝑛

𝑔𝑠/2 and 𝑆+
𝑛 = 𝜎̂𝑛

𝑠𝑔/2, we have

𝑑

𝑑𝑡
𝜌 ≈ 𝜅

∑︁
𝑛,𝑚

𝑓 (|𝑛−𝑚|)
(︂
𝑆−
𝑚𝜌𝑆

+
𝑛 −

1

2

{︁
𝑆+
𝑛 𝑆

−
𝑚, 𝜌

}︁)︂
+ 𝑖

[︃
𝜅
∑︁
𝑛,𝑚

𝑓𝑛,𝑚𝑆
−
𝑛 𝑆

+
𝑚, 𝜌

]︃
(6.24)

The first term in Eq. (6.24) is the desired non-local dissipation while the second term

represents coherent spin-exchange interactions mediated by a virtual photon emitted
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in the Λ-process within one atom and absorbed via the reverse Λ-process in a second

atom a distance |𝑛−𝑚| away [162, 27]. Comparing the expressions for 𝑓𝑛,𝑚 and 𝑓𝑛,𝑚

in Eq. (6.22), we see that the coherent dynamics are subleading to the dissipative

dynamics. Therefore, when the cavity decay is large enough that 𝛾 ≫ 𝛿𝛽,𝑚, the

coherent dynamics vanishes and we are left with purely dissipative dynamics with a

spatial profile 𝑓 (|𝑛−𝑚|):

𝑑

𝑑𝑡
𝜌 = 𝜅

∑︁
𝑛,𝑚

𝑓 (|𝑛−𝑚|)
(︂
𝑆−
𝑛 𝜌𝑆

+
𝑚 −

1

2

{︁
𝑆+
𝑚𝑆

−
𝑛 , 𝜌

}︁)︂
(6.25)

which is the non-local 𝐿̂𝑛 = 𝑆−
𝑛 loss channel we aimed to construct. The positivity of

this Lindblad map is guaranteed by the positivity of the Raman sideband amplitudes

Ω𝛽 that determine 𝑓 (|𝑛−𝑚|); we require 𝑓 (|𝑛−𝑚| = 0) ̸= 0 to ensure a positive

Lindblad map, which is violated only when all sideband amplitudes are zero and we

have no dynamics.

6.2 Engineering the spatial profile

We now show how to construct a desired dissipation profile 𝑓 (|𝑛−𝑚|) by choosing

the Raman sideband amplitudes {Ω𝛽} appropriately. In this section, we work in units

where the maximum sideband amplitude is normalized to 1 (Ω𝑀 = 1). The equation

we want to invert is

𝑓 (|𝑛−𝑚|) =
∑︁

𝛼,𝛽;(𝛼−𝛽)=(𝑛−𝑚)

Ω𝛼Ω*
𝛽

=
∑︁
𝛽

Ω𝛽+(𝑛−𝑚)Ω
*
𝛽,

with 𝑟 ≡ 𝑛−𝑚. For a system of 𝑁 spins, we have 𝑟 = − (𝑁 − 1) ,− (𝑁 − 2) , .., 0, ...,

(𝑁 − 2) , (𝑁 − 1). Recalling that 𝑓 (|𝑛−𝑚|) = 𝑓 (𝑟) is a translationally invariant

profile, we have

𝑓 (𝑟) =
∑︁
𝛽

Ω𝛽+𝑟Ω
*
𝛽, (6.26)
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where we will need 2𝑁 −1 sidebands corresponding to the values that 𝑟 can take; the

sidebands {Ω𝛽} are indexed as 𝛽 = − (𝑁 − 1) ,− (𝑁 − 2) , .., 0, ..., (𝑁 − 2) , (𝑁 − 1).

Note that Eq. (6.26) shows that the profile 𝑓 (𝑟) is simply the discrete autocorrelation

of the sideband amplitudes. We can thus make use of the convolution theorem to take

the discrete Fourier transform (DFT) of both sides:

𝑓 (𝑘) = |Ω𝑘|2 , (6.27)

where we define the DFT as 𝑓 (𝑘) =
∑︀

𝑟 𝑒
−𝑖𝑘𝑟𝑓 (𝑟) and Ω𝑘 =

∑︀
𝛽 𝑒

−𝑖𝑘𝛽Ω𝛽, introducing

the inverse DFT as 𝑓 (𝑟) = 1
(2𝑁−1)

∑︀
𝑘 𝑒

𝑖𝑘𝑟𝑓 (𝑘) and Ω𝛽 = 1
(2𝑁−1)

∑︀
𝑘 𝑒

𝑖𝑘𝛽Ω𝑘. We

know that any choice of 𝑓 (|𝑛−𝑚|) which yields a physically valid dissipator must

be positive semidefinite, and therefore 𝑓 (𝑘) must be real and non-negative. We can

take its square root and get

|Ω𝑘| =
√︀
𝑓 (𝑘). (6.28)

Now, we can look for solutions with Ω𝑘 real, thus yielding

Ω𝛽 =
1

(2𝑁 − 1)

∑︁
𝑘

𝑒𝑖𝑘𝛽
√︀
𝑓 (𝑘) (6.29)

which are the desired sideband amplitudes. One can numerically compute these

amplitudes using a fast Fourier transform and then check that the amplitudes yield

the desired profile by computing their autocorrelation (Eq. (6.26)). In Fig. 24, we

demonstrate this procedure for a long-range spatial profile 𝑓 (|𝑛−𝑚|) = 1
(|𝑛−𝑚|+1)𝛼

and a short-range spatial profile 𝑓 (|𝑛−𝑚|) = 𝑒−|𝑛−𝑚|/𝜒.

6.3 Parameter estimates

For the construction to hold, we require that the detuning, ∆, and cavity loss rate,

𝛾, are sufficiently large. Specifically, we require that ∆≫ 𝜇𝑁 , ∆≫ 𝜔𝐿 − 𝜔𝑐 − 𝜔𝑔,𝑛,

and ∆ ≫ Ω𝑀 , 𝑔. These conditions result in the excited atomic level |𝑒⟩𝑛 having

approximately the same energy along the entire chain and only participating virtually

128



100 0 100
0.0

0.2

0.4

0.6

0.8

1.0

0 50 100
r

0.0

0.2

0.4

0.6

0.8

1.0

f(r
)

Constructed
Desired

0.0 0.5 1.0
k/

0.0

0.2

0.4

0.6

0.8

1.0

k/
k

=
0

1.1
1.3
1.6
1.9

100 0 100
0.0

0.2

0.4

0.6

0.8

1.0

0 50 100
r

0.0

0.2

0.4

0.6

0.8

1.0

f(r
)

Constructed
Desired

0.0 0.5 1.0
k/

0.0

0.2

0.4

0.6

0.8

1.0

k/
k

=
0

1
2
3
5

(a) (b) (c)

(d) (e) (f)

Figure 24: Sideband amplitude construction. (a) Sideband amplitudes required to
construct a long-range spatial profile 𝑓 (|𝑛−𝑚|) = (|𝑛−𝑚|+ 1)−𝛼 on a 100 site
chain. (b) Spatial profile resulting from the amplitudes in (a). (c) Fourier transform
of the long-range spatial profile. (d) Sideband amplitudes required to construct a
short-range spatial profile 𝑓 (|𝑛−𝑚|) = 𝑒−|𝑛−𝑚|/𝜒 on a 100 site chain. (e) Spatial
profile resulting from the amplitudes in (d). (f) Fourier transform of the short-range
spatial profile.

in the dynamics. We also require that 𝛾 ≫ 𝑔Ω𝑀/∆ and 𝛾 >> 𝛿𝛽,𝑚, which allow us to

adiabatically eliminate the photon and suppress coherent spin-exchange interactions

respectively. Lastly, we require that ∆2𝛾 ≫ 𝑔2Ω2
𝑀/min |𝜔𝑔,𝑛 − 𝜔𝑔,𝑚| so that only the

resonant process Eq. (6.14) takes place.

Below we provide estimates for the parameters involved in the experiment of

Ref. [84, 85] and show that our construction is accessible to current experimental

systems. The number of lattice sites is 𝑁 ≈100 and it is comparable to the number

of sidebands ≈ 50-100 in the Raman beam. The Raman beam Rabi frequency |Ω|
and cavity mode coupling 𝑔 range are on the order of a few MHz. The carrier fre-
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Figure 25: Crossover between dissipative and coherent dynamics. We compute the
correlation function 𝐶𝑧𝑧 (𝑟, 𝑡) for a system whose dynamics is comprised of a
long-range dissipation channel (𝐿̂𝑛 = 𝑆−

𝑛 ) with strength 𝜅 and a long-range
spin-exchange Hamiltonian with strength 𝜂. For both generators, the spatial profile
is 𝑓 (|𝑛−𝑚|) = (|𝑛−𝑚|+ 1)−𝛼 with 𝛼 = 1.25. The system exhibits a crossover
between 𝜂/𝜅 = 0.25 and 𝜂/𝜅 = 0.5. (a) 𝜅 = 1.0, 𝜂 = 0.0 (only dissipation). ()b)
𝜅 = 1.0, 𝜂 = 0.25. (c) 𝜅 = 1.0, 𝜂 = 0.5. (d) 𝜅 = 1.0, 𝜂 = 1.0. (e) 𝜅 = 1.0, 𝜂 = 2.0.
(f) 𝜅 = 0.0, 𝜂 = 1.0 (only Hamiltonian). Details on how these correlation dynamics
are computed are given in Chaps. 7 and 8.

quency 𝜔𝐿 is ≈ 384THz, while the sideband frequencies of the Raman beam satisfy

max {|𝜔̃𝛼 − 𝜔̃𝛽|} ≈ 10kHz. The Zeeman splitting 𝜔𝑔,𝑛 = 𝜇𝑛 on each site is given by a

magnetic field 𝜇 ·𝐿 ≈ 500kHz, where 𝐿 is the length of the cloud. Finally, the cavity

decay 𝛾 is in the range ≈ 200kHz – 10 of MHz. Per these experimental parameters, we

can estimate that 𝜇𝑁/∆ ∼ 10−5, (𝜔𝐿 − 𝜔𝑐 − 𝜔𝑔,𝑛)/∆ ∼ 10−4, Ω𝑀/∆ ∼ 𝑔/∆ ∼ 10−4,

𝛿𝛽,𝑚/𝛾 ∼ 10−1, 𝑔Ω𝑀/(∆𝛾) ∼ 10−4, and 𝑔2Ω2
𝑀/(min |𝜔𝑔,𝑛 − 𝜔𝑔,𝑚|∆2𝛾) ∼ 10−1. The

conditions for achieving the desired effective dynamics are thus satisfied.
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While we should safely be able to ignore the coherent spin-exchange dynamics

described in Eq. 6.24, we can further examine the robustness of our platform to sub-

leading effects. In Fig. 25, we plot the correlation dynamics when both dissipative

and coherent dynamics are present. As the relative strength of the coherent dynamics

is increased, the pattern of correlations demonstrates a cross-over between the dissi-

pative confinement pattern discussed in Sec. 8.1 and correlation fronts characteristic

of a purely coherent dynamics arising from a spin-exchange Hamiltonian. The dissi-

pative confinement pattern survives even when the coherent dynamics is one-fourth

as strong as the dissipative dynamics; the experimental estimate of 𝛿𝛽,𝑚/𝛾 ∼ 10−1 is

well below this threshold.

The subleading spin-exchange Hamiltonian rotates the collective spin similar to a

uniform external field and one may consider using it to tune the correlation pattern.

However, as the spin-exchange dynamics also inherits a spatial profile, it complicates

the spread of correlations and therefore makes an inconvenient tool to engineer a

desired pattern arising from the dissipative dynamics. A uniform external field can-

not create any spatial correlations, and therefore acts as a simple knob that tunes

dynamics arising from the dissipator.

We note that such a uniform external field requires an addition to the experi-

mental construction. It can be implemented, for example, by shining an additional

multifrequency Raman beam that directly couples the two lower atomic levels with

sideband frequencies corresponding to the change in energy splittings on each site.

The amplitude 𝜔𝐹 characterizing the strength of this effective magnetic field would

be set by the Rabi frequency Ω𝑥 of this additional Raman beam, which typically takes

on values between 1kHz to 50kHz in the experiment referenced above.

Lastly, we consider the effect of local losses from spontaneous Raman scattering

of the individual atoms into free space. These incoherent spin losses are present

in all experiments and introduce undesired decohering effects that deplete the total

magnetization of the system. Following Ref. [342], we estimate the number of spon-

taneous emission events after a time 𝑡 as 𝑁Σ ≃ 𝑁Σ𝑡Ω2
𝑀/∆

2, with Σ being the decay

rate and 𝑁 being the total number of excitations in the system. The relevant time
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scale is set by the rate at which non-local dissipation generates correlations, given by

𝑡 ∼ 1/𝜅 ∼ 𝛾∆2/𝑔2Ω2
𝑀 . Correlations generated on this time scale are preserved if the

number of spontaneous emission events is small compared to the number of atoms in

the system: we require 𝑁Σ ≪ 𝑁 . To satisfy this requirement, we need Σ𝛾/𝑔2 ≪ 1,

which together with the above stated condition of leaky cavity 𝛾 ≫ 𝑔Ω𝑀/∆, yields

Σ ≪ (∆/Ω𝑀)2𝛾. In the setup of Ref. [84, 85], we have Ω𝑀/∆ ∼ 10−4, and as both

Σ and 𝛾 are typically of the order of a few MHz, correlations generated from non-

local dissipation are protected against scattering into free space for a long window of

time. We can alternatively combine the conditions Σ𝛾/𝑔2 ≪ 1 and 𝛾 ≫ 𝑔Ω𝑀/∆ into

𝑔 ≫ ΣΩ𝑀/∆, which states that the coupling between the atoms and the cavity mode

should be strong enough that coherent cavity-mediated transitions between atomic

energy levels should be much more frequent than incoherent transitions due to spon-

taneous emission. For the parameters of Ref. [84, 85], 𝑔 and Σ are of the order of a

few MHz and Ω𝑀/∆ ∼ 10−4 so this strong coupling condition is satisfied.
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Chapter 7

Generalized nonequilibrium spin-wave

theory

In this chapter, we derive the dissipative version of nonequilibrium spin-wave theory

(NEQSWT). This formalism allows us to obtain equations of motion for the rele-

vant observables and their correlations in translationally-invariant spin chains gov-

erned by a master equation, such as the model, Eq. (6.1). Previously, NEQSWT

has been used to study the non-equilibrium dynamics of a variety of unitary sys-

tems including interacting spin chains with competing short- and long-range inter-

actions [306, 210, 214, 286], variable-range interactions [209, 212, 211], and those

coupled to a cavity mode [384]. Here, we extend the method to dissipative dynam-

ics and derive equations of motion for any system whose dynamics is described by

a combination of translationally-invariant Hamiltonians and translationally-invariant

Lindblad channels. Our derivation can be used to construct equations of motion for

the system constructed in Chap. 6 and investigated in Chap. 8, and more generally

for any translationally-invariant spin system whose dynamics is described by a master

equation. Many of the models that are either naturally realized or purposefully engi-

neered on quantum simulation platforms fit into this class of systems [36, 29, 157, 164].

The premise of NEQSWT is to assume that the system is well-described by a

time-dependent strongly polarized collective spin, with a small number of spin-wave

excitations on top of the collective polarization. The motion of the collective spin and
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the spin-waves are coupled, as the spin waves produce a back-reaction (or quantum

feedback) that self-consistently modifies the mean-field trajectory of the collective

spin. As the number of spin-waves is assumed to be small, we can treat the spins as

bosons and the dynamics of the system is reduced to the motion of excitations on top

of a moving “condensate”. Formally, the treatment is a self-consistent time-dependent

Hartree approximation of the lowest order Holstein-Primakoff expansion of the spin

dynamics. The method is valid when the relevant excitations of the system are spin-

waves and during the portion of dynamics in which the spin-wave population remains

low. The advantage of NEQSWT is that it allows us to examine the dynamics of

a thermodynamically large number of spins whenever the above two conditions are

met. This typically results in control of dynamics over a time window significantly

larger than what permissible with conventional low order Holstein-Primakoff expan-

sions [6]. Compared to straightforward [230], or cluster [169], mean-field approaches,

which can be unstable for driven-dissipative systems, NEQSWT can be considered a

systematic improvement which enables the treatment of dissipative quantum many

body dynamics using a method with a control parameter.

7.1 Types of channels

We consider translationally-invariant spin systems described by a quantum master

equation constructed from a combination of three types of channels, each character-

ized by a spin operator of the general form

𝐿̂𝑛 = 𝑐𝐹,𝑈,𝐷𝑥 𝑆𝑥
𝑛 + 𝑐𝐹,𝑈,𝐷𝑦 𝑆𝑦

𝑛 + 𝑐𝐹,𝑈,𝐷𝑧 𝑆𝑧
𝑛 . (7.1)

The coefficients 𝑐𝐹,𝑈,𝐷𝑥,𝑦,𝑧 take arbitrary (complex) values, which can be chosen inde-

pendently in the various channels of type 𝐹 , 𝑈 , and 𝐷 defined below. We assume

|𝑐𝐹,𝑈,𝐷𝑥 |2 + |𝑐𝐹,𝑈,𝐷𝑦 |2 + |𝑐𝐹,𝑈,𝐷𝑧 |2 = 1, so the magnitude of each channel is encoded in

overall dimensionful coupling constants.

The first type of channel is unitary dynamics from a collective field generated by
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the Hamiltonian

𝐻̂𝐹 = 𝜔𝐹

∑︁
𝑛

𝐿̂𝑛. (7.2)

Clearly, in order for 𝐻̂𝐹 to be Hermitian, the coefficients 𝑐𝐹𝑥,𝑦,𝑧 appearing in the

definition of operators 𝐿̂𝑛 must be taken to be real.

The second type of channel is unitary dynamics with spatial character generated

by a Hamiltonian

𝐻̂𝑈 =
𝜂

𝑠Γ𝑈,𝑘=0

∑︁
𝑛,𝑚

𝑓𝑈 (|𝑛−𝑚|)
(︁
𝐿̂†
𝑚𝐿̂𝑛 + ℎ.𝑐.

)︁
(7.3)

where Γ𝑈,𝑘 ≡
∑︀

𝑟∈{−𝑁
2
,𝑁
2 } 𝑒

𝑖𝑘𝑟𝑓𝑈 (|𝑟|) is the Fourier transform of the spatial profile

𝑓𝑈 (|𝑛−𝑚|), 𝑁 is the number of spins in the system, and 𝑠 is the total spin of each

spin on the chain (typically taken to be 𝑠 = 1/2). The strength of this term is defined

with a factor of Γ𝑈,𝑘=0 as per the usual Kac renormalization that is used to normalize

the contribution of this channel to dynamics in the case that 𝑓𝑈 (|𝑛−𝑚|) is long-

range [173]. The coefficients 𝑐𝑈𝑥,𝑦,𝑧 appearing in the definition of operators 𝐿̂𝑛 may be

complex in this case. One can construct arbitrary unitary models of interest featuring

two-body spin-spin interactions by combining various building-block Hamiltonians of

the above forms, each defined through operators 𝐿̂𝑛 of the form (7.1) with different

coefficients. For example, one can construct Heisenberg XYZ models with arbitrary

spatial modulation of the couplings, including, as relevant limits, one-axis and two-

axis twisting Hamiltonians.

The third type of channel is dissipative dynamics generated by a jump operator 𝐿̂𝑛

of the form in Eq. (7.1), with arbitrary complex coefficients 𝑐𝐷𝑥,𝑦,𝑧 chosen independently

from those of the Hamiltonian channels. The contribution of this channel to an adjoint

master equation for an operator 𝐴 is

𝒟𝐷

(︁
𝐴
)︁

=
𝜅

𝑠Γ𝐷,𝑘=0

∑︁
𝑛,𝑚

𝑓𝐷 (|𝑛−𝑚|)
(︂
𝐿̂†
𝑛𝐴𝐿̂𝑚 −

1

2

{︁
𝐿̂†
𝑚𝐿̂𝑛, 𝐴

}︁)︂
, (7.4)
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where we have once again renormalized the dissipative strength with Γ𝐷,𝑘=0 anal-

ogously to above. The usual cases of purely collective (i.e., fully permutationally

invariant) dissipation can be recovered by choosing 𝑓𝐷 (|𝑛−𝑚|) = 𝛿𝑛,𝑚 for individ-

ual dissipation and 𝑓𝐷 (|𝑛−𝑚|) = constant for collective dissipation. Note that

the interaction matrix 𝑓𝐷 (|𝑛−𝑚|) for a valid Lindblad map must be positive semi-

definite; this condition is violated if the same-site component of the spatial profile

𝑓𝐷 (|𝑛−𝑚| = 0) vanishes. Therefore, a valid dissipative channel will always include

a sufficiently strong local (diagonal) term. For this reason, the definition of couplings

𝑓𝑈 (|𝑛−𝑚|) = |𝑛−𝑚|−𝛼 for 𝑛 ̸= 𝑚, usually taken for long-range Hamiltonian inter-

actions, does not lead to a well-defined positive Lindblad generator. In the following,

we will thus include a hardcore parameter 𝑅 > 0 in the definition of our Lindblad

generator spatial profile, entering as

𝑓𝐷(|𝑟|) =
1

(𝑅 + |𝑟|)𝛼 . (7.5)

The choice 𝑅 = 1 is sufficient to ensure positivity for all values of 𝛼. We can see

as follows. The spatial profile 𝑓 (|𝑛−𝑚|) of a valid Lindblad map must be positive

semi-definite, which translates to the requirement that the Fourier transform of the

function 𝑓(𝑟) := 𝑓𝑟=|𝑛−𝑚| is a non-negative function, i.e.,

̃︀𝑓(𝑘) =
+∞∑︁

𝑟=−∞
𝑒−𝑖𝑘𝑟𝑓(𝑟) ≥ 0 .

This is because translational invariance implies that { ̃︀𝑓(𝑘),−𝜋 < 𝑘 ≤ 𝜋} are propor-

tional to the eigenvalues of dissipator. Spatial profiles of dissipative Lindblad channels

must thus be defined such that they satisfy this constraint. For example, a long-range

spatial profile can be properly defined for a dissipative channel as 𝑓(𝑟) = 1/(1+ |𝑟|)𝛼.

We show in Fig. 26 that the Fourier transform of this profile is positive for all 𝛼 > 1,

which is the regime where spatial correlations survive in the thermodynamic limit.

The positivity condition can also be proved analytically. Consider the more general
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Figure 26: Fourier transform of long-range spatial profile 𝑓 (|𝑟|) = (|𝑟|+ 1)−𝛼. The
function is symmetric across 𝑘 = 0 for 𝑘 ∈ [−𝜋, 0]. The fact that Γ𝑘 is greater than
zero for all 𝛼 > 1 ensures that a Lindblad channel with this spatial profile is
mathematically well-defined.

form of a long range spatial profile

𝑓(𝑟) =
1

(𝑅 + |𝑟|)𝛼 (7.6)

with a tunable hardcore parameter 𝑅. Let us separate the effects of the local part

𝑓𝐿(𝑟) = 𝛿𝑟,0
1
𝑅𝛼 and the non-local part 𝑓𝑁𝐿(𝑟) = (1 − 𝛿𝑟,0) 1

(𝑅+|𝑟|)𝛼 of the dissipation

spatial profile. The Fourier transform is

̃︀𝑓(𝑘) = ̃︀𝑓𝐿(𝑘) + ̃︀𝑓𝑁𝐿(𝑘) = 𝑓(0) + 2
+∞∑︁
𝑟=1

cos(𝑘𝑟)𝑓(𝑟) . (7.7)

Note that by construction

∫︁ 𝜋

−𝜋

𝑑𝑘

2𝜋
̃︀𝑓𝑁𝐿(𝑘) = 𝑓𝑁𝐿(0) = 0 (7.8)

so the nonlocal part ̃︀𝑓𝑁𝐿(𝑘) is equally distributed above and below zero. The local

part ̃︀𝑓𝐿(𝑘) is a positive additive constant equal to 𝑓(0). Thus, we can choose the

value of 𝑓(0) to push the full Fourier transform entirely up above the horizontal axis,
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thereby realizing positivity. The smaller the 𝑅, the larger this constant. A simple

sufficient criterion can be proven as follows:

one can choose 𝑅 = 𝑅(𝛼) such that the last inequality holds:

𝑓(0) + min
𝑘

̃︀𝑓𝑁𝐿(𝑘) ≥ 𝑓(0)−max
𝑘
| ̃︀𝑓𝑁𝐿(𝑘)| ≥ 0 . (7.9)

To do so, we bound

max
𝑘
| ̃︀𝑓𝑁𝐿(𝑘)| ≤ 2

∞∑︁
𝑟=1

1

(𝑅 + 𝑟)𝛼

≤ 2

∫︁ ∞

0

𝑑𝑥

(𝑅 + 𝑥)𝛼
=

(︂
2𝑅

𝛼− 1

)︂
1

𝑅𝛼
. (7.10)

Positivity is guaranteed when this quantity does not exceed 𝑓(0) = 1/𝑅𝛼. Thus, we

obtain the sufficient criterion

𝑅 ≤ 𝛼− 1

2
. (7.11)

This bound is not tight, because we majorized |min𝑘
̃︀𝑓𝑁𝐿(𝑘)| by max𝑘 | ̃︀𝑓𝑁𝐿(𝑘)|: For

all 1 ≤ 𝛼 <∞, the former extremum is realized at 𝑘 = 𝜋 and the latter at 𝑘 = 0, so

the two quantities are always different. In reality, the value 𝑅 = 1 that we chose in

our study is sufficient for all 𝛼’s: for 𝑅 = 1 one has

̃︀𝑓(𝑘) = 1 + Re
[︂ ∞∑︁

𝑟=1

𝑒𝑖𝑘𝑟

(1 + 𝑟)𝛼

]︂
= 1 + Re

[︁
𝑒−𝑖𝑘Li𝛼(𝑒𝑖𝑘)− 1

]︁
, (7.12)

where Li𝛼(𝑧) =
∑︀∞

𝑟=1 𝑧
𝑟/𝑟𝛼 is the polylogarithmic function. The function on the

right-hand side is positive in the whole domain 𝑘 ∈ (−𝜋, 𝜋], 𝛼 ∈ [1,∞).

Having understood how to choose valid spatial profiles for dissipation channels,

we return to the dynamics of an operator 𝐴 under the channels Eqs. (7.2), (7.3),

and (7.4) . We can express the total dynamics using an adjoint master equation

𝑑

𝑑𝑡
𝐴 =

∑︁
𝑗

1

𝑖
[𝐴, 𝐻̂𝑗] +

∑︁
𝑗′

𝒟𝑗′

(︁
𝐴
)︁
, (7.13)

138



where the sums run over Hamiltonians and dissipators of the types described above,

F,each defined with different coefficients 𝑐𝑈,𝐷𝑥,𝑦,𝑧. As the system is translationally-

invariant, we assume periodic boundary conditions and define the Fourier transform

of the spin components as 𝑆𝛼
𝑘 =

∑︀
𝑛 𝑒

−𝑖𝑘𝑛𝑆𝛼
𝑛 with 𝛼 ∈ {𝑥, 𝑦, 𝑧}. The inverse transform

is given by 𝑆𝛼
𝑛 = 1

𝑁

∑︀
𝑘 𝑒

𝑖𝑘𝑛𝑆𝛼
𝑘 . The spins in Fourier space satisfy the commutation

relation [𝑆𝛼
𝑘 , 𝑆

𝛽
𝑘′ ] = 𝑖𝜖𝛼𝛽𝛾𝑆𝛾

𝑘+𝑘′ .

We now rotate to a time-dependent frame defined by angles 𝜃(𝑡) and 𝜑(𝑡). Specif-

ically, we apply the unitary transformation 𝑉 (𝜃, 𝜑) = 𝑒−𝑖𝜑
∑︀

𝑛 𝑆𝑧
𝑛𝑒−𝑖𝜃

∑︀
𝑛 𝑆𝑦

𝑛 . Letting 𝑒𝛼

be the unit vectors of the lab frame, the unit vectors of the rotated frame, 𝑒𝛼̃, are

given as

𝑒𝑥̃ =

⎛⎜⎜⎜⎝
cos 𝜃 cos𝜑

cos 𝜃 sin𝜑

− sin 𝜃

⎞⎟⎟⎟⎠ , 𝑒𝑦 =

⎛⎜⎜⎜⎝
− sin𝜑

cos𝜑

0

⎞⎟⎟⎟⎠ , 𝑒𝑧 =

⎛⎜⎜⎜⎝
sin 𝜃 cos𝜑

sin 𝜃 sin𝜑

cos 𝜃

⎞⎟⎟⎟⎠ . (7.14)

We will later choose 𝜃(𝑡) and 𝜑(𝑡) so that the z-axis of the rotated frame, 𝑒𝑧, aligns

with the z-component of the collective spin 𝑆𝛼̃ =
∑︀

𝑛 𝑆
𝛼̃
𝑛 = 𝑆𝛼̃

𝑘=0. The cost of this

time-dependent rotation is an additional ‘inertial’ Hamiltonian

𝐻̂RF = sin 𝜃𝜑̇𝑆𝑥̃ − 𝜃𝑆𝑦 − cos 𝜃𝜑̇𝑆𝑧 (7.15)

that contributes to the dynamics. The three types of dynamical channels that con-

tribute to the dynamics of an operator ˆ̃𝐴 in the rotated frame take thus the form

𝐻̂𝐹 = 𝜔𝐹

∑︁
𝛼̃∈{𝑥̃,𝑦,𝑧}

𝐹𝛼̃𝑆
𝛼̃
𝑘=0 (7.16)

𝐻̂𝑈 =
2𝜂

Γ𝑈,𝑘=0𝑁𝑠

∑︁
𝑘

Γ𝑈,𝑘

∑︁
𝛼̃,𝛽∈{𝑥̃,𝑦,𝑧}

𝑀𝑈
𝛼̃,𝛽
𝑆𝛼̃
−𝑘𝑆

𝛽
𝑘 (7.17)

𝒟𝐷

(︁
ˆ̃𝐴
)︁

=
𝜅

Γ𝐷,𝑘=0𝑁𝑠

∑︁
𝑘

Γ𝐷,𝑘

∑︁
𝛼̃,𝛽∈{𝑥̃,𝑦,𝑧}

𝑀𝐷
𝛼̃,𝛽

(︂
𝑆𝛼̃
𝑘

ˆ̃𝐴𝑆𝛽
−𝑘 −

1

2

{︁
𝑆𝛼̃
−𝑘𝑆

𝛽
𝑘 ,

ˆ̃𝐴
}︁)︂

(7.18)

139



where we have defined

𝐹𝛼̃ (𝜃, 𝜑) = 𝑐𝐹𝑥𝐺𝛼̃,𝑥 + 𝑐𝐹𝑦 𝐺𝛼̃,𝑦 + 𝑐𝐹𝑧 𝐺𝛼̃,𝑧 (7.19)

𝑀𝑈,𝐷

𝛼̃,𝛽
(𝜃, 𝜑) =

(︀
(𝑐𝑈,𝐷𝑥 )*𝐺𝛼̃,𝑥 + (𝑐𝑈,𝐷𝑦 )*𝐺𝛼̃,𝑦 + (𝑐𝑈,𝐷𝑧 )*𝐺𝛼̃,𝑧

)︀ (︀
𝑐𝑈,𝐷𝑥 𝐺𝛽,𝑥 + 𝑐𝑈,𝐷𝑦 𝐺𝛽,𝑦 + 𝑐𝑈,𝐷𝑧 𝐺𝛽,𝑧

)︀
(7.20)

and 𝐺𝛼̃𝛽 = 𝑒𝛼̃ · 𝑒𝛽 is the projection of the rotated basis vectors on the lab frame

basis vectors. The choice of operators 𝐿̂𝑛 are encoded in the coefficients 𝐹𝛼̃ (𝜃, 𝜑) or

𝑀𝑈,𝐷

𝛼̃,𝛽
(𝜃, 𝜑) while the choice of spatial profiles 𝑓𝑈,𝐷 (|𝑛−𝑚|) are encoded in Γ𝑈,𝑘, Γ𝐷,𝑘.

Note that the dynamics of the above channels does not decompose into independent

dynamics for each wave vector 𝑘 as sectors of different momenta are coupled via the

self-consistent feedback of the 𝑘 = 0 mode.

7.2 Holstein-Primakoff expansion in a moving vac-

uum

We now bosonize the spins via a lowest-order Holstein-Primakoff transformation [6]

𝑆𝑧
𝑛 = 𝑠− 𝑏̂†𝑛𝑏̂𝑛, ˆ̃𝑆+

𝑛 = (2𝑠)
1
2 𝑏̂𝑛,

ˆ̃𝑆−
𝑛 = (2𝑠)

1
2 𝑏̂†𝑛 (7.21)

where 𝑏̂†𝑛 and 𝑏̂𝑛 are bosonic creation and annihilation operators representing spin

flips along the chain and satisfy canonical commutation relations
[︁
𝑏̂𝑛, 𝑏̂

†
𝑚

]︁
= 𝛿𝑛𝑚. In

Fourier space, the mapping becomes

𝑆𝑥̃
𝑘 =

(︂
𝑁𝑠

2

)︂ 1
2 {︁

𝑏̂𝑘 + 𝑏̂†𝑘

}︁
, (7.22)

𝑆𝑦
𝑘 =

1

𝑖

(︂
𝑁𝑠

2

)︂ 1
2 {︁

𝑏̂𝑘 − 𝑏̂†𝑘
}︁
, (7.23)

𝑆𝑧
𝑘 = 𝑁𝑠𝛿𝑘,0 −

∑︁
𝑘′

𝑏̂†𝑘′ 𝑏̂𝑘+𝑘′ (7.24)
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where 𝑏̂†𝑘 = 1√
𝑁

∑︀
𝑛 𝑒

𝑖𝑘𝑛𝑏̂†𝑛 and 𝑏̂𝑘 = 1√
𝑁

∑︀
𝑛 𝑒

−𝑖𝑘𝑛𝑏̂𝑛 are bosonic creation and annihi-

lation operators representing spin-wave excitations. It is useful to work in terms

of quadrature operators 𝑞𝑘 and 𝑝𝑘 which are expressed in terms of the creation

and annihilation operators as 𝑏̂†𝑘 = 1√
2

(𝑞𝑘 − 𝑖𝑝𝑘) and 𝑏̂𝑘 = 1√
2

(𝑞𝑘 + 𝑖𝑝𝑘). Note

that these momentum space quadrature operators satisfy the commutation relation

[𝑞𝑘, 𝑝𝑘′ ] = 𝑖𝛿𝑘′,−𝑘. The mapping between spins and bosonic modes can be given in

terms of the quadrature operators as

𝑆𝑥̃
𝑘 = (𝑁𝑠)

1
2 𝑞𝑘, (7.25)

𝑆𝑦
𝑘 = (𝑁𝑠)

1
2 𝑝𝑘, (7.26)

𝑆𝑧
𝑘 = 𝑁𝑠𝛿𝑘,0 −

1

2

∑︁
𝑘′

(𝑞𝑘′𝑞𝑘−𝑘′ + 𝑝𝑘′𝑝𝑘−𝑘′ − 𝛿𝑘,0) . (7.27)

It is also useful to define

𝑛𝑘 = ⟨𝑏̂†𝑘𝑏̂𝑘⟩ =
1

2
⟨(𝑞𝑘𝑞−𝑘 + 𝑝𝑘𝑝−𝑘 − 1)⟩ (7.28)

with 𝑛𝑘=0 corresponding to the condensate density and 𝑛𝑘 ̸=0 corresponding to the

occupation of the spin-wave mode at wavevector 𝑘. The evolution of the 𝑘 = 0

mode represents the dynamics of the spin-wave vacuum and the evolution of the

𝑘 ̸= 0 represents dynamics of spin-waves on top of the moving vacuum. In the

thermodynamic limit, we can treat the spin-wave vacuum classically [211, 212], while

treating the spin-waves as quantum mechanical excitations. In practice, this amounts

to replacing 𝑆𝑧
𝑘=0 by a c-number ⟨𝑆𝑧

𝑘=0⟩ and using the total spin-wave density

𝜖 (𝑡) =
1

𝑁𝑠

∑︁
𝑘 ̸=0

𝑛𝑘 (𝑡) =
1

𝑁𝑠

∑︁
𝑘 ̸=0

⟨𝑞𝑘 (𝑡) 𝑞−𝑘 (𝑡) + 𝑝𝑘 (𝑡) 𝑝−𝑘 (𝑡)− 1⟩
2

(7.29)

as a control parameter for the approximation. The ‘time-dependent’ part of NEQSWT

references choosing the rotating frame angles 𝜃(𝑡) and 𝜑(𝑡) at every momentum in

time so that the 𝑧 axis aligns with the collective spin, which amounts to determining

the equations of motion for these angles by enforcing ⟨𝑆𝑥̃
𝑘=0⟩ = 0 and ⟨𝑆𝑦

𝑘=0⟩ = 0. The
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position of the collective spin on the Bloch sphere defined in the lab frame is given

as m = (𝑚𝑥,𝑚𝑦,𝑚𝑧) where

𝑚𝑥(𝑡) = sin 𝜃(𝑡) cos𝜑(𝑡), (7.30)

𝑚𝑦(𝑡) = sin 𝜃(𝑡) sin𝜑(𝑡), (7.31)

𝑚𝑧(𝑡) = cos 𝜃(𝑡). (7.32)

This choice extends the validity of spin-wave theory to larger window of dynamics by

redefining the spin-wave vacuum, represented by the collective spin, at every point in

time so that the total spin-wave density on top of the vacuum remains small [214]. In

the dilute regime of 𝜀(𝑡)≪ 1, spin waves behave as free bosonic modes which scatter

self-consistently only with the collective magnetization (𝑘 = 0 mode).

