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Abstract

Complex dynamical models are used for prediction in many domains, and are useful
to mitigate many of the grand challenges being faced by humanity, such as climate
change, food security, and sustainability. However, because of computational costs,
complexity of real-world phenomena, and limited understanding of the underlying
processes involved, models are invariably approximate. The missing dynamics can
manifest in the form of unresolved scales, inexact processes, or omitted variables; as
the neglected and unresolved terms become important, the utility of model predic-
tions diminishes. To address these challenges, we develop and apply novel scientific
machine learning methods to learn unknown and discover missing dynamics in models
of dynamical systems.

In our Bayesian approach, we develop an innovative stochastic partial differential
equation (PDE) - based model learning theory and framework for high-dimensional
coupled biogeochemical-physical models. The framework only uses sparse observa-
tions to learn rigorously within and outside of the model space as well as in that
of the states and parameters. It employs Dynamically Orthogonal (DO) differential
equations for adaptive reduced-order stochastic evolution, and the Gaussian Mixture
Model-DO (GMM-DO) filter for simultaneous nonlinear inference in the augmented
space of state variables, parameters, and model equations. A first novelty is the
Bayesian learning among compatible and embedded candidate models enabled by
parameter estimation with special stochastic parameters. A second is the princi-
pled Bayesian discovery of new model functions empowered by stochastic piecewise
polynomial approximation theory. Our new methodology not only seamlessly and
rigorously discriminates between existing models, but also extrapolates out of the
space of models to discover newer ones. In all cases, the results are generalizable and
interpretable, and associated with probability distributions for all learned quantities.
To showcase and quantify the learning performance, we complete both identical-twin
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and real-world data experiments in a multidisciplinary setting, for both filtering for-
ward and smoothing backward in time. Motivated by active coastal ecosystems and
fisheries, our identical-twin experiments consist of lower-trophic-level marine ecosys-
tem and fish models in a two-dimensional idealized domain with flow past a seamount
representing upwelling due to a sill or strait. Experiments have varying levels of com-
plexities due to different learning objectives and flow and ecosystem dynamics. We
find that even when the advection is chaotic or stochastic from uncertain nonhy-
drostatic variable-density Boussinesq flows, our framework successfully discriminates
among existing ecosystem candidate models and discovers new ones in the absence
of prior knowledge, along with simultaneous state and parameter estimation. Our
framework demonstrates interdisciplinary learning and crucially provides probabil-
ity distributions for each learned quantity including the learned model functions.
In the real-world data experiments, we configure a one-dimensional coupled physical-
biological-carbonate model to simulate the state conditions encountered by a research
cruise in the Gulf of Maine region in August, 2012. Using the observed ocean acidifica-
tion data, we learn and discover a salinity based forcing term for the total alkalinity
(𝑇𝐴) equation to account for changes in 𝑇𝐴 due to advection of water masses of
different salinity caused by precipitation, riverine input, and other oceanographic
processes. Simultaneously, we also estimate the multidisciplinary states and an un-
certain parameter. Additionally, we develop new theory and techniques to improve
uncertainty quantification using the DO methodology in multidisciplinary settings, so
as to accurately handle stochastic boundary conditions, complex geometries, and the
advection terms, and to augment the DO subspace as and when needed to capture the
effects of the truncated modes accurately. Further, we discuss mutual-information-
based observation planning to determine what, when, and where to measure to best
achieve our learning objectives in resource-constrained environments.

Next, motivated by the presence of inherent delays in real-world systems and the
Mori-Zwanzig formulation, we develop a novel delay-differential-equations-based deep
learning framework to learn time-delayed closure parameterizations for missing dy-
namics. We find that our neural closure models increase the long-term predictive ca-
pabilities of existing models, and require smaller networks when using non-Markovian
over Markovian closures. They efficiently represent truncated modes in reduced-order-
models, capture effects of subgrid-scale processes, and augment the simplification of
complex physical-biogeochemical models. To empower our neural closure models
framework with generalizability and interpretability, we further develop neural par-
tial delay differential equations theory that augments low-fidelity models in their
original PDE forms with both Markovian and non-Markovian closure terms param-
eterized with neural networks (NNs). For the first time, the melding of low-fidelity
model and NNs with time-delays in the continuous spatiotemporal space followed by
numerical discretization automatically provides interpretability and allows for gener-
alizability to computational grid resolution, boundary conditions, initial conditions,
and problem specific parameters. We derive the adjoint equations in the contin-
uous form, thus, allowing implementation of our new methods across differentiable
and non-differentiable computational physics codes, different machine learning frame-
works, and also non-uniformly-spaced spatiotemporal training data. We also show
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that there exists an optimal amount of past information to incorporate, and provide
methodology to learn it from data during the training process. Computational advan-
tages associated with our frameworks are analyzed and discussed. Applications of our
new Bayesian learning and neural closure modeling are not limited to the shown fluid
and ocean experiments, but can be extended to other fields such as control theory,
robotics, pharmacokinetic-pharmacodynamics, chemistry, economics, and biological
regulatory systems.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Professor, Department of Mechanical Engineering
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the true (left) and mean (right) field of the N, P and Z tracer fields.

In the third column, the first plot will show the variation of normal-

ized root-mean-square-error (RMSE) with time for various stochastic

state variables and parameters. The next two plots contain the prob-

ability distribution of Λ(𝜔), and 𝑎(𝜔) (to learn presence or absence of

quadratic zoo. mortality), with their true values marked with blue dot-

ted lines. The velocity field is deterministic with 𝑅𝑒 = 1. The white

circles on the zooplankton true field marks the observation locations. 197

5-14 The posterior state of the NPZ model based stochastic dynamical sys-

tem used in experiment without subspace augmentation and adaptive

covariance inflation, and with only 2 DO-modes, at 𝑇 = 25 (i.e. after

13 observational episodes). Description same as figure 5-13. . . . . . . 198

5-15 Increase in DO modes with time for the experiment with subspace

augmentation and adaptive covariance inflation. The experiment is

started with just 2 modes, and they increase up to 8 in number. . . . 198

5-16 The posterior state of the NPZ model based stochastic dynamical sys-

tem used in experiment without subspace augmentation and adaptive

covariance inflation, and with 8 DO-modes, at 𝑇 = 25 (i.e. after 13

observational episodes). Description same as figure 5-13. . . . . . . . 199

5-17 Joint sample distribution for 𝑋 ∼ 𝒩 (0, 1) and 𝑌 = 𝑋2+𝒩 (0, 𝜎2) with

𝜎 << 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
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5-18 The result of data assimilation after observing the value 𝑦 = 5 and

using different filters. The top-left plot corresponds to the joint distri-

butions, while the right and the bottom ones showcase the marginals

of 𝑌 and 𝑋 respectively. The dots denotes the monte carlo samples

and the lines, kernel density fits. The ellipses mark the 1st standard

deviation of the Gaussians and the color intensity their individual nor-

malized weights, with darker shades of red mapping to 1 and lighter

to 0, for the prior Gaussian-Mixture-Model (GMM) fit. The shades of

green marks the same, however, for the posterior GMM fits. The black

dot marks the observed true value. (Cont.) . . . . . . . . . . . . . . . 202

5-18 The result of data assimilation after observing the value 𝑦 = 5 and

using different filters. The top-left plot corresponds to the joint distri-

butions, while the right and the bottom ones showcase the marginals

of 𝑌 and 𝑋 respectively. The dots denotes the monte carlo samples

and the lines, kernel density fits. The ellipses mark the 1st standard

deviation of the Gaussians and the color intensity their individual nor-

malized weights, with darker shades of red mapping to 1 and lighter

to 0, for the prior Gaussian-Mixture-Model (GMM) fit. The shades of

green marks the same, however, for the posterior GMM fits. The black

dot marks the observed true value. . . . . . . . . . . . . . . . . . . . 203

5-19 The background consists of the true nutrient field at 𝑇 = 5 from which

observations are extracted. Overlayed are different sets of four observa-

tion locations, and their mutual information content, and normalized

posterior RMSE if they were assimilated. The red box and arrow marks

the set of locations found using the greedy submodular maximization. 205

5-20 Mutual information fields consisting of mutual information computed

between phytoplankton at each grid point and phytoplankton mortality

rate parameter (Ξ(𝜔)) in the top, and between phytoplankton at each

grid point and Ivlev grazing parameter (Λ(𝜔)) in the bottom, at time

𝑡 = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
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5-21 Variation of mutual information computed between augmented states

and parameters at initial time (𝑡 = 0), and at later times. See section

5.4.4 for more details. . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5-22 Adaptive sampling predictions for velocity or coherent structure fields.

(a-b) Forecast realization of the forward-time finite-time Lyapunov ex-

ponent (FTLE) field (a) and of the same FTLE field but zoomed in

a small domain (b), marked by the white box in (a). (c-g) Forecast

mutual information fields within this small domain, between the ob-

servation variable at any location in the domain and the verification

variable which is here always a field defined over that small domain.

The five mutual information fields forecasts are between each of the

following pairs of observation and verification variables: (c) salinity

and zonal velocity field, (d) salinity and forward-time FTLE field, (e)

zonal velocity and forward-time FTLE field, (f) meridional velocity

and forward-time FTLE field, and (g) velocity (both components) and

forward-time FTLE field. These mutual information fields forecast the

most informative observation locations for estimating the verification

variable over the small domain. Note that the color bars of panels (c-g)

differ. This figure and caption exactly appeared in Lermusiaux et al.,

2017 [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5-23 Mutual information between zonal velocity on the surface on April 8,

2019 12Z, with the temperature at the location 1.98∘𝑊 , 35.418∘𝑁 and

106𝑚 depth on April 12, 2019 12Z. . . . . . . . . . . . . . . . . . . . 212

6-1 Geometric interpretation of the closure for reduced-order-models (ROMs).

𝑢 ( ): Solution to the full-order-model (FOM); 𝑉 𝑉 𝑇𝑢 ( ): Projec-

tion of 𝑢 on the subspace 𝑉 ; 𝑢𝑅𝑂𝑀 ( ): Solution to the proper-

orthogonal-decomposition Galerkin-projection (POD-GP) ROM; and,

𝑢𝑅𝑂𝑀+𝐶 ( ): Solution to POD-GP ROM with closure. Adapted from

[2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
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6-2 Graphical representation of the time discretized neural delay differen-

tial equations (nDDEs). The blocks labeled RNN and DNN represent

any recurrent or deep neural-network architectures respectively. The

block labeled
∫︀

symbolizes any time-integration scheme. . . . . . . . 231

6-3 Comparison of the true coefficients (solid) with the coefficients from

the POD-GP ROM (dashed-dot) and from the POD-GP ROMs aug-

mented with the three different learned neural closure models at the

end of training (dashed). For each neural closure, the training period

is from 𝑡 = 0 to 2.0, the validation period from 𝑡 = 2.0 to 4.0, and the

future prediction period from 𝑡 = 4.0 to 6.0. Top-left: neural ODEs

with no-delays (nODE); Top-right: neural DDEs with discrete-delays

(Discrete-nDDE); Bottom-left: neural DDEs with distributed-delays

(Distributed-nDDE). Bottom-right: Evolution of root-mean-squared-

error (RMSE(𝑡) =
√︁

1
3

∑︀3
𝑘=1 |𝑎

𝑝𝑟𝑒𝑑
𝑘 (𝑡) − 𝑎𝑡𝑟𝑢𝑒𝑘 (𝑡)|2) of coefficients from

the four different ROMs. These results correspond to the architectures

detailed in Table D.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6-4 Comparison of solutions of Burger’s equation (Eq. 6.20) for different

grid resolutions. (a): Solution for a high-resolution grid with number of

grid points, 𝑁𝑥 = 100; (b): Solution for a low-resolution grid with𝑁𝑥 =

25; (c): High-resolution solution interpolated onto the low-resolution

grid. (d): Absolute difference between fields in panels (b) and (c). We

also provide a pair of time-averaged errors, specifically: 𝐿2 error; and

RMSE considering only the grid points where the error is at least 2%

of the maximum velocity value, denoted by RMSE(>2%). . . . . . . 239
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6-5 Solutions of the Burger’s PDE on the low-resolution grid with differ-

ent closure models (left-column), and their absolute differences (right-

column) with the high-resolution solution interpolated onto the low-

resolution grid (Fig. 6-4c). For the trained neural closure models, the

training period is from 𝑡 = 0 to 1.25, the validation period from

𝑡 = 1.25 to 2.5, and the prediction period from 𝑡 = 2.5 to 5.0. For each

closure, we also provide the pair of time-averaged errors (see Fig. 6-4

for description). (a): Smagorinsky LES model with 𝐶𝑠 = 1.0; (b), (c),

(d): different neural closure models. These results correspond to the

architectures detailed in Table D.1. . . . . . . . . . . . . . . . . . . . 241

6-6 Variation of distributed-nDDE closure validation loss (time-averaged

𝐿2 error) averaged over the last 50 training epoch for Experiments-2

& 3a. All the experiments have 𝜏1 = 0, and different 𝜏2 (horizontal-

axis). Note that 𝜏2 = 0 corresponds to the nODE closure. We use

boxplots to provide statistical summaries for multiple training repeats

done for each experiment. The box and its whiskers provide a five

number summary: minimum, first quartile (Q1), median (orange solid

line), third quartile (Q3), and maximum, along with outliers (black

circles) if any. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

6-7 Solutions of the marine biological models used in Experiments-3a (con-

centrations vs. time in days). Parameter values used are (adopted from

[3]): 𝑘𝑤 = 0.067 𝑚−1, 𝛼 = 0.025 (𝑊 𝑚−2 𝑑)−1, 𝑉𝑚 = 1.5 𝑑−1, 𝐼0 =

158.075 𝑊 𝑚−2, 𝐾𝑢 = 1 𝑚𝑚𝑜𝑙 𝑁 𝑚−3, Ψ = 1.46 (𝑚𝑚𝑜𝑙 𝑁 𝑚−3)−1,

Ξ = 0.1 𝑑−1, 𝑅𝑚 = 1.52 𝑑−1, Λ = 0.06 (𝑚𝑚𝑜𝑙 𝑁 𝑚−3)−1, 𝛾 = 0.3,

Γ = 0.145 𝑑−1, Φ = 0.175 𝑑−1, Ω = 0.041 𝑑−1, 𝑧 = −25 𝑚, and 𝑇𝑏𝑖𝑜 =

30 𝑚𝑚𝑜𝑙 𝑁 𝑚−3. (a): Nutrient-Phytoplankton-Zooplankton (NPZ)

model (Eq. 6.26); (b): Nitrate-Ammonia-Phytoplankton-Zooplankton-

Detritus (NNPZD) model (Eq. 6.28); (c): Comparison between 𝑁𝑂3+

𝑁𝐻4 +𝐷, 𝑃 , and 𝑍 from the NNPZD model (solid) with 𝑁 , 𝑃 and 𝑍

from the NPZ model (dashed-dot). . . . . . . . . . . . . . . . . . . . 246
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6-8 Comparison of the biological variables from the learned NPZ model

augmented with the three neural closure models (dashed), aggregated

variables from the NNPZD model (ground truth; solid), and variables

from the NPZ model (dashed-dot) at the end of training. For each

neural closure, the training period is from 𝑡 = 0 to 30 days, the valida-

tion period is from 𝑡 = 30 to 60 days, while prediction period is from

𝑡 = 60 to 330 days. (a), (b), (c): different neural closure models; (d):

the left plot shows the evolution of root-mean-squared-error (RMSE),

and the right plot shows the average cross-correlation (only for the

prediction period) w.r.t. the ground truth. These results correspond

to the architectures detailed in Table D.2. . . . . . . . . . . . . . . . 249

6-9 Comparison of the 1-D physical-biogeochemical PDE models used in

Experiments-3b with and without closure models. Along with the pa-

rameter values mentioned in Figure 6-7, we consider: a sinusoidal vari-

ation in 𝐼𝑜(𝑡); linear vertical variation in total biomass 𝑇𝑏𝑖𝑜(𝑧) from

10 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at the surface to 30 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at 𝑧 = 100 𝑚;

𝐾𝑧𝑏 = 0.0864 (𝑚2/𝑑𝑎𝑦); 𝐾𝑧0 = 8.64 (𝑚2/𝑑𝑎𝑦); 𝛾 = 0.1 𝑚−1; and

𝐷 = −100 𝑚, all adapted from [3, 4]. For the neural closure models,

the training period is from 𝑡 = 0 to 30 days, the validation period

from 𝑡 = 30 to 60 days, and the long future prediction period from

𝑡 = 60 to 364 days. (a): Top plots show the yearly variation of solar

radiation and the bottom plots the aggregated states from the NNPZD

model (ground truth) overlaid with the dynamic mixed layer depth in

dashed red lines. In the subsequent plots (b), (c), (d), and (e), we

show the absolute difference of the different neural closure cases with

the ground truth. For each case, we also provide the pair of time-

averaged errors (see Fig. 6-4 for description). These results correspond

to the architectures given in Table D.2. (Cont.) . . . . . . . . . . . . 253
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6-9 Comparison of the 1-D physical-biogeochemical PDE models used in

Experiments-3b with and without closure models. Along with the pa-

rameter values mentioned in Figure 6-7, we consider: a sinusoidal vari-

ation in 𝐼𝑜(𝑡); linear vertical variation in total biomass 𝑇𝑏𝑖𝑜(𝑧) from

10 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at the surface to 30 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at 𝑧 = 100 𝑚;

𝐾𝑧𝑏 = 0.0864 (𝑚2/𝑑𝑎𝑦); 𝐾𝑧0 = 8.64 (𝑚2/𝑑𝑎𝑦); 𝛾 = 0.1 𝑚−1; and

𝐷 = −100 𝑚, all adapted from [3, 4]. For the neural closure models,

the training period is from 𝑡 = 0 to 30 days, the validation period

from 𝑡 = 30 to 60 days, and the long future prediction period from

𝑡 = 60 to 364 days. (a): Top plots show the yearly variation of solar

radiation and the bottom plots the aggregated states from the NNPZD

model (ground truth) overlaid with the dynamic mixed layer depth in

dashed red lines. In the subsequent plots (b), (c), (d), and (e), we

show the absolute difference of the different neural closure cases with

the ground truth. For each case, we also provide the pair of time-

averaged errors (see Fig. 6-4 for description). These results correspond

to the architectures given in Table D.2. . . . . . . . . . . . . . . . . 254

6-10 The background is a spatio-temporal zooplankton field, simulated using

a complex nonlinear 5-component 1-D physical-biogeochemical model.

Seasonal variability is forced through the surface photosynthetically-

available radiation and mixed layer depth, each of which vary in time.

The 5-component model is one of the dynamical systems used to illus-

trate our novel neural closure modeling. Overlaid on the zooplankton

field is the graphical representation of the time-discretized distributed

neural delay differential equation (Distributed-nDDE). The blocks la-

beled DNN and the integral symbol represent any deep neural-network

architecture and time-integration scheme. Appeared on the cover of

Proceedings of the Royal Society A, August 2021 edition. . . . . . . . 260
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7-1 Overview of the generalized neural closure models (gnCM) framework.

The blocks labeled DNN represent any deep neural-network architec-

tures. The block labeled
∫︀

symbolizes any time-integration scheme.

DDE stands for delay differential equation. . . . . . . . . . . . . . . 270

7-2 Comparison of the numerical solution of the KdV-Burgers equation

with only the advection term (equation 7.8; low-fidelity model; middle

plot), with the analytical solution corresponding to the equation with

stronger advection and 3𝑟𝑑 order derivative term (equations 7.9, 7.10 &

7.11; high-fidelity model; left plot). The low-fidelity model is solved on

a grid with 𝑁𝑥 = 200 grid points, and the absolute difference between

the two solutions is provided in the right plot. . . . . . . . . . . . . . 274

7-3 Comparison of the numerical solution of the Burgers equation (with

𝑅𝑒 = 1000) on a low-resolution grid (equations 7.14 & 7.15; low-

fidelity model; middle plot), with its corresponding analytical solution

(equation 7.16; high-fidelity model; left plot). The low-fidelity model

is solved on a grid with 𝑁𝑥 = 50 grid points, and the absolute dif-

ference between the two solutions is provided in the right plot. We

also provide a pair of time-averaged errors, specifically: root-mean-

squared-error (RMSE); and RMSE considering only the grid points

where the error is at least 2% of the maximum velocity value, denoted

by RMSE(> 2%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
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7-4 Performance of Burgers equation (equations 7.14 & 7.15) with different

closure models evaluated for various (𝑁𝑥, 𝑅𝑒) pairs in the 2D domain

spanned by 50 ≤ 𝑁𝑥 ≤ 200 and 50 ≤ 𝑅𝑒 ≤ 1500. The error provided is

the 𝑅𝑀𝑆𝐸(> 2%) (see figure 7-3 for description) computed w.r.t. the

corresponding analytical solutions (equation 7.16) for 0.0 ≤ 𝑡 ≤ 8.0 in

a domain of length 𝐿 = 1.25. (a): Leading discretization error term,

−Δ𝑥
2
𝑢𝜕2𝑢
𝜕𝑥2 , as closure. The white region in the top-left denotes an un-

converged numerical solution; (b): Learned generalized neural closure

model (gnCM) with only the Markovian term; (c): Smagorinsky LES

model with 𝐶𝑠 = 1.0; (d): Learned gnCM with both Markovian and

non-Markovian closure terms. The red ⋆’s mark the (𝑁𝑥, 𝑅𝑒) pairs

used as training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

7-5 Solution of the Burgers equation with and without the learned gener-

alized neural closure model (gnCM) for 𝑅𝑒 = 1000, a low-resolution

grid (𝑁𝑥 = 50), and zero Dirichlet boundary condition on the right

edge. For each case, we also provide the pair of time-averaged errors

(see figure 7-3 for description). . . . . . . . . . . . . . . . . . . . . . . 282

7-6 Solutions (concentrations vs. time in days; 𝑁 , 𝑃 , 𝑍,𝐷 in𝑚𝑚𝑜𝑙 𝑁 𝑚−3,

𝐷𝐼𝐶 in 𝑚𝑚𝑜𝑙 𝑚−3, and 𝑇𝐴 in 𝑚𝑚𝑜𝑙 𝑘𝑔−1) of the ocean acidifica-

tion model used in Experiments-2a, corresponding to different func-

tional forms for the zooplankton mortality term. Left-column: The

top plot shows the yearly variation of solar radiation and the subse-

quent plots depict the states from the NPZD-OA model with 𝑀𝑍(𝑍) =

𝑚𝑍

2
(𝑍 + 𝑍2) (ground truth), overlaid with the dynamic mixed layer

depth in dashed red lines; Middle-column: States from the NPZD-

OA model with 𝑀𝑍(𝑍) = 𝑚𝑍

2
𝑍 (low-fidelity); Right-column: Absolute

difference between the corresponding states in the left- and middle- col-

umn. For each case, we also provide the pair of time-averaged errors

(see figure 7-3 for description). . . . . . . . . . . . . . . . . . . . . . . 287
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7-7 Comparison of the ocean acidification models used in Experiments-2b

with and without closure models. The parameter values and concentra-

tion units are same as those provided in figure 7-6. For the generalized

neural closure model (gnCM), the training period is from t = 0 to

60 𝑑𝑎𝑦𝑠, the validation period from t = 60 to 120 𝑑𝑎𝑦𝑠, and the fu-

ture prediction period from t = 120 to 364 𝑑𝑎𝑦𝑠. Left-column: The

top plot shows the yearly variation of solar radiation and the subse-

quent plots depict the aggregated states from the NPZD-OA model

with 𝑀𝑍(𝑍) = 𝑚𝑍

2
(𝑍 +𝑍2) (ground truth), overlaid with the dynamic

mixed layer depth in dashed red lines; Middle-column: Absolute dif-

ference between the corresponding states in the left-column and those

from the NPZ-OA model with 𝑀𝑍(𝑍) = 𝑚𝑍

2
𝑍 (low-fidelity); Right-

column: Absolute difference between the corresponding states from the

low-fidelity model augmented with the learned gnCM and the ground

truth. For each case, we also provide the pair of time-averaged errors

(see figure 7-3 for description). . . . . . . . . . . . . . . . . . . . . . 290

D-1 Variation with epochs of training (left column), and validation (right column)

time-averaged 𝐿2 loss for the three neural closure models, while training for

each of the Experiments-1, 2, 3a, and 3b. These results accompany Figs. 6-

3, 6-5, 6-8, & 6-9 in the main text, and the architectures detailed in Tables

D.1 & D.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

D-2 Experiments-1 sensitivity to network size and training period length.

(a): Evolution of root-mean-squared-error (RMSE) of coefficients for

distributed-nDDEs trained with different training period length, and

with same architectures and other hyperparameter values. These re-

sults correspond to the distributed-nDDE architecture detailed in Ta-

ble D.1. (b): Variation with epochs of training (left), and validation

(right) time-averaged 𝐿2 loss for the three different sized distributed-

nDDE architectures detailed in Table D.3. . . . . . . . . . . . . . . . 330
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E-1 Comparison of the true and learned two-variable dynamical system

defined by equations E.8 & E.9 respectively. The left plot provides

the temporal trajectories of the two state variables and the right plot

provides the corresponding phase portrait. We train using data only

up until 𝑡 = 40 and make predictions from 𝑡 = 40 to 𝑡 = 80. . . . . . 336

E-2 The evolution of the learned delay value as a function of training epoch

for the distributed-nDDE closure used for learning subgrid-scale pro-

cesses in Burgers’ equation. We use boxplots to provide statistical

summaries for multiple training repeats done for the same set of hy-

perparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

F-1 Variation of training (left column) and validation (right column) loss

with epochs, for each of the experiments-1a, 1b, 2a, and 2b. We use

boxplots to provide statistical summaries for multiple training repeats

done for each set of experiments. The box and its whiskers provide

a five number summary: minimum, first quartile (Q1), median (or-

ange solid line), third quartile (Q3), and maximum, along with out-

liers (black circles) if any. These results accompany the architectures

detailed in table F.1. (cont.) . . . . . . . . . . . . . . . . . . . . . . . 350
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Chapter 1

Introduction and Background

Mathematical modeling provides humans the facility to use the language of mathe-

matics to examine, understand, explain, and predict real-world phenomena. Math-

ematical models are omnipresent in every discipline, ranging from natural sciences,

engineering, as well as in the social sciences, and are used for a variety of research

and societal needs, including applications in energy, food, climate, and sustainability.

In this thesis, our main focus will be on mathematical models used to describe dy-

namical systems. Dynamical systems are phenomena whose state evolve in time, such

as chemical reactions, biological processes, fluid flows, etc. They are often modeled

as differential equations, and the simplest ones formulated using ordinary differential

equations (ODEs) of the form,

𝑑𝑢(𝑡)

𝑑𝑡
= 𝑓(𝑢(𝑡), 𝜃), 𝑡 ∈ [0,∞) , (1.1)

where 𝑢 is the state vector containing the variables being modeled, 𝑓(∙) can be

any non-linear function, and 𝜃 some associated parameters. An initial condition,

𝑢(0) = 𝑢0, is commonly required to obtain an unique solution at some later time, 𝑡.

The model is integrated forward in time,

𝑢(𝑡) = 𝑢0 +

∫︁ 𝑡

0

𝑓(𝑢(𝑠), 𝜃)𝑑𝑠, 𝑡 ∈ [0,∞) , (1.2)
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to obtain the unique solution, 𝑢(𝑡). However, for phenomena where both spatial vari-

ation and time evolution are important, such as fluid and ocean flows, the dynamical

system models are commonly formulated using partial differential equations (PDEs)

of the form,

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= ℒ(𝑢(𝑥, 𝑡), 𝜃), 𝑥 ∈ 𝒟 ⊂ R𝑛, 𝑡 ∈ [0,∞) , (1.3)

where ℒ is any non-linear function containing spatial derivatives. At any given time, 𝑡,

the state variable 𝑢(·, 𝑡) is a vector field defined over a spatial domain 𝒟 ⊂ R𝑛 in one,

two, or three dimensions (𝑛). A unique solution to the above system exists given some

initial condition (𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ 𝒟) and well-defined boundary conditions

(ℬ(𝑢(𝑥, 𝑡)) = 𝑢𝑏(𝑥, 𝑡), 𝑥 ∈ 𝜕𝒟). A PDE can also be interpreted as an infinite-

dimensional ODE system. Unfortunately, solving PDEs is non-trivial. However, a

variety of numerical techniques exists under the umbrella of computational physics to

cater to them [5]. Computational physics is a rapidly-growing and interdisciplinary

area with vast amounts of scientific knowledge already in existence.

In the remainder of the thesis, the use of the term “models” will refer to “dynamical

system models”.

