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Abstract

For any modern database system, its physical design, which is composed of both the
storage layout of the data itself and auxiliary data structures such as indexes, is a
critical piece of maintaining high performance in the face of increasing data volumes.
Existing physical design components are general-purpose: they achieve adequate
performance for the average use case but don’t achieve optimal performance for any
individual use case. These physical design components expose numerous configuration
knobs that users must manually tune to achieve better performance for their individual
use case, but tuning complex systems is labor-intensive, and poor tuning can result in
degraded performance and increased costs.

In this thesis, we explore how database systems can maximize performance while
minimizing manual effort through instance-optimization, which is the process of
designing systems that are able to automatically self-adjust in order to achieve the
best performance for a given use case. We leverage instance-optimization to introduce
novel designs for database indexes and data storage layouts that outperform existing
state-of-the-art indexes and data layouts by orders of magnitude. We also demonstrate
how to incorporate multiple instance-optimized database components into an end-to-
end analytic database system that outperforms a well-tuned commercial cloud-based
analytics system by up to 3×.

Thesis Supervisor: Tim Kraska
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Database systems are the backbone of any modern enterprise. They power increasingly
diverse business-critical use cases, ranging from maintaining real-time inventory metrics
for e-commerce companies to supporting business intelligence tools that enable data-
driven decision making. At the same time, modern enterprises are faced with an
exponentially-increasing deluge of data, with the amount of data created worldwide
increasing from 2 zettabytes in 2010 to nearly 100 zettabytes in 20221. To keep pace
with the prolific growth of both use cases and data volumes, modern database systems
must continue to push the boundaries of performance.

One impactful method of achieving high performance in database systems is by
optimizing their physical design, which refers to the physical data structures that
represent the data stored within a database. A physical design that is optimized
for the database’s intended usage patterns can dramatically improve performance.
For example, over the past decade analytic databases have overwhelmingly adopted
columnar storage over traditional row-based storage, which can reduce scan costs
for analytic queries that typically only access a subset of a table’s columns; this
demonstrates that the way in which the data itself is laid out on physical storage
has an impact on performance. As another example, auxiliary data structures such
as indexes and materialized views can improve performance for specific data access
patterns, such as point lookups over a primary key column or a specific grouped
aggregation.

The physical designs of modern database systems are typically general purpose:
they achieve adequate performance for the average use case, but don’t achieve optimal
performance for any individual use case (Fig. 1-1). Database systems allow users
to make decisions about the physical design of their specific database instance by
exposing configuration knobs that the user can tune to achieve better performance for
their specific use case. For example, the user can decide which column to sort each
table by, which columns to build an index over, and what materialized views to create.
However, tuning complex database systems is labor-intensive, and poor tuning can
result in degraded performance and increased costs.

To alleviate the burden that manual tuning places on the user, in the late 1990’s

1https://www.statista.com/statistics/871513/worldwide-data-created/
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Figure 1-1: How can enterprises handle new data management use cases while main-
taining high performance? Manual tuning can achieve some performance improvements
but is labor-intensive and error-prone. Auto-tuning requires less manual effort but is
still limited by the fact that it is applied to pre-built, often general-purpose, database
systems that have a fixed set of mechanisms. Instance-optimization, which is the focus
of this thesis, involves the careful co-design of both highly customizable mechanisms
and policies for automatically specializing those mechanisms to achieve high perfor-
mance for any given use case.

and early 2000’s, commercial database systems such as Microsoft SQL Server made
a concerted effort to automate certain tuning tasks, such as the selection of which
indexes and materialized views to create [26, 5, 6]. They introduced auto-tuning tools
(Fig. 1-1) that observe the user’s interactions with the database to suggest configuration
knob settings and physical design decisions to the user that improve performance. For
example, the tool might observe that the user often retrieves data from a table that
tracks shipments based on the date of the shipment, and therefore suggest to build an
index over the ship-date column. Over the past decades, these auto-tuning tools have
matured and are a part of many large-scale commercial database systems [7, 8].

However, the performance improvements that are achievable by these auto-tuning
tools depend on the physical design mechanisms that are supported by the underlying
database system. Fundamentally, a physical design mechanism that has more degrees
of freedom has a larger number of possible configurations, and therefore it is more
likely that for a specific use case, a specific well-chosen configuration can achieve
better performance compared to a mechanism with fewer degrees of freedom that has
fewer configurations to choose from.

The problem is that most database systems are designed with the goal of minimizing
the complexity that is exposed to the user. Therefore, they typically expose a minimal
set of configuration knobs and decision decisions for the user to make, in order to
reduce the tuning burden on the user. Auto-tuning tools typically only tune this
minimal set of configuration knobs. The limited degrees of freedom limits the ability
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to specialize for a specific use case, and therefore limits the performance improvements
achievable by tuning. In essence, the problem is that the mechanisms (i.e., the space
of possible physical designs) were designed independently of the policies (i.e., the
methods for searching in that space of designs).

A recent trend towards instance-optimized database components aims to improve
the ability to specialize to a given use case. These instance-optimized components
significantly expand their degrees of freedom far beyond what traditional database
components are capable of, which therefore increases their configurability to any specific
use case. For a given specific use case, instance-optimized database components can
automatically find the best configuration from this much larger design space, often
using machine learning or other optimization techniques. It is important to note
that instance-optimization is not a competitor to auto-tuning, but rather the natural
evolution of auto-tuning into a more powerful form that is not constrained by a
pre-defined, often minimal, configuration space.

This thesis explores how instance-optimization can be used to improve the perfor-
mance of database physical designs—with a focus on indexes, storage layouts, and
materialized views—while requiring minimal manual effort from end users. In the re-
mainder of this chapter, we more formally present the concept of instance-optimization,
especially in the context of physical database design, then introduce the contributions
of this thesis.

1.1 What is Instance-Optimization, Really?

Many existing publications on instance-optimization, including some of our own,
loosely define instance-optimized systems as those that are designed to automatically
self-adjust in order to achieve the best performance for a specific use case, i.e., a dataset
and query workload. However, this definition is too broad and vague to be useful. By
this definition, auto-tuning can be considered a form of instance-optimization because
it is able to automatically self-adjust configuration knobs for a given dataset and
workload. We now present a new definition that is more narrow in scope but is also
more precise and gives us a better framework for reasoning about what constitutes a
instance-optimized database and what doesn’t.

Instance-optimization is often defined in terms of the capabilities of the component,
e.g., the instance-optimized storage layout is able to adapt to the dataset and workload
and therefore achieves better performance for a specific use case. We instead choose to
define instance-optimization in terms of the process of designing the component itself.
An instance-optimized design process involves two parts: first, we aim to expand the
design space of its mechanisms to be able to adapt to any given use case, i.e., any
given dataset and workload. In the extreme case, an instance-optimized database
should support all possible mechanisms and should therefore be infinitely configurable,
but this is not achievable in practice, and so instance-optimized systems must carefully
build its mechanisms to be configurable along the most impactful degrees of freedom
for adapting to different datasets and workloads. In other words, unlike most modern
database systems, which aim to reduce complexity by reducing the number of tunable
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configuration knobs, instance-optimized systems typically expose more knobs and
parameters, which expands the design space and therefore increases the degrees of
freedom with which to optimize for a certain use case.

Second, we simultaneously must create policies for navigating this larger design
space of mechanisms to find the configuration that optimizes performance for a specific
use case. In other words, it should have an extremely powerful auto-tuner that can
select a configuration from the extremely large space of possible database designs. In
summary:

Instance-optimization is the process of co-designing (1) a mechanism
with enough degrees of freedom to allow for fine-grained customization to
any particular use case and (2) a policy, or optimization algorithm, for
automatically specializing the mechanism to a specific use case, i.e., a
well-defined dataset and workload.

It is also important to point out that the idea of instance-optimization is often
incorrectly used synonymously with the idea of “ML for systems,” that is, applying
machine learning techniques to improve database systems. For example, ML can be
used to improve auto-tuning algorithms for configuring knobs, but it would not qualify
as instance-optimization because there is no co-design of mechanisms and policies.
Furthermore, this false equivalence is misleading because instance-optimization does
not necessarily involve ML. Instance-optimized systems do require efficient algorithms
for navigating a expanded design space of mechanisms, which are often based on
machine learning (ML), but not necessarily. In the end, ML is simply a means to an
end, not the end in itself. Even when an instance-optimization technique uses ML, we
generally prefer to call it instance-optimized, to place more focus on the goal rather
than the method for achieving that goal.

1.2 Thesis Statement and Contributions
In this thesis, we make the following claim:

Thesis Statement: Instance-optimization of the physical design of a
database system, through careful co-design of highly configurable mecha-
nisms and policies for automatic specialization to a given use case, improves
the performance of database systems and their ability to adapt to new use
cases.

We explore instance-optimization in the context of several fundamental components
of database physical design: indexes, data storage layouts, and materialized views.

1.2.1 Indexes

Database indexes are data structures that aim to improve the speed of retrieving
data from a database. One of the most fundamental database indexes is the B+ Tree,
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which is constructed over an array of 𝑛 key-value pairs that are sorted by the key, can
perform a lookup of any given key in 𝑂(log 𝑛) time, and takes 𝑂(𝑛) storage space.
The B+ Tree is general-purpose and has been used in commercial databases for many
decades. However, the generality of the B+ Tree comes at a cost. In some cases,
knowledge of the data helps improve performance. As an extreme example, if the
keys are consecutive integers, we can store the data in an array and perform lookup
in 𝑂(1) time.

Indeed, Kraska et al. [100] observed that B+ Tree indexes can be thought of as
models. Given a key, they predict the location of the key-value pair within the sorted
array. If indexes are models, they can be learned using traditional ML techniques by
learning the cumulative distribution function (CDF) of the input data. The resulting
Learned Index [100] is optimized for the specific data distribution, and empirically
outperforms a traditional B+ Tree index over the same data distribution in both
lookup time and space usage.

The Learned Index is an instance-optimized data structure because it satisfies both
properties described in Section 1.1: first, its mechanism is vastly more configurable
than what can be found in traditional systems. Typical indexes such as the B+ Tree
only have a few user-tunable parameters, such as the page size. On the other hand, a
Learned Index is fundamentally a ML model, which can approximate any continuous
function [33]. Furthermore, the Learned Index has algorithms for (semi-)automatically2

configuring their ML model based on the use case, i.e., the specific data that is being
index.

However, the main drawback of the Learned Index is that it does not support
any data modifications (i.e., writes), including inserts, updates, or deletes. This
critical drawback makes the Learned Index unusable for the vast majority of real-world
workloads, which are composed of a combination of reads and writes. In Chapter 2,
we introduce ALEX [46], which is an updatable learned index that dynamically
adjusts both its models and its structure in the presence of data modifications, while
maintaining its speed and space advantages over non-learned indexes. ALEX is built
on several core ideas:

• Storage layout optimized for models: To store sorted key-value records,
ALEX uses an array with gaps, a Gapped Array, which (1) amortizes the cost
of shifting the keys for each insertion because gaps can absorb inserts, and (2)
allows more accurate placement of data using model-based inserts to ensure that
records are located closely to the predicted position when possible.

• Search strategy optimized for models: ALEX exploits model-based inserts
combined with exponential search starting from the predicted position.

• Adaptive tree structure: ALEX provides robust performance even when the
data distribution is skewed or dynamically changes after index initialization.
ALEX achieves this by exploiting adaptive expansion and node splitting mecha-

2In the original publication [100], the user does need to manually tune the number of second-level
models, which has a large impact on performance.
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nisms, paired with selective model retraining, which is triggered by intelligent
policies based on simple cost models.

1.2.2 Storage Layouts

Indexes such as B+ Trees and ALEX are designed to support workloads with frequent
data modifications and lookups for either a single key or short range of key values.
These types of workloads are common in operational (OLTP) use cases, where databases
must excel at efficiently reading and writing individual rows of data.

On the other hand, analytic (OLAP) use cases often involve queries that compute
an aggregation over a large number of data records. In addition, data modification
operations are less frequent, and when they do occur, data records are typically
modified in large batches rather than individually. To efficiently process increasingly
larger volumes of data, modern data analytics services use a variety of techniques to
reduce data access, i.e., the amount of data that must be read during query processing.
For example, one standard technique is to use columnar storage to avoid accessing
columns that are not relevant to a query.

An extremely impactful technique for reducing data access is to adjust the data
storage layout, i.e., the way in which data records are ordered and clustered on
physical storage, whether that be in memory, on disk, or in cloud object stores. Since
filtering data based on predicates is one of the most fundamental operations for any
modern analytic database system, a good storage layout separates filtered records
from non-filtered records, and therefore allows the database to minimize the amount
of data read during query processing. The challenge is that every query in the user’s
workload uses potentially different filters, so the set of filtered and non-filtered records
is different for each query, and the data storage layout should perform well across the
entire user workload.

The most commonly-used data storage technique in practice is to sort all data
records in a table by their value in a certain column, called the sort key. Additionally,
some database support specialized multi-column sort orders (e.g., Z-order) or multi-
dimensional indexes. However, these data layout schemes are hard to tune and their
performance is inconsistent. Our own recent work on learned multi-dimensional in-
dexes [137] has introduced the idea of instance-optimizing the storage layout. However,
the performance of that work suffers in the presence of correlated data and skewed
query workloads, both of which are common in real applications.

Therefore, in Chapter 3 we introduce Tsunami [48], an instance-optimized data
storage layout that handles correlated data and skewed query workloads. First,
Tsunami achieves high performance on skewed query workloads by using a lightweight
decision tree, called a Grid Tree, to partition space into non-overlapping regions
in a way that reduces query skew. Second, Tsunami achieves high performance on
correlated datasets by indexing each region using an Augmented Grid, which uses
two techniques—functional mappings and conditional CDFs—to efficiently capture
information about correlations. Finally, Tsunami has an optimization algorithm that
automatically configures the Grid Tree and Augmented Grid structures for a given
use case. Tsunami achieves up to 11× faster query performance than optimally-tuned

19



traditional data layouts, as well as up to 6× faster query performance than the previous
state-of-the-art instance-optimized data layout.

However, Tsunami can only optimize a single table’s storage layout, for a query
workload that only queries that table. In practice, analytics workloads typically
contain many tables and the queries use diverse join patterns, such as in a star or
snowflake schema. Furthermore, Tsunami is designed to handle data that resides
fully in memory, whereas large datasets nowadays are often stored on disk or in cloud
objects stores such as Amazon S3. Therefore, in Chapter 4 we introduce MTO
(Multi-Table Optimizer) [45], the first instance-optimized storage layout framework for
jointly optimizing the storage layouts of all tables in disk-based or cloud-based multi-
table datasets. Our key idea is to pass additional information about joins through
join-induced predicates, to jointly optimize the layout for all tables, simultaneously.
Furthermore, existing instance-optimized layout techniques must re-optimize the entire
layout in response to changes in the query workload. In contrast, MTO gracefully
responds to workload changes through partial layout reorganization. Experiments
on a commercial cloud-based analytics service show that MTO achieves up to 93%
reduction in data accessed and 75% reduction in end-to-end query times compared to
state-of-the-art data layout strategies.

1.2.3 Synthesis Into a Complete System

Instance-optimized physical design components have largely been designed and eval-
uated in isolation, and there have only been a few efforts to integrate them into
an end-to-end system. It is unclear how multiple instance-optimized components
would work together in concert. In fact, it is easy to imagine a number of learned
components destructively interfering with each other. Is it possible to build a system
that autonomously custom-tailors its major components to the user’s requirements,
approaching the performance of a bespoke system but with similar ease of use as a
general-purpose system?

To the best of our knowledge, there is no end-to-end data system built with
instance-optimization as a foundational design principle. As a case study and a first
attempt at synthesizing the rich space of research on instance-optimized database
components, in Chapter 5 we introduce SageDB [44], an instance-optimized data
analytics system, and show how two carefully selected components can work together in
practice. These instance-optimized components are (1) data storage layouts combined
with data replication, which draws on the ideas of Chapters 3 and 4, and (2) partial
materialized views, which are a generalization of traditional materialized views with
more degrees of freedom. These techniques minimize I/O when scanning data from
disk and maximize computation reuse through intelligent pre-materialization of partial
results. For a given dataset and workload, SageDB uses a global optimization algorithm
to automatically and simultaneously configure all instance-optimized components. Our
SageDB prototype is a single-node database that stores data on disk, backs up data
on the cloud, and uses a parallelized pipeline-based execution engine. Our prototype
outperforms a commercial cloud-based analytics system by up to 3× on end-to-end
query workloads and up to 250× on individual queries.
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1.2.4 Opportunities and Limitations

While the work presented in this thesis demonstrates the opportunities of instance-
optimized database systems, more work remains before instance-optimization tech-
niques can be widely adopted in production-ready systems. We will describe these
limitations and the potential for future work in detail in Section 6.2. Here, we highlight
some key limitations at a high level.

While ALEX shows how learned indexes can thrive in dynamic environments, it
is nonetheless still a prototype. Compared to the B+ Tree, which is often preferred
because of its suitability for data on persistent storage and its support of concurrency,
ALEX’s design is optimized for data stored in memory, and it is single-threaded.
ALEX has served as the blueprint for follow-on work, by both ourselves and others,
that addresses these limitations. APEX [113] adapts ALEX to perform well for data
that is stored on persistent memory, and ALEX+ [191] is a concurrent version of
ALEX that employs a simplified version of APEX’s concurrency protocol.

Together, Tsunami and MTO improve both the performance and scope of instance-
optimized data storage layouts. However, one limitation of both techniques, and of
existing instance-optimized data layouts techniques more broadly, is that since they
optimize their design for a specific dataset and workload, they may perform poorly
for datasets and workloads that frequently change. For highly dynamic environments,
it may not make sense to even use instance-optimized layouts.

There is also room to further improve SageDB’s design and performance. First,
while we aimed to automate SageDB’s operation as much as possible, the user still has
one important responsibility: deciding when to manually trigger SageDB’s optimization
algorithms. Ideally, even this responsibility should be removed from the user, and
SageDB’s optimization functionality should be fully autonomous. Second, as was
the case with instance-optimized layouts, SageDB is not designed to maintain high
performance for highly dynamic datasets and workloads. Furthermore, SageDB
currently only synthesizes instance-optimized components related to physical design,
but there has also been significant work on instance-optimized query optimizers,
cardinality estimators, and cost models that have not yet been incorporated into
SageDB. These limitations point to important directions for future work.
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Chapter 2

ALEX: An Updatable Learned Index

Recent work by Kraska et al. [97], which we will refer to as the Learned Index, proposes
to replace a standard database index with a hierarchy of machine learning (ML) models.
Given a key, an intermediate node in the hierarchy is a model to predict the child
model to use, and a leaf node in this hierarchy is a model to predict the location of
the key in a densely packed array (Fig. 2-1). The models for this Learned Index are
trained from the data. Their key insight is that using (even simple) models that adapt
to the data distribution to make a “good enough” guess of a key’s actual location
significantly improves performance. However, their solution can only handle lookups
on read-only data, with no support for update operations. This critical drawback
makes the Learned Index unusable for dynamic, read-write workloads, common in
practice.

In this chapter, we start by asking ourselves the following research question: Can we
design a new high performance index for dynamic workloads that effectively combines
the core insights from the Learned Index with proven storage & indexing techniques to
deliver great performance in both time and space? Our answer is a new in-memory
index structure called ALEX, a fully dynamic data structure that simultaneously
provides efficient support for point lookups, short range queries, inserts, updates,
deletes, and bulk loading. This mix of operations is commonplace in online transaction
processing (OLTP) workloads [30, 179, 164] and is also supported by B+Trees [159].

Implementing writes with high performance requires a careful design of the un-
derlying data structure that stores records. [97] uses a sorted, densely packed array
which works well for static datasets but can result in high costs for shifting records
if new records are inserted. Furthermore, the prediction accuracy of the models can
deteriorate as the data distribution changes over time, requiring repeated retraining.
To address these challenges, we make the following technical contributions in this
chapter:

• Storage layout optimized for models: Similar to a B+Tree, ALEX builds a
tree, but allows different nodes to grow and shrink at different rates. To store
records in a data node, ALEX uses an array with gaps, a Gapped Array, which
(1) amortizes the cost of shifting the keys for each insertion because gaps can
absorb inserts, and (2) allows more accurate placement of data using model-based
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inserts to ensure that records are located closely to the predicted position when
possible. For efficient search, gaps are actually filled with adjacent keys.

• Search strategy optimized for models: ALEX exploits model-based inserts
combined with exponential search starting from the predicted position. This
always beats binary search when models are accurate.

• Keeping models accurate with dynamic data distributions and work-
loads: ALEX provides robust performance even when the data distribution is
skewed or dynamically changes after index initialization. ALEX achieves this
by exploiting adaptive expansion, and node splitting mechanisms, paired with
selective model retraining, which is triggered by intelligent policies based on
simple cost models. Our cost models take the actual workload into account
and thus can effectively respond to dynamic changes in the workload. ALEX
achieves all the above benefits without needing to hand-tune parameters for
each dataset or workload.

• Detailed evaluation: We present the results of an extensive experimental
analysis with real-life datasets and varying read-write workloads and compare
against state of the art indexes that support range queries.

On read-only workloads, ALEX beats the Learned Index by up to 2.2× on per-
formance with up to 15× smaller index size. Across the spectrum of read-write
workloads, ALEX beats B+Tree by up to 4.1× while never performing worse, with
up to 2000× smaller index size. ALEX also beats an ML-enhanced B+Tree and the
memory-optimized Adaptive Radix Tree, scales to large data sizes, and is robust to
data distribution shift.

ALEX is a key step towards making learned indexes practical for a broader class
of database workloads with dynamic updates. The initial design presented in this
chapter focused on in-memory datasets and single-threaded execution. After its initial
publication, follow-up work has addressed how to adapt the ALEX design to data
stored on persistent storage mediums [113] and multi-threaded execution [191].

In the remainder of this chapter, we give background (Section 2.1), present the
architecture of ALEX (Section 2.2), describe the operations on ALEX (Section 2.3),
present an analysis of ALEX performance (Section 2.4), present experimental results
(Section 2.5), review related work (Section 2.6), discuss extensions to our design
(Section 2.7), and conclude (Section 2.8).

2.1 Background

2.1.1 Traditional B+Tree Indexes

B+Tree is a classic range index structure. It is a height-balanced tree which stores
either the data (primary index) or pointers to the data (secondary index) at the leaf
level, in a sorted order to facilitate range queries.
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Figure 2-1: Learned Index by Kraska et al.

A B+Tree lookup operation can be broken down into two steps: (1) traverse to
leaf, and (2) search within the leaf. Starting at the root, traverse to leaf performs
comparisons with the keys stored in each node, and branches via stored pointers to
the next level. When the tree is deep, the number of comparisons and branches can
be large, leading to many cache misses. Once traverse to leaf identifies the correct leaf
page, typically a binary search is performed to find the position of the key within the
node, which might incur additional cache misses.

The B+Tree is a dynamic data structure that supports inserts, updates, and
deletes; is robust to data sizes and distributions; and is applicable in many different
scenarios, including in-memory and on-disk. However, the generality of B+Tree comes
at a cost. In some cases knowledge of the data helps improve performance. As an
extreme example, if the keys are consecutive integers, we can store the data in an
array and perform lookup in O(1) time. A B+Tree does not exploit such knowledge.
Here, “learning” from the input data has an edge.

2.1.2 The Case for Learned Indexes

Kraska et al. [97] observed that B+Tree indexes can be thought of as models. Given
a key, they predict the location of the key within a sorted array (logically) at the leaf
level. If indexes are models, they can be learned using traditional ML techniques by
learning the cumulative distribution function (CDF) of the input data. The resulting
Learned Index is optimized for the specific data distribution.

Another insight from Kraska et al. is that a single ML model learned over the entire
data is not accurate enough because of the complexity of the CDF. To overcome this,
they introduce the recursive model index (RMI ) [97]. RMI is a hierarchy of models,
with a static depth of two or three, where a higher-level model picks the model at the
next level, and so on, with the leaf-level model making the final prediction for the
position of the key in the data structure (Fig. 2-1). Logically, the RMI replaces the
internal B+Tree nodes with models. The effect is that comparisons and branches in
internal B+Tree nodes during traverse to leaf are replaced by model inferences in a
Learned Index.
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In [97], the keys are stored in an in-memory sorted array. Given a key, the leaf-level
model predicts the position (array index) of the key. Since the model is not perfect, it
could make a wrong prediction. The insight is that if the leaf model is accurate, a
local search surrounding the predicted location is faster than a binary search on the
entire array. To support local search, [97] keeps min and max error bounds for each
model in RMI and performs binary search within these bounds.

Last, each model in RMI can be a different type of model. Both linear regression
and neural network based models are considered in [97]. There is a trade-off between
model accuracy and model complexity. The root of the RMI is tuned to be either a
neural network or a linear regression, depending on which provides better performance,
while the simplicity and the speed of computation for linear regression model is
beneficial at the non-root levels. A linear regression model can be represented as
𝑦 = ⌊𝑎 * 𝑥+ 𝑏⌋, where 𝑥 is the key and 𝑦 is the predicted position. A linear regression
model needs to store just two parameters 𝑎 and 𝑏, so storage overhead is low. The
inference with a single linear regression model requires only one multiplication, one
addition and one rounding, which are fast to execute on modern processors.

Unlike B+Tree, which could have many internal levels, RMI uses two or three
levels. Also, the storage space required for models (two or four 8-byte double values
per model) is much smaller than the storage space for internal nodes in B+Tree (which
store keys and pointers). A Learned Index can be an order of magnitude smaller in
main memory storage (vs. internal B+Tree nodes), while outperforming a B+Tree in
lookup performance by a factor of up to three [97].

The main drawback of the Learned Index is that it does not support any modifi-
cations, including inserts, updates, or deletes. Let us demonstrate a naïve insertion
strategy for such an index. Given a key 𝑘 to insert, we first use the model to find
the insertion position for 𝑘. Then we create a new array whose length is one plus
the length of the old array. Next, we copy the data from the old array to the new
array, where the elements on the right of the insertion position are shifted to the right
by one position. We insert 𝑘 at the insertion position of the new array. Finally, we
update the models to reflect the change in the data distribution. Such a strategy
has a linear time complexity with respect to the data size, which is unacceptable in
practice. Kraska et al. suggest building delta-indexes to handle inserts [97], which
is complementary to our strategy. In this chapter, we describe an alternative data
structure to make modifications in a learned index more efficient.

2.2 ALEX Overview

The ALEX design (Fig. 2-2) takes advantage of two key insights. First, we propose a
careful space-time trade-off that not only leads to an updatable data structure, but
is also faster for lookups. To explore this trade-off, ALEX supports a Gapped Array
(GA) layout for the leaf nodes, which we present in Section 2.2.2. Second, the Learned
Index supports static RMI (SRMI) only, where the number of levels and the number
of models in each level is fixed at initialization. SRMI performs poorly on inserts if
the data distribution is difficult to model. ALEX can be updated dynamically and
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Figure 2-2: ALEX Design

efficiently at runtime and uses linear cost models that predict the latency of lookup
and insert operations based on simple statistics measured from an RMI. ALEX uses
these cost models to initialize the RMI structure and to dynamically adapt the RMI
structure based on the workload.

ALEX aims to achieve the following goals w.r.t. the B+Tree and Learned Index.
(1) Insert time should be competitive with B+Tree, (2) lookup time should be faster
than B+Tree and Learned Index, (3) index storage space should be smaller than
B+Tree and Learned Index (4) data storage space (leaf level) should be comparable to
dynamic B+Tree. In general, data storage space will overshadow index storage space,
but the space benefit from smaller index storage space is still important because it
allows more indexes to fit into the same memory budget. The rest of this section
describes how our ALEX design achieves these goals.

2.2.1 Design Overview

ALEX is an in-memory, updatable learned index. ALEX has a number of differences
from the Learned Index [97].

The first difference lies in the data structure used to store the data at the leaf
level. Like B+Tree, ALEX uses a node per leaf. This allows the individual nodes to
expand and split more flexibly and also limits the number of shifts required during
an insert. In a typical B+Tree, every leaf node stores an array of keys and payloads
and has “free space” at the end of the array to absorb inserts. ALEX uses a similar
design but more carefully chooses how to use the free space. The insight is that by
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introducing gaps that are strategically placed between elements of the array, we can
achieve faster insert and lookup times. As shown in Fig. 2-2, ALEX uses a Gapped
Array (GA) layout for each data node, which we describe in Section 2.2.2.

The second difference is that ALEX uses exponential search to find keys at the leaf
level to correct mispredictions of the RMI, as shown in Fig. 2-2. In contrast, [97] uses
binary search within the error bounds provided by the models. We experimentally
verified that exponential search without bounds is faster than binary search with
bounds (Section 2.5.3). This is because if the models are good, their prediction is
close enough to the correct position. Exponential search also removes the need to
store error bounds in the models of the RMI.

The third difference is that ALEX inserts keys into data nodes at the position
where the models predict that the key should be. We call this model-based insertion.
In contrast, the Learned Index produces an RMI on an array of records without
changing the position of records in the array. Model-based insertion has better search
performance because it reduces model misprediction errors.

The fourth difference is that ALEX dynamically adjusts the shape and height
of the RMI depending on the workload. We describe the design of initializing and
dynamically growing the RMI structure in Section 2.3.

The final difference is that ALEX has no parameters that need to be re-tuned for
each dataset or workload, unlike the Learned Index, in which the number of models
must be tuned. ALEX automatically bulk loads and adjusts the structure of RMI to
achieve high performance by using a cost model.

2.2.2 Node Layout

Data Nodes

Like a B+Tree, the leaf nodes of ALEX store the data records and thus are referred
to as data nodes, shown as circles in Fig. 2-2. A data node stores a linear regression
model (two double values for slope and intercept), which maps a key to a position,
and two Gapped Arrays (described below), one for keys and one for payloads. We
show only the keys array in Fig. 2-2. By default, both keys and payloads are fixed-size.
(Note that payloads could be records or pointers to variable-sized records, stored in
separately allocated spaces in memory). We also impose a max node size for practical
reasons (see details in Section 2.3).

ALEX uses a Gapped Array layout which uses model-based inserts to distribute
extra space between the elements of the array, thereby achieving faster inserts and
lookups. In contrast, B+Tree places all the gaps at the end of the array. Gapped
Arrays fill the gaps with the closest key to the right of the gap, which helps maintain
exponential search performance. In order to efficiently skip gaps when scanning, each
data node maintains a bitmap which tracks whether each location in the node is
occupied by a key or is a gap. The bitmap is fast to query and has low space overhead
compared to the Gapped Array. We compare Gapped Array to an existing gapped
data structure called Packed Memory Array [16] in Appendix A.7.
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Internal Nodes

We refer to all the nodes which are part of the RMI structure as internal nodes, shown
as rectangles in Fig. 2-2. Internal nodes store a linear regression model and an array
containing pointers to children nodes. Like a B+Tree, internal nodes direct traversals
down the tree, but unlike B+Tree, internal nodes in ALEX use models to “compute”
the location, in the pointers array, of the next child pointer to follow. Similar to data
nodes, we impose a max node size.

The internal nodes of ALEX serve a conceptually different purpose than those of
the Learned Index. Learned Index’s internal nodes have models that are fit to the
data; an internal node with a perfect model partitions keys equally to its children,
and an RMI with perfect internal nodes results in an equal number of keys in each
data node. However, the goal of the RMI structure is not to produce equally sized
data nodes, but rather data nodes whose key distributions are roughly linear, so that
a linear model can be accurately fit to its keys.

Therefore, the role of the internal nodes in ALEX is to provide a flexible way to
partition the key space. Suppose internal node A in Fig. 2-3 covers the key space [0, 1)
and has four child pointers. A Learned Index would assign a node to each of these
pointers, either all internal nodes or all data nodes. However, ALEX more flexibly
partitions the space. Internal node A assigns the key spaces [0, 1/4) and [1/2, 1) to
data nodes (because the CDF in those spaces are linear), and assigns [1/4, 1/2) to
another internal node (because the CDF is non-linear and the RMI requires more
resolution into this key space). As shown in the figure, multiple pointers can point to
the same child node; this is useful for handling inserts (Section 2.3.3). We restrict
the number of pointers in every internal node to always be a power of 2. This allows
nodes to split without retraining its subtree (Section 2.3.3).
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2.3 ALEX Algorithms

In this section, we describe the algorithms for lookups, inserts (including how to
dynamically grow the RMI and the data nodes), deletes, out of bounds inserts, and
bulk load.

2.3.1 Lookups and Range Queries

To look up a key, starting at the root node of the RMI, we iteratively use the model
to “compute” a location in the pointers array, and we follow the pointer to a child
node at the next level, until we reach a data node. By construction, the internal node
models have perfect accuracy, so there is no search involved in the internal nodes. We
use the model in the data node to predict the position of the search key in the keys
array, doing exponential search if needed to find the actual position of the key. If a
key is found, we read the corresponding value at the same position from the payloads
array and return the record. Else, we return a null record. We visually show (using
red arrows) a lookup in Fig. 2-2. A range query first performs a lookup to find the
position and data node of the first key whose value is not less than the range’s start
value, then scans forward until reaching the range’s end value, using the node’s bitmap
to skip over gaps and if necessary using pointers stored in the node to jump to the
next data node.

2.3.2 Insert in non-full Data Node

For the insert algorithm, the logic to reach the correct data node (i.e., TraverseToLeaf)
is the same as in the lookup algorithm described above. In a non-full data node, to
find the insertion position for a new element, we use the model in the data node to
predict the insertion position. If the predicted position is not correct (if inserting
there would not maintain sorted order), we do exponential search to find the correct
insertion position. If the insertion position is a gap, then we insert the element into
the gap and are done. Else, we make a gap at the insertion position by shifting the
elements by one position in the direction of the closest gap. We then insert the element
into the newly created gap. The Gapped Array achieves 𝑂(log 𝑛) insertion time with
high probability [15].
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2.3.3 Insert in full Data Node

When a data node becomes full, ALEX uses two mechanisms to create more space:
expansions and splits. ALEX relies on simple cost models to pick between different
mechanisms. Below, we first define the notion of “fullness,” then describe the expansion
and split mechanisms, and the cost models. We then present the insertion algorithm
that combines the mechanisms with the cost models. Algorithm 1 summarizes the
procedure for inserting into a data node.

Criteria for Node Fullness

ALEX does not wait for a data node to become 100% full, because insert performance
on a Gapped Array will deteriorate as the number of gaps decreases. We introduce
lower and upper density limits on the Gapped Array: 𝑑𝑙, 𝑑𝑢 ∈ (0, 1], with the constraint
that 𝑑𝑙 < 𝑑𝑢. Density is defined as the fraction of positions that are filled by elements.
A node is full if the next insert results in exceeding 𝑑𝑢. By default we set 𝑑𝑙 = 0.6
and 𝑑𝑢 = 0.8 to achieve average data storage utilization of 0.7, similar to B+Tree [67],
which in our experience always produces good results and did not need to be tuned.
In contrast, B+Tree nodes typically have 𝑑𝑙 = 0.5 and 𝑑𝑢 = 1. Section 2.4 presents a
theoretical analysis of how the density of the Gapped Array provides a way to trade
off between the space and the lookup performance for ALEX.

Node Expansion Mechanism

To expand a data node that contains 𝑛 keys, we allocate a new larger Gapped Array
with 𝑛/𝑑𝑙 slots. We then either scale or retrain the linear regression model, and then
do model-based inserts of all the elements in this new larger node using the scaled or
retrained model. After creation, the new data node is at the lower density limit 𝑑𝑙.
Fig. 2-4 shows an example data node expansion where the Gapped Array inside the
data node is expanded from two slots on the left to four slots on the right.

Node Split Mechanism

To split a data node in two, we allocate the keys to two new data nodes, such that
each new node is responsible for half of the key space of the original node. ALEX
supports two ways to split a node:
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(1) Splitting sideways is conceptually similar to how a B+Tree uses splits. There
are two cases: (a) If the parent internal node of the split data node is not yet at
the max node size, we replace the parent node’s pointers to the split data node with
pointers to the two new data nodes. The parent internal node’s pointers array might
have redundant pointers to the split data node (Fig. 2-3). If so, we give half of the
redundant pointers to each of the two new nodes. Else, we create a second pointer to
the split data node by doubling the size of the parent node’s pointers array and making
a redundant copy for every pointer, and then give one of the redundant pointers to
each of the two new nodes. Fig. 2-5a shows an example of a sideways split that does
not require an expansion of the parent internal node. (b) If the parent internal node
has reached max node size, then we can choose to split the parent internal node, as
we show in Fig. 2-5b. Note that by restricting all the internal node sizes to be powers
of 2, we can always split a node in a “boundary preserving” way, and thus require
no retraining of any models below the split internal node. Note that the split can
propagate all the way to the root node, just like in a B+Tree.

(2) Splitting down converts a data node into an internal node with two child data
nodes, as we show in Fig. 2-5c. The models in the two child data nodes are trained on
their respective keys. B+Tree does not have an analogous splitting down mechanism.

Cost Models

To make decisions about which mechanism to apply (expansion or various types of
splits), ALEX relies on simple linear cost models that predict average lookup time
and insert time based on two simple statistics tracked at each data node: (a) average
number of exponential search iterations, and (b) average number of shifts for inserts.
Lookup performance is directly correlated with (a) while insert performance is directly
correlated with (a) and (b) (since an insert first needs to do a lookup to find the
correct insertion position). These intra-node cost models predict the time to perform
operations within a data node.

These two statistics are not known when creating a data node. To find the expected
cost of a new data node, we compute the expected value of these statistics under the
assumption that lookups are done uniformly on the existing keys, and inserts are
done according to the existing key distribution. Specifically, (a) is computed as the
average base-2 logarithm of model prediction error for all keys; (b) is computed as the
average distance to the closest gap in the Gapped Array for all existing keys. These
expected values can be computed without creating the data node. If the data node is
created using a subset of keys from an existing data node, we can use the empirical
ratio of lookups vs. inserts to weight the relative importance of the two statistics for
computing the expected cost.

In addition to the intra-node cost model, ALEX uses a TraverseToLeaf cost
model to predict the time for traversing from the root node to a data node. The
TraverseToLeaf cost model uses two statistics: (1) the depth of the data node being
traversed to, and (2) the total size (in bytes) of all inner nodes and data node metadata
(i.e., everything except for the keys and payloads). These statistics capture the cost
of traversal: deeper data nodes require more pointer chases to find, and larger size
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will decrease CPU cache locality, which slows down the traversal to a data node. We
provide more details about the cost models and show their low usage overhead in
Appendix A.6.