As long as 𝜖 (𝑡) remains small, the majority of angular momentum in the system

resides in the collective 𝑘 = 0 mode (taken to be aligned with the 𝑧 axis) and higher

order terms in the Holstein-Primakoff transformation can be ignored [214, 210]. The

system’s dynamics can then be described as that of the collective spin on a Bloch

sphere with a small density of spin-waves, negligibly reducing the length of this

collective magnetization. NEQSWT is valid up to times ∼ 1/𝜖2 (see for instance

Refs. [214, 210]). As a practical rule of thumb, the dynamics of spins are faithfully

captured as long as the spin-wave density satisfies 𝜖(𝑡) . 0.2 for the effects illustrated

in Section 8.1.

We apply the Holstein-Primakoff transformation described above to the adjoint

master equation Eq. (7.13). A sufficiently small spin-wave density allows us to trun-

cate the equations of motion for the system at the Gaussian level; expectation values

of operators that are more than quadratic in spin-wave operators are negligible in

this limit. This approximation then allows for a closed set of non-linear coupled dy-

namical equations involving only the angles 𝜃(𝑡) and 𝜑(𝑡), representing the one-point
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correlation functions, and the two-point correlation functions defined below:

∆𝑞𝑞
𝑘 (𝑡) = ⟨𝑞𝑘 (𝑡) 𝑞−𝑘 (𝑡)⟩ , (7.33)

∆𝑝𝑝
𝑘 (𝑡) = ⟨𝑝𝑘 (𝑡) 𝑝−𝑘 (𝑡)⟩ , (7.34)

∆𝑞𝑝
𝑘 (𝑡) =

1

2
⟨𝑞𝑘𝑝−𝑘 + 𝑝𝑘𝑞−𝑘⟩ . (7.35)

The dynamics of these two-point functions act as feedback for the motion of 𝜃(𝑡) and

𝜑(𝑡).

Specifically, we substitute the spin operators with bosonic creation and annihila-

tion operators in the Hamiltonian or dissipator and keep contributions that are at

most quadratic in bosonic operators. We then substitute quadrature operators for the

creation and annihilation operators before computing equations of motion for 𝑞𝑘=0,

𝑝𝑘=0, 𝑞𝑘𝑞−𝑘, 𝑝𝑘𝑝−𝑘, and 1
2
(𝑞𝑘𝑝−𝑘 + 𝑝𝑘𝑞−𝑘). The first two quantities and enforcement

of ⟨𝑆𝑥̃
𝑘=0⟩ = ⟨𝑆𝑦

𝑘=0⟩ = 0 yields equations of motion for the angles 𝜃(𝑡) and 𝜑(𝑡) respec-

tively, while the latter three quantities yield equations of motion for the two-point

functions given in Eq. (7.33).

It is important to note three technical points. First, we must do the Gaussian

approximation in terms of bosonic creation and annihilation operators rather than

quadratures as 𝑏̂†𝑘𝑏̂𝑘 is the quantity that is related to the small parameter 𝜀 that we

are expanding around; doing the approximation in terms of quadrature operators

may yield spurious terms in the final equations due to zero-point quantum fluctua-

tions. Second, we must apply the Holstein-Primakoff transformation and Gaussian

approximation at the level of the generators Eqs. (7.16)-(7.18) before calculating the

equation of motion for an operator ˆ̃𝐴; performing the Gaussian approximation after

computing the equation of motion may also introduce spurious terms in the final

equations. Third, the chain rule for derivatives does not apply to operators evolving

under a Lindblad master equation so the equations for the two-point functions must

be directly computed [123]; we cannot construct these equations from a product of the

equations of motion for the one-point functions as is commonly done when NEQSWT

is applied to purely unitary systems.
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7.3 Equations of motion

The content of this section is intended as a user guide for assembling equations of

motion for arbitrary quantum master equations of the general form considered in this

work, corresponding to adjoint master equations that can be expressed as Eq. (7.13).

The following are a set of mechanical rules to construct the right-hand side of the

equations of motion.

First, we start with the contributions of the Larmor Hamiltonian 𝐻̂RF which will

always be present due to the rotation of the reference frame:

𝑑

𝑑𝑡
𝜃 = 0

𝑑

𝑑𝑡
𝜑 = 0

𝑑

𝑑𝑡
∆𝑞𝑞

𝑘 = cos 𝜃𝜑̇ (2∆𝑞𝑝
𝑘 )

𝑑

𝑑𝑡
∆𝑝𝑝

𝑘 = − cos 𝜃𝜑̇ (2∆𝑞𝑝
𝑘 )

𝑑

𝑑𝑡
∆𝑞𝑝

𝑘 = − cos 𝜃𝜑̇ (∆𝑞𝑞
𝑘 −∆𝑝𝑝

𝑘 )

(7.36)

Each channel 𝑗, given by a choice of one of the generators in Eqs. (7.16)-(7.18), then

contributes to the above equations as

𝑑

𝑑𝑡
𝜃 → 𝑑

𝑑𝑡
𝜃 + 𝑑𝜃𝑗 (7.37)

𝑑

𝑑𝑡
𝜑→ 𝑑

𝑑𝑡
𝜑+ 𝑑𝜑𝑗 (7.38)

𝑑

𝑑𝑡
∆𝑞𝑞

𝑘 →
𝑑

𝑑𝑡
∆𝑞𝑞

𝑘 + 𝑑𝑄𝑗 (7.39)

𝑑

𝑑𝑡
∆𝑝𝑝

𝑘 →
𝑑

𝑑𝑡
∆𝑝𝑝

𝑘 + 𝑑𝑃𝑗 (7.40)

(7.41)
𝑑

𝑑𝑡
∆𝑞𝑝

𝑘 →
𝑑

𝑑𝑡
∆𝑞𝑝

𝑘 + 𝑑𝑊𝑗 (7.42)

Below we give the contributions to the equations of motion from each type of channel.
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It is useful to define the quantities

𝜉𝛼̃,𝛽 =
𝑀𝛽,𝛼̃

𝑀𝛼̃,𝛽

=
𝑀*

𝛼̃,𝛽

𝑀𝛼̃,𝛽

(7.43)

𝛿𝜂𝜉 =
1

Γ𝑘=0𝑁𝑠

∑︁
𝑘 ̸=0

Γ𝑘∆𝜂𝜉
𝑘 . (7.44)

defined analogously for each superscript 𝑈 or 𝐷.

The contributions from a 𝐻̂𝐹 channel are

𝑑𝜃𝐻𝐹
= 𝜔𝐹𝐹𝑦 (7.45)

𝑑𝜑𝐻𝐹
= −𝜔𝐹𝐹𝑥̃

1

sin 𝜃
(7.46)

𝑑𝑄𝐻𝐹
= −2𝜔𝐹𝐹𝑧∆

𝑞𝑝
𝑘 (7.47)

𝑑𝑃𝐻𝐹
= 2𝜔𝐹𝐹𝑧∆

𝑞𝑝
𝑘 (7.48)

𝑑𝑊𝐻𝐹
= 𝜔𝐹𝐹𝑧 (∆𝑞𝑞

𝑘 −∆𝑝𝑝
𝑘 ) (7.49)

To ease the notation, we drop the superscripts 𝑈 and 𝐷 in the coefficients in the

following equations for the channels 𝐻̂𝐿 and 𝒟𝐿. The contributions from a 𝐻̂𝑈 channel

are

𝑑𝜃𝐻𝐿
= −𝑀𝑥̃,𝑧4𝜂

1

Γ𝑘=0𝑁𝑠

∑︁
𝑘′

Γ𝑘′
1

2
⟨𝑞−𝑘′𝑝𝑘′ + 𝜉𝑥̃,𝑧𝑝−𝑘′𝑞𝑘′⟩

+𝑀𝑦,𝑧2𝜂 (1 + 𝜉𝑦,𝑧)

(︂
1− 𝜀− 𝛿𝑝𝑝𝛼 −

1

𝑁𝑠
𝑛𝑘=0 −

1

𝑁𝑠
∆𝑝𝑝

𝑘=0

)︂
(7.50)

𝑑𝜑𝐻𝐿
= 𝑀𝑦,𝑧

1

sin 𝜃
4𝜂

1

Γ𝑘=0𝑁𝑠

∑︁
𝑘′

Γ𝑘′
1

2
⟨𝑝−𝑘′𝑞𝑘′ + 𝜉𝑦,𝑧𝑞−𝑘′𝑝𝑘′⟩ (7.51)

−𝑀𝑥̃,𝑧
1

sin 𝜃
2𝜂 (1 + 𝜉𝑥̃,𝑧)

(︂
1− 𝜀− 𝛿𝑞𝑞𝛼 −

1

𝑁𝑠
𝑛𝑘=0 −

1

𝑁𝑠
∆𝑞𝑞

𝑘=0

)︂
(7.52)

𝑑𝑄𝐻𝐿
= 𝑀𝑦,𝑦𝜂 · 8

Γ𝑘

Γ𝑘=0

∆𝑞𝑝
𝑘 −𝑀𝑧,𝑧𝜂 · 8∆𝑞𝑝

𝑘 +𝑀𝑥̃,𝑦4𝜂 (1 + 𝜉𝑥̃,𝑦)
Γ𝑘

Γ𝑘=0

∆𝑞𝑞
𝑘 (7.53)
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𝑑𝑃𝐻𝐿
= −𝑀𝑥̃,𝑥̃𝜂 · 8

Γ𝑘

Γ𝑘=0

∆𝑞𝑝
𝑘 +𝑀𝑧,𝑧𝜂 · 8∆𝑞𝑝

𝑘 −𝑀𝑥̃,𝑦4𝜂 (1 + 𝜉𝑥̃,𝑦)
Γ𝑘

Γ𝑘=0

∆𝑝𝑝
𝑘 (7.54)

𝑑𝑊𝐻𝐿
= −𝑀𝑥̃,𝑥̃𝜂 · 4

Γ𝑘

Γ𝑘=0

∆𝑞𝑞
𝑘 +𝑀𝑦,𝑦𝜂 · 4

Γ𝑘

Γ𝑘=0

∆𝑝𝑝
𝑘 (7.55)

+𝑀𝑧,𝑧𝜂 · 4 (∆𝑞𝑞
𝑘 −∆𝑝𝑝

𝑘 ) (7.56)

The contributions from a 𝒟𝐷 channel are

𝑑𝜃𝒟𝐷
= −𝑖𝑀𝑥̃,𝑧

1

2
𝜅

1

Γ𝑘=0𝑁𝑠

∑︁
𝑘′

Γ𝑘′ ⟨𝑞−𝑘′𝑝𝑘′ − 𝜉𝑥̃,𝑧𝑝𝑘′𝑞−𝑘′⟩ (7.57)

− 𝑖𝑀𝑦,𝑧
1

2
𝜅 (1− 𝜉𝑦,𝑧)

(︂
1− 𝜀+ 𝛿𝑝𝑝𝛼 −

1

𝑁𝑠
𝑛𝑘=0 +

1

𝑁𝑠
∆𝑝𝑝

𝑘=0

)︂
(7.58)

𝑑𝜑𝒟𝐷
= 𝑖𝑀𝑦,𝑧

1

sin 𝜃

1

2
𝜅

1

Γ𝑘=0𝑁𝑠

∑︁
𝑘′

Γ𝑘′ ⟨𝑝−𝑘′𝑞𝑘′ − 𝜉𝑦,𝑧𝑞𝑘′𝑝−𝑘′⟩ (7.59)

+ 𝑖𝑀𝑥̃,𝑧
1

sin 𝜃

1

2
𝜅 (1− 𝜉𝑥̃,𝑧)

(︂
1− 𝜀+ 𝛿𝑞𝑞𝛼 −

1

𝑁𝑠
𝑛𝑘=0 +

1

𝑁𝑠
∆𝑞𝑞

𝑘=0

)︂
(7.60)

𝑑𝑄𝒟𝐷
= 𝑀𝑦,𝑦𝜅

Γ𝑘

Γ𝑘=0

+ 𝑖𝑀𝑥̃,𝑦𝜅 (1− 𝜉𝑥̃,𝑦)
Γ𝑘

Γ𝑘=0

∆𝑞𝑞
𝑘 (7.61)

𝑑𝑃𝒟𝐷
= 𝑀𝑥̃,𝑥̃𝜅

Γ𝑘

Γ𝑘=0

+ 𝑖𝑀𝑥̃,𝑦𝜅 (1− 𝜉𝑥̃,𝑦)
Γ𝑘

Γ𝑘=0

∆𝑝𝑝
𝑘 (7.62)

𝑑𝑊𝒟𝐷
= 𝑖𝑀𝑥̃,𝑦𝜅

Γ𝑘

Γ𝑘=0

1

2
⟨𝑞𝑘𝑝−𝑘 − 𝜉𝑥̃,𝑦𝑝𝑘𝑞−𝑘 + 𝑞−𝑘𝑝𝑘 − 𝜉𝑥̃,𝑦𝑝−𝑘𝑞𝑘⟩ (7.63)

Note that the spin-wave density is expressed in terms of two-point correlation func-

tions as 𝜀 (𝑡) = 1
𝑁𝑠

∑︀
𝑘 ̸=0 𝑛𝑘 where 𝑛𝑘 = 1

2
(∆𝑞𝑞

𝑘 + ∆𝑝𝑝
𝑘 − 1). After assembling the

contributions of each desired channel to the equations of motion for the collective

spin angles and two-point functions, we then plug in the final expression for 𝑑
𝑑𝑡
𝜑 into

the Larmor term in the equations of motion for the two-point functions. We then
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keep terms that are second order in 𝑘 ̸= 0 spin-wave operators. As each Larmor term

is proportional to 𝑑
𝑑𝑡
𝜑 multiplied by a two-point function, we only keep terms in 𝑑

𝑑𝑡
𝜑

that are zeroth order in spin-wave operators when substituting the expression. In the

above expressions, we have kept terms that are proportional to 1
𝑁𝑠

which are necessary

to quantify finite size effects. In the thermodynamic limit, these terms vanish. The

treatment thus results in a set of differential equations for the collective angles 𝜃(𝑡)

and 𝜑(𝑡) which are coupled to the 2𝑁 equations of motion for the two-point correla-

tion functions which represent the dynamics of spin-wave excitations. The coupling

between these equations represents the self-consistent part of the method where the

quantum fluctuations of spin-waves affects the motion of the spin-wave vacuum and

vice-versa.

The initial values of the dynamical variables depend on the choice of initial state.

For quasiclassical pure states fully polarized along a given direction, the dynamical

variables take the values 𝜃(0) = 𝜃0, 𝜑(0) = 𝜑0, ∆𝑞𝑞
𝑘 = ∆𝑝𝑝

𝑘 = 1/2, and ∆𝑞𝑝
𝑘 = 0.
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Chapter 8

Correlation dynamics

In this chapter, we investigate a specific spin model which exhibits novel correlation

dynamics illustrative of spatially extended dissipation. The system serves as a rel-

atively simple model of the types of interesting correlations that can be generated

by spatially extended dissipation. Additionally, as the collective dissipation limit has

been studied in past literature [164], the methods used to analyze the system can be

benchmarked in this limit. The proposed experimental implementation of the model

in an analog quantum simulator is given in Chap. 6 and the formalism used to analyze

its dynamics is given in Chap. 7. The system is described via the following purely

dissipative non-diagonal Lindblad quantum master equation:

𝜕𝑡𝜌 = 𝐾
𝑁∑︁

𝑛,𝑚=1

𝑓𝑛,𝑚

(︂
𝑆−
𝑛 𝜌𝑆

+
𝑚 −

1

2
{𝑆+

𝑛 𝑆
−
𝑚, 𝜌}

)︂
. (8.1)

The spatial extension of the dissipation is contained in the translationally-invariant

profile 𝑓𝑛,𝑚 = 𝑓(|𝑛−𝑚|), while its strength 𝐾 ≡ 2𝜅/(Γ𝑘=0) is renormalized by Γ𝑘=0

where Γ𝑘 ≡
∑︀

𝑟∈{−𝑁
2
,𝑁
2 } 𝑒

𝑖𝑘𝑟𝑓 (|𝑛−𝑚|) is the Fourier transform of 𝑓𝑛,𝑚.

In the language of Chap. 7, the system described by Eq. (8.1) has observables 𝐴

that evolve according to the adjoint master equation 𝑑
𝑑𝑡
𝐴 = 𝒟𝐷

(︁
𝐴
)︁

with:

𝒟𝐷

(︁
𝐴
)︁

=
𝜅

𝑠Γ𝑘=0

∑︁
𝑛,𝑚

𝑓 (|𝑛−𝑚|)
(︂
𝑆+
𝑛 𝐴𝑆

−
𝑚 −

1

2

{︁
𝑆+
𝑚𝑆

−
𝑛 , 𝐴

}︁)︂
(8.2)
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Note that we drop the superscript 𝐷 in this section. It is instructive to analyze

dynamics described by Eq. (8.2) starting from the case of a long-range spatial profile,

𝑓 (|𝑛−𝑚|) = (|𝑛−𝑚| + 1)−𝛼. The Fourier transform, Γ𝑘, of this profile can be

expressed in terms of poly-logarithm functions Γ𝑘(𝛼) = 1 + 2Re
[︀
𝑒−𝑖𝑘Li𝛼

(︀
𝑒𝑖𝑘
)︀
− 1
]︀

of order 𝛼. The inclusion of a hardcore parameter 𝑅 = 1 ensures positivity of Γ𝑘,

as explained in Sec. 7.1. The denominator Γ𝑘=0 ensures the extensive scaling of

the Liouvillian (8.1) in the thermodynamic limit, thus playing a role analogous to the

conventional Kac’s renormalization of long-range Hamiltonians [58, 176, 55, 364, 365].

When 𝛼 = 0, the dynamics of the collective spin admit an analytical solution

in the thermodynamic limit [164, 288]. The mean-field solution becomes exact and

can be written in terms of the components of the collective magnetization, 𝑚𝑥(𝑡) =

sin 𝜃(𝑡) cos𝜑(𝑡) and 𝑚𝑧(𝑡) = cos 𝜃(𝑡), which, in this case, is fully described by a

spin coherent state moving on the (collective spin) Bloch sphere with azimuthal and

polar angles 𝜑(𝑡) and 𝜃(𝑡), respectively. The model at 𝛼 = 0, with the addition

of a coherent external field representing by a Hamiltonian 𝐻̂0 = 𝜔0

∑︀𝑁
𝑛=1 𝑆

𝑥
𝑛, has

been studied in the context of cooperative radiation, optical bistability, and time-

crystals [164, 99, 100, 367, 146]. When 𝜔0/𝜅 & 1, the total magnetization rolls

around the 𝑥̂ axis with ⟨𝑆𝑧⟩ = 0. In the opposite limit 𝜅/𝜔0 & 1, the dynamics is

damped and quickly attracted towards the southern hemisphere of the Bloch sphere

with a non-vanishing 𝑆𝑧 component.

Choosing 𝛼 ̸= 0 introduces spatial resolution to the system and understanding the

dynamics requires, in principle, a solution to the full many-body system including con-

nected spin correlation functions of all orders beyond mean-field. In the dissipation-

dominated regime 𝜅/𝜔0 & 1, however, the NEQSWT developed in Chap. 7 can be

used to treat the system as the number of spin-wave excitations remains sufficiently

low over the course of dynamics. In the next section, we analyze dynamics for a

system with no external field (𝜔0 = 0). As the dissipation channel, Eq. (8.1), is the

only generator of dynamics, we are always in the dissipation-dominated regime where

NEQSWT remains valid. The case of a non-zero external field (𝜔0 ̸= 0) is discussed

in Ref. [319], with the overall picture unaffected by a small but non-zero 𝜔0.
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For 0 ≤ 𝛼 ≤ 1, the normalization factor diverges, which means that the normalized

spectrum of the Lindbladian (𝜅/𝑠)Γ𝑘/Γ𝑘=0 asymptotically converges to zero for all

finite momenta 𝑘 ̸= 0. It can be shown that such a spectrum remains discrete in

the thermodynamic limit [212, 90]. Away from fine-tuned dynamical critical points,

however, the behavior of collective observables in the thermodynamic limit is identical

with that of the mean-field model describing the 𝛼 = 0 case. There may be severe

finite-size effects for 𝛼 close to 1. For 𝛼 > 1, however, spin-wave modes get populated

as the system evolves out of equilibrium, exerting a finite feedback on the dynamics

of the collective spin, which acquire corrections beyond the mean-field. In the next

section, we consider this situation.

8.1 Correlation dynamics of non-local dissipation chan-

nel

We can gain intuition for the dynamics of quantum correlations generated by Eq. (8.2)

by considering the simplest situation of evolution starting from a pure state with a

single spin excitation 𝜌(0) = |𝑗⟩⟨𝑗|, where |𝑗⟩ ≡ | ↓1 . . . ↓𝑗−1↑𝑗↓𝑗+1 . . . ↓𝑁⟩ and the

single up spin is at site 𝑗. Time evolution takes place in the restricted Hilbert space

spanned by {|𝑛⟩, 𝑛 = 1, . . . , 𝑁} and the dark state |∅⟩ ≡ | ↓1 . . . ↓𝑁⟩ which is fully

polarized down. The state’s dynamics, governed by the master equation Eq. (8.2),

admits a simple physical picture: the excitation initially at site 𝑗 evolves in the single-

excitation space subject to the non-Hermitian (imaginary) hopping Hamiltonian

𝑖𝜅

2𝑠Γ𝑘=0

∑︁
𝑛,𝑚

𝑓|𝑛−𝑚|𝐿
†
𝑛𝐿𝑚  

𝑖𝜅

2𝑠Γ𝑘=0

∑︁
𝑛,𝑚

𝑓|𝑛−𝑚||𝑛⟩⟨𝑚| . (8.3)

This single-particle evolution is diagonal in Fourier space, and each momentum com-

ponent decays with a different rate proportional to Γ𝑘/Γ𝑘=0. The probability con-

tinuously lost by the single-excitation space accumulates in the dark state. Thus,

the excitation initially localized at site 𝑗 spreads quantum mechanically in the single-

excitation sector, generating an initial spreading of quantum correlations with quan-
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tum coherence between different single-excitation states. At the same time, each

momentum component inhomogeneously decays to the dark state, which generates

nontrivial correlation dynamics.

Armed with intuition from the above example, we proceed to examining the dy-

namics of Eq. (8.1) starting from initial states far away from the dark state. We

will consider systems prepared in fully polarized states pointing along an arbitrary

direction on the Bloch sphere, identified by spherical angles 𝜃0, 𝜑0. Furthermore, we

consider long-range and short-range spatial profiles 𝑓(𝑟 = |𝑛−𝑚|) given respectively

by

𝑓 (𝑟) =
1

(𝑟 + 1)𝛼
or 𝑓 (𝑟) = exp(−𝑟/𝜒). (8.4)

Using Eqs (7.36), we can derive a differential equation for the occupation 𝑛𝑘 of the

spin-wave excitation at wavevector 𝑘 ̸= 0.

𝑑

𝑑𝑡
𝑛𝑘 = 2𝜅

Γ𝑘

Γ𝑘=0

(︂
𝑛𝑘 cos 𝜃(𝑡) + cos4

(︂
𝜃(𝑡)

2

)︂)︂
. (8.5)

The 𝑘-dependent prefactor Γ𝑘/Γ𝑘=0 is positive for both spatial profiles of interest;

positivity of the master equation requires 𝜅 ≥ 0. Remarkably, for the specific Lind-

blad channel in Eq. (8.2), the equation of motion for spin-wave occupation given

by Eq. (8.5) is a linear differential equation that is not coupled to other NEQSWT

variables. The homogeneous term in Eq. (8.5) describes the rate of production of

spin-waves and depends on cos 𝜃(𝑡); accordingly, it generates or drains spin waves de-

pending on whether the collective magnetization is in the northern (0 < 𝜃(𝑡) < 𝜋/2)

or southern (𝜋/2 < 𝜃(𝑡) < 𝜋) hemisphere of the Bloch sphere. In other words, the

transition in the rate of production of spin waves can be understood as a consequence

of the spin waves’ dynamics being dependent on the instantaneous direction of the

collective spin. While the effect of dissipation is creating spin waves on top of a mean

field in the northern hemisphere, the same dissipative mechanism results in a reduc-

tion of spin-waves with respect to a mean-field in the southern hemisphere. We note

that the inhomogeneous decay of spin excitations with different momenta, discussed

at the beginning of this section [cf. Eq. (8.3)], is visible in Eq. (8.5) by examining the
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point 𝜃 ≃ 𝜋.

Note that this behavior is a result of the choice of dissipation channel, 𝐿̂𝑛 = 𝑆−
𝑛 ,

and does not depend on the choice of spatial profile which only modifies the prefactor

Γ𝑘/Γ𝑘=0 in Eq (8.5). The long-range profile is a power-law decay characterized by

power 𝛼 and results in a prefactor that decays as a a power-law with power related

to 𝛼. The short-range profile is an exponential decay characterized by a decay length

𝜒 and results in a prefactor that is Lorentzian with width proportional to 1/𝜒. The

change in spatial profile determines modifications in some non-universal parameters

such as the transition time, 𝑡* upon which the system switches from pumping ex-

citations to draining excitations. The spatial profile is, however, important when

engineering the dynamics of the system for certain applications.

The mechanism governing the dynamics of spin-wave occupation explains the

dynamics of equal time spin-spin correlation functions. As an example, we examine

the connected correlation function

𝐶𝑧𝑧 (𝑟, 𝑡) = ⟨𝑆𝑧
𝑛 (𝑡)𝑆𝑧

𝑛+𝑟 (𝑡)⟩ − ⟨𝑆𝑧
𝑛 (𝑡)⟩⟨𝑆𝑧

𝑛+𝑟 (𝑡)⟩ (8.6)

which is directly sensitive to the action of spin losses 𝐿̂𝑛 = 𝑆𝑛

−
. This function can

be expressed in terms of NEQSWT variables as

𝐶𝑧𝑧 (𝑟, 𝑡) = (sin 𝜃(𝑡))2
∑︁

𝑘 ̸=0,𝑘>0

cos(𝑘𝑟)∆𝑞𝑞
𝑘 . (8.7)

We see that there is an overall envelope to the correlation dynamics set by [sin 𝜃(𝑡)]2,

which grows as the collective spin moves from the north pole of the Bloch sphere to

the equator, and shrinks as it moves from the equator to the south pole. Therefore,

in the absence of other dynamical channels, we expect the correlations to grow for a

period of time and then shrink, with the time 𝑡* upon which the system transitions

between these two regimes being dependent on the motion of the collective spin. As

the dynamics of spin-wave occupation also increases and decreases depending on the

collective spin motion, we expect that the correlation transition time 𝑡* sets the scale
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upon which the spin-wave density 𝜀 reaches its maximum value before shrinking.

Similar to the dynamics of spin-wave occupation, we note that the choice of spatial

profile does not qualitatively modify the correlation dynamics. The spatial profile

only enters Eq. (8.7) through the dynamics of ∆𝑞𝑞
𝑘 .

We now numerically calculate the dynamics of the correlation function, Eq. (8.7),

using NEQSWT and analyze both long-range and short-range cases. We start with

all the spins in a coherent state pointing slightly above the equator of the Bloch

sphere (𝜃(𝑡 = 0) = 0.4𝜋, 𝜑(𝑡 = 0) = 0). The qualitative nature of the dynamics for

this dissipative channel does not depend on the angle of the initial coherent state;

starting too close to the North pole, however, causes the spin-wave density to exceed

the threshold treatable by NEQSWT. Our choice of 𝜃(𝑡 = 0) = 0.4𝜋 allows the

dynamics to be validly treated with NEQSWT.

The correlation dynamics for the long-range spatial profile is shown in Fig. 27(a).

In the first stage of dynamics, correlations exhibit a front scaling as 𝑡 ≈ 𝑟𝛽. The expo-

nent 𝛽 is plotted in Fig. 27(c), showing that the dissipation strength 𝜅 does not play

a role in the ‘opening’ of the correlation function. The exponent 𝛽 characterizing the

scaling follows 𝛽 ≃ 𝛼; this result can be understood by making the following scaling

ansatz for 𝐶𝑧𝑧 (𝑟, 𝑡) in the initial opening stage of correlation spreading dynamics:

𝐶𝑧𝑧
(︁
𝑟𝑡

1/𝛽
1 , 𝑡1

)︁
= 𝐶𝑧𝑧

(︁
𝑟𝑡

1/𝛽
2 , 𝑡2

)︁
. (8.8)

Algebraic manipulation yields the equivalent expressions

𝐶𝑧𝑧 (𝜁𝑟, 𝑡) = 𝜁𝜈𝐶𝑧𝑧 (𝑟, 𝑡) ,

𝐶𝑧𝑧 (𝑟, 𝜁𝑡) = 𝜁−𝜈𝜂𝐶𝑧𝑧 (𝑟, 𝑡) .
(8.9)

Here 𝜁 is a positive rescaling factor while 𝜈 and 𝜂 are the two rescaling exponents

for space and time. The above ansatz represents a correlation function front scaling

with exponent 𝛽 = 1/𝜂. As we discuss later, we find that for large distances (𝑟 ≫ 1),

the correlation function satisfies 𝐶𝑧𝑧 (𝑟, 𝑡) ∝ 1/𝑟𝛼. This behavior yields 𝜈 = −𝛼 using

the first equation in (8.9). Additionally, at short times, correlations grow linearly to
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Figure 27: Dynamics of 𝐿̂𝑛 = 𝑆−
𝑛 dissipation with long-range spatial profile

𝑓 (|𝑟|) = (|𝑟|+ 1)−𝛼. (a) Spreading and contraction of spin correlations described by
Eq. (8.6) for 𝛼 = 1.25 and 𝜅 = 1.0; the green dotted line tracks the correlation front
which spreads as 𝑡 ≈ 𝑟𝛽 at short times. (b) Dynamics of the spin wave density and
evolution of the collective magnetization on the Bloch sphere (inset) for the same
choice of parameters as (a). The density of spin waves has a peak at time 𝑡* where
the front of correlations reverses (cf. (a)). (c) Scaling parameter 𝛽 as a function of
𝛼. The black dotted line represents 𝛽 = 𝛼; we see that 𝛽 ≃ 𝛼 independent of the
dissipation strength 𝜅. (d) Dependence of 𝑡* on 𝛼 and 𝜅. For all panels we evaluate
dynamics in the thermodynamic limit with the initial state of the system
representing a spin coherent state pointing in the direction 𝜃(𝑡 = 0) = 0.4𝜋,
𝜑(𝑡 = 0) = 0.

leading order (𝐶𝑧𝑧 (𝑟, 𝑡→ 0) ∝ 𝑡+𝒪 (𝑡2)) as we start with an uncorrelated spin coher-

ent state for which 𝐶𝑧𝑧 (𝑟, 𝑡 = 0) is vanishing. The second equation in (8.9) therefore

implies 𝜈𝜂 = −1 and combining them, yields 𝜂 = 1/𝛼. We therefore see that the

correlation front must scale as 𝑡 ≃ 𝑟𝛽 with 𝛽 = 𝛼 as numerically observed. At large

𝛼, correlations disappear (𝛽 →∞) consistently with the Lindbladian becoming diag-

onal and representing independent local emission events. This behavior differs from

the large 𝛼 light cone of long-range Hamiltonians which becomes increasingly linear
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Figure 28: Dynamics of 𝐿̂𝑛 = 𝑆−
𝑛 dissipation with short-range spatial profile

𝑓 (|𝑟|) = exp(− |𝑟| /𝜒). (a) Spreading and contraction of spin correlations described
by Eq. (8.6) for 𝜒 = 2.0 and 𝜅 = 1.0. (b) Dynamics of spin-wave density and
correlation function transition time (inset). For all panels we evaluate dynamics in
the thermodynamic limit with the initial state of the system representing a spin
coherent state pointing in the direction 𝜃(𝑡 = 0) = 0.4𝜋, 𝜑(𝑡 = 0) = 0.

(𝛽 ≈ 1) [118]. As stated in Sec. 7.1, this difference arises from the proper way to de-

fine long-range dissipation (𝑓 (|𝑛−𝑚|) = (|𝑛−𝑚|+ 1)−𝛼) versus coherent dynamics

(𝑓 (|𝑛−𝑚|) = |𝑛−𝑚|−𝛼). In the former case, we tend towards independent dissipa-

tors for large 𝛼, while in the latter case one retrieves nearest-neighbor interactions.

Similar phenomenology is retrieved for short-range losses when 𝜒→ 0.

At late times, long-range dissipation has a contractive effect on correlation dy-

namics. Correlations reach their maximum spread at a time 𝑡* where the spin wave

density exhibits a peak. Spin waves are pumped by the second term in the right hand

side of Eq. (8.5) which acts as parametric drive, and they are damped by the first

term of (8.5) as soon as the collective magnetization enters the southern hemisphere.

For sufficiently strong dissipation, the collective magnetization will always eventually

enter the southern hemisphere as the south pole is the dark state for strong spin losses.

The competition of this self-pumping mechanism and the incoherent depolarization

of spins is what leads to the opening and closing of the correlation function. The

transition time 𝑡* corresponds to the timescale upon which the spin wave damping

term starts to dominate dynamics (see Fig. 27(d)). Correlations vanish in the ab-
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sence of spin wave excitations and therefore the correlation function 𝐶𝑧𝑧 (𝑟, 𝑡) shrinks

to zero as spin waves are progressively dissipated into the environment for 𝑡 > 𝑡* (see

Fig. 27(b)). At sufficiently late times (𝑡 ≫ 𝑡*), there is negligible spin wave density

and the system is almost in a coherent state of spins pointing in a direction near the

south pole. Closer inspection into the correlations near the steady state shows that

𝐶𝑧𝑧(𝑟) ∝ 1/𝑟𝛼 for large inter-spin distances. In fact, this 1/𝑟𝛼 decay of correlations

appears to hold at all times.