1.1 Missing Dynamics in Existing Models

Often, a lot of scientific rigour in the form of knowledge of conservation laws, complex

mathematical tools, and carefully-obtained experimental data goes into the formula-

tion of dynamical system models (and mathematical models, in general). However,

it is not often possible to derive the ‘perfect model’ which describes the phenomenon

of interest exactly. This is because real-world phenomena are highly complex and

it is not possible to account for every atom or molecule. Most models only resolve

spatiotemporal scales, processes, and field variables to a certain level of accuracy

because of the high computational costs. In many cases, due to incomplete or even

poor understanding, there exists multiple competing model hypotheses, and there
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are interactions and processes completely unknown to scientists. We refer to such

truncated, unresolved, or unmodeled scales, processes, and variables as “missing dy-

namics”, which often limit the reliability and usefulness of simulations, especially for

scientific, engineering, and societal applications where longer-term model predictions

are needed to guide decisions. A variety of modeling techniques have been developed

to represent the missing dynamics. Techniques that express these missing dynamics

as functions of modeled state variables and parameters are referred to as closure mod-

els. Turbulence closure [6, 7] is a classic example of this approach, however, deriving

these closure models even for relatively simple systems could constitute a PhD thesis

in its own right.

1.2 Bayesian Model Learning for Dynamical Systems

Due to the inability to account for the missing dynamics, there exists an inherent

model uncertainty, which could manifest in many different forms. These might in-

clude uncertainty in the initial conditions, boundary conditions, parameters, the op-

tion to choose from a set of candidate functions or model complexity, or the functional

form of the model being completely unknown. A Bayesian approach is then useful

because it allows to take into account prior information in accord with their uncer-

tainties and updates uncertainty estimates when data becomes available. The results

of Bayesian learning are often easy to interpret and provide quantifiable uncertainty

on the answers. Bayesian approaches are already widely used in variety of disciplines

such as life sciences, finance, social-sciences, etc. However, applications to dynamical

systems have been limited in their scope. Due to the inherent high-dimensionality

of PDE-based systems (dimensions from 𝒪(103), to above 𝒪(108)𝑎𝑛𝑑𝑚𝑜𝑟𝑒; [8]), they

include simplifying assumptions such as linearity and Gaussianity, and often are only

limited to parameter estimation or do not provide full posterior probability distribu-

tions. The reader is referred to Lin, 2020 [9] section 1.3 for a comprehensive review

of different methods.

Recent developments in our group by Lu and Lermusiaux, 2014 & 2021 [10, 8] and
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Lin, 2020 [9] have for the first time made it feasible to perform joint inference of state

variables, parameters, and the dynamical model itself for realistic high-dimensional

dynamical systems with non-Gaussian statistics and nonlinear dynamics. Their the-

ory and computational framework propagate uncertainty for each candidate model in

a reduced subspace by the dynamically orthogonal (DO) equations [11, 12, 13, 14, 15],

and jointly infer state variables and model parameters via data assimilation by the

Gaussian mixture model (GMM) based Kalman filter (GMM-DO filter; [16, 17]).

Based on observations and model predictions, the framework learns the underlying

dynamical models in a principled hierarchical Bayesian way. This formulation has

been very successful for cases when the true model is exactly equal to one of the

candidate models, or when there are a limited number of candidate models to choose

from even if none is the exact one. However, it might be the case that none of the

candidate models is exactly equal to the true model, or there are too many candi-

dates, or the functional form is elusive to the scientists, in which case the candidate

model space becomes infinite. Thus, one of the goals of this thesis is to extend and

generalize the discrimination based model learning developed by Lu and Lermusiaux,

2014 & 2021 [10, 8] and Lin, 2020 [9] to allow for interpolation in the space of known

candidate models, and also the discovery of new models in an efficient but rigorous

fashion.

1.3 Deep Learning for Dynamical Systems

We are in the midst of the “big data” revolution, and the advances in deep learning

have revolutionized the way we analyse and utilize data. Learning models solely from

data works very well for applications where a vast multitude of data is readily available

and useful prior models are not available, but struggles in situations where data is

scarce both in space and time. Thus, using deep learning techniques which were found

to be successful with image and language tasks, and applying them out-of-the box to

dynamical systems such as fluid and ocean flows fails to generalize and compete with

existing models which were derived using sound scientific analysis over centuries. Deep
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learning, existing dynamical system models, and computational physics techniques are

in themselves very powerful tools in the arsenal of mathematical modeling, and have

their own strengths and weaknesses which can potentially complement each other.

For example, an existing dynamical system model could act as a regularizer for the

deep learning model when data is scarce, or deep learning could specifically switch

out tasks in computational physics that are either computationally very expensive or

use heuristics. Thus, it becomes imperative to use them in consonance and leverage

existing scientific knowledge to come up with new hybrid methods which will help

push the boundaries of computational science.

Over the last 5 years or so, many novel methods have been developed which meld

deep learning and dynamical systems in interesting ways. We will next outline some of

the significant methods in the literature. Physics informed neural networks (PINNs;

[18, 19]) were originally developed to learn a direct map from a point in space and

time, (𝑥, 𝑡), to the state of the dynamical system, 𝑢(𝑥, 𝑡), with the training loss

constrained using the known model equations, boundary and initial conditions, thus,

circumventing the need for any training data. Nowadays, the term “PINNs” is used

more colloquially to refer to incorporation of any insight about the dynamical system

at hand into the learning process, for example, custom architectures, loss functions,

etc. Another popular approach is to use recurrent networks such as long-short term

memory networks (LSTMs), gated recurrent units (GRUs) etc. as surrogates for the

discretized time-integration (equation 1.2) step [20, 21, 22, 23]. Sparse regression-

based methods (SINDy; [24, 25]) have also been developed for the discovery of model

equations, which are promising as they do not require prior knowledge, however, they

often require large data sets. Variations of SINDy, such as weak SINDy, have been

developed to learn PDEs [26], adaptively generate features to increase the library of

models [27], and extend to Bayesian identification [28]. Some methods use Genetic al-

gorithms [29] and reinforcement learning [30, 31, 32] to perform searches in the space

of potential models. Next is the neural ODE framework [33], which parameterizes

the temporal derivative of the state variable (𝑑𝑢(𝑡)/𝑑𝑡 in equation 1.1) using neural

networks to learn the system dynamics. A significant extension of this method is
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the universal differential equations framework [34], which extends it to any class of

differential equations. However, there is still need to study behaviour and develop

innovative architectures, efficient training methods, etc., for the different classes of

differential equations. Finally, we mention DeepONet [35] and the neural operators

[36] framework which leverages the Green’s function corresponding to a PDE and uni-

versal approximation theorem for operators to justify learning the operator-mapping

between infinite dimensional input-output function spaces, and generalizes well.

Overall, the field of Scientific Machine Learning (SciML; [37]) is burgeoning with

innovative methods that combine existing scientifically-derived differential equation

models and computational physics techniques with machine learning to make realistic

simulations of real-world phenomena feasible, given current computational capabili-

ties. This thesis is a new contribution to the same.

1.4 Contributions and Structure of this Thesis

The overarching goal of this thesis is to develop novel machine learning methods to

learn and discover missing dynamics in existing dynamical system models. We develop

both new Bayesian learning and new deep learning methodologies, that enable lever-

aging all the existing scientific knowledge in the learning process. For the Bayesian

learning part of the thesis, we build on the existing theory and computational frame-

work of Lu and Lermusiaux, 2014 & 2021 [10, 8] and Lin, 2020 [9], and equip it to

interpolate in the space of known candidate models, and also discover new models in

an efficient fashion. We also develop and adapt techniques for improving uncertainty

quantification using the DO equations for multidisciplinary dynamics, and observation

planning in resource constraint environments to best achieve the learning objectives.

For the deep learning part of the thesis, we build a neural ODE style framework

that allows learning non-Markovian closure models. We also ensure it is generalizable

and interpretable. Our primary applications of interest include fluid and ocean flows,

marine ecosystems, and ocean acidification, all of which play a vital role in climate

change, fisheries management, food security, and require immediate understanding,
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monitoring, forecasting, and intervention. However, the developed frameworks are

application-agnostic and could be widely extended to other fields such as control the-

ory, robotics, pharmacokinetic-pharmacodynamics, chemistry, economics, biological

regulatory systems, etc.

Before concluding this chapter, we provide a brief exposition of this thesis. In

chapter 2, we will derive the developed Bayesian model learning methodology for si-

multaneous estimation of states, parameters, and model discovery, with applications

to lower-trophic-level models for the marine ecosystem. In chapter 3, we will apply

our Bayesian model learning framework to fish models. In chapter 4, we will use it

to discover missing dynamics in an existing ocean acidification model from real-world

data collected in the Gulf of Maine. In chapter 5, we will develop schemes for handling

stochastic boundary conditions, numerics, data-driven subspace augmentation, and

observation planning to answer what, when, and where to measure. In chapter 6, we

will present our new neural closure models framework to learn non-Markovian closure

parameterizations for known-physics/low-fidelity models using data from high-fidelity

simulation data. Applications will include accounting for truncated modes in reduced-

order-models, capturing the effects of subgrid-scale processes in coarse models, and

augmenting the simplification of complex biological and physical-biogeochemical mod-

els. In chapter 7, we will develop the novel generalized and interpretable extension of

our neural closure models framework, and demonstrate its performance. Finally, in

chapter 8, we will make concluding remarks and discuss some future directions.
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Chapter 2

Bayesian Learning Machines for

Coupled Biogeochemical-Physical

Models

The ability to predict and understand marine ecosystems is essential for addressing

many of the grand challenges faced by humanity, such as, climate change, food secu-

rity, and sustainability. In broad terms, marine ecosystems can be seen as food webs,

or flow of food/energy from nutrients, to phytoplanktons, to zooplanktons, to fish,

and finally recycling back to the nutrients [38, 39]. However, there does not yet exist

a single generic model that accurately represents all the components in marine food

webs due to the presence of highly complex biological processes with many unknown

interactions, as well as of nonlinear physical forcing. Many approximations are thus

made and only parts of a food web are commonly modeled. The interactions of what

is modeled with other portions of the food web then need to be parameterized. The

biology is also forced by the dynamic physical state of the ocean. The overall result

are biogeochemical-physical modeling systems. In these systems, the nutrients and

individual species (plankton, fish, etc.) are broadly categorized and represented as

components or state variables, defined as a concentration of nutrients, biomass, or

number of organisms per unit volume of water. The dynamics of these state variable

fields thus consists of reaction terms representing biogeochemical processes such as
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nutrient uptake, grazing, death, etc., and of forcing by physical processes such as

advection, diffusion, and sun light.

A plethora of biogeochemical models have been proposed by scientists which differ

in their ability to resolve different biological processes. This ability is determined by

the complexity of the model. Models of higher complexity have more biological com-

ponents, functional terms, and parameters. However, process terms and parameters

are often poorly known, which hampers the utility of highly complex models [40, 41].

Some prominent biogeochemical models of varying complexities are listed next. The

simplest and the most popular are 3-component nutrient-phytoplankton-zooplankton

(NPZ) models [42, 43]. NPZ models are easily explored and understood, thus serv-

ing as an important tool in oceanographic research. Also modeling the intermediate

state of detritus leads to four component NPZ-Detritus biological models [44]. An

intermediate complexity model is the 7-component additionally accounting for bacte-

ria, nitrate, ammonium, and dissolved organic nitrogen proposed in [45]. One of the

most complex lower-trophic level marine ecosystem models is the European Regional

Seas Ecosystem Model (ERSEM, [46, 47, 48]) which was developed for the North Sea.

Many different choices of functional forms exists for each of the biological processes

[40] which helps develop application specific variants of the above models.

Biogeochemical models are developed using semi-empirical methodologies, which

leads to a lot of uncertainty associated with the parameters, functional form, and the

level of complexity of these models. A set of parameter values working in a particular

part of the ocean, might not work anywhere else, or there may be seasonal variability

in parameter values. This also leads to uncertainty in the state variables being pre-

dicted using these models. Observations are already an integral part of the formation

of these models, however, are in general only used for data fitting in order to find ap-

propriate parameter values or functional forms of these models in offline mode. With

the availability of state-of-the-art data assimilation techniques, we should instead

use these observations in a Bayesian sense to learn state variables, parameter values,

and discriminate/discover functional forms of biogeochemical models with quantifi-

able uncertainty for better estimation and prediction of ocean biology. A variety

56



of data assimilation techniques are being applied to biogeochemical models and can

be categorized broadly into two categories. First is parameter optimization, where

model parameters are calibrated by minimizing misfits between model output and in-

dependent observations [49, 50, 41]. The second is sequential data assimilation, which

helps to estimate model states taking into account the observations available while

integrating the model forward in time [51, 52, 53]. However, very few studies deal

with the simultaneous estimation of parameters, state variables, and model equations.

Some notable examples include Dowd et al., 2011 ([54]) using a Monte Carlo approach

with an ensemble of 200 simulations lasting 30-days during the spring bloom in the

North Atlantic. A twin experiment was conducted in an idealized framework, with

surface observations of phytoplankton concentration to perform a Kalman filter based

uncertain parameter and state estimation using the technique of state augmentation.

Similarly, Julier and Uhlmann, 2010 ([55]) performed state and parameter estimation

in a non-linear phytoplankton-zooplankton model using two different Markov Chain

Monte Carlo (MCMC) algorithms in an identical-twin setting. Lately, along with

state and parameter estimation, the selection of optimal complexity of biogeochemi-

cal models has become an active area of research [41]. With the recent advancement

and popularization of machine learning, several machine learning methods have been

developed for the discovery of model equations. The sparse regression-based methods

(SINDy; [24, 25]) are promising as they do not require prior knowledge, however,

they often require large data sets. Variations of SINDy have been developed such as

weak SINDy to learn PDEs [26], the adaptive generation of features to increase the

library of models [27], and extensions to Bayesian identification [28]. Some methods

use genetic algorithms [29] and reinforcement learning [30, 31, 32] to perform searches

in the space of potential models. However, most of these approaches do not provide

uncertainty estimates for the discovered models. Methods have also combined prior

knowledge about underlying governing equations for model recovery and refinement.

For example, Raissi and Karniadakis, 2018 [18] successfully used Gaussian processes

to learn the values of the parametric response of partially-known nonlinear differential

equations. Unfortunately, data and knowledge of governing laws is a luxury in the
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case of biogeochemical models.

There are as many biogeochemical models as biologists. Hence, the selection of

models which best explains the data in a principled way is much needed. The rigorous

Bayesian learning approach developed by Lu and Lermusiaux, 2014 & 2021 [10, 8] ad-

dresses most of the above needs and drawbacks, allowing for simultaneous estimation

of states and parameters along with discrimination among candidate models using

sparse observations. However, what to do in the case when none of the candidate

models is exactly equal to the true model? Or the functional form is yet completely

elusive to scientists? Could we interpolate within and extrapolate out of known model

spaces, while providing accurate joint probability distributions for model states, pa-

rameters, and formulations? Could such Bayesian learning be efficient and successful

with high-dimensional and multidisciplinary stochastic PDEs? Thus, the goal of the

present paper is to extend and generalize the discrimination-based model learning de-

veloped in [10, 8], to allow for interpolation in the space of known candidate models

and the discovery of new models in an efficient fashion. Our novel model learning

and discovery is achieved by introducing special stochastic parameters and stochastic

linear piece-wise function approximations. We address the challenges of multidisci-

plinary dynamics and develop a rigorous PDE-based Bayesian learning framework

by combining the Dynamically Orthogonal (DO) methodology [11, 12, 14, 13, 15]

for reduced dimension stochastic evolution, and Gaussian Mixture Model (GMM)-

DO filtering algorithm [16, 17]. In Sect. 2.1, we present the problem statement. In

Sect. 2.2, we develop the special parameters for formulating model uncertainty and

obtain novel Bayesian methods for model learning and discovery. In Sect. 2.3, de-

tails of the biogeochemical models used in this study, governing equations, modeling

domain, true solution generation, etc. are presented. Finally, in Sect. 2.4 we show

the application of our algorithms using four experiments of varying complexities and

learning objectives. The conclusions of this study are provided in Sect. 2.5.
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2.1 Problem Statement

A single mathematical model that exactly captures all the physical and biological

processes occurring in the real-world does not yet exist. Hence, there is inherent

model uncertainty that manifests in many forms, including: initial and boundary

condition uncertainties; unreliable parameter values; multiple competing candidate

model functions; unknown functional forms; missing model terms; and, debatable

complexity of the model. In this work, we consider discriminating among candidate

models as well as learning among compatible models and discovering new model

formulations. Compatible models are models that can be related to a single modeling

system theoretically and that can also be combined numerically. Compatible models

can nonetheless represent different dynamics, e.g., our goals include learning which

dynamics is or is not present based on observations.

In general, we consider a stochastic dynamical modeling system defined on a

domain 𝒟, governing the dynamics of 𝑢(𝑥, 𝑡;𝜔) : R𝑛 × [0, 𝑇 ] → R𝑁𝑣 , the stochastic

state vector comprising 𝑁𝑣 dynamical state variable fields. The realization index 𝜔

belongs to a measurable sample space Ω and the model depends on a vector 𝜃(𝜔)

of 𝑁𝜃 uncertain parameters. To encompass the majority of scenarios, we write the

general form of the uncertain dynamical modeling system as follows,

𝜕𝑢(𝑥, 𝑡;𝜔)

𝜕𝑡
= ℒ[𝑢(𝑥, 𝑡;𝜔),𝜃(𝜔),𝑥, 𝑡] + ̂︀ℒ[𝑢(𝑥, 𝑡;𝜔);𝜔] + ̃︀ℒ[𝑢(𝑥, 𝑡;𝜔);𝜔] ,

𝑥 ∈ 𝒟, 𝑡 ∈ [0, 𝑇 ], 𝜔 ∈ Ω ,

with 𝑢(𝑥, 0;𝜔) = 𝑢𝑜(𝑥;𝜔) ,

and ℬ[𝑢(𝑥, 𝑡;𝜔)] = 𝑏(𝑥, 𝑡;𝜔), 𝑥 ∈ 𝜕𝒟, 𝑡 ∈ [0, 𝑇 ], 𝜔 ∈ Ω ,

(2.1)

where 𝑢𝑜(𝑥;𝜔), ℬ, and 𝑏(𝑥, 𝑡;𝜔) are the stochastic initial conditions, boundary con-

dition operators, and boundary values respectively. The functional form of the first

dynamics term ℒ[𝑢(𝑥, 𝑡;𝜔),𝜃(𝜔),𝑥, 𝑡] is assumed to be known, but with uncertain pa-

rameters. The second term ̂︀ℒ[𝑢(𝑥, 𝑡;𝜔);𝜔] ∈ { ̂︀ℒ1[𝑢(𝑥, 𝑡;𝜔);𝜔], ..., ̂︀ℒ𝑁𝑚 [𝑢(𝑥, 𝑡;𝜔);𝜔]},
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represents a set of compatible candidate functional forms, where 𝑁𝑚 is the number

of candidates. For example, for reaction terms, model functions are often from the

polynomial, exponential, and/or sinusoidal families, and can be rational or irrational

functions. The third term ̃︀ℒ[𝑢(𝑥, 𝑡;𝜔);𝜔] has a functional form completely unknown.

The stochastic initial and boundary condition formulations can also have uncertain

function forms, similar to the dynamical modeling system itself, e.g. they can be

known, belonging to a family, or unknown.

In some cases, candidate models have different complexities,

ℳ𝑖 :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜕𝑢𝑖

1(𝑥,𝑡;𝜔)

𝜕𝑡
= ℒ𝑖

1[𝑢
𝑖
1(𝑥, 𝑡;𝜔), ..., 𝑢𝑖𝑁𝑣(𝑖)

(𝑥, 𝑡;𝜔),𝜃𝑖(𝜔),𝑥, 𝑡;𝜔]

...
𝜕𝑢𝑖

𝑁𝑣(𝑖)
(𝑥,𝑡;𝜔)

𝜕𝑡
= ℒ𝑖

𝑁𝑣(𝑖)
[𝑢𝑖1(𝑥, 𝑡;𝜔), ..., 𝑢𝑖𝑁𝑣(𝑖)

(𝑥, 𝑡;𝜔),𝜃𝑖(𝜔),𝑥, 𝑡;𝜔]

, (2.2)

𝑖 = 1, ..., 𝑁𝑚

where each model, ℳ𝑖, has 𝑁𝑣(𝑖) number of state variables ({𝑢𝑖1, ..., 𝑢𝑖𝑁𝑣(𝑖)
}) from a

pool of candidates, and their aggregates. In such situations, the candidate models

can often remain compatible with each other, for example low complexity models are

embedded in higher complexity ones. We refer to such classes of candidate models as,

compatible-embedded models. Of course, in general, uncertainty in parameter values,

functional forms, and complexities occur simultaneously.

Let 𝑈(𝑡;𝜔) ∈ R𝑁𝑣𝑁𝑥 denote the spatially discretized state vector of the continuous

field 𝑢(𝑥, 𝑡;𝜔). where 𝑁𝑥 denotes the dimension of the discretized state space. Next,

we assume that the observations (𝒴(𝑡;𝜔)) are indirect, noisy, and related to 𝑈(𝑡;𝜔)

according to the linear model from the state to the data space,

𝒴(𝑡;𝜔) = 𝐻𝑈 (𝑡;𝜔) + 𝑉 (𝑡;𝜔), 𝑉 (𝑡;𝜔) ∼ 𝒩 (0,𝑅) (2.3)

where 𝑁𝑦 is the number of available observations; 𝐻 ∈ R𝑁𝑦×𝑁𝑣𝑁𝑥 the observation

matrix; and 𝑉 ∈ R𝑁𝑦 a zero-mean, uncorrelated Gaussian measurement noise with

covariance matrix 𝑅 ∈ R𝑁𝑦×𝑁𝑦 . Observations are assumed to be available only at
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discrete time-instants, 𝑡𝑘 for 𝑘 = 1, 2, ..., 𝐾.

In summary, our specific objectives are thus two-folds, first to solve the stochastic

forward-modeling system (Eqs. 2.1 & 2.2), taking into account all the associated un-

certainties including compatible, compatible-embedded, and unknown model terms;

and second to simultaneously learn, in the Bayesian sense, the state fields, parame-

ters, and model equations based on the observation model (Eq. 2.3). Our Bayesian

learning thus need to evolve the prior and posterior probabilities of state fields, param-

eters, and model formulations, given the observations available and all uncertainties.

The overall goal is to accurately represent these probability density functions (pdfs),

including the marginal probabilities of known, uncertain, and unknown model for-

mulations. It is only if the observations are sufficiently informative about either the

state fields, parameters, and/or model formulations, that the Bayesian machine will

identify the true state variables, true parameters, and/or true model. If the obser-

vations are not sufficiently informative, the perfect Bayesian machine will not lead

to prefect identification, but provide the exact posterior probabilities of the models,

parameter values and/or state variable fields.

2.2 General Bayesian Learning Methodology

In this work, we start from Bayesian learning for rigorous discrimination among can-

didate models [10, 8]. Each candidate model then evolves the joint pdf of its state

variables and parameters, independently from other models, and provides probabil-

ity distributions that are conditional on the candidate model. When observations

are made, both the model-conditional state variables and parameters, and the model

pdfs are updated using Bayes’ rules [56],

𝑝𝑈 |𝒴,ℳ(𝑈 |𝑦,ℳ𝑖) =
𝑝𝒴|𝑈 ,ℳ(𝑦|𝑈 ,ℳ𝑖)

𝑝𝒴|ℳ(𝑦|ℳ𝑖)
𝑝𝑈 |ℳ(𝑈 |ℳ𝑖) ,

∀ 𝑈 ∈ R𝑁𝑣𝑁𝑥 ,∀ 𝑖 ∈ {1, ..., 𝑁𝑚} ,

𝑝ℳ|𝒴(ℳ𝑛|𝑦) =
𝑝𝒴|ℳ(𝑦|ℳ𝑖)

𝑝𝒴(𝑦)
𝑝ℳ(ℳ𝑖) , ∀ 𝑖 ∈ {1, ..., 𝑁𝑚} ,

(2.4)
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where ℳ𝑖 is the 𝑖𝑡ℎ model candidate and the distributions 𝑝𝑈 |ℳ(𝑈 |ℳ𝑖) and

𝑝𝑈 |𝒴,ℳ(𝑈 |𝑦,ℳ𝑖) are the prior and posterior model-conditional state variable distri-

butions, respectively. The model distribution 𝑝ℳ(∙) is the prior probability for each

of the candidates being the true model and 𝑝ℳ|𝒴(∙|𝑦) is the corresponding posterior

model distribution. This pdf 𝑝ℳ|𝒴(∙|𝑦) allows learning by exact Bayesian discrimi-

nation among candidate models. In particular, when observations are not sufficient

to achieve unequivocally the ultimate learning objective, this posterior pdfs will cor-

rectly represent the ambiguity including possible multimodal distributions and the

effects of biases in the candidate models [10, 8].

The above Bayesian learning evolves each stochastic candidate model separately.

To increase efficiency, this can be circumvented, for example, when models are com-

patible or compatible-embedded. Next, we thus develop new stochastic parameteri-

zations that unify all such candidate models into a single general modeling system.

We recast the model learning into new parameter estimation problems, using special

stochastic parameters (Sect. 2.2.1) and stochastic piece-wise function approximation

theory (Sect. 2.2.2). We then evolve the joint probabilities of the state fields and of the

regular and special parameters using new stochastic DO equations (Appendix A and

Sect. 2.3.3). Finally, at each observation time, we perform Bayesian learning using the

GMM-DO filter (Appendix B) with state augmentation (Appendix C). The overall

methodology (Sect. 2.2) avoids the computation of the discrete marginal likelihoods,

𝑝𝒴|ℳ(𝑦|ℳ𝑖), and instead learns in a parameterized continuous model space. It thus

extends learning among discrete model formulations to learning within a continuous

infinite range of formulations as well as across models of different complexities and

into unknown models. In other words, we remain able to discriminate among existing

models, but we can now also interpolate or even extrapolate in the space of models

to discover new ones.
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2.2.1 Special Stochastic Parameters: Compatible and

Compatible-embedded Models

Let us first consider the case when according to prior scientific knowledge, the uncer-

tain model belongs to a set of compatible candidate functional forms (ℒ̂[∙]; Eq. 2.1).

In order to recast this learning problem with multiple models into a learning problem

with a single model and parameter estimation, the compatible candidate model func-

tions are added to each other but only after being multiplied with novel stochastic

parameters. Each of the candidates is thus assigned a special stochastic parameter

that can take discrete or continuous values depending on the learning objectives and

prior knowledge. For example, binary values would be utilized to discriminate be-

tween presence or absence of certain functions, while other values would be utilized to

allow some linear interpolation within the space defined by the compatible candidate

models. To complete Bayesian learning, when observations are collected, the proba-

bility distributions of these uncertain special parameters (𝛼𝑘(𝜔)’s, 𝑘 = 1, ..., 𝑁𝑚) are

updated and their mean values estimated alongside these of other regular parameters

(𝜃(𝑡;𝜔)), using state augmentation. Summarizing, the general model can thus be

written as a stochastic linear combination of the candidates,

ℒ̂[𝑢(𝑥, 𝑡;𝜔), 𝑡;𝜔] =
𝑁𝑚∑︁
𝑘=1

𝛼𝑘(𝜔)ℒ𝑘[𝑢(𝑥, 𝑡;𝜔),𝑥, 𝑡;𝜔] . (2.5)

where the distribution of the 𝛼𝑘(𝜔) is updated at each observation time. This new

formulation can thus both help select active candidate functions and identify their

linear combinations. It allows interpolating in the space of known candidate functions.

Next, we extend this approach to learn model complexity (Eq. 2.2). This is

achieved by defining new states multiplied with special stochastic parameters, 𝑢′
𝑘 =

𝛽𝑘(𝜔)𝑢𝑘, and a general model, ℒ′
𝑘, which encompasses all the candidates in the class
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of compatible-embedded models,

𝜕𝑢′
𝑘(𝑥, 𝑡;𝜔)

𝜕𝑡
= ℒ′

𝑘[𝑢′
1(𝑥, 𝑡;𝜔), ...,𝑢′

𝑁𝑣
(𝑥, 𝑡;𝜔),𝜃(𝑡;𝜔),𝛽(𝜔),𝑥, 𝑡;𝜔], 𝑘 = 1, ..., 𝑁𝑣

(2.6)

where 𝑁𝑣 = max{𝑁𝑣(𝑖)}𝑁𝑚
𝑖=1. By learning these special parameters, we can eliminate

certain state variables or aggregate them to form new states, and determine the model

of appropriate complexity that best explains the observed data. To illustrate such

combinations of compatible-embedded models into a general model, let us consider

a case with only two candidate models (𝑁𝑚 = 2 in Eq. 2.2). Let us further assume

that the set of states of the first model ({𝑢1, ..., 𝑢𝑁𝑣(1)}) are fully contained within

the set of states of the second model ({𝑢1, ..., 𝑢𝑁𝑣(1), ..., 𝑢𝑁𝑣(2)}), and the goal is to

discriminate between the presence or absence of either of the model. Using a special

stochastic parameter 𝛽(𝜔) that is allowed to take only binary values and new states

𝑢′
𝑁𝑣(1)+1 = 𝛽(𝜔)𝑢𝑁𝑣(1)+1, ..., 𝑢′

𝑁𝑣(2)
= 𝛽(𝜔)𝑢𝑁𝑣(2), the general model can be written

as (based on Eq. 2.2 and omitting explicit dependence on 𝑥, 𝑡, & 𝜔 for brevity),

𝜕𝑢1
𝜕𝑡

=(1 − 𝛽)ℒ1
1[𝑢1, ..., 𝑢𝑁𝑣(1),𝜃

1] + 𝛽ℒ2
1[𝑢1, ..., 𝑢𝑁𝑣(1), 𝑢

′
𝑁𝑣(1)+1, ..., 𝑢

′
𝑁𝑣(2),𝜃

2] ,

...
𝜕𝑢𝑁𝑣(1)

𝜕𝑡
=(1 − 𝛽)ℒ1

𝑁𝑣(1)[𝑢1, ..., 𝑢𝑁𝑣(1),𝜃
1] + 𝛽ℒ2

𝑁𝑣(1)[𝑢1, ..., 𝑢𝑁𝑣(1), 𝑢
′
𝑁𝑣(1)+1, ..., 𝑢

′
𝑁𝑣(2),𝜃

2] ,

𝜕𝑢′𝑁𝑣(1)+1

𝜕𝑡
=𝛽ℒ2

𝑁𝑣(1)+1[𝑢1, ..., 𝑢𝑁𝑣(1), 𝑢
′
𝑁𝑣(1)+1, ..., 𝑢

′
𝑁𝑣(2),𝜃

2] ,

...