Insertion Algorithm

As lookups and inserts are done on the data node, we count the number of exponential
search iterations and shifts per insert. From these statistics, we compute the empirical
cost of the data node using the intra-node cost model. Once the data node is full, we
compare the expected cost (computed at node creation time) to the empirical cost. If
they do not deviate significantly, then we conclude that the model is still accurate, and
we perform node expansion (if the size after expansion is less than the max node size),
scaling the model instead of retraining. The models in the internal nodes of the RMI
are not retrained or rescaled. We define significant cost deviation as occurring when
the empirical cost is more than 50% higher than the expected cost. In our experience,
this cost deviation threshold of 50% always produces good results and did not need to
be tuned.

Otherwise, if the empirical cost has deviated from the expected cost, we must
either (i) expand the data node and retrain the model, (ii) split the data node sideways,
or (iii) split the data node downwards. We select the action that results in lowest
expected cost, according to our intra-node cost model. For simplicity, ALEX always
splits a data node in two. The data node could conceptually split into any power of
2, but deciding the optimal fanout can be time-consuming, and we experimentally
verified that a fanout of 2 is best according to the cost model in most cases.

Why would empirical cost deviate from expected cost?

This often happens when the distribution of keys that are inserted does not follow
the distribution of existing keys, which results in the model becoming inaccurate. An
inaccurate model may lead to long contiguous regions without any gaps. Inserting into
these fully-packed regions requires shifting up to half of the elements within it to create
a gap, which in the worst case takes 𝑂(𝑛) time. Performance may also degrade simply
due to random noise as the node grows larger or due to changing access patterns for
lookups.

2.3.4 Delete, update, and other operations

To delete a key, we do a lookup to find the location of the key, and then remove
it and its payload. Deletes do not shift any existing keys, so deletion is a strictly
simpler operation than inserts and does not cause model accuracy to degrade. If
a data node hits the lower density limit 𝑑𝑙 due to deletions, then we contract the
data node (i.e., the opposite of expanding the data node) in order to avoid low space
utilization. Additionally, we can use intra-node cost models to determine that two
data nodes should merge together and potentially grow upwards, locally decreasing
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the RMI depth by 1. However, for simplicity we do not implement these merging
operations.

Updates that modify the key are implemented by combining an insert and a delete.
Updates that only modify the payload will look up the key and write the new value
into the payload. Like B+Trees, we can merge two ALEX indexes or find the difference
between two ALEX indexes by iterating over their sorted keys in tandem and bulk
loading a new ALEX index.

2.3.5 Handling out of bounds inserts

A key that is lower or higher than the existing key space would be inserted into the
the left-most or right-most data node, respectively. A series of out-of-bounds inserts,
such as an append-only insert workload, would result in poor performance because
that data node has no mechanism to split the out-of-bounds key space. Therefore,
ALEX has two ways to smoothly handle out-of-bounds inserts. Assume that the
out-of-bounds inserts are to the right (e.g., inserted keys are increasing); we apply
analogous strategies when inserts are to the left.

First, when an insert that is outside the existing key space is detected, ALEX will
expand the root node, thereby expanding the key space, shown in Fig. 2-6. We expand
the size of the child pointers array to the right. Existing pointers to existing children
are not modified. A new data node is created for every new slot in the expanded
pointers array. In case this expansion would result in the root node exceeding the
max node size, ALEX will create a new root node. The first child pointer of the new
root node will point to the old root node, and a new data node is created for every
other pointer slot of the new root node. At the end of this process, the out-of-bounds
key will fall into one of the newly created data nodes.

Second, the right-most data node of ALEX detects append-only insertion behavior
by maintaining the value of the maximum key in the node and keeping a counter
for how many times an insert exceeds that maximum value. If most inserts exceed
the maximum value, that implies append-only behavior, so the data node expands to
the right without doing model-based re-insertion; the expanded space is kept initially
empty in anticipation of more append-like inserts.
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2.3.6 Bulk Load

ALEX supports a bulk load operation, which is used in practice to index large amounts
of data at initialization or for rebuilding an index. Our goal is to find an RMI structure
with minimum cost, defined as the expected average time to do an operation (i.e.,
lookup or insert) on this RMI. Any ALEX operation is composed of TraverseToLeaf
to the data node followed by an intra-node operation, so RMI cost is modeled by
combining the TraverseToLeaf and intra-node cost models.

Bulk Load Algorithm

Using the cost models, we grow an RMI downwards greedily, starting from the root
node. At each node, we independently make a decision about whether the node should
be a data node or an internal node, and in the latter case, what the fanout should be.
The fanout must be a power of 2, and child nodes will equally divide the key space of
the current node. Note that we can make this decision locally for each node because
we use linear cost models, so decisions will have a purely additive effect on the overall
cost of the RMI. If we decide the node should be an internal node, we recurse on each
of its child nodes. This continues until all the data is loaded in ALEX.

The Fanout Tree

As we grow the RMI, the main challenge is to determine the best fanout at each node.
We introduce the concept of a fanout tree (FT), which is a complete binary tree. An
FT will help decide the fanout for a single RMI node; in our bulk loading algorithm,
we construct an FT each time we want to decide the best fanout for an RMI node. A
fanout of 1 means that the RMI node should be a data node.

Fig. 2-7 shows an example FT. Each FT node represents a possible child of the
RMI node. If the key space of the RMI node is [0, 1), then the 𝑖-th FT node on a level
with 𝑛 children represents a child RMI node with key space [𝑖/𝑛, (𝑖+ 1)/𝑛). Each FT
node is associated with the expected cost of constructing a data node over its key
space, as predicted by the intra-node cost models. Our goal is to find a set of FT
nodes that cover the entire key space of the RMI node with minimum overall cost.
The overall cost of a covering set is the sum of the costs of its FT nodes, as well as
the TraverseToLeaf cost due to model size (e.g., going a level deeper in the FT means
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the RMI node must have twice as many pointers). This covering set determines the
optimal fanout of the RMI node (i.e., the number of child pointers) as well as the
optimal way to allocate child pointers.

We use the following method to find a low-cost covering set: (1) Starting from
the FT root, grow entire levels of the FT at a time, and compute the cost of using
each level as the covering set. Continue doing so until the costs of each successive
level start to increase. In Fig. 2-7, we find that level 2 has the lowest combined cost,
and we do not keep growing after level 3. In concept, a deeper level might have lower
cost, but computing the cost for each FT node is expensive. (2) Starting from the
level of the FT with lowest combined cost, we start merging or splitting FT nodes
locally. If the cost of two adjacent FT nodes is higher than the cost of its parent, then
we merge (e.g., the nodes with cost 20 and 25 are merged to one with cost 40); this
might happen when the two nodes have very few keys, or when their distributions
are similar. In the other direction, if the cost of a FT node is higher than the cost of
its two children, we split the FT node (e.g., the node with cost 10 is split into two
nodes each with cost 1); this might happen when the two halves of the key space
have different distributions. We continue with this process of merging and splitting
adjacent nodes locally until it is no longer possible. We return the resulting covering
set of FT nodes.

2.4 Analysis of ALEX
In this section, we provide bounds on the RMI depth and complexity analysis. Bounds
on the performance of model-based search are found in Appendix A.8.

2.4.1 Bound on RMI depth

In this section we present a worst-case bound on maximum RMI depth and describe
how to achieve it. Note that the goal of ALEX is to maximize performance, not to
minimize tree depth; though the two are correlated, the latter is simply a proxy for the
former (e.g., depth is one input to our cost models). Therefore, this analysis is useful
for gaining intuition about RMI depth, but does not reflect worst-case guarantees in
practice.

Let 𝑚 be the maximum node size, defined in number of slots (in the pointers array
for internal nodes, in the Gapped Array for data nodes). We constrain node size to
be a power of 2: 𝑚 = 2𝑘. Internal nodes can have up to 𝑚 child pointers, and data
nodes must contain no more than 𝑚𝑑𝑢 keys. Let all keys to be indexed fall within
the key space 𝑠. Let 𝑝 be the minimum number of partitions such that when the key
space 𝑠 is divided into 𝑝 partitions of equal width, every partition contains no more
than 𝑚𝑑𝑢 keys. Define the root node depth as 0.

Theorem 1. We can construct an RMI that satisfies the max node size and upper
density limit constraints whose depth is no larger than ⌈log𝑚 𝑝⌉—we call this the
maximal depth. Furthermore, we can maintain maximal depth under inserts. (Note
that 𝑝 might change under inserts.)
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In other words, the depth of the RMI is bounded by the density of the densest
subregion of 𝑠. In contrast, B+Trees bound depth as a function of the number of keys.
Theorem 1 can also be applied to a subspace within 𝑠, which would correspond to
some subtree within the RMI.

Proof. Constructing an RMI with maximal depth is straightforward. The densest
subregion, which spans a key space of size |𝑠|/𝑝, is allocated to a data node. The
traversal path from the root to this densest region is composed of internal nodes, each
with 𝑚 child pointers. It takes ⌈log𝑚 𝑝⌉ internal nodes to narrow the key space size
from |𝑠| to |𝑠|/𝑝. To minimize depth in other subtrees of the RMI, we apply this
construction mechanism recursively to the remaining parts of the space 𝑠.

Starting from an RMI that satisfies maximal depth, we maintain maximal depth
using the mechanisms in Section 2.3.3 under the following policy: (1) Data nodes
expand until they reach max node size. (2) When a data node must split due to max
node size, it splits sideways to maintain current depth (potentially propagating the
split up to some ancestor internal node). (3) When splitting sideways is no longer
possible (all ancestor nodes are at max node size), split downwards. By following this
policy, RMI only splits downward when 𝑝 grows by a factor of 𝑚, thereby maintaining
maximal depth.

2.4.2 Complexity analysis

Here we provide complexity of lookups and inserts, as well as the mechanisms from
Section 2.3.3. Both lookups and inserts do TraverseToLeaf in ⌈log𝑚 𝑝⌉ time. Within
the data node, exponential search for lookups is bounded in the worst case by 𝑂(log𝑚).
In the best case, the data node model predicts the key’s position perfectly, and lookup
takes 𝑂(1) time. We show in the next sub-section that we can reduce exponential
search time according to a space-time trade-off.

Inserts into a non-full node are composed of a lookup, potentially followed by shifts
to introduce a gap for the new key. This is bounded in the worst case by 𝑂(𝑚), but
since Gapped Array achieves 𝑂(log𝑚) shifts per insert with high probability [15], we
expect 𝑂(log𝑚) complexity in most cases. In the best case, the predicted insertion
position is correct and is a gap, and we place the key exactly where the model predicts
for insert complexity of 𝑂(1); furthermore, a later model-based lookup will result in a
direct hit in 𝑂(1).

There are three important mechanisms in Section 2.3.3, whose costs are defined
by how many elements must be copied: (1) Expansion of a data node, whose cost is
bounded by 𝑂(𝑚). (2) Splitting downwards into two nodes, whose cost is bounded by
𝑂(𝑚). (3) Splitting sideways into two nodes and propagating upwards in the path to
some ancestor node, whose cost is bounded by 𝑂(𝑚⌈log𝑚 𝑝⌉) because every internal
node on this path must also split. As a result, the worst-case performance for insert
into a full node is 𝑂(𝑚⌈log𝑚 𝑝⌉).
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2.5 Evaluation

We compare ALEX with the Learned Index, B+Tree, a model-enhanced B+Tree,
and Adaptive Radix Tree (ART), using a variety of datasets and workloads. This
evaluation demonstrates that:

• On read-only workloads, ALEX achieves up to 4.1×, 2.2×, 2.9×, 3.0× higher
throughput and 800×, 15×, 160×, 8000× smaller index size than the B+Tree,
Learned Index, Model B+Tree, and ART, respectively.

• On read-write workloads, ALEX achieves up to 4.0×, 2.7×, 2.7× higher through-
put and 2000×, 475×, 36000× smaller index size than the B+Tree, Model
B+Tree, and ART, respectively.

• ALEX has competitive bulk load times and maintains an advantage over other
indexes when scaling to larger datasets and under distribution shift due to data
skew.

• Gapped Array and the adaptive RMI structure allow ALEX to adapt to different
datasets and workloads.

2.5.1 Experimental Setup

We implement ALEX in C++1. We perform our evaluation via single-threaded
experiments on an Ubuntu Linux machine with Intel Core i9-9900K 3.6GHz CPU and
64GB RAM. We compare ALEX against four baselines. (1) A standard B+Tree, as
implemented in the STX B+Tree [20]. (2) Our best-effort reimplementation of the
Learned Index [97], using a two-level RMI with linear models at each node and binary
search for lookups.2 (3) Model B+Tree, which maintains a linear model in every node
of the B+Tree, stores each node as a Gapped Array, and uses model-based exponential
search instead of binary search, implemented on top of [20]; this shows the benefit of
using models while keeping the fundamental B+Tree structure. (4) Adaptive Radix
Tree (ART) [107], a trie that adapts to the data which is optimized for main memory
indexing, implemented in C [34]. Since ALEX supports all operations common in
OLTP workloads, we do not compare to hash tables and dynamic hashing techniques,
which cannot efficiently support range queries.

For each dataset and workload, we use grid search to tune the page size for B+Tree
and Model B+Tree and the number of models for Learned Index to achieve the best
throughput. In contrast, no tuning is necessary for ALEX, unless users place additional
constraints. For example, users might want to bound the latency of a single operation.
We set a max node size of 16MB to achieve tail latency (99.9th percentile) of around

1https://github.com/microsoft/ALEX
2In private communication with the authors of [97], we learned that the added complexity of

using a neural net for the root model usually is not justified by the resulting minor performance
gains, which we also independently verified.
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Table 2.1: Dataset Characteristics

longitudes longlat lognormal YCSB

Num keys 1B 200M 190M 200M
Key type double double 64-bit int 64-bit int
Payload size 8B 8B 8B 80B
Total size 16GB 3.2GB 3.04GB 17.6GB

2𝜇s per operation, but max node size can be adjusted according to user’s desired
limits (Fig. 2-15).

Index size of ALEX and Learned Index is the sum of the sizes of all models used
in the index and metadata; index size for ALEX also includes internal node pointers.
For ALEX, each linear model consists of two 64-bit doubles which represent the slope
and intercept. Learned Index keeps two additional integers per model that represent
the error bounds. The index size of B+Tree and Model B+Tree is the sum of the
sizes of all inner nodes, which for Model B+Tree includes the models in each node.
The index size of ART is the sum of inner node sizes minus the total size of keys,
since keys are encoded into the inner nodes. The data size of ALEX is the sum of the
sizes of the arrays containing the keys and payloads, including gaps, as well as the
bitmap in each data node. The data size of B+Tree is the sum of the sizes of all leaf
nodes. At initialization, the Gapped Arrays in data nodes are set to have 70% space
utilization, comparable to B+Tree leaf node space utilization [67].

Datasets

We run all experiments using 8-byte keys from some dataset and randomly generated
fixed-size payloads. We evaluate ALEX on 4 datasets, whose characteristics and
CDFs are shown in Table 2.1 and Fig. 2-8. The longitudes dataset consists of the
longitudes of locations around the world from Open Street Maps [13]. The longlat
dataset consists of compound keys that combine longitudes and latitudes from Open
Street Maps by applying the transformation 𝑘 = 180 · floor(longitude) + latitude to
every pair of longitude and latitude. The resulting distribution of keys 𝑘 is highly
non-linear. The lognormal dataset has values generated according to a lognormal
distribution with 𝜇 = 0 and 𝜎 = 2, multiplied by 109 and rounded down to the nearest
integer. The YCSB dataset has values representing user IDs generated according
to the YCSB Benchmark [30], which are uniformly distributed across the full 64-bit
domain, and uses an 80-byte payload. These datasets do not contain duplicate values.
Unless otherwise stated, these datasets are randomly shuffled to simulate a uniform
dataset distribution over time.

Workloads

Our primary metric for evaluating ALEX is average throughput. We evaluate through-
put for five workloads: (1) a read-only workload, (2) a read-heavy workload with 95%
reads and 5% inserts, (3) a write-heavy workload with 50% reads and 50% inserts, (4)
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Figure 2-8: Dataset CDFs, and zoomed-in CDFs.

Table 2.2: ALEX Statistics after Bulk Load

longitudes longlat lognormal YCSB

Avg depth 1.01 1.56 1.80 1
Max depth 2 4 3 1
Num inner nodes 55 1718 24 1
Num data nodes 4450 23257 757 1024
Min DN size 672B 16B 224B 12.3MB
Median DN size 161KB 39.6KB 2.99MB 12.3MB
Max DN size 5.78MB 8.22MB 14.1MB 12.3MB

a short range query workload with 95% reads and 5% inserts, and (5) a write-only
workload, to complete the read-write spectrum. For the first three workloads, reads
consist of a lookup of a single key. For the short range workload, a read consists of a
key lookup followed by a scan of the subsequent keys. The number of keys to scan is
selected randomly from a uniform distribution with a maximum scan length of 100.
For all workloads, keys to look up are selected randomly from the set of existing keys
in the index according to a Zipfian distribution. The first four workloads roughly
correspond to Workloads C, B, A, and E from the YCSB benchmark [30], respectively.
For a given dataset, we initialize an index with 100 million keys. We then run the
workload for 60 seconds, inserting the remaining keys. We report the throughput of
operations completed in that time, where operations are either inserts or reads. For
the read-write workloads, we interleave the operations: for the read-heavy workload
and short range workload, we perform 19 reads/scans, then 1 insert, then repeat the
cycle; for the write-heavy workload, we perform 1 read, then 1 insert, then repeat the
cycle.
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2.5.2 Overall Results

Read-only Workloads

For read-only workloads, Figs. 2-9a and 2-9f show that ALEX achieves up to 4.1×,
2.2×, 2.9×, 3.0× higher throughput and 800×, 15×, 160×, 8000× smaller index size
than the B+Tree, Learned Index, Model B+Tree, and ART, respectively.

On the longlat and YCSB datasets, ALEX performance is similar to Learned
Index. The longlat dataset is highly non-uniform, so ALEX is unable to achieve high
performance, even with adaptive RMI. The YCSB dataset is nearly uniform, so the
optimal allocation of models is uniform; ALEX adaptively finds this optimal allocation,
and Learned Index allocates this way by nature, so the resulting RMI structures are
similar. On the other two datasets, ALEX has more performance advantage over
Learned Index, which we explain in Section 2.5.3.

In general, Model B+Tree outperforms B+Tree while also having smaller index
size, because the tuned page size of Model B+Tree is always larger than those of
B+Tree. The benefit of models in Model B+Tree is greatest when the key distribution
within each node is more uniform, which is why Model B+Tree has least benefit on
non-uniform datasets like longlat.

The index size of ALEX is dependent on how well ALEX can model the data
distribution. On the YCSB dataset, ALEX does not require a large RMI to accurately
model the distribution, so ALEX achieves small index size. However, on datasets that
are more challenging to model such as longlat, ALEX has a larger RMI with more nodes.
ALEX has smaller index size than the Learned Index, even when throughput is similar,
for two reasons. First, ALEX uses model-based inserts to obtain better predictive
accuracy for each model, which we show in Section 2.5.3, and therefore achieves high
throughput while using relatively fewer models. Second, ALEX adaptively allocates
data nodes to different parts of the key space and does not use any more models than
necessary (Fig. 2-3), whereas Learned Index fixes the number of models and ends up
with many redundant models. The index size of ART is higher than all other indexes.
[107] claims that ART uses between 8 and 52 bytes to store each key, which is in
agreement with the observed index sizes.

Table 2.2 shows ALEX statistics after bulk loading, including data node (DN)
sizes. The root has depth 0. Average depth is averaged over keys. The max depth of
the tuned B+Tree is 4 on the YCSB dataset and 5 on the other datasets. Datasets
that are easier to model result in fewer nodes. For uniform datasets like YCSB, the
data node sizes are also uniform.

Read-Write Workloads

For read-write workloads, Figs. 2-9b to 2-9d and 2-9g to 2-9i show that ALEX achieves
up to 4.0×, 2.7×, 2.7× higher throughput and 2000×, 475×, 36000× smaller index
size than the B+Tree, Model B+Tree, and ART, respectively. The Learned Index has
insert time orders of magnitude slower than ALEX and B+Tree, so we do not include
it in these benchmarks.
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Figure 2-10: (a) When scan length exceeds 1000 keys, ALEX is slower on range queries
than a B+Tree whose page size is re-tuned for different scan lengths. (b) However,
throughput of the re-tuned B+Tree suffers for other operations, such as point lookups
and inserts in the write-heavy workload.

The relative performance advantage of ALEX over baselines decreases as the
workload skews more towards writes, because all indexes must pay the cost of copying
when splitting/expanding nodes. Copying has an especially big impact for YCSB, for
which payloads are 80 bytes. ART achieves comparable throughput to ALEX on the
write-only workload for YCSB because ART does not keep payloads clustered, so it
avoids the high cost of copying 80-byte payloads. Note that ALEX could similarly
avoid copying large payloads by storing unclustered payloads separately and keeping a
pointer with every key; however, this would impact scan performance. On datasets that
are challenging to model such as longlat, ALEX only achieves comparable write-only
throughput to Model B+Tree and ART, but is still faster than B+Tree.

Range Query Workloads

Figs. 2-9e and 2-9j show that ALEX maintains its advantage over B+Tree on the short
range workload, achieving up to 2.27×, 1.77× higher throughput and 1000×, 230×
smaller index size than B+Tree and Model B+Tree, respectively. However, the relative
throughput benefit decreases, compared to Fig. 2-9b. This is because as scan time
begins to dominate overall query time, the speedups that ALEX achieves on lookups
become less apparent. The ART implementation from [34] does not support range
queries; we suspect range queries on ART would be slower than for the other indexes
because ART does not cluster payloads, leading to poor scan locality. Appendix A.5.1
shows that ALEX continues to outperform other indexes on a workload that mixes
inserts, point lookups, and short range queries.

To show how performance varies with range query selectivity, we compare ALEX
against two B+Tree configurations with increasingly larger range scan length over the
longitudes dataset (Fig. 2-10a). In the first B+Tree configuration, we use the optimal
B+Tree page size on the write-heavy workload (Fig. 2-9c), which is 1KB (solid green
line). In the second B+Tree configuration, we tune the B+Tree page size for each

42



Figure 2-11: ALEX takes 50% more than time than B+Tree to bulk load on average,
but quickly makes up for this by having higher throughput.

different scan length (dashed green line).
Unsurprisingly, Fig. 2-10a shows as scan length increases, the throughput in terms

of keys scanned per second increases for all indexes due to better locality and a smaller
fraction of time spent on the initial point lookup. Furthermore, ALEX outperforms
the 1KB-page B+Tree for all scan lengths due to ALEX’s larger nodes; median ALEX
data node size is 161KB on the longitudes dataset (Table 2.2), which benefits scan
locality—scanning larger contiguous chunks of memory leads to better prefetching
and fewer pointer chases. This makes up for the Gapped Array’s overhead.

However, if we re-tune the B+Tree page size for each scan length (dashed green
line), the B+Tree outperforms ALEX when scan length exceeds 1000 keys because past
this point, the overhead of Gapped Array outpaces ALEX’s scan locality advantage
from having larger node sizes. However, this comes at the cost of performance on other
operations: Fig. 2-10b shows that if we run the re-tuned B+Tree on the write-heavy
workload, which includes both point lookups and inserts, its performance would begin
to decline when scan length exceeds 100 keys. In particular, larger B+Tree pages lead
to a higher number of search iterations for lookups and shifts for inserts; ALEX avoids
both of these problems for large data nodes by using Gapped Arrays with model-based
inserts. We show in Appendix A.5 that this behavior also occurs on the other three
datasets.

Bulk Loading

We compare the time to initialize each index with bulk loading, which includes the
time to sort keys. Fig. 2-11a shows that on average, ALEX only takes 50% more
time to bulk load than B+Tree, and in the worst case is only 2× slower than B+Tree.
On the YCSB dataset, B+Tree and Model B+Tree take longer to bulk load due to
the larger payload size, but bulk loading ALEX remains efficient due to its simple
structure (Table 2.2). Model B+Tree is slightly slower to bulk load than B+Tree due
to the overhead of training models for each node. ART is slower to bulk load than
B+Tree, Model B+Tree, and ALEX.
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Figure 2-12: ALEX maintains high throughput when scaling to large datasets and
under data distribution shifts. (RH = Read-Heavy, WH = Write-Heavy)

ALEX can quickly make up for its slower bulk loading time than B+Tree by
having higher throughput performance. Fig. 2-11b shows that when running the
read-heavy workload on the longitudes dataset, ALEX’s total time usage (bulk loading
plus workload) drops below all other indexes after only 3 million inserts. We provide
a more detailed bulk loading evaluation in Appendix A.1.

Scalability

ALEX performance scales well to larger datasets. We again run the read-heavy
workload on the longitudes dataset, but instead of initializing the index with 100
million keys, we vary the number of initialization keys. Fig. 2-12a shows that as the
number of indexed keys increases, ALEX maintains higher throughput than B+Tree
and Model B+Tree. In fact, as dataset size increases, ALEX throughput decreases
at a surprisingly slow rate. This occurs because ALEX adapts its RMI structure in
response to the incoming data.

Dataset Distribution Shift

ALEX is robust to dataset distribution shift. We initialize the index with the 50
million smallest keys and run read-write workloads by inserting the remaining keys in
random order. This simulates distribution shift because the keys we initialize with
come from a completely disjoint domain than the keys we subsequently insert with.
Fig. 2-12b shows that ALEX maintains up to 3.2× higher throughput than B+Tree in
this scenario. ALEX is also robust to adversarial patterns such as sequential inserts
in sorted order, in which new keys are always larger than the maximum key currently
indexed. Fig. 2-12c shows that when we initialize with the 50 million smallest keys
and insert the remaining keys in ascending sorted order, ALEX has up to 3.6× higher
throughput than B+Tree. Appendix A.4 further shows that ALEX is robust to
radically changing key distributions.
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Figure 2-13: Impact of Gapped Array and adaptive RMI.

Figure 2-14: ALEX achieves smaller prediction error than the Learned Index.

2.5.3 Drilldown into ALEX Design Trade-offs

In this section, we delve deeper into how node layout and adaptive RMI help ALEX
achieve its design goals.

Part of ALEX’s advantage over Learned Index comes from using model-based
insertion with Gapped Arrays in the data nodes, but most of ALEX’s advantage
for dynamic workloads comes from the adaptive RMI. To demonstrate the effects of
each contribution, Fig. 2-13 shows that taking a 2-layer Learned Index and replacing
the single dense array of values with a Gapped Array per leaf (LI w/Gapped Array)
already achieves significant speedup over Learned Index for the read-only workload.
However, a Learned Index with Gapped Arrays achieves poor performance on read-
write workloads due to the presence of fully-packed regions which require shifting
many keys for each insert. ALEX’s ability to adapt the RMI structure to the data is
necessary for good insert performance.

During lookups, the majority of the time is spent doing local search around the
predicted position. Smaller prediction errors directly contribute to decreased lookup
time. To analyze the prediction errors of the Learned Index and ALEX, we initialize
an index with 100 million keys from the longitudes dataset, use the index to predict
the position of each of the 100 million keys, and track the distance between the
predicted position and the actual position. Fig. 2-14a shows that the Learned Index
has prediction error with mode around 8-32 positions, with a long tail to the right.
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Table 2.3: Data Node Actions When Full (Write-Heavy)

longitudes longlat lognormal YCSB

Expand + scale 26157 113801 2383 1022
Expand + retrain 219 2520 2 1026
Split sideways 79 2153 7 0
Split downwards 0 230 0 0

Total times full 26455 118704 2392 2048

Figure 2-15: Latency of a single operation.

On the other hand, ALEX achieves much lower prediction error by using model-based
inserts. Fig. 2-14b shows that after initializing, ALEX often has no prediction error,
the errors that do occur are often small, and the long tail of errors has disappeared.
Fig. 2-14c shows that even after 20 million inserts, ALEX maintains low prediction
errors.

Once a data node becomes full, one of four actions happens: if there is no cost
deviation, then (1) the node is expanded and the model is scaled. Otherwise, the
node is either (2) expanded and its model retrained, (3) split sideways, or (4) split
downwards. Table 2.3 shows that in the vast majority of cases, the data node is simply
expanded and the model scaled, which implies that models usually remain accurate
even after inserts, assuming no radical distribution shift. The number of occurrences
of a data node becoming full is correlated with the number of data nodes (Table 2.2).
On YCSB, expansion with model retraining is more common because the data nodes
are large, so cost deviation often results simply from randomness.

Users can adjust the max node size to achieve target tail latencies, if desired.
In Fig. 2-15, we run the write-heavy workload on the longitudes dataset, measuring
the latency for every operation. As we increase the max node size, median and
even p99 latency of ALEX decreases, because ALEX has more flexibility to build a
better-performing RMI (e.g., ability to have higher internal node fanout). However,
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Figure 2-16: Exponential vs. other search methods.

maximum latency increases, because an insert that triggers an expansion or split of
a large node is slow. If the user has strict latency requirements, they can decrease
the max node size accordingly. After increasing the max node size beyond 64MB,
latencies do not change because ALEX never decides to use a node larger than 64MB.

Search Method Comparison

In order to show the trade-off between exponential search and other search methods,
we perform a microbenchmark on synthetic data. We create a dataset with 100 million
perfectly uniformly distributed doubles. We then perform searches for 10 million
randomly selected values from this dataset. We use three search methods: binary
search and biased quaternary search (proposed in [97] to take advantage of accurate
predictions), each evaluated with two different error bound sizes, as well as exponential
search. For each lookup, the search method is given a predicted position that has
some synthetic amount of error in the distance to the actual position value. Fig. 2-16
shows that the search time of exponential search increases proportionally with the
logarithm of error size, whereas the binary search methods take a constant amount of
time, regardless of error size. This is because binary search must always begin search
within its error bounds, and cannot take advantage of cases when the error is small.
Therefore, exponential search should outperform binary search if the prediction error
of the RMI models in ALEX is small. As we showed in Section 2.5.3, ALEX maintains
low prediction errors through model-based inserts. Therefore, ALEX is well suited to
take advantage of exponential search. Biased quaternary search is competitive with
exponential search when error is below 𝜎 (we set 𝜎 = 8 for this experiment; see [97]
for details) because search can be confined to a small range, but performs similarly to
binary search when error exceeds 𝜎 because the full error bound must be searched. We
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prefer exponential search to biased quaternary search due to its smoother performance
degradation and simplicity of implementation (e.g., no need to tune 𝜎).

2.6 Related Work

Learned Index Structures: The most relevant work is the Learned Index [97],
discussed in Section 2.1.2. Learned Index has similarities to prior work that explored
how to compute down a tree index. Tries [93] use key prefixes instead of B+Tree
splitters. Masstree [123] and Adaptive Radix Tree [107] combine the ideas of B+Tree
and trie to reduce cache misses. Plop-hashing [101] uses piecewise linear order-
preserving hashing to distribute keys more evenly over pages. Digital B-tree [111]
uses bits of a key to compute down the tree more flexibly. [112] proposes to partially
expand the space instead of always doubling when splitting in B+Tree. [65] proposes
the idea of interpolation search within B+Tree nodes; this idea was revisited in [140].
The interpolation-based search algorithms in [186] can complement ALEX’s search
strategy. Hermit [192] creates a succinct tree structure for secondary indexes.

Other works propose replacing the leaf nodes of a B+Tree with other data structures
in order to compress the index, while maintaining search and update performance.
FITing-tree [60] uses linear models in its leaf nodes, while BF-tree [10] uses bloom
filters in its leaf nodes.

All these works share the idea that using extra computation or data structures can
make search faster by reducing the number of binary search hops and corresponding
cache misses, while allowing larger node sizes and hence a smaller index size. However,
ALEX is different in several ways: (1) We use a model to split the key space, similar to
a trie, but no search is required until we reach the leaf level. (2) ALEX’s accurate linear
models enable larger node sizes without sacrificing search and update performance.
(3) Model-based insertion reduces the impact of model’s misprediction. (4) ALEX’s
cost models automatically adjust the index structure to dynamic workloads.

Memory Optimized Indexes: There is a large body of work on optimizing
tree index structures for main memory by exploiting hardware features such as CPU
cache, multi-core, SIMD, and prefetching. CSS-trees [161] improve B+Tree’s cache
behavior by matching index node size to CPU cache-line size and eliminating pointers
in index nodes by using arithmetic operations to find child nodes. CSB+-tree [162]
extends the static CSS-trees by supporting incremental updates without sacrificing
CPU cache performance. [71] evaluates the effect of node size on the performance of
CSB+-tree analytically and empirically. pB+-tree [28] uses larger index nodes and
relies on prefetching instructions to bring index nodes into cache before nodes are
accessed. In addition to optimizing for cache performance, FAST [87] further optimizes
searches within index nodes by exploiting SIMD parallelism.

ML in other DB components: Machine learning has been used to improve
cardinality estimation [90, 51], query optimization [125], workload forecasting [117],
multi-dimensional indexing [138], and data partitioning [194]. SageDB [95] envisions a
database system in which every component is replaced by a learned component. These
studies show that the use of machine learning enables workload-specific optimizations,
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which also inspired our work.

2.7 Discussion & Future Work
In this section, we discuss our design and possible future extensions.
Role of Machine Learning. Similar to the original learned indexes, machine
learning (ML) currently plays a limited, but important role in the design of ALEX.
ALEX uses simple linear regression models, at all levels of the RMI. We found
linear regression models to strike the right balance between computation overhead
vs. prediction accuracy. We have also found these to work better than the even simpler,
pure interpolation search [140]. Polynomial models, piecewise linear splines, or even a
hybrid of ML models and B+Tree in the RMI structure, as originally proposed by [97]
might be worth exploring, but they have not been the focus of this chapter.
Concurrency Control. To use ALEX in a database system requires concurrency
control for handling updates with concurrent lookups. For lookups, without Adaptive
RMI, only a shared lock on the leaf data node is needed in ALEX. With adaptive
RMI, to protect against concurrent modifications of the RMI structure, lookups can
use lock-coupling (or crabbing) [66] while traversing the RMI to a leaf data node.
Similarly, for inserts, without adaptive RMI, an exclusive lock on the leaf data node
is sufficient. For cases which require an expansion, we need to hold an exclusive lock
on the leaf data node and the corresponding leaf level model in the RMI, since the
model needs to be retrained. With adaptive RMI with node splitting on inserts, the
structure of the RMI can be modified as well. Since this is very similar to splits in a
B+Tree, we believe lock-coupling [66] can be applied in ALEX, in this case as well.
Data Skew. Data skew is quite common in real-life workloads and hence it is
important for any index structure to be able to deal with it. Fig. 2-12b shows that
ALEX is able to handle some data skew gracefully. However, it is also easy to construct
an adversarial workload where ALEX’s performance degrades significantly, as shown
in Fig. 2-12c. Future work could explore even better node layouts for ALEX, for
example the adaptive PMA [16] could, in theory, prevent the adversarial case shown
in Fig. 2-12c. Better models, or different adaptability strategies for the RMI are other
possible directions to pursue.
Secondary Indexes. Handling secondary indexes is straight-forward in ALEX.
Similar to a B+Tree, instead of storing actual data at the leaf level, ALEX can store
a pointer to the data. The difficulty is in dealing with duplicate keys, which ALEX
currently does not support.
Secondary Storage. Handling secondary storage, for data that does not fit in-
memory is another important practical requirement. ALEX uses a node per leaf
layout, which could be mapped to disk pages, and hence is secondary storage friendly.
A simple extension of ALEX could store a pointer to a leaf data page in secondary
storage, for every leaf node. However, as observed in [97], supporting secondary storage
may require: changes to model training, introducing an additional translation table,
or using more complex models.
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2.8 Conclusion
We build on the excitement of learned indexes by proposing ALEX, a new updatable
learned index that effectively combines the core insights from the Learned Index with
proven storage and indexing techniques. Specifically, we propose a Gapped Array
node layout that uses model-based inserts and exponential search, combined with an
adaptive RMI structure driven by simple cost models, to achieve high performance
and low memory footprint on dynamic workloads. Our in-depth experimental results
show that ALEX not only consistently beats B+Tree across the read-write workload
spectrum, it even beats the existing Learned Index, on all datasets, by up to 2.2×
with read-only workloads.

We believe this chapter presents important learnings to our community and
opens avenues for future research in this area. We intend to pursue open theoretical
problems about ALEX performance, supporting secondary storage for larger than
memory datasets, and new concurrency control techniques tailored to the ALEX
design.

50



Algorithm 1 Gapped Array Insertion
1: struct Node { keys[] (Gapped Array); num_keys; 𝑑𝑢, 𝑑𝑙; model: key→ [0, keys.size);

}
2: procedure Insert(𝑘𝑒𝑦)
3: if num_keys / keys.size >= 𝑑𝑢 then
4: if expected cost ≈ empirical cost then
5: Expand(retrain=False)
6: else
7: Action with lowest cost /* described in Sec. 2.3.3 */
8: end if
9: end if

10: predicted_pos = model.predict(key)
11: /* check for sorted order */
12: insert_pos = CorrectInsertPosition(predicted_pos)
13: if keys[insert_pos] is occupied then
14: MakeGap(insert_pos) /* described in text */
15: end if
16: keys[insert_pos] = key
17: num_keys++
18: end procedure
19: procedure Expand(𝑟𝑒𝑡𝑟𝑎𝑖𝑛)
20: expanded_size = num_keys * 1/𝑑𝑙
21: /* allocate a new expanded array */
22: expanded_keys = array(size=expanded_size)
23: if retrain == True then
24: model = /* train linear model on keys */
25: else
26: /* scale existing model to expanded array */
27: model *= expanded_size / keys.size
28: end if
29: for key : keys do
30: ModelBasedInsert(key)
31: end for
32: keys = expanded_keys
33: end procedure
34: procedure ModelBasedInsert(𝑘𝑒𝑦)
35: insert_pos = model.predict(key)
36: if keys[insert_pos] is occupied then
37: insert_pos = first gap to right of predicted_pos
38: end if
39: keys[insert_pos] = key
40: end procedure
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Chapter 3

Tsunami: An Instance-Optimized
Storage Layout for In-Memory Data

While the previous chapter focused on a instance-optimized learned index for opera-
tional workloads that consist of a mix of point lookups, short range queries, inserts,
updates, and deletes, the remainder of this thesis will focus on instance-optimized
physical designs for analytic workloads. In this chapter and the following chapter,
we discuss instance-optimized layouts for improving the performance of scanning and
filtering.