We also examine the correlation dynamics for a short-range spatial profile. Fig-

ure 28(a) shows that the correlations follow the same qualitative behavior as the the

long-range case (they grow for a period before contracting). The time 𝑡* characteriz-

ing this transition is shown in Fig. 28(b) and it corresponds to the time upon which

spin-wave excitations reach their maximal value and start decreasing. In both long-

and short-range cases, the time scale 𝑡* increases for spatial profiles that decay more

slowly in space. However, the dependence on spatial profile is weak and the transition

time primarily depends on the decay rate 𝜅 which sets the overall time-scale of the

dissipation channel. The main difference between long- and short-range dissipative

dynamics is that the correlations decay more rapidly in space for the short-range case,

as seen by comparing Fig. 27(a) to Fig. 28(a).

The spread and contraction of correlations arising from non-local dissipation

is reminiscent of dynamical signatures of confinement in purely unitary spin sys-

tems [187, 221, 348, 64]. There, correlations are confined due to bound states in

the spectrum of Hamiltonianan which arise from an effective attractive potential for

low-lying excitations. Here, however, confinement of correlations is an inherently non-

equilibrium phenomenon stemming from the fact that non-local dissipation channels

can both create and destroy correlations.
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8.2 Correlation engineering using non-local dissipa-

tion and a control field

Let us summarize the basic intuition for the dynamics of the non-local dissipation

channel analyzed in the previous section. When the collective spin is in the northern

hemisphere of the Bloch sphere, the average magnetization of the system is positive

and the jump operator 𝑆−
𝑛 creates spin-waves by lowering the magnetization away

from that of a spin-coherent state which is fully polarized upwards. When the collec-

tive spin is in the southern hemisphere of the Bloch sphere, the average magnetization

of the system is negative and the jump operator destroys spin-waves by lowering the

average magnetization towards that of a spin-coherent state which is fully polarized

downwards. The collective spin therefore acts as a mobile vacuum for excitations

and its position controls whether the dissipation channel predominently creates or

destroys correlations carried by these excitations.

This intuition intimates a natural way to engineer correlations generated by the

non-local dissipation channel. A uniform external field which guides the motion of the

collective spin, and thereby influences when dissipation creates or destroys excitations,

can be used to modulate the spatio-temporal correlation pattern created by the 𝐿̂𝑛 =

𝑆−
𝑛 dissipation channel. We demonstrate this control using a field of magnitude 𝜔𝐹

and direction 𝜙. This field is modeled by adding a unitary dynamics channel described

by the Hamiltonian 𝐻̂ = 𝜔𝐹

(︁
cos𝜙𝑆𝑥 + sin𝜙𝑆𝑧

)︁
to the non-local dissipation channel

described by Eq. 8.2.

In Fig. 29(a)-(d), we show how the long-range confinement pattern of Fig 27 can

be modified. Figure 29(b) shows temporal control over the correlation pattern. The

window of time during which the system remains correlated before decaying to an

uncorrelated state is extended by a factor of approximately five.

Figure 29(d) shows that the confinement pattern can be modulated to exhibit

oscillating correlations, which resembles a dissipation-induced limit cycle dressed by

quantum fluctuations. This behaviour, however, is metastable and the system reaches

a non-oscillatory steady state. For parameters 𝛼 ≤ 1, 𝜙 = 0, and 𝜔𝐹 ≥ 𝜅, the system
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Figure 29: Modulating correlations via a uniform field. We initialize the system in a
spin coherent state pointing in the direction 𝜃(𝑡 = 0) = 0.4𝜋, 𝜑(𝑡 = 0) = 0 for all
panels. (a),(b) Collective spin motion and connected correlation function 𝐶𝑧𝑧 (𝑟, 𝑡)
for a long-range spatial profile with 𝛼 = 1.25. System parameters are 𝜅 = 0.8,
𝜔𝐹 = 1.0, and 𝜙 = 0.25𝜋. (c),(d) Collective spin motion and connected correlation
function 𝐶𝑧𝑧 (𝑟, 𝑡) for a long-range spatial profile with 𝛼 = 1.1. System parameters
are 𝜅 = 0.95, 𝜔𝐹 = 1.0, and 𝜙 = 0.1𝜋. (e),(f) Squeezing parameter and connected
correlation function 𝐶𝑧𝑧 (𝑟, 𝑡) for a short-range spatial profile with 𝜒 = 3.0. System
parameters are 𝜅 = 1.2, 𝜔𝐹 = 1.0, and 𝜙 = 0.

is fully described by the classical motion of the collective spin and exhibits persistent

oscillations [164]. However, for 𝛼 > 1, we find that these oscillations are eventually

washed out by many-body fluctuations.

In Fig. 29(e)-(f), we manipulate the short-range confinement pattern of Fig 28

via the uniform field. Specifically, we send the system to an increasingly correlated

state at late times in a fashion reminiscent of traditional dissipative state preparation

schemes [92].

Many such schemes try to leverage collective dissipation to prepare metrologically

useful states [81]. Collective dissipation limits the system to sensing uniform external

fields. Non-local dissipation, however, may be able to prepare metrologically useful
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Figure 30: Preferentially squeezing a target wavevector. Spatial squeezing
parameter for a spatial profile 𝑓𝑛,𝑚 = cos (𝑘*|𝑛−𝑚|) 𝑒−|𝑛−𝑚|/𝜒 with 𝜒 = 50 and
𝑘* = 0.3𝜋. System parameters are 𝜅 = 0.8, 𝜔𝐹 = 1.0, and 𝜙 = 0. The system is
initialized in a spin coherent state pointing in the direction 𝜃(𝑡 = 0) = 0.4𝜋,
𝜑(𝑡 = 0) = 0. The figure inset shows that the Fourier transform of the spatial profile
is peaked around 𝑘*.

states for sensing spatially varying fields. We can explore this potential by examining

the finite wavevector squeezing parameter

(︁
𝜉
(W)
𝑘

)︁2
= min𝑒⊥

{︂2𝛿𝑘 ̸=0𝑁⟨∆
(︁
𝑒⊥ · Re{𝑆̂𝑘}

)︁2
⟩

|⟨𝑒𝑠 · 𝑆̂tot⟩|2

}︂
. (8.10)

where 𝑆̂𝑘 =
∑︀

𝑛 𝑒
−𝑖𝑘𝑛𝑆̂𝑛 and 𝛿𝑘 ̸=0 = 1 if 𝑘 ̸= 0 and 0 otherwise. In Sec. 8.3, we show

that 𝜉(W)
𝑘 is a generalization of the Wineland collective squeezing parameter [370, 227],

and quantifies metrologically useful entanglement when sensing a particular spatial

mode of a spatially varying field.

Figure 29(e) shows that different wavevectors exhibit varying amounts of squeezing

depending on the Fourier transform of the spatial profile, given by Γ𝑘 =
∑︀

𝑟=𝑛−𝑚 𝑒
𝑖𝑘𝑟𝑓 (|𝑟|).

Modes with larger Γ𝑘 will get squeezed more at short times. This fact can be exploited

160



to preferentially squeeze a target mode 𝑘*.

We demonstrate this control in Fig. 30, where we show the dynamics of 𝜉(W)
𝑘 for

a spatial profile 𝑓𝑛,𝑚 = cos (𝑘*|𝑛−𝑚|) 𝑒−|𝑛−𝑚|/𝜒 with 𝑘* = 0.3𝜋. The figure inset

shows that Γ𝑘 is a Lorentzian of width 𝜒 peaked at 𝑘*. We see that the 𝑘 = 𝑘*

mode is squeezed more than other modes, including the collective 𝑘 = 0 mode which

witnesses pairwise entanglement. Furthermore, squeezing at 𝑘* seems to antisqueeze

other modes. The correlation dynamics arising from a non-local dissipation channel

can thus be engineered using a uniform control field to generate states which act as

a resource for sensing spatially varying external fields.

8.3 Finite wavevector squeezing parameter

Here, we show that the finite wavevector squeezing parameter described in the pre-

vious section acts as a witness of metrologically useful entanglement for the task of

measuring a spatial Fourier component of an external field. Consider a spatially vary-

ing magnetic field B(r) = (0, 0, 𝐵(r)) pointing in the 𝑧-direction of the coordinate

system applied to a spin chain of 𝑁 spins represented by operators Ŝ𝑛, where 𝑛 in-

dexes the position of each spin. If the field is applied for a time 𝑡, the effect on a

system state 𝜌0 is

𝜌0 → 𝜌𝑡 ({𝐵𝑛}) = 𝑈̂ (𝑡) 𝜌0𝑈̂ (𝑡)† (8.11)

where 𝑈̂ (𝑡) = exp{𝑖𝐻̂𝑡}, 𝐻̂ =
∑︀𝑁

𝑛=1𝐵𝑛𝑆
𝑧
𝑛, and 𝐵𝑛 = 𝐵 (r𝑛). Letting r𝑛 = 𝑛𝑎 and

setting the lattice constant as 𝑎 = 1, we can decompose the magnetic field in terms

of Fourier components as 𝐵𝑛 = 2
𝑁

∑︀
𝑘 𝐵𝑘 cos (𝑘𝑛) with 𝑘 ∈ 2𝜋

𝑁
{1, 𝑁}. The Fourier

components are given by the inverse transform 𝐵𝑘 =
∑︀

𝑛𝐵𝑛 cos (𝑘𝑛). Our goal is

to estimate 𝐵𝑘* for a desired wavevector 𝑘 = 𝑘* using 𝑀 measurements performed

on the state 𝜌𝑡, given that the magnetic field strengths {𝐵𝑛} are unkown a priori.

Estimating 𝐵𝑘* thus amounts to estimating a linear function

𝑓 (𝛼,𝜃) = 𝛼 · 𝜃 (8.12)
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of unknown parameters 𝜃 = {𝐵𝑛} and known coefficients 𝛼 = {cos (𝑘*𝑛)}. The

precision bounds, known as Cramer-Rao bounds, for such multiparameter estimation

tasks were derived in Ref. [110]. Let Θ𝑘* be the estimator of 𝐵𝑘* , with a mean

E [Θ𝑘* ] and variance ∆ (Θ𝑘*)2. The lower bound on the variance sets the maximum

achievable precision of the estimator. If the initial state 𝜌0 has no entanglement, then

∆ (Θ𝑘*)2 ≥ ∆SQL (Θ𝑘*)2 where

∆SQL (Θ𝑘*)2 =
𝑁

𝑀𝑡2
1

2𝛿𝑘*̸=0
(8.13)

is known as the standard quantum limit (SQL). We have used the shorthand 𝛿𝑘* ̸=0 = 1

if 𝑘* ̸= 0 and zero otherwise. If we allow entanglement in the initial state 𝜌0, then

∆ (Θ𝑘*)2 ≥ ∆HL (Θ𝑘*)2 where

∆HL (Θ𝑘*)2 =
1

𝑀𝑡2
(8.14)

is known as the Heisenberg limit (HL). The key point is that ∆SQL (Θ𝑘*)2 /∆HL (Θ𝑘*)2 ∝
𝑁 , therefore entanglement allows a factor 𝑁 scaling improvement in the precision of

the estimator. Importantly, as the generators {𝑆𝑧
𝑛} commute with each other, the

Heisenberg limit can in principle be saturated with an optimal choice of initial state

𝜌0 and measurement protocol.

In order to put the above expressions for the SQL and HL in a more familiar

context, consider the quantity 𝜑0 = 1
𝑁
𝐵𝑘*=0 and its estimator Φ0. This quantity cor-

responds to measuring the uniform component of the magnetic field and has precision

limits

∆SQL (Φ0)
2 =

1

𝑁𝑀𝑡2
, (8.15)

∆HL (Φ0)
2 =

1

𝑁2𝑀𝑡2
, (8.16)

which are the usual expressions for the single parameter estimation problem typically

considered in quantum-enhanced metrology.

We can similarly gain intuition for the 𝑘* ̸= 0 case by framing it as a single
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parameter estimation problem. Let us define the Fourier transformed spin operators

as 𝑆̂𝑘 =
∑︀

𝑛 𝑒
−𝑖𝑘𝑛𝑆̂𝑛, with the inverse transform being 𝑆̂𝑛 = 1

𝑁

∑︀
𝑘 𝑒

𝑖𝑘𝑛𝑆̂𝑘. Then,

we can write the Hamiltonian generating evolution due to the magnetic field as 𝐻̂ =

2
𝑁

∑︀
𝑘 𝐵𝑘 Re{𝑆𝑧

𝑘} where Re{𝑆̂𝑘} =
∑︀

𝑛 cos (𝑘𝑛) 𝑆̂𝑛. The variance of the estimator

Θ𝑘* is then bounded by generator of 𝐵𝑘* in 𝐻̂ [284, 110, 5]. Specifically, we have

∆ (Θ𝑘*)2 ≥ ∆G (Θ𝑘*)2 where ∆G (Θ𝑘*)2 = 1/(𝑀𝑡24∆
(︁
𝐺̂𝑘*

)︁2
) and 𝐺̂𝑘* = 𝜕𝐻̂/𝜕𝐵𝑘* =

2
𝑁

Re{𝑆𝑧
𝑘*}. This yields the precision bound

∆G (Θ𝑘*)2 = ∆SQL (Θ𝑘*)2
2𝛿𝑘*̸=0

16

𝑁

∆
(︁

Re{𝑆𝑧
𝑘*}
)︁2 . (8.17)

The bound in Eq. (8.17) is typically looser than the one in Eq. (8.14), but provides

intuition for how decreasing the variance of the operator 𝑆𝑧
𝑘* increases the potential

precision in the estimate of 𝐵𝑘* .

We now give an example of an estimator that can exploit squeezing of this variance

to provide a metrological advantage. Consider an experiment that makes 𝑀 measure-

ments of an observable 𝜇̂ on the state 𝜌𝑡(𝜃) that depends on the unknown parameter of

interest, 𝜃. Let the expected value of this observable be 𝜇̄ = Tr{𝜇̂𝜌𝑡(𝜃)} ≡ 𝑓(𝜃), where

we have made the dependence on 𝜃 explicit, and the sample average of the measure-

ments be 𝜇̄𝑀 . The method of moments (MOM) estimator is defined as the value of 𝜃

for which the expectation value 𝜇̄ equals the sample average: Θmom = 𝑓−1(𝜇̄𝑀) [284].

We have 𝜇̄𝑀 = 𝑓(Θmom), and in the limit of many measurements, the law of large

numbers states that 𝜇̄𝑀 ≈ 𝜇̄ = 𝑓(𝜃). Therefore, we expect Θmom ≈ 𝜃 and we can

expand 𝜇̄𝑀 = 𝑓(Θmom) around Θmom = 𝜃:

𝑓(Θmom) ≈ 𝑓(𝜃) +
𝜕𝑓

𝜕𝜃

⃒⃒⃒⃒
⃒
𝜃

(Θmom − 𝜃) . (8.18)

Plugging in 𝜇̄𝑀 and 𝜇̄, we have

𝜇̄𝑀 ≈ 𝜇̄ (𝜃) +
𝜕𝜇̄

𝜕𝜃

⃒⃒⃒⃒
⃒
𝜃

(Θmom − 𝜃) . (8.19)
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The convenient aspect of the MOM estimator is that the value Θmom can be extracted

directly from the experimental sample average 𝜇̄𝑀 . Extracting the estimate, however,

requires knowledge of the functional form 𝜇̄(𝜃), or its inverse, as is the case in the

usual Ramsey metrology protocol where typically 𝜇̄(𝜃) ∝ cos2(𝜃). Alternatively, the

MOM estimate can be extracted using the above Taylor expansion if we know a

calibration value 𝜃𝑐 that is close to the true unknown value 𝜃, as well as 𝜇̄(𝜃𝑐) and
𝜕𝜇̄
𝜕𝜃
|𝜃𝑐 with high precision [5]:

𝜇̄𝑀 ≈ 𝜇̄ (𝜃𝑐) +
𝜕𝜇̄

𝜕𝜃

⃒⃒⃒⃒
⃒
𝜃𝑐

(Θmom − 𝜃𝑐) . (8.20)

In either case, the variance of the estimator can be calculated in the limit of large 𝑀

by identifying ∆ (Θmom)2 ≈ (Θmom − 𝜃)2 and ∆ (𝜇̄(Θmom))2 ≈ 𝑀 (𝜇̄(Θmom)− 𝜇̄(𝜃))2

in Eq. (8.19), or by replacing 𝜃 → 𝜃𝑐 in these expressions and then using them with

Eq. (8.20). Letting 𝐺̂𝜃 = 𝜕𝐻̂/𝜕𝜃, we have 𝜕𝜇̄
𝜕𝜃
|𝜃𝑐 = −𝑖𝑡Tr{

[︁
𝐺̂𝜃, 𝜇̂

]︁
𝜌𝑡(𝜃)}. The variance

of the MOM estimator is then

∆ (Θmom)2 =
⟨∆ (𝜇̂)2⟩

𝑀𝑡2|⟨
[︁
𝐺̂𝜃, 𝜇̂

]︁
⟩|2

(8.21)

where ⟨·⟩ = Tr{·𝜌𝑡(𝜃)}. For our problem to estimate 𝜃 = 𝐵𝑘* , we have 𝐺̂𝜃 =

2
𝑁

Re{𝑆𝑧
𝑘*}. We pick a measurement observable 𝜇̂ = 𝑒⊥ · Re{𝑆̂𝑘*} where 𝑒⊥ rep-

resents a unit vector in the plane perpendicular to both the mean spin direction,

𝑒𝑠, and the direction of the external magnetic field, 𝑒𝑧. The variance of our MOM

estimate for 𝐵𝑘* is

∆mom (Θ𝑘*)2 =
𝑁

𝑀𝑡2

𝑁⟨∆
(︁
𝑒⊥ · Re{𝑆̂𝑘*}

)︁2
⟩

|⟨𝑒𝑠 · 𝑆̂tot⟩+ ⟨𝑒𝑠 · Re{𝑆̂2𝑘*}⟩|2
(8.22)

=
𝑁

𝑀𝑡2

𝑁⟨∆
(︁
𝑒⊥ · Re{𝑆̂𝑘*}

)︁2
⟩

4|∑︀𝑛 cos2 (𝑘*𝑛) ⟨𝑒𝑠 · 𝑆̂𝑛⟩|2
(8.23)

≤ 𝑁

𝑀𝑡2

𝑁⟨∆
(︁
𝑒⊥ · Re{𝑆̂𝑘*}

)︁2
⟩

4|⟨𝑒𝑠 · 𝑆̂tot⟩|2
(8.24)
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where 𝑆̂tot = 𝑆̂𝑘=0 =
∑︀

𝑛 𝑆̂𝑛 and we have used the fact that spin operators satisfy

the commutation relation
[︁
𝑆𝛼
𝑘 , 𝑆

𝛽
𝑘′

]︁
= 𝑖𝜀𝛼𝛽𝛾𝑆𝛾

𝑘+𝑘′ for 𝛼, 𝛽, 𝛾 ∈ {𝑥, 𝑦, 𝑧}. We can thus

upper bound the variance of the MOM estimator as

∆ub
mom (Θ𝑘*)2 = ∆SQL (Θ𝑘*)2 𝜉2𝑘* (8.25)

with

𝜉2𝑘* =
2𝛿𝑘*̸=0𝑁⟨∆

(︁
𝑒⊥ · Re{𝑆̂𝑘*}

)︁2
⟩

|⟨𝑒𝑠 · 𝑆̂tot⟩|2
, (8.26)

For 𝑘* = 0, we get Wineland’s metrological squeezing parameter [284], and therefore

Eq. (8.26) serves as a generalization of Wineland’s parameter to the case of sensing

specific Fourier components of a spatially varying field. If 𝜉2𝑘* < 1, then a MOM

estimator can exploit entanglement in the system to measure this Fourier component

with a precision beyond the standard quantum limit. The estimator requires that we

can measure ⟨𝑒⊥ · Re{𝑆̂𝑘*}⟩. Using the Fourier decomposition of 𝑆̂𝑘* , this requires

computing ⟨𝑒⊥ ·𝑆̂𝑛⟩, which can easily be extracted from simultaneous projective mea-

surements of ⟨𝑆𝑧
𝑛⟩ of each spin after rotation of 𝑒⊥ to the 𝑒𝑧 basis. Such measurements

are routinely performed in cold atom systems using flourescence imaging to determine

the occupation of the atoms in each of their internal states (corresponding to spin up

and spin down).

In general, if we are trying to characterize the metrological utility of a state 𝜌0

with a fixed mean spin direction 𝑒𝑠, we can presume control over the direction of the

external magnetic field B(𝑛𝑎) that is being sensed and align it for greatest sensitivity.

The metrological gain to sense a Fourier component at wavevector 𝑘 of the field can

then be quantified via the finite wavevector squeezing parameter

(︁
𝜉
(W)
𝑘

)︁2
= min𝑒⊥

{︃
2𝛿𝑘 ̸=0𝑁⟨∆

(︁
𝑒⊥ · Re{𝑆̂𝑘}

)︁2
⟩

|⟨𝑒𝑠 · 𝑆̂tot⟩|2

}︃
, (8.27)

where the minimization is performed over all directions 𝑒⊥ that are perpendicular

to the mean spin direction 𝑒𝑠. One should be careful in the interpretation of the
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above generalized squeezing parameter. The spin operators at a given wavevector 𝑘

do not form a closed spin algebra, and therefore there is no single Bloch sphere that

can be associated with this spin mode. Therefore, the usual intuition of squeezing a

quadrature of the spin on its Bloch sphere does not hold. Nonetheless, Eq. (8.27) does

quantify the amount of metrological gain that can be achieved due to entanglement

in the state using projective measurements of local spin operators (e.g. ⟨𝑆𝑧
𝑛⟩). The

reason is that reducing the variance of the generator of the estimated parameter

helps increase the precision of the estimate, as described in Eq. (8.17). In general, the

precision of this MOM estimator is worse than the optimal precision set by Eq. (8.14),

but one may hope to find squeezing values, (𝜉
(W)
𝑘 )2, which scale as 1/𝑁 and therefore

provide the same scaling advantage. More optimal estimators can saturate the bound

of Eq. (8.14) [110, 291, 292, 327, 372].

8.4 Discussion

In this part of the thesis, we have shown how quantum simulators may be used to

investigate the open system dynamics of quantum many-body systems as well as

dissipative quantum information processing. Compared to purely unitary strategies,

dissipative protocols may hold unique advantages in a variety of applications as ir-

reversible dynamics is stable to variations in the initial state. We have checked, for

instance, that the dynamical features shown in Figs. 27, 28, and 29 do not depend

qualitatively on the choice of initial state. In contrast, the dynamical confinement

of correlations in long-range interacting unitary quantum simulators requires careful

preparation of the initial state [187, 221, 348, 64].

The spread of correlations in unitary long-range quantum simulators has proven

a fruitful area of inquiry for understanding entanglement dynamics in many-body

systems [149, 364, 117]. By choosing a spatial profile 𝑓𝑛,𝑚 = (|𝑛−𝑚|+ 1)−𝛼, our

platform turns into a non-Hermitian analogue of such systems, thus opening an op-

portunity to explore how the purely dissipative character of dynamics affects entan-

glement spreading. The far-from-equilibrium dynamics of many closed quantum spin
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chains is still not fully understood despite much theoretical effort [168]. Dissipative

channels which can generate correlations open the door to richer dynamics, but can

make the system harder to analyze. Quantum simulators are thus a valuable tool to

study these systems.

The correlation function in Eq. (8.6) can be experimentally measured by state-

selective fluorescence imaging [283]. Initially preparing a spin texture alternatively

allows one to track the dynamics of the system with direct measurements of the

local magnetization [85], potentially revealing novel transport mechanisms assisted

by non-local dissipation. Our platform also offers the prospect of studying quantum

information scrambling [238, 28] and novel phase transitions [94] in purely dissipative

cavity QED simulators.

Furthermore, the ability to squeeze the system at desired wavevectors may be

useful for spatially-resolved magnetometry, thus providing an advantage over sys-

tems employing homogeneous, collective dissipation [82], which can only squeeze the

collective spin mode. Realizing our platform’s potential for spatial magnetometry

requires optimizing the choice of profile, 𝑓𝑛,𝑚, and jump operator, 𝐿̂𝑛, characterizing

the non-local dissipation channel to maximally decrease the value of 𝜉(W)
𝑘 within the

Heisenberg limit (see Appendix 8.3). Feedback conditioned on emitted photons and

use of ensembles of atoms may offer additional routes towards increased metrological

sensitivty [85, 315, 216, 77, 191].

From a methodological perspective, there are several interesting directions that

could be explored with formalisms that go beyond the limitations of the NEQSWT

developed in Chap. 7. For example, we plan to extend the generalized NEQSWT

to a Hartree-Fock treatment of non-linear effects beyond the leading order Holstein-

Primakoff expansion. This would allow us to analyze systems with sizeable spin-wave

densities, enabling the study of systems with highly correlated initial states, as well

as exploring the possibility of dynamical phase transitions arising from competition

between unitary dynamics generated by a Hamiltonian and dissipative dynamics gen-

erated by a Lindblad channel.

In order to provide a closer benchmark with cavity-QED quantum simulation
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experiments and explore regimes where coherent and dissipative dynamics of the

cavity compete, a method to treat the combined light-matter system is required. We

envision the possibility of extending variational many-body methods [336] to study

how correlations spread in the system when the cavity photon cannot be adiabatically

eliminated and will therefore participate in the dynamics of the atoms. When the

photon linewidth is decreased, the spatio-temporal spin correlation patterns may get

modified in non-trivial ways [178].
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Part IV

Dynamics of practical systems: NMR

spectroscopy
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Chapter 9

Introduction

In the prior two parts of the thesis, we explored how quantum simulation can be used

to study the closed and open system dynamics of physics systems of fundamental

scientific interest. Quantum simulation also has potential utility for many applications

of practical interest, including quantum chemistry systems such as the FeMo cofactor

of nitrogenase with relevance to industrial fertilizer production [295], material science

systems such as perovskites with relevance to solar energy [125], and physics systems

such as high-temperature superconductors with relevance to fusion energy and defense

applications [38]. Useful quantum simulation of these systems, however, will likely

require fault tolerant quantum computers or simulators that will take an appreciable

amount of time to develop. It is therefore interesting to consider if there are any

practical applications where near- and intermediate-term quantum simulators can

add value.

This part of the thesis explores quantum simulation in the context of an appli-

cation of significant scientific and industrial relevance: nuclear magnetic resonance

(NMR) spectroscopy. NMR spectroscopy is used both fundamental biochemistry as

well as pharmaceutical drug development. The essence of the technique is to infer

information about the structure and dynamics of molecules based on observations of

the dynamics of their nuclear and electronic spins. In most NMR experiments, the

difference in orientations of the molecules in the sample, either due to rapid rotation

in liquid-state samples or random orientations fixed during sample preparation in
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solid-state samples, causes decoherence in the quantum dynamics of the many-body

spin system describing the relevant degrees of freedom in the experiment. NMR ex-

periments can thus be described by the dynamics of noisy quantum spins, which gives

hope to simulate them with noisy near- and intermediate-term quantum simulators;

the idea is to simulate one noisy spin system with another noisy effective spin system.

Such simulations can prove very useful in inferring the molecule’s chemical informa-

tion of interest, and great effort has been invested in developing NMR simulation

tools that run on classical computers [196]. Quantum hardware which more naturally

simulates spin dynamics may have a natural advantage for certain contexts that are

hard to simulate on classical computers.

The dynamics of NMR systems can vary widely depending on the experimental

protocol that is used. Some experiments can be described by purely closed systems,

such as those discussed in Part II, with a phenomenological decay added to the com-

puted signal. Other experiments must be described with open systems, such as those

discussed in Part III, as the chemical information of interest is contained in the dis-

sipative dynamics itself. The generic NMR experiment thus contains information in

both the unitary (closed) and dissipative (open) dynamics of the spins, and simula-

tions must capture both types of dynamical channels. Here, we focus on simulations

of NMR experiments which are accurately described by unitary dynamics, including

many common liquid-state NMR protocols such as COSY, or ensemble averages over

unitary dynamics, including solid-state NMR and ESR protocols such as DEER. We

leave the case of dissipation-dominated protocols such as NOESY for future work.

We start by giving a background on the utility and challenge of NMR simulation

in Chapter 10. In Chapter 11, we develop quantum algorithms to aid in the analysis

of NMR experiments by simulating the spin dynamics in these experiments, and ar-

gue that noisy quantum simulators may still hold a practical advantage over classical

computers for this application. In Chapter 12, we discuss both completed and pro-

posed experimental demonstrations of the algorithm on a digital ion trap quantum

computer and an analog superconducting quantum simulator respectively.

Near-term quantum computers and simulators are noisy and scaling their use
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beyond proof-of-principle experiments is likely to rely upon software-hardware co-

design, with error-aware algorithms and protocols optimized for the platforms they

are run on. Therefore, in Chapter 13, we show how knowledge of noise in a system

can be exploited to improve the design of gate-based quantum simulation algorithms,

and concretely demonstrate the utility of our error-mitigation strategy in the context

of NMR simulation.
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Chapter 10

NMR spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is a widely used tool in materials

chemistry and structural biology, providing insight into the structure, conformational

dynamics, reaction state, and chemical environment of molecules [218]. NMR is

employed to probe the structure of promising photovoltaic candidates [193] as well

as medically-relevant biomolecules such as the intrinsically disordered proteins that

cause Alzheimer’s and Parkinson’s [294, 102]. Despite their versatility, NMR ex-

periments can be difficult to interpret, often requiring numerical simulation of the

molecule’s nuclear spin dynamics [294, 104]. The spin correlations in these quantum

systems can spread in an exponentially large state space, making simulation on clas-

sical computers intractable for large molecules as well as for emerging experimental

protocols such as zero-field NMR [351, 23].

In this chapter, we first present the spin Hamiltonian describing the effective

dynamics of nuclear spins in an NMR system. We then give the initial state and

observable measured during an NMR experiment. The NMR simulation task is to

use a classical or quantum computer to simulate a quantum system which starts in

this initial state, undergoes dynamics described by the appropriate spin Hamiltonian,

and then has the appropriate observable measured. We close with a discussion on

when this type of simulation is useful in the analysis of NMR experiments, and when

these simulations are hard to perform on classical computers.
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Figure 31: Orientation of a NMR Experiment. Modified from Ref. [218].

10.1 NMR Spin Hamiltonian

Consider a heteronuclear spin-1
2

system consisting of 𝑁𝑆 nuclear spins
{︁
𝑆𝑖

}︁
and 𝑁𝐼

nuclear spins
{︁
𝐼𝑖

}︁
of a different type. We assume that the (liquid or solid state)

sample is placed in a superconducting magnet which produces a constant magnetic

field oriented along the 𝑧-direction. The sample is attached to a rotor which can

rotate the sample at a frequency 𝜔𝑟 around an axis that is tilted at a polar angle

𝜃𝑟 with respect to the solenoid axis (see Fig. 31). Additionally, there is an RF coil

around the sample with the coil orientated along the rotor axis; this coil is used to

both apply RF pulses on the spins as well as read out the free-induction decay (FID)

signal which the NMR experiment measures.

The lab-frame spin Hamiltonian modeling the system can be built from the fol-

lowing terms:

• Larmor terms from the external magnetic field

𝐻̂0,𝑆 = 𝜔0,𝑆𝑆
𝑧
tot (10.1)

𝐻̂0,𝐼 = 𝜔0,𝐼𝐼
𝑧
tot (10.2)

where the Larmor frequencies are 𝜔0,(𝑆,𝐼) = −𝛾(𝑆,𝐼)𝐵0, the gyromagnetic ratios
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of the 𝑆 and 𝐼 nuclei are 𝛾(𝑆,𝐼), and the external Zeeman field is B0 = 𝐵0u𝑧.

Note that we have defined the total spin operators as 𝑆𝛼
tot =

∑︀𝑁𝑆

𝑖=1 𝑆
𝛼
𝑖 and

𝐼𝛼tot =
∑︀𝑁𝐼

𝑖=1 𝐼
𝛼
𝑖 .

• RF field (assumed resonant with the Larmor frequencies):

𝐻̂RF,𝑆 (𝑡) = −𝜔RF,𝑆

(︁
cos (𝜔0,𝑆𝑡+ 𝜑RF)𝑆𝑥

tot + sin (𝜔0,𝑆𝑡+ 𝜑RF)𝑆𝑦
tot

)︁
(10.3)

= −𝜔RF,𝑆𝑅̂
𝑧
𝑆 (𝜔0,𝑆𝑡+ 𝜑RF)𝑆𝑥

tot𝑅̂
𝑧†
𝑆 (𝜔0,𝑆𝑡+ 𝜑RF) (10.4)

𝐻̂RF,𝐼 (𝑡) = −𝜔RF,𝐼

(︁
cos (𝜔0,𝐼𝑡+ 𝜑RF) 𝐼𝑥tot + sin (𝜔0,𝐼𝑡+ 𝜑RF) 𝐼𝑦tot

)︁
(10.5)

= −𝜔RF,𝐼𝑅̂
𝑧
𝐼 (𝜔0,𝐼𝑡+ 𝜑RF) 𝐼𝑥tot𝑅̂

𝑧†
𝐼 (𝜔0,𝐼𝑡+ 𝜑RF) (10.6)

where 𝜔RF,(𝑆,𝐼) =
⃒⃒
1
2
𝛾(𝑆,𝐼)𝐵RF sin 𝜃𝑟

⃒⃒
and the RF field is given as BRF (𝑡) =

𝐵RF cos
(︀
𝜔0,(𝑆,𝐼)𝑡+ 𝜑RF

)︀
(sin 𝜃𝑟u𝑥 + cos 𝜃𝑟u𝑧). Note that we have defined the

rotation operators 𝑅̂𝛼
𝑆 (𝜑) = 𝑒−𝑖𝜑𝑆𝛼

tot and 𝑅̂𝛼
𝐼 (𝜑) = 𝑒−𝑖𝜑𝐼𝛼tot .

• Chemical shifts corresponding to the average electron distribution response to

external magnetic fields (shielding):

𝐻̂0,𝑆 (Θ, {𝜃𝑟,𝜔𝑟𝑡}) = 𝜔0,𝑆

𝑁𝑆∑︁
𝑖=1

h𝑆𝑖
(Θ, {𝜃𝑟,𝜔𝑟𝑡}) · Ŝ𝑖 (10.7)

𝐻̂0,𝐼 (Θ, {𝜃𝑟,𝜔𝑟𝑡}) = 𝜔0,𝐼

𝑁𝐼∑︁
𝑖=1

h𝐼𝑖 (Θ, {𝜃𝑟,𝜔𝑟𝑡}) · Î𝑖 (10.8)

where the lab-frame shifts h(𝑆,𝐼)𝑖
(Θ (𝑡) , {𝜃𝑟,𝜔𝑟𝑡}) depend on the orientation of

the molecule Θ in the rotor frame, taken to be the stationary frame of the

sample, which in turn can vary in time in liquid samples due to thermally

caused molecular rotation, as well as purposeful rotation of the sample at an-

gle 𝜃𝑟 and frequency 𝜔𝑟 (often done for solid samples). If we fix the orien-

ation of the molecule at time 𝑡 = 0 and diagonalize the chemical shift ten-

sor 𝜇𝛼𝛽
(𝑆,𝑁) = 𝛾(𝑆,𝑁)ℎ

𝛼
(𝑆,𝐼)𝑖

𝐵𝛽
0 , the eigenvectors represent the three directions in

which an applied external field will cause a chemical shift in the same direc-

tion. We call this set of orthogonal eigenvectors the ‘principal axis system’
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(PAS) and the eigenvalues h𝑃
(𝑆,𝐼)𝑖

are the princpal chemical shifts which do

not depend on the molecular orientation, and therefore contain intrinsic in-

formation about the molecule. We can relate the the principal shifts to the

lab-frame shifts as ℎ𝛼(𝑆,𝐼)𝑖 =
∑︀

𝛽,𝜂 ℛ̃
𝛼𝜂

(𝜃𝑟, 𝜔𝑟𝑡)ℛ𝜂𝛽
𝑖 (Θ)ℎ𝑃,𝛽𝑖 ℛ𝛽𝜂

𝑖 (Θ) ℛ̃𝜂𝛼
(𝜃𝑟, 𝜔𝑟𝑡)

where 𝛼, 𝛽, 𝜂 ∈ {𝑥, 𝑦, 𝑧} and ℛ𝑖 (Θ) is the orientation-dependent rotation ma-

trix that rotates the PAS to the rotor frame, and ℛ̃ (𝜃𝑟, 𝜔𝑟𝑡) is the rotation

matrix the rotates the rotor frame to the lab-frame where the external field B0

is pointing in the 𝑧-direction.