𝜕𝑢′𝑁𝑣(2)

𝜕𝑡
=𝛽ℒ2

𝑁𝑣(2)[𝑢1, ..., 𝑢𝑁𝑣(1), 𝑢
′
𝑁𝑣(1)+1, ..., 𝑢

′
𝑁𝑣(2),𝜃

2] ,

(2.7)

where 𝛽(𝜔) = 0 leads to the first candidate model, and 𝛽(𝜔) = 1 to the second

candidate model. In similar fashion, we can derive the general model for cases with

more than two candidate models, with states in one model being aggregate of states

in other models, etc.
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2.2.2 Stochastic Piece-wise Linear Function Approximations:

Unknown Models

The above two new uses of special stochastic parameters require a set of candidate

functional forms to choose from. However, in some cases, there might be no such

prior information / candidates available, hence the unknown part ̃︀ℒ of the model

(Eq. 2.1). These model functions then need to be discovered. We thus propose to

parameterize such an unknown function space using stochastic piece-wise continuous

functions. In the present work, we consider dense piece-wise linear functions as this

representation is both rich and simple, and provides practical approximations of any

unknown function. It greatly enhances the functional space in which we can perform

our Bayesian search, and enables the discovery of new learned functions.

For brevity, let us only consider the scalar case, where ̃︀ℒ[𝑢(𝑥, 𝑡;𝜔);𝜔] is the un-

known function (Eq. 2.1) of a single scalar state variable. Also, it is often the case

that prior information about the range of values taken by the state variable is avail-

able, 𝑢(𝑥, 𝑡;𝜔) ∈ [𝑢𝐿, 𝑢𝑅], ∀𝑥 ∈ 𝒟 and 𝑡 ∈ [0, 𝑇 ]. Now, to define a parameterization

using continuous piece-wise linear segments, consider the range ℋ = [𝑢𝐿, 𝑢𝑅] to be an

indexed collection of intervals with non-zero measure {𝐼𝑖 = [𝑢𝑖𝐿, 𝑢
𝑖
𝑅]}0≤𝑖≤𝑁𝐼

forming a

partition of ℋ, i.e.,

ℋ =

𝑁𝐼⋃︁
𝑖=0

𝐼𝑖 and �̊�𝑖 ∩ 𝐼𝑗 = ∅ for 𝑖 ̸= 𝑗 , (2.8)

and we use 𝑁𝐼 + 1 points to discretize the range, such that,

𝑢𝐿 = 𝑢0𝐿 < 𝑢0𝑅 = 𝑢1𝐿 < ... < 𝑢𝑁𝐼−1
𝑅 = 𝑢𝑁𝐼

𝐿 < 𝑢𝑁𝐼
𝑅 = 𝑢𝑅 . (2.9)
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Let {Ψ0, ...,Ψ𝑁𝐼+1} be the linear functions defined on each of these element,

Ψ0(𝑢) =

⎧⎪⎨⎪⎩
1

(𝑢0
𝑅−𝑢𝐿)

(𝑢0𝑅 − 𝑢) if 𝑢 ∈ 𝐼0 ,

0 otherwise

Ψ𝑘(𝑢) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

(𝑢𝑘−1
𝑅 −𝑢𝑘−1

𝐿 )
(𝑢− 𝑢𝑘−1

𝐿 ) if 𝑢 ∈ 𝐼𝑘−1 ,

1
(𝑢𝑘

𝑅−𝑢𝑘
𝐿)

(𝑢𝑘𝑅 − 𝑢) if 𝑢 ∈ 𝐼𝑘 ,

0 otherwise

for 𝑘 ∈ {1, ..., 𝑁𝐼} ,

Ψ𝑁𝐼+1(𝑢) =

⎧⎪⎨⎪⎩
1

(𝑢𝑅−𝑢𝑁
𝐿 )

(𝑢− 𝑢𝑁𝐿 ) if 𝑢 ∈ 𝐼𝑁𝐼
,

0 otherwise

(2.10)

and 𝛾𝑘(𝜔)′𝑠, 𝑘 ∈ 0, ..., 𝑁𝐼 + 1 be 𝑁𝐼 + 2 stochastic expansion coefficients that param-

eterize the unknown function space by taking a linear combination of the functions

defined on each elements. Hence, all together we obtain:

̃︀ℒ[𝑢(𝑥, 𝑡;𝜔);𝜔] =

𝑁𝐼+1∑︁
𝑘=0

𝛾𝑘(𝜔)Ψ𝑘(𝑢(𝑥, 𝑡;𝜔)) . (2.11)

Thus, estimating the stochastic parameters 𝛾𝑘’s, in turn leads to learning of the un-

known model function. The above formulation ensures 𝐶0 continuity in the functional

space. The prior distribution of these parameters define the functional space in which

the search is performed. By construction, this parameterized space can be made as

dense as desired. Next, we extend this formulation to any general basis, such as

higher degree polynomials, etc.

2.2.3 Stochastic Piece-wise Polynomial Function Approxima-

tions: Unknown Models

Now, let us say that we want to learn the unknown term ℒ̃[𝑢(𝑥, 𝑡;𝜔);𝜔] using a

polynomial of order 𝑘, 𝑃 𝑘. The 𝑁𝐼 + 1 points introduced in the discretization for

the linear case (equation 2.9), will now act as the global nodes. For each of the
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interval 𝐼𝑖, we introduce local nodes, 𝜉𝑖,𝑚 = 𝑢𝑖 + 𝑚
𝑘

(𝑢𝑖+1 − 𝑢𝑖), and let {𝑃 𝑘
𝑖,0, ..., 𝑃

𝑘
𝑖,𝑘}

be the Lagrange or similar interpolation polynomials associated with these nodes.

For 𝑗 ∈ {0, ..., 𝑘(𝑁𝐼 + 1)} with 𝑗 = 𝑘𝑖+𝑚 and 0 ≤ 𝑚 ≤ 𝑘− 1, define the function Ψ𝑗

element-wise as follows:

For 1 ≤ 𝑚 ≤ 𝑘 − 1,

Ψ𝑘𝑖+𝑚(𝑢) =

⎧⎪⎨⎪⎩𝑃
𝑘
𝑖,𝑚(𝑢) if 𝑢 ∈ 𝐼𝑖,

0 otherwise
(2.12)

and for 𝑚 = 0,

Ψ𝑘𝑖(𝑢) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑃 𝑘
𝑖−1,𝑘(𝑢) if 𝑢 ∈ 𝐼𝑖−1,

𝑃 𝑘
𝑖,0(𝑢) if 𝑢 ∈ 𝐼𝑖,

0 otherwise

(2.13)

with obvious modifications if 𝑖 = 0 or 𝑁𝐼 + 1. Now, let 𝛾𝑗(𝜔), 𝑗 ∈ 0, ..., 𝑘(𝑁𝐼 + 1) be

𝑘(𝑁𝐼 + 1) + 1 stochastic expansion coefficients, hence, the unknown function could

be expressed as a linear combination of the polynomial basis (Ψ𝑗’s) defined above,

ℒ̃[𝑢(𝑥, 𝑡;𝜔);𝜔] =

𝑘(𝑁𝐼+1)∑︁
𝑗=0

𝛾𝑗(𝜔)Ψ𝑗(𝑢(𝑥, 𝑡;𝜔)) (2.14)

Assigning appropriate priors to stochastic parameters, 𝛾𝑗’s, determines the initial

function space in which the search is performed. The above discussion is adopted

from chapter 1 of Guermond, 2016 [57].

2.2.4 Bayesian Learning: stochastic DO PDEs, GMM-DO Fil-

ter, and Learning Skill

To provide an accurate and informative prior for our new Bayesian learning paradigm

with uncertain and unknown nonlinear dynamics and PDEs, we employ Dynamically

Orthogonal (DO) equations [11, 12, 13]. The DO equations are optimal reduced
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order differential equations that evolve, based on the governing nonlinear dynamics,

the dominant probabilistic subspace. Their derivation with uncertain parameters is

provided in Appendix A and in Sect. 2.3.3 for biogeochemical specifics.

For the Bayesian learning at each observation time, the GMM-DO filter [16, 17] is

used to perform nonlinear, non-Gaussian Bayesian updates of the probability distri-

bution of the state variables, as detailed in Appendix B. This approach is extended

to stochastic dynamical models featuring uncertain parameters using the technique

of state augmentation [58, 8] (Appendix C), enabling joint Bayesian learning of state

variables and parameters. Then, combining the GMM-DO filter with state augmen-

tation, our novel schemes of recasting the learning of compatible and compatible-

embedded models into special parameter estimations and of parameterizing the space

of unknown model functions using piece-wise linear continuous functions, allow for

efficient simultaneous Bayesian estimation of state variable fields, parameters, and

model equations themselves, all while using a single modeling system. For the former

scheme, the learning occurs within the space of candidate models while for the lat-

ter, it occurs outside of that space and into the space of unknown model functions,

hence providing the capability for full model discovery. Most importantly, this dis-

covery is interpretable as it is in the form of piece-wise linear continuous functions.

In addition, all of our Bayesian estimations provide much more than maximum likeli-

hood estimates: they predict and update the complete joint probability distribution

of states, parameters, and models. When the observations are not sufficiently infor-

mative to learn and eliminate all but one model, parameter value, or state variable

field, our Bayesian learning can provide the correct multi-modal pdfs. Our learning

can indeed represent ambiguity, e.g. multiple options are possible, or even equifinality

[59], e.g. a set of model estimates have the same likelihood. It can also signal the

presence of bias in competing model formulations. Such capabilities will be showcased

in (Sect. 2.4).

To evaluate the learning skill, we first compare the mean fields and parameters

with the noisy observations, using several error metrics. We also analyze the evolution

of the pdfs of fields and parameters, as well as the convergence of these pdfs with
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stochastic resolution.

2.3 Biogeochemical-Physical Equations and Simulated

Experiments Setup

In this section, we describe the specifics of our simulated Bayesian learning experi-

ments. We start with the biogeochemical differential equations, their coupling with

the physics PDEs, and the stochastic DO decomposition with uncertain and unknown

terms. This is followed by details of the modeling domain, numerical methods, initial-

ization of the stochastic simulations, true solution generation, simulated observations,

and learning metrics.

2.3.1 Biogeochemical Models

The biogeochemical differential equations that we employ are adapted from [60, 61]

and references therein, and from Newberger et. al., [3]. They meet the criterion

of being compatible with each other, with low complexity models being embedded

in higher complexity models (compatible-embedded-models). We will utilize three

reaction models: the three-component NPZ model, i.e., nutrients (𝑁), phytoplankton

(𝑃 ), and zooplankton (𝑍); the four-component NPZD model, i.e., 𝑁 , 𝑃 , 𝑍 and

Detritus (𝐷); and, the five-component NNPZD model, i.e., ammonia (𝑁𝐻4), nitrate

(𝑁𝑂3), 𝑃 , 𝑍, and 𝐷. The NPZ model is given by,

𝑑𝑁

𝑑𝑡
= −𝐺 𝑃𝑁

𝑁 +𝐾𝑢

+ Ξ𝑃 + Γ𝑍 +𝑅𝑚𝛾𝑍(1 − exp−Λ𝑃 ) ,

𝑑𝑃

𝑑𝑡
= 𝐺

𝑃𝑁

𝑁 +𝐾𝑢

− Ξ𝑃 −𝑅𝑚𝑍(1 − exp−Λ𝑃 ) ,

𝑑𝑍

𝑑𝑡
= 𝑅𝑚(1 − 𝛾)𝑍(1 − exp−Λ𝑃 ) − Γ𝑍 ,

(2.15)

with 𝐺 representing the optical model,

𝐺 = 𝑉𝑚
𝛼𝐼

(𝑉 2
𝑚 + 𝛼2𝐼2)1/2

, and 𝐼(𝑧) = 𝐼0 exp𝑘𝑤𝑧 , (2.16)
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where 𝑧 is depth and 𝐼(𝑧) models the availability of sunlight for photo-chemical reac-

tions. The parameters in Eqs. 6.26 & 6.27 are: 𝑘𝑤, light attenuation by sea water; 𝛼,

initial slope of the 𝑃 -𝐼 curve; 𝐼0, surface photosynthetically available radiation; 𝑉𝑚,

phytoplankton maximum uptake rate; 𝐾𝑢, half-saturation constant for phytoplank-

ton uptake of nutrients; Ξ, phytoplankton specific mortality rate; 𝑅𝑚, zooplankton

maximum grazing rate; Λ, Ivlev grazing constant; 𝛾, fraction of zooplankton grazing

egested; and Γ, zooplankton specific excretion/mortality rate. In this NPZ model (Eq.

6.26), the nutrient uptake by phytoplankton is governed by a Michaelis-Menten formu-

lation, which amounts to a linear uptake relationship at low nutrient concentrations

that saturates to a constant at high concentrations. The grazing of phytoplankton

by zooplankton follows a similar behavior: their growth rate becomes independent of

𝑃 in case of abundance, but proportional to available 𝑃 when resources are scarce;

hence, zooplankton grazing is modeled by an Ivlev function. The death rates of both

𝑃 and 𝑍 are linear, and a portion of zooplankton grazing in the form of excretion

goes directly to nutrients.

For the NPZD model, the only change is in the addition of detritus, which is the

intermediate state before dead plankton get converted to nutrients,

𝑑𝑁

𝑑𝑡
= −𝐺 𝑃𝑁

𝑁 +𝐾𝑢

+ Φ𝐷 + Γ𝑍 ,

𝑑𝐷

𝑑𝑡
= 𝑅𝑚𝛾𝑍(1 − exp−Λ𝑃 ) + Ξ𝑃 − Φ𝐷 .

(2.17)

However, for the NNPZD model, the nutrients are divided into ammonia and

nitrates, which are the two most important forms of nitrogen in the ocean [38, 39].

This helps to capture new processes such as, phytoplankton cells preferentially taking

up ammonia over nitrate because the presence of ammonia inhibits the activity of

the enzyme nitrate reductase essential for the uptake kinetics, the pool of ammonia

coming from remineralization of detritus, and part of this ammonia pool getting

oxidized to become a source of nitrate referred to as nitrification, etc. [38, 39, 62].
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The NNPZD model is given by,

𝑑𝑁𝑂3

𝑑𝑡
= Ω𝑁𝐻4 −𝐺

[︂
𝑁𝑂3

𝑁𝑂3 +𝐾𝑢

exp−Ψ𝐼𝑁𝐻4

]︂
𝑃 ,

𝑑𝑁𝐻4

𝑑𝑡
= − Ω𝑁𝐻4 + Φ𝐷 + Γ𝑍 −𝐺

[︂
𝑁𝐻4

𝑁𝐻4 +𝐾𝑢

]︂
𝑃 ,

𝑑𝑃

𝑑𝑡
= 𝐺

[︂
𝑁𝑂3

𝑁𝑂3 +𝐾𝑢

exp−Ψ𝐼𝑁𝐻4 +
𝑁𝐻4

𝑁𝐻4 +𝐾𝑢

]︂
𝑃 − Ξ𝑃 −𝑅𝑚𝑍(1 − exp−Λ𝑃 ) ,

𝑑𝑍

𝑑𝑡
= 𝑅𝑚(1 − 𝛾)𝑍(1 − exp−Λ𝑃 ) − Γ𝑍 ,

𝑑𝐷

𝑑𝑡
= 𝑅𝑚𝛾𝑍(1 − exp−Λ𝑃 ) + Ξ𝑃 − Φ𝐷 .

(2.18)

The above three models aim to capture the lower-trophic-level (LTL) interactions

in the ocean ecosystem. They are the Lagrangian or ordinary differential equation

(ODE) versions of these models. For realistic ocean field simulations, the above

rates of change are material derivatives of dynamic tracers that are coupled with the

physics using advection-diffusion-reaction PDEs. Of course, these models are not

directly applicable in every ocean region without parameter tuning or modifying the

functional form of the reaction terms. Regional diversity is one of the reasons for

parameter and functional form (model) uncertainties.

2.3.2 Coupling with the Physics

In biogeochemical-physical models, the physics is provided by solving PDEs for the

conservation of mass and momentum (Navier-Stokes), internal energy, and salt, e.g.,

the ocean primitive equations [63, 64]. These models often contain parameterizations

to represent subgridscale processes [65, 66]. In the present work, we employ the

incompressible nonhydrostatic Reynolds-averaged Navier-Stokes (RANS) PDEs [67],

∇.𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ 𝒟 ,

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ ∇.(𝑢(𝑥, 𝑡)𝑢(𝑥, 𝑡)) = −∇𝑝(𝑥, 𝑡) + 𝜈𝐸∇2𝑢(𝑥, 𝑡) , 𝑥 ∈ 𝒟 ,

(2.19)
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where 𝑢(𝑥, 𝑡) is the velocity field, 𝑝(𝑥, 𝑡) the pressure field, and 𝜈𝐸 the turbulent eddy

viscosity.

The Lagrangian biogeochemical models (Sect. 2.3.1) are coupled with the physics

using stochastic advection-diffusion-reaction (ADR) PDEs. For 𝑁𝜑 stochastic biogeo-

chemical tracers, 𝜑𝑖(𝑥, 𝑡;𝜔)’s, we obtain,

𝜕𝜑𝑖(𝑥, 𝑡;𝜔)

𝜕𝑡
+ ∇.(𝑢(𝑥, 𝑡)𝜑𝑖(𝑥, 𝑡;𝜔))⏟  ⏞  

Advection

−𝒦𝐸∇2𝜑𝑖(𝑥, 𝑡;𝜔)⏟  ⏞  
Diffusion

= 𝑆𝜑𝑖

(𝜑1, ..., 𝜑𝑁𝜑 , 𝜃1(𝜔), ..., 𝜃𝑁𝜃(𝜔),𝑥, 𝑡;𝜔)⏟  ⏞  
Reaction

, ∀𝑖 = {1, ..., 𝑁𝜑},
(2.20)

where 𝑢(𝑥, 𝑡) is the deterministic velocity field governed by (2.19), 𝒦𝐸 is the eddy

diffusivity, 𝑆𝜑𝑖
(𝜑1, ..., 𝜑𝑁𝜑 , 𝜃1(𝜔), ..., 𝜃𝑁𝜃(𝜔),𝑥, 𝑡;𝜔) are the reaction terms defined by

the right-hand-side of the ODEs of Sect. 2.3.1, and the 𝜃𝑙(𝜔)’s, 𝑙 = {1, ..., 𝑁𝜃}, are

the uncertain biogeochemical parameters. Biogeochemical reactions are nonlinear in

nature, hence, the PDEs (2.20) form a set of strongly nonlinear, stiff, and coupled

PDEs.

2.3.3 Biogeochemical-Physical Stochastic Dynamically-Orthogonal

PDEs

To solve the system of Eqs. (2.19 & 2.20) efficiently, we now develop the DO equations

for the stochastic ADR PDEs (2.20) with model and parameter uncertainty. We first

separate the reactions into known, uncertain, and unknown terms, and write (2.20)

in vector form,

𝜕𝜑(𝑥, 𝑡;𝜔)

𝜕𝑡
+ ∇.(𝑢(𝑥, 𝑡)𝜑(𝑥, 𝑡;𝜔)) −𝒦𝐸∇2𝜑(𝑥, 𝑡;𝜔)

= 𝑆𝜑(𝜑(𝑥, 𝑡;𝜔),𝜃(𝜔),𝛽(𝜔),𝑥, 𝑡;𝜔)

+ ̂︀𝑆𝜑(𝜑(𝑥, 𝑡;𝜔),𝜃(𝜔),𝛼(𝜔),𝛽(𝜔),𝑥, 𝑡;𝜔)

+ ̃︀𝑆𝜑(𝜑(𝑥, 𝑡;𝜔),𝛾(𝜔),𝑥, 𝑡;𝜔) ,

(2.21)
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where 𝜑 = [𝜑𝑖]
𝑁𝜑

𝑖=1. The functional form of the first reaction term 𝑆𝜑(∙) =
[︁
𝑆𝜑𝑖

(∙)
]︁𝑁𝜑

𝑖=1

is assumed to be known, however it contains 𝑁𝜃 uncertain regular parameters 𝜃(𝜔) =[︀
𝜃𝑘
]︀𝑁𝜃

𝑘=1
. The second term ̂︀𝑆𝜑(∙) =

[︁̂︀𝑆𝜑𝑖
(∙)
]︁𝑁𝜑

𝑖=1
is uncertain: it belongs to a family of

candidate functions, parameterized using 𝑁𝛼 special stochastic parameters 𝛼(𝜔) =[︀
𝛼𝑘
]︀𝑁𝛼

𝑘=1
, and may contain uncertain regular parameters 𝜃(𝜔). The candidate models

of different complexities are combined using 𝑁𝛽 special stochastic parameters 𝛽(𝜔) =[︀
𝛽𝑘
]︀𝑁𝛽

𝑘=1
. The 𝛽𝑘(𝜔)’s multiplied with the original biological tracer fields (as described

in Sect. 2.2.1) are absorbed into 𝜑𝑖’s and not explicitly shown; however, 𝛽𝑘(𝜔)’s

usually appear on the right-hand-side (RHS) of 𝑆𝜑(∙) and ̂︀𝑆𝜑(∙). The third term̃︀𝑆𝜑(∙) =
[︁̃︀𝑆𝜑𝑖

(∙)
]︁𝑁𝜑

𝑖=1
has a functional form completely unknown, and is parameterized

using 𝑁𝛾 stochastic expansion coefficients 𝛾(𝜔) =
[︀
𝛾𝑘
]︀𝑁𝛾

𝑘=1
. The DO decomposition

for the biogeochemical fields into mean �̄�, modes �̃�𝑖, and stochastic coefficients 𝑌𝑖, is

given by,

𝜑(𝑥, 𝑡;𝜔) = �̄�(𝑥, 𝑡) +
𝑁𝑠∑︁
𝑖=1

�̃�𝑖(𝑥, 𝑡)𝑌𝑖(𝑡;𝜔) . (2.22)

The uncertain regular and special stochastic parameters are split into means and

deviations, 𝜃(𝜔) = 𝜃 + D𝜃(𝜔), 𝛼(𝜔) = �̄� + D𝛼(𝜔), and 𝛽(𝜔) = 𝛽 + D𝛽(𝜔). For

the nonlinear reaction terms in 𝑆𝜑(∙) and ̂︀𝑆𝜑(∙), as for the nonlinear path planning

optimal propulsion term [68, 69], we utilize a local Taylor series expansion around the

statistical means, �̄�(𝑥, 𝑡), 𝜃, �̄�, and 𝛽, to locally represent the nonlinear stochastic

effects in the reaction equations as nonlinear mean terms plus stochastic deviations.

As we will exemplify, for most uncertainties, such stochastic approximation is efficient

for Bayesian learning as it maintains the significant computational advantages of the

DO methodology (Appendix A) with respect to the other methods [70]. Handling

the ̃︀𝑆[∙] term is less straightforward because of the need to evaluate the interval in

which each state realization value lies at every spatial location and time (see Sect.

2.2.2). Presently, for maximum accuracy, we directly evaluate the ̃︀𝑆[∙] term for every

state realization in a Monte-Carlo fashion. To increase efficiency without much loss

73



of accuracy, very recent techniques such as dynamic clustering [71, 72, 73] Next,

we directly provide the resulting DO equations for the mean, modes, and stochastic

coefficients (omitting function arguments and now using 𝑖, 𝑗, 𝑛, and 𝑚 as summation

indices),

𝜕�̄�

𝜕𝑡
= −∇.(𝑢�̄�) + 𝒦𝐸∇2�̄� + 𝑆𝜑|𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

+ ̂︀𝑆𝜑| 𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

+ E[ ̃︀𝑆𝜑] ,

𝜕�̃�𝑖

𝜕𝑡
= 𝑄𝑖 −

𝑁𝑠∑︁
𝑗=1

⟨𝑄𝑖, �̃�𝑗⟩�̃�𝑗 ,

𝑑𝑌𝑖
𝑑𝑡

=
𝑁𝑠∑︁
𝑚=1

⟨𝐹𝑚, �̃�𝑖⟩𝑌𝑚 +

𝑁𝜃∑︁
𝑚=1

⟨
𝜕𝑆𝜑

𝜕𝜃𝑖

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

, �̃�𝑖

⟩
D𝜃

𝑚 +

𝑁𝛽∑︁
𝑚=1

⟨
𝜕𝑆𝜑

𝜕𝛽

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

, �̃�𝑖

⟩
D𝛽

𝑚

+

𝑁𝜃∑︁
𝑚=1

⟨
𝜕 ̂︀𝑆𝜑

𝜕𝜃𝑖

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

, �̃�𝑖

⟩
D𝜃

𝑚 +
𝑁𝛼∑︁
𝑚=1

⟨
𝜕 ̂︀𝑆𝜑

𝜕𝛼𝑖

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

, �̃�𝑖

⟩
D𝛼

𝑚

+

𝑁𝛽∑︁
𝑚=1

⟨
𝜕 ̂︀𝑆𝜑

𝜕𝛽𝑖

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

, �̃�𝑖

⟩
D𝛽

𝑚 +
⟨ ̃︀𝑆𝜑 − E[ ̃︀𝑆𝜑], �̃�𝑖

⟩
,

(2.23)
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where,

𝑄𝑖 = −∇.(𝑢�̃�𝑖) + 𝒦𝐸∇2�̃�𝑖 +
𝜕𝑆𝜑

𝜕𝜑

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

𝜑𝑖 +
𝑁𝑠∑︁
𝑗=1

𝑁𝜃∑︁
𝑛=1

𝐶−1
𝑌𝑖𝑌𝑗

𝐶D𝜃
𝑛𝑌𝑗

𝜕𝑆𝜑

𝜕𝜃𝑛

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

+
𝑁𝑠∑︁
𝑗=1

𝑁𝛽∑︁
𝑛=1

𝐶−1
𝑌𝑖𝑌𝑗

𝐶D𝛽
𝑛𝑌𝑗

𝜕𝑆𝜑

𝜕𝛽𝑛

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

+
𝜕 ̂︀𝑆𝜑

𝜕𝜑

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

𝜑𝑖 +
𝑁𝑠∑︁
𝑗=1

𝑁𝜃∑︁
𝑛=1

𝐶−1
𝑌𝑖𝑌𝑗

𝐶D𝜃
𝑛𝑌𝑗

𝜕 ̂︀𝑆𝜑

𝜕𝜃𝑛

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

+
𝑁𝑠∑︁
𝑗=1

𝑁𝛼∑︁
𝑛=1

𝐶−1
𝑌𝑖𝑌𝑗

𝐶D𝛼
𝑛𝑌𝑗

𝜕 ̂︀𝑆𝜑

𝜕𝛼𝑛

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

+
𝑁𝑠∑︁
𝑗=1

𝑁𝛽∑︁
𝑛=1

𝐶−1
𝑌𝑖𝑌𝑗

𝐶D𝛽
𝑛𝑌𝑗

𝜕 ̂︀𝑆𝜑

𝜕𝛽𝑛

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

+
𝑁𝑠∑︁
𝑗=1

𝐶−1
𝑌𝑖𝑌𝑗

E[𝑌𝑗 ̃︀𝑆𝜑] ,

𝐹𝑚 = −∇.(𝑢�̃�𝑚) + 𝒦𝐸∇2�̃�𝑚 +
𝜕𝑆𝜑

𝜕𝜑

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

𝜑𝑚 +
𝜕 ̂︀𝑆𝜑

𝜕𝜑

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

𝜑𝑚 ,

(2.24)

with 𝐶∙,∙ representing cross-covariances, E[∙] expectations, and ⟨∙, ∙⟩ spatial inner-

products operators.