Filtering through data is the foundation of any analytical database engine, and
several advances over the past several years specifically target database filter perfor-
mance. For example, column stores [54] delay or entirely avoid accessing columns
(i.e., dimensions) which are not relevant to a query, and they often sort the data by a
single dimension in order to skip over records that do not match a query filter over
that dimension.

If data has to be filtered by more than one dimension, secondary indexes can be
used. Unfortunately, their large storage overhead and the latency incurred by chasing
pointers make them viable only when the predicate on the indexed dimension has a
very high selectivity. An alternative approach is to use (clustered) multi-dimensional
indexes; these may be tree-based data structures (e.g., k-d trees, R-trees, or octrees)
or a specialized sort order over multiple dimensions (e.g., a space-filling curve like
Z-ordering or hand-picked hierarchical sort). Many state-of-the-art analytical database
systems use multi-dimensional indexes or sort orders to improve the scan performance
of queries with predicates over several columns [9, 41, 76].

However, multi-dimensional indexes have significant drawbacks. First, these
techniques are hard to tune and require an admin to carefully pick which dimensions
to index, if any at all, and the order in which they are indexed. This decision must be
revisited every time the data or workload changes, requiring extensive manual labor
to maintain performance. Second, there is no single approach (even if tuned correctly)
that dominates all others [138].

To address the shortcomings of traditional indexes, recent work has proposed
the idea of learned multi-dimensional indexes [138, 194, 108, 187, 42]. In particular,
Flood [138] is a in-memory multi-dimensional index that automatically optimizes
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Figure 3-1: Indexes must identify the points that fall in the green query rectangle. To
do so, they scan the points in red. (a) K-d tree guarantees equally-sized regions but is
not optimized for the workload. (b) Flood is optimized using the workload but its
structure is not expressive enough to handle query skew, and cells are unequally sized
on correlated data. (c) Tsunami is optimized using the workload, is adaptive to query
skew, and maintains equally-sized cells within each region.

its structure to achieve high performance on a particular dataset and workload. In
contrast to traditional multi-dimensional indexes, such as the k-d tree, which are
created entirely based on the data (see Fig. 3-1a), Flood divides each dimension into
some number of partitions based on the observed data and workload (see Fig. 3-1b,
explained in detail in Chapter 3.1). The Cartesian product of the partitions in each
dimension form a grid. Furthermore, to reduce the index size, Flood uses models of
the CDF of each dimension to locate the data.

However, Flood faces a number of limitations in real-world scenarios. First, Flood’s
grid cannot efficiently adapt to skewed query workloads in which query frequencies
and filter selectivities vary across the data space. Second, if dimensions are correlated,
then Flood cannot maintain uniformly sized grid cells, which degrades performance
and memory usage.

To address these limitations, we propose Tsunami, an in-memory read-optimized
learned multi-dimensional index that extends the ideas of Flood with new data
structures and optimization techniques. First, Tsunami achieves high performance
on skewed query workloads by using a lightweight decision tree, called a Grid Tree,
to partition space into non-overlapping regions in a way that reduces query skew.
Second, Tsunami achieves high performance on correlated datasets by indexing each
region using an Augmented Grid, which uses two techniques—functional mappings
and conditional CDFs—to efficiently capture information about correlations.

While recent work explored how correlation can be exploited to reduce the size of
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secondary indexes [193, 88], our work goes much further. We demonstrate not only
how to leverage correlation to achieve faster and more compact multi-dimensional
indexes (in which the data is organized based on the index) rather than secondary
indexes, but also how to integrate the optimization for query skew and data correlation
into a full end-to-end solution. Tsunami automatically optimizes the data storage
organization as well as the multi-dimensional index structure based on the data and
workload.

Like Flood [138], Tsunami is a clustered in-memory read-optimized index over
an in-memory column store. In-memory stores are increasingly popular due to lower
RAM prices [86] and our focus on reads reflects the current trend towards avoiding
in-place updates in favor of incremental merges (e.g., RocksDB [164]). We envision
that Tsunami could serve as the building block for a multi-dimensional in-memory key-
value store or be integrated into commercial in-memory (offline) analytics accelerators
like Oracle’s Database In-Memory (DBIM) [151].

In summary, we make the following contributions:
1. We design and implement Tsunami, an in-memory read-optimized learned multi-

dimensional index that self-optimizes to achieve high performance and robustness
to correlated datasets and skewed workloads.

2. We introduce two data structures, the Grid Tree and the Augmented Grid, along
with new optimization procedures that enable Tsunami to tailor its index structure
and data organization strategy to handle data correlation and query skew.

3. We evaluate Tsunami against Flood, the original in-memory learned multi-dimensional
index, as well as a number of traditional non-learned indexes, on a variety of work-
loads over real datasets. We show that Tsunami is up to 6× and 11× faster than
Flood and the fastest optimally-tuned non-learned index, respectively. Tsunami is
also adaptable to workload shift, and scales across data size, query selectivity, and
dimensionality.
In the remainder of this chapter, we give background (Chapter 3.1), present

an overview of Tsunami (Chapter 3.2), introduce its two core components—Grid
Tree (Chapter 3.3) and Augmented Grid (Chapter 3.4), present experimental results
(Chapter 3.5), review related work (Chapter 3.6), propose future work (Chapter 3.7),
and conclude (Chapter 3.8).

3.1 Background

Tsunami is an in-memory clustered multi-dimensional index for a single table. Tsunami
aims to increase the throughput performance of analytics queries by decreasing the
time needed to filter records based on range predicates. Tsunami supports queries
such as:

SELECT SUM(R.X)
FROM MyTable
WHERE (a ≤ R.Y ≤ b) AND (c ≤ R.Z ≤ d)

where SUM(R.X) can be replaced by any aggregation. Records in a 𝑑-dimensional
table can be represented as points in 𝑑-dimensional data space. For the rest of this
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chapter, we use the terms record and point interchangeably. To place Tsunami in
context, we first describe the k-d tree as an example of a traditional non-learned
multi-dimensional index, and Flood, which originally proposed the idea of learned
in-memory multi-dimensional indexing.

3.1.1 K-d Tree: A Traditional Non-Learned Index

The k-d tree [17] is a binary space-partitioning tree that recursively splits 𝑑-dimensional
space based on the median value along each dimension, until the number of points in
each leaf region falls below a threshold, called the page size. Fig. 3-1a shows a k-d
tree over 2-dimensional data that has 8 leaf regions. The points within each region are
stored contiguously in physical storage (e.g., a column store). By construction, the
leaf regions have a roughly equal number of points. To process a query (i.e., identify
all points that match the query’s filter predicates), the k-d tree traverses the tree to
find all leaf regions that intersect the query’s filter, then scans all points within those
regions to identify points that match the filter predicates.

The k-d tree structure is constructed based on the data distribution but indepen-
dently of the query workload. That is, regardless of whether a region of the space is
never queried or whether queries are more selective in some dimensions than others,
the k-d tree would still build an index over all data points with the same page size
and index overhead. While other traditional multi-dimensional indexes split space
in different ways [129, 14, 143, 198], they all share the property that the index is
constructed independent of the query workload.

3.1.2 Flood: A Learned Index

In contrast, Flood [138] optimizes its layout based on the workload (Fig. 3-1b). We
first introduce how Flood works, then explain its two key advantages over traditional
indexes, then discuss its limitations.

Given a 𝑑-dimensional dataset, Flood first constructs compact models of the CDF
of each dimension. The choice of modeling technique is orthogonal; Flood uses a
Recursive Model Index [98], but one could also use a histogram or linear regression.
Flood uses these models to divide the domain of each dimension into equally-sized
partitions: let 𝑝𝑖 be the number of partitions in each dimension 𝑖 ∈ [0, 𝑑). Then a
point whose value in dimension 𝑖 is 𝑥 is placed into the ⌊𝐶𝐷𝐹𝑖(𝑥) · 𝑝𝑖⌋-th partition
of dimension 𝑖. This guarantees that each partition in a given dimension has an
equal number of points. When combined, the partitions of each dimension form a
𝑑-dimensional grid with

∏︀
𝑖∈[0,𝑑) 𝑝𝑖 cells, which are ordered. The points within each

cell are stored contiguously in physical storage.
Flood’s query processing workflow has three steps, shown in Fig. 3-1b: (1) Using

the per-dimension CDF models, identify the range of intersecting partitions in each
dimension, and take the Cartesian product to identify the set of intersecting cells. (2)
For each intersecting cell, identify the corresponding range in physical storage using a
lookup table. (3) Scan all the points within those physical storage ranges, and identify
the points that match all query filters.
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Flood’s Strengths

Flood has two key advantages over traditional indexes such as the k-d tree1. First,
Flood can automatically tune its grid structure for a given query workload by adjusting
the number of partitions in each dimension to maximize query performance. For
example, in Fig. 3-1b, there are many queries in the upper-right region of the data
space that have high selectivity over dimension Y. Therefore, Flood’s optimization
technique will place more partitions in dimension Y than dimension X, in order
to reduce the number of points those queries need to scan. In other words, Flood
learns which dimensions to prioritize over others and adjusts the number of partitions
accordingly, whereas non-learned approaches do not take the workload into account
and treat all dimensions equally.

Flood’s second key advantage is its CDF models. The advantage of indexing using
compact CDF models, as opposed to a tree-based structure such as a k-d tree, is lower
overhead in both space and time: storing 𝑑 CDF models takes much less space than
storing pointers and boundary keys for all internal tree nodes. It is also much faster
to identify intersecting grid cells by invoking 𝑑 CDF models than by pointer chasing
to traverse down a tree index.

The combination of these two key advantages allows Flood to outperform non-
learned indexes by up to three orders of magnitude while using up to 50× smaller
index size [138].

Flood’s Limitations

However, Flood has two key limitations. First, Flood only optimizes for the average
query, which results in degraded performance when queries are not uniform. For
example, in Fig. 3-1b there are a few queries in the lower-left region of the data space
that, unlike the many queries in the upper-right region, have high selectivity over
dimension X. Since these queries are a small fraction of the total workload, Flood’s
optimization will not prioritize their performance. As a result, Flood will need to scan
a large number of points to create the query result (red points in Fig. 3-1b). Flood’s
uniform grid structure can only optimize for the average selectivity in each dimension
and is not expressive enough to optimize for both the upper-right queries and lower-left
queries independently. The workload in Fig. 3-1 is an example of a skewed workload.
Query skew is common in real workloads: for example, queries often hit recent data
more frequently than stale data, and operations monitoring systems only query for
health metrics that are exceedingly low or high.

Second, Flood’s model-based indexing technique can result in unequally-sized cells
when data is correlated. In Fig. 3-1b, even though the CDF models guarantee that
the three partitions over dimension X have an equal number of points, as do the six
partitions over dimension Y, the 18 grid cells are unequally sized. This degrades
performance and space usage (Chapter 3.4.1). Correlations are common in real data:
for example, the price and distance of a taxi ride are correlated, as are the dates on
which a package is shipped and received.

1Flood’s minor third advantage, the sort dimension, is orthogonal to our work.
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The goal of our work, Tsunami, is to maintain the two advantages of Flood—
optimization based on the query workload and a compact/fast model-based index
structure—while also addressing Flood’s limitations in the presence of data correlations
and query skew.

3.2 Tsunami Design Overview
Tsunami is a learned multi-dimensional index that is robust to data correlation and
query skew. We first introduce the index structure and how it is used to process a
query. We then provide an overview of the offline procedures we use to automatically
optimize Tsunami’s structure.
Tsunami Structure. Tsunami is a composition of two independent data structures:
the Grid Tree (Chapter 3.3) and the Augmented Grid (Chapter 3.4). The Grid Tree
is a space-partitioning decision tree that divides 𝑑-dimensional data space into some
number of non-overlapping regions. In Fig. 3-1c, the Grid Tree divides data space into
three regions by splitting on dimension X.

Within each region, there is an Augmented Grid. Each Augmented Grid indexes
the points that fall in its region. In Fig. 3-1c, Regions 1 and 3 each have their own
Augmented Grid. Region 2 is not given an Augmented Grid because no queries
intersect its region. An Augmented Grid is essentially a generalization of Flood’s
index structure that uses additional techniques to capture correlations. In Fig. 3-1c,
the Augmented Grids use 𝐹 : 𝑌 → 𝑋 and 𝐶𝐷𝐹 (𝑌 |𝑋) instead of Flood’s 𝐶𝐷𝐹 (𝑌 )
(explained in Chapter 3.4.2).
Tsunami Query Workflow. Tsunami processes a query in three steps: (1) Traverse
the Grid Tree to find all regions that intersect the query’s filter. (2) In each region,
identify the set of intersecting Augmented Grid cells (Chapter 3.4), then identify the
corresponding range in physical storage using a lookup table. (3) Scan all the points
within those physical storage ranges, and identify the points that match all query
filters.
Tsunami Optimization. Tsunami’s offline optimization procedure has two steps:
(1) Optimize the Grid Tree using the full dataset and sample query workload (Chap-
ter 3.3.3). (2) In each region of the optimized Grid Tree, construct an Augmented
Grid that is optimized over only the points and queries that intersect its region
(Chapter 3.4.3).

Intuitively, Tsunami separates the two concerns of query skew and data correlations
into its two component structures, Grid Tree and Augmented Grid, respectively. Each
structure is optimized in a way that addresses its corresponding concern. We now
describe each structure in detail.

3.3 Grid Tree
In this section, we first discuss the performance challenges posed by skewed workloads.
We then formally define query skew, and we describe Tsunami’s solution for mitigating
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Figure 3-2: A single grid cannot efficiently index a skewed query workload, but a
combination of non-overlapping grids can. We use this workload as a running example.

query skew: the Grid Tree.

3.3.1 Challenges of Query Skew

A query workload is skewed if the characteristics of queries (e.g., frequency or selectiv-
ity) vary in different parts of the data space. Fig. 3-2a shows an example of sales data
from 2016 to 2020. Points are uniformly distributed in time. The query workload
is composed of two distinct query “types”: the red queries 𝑄𝑟 filter uniformly over
one-year spans, whereas the green queries 𝑄𝑔 filter over one-month spans only over the
last year. If we were to impose a grid over the data space, we intuitively would want
many partitions over the past year in order to obtain finer granularity for 𝑄𝑔, whereas
partitions prior to 2019 should be more widely spaced, because 𝑄𝑟 does not require
much granularity in time. However, with a single grid it is not possible accommodate
both while maintaining an equal number of points in each partition (Fig. 3-2a).

Instead, we can split the data space into two regions: before 2019 and after 2019
(Fig. 3-2b). Each region has its own grid, and the two grids are independent. The
right region can therefore tailor its grid for 𝑄𝑔 by creating many partitions over time.
On the other hand, the left region does not need to worry about 𝑄𝑔 at all and places
few partitions over time, and can instead add more partitions over the sales dimension.
This intuition drives our solution for tackling query skew.

3.3.2 Reducing Query Skew with a Grid Tree

We first formally define query skew. We then describe at a high level how Grid Tree
tackles query skew and how to process queries using the Grid Tree. We then describe
how to find the optimal Grid Tree for a given dataset and query workload. We use
the terminology in Tab. 3.1.
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Table 3.1: Terms used to describe the Grid Tree

Term Description

𝑑 Dimensionality of the dataset
𝑆 𝑑-dimensional data space: [0, 𝑋0)× · · · × [0, 𝑋𝑑−1)
𝑄 Set of queries
𝑈𝑛𝑖𝑖(𝑎, 𝑏) Uniform distribution over [𝑎, 𝑏) in dimension 𝑖 ∈ [0, 𝑑)
𝑃𝐷𝐹𝑖(𝑄, 𝑎, 𝑏) Empirical PDF of queries 𝑄 over [𝑎, 𝑏) in dimension 𝑖
𝐻𝑖𝑠𝑡𝑖(𝑄, 𝑎, 𝑏, 𝑛) Approximate PDF of queries 𝑄 over range [𝑎, 𝑏)

in dimension 𝑖 using a histogram with 𝑛 bins
𝐸𝑀𝐷(𝑃1, 𝑃2) Earth Mover’s Distance between distributions 𝑃1, 𝑃2

𝑆𝑘𝑒𝑤𝑖(𝑄, 𝑎, 𝑏) Skew of query set 𝑄 over range [𝑎, 𝑏) in dimension 𝑖

Definition of Query Skew

The skew of a set of queries 𝑄 with respect to a range [𝑎, 𝑏) in dimension 𝑖 is

𝑆𝑘𝑒𝑤𝑖(𝑄, 𝑎, 𝑏) = 𝐸𝑀𝐷 (𝑈𝑛𝑖𝑖(𝑎, 𝑏), 𝑃𝐷𝐹𝑖(𝑄, 𝑎, 𝑏))

where 𝑈𝑛𝑖𝑖(𝑎, 𝑏) is a uniform distribution over [𝑎, 𝑏) and 𝑃𝐷𝐹𝑖(𝑄, 𝑎, 𝑏) is the empirical
PDF of queries in 𝑄 over [𝑎, 𝑏). Each query contributes a unit mass to the PDF,
spread over its filter range in dimension 𝑖. 𝐸𝑀𝐷 is the Earth Mover’s Distance, which
is a measure of the distance between two probability distributions.

Fig. 3-3a shows the same data and workload as in Fig. 3-2. Fig. 3-3b-c show the PDF
of 𝑄𝑔 and 𝑄𝑟, respectively. The skew is intuitively visualized (though not technically
equal to) the shaded area between the PDF and the uniform distribution. Although
𝑄𝑔 is highly skewed over the time dimension, Fig. 3-3d shows that by splitting the
time domain at 2019, we can reduce the skew of 𝑄𝑔 because 𝑆𝑘𝑒𝑤𝑌 𝑒𝑎𝑟(𝑄𝑔, 2016, 2019)
and 𝑆𝑘𝑒𝑤𝑌 𝑒𝑎𝑟(𝑄𝑔, 2019, 2020) are low.

In concept, 𝑃𝐷𝐹𝑖(𝑄, 𝑎, 𝑏) is a continuous probability distribution. However, in
practice we approximate 𝑃𝐷𝐹𝑖(𝑄, 𝑎, 𝑏) using a histogram: we discretize the range
[𝑎, 𝑏) into 𝑛 bins. If a query 𝑞’s filter range intersects with 𝑚 contiguous bins, then it
contributes 1/𝑚 mass to each of the bins. Therefore, the total histogram mass will be
|𝑄|. We call this histogram 𝐻𝑖𝑠𝑡𝑖(𝑄, 𝑎, 𝑏, 𝑛).

In this context, a probability distribution over a range of histogram bins [𝑥, 𝑦),
where 0 ≤ 𝑥 < 𝑦 ≤ 𝑛, is a (𝑦 − 𝑥)-dimensional vector. We can concretely compute
skew over the bins [𝑥, 𝑦):

𝑈𝑛𝑖𝑖(𝑄, 𝑥, 𝑦)[𝑗] =

∑︀
𝑥≤𝑘<𝑦 𝐻𝑖𝑠𝑡𝑖(𝑄, 𝑎, 𝑏, 𝑛)[𝑘]

𝑦 − 𝑥
for 𝑥 ≤ 𝑗 < 𝑦

𝑃𝐷𝐹𝑖(𝑄, 𝑥, 𝑦)[𝑗] = 𝐻𝑖𝑠𝑡𝑖(𝑄, 𝑎, 𝑏, 𝑛)[𝑗] for 𝑥 ≤ 𝑗 < 𝑦

𝑆𝑘𝑒𝑤𝑖(𝑄, 𝑥, 𝑦) = 𝐸𝑀𝐷 (𝑈𝑛𝑖𝑖(𝑄, 𝑥, 𝑦), 𝑃𝐷𝐹𝑖(𝑄, 𝑥, 𝑦))

We store the bin boundaries of the histogram, so there is a simple mapping function
from a value 𝑎 to its bin 𝑥. Therefore, throughout this section, we will use 𝑆𝑘𝑒𝑤𝑖(𝑄, 𝑎, 𝑏)
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Figure 3-3: Query skew is computed independently for each query type (𝑄𝑔 and 𝑄𝑟)
and is defined as the statistical distance between the empirical PDF of the queries
and the uniform distribution.

and 𝑆𝑘𝑒𝑤𝑖(𝑄, 𝑥, 𝑦) interchangeably.

Grid Tree Design

Given a query workload that is skewed over a data space, the aim of the Grid Tree is
to divide the data space into a number of non-overlapping regions so that within each
region, there is little query skew.

The Grid Tree is a space-partitioning decision tree, similar to a k-d tree. Each
internal node of the Grid Tree divides space based on the values in a particular
dimension, called the split dimension 𝑑𝑠. Unlike a k-d tree, which is a binary tree,
internal nodes of the Grid Tree can split on more than one value. If an internal node
splits on values 𝑉 = {𝑣1, . . . , 𝑣𝑘}, then the node has 𝑘 + 1 children. To process a
query, we traverse the Grid Tree to find all regions that intersect with the query’s filter
predicates. If there is an index over the points in that region (e.g., an Augmented
Grid), then we delegate the query to that index and aggregate the returned results. If
there is no index for the region, we simply scan all points in the region.

Note that the Grid Tree is not meant to be an end-to-end index. Instead, the Grid
Tree’s purpose is to efficiently reduce query skew, while using low memory. This way,
the user is free to use any indexing scheme within each region, without worrying about
intra-region query skew.
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3.3.3 Optimizing the Grid Tree

Given a dataset and sample query workload, our optimization goal is to reduce query
skew as much as possible while maintaining a small and lightweight Grid Tree. We
present the high-level optimization algorithm, then dive into details. Our procedure is
as follows: (1) Group queries in the sample workload into some number of clusters,
which we call query types (Chapter 3.3.3). (2) Build the Grid Tree in a greedy fashion.
Start with a root node that is responsible for the entire data space 𝑆. Recursively, for
each node 𝑁 responsible for data space 𝑆𝑁 , pick the split dimension 𝑑𝑠 ∈ [0, 𝑑) and
the set of split values 𝑉 = {𝑣1, . . . , 𝑣𝑘} that most reduce query skew (Chapter 3.3.3).
𝑑𝑠 and 𝑉 define 𝑘 + 1 non-overlapping sub-spaces of 𝑆𝑁 . Assign a child node to each
of the 𝑘 + 1 sub-spaces and recurse for each child node. If a node 𝑁 has low query
skew (Chapter 3.3.3), or has below a minimum threshold number of intersecting points
or queries, then it stops recursing and becomes a leaf node, representing a region.

Clustering Query Types

It is not enough to consider the query skew of the entire query set 𝑄 as a whole,
because queries within this set have different characteristics and therefore are best
indexed in different ways. For example, we showed in Fig. 3-2 that 𝑄𝑔 and 𝑄𝑟 are
best indexed with different partitioning schemes. Considering all queries as a whole
can mask the effects of skew because the skews of different query types can cancel
each other out.

Therefore, we cluster queries into types that have similar selectivity characteristics.
First, queries that filter over different sets of dimensions are automatically placed in
different types. For each group of queries that filter over the same set of 𝑑′ dimensions,
we transform each query into a 𝑑′-dimensional embedding in which each value is set
to the filter selectivity of the query over a particular dimension. We run DBSCAN
over the 𝑑′-dimensional embeddings with eps set to 0.2 (this worked well for all our
experiments and we never tuned it). DBSCAN automatically determines the number
of clusters. The choice of clustering algorithm is orthogonal to the Grid Tree design.

Real query workloads have patterns and can usually be divided into types. For
example, many analytic workloads are composed of query templates, for which the
dimensions filtered and rough selectivity remains constant, but the specific predicate
values vary. However, even if there are no patterns in the workload, the Grid Tree is
still useful because there can still be query skew over a single query type (i.e., query
frequency varies in different parts of data space).

From now on, we assume that if the query set 𝑄 is composed of 𝑡 query types,
then we can divide 𝑄 into 𝑡 subsets 𝑄1, . . . , 𝑄𝑡. For example, in Fig. 3-3 there are
2 types, 𝑄𝑟 and 𝑄𝑔. Note that each query can only belong to one query type, but
queries in different types are allowed to overlap in data space. We now redefine skew:

𝑆𝑘𝑒𝑤𝑖(𝑄, 𝑎, 𝑏) =
∑︁
1≤𝑖≤𝑡

𝑆𝑘𝑒𝑤𝑖(𝑄𝑡, 𝑎, 𝑏)
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Figure 3-4: Skew tree over the range [0, 1000) with eight leaf nodes. The covering set
that achieves lowest combined skew is shaded green. Based on the boundaries of the
covering set, we extract the split values 𝑉 = {250, 375, 500}.

Selecting the Split Dimension and Values

Given a Grid Tree node 𝑁 over a data space 𝑆𝑁 and a set of queries 𝑄 that intersects
with 𝑆𝑁 , our goal is to find the split dimension 𝑑𝑠 and split values over that dimension
𝑉 = {𝑣1, . . . , 𝑣𝑘} that achieve the largest reduction in query skew. For a dimension
𝑖 ∈ [0, 𝑑) and split values 𝑉 , the reduction in query skew is defined as

𝑅𝑖(𝑄, 0, 𝑋𝑑, 𝑉 ) = 𝑆𝑘𝑒𝑤𝑖(𝑄, 0, 𝑋𝑑)−
[︁
𝑆𝑘𝑒𝑤𝑖(𝑄, 0, 𝑣1)

+ 𝑆𝑘𝑒𝑤𝑖(𝑄, 𝑣𝑘, 𝑋𝑑) +
∑︁
1≤𝑖<𝑘

𝑆𝑘𝑒𝑤𝑖(𝑄, 𝑣𝑖, 𝑣𝑖+1)
]︁

Note that skew reduction is defined per dimension, not over all 𝑑 dimensions simul-
taneously. Therefore, we independently find the largest skew reduction 𝑅𝑚𝑎𝑥𝑖 =
max𝑉 (𝑅𝑖) for each dimension 𝑖 ∈ [0, 𝑑) (explained next), then pick the split dimension
𝑑𝑠 = argmax𝑖(𝑅𝑚𝑎𝑥𝑖).

For example, in Fig. 3-3, 𝑆𝑘𝑒𝑤𝑆𝑎𝑙𝑒𝑠 is already low because both query types are
distributed relatively uniformly over Sales, so 𝑅𝑚𝑎𝑥Sales is low. On the other hand,
𝑆𝑘𝑒𝑤𝑌 𝑒𝑎𝑟 is high. We can achieve very large 𝑅𝑚𝑎𝑥Year using 𝑉 = {2019}. Therefore,
we select 𝑑𝑠 = Year and 𝑉 = {2019}.

If max𝑖(𝑅𝑚𝑎𝑥𝑖) is below some minimum threshold (by default 5% of |𝑄|) or if 𝑆𝑁

intersects below a minimum threshold of points or queries (by default 1% of the total
points or queries in the entire data space), then 𝑑𝑠 is rejected and 𝑁 becomes a leaf
Grid Tree node.

We now explain how to find the split values 𝑉 that maximize 𝑅𝑑𝑠 for each candidate
split dimension 𝑑𝑠 ∈ [0, 𝑑). We introduce a data structure called the skew tree, which
is simply a tool to help find the optimal 𝑉 ; it is never used when running queries.
The skew tree is a balanced binary tree (Fig. 3-4). Each node represents a range over
the domain of dimension 𝑑𝑠. The root node represents the entire range [0, 𝑋𝑑𝑠), and
every node represents the combined ranges of the nodes in its subtree. A skew tree
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node whose range is [𝑎, 𝑏) will store the value 𝑆𝑘𝑒𝑤𝑑𝑠(𝑄, 𝑎, 𝑏). In other words, each
skew tree node stores the query skew over the range it represents.

Creating the skew tree requires 𝐻𝑖𝑠𝑡𝑑𝑠(𝑄, 0, 𝑋𝑑𝑠). By default, we instantiate the
histogram with 128 bins. Note that we are unable to compute a meaningful skew over
a single histogram bin: 𝑆𝑘𝑒𝑤𝑑𝑠(𝑄, 𝑥, 𝑥+ 1) is always zero, because a single bin has no
way to differentiate the uniform distribution from the query PDF. Therefore, the skew
tree will only have 64 leaf nodes. However, if there are fewer than 128 unique values
in dimension 𝑑𝑠, we create a bin for each unique value. In this case, there is truly no
skew within each histogram bin, so the skew tree has as many leaf nodes as unique
values in 𝑑𝑠, and the skew at each leaf node is 0.

A set of skew tree nodes is called covering if their represented ranges do not
intersect and the union of their represented ranges is [0, 𝑋𝑑𝑠). We want to solve for the
covering set with minimum combined query skew. This is simple to do via dynamic
programming in two passes over the skew tree nodes: in the first pass, we start from
the leaf nodes and work towards the root node, and at each node we annotate the
minimum combined query skew achievable over the node’s subtree. In the second pass,
we start from the root and work towards the leaves, and check if a node’s skew is
equal to the annotated skew: if so, the node is part of the optimal covering set. The
boundaries between the ranges of nodes in the optimal covering set form 𝑉 .

As a final step, we do a single ordered pass over all the nodes in the covering set, in
order of the range they represent, and merge nodes if the query skew of the combined
node is not more than a constant factor (by default, 10%) larger than the sum of the
individual query skews. For example, in Fig. 3-4 if 𝑆𝑘𝑒𝑤𝐴(𝑄, 0, 375) < 15 · 1.1, then
the first two nodes of the covering set would be merged, and 250 would be removed
as a split value. This step counteracts the fact that the binary tree may split at
superfluous points, and it also acts as a regularizer that prevents too many splits.

3.4 Augmented Grid

In this section, we describe the challenges posed by data correlations, and we introduce
our solution to address those challenges: the Augmented Grid. Note that the Grid
Tree (Chapter 3.3) optimizes only for query skew reduction, and the points within
each region might still display correlation.

3.4.1 Challenges of Data Correlation

We broadly define a pair of dimensions 𝑋 and 𝑌 to be correlated if they are not
independent, i.e., if 𝐶𝐷𝐹 (𝑋) ̸= 𝐶𝐷𝐹 (𝑋|𝑌 ) and vice versa. In the presence of
correlated dimensions, it is not possible to impose a grid that has equally-sized cells
by partitioning each dimension independently (see Fig. 3-1b). As a result, points will
be clustered into a relatively few number of cells, so any query that hits one of those
cells will likely scan many more points than necessary.

One way to mitigate this issue is by increasing the number of partitions in each
dimension, to form more fine-grained cells. However, increasing the number of cells
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Table 3.2: Example skeleton over dimensions 𝑋, 𝑌, 𝑍, and all skeletons one “hop” away.
Restrictions are explained in Chapter 3.4.2 and Chapter 3.4.2 (e.g., [𝑋 → 𝑍, 𝑌 |𝑋,𝑍]
is not allowed).

Ex. skeleton [𝑋,𝑌 |𝑋,𝑍] (i.e., 𝐶𝐷𝐹 (𝑋), 𝐶𝐷𝐹 (𝑌 |𝑋), and 𝐶𝐷𝐹 (𝑍))

One hop away [𝑋,𝑌, 𝑍] [𝑋,𝑌 |𝑍,𝑍] [𝑋,𝑌 → 𝑋,𝑍]
[𝑋,𝑌 → 𝑍,𝑍] [𝑋,𝑌 |𝑋,𝑍|𝑋] [𝑋,𝑌 |𝑋,𝑍 → 𝑋]

would counteract the two advantages of grids over trees: (1) Space overhead increases
rapidly (e.g., doubling the number of partitions in each dimension increases index
size by 2𝑑). (2) Time overhead also increases, because each cell incurs a lookup table
lookup. Therefore, simply making finer-grained grids is not a scalable solution to data
correlations.

3.4.2 A Correlation-Aware Grid

Tsunami handles data correlations while maintaining the time and space advantage
of grids by augmenting the basic grid structure with new partitioning strategies that
allow it to partition dimensions dependently instead of independently. We first provide
a high level description of the Augmented Grid, then dive into details.

An Augmented Grid is a grid in which each dimension 𝑋 ∈ [0, 𝑑) is divided into
𝑝𝑋 partitions and uses one of three possible strategies for creating its partitions: (1)
We can partition 𝑋 independently of other dimensions, uniformly in 𝐶𝐷𝐹 (𝑋). This
is what Flood does for every dimension. (2) We can remove 𝑋 from the grid and
transform query filters over 𝑋 into filters over some other dimension 𝑌 ∈ [0, 𝑑) using
a functional mapping 𝐹 : 𝑋 → 𝑌 (Chapter 3.4.2). (3) We can partition 𝑋 dependent
on another dimension 𝑌 ∈ [0, 𝑑), uniformly in 𝐶𝐷𝐹 (𝑋|𝑌 ) (Chapter 3.4.2).

A specific instantiation of partitioning strategies for all dimensions is called a
skeleton. Tab. 3.2 shows an example. We “flesh out” the skeleton by setting the number
of partitions in each dimension to create a concrete instantiation of an Augmented
Grid. Therefore, an Augmented Grid is uniquely defined by the combination of its
skeleton 𝑆 and number of partitions in each dimension 𝑃 .

Functional Mappings

A pair of dimensions 𝑋 and 𝑌 is monotonically correlated if as values in 𝑋 increase,
values in 𝑌 only move in one direction. Linear correlations are one subclass of
monotonic correlations. For monotonically correlated 𝑋 and 𝑌 , we conceptually define
a mapping function as a function 𝐹 : R2 → R2 that takes a range [𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥] over
dimension 𝑌 and maps it to a range [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥] over dimension 𝑋 with the guarantee
that any point whose value in dimension 𝑌 is in [𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥] will have a value in
dimension 𝑋 in [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥]. In this case, we call 𝑌 the mapped dimension and we
call 𝑋 the target dimension. For simplicity, we place a restriction: a target dimension
cannot itself be a mapped dimension. Similar ideas were proposed in [88, 193].
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Figure 3-5: Functional mapping creates equally-sized cells and reduces scanned points
for tight monotonic correlations. The query is in green, scanned points are red, and
the mapping function is purple, with error bounds drawn as dashed lines.

Concretely, we implement the mapping function as a simple linear regression 𝐿𝑅
trained to predict 𝑋 from 𝑌 , with lower and upper error bounds 𝑒𝑙 and 𝑒𝑢. Therefore, a
functional mapping is encoded in four floating point numbers and has negligible storage
overhead. Given a range [𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥], the mapping function produces 𝑋𝑚𝑖𝑛 = 𝑌𝑚𝑖𝑛−𝑒𝑙
and 𝑋𝑚𝑎𝑥 = 𝑌𝑚𝑎𝑥 + 𝑒𝑢. Note that the idea of functional mappings can generalize to
all monotonic correlations, as in [193]. However, in our experience the vast majority
of monotonic correlations in real data are linear, so we use linear regressions for
simplicity.

Given a functional mapping, any range filter predicate (𝑦0 ≤ 𝑌 ≤ 𝑦1) over
dimension 𝑌 can be transformed into a semantically equivalent predicate (𝑥0 ≤ 𝑋 ≤ 𝑥1)
over dimension 𝑋, where (𝑥0, 𝑥1) = 𝐹 (𝑦0, 𝑦1). This gives us the opportunity to
completely remove the mapped dimension from the 𝑑-dimensional grid, to obtain
equally-sized cells. Fig. 3-5 demonstrates the benefits of functional mapping. The grid
without functional mapping has unequally-sized cells, which results in many points
scanned. On the other hand, the grid with functional mapping has equally-sized cells
and is furthermore able to “shrink” the size of the query to a semantically equivalent
query by inducing a narrower filter over dimension X using the mapping function.
This results in fewer points scanned.

Conditional CDFs

Functional mappings are only useful for tight monotonic correlations. Otherwise, the
error bounds would be too large for the mapping to be useful. For loose monotonic
correlations or generic correlations, we instead use conditional CDFs. For a pair of
generically correlated dimensions 𝑋 and 𝑌 , we partition 𝑋 uniformly in 𝐶𝐷𝐹 (𝑋)
and we partition 𝑌 uniformly in 𝐶𝐷𝐹 (𝑌 |𝑋), resulting in equally-sized cells. In this
case, we call 𝑋 the base dimension and 𝑌 the dependent dimension. For simplicity,
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Figure 3-6: Conditional CDFs create equally-sized cells and reduce scanned points for
generic correlations. The query is in green, and scanned points are in red.

we place restrictions: a base dimension cannot itself be a mapped dimension or a
dependent dimension.

Concretely, if there are 𝑝𝑋 and 𝑝𝑌 partitions over 𝑋 and 𝑌 respectively, we
implement 𝐶𝐷𝐹 (𝑌 |𝑋) by storing 𝑝𝑋 histograms over 𝑌 , one for each partition in 𝑋.
When a query filters over 𝑌 , we first find all intersecting partitions in 𝑋, then for
each 𝑋 partition independently invoke 𝐶𝐷𝐹 (𝑌 |𝑋) to find the intersecting partitions
in 𝑌 . The storage overhead is proportional to 𝑝𝑋𝑝𝑌 , which is minimal compared to
the existing overhead of the grid’s lookup table, which is proportional to

∏︀
𝑖∈[0,𝑑) 𝑝𝑖.

Fig. 3-6 shows an example of using conditional CDFs. Both grids have 𝑝𝑋 = 𝑝𝑌 = 4.
By partitioning 𝑌 using 𝐶𝐷𝐹 (𝑌 |𝑋), the grid on the right has staggered partition
boundaries, which create equally-sized cells and results in fewer points scanned.
Additionally, the regions outside the cells (shaded in gray) are guaranteed to have no
points, which allows the query to avoid scanning the first and last partitions of 𝑋,
even though they intersect the query.

3.4.3 Optimizing the Augmented Grid

Given a dataset and sample query workload, our optimization goal is to find the
best Augmented Grid, i.e., the settings of the parameters (𝑆, 𝑃 ) that achieves lowest
average query time over the sample workload, where 𝑆 is the skeleton and 𝑃 is the
number of partitions in each dimension.