We define the isotropic chemical shift as the average of the principle shifts:

ℎiso
(𝑆,𝐼)𝑖

= 1
3

(︁
ℎ𝑃,𝑥(𝑆,𝐼)𝑖

+ ℎ𝑃,𝑦(𝑆,𝐼)𝑖
+ ℎ𝑃,𝑧(𝑆,𝐼)𝑖

)︁
. For liquid state NMR without any rotor,

rapid molecular tumbling causes the orientation-dependence of the lab-frame

shift to average out leaving us with the leading contribution ℎ𝛼(𝑆,𝐼)𝑖
= ℎiso

(𝑆,𝐼)𝑖
.

Furthermore, for high-field NMR, typically only the ℎ𝑧(𝑆,𝐼)𝑖
term contributes.

Chemical shift anisotropy (CSA) is the deviation of the molecular orientation-

dependent lab-frame shift from the isotropic shift leads, and this CSA acts as a

relaxation mechanism that is secondary to dipolar relaxation but still important.

We can roughly think of the CSA as the deviation of ℎ𝑧(𝑆,𝐼)𝑖 (Θ) from the average

value of the principal chemical shifts intrinsic to the molecule.

• Direct dipolar coupling between nuclear spins (‘through-space’ coupling):

𝐻̂𝐷,𝑆𝑆 (Θ, {𝜃𝑟,𝜔𝑟𝑡}) =

𝑁𝑆∑︁
𝑖<𝑗

𝐾𝑆𝑖,𝑆𝑗

(︁
Ŝ𝑖 · Ŝ𝑗 − 3

(︁
Ŝ𝑖 · u𝑆𝑖,𝑆𝑗

)︁(︁
Ŝ𝑗 · u𝑆𝑖,𝑆𝑗

)︁)︁
(10.9)

𝐻̂𝐷,𝐼𝐼 (Θ, {𝜃𝑟,𝜔𝑟𝑡}) =

𝑁𝐼∑︁
𝑖<𝑗

𝐾𝐼𝑖,𝐼𝑗

(︁
Î𝑖 · Î𝑗 − 3

(︁
Î𝑖 · u𝐼𝑖,𝐼𝑗

)︁(︁
Î𝑗 · u𝐼𝑖,𝐼𝑗

)︁)︁
(10.10)

𝐻̂𝐷,𝑆𝐼 (Θ, {𝜃𝑟,𝜔𝑟𝑡}) =

𝑁𝑆∑︁
𝑖=1

𝑁𝐼∑︁
𝑗=1

𝐾𝑆𝑖,𝐼𝑗

(︁
Ŝ𝑖 · Î𝑗 − 3

(︁
Ŝ𝑖 · u𝑆𝑖,𝐼𝑗

)︁(︁
Î𝑗 · u𝑆𝑖,𝐼𝑗

)︁)︁
(10.11)

where r(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗 = 𝑟(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗u(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗
is the dipole vector connecting spin

(𝑆, 𝐼)𝑖 and (𝑆, 𝐼)𝑗 with magnitude 𝑟(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗 and direction u(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗
. The
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coupling constant 𝐾(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗
= 𝜇0

4𝜋
𝛾(𝑆,𝐼)𝑖𝛾(𝑆,𝐼)𝑗𝑟

−3
(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗

contains the depen-

dence on the distance between the spins, while the direction u(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗
=

u(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗
(Θ, {𝜃𝑟,𝜔𝑟𝑡}) contains the dependence on the molecule’s orientation

and rotor frame (defined by 𝜃𝑟 and 𝜔𝑟𝑡). The dependence on Θ causes the

primary relaxation mechanism in solid state NMR, with the distance depen-

dence of the relaxation rate (encoded in 𝐾(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗
) allowing information to be

inferred about the physical structure of the molecule.

• Indirect exchange (J) coupling between nuclear spins mediated by shared elec-

tron orbitals (‘through-bound’ coupling):

𝐻̂𝐽,𝑆𝑆 =

𝑁𝑆∑︁
𝑖<𝑗

(︀
2𝜋𝐽𝑆𝑖,𝑆𝑗

)︀
Ŝ𝑖 · Ŝ𝑗 (10.12)

𝐻̂𝐽,𝐼𝐼 =

𝑁𝐼∑︁
𝑖<𝑗

(︀
2𝜋𝐽𝐼𝑖,𝐼𝑗

)︀
Î𝑖 · Î𝑗 (10.13)

𝐻̂𝐽,𝑆𝐼 =

𝑁𝑆∑︁
𝑖=1

𝑁𝐼∑︁
𝑗=1

(︀
2𝜋𝐽𝑆𝑖,𝐼𝑗

)︀
Ŝ𝑖 · Î𝑗 (10.14)

where 𝐽(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗 are the J-coupling constants. The value of the J-coupling

constant contains information about the bond torsion angles in the molecule,

and therefore allows information to be inferred about the chemical structure of

the molecule.

Note that the electric quadrupole interaction is very important for systems of spins

that are greater than spin-1
2
, but vanishes for spin-1

2
systems due to symmetry. In

principle, for spin-1
2

systems, we should also include the spin-rotation interaction

between the nuclear spin and the magnetic fields arising from the current generated

by the molecules rapid motion, but this is typically irrelevant for liquid and solid state

NMR; the interaction only contributes a third order relaxation mechanism behind the

anisotropic dipolar interaction and the chemical shift anisotropy.

(10.15)
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The overall Hamiltonian for a generic NMR system is then given as

𝐻̂𝑓 (𝑡) = 𝐻̂0,𝑆 + 𝐻̂0,𝑆 (𝑡) + 𝐻̂𝐷,𝑆𝑆 (𝑡) + 𝐻̂𝐽,𝑆𝑆 (10.16)

+ 𝐻̂0,𝐼 + 𝐻̂0,𝐼 (𝑡) + 𝐻̂𝐷,𝐼𝐼 (𝑡) + 𝐻̂𝐽,𝐼𝐼 (10.17)

+ 𝐻̂𝐷,𝑆𝐼 (𝑡) + 𝐻̂𝐽,𝑆𝐼 (10.18)

with the addition of 𝐻̂RF,𝑆 (𝑡) and/or 𝐻̂RF,𝐼 (𝑡) depending on if the RF field is applied

at any given moment.

Typical parmeter values and scales in the system are

• 𝜃𝑟 = 𝜃𝑚 ≡ cos−1
(︁

1√
3

)︁
rad ≈ 54.7∘

• 𝜔𝑟/2𝜋 ∼ 1kHz− 100kHz

• 𝜔0,(𝑆,𝐼) ∼ 10MHz− 1000MHz (assuming a Zeeman field of 𝐵0 ∼ 5T− 20T)

• 𝜔RF,(𝑆,𝐼)/2𝜋 ∼ 1kHz− 200kHz

• chemical shifts: typically 10−4 × 𝜔0,(𝑆,𝐼) ∼ 1kHz− 100kHz

• dipolar coupling: 𝐾(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗
/2𝜋 ∼ 10kHz for nuclei that are relatively close by

(e.g. two 1𝐻 that are ~0.2nm = 0.02Å apart)

• 𝐽(𝑆,𝐼)𝑖,(𝑆,𝐼)𝑗/2𝜋 ∼ 1Hz− 200Hz

• 𝛾𝑆
𝛾𝐼
∼ 3− 5 where we have chosen1 𝛾𝑆 > 𝛾𝐼 WLOG, and correspondingly 𝜔0,𝑆

𝜔0,𝐼
∼

𝜔RF,𝑆

𝜔RF,𝐼
∼ 3−5 so the Larmor and RF Rabi frequencies for different nuclear species

are off-resonant with each other

• temperature: room temperature corresponding to 𝑘𝐵𝑇/2𝜋 ∼ 40THz

For high-field NMR experiments, which are those with a large external Zeeman field,

we therefore have four broad scales in the system: THz (temperature), MHz (Larmor

frequency, RF control field frequencies), kHz (chemical shifts, dipolar coupling, RF

Rabi frequency, rotor frequency), Hz (J-coupling). For zero-field NMR, experiments
1e.g. let 𝑆 be 1H and 𝐼 be 13C
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the Zeeman field, chemical shifts, and RF fields vanish, and we add a DC magnetic

field of 1G (corresponding to a Rabi frequency of 𝜔DC,(𝑆,𝐼) ∼ 1kHz − 10kHz) to

apply pulses; the scales becomes THz (temperature), kHz (dipolar coupling, DC Rabi

frequency, rotor frequency), Hz (J-coupling).

NMR is also used to study chemical exchange processes which involve one nuclei

dynamically exchanging its environment with another (e.g. through bond rearrange-

ment). This exchange changes the chemical shifts and J-coupling parameters. For

fast exchange that is averaged out on the time-scale of NMR experiments, the chemi-

cal shifts and J-coupling parameters are a weighted average of the parameters before

and after the exchange with the weight given by a temperature-dependent (reaction)

equilibrium constant. The NMR spectrum can thus be measured at several different

temperatures and the chemical shifts and J-couplings of each state of the reaction,

as well as the enthalphy and entropy differences between states, can be determined

by fitting. In this fast exchange case, no change is made to the Hamiltonian used

in the NMR simulation and the chemical shifts and J-coupling parameters are just

interpreted as the average parameters at the temperature of the given experimental

spectrum that serves as the baseline for inference. For medium and slow exchange

that is comparable to the timescale of NMR experiments, we add a time-dependence

to the chemical shifts and J-couplings, with these parameters now evolving according

to a classical rate equation with a temperature-dependent rate. Note that for the

chemical shifts, this time-dependence is in addition to the time-dependence arising

from changes in the molecules orientation. Information about the chemical exchange

for medium and slow exchange processes can then be observed in the individual spec-

trum itself, in addition to comparison to spectra at different temperatures.

Recently, ‘nanoscale’ NMR has been demonstrated [224, 16], which uses NV cen-

ters in diamond to polarize and measure NMR signals in samples that are at the

sub-𝜇m scale (approximately cubic nanometers, or nm length scale) in both high-

and low-field settings. This allows for NMR experiments on systems of 102 − 103

nuclear spins, which is much smaller than the 1014 spins (corresponding to a macro-

scopic sample length scale) used in conventional NMR. Such an improved resolution
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allows for NMR experiments on smaller volume samples and lower magnetic fields

(making the experiment smaller and cheaper), as well as on single biological macro-

molecules (e.g. a single protein) that is attached to the diamond surface. Nanoscale

NMR can be thought of as producing the same NMR signal as conventional NMR;

the Hamiltonian and simulation protocol doesn’t change, though the molecular ori-

entation will remain fixed if single molecule NMR is done with a sample that is not

rotating. Resolution of the technique must be significantly improved, however, before

it is competitive with conventional NMR.

10.2 Experimental Protocol and Measurement

The NMR experiment is initialized by polarizing the spins in the sample into the an

uncorrelated product state of spins pointing in the +𝑧-direction. The typical way to do

this in conventional high-field NMR is to turn on a strong external Zeeman field in the

+𝑧-direction and let the sample relax into thermal equilibrium at room temperature.

The initial state of the system is then approximately 𝜌0 = 1
𝑍

exp
{︁
−𝛽𝐻̂0

}︁
with 𝐻̂0 =

𝐻̂0,𝑆 + 𝐻̂0,𝐼 , where we have assumed that the Larmor frequencies 𝜔0,(𝑆,𝐼) are much

larger than other scales in the system Hamiltonian so we can ignore other Hamiltonian

terms. The room temperature of the experiment is a much higher scale than the

Larmor frequencies, however, so we can approximate the state further as being at

high-temperature: 𝜌0 ≈ 1
𝑍

(︁
𝐼 − 𝛽𝐻̂0

)︁
. The system then undergoes time-evolution,

with the RF field on or off at various times. We can describe this evolution with the

operator 𝑈̂ (𝑡, 0) = 𝒯 exp
(︁
−𝑖
∫︀ 𝑡

0
𝑑𝑠𝐻̂ (𝑠)

)︁
where

𝐻̂ (𝑡) = 𝐻̂𝑓 (𝑡) +
𝒩−1∑︁
𝑛=0

rect
(︂
𝑡− 𝑡𝑛
𝜏𝑛

)︂
𝐻̂

(𝑛)
RF (𝑡)

where 𝐻̂(𝑛)
RF (𝑡) ∈

{︁
𝐻̂RF,𝑆 (𝑡) , 𝐻̂RF,𝐼 (𝑡) , 𝐻̂RF,𝑆 (𝑡) + 𝐻̂RF,𝐼 (𝑡)

}︁
, 𝜏𝑛 is the duration of

each RF pulse and 𝑡𝑛 is the center time of the window it is applied in. The state of the

system after this evolution is 𝜌 (𝑡) = 𝑈̂ (𝑡, 0) 𝜌0𝑈̂
† (𝑡, 0). The NMR experiment then

measures the total transverse magnetization of one of the nuclear species, described
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by observable 𝑆+
tot or 𝐼+tot, as a function of time 𝑡. This measured signal is called

the free induction decay (FID) and its Fourier transform yields the NMR spectrum.

Depending on the spin species that is measured, the FID signal can thus be described

as

𝑆𝐴 (𝑡) =
⟨
𝐴+

tot (𝑡)
⟩

= Tr
{︁
𝐴+

tot𝜌 (𝑡)
}︁

(10.19)

where 𝐴+
tot (𝑡) = 𝑈̂ † (𝑡, 0)𝐴+

tot𝑈̂ (𝑡, 0) and 𝐴 ∈ {𝑆, 𝐼} is the species of nuclear spin we

measure. Plugging in the approximation of the initial state, we have

𝑆𝐴 (𝑡) ≈ −𝜆
(︂

Tr
{︂
𝐴+

tot (𝑡)

(︂
𝑆𝑧

tot +
𝛾𝐼
𝛾𝑆
𝐼𝑧tot

)︂}︂)︂
(10.20)

where 𝜆 ∼ 𝜔0,𝑆/
(︀
2𝑁𝑆+𝑁𝐼𝛽

)︀
is an experimentally fit proportionality constant. In

physics language, the FID above takes the form of an infinite temperature two-

point correlation function. The Fourier transform of the FID yields the NMR spec-

trum. If the time-evolution is composed of several independently chosen times,

𝑈̂(𝑡, 0)← 𝑈̂(𝑡𝑛), each time 𝑡𝑛 will be associated with a separate frequency variable 𝜔𝑛.

Each of these frequencies is considered a ‘dimension’ and we get a multi-dimensional

spectrum. Multi-dimensional NMR protocols are useful, for instance, in analyzing

larger molecules where the usual 1D NMR spectrum becomes too degenerate to ana-

lyze.

10.3 The simulation challenge in NMR

Here, we discuss when NMR simulation is useful in the analysis of NMR experiments.

We indicate when these simulations are hard to perform on classical computers, even

when using gold-standard software packages such as Spinach [154]. From the inter-

section of these two characteristics, we identify the contexts in which we may look

for a practically useful quantum advantage in simulation of NMR experiments.
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10.3.1 Types of magnetic resonance experiments

Metabolomics

Metabolites are small molecules that drive critical mechanisms in cells such as energy

production and storage, signal transduction, and apoptosis [171]. Studying them

can grant deep insight into disease processes, drug toxicity, and cell function [302].

NMR and mass spectroscopy are the two most widely used tools to characterize

metabolites. NMR experiments on metabolites are typically analyzed by comparison

to reference data and chemical standards. This approach is quite successful without

requiring simulation. However, a large portion of the metabolite space is unmapped

and performing experiments to populate this reference space is currently untenable.

Simulations may therefore be useful populating the metabolite reference space ‘in

silico’ [41]. As metabolites are typically very small, classical computers are well-

capable of efficiently performing these simulations.

Natural product, organic, and protein biochemistry

Liquid-state NMR is one of the most widely used tools in the study of biomacro-

molecules such as proteins, nucleic acids, carbohydrates, and lipids. NMR is essential

in characterizing the structure and function of these intermediate to large molecules

when they do not crystalize, have functional differences in a crystalline or frozen

state compared to their natural solution environment, or when we are interested

in their dynamics [74]. While NMR enables de novo structure characterization of

molecules such as proteins with applications both in fundamental biochemistry [374]

and drug discovery [133], interpreting the spectra and inferring chemical structure can

be challenging. Chemists are trained to accurately extract the Hamiltonian parame-

ters (chemical shifts, J-couplings, and internuclear distances) from multidimensional

NMR experiments and then perform structure assignment. The sophisticated, and

complicated, set of heuristics that are used to perform this analysis usually lead to

accurate results.

Simulation can be critical, however, in validating the final set of parameters and
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structure for large organic compounds [104]. Most experiments in this category are

high-field, liquid-state protocols which are reasonably easy to simulate on classical

computers using software like Spinach [154]. On the other hand, certain key protocols

such as NOESY that are useful for de novo structure characterization of proteins

involve dipolar relaxation on large molecules. The correlations generated by the

dipolar interaction and the size of the molecule make the dynamics of the system

hard to simulate classically. The largest NOESY simulation performed using classical

hardware is that of ubiquitin [104], a protein whose weight of 8.6 kDa corresponds

to approximately 1000 coupled spins. Biomolecular NMR experiments, however, are

routinely performed on proteins weighing up to 50 kDa with new techniques such

as deuteration starting to enable experiments on molecules weighing hundreds of

kDa [159]. There is therefore a wide range of biomolecular NMR experiments where

simulation would be useful for structural validation but is currently infeasble using

classical computers.

Solid-state chemistry

NMR experiments are also used to study the structure and dynamics of rigid and

semi-rigid solid systems that appear in biochemistry, such as membrane proteins and

amyloid fibrils, as well as materials chemistry, such as polymers, battery materials,

photovoltaic perovskites, solid state catalysts, and metal-organic frameworks [294, 66].

The utility of solid-state NMR in these contexts is its ability to selectively probe

inter-atomic interactions, and therefore information about the chemical structure,

three-dimensional structure, and dynamics of both ordered and disordered systems

at the atomic level [294]. The technique is thus complementary to other structural

characterization methods such as X-ray crystallography and cryo-EM which provide

a more ‘average’ structural description and struggle to fully characterize disordered

systems without long-range order or periodicity [66]. Solid-state NMR is thus an

important tool in biochemistry to study binding between biomacromolecules and small

molecules, protein and ligand dynamics with functional importance, and chemical

processes such as protonation reactions, as well as an important tool in materials
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chemistry to investigate disorder properties that play a critical role in the chemical

reactivity of, for example, organometallic catalysts [294].

The downside of solid-state NMR compared to other structural characterization

methods which produce spatial density maps, however, is that it is more difficult

to interpret and infer structural information from NMR spectra as the information

is encoded in the frequency domain. The presence of quadrupolar nuclei can make

interpretation even more complicated, although the quadrupolar interaction embeds

additional structural information into the spectrum and is therefore useful if the in-

formation can be extracted [66]. Computational simulation and fitting is thus often

required to infer structural parameters from solid-state NMR experiment [294]. As an

example, consider Ziegler-Natta catalysts (ZNCs) which are one of the most impor-

tant catalysts used in the industrial production of polyolefins such as polyethylene

and polypropylene that form the foundation of many chemical industries. Despite

their industrial success, these catalysts are poorly understood at the molecular level

and their heterogeneous disordered composition makes solid-state NMR a well-suited

investigative tool compared to other structural characterization methods. Due to

in part to the presence of quadrapolar nuclei in the material, computational sim-

ulation and fitting is required to interpret NMR experiments on ZNCs and other

organometallic catalysts [32, 34, 33, 252].

The synergetic combination of solid-state NMR experiments and computational

simulations to study structurally complex systems has coalesced into the developing

field of ‘NMR crystallography’ [14, 13, 49]. Density functional theory is the primary

computational tool used to provide ab initio predictions of NMR parameters from

structural models of the system. Spin dynamics simulations then form a natural

bridge from the NMR parameters to computed NMR spectra that can be compared

with experiment. These spin dynamics simulations are very challenging to do on

classical computers for two reasons. Firstly, the dynamics of the system is dominated

by a coherent dipolar interaction whose long-range character generates an appreciable

amount of correlations between the hundreds of spins required to describe the sample.

Secondly, the orientations of the molecules in the sample are static but randomly
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distributed, and we must average over an ensemble of orientations (‘powder average’).

Therefore, while it is often possible to simulate solid-state NMR experiments using

classical computers, these simulations can be extremely resource intensive, especially

for large systems.

Electron spin resonance (ESR) and electron pair resonance (EPR)

ESR and EPR experiments are widespread in chemistry, biology, physics, and material

science. In biochemical contexts, the protocol is to prepare molecules with radicals,

cryogenically freeze the sample, and then study the dynamics of the electronic spins

interacting via a dipolar interaction. Such protocols give valuable distance informa-

tion that can be used to probe the structure, reactivity, and mechanisms of systems

ranging from catalysts, photosystems, and molecular conductors to biological macro-

molecules such as proteins and nucleic acids [303, 299, 313]. A simple example of

this type of experiment is the DEER protocol, where we try to extract the distance

between a pair of electrons. This distance, however, varies slightly between molecules

in the sample as they are frozen in slightly different configurations. We are tasked

with identifying the distance distribution that results in the experimental trace.

Simulation is often critical to interpret ESR and EPR experiments, but can be

challenging and the most time-consuming aspect of the study [303, 373]. While the

number of spins in the system is small so their dynamics is generally not difficult

to simulate, there are now two ensembles we must average over. The first is the

orientation (powder) average, and the second is the distribution of distances between

electrons. For experiments such as Gd3+-label DEER involving spins greater than 1/2,

the dynamics itself becomes more difficult, which, combined with the large amount of

ensemble averaging, can cause the simulation to take months using classical computers

[234].

Zero- and ultralow-field (ZULF) NMR

ZULF NMR was developed with the goals of achieving cheaper liquid-state biomolec-

ular NMR and more precise determination of interaction constants related to bond
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angles [351, 369]. While a lower magnetic field enables these goals, interpretation

of the spectrum becomes more challenging and requires simulation to analyze as the

interactions dominate and we can no longer interpret the spectrum based on per-

turbations of chemical shift frequencies. The strong interactions, however, make the

dynamics hard to simulate on classical computers for systems of even intermediate

sizes. From an application perspective, however, ZULF experiments may be less

relevant to chemistry and more useful for testing Standard Model physics [54].

10.3.2 Searching for a practical quantum advantage

We can therefore identify two characteristics of NMR contexts where simulation is

required to analyze the experiment but is hard to perform on classical computers. The

first characteristic is when the dynamics of the spins is hard. This typically occurs

when we have large systems in which the long-range dipolar interactions are relevant,

either in the coherent or relaxation dynamics of the system. NOESY protocols on

large proteins are an example of this context. The second characteristic is when we

have to ensemble average over many parameters, such as orientations and distances, in

the Hamiltonian. Regardless of the size of the system or complexity of the dynamics,

the requirement to run several parallel simulations to compute the ensemble average

makes the simulation task challenging. ESR and EPR experiments are an example

of where even modestly sized systems, especially when involving spins greater than

1/2, can be hard to simulate due to the massive ensemble of parameters we must

average over even though the systems are small enough that their dynamics itself is

tractable. Solid-state NMR of large systems, especially when involving quadrupolar

nuclei with spins greater than 1/2, is a context where both of these characteristics

appear; the dynamics of the spins is hard due to coherent dipolar interactions and we

must ensemble average over orientations.

We should therefore focus on NMR contexts with either of these two characteristics

are present when seeking a practical quantum advantage in NMR simulation. The

quantum algorithms presented in the next chapter open the possibility for seeking such

an advantage. Specifically, Sec 11.1 discusses the simulation of NMR dynamics on a

188



quantum device, and Sec 11.2 discusses how ensemble averaging can be performed.

The combination of these two algorithms confers memory and time advantages over

classical simulation, allowing for efficient simulation of NMR experiments that can be

modeled using purely coherent dynamics, including solid-state NMR and ESR/EPR.

A quantum algorithm that captures NMR experiments with dissipative dynamics

would enable simulation of practically-useful liquid-state relaxation protocols such

as NOESY on large proteins, and is an ongoing effort. Quantitative metrics for

comparing the efficiency of classical and quantum simulations are memory (classical

memory and number of qudits), elapsed real time of the simulation, and number of

parallelizable runs of the simulation that must be performed for contexts requiring

ensemble averaging.

Performing a quantum simulation that surpasses classical computers in solid-state

NMR or liquid-state relaxation NMR on large, application-relevant systems will re-

quire quantum hardware that is appreciably more mature than what is currently

available. We can thus consider two avenues to demonstrate value from near-term

quantum hardware. First, we can perform quantum simulations of ZULF NMR exper-

iments. While these experiments may not have as much practical utility as solid-state

NMR or liquid-state relaxation NMR, classical computers start struggling with the

simulation of even intermediate-sized molecules; near-term quantum hardware there-

fore has a chance of demonstrating an advantage on a classically hard system. In

Sec. 12.1, we take an initial step in this direction by demonstrating a proof-of-principle

quantum simulation of a ZULF experiment that is still easily simulable on classical

computers. The second avenue is to use quantum hardware to simulate a subsystem

of a large solid-state NMR or liquid-state relaxation NMR experiment, while feeding

this simulation result into a larger computation on a classical computer. In Part V,

we discuss such hybrid quantum-classical algorithms where quantum hardware acts

as an accelerater rather than a replacement for classical computers.
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Chapter 11

Quantum simulation of NMR spectra

In the previous chapter, we described when simulation is useful to analyze NMR

experiments and when these simulations are classically challenging. We now explore

how quantum hardware may be used to simulate NMR experiments and how this

quantum simulation may prove advantageous is classically challenging contexts. Here,

we focus on spectroscopic NMR protocols, which are those that do not rely on dipolar

relaxation or relaxation due to chemical shift anisotropy. Developing a quantum

algorithm for such relaxation protocols is an ongoing work.

11.1 Computing the FID

In this section, we describe a quantum algorithm that can be used to simulate a

diverse array of spectroscopic NMR experiments, including protocols with multiple

dimensions, solid-state samples, and different isotope labeling. The algorithm is a

generalization of that presented in Ref. [329]. The basic idea is to simulate the

dynamics of the nuclear spins via an effective spin Hamiltonian with the appropriate

terms [218] after initializing the system in a high temperature state [330], or by

effectively achieving this thermal state by sampling from computational basis states of

the quantum machine [329]. Multidimensional protocols can be simulated by inserting

single-qubit rotations into the time-evolution and isotope labeling is incorporated by

the choice of basis states that the qubits are prepared in and by the choice of qubits
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to measure at the end of the simulation. The algorithm can therefore be considered a

direct simulation of the average spin dynamics occuring during an NMR experiment.

Our goal is to compute the FID, Eq. (10.19) or equivalently Eq. (10.20), on quan-

tum hardware rather than compute the NMR spectrum itself as done in Ref. [330].

We will then take the Fourier transform of the computed FID to get the spectrum as

is done in the NMR experiment itself. Computing the time-domain signal instead of

the frequency-domain signal allows us to transparently simulate all the different fla-

vors of NMR protocols by implementing the pulse sequence determining each protocol

directly on the quantum device.

We perform the simulation by implementing the NMR experiment’s initial state,

unitary dynamics, and measured observable on a quantum computer or simulator.

The measured observable, 𝐴+
tot, directly maps to the natural computational basis

measurement on the quantum device after 𝜋/2 single qubit rotation performed on

each qubit. The unitary dynamics 𝑈̂(𝑡) can either be implemented in a digital fashion

via a quantum circuit composed of several quantum gates, or in an analog fashion

by engineering the device’s native dynamics to mimic 𝑈̂(𝑡). Both of these routes

can be challenging to implement efficiently, and strategies to do so are discussed

in Chapter 12. The NMR experiment’s initial thermal Gibbs state can either be

directly implemented on the quantum device by exploiting ancilla qubits [330], or

by repeating the simulation with several of the computational basis states that are

naturally prepared via single qubit rotations [329]. We focus on the latter approach

here.

We can calculate the FID, Eq. (10.20), as follows. The eigendecomposition of

operator 𝑆𝑧
tot + 𝛾𝐼

𝛾𝑆
𝐼𝑧tot is

{︁
|𝑚𝑆,𝐼⟩ = |𝑚𝑆,𝑚𝐼⟩ ;𝑚𝑆,𝐼 = 𝑚𝑆 + 𝛾𝐼

𝛾𝑆
𝑚𝐼

}︁
where {|𝑚𝑆⟩ ;𝑚𝑆}

and {|𝑚𝐼⟩ ;𝑚𝐼} are the eigendecompositions of 𝑆𝑧
tot and 𝐼𝑧tot respectively. We thus

have

𝑆𝐴 (𝑡) ≈ 𝜆
∑︁
𝑚𝑆,𝐼

𝑚𝑆,𝐼 ⟨𝑚𝑆,𝐼 (𝑡) |𝐴+
tot|𝑚𝑆,𝐼 (𝑡)⟩ (11.1)

where |𝑚𝑆,𝐼 (𝑡)⟩ = 𝑈̂ (𝑡, 0) |𝑚𝑆,𝐼⟩. Each term in the sum above is computed by prepar-

ing the computational basis state |𝑚𝑆,𝐼⟩ on the quantum device via single qubit rota-
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tions, implementing the time-evolution unitary 𝑈̂ (𝑡, 0), and measuring 𝐴+
tot via sin-

gle qubit rotations followed by a projective measurement in the computational basis.

Note that in the case of zero field NMR, 𝐴 doesn’t correspond to a single spin species,

but instead the measurement 𝐴+
tot → 𝑆+

tot + 𝛾𝐼
𝛾𝑆
𝐼+tot is made. By computing each term

in Eq. 11.1 and summing them, we get the FID. There are, however, an exponential

number of terms in the sum. This would, in principle, prevent the algorithm for be-

ing computationally tractable for large molecules with many spins. Fortunately, we

do not actually have to compute every term of the sum. By sampling a polynomial

number of basis states, each corresponding to a term in the sum, we can estimate

the FID within a desired mean-squared error [329]. Specifically, uniform sampling of

basis states in the sum or importance sampling basis states according to the square

of their magnitization can always be used to estimate the FID with 𝒪 ((𝑁𝑆 +𝑁𝐼)
2)

samples, compared to the 2𝑁𝑠+𝑁𝐼 terms in the sum. The NMR experiment can thus

be simulated efficiently on quantum devices as long as we can efficiently implement

the time-evolution unitary 𝑈̂ (𝑡, 0).

The hope for a quantum advantage over classical computers performing this sim-

ulation stems from the belief that this time-evolution is more natural, and therefore

less resource intensive, to implement on quantum hardware compared to classical

computers. The difficulty of implementing 𝑈̂ (𝑡, 0) depends on the system studied in

the NMR experiment and the protocol that is chosen. In many cases, the dynamics

itself is fairly classical, without the spins appreciably developing higher order corre-

lations. These cases can be simulated efficiently using classical computers. Other

contexts, however, such as much of solid-state NMR, are classically hard to simulate

as discussed in Chapter 10. It is in these contexts where a quantum simulation may

prove advantageous.

We note that that the algorithm described in this section can also be used to

simulate liquid-state NMR protocols where dipolar relaxation and relaxation from

chemical shift anisotropy are relevant. The rapid molecular tumbling underlying

these processes are incorporated by allowing the molecular orientation Θ, appearing

in the dipolar interaction and chemical shift terms of the model in Sec. 10.1, to vary in
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time. However, the scale separation between the molecular tumbling and the internal

spin dynamics makes implementation of the time-evolution unitary challenging on a

quantum device. In classical simulation of NMR experiments, relaxation processes

are taken into account by deriving a Redfield master equation to second order and

replacing the time-dependent parameters in this equation of motion with their av-

erage over the rapid motional tumbling. We explore a way to capture the spirit of

this treatment by deriving an effective Floquet Hamiltonian for the system and then

making a similar second-order approximation in ongoing work.

11.2 Ancilla-assisted ensemble averaging

In Chapter 10, we explained that NMR simulation is classically challenging when

(1) the time-evolution unitary 𝑈̂ (𝑡, 0) is hard to implement, and (2) when we must

ensemble average simulations over different Hamiltonian parameters to match the ex-

perimental spectrum. The algorithm in the prior section sought a quantum advantage

in challenge (1), hoping that the dynamics is more natural to implement on quantum

hardware. Here, we focus on extending the algorithm to seek a quantum advantage

in challenge (2). The material in this section corresponds to the work in Ref. [322].

As a concrete context, consider solid-state NMR experiments and electron spin

resonance (ESR) experiments such as DEER. In both cases, the effective Hamiltonian

of Sec. 10.1 can often be reduced to

𝐻̂ = 𝜔0,𝑆

𝑁𝑆∑︁
𝑖=1

ℎ𝑖𝑆
𝑧
𝑖 +

∑︁
𝑖<𝑗

𝑑𝑖𝑗

(︂
2𝑆𝑧

𝑖 𝑆
𝑧
𝑗 −

1

2

(︁
𝑆+
𝑖 𝑆

−
𝑗 + 𝑆−

𝑖 𝑆
+
𝑗

)︁)︂
(11.2)

where we have taken a homonuclear system for simplicity and applied the secular

approximation that is valid for large external fields. The coupling constant is

𝑑𝑖𝑗 = −𝜇0𝛾𝑖𝛾𝑗~
4𝜋𝑟3𝑖𝑗

1

2

(︀
3 cos2 Θ𝑖𝑗 − 1

)︀
(11.3)

where Θ𝑖𝑗 is the angle between the dipole vector between the spins and the z-axis,
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which is chosen as the quantization axis, and 𝑟𝑖𝑗 is the distance between the spins. In

solid-state NMR and ESR experiments, the orientation of each molecule in the sample

takes a uniformly random but static value during the experiment. We can define a

molecule’s orientation as Ω = (𝛼, 𝛽, 𝛾), where 𝛼, 𝛽, and 𝛾 are Euler angles. The

different orientations correspond to the Θ𝑖𝑗 in Eq. (11.3) takings different values. We

can therefore simulate the experiment by computing the spectrum for an ensemble

of Hamiltonians, Eq. (11.2), each corresponding to a different orientation Ω𝑘. DEER

experiments typically consist of two electron spins a distance 𝑟 apart. During the

experiment, the sample is cryogenically frozen and each molecule in the sample freezes

in a slightly different conformation. This causes 𝑟 to take slightly different values for

each molecule, and therefore in DEER experiments we must also ensemble average

over this distance.

Performing the ensemble average over orientations, known as the powder average,

and possibly over distances is challenging for classical computers even after paral-

lelizing the computation. This parallelization can be done naturally in one shot on a

quantum device, however, by exploiting ancilla degrees of freedom in a superposition.

Let the Hamiltonians 𝐻̂𝑘 = 𝐻̂(Ω𝑘, 𝑟𝑘) correspond to Eq. (11.2) parameterized by a

specific orientation Ω𝑘 and, in the case of a DEER experiment, distance 𝑟𝑘. We can

perform the ensemble average using an ancilla system either comprised of discrete

degrees of freedom formed by an ancillary set of qubits, or comprised of a continuous

degree of freedom formed by an ancillary bosonic mode. We describe both approaches

as well as their advantages and disadvantages below.