2.3.4 Modeling Domain and Boundary Conditions

Our modeling domain is inspired from the Stellwagen Bank at the edge of Mas-

sachusetts Bay, which is a whale feeding ground [74, 75, 62, 76, 77, 78, 79]. The

experimental setup consists of a two-dimensional domain with a seamount represent-

ing an idealized sill (Fig. 2-1). The mean flow occurs from left to right in the positive

𝑥-direction over the seamount. Such flows can create upwelling of nutrients, leading

to phytoplankton blooms, zooplankton responses, and nutrient uptake and recycling.

A horizontal length scale of 𝐷 ≈ 1 𝑘𝑚 is chosen for the seamount, while the

vertical height scale is 𝐻 ≈ 50 𝑚. The overall transverse height of the domain is

𝐻𝑖𝑛 = 100 𝑚. The longitudinal length of the domain is 𝐿 = 20 𝑘𝑚, with center of

the seamount at 𝑋𝑐 = 7.5 𝑘𝑚.

Further, we only consider deterministic boundary conditions (BCs) models. The

inlet at the left boundary has Dirichlet BCs for velocity, and zero Neumann for
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Figure 2-1: Two-dimensional spatial domain of the flow past a seamount. The
seamount is defined by 𝐻𝑒−(𝑥−𝑋𝑐)2/𝐷2 , where 𝐷 is the characteristic width, 𝐻 the
height, and 𝑋𝑐 the distance between the inlet and the center of the seamount. Ob-
servations are collected downstream of the seamount (see example sensor locations
inset), with the exact observation locations depending on the particular experiment.

biological tracers,

𝑢 = 𝑈, 𝑣 = 0 and
𝜕𝜑𝑖

𝜕𝑥
= 0, at 𝑥 = 0 , ∀𝑖 ∈ {1, ..., 𝑁𝜑} . (2.25)

On the top and bottom boundary, free slip for velocity and again zero Neumann for

tracers are applied,

𝜕𝑢

𝜕𝑧
= 0, 𝑣 = 0 and

𝜕𝜑𝑖

𝜕𝑧
= 0, at 𝑧 = 0 & ℎ , ∀𝑖 ∈ {1, ..., 𝑁𝜑} . (2.26)

At the outlet on the right boundary, we have open BCs with zero Neumann for all

the state variables,

𝜕𝑢

𝜕𝑥
= 0,

𝜕𝑣

𝜕𝑥
= 0 and

𝜕𝜑𝑖

𝜕𝑥
= 0, at 𝑥 = 𝐿 , ∀𝑖 ∈ {1, ..., 𝑁𝜑} . (2.27)

Finally, on the obstacle surface, no-slip for velocity and zero Neumann for tracers are

used,

𝑢 = 0, 𝑣 = 0 and
𝜕𝜑𝑖

𝜕𝑥
=
𝜕𝜑𝑖

𝜕𝑧
= 0, at 𝑧 = 𝐻𝑒−(𝑥−𝑋𝑐)2/𝐷2

, ∀𝑖 ∈ {1, ..., 𝑁𝜑} .

(2.28)
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2.3.5 Numerical Schemes

The velocity and pressure fields are governed by the incompressible nonhydrostatic

RANS PDEs (2.19). The stochastic biogeochemical fields are coupled with this dy-

namic RANS flow and governed by a dynamic reduced-order representation of the

original stochastic ADR PDEs (2.20), the DO ADR PDEs we derived (Eqs. 2.23 & 2.24).

For numerical implementation, the physical domain (Sect. 2.3.4) is discretized using

a uniform finite-volume staggered C-grid, for both the flow and stochastic biogeo-

chemical fields. The size of finite volumes in each 𝑥− and 𝑧− direction is equal to

∆𝑥 = 1
15

and ∆𝑧 = 1
15

(non-dimensional) respectively, thus, a grid-size of 300 × 30.

We solve the RANS and biogeochemical DO equations using our modular finite-

volume framework [80]. Advection is computed explicitly, using a total variation

diminishing (TVD) scheme with a monotonized flux limiter [81]. Diffusion is treated

implicitly, with a second-order central difference scheme. All the reaction terms are

computed explicitly. To handle the complex boundaries with the structured Cartesian

grid, a ghost cell immersed boundary method is adopted for accurate enforcement of

the boundary conditions (Sect. 5.2). For time-marching of the PDEs (RANS, DO

mean, and DO modes), we use a first-order forward Euler method, while for the

stochastic DO coefficient ODEs, we use a four-stage Runge-Kutta scheme. A non-

dimensional time-step of ∆𝑡 = 1
240

is used in all the experiments. It is also ensured

that we satisfy the Courant-Friedrichs-Lewy (CFL) condition at all times. We refer

to ([82]) and ([14]) for more details on the numerical schemes we employ.

2.3.6 Balanced Initialization: Parameters, State Variable Fields,

and Probabilities

The values of the parameters for the physics are chosen such that the flow emulates

some coastal ocean dynamics. The dimensional barotropic velocity at the inlet is

chosen to be 𝑈 ≈ 10−2 to 10−1 𝑚/𝑠. The subgridscale eddy-viscosity is 𝜈𝐸 ≈ 0.01

to 0.5 𝑚2/𝑠. Considering the vertical length scale of 𝐻 ≈ 50 m for the seamount,

we obtain an eddy-viscosity Reynolds number of 𝑅𝑒 = 𝑈𝐻
𝜈𝐸

≈ 1 to 500. Further,
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we do not consider any wind-forcing explicitly. For the initial velocity, we use a

divergence free velocity field that satisfies the inlet and outlet boundary conditions,

and so mass conservation in the given domain. The pressure field is initialized to be

zero throughout the domain.

The biological parameters are either deterministic or stochastic. The values of

the deterministic parameters are kept fixed for every realization, while the stochas-

tic parameters are sampled from their respective probability distributions or joint

distributions, if available. The stochastic parameters are further divided into two

categories, regular and special, where the former were originally present in the bio-

geochemical models and have biological meanings associated with them, while the

later are introduced for unification of candidate models and parameterization of un-

known functions. The values of biological parameters used in the main experiments

are given in Table 2.1. Probability distributions of all the stochastic parameters are

assumed to be uniform and independent of each other, unless otherwise specified. In

the experiments presented in this paper, advection-reaction dominates and the eddy-

diffusivity for the biological tracers can be taken as negligible, 𝒦𝐸 ≈ 0, such that the

eddy-diffusivity Peclet number 𝑃𝑒 = 𝑈𝐻
𝒦𝐸

→ ∞. Other experiments (not shown) were

also successful however with non-negligible diffusivity, e.g. [8]. In all our simulations,

a biological time-scale of the order of 1 𝑑𝑎𝑦 is used for all non-dimensionalization

purposes.

Following [83, 62, 61, 84], in all the subsequent experiments, biogeochemical fields

are initialized in dynamical balance, in accord with their stochastic model PDEs

(2.20) and their parameter values. Specifically, the initial concentration fields for

every sampled realization is obtained by finding an equilibrium solution corresponding

to its sampled parameter values. These equilibrium fields are found by solving the

ODE nonlinear biogeochemical models of Sect. 2.3.1 at all depths. Equilibrium is

reached when temporal variations become negligible, or the system reaches a limit

cycle. Further, we also impose the total biomass,
∑︀𝑁𝜑

𝑖=1 𝜑
𝑖(𝑧;𝜔) = 𝑇𝑏𝑖𝑜(𝑧), to be

conserved, with 𝑇𝑏𝑖𝑜 to be linearly increasing from 10 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at the surface

to 30 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at the depth of 100 𝑚, for all the biogeochemical models. This
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depth-dependent equilibrium solution for each of the biogeochemical state variables

is used to initialize the corresponding fields in space, with the seamount masked

at every 𝑥 location. We also ensure that none of the realizations of the stochastic

parameters lead to nonphysical equilibrium solutions, such as negative tracer values.

The value of 30 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 is used to non-dimensionalize all the biogeochemical

fields and parameter values. For the non-dimensionalization of parameters, when

needed, we additionally use a length-scale of 50 𝑚 (the height 𝐻 of the seamount)

and a time-scale of 1 𝑑𝑎𝑦.

To initialize the DO decomposition of the biogeochemical fields, after generating

the initial fields for each realization, we compute their statistical average and use it

to initialize the mean biogeochemical fields. To initialize the DO modes and stochas-

tic coefficients, we take the singular value decomposition (SVD) of the ensemble of

mean-removed concatenated fields, keeping the dominant singular values and vectors.

We account for the differences in the magnitude of the variability of individual bio-

geochemical tracers before taking the SVD, by appropriate normalization based on

their standard deviations.

2.3.7 True Solution Generation

In the present work, identical-twin experiments [85, 86, 87, 88] are conducted, and

the observations are extracted from a simulated truth. To obtain the simulated truth

fields for each experiment, a set of parameters and state fields are first sampled from

the initial realization space. Second, starting from these parameters and state fields,

the Navier-Stokes PDEs (2.19) and the deterministic version of the ADR PDEs (2.20)

with the appropriate biogeochemical model are numerically integrated. The result is

the simulated truth solution. In each experiment, all the remaining deterministic

parameters, modeling domain, and numerical schemes are kept as these of the corre-

sponding stochastic simulation using the DO equations.
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2.3.8 Observations and Inference

Sparse observations are taken from the simulated true solution (Sect. 2.3.7). In each

experiment, one of the biological tracer fields is observed at 6 to 9 locations (Fig. 2-

1). The observation locations are kept in or near the euphotic zone because deeper

depths have limited biological variability. The observation schedule is also experiment

dependent, however, is it is not more frequent than once every non-dimensional time.

The observation error standard deviation matrix (
√
𝑅 in Eq. 2.3) is assumed diag-

onal. The linear observation matrix 𝐻 (Eq. 2.3) is specified such that it predicts the

concentration of the observed tracer field at the observation locations by interpolating

the concatenated state fields at the observation locations.

Further, the hyper-parameters related to the DO equations and the GMM-DO

filter were chosen based on numerical tests and experience [17, 89, 10, 90], for each of

the experiments. For the DO equations, for example, the number of modes, of Monte-

Carlo coefficient samples, the time-step, etc., were selected so as to be sufficient to

capture the dominant uncertainty and evolving probability distribution for each of

the state vector fields, parameters, and model equations themselves. For the Bayesian

learning with the GMM-DO filter, the BIC and EM algorithm were employed to select

the optimal number of GMM components at each data time. Typical BIC-optimized

values for 𝑁GMM were found to be 10 for the present experiments.

2.3.9 Learning Metrics

We evaluate the performance of our Bayesian learning framework by comparing the

learned solution with the true solution from which noisy observations were collected

and by examining the posterior joint state-parameter-model probability distribu-

tions. For the former solution evaluations, we compare the true fields to the DO

mean fields, and the true parameter values to the most probable DO pdf values of

the parameters. To quantify performance, we examine the evolution of the Root

Mean Square Error (RMSE) of the biogeochemical tracer fields, the uncertain regu-

lar (𝜃(𝜔)) and special (𝛼(𝜔) & 𝛽(𝜔)) parameters, and/or the stochastic expansion
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coefficients (𝛾(𝜔)). The RMSE between a evolved stochastic state field/parameter

estimate 𝜑(𝑥, 𝑡;𝜔) and its corresponding true field/parameter 𝜑𝑡𝑟𝑢𝑒(𝑥, 𝑡), is given by,√︁
1
|𝒟|

∫︀
𝒟 E[(𝜑(𝑥, 𝑡;𝜔) − 𝜑𝑡𝑟𝑢𝑒(𝑥, 𝑡))2]𝑑𝑥. The square of RMSE hence consists of two

contributions [9], one is the square of the 𝐿2 distance between the mean of the vari-

able in the stochastic run and the simulated truth, while other is the variance of the

variable. In every experiment, the RMSE values of each variable are normalized by

the corresponding RMSE value just before the first assimilation step. For the lat-

ter pdf evaluations, we analyze the evolution of the posterior pdfs of the stochastic

DO coefficients, and of the regular and special stochastic parameters. For example,

for the DO coefficient realizations, we employ 2-D scatter plots. For the stochastic

parameters, we use marginals and kernel-density fits. We also evaluate the conver-

gence of pdf estimates with stochastic resolution, i.e. increasing/decreasing stochastic

numerical parameters (𝑁𝑠, 𝑁𝑟, etc.), see Sect. 2.2.4.

2.4 Application Results and Discussion

In order to demonstrate the capabilities of our Bayesian learning we utilize four sets of

identical twin experiments with different coupled biogeochemical-physical dynamics

and learning objectives, and perform simultaneous Bayesian estimation of state vari-

ables, parameters, and model equations, using observations that are sparse in both

space and time. To quantify performance, we evaluate several learning metrics, em-

phasizing the sharpness of the inference and the accuracy of probability distributions.

For each of the four sets of experiments, we conduct multiple studies so as to evaluate

the sensitivity to hyper-parameters. However, for each set, we present detailed results

for only one experiment and summarize the other results.
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2.4.1 Experiments 1: Discriminating among candidate func-

tional forms and smoothing

Biologically, mortality is a linear rate process. The mortality terms of phytoplank-

ton and zooplankton however commonly act as “closure” parameterizations in models

because as they allow for recycling of nutrients directly from plankton. As a re-

sult, due to the missing intermediate states in the recycling model, the zooplankton

mortality and recycling processes are often modeled nonlinearly, with a concentration-

dependent loss rate [40]. In this first set of experiments, we use the NPZ model with

uncertainty introduced by the ambiguity in the presence or absence of a quadratic

zooplankton mortality function, along with the uncertainty in the value of the Ivlev

grazing parameter (Λ). The uncertainty in the initial biogeochemical conditions is

set in balance with the uncertain parameters and model equations, as explained in

Sect. 2.3.6. The learning objective is to simultaneously learn all the biological states,

regular parameter Λ, and functional form of zooplankton mortality using a special

stochastic parameter, assimilating sparse observations.

The right-hand-side of NPZ model (Eq. 6.26) with the quadratic zooplankton

mortality is given by,

𝑆𝑁 = −𝐺 𝑃𝑁

𝑁 +𝐾𝑢

+ Ξ𝑃 + Γ𝑍 + 𝛼(𝜔)(Γ̃𝑍2)⏟  ⏞  
Quad. Z Mort.

+𝑅𝑚𝛾𝑍(1 − exp−Λ(𝜔)𝑃 )

𝑆𝑃 = 𝐺
𝑃𝑁

𝑁 +𝐾𝑢

− Ξ𝑃 −𝑅𝑚𝑍(1 − exp−Λ(𝜔)𝑃 )

𝑆𝑍 = 𝑅𝑚(1 − 𝛾)𝑍(1 − exp−Λ(𝜔)𝑃 ) − Γ𝑍 − 𝛼(𝜔)(Γ̃𝑍2)⏟  ⏞  
Quad. Z Mort.

.

(2.29)

The stochastic parameters are explicitly shown using the realization index (𝜔), and the

ambiguous quadratic mortality term is pointed out. The special stochastic parameter,

𝛼(𝜔), is restricted to binary values, i.e., either 0 or 1, corresponding to the absence

or presence of the quadratic mortality term, respectively. Λ(𝜔) is sampled from a

uniform probability distribution between the non-dimensional values of 3 and 6, and

𝛼(𝜔) is assumed to have an initial 50%-50% probability of being 0 or 1. The above
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stochastic NPZ reactions (Eq. 2.29) are coupled with the RANS flow PDEs and used

in the stochastic ADR PDEs that are solved with the DO methodology (Sect. 2.3.3).

The other known model parameters related to the physical-biogeochemical model as

well as the hyper-parameters for the DO equations are provided in Table 2.1.

True solution generation: The true solution from which observations are ex-

tracted, corresponds to the non-dimensional values, 3.6 for Λ, and 1 for 𝛼, i.e., the

quadratic mortality term present. The true state fields are initialized and evolved as

described in Sect. 2.3.7. Observations and learning parameters: The observa-

tions are sparse in both space and time, and consist of zooplankton measurements at

six locations downstream of the seamount, only at every two non-dimensional times,

starting at 𝑡 = 5. The data shown in Fig. 2-2 is all that the Bayesian learning frame-

work gets to assimilate over the course of the experiment. Other hyper-parameters

related to the GMM-DO filtering are provided in Table 2.1. Numerical method:

The deterministic equations for the true solution and DO equations for the estimate

pdfs are solved using the modular finite-volume framework described in Sect. 2.3.5.

Learning metrics: As time advances, the sparse data are assimilated using the

Bayesian GMM-DO filter in the augmented state space. We compare the true fields

and paramaters to their DO estimates (mean and most probable values). To quantify

performance, we examine the evolution of the normalized RMSEs (Sect. 2.3.9) for the

N, P, and Z fields, and for the Λ(𝜔) and 𝛼(𝜔) parameters, as well as the pdfs of the

stochastic parameters, DO coefficients, and biological states.

Table 2.1: Values of the various domain-related, biological, physical, and hyper-
parameters used in the four sets of experiments. 𝐻 = 50 𝑚, 𝑚𝑎𝑥{𝑇𝑏𝑖𝑜(𝑧)} =
30 𝑚𝑚𝑜𝑙 𝑁 𝑚−3, and time-scale of 1 𝑑𝑎𝑦, are the characteristic scales used for non-
dimensionalization.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4

Biogeochemical model NPZ NPZ &

NPZD

NPZ NNPZD

Biological Parameters
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Light attenuation due to sea wa-

ter, 𝑘𝑤 (𝑚−1)

0.067 0.067 0.067 0.067

Initial slope of the P-I curve, 𝛼

((𝑊 𝑚−2 𝑑𝑎𝑦)−1)

0.025 0.025 0.025 0.025

Surface photosynthetically avail-

able radiation, 𝐼𝑜 (𝑊 𝑚−2)

158.075 158.075 158.075 158.075

Phytoplankton maximum uptake

rate, 𝑉𝑚 (𝑑𝑎𝑦−1)

1.5 1.5 1.5 1.5

Half-saturation for phytoplank-

ton uptake of nutrients, 𝐾*
𝑢

(𝑚𝑚𝑜𝑙 𝑁 𝑚−3)

1 1 1 1

𝑁𝐻4 inhibition parameter, Ψ𝐼

((𝑚𝑚𝑜𝑙 𝑁 𝑚−3)−1)

– – – 1.46

𝑁𝐻4 oxidation coefficient, Ω

(𝑑𝑎𝑦−1)

– – – 0.25

Phytoplankton specific mortality

rate, Ξ (𝑑𝑎𝑦−1)

0.1 0.1 0.1 unif(0.01,

0.08)

Zooplankton specific excretion

and mortality rate, Γ (𝑑𝑎𝑦−1)

0.145 0.145 0.145 unif(0.125,

0.150)

Presence/absence of quadratic

zooplankton term, 𝛼

unif{0, 1} unif{0, 1} – unif{0, 1}

Quadratic zooplankton specific

excretion and mortality rate, Γ̃

(𝑑𝑎𝑦−1)

0.2 0.2 0.2 0.2

Zooplankton maximum grazing

rate, 𝑅𝑚 (𝑑𝑎𝑦−1)

0.52 0.52 0.52 unif(0.52,

0.72)

Ivlev constant, Λ

((𝑚𝑚𝑜𝑙 𝑁 𝑚−3)−1)

unif(0.1,

0.2)

unif(0.1,

0.2)

0.13 unif(0.052,

0.072)
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Fraction of zooplankton grazing

egested, 𝛾

0.3 0.3 0.2 0.3

Detritus decomposition rate, Φ

(𝑑𝑎𝑦−1)

1.03 1.03 1.03 1.03

Diffusion constants – horizontal &

vertical, (𝒦𝐸)

0 0 0 0

Modeling Domain

Height of the seamount, 𝐻 (𝑚) 50 50 50 50

Characteristic width of the

seamount, 𝐷 (𝑘𝑚)

1 1 1 1

Distance between inlet and center

of seamount, 𝑋𝑐 (𝑘𝑚)

7.5 7.5 7.5 7.5

Domain height, 𝐻𝑖𝑛 (𝑚) 100 100 100 100

Domain length, 𝐿 (𝑘𝑚) 20 20 20 20

Physical Parameters

Inverse of Eddy-viscosity

Reynolds nb., (Λ𝑅𝑒)

1 1 1 1/500

DO Parameters

Number of Modes, 𝑁𝑠 20 40 20 15

Number of Monte-Carlo samples,

𝑁𝑟

10,000 10,000 1,000 10,000

GMM-DO Parameters

State being observed 𝑍 𝑍 𝑁 𝑃

Observation error standard devia-

tion, (
√
𝑅)

0.05 0.05 0.035 0.04

Size of Observation vector, 𝑁𝑦 6 6 8 9

Observation start time (non-dim.) 5 5 1 2
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Time interval between assimila-

tions (non-dim.)

2 2 2 1

Observation end time (non-dim.) 25 25 25 25

Learning results

Figure 2-3 shows the initial state and parameters of the system (at 𝑡 = 0), while

Fig. 2-4 shows the evolved prior state and parameters of the system at 𝑡 = 5 (i.e.

just before the 1st observational episode). There are significant differences between

the true and prior DO mean fields of the biogeochemical tracers. During these first

five non-dimensional time units, a phytoplankton bloom develops just downstream

(top-right) of the seamount: upwelling of nutrients above the seamount within the

euphotic zone feeds the growth in phytoplankton biomass in the wake.

In Fig. 2-5, we illustrate the evolving statistics of the stochastic dynamical system

from 𝑡 = 0 to 𝑡 = 5 just before data assimilation. We show fields of the phyto-

plankton standard deviation and dominant three DO modes (Panels 2-5a & 2-5b).

The standard deviation fields clearly highlight the significant uncertainty around the

phytoplankton subsurface maxima and bloom, reaching 30 percent of the mean field

maxima. The uncertain subsurface maxima and bloom also clearly affect the DO

modes. In Panels 2-5c & 2-5d, we show the joint distribution of the top four stochas-

tic coefficients, along with the prior GMM fits using 10 components (Panel 2-5d). We

use the Bayesian information criterion (BIC; [91]) to find the optimal number of com-

ponents required [16]. The joint distributions demonstrate the highly non-Gaussian

nature of the stochastic DO coefficients, which the DO equations are able to evolve,

and the GMM-DO filter is able account for. The strong parametric uncertainties is

reflected by the thin 2D joint coefficient distributions. In addition, the realizations

of the stochastic coefficients are clearly divided into two groups, each corresponding

to the presence and absence of the quadratic mortality term, .

At 𝑡 = 5, the first sparse data is assimilated. Fig. 2-6 shows the posterior mean

fields, prior and posterior parametric distributions, and the normalized RMSE values
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Figure 2-2: Experiments-1. Time-series of zooplankton data collected at six observa-
tion locations (with coordinates given in the respective titles).

Figure 2-3: Experiments-1: State of the true and estimate NPZ fields and param-
eters at 𝑡 = 0 (i.e. initial conditions). The first two columns consist of the non-
dimensionalized true (left) and estimate mean (right) tracer fields of N, P and Z. In
the third column, the top panel shows the variation of normalized root-mean-square-
error (RMSE) with time for the stochastic state variables and parameters. The next
two panels contain the pdf of the non-dimensional Λ(𝜔) and 𝑎(𝜔) (to learn presence or
absence of quadratic zooplankton mortality), with their true unknown values marked
with blue dotted lines. The velocity field is deterministic with 𝑅𝑒 = 1.
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Figure 2-4: Experiments-1: As Fig. 2-3, but for the prior fields and parameters at
𝑡 = 5 (i.e. just before the 1st assimilation). Additionally, the white circles on the
zooplankton true field mark the six observation locations.

for the mean fields and two stochastic parameters. By just observing zooplankton at

six locations, the GMM-DO filter simultaneously update all the biological fields and

parameters. This is evident from the mean fields getting aligned with the true fields

and quantified by the RMSE reductions of about 20 to 30 percent. Also visible is the

slight change in the pdf for Λ(𝜔) and a higher probability value for 𝛼(𝜔) being one.

The six data are so far much more informative about the mortality term than about

the Ivlev parameter.

Next, in Fig. 2-7, we illustrate the same posterior mean fields, prior and posterior

parameters, and normalized RMSE values, but at 𝑡 = 15, i.e., at the sixth data

assimilation. The flow is fully developed with the biogeochemical fields well learned,

as quantified by the normalized RMSEs at about 40 percent. The GMM-DO filter

unambiguously detects the presence of quadratic mortality of 𝑍. The pdf of Λ(𝜔) is

also accumulated around its true value, but is multi-modal, indicating nonlinearities

and remaining ambiguity.

Finally, at 𝑡 = 25, after 11 assimilation events, the same quantities are shown in
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(a) Phytoplankton mean, standard deviation
and top three DO modes, at 𝑡 = 0

(b) Phytoplankton mean, standard deviation
and top three DO modes, at 𝑡 = 5 (prior)

(c) Joint distributions and respective
marginals of the top four stochastic DO
coefficients, at 𝑡 = 0

(d) Joint distributions and respective
marginals of the top four stochastic DO
coefficients, along with the GMM fit, at
𝑡 = 5 (prior)

Figure 2-5: Experiments-1: Statistics for the initial (𝑡 = 0) and prior (𝑡 = 5, just
before the 1st assimilation) states of the stochastic NPZ ADR dynamical system.
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Figure 2-6: Experiments-1: As Figs. 2-3 & 2-4, but for posterior fields and parameters
at 𝑡 = 5 (i.e. just after the 1st assimilation).

Fig. 2-8. All the biogeochemical mean and true fields match with each other with

RMSEs around 20 percent or less. The probability of the presence of the quadratic

mortality term is now almost one, while the Λ(𝜔) pdf has a clear peak near 3.6 with

a couple other much lower biased peaks around it. In general, the presence of lower

peaks in pdfs of parameters indicate alternative combinations that could explain the

data, and also the ability of the GMM-DO filter to capture non-Gaussian pdfs. The

learning is also evident from the sustained decrease in the normalized RMSEs at every

assimilation step for all the biogeochemical fields and parameters.

Many similar experiments were completed, changing various hyperparameters re-

lated to the GMM-DO filter, such as the biological variable being observed, obser-

vation locations, frequency, start-time, etc. Observations from simulated truths with

different combinations of Λ(𝜔) and 𝛼(𝜔) were also used. We found that the biological

variable being observed has an impact on the sharpness of the inference or learnabil-

ity of the given learning objectives. For example, observing 𝑁 led to the learning of

two distinct combinations of Λ(𝜔) & 𝛼(𝜔), 3.1 & 0, and 3.6 & 1, respectively with
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Figure 2-7: Experiments-1: As Figs. 2-3 & 2-4 but for posterior fields and parameters
at 𝑡 = 15 (i.e. just after the 6th assimilation).

Figure 2-8: Experiments-1: As Figs. 2-3 & 2-4 but for posterior fields and parameters
at 𝑡 = 25 (i.e. just after the 11th assimilation).
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nearly equal amount of confidence [92]. Decreasing the amount of observation data,

or increasing the value of the observation error standard deviation led to larger un-

certainty in the learned states and parameters. We also confirmed the convergence of

our GMM-DO Bayesian posteriors by repeating learning experiments with an increas-

ing number of DO modes and coefficients (not shown), until the results converged to

those shown. This convergence of the pdfs of the parameters and DO coefficients,

and of the DO modes and mean, indicates that our Bayesian GMM-DO filter pro-

vides accurate pdf estimates, and thus shows what has been learned without or with

some ambiguity remaining. For the latter case, the multi-model posterior pdfs show

that additional observations are needed to sharpen the inference further.

Once all the observations are collected, we also perform retrospective Bayesian

smoothing [93] in order to maximize the information content of the posterior pdf

of the state variables and parameters. We use the counterpart of the GMM-DO

filter, called the GMM-DO smoother [94, 95], which enables non-Gaussian smoothing

in an computationally efficient fashion by utilizing the DO subspace. In Fig. 2-9a,

we provide the prior, posterior, and the smoothed stochastic coefficients for the DO

subspace at time 𝑡 = 5. It should be noted that the prior coefficients have seen

no observational data, the posterior coefficients only contain information of the 1𝑠𝑡

observational episode, while, the smoothed coefficients contains information of all the

11 observational episodes. The stochastic coefficient realizations are translated using

the projection of their respective means onto the subspace to demonstrate the fact,

that the pdfs of the posterior and the smoothed coefficients are contained within the

support of pdf of the prior. Similar to the prior coefficients, the posterior coefficients

are still divided into two groups because a single observational episode is insufficient

to eliminate the ambiguity about the presence or absence of the quadratic mortality

term. However, because the smoothed coefficients contain information from the future

observational episodes, the ambiguity is resolved and the realizations are mostly part

of one of the groups. Normalized RMSE of the smoothed states and parameters are

provided in Fig. 2-9b, and one can notice that it is always lower than that of the

corresponding filtered variables due to access to future observations in the smoothed
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case.