This optimization problem is challenging in two ways: (1) For a specific setting of
(𝑆, 𝑃 ), we cannot know the average query time without actually running the queries,
which can be very time-intensive. Therefore, we create a cost model to predict average
query time, and we optimize for lowest average predicted query time (Chapter 3.4.3).
(2) The search space over skeletons is exponentially large. For each dimension, there
are 𝑂(𝑑) possible partitioning strategies, since there are up to 𝑑− 1 choices for the
other dimension in a functional mapping or conditional CDF. Therefore, the search
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space of skeletons has size 𝑂(𝑑𝑑). To efficiently navigate the joint search space of
(𝑆, 𝑃 ), we use adaptive gradient descent (Chapter 3.4.3).

Cost Model

We use a simple analytic linear cost model to predict the runtime of a query 𝑞 on
dataset 𝐷 and an instantiation of the Augmented Grid with parameters (𝑆, 𝑃 ):

Time = 𝑤0(# cell ranges) + 𝑤1(# scanned points)(# filtered dims)

We now explain each term of this model. A set of adjacent cells in physical storage is
called a cell range. Instead of doing a lookup on the lookup table for every intersecting
cell, we only look up the first and last cell of a cell range. Furthermore, skipping to
each new cell range in physical storage likely incurs a cache miss. 𝑤0 represents the
time to do a lookup and the cache miss of accessing the range in physical storage.

The 𝑤1 term models the time to scan points (e.g., all red points in previous figures).
Since data is stored in a column store, only the dimensions filtered by the query need
to be accessed. 𝑤1 represents the time to scan a single dimension of a single point.

Importantly, the features of this cost model can be efficiently computed or estimated:
the number of cell ranges is easily computed from 𝑞 and (𝑆, 𝑃 ). The number of filtered
dimensions is obvious from 𝑞. The number of scanned points is estimated using 𝑞,
(𝑆, 𝑃 ), and a sample of 𝐷.

Note that we do not model the time to actually perform the aggregation after
finding the points that intersect the query rectangle. This is because aggregation is
a fixed cost that must be incurred regardless of index choice, so we ignore it when
optimizing.

Adaptive Gradient Descent

We find the (𝑆, 𝑃 ) that minimizes average query time, as predicted by the cost model,
using adaptive gradient descent (AGD). We first enumerate AGD’s high level steps,
then provide details for each step. AGD is an iterative algorithm that jointly optimizes
𝑆 and 𝑃 :
1. Using heuristics, initialize (𝑆0, 𝑃0).
2. From (𝑆0, 𝑃0), take a gradient descent step over 𝑃0 using the cost model as the

objective function, which gives us (𝑆0, 𝑃1).
3. From (𝑆0, 𝑃1), perform a local search over skeletons to find the skeleton 𝑆 ′ that

minimizes query time for (𝑆 ′, 𝑃1). Set 𝑆1 = 𝑆 ′. It may be that 𝑆 ′ = 𝑆0, that is, the
skeleton does not change in this step.

4. Repeat steps 2 and 3 starting from (𝑆1, 𝑃1) until we reach a minimum average
query time.
In step 1, we first initialize 𝑆, then 𝑃 . We make a best guess at the optimal

skeleton using heuristics: for each dimension 𝑋, use a functional mapping to dimension
𝑌 if the error bound is below 10% of 𝑌 ’s domain. Else, partition using 𝐶𝐷𝐹 (𝑋|𝑌 )
if not doing so would result in more than 25% of cells in the 𝑋𝑌 grid hyperplane
being empty. Else, partition 𝑋 independently using 𝐶𝐷𝐹 (𝑋). Given the initial 𝑆, we
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initialize 𝑃 proportionally to the average query filter selectivity in each grid dimension
(i.e., excluding mapped dimensions).

In step 2, we use the insight that the cost model is relatively smooth in 𝑃 : changing
the number of partitions usually smoothly increases or decreases the cost. Therefore,
we take the numerical gradient over 𝑃 at (𝑆, 𝑃 ) and take a step in the gradient
direction.

In step 3, we take advantage of the insight that an incremental change in 𝑃 is
unlikely to cause the skeleton 𝑆 ′ to differ greatly from 𝑆. Therefore, step 3 will only
search over 𝑆 ′ that can be created by changing the partitioning strategy for a single
dimension in 𝑆 (e.g., skeletons one “hop” away in Tab. 3.2).

While we could conceivably use black box optimization methods such as simulated
annealing to optimize (𝑆, 𝑃 ), AGD takes advantage of the aforementioned insights into
the behavior of the optimization and is therefore able to find lower-cost Augmented
Grids, which we confirm in Chapter 3.5.6.

3.5 Evaluation

We first describe the experimental setup and then present the results of an in-depth
experimental study that compares Tsunami with Flood and several other indexing
methods on a variety of datasets and workloads. Overall, this evaluation shows that:
1. Tsunami is consistently the fastest index across tested datasets and workloads.

It achieves up to 6× higher query throughput than Flood and up to 11× higher
query throughput than the fastest optimally-tuned non-learned index. Furthermore,
Tsunami has up to 8× smaller index size than Flood and up to 170× smaller index
size than the fastest non-learned index (Chapter 3.5.3).

2. Tsunami can optimize its index layout and reorganize the records quickly for a new
query distribution, typically in under 4 minutes for a 300 million record dataset
(Chapter 3.5.4).

3. Tsunami’s performance advantage over other indexes scales with dataset size,
selectivity, and dimensionality (Chapter 3.5.5).

3.5.1 Implementation and Setup

We implement Tsunami in C++ and perform optimization in Python. We perform our
query performance evaluation via single-threaded experiments on an Ubuntu Linux
machine with Intel Core i9-9900K 3.6GHz CPU and 64GB RAM. Optimization and
data sorting for index creation are performed in parallel for Tsunami and all baselines.

All experiments use 64-bit integer-valued attributes. Any string values are dictio-
nary encoded prior to evaluation. Floating point values are typically limited to a fixed
number of decimal points (e.g., 2 for price values). We scale all values by the smallest
power of 10 that converts them to integers.

Evaluation is performed on data stored in a custom column store with one scan-time
optimization: if the range of data being scanned is exact, i.e., we are guaranteed ahead
of time that all elements within the range match the query filter, we skip checking
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Table 3.3: Dataset and query characteristics.

TPC-H. Taxi Perfmon Stocks

records 300M 184M 236M 210M
query types 5 6 5 5
dimensions 8 9 7 7
size (GB) 19.2 13.2 13.2 11.8

each value against the query filter. For common aggregations, e.g. COUNT, this removes
unnecessary accesses to the underlying data.

We compare Tsunami to other solutions implemented on the same column store,
with the same optimizations, if applicable:

1. Clustered Single-Dimensional Index : Points are sorted by the most selective dimen-
sion in the query workload. If a query filter contains this dimension, we locate the
endpoints using binary search. Otherwise, we perform a full scan.

2. The Z-Order Index is a multidimensional index that orders points by their Z-
value [59]; contiguous chunks are grouped into pages. Given a query, the index
finds the smallest and largest Z-value contained in the query rectangle and iterates
through each page with Z-values in this range. Pages maintain min/max metadata
per dimension to prune irrelevant pages.

3. The Hyperoctree [129] recursively subdivides space equally into hyperoctants (the
𝑑-dimensional analog to 2-dimensional quadrants), until the number of points in
each leaf is below a predefined but tunable page size.

4. The k-d tree [17] recursively partitions space using the median value along each
dimension, until the number of points in each leaf falls below the page size. The
dimensions are selected in a round robin fashion, in order of selectivity.

5. Flood, introduced in Chapter 3.1.2. We use the implementation of [138] with
two changes: we use Tsunami’s cost model instead of Flood’s original random-
forest-based cost model, and we perform refinement using binary search instead
of learned per-cell models (see [138] for details). We verified that these changes
did not meaningfully impact performance. Furthermore, removing per-cell models
dramatically reduces Flood’s index size (on average by 20× [138]), and this allows
us to more directly evaluate the impact of design differences between Flood and
Tsunami without any confounding effects from implementation differences.

There are a number of other multi-dimensional indexing techniques, such as Grid
Files [143], UB-tree [160], and R*-Tree [14]. We decided not to evaluate against these
because Flood already showed consistent superiority over them [138]. We also do
not evaluate against other learned multi-dimensional indexes because they are either
optimized for disk [194, 108] or optimize only based on the data distribution, not the
query workload [187, 42] (see Chapter 3.6).
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3.5.2 Datasets and Workloads

We evaluate indexes on three real-world and one synthetic dataset, summarized in
Tab. 3.3. Queries are synthesized for each dataset, and include a mix of range filters
and equality filters. The queries for each dataset comes from a certain number of
query types (Chapter 3.3.3), each of which answers a different analytics question, with
100 queries of each type. All queries perform a COUNT aggregation. Since all indexes
must pay the same fixed cost of aggregation, performing different aggregations would
not change the relative ordering of indexes in terms of query performance.

The Taxi dataset comes from records of yellow taxi trips in New York City in 2018
and 2019 [144]. It includes fields capturing pick-up and drop-off dates/times, pick-up
and drop-off locations, trip distances, itemized fares, and driver-reported passenger
counts. Our queries answer questions such as “How common were single-passenger
trips between two particular parts of Manhattan?” and “What month of the past year
saw the most short-distance trips?”. Queries display skew over time (more queries over
recent data), passenger count (different query types about very low and very high
passenger counts), and trip distance (more queries about very short trip distances).
Query selectivity varies from 0.25% to 3.9%, with an average of 1.3%.

The performance monitoring dataset Perfmon contains logs of all machines
managed by a major US university over the course of a year. It includes fields
capturing log time, machine name, CPU usages, and system load averages. Our
queries answer questions such as “When in the last month did a certain set of machines
experience high load?”. Queries display skew over time (more queries over recent data)
and CPU usage (more queries over high usage). Query selectivity varies from 0.50%
to 4.9%, with an average of 0.79%. The original dataset has 23.6M records, but we
use a scaled dataset with 236M records.

The Stocks dataset consists of daily historical stock prices of over 6000 stocks
from 1970 to 2018 [55]. It includes fields capturing daily prices (open, close, adjusted
close, low, and high), trading volume, and the date. Our queries answer questions
such as “Which stocks saw the lowest intra-day price change while trading at high
volume?” and “What one-year span in the past decade saw the most stocks close in
a certain price range?”. Queries display skew over time (more queries over recent
data) and volume (different query types about very low and very high volume). Query
selectivity is tightly concentrated around 0.5%± 0.04%. The original dataset has 21M
records, but we use a scaled dataset with 210M records.

Our last dataset is TPC-H [180]. For our evaluation, we use only the fact table,
lineitem, with 300M records (scale factor 50) and create queries by using filters
commonly found in the TPC-H query workload. Our queries include filters over
quantity, extended price, discount, tax, ship mode, ship date, commit date, and receipt
date. They answer questions such as “How many high-priced orders in the past year
used a significant discount?” and “How many shipments by air had below ten items?”.
Query selectivity varies from 0.40% to 0.64%, with an average of 0.54%.
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Figure 3-7: Tsunami achieves up to 6× faster queries than Flood and up to 11× faster
queries than the fastest non-learned index.

3.5.3 Overall Results

Fig. 3-7 compares Tsunami to Flood and the non-learned baselines. Tsunami and
Flood are automatically optimized for each dataset/workload. For the non-learned
baselines, we tuned the page size to achieve best performance on each dataset/workload.
Tsunami is consistently the fastest of all the indexes across datasets and workloads,
and achieves up to 6× faster queries than Flood and up to 11× faster queries than
the fastest non-learned index.

Tab. 3.4 shows statistics of the optimized Tsunami index structure. The Grid Tree
depth and the number of leaf regions are relatively low, which confirms that the Grid
Tree is lightweight, as desired. Because skew does not occur uniformly across data
space, the number of points in each region can vary by over an order of magnitude.

The Grid Tree typically has a low number of nodes (Tab. 3.4), so the vast majority
of Tsunami’s index size comes from the cell lookup tables for the Augmented Grids in
each region. Tsunami often has fewer total grid cells than Flood (Tab. 3.4) because
partitioning space via the Grid Tree gives Tsunami fine-grained control over the
number of cells to allocate in each region, whereas Flood must often over-provision
partitions to deal with query skew (see Chapter 3.3.1). Fig. 3-8 shows that as a result
of having fewer cells, Tsunami uses up to 8× less memory than Flood. Furthermore,
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Figure 3-8: Tsunami uses up to 8× less memory than Flood and 7-170× less memory
than the fastest tuned non-learned index.

Table 3.4: Index Statistics after Optimization.

TPC-H Taxi Perfmon Stocks

Tsunami

Num Grid Tree nodes 39 35 42 54
Grid Tree depth 4 2 4 4
Num leaf regions 27 31 36 39
Min points per region 3.5M 1.9M 2.6M 2.4M
Median points per region 5.9M 3.3M 3.7M 3.2M
Max points per region 10M 6.7M 26M 41M
Avg FMs per region 0.67 0.55 0 1.1
Avg CCDFs per region 1.3 1.9 1.75 1.8
Total num grid cells 1.5M 99K 80K 220K

Flood

Num grid cells 920K 840K 530K 250K
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Figure 3-9: (a) After the query workload changes at midnight, Tsunami re-optimizes
and re-organizes within 4 minutes to maintain high performance. (b) Comparison of
index creation times (solid bars = data sorting time, hatched bars = optimization
time).

Tsunami is between 7× to 170× smaller than the fastest optimally-tuned non-learned
index across the four datasets.

3.5.4 Adaptibility

Tsunami is able to quickly adapt to changes in the query workload by re-optimizing
its layout for the new query workload and re-organizing the data based on the new
layout. In Fig. 3-9a, we simulate a scenario in which the query workload over the
TPC-H dataset changes at midnight: the original query workload is replaced by a new
workload with queries drawn from five new query types. This causes performance on
the learned indexes to degrade. Tsunami (as well as Flood) automatically detects the
workload shift (see Chapter 3.7) and triggers a re-optimization of the index layout
for the new query workload. Tsunami’s re-optimization and data re-organization over
300M rows finish within 4 minutes, and its high query performance is restored. This
shows that Tsunami is highly adaptive for scenarios in which the data or workload
changes infrequently (e.g., every day). The non-learned indexes are not re-tuned
after the workload shift, because in practical settings, it is unlikely that a database
administrator will be able to manually tune the index for every workload change.

Fig. 3-9b shows the index creation time in detail for Tsunami and the baselines.
All indexes require time to sort the data based on the index layout, shown as solid
bars. The learned approaches additionally require time to perform optimization based
on the dataset and query workload, shown as the hatched bars. Even for the largest
datasets, the entire index creation time for Tsunami remains below 4 minutes.
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Figure 3-10: Tsunami continues to outperform other indexes at higher dimensions.

3.5.5 Scalability

Throughout this subsection, Tsunami and Flood are re-optimized for each dataset/-
workload configuration, while the non-learned indexes use the same page size and
dimension ordering as they were tuned for the full TPC-H dataset/workload in
Chapter 3.5.3.

Number of Dimensions. To show how Tsunami scales with dimensions, and how
correlation affects scalability, we create two groups of synthetic 𝑑-dimensional datasets
with 100M records. Within each group, datasets vary by number of dimensions
(𝑑 ∈ {4, 8, 12, 16, 20}). Datasets in the first group show no correlation and points
are sampled from i.i.d. uniform distributions. For datasets in the second group, half
of the dimensions have uniformly sampled values, and dimensions in the other half
are linearly correlated to dimensions in the first half, either strongly (±1% error) or
loosely (±10% error). For each dataset, we create a query workload with four query
types. Earlier dimensions are filtered with exponentially higher selectivity than later
dimensions, and queries are skewed over the first four dimensions.

Fig. 3-10 shows that in both cases, Tsunami continues to outperform the other
indexes at higher dimensions. In particular, the Augmented Grid is able to take
advantage of correlations to effectively reduce the dimensionality of the dataset. This
helps Tsunami delay the curse of dimensionality: Tsunami has around the same
performance on each 𝑑-dimensional correlated dataset as it does on the (𝑑 − 4)-
dimensional uncorrelated dataset.

Dataset Size. To show how Tsunami scales with dataset size, we sample records
from the TPC-H dataset to create smaller datasets. We run the same query workload
as on the full dataset. Fig. 3-11a shows that across dataset sizes, Tsunami maintains
its performance advantage over Flood and non-learned indexes.

Query Selectivity. To show how Tsunami performs at different query selectivities, we

74



Figure 3-11: Tsunami maintains high performance across dataset sizes and query
selectivities.

use the 8-dimensional synthetic dataset/workload with correlation (explained above)
and scale filter ranges equally in each dimension in order to achieve between 0.001%
and 10% selectivity. Fig. 3-11b shows that Tsunami performs well at all selectivities.
The relative performance benefit of Tsunami is less apparent at 10% selectivity because
aggregation time becomes a bottleneck.

3.5.6 Drill-down into Components

Fig. 3-12a shows the relative performance of only using the Augmented Grid (i.e.,
one Augmented Grid over the entire data space) and of only using Grid Tree (i.e.,
with an instantiation of Flood in each leaf region). Grid Tree contributes the most to
Tsunami’s performance, but Augmented Grid also boosts performance significantly
over Flood. Grid Tree-only performs almost as well as Tsunami because partitioning
data space via the Grid Tree often already has the unintentional but useful side effect
of mitigating data correlations.

We now evaluate Augmented Grid’s optimization procedure, which can be broken
into two independent parts: the accuracy of the cost model (Chapter 3.4.3) and the
ability of Adaptive Gradient Descent (Chapter 3.4.3) to minimize cost (i.e., average
query time, predicted by the cost model). For each of our four datasets/workloads,
we run Adaptive Gradient Descent (AGD) to find a low-cost Augmented Grid over
the entire data space. We compare with three alternative optimization methods, all
using the same cost model:
1. Gradient Descent (GD) uses the same initial (𝑆0, 𝑃0) as AGD, then performs

gradient descent over 𝑃 , without ever changing the skeleton.
2. Black Box starts with the same initial (𝑆0, 𝑃0) as AGD, then optimizes 𝑆 and

𝑃 according to the basin hopping algorithm, implemented in SciPy [168], for 50
iterations.
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Figure 3-12: (a) Augmented Grid and Grid Tree both contribute to Tsunami’s
performance. (b) Comparison of optimization methods. Bars show the predicted
query time according to our cost model. Error bars show the actual query time.

3. AGD with naive initialization (AGD-NI) sets the initial skeleton 𝑆0 to use 𝐶𝐷𝐹 (𝑋)
for each dimension, then runs AGD.

Fig. 3-12b shows the lowest cost achieved by each optimization method. There are
several insights. First, Black Box performs worse than the gradient descent variants,
which implies that using domain knowledge and heuristics to guide the search process
provides an advantage. Second, Adaptive Gradient Descent usually achieves only
marginally better predicted query time than Gradient Descent, which implies that for
our tested datasets, our heuristics created a good initial skeleton 𝑆0. Third, Adaptive
Gradient Descent is able to find a low-cost grid even when starting from a naive
skeleton, which implies that the local search over skeletons is able to effectively switch
to better skeletons. For the Taxi dataset, AGD-NI is even able to find a lower-cost
configuration than AGD.

Fig. 3-12b additionally shows the error between the predicted query time using
the cost model and the actual query time when running the queries of the workload.
The average error of the model for all optimized configurations shown in Fig. 3-12b is
only 15%.

3.6 Related Work

Traditional Multi-dimensional Indexes. There is a rich corpus of work dedicated
to multi-dimensional indexes, and many commercial database systems have turned to
multi-dimensional indexing schemes. For example, Amazon Redshift organizes points
by Z-order [133], which maps multi-dimensional points onto a single dimension for
sorting [9, 150, 198]. With spatial dimensions, SQL Server allows Z-ordering [131],
and IBM Informix uses an R-Tree [76]. Other multi-dimensional indexes include K-d
trees, octrees, R* trees, UB trees (which also make use of the Z-order), and Grid
Files [143], among many others (see [146, 174] for a survey). There has also been
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work on automatic index selection [116, 24, 183]. However, these approaches mainly
focus on creating secondary indexes, whereas Tsunami co-optimizes the index and
data storage.

Learned Indexes. Recent work by Kraska et al. [98] proposed the idea of replacing
traditional database indexes with learned models that predict the location of a key in
a dataset. Their learned index, called the Recursive Model Index (RMI), and various
improvements on the RMI [46, 57, 91, 61, 178], only handle one-dimensional keys.

Since then, there has been a corpus of work on extending the ideas of the learned
index to spatial and multi-dimensional data. The most relevant work is Flood [138],
described in Chapter 3.1.2. Learning has also been applied to the challenge of reducing
I/O cost for disk-based multi-dimensional indexes. Qd-tree [194] uses reinforcement
learning to construct a partitioning strategy that minimizes the number of disk-based
blocks accessed by a query. LISA [108] is a disk-based learned spatial index that
achieves low storage consumption and I/O cost while supporting range queries, nearest
neighbor queries, and insertions and deletions. Tsunami and these works share the
idea that a multi-dimensional index can be instance-optimized for a particular use
case by learning from the dataset and query workload.

Past work has also aimed to improve traditional indexing techniques by learning
the data distribution. The ZM-index [187] combines the standard Z-order space-filling
curve [133] with the RMI from [98] by mapping multi-dimensional values into a
single-dimensional space, which is then learnable using models. The ML-index [42]
combines the ideas of iDistance [83] and the RMI to support range and KNN queries.
Unlike Tsunami, these works only learn from the data distribution, not from the query
workload.

Data Correlations. There is a body of work on discovering and taking advantage of
column correlations. BHUNT [21], CORDS [79], and Pyro [104] automatically discover
algebraic constraints, soft functional dependencies, and approximate dependencies
between columns, respectively. CORADD [89] recommends materialized views and
indexes based on correlations. Correlation Map [88] aims to reduce the size of B+Tree
secondary indexes by creating a mapping between correlated dimensions. Hermit [193]
is a learned secondary index that achieves low space usage by capturing monotonic
correlations and outliers between dimensions. Although the functional mappings
in the Augmented Grid are conceptually similar to Correlation Map and Hermit,
our work is more focused on how to incorporate correlation-aware techniques into a
multi-dimensional index.

Query Skew. The existence of query skew has been extensively reported in settings
where data is accessed via single-dimensional keys (i.e., “hot keys”) [31, 12, 199]. In
particular, key-value store workloads at Facebook display strong key-space locality:
hot keys are closely located in the key space [199]. Instead of relying on caches to
reduce query time for frequently accessed keys, Tsunami automatically partitions data
space using the Grid Tree to account for query skew.
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3.7 Future Work

Complex Correlations. Augmented Grid’s functional mappings are not robust
to outliers: one outlier can significantly increase the error bound of the mapping.
We can address this by placing outliers in a separate buffer, similar to Hermit [193].
Furthermore, Augmented Grid might not efficiently capture more complex correlation
patterns, such as temporal/periodic patterns and correlations due to functional de-
pendencies over more than two dimensions. To handle these correlations, we intend to
introduce new correlation-aware partitioning strategies to the Augmented Grid.
Data and Workload Shift. Tsunami can quickly adapt to workload changes but
does not currently have a way to detect when the workload characteristics have
changed sufficiently to merit re-optimization. To do this, Tsunami could detect when
an existing query type (Chapter 3.3.3) disappears, a new query type appears, or when
the relative frequencies of query types change. Tsunami could also detect when the
query skew of a particular Grid Tree region has deviated from its skew after the initial
optimization. Additionally, Tsunami is completely re-optimized for each new workload.
However, Tsunami could be incrementally adjusted, e.g. by only re-optimizing the
Augmented Grids whose regions saw the most significant workload shift.

Tsunami currently only supports read-only workloads. To support dynamic data,
each leaf node in the Grid Tree could maintain a sibling node that acts as a delta
index [171] in which inserts, updates, and deletes are buffered and periodically merged
into the main node.
Persistence. Tsunami’s techniques for reducing query skew and handling correlations
are not restricted to in-memory scenarios and could be incorporated into an index
for data resident on disk or SSD, perhaps by combining ideas from qd-tree [194] or
LISA [108].

3.8 Conclusion
Recent work has introduced the idea of learned multi-dimensional indexes, which
outperform traditional multi-dimensional indexes by co-optimizing the index layout
and data storage for a particular dataset and query workload. We design Tsunami,
a new in-memory learned multi-dimensional index that pushes the boundaries of
performance by automatically adapting to data correlations and query skew. Tsunami
introduces two modular data structures—Grid Tree and Augmented Grid—that allow
it to outperform existing learned multi-dimensional indexes by up to 6× in query
throughput and 8× in space. Our results take us one step closer towards a robust
learned multi-dimensional index that can serve as a building block in larger in-memory
database systems.

78



Chapter 4

MTO: An Instance-Optimized Storage
Layout for Cloud Data

The instance-optimized data storage layout that we introduced in the previous chapter,
Tsunami, is designed for single-table in-memory data. In this chapter, we introduce
another instance-optimized storage layout technique, MTO (Multi-Table Optimizer),
which is designed to simultaneously optimize the data storage layouts for all tables in
datasets that are stored on disk or on the cloud.

To efficiently process increasingly larger volumes of data, modern cloud-based data
analytics services persist data in remote cloud storage, such as Amazon S3, and access
data by “compute nodes” during query processing. These systems group data records
into large blocks, each with hundreds of thousands or millions of records in order to
maximize compression ratios. To maximize throughput and minimize I/O operations
per second, during query processing, a block (or a subset of columns from a block) is
the smallest unit of I/O from cloud storage.

To avoid accessing blocks that are not relevant to a query, per-block metadata,
which is often cached in memory, is used to skip blocks during query processing. The
most common form of per-block metadata is zone maps [29, 130, 149, 39], which store
the minimum and maximum value for each column in a data block. For example
(Fig. 4-1), if a block’s zone map shows that the records in the block span dates from
March to April 2020, and the query filters for records with dates in January 2020,
then this particular block does not have to be read from storage (i.e., can be skipped)
during this query’s execution.

Zone maps are cheap to maintain and potentially useful, but their effectiveness
at block skipping is highly dependent on how records are assigned to blocks (i.e.,
the data layout). By default, most systems usually sort each table by a certain sort
column (e.g., the date column), and will place contiguous chunks of records into the
same block. Under this basic blocking scheme, queries that filter over the sort column
will be able to skip blocks based on zone maps, but filters over other columns do not
provide much skipping opportunity (Fig. 4-1). Z-order [134] is a multi-dimensional
sorting technique, often deployed in practice for its simplicity. However, for Z-order to
be effective for block skipping, the columns on which to define the Z-order and their
relative order must be manually and carefully selected, and poor tuning can actually
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Figure 4-1: Zone maps over three data blocks. Using zone maps, the first query is
able to skip blocks 1 and 2, whereas the second query cannot skip any blocks.

result in degraded performance.
To overcome the shortcomings of existing data layout techniques, instance-optimized

data layouts for disk-based and cloud-based data “learn” a specialized blocking scheme
(i.e., a sort order) that achieves high block skipping performance for a specific dataset
and workload [195, 109]. Experiments on synthetic and real-world datasets and work-
loads show that instance-optimized data layouts can be orders of magnitude better in
block skipping compared to simple sort-based data layouts as well as more advanced,
fine-grained data skipping techniques [176, 177]. However, existing instance-optimized
layouts can only optimize a single table’s layout, for a query workload that only queries
that table. In practice, analytics workloads typically contain many tables and the
queries use diverse join patterns, such as in a star or snowflake schema.

One naïve approach to optimizing the layout for a multi-table dataset is to inde-
pendently optimize each table’s layout using an existing instance-optimized approach.
However, as we show later, this approach does not perform significantly better, as it
does not exploit knowledge about the joins. In this chapter, we propose MTO (Multi-
Table Optimizer), the first instance-optimized data layout framework for optimizing
whole datasets. Our key idea is to pass additional information about joins, which we
refer to as sideways information passing (SIP), through join-induced predicates, to
jointly optimize the layout for all tables, simultaneously. This idea is inspired by prior
work on SIP [85]; we discuss similarities and differences in Section 4.2.1. Furthermore,
existing instance-optimized layout techniques [195, 138, 49] must re-optimize the entire
layout in response to changes in the query workload. In contrast, MTO gracefully
responds to workload changes through partial layout reorganization. We summarize
our contributions as follows:

1. We propose MTO, the first instance-optimized data layout framework for multi-
table datasets. MTO aims to minimize the overall number of blocks accessed in
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an analytics workload with join queries, which are common in practice.

2. We introduce join-induced predicates, used in MTO to pass information through
joins. We present algorithms that exploit join-induced predicates to “learn”
better data layouts.

3. We introduce further practical techniques to ensure that MTO scales to larger
datasets and query workloads and adapts to workload shift and data changes.

4. We evaluate MTO, both in simulations and by integrating with a commer-
cial cloud-based data analytics service to measure end-to-end gains. We com-
pare MTO against existing instance-optimized layouts and user-tuned blocking
schemes, and show that MTO achieves up to 93% reduction in blocks accessed
and 75% reduction in end-to-end query times compared to state-of-the-art
blocking strategies.

In the rest of this chapter, we provide background (Section 4.1), introduce MTO’s
high-level design (Section 4.2), examine the details of MTO’s algorithms (Sections 4.3
and 4.4), present experimental results (Section 4.5), review related work (Section 4.7),
and conclude (Section 4.8).

4.1 Current Blocking Approaches

As shown in Fig. 4-1, zone maps are useful for skipping irrelevant blocks during query
execution, but their effectiveness depends on the physical layout of the data among
blocks (i.e., the sort order). We now describe existing approaches for data layout.
Sort Key. A common approach used in practice is to sort each table’s data by a
particular column. For example, by sorting on timestamp/date, any queries that only
filter over the past day of data can skip all blocks that contain data that is older than
one day.
Z-ordering. One drawback to the sort key approach is that only queries that filter
over the sort key column can benefit from block skipping. Z-ordering [134] “sorts”
data over multiple columns simultaneously, and it is supported by several commercial
systems [198, 40]. However, Z-ordering must be tuned carefully to achieve high
performance. For example, a DBA must decide which columns to include in the
Z-order, and whether to give more weight to certain columns over others. A poorly
tuned Z-ordering can degrade block skipping performance compared to the sort key
approach. Even when properly tuned, Z-ordering underperforms instance-optimized
approaches.
Instance-optimized Layouts Instance-optimized layouts are specialized to perform
well (e.g., achieve low overall query runtime) on a particular dataset and workload [195,
138, 109, 49]. By purposefully overfitting the layout for a specific dataset and workload,
instance-optimized layouts are able to outperform existing approaches on that specific
instance (dataset and workload).
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Figure 4-2: (1) Qd-tree defines blocks using cuts. (2) Qd-tree is used offline to route
records to the blocks they are stored in and (3) is used online to determine which
blocks need to be accessed during query execution.

Drawback of Current Approaches One major drawback of all the approaches
described above is that they optimize the layout for a single table. In a dataset with
multiple tables, existing approaches would optimize each table’s layout independently.
By not considering the layout of all tables jointly, existing approaches do not maximize
block skipping performance, as we show later through experiments.

4.1.1 Qd-tree

We now describe qd-tree [195], an existing instance-optimized data layout framework
for single tables, which we use as a fundamental building block in our work. The
intuition behind qd-tree is to tailor the block assignment strategy for a given query
workload to reduce the number of blocks accessed when running that workload. For
example, consider a workload consisting of a single query:

SELECT * FROM table
WHERE X > 10 AND Y IN (1, 2, 3)

Let us divide the records of table into those that satisfy X > 10 and those that do not.
If we assign each set of records to a separate group of blocks (e.g., records that satisfy
the predicate are assigned to blocks 1 and 3, while records that do not go in blocks 2
and 4), then during query processing, we only need to access the blocks corresponding
to the “satisfying” set. We can apply similar logic to divide and block the records
based on whether they satisfy the other predicate, Y IN (1, 2, 3). However, if we
sort/block the records based on their value in some unrelated column (e.g., Z), the
query will likely need to access all blocks. This example illustrates that by blocking
based on the specific filter predicates that appear in the query workload, we can reduce
the number of blocks accessed during query processing.

We now provide a high-level overview of qd-tree, which we describe in more detail
in the following subsections. The qd-tree workflow is as follows (Fig. 4-2):
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1. The input to the workflow is a table and workload of queries that the user
expects to run on the table. Using (a sample of) the table and query workload,
construct a decision tree (which we call a qd-tree) that roughly evenly splits the
records of the (sampled) table into data blocks (Section 4.1.1).

2. Offline, use the qd-tree to assign the table’s records to blocks. This process is
called routing a record (Section 4.1.1).

3. At query execution time, use the same qd-tree to determine which blocks the
query needs to access (and therefore which data blocks can be skipped). This
process is called routing a query (Section 4.1.1).

Qd-tree Structure

The qd-tree (Fig. 4-2) is a binary decision tree. Each node corresponds to some subset
of records in the table. The root node corresponds to all records in the table. Each
inner node contains a filter predicate, which we call a cut. The node’s cut is used to
divide its subset of records into two smaller subsets, one with records that satisfy the
cut and the other with records that do not. The left child inherits the “yes” subset,
and the right child inherits the “no” subset. The leaf nodes of the qd-tree correspond
to data blocks. That is, the subset of records corresponding to a leaf node are assigned
to the same data block.

Qd-tree Usage

We can use a qd-tree for both offline block assignment and online query processing.
Given a qd-tree and a table, we route each record in the table through the qd-tree
to assign it to the data block that it will be stored in. For example, consider the
first record in Fig. 4-2. We route this record 𝑅 through the qd-tree, from root to leaf.
The root node’s cut indicates that records that satisfy cpu < 90 are inherited by the
left child, while records that do not satisfy cpu < 90 are inherited by the right child.
Since 𝑅 does not satisfy the root node’s cut, we route 𝑅 to the right child. The right
child is a leaf node, and therefore we assign 𝑅 to block 3. In the same manner, every
record is assigned to a block.

At query execution time, we use the qd-tree to determine which blocks need to
be accessed. For example, consider the first query in Fig. 4-2. We route this query
through the qd-tree, from root to leaf. At the root node, the query only filters for
records that could appear in the left child (i.e., any records that do not satisfy the
cut cpu < 90 are irrelevant), so we route the query to the left child. At this second
node, the query could filter for records that appear in either child (i.e., records that
satisfy and do not satisfy mem > 1G could both be relevant), so we route the query to
both children. We continue to recurse in this manner, and at the end, we find that
the query must access blocks 0, 1, and 2. Note that while records are always routed
to exactly one block, queries can be routed to multiple blocks.
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Qd-tree Construction Algorithm

We take the same greedy approach to construction as [195]: given a table and query
workload, begin with all the records in a single block, i.e., the qd-tree has a single
root node that contains all the records. In each iteration, we split a leaf node into
two child nodes by applying a cut. Cuts are chosen from the set of candidate cuts,
which is the set of filter predicates that appear in the query workload. For example,
in the single-query workload described at the beginning of this section, there are two
candidate cuts: X > 10 and Y IN (1, 2, 3). When choosing the cut for a node, we
use the one amongst the candidate cuts that maximizes the number of records skipped
by the resulting qd-tree over the given workload. We continue iterating until all leaf
nodes have reached some desired size, measured by the number of records falling in
the data block represented by that leaf node.

4.2 MTO Overview

In this section, we provide an overview of our approach, called MTO (Multi-Table
Optimizer), that creates instance-optimized data layouts for multi-table datasets.
For a multi-table dataset and a query workload, the goal of MTO is to learn an
instance-optimized layout that maximizes block skipping for that specific dataset and
workload. MTO consists of two parts: (1) a mapping of records to blocks, where each
block has roughly the same number of records, which we call the block size1. A block
can only contain records from a single table. (2) At execution time, given a query, a
method to identify which blocks need to be accessed (and by proxy, which blocks can
be skipped).

We first introduce the key idea that differentiates MTO from existing instance-
optimized approaches: sideways information passing using join-induced predicates.
We then describe MTO’s end-to-end workflow. We present more details in Sections 4.3
and 4.4.

4.2.1 Sideways Information Passing

Existing single-table layout approaches are sub-optimal in the multi-table case because
they do not take advantage of sideways information passing between tables. To provide
intuition, we use the following running example (Fig. 4-3): let the block size be 1M
records. Let our dataset have two tables: Table A with 1M records, and Table B with
8M records. All of Table A’s records will fall in the same block, so the sort order
for Table A does not impact block skipping. We are only interested in the blocking
strategy for Table B. Consider a workload consisting of queries similar to the following:

SELECT COUNT(*) FROM A, B
WHERE A.KEY = B.KEY AND A.X < 100 AND B.Y > 200

1On most cloud analytics services, the block size is preset automatically by the service and cannot
be changed by the user, so we do not explore variable-sized blocks.
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Figure 4-3: By taking advantage of sideways information passing to optimize the data
layout, we can increase block skipping. Only blocks in the shaded regions are read.

By pushing down the two filter predicates, Table A’s zone maps will be able to skip
blocks based on the predicate A.X < 100, and Table B’s zone maps will be able to skip
blocks based on B.Y > 200. A DBA determining each table’s layout independently
would sort Table B’s data by Y. Then the execution engine will use zone maps to skip
over B’s blocks where 𝑌 ≤ 200, as shown in Fig. 4-3.

However, we can achieve even more block skipping using sideways information
passing. We know that any records of the joined relation that have 𝐴.𝑋 ≥ 100 are
irrelevant. Therefore, the records in B that produce irrelevant records when joined
with A are themselves irrelevant. By grouping together the records of B based on
whether the join with A would produce relevant records, we can further increase block
skipping. Essentially, Table B’s zone maps are skipping blocks based on two predicates:
B.Y > 200, as well as a new join-induced predicate: B.KEY IN (SELECT A.KEY FROM
A WHERE A.X < 100). Table 4.1 defines relevant terminology through an example.
We explain join-induced predicates in more detail in Section 4.3.1.

Relation to Existing Approaches

The idea of join-induced predicates is similar to some existing techniques. Semi-join
reduction [18, 62] uses sideways information passing at execution time to filter rows
(e.g., construct a bitmap over the build input of a hash join and use it to filter rows
on the probe input before they reach the join). In contrast, join-induced predicates
in MTO are used in an offline optimization stage to determine the data layout and
introduce negligible overhead during query execution.