11.2.1 Averaging using discrete ancilla

Define the unitary operators 𝑈̂𝑘(𝑡) = 𝑒−𝑖𝐻̂𝑘𝑡. Then, the circuit in Fig. 32 provides

a construction whereby the ensemble averaged FID can be computed on the quan-

tum device in the same amount of time it takes to compute a single FID. Specifi-

cally, we use 𝑀 ancilla qubits to simultaneously averaging over 2𝑀 configurations.

The idea is as follows. Let |𝑘⟩ represent the state of the ancilla register, with

𝑘 = {0...00, 0...01, 0...10, 0...11, ..., 1...11}. The integer corresponding to each binary

195



M |0〉 H · · · •
...

...
1 |0〉 H • · · · •

ρ0 / U0 (t) U1 (t) · · · U2M (t)

N

Figure 32: Circuit to compute ensemble averaged FID at time 𝑡. Each 𝑈𝑘

corresponds to a different configuration of the system (Ω𝑘, 𝑟𝑘).

string 𝑘 labels the 2𝑀 configurations that we average over. The circuit in Fig. 32

implements the time evolution

𝑈̂comb (𝑡) =
∑︁
𝑘

|𝑘⟩ ⟨𝑘| ⊗ 𝑈̂𝑘 (𝑡) (11.4)

after preparing the combined system in the state 𝜌comb =
(︁∑︀

𝑘,𝑘′ |𝑘⟩ ⟨𝑘′|
)︁
⊗ 𝜌0 where

𝜌0 is the initial state of the system representing the NMR spins. We can either have 𝜌0

be the thermal Gibbs state or the appropriate computational basis state as discussed

in Sec. 11.1. The observable we measure is 𝐼 ⊗ 𝑆+
tot, where 𝐼 is the identity operator

on the ancilla system. The measurement performed by the circuit is therefore

𝑆 (𝑡) = Tr{𝑈̂comb (𝑡)† 𝜌comb𝑈̂comb (𝑡)} (11.5)

=
∑︁
𝑘,𝑘′

Tr{|𝑘⟩ ⟨𝑘′| ⊗
(︁
𝑈̂ †
𝑘(𝑡)𝑆+

tot𝑈̂𝑘′(𝑡)
)︁
} (11.6)

=
∑︁
𝑘

Tr{𝑈̂ †
𝑘(𝑡)𝑆+

tot𝑈̂𝑘(𝑡)} (11.7)

=
2𝑀∑︁
𝑘=1

𝑆𝑘 (𝑡) (11.8)
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M |0〉 H · · · • · · · • · · · · · · • • · · ·
...

...
1 |0〉 H • · · · • · · · · · · • · · · · · · •

ρ0 / R (Ω1) · · · R (ΩM ) U(∆t) V (Ω1) · · · V (ΩM ) · · · U(∆t) V (Ω1) · · · V (ΩM ) R† (ΩM ) · · · R† (Ω1)

N · · · 1 · · · L

Figure 33: Circuit to efficiently compute orientation averaged FID at time 𝑡. The
𝑅(Ω𝑘) and 𝑉 (Ω𝑘) are composed of a sequence of single qubit rotations, making the
ancilla-controlled version of these operations a sequence of two-qubit gates.

where 𝑆𝑘 (𝑡) = Tr{𝑈̂ †
𝑘(𝑡)𝑆+

tot𝑈̂
𝑘(𝑡)} is the FID for a particular configuration 𝑘 of the

system. Dividing 𝑆(𝑡) by the total number of configurations, 2𝑀 , therefore gives us

the desired ensemble averaged FID. We note that the observable 𝐼⊗𝑆+
tot corresponds

to not measuring the ancilla register; measuring the ancilla would collapse the compu-

tation into a single sample of the FID 𝑆𝑘(𝑡) instead of the producing the full ensemble

average.

Typically, we desire to average over 𝒪(103) to 𝒪(104) orientations in solid-state

NMR and ESR, and𝒪(103) distances in ESR experiments requiring distance-averaging

such as DEER. Therefore, 10-15 ancilla qubits are sufficient for orientation averag-

ing and 20-25 ancilla qubits are sufficient for both orientation and distance aver-

aging. This is a modest resource overhead for being able to simultenously do the

entire ensemble averaging in one pass of the quantum computation. The difficulty in

practice, however, appears in efficiently implementing the ancilla-controlled unitaries

|𝑘⟩ ⟨𝑘| ⊗ 𝑈̂𝑘 (𝑡). In Fig. 33, we give a way to efficiently implement these operations

for orientation averaging.

Define the operator

𝑅̂ (Ω𝑘) = 𝑒−𝑖𝜙𝑘n𝑘·Ŝtot (11.9)

where n𝑘 and 𝜙𝑘 are the unit vector and angle that rotates the z-axis to the orientation

Ω𝑘. This operator is composed from single qubit rotations on the system spins. Next,

assume we implement the time-evolution 𝑈̂(𝑡) via the discretization

𝑈̂(𝑡) ≈
[︁
𝑈̂(∆𝑡)

]︁𝐿
(11.10)
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where ∆𝑡 = 𝑡/𝐿 and 𝐿 is an integer. In the limit of large 𝐿, Eq. (11.10) becomes

an equality. This formula captures both digital simulation via product formulas and

analog simulation via Hamiltonian engineering (see Chapter 12). In the former, 𝑈̂(∆𝑡)

represents one Trotter step, while in the latter, 𝑈̂(∆𝑡) represents one Floquet cycle.

We now introduce the operator

𝑉 (Ω𝑘) = 𝑒−𝑖Δ𝑡
∑︀

𝑖 ℎ𝑖Ŝ·(e𝑧−n𝑘) (11.11)

where e𝑧 is the unit vector in the z-direction. First consider implementing the orienta-

tion ensemble average of evolution under Eq. (11.2) without the chemical shift term.

Then, we allow each of the 𝑀 ancilla qubits to perform a global rotation 𝑅̂(Ω𝑚) on

the system conditioned on state of the qubit. Specifically, the 𝑚th ancilla performs

the controlled operation |0⟩ ⟨0|⊗𝐼+|1⟩ ⟨1|⊗𝑅̂(Ω𝑚) at the beginning of the circuit and

undoes this rotation at the end of the circuit. The dipolar interaction Hamiltonian

will thus be transformed by one of the 2𝑀 following rotations

{ 𝑅̂ (Ω1) , 𝑅̂ (Ω2) , ..., 𝑅̂ (Ω𝑀) , 𝑅̂ (Ω1 + Ω2) , 𝑅̂ (Ω1 + Ω3) , ..., 𝑅̂

(︃
𝑀∑︁

𝑚=1

Ω𝑚

)︃
} (11.12)

depending on the bitstring of the ancilla register. Note that we have used the short-

hand 𝑅̂(Ω𝑚 + Ω𝑚′) = exp{−𝑖 (𝜙𝑚n𝑚 + 𝜙𝑚′n𝑚′) · Ŝtot}. The 𝑀 orientations that

we specify by choosing the rotations performed by individual ancilla qubits ends up

generating 2𝑀 orientations via this construction. We must therefore ensure that we

pick the 𝑀 rotations such that the 2𝑀 rotations uniformly cover the sphere in order

to achieve the desired uniform orientation average.

Now let us add the chemical shift term of Eq.(11.2) back in. The problem with the

above construction is that while the rotations map the dipolar interaction to another

orientation, they also rotate the chemical shift term so that it no longer generates

the desired precession around the z-axis. Instead, it will generate precession around

the rotated axis. If the time-evolution is implemented in a discretized manner as in

Eq. (11.10), then we can fix this error by inserting in ancilla-controlled 𝑉 (Ω𝑚) during

198



each time-evolution step. The commutation error between this operation and the

time-evolution unitary 𝑈̂(∆𝑡) vanishes in the limit of a large number of discretization

steps 𝐿. We get the circuit in Fig. 33 by combining the initial global rotations 𝑅̂

and the chemical shift ‘fixing’ operations 𝑉 in each discretization step. Crucially, the

ancilla-controlled versions of these two operations are just two-qubit gates between

individual ancilla qubits and individual system qubits, thereby allowing an efficient

implementation on quantum hardware as long as the system has the right connectivity

between qubits.

The ancilla qubits never interact with each other, but each ancilla needs to be

able to interact with all of the system qubits. Trapped ion systems natively have

this connectivty, while new architectures of Rydberg atom simulators also have such

a capability. Superconducting devices are usually designed with nearest neighbor

connectivity, but have the potential to be fabricated in more complex qubit topologies

if there is sufficient motivation.

The resource overhead of the ancilla-enabled orientation averaging scheme is 𝑀

ancilla qubits and 𝐿 *𝑀 *𝑁 additional two-qubit gates in the worst case, where 𝑁 is

the number of system qubits and 𝐿 is the number of discretization steps. Typically,

we get a sufficiently low discretization error with 𝐿 ≈ 103 and can cover the required

number of orientations with 𝑀 ≈ 10 − 15. For solid-state NMR, we may have

𝑁 ≈ 102 − 103 spins, while for DEER we have 𝑁 = 2. Therefore, a quantum device

with 15 qubits and sufficient fidelity to perform around 104 two-qubits gates can

produce a orientation-averaged DEER spectrum for a single spin distance 𝑟.

The orientation averaging in DEER experiments, however, can be performed an-

alytically under common approximations [373]; the distance averaging is the more

costly operation. It would be interesting to explore if the spirit of Fig. 32 can be

distilled into an efficient construction for ensemble distance averaging, just as Fig. 33

provides such a construction for ensemble orientation averaging. Unlike the orien-

tational average, however, the composition of two ancilla-controlled rotations which

correspond to different distance choices does not also correspond to an easily un-

derstandable choice of distance. Motivated by the continuous nature of the 1/𝑟3
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distance term that we would like to average over, we explore an ancilla-assited av-

eraging scheme using a continuous ancilla degree of freedom instead of the discrete

Hilbert space of a set of qubits.

11.2.2 Averaging using continuous ancilla

Consider a system of spins evolving according to Eq. (11.2). Our goal is to simul-

taneously average over a continuous distribution of interaction constants 𝑑𝑖𝑗, which

is determined by the distribution of angles Θ𝑖𝑗 and positions 𝑟𝑖𝑗. The angles are

uniformly distributed over the unit sphere, while the position distribution typically

looks like a smooth combination of a few Gaussians [373]. The idea is to couple the

spins describing the NMR system to an ancillary bosonic mode whose state can be

described by a continuous wavefunction. By appropriately choosing the wavefunction

of the bosonic mode, we can average over the continuum of distance or orientation

values in the spin Hamiltonian.

We first illustrate the key idea. Consider two qubits coupled to a bosonic mode.

Assuming we can implement a gate

𝑈̂𝑥𝑖 (𝜑) = 𝑒−𝑖𝜑𝑥̂𝐻̂int (11.13)

where 𝑥̂ is a quadrature operator of the bosonic mode and 𝐻̂int is the interaction term

of the spin Hamiltonian we are trying to average over. For two qubits, we will have

𝐻̂int = 𝑑12

(︂
2𝑆𝑧

1𝑆
𝑧
2 −

1

2

(︁
𝑆+
1 𝑆

−
2 + 𝑆−

1 𝑆
+
2

)︁)︂
. (11.14)

The idea is that by placing the resonator in a state with Wigner function 𝑊 (𝑥, 𝑝) such

that 𝑝(𝑥) =
∫︀
𝑑𝑝𝑊 (𝑥, 𝑝) corresponds to the distribution of the exchange constants

𝑑12 = −𝜇0𝛾𝑖𝛾𝑗~
4𝜋𝑟312

1

2

(︀
3 cos2 Θ12 − 1

)︀
, (11.15)

we can simultaneously average the DEER spectrum over all 𝑑12 corresponding to the

distribution of the distances 𝑟12 and angles Θ12. Specifically, let the initial state of
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the system be |𝜓0⟩ = |𝜓(𝑠)
0 ⟩ |𝜓(𝑟)

0 ⟩, where |𝜓(𝑠)
0 ⟩ and |𝜓(𝑟)

0 ⟩ are the initial states of the

spin system and resonator respectively. Expanding the resonator state in the position

basis, we have |𝜓(𝑟)
0 ⟩ =

∫︀
𝑑𝑥
√︀
𝑝(𝑥) |𝑥⟩. We are interested in an observable of the form

𝑆𝑥 (𝜑) = ⟨𝜓0| 𝑈̂ †
𝑥𝑖(𝜑)𝑆𝑥

tot𝑈̂𝑥𝑖(𝜑) |𝜓0⟩ . (11.16)

By expanding out 𝑈̂𝑥𝑖(𝜑), acting term by term on |𝜓0⟩, and recombining terms into

an exponential, we get

𝑆𝑥 (𝜑) =

∫︁
𝑑𝑥 𝑝(𝑥) ⟨𝜓0| 𝑈̂ †

𝑖 (𝜑, 𝑥)𝑆𝑥
tot𝑈̂𝑖(𝜑, 𝑥) |𝜓0⟩ . (11.17)

where 𝑈̂𝑖(𝜑, 𝑥) = 𝑒−𝑖𝜑𝑥𝐻̂int . Thus, if we are able to prepare a bosonic state such that

𝑝(𝑥) corresponds to the desired distribution 𝑝(𝑑12), then we can simultaneously do

the ensemble average over both 𝑟12 and Θ12.

The full protocol consists in three steps: First, prepare the bosonic mode in a

state given by Wigner function 𝑊 (𝑥, 𝑝) such that
∫︀
𝑑𝑝𝑊 (𝑥, 𝑝) = 𝑝(𝑥) and the qubits

in |𝜓0⟩. Then, act with 𝑈̂𝑖𝑥(𝜑) on the mode and qubits. Finally, measure 𝑆𝑥
tot.

As a simple benchmark, we first demonstrate the continuous averaging idea for

the Ising Hamiltonian

𝐻̂int = 4𝐽𝑆𝑧
1𝑆

𝑧
2 , (11.18)

with the spins in an initial |↑𝑥↑𝑥⟩ and bosonic mode having a wavefunction correspond-

ing to a Gaussian distribution 𝑝(𝐽) = 𝒩 (𝐽, 𝜇 = 2
√

2, 𝜎2 = 0.5). This wavefunction

corresponds to preparing the bosonic mode in a coherent state, and more precisely,

a squeezed displaced state with squeezing 𝜉 = 0 and displacement 𝛼 = 2. The in-

teraction Hamiltonian Eq. (11.18) is not an overly simplistic choice as DEER time

evolution can be written as a pure Ising model without local magnetic fields in certain

limits [373].

In Fig. 34 we simulate the time evolution of the magnetization 4 ⟨∑︀𝑖 𝑆
𝑥
𝑖 ⟩ under

the Ising model, averaged over the Gaussian distribution of 𝐽 couplings. We compare

two averaging methods. In “brute force averaging”, we calculate 4 ⟨∑︀𝑖 𝑆
𝑥
𝑖 ⟩ using a
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Figure 34: Comparison of brute force sampling versus the averaging employing the
Bosonic mode. We use a Trotter step 0.1/𝐽 for the Bosonic mode averaging.

Figure 35: The circuit required to prepare the mode in the powder average
distribution (first two gates before the barrier), and then act on it with the Trotter
step (rest of circuit) corresponding to the Hamiltonian of interest.

fixed 𝐽 employing only spin evolution and then averaging over many such runs. In

“bosonic mode averaging”, we use the method discussed above, i.e. coupling to a

bosonic mode prepared in a squeezed displaced state and then time evolved with the

Trotterized circuit shown in Fig. 35. We chose a Trotter step of 0.1/𝐽 and the bosonic

operations are implemented with “Bosonic Qiskit” [347]. We see that the continuous

ancilla-assisted averaging using the bosonic mode accurately reproduces the ensemble

averaged observable of interest.

The remaining challenge is thus experimental implementation of this scheme on

quantum simulator platforms such as circuit QED systems comprised of supercon-

ducting transmon qubits coupled to a microwave resonator acting as the bosonic
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mode, a chain of trapped ions where the transverse phonon mode along the chain

provides the bosonic mode, or cavity QED systems consisting of Rydberg atoms in a

microwave cavity where the cavity photon acts as the bosonic mode. The two issues

that must be addressed are engineering a coupling of the form Eq. (11.13) using the

interaction Hamiltonian in Eq. (11.14), and preparing the state of the bosonic mode

such that it corresponds to distributions of interest that appear in NMR and ESR

experiments.

Circuit QED and trapped ion platforms do not naturally implement a boson-

controlled interaction with the dipolar spin Hamiltonian in Eq. (11.14). They can,

however, implement a controlled interaction with a flip-flop spin Hamiltonian of the

form

𝐻̂int = 𝐽𝑥̂
(︁
𝑆+
1 𝑆

−
2 + 𝑆−

1 𝑆
+
2

)︁
. (11.19)

We can then use an appropriate train of single-qubit rotations applied to the two

qubits to Floquet-engineer the dynamics such that they approximately behave accord-

ing to a desired dipolar interaction Hamiltonian on average [71, 383]. For example,

the pulse sequence

𝒫 = {𝑅𝑥 (𝜋/2) , 𝜏 ;𝑅𝑦 (−𝜋/2) , 𝜏 ;𝑅𝑦 (𝜋) , 𝜏 ;𝑅𝑦 (𝜋/2) , 𝜏 ;𝑅𝑥 (−𝜋/2) , 𝑅𝑧 (𝜋)} (11.20)

where we first apply a pulse 𝑅𝑥 (𝜋/2) on the two qubits, then undergo evolutionunder

the native Hamiltonian for a time 𝜏 , then apply a pulse 𝑅𝑦 (−𝜋/2) on the two qubits,

and so on would yield the effective Hamiltonian

ˆ̃𝐻int = 𝐽𝑥̂

(︂
2𝑆𝑧

1𝑆
𝑧
2 +

1

2

(︁
𝑆+
1 𝑆

−
2 + 𝑆−

1 𝑆
+
2

)︁)︂
. (11.21)

Application of a 𝜋-rotation around the z-axis on one of the qubits then flips the

relative sign between the flip-flop part of the interaction and the Ising part of the

interaction. Specifically,

𝑅𝑧
1(𝜋)† ˆ̃𝐻int𝑅

𝑧
1(𝜋) = 𝐽𝑥̂

(︂
2𝑆𝑧

1𝑆
𝑧
2 −

1

2

(︁
𝑆+
1 𝑆

−
2 + 𝑆−

1 𝑆
+
2

)︁)︂
. (11.22)
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where we have chosen to do the rotation around the first qubit. We can then reintro-

duce the chemical shift terms via Trotterization after each Floquet cycle:

𝑈̂ (𝑡)ave = 𝑅𝑧
1 (𝜋)†

[︂
𝑅𝑧

1

(︂
ℎ1
𝑡

𝑟

)︂
𝑅𝑧

2

(︂
ℎ1
𝑡

𝑟

)︂
ˆ̃𝑈int

(︂
𝑡

𝑟

)︂]︂𝑟
𝑅𝑧

1 (𝜋) (11.23)

where 𝑟 is the Trotter step and

ˆ̃𝑈int

(︂
𝑡

𝑟

)︂
= 𝑅𝑧 (𝜋)𝑅𝑥 (−𝜋/2) 𝑈̂int

(︂
𝑡

4𝑟

)︂
𝑅𝑦 (𝜋/2) 𝑈̂int

(︂
𝑡

4𝑟

)︂
𝑅𝑦 (𝜋)×

× 𝑈̂int

(︂
𝑡

4𝑟

)︂
𝑅𝑦 (−𝜋/2) 𝑈̂int

(︂
𝑡

4𝑟

)︂
𝑅𝑥 (𝜋/2) (11.24)

with 𝑈̂int (𝑡) being given as

𝑈̂int (𝑡) = exp
{︁
𝐽𝑥̂
(︁
𝑆+
1 𝑆

−
2 + 𝑆−

1 𝑆
+
2

)︁
𝑡
}︁

(11.25)

in terms of the native ancilla-controlled interaction in the system. The time-evolution

in Eq. (11.23) then corresponds to dynamics generated by the effective Hamiltonian

𝐻̂ave = ℎ1𝑆
𝑧
1 + ℎ2𝑆

𝑧
1 + 𝐽𝑥̂

(︂
2𝑆𝑧

1𝑆
𝑧
2 −

1

2

(︁
𝑆+
1 𝑆

−
2 + 𝑆−

1 𝑆
+
2

)︁)︂
(11.26)

to leading order. Initializing the bosonic mode in the appropriate state then gives

the desired ensemble-averaged dynamics. This hybrid digitial-analog combination of

Trotterization, Floquet-engineering, and a native operation of the quantum simulator

is a powerful approach to generating complicated Hamiltonians which are useful for

different applications. In comparison to circuit QED and trapped ion platforms,

Rydberg atoms in microwave cavities may be able to directly implement the boson-

controlled dipolar interaction [88, 75]. However, Trotterization may still be required

to introduce the chemical shift terms.

We now discuss preparation of the bosonic state such that its wavefunction cor-

responds to the NMR ensemble of interest. In many cases, the distribution 𝑝(𝑥) we

would like to average over can be expressed as a sum of a few Gaussian distribu-
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Figure 36: Wigner function of a squeezed displaced state, and the integral over
position 𝑝.

tions [373]. We can write down such a Gaussian mixture model as

𝑝(𝑥) =
∑︁
𝑖

𝒩𝑖(𝑥, 𝜇𝑖, 𝜎𝑖), (11.27)

where 𝜇𝑖, 𝜎𝑖 are the mean and the standard deviation of the Gaussian

𝒩 (𝑥, 𝜇, 𝜑) =
1√

2𝜋𝜎2
exp

(︂
−(𝑥− 𝜇)2

2𝜎2

)︂
. (11.28)

We can then decompose the ensemble averaged observable of interest as 𝑆(𝜑) =∑︀
𝑖 𝑆𝑖(𝜑), where

𝑆𝑖 (𝜑) =

∫︁
𝑑𝑥 𝒩𝑖(𝑥, 𝜇𝑖, 𝜃𝑖) ⟨𝜓0| 𝑈̂ †

𝑖 (𝜑, 𝑥)𝑆𝑥
tot𝑈̂𝑖(𝜑, 𝑥) |𝜓0⟩ . (11.29)

Hence, instead of preparing the full distribution 𝑝(𝑥) in experiment, we can instead

perform a few experiments in which we only need to prepare a Gaussian and then

sum over the results in the end to get 𝑆(𝜑). The benefit of this decomposition is

that it such Gaussian distributions correspond to a wavefunction of a bosonic mode

in a squeezed-displaced state. Such states are relatively straightforward to prepare in

microwave cavities and trapped ion chains.

We now discuss how to take an arbitrary Gaussian distribution of interest and

prepare the corresponding state in bosonic platforms by using displacements and
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squeezing. Specifically, the squeezing operator is given by

𝑆(𝜉) = exp

(︂
−1

2
(𝜉*𝑎̂2 − 𝜉(𝑎̂†)2)

)︂
. (11.30)

One can then show that for real squeezing 𝜉 = 𝜉*, the probability distribution along

𝑥 is a Gaussian with mean zero and standard deviation 𝜎2 = exp(−2𝜉)/2.

The displacement operator displaces the vacuum state to a coherent state |𝛼⟩ =

𝐷̂(𝛼) |0⟩ and is given by

𝐷̂(𝛼) = exp(𝛼𝑎̂† − 𝛼*𝑎̂), (11.31)

in terms of the bosonic raising/lowering operators 𝑎̂†, 𝑎̂. Choosing a purely real 𝛼* =

𝛼, we displace along 𝑥̂ = (𝑎̂† + 𝑎̂)/
√

2. When displacing the vacuum state, we find

that the probability distribution along 𝑥 is a Gaussian with mean 𝜇 =
√

2𝛼.

Combining these two results, we find that if we first squeeze the vacuum with real

𝜉 and then displace by real 𝛼 while choosing the parameters as

𝜉 = − ln(2𝜎2)

2
, (11.32)

𝛼 =
𝜇√
2
, (11.33)

the marginal of the Wigner function
∫︀
𝑑𝑝𝑊 (𝑥, 𝑝) is exactly given by Eq. (11.28) (see

Fig. 36).

Note that first displacing and then squeezing yields a different result. Moreover,

the exact form of the parameters 𝜉 depends on the definition of 𝑥̂ in terms of rais-

ing/lowering operators, which is not unique. Therefore, for our protocol to work, we

need to make sure that 𝑥̂ is defined in the same way when deriving the gates acting

on the bosonic mode in 𝑈𝑥𝑖.

In principle, a bosonic wavefunction corresponding to 𝑝(𝑥) can also be prepared

directly by using ancilla qubits and performing conditional displacements and squeez-

ing. This way, the amount of displacement can be steered by the state of the qubit

and therefore a direct superposition of Gaussians can be obtained. We would then

avoid the need for several repetitions of the experiment, each corresponding to a sin-
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gle Gaussian, but pay the price of a more complicated state preparation protocol and

the associated increase in experimental errors.
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Chapter 12

Experimental demonstration of NMR

simulation

Here, we discuss efforts to experimentally demonstrate the algorithms presented in

Chap. 11. There are two modalities of simulation which differ in how they implement

the time-evolution unitary

𝑈NMR (𝑡1, ..., 𝑡𝑀) =
𝑀∏︁

𝑚=1

𝑈𝐻 (𝑡𝑚)𝑈
(𝑚)
rot (12.1)

describing the NMR system’s dynamics, where 𝑈𝐻 (𝑡𝑚) = 𝑒−𝑖𝐻𝑡𝑚 and 𝑈
(𝑚)
rot describe

the spin dynamics and global rotations in step 𝑚 of the protocol respectively. Digital

quantum simulation involves decomposing 𝑈𝐻 (𝑡𝑚) into a sequence of discrete quan-

tum gates that are implemented on the simulator’s qubits, while analog simulation

tries to engineer the native dynamics of the simulator to mimic 𝑈𝐻 (𝑡𝑚). Both ap-

proaches are worth exploring as they each have advantages and disadvantages. In

Sec. 12.1, we discuss a digitial simulation experiment performed in a trapped ion

system, corresponding to the work in Ref. [321]. In Sec. 12.2, we discuss an analog

simulation experiment that is currently being performed in a superconducting qubit

system.
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12.1 Digital simulation in trapped ions

We perform the first proof of principle of quantum NMR simulation by simulat-

ing a zero-field NMR experiment on a trapped-ion quantum computer [105]. The

quantum computer implements a sequence of unitary rotations and entangling inter-

actions on 171Yb+ ion qubits to implement the quantum circuit that emulates the

NMR experiment 12.1.2. Specifically, we compute the spectrum of selectively iso-

tope labeled acetonitrile, with four NMR-active nuclear spins, and show that the

resonance frequencies in the spectrum quantitatively match the experimental NMR

data from Ref. [206], while the peak intensities match in their ordering. We obtain

high spectral resolution within the resource limitations of the trapped-ion device by

exploiting compressed sensing techniques [42] and a state-of-the-art quantum circuit

synthesis algorithm [380]. These techniques can be used to reduce the resource cost

of simulating classically hard NMR systems, and are likely to prove useful in quan-

tum simulations of hard systems that appear in quantum chemistry and condensed

matter physics [8]. We give resource estimates for quantum simulations of hard NMR

systems, showing how the dephasing commonly present in nuclear spin dynamics may

enable such simulations on near-term quantum hardware.

12.1.1 Overview of experiment

First let us discuss zero-field 1D NMR protocols. Recall that an NMR experiment

involves polarizing the nuclear spins of a sample via an external magnetic field or a

chemical process, letting the spins evolve in time, and measuring the average magne-

tization of the system. The measured time-dependent magnetization is called the free

induction decay (FID), and its Fourier transform yields the NMR spectrum. Letting

the operators {S𝑖} represent the nuclear spins, the initial state of the system when

polarized via a magnetic field can be described as 𝜌0 ≈ 𝐼+𝜆𝑆
𝑧

tot, where 𝐼 is the iden-

tity operator and 𝑆
𝑧

tot =
∑︀

𝑖 𝛾𝑖𝑆
𝑧
𝑖 , with 𝛾𝑖 being the gyromagnetic ratio of the nuclear

isotope 𝑖. In the case of a 1D NMR experiment, the measured FID corresponds to
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the quantity

FID (𝑡) = Tr
[︁
𝑈 (𝑡)† 𝑆

𝑧

tot𝑈 (𝑡)𝑆𝑧
tot

]︁
, (12.2)

where 𝑈 (𝑡) = exp (−𝑖𝐻𝑡/~) produces the time-evolution of the system generated by

a Hamiltonian 𝐻. The evolution of liquid-state molecular samples is typically well

captured by

𝐻 =
∑︁
𝑖,𝑗

2𝜋𝐽𝑖𝑗S𝑖 · S𝑗 +
∑︁
𝑖

𝜔𝑖𝑆
𝑥
𝑖 , (12.3)

where we have taken Planck’s constant ~ = 1. The 𝐽-couplings {𝐽𝑖𝑗} characterize

the strength of bond-mediated exchange interactions and the chemical shifts {ℎ𝑖}
represent local magnetic screening around nuclei in different chemical environments

in response to an external magnetic field [218].

Zero-field NMR protocols have no external magnetic field and the chemical shifts

are all zero. Instead, the sample is polarized via a chemical process and only the

J-couplings contribute to the system’s dynamics. The resulting spectra can have nar-

rower resonance lines than conventional high-field NMR due to high absolute field

homogeneity and stability [206, 351, 23], allowing more accurate determination of

the J-couplings, which in turn encode information about the molecular bond angles.

Furthermore, zero-field protocols open the possibility of portable and cheaper exper-

iments as they obviate the need for cryogenically cooled superconducting magnets

which produce high fields. Recent experimental progress with nitrogen-vacancy cen-

ters in diamond has opened an additional avenue towards zero- and low-field NMR,

possibly allowing spectroscopy of samples at the nanoscale [232, 346, 224]. Despite

their advantages, a significant limitation of zero-field protocols is that their spectra

are hard to interpret without access to reliable computational simulations of the NMR

experiment. As the dynamics in zero-field experiments are dominated by interactions

between spins, quantum correlations build up rapidly and render classical simula-

tions of even intermediate scale molecules intractable [272]. Zero-field experiments

are therefore one of the first NMR settings where quantum computers and simulators

may provide computational advantage.

We compute the zero-field spectrum of acetonitrile, a compound which is com-
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Figure 37: Zero-field spectrum of acetonitrile computed on an ion-trap quantum
computer compared with the NMR experiment performed in Ref. [206]. The inset
shows the chemical structure of acetonitrile, highlighting the methyl group that was
probed in the experiment.

monly used as an industrial solvent. The molecule is isotope labeled to have four

NMR-active spin-1/2 nuclei, a 13C and three 1H, that make up a methyl group (see

inset in Fig. 37). There are three non-zero 𝐽-couplings, corresponding to the three
13C − 1H bonds, all with value 𝐽 = 136.2 Hz. The FID signal of Eq. (12.2) can be

computed on a quantum computer by initializing the system qubits in basis states

with a positive average magnetization, enacting time-evolution under the Hamilto-

nian via an appropriate quantum circuit, Eq. (13.1), and then measuring the average

magnetization of the system. We write this measurable as

FID (𝑡) =
∑︁
𝑚̃𝑛>0

𝑚̃𝑛 ⟨𝑚̃𝑛(𝑡)|𝑆𝑧
tot|𝑚̃𝑛(𝑡)⟩ , (12.4)

where {|𝑚̃𝑛⟩ ; 𝑚̃𝑛} are the eigenstates and eigenvalues of 𝑆𝑧
tot, and |𝑚̃𝑛(𝑡)⟩ = 𝑈(𝑡) |𝑚̃𝑛⟩.
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Figure 38: Zero-field spectrum of acetonitrile computed on an ion-trap quantum
computer and IBM superconducting quantum computer compared with the NMR
experiment performed in Ref. [206]

For a system of 𝑁 spins, the sum in Eq. (12.4) can have a number of terms that scales

exponentially with 𝑁 , potentially negating any quantum computational advantage.

The sampling cost can, however, always be reduced to𝒪 (𝑁2) terms via either uniform

sampling of basis states in the sum or importance sampling basis states according to

a distribution proportional to the square of the states’ magnitization (𝑚̃2
𝑛). The ad-

vantage of quantum simulation is thus preserved after incuring a polynomial sampling

overhead [329].

Figure 37 shows the spectrum we compute on an ion trap quantum computer

in comparison with the seminal zero-field NMR experiment of Ref. [206]. We see

that the quantum computation accurately reproduces the resonances at frequencies

𝐽 and 2𝐽 . Specifically, the corresponding resonance frequencies extracted from the

quantum simulation are 136.20± 0.09 Hz and 272.41± 0.09 Hz, which are within 1𝜎

of the exact frequencies of 136.2 Hz and 272.4 Hz. The extracted resonance frequency
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uncertainty is Fourier limited; a Lorentzian fit to the reconstructed peaks results in a

width smaller than the frequency grid spacing. We therefore take half the grid spacing

as the uncertainty. Given that the zero-field NMR experiment can only resolve the

spectral peaks within 0.1 Hz [206], we demonstrate that quantum computers can

simulate NMR experiments within their spectral resolution.

The spectrum computed on the ion trap quantum computer has peak intensities

that match the ordering of peaks in Ref. [206], but has a quantitative mismatch with

spectral weight transferred from the resonance at 2𝐽 to an additional resonance at

𝐽/2 that is not present in the NMR experiment. This additional spectral peak arises

from a combination of errors in the quantum computer and the high-symmetry of

the molecule, which induces dynamical recurrences that are captured by the specific

method we use to synthesize the time-evolution circuits. Such artifacts are unlikely

to appear in classically intractable NMR simulations whose large, strongly correlated

molecules typically do not exhibit dynamical recurrences. Furthermore, we provide

a simple method to remove artifact peaks in future experiments even for the small,

highly symmetric systems where they may occur 12.1.3. To illustrate that the quan-

tative agreement between the ion trap computation and Ref. [206] is non-trivial, we

also compute the same zero-field spectrum on a IBM cloud service superconducting

quantum computer (ibm-perth). The result, shown in Fig. 38, manifests several addi-

tional spurious peaks and a larger amplitude mismatch than the ion experiment. We

attribute this worse performance to control errors in the superconducting device and

the fact that the time-evolution circuits, synthesized via an optimization algorithm

describe below, have about 1.5-2 times more two-qubit gates than the ion circuits

due to the expressivity of the native two-qubit gate on each device. Specifically, the

ion system uses a variable angle Molmer-Sorenson interaction, which appears better

suited to the quantum simulation of Eq. (13.1) than the CNOT gate of the supercon-

ducting system.

In order to calculate the spectrum, we first compute the FID, Eq. (12.4), at a non-

uniform random sampling of time points lower than the Nyquist rate. We synthesize

the time-evolution quantum circuits using the numerical optimization algorithm in
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Figure 39: Compressed sensing reconstruction & Benchmarking. (A) Comparison of
the FID of a noisy quantum circuit emulation (blue line) and the non-uniform,
sparsely sampled points experimentally measured on the trapped-ion quantum
computer (green circles). The noise is modeled by two-qubit gates subject to both
amplitude and phase damping with rates 0.005 and 0.035 respectively. (B) NMR
spectrum extracted from the digital quantum simulation, where the spectrum is the
real part of the Fourier transform of the FID. Green dots show the spectrum after
replacing unsampled points of the FID with zeros. Dashed blue line shows the best
(under ℓ1-norm) Lorentzian fits to this zero-padded data. Solid yellow line shows the
reconstructed spectrum after applying the IST-S algorithm. The y-axis is rescaled
(zoomed-in) compared to Fig. 37 to make the features more visible. (C) Fidelity of
quantum simulation. The yellow crosses show the squared Bhattacharyya coefficient
and the green dots show a fidelity estimator recently introduced by Choi et al. [70]
as a function of the circuit depth measured in the number of two-qubit gates.

Ref. [380] after tailoring it to the gate set and qubit topology of the trapped ion

device 12.1.2. This numerical synthesis procedure efficiently produces low-depth cir-

cuits but is limited to a small number qubits. It can, however, be a useful tool when

simulating larger systems 12.1.2.