2.4.2 Experiments 2: Discriminating among models of differ-

ent complexities

In the second set of experiments, the primary goal is to learn the complexity of the

biogeochemical model, e.g., its state variables, along with the biogeochemical fields

and Ivlev grazing parameter. Two candidates hierarchical model classes, NPZ and

NPZD, are considered possible. To represent them with a single modeling system,

we embed the former into the latter using our special stochastic parameter, 𝛽(𝜔).

We multiply the detritus state variable (𝐷) and other appropriate terms with 𝛽(𝜔),

such that, the value of 1 derives the NPZD model, while the value of 0 derives the

NPZ model (see Eq. 2.7). Thus, the RHS of the general stochastic model which

encompasses both NPZ and NPZD models is given by,

𝑆𝑁 = −𝐺 𝑃𝑁

𝑁 +𝐾𝑢

+ Φ𝐷′ + Γ𝑍 + (1 − 𝛽(𝜔))Ξ𝑃

𝑆𝑃 = 𝐺
𝑃𝑁

𝑁 +𝐾𝑢

− Ξ𝑃 −𝑅𝑚𝑍(1 − exp−Λ(𝜔)𝑃 )

𝑆𝑍 = 𝑅𝑚(1 − 𝛽(𝜔)𝛾)𝑍(1 − exp−Λ(𝜔)𝑃 ) − Γ𝑍

𝑆𝐷′
= 𝛽(𝜔)𝑅𝑚𝛾𝑍(1 − exp−Λ(𝜔)𝑃 ) + 𝛽(𝜔)Ξ𝑃 − Φ𝐷′

𝐷′ = 𝛽(𝜔)𝐷 ,

(2.30)

where 𝐷′ is the modified detritus state. Once again, Λ(𝜔) is sampled from a uni-

form probability distribution between the non-dimensional values of 3 and 6, and

𝛽(𝜔) is assumed to have 50%-50% probability of being 0 or 1. The stochastic NPZD

reactions (Eq. 2.30) are coupled with the RANS flow PDEs and used in the stochas-

tic ADR PDEs that are solved with the DO methodology (Sect. 2.3.3). The other

known physical-biogeochemical parameters as well as the hyper-parameters for the

DO equations are given in Table 2.1.

True solution generation: The true solution corresponds to the NPZ model

with a non-dimensional value of 3.6 for the Λ parameter. The state fields are initialized
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(a)

(b)

Figure 2-9: Results corresponding to the smoothing part of Experiments - 1. (a):
Joint distributions (scatter-plots with realizations) of the top four DO stochastic
coefficients for the prior, posterior, and the smoothed states at 𝑡 = 5. Individual
probability density plots (line-plots) are also provided in the middle of scatter-plots.
Projection of the mean onto the subspace is added to each realization of the stochas-
tic coefficients. The realization of the prior are completely covered by the posterior
realizations, thus, not visible. (b): Variation of RMSE with time for all the stochas-
tic state variables and parameters. The full-lines (‘—’) corresponds to the forward
filtering pass, and the dashed-lines (‘- - -’) to the smoothing pass.
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and evolved as described in Sect. 2.3.7. Observations and learning parameters:

The observations are sparse in both space and time, and again consist of zooplankton

measurements at six locations downstream of the seamount, only at every two non-

dimensional times, starting at 𝑡 = 5. Other hyper-parameters related to the GMM-

DO filtering are provided in Table 2.1. Numerical method: Similar to the last set

of experiments, the DO equations and the deterministic governing equations for the

true solution are solved using the modular finite-volume framework described in Sect.

2.3.5. Learning metrics: As time advances and sparse data are assimilated, we

compare the true fields and parameters their DO estimates. To quantify performance,

we examine the evolution of the: normalized RMSEs of state fields and parameters,

pdfs of stochastic parameters, and variances of DO coefficients.

Learning results

Figure 2-10 shows the state and parameters of the system at 𝑡 = 5, just before the first

observational episode. The most distinctive difference is between the true and mean

detritus fields. Since the true model is NPZ, the true detritus field is equal to zero,

while the mean detritus field is non-zero because half of the realizations correspond

to the NPZD model. The RMSEs of all the variables exactly equal 1, because their

respective values just before the first assimilation were used for normalization. The

pdf of Λ(𝜔) is uniform in the main range, and 𝛽(𝜔) has 0.5 probability of being 0 or 1.

The variances of the top five modes show a rapid decay with mode number, with the

top two variances orders of magnitude larger. The variances of modes 3 and 4 differ

initially but become similar over time, indicating a potential cross-over at 𝑡 = 5.

In Fig. 2-11, we directly show the state of the system at time 𝑡 = 25, after

eleven GMM-DO data assimilation (six zooplankton values every two non-dimensional

times). We find that our Bayesian learning framework is able to learn the true model

to be NPZ, along with the posterior pdf of Λ(𝜔) concentrated around the true value

of 3.6. The mean fields also match the true fields, especially the detritus mean field

becoming very close to 0 at all the spatial locations. The RMSEs for all the variables

decrease over time, up to about 𝑡 = 15. At that time, the RMSE for the phytoplankton
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field increases due to a mismatch in the strength of the bloom, thus showing that the

zooplankton data are not sufficiently informative for the same. The pdf of Λ(𝜔)

features multiple peaks and thus still indicates that competing hypotheses remain

for different pairs of parameter values; this was already the case in the intermediate

assimilation steps (not shown). The evolution of the variances of the top five modes

shows that these variances can increase and cross-over, for example, lower modes

become more important as learning progresses. As the bloom develops, more complex

nonlinear dynamics is activated, leading to the growth of some uncertainty modes.

Results show that our Bayesian filter captures this as well as biases and non-Gaussian

behaviors in the pdfs.

We performed other experiments with parameter sensitivity studies similar to

those of Experiments-1; similar trends were found.

2.4.3 Experiments 3: Learning unknown functional form

In our third set of experiments, the primary goal is to learn the functional form of the

zooplankton mortality without any prior knowledge of candidate forms, along with

the uncertain biological tracer fields. We utilize stochastic piece-wise linear functions

to parameterize a large set of possible functional forms within a specified range, as

explained in Sect. 2.2.2. Such a parameterization encompasses many different classes

of functions, for example, polynomial, exponential, logarithmic, sinusoidal, etc. The

right-hand-side of the stochastic NPZ model with the unknown function is given by,

𝑆𝑁 = −𝐺 𝑃𝑁

𝑁 +𝐾𝑢

+ Ξ𝑃 + Γ𝑍 + 𝐹 (𝑍;𝜔)⏟  ⏞  
Unknown Function

+𝑅𝑚𝛾𝑍(1 − exp−Λ𝑃 )

𝑆𝑃 = 𝐺
𝑃𝑁

𝑁 +𝐾𝑢

− Ξ𝑃 −𝑅𝑚𝑍(1 − exp−Λ𝑃 )

𝑆𝑍 = 𝑅𝑚(1 − 𝛾)𝑍(1 − exp−Λ𝑃 ) − Γ𝑍 − 𝐹 (𝑍;𝜔)⏟  ⏞  
Unknown Function

(2.31)

From prior knowledge [3], the non-dimensional value of zooplankton is assumed

non negative and its maximum value to be 0.3. Thus, 𝐹 (𝑍;𝜔) is set to be composed
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Figure 2-10: Experiments-2: State of the true and prior estimate NPZD fields and
parameters at 𝑡 = 5 (i.e. just before the 1st assimilation). The first two columns
consist of the non-dimensionalized true (left) and estimate mean (right) tracer fields
of 𝑁 , 𝑃 , 𝑍, and 𝐷. In the third column, the first panel shows the variation of
normalized RMSE with time for all the stochastic state variables and parameters.
The next two panels contain the pdf of the non-dimensional Λ(𝜔) and 𝛽(𝜔) (to learn
the complexity, NPZ vs. NPZD), with their true unknown values marked with blue
dotted lines. The last panel shows the evolution with time of the variance (log scale)
of the top five modes. The velocity field is deterministic with 𝑅𝑒 = 1. Additionally,
the white circles on the zooplankton true field mark the six observation locations.
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Figure 2-11: Experiments-2: As Fig. 2-10 but for posterior fields and parameters at
𝑡 = 25 (i.e. just after the 11th assimilation).

of any continuous piece-wise linear segments in the interval 𝑍 ∈ [0, 0.3]. Dividing this

interval [0, 0.3] into 10 equal non-overlapping sections, such that, 0 = 𝑍0
𝐿 < 𝑍0

𝑅 =

0.03 = 𝑍1
𝐿 < ... < 𝑍9

𝑅 = 0.27 = 𝑍10
𝐿 < 𝑍10

𝑅 = 0.3, 𝐹 (𝑍;𝜔) is thus represented as,

𝐹 (𝑍;𝜔) =
11∑︁
𝑘=0

𝛾𝑘(𝜔)Ψ𝑘(𝑍) (2.32)
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where,

Ψ0(𝑍) =

⎧⎪⎨⎪⎩
1

0.03
(0.03 − 𝑍) if 0 ≤ 𝑍 ≤ 0.03 ,

0 otherwise

Ψ𝑘(𝑍) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

(𝑍𝑘−1
𝑅 −𝑍𝑘−1

𝐿 )
(𝑍 − 𝑍𝑘−1

𝐿 ) if 𝑍𝑘−1
𝐿 ≤ 𝑍 ≤ 𝑍𝑘−1

𝑅 ,

1
(𝑍𝑘

𝑅−𝑍𝑘
𝐿)

(𝑍𝑘
𝑅 − 𝑍) if 𝑍𝑘

𝐿 ≤ 𝑍 ≤ 𝑍𝑘
𝑅 ,

0 otherwise

for 𝑘 ∈ {1, ..., 10} ,

Ψ11(𝑍) =

⎧⎪⎨⎪⎩
1

0.03
(𝑍 − 0.27) if 0.27 ≤ 𝑍 ≤ 0.3 ,

0 otherwise

(2.33)

Each set of realizations of 𝛾′𝑘𝑠, 𝑘 ∈ {0, ..., 11} are sampled in such a way that they

do not lead to a prior with unnatural highly fluctuating functions. The function range

is set within 0 and 0.08; it is non-negative as mortality is negative in the zooplankton

equation (2.31). To initialize the tracer fields, we find equilibrium solutions corre-

sponding to each realization of the zooplankton mortality function. The stochastic

NPZ reactions (Eq. 2.31) are coupled with the RANS flow PDEs and used in the

stochastic ADR PDEs that are solved with the DO methodology (Sect. 2.3.3). Table

2.1 provides the values of other known model and hyper- parameters. The learning

objective of these experiments is to learn 𝐹 (𝑍;𝜔) by estimating 𝛾′𝑘𝑠 along with the

biological tracer fields.

True solution generation: The true solution contains quadratic zooplankton

mortality, with values of the other parameters provided in Table 2.1. Observations

and learning parameters: Observations remain sparse in time and space, but here

consists of the nutrient field at 8 spatial locations, starting at 𝑡 = 1 and occurring

every two non-dimensional times. In these experiments, we start the assimilation at

the earlier 𝑡 = 1 time in order to limit the exploding growth of uncertainty in the

system, because each function realization leads to very different biological dynamics,

several of which would lead to nonphysical biological states. Other hyper-parameters
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related to the GMM-DO filtering are provided in Table 2.1. Numerical method:

As for the last two sets of experiments, the DO equations and the deterministic

governing equations for the true solution are solved using the modular finite-volume

framework described in Sect. 2.3.5. Learning metrics: We compare the true fields

and parameters their DO estimates. To quantify performance, we also examine the

evolution of the normalized RMSEs and pdf and realizations of the stochastic piece-

wise linear functions.

Learning results

Figure 2-12 illustrates the prior at 𝑡 = 1. Every realization in the space of the

unknown function is assumed to be equilikely. In general, mortality being 0 for 𝑍 = 0

is common knowledge. Otherwise, it could act as a sink for zooplankton and lead to

negative tracer values. However, we let this be discovered by the learning algorithm.

The DO biogeochemical mean fields are quite far from the unknown true fields, and

the prior function realizations are not similar to the true quadratic mortality.

As the eight 𝑁 observations are assimilated every two non-dimensional times,

nearly all the piece-wise linear function realizations converge to the true quadratic

mortality. Results after 13 GMM-DO assimilation in Fig. 2-13 show this. We find

however that the 𝑁 data are not as informative about mortality function for 𝑍 beyond

0.25. This is in part because the maximum value reached in the true 𝑍 field is ∼ 0.2,

which limits the uncertainty reduction in that larger 𝑍 regime. The mean fields

also converge to the true fields. The normalized RMSEs of all the biogeochemical

fields indeed decrease at each assimilation. The learned phytoplankton mean field

however remain a bit higher than true fields, in part because they were much higher

initially. It is also because the observed data (here eight 𝑁 data) are not equally

informative about all the learning objectives. As in [96, 1, 9], this is confirmed by

mutual information fields (not shown).

Other experiments included studying the effect of incorporating or excluding prior

knowledge such as the function value being 0 for 𝑍 = 0 and using smoothly varying

function realizations. For the former, sampling 𝛾𝑘’s independent of each other led to
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Figure 2-12: Experiments-3: State of the true and prior estimate NPZ fields and pa-
rameters at 𝑡 = 1 (i.e. just before the 1st assimilation). The first two columns consist
of the non-dimensionalized true (left) and estimate mean (right) tracer fields of 𝑁 , 𝑃
and 𝑍. In the third column, the first panel shows the evolution of normalized RMSE
for all the stochastic state variables. The second panel contains all the realizations
of the unknown functional form approximated by piece-wise linear segments. The
function realizations are colored according to their respective normalized probability
density values. The velocity field is deterministic with 𝑅𝑒 = 1. Additionally, the
white circles on the nutrient true field mark the 8 observation locations.

highly fluctuating function realizations which completely impaired the learnability of

the unknown function. For the latter, enforcing 𝛾0 = 0 sets 𝐹 (0;𝜔) = 0 for all realiza-

tions, which improved the convergence between the learned function realizations and

the true function. Finally, increasing the number of independent observations (more

𝑁 data, data for 𝑍 or 𝑃 as well, etc.) also improved the sharpness of our GMM-DO

inference: in all examples we show, we highlight cases with sparse observations as in

real ocean applications.

We also repeat this experiment using quadratic piece-wise polynomials instead of

linear ones. In Fig. 2-14, we directly provide the posterior at 𝑇 = 25. Once again, the

mean and nearly all the ensemble members of the functional approximated polynomial

approximations converges to a quadratic curve, which is the truth, and is successful
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Figure 2-13: Experiments-3: As Fig. 2-12 but for posterior fields and function at
𝑡 = 25 (i.e. just after the 13th assimilation).

in learning the common-sense logic of the mortality function being 0 for 𝑍 = 0. At

the same time, the mean and true fields also look similar in the posterior at 𝑇 = 25.

This learning is also evident from the decrease in RMSE in Fig. 2-14 at each learning

step. The use of quadratic (Fig. 2-14) over linear (Fig. 2-13) segments also improves

the quality of the learned ensemble of unknown function and it is better matches the

truth. This is possibly the case because the true function is itself quadratic.

2.4.4 Experiments 4: Learning in chaotic dynamics

In the last set of experiments, in order to robustly test our algorithms, the aim is to

learn a five-component NNPZD model with a flow of Reynolds number 𝑅𝑒 = 500. At

such high 𝑅𝑒, vortices start to shed in the wake of the seamount and the flow chaotic.

The learning objectives include all 5 biogeochemical fields, the Ivlev grazing parameter

(Λ), the phytoplankton-specific mortality rate (Ξ), the zooplankton maximum grazing

rate (𝑅𝑚), the zooplankton specific mortality (Γ), and the presence or absence of the

quadratic zooplankton mortality term. The stochastic NNPZD reactions, with all the
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Figure 2-14: The posterior state of the NPZ model based stochastic dynamical system
used in Experiment 3, at 𝑇 = 25 (i.e. just after the 13th observational episode). The
unknown functional form is approximated using piece-wise quadratic segments, while,
the rest of the description is same as Figure 2-13.
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uncertain parameters explicitly containing 𝜔 as an argument, are given by,

𝑆𝑁𝑂3 = Ω𝑁𝐻4 −𝐺

[︂
𝑁𝑂3

𝑁𝑂3 +𝐾𝑢

exp−Ψ𝐼𝑁𝐻4

]︂
𝑃 ,

𝑆𝑁𝐻4 = − Ω𝑁𝐻4 + Φ𝐷 + Γ(𝜔)𝑍 + 𝛼(𝜔) (Γ2𝑍
2)⏟  ⏞  

Quad. Z Mort.

−𝐺
[︂

𝑁𝐻4

𝑁𝐻4 +𝐾𝑢

]︂
𝑃 ,

𝑆𝑃 = 𝐺

[︂
𝑁𝑂3

𝑁𝑂3 +𝐾𝑢

exp−Ψ𝐼𝑁𝐻4 +
𝑁𝐻4

𝑁𝐻4 +𝐾𝑢

]︂
𝑃 − Ξ(𝜔)𝑃 ,

−𝑅𝑚(𝜔)𝑍(1 − exp−Λ(𝜔)𝑃 ) ,

𝑆𝑍 = 𝑅𝑚(𝜔)(1 − 𝛾)𝑍(1 − exp−Λ(𝜔)𝑃 ) − Γ(𝜔)𝑍 + 𝛼(𝜔) (Γ2𝑍
2)⏟  ⏞  

Quad. Z Mort.

,

𝑆𝐷 = 𝑅𝑚(𝜔)𝛾𝑍(1 − exp−Λ(𝜔)𝑃 ) + Ξ(𝜔)𝑃 − Φ𝐷 .

(2.34)

Initially, we assume uniform and independent pdfs for the 4 uncertain regular parame-

ters and equiprobability for the quadratic zooplankton mortality term to be present or

absent. The NNPZD reactions (2.34) are coupled with the deterministic RANS flow

PDEs and used in the stochastic ADR PDEs that are solved with the DO method-

ology (Sect. 2.3.3). The other known physical-biogeochemical model parameters as

well as the hyper-parameters for the DO equations are provided in Table 2.1.

True solution generation: The true solution from which observations are ex-

tracted, corresponds to the non-dimensional values, 1.5 for Λ, 0.04 for Ξ, 0.6 for 𝑅𝑚,

0.14 for Γ, and 0 for 𝛼, i.e. the quadratic mortality term absent. The state fields

are initialized and evolved as described in Sect. 2.3.7. Observations and learning

parameters: Observations remain sparse and univariate, but due to the unstable

and fast dynamics of the flow, there is a need for a bit more frequent data than in

other experiments. The phytoplankton field is observed at nine locations starting at

𝑡 = 2 and subsequently every one non-dimensional time. In total, we assimilate 24

times, i.e. until 𝑡 = 25. Other hyper-parameters related to the GMM-DO filtering are

provided in Table 2.1. Numerical method: The DO equations and the determin-

istic governing equations for the true solution remain solved using the finite-volume

framework (Sect. 2.3.5). Learning metrics: We compare the true fields and param-

eters their DO estimates. To quantify performance, we compute the evolution of the
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normalized RMSEs for all the 5 biological fields and 5 stochastic parameters. We also

analyze the evolution of pdfs of the regular and special stochastic parameters, and

the variances of DO coefficients.

Learning results

Figure 2-15 shows the prior estimates at 𝑡 = 2. The flow has just started to develop.

There are significant differences between the true and mean biogeochemical fields.

The normalized RMSEs are equal to 1 by construction. The pdfs of all parameters

remained as they were initially since no data has been assimilated.

Figure 2-16 illustrates the posterior estimates at 𝑡 = 2, just after the first assim-

ilation. Large corrections were made to the mean tracer fields (also visible in their

RMSEs that decay by about 15 to 25%), and the GMM-DO learning already predicts

the absence of quadratic zooplankton term. These first 9 𝑃 observations are not as

informative however about the other parameters (their RMSEs only decay by about

4% to 8%).

Figure 2-17 shows the estimates at 𝑡 = 25, after 24 GMM-DO assimilation. In

addition to the mean fields, our augmented filter has been learning the 4 regular

parameters as well. Their posterior pdfs have become Gaussian which occurs in

intermediate assimilation steps (not shown). We also show the evolution of variance

of the top 3 modes. We find that the total variance on average either decreases or

remains similar, while that of individual modes in general decreases but may also

increase in accord with the stochastic dynamics. The velocity field being chaotic

renders the learning more challenging in this experiment but our framework can still

meet all the learning objectives, even with sparse and univariate data.

Other experiments were performed. As expected, they demonstrated sensitivity to

the schedule, type, and quantity of observations. With only nine sparse and univariate

data, starting them after the chaos sets in, or sampling even less frequently than every

one non-dimensional time, led to posterior pdf of some stochastic parameters that

were not concentrated around their respective true values. Similar results were found

if even less than nine data were collected. Adding other observation types improved
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Figure 2-15: Experiments-4: State of the true and prior estimate NNPZD fields
and parameters at 𝑡 = 2 (i.e. just before the 1st assimilation). The first two columns
consist of the non-dimensionalized true (left) and estimate mean (right) fields of 𝑁𝑂3,
𝑁𝐻4, 𝑃 , 𝑍, and 𝐷. In the third column, the first two panels show the evolution of
the normalized RMSEs for the 5 state variables and 5 parameters. The third panel
shows the evolution of variance of the top 3 DO modes. In the fourth column, the
panels contain the pdf of the non-dimensional Λ(𝜔), Ξ(𝜔), 𝑅𝑚(𝜔), Γ(𝜔), and 𝛼(𝜔)
(learns the presence or absence of quadratic zooplankton mortality), with their true
unknown values marked with blue dotted lines. The velocity field is deterministic
with 𝑅𝑒 = 500. Additionally, the white circles on the phytoplankton true field mark
the 9 observation locations.

the learning. For other sensitivity studies, trends similar to other experiments were

found.

2.5 Summary

Biogeochemical-physical models for the ocean are inherently uncertain due to the

inability of capturing all the complex interactions and processes in the ocean ecosys-

tem with a single mathematical model. Uncertainty could manifest in many different

forms, such as the initial conditions, boundary conditions, parameters, and the model

equations themselves. In general, Bayesian approaches are advantageous for meld-
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Figure 2-16: Experiments-4: As Fig. 2-15, but for posterior fields and parameters at
𝑡 = 2 (i.e. just after the 1st assimilation).

Figure 2-17: Experiments-4: As Fig. 2-15, but for posterior fields and parameters at
𝑡 = 25 (i.e. just after the 24th assimilation).
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ing observations with the model, as they provide the ability to take into account

all the existing prior knowledge into the learning process, accompanied by the as-

sociated uncertainty estimates. Thus, we build upon the approach developed in Lu

and Lermusiaux, 2014 & 2021 [10, 8] for the simultaneous estimation of states and

parameters along with discrimination among candidate models in high-dimensional

stochastic dynamical systems using sparse observations. However, often none of the

candidate models is exactly equal to the true model, or the functional form is yet com-

pletely elusive to scientists. Mostly, also the candidate models are compatible with

each other, for example, only certain functional terms in a model are unknown, or low

complexity models are embedded in higher complexity models. These situations were

addressed in two novel ways: first, using special stochastic parameters to unify all the

candidates into a single general model; second, parameterizing unknown functions

using stochastic piece-wise polynomial functions, allowing us to search in an infinite

candidate space. Our new methodology not only seamlessly and rigorously discrim-

inated between existing models, but also extrapolated out of the space of models to

discover newer ones. In all cases, the results were generalizable and interpretable, and

our Bayesian estimations provided much more than maximum likelihood estimates:

they predicted and updated the complete joint probability distribution of states, pa-

rameters, and models. All of this is achieved just at the cost of single stochastic

model simulation with parameter estimation, enabling both discrimination and dis-

covery of models. Our rigorous PDE-based Bayesian learning framework combines

the Dynamically Orthogonal (DO) equations for efficient reduced-dimension uncer-

tainty evolution; and the Gaussian mixture model (GMM) DO filtering algorithm for

the nonlinear, non-Gaussian inference of the states, parameters, and model equations

simultaneously.

The performance of our Bayesian learning framework is evaluated using a series

of identical twin experiments with compatible and embedded models of the three-

component NPZ model (nutrients (𝑁), phytoplankton (𝑃 ), and zooplankton (𝑍)), the

four-component NPZD model (𝑁 , 𝑃 , 𝑍 and Detritus (𝐷)), and the five-component

NNPZD model (ammonia (𝑁𝐻4), nitrate (𝑁𝑂3), 𝑃 , 𝑍, and 𝐷). In the first set of
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experiments, we use the NPZ model, with uncertainty introduced due to the un-

known Ivlev grazing parameter value and ambiguity in the presence or absence of

the quadratic zooplankton mortality term. We were able to meet our learning ob-

jectives of simultaneously estimating the biological state variables, Ivlev parameter,

and the unknown functional form just using sparse zooplankton observations in space

and time. We further noticed lower peaks in the posterior probability distributions

of the parameters, which often indicate alternative combinations of parameter values

which could potentially explain the observed data, thus showcasing the ability of our

framework to capture non-Gaussian statistics. Once all the data becomes available,

we also demonstrate smoothing backward in time. In the second set of experiments,

we demonstrated the ability to learn the complexity of the model by identifying the

true model among NPZ and NPZD along with the uncertain Ivlev grazing parameter.

In the third set of experiments, we assumed no prior knowledge about the functional

form of zooplankton mortality and generated a function space using stochastic piece-

wise linear segment approximations. Such a formulation helps us to perform a search

in a rich functional space, and discover new functions. We also repeat the experiment

using quadratic segments which improves the quality of the learned function. The last

set of experiments involved learning the complicated NNPZD model in an unsteady

deterministic flow with vortex shedding. The NNPZD model had uncertainty in all

the tracer fields, four parameters, and in the presence or absence of the zooplankton

mortality term. All of the learning objectives were achieved simultaneously.

These four sets of experiments acts as complementary benchmarks, allowing us to

showcase all the features of our learning framework. Next steps include application of

this Bayesian learning framework to more complex oceanic applications. Even though

we demonstrate our learning framework using biogeochemical models, it is applicable

to any problem with model uncertainty, for example, in medical applications, eco-

nomics, energy, etc. Our framework could give scientists in different disciplines not

only the ability to choose between competing existing hypotheses, but to also discover

new ones in an efficient manner.

109



110



Chapter 3

Bayesian Learning for Fish Models1

Fisheries are a major industry in the coastal states of India, employing millions of

people and contributing to 1.1% of GDP and 5.3% of agricultural GDP. Globally,

the Indian fishing industry is the third largest in the world. The total marine fish

production is around 3 billion metric tons. Indian waters contain about 2,500 species

of finfishes and shellfishes. Among these, there are about 65 commercially important

species or groups. In 2004, 52% of these commercially important groups were pelagic

and midwater species. In 2006, over 600,000 metric tons of fish were exported, to

some 90 countries, earning over $1.8 billion [97]. Increased demand for fish, coupled

with unsustainable fishing practices lead to over-exploitation and fast depletion of

fish stocks. Coastal fisheries and aquaculture stocks often thrive on very specific

water conditions—building capabilities for coastal physical-ecosystem forecasting and

monitoring will help ensuring and managing the survival and reproduction of healthy

stock. Without sustainable fisheries management and conservation practices in place,

there could be dire consequences for the many communities that rely on the ocean

for their economic well-being.

The ocean ecosystem is commonly divided into two main levels, Lower Trophic

Levels (LTL) and Higher Trophic Levels (HTL) including fish. A number of models

have been proposed in the literature for either of the levels (see section 3.1). How-

1Parts of this chapter appeared in: Gupta, A., Haley, P. J., Subramani, D. N., & Lermusiaux, P.
F. (2019, October). Fish modeling and Bayesian learning for the Lakshadweep Islands. In OCEANS
2019 MTS/IEEE SEATTLE (pp. 1-10). IEEE.
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ever, due to the semi-empirical methodology of developing these models, there is

uncertainty associated with the parameters, functional forms, and the level of com-

plexity of fish models. Thus, in this chapter, we use our novel PDE-based Bayesian

learning framework to showcase a series of learning experiments that simultaneously

infer the augmented state variables, parameters, and parameterizations of the fish

model SEAPODYM (described in the next two sections) coupled with a LTL dynam-

ical model and a nonhydrostastic varaible-density Boussinesq flow past a seamount.

3.1 Fish Modeling

First, we provide a brief literature review of different models used for the two main

parts of the marine ecosystem.

3.1.1 Lower Trophic Level

There exist many well-studied models of varying complexities for LTL. A basic model

is a simple, 3-component nutrient-phytoplankton-zooplankton (NPZ) model [42, 43,

62]; Franks, 2002 ([40]) provides a thorough review on development of such models.

In a workshop on the status of upper layer coupled biological-physical modeling [44],

researchers proposed couplings of various mixed layer physical models with NPZ and

NPZD (NPZ-Detritus) biological models. Fasham et. al., 1990 ([45]) presented a

7-component model of the annual cycles of plankton dynamics and nitrogen in the

ocean. One of the most complex lower-trophic level marine ecosystem model is the

European Regional Seas Ecosystem Model (ERSEM, [46, 47, 48]), initially developed

for the North Sea.