Similar to semi-join reduction, data-induced predicates (diPs) [85] pass information
about the blocks selected by a predicate (e.g., the zone maps over selected blocks),
through joins, which induces a predicate on the joined table’s join column that can be
used to skip blocks on the joined table. diPs are applied during query optimization,
which avoids the overhead of performing sideways information passing at execution time
and gives the optimizer extra information with which to find better plans. However,
diPs are only beneficial to block skipping when certain conditions about the data
layout are met, most importantly that the join column values in the blocks that satisfy
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Table 4.1: Join-induced predicate terminology example.

Term Definition Running Example

Simple predicate Predicate over one table A.X < 100

Join-induced Predicate over columns in A.BKEY IN (SELECT B.BKEY
predicate/cut multiple tables, composed of FROM B WHERE B.CKEY IN (

nested semi-join subqueries SELECT C.CKEY FROM C
WHERE C.Z > 200))

Literal cut Result of evaluating subqueries A.BKEY IN (3, 14, 159)
in a join-induced cut

Source table Table with the original predicate C
Target table Table whose predicate is induced A
Source cut Source table’s predicate C.Z > 200
Induction path List of tables and join columns C→CKEYB→BKEYA

connecting source to target
Induction depth Length of the induction path 2

a predicate contain only a small portion of all possible join column values, otherwise
the induced predicate will not be selective enough to skip blocks when applied to the
joining table. In contrast, MTO explicitly constructs the block layout to maximize
opportunities for skipping blocks during execution. We show in our evaluation that
this difference allows MTO to outperform diPs.

4.2.2 MTO Workflow

Our workflow (Fig. 4-4) has two components, corresponding to the two parts described
at the beginning of this section: (1) offline optimization, and (2) online query execution.

Offline optimization

The MTO optimization algorithm takes a multi-table dataset and a query workload
as input and creates one qd-tree per table, which will determine the data layout for
that table’s records. The algorithm has the following steps (Fig. 4-5):

1. Do the following for each query (Fig. 4-5 shows the workflow for one particular
query):

(a) Extract all simple predicates (Table 4.1) from the query, and group them
based on which table they filter. In Fig. 4-5, the example query contains
two simple predicates: A.x < 100 and B.y > 200. Therefore, A.x < 100
is extracted for Table A and B.y > 200 is extracted for Table B.

(b) Pass the simple predicates extracted in Step 1a through joins to create
join-induced predicates. In the example, the simple predicate B.y > 200 is
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Figure 4-4: (1) In offline optimization, MTO produces a layout (a qd-tree per table)
given a dataset and query workload. (2) MTO assigns records to blocks and stores
them. (3) In online query execution, MTO skips blocks based on the layout.

passed though the join to Table A, which produces the join-induced predi-
cate A.key IN (SELECT B.key FROM B WHERE B.y > 200), which filters
Table A. Similarly, the simple predicate A.x < 100 passes through the join
to Table B to create a join-induced predicate on Table B. For queries with
more complex join graphs (e.g., Table A joins with Table B, which joins
with Table C), a simple predicate can be passed through multiple joins
(e.g., a simple predicate on Table A is passed through Table B to Table C
and produces a join-induced predicate on Table C).

(c) For each join-induced predicate, evaluate any subqueries to obtain the
literal cut. In the example, running the subquery (SELECT B.key FROM B
WHERE B.y > 200) returns the set (1, 4, 9), so the literal form of the
join-induced cut over Table A is A.key IN (1, 4, 9).

2. For each table independently: feed the table and overall query workload into the
qd-tree construction algorithm (Section 4.1.1). The predicates over that table
extracted in Step 1 (which could be either simple predicates or join-induced
predicates) become the candidate cuts for the qd-tree. The constructed qd-tree
determines that table’s data layout.

Given the optimized layout, MTO assigns each table’s records to data blocks using
their respective qd-trees, as described in Section 4.1.1.

Online query execution

At query execution time, MTO uses the qd-tree for each table to determine which
blocks need to be accessed. Following our running example, Fig. 4-6 shows the qd-tree
that might be constructed for Table B by the MTO optimization algorithm. The
qd-tree has three leaf nodes, so the records of Table B will be stored in three blocks
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Figure 4-5: MTO optimization uses the query workload and dataset to create one
qd-tree per table.

(B0, B1, B2). The qd-tree uses two cuts: a simple cut B.y > 200, and a join-induced
cut shaded in green. To determine which blocks of Table B need to be accessed when
processing the user query in Fig. 4-6, MTO will do the following (a similar process
would occur independently to determine blocks to access on Table A):

1. Identify all predicates from the query on that table, including join-induced
predicates, following the same procedure as Steps 1a and 1b (but not 1c) from
Section 4.2.2.

2. Use the predicates to route through the table’s qd-tree to identify which blocks
need to be accessed, using the process described in Section 4.1.1. Section 4.3.1
provides details about routing through join-induced cuts (e.g., Step 2b in the
example).

Note that these steps are applied independently for each table, before execution occurs.
Therefore, MTO will skip the same set of blocks regardless of the physical execution
plan (e.g., the join order).

4.3 MTO Algorithms

In this section, we provide details about join-induced predicates and also describe how
MTO maintains low optimization times even when scaling to larger datasets. We use
the terminology shown in Table 4.1.
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Figure 4-6: At query time, MTO uses the per-table qd-trees to determine which blocks
to access from each table. This query only needs to read block 1 from Table B.

4.3.1 Join-induced Predicates

When Can We Induce?

MTO supports induction on source predicates that use =, ̸=, <, ≤, >, ≥, IN, NOT
IN, LIKE, and NOT LIKE, including predicates over multiple columns (e.g., A.X <
A.Y), as well as any conjunctions or disjunctions of the above. We support predicate
induction through equijoins over a single column, including inner, one-sided outer,
semi, anti-semi, and self joins.

In the simple example in Section 4.2.2, we induced a predicate from Table A to
Table B, and vice versa. However, in some cases we cannot induce a predicate from
one table to another while maintaining a semantically equivalent query. Consider the
following query:

SELECT AVG(A.Z) FROM A WHERE A.X < 100 AND A.Y < (
SELECT COUNT(*) FROM B WHERE A.KEY = B.KEY AND B.Z > 200)

We can induce from A to B, producing the join-induced predicate B.KEY IN (SELECT
A.KEY FROM A WHERE A.X < 100). However, we cannot induce from B to A. To
determine when predicates can be induced while maintaining a semantically equivalent
query, we use the following set of rules, similar to those found in [85]:

• Predicates can be induced in both directions through inner joins; from the left
to right side for a left outer join, and vice versa for right outer joins; in both
directions through semi joins; and from the left to right side for a left anti-semi
join, and vice versa for right anti-semi joins. Predicates cannot be induced
through full outer joins.

• For self-joins, MTO logically creates two copies of the table, treats them as
different tables, and applies the above rules.
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• Predicates can be induced from an outer query into a correlated subquery [189]
through any of the above rules. In the example query given above, a predicate
from the outer query (A.X < 100) is induced into the correlated subquery
(SELECT COUNT(*) ...) through an inner join (A.KEY = B.KEY).

Just because we can induce doesn’t mean we should. In the optimization process,
MTO only considers join-induced predicates whose induction paths are composed only
of joins originating from columns with unique values (e.g., inducing from a dimension
table into a fact table by joining on the dimension table’s primary key, but not from a
fact table’s foreign key into a dimension table). This is not a fundamental limitation
of join induction; instead, we enforce this restriction to make inserts and deletes
more efficient (Section 4.4.2). We verified experimentally that this restriction has
minimal impact on performance. Intuitively, this is because predicates induced from
join columns with non-unique values tend to fall on smaller tables with fewer blocks
(e.g., dimension tables), which limits the predicate’s impact on the number of blocks
skipped dataset-wide.

How Do We Use Them?

Like simple cuts in the qd-tree, join-induced cuts are used to route records and queries
down the tree. To route records, we use the literal join-induced cut in the same way
as a simple cut. To route queries, the qd-tree checks for subsumption between the
query and the logical join-induced cut: if the query’s join graph does not share the
join-induced cut’s induction path, route the query to both child nodes in the qd-tree.
Otherwise, route to the left child if the query’s filters on the source table intersect
the source cut, and independently route to the right child if the query’s filters on
the source table intersect the negation of the source cut. For example, in Step 2b of
Fig. 4-6, the query filter on the source table (A.x > 200) does not intersect the source
cut (A.x < 100), but does intersect the negation of the source cut (A.x ≥ 100), so
we only route to the right child.

Qd-tree nodes that use join-induced cuts must store both the logical and literal
cuts. The logical cut (i.e., a query of nested semi-joins) is compact, but literal cuts
can incur high memory costs, because the IN list can grow very large, especially over
high-cardinality key columns. To reduce space usage, we compress IN lists as Roaring
Bitmaps [22], which is the state-of-the-art bitmap compression technique [188].

4.3.2 Scalability through Sampling

To reduce the time needed for optimizing the layout when scaling to larger datasets,
MTO runs its optimization algorithm on a uniform sample of the dataset instead of
the full dataset. Given a sampling rate 𝑠, MTO creates a sample by selecting 𝑠 fraction
of records from each table in the dataset uniformly at random. For especially small
tables (e.g., under 1K records), MTO simply uses the entire table, because sampling
small tables does not meaningfully decrease optimization time. If the desired block
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Figure 4-7: Cardinality adjustment allows MTO to achieve accurate block size estimates
when optimizing based on a dataset sample, which improves the quality of the resulting
layout.

size on the full dataset is 𝑏, MTO uses the adjusted block size 𝑏× 𝑠 when optimizing
based on the sampled dataset.2

It is well-known that the join of two uniform samples has quadratically fewer
tuples than a sample of the original join [75]. MTO must account for this effect when
evaluating the quality of join-induced cuts when optimizing on a sampled dataset. For
example, Fig. 4-7 shows a dataset with 10M records in Table A and 100M records in
Table B. The simple predicate 𝑝𝐵 on Table B and the join-induced predicate 𝑝𝐴→𝐵 on
Table B both select 10M records. However, on a sampled dataset with 𝑠 = 0.1, 𝑝𝐵
selects (10M)𝑠=1M records, whereas 𝑝𝐴→𝐵 selects (10M)𝑠2=100K records. If MTO
estimates block sizes on the full dataset as 1/𝑠 of the block sizes on the sample, then
it produces inaccurate estimates of block size (e.g., the qd-tree shaded in orange in
Fig. 4-7). Optimizing without taking this discrepancy into account may degrade the
quality of the resulting layout.

To account for this effect, MTO attaches a value called the cardinality adjustment
(CA) to every join-induced cut, defined as 𝑠𝑑, where 𝑑 is the induction depth (e.g., the
CA for 𝑝𝑋→𝑌→𝑍 is 𝑠2). Therefore, in Fig. 4-7 the CA for 𝑝𝐴→𝐵 is 𝑠. The left block in
the bottom qd-tree (which is constructed over a sample) has block size 100K records,
but the cardinality-adjusted block size is (100K)/𝑠 = 1M records. This is then used
to produce an accurate estimate of the block size on the full dataset.

Formally, let qd-tree node 𝑁 cover 𝑟 records of the sampled table, so that the
estimated cardinality of 𝑁 on the full dataset is 𝑟/𝑠. Let 𝑁 use join-induced cut 𝑝, so

2We also experimented with ways to sample at different rates for different tables while maintaining
an overall sample rate of 𝑠 (e.g., sample more from smaller tables, sample less from larger tables).
However, we found through evaluation that more complex schemes did not meaningfully impact the
optimized layout’s performance.
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that the left child 𝑁𝐿 covers 𝑟𝐿 records and the right child 𝑁𝑅 covers 𝑟𝑅 = 𝑟 − 𝑟𝐿
records. If 𝑝 has a CA of 𝑘, then the estimated cardinality of 𝑁𝐿 on the full dataset is
not 𝑟𝐿/𝑠. Instead, it is 𝑟𝐿/𝑠𝑘. Accordingly, the estimated cardinality of 𝑁𝑅 on the full
dataset is not 𝑟𝑅/𝑠, but instead 𝑟/𝑠 − 𝑟𝐿/𝑠𝑘. Simple cuts have a CA of 1.

The CA for a block (i.e., a leaf node) is the product of CAs for all cuts on the
traversal route from root to leaf. Adjustments caused by a particular join are not
double-counted if multiple intersecting cuts along the traversal route have induction
paths that contain that join.

4.4 Workload Shift and Data Changes
In this section, we describe how MTO can adapt to changes in the query workload
and data.

4.4.1 Dynamic Workloads

MTO’s layout is optimized for a given query workload. However, workload char-
acteristics (e.g., join patterns, frequently filtered columns) often change over time,
which may cause query performance on MTO’s layout to degrade. In response, MTO
can re-optimize its layout and physically reorganize blocks to specialize for the new
workload. However, fully reorganizing a large dataset can require significant time
and computational resources. Therefore, MTO has the ability to partially reorganize
its layout. Intuitively, MTO only reorganizes qd-tree subtrees that result in the
most overall performance gain. For example, if only the workload over Europe has
changed, and the qd-tree root node has the cut REGION = ‘EUROPE’, MTO would
only reorganize the left subtree. Next, we describe a reward function for determining
the value (i.e., benefit minus cost) of reorganizing a qd-tree subtree, and then we
describe how MTO uses this reward function to determine the best reorganization
strategy.

Minimizing Impact of Reorganization

To minimize impact on query performance, MTO spins up a separate process that
performs (partial) reorganization using a (partial) copy of the data. During reorga-
nization, queries are still executed on the existing data/layout, so query serving is
unaffected. After reorganization completes, the new data/layout is swapped with the
existing layout with minimal impact on the workload.

Reward Function

Assume that workload shift has occurred and we have already observed some queries,
denoted 𝑄, from this new workload (e.g., a sample of recently-run queries); assume we
expect to run 𝑞 more queries from the same distribution as 𝑄 before the next workload
shift. The reward of reorganizing a subtree 𝑇 (i.e., replacing 𝑇 with a new qd-tree 𝑇 ′

over the records in 𝑇 ’s blocks) is defined as 𝑅(𝑇,𝑄) = (𝑞/𝑤) ·𝐵(𝑇,𝑄)− 𝐶(𝑇 ), where:
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Figure 4-8: Using 𝑞/𝑤 = 2 in the reward, MTO chooses to reorganize the subtrees of
nodes 2 and 6, achieving total reward 36.

• 𝐵(𝑇,𝑄) is the average number of block accesses that can be reduced for a query
in 𝑄 if we fully reorganize the subtree 𝑇 . It represents the benefit of reorganizing
𝑇 in terms of expected impact on each of the next 𝑞 queries. To compute 𝐵(𝑇,𝑄),
we take all records in 𝑇 ’s blocks and re-run offline optimization (Section 4.2.2)
to construct a new qd-tree 𝑇 ′, then take the difference in block accesses over 𝑄
between 𝑇 and 𝑇 ′.

• 𝐶(𝑇 ) is the total number of blocks in 𝑇 . It represents the cost of fully reorganizing
𝑇 ’s blocks. Note that 𝐶(𝑇 ) ≥ 𝐵(𝑇,𝑄).

• 𝑤 represents the relative overhead of reorganizing (i.e., re-compressing and
re-writing blocks) vs. accessing blocks in the underlying storage system. For
example, in our evaluation system (Section 4.5.1), compressing and writing a
block is ∼100× slower on average than reading a block, so 𝑤 = 100.

A negative reward implies that it is not worth fully reorganizing 𝑇 (however, a subtree
of 𝑇 may still have positive reward). Computing reward does not require us to actually
perform any physical reorganization. Reorganizing 𝑇 ’s blocks does not impact any
other blocks in the layout. A higher 𝑞 (meaning we expect the next workload shift will
occur later in the future) encourages MTO to reorganize a larger portion of the dataset.
𝑞 ≤ 𝑤 leads to no reorganization, because reward can never be positive. Currently,
a user must manually set 𝑞; we leave automatic setting of 𝑞 based on predictions of
future workload changes as future work.

Finding the Optimal Reorganization Strategy

For each table in the dataset, we compute 𝑅(𝑇,𝑄) for each subtree 𝑇 of the table’s
qd-tree. We want to find the set of non-overlapping subtrees that has the maximum
combined reward; this optimal set can be empty, in which case overall reward is 0. We
find the qd-tree’s optimal set via dynamic programming: we visit all nodes, starting
from the leaves and working towards the root. At each node, we determine the optimal
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set over its subtree: the optimal set for a leaf 𝐿 is {𝐿} if 𝑅(𝐿,𝑄) > 0 and empty
otherwise. The optimal set for a non-leaf 𝑇 is either {𝑇} or the union of the optimal
sets of its two children, whichever one has higher combined reward. The root node’s
optimal set is the qd-tree’s optimal set. Fig. 4-8 shows a qd-tree in which the optimal
set has two subtrees.

MTO runs this re-optimization workflow periodically according to some user-
defined interval, such as every 𝑛 hours or every 𝑛 queries. If the overall reward is
positive, MTO physically performs the reorganization by replacing each subtree 𝑇 in
the optimal set with its re-optimized subtree 𝑇 ′ and re-writing 𝑇 ’s blocks accordingly.
If reward is non-positive, implying minimal workload shift during the interval, MTO
will not reorganize.

Computing the reward for every subtree can be expensive for large qd-trees. The
main bottleneck is computing 𝐵(𝑇,𝑄) for every 𝑇 by re-running optimization on 𝑇 ’s
records to obtain a new qd-tree 𝑇 ′. The following properties help MTO prune nodes
(i.e., avoid computing 𝐵 on that node’s subtree) that provably cannot be part of the
optimal set:

1. 𝐵(𝑇,𝑄) is upper bounded by the number of block accesses for the average query
in 𝑄 using 𝑇 ’s layout. This is because a new qd-tree 𝑇 ′ cannot reduce the block
accesses to less than zero.

2. 𝐵(𝑇,𝑄) ≥ 𝐵(𝑇𝐿, 𝑄)+𝐵(𝑇𝑅, 𝑄), where 𝑇𝐿 and 𝑇𝑅 are the left and right subtrees
of 𝑇 . This is because any reorganizations of 𝑇𝐿 and 𝑇𝑅 independently can also
be achieved by reorganizing 𝑇 .

3. If 𝑅(𝑇,𝑄) ≥ 𝐵(𝑇𝐿, 𝑄)+𝐵(𝑇𝑅, 𝑄), then no set of 𝑇 ’s subtrees can have combined
reward larger than 𝑅(𝑇,𝑄). This follows from property 2 and the fact that
𝐶(𝑇 ) ≥ 0.

To take advantage of these properties, we first use property 1 on every subtree to
prune out any subtrees whose maximum possible reward is non-positive. For each
non-pruned subtree 𝑇 , we cache the upper bound for 𝐵(𝑇,𝑄). We then compute the
reward for subtrees starting from the root node and continuing in breadth-first order
(e.g., in node ID order in Fig. 4-8). When it comes time to compute the reward for 𝑇 ,
we first check the cached upper bound for 𝐵(𝑇,𝑄). If the bound is low enough that
𝑅(𝑇,𝑄) cannot be positive, then we prune 𝑇 .

Otherwise, we compute the true value of 𝐵(𝑇,𝑄) and update the cache to help
prune later subtrees: (1) Benefits for 𝑇 ’s subtrees are upper bounded by 𝐵(𝑇,𝑄). Let
𝑇 ’s sibling and parent be 𝑆 and 𝑃 . Benefits for 𝑆’s subtrees are upper bounded by
𝐵(𝑃,𝑄) − 𝐵(𝑇,𝑄). This is possible through property 2. In Fig. 4-8, this helps us
prune nodes 7, 12, and 13. (2) Once we compute the reward for 𝑇 and its two children,
we use property 3 to possibly prune out all further subtrees of 𝑇 . In Fig. 4-8, this
helps us prune nodes 8-11.
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Figure 4-9: Inserting two records into table B causes updates to join-induced cuts in
table F’s qd-tree.

4.4.2 Dynamic Data

Inserted, deleted, or updated records are routed to the relevant data blocks using
MTO’s qd-trees. The physical change itself is handled transparently by the data
analytics service. For example, many services buffer data changes in delta stores,
then periodically merge delta stores into the main data store, which often requires
re-writing blocks. This merging overhead must be paid for any data layout strategy
that maintains some sort order over records, including simple strategies such as sorting
by a user-selected column.

Data changes pose one unique challenge for MTO: join-induced cuts must be
updated to reflect the new data. After an insert into a table, MTO must update
all join-induced cuts in other tables’ qd-trees that have the changed table on its
induction path. In Fig. 4-9, inserting two records into table B results in updates to
two join-induced cuts in table F’s qd-tree. Any join-induced cuts in table B’s qd-tree
are unaffected. We perform the update by evaluating the relevant cut only on the
inserted records, not all the records of table B. Similarly, a delete results in updates
to join-induced cuts in other tables’ qd-trees, performed by evaluating cuts only on
the deleted records. A data update is handled as a delete followed by an insert.

A subtle but important ramification of updating join-induced cuts is that it shifts
the “boundaries” between blocks. Will this force existing records to change blocks?
Assuming referential integrity [190], and due to induced predicates only originating
from join columns with unique values, like primary key columns (Section 4.3.1), inserts
and deletes in MTO will never cause unchanged records to change blocks, because there
cannot be records in the “boundary shift” region. For example, the inserted records in
Fig. 4-9 do not join with any existing records in table F, so table F’s join-induced cuts
will select the same set of records before and after updating. However, data updates
might cause updates to join-induced cuts that force existing records to change blocks.
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4.5 Evaluation

We present the results of an in-depth experimental study that compares MTO with
other data layout strategies on a variety of multi-table datasets and workloads. Overall,
this evaluation shows that:

• On a commercial cloud-based analytics service, MTO achieves up to 93% reduc-
tion in blocks accessed and up to 75% reduction in overall query time compared
to alternative methods (Section 4.5.2). Queries with selective filters over joined
tables benefit most from MTO (Section 4.5.3).

• MTO achieves low optimization times through sampling, resulting in faster
end-to-end performance compared to alternatives (Section 4.5.4).

• MTO adapts its layout in response to workload shift and data changes (Sec-
tion 4.5.5) and scales to larger query workload sizes and data sizes (Section 4.5.6).

4.5.1 Setup

Datasets and Workloads

We evaluate on three datasets: Star Schema Benchmark (SSB) [145], TPC-H [180],
and TPC-DS [181], each by default with scale factor 100. This corresponds to around
60GB of data for SSB and 100GB of data for TPC-H and TPC-DS. For SSB, we
use all 13 queries in the workload. For TPC-H, we support all 22 templates, and by
default we use 8 randomly generated queries per template, resulting in a workload of
176 queries. For TPC-DS, we use 46 templates that vary in complexity3, with one
query per template.

Implementation and Systems

We implement MTO’s offline optimization and simulation of blocks accessed during
query execution in Python. We evaluate offline optimization and simulated performance
on an Arch Linux machine with Intel Xeon Gold 6230 2.1GHz CPU and 256GB RAM.
We also test the impact on query execution times on a commercial cloud-based analytics
service, which we refer to as Cloud DW, which performs block skipping via per-block
zone maps and semi-join reduction during query execution. Cloud DW aims to store
1M records in each of its data blocks, but blocks can have less than that target size (as
low as around 100K records) due to various internal factors, including the efficiency of
compression. Therefore, the block size in Cloud DW is not uniform. In simulation, we
use a block size of 500K records.

We performed a shallow integration of MTO into Cloud DW: each block across the
multi-table layout is assigned a unique block ID (BID). For each table, we materialize
a new column that contains the BID for each record. In storage, we sort each table by

3We use templates 1-50, except for 14, 23, 24, and 39, which are each composed of multiple
queries.
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its BID column. The per-block zone maps will now contain the min/max BIDs for
records in the block. Before feeding each query into Cloud DW, MTO will rewrite the
query by adding extra predicates which are used transparently by Cloud DW’s zone
maps to skip unnecessary blocks. For example, if routing a query through Table A’s
qd-tree tells us that processing the query only requires records from blocks 2 and 4 of
Table A, we add the predicate A.BID IN (2, 4) to the query.

Comparisons

We compare MTO against two alternatives: (1) Baseline, which sorts each table by
a user-tuned column4. (2) STO, which is an instance-optimized layout approach
that follows MTO’s algorithms without using join-induced predicates. That is, STO
constructs a qd-tree per table, using only simple predicates. Note that for all methods,
we create one layout for all queries in the workload.

In simulation, we also use data-induced predicates [85] (diPs, described in Sec-
tion 4.2.1) to enhance the performance of STO and Baseline, using range-sets of size
20. Since diPs are meant to be incorporated into the query optimizer, we were not
able to show the performance of diPs in Cloud DW as part of our shallow integration.

Metrics

We evaluate on three metrics: (1) number of blocks accessed in simulation, where each
block is exactly 500K records. (2) Fraction of blocks accessed on Cloud DW. Because
blocks are not equally sized on Cloud DW, it is unfair to compare the raw number
of blocks accessed. Therefore, we use the fraction of blocks accessed out of the total
number of blocks in the accessed base tables. (3) End-to-end query runtime on Cloud
DW.

4.5.2 Overall Results

For each metric, we compare MTO to the alternatives using the overall metric across
the entire query workload. We normalize to the metric achieved by Baseline.

Simulated Block Skipping

Fig. 4-10a shows that across datasets, MTO achieves between 43%–96% reduction in
simulated block accesses compared to Baseline and between 32%–94% reduction in
simulated block accesses compared to the best alternative method.

Data-induced predicates (diPs) help reduce blocks accessed by Baseline on SSB
and TPC-DS. diPs do not provide any improvements on TPC-H because the diP is
usually not selective enough to make an impact when pushed to other tables. Similarly,
diPs provide only minor improvements for STO, because STO creates blocks based

4For SSB, we sort lineorders by orderdate and all other tables by primary key. For TPC-H, we
sort lineitem by shipdate, orders by orderdate, and all other tables by primary key. For TPC-DS, we
sort all fact tables by date (sold_date for sales tables and returned_date for returns tables) and all
dimension tables by primary key.
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Figure 4-10: MTO achieves better overall workload performance than alternatives
across datasets and metrics. Note that the y-axes are normalized to the metric achieved
by Baseline.

SSB TPC-H TPC-DS

Total cuts 272 4253 662
Total join-induced cuts 201 3397 517
Avg induction depth 1 1.44 1.07
Max induction depth 1 4 2
Memory size 2.05MB 3.67GB 4.58MB

Table 4.2: Statistics of MTO’s qd-trees.

only on columns that are filtered by simple predicates, which are independent of join
columns. Therefore, diPs created from STO’s layout are not selective enough to make
an impact.

Table 4.2 shows that for MTO, the total number of cuts over all qd-trees varies
across datasets. This trend is primarily due to the size of the query workload that
MTO optimizes on: (1) workloads with more queries produce more candidate cuts,
and (2) larger workloads require a finer-grained blocking strategy in order to maximize
block skipping across all queries. For all datasets, MTO’s qd-trees are composed
mostly of join-induced cuts. On SSB, the induction depth of join-induced cuts is
always 1, because all dimension tables are joined directly to the fact table. On TPC-H,
the maximum induction depth is 4 (e.g., a join-induced cut with region as the source
table and joining through nation, customer, and orders to reach the lineitem table).

Table 4.2 also shows that the memory overhead of MTO, which comes from its
per-table qd-trees, is at most a few GB, which is small compared to the size of the
data (∼100GB). MTO’s size on TPC-H is much higher than on SSB and TPC-DS
due to having more join-induced cuts with higher-cardinality literal cuts (e.g., many
join-induced cuts on TPC-H originate from the orders table, which produces literal
cuts with as many as 150M values).

Block Skipping on Cloud DW

Fig. 4-10b shows that MTO’s simulated reduction in block accesses roughly translates
to actual reduction of block accesses on Cloud DW. Across datasets, MTO achieves
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between 19%–93% reduction in fraction of blocks accessed compared to the best
alternative method.

There are a couple reasons for the difference between simulated and actual block
accesses: (1) Block sizes in simulation are fixed at 500K records, whereas actual block
sizes in Cloud DW vary between a maximum of 1M records and a low of around 100K
records. (2) The execution engine of Cloud DW may perform extra optimizations that
we do not consider in simulation, such as semi-join reductions, which lead to additional
block skipping. These extra optimizations may affect each method differently. In
particular, the second reason explains why, for TPC-DS, MTO and STO have higher
normalized block accesses on Cloud DW than in simulation: most queries in the
workload filter on date, which allows Baseline to heavily take advantage of semi-join
reductions, because Baseline sorts fact tables by date. Therefore, Baseline accesses
significantly fewer blocks on Cloud DW than in simulation. MTO and STO can also
take advantage of semi-join reductions, but to a lesser extent because their fact tables
are not completely sorted on date.

End-to-end Runtimes on Cloud DW

Fig. 4-10c shows that across datasets, MTO achieves between 20%–75% reduction in
end-to-end query runtimes compared to the best alternative method. The reduction
in query time is generally not as dramatic as the reduction in block accesses because
block access is only one part of the total time spent on query execution (e.g., time
to compute joins is not reduced by block skipping). However, on TPC-DS, MTO
and STO actually improve their normalized performance compared to Fig. 4-10b.
This is because Baseline incurs heavier runtime costs of using semi-join reductions, as
explained in Section 4.5.2.

4.5.3 Performance Breakdown by Query

Fig. 4-11 shows the fraction of queries that achieve a certain reduction in query time
on Cloud DW compared to the alternative methods. Reduction in query times from
MTO is achieved by all queries in SSB, around 50% of query templates in TPC-H,
and around 75% of queries in TPC-DS. For a few queries, performance regresses when
using MTO’s layout. This is because MTO optimizes to achieve best overall block
skipping across all queries in a workload. Therefore, MTO may allow performance to
regress for certain queries in order for overall performance to improve.

When Does MTO Pay Off?

Fig. 4-10 shows that the performance benefits of MTO varies depending on the
dataset. To better understand the conditions under which MTO offers performance
benefit over STO and Baseline, we select five query templates with different filter/join
characteristics from the TPC-H workload, all of which touch the fact table (lineitem):
Q1 has no joins and scans most of the fact table, Q14 has a filter over the fact table
on the sort column (L_SHIPDATE) but no filter over joined dimension tables, Q6 has
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Figure 4-11: Reduction in query runtimes achieved by MTO, relative to STO and
Baseline. Different queries achieve different performance gains.

Figure 4-12: MTO has the most performance advantage over STO and Baseline on
queries with selective filters over joined tables, like Q4 and Q5.

filters over the fact table on non-sort columns but no joins, Q4 has selective filters
over joined dimension tables only on columns that are correlated to the fact table’s
sort column, and Q5 has selective filters over joined dimension tables on columns that
are not correlated to the fact table’s sort column. We create five different layouts
using MTO and STO, specialized for each query template individually.

Fig. 4-12 shows simulated block skipping. For STO and Baseline, we also evaluate
using data-induced predicates (diPs), as well as creating a secondary index (SI) on
the fact table’s join column (L_ORDERKEY) so that at runtime, we push a join-induced
predicate from the dimension table to the fact table and use the secondary index to
prune blocks.

Fig. 4-12 provides several insights: (1) On queries that have non-selective filters
(like Q1) or selective filters only over the sort column (like Q14), MTO and STO have
little or no advantage over Baseline because Baseline already prunes most irrelevant
blocks. (2) On queries that have selective filters over non-sort columns and no joins or
only non-selective filters over joined tables (like Q6), MTO and STO perform equally
well, because MTO cannot take advantage of join-induced predicates, but they both
outperform Baseline. (3) On queries with selective filters over joined tables that are
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SSB TPC-H TPC-DS

MTO

Optimization time (min) 0.195 3.67 0.619
Data sample rate used for opt. 0.01 0.03 0.01
Routing time (min) 1.54 5.80 3.50
Total offline time (min) 1.73 9.47 4.12

STO

Optimization time (min) 0.0213 0.697 0.0611
Data sample rate used for opt. 0.003 0.0003 0.01
Routing time (min) 0.360 0.978 0.771
Total offline time (min) 0.381 1.68 0.832

Table 4.3: Offline optimization times for Fig. 4-10.

SSB TPC-H TPC-DS

X=total queries run, Y=STO 4 33 29
X=minutes from start, Y=STO 2.18 26.9 9.72
X=total queries run, Y=Baseline 6 56 32
X=minutes from start, Y=Baseline 2.41 39.1 10.3

Table 4.4: How many X until MTO runs more queries than Y?

correlated with the fact table’s sort column (like Q4), MTO performs better than
STO and Baseline, but using a secondary index allows Baseline to take advantage of
correlations to filter out some blocks in the fact table at runtime. (4) On queries with
selective filters over joined tables that are not correlated with the fact table’s sort
column (like Q5), MTO outperforms all alternatives by a large margin.

Therefore, in workloads with a significant portion of queries that satisfy the third
and fourth conditions above, MTO will show the largest gains. This is especially true
for the SSB workload, in which most queries include a selective filter over a joined
dimension table, and no one sort column on the fact table is correlated to filtered
columns in all dimension tables. In contrast, the TPC-H workload contains many
queries that satisfy the first and second conditions, and therefore MTO’s performance
gains are not as significant.

4.5.4 End-to-end Performance

We examine the impact of offline steps (layout optimization and assigning records to
blocks) on end-to-end performance.
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Figure 4-13: (a) MTO and STO can decrease optimization time by using sampling.
Cardinality adjustment (CA) helps MTO mitigate performance degradation. (b) MTO
achieves the lowest end-to-end runtime when optimized with a 3% data sample.

Optimization Time

Table 4.3 shows the time that MTO and STO take to find the optimal layout for each
dataset, when optimized using the data sample rates shown in the table. These sample
rates were chosen so that the simulated performance of the layout optimized on the
sample has less than 1% difference with the layout optimized on the full data. Smaller
query workloads and simpler join patterns generate fewer candidate cuts, which leads
to lower optimization times. Therefore, MTO optimization finishes quickly for SSB,
which has 13 queries and a maximum induction depth of 1, while optimization takes
longer on TPC-H, whose workload has 176 queries and a maximum induction depth
of 4 (Table 4.2). Similarly, data routing (i.e., assigning each record to a block) is
slowest on TPC-H because the qd-trees optimized on TPC-H are larger and the paths
from root to leaf are deeper (Table 4.2). Optimization and routing times are lower
for STO than MTO because STO does not need to consider join-induced cuts during
optimization and does not include join-induced cuts in its qd-trees, which makes both
steps computationally simpler than for MTO.

Fig. 4-13a shows the impact of varying the sample rate between 1 (i.e., no sampling)
and 0.0003 on optimization time for TPC-H. The solid lines show blocks accessed
in simulation when evaluated on the full dataset, whereas the dotted lines show
blocks accessed when evaluated on the sample. With cardinality adjustment (CA)
(Section 4.3.2), the metric computed on the sample is close to the true metric on
the full dataset, whereas without CA, the sampled metric is inaccurate. By using
CA, MTO can reduce its optimization time from nearly an hour without sampling to
under 4 minutes with a 3% sample, while achieving nearly the same layout quality.
STO’s layout quality is negligibly impacted by sampling because it does not consider
join-induced cuts, which are most affected by sampling.
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End-to-end Time

Fig. 4-13b shows the end-to-end time for the TPC-H workload with 176 queries,
including the offline optimization and routing times. By optimizing on a 3% sample
of the data, optimization time is a small fraction of overall runtime for both MTO
and STO, and therefore the faster query times achieved by MTO allow it to complete
the end-to-end workload quickest. Query routing latency (i.e., determining which
blocks a query must read) is on the order of milliseconds per query, which is negligible
compared to total query time, which is on the order of seconds per query (Fig. 4-11).

Since MTO pays the upfront time cost to perform offline optimization and data
routing, how long does it take for MTO to catch up to STO and Baseline? Table 4.4
shows the total number of queries MTO runs before surpassing STO and Baseline,
as well as the time it takes for MTO to complete that many queries (including time
for offline steps). For example, on SSB, MTO runs more queries than STO after ∼2
minutes. In all cases, MTO reaches this crossover point before the workload completes.

4.5.5 Dynamic Workloads and Data

Dynamic Workloads

To show how MTO adapts to workload shift, we use MTO to optimize the layout
based on templates 1-11 of the TPC-H workload using 8 queries per template, then
actually run queries drawn from templates 12-22 of TPC-H. This simulates a scenario
in which the user completely and suddenly changes their query workload; in reality,
workload shift is likely not so abrupt.

Fig. 4-14a shows that immediately after the workload shift, queries on MTO
have higher execution times than queries on Baseline, because MTO’s layout is
not optimized for the observed workload (i.e., templates 12-22). Re-optimizing and
physically reorganizing the entire layout based on the observed workload (MTO Full
Reorg) takes more than two hours; during reorganization, queries are still executed on
the old layout (Section 4.4.1). However, MTO is able to use partial re-optimization
(Section 4.4.1, using 𝑞 = 200 and 𝑤 = 100) to physically reorganize only a subset
of existing blocks. Partial re-optimization and reorganization completes in under an
hour (MTO Partial Reorg), while achieving nearly the same resulting performance
benefit as a full reorganization, because it only reorganizes the blocks that have the
most impact on performance. The bottom half of Fig. 4-14a shows the impact of
reorganization on the total number of queries executed over time. Even though MTO
initially executes fewer queries than Baseline after the workload shift, it is able to
quickly recoup the lost time after reorganization.

Table 4.5 shows that as we increase 𝑞 in the reward function while fixing 𝑤 = 100
(Section 4.4.1), MTO will choose to reorganize a larger fraction of the data. Therefore,
a user can adjust 𝑞 to trade off between decreased execution time of future queries and
computation costs of reorganization. The time for physically performing reorganization
(i.e., writing/compressing blocks) is roughly proportional to the fraction of data
reorganized, and reorganizing all TPC-H data takes around 2 hours in our setup.
Furthermore, the time to perform re-optimization is kept relatively low (compared to
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Figure 4-14: (a) MTO initially performs worse than Baseline after workload shift but
performs better in the long run after reorganization. (b) MTO maintains its advantage
over Baseline after data insertion.

Frac.
Data
Reorga-
nized

Re-opt.
Time
(min)

Frac. Sub-
trees Consid-
ered in Re-
opt.