The undersampled FID measured in experiment is reconstructed into a spectrum

by a recovery algorithm which assumes that the time domain signal is sparse in the

215



frequency domain. The sparsity assumption holds true for 1D NMR spectra of simple

molecules and also for higher-dimensional NMR spectra of larger complex molecules.

Indeed, higher-dimensional NMR was developed for the purpose of generating sparse,

and therefore interpretable, spectra for biological macromolecules such as large pro-

teins. These two steps – non-uniform sampling (NUS) and spectral reconstruction –

form the basis of compressed sensing. Compressed sensing techniques have their root

in information theory [95], but have been further developed in the experimental NMR

community where they can drastically reduce the data collection burden [42]. While

these techniques have recently been used in quantum sensing [9], we demonstrate

their use in quantum simulation experiments to similarly reduce the computational

cost [8]. In Fig. 39A we plot a noisy emulation of the ion trap experiment at all values

of the uniform dense time grid and compare to the NUS points that were actually

collected in the experiment. Experimental data was collected up to times 𝑡 = 6 12.1.2,

but is only shown up to 𝑡 = 0.2 to allow a clear comparison to the noisy emulation.

We use a sine-weighted Poisson gap NUS schedule that is dense at short times as

it has been shown to reduce reconstruction artifacts [163]. Figure 39B shows the

spectrum resulting from Fourier transforming the experimental data before running

the reconstruction algorithm. We see that the signal-to-noise ratio in this raw spec-

trum is poor due to NUS artifacts, with a Lorentzian fit to the peaks resulting in

an uncertainty of approximately 1 Hz. The same spectrum is shown after we run

the iterative soft thresholding (IST-S) reconstruction algorithm; the signal-to-noise

is dramatically improved, with the uncertainty reducing by an order of magnitude to

approximately 0.1 Hz. The reconstructed spectrum matches the spectrum resulting

from fully sampled noisy emulation 12.1.2. Experimentally, only 102 out of the 4096

time points were collected, indicating that compressed sensing reduced the compu-

tational burden of the experiment by more than a factor of 40. This reduction is

particularly crucial for experiments with slow repetition rates.

In Fig. 39C, we asses the quality of the trapped-ion simulation by comparing the

outputs of all 102 circuits (× 8 initial states) with the ideal outputs resulting from

a noiseless circuit emulation. These synthesized circuits, each corresponding to a
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Figure 40: Scaling up to classically hard simulations. (A) Chemical structures of (i)
anti-3,4-difluoroheptane [196] (ii) a system with two coupled tert-butyl groups and
(iii) the B[ACR9]3 phosphorous system [245]. Light green atoms do not contribute
to the NMR signal and dashed boxes indicate strongly interacting clusters who’s
circuit synthesis can significantly speed up the quantum computation 12.1.4. (B)
Experimental design curves for (Me3Si)3P7 (panel A(iii)), showing 1/

√
𝐷 scaling,

where 𝐷 is the circuit depth, of the frequency resolution up to a minimally
achievable width set by the decoherence of the quantum computer. The circuit
depth is measured by the number of fully-connected two-qubit gates. (C) Optimal
resolution for all three molecules. The circles indicate the resolution at optimal
circuit depth and the dashed black horizontal lines indicate the resolution accessible
in NMR experiments.

time 𝑡, have varying circuit depths according to the entanglement generated in the

system at that time 12.1.3. The Bhattacharyya coefficient (BC), which provides an

upper bound for the fidelity of the prepared quantum state 12.1.3, indicates that a

typical two-qubit gate operation was enacted with fidelity at most 98.9%. The BC

is an informative metric for states with high fidelities, but it saturates to a value of

0.5 for the random states that the system tends to after decoherence runs its course.

We therefore also examine the Choi fidelity estimator of Ref. [70], which is a more

intuitive metric for low fidelity states as random states will be mapped to a fidelity

close to zero. The Choi fidelity yields an estimate of 97.7% fidelity per operation

enacted in the trapped-ion experiment.

While the present experiment is performed on state-of-the-art quantum hardware,

it is still easily tractable on a classical computer. In order to elucidate the hardware

resources required to scale quantum simulations to classically hard NMR experiments,

we examine three challenging systems that are at the border of what is classically
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simulable. The compounds are are depicted in Fig. 40A. Each system can be simulated

on a classical computer using Spinach [154], an advanced classical simulation package,

in several hours, provided access to 32 CPU cores, 128 GB RAM, and a graphics card

as powerful as the Titan V. The interaction graphs characterizing the molecules’

nuclear spin Hamiltonians have a compact structure, and are composed of strongly

interacting clusters of four to seven spins which are weakly connected to other clusters.

The compact nature of the interaction graphs—which give rise to rapidly spreading

strong correlations—makes these systems hard to simulate on a classical computer,

even though these NMR experiments can be described without the long-range dipolar

interactions that are central to other challenging NMR protocols.

We estimate the resources required to simulate these systems using a quantum

computer by using product formulas to prescribe circuits that implement time-evolution

under the Hamiltonian of Eq. (13.1). While there are many quantum algorithms that

implement quantum dynamics, product formulas are considered to have the lowest

resource overhead and be most suitable for early quantum devices [68, 69]. We exploit

both the cluster structure of the nuclear interactions as well as inherent dephasing in

the NMR experiment to further reduce the cost 12.1.4.

In Fig. 40B, we plot the achievable linewidth ∆𝑓 of the NMR spectrum as a func-

tion of the circuit depth 𝐷 for quantum computers with various levels of decoherence.

We assume the time-evolution quantum circuits are designed using a clustered first

order product formula, a schematic of which is depicted in Fig. 41. We define the

circuit depth as the number of fully connected two-qubit gates, as available in ion

trap quantum computers [105]. We observe a 1/
√
𝐷 scaling, reminiscent of the stan-

dard quantum limit, up to a critical depth where the decoherence of the quantum

computer takes over. At any given value of the gate fidelity 𝐹 there is an optimal

circuit depth ∼ 1/ log(1/𝐹 ) arising from a competition between algorithmic error and

decoherence, resulting in linewidth ∆𝑓 ∼
√︀

log(1/𝐹 ). Fig. 40C depicts the expected

optimal linewidth for the molecules in Fig. 40A. While we clearly observe that the

larger molecules from Fig. 40A are considerably harder to simulate than the four

spin methyl group that was computed here, it should be noted that these curves are
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Figure 41: Schematic of quantum circuits simulating the time-evolution of
challenging NMR systems. The total time-evolution is split into 𝑁 identical
increments. Each increment is composed of numerically synthesized circuits
enacting the time-evolution of strongly interacting clusters of spins, along with
two-qubit gates enacting interactions between spins from different clusters. An
example of a numerically synthesized circuit is given in 12.1.2.

expected to saturate for Hamiltonians corresponding to clustered molecules. To sim-

ulate the phosphorus cluster (Fig. 40A(iii)) to the same level as the physical NMR

experiment, we expect to require circuits of 𝑂(105) gates with a typical gate infidelity

of 𝑂(10−4), an infidelity that is two orders of magnitude better than the present ex-

periment. Such infidelities have been achieved in small trapped-ion systems [121, 18],

and future scaling strategies hold great promise for reaching the above performance

metrics [46].
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Our demonstration provides the first proof of principle that quantum comput-

ers can simulate NMR spectra within experimental resolution. Simulations of NMR

experiments on quantum hardware would not only be invaluable to analyzing conven-

tional NMR experiments in systems consisting of hundreds to thousands of spins [104]

but could also help realize the full potential of emerging modalities that explore strong

spin-correlations such as zero-field, low-field, and nanoscale NMR. These latter proto-

cols generate spectra that are especially difficult to interpret without computational

simulations, which in turn can prove classically intractable for systems of even a few

tens of spins [250].

While scaling quantum NMR simulations to classically intractable systems will be

challenging, it should be noted that the resource projections in Fig. 40 are significantly

less demanding than most other near-term quantum computing applications [68, 195,

131]. The physical reason behind the reduced resource cost is that dephasing is

inherent in the dynamics of nuclear spin systems, with a rate given by the finite

line-width of spectral peaks in NMR experiments. Quantum simulations can tolerate

decoherence in the quantum device as long as it is less than the dephasing rate

of the spin system [329]. NMR thus provides a natural task where we can seek a

practical quantum advantage from near-term quantum devices: simulation of noisy

spin systems using noisy quantum computers.

12.1.2 Methods

Data collection

NMR simulation circuits are run on a trapped ion quantum computer that uses the
2S1/2 states of 171Yb+ ions as the qubit states. We trap 15 ions in a chain for the

simulation, and the circuits use 4 of those ionic qubits. Before each circuit iteration,

ions are cooled using Doppler cooling and Raman sideband cooling, and then reset to

the logical |0⟩ state via optical pumping. The qubit state is manipulated using 355-

nm pulsed Raman beams. Single qubit gates are implemented using SK1 pulses [?],

and two-qubit gates are mediated by Mølmer-Sørensen interactions [?] —these gates
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q0 Rx(1.99π) Rz(0.803π)

q1 Rx(1.09π) Rz(0.74π)

q2 Rx(0.253π) Rz(0.779π)
MS(-0.4371π/2)

Rx(1.81π) Rz(0.092π)
MS(0.438π/2)

Rx(1.31π)

q3 Rx(0.652π) Rz(0.438π) Rx(0.789π) Rz(0.076π) Rx(1.5π)

q0 MS(-0.147π) Rx(0.088π)

q1

q2 Rz(0.513π)
MS(0.090π/2)

Rx(-0.079π) Rz(0.293π) Rx(0.896π)

q3 Rz(0.31π) Rx(-1.9π) Rz(0.586π) MS(-0.147π) Rx(0.589π)

q0 Rz(0.276π) MS(0.368π/2) Rx(0.876π) Rz(0.665π) MS(0.246π/2) Rx(-0.065π) Rz(0.278π)

q1

q2

q3 Rz(0.094π) MS(0.368π/2) Rx(-1.52π) Rz(0.107π) MS(0.246π/2) Rx(0.979π) Rz(0.778π)

q0 Rx(-0.974π)

q1 MS(0.081π/2) Rx(1.0π) Rz(0.581π) MS(0.079π/2) Rx(0.598π) Rz(0.442π)

q2

q3 MS(0.081π/2) Rx(1.61π) Rz(0.399π) MS(0.079π/2) Rx(-1.42π) Rz(0.416π)

q0

q1 MS(-0.079π/2) Rx(1.15π) Rz(0.495π) Rx(0.295π)

q2

q3 MS(-0.079π/2) Rx(0.24π) Rz(0.501π) Rx(0.411π)

Figure 42: Time-evolution circuit. Example time-evolution circuit generated by
numerical synthesis algorithm corresponding to 𝑡 = 0.07 s. Circuit is split into five
rows and read top to bottom, with the start of each row indicated by a dashed box
around the four qubits in the experiment.

are run sequentially. We measure the qubit states by shining 369-nm light resonant

on the 2S1/2 →2P1/2 cycling transition that scatters photons.

The time series data used to construct the NMR spectrum of acetonitrile was

collected over the course of 12 days, during which the quantum computer’s hardware

remained unchanged. The data consists of a 1000 shots of 102 different circuits, for

which 8 different initial states were prepared. While running circuits on the quantum

machine, we perform system calibrations of trap voltages and gate amplitudes every

hour to mitigate effects of system drift on circuit performance. We do not correct for

state preparation and measurement (SPAM) errors in this study, and a table of our

system’s SPAM characterization is presented in Ref. [105].
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Time-evolution circuit synthesis

We use the numerical optimization algorithm in Ref. [380] to synthesize the circuits

implementing the time-evolution unitary 𝑈 (𝑡) = exp (−𝑖𝐻𝑡/~), with the Hamiltonian

given in Eq. (12.5). The algorithm implements a bottom-up approach, building the

single- and two-qubit gate decomposition of a 𝑛-qubit unitary by iteratively searching

for a 𝑚-qubit gate decomposition with 𝑚 < 𝑛. Initially, 𝑚 is set to 𝑛 − 1. The

algorithm is hardware topology and gateset aware; to specialize for the trapped-ion

system, we allow all-to-all connectivity of qubit interactions and choose Mølmer-

Sørensen gates with variable angles as the interaction gate.

We choose a unitary error of 𝜖 = 10−2, with the synthesis algorithm producing a

circuit in terms of Mølmer-Sørensen (MS) gates and generic single-qubit rotations that

approximates the true time-evolution unitary within this error. We then iteratively

perform a X-Z-X decomposition of each single-qubit rotations, commuting the trailing

X rotation through each MS gate before decomposing the next single-qubit rotation.

This optimization results in roughly two Z rotations and two X rotations after each

MS gate. As Z rotations are implemented virtually in the trapped-ion system, the

final circuit has only two physical single-qubit rotations for each MS gate, and thus

the physical circuit depth is reduced compared to the initial output of the synthesis

algorithm. An example of the final optimized circuit is shown in Fig. 42. Typically,

the produced circuits were composed of up to 40 MS gates and 80 physical single-qubit

gates.

Compressed sensing

A general function in the frequency-domain that is nonzero in a specified frequency

window can be reconstructed by Fourier transforming a corresponding time-domain

signal that is uniformly sampled at the Nyquist rate. If the function is known to

be sparse in the frequency domain, however, the time signal can be undersampled

by choosing a non-uniform subset of time points which still capture the relevant

information in the frequency domain [95]. The missing points on the original uni-
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Figure 43: Compressed sensing reconstruction. (a) Comparison of the FID for noisy
quantum circuit emulation on a fully sampled uniform time grid of 4096 points (blue
circles) and the 99 data points experimentally measured on the ion trap device (red
diamonds). (b) Fourier transform of the FID after replacing unsampled points with
zeros. (c) Reconstructed spectrum after applying the iterative soft thresholding
algorithm. The noise is modeled by two-qubit gates subject to both amplitude and
phase damping with rates 0.005 and 0.035 respectively.

form time grid create artifacts in Fourier transform of the signal, however, which

must then be removed using a compressed sensing reconstruction algorithm that ex-

ploits the assumed sparsity of the frequency signal. NMR spectra are often sparse as

they are composed of a series of Lorentzian peaks, and therefore compressed sensing

techniques allow for a dramatic reduction in the sampling required during an NMR

experiment [42].

This sparsity can also be exploited in quantum simulations of NMR experiments

by computing the FID at only the undersampled time points and then reconstructing

the spectrum. We compute the FID at 102 out of the 𝑁𝑠 = 4096 time points on the
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uniform grid, choosing the points according to a sine-weighted Poisson gap schedule.

Such schedules have been shown to reduce undersampling artifacts [163]. The points

are randomly chosen with the likelihood to pick a point 𝑚 + 1 on the uniform grid,

given we have picked a point 𝑚, set by a Poission distribution with mean proportional

to sin (𝛼𝜋𝑚/𝑁𝑠). Specifically, we choose 𝛼 = 0.5, resulting in a schedule that is dense

at short times before becoming increasingly sparse at later times. We find that this

choice allows for much larger compression compared to a schedule with uniformly

distributed gaps between points, or a schedule that is also dense at late times (cor-

responding to 𝛼 = 1). After computing the undersampled FID, we reconstruct the

spectrum using the iterative soft thresholding (IST-S) algorithm [42].

In Fig. 43(a), we plot the FID computed via noisy emulations for all 4096 time

points, and compare with the 102 points that were experimentally computed. This

plot corresponds to Fig. 39A, but with the quantities depicted over the full time grid.

In Fig. 43(b), we plot the spectrum computed after padding the experimental data

with zeros for all time points that were not computed. We see that there is some

signal at the spectral peaks expected from the noisy emulation, but the signal-to-

noise is very large. The zero-padded spectrum in this plot corresponds to the green

dots in Fig. 39B. In Fig. 43(c), we plot the compressed sensing reconstruction of the

experimentally computed spectrum, and see that the signal-to-noise is dramatically

improved. The reconstructed spectrum in this plot corresponds to the yellow curve

in Fig. 39C.

Scaling to larger systems

The numerical optimization algorithm we use is likely to be limited to producing

time-evolution circuits for systems of up to ∼ 7 spins [380]. This tool can still

prove useful, however, when scaling to large, classically-intractable NMR simulations

by exploiting the cluster structure of these molecules (see Fig. 40A). The strongly-

interacting clusters are usually formed from 4-7 spins, and the optimization algorithm

can be used to synthesize the time-evolution circuit for each cluster. These circuits

can then be combined with a Trotter formula to implement the time-evolution of the
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entire systems [69]. Compared to a Trotter decomposition of the entire system, such

a hybrid approach can reduce the overall circuit depth, as discussed in Sec. 12.1.4.

Furthermore, at the level of discretization estimated in Fig. 40, the simulation times

are small enough that the optimization should converge very quickly, potentially

enabling real-time compilation of the overall time-evolution circuit.

We note that numerical circuit synthesis of small subsystems and compressed

sensing techniques form a synergistic combination of tools. For example, cluster-

exploiting Trotter formulas allow for an overall reduction in resource cost at all sim-

ulation times, while compressed sensing non-uniform sampling schedules may sample

more densely from short times where the resource cost is smallest. On the hardware

side, the all-to-all connectivity of trapped ions makes them well-suited to the inter-

action graphs within clusters, and may allow comparatively smaller gate counts for

the cluster evolution circuits. The relatively slow cycle time of ion devices is amelio-

rated by compressed sensing techniques, which reduce the number of time points that

must be sampled. The combination of numerical circuit synthesis, which exploits the

clustered interaction structure of a system, and compressed sensing, which exploits

sparsity of the observable of interest in the transform domain, may similarly prove

useful for quantum simulations in quantum chemistry and condensed matter systems

where both of these characteristics are often present [8].

12.1.3 Spectral peak at J/2

The acetonitrile spectrum we compute on the trapped ion quantum computer, de-

picted in Fig. 37, exhibits a resonance at frequency 𝐽/2 which does not appear in the

NMR experiment of Ref. [206]. Here, we explain the origin of this additional peak

and discuss how to prevent such artifacts from appearing in future experiments.

The zero-field nuclear spin Hamiltonian of acetonitrile is

𝐻̂ = 𝐽
(︁
Ŝ1 + Ŝ2 + Ŝ3

)︁
· Ŝ4, (12.5)

where {Ŝ1, Ŝ2, Ŝ3} represent the three 1H and Ŝ4 represents the 13C. The eight positive
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Figure 44: Magnetization basis state revivals. A system initialized in state |𝜓(0)⟩
selected from magnetization basis states 𝒜 = {𝑚̃1, 𝑚̃3, 𝑚̃5} and ℬ = {𝑚̃4, 𝑚̃6, 𝑚̃8}
undergoes revivals with a period 2/𝐽 .

magnetization states used to compute the FID, see Eq. (12.4), and their magnetiza-

tions are

|𝑚̃1 = 1.626⟩ = |0000⟩ 𝑚̃1 = 1.626

|𝑚̃2 = 1.626⟩ = |0001⟩ 𝑚̃2 = 1.374

|𝑚̃3 = 1.626⟩ = |0010⟩ 𝑚̃3 = 0.626

|𝑚̃4 = 1.626⟩ = |0011⟩ 𝑚̃4 = 0.374

|𝑚̃5 = 1.626⟩ = |0100⟩ 𝑚̃5 = 0.626

|𝑚̃6 = 1.626⟩ = |0101⟩ 𝑚̃6 = 0.374

|𝑚̃7 = 1.626⟩ = |1000⟩ 𝑚̃7 = 0.626

|𝑚̃8 = 1.626⟩ = |1001⟩ 𝑚̃8 = 0.374

The small, four spin Hilbert space of the NMR active nuclear spins of the molecule
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along with the molecules highly symmetric nature—as codified by the single inter-

action scale 𝐽 in Eq. (12.5)—combine to yield perfect revivals when the system is

prepared in six of the above magnetization basis states. These states can be grouped

into the triads 𝒜 = {𝑚̃1, 𝑚̃3, 𝑚̃5} and ℬ = {𝑚̃4, 𝑚̃6, 𝑚̃8} and we depict their re-

vivals in Fig. 44. When viewed in the energy eigenstate basis, each of these six

magnetization basis states only has weight on energy eigenstates whose eigenvalues

are integer multiples of 𝐽/2. Consequently, all energies relevant to the dynamics are

commensurate with a smallest splitting of 𝐽/2, which leads to the state reviving with

perfect fidelity at this frequency. The revival of each state is mirrored in its entangle-

ment dynamics. Each magnetization state begins in an unentangled product state,

non-monotonically accrues entanglement over a period 𝑇 = 2
𝐽
, and then dis-entangles

as it returns to the original product state. The high symmetry and small size of

the molecule therefore causes the dynamics to defy usual expectations of ergodicity,

with the entanglement of a system initially prepared in one of the states in 𝒜 or ℬ
oscillating at a frequency 𝐽/2 instead of growing monotonically in time.

The numerical optimization algorithm, Ref. [380], we use to synthesize time-

evolution circuits for each time point reflects this oscillating entanglement in the

gate depth of the synthesized circuits. Specifically, times at which the system is more

heavily entangled correspond to deeper circuits with a larger number of two-qubit

gates, as can be seen in Fig. 45.

Noise in the system affects deeper circuits more than shallower ones, and therefore

imprints the 𝐽/2 entanglement oscillation onto the experimentally measured observ-

able by lowering the fidelity of the signal at this frequency. We can gain visibility

into this process by computing the average Bhattacharyya coefficient (BC) between

the measured basis state populations and noiseless emulations of the circuits for each

time point. The BC is defined as

BC = 1− 1

2

∑︁
𝑗

(︁√︀
𝑝(𝑗)−

√︀
𝑞(𝑗)

)︁2
, (12.6)

where 𝑗 runs over all computational basis states, and 𝑝(𝑗) and 𝑞(𝑗) are the correspond-
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Figure 45: Synthesized circuit depth and entanglement. (a) Two-qubit gate count of
synthesized time-evolution circuits for each FID evolution time measured on the
trapped-ion device. (b) Entanglement entropy of the system at a particular
evolution time compared to the two-qubit gate count of the circuit implementing
that evolution. We average the final entanglement entropy for systems initialized in
each of the eight magnetization basis states used to compute the FID.

ing occupation probabilities, given by the diagonal elements of the density matrix,

of the two states beings compared. The BC gives a measure of the fidelity of the

experimental runs and we plot it for every experimentally measured time point in

Fig. 46(a). We see that it varies as a function of time, and these oscillations corre-

spond to time-evolution circuits that have a larger two-qubit gate count as shown in

Fig.39C. In Fig. 46(b), we use the same compressed sensing algorithm used to com-

pute the NMR spectrum to reconstruct the Fourier transform of the the BC dynamics

depicted in Fig. 46(a). We observe a sharp peak at 𝐽/2, confirming that the fidelity

of the experimental oscillates at a frequency of 𝐽/2. These oscillations corresponding

to oscillating depths of the synthesized circuits, which in turn reflect the entangle-

ment revivals of the molecule’s underlying dynamics. The above story confirms why

noisy circuit simulations, such as the one depicted in Fig. 39A, also exhibit this 𝐽/2

resonance peak in the computed NMR spectrum regardless of the type of decoherence

channel used to simulate noise.

Artifact peaks such as the 𝐽/2 resonance can easily be removed in future exper-

iments. By padding all time-evolution circuits so that they have roughly the same

depth as the deepest synthesized circuit, the noise in the system can no longer imprint
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(a) (b)

Figure 46: Bhattacharyya coefficient between trapped ion measurements and
noiseless emulation of the experiment. (a) BC vs evolution time. (b) Compressed
sensing reconstruction of the frequency spectrum of the BC. We see that the BC, a
measure of the fidelity of the system, only varies at the frequency 𝐽/2 with which
the system’s entanglement, and therefore circuit depth, oscillates.

any frequency on the measured signal as the gate depths no longer oscillate. We show

in Fig. 47 that such padding dramatically decreases the height of the 𝐽/2 peak in noisy

circuit simulations of the experiment. The padding will, however, slightly decrease

the overall fidelity of the computed FID as every point will be subject to as much

noise as the deepest time-evolution circuit. If we desire to compute the maximum

fidelity signal allowable by hardware, we can compute FID twice - once with padded

circuits and once without. Any feature that vanishes in the padded experiment can

be removed from the higher fidelity non-padded experiment.

Lastly, we note that artifact peaks are unlikely to appear during quantum simu-

lations of the majority of NMR experiments, and become increasingly unlikely when

scaling to classically intractable systems. Small molecules which do not exhibit the

high degree of symmetry exhibited in Eq. (12.5) are unlikely to exhibit the dynamical

revivals at the heart of artifact peaks. Larger systems, including those with some

symmetry, are even less likely to exhibit revivals as entanglement spreads throughout

the system. In fact, classically intractable systems are intractable precisely because

quantum correlations spread quickly throughout the system. Furthermore, quantum

simulation algorithms that generalize to larger systems, such as product formulas, typ-
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Figure 47: Noisy circuit simulation. The zero-field NMR spectrum of acetonitrile
computed using noisy circuit simulations with and without padding. The padded
circuits no longer have depths that oscillate in accordance with the system’s
entanglement, and therefore do not exhibit the artifact peak at 𝐽/2. Noise was
simulated by by adding a depolarizing channel to each gate, with a rate of 10−3 for
single-qubit gates and 10−2 for two-qubit gates.

ically have gate depths that monotonically increase with the simulation time. This

relationship is also directly true for analog quantum simulation. Noise in these cases

will lead only to a broadening of spectral peaks, and cannot imprint any artifact

frequencies on the measured signal. Therefore, artifact peaks are unlikely to be a

common concern during quantum simulations of NMR experiments. Even in small,

highly symmetric systems where the peaks might appear, circuit padding is a cheap

way to remove these artifacts.

12.1.4 Resource Estimates for NMR simulation

The standard Hamiltonian simulation task (e.g. by Suzuki-Trotter product formula,

hereafter product formula), seeks to approximate exact unitary dynamics within a
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finite precision 𝜖 (clarified below). However, the spectral resolution—alternatively,

the line-width—of NMR experiments are set by the dephasing of the nuclear spins.

The inherent dephasing in the experiments we seek to simulate reduces the resource

cost simulation compared to purely coherent systems. In what follows, we show how

this discrepancy between the standard Hamiltonian simulation task (simulating a

unitary to finite precision) and the task of employing Hamiltonian simulation as a

sub-routine to compute an NMR spectrum (with finite spectral resolution) can yield

gate counts that are several orders of magnitude smaller for the latter task, making

it tractable on NISQ devices. To perform Hamiltonian simulation, we proceed by

using a variant of first-order product formula that exploits the clustered structural

motif present in many molecules that are classical challenging to simulate. In what

follows, we first elucidate the distinction between the standard Hamiltonian simula-

tion task and the task at hand and provide bounds on the requisite two-qubit gate

fidelity and gate counts for computing NMR spectra with finite resolution. We round

out our discussion by providing commutator bounds relevant to estimating the quan-

tum resources required to simulate the NMR spectra of molecules with a clustered

interaction structure.

Approximating Hamiltonian Dynamics for NMR Simulations

We begin by clarifying the difference between a standard Hamiltonian simulation task

and the task of using Hamiltonian simulation to simulate NMR experiments. We

consider performing Hamiltonian simulation via first order Trotterization, a simple

but powerful and gate efficient method for simulating Hamiltonian dynamics. Keeping

our discussion somewhat general for the moment, let’s say we have a Hamiltonian

𝐻 =
∑︀

𝜇 ℎ𝜇, composed out of a number of 𝑁𝑐 terms ℎ𝜇. We’d like to replace the

time-evolution operator 𝑈 = 𝑒−𝑖Δ𝑡𝐻 , for some small time-step ∆𝑡 by our simple

product formula:

𝑈̃ =
𝑁𝑐∏︁
𝜇=1

𝑒−𝑖Δ𝑡ℎ𝜇 .
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It follows from Baker-Campbell-Hausdorff (BCH), by keeping only lowest order con-

tributions in ∆𝑡, that

‖𝑈 − 𝑈̃‖ ≤ (∆𝑡)2

2

𝑁𝑐∑︁
𝜇=1

‖
∑︁
𝜈>𝜇

[ℎ𝜈 , ℎ𝜇]‖, (12.7)

as obtained in Ref. [68]. Consequently, we could also write the fidelity of the simula-

tion as

ℱ𝛿𝑡 = ‖𝑈𝑈̃‖ ≥ 𝑒−𝛽(Δ𝑡)2/2, where 𝛽 =
𝑁𝑐∑︁
𝜇=1

‖
∑︁
𝜈>𝜇

[ℎ𝜈 , ℎ𝜇]‖ (12.8)

Let’s say we’d like to evolve for a total time 𝑇 = 𝑟∆𝑡, then the total fidelity will be

ℱ𝑃𝐹 (𝑇 ) =
𝑟∏︁

𝑖=1

ℱ𝛿𝑡𝑖 = 𝑒−𝑟𝛽(𝛿𝑡)2/2 = exp

(︂
−𝛽𝑇

2

2𝑟

)︂
, (12.9)

If we want a precision 𝜖, then we need ℱ = 1− 𝜖 ≈ 𝑒−𝜖. This sets the Trotter number

𝑟 to achieve a precision 𝜖:

𝑟𝜖 =
𝛽𝑇 2

2𝜖
. (12.10)

Achieving this can be quite challenging for even intermediate times, in particular in

NISQ settings.

The task of simulating the relevant dynamics corresponding to an NMR exper-

iment does not, however, require the approximation of unitary dynamics generated

by the Hamiltonian to finite, time-independent precision 𝜖. It requires instead the

simulation of a spectrum to finite spectral resolution ∆𝑓 . In an NMR experiment,

∆𝑓 ∼ 𝛾, the dephasing rate of a single nuclear spin in experimentally interrogated

sample. Thus, the task of simulating an NMR experiment with resolution ∆𝑓 is

equivalent to simulating Hamiltonian dynamics of a sample of 𝑁 spins in which each

spin decoherences independently with an effective dephasing rate 𝛾 = Δ𝑓
2𝜋

. Such de-

phasing exponentially degrades the fidelity, vis-a-vis perfect unitary dynamics given

by the Hamiltonian, as ℱ𝑁𝑀𝑅 ∼ 𝑒−𝛾𝑁𝑡. Thus, there is a subtle but essential dis-

tinction between the task of approximating a unitary to multiplicative error 𝜖 and

performing Hamiltonian simulation to compute a spectrum with finite spectral res-
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olution ∆𝑓 . If, for the moment, we neglect decoherence in our quantum hardware

and consider only algorthmic error due to our product formula, as given in 12.9, then

setting ℱ𝑃𝐹 (𝑇 ) = ℱ𝑁𝑀𝑅(𝑇 ) we find a upper bound for the minimal necessary Trotter

number:

𝑟𝑁𝑀𝑅 =
𝛽𝑇

2𝛾𝑁
. (12.11)

As typical experiments interrogate regimes up to where 𝛾𝑇 ∼ 1, the number

of Trotter steps 𝑟 is reduced by a factor of 𝑁
𝜖

as compared to the case of fixed

precision—for the examples examined in Fig. 40, this corresponds to a 𝑂(103− 104)-

fold decrease in the number of steps required to realize the longest dynamics relevant

to experiment.

For a more careful estimate of the necessary resources, we also account for the

decrease in fidelity due to decoherence in our quantum hardware. We describe the

decaying fidelity of our experiment due to hardware error as ℱℎ(𝑇 ) ∼ 𝐹 𝑟𝑁𝑔 , where

𝐹 is the two-qubit gate fidelity, 𝑟 is the Trotter number, and 𝑁𝑔 is the number of

two-qubit gates required to realize a particular Trotter step. Note that by such a

description, we assume that hardware error and algorithmic error are independent of

each other and that two-qubit gates dominate the hardware error. The product of

ℱℎ(𝑇 ) and ℱ𝑃𝐹𝑇 must be greater than or equal to ℱ𝑁𝑀𝑅 in order to perform reliable

simulation. We obtain, the following requirement:

−𝑁𝑔 log(𝐹 ) + 𝛽(∆𝑡)2/2 ≤ 𝛾𝑁∆𝑡. (12.12)

This will have a solution for the Trotter time step ∆𝑡 as long as

𝐹 ≥ 𝑒−𝛾𝑁Δ𝑡/𝑁𝑔 . (12.13)

Requiring our quantum simulation fidelity to match the fidelity of the experiment

—thereby recasting 12.12 as an equality —and re-arranging, we can establish an

equation for 𝛾 ∼ ∆𝑓 :
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𝛾 =
1

𝑁
(
∆𝑡𝛽

2
− 𝑁𝑔 log(𝐹 )

∆𝑡
) (12.14)

By optimizing over the Trotter step ∆𝑡, we can set the ultimate resolution ∆𝑓𝑜𝑝𝑡

of our experiment:

∆𝑓𝑜𝑝𝑡 =
𝛾𝑜𝑝𝑡
2𝜋

=
1

2𝜋𝑁

√︁
2𝑁𝑔𝛽 log(1/𝐹 ) (12.15)

Note that this optimal resolution is a simple function of the fidelity of the quantum

hardware employed, given by 𝐹 , and the efficiency of the algorithm used, as encoded

by 𝛽 and 𝑁𝑔. On the hardware side, improving gates and thereby improving the gate

fidelity, parametrized by 𝐹 , would lower the resolution. Similarly, on the algorithmic

side, finding more efficient circuits to realize a single Trotter step (lowering 𝑁𝑔) or

better product formulae (lowering 𝛽), would improve the resolution—in what follows,

we provide strategies on how to achieve both of these algorithmic improvements.

Commutator Bounds for Clustered Hamiltonians

As implied by Eq. (12.15), decreasing 𝛽, defined above in Eq. (12.8) and representing

the magnitude of the commutator error, would improve the resolution of the simu-

lation. In what follows, we compute 𝛽, assuming an NMR Heisenberg Hamiltonian

with clustered interactions, first in the standard way and then by taking advantage

of the cluster motif. We show that by doing the latter, we can reduce 𝛽 substantially.

Before beginning this program, it is useful to establish some intuition for how

clustered interactions reduce 𝛽 vis-a-vis the case of all-to-all couplings. If we take an

all-to-all model with some typical coupling 𝐽/
√
𝑁 (taking into account Kac normal-

ization to keep the energy extensive in the system size 𝑁), we find

𝛽 = 𝑂(𝐽2𝑁2), such that 𝑟 ∼
(︂
𝐽𝑁

𝛾

)︂2

(𝛾𝑇 ). (12.16)

The situation changes for clustered Hamiltonians where each spin typically inter-

acts with a sub-extensive number of spins 𝑘. For each term in the latter, only 𝑘 terms

234



contribute in the commutator and there are 𝑘𝑁 terms, yielding:

𝛽 ∼ 𝑘2𝑁𝐽2, such that 𝑟 ∼
(︂
𝐽𝑘

𝛾

)︂2

(𝛾𝑇 ). (12.17)

Note that, due to the clustered nature of the interactions, 𝑟 does not scale with 𝑁 :

Increasing the number of spins does not increase the Trotter number.

Having established an heuristic derivation for the scaling of 𝛽 and thereby the

Trotter number, we turn to the present situation of a Heisenberg model with local

fields.

𝐻 =
∑︁
𝑖𝑗

𝐽𝑖𝑗(𝑆
𝑥
𝑖 𝑆

𝑥
𝑗 + 𝑆𝑦

𝑖 𝑆
𝑦
𝑗 + 𝑆𝑧

𝑖 𝑆
𝑧
𝑗 ) +

∑︁
𝑖

ℎ𝑖𝑆
𝑧
𝑖 . (12.18)

where all terms can be labeled by 𝜇 = (𝑖, 𝑗, 𝜎), indicating the bond and the

operator that is acted with. If we perform a scheme which alternates all Ising-𝑋𝑋

gates with all Ising-𝑌 𝑌 s and all Ising-𝑍𝑍s, then 𝛽 is comprised of three terms, defined

below: 𝛽1, 𝛽2, 𝛽3.