3.1.2 Higher Trophic Level

HTL models vary greatly in how they model fish; some model individual fishes in

Lagrangian sense, some are empirical data-based models, and some treat them as

aggregate (continuous) biomass and capture more realistic biological interactions and
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processes. The effective coupling of LTL models and HTL full-life cycle fish models is

notoriously challenging, mainly due to the difficult practical and theoretical problems

associated with resolving relevant temporal and spatial scales at all biologically mean-

ingful trophic levels. Nonetheless, they can be coupled using different mathematical

functions that model source and mortality terms, and close the ecosystem. One of the

oldest models developed for fisheries management is the MultiSpecies Virtual Popu-

lation Analysis (MSVPA) [98]. It solves a system of coupled nonlinear equations in

terms of biomass of species and number of fishes belonging to each cohort averaged

over large spatial and temporal scales. Parameterization requires stomach-content

data of fish and estimates of the number of fish in a particular cohort; this requires

lots of hard-to-obtain data, data only sparsely collected for a small number of fish

species.

Larval Individual Based Models (IBMs) [99] attempt to model the larval stage,

which is in-between LTL and HTL. They start with an ensemble of eggs seeded

in the domain, and let them advect and interact with the underlying physical and

biogeochemical fields, while mortality is also modeled as a stochastic event which

determines whether individual eggs develop to the juvenile stage. A drawback to this

approach is the fact that larvae cannot really represent fish population.

A prominent box model is NUMERO.FISH [100, 101], which simulates the daily

predator-prey interactions and biogeochemical cycling of phytoplankton, zooplankton,

nutrients, and detritus. The FISH model simulates the daily growth and mortality of

herring in each of multiple age-classes and is coupled to NEMURO via zooplankton-

dependent herring consumption, excretion, and egestion. The FISH model is based

on an energy balance equation that equates energy consumed with energy expended

and gained.

Interacting Particle Model for Migration of Pelagic Fish [102] models individuals

rather than keeping track of the density of a population. Particles look to their neigh-

bors to determine their directional heading at each time step, averaging the neighbors’

directional headings to determine their own. This allows the particles to move to-

gether as a group. Size spectra models [103] are based on the biomass spectrum
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theory, which assumes that size governs biological rates and predatory interactions.

In size-spectra studies, the whole ecosystem or community is represented by a con-

tinuum of biomass and organisms are represented only in terms of their body size.

The bio-ecological processes taken into account to model consumers are predation,

mortality, assimilation and use of energy for maintenance, growth and reproduction.

Ordinary differential equations based models include the Ecopath with Ecosim

(EwE) Ecosystem Modeling Suite [104, 105]. EwE facilitates the construction of a

static ecosystem model (Ecopath) that can then be used to run time-based dynamic

(Ecosim) and spatial (Ecospace) simulations. Modelling in EwE begins with creating

a mass-balance model using Ecopath to obtain a static snapshot of the ecosystem

under study. The underlying principle behind the mass balance approach is to balance

the energy flow among different trophically linked functional groups by solving a set

of simultaneous linear equations (one equation for each functional group).

SEAPODYM (Spatial Ecosystem And Populations Dynamics Model) [106, 107] is

an Advection-Diffusion-Reaction (ADR) equation-based model that couples a physical-

biological interaction model at basin scales, combining a forage (prey) production

model with an age-structured population model of targeted (tuna predator) species.

An adult habitat index combines the spatial distribution of tuna forage biomass with

a temperature function defined for each species. Young and adult tuna movements

are constrained by this adult habitat index while a spawning habitat index is used

to constrain the recruitment to environmental conditions. Related ADR models were

used for regional fisheries management [108].

Lastly, recent research involves machine learning approaches such as training

Artificial-Neural-Nets (ANNs). When using ANNs, typically the output is in the

form of catch-per-unit-effort (CPUE) and input includes Sea-Surface-Temperature

(SST), Sea-Surface-Height (SSH), gradient of SST, chlorophyll-a, latitude, longitude,

time, and other relevant quantities [109, 110, 111, 112].
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3.2 Learning and Modeling Methodology

3.2.1 Physical Model

The physical model is described by the stochastic nonhydrostatic Navier-Stokes equa-

tions with a variable-density Boussinesq approximation,

∇.𝑢 = 0 ,

𝜕𝑢

𝜕𝑡
= −∇.(𝑢𝑢) −∇𝑃 + Λ𝑅𝑒(𝜔)∇2𝑢 +

[︂
𝜌′

𝜌𝑜

]︂
g ,

𝜕𝜌′

𝜕𝑡
= −∇.(𝜌′𝑢) + 𝜅∇2𝜌′ ,

(3.1)

where 𝑢 ≡ 𝑢(𝑥, 𝑡;𝜔) is the two-dimensional stochastic velocity field; 𝑃 ≡ 𝑃 (𝑥, 𝑡;𝜔),

the stochastic pressure field that contains contributions from the hydrostatic pres-

sure due to the variable density as well as the nonhydrostatic pressure; 𝜌𝑜, the mean

density; 𝜌′ ≡ 𝜌′(𝑥, 𝑡;𝜔) = 𝜌(𝑥, 𝑡;𝜔) − 𝜌𝑜, the density perturbation from the mean;

𝑔 = −𝑔𝑒𝑧; 𝜅, the constant of kinematic diffusivity; and Λ𝑅𝑒(𝜔) is here an uncer-

tain parameter equivalent to the inverse of eddy-viscosity (𝜈𝐸) Reynolds number

(𝑅𝑒 = 𝑈𝐿
𝜈𝐸

). This stochastic system belongs to a domain 𝑥 : {𝑥, 𝑧} ∈ 𝒟, and 𝜔 is a

realization index belonging to a measurable sample space Ω. We also consider the

density perturbation to be solely a function of temperature 𝑇 (𝑥, 𝑡;𝜔), given by the

relation, 𝜌′ = 𝛼(𝑇 − 𝑇𝑜), where 𝛼 is the coefficient of expansion and 𝑇𝑜 is a refer-

ence temperature. We specify uncertain initial velocity 𝑢(𝑥, 𝑡𝑖𝑛𝑖𝑡;𝜔) = 𝑢𝑖𝑛𝑖𝑡(𝑥;𝜔)

and temperature 𝑇 (𝑥, 𝑡𝑖𝑛𝑖𝑡;𝜔) = 𝑇𝑖𝑛𝑖𝑡(𝑥;𝜔) fields. The velocity uncertainty is ini-

tialized by adding sinusoidal perturbations to a divergence-free domain-confirming

potential flow, while for density, different stable stratified profiles are considered for

each realization.

3.2.2 LTL-Biological Model

The lower-trophic-level biogeochemical model used in the present study is adapted

from Newberger et. al., 2003 ([3]). We employ the three-component NPZ model (nu-
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trients (𝑁(𝑥, 𝑡;𝜔)), phytoplankton (𝑃 (𝑥, 𝑡;𝜔)), and zooplankton (𝑍(𝑥, 𝑡;𝜔))). The

NPZ model is given by,

𝑆𝑁 = −𝐺 𝑃𝑁

𝑁 +𝐾𝑢

+ Ξ𝑃 + Γ1𝑍 + 𝑎(𝜔)Γ2𝑍
2 +𝑅𝑚𝛾𝑍(1 − exp−Λ(𝜔)𝑃 ) ,

𝑆𝑃 = 𝐺
𝑃𝑁

𝑁 +𝐾𝑢

− Ξ𝑃 −𝑅𝑚𝑍(1 − exp−Λ𝑃 ) ,

𝑆𝑍 = 𝑅𝑚(1 − 𝛾)𝑍(1 − exp−Λ𝑃 ) − Γ1𝑍 − 𝑎(𝜔)Γ2𝑍
2 ,

(3.2)

where: 𝐺 represents the optical model given by, 𝐺 = 𝑉𝑚
𝛼𝐼𝑙

(𝑉 2
𝑚+𝛼2𝐼2𝑙 )

1/2 and 𝐼𝑙(𝑥) =

𝐼𝑜𝑙 exp𝑘𝑤𝑧. Along with the uncertain state variables, we assume a uncertain Ivlev

grazing parameter (Λ(𝜔)) and a special binary stochastic parameter (𝑎(𝜔) ∈ {0, 1}).

The biogeochemical models are coupled with the physical model using stochastic

Advection-Diffusion-Reaction (ADR) equations. Let 𝜑𝑖(𝑥, 𝑡;𝜔), 𝑖 = {1, 2, 3} represent

the three stochastic biological tracers, the ADR equations are then,

𝜕𝜑𝑖

𝜕𝑡
+ ∇.(𝑢𝜑𝑖) − 𝜅∇2𝜑𝑖 = 𝑆𝜑𝑖

(𝜑1, 𝜑2, 𝜑3,𝑥, 𝑡;𝜔), 𝑖 = {1, 2, 3} , (3.3)

where 𝑢(𝑥, 𝑡;𝜔) is the stochastic velocity field which is derived from the physical

model (equation 3.1), 𝑃𝑒 is the Peclet number, and 𝑆𝜑𝑖
(𝜑1, 𝜑2, 𝜑3,𝑥, 𝑡) are the reaction

equations for various biological variables which are given by the NPZ biogeochemical

model (equation 3.2). The initial conditions for this model are here generated by

solving for stable equilibrium solution (𝑆𝜑𝑖
= 0, 𝑖 = {1, 2, 3}) for each of the parameter

realizations.

3.2.3 Fish Model

We use the spatial ecosystem and population dynamics model (SEAPODYM) based

on an ADR formulation that focuses on spatial tuna population dynamics [113]. It

couples low-trophic-level (LTL) and high-trophic-level (HTL) biological models. The

physical and LTL biological models, given in sections 3.2.1 and 3.2.2, respectively,

provide estimates of stochastic physical state variables such as velocity (𝑢(𝑥, 𝑡;𝜔)),

temperature (𝑇 (𝑥, 𝑡;𝜔)), and primary production (𝑃 (𝑥, 𝑡;𝜔)). The primary produc-
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tion acts as a source for the forage (𝐹 (𝑥, 𝑡;𝜔)), after taking into account the recruit-

ment time and mortality, given by source 𝑆(𝑥, 𝑡;𝜔) = 1
𝜆
𝑃 (𝑥, 𝑡;𝜔) exp−𝑚𝑟𝑇𝑟(𝜔), where

𝜆 is the mortality, 𝑚𝑟 is a loss coefficient, and 𝑇𝑟(𝜔) is the uncertain recruitment

time. Thus, the forage field is governed by,

𝜕𝐹

𝜕𝑡
+ ∇.(𝑢𝐹 ) − 𝜅∇2𝐹 = −𝜆𝐹 + 𝑆 . (3.4)

Tuna tend to favor certain temperature ranges and high food concentrations; the

habitat index, given by 𝐼(𝑥, 𝑡;𝜔) = 𝑔(𝐹 (𝑥, 𝑡;𝜔))𝜑(𝑇 (𝑥, 𝑡;𝜔) − 𝑇𝑜), acts as a spa-

tial field which defines the favorability of location for the fish, here tuna. We take

𝑔(𝐹 (𝑥, 𝑡;𝜔)) = 𝐹 (𝑥, 𝑡;𝜔) and,

𝜑(𝑇 (𝑥, 𝑡;𝜔) − 𝑇𝑜) = 1/(1 + exp−(𝑇 (𝑥,𝑡;𝜔)−𝑇𝑜)) .

Gradients of the habitat index then affect the movement of the fishes. This is cap-

tured by defining effective advection velocities, 𝐴𝑥(𝑥, 𝑡;𝜔) = 𝑢(𝑥, 𝑡;𝜔)+𝜒𝜕𝐼(𝑥,𝑡;𝜔)
𝜕𝑥

and

𝐴𝑦(𝑥, 𝑡;𝜔) = 𝑣(𝑥, 𝑡;𝜔) + 𝜒𝜕𝐼(𝑥,𝑡;𝜔)
𝜕𝑦

. Hence, the population density (𝑃𝑑𝑒𝑛(𝑥, 𝑡;𝜔)) of

tuna is then governed by an ADR equation with the effective advection,

𝜕𝑃𝑑𝑒𝑛

𝜕𝑡
+ ∇.(A𝑃𝑑𝑒𝑛) = ∇.(𝐷∇𝑃𝑑𝑒𝑛)𝐹 − 𝑍(𝐼)𝑃𝑑𝑒𝑛 +𝑅 , (3.5)

where 𝐷 is the diffusion coefficient; 𝑍(𝐼) is a habitat index dependent mortality

coefficient given by 𝜆𝑧 exp−𝜆𝐼𝐼 ; and 𝑅 is growth rate. Again the initial uncertainty

estimates for 𝐹 (𝑥, 𝑡;𝜔) and 𝑃𝑑𝑒𝑛(𝑥, 𝑡;𝜔) are here found by solving for the stable

equilibrium solutions of equations 3.4 and 3.5 for each realizations.

3.2.4 GMM-DO Bayesian Learning

As mentioned in the last chapter, a Bayesian learning setting involves choosing a prior

probability distribution for the state variables (X ∈ R𝑁𝑋 ) of interest, taking into ac-

count all sources of uncertainties, 𝑝X(x). Observations (Y ∈ R𝑁𝑌 ), with likelihood
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(𝑝Y|X(y|x)) are used to estimate the posterior probability of the states (𝑝X|Y(x|y))

[56, 93]. In the present problem, the state variable consists of physical, lower-trophic-

level and higher-trophic level biological variables, governed by a coupled physical-

biological-fish model, along with initial conditions, parameters, and parameterization

uncertainties. For the observation likelihood, we assume a linear model given by,

Y = HX+V; where H ∈ R𝑁𝑌 ×𝑁𝑋 is the sparse observation matrix; and V ∈ R𝑁𝑌 is

a zero-mean, uncorrelated Gaussian noise with covariance matrix R ∈ R𝑁𝑌 ×𝑁𝑌 . Un-

certainty propagation is performed using an efficient reduced-dimension uncertainty

quantification method, the Dynamically Orthogonal (DO) equations [11, 12, 15]. In

the current application, even though the physics, LTL-biological, and the fish model

are coupled, however, they do not share stochastic coefficients. Thus, we use the

following truncated KL-decompositions,⎡⎢⎢⎢⎣
𝑢(𝑥, 𝑡;𝜔)

𝑣(𝑥, 𝑡;𝜔)

𝜌′(𝑥, 𝑡;𝜔)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
�̄�(𝑥, 𝑡)

𝑣(𝑥, 𝑡)

𝜌′(𝑥, 𝑡)

⎤⎥⎥⎥⎦+

𝑆𝑣𝑒𝑙∑︁
𝑖=1

⎡⎢⎢⎢⎣
�̃�𝑖(𝑥, 𝑡)

𝑣𝑖(𝑥, 𝑡)

𝜌′𝑖(𝑥, 𝑡)

⎤⎥⎥⎥⎦𝑌 𝑣𝑒𝑙
𝑖 (𝑡;𝜔)

⎡⎢⎢⎢⎣
𝑁(𝑥, 𝑡;𝜔)

𝑃 (𝑥, 𝑡;𝜔)

𝑍(𝑥, 𝑡;𝜔)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
�̄�(𝑥, 𝑡)

𝑃 (𝑥, 𝑡)

𝑍(𝑥, 𝑡)

⎤⎥⎥⎥⎦+

𝑆𝑏𝑖𝑜∑︁
𝑖=1

⎡⎢⎢⎢⎣
�̃�𝑖(𝑥, 𝑡)

𝑃𝑖(𝑥, 𝑡)

𝑍𝑖(𝑥, 𝑡)

⎤⎥⎥⎥⎦𝑌 𝑏𝑖𝑜
𝑖 (𝑡;𝜔)

⎡⎣ 𝐹 (𝑥, 𝑡;𝜔)

𝑃𝑑𝑒𝑛(𝑥, 𝑡;𝜔)

⎤⎦ =

⎡⎣ 𝐹 (𝑥, 𝑡)

𝑃𝑑𝑒𝑛(𝑥, 𝑡)

⎤⎦+

𝑆𝑓𝑖𝑠ℎ∑︁
𝑖=1

⎡⎣ 𝐹𝑖(𝑥, 𝑡)

𝑃𝑑𝑒𝑛𝑖
(𝑥, 𝑡)

⎤⎦𝑌 𝑓𝑖𝑠ℎ
𝑖 (𝑡;𝜔)

(3.6)

where

⎡⎢⎢⎢⎣
�̄�

𝑣

𝜌′

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
�̄�

𝑃

𝑍

⎤⎥⎥⎥⎦ ,
⎡⎣ 𝐹

𝑃𝑑𝑒𝑛

⎤⎦ are the means;

⎡⎢⎢⎢⎣
�̃�𝑖

𝑣𝑖

𝜌′𝑖

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
�̃�𝑖

𝑃𝑖

𝑍𝑖

⎤⎥⎥⎥⎦ ,
⎡⎣ 𝐹𝑖

𝑃𝑑𝑒𝑛𝑖

⎤⎦ are the modes; and

𝑌 𝑣𝑒𝑙
𝑖 (𝑡;𝜔), 𝑌 𝑏𝑖𝑜

𝑖 (𝑡;𝜔), 𝑌 𝑓𝑖𝑠ℎ
𝑖 (𝑡;𝜔) are the respective stochastic coefficients. The three

sets of modes follow dynamic orthogonality w.r.t. themselves, thus allowing us to de-

rive the corresponding DO equations. To handle uncertain functional terms, we make

use of the methodology of special stochastic parameters and stochastic piece-wise

polynomials developed in sections 2.2.1, 2.2.2 and 2.2.3. For detailed DO derivation
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of a general stochastic dynamical system with uncertain parameters, and initial and

boundary condition, see appendix A.

To perform inference of the augmented state variables, parameters and model

equations, we make use of a PDE-based machine learning framework developed by

combining the DO method with a Gaussian mixture model (GMM) filtering algorithm

[114, 10, 115], and implemented in a finite volume framework [80]. For details, see

appendices B & C.

3.3 Experimental Setup

In this section we describe details of the modeling domain, numerical methods, ini-

tialization of the stochastic simulations, true solution generation, observations, etc.,

which for the most part are similar to those in chapter 2.

3.3.1 Simulated Experiments and Dynamics

The experimental setup for the Bayesian learning consists of a 2-dimensional domain

with a seamount representing an idealized sill or strait that can create an upwelling

of the nutrients and thus phytoplankton blooms. The domain is exactly the same as

that used in chapter 2, figure 2-1. The seamount also forces the advection of cold

water upward, that leads to a competing effect on the habitat index, thus limiting the

tuna to very specific depths. With the nonhydrostatic dynamics, internal waves, re-

circulations, and other instabilities can also be created downstream of the seamount,

leading additional biogeochemical-fish responses. This domain is inspired by the Stell-

wagen Bank off of Massachusetts. Here, flow occurs from left to right in the positive

𝑥-direction over the seamount. For velocity, we apply a Dirichlet boundary condition

for the inlet, no-slip for the bump, free-slip at top and bottom, and open boundary

at the outlet. For the tracer fields, we use zero-Neumann on all the boundaries. The

parameter values associated with the domain are provided in Table 3.1.
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3.3.2 Numerical Method

We solve the derived DO equations using a modular finite-volume framework [80].

The geometry is discretized using a uniform, staggered C-grid. The advection oper-

ator is discretized using a total variation diminishing (TVD) scheme with a mono-

tonized central limiter [81]. Diffusion is treated implicitly, with a second-order central

difference scheme. All the reaction terms are computed explicitly. To handle the com-

plex boundaries with the structured Cartesian grid, a ghost cell immersed boundary

method is adopted for accurate enforcement of the boundary conditions (Sect. 5.2).

A first-order forward Euler method is used to evolve the mean and the modes, and

a four-stage Runge-Kutta scheme is employed for the stochastic coefficients. It is

ensured that we satisfy the Courant-Friedrichs-Lewy (CFL) condition at all times.

Refer to Ueckermann and Lermusiaux, 2013 [82], and Feppon and Lermusiaux, 2018

[14] for more details on the numerical schemes we use.

3.3.3 Initialization

The parameters contained in the physical and biological models can be divided into

two categories, deterministic parameters and stochastic parameters. While the values

of deterministic parameters are fixed for every realization, but the stochastic ones

can vary based on their probability distributions. To initialize, parameter values are

sampled for the stochastic parameters (both regular and special) from their initial

joint probability distributions, and the corresponding equilibrium solution is found

for each realization. Definitions and values of all the parameters are provided in Table

3.1.

Physical model

The flow is slow moving with the dimensional velocity at the inlet to be approximately

𝑈 ≈ 10−2 𝑚/𝑠, while the eddy viscosity is considered to be 𝜈𝐸 ≈ 0.1− 10 𝑚2/𝑠. Now

with a horizontal length scale of 𝐷 ≈ 1 𝑘𝑚 for the seamount, the typical value of eddy

viscosity based Reynolds number (𝑅𝑒) turns out to be in the range, 𝑅𝑒 = 1 − 100.

120



Using this eddy viscosity based 𝑅𝑒, helps us to implement Large Eddy Simulations

(LES) in the simplest form, thus capturing large scale dynamics. For the mean

velocity, we use a divergence free velocity field, conforming to the given domain.

For cases with uncertainty in the velocity field, the modes are initialized using a

streamfunction, while the stochastic coefficients using a variance function, as given

in Ueckermann and Lermusiaux, 2013 [82]. And the Reynolds number (𝑅𝑒(𝜔)) is

sampled from its prescribed distribution. To initialize the temperature field, we use

a generalized logistic function given by,

𝑇 (𝑧) = 𝐴+
𝐾 − 𝐴

(𝐶 +𝑄 exp−𝐵𝑧)1/𝜈
(3.7)

where 𝑧 is the depth, and 𝐾,𝐴,𝐶,𝑄,𝐵, 𝜈 are various parameters which control the

shape of the function. These parameters are sampled from normal distribution to

create ensemble of temperature profiles, which are close to realistic scenarios. A

sample temperature profile is presented in figure 3-1. Finally, we recreate all the

velocity realizations and take a joint SVD with temperature realizations, to initialize

the mean, modes and stochastic coefficients for the physics part.

LTL-biological model

To find the equilibrium solutions, consider reference frame without the physics, i.e.

the advection and diffusion terms, hence the biological models are now only depth

(−ℎ𝐻 < 𝑧 < 0) dependent. Once our system is in equilibrium, the concentration of

biological tracers does not change with depth and time. As all the models respect

biomass conservation
∑︀𝑁𝜑

𝑖=1
𝑑𝜑𝑖

𝑑𝑡
= 0, hence all the tracers sums to constant total

biomass
∑︀𝑁𝜑

𝑖=1 𝜑
𝑖 = 𝑁𝑇 , which could vary with depth. We consider 𝑁𝑇 to be linearly

increasing from 10 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at the surface to 30 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at the depth of

100 𝑚, for all the models. A non-linear solver is used to find the steady equilibrium

solutions of the equations in the NPZ model (equation 3.2; or the one modified with

the piece-wise function approximation). Figure 3-1 shows the one-dimensional (𝑧)

solutions for each of the models, for a particular set of parameter values. Hence for
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(a) Sample temperature profile (b) NPZ equilibrium solution

(c) Fish equilibrium solution

Figure 3-1: Sample temperature profile and equilibrium solution for the LTL-
biological and fish model.

every realization, we use the corresponding equilibrium solution for each of its tracer

field, to initialize the masked domain at every 𝑥− location. It should be ensured that

none of the realization of the stochastic parameters leads to unphysical equilibrium

solutions. The value of 30 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 is used to non-dimensionalize all the tracer

fields and appropriate parameter values. Next, we take Singular Value Decomposition

(SVD) of the ensemble to initialize mean, modes and stochastic coefficients.

Fish model

The forage and the fish population density is also initialized by first computing the

equilibrium solutions. The reaction part in equations 3.4 and 3.5 is equated to zero,

which is also dependent on primary production (phytoplankton concentration) from
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the LTL-biological model, and the temperature field from the physics model. Creation

of the ensemble is followed by joint SVD to initialized the mean, modes and stochastic

coefficients.

3.3.4 True Solution Generation

Truth is generated using a deterministic run with a particular set of parameter values

which lie within the realization space. The governing equations are the deterministic

version of the physical, LTL-biological and the fish model. Boundary conditions and

velocity field are either deterministic, or corresponding to a particular realization from

the stochastic run. The velocity and tracer fields are also initialized by reconstructing

the realization from the stochastic fields at 𝑡 = 0 (𝑡 is used for non-dimensional

times), corresponding to the parameter values chosen for the true run. The numerical

methods to solve the deterministic governing equations, domain (𝒟) layout, along

with the non-dimensional domain and time discretizations (∆𝑥 = ∆𝑦 = 1
15

, and

∆𝑡 = 1
240

are kept exactly the same as those used for evolving the stochastic DO

equations.

3.3.5 Observations and Inference

Observations sparse in both space and time are taken from the generated true solution

(section 3.3.4). Depending on the experiment, one of the biological tracer fields

is observed at 8-15 locations. The observation locations are kept in the euphotic

zone because below the euphotic zone there is not much dynamics happening. The

observations happen at every 2 non-dimensional times. Observation error standard

deviation matrix (
√
𝑅 in section 3.2.4) represents the confidence in the sensors, and

in all the experiments, the sensors are considered independent of each other. The

linear observation matrix 𝐻 (section 3.2.4) is specified such that it identifies the

concentration of the tracer field corresponding to the observation locations.

Also, the parameters related to the DO equations and the GMM-DO filter, for ex-

ample, number of modes, monte-carlo samples, maximum number of GMM mixtures
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to be trying to fit at every assimilation step, etc. were chosen based on experience and

numerical tests. It was made sure that they are sufficient to capture the uncertainty

associated with each of the experiments.

3.4 Application Results and Discussions

To demonstrate the capabilities of the Bayesian learning framework, we perform si-

multaneous estimations of state variables, parameters, and parameterizations in the

coupled physical-biological-fish model using only very sparse observations. We employ

so-called “identical twin experiments” in which observations are made from a simu-

lated truth generated using a deterministic run with a particular set of parameter

values which lie within the uncertain realization space.

3.4.1 Experiments 1: Uncertain hydrostatic physics

In the first set of experiments, for the physical model, uncertainty is in the initial con-

ditions for the state variables and the eddy viscosity parameter (Λ𝑅𝑒). We consider

the Boussinesq coupling between momentum and density equation to be absent, with

the density acting as a passive tracer. In the lower-trophic-level biological model,

uncertainty is introduced by the ambiguity in the presence or absence of quadratic

zooplankton mortality functional (𝑎 ∈ {0, 1}), along with the Ivlev grazing parameter

(Λ). In the fish model, the uncertainty comes from the presence of uncertain primary

production and the recruitment time (𝑇𝑟) in the source term of the forage equation

(equation 3.4) and from uncertain physical variables in the effective advection ve-

locities (equation 3.5). The goal is to learn all the state variables fields, along with

the uncertain parameters and parameterizations, through a few observations of the

zooplankton field. These data are sparse in both space and time, with the observa-

tions only available at six locations every two non-dimensional times, starting at time

𝑇 = 3 and ending at 𝑇 = 11. The parameter values used in this experiment, adapted

from the literature, are given in Table 3.1.
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Table 3.1: Values of the parameters used in the coupled nonhydrostatic physical-
biological-fish model. For the non-dimensionalization, the scalings used are: 𝑁𝑇 =
30 𝑚𝑚𝑜𝑙𝑁 𝑚−3, 𝐻 = 50 𝑚, 𝐷 = 1 𝑘𝑚, and time-scale of 12.5 𝑑𝑎𝑦.