𝑞 = 100 0 0 0
𝑞 = 200 0.370 9.81 0.031
𝑞 = 500 0.841 25.0 0.163
𝑞 = 1000 0.893 17.3 0.084
𝑞 = ∞ 1.0 2.48 N/A

Table 4.5: MTO behavior after workload shift.

time for performing reorganization) because we use the properties from Section 4.4.1
to avoid unnecessary computation, and therefore only consider a small fraction of all
subtrees during the re-optimization process (Table 4.5).

Dynamic Data

To show how MTO adapts to dynamic data, we use the TPC-H dataset. We first
remove all records from the orders table with orderdate after Jan 1, 1996, and all
records in the lineitem table that join with the removed order records. This leaves
around 61% of the records in both the orders and lineitem tables. We perform offline
optimization using this partial dataset, then insert the records we had removed. This
represents the common use case in which new records are inserted into the fact tables
(in this case, new records from 3 years of orders).

Fig. 4-14b shows that MTO takes around 4 minutes to update join-induced cuts
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Figure 4-15: MTO scales to larger query workload sizes and improves its relative
performance at larger data sizes.

(represented by the shaded region). MTO is unable to assign inserted lineitem records
to blocks while cuts are updating, so queries accessing lineitem executed in the first
4 minutes must read all inserted records, which is slow. After cuts have updated
and inserted records are assigned to blocks, MTO without reorganization already
achieves lower average query time than Baseline. This implies that MTO performance
is impacted less by data changes than by workload shift, because the structure/cuts
of the existing qd-trees still conform to observed query patterns; this is important
for practical reasons because data changes happen frequently but we do not expect
workload shift to occur as often. MTO can optionally perform reorganization to boost
performance further (Fig. 4-14b). In all cases, MTO is able to quickly recoup the time
spent updating join-induced cuts and outpace Baseline in number of executed queries.

4.5.6 Scalability

Workload Size

On TPC-H, we vary the number of queries per template in the workload from 1 to 64.
Since there are 22 templates, this results in workloads ranging from 22 to 1408 queries.
Fig. 4-15a shows that as workload size increases, average blocks accessed by MTO
increases slightly, because the fixed number of data blocks does not provide MTO
enough degrees of freedom to optimize for all queries in a larger workload with more
unique predicates. Nevertheless, MTO maintains a relative performance advantage
over alternative methods, with 30% and 39% fewer blocks accessed than STO and
Baseline, respectively, for a workload with 1408 queries.

Data Size

On TPC-H, we vary the scale factor from 1 to 100, while maintaining the workload
of 176 queries and a block size of 500K records. Fig. 4-15b shows that MTO (and
STO) achieves greater reduction in block accesses over Baseline as data size increases;
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larger data size leads to more total data blocks, which allows MTO (and STO) to take
advantage of finer-grained blocking strategies.

4.6 Discussion & Future Work

Optimization Objective. MTO optimizes the layout for a particular workload
with the objective of minimizing the overall number of blocks accessed across all
queries in the workload. As shown in Section 4.5.3, this can lead to some queries in
the workload requiring more block accesses than would have been required using the
heuristic baseline layout. Users have the freedom to choose the optimization objective.
For example, if users want to ensure that no queries will degrade in terms of blocks
accessed compared to a baseline, MTO can set the qd-tree’s objective function to have
a high penalty when the number of blocks accessed is above the baseline.

Furthermore, MTO’s optimization objective is currently defined solely by scan cost
(i.e., number of blocks accessed), but could be augmented to also take join cost into
account (e.g., how would a particular blocking assignment affect the choice of physical
join operator for query execution).

Scalability. MTO uses data sampling to maintain low optimization times. However,
there are other complementary techniques for achieving scalability. Instead of uniform
sampling per table, we could use stratified sampling, in which we sample at lower
rates from regions of the data space that are accessed by fewer queries. For example,
MTO should not sample any records that are not accessed by any query, since the
blocks that contain those records are never accessed, so their layout is irrelevant. This
may allow MTO to produce a layout with the same performance while using a smaller
overall sample, therefore decreasing optimization time.

MTO can also take advantage of query sampling. In the most basic form, MTO
optimizes based on a uniform sample of the query workload. A more complex approach
is to first cluster queries based on common tables/columns accessed (e.g., each template
in TPC-H is a cluster), and sample queries stratified by cluster. Another approach is
to cluster the candidate cuts for qd-tree based on the similarity of records filtered,
and sample stratified by cluster. For example, the cuts PRICE < 7.99 and PRICE <
8.00 likely achieve similar performance, so we need to only consider one of them in
the qd-tree.

Workload and Data Shift. MTO assumes a static workload. In response to work-
load shift, MTO’s performance may degrade. The simplest approach to maintaining
performance under workload shift is to re-optimize the layout. However, this approach
is costly because it requires re-assigning each record to a potentially different block. If
the workload shift only impacts one region of the data (e.g., queries over Europe have
shifted), a less costly alternative approach is to only re-optimize the relevant subtree
of the qd-tree (e.g., if the root node has cut REGION = ‘EUROPE’, only re-optimize
the left subtree).

106



One common form of workload shift is time-varying predicates (e.g., queries that
always select the last day of data will have different date literals for every invocation).
By predicting the change in time-varying predicates, MTO can optimize its layout
based on not only on the past query workload, but also the expected future queries.

MTO also assumes a static dataset. In response to data updates, MTO may
need to re-optimize its layout in order to maintain high performance, using similar
approaches as those described above.

Instance-optimization. Aside from better block partitioning, there are other
possible avenues for reducing data access through instance-optimized strategies. For
example, one might create materialized views specialized for certain query patterns or
denormalize tables that are frequently joined. These complementary techniques come
with their own challenges, such as space overhead and maintainability. In our work,
we focus on how to create a layout with only one copy of all the data, with all tables
in their original schemas.

4.7 Related Work

Physical Data Layouts & Partitioning. Cloud-based analytics services typically
distribute data across multiple nodes or partitions, in order to scale out computation
and load balance among computational resources. Data is often distributed either
based on ingestion time, or using range, hash, or round-robin distribution schemes [106].
Automatic design advisors use what-if analyses and data mining to auto-tune the
physical design and partitioning scheme [4, 139, 163]. Certain automated approaches
are specialized for transactional workloads [32, 156, 158] or analytic workloads [52, 114].
MTO may be applied within each node or partition created by these schemes.

Qd-tree [195] (Section 4.1.1) and Sun et al. [176, 177] propose physical data
layouts that maximize block skipping. Amoeba [172] adapts its partitioning to ad-hoc
workloads. These approaches optimize the layout for a single table, whereas MTO
jointly optimizes the layout for multiple tables.
Instance-Optimized Databases. There has been a recent research trend towards
instance-optimized database systems and components. Whereas design decisions in
traditional systems are often made though manual tuning or heuristics, the goal of
instance-optimized systems is to automatically specialize database components and
algorithms to a particular use case, sometimes using machine learning. MTO and
qd-tree [195] are frameworks for instance-optimized data layouts. [11] introduces
layouts for hybrid read-write workloads tailored to the data and query workload.
Recent works have proposed instance-optimized, or learned, approaches for partition
advising [73], tuning [184], data structures and indexes [97, 60, 192, 138, 77, 47, 49, 109],
query optimization [125, 102, 152, 127], cardinality estimation [51, 90, 197, 196], job
scheduling [122], workload forecasting [117], and complete database systems [95].
Sideways Information Passing. Similar to MTO’s join-induced predicates, data-
induced predicates [85] (Section 4.2.1), column equivalence [53], and magic-set rewrit-
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ing [170] can also be used to push predicate information through joins. The performance
benefit of these techniques depends on the data layout (e.g., pushed predicates cannot
help skip blocks if every block contains records satisfying the predicate). MTO uses
join-induced predicates to explicitly construct a layout that maximizes opportunities
for block skipping during execution.

During query execution, sideways information passing between two joined tables or
subexpressions, often in the form of semi-join reduction [18], can be used to skip blocks
and speed up joins [82, 19, 153]. In contrast, MTO performs sideways information
during offline optimization in order to produce a better joint layout for multiple tables.

Some auxiliary data structures cache useful information about joining tables. These
include materialized views, join indexes [148], and join zone maps [149]. These data
structures use extra storage space and incur maintenance overhead. In contrast, MTO
does not duplicate any of the base data.

4.8 Conclusion
One of the dominant costs for query processing in cloud-based data analytics services
is the I/O for accessing large data blocks from cloud storage. Per-block zone maps
are a commonly-employed technique for reducing I/O by skipping blocks, but their
effectiveness is dependent on how the records are assigned to blocks, i.e., the data
layout. Existing approaches for optimizing data layouts only target a single table, and
their performance suffers in the presence of join-based queries. In this chapter, we
propose MTO, a data layout framework that automatically and jointly optimizes the
blocking strategy for all tables in a multi-table dataset for a given query workload. We
show that by taking advantage of sideways information passing through joins during
the optimization process, MTO produces layouts that achieve up to 93% reduction
in blocks accessed and 75% reduction in end-to-end query times on a commercial
cloud-based data analytics service.
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Chapter 5

SageDB: An Instance-Optimized Data
Analytics System

In the previous chapters, we have introduced individual instance-optimized physi-
cal design components, focusing on indexes (Chapter 2) and data storage layouts
(Chapters 3 and 4). In this chapter, we explore what it takes to synthesize multiple
instance-optimized physical design components into an end-to-end database system
under a global optimization policy.

Most modern data management systems fall on a spectrum between general-purpose
and application-specific. For example, PostgreSQL [1] is extremely general purpose,
and powers a diverse range of analytical and transactional workloads. Apache Spark
is slightly specialized towards analytic tasks, but can still handle a wide variety of use
cases (e.g., batch reporting, ad-hoc interactive queries, data science, and ML) and
low-level workloads (e.g., I/O-bound, CPU-bound, in-memory, on-disk, in the cloud).
On the other hand, systems like Google’s Mesa [69] and Napa [3] were custom-built
to power Google Ads, and are not suitable for any other application. While these
systems improve efficiency, these bespoke systems require years of intense engineering
effort and are only achievable by large corporations with significant resources.

Ideally, users should be able to have the efficiency of specialized systems along with
the flexibility of general-purpose systems. Tuning configuration options (“knobs”) is
easier than building an entirely new system, and can bridge some of the performance
gap. However, experienced engineers and database administrators still go through the
time-consuming and error-prone tuning process for each application. Recent research
proposes techniques for automatic knob tuning [27]; however, the performance impact
of tuning such knobs is still limited. For example, users can only adjust the size of a
data block, not how data is laid out on disk. Fundamentally, general-purpose systems
are designed to be task agnostic, so for most tasks a tuned general-purpose system
will perform worse than a custom-tailored system.

In previous chapters, we have shown that existing system components can be
replaced with instance-optimized or learned components, which are able to automati-
cally adjust to a specific use case and workload. For example, learned index structures
(Chapter 2) offer the same read functionality as traditional index structures (e.g. B+
trees) while providing better performance in both latency and space consumption.
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Instance-optimized data storage layouts (Chapters 3 and 4) are able to improve scan
performance by skipping data with greater effectiveness than traditional sorting-based
partitioning techniques.

However, these instance-optimized components have largely been designed and
evaluated in isolation, and there have only been a few efforts to integrate them into an
end-to-end system. Bourbon [36] replaces block indexes in an LSM-tree with learned
indexes and demonstrates latency improvements. Google integrated learned indexes
into BigTable [2] with similar findings, mainly due to a smaller index footprint and
fewer cache misses when traversing the index. While these are useful initial studies, it
is still unclear how multiple instance-optimized components would work together in
concert. In fact, it is easy to imagine a number of learned components destructively
interfering with each other. Is it possible to build a system that autonomously custom-
tailors its major components to the user’s requirements, approaching the performance
of a bespoke system but with similar ease of use as a general-purpose system?

To the best of our knowledge, there is no end-to-end data system built with
instance-optimization as a foundational design principle. We previously presented
our vision and blueprint for such a system, called SageDB [96]. In this chapter,
we present our first prototype of SageDB, and show how two carefully selected
components can work together in practice. These instance-optimized components are
(1) (multi-dimensional) data layouts and data replication and (2) partial materialized
views. These techniques minimize I/O when scanning data from disk and maximize
computation reuse through intelligent pre-materialization of partial results. While
the ultimate goal is to automatically trigger self-optimization whenever necessary,
for the current prototype we decided to expose a single easy-to-use command to
the user — OPTIMIZE — with a user-given space budget. Doing so gives the user
control over when SageDB should start to instance-optimize the internal components
to improve performance for the user’s workload while respecting the space constraint.

Building a usable database takes years and several attempts (e.g., Oracle took
until version 7 to become stable), so this chapter should largely be regarded as a
progress report on how to integrate learned components and the potential benefits they
can provide when combined. As such, this chapter aims to inform the research and
industry communities about the potentials, limitations, and future research challenges
of learned instance-optimization.

In summary, we make the following contributions:
1. We introduce two new instance-optimized techniques: partial materialized views

(PMVs), which is a generalization of traditional materialized views with more
degrees of freedom, and replicated data layouts, which combines the idea of instance-
optimized data layouts with partial table replication.

2. We introduce a global optimization algorithm that jointly and automatically con-
figures partial materialized views and replicated data layouts given the user’s data
and workload. As a result, a user only needs to decide when to issue the OPTIMIZE
command, and SageDB will automatically decide how to simultaneously configure
all instance-optimized components.

3. We present an evaluation of our prototype implementation of SageDB against
other systems, including a commercial cloud-based data warehouse product, which
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Figure 5-1: A user query passes through the rule-based optimizer, which determines
if and how to use SageDB’s instance-optimized components, then runs on SageDB’s
vectorized execution engine. When users issue an OPTIMIZE command, SageDB
automatically configures its instance-optimized components to maximize performance
based on the user’s query history.

SageDB outperforms by up to 3× on end-to-end query workloads and up to 250×
on individual queries.
In the remainder of this chapter, we give background (Section 5.1), present an

overview of SageDB (Section 5.2), introduce its instance-optimized components (Sec-
tion 5.3) and how that complexity is surfaced to the user (Section 5.4), present
experimental results (Section 5.5), discuss remaining design challenges and future
work (Section 5.6), review related work (Section 5.7), and conclude (Section 5.8).

5.1 SageDB

In this section, we provide a brief overview of the state of research on instance-optimized
systems. Then we describe our motivations and design principles for building SageDB.

Background. Instance-optimization (a term inspired by the definition of instance-
optimal algorithms [165]) refers to specializing a system based on the dataset and
workload to achieve performance close to specialized solutions [96]. While there exists
many possible ways to create instance-optimized components, a common approach is
to tightly couple a model of the user’s workload with a novel data structure designed
to take advantage of that model. Sometimes, this approach is also referred to as
learned systems or algorithms with predictions/oracles [80]. For example, learned
indexes [99] model the user’s data to accelerate searches on that dataset. Instance-
optimized data layout techniques [137, 195] create workload-specific physical designs
that minimize I/O during query execution. Past work tended to improve performance
for a single instance-optimized component in isolation, but not for the entire database.
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For example, learned indexes were evaluated on single-key lookup workloads instead
of complete transactional workloads, and data layouts were evaluated on selective
scan-heavy queries. Note that instance-optimized systems are fundamentally different
from automatic knob-tuning approaches. Knob-tuning optimizes the hyperparameters
of a system and is agnostic to the underlying data distribution. Instance-optimization
designs systems that take advantage of knowledge about the specific data and/or
workload distribution.

Motivation and Design Principles. We had two motivations for building SageDB.
First, we aim to show that instance-optimization can provide benefits for end-to-end
workloads with diverse query patterns instead of just database components evaluated
in isolation. Second, we hoped that building and evaluating SageDB on real data and
workloads would identify the most important pain points and roadblocks and guide us
towards the most impactful directions for future work in instance-optimized systems.
Like many existing learned components [124, 99, 195], we focus on analytic workloads
as well. We leave investigation of instance-optimization for transactional workloads to
future work.

We used several general principles to guide our design:
1. Avoid regression. One of the biggest deterrents to the adoption of instance-

optimized techniques in practice is the fear that they might result in catastrophic
failures or performance regressions under changing or even adversarial workloads.
This fear of regression often outweighs the promise of potential performance improve-
ments. In SageDB, we err on the side of caution: we must consider a component’s
downsides just as carefully as its upsides, and it must be simple to disable the
component if necessary. The worst case should be no impact—not negative impact.

2. Minimize the burden on the user. Configuring the components should require
as little as possible from the user, both in terms of interaction and understanding.
The complexity of incorporating new instance-optimized components into SageDB
should be completely hidden from the user—they should not need to read more
documentation or issue new commands in order to make use of those new compo-
nents. Accordingly, SageDB is designed such that the user only needs to issue a
single OPTIMIZE command to trigger all optimizations.

3. Avoid negative interference. When combining a number of learned components,
it is natural to worry that optimizing each component individually might not lead
to an optimal global configuration. In the worst case, different learned components
might “step on each other,” degrading system performance. We must carefully
consider how each component affects the others.

5.2 Design Overview

In this section, we provide a high-level overview of SageDB as a system and its instance-
optimized components. Section 5.3 describe the instance-optimized components in
more detail, and Section 5.4 covers the global optimization procedure. Fig. 5-1 provides
an overview.
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5.2.1 System

Storage Layer

SageDB stores data and performs query execution on a single node. SageDB by
default stores data in columnar format, although row-store format is also available.
The records of a table are divided into horizontal partitions. Each partition is stored
as a separate file; each column of each partition can be accessed individually, without
reading other columns. String columns are dictionary encoded, and integer columns
are compressed using bit-packing.

For each horizontal partition, we store statistics used for execution-time data
skipping, including the minimum value, maximum value, and number of distinct values
for each column. In addition, we optionally store a predicate for each partition, with
the property that all records in the partition are guaranteed to satisfy the predicate
(see Section 5.3.2 for details). When a query scans from a table, SageDB compares the
query’s filter with the per-column statistics and the optional predicates to determine
the set of horizontal partitions that can be skipped, i.e., the partitions for which the
statistics and predicate guarantee that no row can match the filter. SageDB uses
memory-mapped file I/O for data files stored on local SSD or disk. For long-term
persistence, data files are stored on AWS S3 or other cloud object stores.

Query Optimizer and Execution Engine

SageDB has a vectorized execution engine that processes a chunk of data at a time.
SageDB uses non-compiled pipelines with push-based execution (see Fig. 5-1 for
an example). The first pipeline for each table involves scanning data from disk,
for which the granularity of a chunk is a horizontal partition. Each pipeline may
involve a projection over the columns or a filter over the rows. SageDB supports lazy
materialization by maintaining a bitmap of relevant rows and passing the bitmap
through the pipeline. SageDB uses multi-threaded parallel execution of pipelines.

SageDB has a rule-based query optimizer that determines the minimal set of
columns that need to be read from each table, determines which horizontal partitions
to scan from each table by using per-partition statistics and predicates to skip irrelevant
partitions, orders tables for hash joins so that the largest table is the probe side, and
constructs the execution pipelines.

Usage and SQL Support

We assume that queries issued by the user contain meaningful patterns and are not
completely ad-hoc. More formally, we assume that user queries can be categorized
into templates (also referred to as prepared statements), which are queries whose
filters contain changeable parameters. For example, the template in Fig. 5-2 has
parameters which are represented in the SQL text by ?. SageDB gives users the ability
to explicitly create these templates and issue queries by specifying the template ID
and the parameter values, as shown in Fig. 5-2.
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Figure 5-2: The example query takes advantage of the partial materialized view (PMV)
to produce a remainder query with a more selective filter. It then reads from a replica
instead of the base table in order to reduce scan cost.

SageDB supports a command-line SQL interface as well as a Python connector
library. Users can load data into tables from either CSV files or Parquet files. SageDB
returns query results to the user in JSON format. SageDB currently supports select-
project-join-aggregate queries that can contain GROUP BY, ORDER BY, HAVING, LIMIT,
DISTINCT, and analytic functions. Supported aggregation functions include COUNT,
COUNT DISTINCT, COUNT APPROX DISTINCT (using HyperLogLog [58]), SUM, AVG, MIN,
and MAX, including multi-attribute aggregations. SageDB supports nested queries
through through unnesting [142] and treats CTEs as temporary tables. SageDB only
supports inner equijoins, implemented as hash joins. SageDB also supports INSERT,
but it is not a focus of the current design.

5.2.2 Instance-Optimization

What distinguishes SageDB from traditional systems is the degree to which it is able
to customize its design for a specific use case. Many of the techniques that traditional
analytic systems use to optimize for a given dataset and workload fall in two categories.
First, users are allowed to create materialized views, which are used at query time to
substitute a subquery or the entire query itself. This can result in serious performance
improvements—some systems’ performance relies almost entirely on aggressive use of
materialized views [3]—and significant commercial effort has been put on automating
materialized view selection [8, 147], maintenance [128], and matching [64].

Second, users are allowed to specify how the records of a table should be sorted.
Classically, each table can be sorted by a specified column (i.e., the sort key), and
some systems aim to automate sort key selection [7], but newer systems now also
support multi-column sort orders such as the Z-order [198, 38]. Contiguous chunks of
the sorted records are grouped into blocks, and systems traditionally store per-block
metadata, such as the minimum and maximum value for each column [149, 29, 39, 130],
which are used to skip irrelevant blocks during query processing.

Materialized views and data layouts can have a significant impact on performance.
However, in traditional systems they are used independently of each other, and
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furthermore, they are limited in complexity, which can limit their effectiveness. SageDB
takes both components, expands their scope to go far beyond the capabilities of
traditional systems, and combines them under a single global optimization objective.
In particular, SageDB introduces the concept of partial materialized views, and
SageDB uses instance-optimized block-based data layouts in combination with data
replication. We explain these components in depth in Section 5.3, but we first briefly
provide high-level intuition by presenting an example of their usage (Fig. 5-2).

An Illustrative Example

Assume there are two tables: a small table T1 with columns (id, A, B); and a large
table T2 with columns (id, X, Y). Assume that the user creates a query template:

select A, sum(X) from T1, T2
where T1.id = T2.id and B = ? and Y < ?
group by A order by A

Assume that A and B are a low-cardinality categorical columns, while Y is a high-
cardinality column whose values are unique floating-point numbers. A traditional
materialized view for answering queries following this template would look like:

select A, B, Y, sum(X) as sumX from T1, T2
where T1.id = T2.id
group by A, B, Y

When the user issues a query using this template by specifying values for the parameters,
the engine would answer the query directly from this materialized view instead of
scanning the base tables, T1 and T2, with a query such as:

select A, sum(sumX) from MaterializedView
where B = ? and Y < ?

However, since column Y has unique values, the materialized view has as many rows
as the base table T2. This makes the materialized view expensive to store and also
greatly reduces its performance benefits. In fact, executing using the materialized
view might be slower than scanning the base tables. In this example, the engine would
need to scan four columns from the materialized view and apply filters to two of those
columns, whereas the original query would only need to read three columns from T2
and apply filters to one column (the cost of reading and filtering the smaller T1 are
negligible) and perform a potentially inexpensive join.

To avoid the limitations of traditional materialized views, SageDB introduces the
concept of partial materialized views (PMVs). A PMV is associated with a specific
query template. Each cell in the grid (Fig. 5-2) represents a filtered subset of the joint
data distribution of the base tables. For example, the top-left cell represents the data
of T1 and T2 (joined by id) that satisfies the predicate B=’a’ and Y<10. Note that a
PMV’s grid is specific to a certain join pattern, namely, the join pattern observed in
the template.

Each cell stores the result of the template’s aggregation over only the data that it
represents. For example, the top-left cell would store a relation that is equivalent to
the result of executing
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select A, sum(X) from T1, T2
where T1.id = T2.id and B=’a’ and Y<30
group by A

When executing a query following this template (Fig. 5-2), the SageDB query optimizer
will find the cells that are subsumed by (i.e., entirely contained within) the query’s
filter, which for the example query in the figure are the two cells highlighted. We then
produce the remainder query, which is the query whose filter has removed the parts
that are already subsumed by the PMV (details in Section 5.3.1) and is therefore
much more selective.

Furthermore, unlike traditional systems which allow users to specify a sort order
for each table, SageDB has the ability to create multiple partial replicas for each base
table (i.e., a replica containing a subset of the columns but all of the records of the
base table), each with their own instance-optimized data layout. Before executing the
remainder query, SageDB’s optimizer considers whether to scan from the base table or
a replica. Fig. 5-2 shows that there are two replicas of T2, namely T2R1 with columns
(id, X, Y) and T2R2 with columns (id, X). Imagine that the data layout for T2R1
has specifically been optimized for the template (Section 5.3.2 presents more details),
so that we would only need to read one horizontal partition from T2R1 (highlighted
in blue), whereas we would need to read all horizontal partitions from T2. Therefore
the SageDB optimizer would substitute T2R1 into the query. Note that we cannot use
T2R2 because it does not contain all the necessary columns.

Finally, the modified remainder query is fed to the execution engine, and the
partial aggregations from the two subsumed PMV grid cells are merged during the
aggregation step.

This example shows how SageDB’s instance-optimized components work to reduce
query execution cost: first, the PMV eliminates part of the query filter, which reduces
the cost of joins (because the join inputs are smaller) and aggregation (because we
aggregate fewer records). Second, substitution of base tables with replicas reduces scan
cost by reducing the number of horizontal partitions scanned. The former technique
is not easily supported in traditional systems; the latter is supported in traditional
systems but is limited to simple data layouts (e.g., sort keys) and requires the user to
manually specify replicas and layouts, whereas SageDB uses automatically-configured
instance-optimized data layouts.

An important part of our contribution is not only supporting these techniques
in SageDB, but also automatically optimizing their configuration. In particular, the
performance of each component is dependent on the other. In Section 5.4, we describe
our algorithm for co-optimizing these components given the user’s data and workload.

5.3 Instance-Optimized Components
In this section, we more formally introduce SageDB’s instance-optimized components,
which we gave intuition for in Section 5.2.2. First, partial materialized views (PMVs)
are a novel technique for generalizing traditional materialized views with more degrees
of freedom. Second, although the idea of combining instance-optimized data layouts
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with data replication has been proposed in [175], SageDB’s replicated data layouts
applies them to the novel context of disk-resident datasets composed of multiple tables,
and we introduce a novel optimization algorithm (Section 5.4.4).

5.3.1 Partial Materialized Views

A partial materialized view (PMV) is associated with a specific query template. For
a given query template (see Section 5.2.1), a templated column is a column that is
directly involved in a filter predicate that includes a parameter. For the template in
Fig. 5-2, the two templated columns are B and Y. A partial materialized view (PMV)
for a given query template is logically defined as a grid over the templated columns.
If a templated column is used twice in the same template (e.g., the filter includes Y
> ? AND Y < ?), the column is only used once in the grid. For each grid cell, the
PMV stores the result of executing the query template over only the data represented
by the grid cell.

In concept, several templates can share the same PMV. For example, two templates
that have the same filter and group-by clauses but have different aggregations (e.g.,
template 1 computes SUM(A) but template 2 computes MIN(B)) can share the same grid.
However, this reduces our flexibility to adjust the amount of resources (i.e., memory
budget, see Section 5.4.3) allocated to each template. For example, it is inefficient for
a infrequently-queried low-cost template and a frequently-queried high-cost template
to share the same grid; instead, the former should have a coarse-grained grid with
fewer cells that uses low memory and the latter should have a fine-grained grid with
more cells that uses more memory. It is therefore unlikely that two templates have
the same optimal PMV grid. Therefore, we decide in SageDB to limit each PMV to a
single template.

Construction

Given a PMV grid definition, we construct PMV in a single pass over the data. In
fact, the construction can be posed as a SQL query. For example, the PMV in Fig. 5-2
is constructed as:

select A, [CASE WHEN B=’a’ AND Y<10 THEN 1 ELSE WHEN...], sum(X)
from T1, T2 where T1.id = T2.id
group by A, [CASE WHEN B=’a’ AND Y<10 THEN 1 ELSE WHEN...]

where the CASE expression will output a cell number based on the record’s value
in the templated columns1. Note that in the construction query, we remove the
parameterized filter predicates, but leave remaining filter predicates as-is (e.g., if there
were an additional predicate AND X>0 in the template).

1Instead of having a case for every cell, an optimization is have a CASE expression for each grid
dimension individually, and then combine them to form a unique cell number.
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Usage

To use PMVs at query time, we first logically determine which cells are subsumed
by the query filter. We then exclude those regions of the data space from the filter.
To determine which cells are subsumed, we break down the filter into its atomic
components by splitting apart ANDs and ORs. The example query in Fig. 5-2 has
one AND, and therefore two atomic components. Any atomic component that only
references a single templated column can be checked against the corresponding grid
dimension. For the query in Fig. 5-2, the atomic component B=’c’ is checked against
the partitions of grid dimension B, and we see that only one partition is subsumed,
and the atomic component Y<30 subsumes the two partitions that, when combined,
represent Y<25. An expression describing the subsumed cells can then be constructed
by re-combining the atomic components, e.g., B=’c’ AND Y < 25.

To modify the query filter, we add a NOT of an expression describing the subsumed
regions. For the example query in Fig. 5-2, the remainder query is

select A, sum(X) from T1, T2
where T1.id = T2.id and B=’a’ and Y<30 and not (B=’a’ and Y<25)
group by A

Note that the expression in parentheses describes the subsumed cells. This may result
in an overly complicated filter, but the SageDB optimizer uses an SMT solver [43] to
simplify filters into conjunctive normal form (CNF) before passing it to the execution
engine.

SageDB caches partial materialized views in memory but they are also persisted
to disk and cloud storage.

Strengths and Limitations

The scope of PMVs is quite broad. PMVs can be used for nearly any query template
with parameterized filters, since the usage technique is very generic. This idea extends
to multiple templated columns, and also to queries with joins (such as the one in
Fig. 5-2), for arbitrary filter predicates (containing both ANDs and ORs).

However, there are some scenarios in which PMVs are unlikely to help (see Sec-
tion 5.5.3 for experiments). For templates that produce large aggregations (i.e., group
by high-cardinality columns), the PMV becomes expensive to store and has limited
benefits2, similar to the limitation of traditional materialized views presented in Sec-
tion 5.2.2. Also, if there are many templated columns, the high-dimensional PMV
grid is less effective at isolating subsumed cells due to the curse of dimensionality (e.g.,
Gaming Q4, Section 5.5.3).

2Typically, these types of queries include a LIMIT clause (e.g., TPC-H Q10). Unfortunately, we
cannot simply take take a LIMIT within each cell of the PMV grid, because a global top-K is not
equivalent to merging the top-K of each cell.
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5.3.2 Replicated Data Layouts

Prior work on instance-optimized data layouts [137, 48, 195, 45] has already shown
that more complex data layouts perform better than traditional single-column or
multi-column sort orders. However, these prior instance-optimized techniques assume
that they modify the original copy of the data. In SageDB, we want to avoid this
because it violates our design principle of avoiding regressions, because an unexpected
future query may execute slower on the “optimized” layout than the original layout.

In SageDB, we do not modify the layout of the original copy, which we refer to as
base tables. Instead, we use a user-provided additional disk space budget to create
partial replicas of tables. A partial replica contains a subset of the columns from the
base table (which may be the full set). The data layout for each replica is independent.
For each query, the query optimizer chooses to read from the replica (or the base table)
that minimizes scan cost. The challenge is to determine which subset of the workload
to optimize each replica for in order to achieve the best performance, since it does not
make sense to optimize multiple replicas for the same query/template if the execution
engine only uses one replica at execution time—we examine this optimization problem
in Section 5.4.4.

Construction

For a given replica (i.e., a subset of columns from a base table) and a set of queries to
optimize the replica’s data layout for, we use the same algorithm as in [195] to create a
set of horizontal partitions. SageDB defines a target number of records per horizontal
partition, which by default is set to 2M rows based on the latencies we observed for
Amazon S33. Each block is associated with a predicate, with the property that all
records in the block satisfy the predicate, and also all records that satisfy the predicate
are in the block, i.e., blocks do not “overlap.” For brevity, we omit the details of the
algorithm, which can be found in [195] and is summarized in Section 2.1 of [45].

Usage

For each table referenced in the query, the SageDB optimizer iterates over the replicas,
first checks whether the replica contains all the necessary columns, and checks the
per-horizontal partition metadata to determine the number of files and rows that need
to be read from each, and picks the replica with the lowest cost (see Section 5.4.1). This
procedure is done for each table independently, because substituting replicas purely
improves scan cost. Downstream operators that introduce dependencies between
tables, just as joins, are not affected.

Strengths and Limitations

Replicated layouts have the greatest impact on reducing cost for scan-heavy queries
with selective filters. However, replicated data layouts only help reduce scan cost

3Future versions of SageDB will automatically tune this parameter based on the observed perfor-
mance.
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(by skipping irrelevant data blocks) but cannot reduce the cost of other parts of
query execution, such as joins, and are therefore less effective for queries where joins
dominate execution time (see Section 5.5.3 for examples). Furthermore, if the query
filter is extremely complex (e.g., composed of many conjunctions and disjunctions
over many columns), then even instance-optimized data layouts may not be able to
meaningfully outperform a full table scan, due to the curse of dimensionality.

5.4 The OPTIMIZE Command

The user can issue the OPTIMIZE command to trigger automatic configuration of
SageDB’s instance-optimized components. The command has two arguments, a
budget for the amount of memory space that SageDB can use to store PMVs, and
a budget for the amount of disk space that SageDB can use to store replicated data
layouts. The user is allowed to set either budget to zero, though this would of course
limit the effectiveness of the optimization.

The user’s only responsibility is to decide when to issue the OPTIMIZE command.
We envision that the user runs the command during a time of low system load, so
that the optimization process does not affect performance of concurrently running
queries; this is the same advice that data warehouse providers typically give to users
when suggesting knob tuning recommendations. Ideally, the user should have already
issued a representative set of queries on SageDB, because the optimization will require
examining and modeling the user’s query history. For example, if the user uses SageDB
to run a daily batch reporting job, then they may want to run the first day’s batch,
then issue the OPTIMIZE command overnight, so that the next day’s batch can take
advantage of performance improvements.

When the user triggers the OPTIMIZE command, SageDB needs to automatically
configure its instance-optimized components simultaneously. Why not simply optimize
PMVs and replicated layouts independently, each on the full query workload? The
choice of PMVs affects the optimal replicated layouts, because PMVs produce remainder
queries and in some cases answer the entire query, so the layout should only be
optimized for the remainder queries. The choice of replicated layouts also affects the
optimal PMVs; depending on how effective the layouts are at processing a template’s
remainder queries, we may want to allocate more or less memory budget for that
template’s PMV (e.g., a PMV is useless if the remainder query would anyway require
scanning all of the data because of a poor data layout).

SageDB uses an iterative algorithm that optimizes PMVs and layouts, dependent
on the other, in a loop until convergence. We now describe the cost model which
forms the optimization objective, then the global optimization procedure.
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5.4.1 Cost Model

SageDB uses an analytic cost model. The cost of a query is the sum of scan cost, join
cost, and aggregation cost:

ScanCost = 𝑤0(# horizontal partitions scanned)
+ 𝑤1(# scanned records)(# columns read)

JoinCost = 𝑤2(# build side records) + 𝑤3(# probe side records)
+ 𝑤4(# output records)(# output columns)

AggCost = 𝑤5(# aggregated records)

Scan cost and (hash) join cost are evaluated for each table/join, while aggregation
cost is computed for the post-join relation. The weights 𝑤𝑖 are tuned based on the
hardware. To estimate the features, we use a simple cardinality estimator which
assumes independence between columns and uniform data distributions of the values
in each column. We could use a more complex cost model, or even a learned cost
model, but that is orthogonal to the core optimization technique.

5.4.2 Global Optimization

The optimization objective is to minimize total workload cost, i.e., the sum of costs,
according to the cost model, for all queries in the workload. The algorithm is as
follows:
1. The catalog stores a log of all past user queries. We examine that history and cluster

queries into templates. A template is a query for which constant literals in the query
filter are replaced by placeholders. Within each template, if a certain placeholder
always has the same constant value, we remove the placeholder and simply use
the value. We expect that many real workloads (e.g., daily batch reporting jobs,
dashboard queries) have repeated query patterns and are naturally composed of
templates.

2. Starting from the default physical configuration, which only contains the base tables
in their original layout and has no PMVs and no replicas, perform the following
steps in a loop, until the relative cost decrease from the previous iteration of the
loop is less than a certain threshold, by default 1%:

(a) Optimize the PMVs, using an objective function that takes the current replicated
layout configuration into account (see Section 5.4.3).

(b) Feed all queries through the optimized PMVs to construct a workload consisting
only of remainder queries.

(c) For each remainder query with joins, push down all single-table predicates to
their respective tables and create a single-table query for each table.

(d) Optimize the replicas and data layouts on the single-table remainder queries (see
Section 5.4.4). Each table is optimized only for the queries that filter on that
table.

The intuition behind the loop is to incrementally optimize each component given the
currently-optimized configuration of the other component. For example, the first time
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Figure 5-3: Optimizing PMVs for three templates with a total memory budget of 100
and step size of 25. Utility is visualized as the slope of the lines. Red stars represent
the selected configurations. Dotted lines would not actually be considered in the
optimization.

that PMVs are created, some PMVs may be rejected because the remainder queries
would anyways be very expensive on the default layout. However, after the layouts
are optimized once, it is likely that those PMVs are selected in the next iteration,
because the layout is now optimized. This way, the dependencies between PMVs and
replicated layouts are captured.

There are no regressions from one iteration to the next (i.e., cost can only decrease)
because the algorithm can always select to choose the same PMVs or replicated layouts
as the previous iteration.

5.4.3 Optimizing Partial Materialized Views

Given a memory budget and a set of templates 𝑇 , we need an algorithm to decide
how much memory to allocate to building a PMV for each template, and also what
the PMV grid should be given that memory allocation. We first describe the latter,
since it is used as a subroutine in the former.

Optimizing the PMV grid.