We first bound 𝛽1, given by:

𝛽1 =
∑︁
𝑖𝑗

|𝐽𝑖𝑗|‖
∑︁
𝑘𝑙

𝐽𝑘𝑙[𝑆
𝑦
𝑘𝑆

𝑦
𝑙 + 𝑆𝑥

𝑘𝑆
𝑥
𝑙 , 𝑆

𝑧
𝑖 𝑆

𝑧
𝑗 ]‖, (12.19)

Straightforward algebra brings us to

𝛽1 =
∑︁
𝑖𝑗

|𝐽𝑖𝑗|‖
∑︁
𝑘

(︀
2𝐽𝑘𝑖(𝑆

𝑥
𝑘𝑆

𝑦
𝑖 − 𝑆𝑦

𝑘𝑆
𝑥
𝑖 )𝑆𝑧

𝑗 + 2𝐽𝑘𝑗(𝑆
𝑥
𝑘𝑆

𝑦
𝑗 − 𝑆𝑦

𝑘𝑆
𝑥
𝑗 )𝑆𝑧

𝑖 ‖
)︀
. (12.20)

where the fact that 𝐽𝑖𝑗 = 𝐽𝑗𝑖 is used. We therefore have:

𝛽1 ≤
∑︁
𝑖𝑗

2|𝐽𝑖𝑗|
∑︁
𝑘

(︀
‖𝐽𝑘𝑖(𝑆𝑥

𝑘𝑆
𝑦
𝑖 − 𝑆𝑦

𝑘𝑆
𝑥
𝑖 )𝑆𝑧

𝑗 + 𝐽𝑘𝑗(𝑆
𝑥
𝑘𝑆

𝑦
𝑗 − 𝑆𝑦

𝑘𝑆
𝑥
𝑗 )𝑆𝑧

𝑖 ‖
)︀
, (12.21)

which can again be bounded as:

𝛽1 ≤ 2
∑︁
𝑖𝑗

|𝐽𝑖𝑗|
∑︁
𝑘

⃒⃒
𝐽𝑘𝑖|‖(𝑆𝑥

𝑘𝑆
𝑦
𝑖 − 𝑆𝑦

𝑘𝑆
𝑥
𝑖 )𝑆𝑧

𝑗 ‖+ |𝐽𝑘𝑗|‖(𝑆𝑥
𝑘𝑆

𝑦
𝑗 − 𝑆𝑦

𝑘𝑆
𝑥
𝑗 )𝑆𝑧

𝑖 ‖
)︀
. (12.22)
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Computing the norm directly—‖(𝑆𝑥
𝑘𝑆

𝑦
𝑖 − 𝑆𝑦

𝑘𝑆
𝑥
𝑖 )𝑆𝑧

𝑗 ‖ = 1/4 —we arrive at:

𝛽1 ≤
∑︁
𝑖𝑗𝑘

|𝐽𝑖𝑘||𝐽𝑘𝑖| (12.23)

We can similarly bound 𝛽2, which is given by:

𝛽2 =
∑︁
𝑖𝑗

|𝐽𝑖𝑗|‖
∑︁
𝑘𝑙

𝐽𝑘𝑙[𝑆
𝑦
𝑘𝑆

𝑦
𝑙 , 𝑆

𝑥
𝑖 𝑆

𝑥
𝑗 ]‖, (12.24)

as

𝛽2 ≤
1

2

∑︁
𝑖𝑗𝑘

|𝐽𝑖𝑘||𝐽𝑘𝑗| (12.25)

Finally there are local field terms, which if we do them together with the ZZ gates

would give

𝛽3 =
∑︁
𝑖

|ℎ𝑖|‖
∑︁
𝑘𝑙

𝐽𝑘𝑙[𝑆
𝑦
𝑘𝑆

𝑦
𝑙 + 𝑆𝑥

𝑘𝑆
𝑥
𝑙 , 𝑆

𝑧
𝑖 ]‖, (12.26)

which gives

𝛽3 = 2
∑︁
𝑖

|ℎ𝑖|‖
∑︁
𝑘

𝐽𝑘𝑖(𝑆
𝑥
𝑘𝑆

𝑦
𝑖 − 𝑆𝑦

𝑘𝑆
𝑥
𝑖 )‖, (12.27)

and thus

𝛽3 ≤
∑︁
𝑖𝑗

|ℎ𝑖||𝐽𝑖,𝑗| (12.28)

However, one can obtain a tighter bound by treating the Z-gates as a single global

gate. Doing so yields:

𝛽3 = ‖
∑︁
𝑘𝑙

𝐽𝑘𝑙[𝑆
𝑦
𝑘𝑆

𝑦
𝑙 + 𝑆𝑥

𝑘𝑆
𝑥
𝑙 ,
∑︁
𝑖

ℎ𝑖𝑆
𝑧
𝑖 ]‖, (12.29)

in which case we’d arrive at

𝛽3 ≤
1

2

∑︁
𝑖𝑗

|ℎ𝑖 − ℎ𝑗||𝐽𝑖,𝑗| ≤ 𝛽3. (12.30)

Therefore, we have that the total spectral norm of the nested commutator 𝛽 is
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bounded by:

𝛽 ≤ 𝛽1 + 𝛽2 + 𝛽3 ≤
3

2

∑︁
𝑖𝑗𝑘

|𝐽𝑖𝑘||𝐽𝑘𝑗|+
1

2

∑︁
𝑖𝑗

|ℎ𝑖 − ℎ𝑗||𝐽𝑖,𝑗|. (12.31)

For many molecules, the interactions between nuclear spins follows a clustered

motif. In particular, we examine the computational resources to simulate classically

hard molecules that are composed of strongly-interacting clusters tethered together

with weakly interacting links. We leverage the clustered motif by performing a variant

of first-order Trotter formula wherein the dynamics of the small clusters are numer-

ically synthesized to high precision, using for example the algorithm of Ref. [380],

while weak interactions between such clusters are rendered via a pairwise Trotter

decomposition of the Hamiltonian.

To understand how this modifies 𝛽, we consider the following Hamiltonian:

𝐻 = 𝐻𝑐 +
∑︁
𝑖,𝑗

𝐽𝑖,𝑗(𝑆
𝑥
𝑖 𝑆

𝑥,𝑐
𝑗 + 𝑆𝑦

𝑖 𝑆
𝑦,𝑐
𝑗 + 𝑆𝑧

𝑖 𝑆
𝑧,𝑐
𝑗 ) +

∑︁
𝑖

ℎ𝑖𝑆
𝑧
𝑖 , (12.32)

and

𝐻𝑐 =
∑︁
𝑘,𝑙

𝑉𝑘,𝑙(𝑆
𝑥,𝑐
𝑘 𝑆𝑥,𝑐

𝑘 + 𝑆𝑦,𝑐
𝑘 𝑆𝑦,𝑐

𝑙 + 𝑆𝑧,𝑐
𝑘 𝑆𝑧,𝑐

𝑙 ) +
∑︁
𝑘

ℎ𝑘𝑆
𝑧,𝑐
𝑘 , (12.33)

where the superscript simply indicates that the operator belongs to the cluster 𝐻𝑐.

If we could synthesize the Hamiltonian of the cluster efficiently (see below), we find:

𝛽 ≤ 3

2

∑︁
𝑖,𝑗,𝑘

|𝐽𝑖,𝑘𝑉𝑘,𝑗|+
3

2

∑︁
𝑖,𝑗,𝑘

|𝐽𝑖,𝑘𝐽𝑘,𝑗|+
1

2

∑︁
𝑖,𝑘

|𝐽𝑖,𝑘||ℎ𝑘 − ℎ𝑖|. (12.34)

By comparing Eq. (12.34) with Eq. (12.31), we see that the latter avoids terms with

intra-cluster couplings (i.e. terms like 𝑉𝑖,𝑗𝑉𝑘,𝑙). For the cases considered in Fig. 40,

making use of the cluster structure in this manner reduces the Trotter number by one

to two orders of magnitude. We note that classical NMR simulation algorithms also

reduce their resource cost by exploiting structure in the molecule’s interaction graph

using spiritually similar decompositions of the system’s dynamics [154]
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12.2 Analog simulation in superconducting devices

In Sec. 12.1, we discussed how quantum simulation of NMR experiments can tolerate

decoherence in quantum devices due to decoherence in the NMR system itself. This

allowed a dramatic reduction in the resource cost for digital quantum simulation

of theese systems. In comparison, quantum simulations of classically hard quantum

chemistry [26] and condensed matter systems [27] may have a lower tolerance to device

decoherence than NMR systems as the dynamical systems being simulated in these

settings do not explicitly contain dissipation. The tolerance towards decoherence in

NMR simulation can also be exploited by analog quantum simulation via Hamiltonian

engineering of quantum devices, providing an alternative route to digital quantum

simulation via quantum circuits. Analog simulators may be easier to realize in the

near-term [9], and the fact that NMR systems only explore a set fraction of state

space due to decoherence means that the analog device need only be engineered to

access the same fraction of space, as opposed to digital quantum computers which

are designed to have universal control and access to the full exponentially large state

space. Here, we discuss a concrete proposal for analog quantum simulation of NMR

systems on superconducting devices.

12.2.1 Superconducting devices

In Fig. 48, we show an eight qubit chip composed of four flux-tunable grounded

transmon system qubits and four flux-tunable grounded transmon ‘coupler’ qubits.

The system qubits are the qubits we perform computations with, while the coupler

qubits are used to tunably couple adjacent system qubits [376]. The system imple-

ments of a hard-core Bose-Hubbard model that can be mapped to the following spin

Hamiltonian [378]:

𝐻SC =
∑︁
𝑖

𝜔𝑖𝑆
𝑧
𝑖 +

∑︁
⟨𝑖𝑗⟩

4𝐽𝑖𝑗
(︀
𝑆+
𝑖 𝑆

−
𝑗 + 𝑆−

𝑖 𝑆
+
𝑗

)︀
(12.35)
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(a) (b)

Figure 48: Tunable coupler superconducting chip for proposed analog simulation
experiment. (a) False color. (b) Optical micrograph. The tunable couplers on the
chip are a few 𝜇m in size..

where the spin operators 𝑆𝑖 represent system qubits. The effective nearest-neighbor

coupling 𝐽𝑖𝑗 between adjacent system qubits can be tuned by modulating the fre-

quency of the coupler qubits. The sweet spot frequency of the system and coupler

qubits are offset by approximately 1 GHz, allowing us to effectively turn off the in-

teraction between adjacent system qubits, as well as to partially compensate for the

parasitic 𝑍𝑍 interaction in the system. The chip therefore constitutes a 2x2 grid of

system qubits with frequencies that can be tuned between 4.5 GHz - 3.0 GHz and

effective nearest-neighbor interactions that can be tuned from +5 MHz to −30 MHz.

12.2.2 Hamiltonian engineering

We would like to manipulate the system so that the native dynamics of the chip,

described by Eq. (12.35) is turned into the appropriate NMR Hamiltonian, described

in Sec. 10.1. A framework to systematically construct pulse sequences to do this is

described in Ref. [71]. The idea is to discretize the total time-evolution into several

(Floquet) cycles, each of which constitutes a sequences pulses implementing global

rotations on the spins interspersed with evolution under the system’s native Hamil-

tonian. If the total time is discretized into a sufficiently large number of cycles, the

effective dynamics of the system can be described via average Hamiltonian theory. We

can think of the framework in Ref. [71], which was experimentally demonstrated in
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Figure 49: Pulse sequence that echos out local 𝑆𝑧
𝑖 terms and symmetrizes the

flip-flop interaction.

Ref. [383], as a generalization of dynamical decoupling pulse sequences that have long

been used in NMR experiments. Here, we utilize these pulse sequences to engineer the

native Hamiltonian of a quantum device into an effective Hamiltonian implementing

an analog quantum simulation of a different target system.

For example, the pulse sequence in Fig. 49 echos out the local 𝑆𝑧
𝑖 terms in

Eq. (12.35) while symmetrizing the flip-flop interaction, transforming it into

𝐻av =
∑︁
⟨𝑖𝑗⟩

S𝑖 · S𝑗 (12.36)

A similar pulse sequence that symmetrizes the interaction but keeps the 𝑆𝑧
𝑖 terms will

implement the NMR Hamiltonian Eq. (13.1). Such a Hamiltonian is a good descrip-

tion of many liquid-state NMR experiments, including multidimensional experiments

such as COSY. We demonstrate the by simulating the COSY90 spectrum of rotenone,

a 22 spin pesticide, using the true Hamiltonian Eq. (13.1) (Fig. 50), and using the

native superconducting Hamiltonian Eq. (12.35) with the appropriate pulse sequence

(Fig. 51).

We see that both 2D spectra match quite well, with a few discretization artifacts in

Fig. 51 that are not present in the true spectrum depicted in Fig. 50. These artifacts
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Figure 50: COSY90 spectrum of rotenone computed via the true NMR Hamiltonian.

Figure 51: COSY90 spectrum of rotenone computed via pulse sequences applied on
top of the native superconducting Hamiltonian.
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Figure 52: Proposed quantum simulation of threonine. The ‘True spectrum’
corresponds to dynamics evolving under the true NMR Hamiltonian, while the
‘Simulated spectrum’ corresponds to a noisy simulation of the superconducting chip
with appropriate puse sequences to modify its native dynamics.

will vanish if we split the time-evolution into a larger number of Floquet cycles.

12.2.3 Proposed test systems

The rotenone molecule is too large to compute on the chip in Fig. 48. Instead,

we propose to simulate the spectrum of the amino acid threonine. By deuterating

the hydrogens in the molecule and leaving the nitrogen unlabeled, we are left with

a linear chain of four carbon spins that can be simulated on the superconducting

chip. In Fig. 52, we show a simulation of the 1D NMR spectrum computed using

the true NMR Hamiltonian, Eq. (13.1), and one computed from a noisy simulation

of the superconducting chip with the appropriate pulse sequence to modify its native

dynamics. We hope the replace the ‘True spectrum’ curve with one experimentally

computed in a NMR lab, and the ‘Simulated spectrum’ curve with one experimentally

computed on the superconducting chip.

In addition to this analog quantum simulation the NMR spectrum via the algo-
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Figure 53: Proposed quantum simulation of nitroxide radical DEER spectrum.
Simulation is computed from dynamics evolving under the true NMR Hamiltonian
and orientation (powder) averaged across 3200 orientations.

rithm of Sec. 11.1, we also intend on a minimal demonstration of the ancilla-assisted

orientation averaging described in Sec. 11.2. We will simulate the DEER trace of a

pair of nitroxide radicals with a single ancilla qubit allowing us to average over two

orientations at a time. A simulation of the trace we wish to produce is depicted in

Fig. 53. While this trace is simple, it serves as a proof of principle demonstration and

benchmark of hardware.
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Chapter 13

Co-design of digital quantum

simulation

In the previous chapter, we discussed digital quantum simulation of NMR experi-

ments, and how scaling to large, classically hard systems will likely require a product

formula decomposition of the time-evolution unitary (see Fig. 41). Such formulas

implement terms of the Hamiltonian via quantum gates. In real hardware, how-

ever, control errors in the system often result in an applied gate being different from

the intended one. A common challenge in all such gate-based quantum simulation,

therefore, is to optimize the quantum circuit implementing the product formula for

a particular NISQ platform. Specifically, the discretization (‘Trotter’) error in the

product formula is reduced by increasing the number of gates, while hardware noise

in the system causing decoherence leads to error that typically worsens as the num-

ber of gates increases. To achieve the best performance of the algorithm, we must

therefore determine both the optimal number of gates and the optimal parameters

for these gates in order to account for noise. The focus of this chapter is to provide

insight into these questions which lie at the heart of software-hardware co-design of

gate-based quantum simulation.

More generally, understanding the principles of co-design and error-mitigation is

essential to realize the potential of quantum computers, as hardware noise usually

wipes out the effects responsible for quantum advantages [197]. Even fault-tolerant
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quantum computers of the future will rely on the characterization and mitigation of

noise. The existence of a fault tolerance threshold is only rigorously defined when

errors are assumed to be independent; this Markovian idealization is only true when

spatial and temporal correlations in the noise die off quickly [269, 266, 289]. The mag-

nitude of independent errors, in turn, affects the resource cost of the system, with

noisier systems requiring a larger overhead of physical qubits per logical qubit. For

near-term noisy, intermediate-scale platforms, characterizing the noise in a system is

even more critical. Practical applications will require the co-design of protocols opti-

mized to different hardwares. Indeed, understanding the nature of noise in a system

can enable tailored quantum-control and error mitigation that improves desired per-

formance metrics [279, 205]. In some cases, noise can even be exploited as a feature

of the system to simulate the dynamics of complicated many-body models [345].

The three categories of error in quantum computations and simulations are state

preparation and measurement (SPAM) errors, incoherent errors, and coherent er-

rors. The first category corresponds to errors occuring at the beginning and end of

the computation respectively. State preparation error corresponds to the initial state

prepared on the hardware being different from the intended one, and may occur due to

the probabilistic nature of projective measurements used to initial the system. Mea-

surement error arises as quantum observables have inherent uncertainty and hence

their expectation value can only be determined with a certainty set by the number

of measurement samples. The second category, incoherent error, arises from coupling

between the qubits and their environment, with these interactions causing the in-

ternal state of the qubit to change. The last category, coherent error, occurs when

a desired unitary transformation of the system imparts an angle different than in-

tended. These unitary errors are the focus of this chapter and arise due to limitations

of the platform’s analog control hardware or the dynamics of the physical qubits [300].

Over the course of a quantum computation or simulation, such unitary errors accu-

mulate and dephase the system state, killing the coherent effects responsible for a

quantum advantage and degrading the fidelity of any simulation. In trapped ions, for

example, one dominant source of decoherence is the ions’ collective motion, which is
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Figure 54: Chain of trapped ions collectively moving at frequency 𝜔0 in the 𝑥
direction. Ions explore different parts of the beam waist of lasers (yellow) that apply
unitary gates, thus accumulating an incorrect phase.

thermally excited due to electric field fluctuations from trap electrodes. While the

internal qubit states of the ions are not directly affected by this motion, the Molmer-

Sorenson gate, used as the standard two-qubit entangling gate, is implemented via

individually addressed lasers and imparts an erroneous phase to the qubit states, as

depicted in Fig. 54. The source of this noise can be understood as the phonon mode

associated with the center of mass of the chain having an energy that undergoes dif-

fusion due to heating from electric field fluctuations. We find that this slow diffusion

of the phonon in energy space causes the unitary error to be non-Markovian, with

correlations arising between gates applied at different times during an experiment.

In this chapter, we demonstrate how to exploit knowledge of the noise underlying

a system to optimize gate-based quantum simulations. To provide a concrete exam-

ple, we do so in the context of simulating the dynamics of a Heisenberg spin model

in a system of trapped ions. We first introduce the quantum simulation task and as-

sociated gate-based algorithm. Then, we derive a theoretical noise model describing

unitary errors from thermal ion motion in trapped ion systems and provide a proto-

col to experimentally extract the latent variable underlying the model. We discuss

how temporal correlations in the noise induce an optimal gate depth of the quantum

simulation circuit. These correlations cause the error in the simulation arising from

motional noise to accumulate as the gate depth is increased, while the Trotter error

associated with discretization of the time-evolution decreases as the gate depth is

increased. The competition of these two errors induces an optimal gate depth.
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Next, we provide a platform-independent framework for optimal feedforward con-

trol of unitary gate errors, which involves applying gates with angles that are modi-

fied to compensate for the predicted noise in the system. We illustrate the utility of

feedforward control in the trapped ion implementation of simulating the Heisenberg

Hamiltonian, showing that feedforward control partially mitigates both discretization

error and decoherence error in the simulation output.

Our work provides three results that are generally applicable to the co-design

of gate-based quantum algorithms beyond the discussed simulation task: (i) the

understanding that non-Markovian correlations are the root cause of decoherence

and the subsequent limitation on gate depth in any platform where unitary errors

are the dominant noise, (ii) a method to optimally leverage noise characterization to

mitigate unitary gate errors via feedforward control, and (iii) an accurate model of

unitary gate errors arising from thermally-excited ion motion in trapped ion systems.

The material in this chapter corresponds to the work in Ref. [324].

13.1 Hamiltonian simulation

To provide a concrete context for our discussion, we focus on the specific task of

simulating the time-evolution, 𝑈̂ (𝑡) = exp (−𝑖𝐻𝑡/~), of a system whose dynamics is

generated by thethe Heisenberg Hamiltonian,

𝐻̂ =
∑︁
𝑖,𝑗

𝐽𝑖𝑗Ŝ𝑖 · Ŝ𝑗 +
∑︁
𝑖

ℎ𝑖𝑆
𝑥
𝑖 . (13.1)

This paradigmatic model not only describes many NMR systems, as discussed in pre-

vious chapters, but also describes the magnetic properties of many insulating crys-

tals [79] and appears in the study of thermalization in quantum systems [264, 225,

275].

Many near-term quantum algorithms and simulations focus on the task of estimat-

ing the expectation value of some observable after time-evolution, with the value of

such observables often being less susceptiable to noise than the full system state [349].
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In this vein, we also benchmark the quality of gate-based quantum simulation of

Eq. (13.1) with the spectrum simulation task discussed in Ch. 11 and experimentally

demonstrated in Ch. 12. Specifically, we compute the NMR spectrum

𝐴 (𝜔) = Re
∫︁ ∞

0

𝑑𝑡 · 𝑒𝑖𝜔𝑡−𝛾𝑡𝑆 (𝑡) (13.2)

where

𝑆 (𝑡) = ⟨𝑆𝑧
tot (𝑡)𝑆𝑧

tot⟩ (13.3)

= Tr
[︁
𝑒𝑖𝐻̂𝑡𝑆𝑧

tot𝑒
−𝑖𝐻̂𝑡𝑆𝑧

tot𝜌0

]︁
(13.4)

is the total magnetization response function and 𝜌0 = 𝐼

Tr[𝐼]
is the initial state of the

spin system.

We implement this time-evolution using a first-order Trotter decomposition into

gates commonly used in trapped ion platforms. Specifically, we split the total time-

evolution into 𝑟 Trotter steps yielding 𝑈̂ (𝑡) =
[︁
𝑈̂ (∆𝑡)

]︁𝑟
where ∆𝑡 = 𝑡

𝑟
. The unitary

𝑈̂ (∆𝑡) = 𝑒−𝑖𝐻̂Δ𝑡 is then approximated with the Suzuki-Trotter product formula

𝑈̂1 (∆𝑡) = 𝑒−𝑖(
∑︀

𝑖 ℎ𝑖𝑆
𝑥
𝑖 )Δ𝑡

(︁
Π⟨𝑖𝑗⟩𝑒

−𝑖𝑆𝑧
𝑖 𝑆

𝑧
𝑗 (2𝐽𝑖𝑗Δ𝑡)

)︁
×

×
(︁

Π⟨𝑖𝑗⟩𝑒
−𝑖𝑆𝑦

𝑖 𝑆
𝑦
𝑗 (2𝐽𝑖𝑗Δ𝑡)

)︁(︁
Π⟨𝑖𝑗⟩𝑒

−𝑖𝑆𝑥
𝑖 𝑆

𝑥
𝑗 (2𝐽𝑖𝑗Δ𝑡)

)︁
(13.5)

where ⟨𝑖𝑗⟩ corresponds to all unique pairs of spins as 𝐽𝑖𝑗 = 𝐽𝑗𝑖 in the Hamiltonian.

Furthermore, we only include pairs of spins where 𝐽𝑖𝑗 ̸= 0. The total time-evolution

is then given by 𝑈̂1 (𝑡) =
[︁
𝑈̂1 (∆𝑡)

]︁𝑟
. Defining the two-qubit gates 𝑈̂𝛼𝛼 (𝜑𝑖𝑗) =

exp{−𝑖𝑆𝛼
𝑖 𝑆

𝛼
𝑗 𝜑𝑖𝑗} where 𝜑𝑖𝑗 = 2𝐽𝑖𝑗∆𝑡, single-qubit rotation gates 𝑅̂𝛼

𝑖 (𝜑) = 𝑒−𝑖𝑆𝛼
𝑖

𝜑
2 ,
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Figure 55: Example spectrum without noise (black), with Trotter error and unitary
noise (orange), and noise with feedforward control (green) for a system of four spins
evolving under the Heisenberg Hamiltonian, Eq. (13.1). The phonon heating rate is
taken to be 𝑐2 = 0.02 ms−1 and the noisy spectra are averaged over 40 runs. The
uncorrected noisy spectrum is computed using 200 gates and the corrected noisy
spectrum is computed using 500 gates, which are the gate depths for which each
spectrum is closest to the noiseless spectrum, as quantified by the Hellinger distance
between the spectra.

and angles 𝜑𝑖 = 2ℎ𝑖∆𝑡, the quantum circuit for time evolution is given by

𝑈̂1 (𝑡) = Π𝑟
𝑚=1{

(︁
Π𝑖𝑅̂

𝑦
𝑖

(︁
−𝜋

2

)︁)︁(︁
Π𝑖𝑅̂

𝑧
𝑖 (−𝜑𝑖)

)︁
×

×
(︁

Π⟨𝑖𝑗⟩𝑈̂
𝑥𝑥 (𝜑𝑖𝑗)

)︁(︁
Π𝑖𝑅̂

𝑦
𝑖

(︁𝜋
2

)︁)︁
×

×
(︁

Π𝑖𝑅̂
𝑧
𝑖

(︁
−𝜋

2

)︁)︁(︁
Π⟨𝑖𝑗⟩𝑈̂

𝑥𝑥 (𝜑𝑖𝑗)
)︁
×

×
(︁

Π𝑖𝑅̂
𝑧
𝑖

(︁𝜋
2

)︁)︁(︁
Π⟨𝑖𝑗⟩𝑈̂

𝑥𝑥 (𝜑𝑖𝑗)
)︁
} (13.6)

where we apply gates from right to left. The Trotter decomposition, Eq. (13.6), is

expressed in terms of the Molmer-Sorensen gates, 𝑈̂𝑥𝑥 (𝜑𝑖𝑗), and single qubit rotations

that are commonly used in trapped ion computations.
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Assuming that enough measurements are made during a computation to ignore

measurement errors in the expection values, ⟨𝑆𝑧
tot (𝑡)⟩, the computed spectrum will

still include discretization errors from Trotterization and unitary gate errors from the

ion motion described in Sec.13.2. The feedforward control discussed in Sec.13.4 can

help mitigate the latter. Figure 55 shows an example spectrum (black), the same

spectrum with both Trotter and unitary noise (orange), and the noisy spectrum with

feedforward control (green).

13.2 Trapped Ion Noise Model

Trapped ions have emerged as a leading platform for quantum computation and

simulation due to their long coherence times, identical nature, and negligible idle er-

rors [197, 62]. The ions in these systems crystalize into a chain after being tightly

confined in two directions via an oscillating electric field. Entanglement between the

qubits is generated by a laser-induced interaction between states that is mediated by

the collective motion of ions. Usually, the motional modes along the tightly confined

transverse direction are used for these operations as they are less sensitive to electric

field fluctuations arising from the electrodes generating the trap. These fluctuations

do, however, excite the weakly confined longitudinal modes of the chain. The de-

viation of the ions from their lattice positions causes them to experience erroneous

intensities from the individudally addressed laser beams used to implement different

operations. As the longitudinal motion of the ions heats up, these errors build into

a dominant form of noise that limits the operational time window of the system [62].

Here, we develop a noise model for errors arising from this longitudinal heating, ignor-

ing other possible sources of error in trapped ion systems that may be more prevelant

in different operational regimes of the device.

We first characterize the gate error in the system due to longitudinal movement of

the ions in the 𝑥-direction, depicted in Fig. 54. The individually addressed single- and

two-qubit gates in trapped ion systems are enacted by shining a narrowly focused laser

on a single or pair of ion lattice sites respectively. The gates take the form 𝑈̂ (𝜑) =
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exp
(︁
−𝑖𝜑𝐴

)︁
, where 𝐴 is either a single spin operator, 𝑆𝛼

𝑗 , acting on a site 𝑗, or the

bilinear, 𝑆𝑥
𝑖 𝑆

𝑥
𝑗 , acting on a pair of sites. These gates form a sufficient set for universal

quantum computation. The phase of the gate is 𝜑 = Ω𝑡𝑔, where 𝑡𝑔 is the duration of

the laser pulse, and Ω is the Rabi frequency set by the electric field amplitude of the

laser. This amplitude typically has a Gaussian spread in the longitudinal direction

which carries over to the Rabi frequency: Ω (𝑥) = Ω0 exp (−𝑥2/(2𝜎2)) where Ω0

represents the maximum beam intensity and 𝜎 characterizes the beam width. The

collective motion of the ions in the longitudinal direction can be decomposed in terms

of normal modes with frequencies 𝜔𝑚. During application of a gate, these motional

oscillations cause the ions to feel a position-dependent Rabi frequency that is less than

the desired Ω0. Our goal is to derive the distribution of the erroneous phase 𝜑 that is

applied when inputing an angle 𝜑in = Ω0𝑡𝑔. In general, this distribution will evolve

in time as the longitudinal phonon modes are heated, leading to larger amplitude

oscillations. We therefore also seek to determine how the erroneous Rabi frequency,

and therefore the phases 𝜑(𝑡) and 𝜑(𝑡′), are correlated at different times. Temporal

correlations over a sufficiently long timescale can limit the fidelity of computations in

the system, even after feedforward optimization of individual gates.

In many common trapping schemes, electric field fluctuations from electrodes trap-

ping the ions are primarily responsible for heating the longitudinal phonons [47]. Here,

we consider systems utilizing such trapping schemes. The lowest frequency phonon

mode, characterized by ions oscillating in phase at frequency 𝜔0, typically dominates

the gate error as the field fluctuations are roughly uniform over the chain [62]. The

gate application time, 𝑡𝑔, is usually much longer than the timescale set by 𝜔0 so we

can assume that the effective Rabi frequency, Ω(𝑡), that an ion feels during a gate

initiated at time 𝑡 only depends on the average position of the ion:

Ω(𝑡) = Ω0 exp

(︂
−𝑥

2(𝑡)

2𝜎2

)︂
(13.7)

where 𝑥(𝑡) = 1
𝑡𝑔

∫︀ 𝑡+𝑡𝑔
𝑡

𝑑𝑠 ⟨𝑥̂(𝑠)⟩ and 𝑥̂ is the position operator of the ion. Letting 𝑝

be the canonically conjugate ion momentum operator, we define the usual bosonic
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creation and annihilation operators 𝑎̂† = (𝑥̂− 𝑖𝑝) /
√

2 and 𝑎̂ = (𝑥̂+ 𝑖𝑝) /
√

2. The

average ion position only depends on the average energy of the harmonic motion:

𝑥2(𝑡) = ~ ⟨𝑛̂(𝑡)⟩ / (𝑚𝜔0) where 𝑚 is the mass of the ion and 𝑛̂ = 𝑎̂†𝑎̂ is the occupation

number.

We must describe the dynamics of the ions’ harmonic motion in order to compute

the distribution and correlations of the Rabi frequencies, and by extention the phases

of the unitary gate. Letting the state of the system be 𝜌 (𝑡), we can model the

dynamics with the Lindblad master equation

𝑑

𝑑𝑡
𝜌 = − 𝑖

~
[~𝜔0𝑛̂, 𝜌]

+ 𝛾+

(︂
𝑎̂†𝜌𝑎̂+

1

2

{︀
𝑎̂𝑎̂†, 𝜌

}︀)︂
+ 𝛾−

(︂
𝑎̂𝜌𝑎̂† +

1

2

{︀
𝑎̂†𝑎̂, 𝜌

}︀)︂
, (13.8)

where the first term represents the coherent harmonic oscillation of the ions, the sec-

ond term represents an increase in the oscillation amplitude at rate 𝛾+, and the third

term represents a decrease in the oscillation amplitude at rate 𝛾−. These latter two

terms describe the incoherent dynamics of the ions resulting from backgrond electric

field fluctuations. Assuming that this background field exists in a thermal state at

temperature 𝑇 , the ions’ oscillation amplitude changes at rates 𝛾+ = 𝛾𝒩 (𝜔0, 𝑇 ) and

𝛾− = 𝛾 (𝒩 (𝜔0, 𝑇 ) + 1), where 𝒩 (𝜔0, 𝑇 ) = 1/
(︀
𝑒~𝜔0/𝑘𝐵𝑇 − 1

)︀
is the Bose-Einstein dis-

tribution of the electric field occupation. We assume that the background electric

field is at infinite temperature so both these rates are equal and redefine 𝛾 such that

𝛾+ = 𝛾− = 𝛾. We also assume that the laser pulse enacting the gate does not affect

the ions’ motional state; in this sense, it is a weak measurement rather than a strong

measurement which would collapse the ions’ motion into a particular eigenstate of

the occupation 𝑛̂.

In typical trapped ion experiments, the initial preparation of the system involves

cooling it close to its motional ground state. We therefore assume that the initial

motional state of the system is the phonon vacuum 𝜌 (𝑡0) = |0⟩ ⟨0|. Dynamics under
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Eq. (13.8) will then evolve the system into a harmonically oscillating coherent state

undergoing a diffusive random walk in its amplitude. It therefore makes sense to

describe the system state in terms of its P-function representation:

𝜌 =

∫︁
𝑑2𝛼𝑃 (𝛼, 𝛼*, 𝑡) |𝛼⟩ ⟨𝛼| (13.9)

where {|𝛼⟩} are coherent states that form a basis for the system. The dynamics of the

system is then captured by a Fokker-Planck equation for the P-function, 𝑃 (𝛼, 𝛼*, 𝑡),

𝑑

𝑑𝑡
𝑃 =

{︂
𝑖𝜔0

(︂
𝜕

𝜕𝛼
𝛼− 𝜕

𝜕𝛼*𝛼
*
)︂

+ 𝛾
𝜕2

𝜕𝛼𝜕𝛼*

}︂
𝑃. (13.10)

The Green’s function of the Fokker-Planck equation, expressed in the rotating

frame of the phonon mode with frequency 𝜔0, is

𝐾 (𝛼′, 𝑡′|𝛼, 𝑡) =
1

𝜋𝛾 (𝑡′ − 𝑡) exp

{︂
− |𝛼

′ − 𝛼|
𝛾 (𝑡′ − 𝑡)

}︂
, (13.11)

which can be interpreted as the probability to find the ions in state |𝛼′⟩ at time 𝑡′

given that they were in state |𝛼⟩ at time 𝑡. This Green’s function can be used to

compute the probability distribution and correlations of observables expressed in the

coherent state basis. Letting 𝜑 (𝜏) = Ω (𝜏) 𝑡𝑔 be the angle imparted by a unitary gate

applied at time 𝜏 in the experiment, when the phonon mode is in state |𝛼 (𝜏)⟩, the

Rabi phase of the qubit will advance by an angle

𝜑 (𝜏) = 𝜑in exp

{︃
−
(︂
𝑎osc

𝑎laser

)︂2

|𝛼 (𝜏)|2
}︃
, (13.12)

where 𝑎osc =
√︀
~/(𝑚𝜔0) and 𝑎laser =

√
2𝜎 are the characteristic length scales of the

harmonic oscillator and Gaussian laser respectively. The probability distribution of

the angle can then be computed as

𝑝𝜑 (𝜑; 𝜏, 𝑐2) =
1

𝑐2𝜏

1

𝜑

(︂
𝜑

𝜑in

)︂ 1
𝑐2𝜏

Θ (𝜑in − 𝜑) , (13.13)
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where we have defined the heating rate constant

𝑐2 = 𝛾

(︂
𝑎osc

𝑎laser

)︂2

(13.14)

and the Heaviside step function, Θ (𝜑in − 𝜑), encodes the fact that the time-averaged

Rabi frequency felt by the ion cannot be more than spending all its time at the center

of the laser where its intensity is strongest. The distribution of angles, Eq. (13.13),

is the noise model we need for feedforward control. Note that it only depends on a

single latent variable, 𝜆 = 𝑐2𝜏 , representing the amount of diffusion the ions’ motion

has undergone.