Parameters Values

Domain

Horizontal length scale, 𝐷 (𝑘𝑚) 1

Vertical length scale, 𝐻 (𝑚) 50

Domain length, L (non-dim.) 20

Domain height, h (non-dim.) 2

Seamount center, 𝑋𝑐 (non-dim.) 7.5

Physical Model

Inlet velocity, 𝑈 (𝑐𝑚/𝑠) 1

Eddy viscosity, 𝜈𝐸 (𝑚2/𝑠) 10

Inverse of Eddy viscosity based Reynolds number,

Λ𝑅𝑒 (non-dim.)

unif(0.01, 1)

Diffusion constants in horizontal and vertical, 𝒦𝑥 &

𝒦𝑧 (𝑚2/𝑠; same for all tracers, except fish density)

0.01 & 0.001

Reference temperature, 𝑇𝑜 (∘𝐶) 15

Coefficient of expansion, 𝛼 (𝑘𝑔/𝑚3/∘𝐶) 1.5×10−7

LTL-Biological Model

Light attenuation coefficient, 𝑘𝑤 (𝑚−1) 0.067

Slope of the P-I curve, 𝛼 ((𝑊 𝑚−2 𝑑𝑎𝑦)−1) 0.025

Surface available radiation, 𝐼𝑜𝑙 (𝑊 𝑚−2) 158.075

Phytoplankton maximum uptake rate, 𝑉𝑚 (𝑑𝑎𝑦−1) 1.5

Half-saturation for phytoplankton uptake of nutri-

ents, 𝐾𝑢 (𝑚𝑚𝑜𝑙 𝑁 𝑚−3)

1

Phytoplankton specific mortality rate, Ξ (𝑑𝑎𝑦−1) 0.1

Linear zooplankton mortality rate, Γ1 (𝑑𝑎𝑦−1) 0.145
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Presence or absence of quadratic zooplankton mor-

tality term, 𝑎 (non-dim)

unif{0, 1}

Quadratic zooplankton mortality rate, Γ2 (𝑑𝑎𝑦−1) 0.2

Zooplankton max grazing rate, 𝑅𝑚 (𝑑𝑎𝑦−1) 0.52

Ivlev constant, Λ ((𝑚𝑚𝑜𝑙 𝑁 𝑚−3)−1) unif(0.1,

0.2)

Fraction of zooplankton grazing egested, 𝛾 0.3

Fish Model

Forage mortality, 𝜆 (𝑦𝑟−1) 4.6

Forage loss coefficient, 𝑚𝑟 (𝑑𝑎𝑦−1) 0.025

Recruitment time, 𝑇𝑟 (𝑑𝑎𝑦) unif(75, 100)

Fish mortality coefficient parameter, 𝜆𝑧 (day−1) 0.8

Fish mortality coefficient parameter, 𝜆𝐼 (non-dim) 100

Gradient of habitat index proportionality coeffi-

cient, 𝜒 (m/day)

400

Fish recruitment rate, 𝑅 (kg/m2/day) 4

Fish diffusion coefficient, 𝐷𝑥 & 𝐷𝑦 (𝑚2/𝑠) 0.1 & 0.01

Others

Number of realizations, 𝑁𝑀𝐶 10,000

State being observed 𝑍

Observation error standard deviation, (
√
𝑅) 0.05

Number of observation locations, 𝑁𝑌 6

Observation start time (non-dim) 3

Time interval between observations (non-dim) 2

Observation end time (non-dim) 11

Figure 3-2 shows the prior of the system at 𝑇 = 3, i.e., just before the first set

of observations are available. There are many differences between the mean and true

fields of all the state variables. The blue dotted line in the probability plots of the

126



parameters marks the true non-dimensional values. The prior probabilities of these

parameters are considered to be uniform within a certain range. A phytoplankton

bloom develops in top-right of the seamount due to the upwelling of nutrients from

the bottom, which causes an increase in the forage concentration. In-turn, the fish

population increases. A vortex also starts to develop in the wake of the seamount.

We provide the corresponding standard deviation fields in Figure 3-3. There exists a

large amount of uncertainty in the exact location and size of both the bloom and the

vortex.

In figure 3-4, we provide the posterior of the system after two observational

episodes, i.e. at 𝑇 = 5. By observing the zooplankton field, we are not only able

to correct the biological model tracers and its parameters, but also the dynamics

of the flow, as seen by the clustering of the Λ𝑅𝑒 distribution around its true value.

Though we do not see a large correction in the fish model state variables, the prob-

ability distribution for the recruitment time (𝑇𝑟) begins to approach the true value.

We use the variation of Root Mean Square Error (RMSE) over time to judge perfor-

mance. RMSE is the 𝐿2 distance between the mean of the random variables in the

stochastic run and the simulated truth. The RMSE value for each of the variables

at every time is normalized by the corresponding RMSE value just before the first

assimilation step. Hence, our findings are corroborated by the decrease in RMSE for

the parameters and state variables (except the temperature field), and the fact that

assimilating the first observation at 𝑇 = 3 was not effective.

Finally, in figure 3-5, we present the posterior after 5 observational episodes at

𝑇 = 11. We unambiguously learn all the parameter values from the data, even de-

tecting the absence of quadratic mortality term from our NPZ model. We observe

agreement between the mean and true fields for the velocities, NPZ tracers, and the

forage. It is interesting to note that we make no correction to the temperature field.

This is perfectly as expected, because temerature does not affect the biological trac-

ers. Since in the present simulation, temperature is a passive tracer (because of no

Boussinesq coupling), the zooplankton data contains no information about the tem-

perature field, thus, it is not identifiable from the given data (also called the problem
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(a) Physics model

(b) LTL-Biological model

Figure 3-2: The prior state of the stochastic dynamical system used in the
experiments-1, at 𝑇 = 3 (i.e. just before the 1st observational episode). (a), (b),
(c): The first two columns consist of the true (left) and mean (right) field of the state
variables of the corresponding models. In the third column, the first plot shows the
variation of normalized RMSE with time for various stochastic state variables and
parameters. The remaining plot(s) contain the probability distribution of the respec-
tive uncertain parameters of Λ𝑅𝑒(𝜔), Λ(𝜔), 𝑎(𝜔) (to learn the presence or absence of
quadratic zooplankton mortality), and recruitment time 𝑇𝑟(𝜔). The white circles on
the zooplankton true field mark the observation locations. (Cont.)
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(c) Fish model

Figure 3-2: The prior state of the stochastic dynamical system used in the
experiments-1, at 𝑇 = 3 (i.e. just before the 1st observational episode). (a), (b),
(c): The first two columns consist of the true (left) and mean (right) field of the state
variables of the corresponding models. In the third column, the first plot shows the
variation of normalized RMSE with time for various stochastic state variables and
parameters. The remaining plot(s) contain the probability distribution of the respec-
tive uncertain parameters of Λ𝑅𝑒(𝜔), Λ(𝜔), 𝑎(𝜔) (to learn the presence or absence of
quadratic zooplankton mortality), and recruitment time 𝑇𝑟(𝜔). The white circles on
the zooplankton true field mark the observation locations.

Figure 3-3: The prior standard deviation of the stochastic dynamical system used in
the experiments-1, at 𝑇 = 3 (i.e. just before the 1st observational episode).

of identifiability, see section 5.4.3). The fish population density is directly affected by

the temperature field, about which we have no information, but is indirectly related
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(a) Physics model

(b) LTL-Biological model

Figure 3-4: Posterior state of the stochastic dynamical system used in the experiment-
1, at 𝑇 = 5 (i.e. just after the 2nd observational episode). Description same as that
of figure 3-2. (Cont.)

to zooplankton through the primary production and forage; hence, we are able to

learn the fish population from zooplankton data through the somewhat weak link of

primary production and forage.
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(c) Fish model

Figure 3-4: Posterior state of the stochastic dynamical system used in the experiment-
1, at 𝑇 = 5 (i.e. just after the 2nd observational episode). Description same as that
of figure 3-2.

3.4.2 Experiments 2: Deterministic nonhydrostatic physics

In these experiments, to show how the overall learnability of the fish model from zoo-

plankton observations can be improved, we turn on the full temperature-momentum

Boussinesq coupling. Thus, leading to more complex nonhydrostatic dynamics includ-

ing internal waves, however, we consider the physical model to be known, i.e. deterministic.

In figure 3-6, we provide the posterior state of the system directly after 10 obser-

vational episodes at 𝑇 = 21, and as expected, there is a better match between the

GMM-DO mean fields and the true fields for the fish model tracers. The probabil-

ity distribution for the 𝑇𝑟 parameter has also become concentrated around its true

value. The effects of the known internal lee waves are clearly visible on all coupled

physics-LTL-fish fields. As a result, the forage field is more challenging to learn than

before. Even though the physics is known, due to the complicated nature of this flow

dynamics, a larger number of observational episodes were indeed needed to achieve

the learning objectives.
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(a) Physics model

(b) LTL-Biological model

Figure 3-5: The posterior state of the coupled physical-biological-fish model based
stochastic dynamical system used in the experiments-1, at 𝑇 = 11 (i.e. just after the
5th observational episode). Description same as that of figure 3-2. (Cont.)

3.4.3 Experiments 3: Uncertain nonhydrostatic physics with

model discovery

In our last set of experiments, for the physical model, we consider uncertainty in

the initial velocity fields, vertical stratification of temperature, and the eddy viscos-
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(c) Fish model

Figure 3-5: The posterior state of the coupled physical-biological-fish model based
stochastic dynamical system used in the experiments-1, at 𝑇 = 11 (i.e. just after the
5th observational episode). Description same as that of figure 3-2.

ity. Also, the full temperature-momentum Boussinesq coupling is turned-on leading

to more complex dynamics including internal waves. For the LTL NPZ model, we

consider the zooplankton mortality to be completely unknown, thus, left to be dis-

covered by the Bayesian learning machine. While for the HTL fish model, we only

consider the recruitment time parameter to be unknown within a certain range. Sim-

ilar to the experiments - 3 in chapter 2, once again, we assume the domain and

range of the zooplankton mortality function to be [0, 0.3] and [0, 0.08], respectively.

The unknown function is assumed to be composed of 10 continuous and stochastic

piece-wise quadratic segments. In the current experiment, we will observe nutrients

at 15 observation locations from a simulated truth which exists in the initial prior.

The observations start at 𝑇 = 1, and come in every two non-dimensional times till

𝑇 = 11. For the prior at 𝑇 = 1, we can notice that the mean of the state variables of

our stochastic prediction are quite different than the true state variables. For the un-

known function, we do not assume anything other than a bounded domain and range,

and we allow our function to take any form. From the RMSE, we can notice, that as

more and more observations come in, we are able to meet all our learning objectives.

The mean and true fields of the state variables look very similar at 𝑇 = 11 posterior,

along with the parameter pdfs getting concentrated around the true value. However,
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(a) LTL-Biological model

(b) Fish model

Figure 3-6: The posterior state of the coupled physical-biological-fish model based
stochastic dynamical system used in the experiments-2, at 𝑇 = 21 (i.e. just after the
10th observational episode). Description same as that of figure 3-2.

the peak of the Reynolds number pdf misses the true value, because the algorithm

actually learns the value of inverse of Reynolds number, thus making it very sensitive

to small errors in learning. All the zooplankton mortality function realizations gets

concentrated around the truth which is a sigmoid. For 𝑍 in the range 0.25 to 0.30,

the machine is not able to learn the functional form because none of the observa-

tions lie in that range. Such problems can be mitigated by incorporating more prior

knowledge about the system while selecting the function space to search in.
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Figure 3-7: The prior state of the stochastic dynamical system used in the experiment-
2, at 𝑇 = 1 (i.e. just before the 1𝑠𝑡 observational episode), followed by the posterior at
𝑇 = 1, and posterior at the final time of 𝑇 = 11 (after the 6 observational episodes).
Every column consists of (left) and mean (right) field of the state variables of the
corresponding models. At the bottom of the state variable plot of each of the physics,
LTL biology, and fish model; pdf of Reynolds number, ensemble of function realiza-
tions (colored according to their respective normalized probability density values),
and pdf of recruitment time parameter are respectively plotted. The bottom-most
row consists of normalized RMSE variation with time for each model. The white
circles on the nutrients true field mark the observation locations, and the dotted lines
the true zooplankton mortality function, and other parameter values.
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3.5 Summary

We provided a comprehensive overview of the current state-of-the-art in fish model-

ing. Taking into account different sources of uncertainty including initial conditions,

parameters, and parameterizations, we numerically integrated a stochastic coupled

nonhydrostatic ocean physical-biological-fish dynamical model in an idealized do-

main, using the Dynamically Orthogonal (DO) methodology, an adaptive reduced-

dimension stochastic modeling technique for efficient uncertainty evolution. The un-

certain functional forms (parameterizations) are handled using the novel methodolo-

gies of stochastic special parameters and stochastic piece-wise polynomial functions

developed in the previous chapter. As a part of our PDE-based Bayesian learn-

ing framework, we then use the GMM-DO filter to perform a nonlinear inference

of high-dimensional states containing multidisciplinary unknown states, parameters,

and parameterizations in a series of experiments of varying complexities. The experi-

mental setup consists of a uncertain nonhydrostastic variable-density Boussinesq flow

past a seamount, and we also demonstrate interdisciplinary learning. The learning

results are promising for use with realistic fish modeling simulations.
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Chapter 4

Bayesian Discovery of Ocean

Acidification Models Using

Real-World Data

Monitoring, quantifying, and predicting the three-dimensional and time-dependent

ocean acidification processes, from the atmospheric exchanges and river discharges to

the ocean interior, over days to decades, remains a fascinating observational, theoret-

ical, and modeling challenge. This challenge is the long-term driver of our “Bayesian

Intelligent Ocean Modeling and Acidification Prediction Systems” (BIOMAPS) re-

search (http://mseas.mit.edu/Research/BIOMAPS/). Ocean acidification (OA), or

the progressive decrease in pH of seawater, is caused primarily by excess atmospheric

CO2 and is linked to climate change [116, 117, 118]. Its chemical perturbations are

expected to be larger in coastal regions than on global average [119, 120]. In the

Gulf of Maine and Massachusetts Bay regions, the shellfish growth and reproduction

are affected by coastal acidification, with negative impacts on crustaceans (lobsters,

crabs) and both wild and farmed mollusks (scallops, oysters, clams, mussels), hence

also on major industries and employment sources [121]. Improving the monitoring,

modeling, and forecasting of regional OA is urgent.

The overarching goal of our research is to develop and demonstrate principled

Bayesian intelligent ocean modeling and acidification prediction systems that discrim-
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inate among and infer new OA models, rigorously learning from data-model misfits

and accounting for uncertainties, so as to better monitor, predict, and characterize

OA over time scales of days to months in the Massachusetts Bay and Stellwagen Bank

regions.

4.0.1 Problem Statement

One-dimensional (1-D) models for the ocean biogeochemistry provide an important

tool for the study, understanding, and modeling of interplay of various (often elusive)

physical, biological, and carbonate processes [122]. However, they are marred by a

variety of issues, such as, missing processes and interactions, seasonal and regional

variability in parameter values, multiple candidate functional representations of the

same process by different scientists, etc. Thus, the goal of this work is to use and

showcase our novel Bayesian learning paradigm to simultaneously estimate states,

parameters, and functional form of missing processes with quantifiable uncertainty,

using model-data misfits between an existing coupled physical-biological-carbonate

model and observed real world in-situ OA data in the Gulf of Maine (GoM) during

a research cruise in the middle of August, 2012.

4.1 Modeling Methodology

In what comes next, we first describe the 1-D coupled physical-biological-carbonate

model used in the present study, followed with the different data sources available

in the GoM region during the time of interest. We then describe the procedures for

estimating initial state uncertainty, parameter values, relevant physical conditions,

etc. which are important to ensure that the model simulations provide an accurate

and representative prior estimate for state uncertainty.
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4.1.1 Coupled physical-biological-carbonate model

We will use a model similar to the Hadley Centre Ocean Carbon Cycle (HadOCC)

model [123], where the biological part will consist of a modified version of a four-

component system (nutrients (N), phytoplankton (P), zooplankton (Z), and detritus

(D)) developed by Tian et al. [77] for the Gulf of Maine, along with dissolved inorganic

carbon (DIC), and total alkalinity (TA) for the carbonate part. The NPZD model is

given by,

𝑑𝑁

𝑑𝑡
= −𝑈𝑃 + 𝜆𝐺𝑍 + 𝜀𝑓𝑇 (𝑇 (𝑧))𝐷 ,

𝑑𝑃

𝑑𝑡
= 𝑈𝑃 −𝐺𝑍 −𝑚𝑃𝑓𝑇 (𝑇 (𝑧))𝑃 2 + 𝑠𝑃

𝜕𝑃

𝜕𝑧
,

𝑑𝑍

𝑑𝑡
= 𝛾𝐺𝑧 −𝑚𝑍𝑓𝑇 (𝑇 (𝑧))𝑍2 ,

𝑑𝐷

𝑑𝑡
= (1 − 𝛾 − 𝜆)𝐺𝑍 +𝑚𝑃𝑃

2 +𝑚𝑍𝑍
2 − 𝜀𝑓𝑇 (𝑇 (𝑧))𝐷 + 𝑠𝐷

𝜕𝐷

𝜕𝑧
,

(4.1)

with 𝑈𝑃 representing the phytoplankton growth, regulated by nitrogen limitation

based on Michaelis-Menten kinetics (𝑓𝑁(𝑁)), photosynthetically active radiation (𝑓𝐼(𝐼(𝑧))),

and temperature limitation (𝑓𝑇 (𝑇 (𝑧))); 𝐺𝑍 representing the zooplankton grazing; and

𝑀𝑍(𝑍) representing the zooplankton mortality; all given by,

𝑈𝑃 = 𝜇𝑚𝑎𝑥𝑓𝑁(𝑁)𝑓𝐼(𝐼(𝑧))𝑓𝑇 (𝑇 (𝑧))𝑃 , 𝑓𝑁(𝑁) =
𝑁

𝑁 +𝐾𝑁

,

𝑓𝐼(𝐼(𝑧)) = (1 − exp(𝛼𝐼(𝑧)/𝜇𝑚𝑎𝑥)) exp(−𝛽𝐼(𝑧)/𝜇𝑚𝑎𝑥) ,

𝐼(𝑧) = 𝐼0 exp

(︂
−𝑘𝑊 𝑧 − 𝑘𝑃

∫︁ 0

−𝑧

𝑃𝑑𝑧 − 𝑘𝐷

∫︁ 0

−𝑧

𝐷𝑑𝑧

)︂
,

𝐺𝑍 =
𝑔𝑚𝑎𝑥𝑍𝑃

2

𝑃 2 +𝐾2
𝑃

, 𝑓𝑇 (𝑇 (𝑧)) = exp(−𝑎|𝑇 (𝑧) − 𝑇𝑜𝑝𝑡|) .

(4.2)

In the above equations, the concentration of biological variables is in 𝑚𝑚𝑜𝑙 𝑁 𝑚−3

(measured in nitrogen), 𝑧 is depth, and the other parameters are: 𝜇𝑚𝑎𝑥 is the max-

imum growth rate of phytoplankton; 𝐾𝑁 is the half-saturation constant; 𝛼 is the

light-growth slope; 𝛽 is the inhibition coefficient; 𝐼0 is photosynthetically active ra-

diation (PAR) at the sea surface; 𝑘𝑊 is the attenuation coefficient of water; 𝑇𝑜𝑝𝑡
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is optimal temperature for phytoplankton growth; 𝑎 is the temperature coefficient;

𝑔𝑚𝑎𝑥 is the zooplankton maximum grazing rate; 𝐾𝑃 the half-saturation constant for

zooplankton grazing; 𝛾 is the assimilation coefficient; 𝑚𝑧 the zooplankton mortality

coefficient; 𝑚𝑝 the phytoplankton mortality coefficient; 𝜆 is the active respiration

zooplankton expressed as a fraction of grazing; 𝑠𝑃 and 𝑠𝐷 are the phytoplankton and

detritus sinking speeds, respectively; and 𝜀 is the remineralization rate of detritus.

The carbon in the system is coupled with the nitrogen by fixed carbon-nitrogen ratios,

𝐶𝑃 , 𝐶𝑍 , and 𝐶𝐷,

𝑑(𝐷𝐼𝐶)

𝑑𝑡
= −𝐶𝑃

𝑑𝑃

𝑑𝑡
− 𝐶𝑍

𝑑𝑍

𝑑𝑡
− 𝐶𝐷

𝑑𝐷

𝑑𝑡
− 𝛾𝑐𝐶𝑃𝑈𝑃 ,

𝑑(𝑇𝐴)

𝑑𝑡
= − 1

𝜌𝑤

𝑑𝑁

𝑑𝑡
− 2𝛾𝑐𝐶𝑃𝑈𝑃

𝜌𝑤
.

(4.3)

Neither DIC or TA has any effect on the biology because phytoplankton growth is

not carbon limited. The last term in the DIC equation represents the precipitation

of calcium carbonate to form shells and other hard body parts, which subsequently

sink below the euphotic zone, also known as “hard flux”. This flux is modeled to be

proportional (and additional) to the uptake of carbon for primary production. Also,

the chemistry dictates the decrease in total alkalinity by two molar equivalents for

each mole of carbonate precipitated. In general, 𝑇𝐴 is measured in 𝜇𝑚𝑜𝑙 𝑘𝑔−1 while

the biological variable (e.g. 𝑁) are measured in 𝑚𝑚𝑜𝑙 𝑚−3, thus, we divide the right-

hand-side (RHS) of the 𝑇𝐴 equation with density of the sea-water (𝜌𝑤).The units of

𝐷𝐼𝐶 concentration are 𝑚𝑚𝑜𝑙 𝑚−3.

The above biological and carbonate models are often coupled with physical models

to introduce both spatial and temporal components. For our experiments, we use a

1-D diffusion-reaction PDE with vertical eddy mixing parameterized by the operator,

𝜕/𝜕𝑧 (𝐾𝑧(𝑧,𝑀)𝜕/𝜕𝑧(∙)), where 𝐾𝑧 is a dynamic eddy diffusion coefficient. A mixed

layer of varying depth (𝑀 = 𝑀(𝑡)) is used as a physical input to the OA models.

Thus, each biological and carbonate state variable 𝐵(𝑧, 𝑡) is governed by the following
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non-autonomous PDE,

𝜕𝐵

𝜕𝑡
= 𝑆𝐵 +

𝜕

𝜕𝑧

(︂
𝐾𝑧(𝑧,𝑀(𝑡))

𝜕𝐵

𝜕𝑧

)︂
, (4.4)

𝐾𝑧(𝑧,𝑀(𝑡)) = 𝐾𝑧𝑏+
(𝐾𝑧0 −𝐾𝑧𝑏)(arctan(−𝛾𝑡(𝑀(𝑡) − 𝑧)) − arctan(−𝛾𝑡(𝑀(𝑡) −𝐷𝑧)))

arctan(−𝛾𝑡𝑀(𝑡)) − arctan(−𝛾𝑡(𝑀(𝑡) −𝐷𝑧))
,

(4.5)

where 𝐾𝑧𝑏 and 𝐾𝑧0 are the diffusion at the bottom and surface respectively, 𝛾𝑡 is the

thermocline sharpness, and 𝐷𝑧 is the total depth. The 1-D model and parameteri-

zations are adapted from Eknes and Evensen, 2002 [4]. They simulate the seasonal

variability in upwelling, sunlight, and biomass vertical profiles. We simulate the

photosynthetically-available radiation (PAR) 𝐼0(𝑡) using the instantaneous incoming

radiation model proposed by Peixoto and Oort, 1992 [124]. First, the incident solar

radiation at the top of the atmosphere (𝑄0) is given by,

𝑄0 = max

[︃
𝑆𝑐

(︂
𝑑𝑚
𝑑

)︂2

(sin𝜑 sin 𝛿 + cos𝜑 cos 𝛿 cosℎ)

]︃
(︂
𝑑𝑚
𝑑

)︂2

= 1 + 0.035 cos

[︂
2𝜋

365
(6 − 𝑦𝑑)

]︂
𝛿 = −23.45𝜋

180
cos

[︂
2𝜋

365
(355 − 𝑦𝑑)

]︂
ℎ = 2𝜋

(︂
𝑡𝐺𝑀𝑇

24
+

𝜓

360
− 1

2

)︂
(4.6)

where 𝑆𝑐 = 1360𝑊 𝑚−2 is the solar constant; 𝑑𝑚 is the earth’s mean distance from

the sun; 𝑑 is the earth’s current distance from the sun; 𝜑 is the latitude (radians);

𝛿 is the solar declination; ℎ is the hour angle, having a value of zero at local solar

noon; 𝑦𝑑 is the year-day (including fractional part); 𝑡𝐺𝑀𝑇 is the (decimal) time of day,

Greenwich Mean Time (e.g. at 1415 GMT, 𝑡𝐺𝑀𝑇 = 14.25); and 𝜓 is the longitude

(degrees). Further, it is assumed that only only 76% of the radiation penetrates the

atmosphere on a cloudless day and only 45% of it is available as PAR [62]. Thus,
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PAR (in 𝑊 𝑚−2) is given by,

𝐼0(𝑡) = 0.45 × 0.76𝑄0(𝑡) . (4.7)

It should be noted that 𝑡 will need to be converted to 𝑦𝑑 and 𝑡𝐺𝑀𝑇 in equation 4.6.

Apart from the effects of processes such as nutrient uptake / mineralisation, ni-

trification or denitrification on 𝑇𝐴 as modeled by equation 4.3, 𝑇𝐴 is also strongly

controlled by factors such as precipitation, evaporation, water mass mixing, carbonate

dissolution, and precipitation [125]. Thus, 𝑇𝐴 is often decomposed into two compo-

nents, diagnostic and prognostic [126]. The prognostic component is fully advected

and diffused by the circulation model and simulates the variability of 𝑇𝐴 due to all

the biological processes, riverine input, etc. While the diagnostic component is calcu-

lated using a linear regression between 𝑇𝐴 and salinity (𝑆). For the diagnostic part,

we use an empirical linear model optimized for the Gulf of Maine and valid at depths

(Dr. Patrick J. Haley Jr., pers. comm.),

𝑇𝐴 =

⎧⎪⎨⎪⎩(198.10 + 61.75𝑆)/1000, 𝑆 < 32.34

(744.41 + 44.86𝑆)/1000, 𝑆 ≥ 32.34

(4.8)

where 𝑇𝐴 is in 𝑚𝑚𝑜𝑙 𝑘𝑔−1 and 𝑆 in 𝑃𝑆𝑈 (practical salinity unit).

4.1.2 Data

The main region of interest for this study is the Gulf of Maine (GoM). Thus, we

utilize a number of different data sources in the GoM region for the purposes of model

initialization, parameterization, oceanographic analysis, and data assimilation.

GOMECC-2: The primary source of OA data is the second Gulf of Mexico and

East Coast Carbon (GOMECC-2; [127]) Cruise on board the R/V Ronald H. Brown

which happened in July-August, 2012. It started from Miami (July 21, 2012), into

the Gulf of Mexico and then along the East US coast to its end at Boston (August 13,

2012). The effort was in support of the coastal monitoring and research objectives
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of the NOAA Ocean Acidification Program (OAP). In total, 7 observations were

made in the GoM region on August 12 & 13, 2012, and the measured variables of

interest included temperature (𝑇 ), salinity (𝑆), nitrate (𝑁𝑂3), chlorophyll-a (𝐶ℎ𝑙-a),

and total alkalinity (𝑇𝐴). We are only interested in modeling the off-shore ocean

acidification, thus, we will not use the two profiles closest to the coast because they

spend too much time in the Maine coastal current (MCC). Also, the one profile

farthest to the right experiences very different ocean conditions, thus, is not relevant

for our analysis. See figure 4-1 for reference.

GTSPP buoy: A buoy part of the global temperature and salinity profile pro-

gram (GTSPP; [128]) and located just top-left (70.43∘𝑊 , 43.18∘𝑁) to the relevant

GOMECC-2 data profiles (figure 4-2). It was active during the months of July and

August in 2012, and made hourly observations of 𝑇 , 𝑆, and velocity at depths of 1𝑚,

20𝑚, and 50𝑚. We also have access to wind velocities and wind-stress at the buoy

location [129].

Sea surface temperature (SST): SST images collected by the Advanced High Res-

olution Radiometer (AVHRR) on the NOAA polar-orbiting satellites, and processed

by the Ocean Remote Sensing Group at Applied Physics Laboratory, Johns Hopkins

University [130]. We will utilize images for the Northern Gulf Stream region observed

between July 21 - August 13, 2012.

World ocean database (WOD): We will utilize in-situ synoptic WOD data of all

years (until 2018; [131]), for the variables of 𝑆, 𝑁𝑂3, and 𝐶ℎ𝑙-a, and the months of

July and August. Data is selected in the region surrounding the relevant GOMECC-2

profiles and not very near to the coast (excluding MCC region), as shown in figure

4-2. The profiles present in the WOD which meet our location criterion, are further

cleaned manually to remove extreme outliers and which are non-physical / biological.

It should be noted, that the WOD data used did not contain GOMECC-2 profiles.

143



(a) (b)

(c) (d)

(e) (f)

Figure 4-1: Data collected at 7 observation locations in the Gulf of Maine during
the second Gulf of Mexico and East Coast Carbon (GOMECC-2) cruise. (a): Data
locations; (b): Temperature; (c): Salinity; (d): Nitrate; (e): Chlorophyll-a; and (d):
Total alkalinity data profiles. Color correspondence exists between data locations and
profiles.
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Figure 4-2: Locations of data profiles belonging to different data sources that were
actually used for model initialization and assimilation. WOD stands for world
ocean database, GTSPP for global temperature and salinity profile program, and
GOMECC-2 for Gulf of Mexico and East Coast Carbon #2 cruise.
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4.1.3 Initialization

Historical state uncertainty: To compute the historical uncertainty for the months

of July and August of all the biological and carbonate states, we start with the

WOD data profiles of the observed variables of 𝑆, 𝑁𝑂3, and 𝐶ℎ𝑙-a as described in

section 4.1.2 and shown in figure 4-3. Due to lack of WOD data profiles where all

the three variables were observed simultaneously, we create joint vertical empirical

orthogonal functions (EOFs; [132]) for the pairs of {𝑆,𝐶ℎ𝑙-a}, and {𝑆,𝑁𝑂3} as shown

in figure 4-4. Next, our goal is to generate joint random realizations for the three

observed variables. We first create random joint realizations of 𝑆 and 𝐶ℎ𝑙-a using

the corresponding joint modes and eigenvalues of {𝑆,𝐶ℎ𝑙-a} data pairs. Followed by

which, we solve a system of linear equations to find coefficients corresponding to the

joint modes of {𝑆,𝑁𝑂3} which will create the same salinity realization as obtained

earlier in the least-square sense. Using the set of coefficient and joint modes of

{𝑆,𝑁𝑂3} data pairs, we can compute the matching 𝑁𝑂3 realization. This procedure

could also be done in the other order, using {𝑆,𝑁𝑂3} first, followed by {𝑆,𝐶ℎ𝑙-a}.