If a query template 𝑡 has 𝑛 templated columns, then a PMV for 𝑡 is a grid with 𝑛
dimensions, one representing each templated column (see Fig. 5-2 for an example).
The domain of each dimension’s values are logically divided into equally-sized buckets,
much like an equi-depth histogram: for each dimension 𝑖 ∈ [0, 𝑛), we create 𝑏𝑖 buckets
by setting the boundary values between buckets in such a way that 1/𝑏𝑖 of all records
fall in each bucket. For templated columns involved in equality filters (i.e., =, !=, IN),
we ensure that each bucket only contains one unique value of that column, since a
bucket is only useful if the filter is able to subsume it; if there are more unique values
than buckets, we only use the 𝑏𝑖 most frequent values.

Given a query template 𝑡 and a space budget 𝑠, we want to configure a PMV grid,
i.e., set 𝑏𝑖 for 𝑖 ∈ [0, 𝑛), that minimizes the total cost, according to our cost model, of
executing all queries in the workload that come from 𝑡. (Note that scan cost of the
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remainder query depends on the current replicated layout configuration, in the context
of the global optimization algorithm in Section 5.4.2.) We use Bayesian optimization
to determine the 𝑏𝑖 for each dimension that minimizes cost, under the space budget
constraint 𝑠. Throughout this process, we make use of SageDB’s ability to simulate
a PMV without physically creating it, by only storing the PMV metadata (i.e., the
grid definition), which is used to generate remainder queries as if the PMV actually
existed and to estimate the memory usage of the PMV.

Allocating memory to templates.

Given a total memory budget 𝐵 and a set of templates 𝑇 = {𝑡1, . . . , 𝑡𝑛}, our algorithm
aims to minimize

∑︀
𝑖 𝐶𝑖(𝑠𝑖), under the constraint that

∑︀
𝑖 𝑠𝑖 ≤ 𝐵, where 𝐶𝑖(𝑠) is the

total cost of executing the queries from template 𝑡𝑖 if we could create a PMV for 𝑡𝑖
with space 𝑠, as described above. While solving this optimization problem, we would
like to minimize the number of times we compute 𝐶𝑖(𝑠), since PMV simulation, while
cheaper than physically creating the PMV, is still expensive.

We make the following observation: allocating more space to a template’s PMV
generally has diminishing marginal returns. That is, for a template 𝑡𝑖 ∈ 𝑇 , the cost
function 𝐶𝑖(𝑠) is convex. For intuition, consider a simple template, SELECT SUM(A)
FROM T WHERE B < ?, where column B contains numeric values. A PMV for this
template would essentially divide the domain of column B into 𝑛 equally-sized cells.
By using the PMV, a query from this template would only ever need to scan/aggregate
the data corresponding to one cell, because all cells to the “left” would be subsumed.
Each cell contains around 1/𝑛 of the data, so the cost as a function of the number
of cell is approximately 𝐶(𝑛) = 1/𝑛, which is convex. This intuition also roughly
extends to higher-dimensional grids.

Therefore, the intuition behind the optimization algorithm is that instead of
allocating the total memory budget across the different templates in one shot, we take
an iterative approach where we incrementally allocate more space to the template
with the highest impact on cost. Essentially, we do not know the cost functions 𝐶𝑖(𝑠)
upfront, so we incrementally explore these cost functions, starting from 𝑠 = 0. We
now formalize this algorithm.

Our algorithm works by incrementally allocating 𝑏 memory budget at a time, where
𝑏 < 𝐵. We refer to 𝑏 as the “step size.” If a template 𝑡𝑖 currently has a PMV that uses
memory space 𝑠, we define the (marginal) utility 𝑈𝑖(𝑠, 𝑏) of allocating another 𝑏 space
as as (𝐶𝑖(𝑠)− 𝐶𝑖(𝑠+ 𝑏))/𝑏. Throughout the optimization algorithm, we maintain a
memo that stores, for each template 𝑡𝑖, three pieces of data: (1) the amount of space
currently allocated to that template 𝑠𝑖, (2) the cost 𝐶𝑖(𝑠𝑖), and (3) the utility 𝑈𝑖(𝑠𝑖, 𝑏)
of allocating 𝑏 more space to the template. The algorithm proceeds as follows (Fig. 5-3
shows an example):
1. The memo is initially empty, i.e., zero space is allocated to each template. We

begin by computing the utility 𝑈𝑖(0, 𝑏) for each template. This requires computing
𝐶𝑖(𝑏) for each template 𝑡𝑖.

2. Pick the template with the highest utility: argmax𝑖 𝑈𝑖(𝑠𝑖, 𝑏). Change that tem-
plate’s entry in the memo. That is, if the entry was previously (𝑠𝑖, 𝐶𝑖(𝑠𝑖), 𝑈𝑖(𝑠𝑖, 𝑏)),

123



Figure 5-4: Hierarchical clustering of four query templates on a table with five columns,
which produces four candidate replica-sets (blue) over seven distinct replicas (gray).

we now replace it with (𝑠𝑖 + 𝑏, 𝐶𝑖(𝑠𝑖 + 𝑏), 𝑈𝑖(𝑠𝑖 + 𝑏, 𝑏)). This requires computing
𝐶𝑖(𝑠𝑖 + 𝑏). In case the PMV has reached its maximum size (i.e., we have done the
equivalent of a traditional materialized view that groups by the templated columns),
we do not consider this template further.

3. Repeat step 2 until the space budget is filled.
In general, a smaller step size 𝑏 means a closer-to-optimal solution. By default, we

set 𝑏 = 𝐵/𝑛, where 𝑛 is the number of templates. This is small enough to guarantee
that every template can get a PMV, if that is indeed optimal. Furthermore, this
means that the complexity of the algorithm (i.e., the number of invocations of a cost
function) is 𝑂(𝑛): we perform 𝑂(𝑛) cost function calls to initialize the memo, and we
perform 𝑂(𝐵/𝑏) = 𝑂(𝑛) additional cost function calls before the budget is filled.

5.4.4 Optimizing Replicated Layouts

Assume the dataset is composed of 𝑚 tables, 𝑇1, . . . , 𝑇𝑚. Given a total disk budget 𝐵
and a set of single-table remainder queries 𝑄𝑖 for each table 𝑇𝑖, our algorithm aims to
find the set of replicas, along with the data layout for each replica, that minimizes the
total scan cost of all remainder queries. Note that we do not need to consider join
cost or aggregation cost, since the amount of data scanned does not affect the inputs
to downstream operators like joins and aggregations. Our algorithm has two steps:
finding a collection of candidate replica-sets for each table, then selecting the optimal
set of replica-sets.

Generating candidate replica-sets.

This step is repeated for each table 𝑇𝑖. Given |𝑄𝑖| remainder queries, there are
2|𝑄𝑖| possible replicas we could create, i.e., we could create a replica whose data
layout is optimized for any subset of the queries. For simplicity, we consider each
query template as one atomic unit, but nonetheless, given 𝑛 templates, there are an
exponential number of possible replicas, so a brute force search is infeasible. Instead,
we generate a collection of promising replica-sets, i.e., a set of replicas along with their
optimized data layouts.
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Our insight is that we should only consider replicas whose layouts are optimized
for a set of similar query templates. More concretely, we generate a embedding for
each query template, in two different ways that represent two different notions of
similarity:
1. A binary embedding (i.e., composed only of 0’s and 1’s) of columns that appear

in the query filter (in both parameterized and constant predicates). Templates
with similar embeddings will benefit from similar layouts. As an extreme example,
three templates that all only filter on colA will both benefit from a replica that
sorts records by colA, whereas a replica optimized for three templates that filter
on three different columns would not do a great job for any template.

2. A binary embedding of columns that appear anywhere in the query template, i.e.,
the columns that the execution engine needs to read when processing this query.
By placing templates with similar embeddings in the same cluster, we minimize the
number of columns we would need to include in a replica for that cluster (recall that
a replica does need to include all columns from the base table, only the columns
necessary for execution).

There is a fundamental trade-off between space and cost: having a different replica
for every different template will achieve the lowest scan cost, but will take the most
disk storage space, while optimizing a single replica for all the templates takes the
least space but will not reduce scan cost as much. The candidate replica-sets that we
generate should form a Pareto frontier that spans this space-cost tradeoff.

Specifically, use hierarchical agglomerative clustering [173] over the embedded
space to separate the 𝑛 templates into anywhere from 1 cluster to 𝑛 clusters (see
Fig. 5-4 for an example). For each cluster, we generate a replica whose data layout
is optimized (using the algorithm from [195]) for only the templates in its cluster,
containing only the columns from the base table needed to execute the templates
in its cluster. This results in 𝑛 replica-sets for each type of embedding, and since
we use two types of embeddings, we have up to 2𝑛 − 2 unique replica sets (since
the replica-sets corresponding to 1 cluster and 𝑛 clusters will be the same for both
embeddings). Due to the nature of hierarchical clustering, these replica-sets are built
from up to 3𝑛− 3 unique replicas. Therefore, the time complexity of this step is 𝑂(𝑛).
For each replica-set, we compute the scan cost of executing the queries 𝑄𝑖, according
to the cost model.

Selecting replica-sets.

After generating a collection of candidate replica-sets for each table, we need to select
a global configuration of replicas, i.e., select zero or one replica-set for each table,
that minimizes total scan cost under the space budget 𝐵. This optimization problem
is almost identical to the 0-1 knapsack problem, so we use the standard dynamic
programming solution to find the optimal collection of replica-sets. The only difference
is that if we select multiple replica-sets corresponding to the same table, we only use
the one that reduces scan cost the most.

If the query workload has 𝑛 templates and 𝑚 tables, we generate up to 𝑛𝑚 candidate
replica-sets, so the standard dynamic programming algorithm for the 0-1 knapsack
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Table 5.1: Dataset and workload characteristics.

Gaming Stack Overflow TPC-H

num tables 5 1 8
num rows in largest table 3.06B 507M 600M
uncompressed size (GB) 426 52 100
num templates 13 13 15

problem takes 𝑂((𝑛𝑚)2) time. In practice, this is very fast, for several reasons: first,
the time-intensive optimization steps (i.e., simulating PMVs and replicated layouts
and feeding estimated statistics through the cost model) have already been done.
Second, 𝑛 is typically small (e.g., TPC-H has 22 templates). Third, even if there are
many tables in the dataset, most of these tables are small; we do not even need to
consider creating replicas for tables that only have enough records for one horizontal
partition.

5.5 Evaluation

In this section, we present the results of an experimental study that compares SageDB
with other data analytics systems on both real and synthetic datasets and workloads.
Overall, this evaluation shows:
1. SageDB outperforms a commercial cloud-based analytics system by up to 3× on

end-to-end query workloads and up to almost 250× on individual query templates
(Section 5.5.2).

2. SageDB’s instance-optimized components benefit different types of queries to
different degrees, but almost all queries benefit from at least one instance-optimized
component (Section 5.5.3).

3. SageDB’s optimizations rarely result in regressions for individual queries, and the
OPTIMIZE command can easily be completed as a nightly job (Section 5.5.4).

5.5.1 Setup

We run SageDB on a EC2 machine with 4 vCPUs and 32GB RAM (i3en.xlarge),
with data on an attached EBS volume with 4000 IOPS. We compare against a popular
cloud data warehousing product, which we call System X, running on a single node
with the same number of cores and memory. We also compare against Umbra [141], a
high-performance on-disk analytics research prototype by TUM, which incorporates
many state-of-the-art techniques such as just-in-time code compilation, though it
currently doesn’t support indexes and cannot be tuned for a particular workload.

We evaluate using three datasets and workloads (Table 5.1). We include full
dataset schema and workload specifications in Appendix B.
1. Gaming is a real-world dataset from the gaming division of a major technology

company, donated to us under the condition of anonymity. There are two fact
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tables, with roughly 2B and 3B rows respectively, and three smaller dimension
tables. We use a real workload provided by the company.

2. Stack Overflow is a single-table dataset with 500M records, each of which repre-
sents a post on Stack Overflow.

3. TPC-H is a standard analytics benchmark. We use scale factor 100 to generate
the data.
All experiments that involve running a query workload will first deterministically

shuffle the order of queries (i.e., we want to avoid caching effects of running all queries
of the same template sequentially). We then run the workload three times and report
the median time for each query.

5.5.2 Overall Results

We first compare SageDB directly against System X and Umbra on the three datasets
and workloads. We show two different configurations for SageDB: (1) unoptimized, the
out-of-the-box version of SageDB before the user has issued the OPTIMIZE command,
(2) optimized, the state of SageDB after the user has issued the OPTIMIZE command
with a memory budget of 1GB (which is a small fraction of overall memory) and a
disk budget equal to the size of the original dataset (which we believe to be reasonable
since datasets are often fully replicated for fault tolerance anyway, especially on the
cloud).

We show two different versions of System X: (1) the out-of-the-box configuration,
after the data has been loaded. (2) A tuned version, in which we enable System X’s
ability to automatically select a sort key for each table, as well as automatically select
materialized views. We believe that these capabilities represent the state-of-the-art
in automated physical design in a large-scale commercial analytic system. To ensure
we maximize System X’s performance, we performed additional hand-tuning: we
included hand-picked materialized views for each dataset, and for Stack Overflow, the
tuned version also sorts the table using an interleaved sort key (i.e., Z-order) over
the post_date and score columns, which improves performance because score is
correlated with many of the commonly filtered columns. In summary, the tuned System
X reflects the combination of automatic tuning and hand tuning. The disk storage
cost of our manually-tuned materialized views are 40%, 2%, and 100% of the size of
the original dataset for the Gaming, Stack Overflow, and TPC-H datasets respectively,
which is higher than SageDB’s 1GB budget for PMVs but smaller than its budget for
replicated data layouts; System X does not allow users to access automatically-created
materialized views, so the total storage cost of all materialized views is likely higher.
Umbra does not use any extra storage space because it does not support indexes.

Fig. 5-5 shows that across the three workloads, SageDB outperforms the other
systems on average query runtime by up to 3×. As evidence of the effectiveness
of SageDB’s instance-optimized components, SageDB optimized outperforms the
unoptimized version of itself by between 3–6×, whereas System X tuned, which uses a
combination of manual tuning and state-of-the-art automatic tuning, achieves between
25% and 3× performance gain over the default version of itself. Umbra performs best
when the working set fits in memory; otherwise it is bottlenecked by disk since it
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doesn’t use any indexes or layouts, which is why it performs poorly on TPC-H. Umbra
was unable to complete all queries in the workload for Gaming, which is why we do
not include it in the plot.

For each workload, Fig. 5-5 also shows a per-template breakdown of speedups
achieved by the optimized version of SageDB compared to the tuned version of System
X. For individual query templates, median speedups are as high as 250× (Gaming
Q8). In general, templates for which SageDB performs worse than System X are
ones for which SageDB’s instance-optimized components do not make an impact (e.g.,
TPC-H Q18, see Section 5.5.3), ones for which the tuned System X has sort keys and
materialized views that achieve the same purpose as SageDB’s instance-optimized
components (e.g., Gaming Q12), or ones for which System X’s raw execution engine is
simply more efficient than SageDB’s (e.g., some TPC-H templates). The variability
in speedups is simply due to the fact that the effectiveness of SageDB’s instance-
optimization depends not only on the query template, but also the specific parameter
values of the template; for example, a parameter value that results in a non-selective
filter may not benefit as much from replicated layouts as a selective filter.

While the performance numbers of SageDB are promising compared to System X
and Umbra, it has to be pointed out that SageDB is still a prototype and is not yet
feature-complete like System X (e.g., we do not support outer joins). Rather, there are
two takeaways: first, SageDB as an out-of-the-box system, ignoring instance-optimized
components, has roughly comparable performance to System X and Umbra when
evaluated on the same hardware in a single-node setting. Second, and arguably more
importantly, optimization allows SageDB to outperform the out-of-the-box version
of itself by up to 6×. Next, we dive deeper in which how each instance-optimized
component contributes to that performance gain.

5.5.3 Ablation Study

How much do each of SageDB’s individual instance-optimized components contribute
to the overall performance? In Table 5.2, we break down the effect of each instance-
optimized components on each template of each workload. Overall, there are several
takeaways.

First, different components help more for different types of queries. For example,
replicated data layouts are especially helpful for queries that either filter on a single
table (e.g., Stack Overflow queries, TPC-H Q1) or have inexpensive joins (e.g., TPC-H
Q14). PMVs are helpful whenever they are applicable, and especially if it fully answers
the query so that the remainder query is empty (e.g., Gaming Q8 and Stack Overflow
Q1).

Second, SageDB’s performance when all components are combined is sometimes
better than any individual component on its own. For example, Stack Overflow Q4
and Q11 benefit from some synergy between PMVs, which answer most of the query,
and then using the replicated data layouts to speed up the remainder query.

Third, there are some types of queries for which PMVs or replicated data layouts
make no impact, as we alluded to in Sections 5.3.1 and 5.3.2. For example, TPC-H
Q18 produces extremely large aggregations (since it groups by the primary key of a
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Figure 5-6: Per-query speedups for SageDB compared to its unoptimized configuration.
Regressions are rare. The orange line represents the median; the box represents first
and third quartiles; whiskers extend from the box by 1.5× the inter-quartile range;
dots are those past the end of the whiskers.

table with 150M rows before applying a LIMIT), so a PMV is unhelpful and would
exceed the memory budget anyway.

Fourth, occasionally using instance-optimized component is worse than not using
it. For example, on Stack Overflow Q8, using PMVs decreases performance compared
to the default. This is because SageDB always uses PMVs if they exist, but in this
particular case, the query itself ran relatively quickly, and the extra optimizer overhead
from computing subsumed cells in the PMV ate into the performance gains. This
points to a direction for future work, which is to automatically determine, for each
query, whether a certain instance-optimized component should be disabled.

5.5.4 Microbenchmarks

Regressions

SageDB improves overall performance, but we also want to ensure that individual
queries do not regress. Table 5.2 showed that on a query template level, performance
does not regress. Fig. 5-6 takes this a step further by breaking down individual query
performance for each template, comparing the speedup in query runtime between the
optimized and unoptimized configurations of SageDB. In general, regressions are rare,
and when regressions do occur, they are minor compared to performance gains. Often,
regressions are due to extra query optimization overheads for very short-running
queries.

Space Budget

Fig. 5-5 showed SageDB’s performance when optimized with 1GB memory budget
and disk budget equal to the size of the original dataset. To show how performance
would change if the budgets were set differently, we hold one budget constant while
varying the other budget, on the Gaming dataset. Fig. 5-7 shows the overall workload
cost as each budget varies, compared to the cost of having zero budget (i.e., if the
corresponding component were disabled). As more space is given, cost decreases and
performance improves. Note that the cost curve is convex for PMV optimization (note
the log scale for the x-axis), confirming our intuition from Section 5.4.3. For replicated
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Figure 5-7: Gaming dataset: cost decreases as more space is provided to the OPTIMIZE
command.

Table 5.3: Optimization Time (in seconds).

Gaming Stack Overflow TPC-H

Optimization algorithm 107 117 143
PMV construction 4340 265 4150
Replicated layout construction 16100 1280 2400

Total 20500 1660 6690

layout optimization, there is a significant decrease in cost at 70% disk space because
that is the boundaries past which an especially important replica fits within the space
budget.

Optimization Time

We expect that users should trigger the OPTIMIZE command during a time of low
system load, similar to what popular data warehouse products advise their customers
to do when following recommended optimizations. Therefore, optimization should not
interfere with normal workload execution.

Table 5.3 breaks down the time that SageDB spends on each step of optimization
for each dataset. Overall, optimization finishes in less than 6 hours for the largest
dataset, which reasonably fits into periods of low system load (e.g., overnight). Even
if the optimization is performed while queries are running, this quickly pays off in
terms of saved query time. For example, on the Gaming workload, since the benefit
from optimization is around 200 seconds per query on average (Fig. 5-5), it only takes
just over 100 queries executed to recoup the time “lost” to optimization.

5.6 Lessons Learned and Future Work

In this section, we take a step back and consider how the current SageDB design
compares to our original design principles (Section 5.1). We also highlight important
directions for future work.
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Avoid regression. Due to SageDB’s design, for any particular query we can always
fall back to the default out-of-the-box configuration without instance-optimization.
For example, the optimizer can always choose to read from the base table instead of
from the replicas. This is in contrast to, for example, past work on instance-optimized
layouts that directly modify the original data, which makes it impossible to fall back
to the default. Indeed, we show in Section 5.5.4 that we avoid regressions on all
templates.

The implication is that the burden of avoiding regressions (e.g., deciding to not
use the PMV for a certain query) falls on the query optimizer, which may make
mistakes due to inaccurate cost models or cardinality estimates. Besides integrating
a more sophisticated query optimizer, one way to guard more aggressively against
regression is to allow the optimizer to use the instance-optimized components only
when cost reduction is greater than a certain threshold, i.e., be more conservative in
using instance-optimized components.

Minimize the burden on the user. SageDB places minimal technical burden on
the user: their only responsibility is to issue an OPTIMIZE command, with a space
budget, during times of low system load. However, our longer-term vision is to remove
all responsibility altogether by automatically deciding when to perform optimization
and which components to re-optimize. This will require detecting when either the data
or the workload have shifted significantly enough to merit a re-optimization, and can
incorporate ideas from [45]. It will also require considering the cost of re-optimization
itself, as well as forecasting the future workload—even if the workload has shifted, we
may not want to optimize if the workload will shift again soon anyway.

Inserts. Allowing SageDB and other instance-optimized systems to adapt to inserts
is a key area of future work. The main challenge behind inserts is that they may
invalidate optimizations constructed based on a static snapshot of the data. Replicas
with instance-optimized data layouts can avoid invalidation through delta buffering.
For example, new data is inserted into a special horizontal partition. The existing
horizontal partitions remain unchanged, and when scanning, SageDB can still take
advantage of data skipping over existing partitions, but may need to always read the
new partition. At a later time, when the user again triggers the OPTIMIZE command,
the buffered data in the new partitions are incorporated into the new data layout.

Likewise, PMVs are not necessarily invalidated when data is inserted into a new
horizontal partition, especially if data is only changing in one base table (e.g., users
append data to a fact table but the dimension tables are stable); we essentially execute
two separate queries, one over the data over which the PMV was constructed and
another over the new/buffered data, and merge the results. At a later time, we can
perform incremental maintenance on the PMV, by essentially building a new PMV
over the new/buffered data, with the same grid definition as the existing PMV, and
then merging each cell with its counterpart in the existing PMV. Determining when
to trigger these incremental maintenance operations without increased complexity for
the user is a key direction of future work.

Expanding Components. Since SageDB so far has focused primarily on physical
design, good candidates for components to add next are ones that improve the logical
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side, e.g., a learned query optimizer or a learned cost model. We believe the main
challenge will be to keep these components “in sync.” For example, the physical design
optimization depends on the query optimizer (especially its ability to simulate PMVs
and layouts) and cost model. If the optimizer or cost model changes due to retraining,
then the physical design may be out-of-date, e.g., some pieces of the physical design
will no longer be selected by the optimizer.

With more components, there is also further opportunity for model sharing. For
example, when we optimize the replicated data layouts we might simultaneously build
an updated learned model of the data distribution for the learned query optimizer;
otherwise, an RL-based query optimizer might need to be retrained from scratch.

5.7 Related Work

Automatic database tuning. Modern data system have an increasing number
of knobs and configuration options to be tuned by database administrators or by
(semi-)automatic tools. There have been efforts to automatically tune a DBMSs’
configuration since the early 2000s. Much of the previous work on automatic database
tuning has focused on optimizing the physical design of the database [25], such as
selecting indexes [5, 70], partitioning schemes [6, 32, 156], or materialized views [5].
Based on the method used to find the ideal configuration, the previous work can be
divided into two categories: rule-based methods [35, 105] and ML-based methods
[200, 50, 185, 119, 118, 155]. Cosine [23] focuses on self-designing key-value stores.
Both approach performance optimization differently, with SageDB using learned
components while Cosine essentially creates more knobs to tune. NoisePage [154]
focuses on designing a self-optimizing database like SageDB by defining an objective
function and action space. A centralized service learns to optimize the objective
through the actions. NoisePage learns how to take standard actions in the database,
such as adding/dropping indices, configuring knobs, and scaling hardware resources.
Compared to instance-optimized components or systems, automatic database tuning
has fewer degrees of freedom and is typically performed in a black-box manner.

Instance-optimized components. Further research has expanded the breadth
and depth of instance-optimized components. More sophisticated learned indexes use
multivariate data distributions to create multidimensional indexes [137, 48, 195]. There
are now instance-optimized versions of bloom filters [132, 37, 182] and hash tables
[167]. New use cases, from caching [115, 92] to query optimization [124, 126, 103] to
scheduling [121], have leveraged learning to improve performance. SageDB aims to
take this to the next step: where prior work designed components to adapt to the
data and workload, SageDB intends to design an entire system with that capability.

Computation Reuse. PMVs can be considered a form of computation reuse, in
which we pre-materialize certain results that will be used multiple times in the future.
Other forms of computation reuse are multi-query optimization [169, 166] (which aims
to find a globally optimal execution plan for a batch of queries), materialized views [94],
data cubes [68], and sub-expression materialization [84]. There have also been various
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works on opportunistically caching intermediate results that are already materialized
during query execution, and reusing these intermediate results during future query
execution [136, 81, 157, 110]. These techniques all assume that (sub)queries must
be fully processed using pre-computed or cached results, whereas PMVs have the
flexibility of partially answering the query, while the cheaper remainder query scans
the base data. PMVs are orthogonal to the idea of partially maintaining the state of a
traditional materialized view, such as in Noria [63].
Replication and Data Layouts While there have many works on instance-optimized
data layouts [137, 48, 195, 45], the only other work to consider the combination of
partial replication with instance-optimized data layouts is CopyRight [175]. However,
their optimization algorithm makes assumptions that are specialized for grid-based
data layouts for in-memory data over a single table, while SageDB handles multi-table
disk-based datasets.

5.8 Conclusion
In this chapter, we presented a progress report on SageDB, a first instance-optimized
data system, focused on analytics. SageDB incorporates two instance-optimized
components into one system that exposes a simple interface to the user. While our
prototype system already achieves impressive results, our aspirations for SageDB are
far from complete. Our roadmap for future work includes implementing techniques to
eliminate performance regressions, gracefully handling data changes, and incorporating
further instance-optimized components. We hope that this report leads us a step
closer towards making the vision for instance-optimized systems a reality.

135



Chapter 6

Conclusion and Future Work

6.1 Summary

In this thesis, we formally defined instance-optimization as the process of co-designing
(1) a mechanism with enough degrees of freedom to allow for fine-grained customization
to any particular use case and (2) a policy, or optimization algorithm, for automatically
specializing the mechanism to a specific use case, i.e., a well-defined dataset and
workload.

We then presented new techniques for the instance-optimization of core components
of a database’s physical design: first, indexes are a fundamental component of any
database that supports operational workloads with a mix of point lookups, short
range queries, inserts, updates, and deletes. Learned Indexes [100] took the first step
towards introducing instance-optimization to traditional database indexes, but it was
critically limited by its lack of support for data modification operations. Therefore,
we introduced ALEX (Chapter 2), an updatable learned index that dynamically
adjusts both its models and its structure in the presence of data modifications, while
maintaining its speed and space advantages over both non-learned indexes and the
original Learned Index itself.

Second, storage layouts are a fundamental way in which analytic databases improve
performance, by minimizing the amount of data that is read during query processing.
We introduced two new instance-optimized storage layouts that address critical limita-
tions that prevent existing instance-optimized data layouts from being effective for
real-world use cases. First, Tsunami (Chapter 3) is designed for in-memory data and
handles correlated data and skewed query workloads, which are the common case in
practice. Second, MTO (Chapter 4) is designed for data on disk or on cloud storage
and is the first instance-optimized data layout that handles workloads in which queries
join multiple tables.

Finally, we examined through SageDB (Chapter 5) how an end-to-end instance-
optimized database system can be built through the careful co-design of multiple
instance-optimized components, unified through a global optimization algorithm.
Overall, we hope that this thesis serves as a building block for the further exploration
and development of impactful and practical instance-optimized database systems.
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6.2 Future Work

While the work presented in this thesis demonstrates the opportunities and promise
of instance-optimized database systems, certain limitations of existing instance-
optimization techniques still need to be addressed in order for instance-optimization
to be practical and usable in production systems. In particular, users want robustness
guarantees to ensure that performance will not regress when using instance-optimized
databases, especially robustness against dynamic changes in the dataset and workload.
Overall, we believe that the instance-optimization of database systems will continue to
be a rich and active field of research. Here, we highlight several important directions
for future work.

Theoretical Results and Robustness. While instance-optimization has shown
impressive empirical results on real-world datasets and workloads, widespread adoption
of instance-optimization will also require theoretical guarantees and robustness. Some
work has already been done [56], but there is still much more that can be done. In
particular, robustness guarantees will require more accurate definitions of what defines
a use case, in a similar vein as prior work on robust physical design auto-tuning [135]
that required a rigorous framework for measuring uncertainty and workload similarity.

Dynamic Workloads and Datasets. Instance-optimization is defined in the context
of a certain use case, which means that it is essential to detect when the use case has
changed enough to merit a re-optimization. In fact, the process of re-optimization is
itself an instance-optimization problem: there are many mechanisms for transitioning
from one database configuration to another (e.g., shuffling data from one set of files
to another set can be done with a Map-Reduce with a configurable number of stages),
and we need policies to choose the best transition strategy. The overall policies for
the instance-optimized database must not only consider the performance benefits of
a certain configuration, but it must also take into account the (probabilistic) cost
of a potential re-optimization. In the context of instance-optimized data layouts,
MTO made a first foray into exploring how to more efficiently respond to workload
shifts through partial layout reorganization instead of full layout reorganization, and
self-organizing data containers [120] aim to fully automate the process of detecting
and handling workload shifts.

Techniques for handling dynamic workloads and datasets can be either reactive
or proactive. Reactive techniques aim to quickly detect changes after they have
already started to occur, and to quickly adapt to those detected changes; this is the
predominant technique used by existing instance-optimized physical design components.
However, proactive techniques have the potential to be much more effective: such
techniques predict how the data and workload will change in the future, and directly
optimize for that future. For proactive techniques to be effective, we require more
accurate forecasting of the future data and workload. We also need to explore multi-
step planning techniques, e.g., instead of optimizing a single data layout for a single
static dataset and workload, we plan a sequence of data layouts and times at which we
transition from each layout to the next that are optimized for the anticipated future
sequence of data updates and workload changes.
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Generalized Global Physical Design Optimization. SageDB showed how to
compose multiple instance-optimized physical design components under a global
optimization algorithm. However, there are various other instance-optimized physical
design components in the literature, such as learned membership filters [132, 182],
learned frequency sketches [74], and instance-optimized data compression [78]. If
implemented in the same system, all of these components would compete for the same
resources (e.g., storage space and compute for creation and maintenance), and would
furthermore have an affect on each other’s performance.

It would be inefficient to completely re-design the global optimization algorithm
each time we incorporate an additional instance-optimized component, and it is also
unsatisfactory to incrementally modify the global optimization algorithm for each
additional component as an afterthought. Ideally, we should have a generalized global
physical design optimization algorithm that interacts with each specific component
through a well-defined API. Under such a design, every new component can be
incorporated into the global optimization by implementing this API. Then, the global
optimization algorithm can treat each component as a black box and allocate resources
accordingly, under some global objectives and constraints. The challenge is that, as we
observed in SageDB, instance-optimized components are not independent. Therefore,
the API must be carefully designed to expose some ability for components to share
information with each other, e.g., some shared state which might be captured by a
model.

A More Complete Instance-Optimized Database. SageDB is currently an
instance-optimized database system that includes multiple instance-optimized compo-
nents from the data storage tier. A remaining challenge is to integrate an instance-
optimized data storage tier with an instance-optimized query processing tier. For
example, we can incorporate the extensive work on learned query optimizers [124, 126],
learned cardinality estimation [90, 196], and learned cost models [72]. As we alluded
to in Section 5.6, we believe the main challenge will be to keep components from the
data storage tier and the query processing tier “in sync.” For example, physical design
optimization depends on the query optimizer and cost model. If the optimizer or cost
model changes due to re-optimization, then the physical design may be out-of-date,
e.g., some pieces of the physical design will no longer be selected by the optimizer.

Online vs. Offline Optimization. Note that some of the instance-optimized
techniques in this thesis used offline optimization algorithms that needed to be
triggered at some point in time by a user (Tsunami, MTO, and SageDB), while
one used an online algorithm that continuously modified the mechanisms in the
background (ALEX). Online and offline algorithms each have their pros and cons.
An online algorithm completely removes any need for user intervention, and can
appear more seamless to the user. At the same time, users may want visibility and
interpretability into how instance-optimization affects the performance and costs of
their system, which is easier to understand when optimization is triggered at a specific
point in time, as in the case with offline optimization, than if optimization is constantly
performed in the background, as is the case with online optimization. In general, it is
important to further explore and understand the tradeoffs between online and offline
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instance-optimization techniques.
Beyond Relational Databases. Finally, this thesis has focused on relational
database systems, but the ideas of instance-optimization are applicable to other types
of database systems, such as NoSQL databases, graph databases, time-series databases,
or even data lakes composed of data in diverse formats. This requires a new analysis of
the most impactful components to instance-optimize. For example, the way in which
a graph is physically stored can be optimized for the access patterns. An auto-tuner
might decide between using a sparse or dense representation, but an instance-optimized
graph database might be able to materialize any design on the sparsity spectrum.
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Appendix A

Supplementary Material for ALEX

A.1 Extended Bulk Loading Evaluation

In this section, we provide an extended version of Section 2.5.2, which evaluates
the speed of ALEX’s bulk loading mechanism against other indexes. ALEX uses
two optimizations for bulk loading—approximate model computation (AMC) and
approximate cost computation (ACC)—which we explain in more detail below.

For each index, we bulk load 100 million keys from each of the four datasets
from Section 2.5. This includes the time used to sort the 100 million keys. Fig. A-1,
which is a more detailed version of Fig. 2-11a, shows that on average, ALEX with no
optimizations takes 3.6× more time to bulk load than B+Tree, which is the fastest
index to bulk load. However, with the AMC optimization, ALEX takes 2.6× more
time on average than B+Tree. With both optimizations, ALEX only takes 50% more
than time on average than B+Tree, and in the worst case is only 2× slower than
B+Tree. The results for ALEX in Section 2.5.2 use both optimizations. On the YCSB
dataset, ALEX’s structure is very simple (Table 2.2), and therefore is very efficient to
bulk load even when unoptimized; in fact, ALEX’s large node sizes allow ALEX to
bulk load faster than other indexes due to the benefits of locality.

Fig. A-2 shows the impact of the two optimizations on the throughput of running
a read-heavy or write-heavy workload on ALEX after bulk loading. The AMC opti-
mization has negligible impact on throughput for all datasets and for both workloads.
Adding the ACC optimization has negligible impact on the read-heavy workload,
but decreases throughput by up to 9.6% on the write-heavy workload; we provide
explanation for this behavior below.

Based on these results, we conclude that the AMC optimization should always
be used to improve bulk loading performance, whereas the ACC optimization might
cause a slight decrease in throughput performance and therefore should be used only if
faster bulk loading is required. We now explain the two optimizations in more detail.
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Figure A-1: With both optimizations (AMC and ACC), ALEX only takes 50% more
than time than B+Tree to bulk load when averaged across four datasets.

A.2 Approximate Model Computation

We perform approximate model computation (AMC) efficiently while achieving accu-
racy through progressive systematic sampling. Given a data node of sorted keys, we
perform systematic sampling (i.e., sampling every 𝑛th key) to obtain a small sample
of keys, and compute a linear regression model using that sample. We then repeatedly
double the sample size and recompute the linear model using the larger sample. When
the relative change in the model parameters (i.e., the slope and intercept) both change
by less than 1% from one sample to the next, we terminate the process. In our
experience, this 1% threshold strikes a balance between achieving accuracy and using
small sample sizes, and did not need to be tuned.

Note that by using systematic sampling, all keys in the sample used to compute
the current model will also appear in all subsequent samples. Therefore, each linear
model can be computed progressively starting from the existing model computed from
the previous sample, instead of from scratch. No redundant work is done, and even in
the worst case, AMC will take no more time than computing one linear model from
all keys (if we ignore minor overheads and the effects of locality).

A.3 Approximate Cost Computation

We also perform approximate intra-node cost computation (ACC) for a data node
of sorted keys through progressive systematic sampling. However, ACC differs from
AMC in two ways. First, the cost for a data node must be computed from scratch for
each sample; the cost depends on where keys are placed within a Gapped Array, which
itself depends on which keys are present in the sample. Second, and more importantly,
the cost of a data node naturally increases with the number of keys in the node. This
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Figure A-2: Using the AMC optimization when bulk loading does not cause any
noticeable change in ALEX performance, but ACC can cause a slight decrease in
throughput for write-heavy workloads.

makes ACC an extrapolation problem (i.e., use the cost of a small sample to predict
the cost of the entire data node), whereas AMC is an estimation problem (i.e., use a
small sample to directly estimate the model parameters).

ACC repeatedly doubles its sample size. Let the latest three samples be 𝑠1, which
is half the size of 𝑠2, which is half the size of 𝑠3. Let the costs computed from these
samples be 𝑐1, 𝑐2, and 𝑐3, respectively. We use the 𝑐1 and 𝑐2 to perform a linear
extrapolation to predict 𝑐3. If this prediction is accurate (i.e., if relative error with
the true 𝑐3 is within 20%), then we use 𝑐2 and 𝑐3 to perform a linear extrapolation to
predict the cost of the entire data node, and we terminate the process.1 Otherwise,
we continue doubling the sample size. The intuition behind this process is that we
want to verify the accuracy of extrapolation using small samples before extrapolating
to the entire data node. We allow a higher relative error than for AMC because
the extrapolation process is inherently imprecise, since it is impossible to accurately
predict the cost using a sample without a priori knowledge of the data distribution.

We can now explain why Fig. A-2 shows that adding the ACC optimization
decreases throughput on the write-heavy workload by up to 9.6%. It is because the
average number of shifts per insert, which is one component of the intra-node cost, is
difficult to estimate accurately. Therefore, if ACC underestimates the component of
cost related to shifts, the bulk loaded ALEX structure may be inefficient for inserts
(e.g., an insert that requires more shifts than expected can be very slow). The intra-
node cost is more difficult to approximate accurately for the longitudes and longlat
datasets, which is why the decrease in throughput is most noticeable for those two
datasets. However, note that over time, the dynamic nature of ALEX will eventually
correct for incorrectly estimated costs, so throughput performance in the long run will
be independent of the bulk loading mechanism.