We can gain insight into the angle distribution by examining the average and

typical angles that are applied by the gate,

𝜑avg = E𝜑 [𝜑] =
𝜑in

1 + 𝜆
(13.15)

𝜑typ = exp (E𝜑 [log 𝜑]) = 𝜑in𝑒
−𝜆. (13.16)

We see that at late experimental times compared to the rate 𝑐2 such that 𝜆 → ∞,

both the average and typical angles go to zero. Physically, the amplitude of the ions’

oscillation becomes so large that the ion never spends time inside the laser beam and

hence its internal qubit state is not changed. While the average angle algebraically

decays to zero at late times, the typical angle becomes very small as 𝜏 crosses 1/𝑐2,

thus showing that 𝑐2 sets the timescale where we can coherently manipulate the qubits

in an experiment.

We can further understand the effects of noise on a quantum computation or

simulation by examining the correlation between two Molmer-Sorenson gates applied
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at a time ∆𝜏 apart,

Corr (𝜑(𝜏 + ∆𝜏 )𝜑(𝜏)) =
Cov (𝜑(𝜏 + ∆𝜏 )𝜑(𝜏))√︀
Var (𝜑(𝜏)) Var (𝜑(𝜏))

=
𝜏

𝜏 + ∆𝑡

√︀
(1 + 2𝑐2𝜏) (1 + 2𝑐2(𝜏 + ∆𝜏 ))

1 + 2𝑐2𝜏 + 𝑐2∆𝜏 + 𝑐22𝜏∆𝜏

(13.17)

Taking the limit at late times, we have

lim
𝜏→∞

Corr (𝜑(𝜏 + ∆𝜏 )𝜑(𝜏)) =
1

1 + 1
2
𝑐2∆𝜏

+𝒪
(︂

1

𝜏

)︂
, (13.18)

which shows that 𝑐2 also sets the temporal correlation length between different gates.

Given that the gate application time, 𝑡𝑔, is small compared to typical values of 𝑐2 in

trapped ion experiments, the unitary gate errors will be temporally correlated.

As a limiting case, we can examine how the noisy gate angles are distributed

at short times when the ions are very close to the center of the laser beam. By

simultaneously taking the limits 𝜑→ 𝜑in and 𝑐2𝜏 → 0 in Eq. (13.13), we get the short

time distribution

𝑝short
𝜑 (𝜑; 𝜏, 𝑐2) =

1

𝑐2𝜏𝜑in
𝑒
− (𝜑in−𝜑)

𝑐2𝜏𝜑in Θ (𝜑in − 𝜑) . (13.19)

This expression can equivalently be derived by Taylor expanding Eq. (13.12) as

𝜑 (𝜏) = 𝜑in

(︁
1− ( 𝑎osc

𝑎laser
)2|𝛼 (𝜏)|2

)︁
and computing the probability distribution of gate

angles using the Green’s function given in Eq. (13.11). The exponential distribution

of gate angles described in Eq. (13.19), valid at short times, is in agreement with the

ion noise model discussed in Ref. [62].

We now give a protocol to experimentally extract the value of 𝑐2 which charac-

terizes the noise in a particular trapped ion set-up. Prepare a system of two qubits

in the computational basis state |↓↓⟩, wait a time 𝜏 , and apply a gate 𝑈̂𝑥𝑥 (𝜑) =

exp
(︁
−𝑖𝜑𝑆𝑥

𝑖 𝑆
𝑥
𝑗

)︁
with an input angle 𝜑in. Then, do a projective measurement in the

computational basis state to extract the return probability of the system being in the
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|↓↓⟩ state. If there was no noise in the system, this probability would be

𝑃↓↓ = ⟨↓↓ |𝑈̂𝑥𝑥 (𝜑in)| ↓↓⟩ = cos2
(︂
𝜑in

4

)︂
(13.20)

for all 𝜏 . With unitary gate error due to the ions’ motion, the probability becomes

𝑃 ↓↓ (𝜑in, 𝑐2𝜏) = E𝜑

[︂
cos2

(︂
𝜑

4

)︂]︂
(13.21)

= cos2
(︂
𝜑in

4

)︂
+

𝜑2
in𝑐2𝜏

8 + 16𝑐2𝜏
1𝐹2(1 +

1

2𝑐2𝜏
,
3

2
, 2 +

1

2𝑐2𝜏
,−𝜑

2
in

16
), (13.22)

where 1𝐹2 is the generalized hypergeometric function. This average return probability

is directly related to the moment generating function of Eq. (13.13). Measuring

Eq. (13.21) for different input angles, 𝜑in, and wait times, 𝜏 , yield curves that can

be used to fit the value 𝑐2. We give examples of these curves in Fig. 56(a). In

Fig. 56(b), we show how the return probability can differentiate between the noise

model derived here and and typical phase damping. The latter leads to a return

probability characterized by an exponentially decaying oscillations with a constant

phase shift dependent on the input angle. Armed with knowledge of the noise model,

Eq (13.13), and a method to experimentally determine the latent variable, 𝑐2, we now

illustrate how non-Markovian correlations in the noise induce an optimal gate depth

when implementing a quantum algorithm.

13.3 Optimal gate depth

We can gain insight into how non-Markovian correlations amongst gates induce an

optimal gate depth in a quantum algorithm by first considering a single one- or

two-qubit gate 𝑈̂ (𝜑tot) = exp
(︁
−𝑖𝜑tot𝐴

)︁
of the form discussed in Sec 13.2. Let us

discretize this gate into 𝑟 Trotter steps: 𝑈̂ (𝜑tot) =
[︁
𝑈̂ (𝜑)

]︁𝑟
where 𝜑 = 𝜑tot/𝑟 and

𝑈̂ (𝜑) = exp
(︁
−𝑖𝜑𝐴

)︁
. The expected angle applied by the total sequence 𝑈̂ (𝜑tot) is

E [𝜑tot] = 𝑟E𝜑 [𝜑] (13.23)
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Figure 56: Return probability predictions for experimental protocol to extract 𝑐2.
(a) Curves for different wait times, 𝜏 , as a function of input angle 𝜑in. (b) Difference
between derived noise model and phase damping.

where E𝜑 [𝜑] is the average angle applied by 𝑈̂ (𝜑). If the unitary gate errors in the

system were Markovian, and therefore uncorrelated, the variance in the total angle

would be

Var (𝜑tot) = 𝑟Var (𝜑) (13.24)

where Var (𝜑) is the variance in the angle applied by 𝑈̂ (𝜑). Regardless of the source

of unitary error, this variance of each discretized gate will typically be proportional

to E𝜑 [𝜑]2. Letting the constant of proportionality be 𝛽, defined through Var (𝜑) =

𝛽E𝜑 [𝜑]2, the noise-to-signal ratio of the total gate sequence becomes:

𝜂 =

√︀
Var (𝜑tot)

E [𝜑tot]
=

√
𝛽

𝑟
. (13.25)

As a concrete example, if we take the noise model developed in Sec. 13.2 and ignore

temporal correlations, we have 𝛽 = (𝑐2𝜏)2 /(1 + 2𝑐2𝜏). This constant 𝛽 is computed

by assuming that each gate angle is independent and identically distributed according

to Eq. (13.13). We see that 𝜂 → 0 as 𝑟 →∞, implying that discretizing the total in-

tended gate, 𝑈̂ (𝜑tot), into a large number of steps can fully mitigate the unitary error

in the system, thus allowing for application of a perfect gate 𝑈̂ (𝜑tot). If Markovian
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noise arising from longitudinal phonon heating was the only source of errors in the

system, a generic gate-based quantum algorithm can then be implemented without

any errors by discretizing each of its gates as described above. Such an error-free

quantum circuit contradicts the decoherence caused by heating-induced unitary er-

rors in real experiments, and hence the assumption that longitudinal phonon heating

leads to Markovian noise on the qubit degrees of freedom is flawed. Correlations

between the unitary gate errors must be responsible for decoherence in experiments,

with an optimal gate depth being set by the timescale upon which this decoherence

becomes too large.

To give a concrete example of how this optimal gate depth arises, we turn to the

Hamiltonian simulation task described in Sec. 13.1. The computed spectrum will

have errors both due to discretization via the Trotter decomposition, Eq. (13.6), and

unitary gate noise due to heating of the ions’ motion as described in Sec. 13.2. Trotter

error decreases as the number of gates in the circuit is increased, while unitary errors

accumulate as the numer of gates is increased. Therefore, there is an optimal gate

count balancing Trotter error and accumulated unitary error.

We can quantify the error in the computation use two different metrics. The first

is to compute the average fidelity

𝐹 (𝑡) = | 1

2𝑛
Tr{𝑈̂1 (𝑡)† 𝑈̂ (𝑡)}|2, (13.26)

where 𝑈̂ (𝑡) = 𝑒−𝑖𝐻̂𝑡, with 𝐻̂ given by Eq. (13.1), is the desired time evolution operator

and 𝑈̂1 (𝑡) is the noisy Trotterized evolution we implement in the quantum circuit,

given by Eq (13.6), with noisy gate angles. Given that computation of a spectrum

requires implementing time-evolution for a series of different times in order to generate

samples of the FID 𝑆(𝑡), we can define the time-integrated fidelity

𝐹int =
1

𝑇

∫︁ 𝑇

0

𝐹 (𝑡) (13.27)

where 𝑇 is the last sampled time. The optimal gate depth is then determined by

the largest value of 𝐹int. This metric is not biased towards any particular choice of

259



observable.

Alternatively, we can quantify the error in the spectrum by computing the Hellinger

distance

𝐷2
𝐻 (𝐴𝑖, 𝐴𝑗) =

1

2

∫︁
𝑑𝜔

2𝜋

(︂√︀
𝐴𝑖(𝜔)−

√︁
𝐴𝑗(𝜔)

)︂2

(13.28)

between a noiseless spectrum, 𝐴𝑖(𝜔), generated by the perfect time evolution oper-

ator, 𝑈̂ (𝑡) = 𝑒−𝑖𝐻̂𝑡, and a noisy spectrum, 𝐴𝑗(𝜔), generated by a noisy Trotterized

evolution, 𝑈̂1 (𝑡) . At the optimal gate depth, the Trotterized spectrum will have the

most overlap with the true noiseless spectrum according to the Hellinger distance.

This metric is biased towards the computation of the spectrum.

The optimal gate depth with the corresponding average fidelity and Hellinger dis-

tance for an example noisy computation is shown in Fig. 59 and Fig. 60 respectively,

and we discuss these results in the next section. The total amount of error in the

noisy computation can be reduced by appropriately modifying the angles of the gates

comprising the quantum simulation circuit, Eq. (13.6), a method known as feedfor-

ward control. We develop a systematic, platform-independent protocol to determine

the modificatied gate angles in the next section. We then illustrate the benefits of

the feedforward control in the context of the Hamiltonian simulation task by showing

improvements in the fidelity and Hellinger distance for an example Hamiltonian of

the form in Eq. (13.1).

13.4 Feedforward Control

A quantum computation or simulation involves applying a unitary operation 𝑈̂ to

a system of qubits. Often, this unitary transformation is a composite of several

single- and two-qubit unitary gates 𝑈̂ (𝜑) = exp
(︁
−𝑖𝜑𝐴

)︁
, with 𝐴 typically linear or

bilinear in spin-1/2 operators, 𝑆𝛼
𝑗 = 𝜎̂𝛼

𝑗 /2. A unitary error in the system manifests

as application of 𝑈̂ (𝜑) when we intend to apply 𝑈̂ (𝜑𝑝). We usually do not have

deterministic knowledge of the value of the incorrect angle, 𝜑, and therefore describe

it with a probability distribution 𝑝𝜑 (𝜑;𝜑in, 𝜆), where 𝜆 is a vector of latent variables

characterizing the physical noise underlying the system and 𝜑in is the angle we input
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when applying the gate. If the gate was noiseless, we would have 𝑝𝜑 (𝜑;𝜑in, 𝜆) =

𝛿 (𝜑− 𝜑in) and would input 𝜑in = 𝜑𝑝, where 𝜑𝑝 is the desired output gate angle. The

idea of feedforward control is to appropriately adjust the input gate angles of the

computation to reduce the error accumulated from incorrect gate angles.

Formally, let the total unitary describing the actual computation be 𝑈̂ =
∏︀𝑀

𝑚=1 𝑈̂𝑚

(︀
𝜑(𝑚)

)︀
,

where 𝑈̂𝑚

(︀
𝜑(𝑚)

)︀
= exp

(︁
−𝑖𝜑(𝑚)𝐴𝑚

)︁
. The desired computation is 𝑈̂𝑝 =

∏︀𝑀
𝑚=1 𝑈̂𝑚

(︁
𝜑
(𝑚)
𝑝

)︁
.

As the output angles are probabilistic, a particular manifestation of the output com-

putation 𝑈̂ depends on the joint probability distribution 𝑝𝜑 (𝜑;𝜑in, 𝜆), where 𝜑in and

𝜑 are the 𝑚 different input and output angles respectively. The goal of feedforward

control is to pick the optimal input angles, 𝜑*
in, such that the computation 𝑈̂ is close

to 𝑈̂𝑝 on average. In general, 𝜑*
in will depend on both the set of desired output angles,

𝜑𝑝, and the latent noise variables, 𝜆.

Optimizing over the entire computation, however, can be challenging as it requires

knowledge of the full joint distribution, 𝑝𝜑, which is generally non-trivial to compute,

even for the model presented in Sec. 13.2. Additionally, even if possible, such an opti-

mization may not generalize well to other computations represented by different gate

sequences. We therefore focus on optimizing each individual unitary gate indepen-

dently of the others, which amounts to neglecting correlations between unitary gate

errors and assuming that they are independent and identically distributed according

to the marginal distribution, 𝑝𝜑. Mathematically, this amounts to the factorization

of the joint distribution: 𝑝𝜑 =
∏︀𝑀

𝑚=1 𝑝𝜑(𝑚) . Temporal correlations in the physical

noise underlying the system lead to correlations in the angles 𝜑 that are not captured

by such a factorization. Feedforward optimization of individual gates can therefore

only partially mitigate the error in the overall computation. However, such an opti-

mization is immediately applicable to all computations, 𝑈̂ , as it done at the level of

individual gates.

The error due to applying a gate 𝑈̂ (𝜑) when we desire to apply 𝑈̂ (𝜑𝑝) can be

quantified by the gate fidelity

𝐹 (𝜑, 𝜑𝑝) = | 1

2𝑛
Tr{𝑈̂ (𝜑)† 𝑈̂ (𝜑𝑝)}|2, (13.29)
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which describes the expected fidelity of an 𝑛-qubit gate for a random state drawn

uniformly from the 𝑛-qubit state space [268]. For example, let us consider a unitary

gate corresponding to 𝐴 = 𝑆𝛼
𝑖 𝑆

𝛼
𝑗 describing an interaction between two qubits 𝑖 and

𝑗. The fidelity then takes the simple form 𝐹 (𝜑, 𝜑𝑝) = cos2 ((𝜑− 𝜑𝑝)/4). The figure

of merit we want to optimize with feedforward control is the average fidelity over all

possible wrong angles 𝜑,

ℱ (𝜑in, 𝜑𝑝, 𝜆) =

∫︁
𝑑𝜑𝑝𝜑 (𝜑;𝜑in, 𝜆)𝐹 (𝜑, 𝜑𝑝) . (13.30)

The optimal input angle is then

𝜑*
in (𝜑𝑝, 𝜆) = arg max

𝜑in

ℱ (𝜑in, 𝜑𝑝, 𝜆) (13.31)

Calculation of this optimal feedforward angle requires knowledge of the control land-

scape defined by the dependence of the figure of merit, Eq. (13.30), on the input angle

𝜑in and desired output angle 𝜑𝑝. This landscape can either be numerically mapped

out with experimental measurements, or analytically computed after developing a

theoretical description of the noise underlying the system.

As a concrete example of the latter approach, the distribution 𝑝𝜑 (𝜑;𝜑in, 𝜆) for

the trapped ion noise discussed in Sec 13.2 is given by Eq. (13.13). The ion noise

is paramterized by a single latent variable, 𝜆 = 𝑐2𝜏 , which can be experimentally

extracted by measuring the return probability Eq. (13.21). The figure of merit for

feedforward control, Eq. (13.30), is this case can be analytically computed:

ℱ (𝜑in, 𝜑𝑝, 𝑐2𝜏) =
1

2
+

1

2
cos

(︂
𝜑in

2

)︂
cos

(︂
𝜑𝑝

2

)︂
+

+
𝜑2

in𝑐2𝜏

8 + 16𝑐2𝜏
cos

(︂
𝜑𝑝

2

)︂
1𝐹2

(︂
1 +

1

2𝑐2𝜏
,
3

2
, 2 +

1

2𝑐2𝜏
,−𝜑

2
in

16

)︂
+

+
𝜑in

4 + 4𝑐2𝜏
sin

(︂
𝜑𝑝

2

)︂
1𝐹2

(︂
1

2
+

1

2𝑐2𝜏
,
3

2
,
3

2
+

1

2𝑐2𝜏
,−𝜑

2
in

16

)︂
. (13.32)

The optimal input angle, 𝜑*
in (𝜑𝑝, 𝑐2𝜏), for the trapped ion noise is the angle which
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Figure 57: Optimal feedforward control characterization. (a) Optimal input angle.
(b) Average gate fidelity. The black dashed line depicts the fidelity if no gate is
applied and the dotted lines represent the fidelity if the desired output angle, 𝜑𝑝, is
directly taken as the input to the gate.

satisfies the condition

ℱ (𝜑*
in, 𝜑𝑝, 𝑐2𝜏) = 𝐹 (𝜑*

in, 𝜑𝑝) , (13.33)

where we recall that 𝐹 (𝜑, 𝜑𝑝) = cos ((𝜑− 𝜑𝑝)/4) is the fidelity of a gate imparting

angle 𝜑 when we desire to apply 𝜑𝑝. We implement feedforward control by taking each

desired output gate angle, 𝜑𝑖𝑗, of the 𝑈̂𝑥𝑥 gates in Eq. (13.6) as 𝜑𝑝 at the experimental

time 𝜏 that the gate is applied. The optimality condition, Eq. (13.33), is then solved

numerically for each such gate and the angle 𝜑*
in is input into the noisy gate rather

than 𝜑𝑖𝑗.

We show the optimal input angle, Fig 57(a), and average gate fidelity, Fig 57(b),

for a range of desired output angles 𝜑𝑝. First, we note that the optimal feedforward

angle, 𝜑*
in, always yields a better average fidelity than inputing 𝜑𝑝. We see that for

small output angles, there is always a finite optimal input angle. For sufficiently large

output angles, however, the optimal input angle is 𝜑*
in = 0, meaning we do not apply

the gate. These angles are such that doing nothing leads to a better fidelity than

any non-zero gate we apply. Furthermore, for times 𝜏 > 𝑐2, meaning that the ions’

collective motion has undergone a considerable amount of diffusion in the ion chain
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Figure 58: Time dependent fidelity of noisy Trotterized time evolution for a system
of four spins evolving under the Heisenberg Hamiltonian, Eq. (13.1). Solid curves
include both heating noise and Trotter error, while the dotted curves include only
Trotter error and are given as a noiseless reference. (a) 𝑐2 = 0.005 ms−1 and no
feedforward correction. (b) 𝑐2 = 0.02 ms−1 and no feedforward correction. (c)
𝑐2 = 0.005 ms−1 with feedforward correction. (d) 𝑐2 = 0.02 ms−1 with feedforward
correction. The noisy computations are averaged over 40 runs.

configuration under consideration, there is an intermediate range of angles where the

optimal thing to do is apply a maximally strong laser pulse to make 𝜑*
in as large as

possible. In this case, the gate essentially applies a random phase to the state and

yields an average fidelity of 1/2.

To benchmark the utility of the feedforward control, we implement with Hamilto-

nian simulation task of Sec 13.1 using optimal input angles computed from Eq. (13.33).

In Fig. 58,we plot an example of the time-dependent fidelity, Eq. (13.26), for differ-

ent heating rate and gate counts with and without feedforward control. We see that

for low gate counts such as computations with 100 gates, the drop in fidelity comes
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Figure 59: Optimal fidelity resulting from balancing Trotter and decoherence errors
for a system of four spins evolving under the Heisenberg Hamiltonian, Eq. (13.1).
The heating rate 𝑐2 is given in units of ms−1. (a) Optimal gate count. (b)
Integrated fidelity. The noisy computations are averaged over 10 runs.

almost fully from Trotter error without heating noise having much of an effect. For

larger gate counts, heating noise becomes the dominant cause of the drop in fidelity.

While the fidelity for the zero heating case gets continuously better with increased

gate count, finite heating causes computations with sufficiently large gate counts to

decrease the overall fidelity.

Feedforward control can improve the situation in two different ways, which can be

seen by comparing, for example, the 300 gate and 700 gate curves. The first effect is

to improve the total fidelity over all time values, as quantified by the improvement in

𝐹int, Eq.(13.27), depicted in Fig. 59. This improvement indicate that the computation

of 𝑈̂1(𝑡) is closer on average to the desired computation 𝑈̂(𝑡) for all values of 𝑡, with

the feedforward corretion bringing the fidelity of a computation closer to the upper

bound set by the Trotter error. The second effect is that for computations with

large gate counts, the fidelity for samples at late times, corresponding to large values

of 𝑡, is improved more signficantly than for short time samples. This improvement

causes the fidelity to have a more shallow decay, and creates windows of time samples

where it may be more advantageous to use circuits with different gate counts. For

example, in Fig. 58(c), a computation with 300 gates is advantageous for samples

with 𝑐2𝑡 . 3, while a computation with 700 gates is advantageous for samples with
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Figure 60: Optimal spectra resulting from balancing Trotter and decoherence errors
for a system of four spins evolving under the Heisenberg Hamiltonian, Eq. (13.1).
The heating rate 𝑐2 is given in units of ms−1. (a) Optimal gate count. (b) Hellinger
distance between optimal noisy spectra and noiseless spectrum. The noisy
computations are averaged over 10 runs.

𝑐2𝑡 & 3. The significance of this result is that a particular observables of interest

may have information that is more concentrated in a particular time window. For

example, the resolution between peak of the spectrum, Eq. (13.2), comes from samples

at late times. Therefore, the optimal gate count determined by the accuracy of the

spectrum may be larger than the optimal gate count determined by the integrated

fidelity. Indeed, this is what is seen when comparing Fig. 59 and Fig. 60.

In Fig. 60(a) and (b), we show the optimal gate count and associated Hellinger

distance of spectra computed both with and without the feedforward correction. We

see that the accuracy of the optimal noisy spectrum is significantly improved. An

example spectrum for a system with heating rate 𝑐2 = 0.02 ms−1 is depicted in Fig. 55.

The feedforward control both directly mitigates decoherence error from the motion of

the ions and indirectly reduces the Trotter error by increasing the optimal gate count.

Therefore, by effectively increasing the optimal gate depth of the circuit, feedforward

control can be used to partially mitigate both discretization error and accumulated

unitary gate error in the system.
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Figure 61: Simulation of NMR inference algorithm with motional noise and Trotter
error for a system of four spins. At each update step of the protocol, noisy spectra
computed from a set of sample Hamiltonians are used to calculate the next update
step (a) Hellinger distance between the average Hamiltonian’s noisy spectrum and
the target spectrum with and without feedforward correction. (b) Spectrum
comparison. We take the average Hamiltonians found at the initial and last
iterations of the noisy inference protocol and simulate what its spectrum would be if
there was no noise. The fact that the last spectrum is significantly closer to the
target spectrum compared to the initial spectrum gives a visual indication of the
improvement in the underlying Hamiltonian during the inference protocol. The
phonon heating rate is taken to be 𝑐2 = 0.02 ms−1 and the noisy spectra are
computed with 500 gates and averaged over 10 runs.

13.5 Discussion

This improvement in the quality of the Hamiltonian simulation can be helpful for prac-

tical applications, such as the NMR spectrum inference task discussed in Ref. [328].

In that work, a hybrid quantum-classical algorithm is used to infer the parameters

of a Hamiltonian, Eq. (13.1), that models the system of nuclear spins which produce

a given experimental NMR spectrum. The premise of the algorithm is to iteratively

simulate the spectrum corresponding to different Hamiltonian parameters on quantum

hardware and guess parameters that are closer to the target experimental spectrum

using classical optimization techniques. After a sufficient number of iterations, the

learned Hamiltonian parmeters can be used to gain insight into the chemical structure

of the sample that produced the given NMR spectrum. In Fig. 61, we demonstrate

the benefit of feedforward correction in this inference algorithm. Figure 61(a) shows
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the Hellinger distance between the average noisy Trotterized spectrum and a given

target spectrum at each iteration of the protocol. We see that the feedforward cor-

rection allows the algorithm to converge faster, as the increased resolution in the

simulated spectra allows the classical optimization to more easily guess better Hamil-

tonian parameters. In Fig. 61(b), we take the Hamiltonian parameters for the initial

and last iterations of the noisy protocol with feedforward correction and compute

the corresponding spectra without noise to compare how well the learned parameters

correspond to the true parameters underlying the given target spectrum. We see that

even though the quantum simulation is noisy, we are still able to iteratively infer the

Hamiltonian parameters underlying the target spectrum.

We have shown how to tailor gate-based quantum simulation algorithms for par-

ticular hardware platforms. Specifically, we demonstrate how knowledge of hardware

noise leading to unitary gate errors can be exploited to implement feedforward control

to improve the simulation outcome. The ion noise model we derive applies to an array

of computations and simulations performed in trapped ions, and feedforward control

can be used to mitigate noise in these applications. In addition to feedforward control,

it may be possible to incorporate feedback control to mitigate the motional noise. For

example, the motional state of an an ancilla ion can be periodically measured. Such

a strong measurement would restart the ions’ diffusion process, effectively reducing

the time 𝜏 over which the system undergoes diffusion. Knowledge of the motional

state can then be used to generate feedforward corrections until they are recalibrated

by the next measurement.

Other common quantum platforms such as superconducting qubits and Rydberg

atoms also suffer from unitary gate errors. For example, charge and flux noise are

amongst the dominant source of errors in superconducting platforms, but dispersive

coupling in the system can cause correlated coherent errors that are appreciable as

well [188, 190]. In Rydberg atom systems, leakage errors due to blackbody radiation-

induced transitions and radiative decay are the dominant error channels, but coherent

errors arising from the finite temperature atoms feeling different laser amplitudes can

be appreciable [76]. The physical mechanisms underlying coherent errors in super-
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conducting and Rydberg platforms are quite different from that of trapped ions and

understanding the structure of the optimal feedforward correction in these systems

may provide insight into which quantum algorithms and simulations are best suited

to different platforms.
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Part V

Conclusion and Outlook
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The goal of this thesis was to progress towards answering practically useful ques-

tions using quantum simulators by improving our understanding of which platforms

suit different application contexts, and when a digital, analog, or hybrid simula-

tion approach is appropriate. We specifically focused on simulating the dynamics of

many-body systems, as this is believed to be one of the first contexts in which early

quantum hardware (either late-stage NISQ or early fault tolerant machines) may aid

in an application of practical relevance [68, 80]. In Part II, we explored analog quan-

tum simulation of the closed system dynamics of Bose-Fermi mixtures using ultracold

atoms. In Part III, we explored analog quantum simulation of the open system dy-

namics of spin chains using ultracold atoms coupled to optical cavities. In Part IV, we

explored digital, analog, and hybrid quantum simulation using trapped ions and su-

perconducting circuits in a context of practical relevance: NMR spectroscopy. NMR

experiments are fundamentally about spin dynamics, with different protocols admit-

ting descriptions as closed or open systems. Here, we draw connections between the

topics examined in different parts of the thesis, synthesizing key lessons learned and

open questions that emerge.

The quantum Cherenkov transition uncovered in Part II can be framed as a dis-

sipative dynamics phenomenon when viewed from the point of view of the fast im-

purity [204]. When the impurity is slow, it emits a fixed amount of excitations into

the bath, while when it is sufficiently fast, it dissipates momentum by emitting a

diverging number of excitations into the bath. Dissipation into the bath mediates

the dynamics of the impurity and the Loschmidt echo can be used to signify a qual-

itative transition between these two dynamical regimes. This behavior is spiritually

analogous to the dissipative spin chain studied in Part III, where the cavity pho-

ton forming the bath mediated dissipative dynamics in the system, with correlation

functions of the system spins signifying a transition between two qualitatively dif-

ferent regimes of dynamics: one where spin-wave excitations are created and other

where they are destroyed. The analogy between the two systems brings to mind a

long-standing question in modern physics: is there a notion of non-equilibrium uni-

versality in many-body systems? Universality, the idea that diverse phenomenon
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with completely different microscopic origins can be classified and predicted using a

handful of underlying characteristics such as dimension and symmetry, is one of the

most successful concepts in our understanding of many-body systems in equilibrium.

It remains unclear whether non-equilibrium phenomenon in closed quantum many-

body systems can similarly be described by a few underlying principles, and whether

opening the system and admitting dissipative dynamics changes the answer [237].

Two organizing questions that arise from Parts II and III are (1) can we define a

non-equilibrium phase of matter, and (2) can entanglement or a similar metric be

used as an order parameter to characterize non-equilibrium universality? Progress on

these questions would have fundamental implications for both condensed matter and

high-energy physics.

Ultracold atom analog quantum simulators seem ideally suited to study the ques-

tion of non-equilibrium universality due to their natural implementation of various

boson, fermion, and spin models in the thermodynamic limit. Coupling the atoms

to an optical cavity allows a degree of tunability of the models that enables explo-

ration of various dynamical systems. Indeed, cold atoms in optical cavities have

been used to explore various dynamical transitions in both closed and open sys-

tems [25, 44, 200, 208, 94, 259, 382, 96, 304, 113]. These works largely explore the

dynamics of collective spin models that are limited to semi-classical behavior. A

promising next step would be to use the tricks employed in Part III, namely magnetic

field gradients and side-bands, to endow the system with spatially-resolved interac-

tions that endow the system with true many-body character and see how this affects

the previously investigated dynamical transitions.

The dissipation engineering tricks developed in Part III are also relevant to the

practical application of NMR simulation discussed in Part IV. While we focused on

NMR protocols that can be described by (possibly ensemble-averaged) closed system

dynamics, many of the most interesting protocols of scientific and pharmaceutical

relevance have dissipative dynamics take center stage. For example, NOESY is a

protocol that uses dipolar relaxation in the system to infer the relative positions of

spins, and thereby learn about the structure of the molecule. NOESY is used widely
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to determine the structure of proteins, which in turn can be used to screen different

drug targets [133]. Both the dynamics of these relaxation spectroscopy protocols and

the dynamics of the spin chains in Part III are described by a master equation char-

acterized by some power spectral density of noise. We can thus ask if we can engineer

the dynamics of analog quantum simulators, either in using cold atoms coupled to

an optical cavity or superconducting devices in a circuit-QED platform, to mimic

the power spectral density of spins in salient relaxation NMR protocols. A possible

starting point is to engineer qubits on a superconducting chip to mimic an inversion-

recovery NMR experiment, where one qubit would act as the spin of interest and

we drive the remaining qubits to engineer an effective bath. More generally, Floquet

engineering may enable a path to directly simulate relaxation NMR protocols on oth-

erwise unitary quantum simulators as the relaxation dynamics in NMR arises from

the system spins themselves rather than an external bath. Mathematically, truncat-

ing the Floquet Hamiltonian at second order and replacing second-order interaction

terms with their rotational expectation values may capture the usual master equation

treatment of relaxation NMR.

In addition to using the dissipation engineering methods Part III to engineer the

dynamics of quantum simulators, the open system correlation dynamics investigated

itself may prove useful in bounding the errors in quantum simulations. We know

from the trapped ion heating dynamics investigated in Part IV that noise in quantum

simulators can often be correlated and non-Markovian. Studying how correlations

generated by correlated dissipation spread may therefore allow us to generalize the

types of error bounds derived in Ref. [116] to quantum simulations of systems with

variable range interactions such as molecules that appear in NMR experiments.

We can also take inspiration in the reverse direction, and see if some of the philoso-

phies in NMR spectroscopy can inform our understanding and control of quantum

simulation. Specifically, NMR spectroscopy is limited to a single observable, the total

magnetization of the system, and therefore extracts information about the underlying

spin dynamics by manipulating the spins with a series of sophisticated pulse trains.

We can identify how external control fields similarly made the dynamics of the systems
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studied in Parts II and III more visibile. Specifically, an external force applied to the

mobile impurity in Part II drove it into the supersonic Cherenkov regime, which man-

ifested in experimentally visible signatures of dissipative dynamics. In Part III, an

external control field was able to repeatedly drive the system through its two regimes

of dynamics (creating and destroying excitations), making this behavior more visible

in experimentally measureable correlation functions. We can thus ask the following

question: can we define a quantum optimal control problem where we fix the available

measurements in a quantum many-body system and optimize how external control

fields are applied such that we can effectively learn the dynamics of excitations in the

system? This scenario is the inverse of current Hamiltonian learning and verification

proposals, where we fix the dynamics of the system and pick optimal measurements

that will let us learn the dynamics effectively [160, 80]. In both cases, we wish to

learn the dynamics of the quantum many-body system, but in one case we pick the

control fields and fix the measurement while in the other case we fix the control field

and pick the measurements.

Progress on this optimal control question may be relevant for NMR experiments

themselves. Modern NMR is performed using a radiofrequency (RF) coil to probe

the spins. In the last few years, people have shown that quantum sensors such as

nitrogen-vacancy (NV) centers in diamond can couple to spins in biomolecules and

perform NMR experiments [224]. Compared to the classically coupled RF coil, the co-

herent nature of the coupling between the NV center and the biomolecule, along with

other memory qubits in the diamond that can coherently interact with the NV cen-

ter, opens the tantalizing possibility of extracting more information from biomolcules

than conventional NMR experiments. Exploring this possibility, however, requires de-

termining the optimal manipulation of the limited quantum resources in the diamond

and the molecule itself in order to extract salient information about the molecule’s

spin dynamics.

Answering practically useful questions using quantum simulators in the near-term

will likely require a similarly clever use of different available resources. For example,

we may use hybrid digital-analog quantum simulation to realize complicated dynam-
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ical models while embedding the simulation in a larger classical simulation. Such

embedding frameworks have been developed for the electronic structure problem in

both condensed matter and quantum chemistry contexts [366]. Two contexts where

such embedding methods could enable quantum simulators to add value to scientifi-

cally and practically useful applications are high-termperature superconductivity and

NMR experiments. Cold atom simulations of the Fermi-Hubbard model [80], and

strongly correlated limits of the model that manifest as Bose-Fermi mixtures [184]

may be able to shed light on qualitative aspects of high-temperature superconductors

if simulations are performed on large enough systems for long enough times. Em-

bedding cold atom analog quantum simulation of these models inside simulations on

classical computers may enable quantatively accurate results faster than waiting for

cold atom experimental platforms to reach low enough errors to perform the entire

simulation themselves.

For NMR experiments, hybrid quantum simulations of solid-state NMR or liquid-

state relaxation NMR (such as NOESY) on different platforms embedded inside clas-

sical computer simulations using software built on state-space decomposition such as

Spinach [196] may enable NMR structure validation of molecules larger than classical

computers can accompish by themselves. This structure validation would be useful

for both fundamental biochemistry studies as well as drug discovery using screening

flows [133]. Enabling quantum simulators to add value, even in a limited capac-

ity, to fundamental material science and biochemistry as well as the development of

high-temperature superconductors and novel drugs would give quantum technology

a keystone near-term application.

Just as the early and modest commercial success of the transistor radio paved

a path to personal computers, a near-term application of quantum hardware with

modest impact may buy the quantum science and technology ecosystem enough time

to reach fully fault-tolerant quantum computers and realize the promise they bring.
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