1In reality, we do not predict the cost directly, but rather each component of the cost (search
iterations per lookup and shifts per insert) independently. This is because the expected extrapolation
behavior differs: iterations per lookup grows logarithmically with sample size, whereas shifts per
insert grows linearly with sample size.
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Figure A-3: ALEX maintains high performance under radically changing key distribu-
tion, although performance does differ slightly depending on the distribution used for
bulk loading.

A.4 Extreme Distribution Shift Evaluation

In order to evaluate the performance of ALEX under a radically changing key distri-
bution, we combine the four datasets from Section 2.5 into one dataset by randomly
selecting 50 million keys from each of the four datasets in order to create one combined
dataset with 200 million keys. We scaled keys from each dataset to fit in the same
domain. Note that we would not typically expect a single table to contain keys
from four independent distributions. Therefore, this complex combined dataset is an
extreme stress test for the adaptibility of ALEX.

We run a write-heavy workload (50% point lookups and 50% inserts) over the
combined dataset, but we vary the order in which keys are bulk loaded and inserted.
For all variants, we bulk load using 50 million keys and run the write-heavy workload
until the remaining 150 million keys are all inserted. We create four variants that
represent distribution shift; each variant bulk loads using the 50 million keys selected
from one of the four original datasets, then gradually inserts keys from the other three
original datasets, in order. For example, the “L-LN-LL-Y” variant bulk loads using
the 50 million keys selected from the longitudes (L) dataset, then runs the write-heavy
workload by inserting the 50 million keys from the lognormal (LN) dataset, then the
longlat (LL) dataset, and finally the YCSB (Y) dataset. For reference, we also include
a variant in which all 200 million keys are shuffled, so that no key distribution shift is
observed.

Fig. A-3 provides three insights. First, on the workload that represents no distribu-
tion shift (“Shuffled”), ALEX continues to outperform other indexes. It is interesting
to note that the throughput of ALEX on the combined dataset is between the through-
puts achieved on each dataset individually (Fig. 2-9c): higher than for longlat, and
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lower than for the other three datasets. Second, ALEX achieves lower throughput
in the four variants that represent distribution shift than without distribution shift,
but still outperforms other indexes. This result aligns with the intuition that ALEX
must spend extra time restructuring itself to adapt to the changing key distribution.
Third, the throughput differs based on which dataset’s keys are used to bulk load
ALEX. When bulk loading using keys from a complex key distribution, such as longlat,
ALEX achieves throughput similar to the variant with no distribution shift; on the
other hand, when bulk loading using keys from a simple key distribution, such as
YCSB, ALEX throughput suffers. This is because when bulk loading with a simple
key distribution, the bulk loaded structure of ALEX will be shallow, with few nodes
(Table 2.2). When the subsequently inserted keys come from a much more complex
key distribution, ALEX must quickly adapt its structure to be deeper and have more
nodes, which can incur significant overhead. On the other hand, when bulk loading
with a complex key distribution, the bulk loaded structure is already deep, with many
nodes, and so can more readily adapt to changes in the key distribution without too
much overhead.

To allow ALEX to more quickly adapt the RMI structure to radically changing
key distributions: (1) we check data nodes periodically for cost deviation instead of
only when the data node is full, and (2) if the number of shifts per insert in a data
node is extremely high, we force the data node to split (as opposed to expanding
and retraining the model). When no distribution shift occurs, these two checks have
negligible impact on performance, because checking for cost deviation has minimal
overhead and cost deviation occurs infrequently (Table 2.3). By default, we check for
cost deviation for every 64 inserts into that data node, and over 100 shifts per insert
is considered extremely high.

A.5 Extended Range Query Evaluation

Varying Range Query Scan Length

We extend the experiment from Fig. 2-10 to all four datasets. Fig. A-4 shows that
across all datasets, ALEX maintains its advantage over fixed-page-size B+Tree, and
re-tuning the B+Tree page size can lead to better range query performance but will
decrease performance on point lookups and inserts. For both ALEX and B+Tree,
performance on YCSB is slower than for the other three datasets because YCSB has
a larger payload size, which worsens scan locality.

A.5.1 Mixed Workload Evaluation

We evaluate a mixed workload with 5% inserts, 85% point lookups, and 10% range
queries with a maximum scan length of 100. The remainder of the experimental setup
is the same as in Section 2.5.1. Fig. A-5 shows that ALEX maintains its performance
advantage over other indexes. The ART implementation from [34] does not support
range queries.
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Figure A-4: Across all datasets, ALEX maintains an advantage over fixed-page-size
B+Tree even for longer range scans.

A.6 Drilldown into Cost Computation

In this section, we first provide more details about the cost model introduced in
Section 2.3.3. We then evaluate the performance of computing costs using cost models.
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Figure A-5: ALEX maintains high performance under a mixed workload with 5%
inserts, 85% point lookups, and 10% short range queries.

A.6.1 Cost Model Details

We formally define the cost model using the terms in Table A.1. At a high level, the
intra-node cost of a data node represents the average time to perform an operation
(i.e., a point lookup or insert) on that data node, and the TraverseToLeaf cost of a
data node represents the time for traversing from the root node to the data node.

For a given data node 𝑁 ∈ 𝒟, the intra-node cost 𝐶𝐼(𝑁) is defined as

𝐶𝐼(𝑁) = 𝑤𝑠𝑆(𝑁) + 𝑤𝑖𝐼(𝑁)𝐹 (𝑁) (A.1)

Both lookups and inserts must perform an exponential search, whereas only inserts
must perform shifts. This is why 𝐼(𝑁) is weighted by 𝐹 (𝑁).

For a given data node 𝑁 ∈ 𝒟, the TraverseToLeaf cost 𝐶𝑇 (𝑁) of traversing from
the root node to 𝑁 is defined as

𝐶𝑇 (𝑁) = 𝑤𝑑𝐷(𝑁) + 𝑤𝑏𝐵(𝒜) (A.2)

The depth of 𝑁 is the number of pointer chases needed to reach the data node. In
our cost model, every traverse to leaf has a fixed cost that is caused by the total size
of the ALEX RMI, because larger RMI causes worse cache locality.

For an instantiation of ALEX 𝒜, the cost of 𝒜 represents the average time to
perform a query (i.e., a point lookup or insert) starting from the root node, and is
defined as

𝐶(𝒜) =

∑︀
𝑁∈𝒟(𝐶𝐼(𝑁) + 𝐶𝑇 (𝑁))𝐾(𝑁)∑︀

𝑁∈𝒟 𝐾(𝑁)
(A.3)

In other words, the cost of 𝒜 is the sum of the intra-node cost and TraverseToLeaf cost
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Table A.1: Terms used to describe the cost model
Term Description

𝒜 An instantiation of ALEX
𝒩 Set of all nodes in 𝒜
𝒟 Set of data nodes in 𝒜. This means that 𝒟 ⊆ 𝒩

𝑆(𝑁)
Average number of exponential search iterations
for a lookup in 𝑁 ∈ 𝒟

𝐼(𝑁) Average number of shifts for an insert into 𝑁 ∈ 𝒟
𝐾(𝑁) Number of keys in 𝑁 ∈ 𝒟

𝐹 (𝑁)
Fraction of operations that are inserts (as opposed
to lookups) in 𝑁 ∈ 𝒟

𝐶𝐼(𝑁) Intra-node cost of 𝑁 ∈ 𝒟
𝐶𝑇 (𝑁) TraverseToLeaf cost of 𝑁 ∈ 𝒟
𝐷(𝑁) Depth of 𝑁 ∈ 𝒩 (root node has depth 0)
𝐵(𝒜) Total size in bytes of all nodes in 𝒜
𝑤𝑠, 𝑤𝑖, 𝑤𝑑, 𝑤𝑏 Fixed pre-defined weight parameters

of each data node, normalized by how many keys are contained in the data node. We
normalize because each data node does not contribute equally to average query time.
For example, a data node that has high intra-node cost but is rarely queried might
not have as much impact on average query time as a data node with lower intra-node
cost that is frequently queried. We use the number of keys in each data node as a
proxy for its impact on the average query time. An alternative is to normalize using
the true query access frequency of each data node.

The weight parameters 𝑤𝑠, 𝑤𝑖, 𝑤𝑑, 𝑤𝑏 do not need to be tuned for each dataset
or workload, because they represent fixed quantities. For our evaluation, we set
𝑤𝑠 = 10,𝑤𝑖 = 1,𝑤𝑑 = 10, and 𝑤𝑏 = 10−6. In terms of impact on throughput
performance, these weights intuitively mean that each exponential search iteration
takes 10 ns, each shift takes 1 ns, each pointer chase to traverse down one level of the
RMI takes 10 ns, and each MB of total size contributes a slowdown of 1 ns due to
worse cache locality. As a side effect, 𝑤𝑏 acts as a regularizer to prevent the RMI from
growing unnecessarily large. We found that our simple cost model performed well
throughout our evaluation. However, it may still be beneficial to formulate a more
complex cost model that more accurately reflects true runtime; this is left as future
work.

A.6.2 Cost Computation Performance

The cost of the entire RMI, 𝐶(𝒜), is never explicitly computed. Instead, all decisions
based on cost are made locally. This is possible due to the linearity of the cost model.
For example, when deciding between expanding a data node and splitting the data
node in two, we compare the incremental impact on 𝐶(𝒜) between the two options.
This only involves computing the intra-node cost of the expanded data node and each
of the two split data nodes; the intra-node costs of all other data nodes in the RMI
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Table A.2: Fraction of time spent on cost computation
longitudes longlat lognormal YCSB

Read-Only 0 0 0 0
Read-Heavy 0.000271 0.000214 0.000617 0
Write-Heavy 0.00142 0.00901 0.00452 0.116
Write-Only 0.0270 0.0732 0.0237 0.149

remain the same.
Cost computation occurs at two points during ALEX operation (Section 2.3.3):

(1) when a data node becomes full, the expected intra-node cost is compared to the
empirical intra-node cost to check for cost deviation. This comparison has very low
performance overhead because the empirical values of 𝑆(𝑁) and 𝐼(𝑁) are maintained
by the data node, so computing the empirical intra-node cost merely involves three
multiplications and an addition. (2) If cost deviation is detected, ALEX must make a
cost-based decision about how to adjust the RMI structure. This involves computing
the expected intra-node cost of candidate data nodes which may be created as a result
of adjusting the RMI structure. Since the candidate data nodes do not yet exist, we
must compute the expected 𝑆(𝑁) and 𝐼(𝑁), which involves implicitly building the
candidate data node. The majority of time spent on cost-based decision making is
spent on computing expected 𝑆(𝑁) and 𝑆(𝐼).

Table A.2 shows the fraction of overall workload time spent on computing costs
and making cost-based decisions. On the read-only workload, no time is spent on
cost-based decision because nodes never become full. As the fraction of writes increases,
an increasing fraction of time is spent on cost computation because nodes become full
more frequently. However, even on the write-only workload, cost computation takes
up a small fraction of overall time spent on the workload. YCSB sees the highest
fraction of time spent on cost computation, due to two factors: data nodes are larger,
so computing 𝑆(𝑁) and 𝐼(𝑁) for larger candidate nodes takes more time, and lookups
and inserts on YCSB are efficient, so data nodes become full more quickly. Longlat
sees the next highest fraction of time spent on cost computation, which is due to the
high frequency with which data nodes become full (Table 2.3).

A.7 Comparison of Gapped Array and PMA

The Gapped Array structure introduced in Section 2.2.2 has some similarities to an
existing data structure known as the Packed Memory Array (PMA) [16]. In this
section, we first describe the PMA, and then we describe why we choose to not use
the PMA within ALEX.

Like the Gapped Array, PMA is an array with gaps. Unlike the Gapped Array,
PMA is designed to uniformly space its gaps between elements and to maintain this
property as new elements are inserted. The PMA achieves this goal by rebalancing
local portions of the array when the gaps are no longer uniformly spaced. Under
random inserts from a static distribution, the PMA can insert elements in 𝑂(log 𝑛)
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time, which is the same as the Gapped Array. However, when inserts do not come
from a static distribution, the PMA can guarantee worst-case insertion in 𝑂(log2 𝑛)
time, which is better than the worst case of the Gappd Array, which is 𝑂(𝑛) time.

We now describe the PMA more concretely; more details can be found in [16].
The PMA is an array whose size is always a power of 2. The PMA divides itself into
equally spaced segments, and the number of segments is also a power of 2. The PMA
builds an implicit binary tree on top of the array, where each segment is a leaf node,
each inner node represents the region of the array covered by its two children, and the
root node represents the entire array. The PMA places density bounds on each node
of this implicit binary tree, where the density bound determines the maximum ratio
of elements to positions in the region of the array represented by the node. The nodes
nearer the leaves will have higher density bounds, and the nodes nearer the root will
have lower density bounds. The density bounds guarantee that no region of the array
will become too packed. If an insertion into a segment will violate the segment’s density
bounds, then we can find some local region of the array and uniformly redistribute
all elements within this region, such that after the redistribution, none of the density
bounds are violated. As the array becomes more full, ultimately no local redistribution
can avoid violating density bounds. At this point, the PMA expands by doubling in
size and inserting all elements uniformly spaced in the expanded array.

We do not use the PMA as the underlying storage structure for ALEX data nodes
because the PMA negates the benefits of model-based inserts, which is critical for
search performance. For example, when rebalancing a local portion of the array, the
PMA spreads the keys in the local region over more space, which worsens search
performance because the keys are moved further away from their predicted location.
Furthermore, the main benefit of PMA—efficient inserts for non-static or complex
key distributions—is already achieved by ALEX through the adaptive RMI structure.
In our evaluation, we found that ALEX using data nodes built on Gapped Arrays
consistently outperformed data nodes built on PMA.

A.8 Analysis of Model-based Search
Model-based inserts try to place keys in Gapped Array in their predicted positions.
We analyze the trade-off between Gapped Array space usage and search performance
in terms of 𝑐, the ratio of Gapped Array slots to number of actual keys. Assume
the keys in the data node are 𝑥1 < 𝑥2 < · · · < 𝑥𝑛, and the linear model before
rounding is 𝑦 = 𝑎𝑥 + 𝑏 when 𝑐 = 1, i.e., when no extra space is allocated. Define
𝛿𝑖 = 𝑥𝑖+1 − 𝑥𝑖,∆𝑖 = 𝑥𝑖+2 − 𝑥𝑖. We first present a condition under which all the keys in
that data node are placed in the predicted location, i.e., search for all keys are direct
hits.

Theorem 2. When 𝑐 ≥ 1
𝑎min𝑛−1

𝑖=1 𝛿𝑖
, every key in the data node is placed in the predicted

location exactly.

Proof. Consider two keys in the leaf node 𝑥𝑖 and 𝑥𝑗, 𝑖 ̸= 𝑗. The predicted locations
before rounding are 𝑦𝑖 and 𝑦𝑗, respectively. When |𝑦𝑖 − 𝑦𝑗| ≥ 1, we know that the
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rounded locations ⌊𝑦𝑖⌋ and ⌊𝑦𝑗⌋ cannot be equal. Under the linear model 𝑦 = 𝑐(𝑎𝑥+𝑏),
we can write the condition as:

|𝑦𝑖 − 𝑦𝑗| = |𝑐𝑎(𝑥𝑖 − 𝑥𝑗)| ≥ 1 (A.4)

If this condition is true for all the pairs (𝑖, 𝑗), 𝑖 ̸= 𝑗, then all the keys will have a
unique predicted location. For the condition Eq. (A.4) to be true for all 𝑖 ̸= 𝑗, it
suffices to have:

𝑛−1

min
𝑖=1

𝑐𝑎(𝑥𝑖+1 − 𝑥𝑖) ≥ 1 (A.5)

which is equivalent to 𝑐 ≥ 1
𝑎min𝑛−1

𝑖=1 𝛿𝑖
.

We now understand that 𝑐 = 1 corresponds to the optimal space, and 𝑐 ≥
1

𝑎min𝑛−1
𝑖=1 𝛿𝑖

= 𝑐𝑚𝑎𝑥 corresponds to the optimal search time (ignoring the effect of cache
misses). We now bound the number of keys with direct hits when 𝑐 < 𝑐𝑚𝑎𝑥.

Theorem 3. The number of keys placed in the predicted location is no larger than
2+

⃒⃒
{1 ≤ 𝑖 ≤ 𝑛− 2|∆𝑖 >

1
𝑐𝑎
}
⃒⃒
, where

⃒⃒
{1 ≤ 𝑖 ≤ 𝑛− 2|∆𝑖 >

1
𝑐𝑎
}
⃒⃒
is the number of ∆𝑖’s

larger than 1
𝑐𝑎

.

Proof. We define a mapping 𝑓 : [𝑛 − 2] → [𝑛], where 𝑓(𝑖) is defined recursively
according to the following cases:

Case (1): 𝑦𝑖+2 − 𝑦𝑖 > 1. Let 𝑓(𝑖) = 1. Case (2): 𝑦𝑖+2 − 𝑦𝑖 ≤ 1, ⌊𝑦𝑖+1⌋ =
⌊𝑦𝑖⌋, 𝑓(𝑖− 1) ≤ 𝑖 or 𝑖 = 1. Let 𝑓(𝑖) = 𝑖+ 1. Case (3): Neither case (1) or (2) is true.
Let 𝑓(𝑖) = 𝑖+ 2.

We prove that ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 2, if 𝑓(𝑖) > 1, 𝑓(𝑗) > 1, then 𝑖 + 1 ≤ 𝑓(𝑖) ≤
𝑖+ 2, 𝑗 + 1 ≤ 𝑓(𝑗) ≤ 𝑗 + 2, and 𝑓(𝑖) < 𝑓(𝑗).

First, when 𝑓(𝑖) > 1, 𝑓(𝑗) > 1, we know that case (1) is false for both 𝑖 and 𝑗. So
𝑓(𝑖) is either 𝑖+ 1 or 𝑖+ 2, and 𝑓(𝑗) is either 𝑗 + 1 or 𝑗 + 2.

Second, if 𝑖+ 1 < 𝑗, then 𝑓(𝑖) ≤ 𝑖+ 2 < 𝑗 + 1 ≤ 𝑓(𝑗). So we only need to prove
𝑓(𝑖) < 𝑓(𝑗) when 𝑖 + 1 = 𝑗. Now consider the only two possible values for 𝑓(𝑗),
𝑗 + 1 and 𝑗 + 2, when 𝑖 + 1 = 𝑗. If 𝑓(𝑗) = 𝑗 + 1 = 𝑖 + 2, by definition we know
that case (2) is true for 𝑓(𝑗). That means 𝑓(𝑗 − 1) = 𝑗 or 1. But we already know
𝑓(𝑗 − 1) = 𝑓(𝑖) > 1. So 𝑓(𝑖) = 𝑓(𝑗 − 1) = 𝑗 = 𝑖+ 1 < 𝑖+ 2 = 𝑓(𝑗). If 𝑓(𝑗) = 𝑗 + 2,
then 𝑓(𝑖) ≤ 𝑖+ 2 < 𝑗 + 2 = 𝑓(𝑗).

So far, we have proved that 𝑓(𝑖) is unique when 𝑓(𝑖) > 1. Now we prove that the
key 𝑥𝑓(𝑖) is not placed in ⌊𝑦𝑓(𝑖)⌋ when 𝑓(𝑖) > 1, i.e., either case (2) or case (3) is true
for 𝑓(𝑖). In both cases, 𝑦𝑖+2 − 𝑦𝑖 ≤ 1, and the rounded integers ⌊𝑦𝑖+2⌋ and ⌊𝑦𝑖⌋ must
be either equal or adjacent: ⌊𝑦𝑖+2⌋ − ⌊𝑦𝑖⌋ ≤ 1. That means ⌊𝑦𝑖+1⌋ must be equal to
either ⌊𝑦𝑖+2⌋ or ⌊𝑦𝑖⌋.

We prove by mathematical induction. For the minimal 𝑖 s.t. 𝑓(𝑖) > 1, if case (2) is
true, ⌊𝑦𝑖+1⌋ = ⌊𝑦𝑖⌋. That means 𝑥𝑖+1 cannot be placed at ⌊𝑦𝑖+1⌋ because that location
is already occupied before 𝑥𝑖+1 is inserted. And 𝑓(𝑖) = 𝑖+ 1 by definition. If case (2)
is false, since we already know 𝑦𝑖+2 − 𝑦𝑖 ≤ 1, 𝑓(𝑖 − 1) = 1 or 𝑖 = 1, it follows that
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⌊𝑦𝑖+1⌋ > ⌊𝑦𝑖⌋. That implies ⌊𝑦𝑖+1⌋ = ⌊𝑦𝑖+2⌋. So 𝑥𝑖+2 cannot be placed at ⌊𝑦𝑖+2⌋. And
𝑓(𝑖) = 𝑖+ 2 because case (3) happens.

Given that the key 𝑥𝑓(𝑖−1) is not placed at ⌊𝑦𝑓(𝑖−1)⌋ when 𝑓(𝑖 − 1) > 1, we now
prove it is also true for 𝑖. The proof for case (2) is the same as above. If case (2) is
false, and ⌊𝑦𝑖+1⌋ > ⌊𝑦𝑖⌋, the proof is also the same as above. The remaining possibility
of case (3) is that ⌊𝑦𝑖+1⌋ = ⌊𝑦𝑖⌋, and 𝑓(𝑖− 1) = 𝑖+ 1. The inductive hypothesis states
that 𝑥𝑖+1 is not placed at ⌊𝑦𝑖+1⌋. That means 𝑥𝑖+1 is placed at a location equal or
larger than ⌊𝑦𝑖+1⌋+ 1 = ⌊𝑦𝑖⌋+ 1. But we also know that ⌊𝑦𝑖+2⌋ ≤ ⌊𝑦𝑖⌋+ 1. So 𝑥𝑖+2

cannot be placed at ⌊𝑦𝑖+2⌋ which is not on the right of 𝑥𝑖+1’s location. Since case (3)
is false, 𝑓(𝑖) = 𝑖+ 2.

By induction, we show that when 𝑓(𝑖) > 1, the key 𝑥𝑓(𝑖) cannot be placed at ⌊𝑦𝑓(𝑖)⌋.
That means when we look up 𝑥𝑓(𝑖), we cannot directly hit it from the model prediction.
Since we also proved that 𝑓(𝑖) has a unique value when 𝑓(𝑖) > 1, the number of
misses from the model prediction is at least the size of 𝑆 = {𝑖 ∈ [𝑛 − 2]|𝑓(𝑖) > 1}.
By the definition of 𝑓(𝑖), 𝑆 = {𝑖 ∈ [𝑛 − 2]|𝑦𝑖+2 − 𝑦𝑖 ≤ 1}. Therefore, the number
of direct hits by the model is at most 𝑛 − |𝑆| = 2 + |{𝑖 ∈ [𝑛− 2]|𝑦𝑖+2 − 𝑦𝑖 > 1}| =
2 +

⃒⃒
{1 ≤ 𝑖 ≤ 𝑛− 2|∆𝑖 ≥ 1

𝑐𝑎
}
⃒⃒
.

This result presents an upper bound on the number of direct hits from the model,
which is positively correlated with 𝑐. This upper bound also applies to the Learned
Index, which has 𝑐 = 1. This explains why the Gapped Array has the potential to
dramatically decrease the search time. Similarly, we can lower bound the number of
direct hits.

Theorem 4. The number of keys placed in the predicted location is no smaller than
𝑙 + 1, where 𝑙 is the largest integer such that ∀1 ≤ 𝑖 ≤ 𝑙, 𝛿𝑖 ≥ 1

𝑐𝑎
, ı.e., the number of

consecutive 𝛿𝑖’s from the beginning equal or larger than 1
𝑐𝑎

.

The proof is not hard based on the ideas from the previous two proofs.
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Appendix B

Supplementary Material for SageDB

B.1 Data Schemas and Workloads

Here, we define the schemas for the three datasets by displaying their CREATE TABLE
commands. We also define the three workloads by displaying the prepared statements.
All of these use SageDB’s SQL dialect, which is similar to but not entirely the same
as any commercial SQL dialect.

B.1.1 Gaming

Schema

create table dim1 (
d1_label text,
d1_id int64 UNIQUE

);
create table dim2 (

d2_type text,
d2_duration int64,
d2_label text,
d2_d1_id int64,
d2_id int64 UNIQUE

);
create table dim3 (

d3_label text,
d3_joined int64,
d3_loc text,
d3_p1 float64,
d3_p2 float64,
d3_p3 float64,
d3_p4 float64,
d3_p5 float64,
d3_id int64 UNIQUE
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);
create table fact (

f_time INT64,
f_d3_id INT64,
f_d1_id INT64,
f_amt INT64,
f_type TEXT,
f_p1 INT64,
f_p2 INT64,
f_p3 INT64,
f_p4 INT64,
f_p5 INT64,
f_p6 INT64,
f_p7 INT64,
f_p8 float64,
f_p9 float64,
f_p10 float64,
f_p11 float64,
f_p12 float64,
f_id int64 UNIQUE

);
create table attrib (

attrib_f_id int64,
attrib_d2_id int64,
attrib_share float64

);

Workload

Q1: SELECT d1_label, COUNT(*) as cnt FROM fact, dim1 WHERE d1_id = f_d1_id
AND f_p1 < ?:INT64 AND f_p8 < ?:FLOAT64 GROUP BY d1_label ORDER BY cnt;

Q2: SELECT d1_label, COUNT(*) as cnt FROM fact, dim1 WHERE d1_id = f_d1_id
AND f_p2 < ?:INT64 AND f_p9 < ?:FLOAT64 GROUP BY d1_label ORDER BY cnt;

Q3: SELECT d1_label, COUNT(*) as cnt FROM fact, dim1 WHERE d1_id = f_d1_id
AND f_p3 < ?:INT64 AND f_p10 < ?:FLOAT64 GROUP BY d1_label ORDER BY cnt;

Q4: SELECT d1_label, COUNT(*) as cnt FROM fact, dim1 WHERE d1_id = f_d1_id
AND (f_p4 < ?:INT64 OR f_p5 < ?:INT64) AND (f_p6 < ?:INT64 OR f_p7 < ?:INT64)
AND (f_p11 < ?:FLOAT64 OR f_p12 < ?:FLOAT64) GROUP BY d1_label ORDER BY
cnt;

Q5: select d3_loc, sum(f_amt) as total from fact, dim3 where d3_id = f_d3_id
and f_type=?:TEXT group by d3_loc order by total desc limit 20;
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Q6: Select d2_label, sum(attrib_share * f_amt) as total from attrib, fact,
dim2 where d2_id = attrib_d2_id and f_id = attrib_f_id and f_amt > ?:INT64
group by d2_label order by total desc;

Q7: Select d2_type, sum(attrib_share * f_amt) as total from fact, attrib,
dim2 where d2_id = attrib_d2_id and f_id = attrib_f_id and f_amt > ?:INT64
group by d2_type order by total desc;

Q8: Select d2_label, d2_type, sum(attrib_share * f_amt) as total from fact,
attrib, dim2, dim3 where d2_id = attrib_d2_id and f_id = attrib_f_id and
f_d3_id = d3_id and d3_loc IN (?:TEXT, ?:TEXT, ?:TEXT, ?:TEXT, ?:TEXT, ?:TEXT)
group by d2_label, d2_type order by total desc;

Q9: Select d3_loc, sum(f_amt) as total from fact, dim3 where f_d3_id =
d3_id and (d3_p1 > ?:FLOAT64 or d3_p2 > ?:FLOAT64) group by d3_loc order
by total desc;

Q10: Select d3_loc, sum(f_amt) as total from fact, dim3 where f_d3_id =
d3_id and (d3_p3 > ?:FLOAT64 or d3_p4 > ?:FLOAT64) and d3_p5 > ?:FLOAT64
group by d3_loc order by total desc;

Q11: Select d2_type, sum(attrib_share * f_amt) as total from fact, attrib,
dim2 where d2_id = attrib_d2_id and f_id = attrib_f_id and f_amt > ?:INT64
and attrib_share > 0.10 and f_p4 - 5500 > f_p7 group by d2_type order by
total desc;

Q12: Select d3_loc, sum(f_p9) from fact, dim3 where f_d3_id = d3_id and
(f_p2 = ?:INT64 or f_p4 = ?:INT64) group by d3_loc order by d3_loc;

Q13: Select d3_loc, sum(f_p9) from fact, dim3 where f_d3_id = d3_id and
f_p2 > ?:INT64 and f_p2 < ?:INT64 and f_p4 > ?:INT64 and f_p4 < ?:INT64
group by d3_loc order by d3_loc;

B.1.2 Stack Overflow

Schema

create table stack_overflow (
id UINT64,
site_name TEXT,
post_date DATE,
poster_name TEXT,
poster_reputation INT32,
poster_join_date DATE,
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score INT32,
view_count UINT64,
favorite_count UINT64,
answered UINT8,
highest_score_answer INT32,
comment_count UINT32,
comment_max_score INT32,
tag_count UINT32,
tag_top25 UINT8,
tag_top20 UINT8,
tag_top15 UINT8,
tag_top10 UINT8,
tag_top5 UINT8,
tag_rust UINT8,
tag_cpp UINT8,
tag_gpu UINT8

)

Workload

Q1: SELECT EXTRACT(YEAR FROM post_date) AS post_year, COUNT(*) FROM denorm_so
WHERE answered = 1 AND comment_count <= ?:UINT32 GROUP BY EXTRACT(YEAR FROM
post_date) ORDER BY post_year;

Q2: SELECT EXTRACT(YEAR FROM post_date) AS post_year, COUNT(*) FROM denorm_so
WHERE answered = 1 AND score >= ?:INT32 GROUP BY EXTRACT(YEAR FROM post_date)
ORDER BY post_year;

Q3: SELECT EXTRACT(YEAR FROM post_date) AS post_year, COUNT(*) FROM denorm_so
WHERE
highest_score_answer >= score AND view_count >= ?:UINT64 AND comment_max_score
>= ?:INT32 AND answered = 1 AND comment_count >= 0 GROUP BY EXTRACT(YEAR
FROM post_date) ORDER BY post_year;

Q4: SELECT EXTRACT(YEAR FROM post_date) AS post_year, COUNT(*) FROM denorm_so
WHERE answered = 0 AND comment_max_score >= ?:INT32 GROUP BY EXTRACT(YEAR
FROM post_date) ORDER BY post_year;

Q5: SELECT EXTRACT(YEAR FROM post_date) AS post_year, COUNT(*) FROM denorm_so
WHERE view_count >= ?:UINT64 AND comment_count >= ?:UINT32 GROUP BY EXTRACT(YEAR
FROM post_date);

Q6: SELECT poster_name, COUNT(*) FROM denorm_so WHERE tag_rust = 1 AND
poster_join_date <= ?:FLOAT64 AND view_count >= ?:UINT64 GROUP BY poster_name;
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Q7: SELECT EXTRACT(YEAR FROM post_date) AS post_year, COUNT(*) FROM denorm_so
WHERE
favorite_count <= ?:UINT64 AND post_date >= ?:FLOAT64 GROUP BY EXTRACT(YEAR
FROM post_date) ORDER BY post_year;

Q8: SELECT COUNT(*) FROM denorm_so WHERE poster_reputation >= ?:INT32 AND
score >= ?:INT32 AND tag_top5 = 1;

Q9: SELECT EXTRACT(YEAR FROM post_date) AS post_year, COUNT(*) FROM denorm_so
WHERE score >= ?:INT32 AND favorite_count >= ?:UINT64 GROUP BY EXTRACT(YEAR
FROM post_date) ORDER BY post_year;

Q10: SELECT EXTRACT(YEAR FROM post_date) AS post_year, COUNT(*) FROM denorm_so
WHERE score <= ?:INT32 AND comment_count <= ?:UINT32 GROUP BY EXTRACT(YEAR
FROM post_date);

Q11: SELECT EXTRACT(YEAR FROM post_date) AS post_year, COUNT(*) FROM denorm_so
WHERE answered = 0 AND score >= ?:INT32 AND tag_count >= 4 GROUP BY EXTRACT(YEAR
FROM post_date) ORDER BY post_year;

Q12: SELECT COUNT(*) FROM denorm_so WHERE answered = 1 AND post_date >=
?:FLOAT64;

Q13: SELECT COUNT(*) FROM denorm_so WHERE view_count >= ?:UINT64 AND (tag_rust
= ?:UINT8 OR tag_cpp = ?:UINT8 OR tag_gpu = ?:UINT8);

B.1.3 TPC-H

Schema

We use the same TPC-H schema in the official specification.

Workload

Q1: select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice)
as sum_base_price, sum(l_extendedprice*(1-l_discount)) as sum_disc_price,
sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge, avg(l_quantity)
as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc,
count(*) as count_order from lineitem where l_shipdate <= ?:DATE group by
l_returnflag, l_linestatus order by l_returnflag, l_linestatus;

Q2: select s_name, sum(s_acctbal) as balance from part, supplier, partsupp,
nation, region where part.p_partkey = ps_partkey and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey and n_regionkey = r_regionkey and p_size =
?:INT32 and region.r_name = ?:TEXT and ps_supplycost = ( select min(ps_supplycost)
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from partsupp, supplier, nation, region where p_partkey = ps_partkey and
s_suppkey = ps_suppkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey
and region.r_name = ?:TEXT ) group by s_name order by balance limit 100;

Q3: select sum(l_extendedprice*(1-l_discount)) as revenue, o_orderdate,
o_shippriority from lineitem, orders, customer where c_custkey = o_custkey
and l_orderkey = o_orderkey and c_mktsegment = ?:TEXT and o_orderdate <
?:DATE and l_shipdate > ?:DATE group by o_orderdate, o_shippriority order
by revenue, o_orderdate limit 10;

Q4: select o_orderpriority, count(*) from orders where o_orderdate >= ?:DATE
and o_orderdate < ?:DATE and exists ( select * from lineitem where l_orderkey
= o_orderkey and l_commitdate < l_receiptdate ) group by o_orderpriority
order by o_orderpriority;

Q5: select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue from
lineitem, orders, customer, supplier, nation, region where c_custkey = o_custkey
and l_orderkey = o_orderkey and l_suppkey = s_suppkey and c_nationkey =
s_nationkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey
and r_name = ?:TEXT and o_orderdate >= ?:DATE and o_orderdate < ?:DATE group
by n_name order by revenue desc;

Q6: select sum(l_extendedprice*l_discount) from lineitem where l_shipdate
>= ?:DATE and l_shipdate < ?:DATE and l_discount >= ?:FLOAT64 and l_discount
<= ?:FLOAT64 and l_quantity < ?:FLOAT64;

Q7: select n1.n_name as supp_nation, n2.n_name as cust_nation, sum(l_extendedprice
* (1 - l_discount)) from lineitem, orders, supplier, customer, nation n1,
nation n2 where s_suppkey = l_suppkey and o_orderkey = l_orderkey and c_custkey
= o_custkey and s_nationkey = n1.n_nationkey and c_nationkey = n2.n_nationkey
and ((n1.n_name = ?:TEXT and n2.n_name = ?:TEXT) or (n1.n_name = ?:TEXT
and n2.n_name = ?:TEXT)) and l_shipdate >= 19950101 and l_shipdate <= 19961231
group by n1.n_name, n2.n_name order by supp_nation, cust_nation;

Q8: select n2.n_name as nation, sum(l_extendedprice * (1-l_discount)) from
lineitem, orders, part, supplier, customer, nation n1, nation n2, region
where p_partkey = l_partkey and s_suppkey = l_suppkey and l_orderkey = o_orderkey
and o_custkey = c_custkey and c_nationkey = n1.n_nationkey and n1.n_regionkey
= r_regionkey and r_name = ?:TEXT and s_nationkey = n2.n_nationkey and o_orderdate
>= 19950101 and o_orderdate <= 19961231 and p_type = ?:TEXT group by n2.n_name;

Q10: select c_custkey, n_name, sum(l_extendedprice * (1 - l_discount))
as revenue from lineitem, orders, customer, nation where c_custkey = o_custkey
and l_orderkey = o_orderkey and o_orderdate >= ?:DATE and o_orderdate <
?:DATE and l_returnflag = ’R’ and c_nationkey = n_nationkey group by c_custkey,
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n_name order by revenue desc limit 20;

Q11: select ps_partkey, sum(ps_supplycost * ps_availqty) as value from
partsupp, supplier, nation where ps_suppkey = s_suppkey and s_nationkey
= nation.n_nationkey and n_name = ?:TEXT group by ps_partkey order by value
limit 10;

Q12: select l_shipmode, sum(case when o_orderpriority = ’1-URGENT’ or o_orderpriority
= ’2-HIGH’ then 1 else 0 end) as high_line_count, sum(case when o_orderpriority
!= ’1-URGENT’ and o_orderpriority != ’2-HIGH’ then 1 else 0 end) as low_line_count
from orders, lineitem where o_orderkey = l_orderkey and l_shipmode = ?:TEXT
and l_commitdate < l_receiptdate and l_shipdate < l_commitdate and l_receiptdate
>= ?:DATE and l_receiptdate < ?:DATE group by l_shipmode order by l_shipmode;

Q14: select sum(case when p_size <= 5 then l_extendedprice * (1 - l_discount)
else 0.0 end), sum(l_extendedprice * (1 - l_discount)) from lineitem, part
where l_partkey = p_partkey and l_shipdate >= ?:DATE and l_shipdate < ?:DATE;

Q15: select l_suppkey, sum(l_extendedprice * (1 - l_discount)) as total_revenue
from lineitem where l_shipdate >= ?:DATE and l_shipdate < ?:DATE group by
l_suppkey order by total_revenue desc limit 10;

Q17: select sum(0.7 * l_extendedprice) from lineitem, part where p_partkey
= lineitem.l_partkey and p_brand = ?:TEXT and p_container = ?:TEXT and l_quantity
< ( select 0.2 * avg(l_quantity) from lineitem where l_partkey = p_partkey
);

Q18: select c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice, sum(l_quantity)
from customer, orders, lineitem where c_custkey = o_custkey and o_orderkey
= l_orderkey and o_orderkey in ( select l_orderkey from lineitem group by
l_orderkey having sum(l_quantity) > ?:FLOAT64 ) group by c_name, c_custkey,
o_orderkey, o_orderdate, o_totalprice order by o_totalprice, o_orderdate
limit 100;
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