We create 1000 Monte-Carlo (MC) realizations, shown in figure 4-5. Realizations

for the non-observed variables are computed from those of the observed ones using

approximate relationships provided in table 4.1 and adopted from Beşiktepe et al.,

2003 [62]. We also apply a Savitzky-Golay filter [133] to each realization for smoothing

them out.

Parameter values: The parameter values for the biological model are adopted from

either Tian et al., 2015 [77] or Beşiktepe et al., 2003 [62], as both the studies provide

values optimized for the GoM region. Parameter values for the carbonate model are

adopted from Palmer and Totterdell, 2001 [123], while that for the physical model by

Dr. Patrick J. Haley Jr. (pers. comm.). A comprehensive list of all the parameter

values used in the experiment are listed in table 4.2.

Physics: For the time period of interest, the mixed layer depth is estimated to

be 4𝑚 based on a root-mean-square wind stress of 0.4 𝑑𝑦𝑛𝑒𝑠/𝑐𝑚2 and an Ekman
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Unobserved Variables Relation to Observed Variables
𝑁(𝑧;𝜔) 𝑁𝑂3(𝑧;𝜔)
𝑃 (𝑧;𝜔) (𝐶𝐶ℎ𝑙/(12 × 𝐶𝑁)) × 𝐶ℎ𝑙-a(𝑧;𝜔)
𝑍(𝑧;𝜔) 0.5 × 𝑃 (𝑧;𝜔)
𝐷(𝑧;𝜔) 0.05 × 𝑃 (𝑧;𝜔)
𝐷𝐼𝐶(𝑧;𝜔) 𝐶𝑁 ×𝑁𝑂3(𝑧;𝜔)

𝑇𝐴(𝑧;𝜔)

{︃
(198.10 + 61.75𝑆(𝑧;𝜔))/1000, 𝑆 < 32.34

(744.41 + 44.86𝑆(𝑧;𝜔))/1000, 𝑆 ≥ 32.34

Table 4.1: Relationships between realizations of different observed and unobserved
variables for initialization. 𝜔 is the realization index and 𝑧 is the depth. For parameter
definitions and values, see table 4.2.

factor of 0.06, and the transition from the mixed layer diffusion to the much smaller

background value by 8𝑚 (Dr. Patrick J. Haley Jr., pers. comm.). The variation of

vertical diffusion coefficient (𝐾𝑧(𝑧,𝑀(𝑡))) is assumed constant in time and provided

in figure 4-6(a). The photosynthetically active radiation (PAR) is computed using

equations 4.6 & 4.7 and at the centroid of the GOMECC-2 data locations, (70∘𝑊 ,

42.85∘𝑁). Further, the mean temperature and salinity profiles computed from the

GOMECC-2 data are used in model parameterizations when ever needed and treated

to be deterministic. See figure 4-6.

Boundary conditions: A Neumann zero boundary condition is specified at the bot-

tom to let the sinking biomass / carbonate exit the domain without any hinderence.

While on the top, a Robin condition is specified to help remember the initial concen-

trations in order to compensate for the lack of surface forcing, and at the same time

allowing for some adjustment. This also removes singularity from the PDE system.

The boundary conditions are given by,

1

2
𝐵(𝑧, 𝑡) +

𝜕𝐵(𝑧, 𝑡)

𝜕𝑧
= 0, at 𝑧 = 0 ,

𝜕𝐵(𝑧, 𝑡)

𝜕𝑧
= 0, at 𝑧 = 𝐷𝑧 ,

(4.9)

where 𝐵 ∈ {𝑁,𝑃, 𝑍,𝐷,𝐷𝐼𝐶, 𝑇𝐴} and valid at all times.
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(a) Salinity (b) Chlorophyll-a

(c) Nitrate

Figure 4-3: World ocean database (WOD) data profiles observed in the months of
July/August, in the area of interest, and used to create initial state uncertainty. For
the corresponding data locations, see figure 4-2.
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(a)

(b)

Figure 4-4: Joint vertical EOFs (empirical orthogonal functions) corresponding to
different pairs of observed variables created using WOD data profiles (figure 4-3).
Only the top 5 modes for each case are provided. (a): Observed variables, salinity
(𝑆) and chlorophyll-a (𝐶ℎ𝑙-a); (b): Observed variables, 𝑆 and nitrate (𝑁𝑂3).
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(a) Salinity (b) Chlorophyll-a

(c) Nitrate

Figure 4-5: The created ensemble of realizations for different observed variables,
representing historical uncertainty for the months of July / August.
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Table 4.2: Parameter definition, values, and units related to the coupled physical-
biological-carbonate model and the experimental setup in general.

Parameters Values

Physical Model

Total depth, 𝐷𝑧 (𝑚) 100

Diffusion coefficient at the top, 𝐾𝑧0 (𝑚2/𝑑𝑎𝑦) 43.2

Diffusion coefficient at the bottom, 𝐾𝑧𝑏 (𝑚2/𝑑𝑎𝑦) 0.1728

Thermocline sharpness, 𝛾𝑡 (dimensionless) 3

Biological Model

Temperature coefficient, 𝑎 (∘𝐶−1) unif(0,

1)

Maximum grazing, 𝑔𝑚𝑎𝑥 (𝑑𝑎𝑦−1) 0.47

Light attenuation by phytoplankton, 𝑘𝑃 (𝑚2(𝑚𝑚𝑜𝑙 𝑁)−1) 0.06

Light attenuation by detritus, 𝑘𝐷 (𝑚2(𝑚𝑚𝑜𝑙 𝑁)−1) 0.01

Light attenuation by pure water, 𝑘𝑊 (𝑚−1) 0.08

Half-saturation constant for nitrogen uptake, 𝐾𝑁 (𝑚𝑚𝑜𝑙 𝑁 𝑚−3) 0.5

Half-saturation constant for grazing, 𝐾𝑃 (𝑚𝑚𝑜𝑙 𝑁 𝑚−3) 0.25

Phytoplankton mortality, 𝑚𝑃 (𝑑𝑎𝑦−1(𝑚𝑚𝑜𝑙 𝑁 𝑚−3)−1) 0.08

Zooplankton mortality, 𝑚𝑃 (𝑑𝑎𝑦−1(𝑚𝑚𝑜𝑙 𝑁 𝑚−3)−1) 0.06

Phytoplankton sinking speed, 𝑠𝑃 (𝑚 𝑑𝑎𝑦−1) 0.3

Detritus sinking speed, 𝑠𝐷 (𝑚 𝑑𝑎𝑦−1) 3

Optimal temperature, 𝑇𝑜𝑝𝑡 (∘𝐶) 20

Phytoplankton maximum growth rate, 𝜇𝑚𝑎𝑥 (𝑑𝑎𝑦−1) 2.808

Light-photosynthesis slope, 𝛼 (𝑚2𝑑𝑎𝑦−1𝑊−1) 0.14

Light-inhibition slope, 𝛽 (𝑚2𝑑𝑎𝑦−1𝑊−1) 0.0028

Remineralization rate at 0∘𝐶, 𝜖 (𝑑𝑎𝑦−1) 0.015

Active respiration, 𝜆 (dimensionless) 0.3

Zooplankton growth efficiency, 𝛾 (dimensionless) 0.4
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Carbonate Model

Carbonate precipitated per unit of primary production, 𝛾𝑐 (dimen-

sionless)

0.01

Carbon:Nitrogen ratio of phytoplankton, 𝐶𝑃 (dimensionless) 6.625

Carbon:Nitrogen ratio of zooplankton, 𝐶𝑃 (dimensionless) 5.625

Carbon:Nitrogen ratio of detritus, 𝐶𝐷 (dimensionless) 7.5

Others

Carbon:Nitrogen ratio 𝐶𝑁 (dimensionless) 6.625

Carbon:Chlorophyll-a ratio 𝐶𝐶ℎ𝑙 (dimensionless) 40

Sea-water density 𝜌𝑤 (𝑘𝑔 𝑚−3) 1025

Number of realizations, 𝑁𝑀𝐶 1000

4.1.4 Numerical Method

We evolve each of the realizations individually in the Monte-Carlo sense. We dis-

cretize the 1-D domain using 100 equally-spaced grid points, and use simple 2𝑛𝑑 order

central difference schemes are for all the spatial derivatives with one-sided schemes

only at the boundaries. The discretized system is evolved in time using a dopri-5

[134] adaptive time-integration scheme. Numerically solving biogeochemical models

is prone to states becoming negative, and often the solution exploding. In order to

avoid this problem, during every evaluation of the right-hand-side, any negative state

values were reset to 0.

4.1.5 Observations and Inference

For all our data assimilation needs, we will use the GMM-DO filter [16, 17] with state

augmentation. The GMM-DO filter performs a Gaussian Mixture Model (GMM)

based Kalman-like update in a reduced-order space, thus, rendering non-Gaussian

Bayesian inference computationally feasible. We will use 30 modes and 10 GMM

components. For more algorithmic details, please see appendices B and C. Further,
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(a) (b)

(c) (d)

Figure 4-6: Physical features relevant to the time and area of interest, and used in the
experiment. (a): Vertical diffusion coefficient, 𝐾𝑧(𝑧, 𝑡), corresponding to a stationary
mixed-layer-depth of 4𝑚 and 𝛾𝑐 = 3; (b): Time variation of photosynthetically active
radiation (PAR) at the location, (70∘𝑊 , 42.85∘𝑁); (c): Mean temperature computed
from the observed GOMECC-2 data profiles; (d): Mean salinity computed from the
observed GOMECC-2 data profiles.
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all the observation are considered independent of each other, and the estimates of

the sensor noise are represented through the error standard deviation matrix (
√
𝑅 in

equation 2.3). Exact sensor noise values are unavailable, thus, to be on the conserva-

tive side, the standard deviation of the observation noise is chosen to be approximately

10 times the precision of the measured values for all our assimilation needs. The ob-

served variables are first converted to the corresponding unobserved variables using

the relationships in table 4.1, and then, a linear observation matrix (𝐻 in equation

2.3) is specified such that it identifies and maps the variable and the observation

locations to the concatenated state space.

4.2 Experiment Overview

We first describe the various sources of uncertainties in our setup, followed by details

about the model run, and finally our learning objectives.

Model uncertainty: As mentioned earlier in section 4.1.1, the change in total al-

kalinity (𝑇𝐴) can be decomposed into two components, diagnostic and prognostic.

In the HadOCC based model used in the current study, the prognostic component

of 𝑇𝐴 is modeled by coupling the RHS of 𝑑(𝑇𝐴)/𝑑𝑡 ODE (equation 4.3) with the

diffusion-reaction PDE (equation 4.4). This model captures the effects of diffusion

and biological processes on the variability of 𝑇𝐴, however, lacks the ability to ac-

count for changes due to advection of water masses of different salinity caused due to

precipitation, riverine input, and other oceanographic processes. Thus, to represent

these unmodeled effects, we propose to add an uncertain salinity based forcing term

to the existing 𝑇𝐴 equation,

𝜕(𝑇𝐴)

𝜕𝑡
=
𝜕

𝜕𝑧

(︂
𝐾𝑧(𝑧,𝑀(𝑡))

𝜕(𝑇𝐴)

𝜕𝑧

)︂
− 𝑈𝑃 − 𝜆𝐺𝑍 − 𝜀𝑓𝑇 (𝑇 (𝑧))𝐷

𝜌𝑤

− 2𝛾𝑐𝐶𝑃𝑈𝑃

𝜌𝑤
+
𝑓(𝑆(𝑧);𝜔)

𝜌𝑤
,

(4.10)

where 𝑓(𝑆(𝑧);𝜔) acts as a closure term, and is parameterized using 4 continuous
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and stochastic piece-wise linear functions (section 2.2.2). 𝜔 is the realization index

belonging to a measurable sample space Ω. Based on historical 𝑇𝐴 variability and

salinity profiles measured during GOMECC-2, we assume that each realization of

𝑓(𝑆(𝑧);𝜔) randomly varies between ±5 𝑚𝑚𝑜𝑙 𝑚−3 𝑑𝑎𝑦−1, and the range of values

taken by salinity, 𝑆(𝑧) ∈ [31, 33] 𝑃𝑆𝑈,∀𝑧 ∈ [−𝐷𝑧, 0]. Let the interval [31, 33] be

divided into 4 equal non-overlapping sections, such that, 31 = 𝑆0
𝐿 < 𝑆0

𝑅 = 31.25 =

𝑆1
𝐿 < ... < 𝑆3

𝑅 = 32.75 = 𝑆4
𝐿 < 𝑆4

𝑅 = 33. Hence, 𝑓(𝑆(𝑧);𝜔) can be represented as,

𝑓(𝑆(𝑧);𝜔) =
5∑︁

𝑗=0

𝜒𝑗(𝜔)𝜑𝑗(𝑆(𝑧)) (4.11)

where,

𝜑0(𝑆) =

⎧⎪⎨⎪⎩
1

0.25
(31.25 − 𝑆) if 31 ≤ 𝑆 ≤ 31.25 ,

0 otherwise

𝜑𝑖(𝑆) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

(𝑆𝑖−1
𝑅 −𝑆𝑖−1

𝐿 )
(𝑆 − 𝑆𝑖−1

𝐿 ) if 𝑆𝑖−1
𝐿 ≤ 𝑆 ≤ 𝑆𝑖−1

𝑅 ,

1
(𝑆𝑖

𝑅−𝑆𝑖
𝐿)

(𝑆𝑖
𝑅 − 𝑆) if 𝑆𝑖

𝐿 ≤ 𝑆 ≤ 𝑆𝑖
𝑅 ,

0 otherwise

for 𝑖 ∈ {1, ..., 4} .

𝜑5(𝑆) =

⎧⎪⎨⎪⎩
1

0.25
(𝑆 − 32.75) if 32.75 ≤ 𝑆 ≤ 33 ,

0 otherwise

(4.12)

Further, each set of realizations of stochastic expansion coefficients 𝜒′
𝑖𝑠, 𝑖 ∈ {0, ..., 5}

are sampled in such a way, that they do not lead to a prior with highly fluctuating

function realizations.

Parameter uncertainty: In the GOMECC-2 data, we notice high phytoplankton

concentrations in the upper 20𝑚 depth (figure 4-1e). However, some preliminary de-

terministic model runs indicated that the parameter values taken from Tian et al.,

2015 [77] and Beşiktepe et al., 2003 [62], and combined with the physical conditions

provided in figure 4-6 led to sharp decline in the modeled phytoplankton concentra-
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tions in the top 20𝑚. Changing the magnitude of the temperature coefficient (𝑎) was

found to have the most impact on the phytoplankton concentration in the top 20𝑚.

Thus, the temperature coefficient (𝑎) parameter is made uncertain, and assumed to

be uniformly distributed between 0 and 1 ∘𝐶−1.

Initial condition uncertainty: We start with the state realizations of the historical

uncertainty for the months of July / August created using the relevant WOD data and

explained in section 4.1.3. Next, we utilize the GTSPP buoy data in order to make

the initial state uncertainty representative of the year 2012. Looking at the wind

stress magnitudes at the buoy in figure 4-8(b), we can notice a major wind event on

July 23. Prior to the wind event, on July 21, the winds were weaker and variable.

They did not support major upwelling which agrees with the SST (figure 4-9). On

July 22, the winds began to pick up in strength and were somewhat more consistently

to the northeast (an upwelling favorable direction). One may see some evidence of

weaker upwelling at buoy (slight decrease in SST) on July 22. However, on July

23, the winds were strong and more consistently to the northeast, and the July 23

SST showed a strong upwelling response. Further, the de-tided barotropic velocities

(figure 4-7) at the buoy showed an Ekman response to the wind event turning from

a southwesterly flow to a southeasterly flow in response to the winds. Note that

the southeasterly de-tided barotropic flow was weak (around 3 𝑐𝑚/𝑠) indicating that

the winds were fighting the density driven flow. After the wind event, calmer more

variable winds prevailed during the period of July 25-30, and a couple of downwelling

favorable minor wind events occurred on July 27 & 29. Followed by that, the de-tided

barotropic velocities at the buoy slowly turned to the southwest and strengthened

through July 29, and the winds at the buoy strengthened on July 31. The winds were

somewhat variable over the day with upwelling favorable winds to the northeast only

occurring at the end of the day. These winds were too late to remove the warming

from the downwelling on July 27 & 29 in the morning SST image on July 31. These

winds may be responsible for the decrease in the de-tided barotropic velocities on

July 30-31. Based on the above arguments and analysis (provided by Dr. Patrick J.
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Haley Jr., pers. comm.), we can expect the water from the buoy on July 23 being

kicked southeast towards the first two GOMECC-2 profiles and making it there on

August 01. Thus, we assume that assimilating salinity observations from the GTSPP

buoy (figure 4-10) on July 23 into the historical state uncertainty for the months of

July / August would lead to initial state uncertainty representative of the conditions

on August 01 12Z.

Model run: Starting with the initial condition, parameter, and model uncertainties

described above, we evolve the ensemble of realizations using the coupled biogeo-

chemical model for a period of 12 𝑑𝑎𝑦𝑠, thus, ending the simulation on August 13,

2012 12Z. In order to make model simulation correspond to the period of August

01 - 13, 2012, we utilize specific physical conditions as described earlier in section

4.1.3. This allows for the states to adjust in response to the model and the physical

conditions, nearly reaching an equilibrium. The evolved ensemble will act as the prior

uncertainty estimate, with built-in relationships between corresponding realizations

of states, parameter, and the salinity based forcing term.

Learning objectives: Our learning objectives include simultaneous estimation of

states, parameter, and the functional form of salinity based forcing term, using the

GOMECC-2 observations of 𝑁𝑂3, 𝐶ℎ𝑙-a, and 𝑇𝐴.

Combining all the steps described above, we provide the overview of the experi-

ment in figure 4-11.

4.3 Application Results and Discussions

Following the experiment overview described in the section 4.2 and figure 4-11, we

start with creating the initial state uncertainty representative of conditions on Au-

gust 01, 2012 12Z. The GTSPP buoy salinity data measure on July 23, 2012 is first

converted to 𝑇𝐴 using the empirical linear relationship given by equation 4.8. These

equivalent 𝑇𝐴 observations are then assimilated into the historical uncertainty for the

model states, which acts as the prior. We assume independent observation noise of
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(a) Raw 2𝑚 velocities (b) De-tided 2𝑚 velocities

(c) Raw barotropic velocities (d) De-tided barotropic velocities

Figure 4-7: Barotropic and 2𝑚 velocities observed at the GTSPP buoy (see figure
4-2 for location) between July 20, 2012 to August 11, 2012. We provide both, the
respective raw and the 62-hour window de-tided velocities. These plots were prepared
with the help of Dr. Patrick J. Haley Jr., pers. comm.

(a) Wind velocities (b) Wind stress magnitudes

Figure 4-8: Wind conditions observed at the GTSPP buoy (see figure 4-2 for location).
Wind velocities are provided between July 20, 2012 to August 11, 2012, while, the
wind stress magnitude for the whole 2 months period. These plots were prepared
with the help of Dr. Patrick J. Haley Jr., pers. comm.
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(a) July 21, 2012 09:53Z (b) July 21, 2012 21:12Z

(c) July 22, 2012 09:31Z (d) July 23, 2012 07:21Z

(e) July 31, 2012 07:34Z (f) August 06, 2012 17:56Z

Figure 4-9: Remote sea surface temperature (SST) observed in the area and time-
period of interest. Images corresponding to relatively clearer days are only provided.
The white patches are due to cloud cover. All seven GOMECC-2 data locations,
along with that of the GTSPP buoy are marked using the ‘*’ symbol. These SST
images were found and prepared with the help of Dr. Chris Mirabito, pers. comm.
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(a) 1𝑚 depth

(b) 20𝑚 depth

(c) 50𝑚 depth

Figure 4-10: Hourly salinity values observed at the GTSPP buoy (see figure 4-2 for
location) at 3 different depths between July 20, 2012 to August 13, 2012.

160



Figure 4-11: Diagram depicting the overview of the experiment. See figure 4-2 for
abbreviations.

standard deviation, 0.02 𝑚𝑚𝑜𝑙/𝑘𝑔−1, and utilize the GMM-DO filter (section 4.1.5).

The prior and the posterior state ensembles are provided in figure 4-12. We no-

tice that the major uncertainty reduction is only obtained for 𝑇𝐴, indicating weak

coupling between historical observations of biological states and salinity.

Next, we evolve each member of the initial state ensemble (figure 4-13(a)) on

August 01, 2012 12Z for 12 𝑑𝑎𝑦𝑠. During the evolution, each state realization experi-

ences a randomly selected member from the 𝑓(𝑆(𝑧);𝜔) and the temperature coefficient

𝑎(𝜔) ensemble. As mentioned earlier, 𝑓(𝑆(𝑧), 𝜔) is parameterized using 4 continuous

piece-wise linear functions nearly encompassing all possible functions with the range,

[−5, 5] 𝑚𝑚𝑜𝑙 𝑚−3 𝑑𝑎𝑦−1, and domain, [31, 33] 𝑃𝑆𝑈 . While, 𝑎(𝜔) is independently

sampled from a uniform distribution between 0 and 1 ∘𝐶−1. In figure 4-13(a), we

can notice a clear discrepancy between initial 𝑇𝐴 realizations and the corresponding

GOMECC-2 data. A positive 𝑓(𝑆(𝑧), 𝜔) value leads to an increase in 𝑇𝐴 concentra-

tion, while a negative value decreases it. Thus, after 12 𝑑𝑎𝑦𝑠 of simulation, the 𝑇𝐴

ensemble members spread out, abridging the discrepancy and encapsulating the ob-
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(a) Prior (b) Posterior

Figure 4-12: State ensembles (uncertainty estimates) before and after assimilating
the GTSPP buoy salinity data observed on July 23, 2012. (a): July / August his-
torical state uncertainty obtained from WOD data, and which acts as the prior; (b):
Posterior obtained after assimilating the observed salinity data converted to total
alkalinity (TA) using empirical relationship provided in equation 4.8 (marked with
red ‘⋆’ symbol). Each state ensemble is overlayed with their corresponding prior and
posterior means.
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served 𝑇𝐴 data within their variability (figure 4-13(b)). Similarly, we also see increase

in uncertainty of other modeled variables due to each realization reaching a different

near equilibrium condition or a point on the limit cycle, and also getting affected by a

different temperature coefficient value (𝑎(𝜔)). The final state uncertainty on August

13, 2012 12Z along with that for 𝑓(𝑆(𝑧);𝜔) and 𝑎(𝜔), is provided in figure 4-13(b).

It should be noted that 𝑓(𝑆(𝑧);𝜔) and 𝑎(𝜔) are autonomous, thus, do not change in

time.

The evolved state realizations along with that for 𝑓(𝑆(𝑧);𝜔) and 𝑎(𝜔) acts as the

prior model uncertainty estimate for August 13, 2012 12Z in the region around the

GOMECC-2 data locations. We will assimilate the GOMECC-2 observations and

perform simultaneous estimation of uncertain states, model, and the parameter. Be-

cause of the lack of availability of additional data for the purpose of validation, we

perform a validation study by holding out data corresponding one of the observed

variables during assimilation, and repeating it thrice. The Bayesian inference step

is performed by augmenting 𝜒𝑖(𝜔)’s (equation 4.11), 𝑎(𝜔) and the all the discretized

state variables, and using the GMM-DO filter. We convert the observed data for 𝑁𝑂3

and 𝐶ℎ𝑙-a to 𝑁 and 𝑃 , respectively, using the relationships provided in table 4.1. We

assume independent observation noise of standard deviation, 0.5 𝑚𝑚𝑜𝑙 𝑁/𝑚−3 for

𝑁 , 0.1 𝑚𝑚𝑜𝑙 𝑁/𝑚−3 for 𝑃 , and 0.01 𝑚𝑚𝑜𝑙/𝑘𝑔−1 for 𝑇𝐴. In figures 4-15, 4-16, and

4-14, we provide the posterior obtained after assimilating data in pairs of {𝑁, 𝑇𝐴},

{𝑃, 𝑇𝐴}, and {𝑁, 𝑃}, respectively. In both the cases of {𝑁, 𝑇𝐴}, and {𝑃, 𝑇𝐴}

data pairs, especially for the variables whose data are being assimilated, we notice

large uncertainty reductions and agreement with the data in the posterior. For their

respective validation variables, we notice uncertainty reduction and the observed data

still contained within the variability of the posterior realizations. However, for the

{𝑁, 𝑇𝐴} data pair case, we notice a peculiar behavior of the 𝑃 posterior realizations.

They show a sharp fluctuation between 10−15 𝑚 depth, which also correspond to the

posterior pdf of 𝑎(𝜔) getting concentrated around lower values (figure 4-15(b)). While

for the {𝑃, 𝑇𝐴} data pair, because 𝑃 is directly being observed, the Bayesian infer-

ence picks the easiest explanation for the observed data, and eliminates the fluctuation
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(a) August 01, 2012 12Z (b) August 13, 2012 12Z

Figure 4-13: Evolved state ensemble members (uncertainty estimates) after 12 𝑑𝑎𝑦𝑠
of model run. (a): Initial state uncertainty (same as the posterior obtained after
assimilating GTSPP data in figure 4-12(b)), realizations for the salinity forcing term
(𝑓(𝑆(𝑧);𝜔); colored according to their respective normalized probability density val-
ues (red for 1 and white for 0); bottom-left), and probability distribution for the
temperature coefficient (𝑎(𝜔); bottom-right); (b): State uncertainty at the end of
model run. Realizations for the salinity forcing term (𝑓(𝑆(𝑧);𝜔); bottom-left) and
probability distribution for the temperature coefficient (𝑎(𝜔); bottom-right) are ex-
actly the same as that in (a). GOMECC-2 nitrate, chlorophyll-a (converted to 𝑁 and
𝑃 , respectively, using the relationships provided in table 4.1), and total alkalinity data
is also provided and marked with red ‘⋆’ symbol.
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in the posterior. This also leads to posterior pdf of 𝑎(𝜔) concentrating around rela-

tively higher values (figure 4-16(b)). In both the cases, we learn a positive 𝑓(𝑆(𝑧);𝜔)

function with high amount of certainty for the three piece-wise segments between

31.25 ≤ 𝑆 ≤ 33. The low salinity values correspond to the upper depths (figure 4-6),

where other processes such as high diffusion (mixing) in the mixed-layer dominate the

𝑇𝐴 equation and are approximately 10 times larger in magnitude than the salinity

forcing term. This makes it harder to learn the 𝑓(𝑆(𝑧);𝜔) function with confidence.

Due to little disagreement between our estimated initial state uncertainty of 𝑇𝐴 on

August 01, 2012 12Z and the GOMECC-2 𝑇𝐴 data at the surface and the bottom

(figure 4-13(a)), and also the high salinity values corresponding to the bottom, we

notice a near zero posterior mean for the 𝑓(𝑆(𝑧);𝜔) function. The learned positive

𝑓(𝑆(𝑧);𝜔) function corresponds to the need for increasing the 𝑇𝐴 concentration in

order to fill the gap between 𝑇𝐴 initial condition and the data through the model

evolution (figure 4-13). In the case of the {𝑁, 𝑃} data pair, we barely notice any

reduction in uncertainty for 𝑇𝐴, thus, indicating a weak influence of the biological

states on the evolution of 𝑇𝐴. Such weak coupling was also noticed earlier between

the historical WOD data of 𝑁𝑂3 and 𝐶ℎ𝑙-a, with 𝑆 (in general, 𝑆 is highly corre-

lated with 𝑇𝐴). This also leads to the inability to learn the 𝑓(𝑆(𝑧);𝜔) function only

using biological state data. However, because the 𝑎(𝜔) parameter directly influences

biology, we notice a tightening of the posterior pdf. The posterior pdf concentrates

around a mid value as compared to that obtained in the case of {𝑁, 𝑇𝐴} and {𝑃, 𝑇𝐴}

data pairs. Overall, the validation study demonstrated the ability to make reasonable

estimates for the hold-out data, thus, indicating our modeling methodology predicts

representative estimates of uncertainty for the GOMECC-2 data.

Finally, we assimilate all the GOMECC-2 observations corresponding to 𝑁 , 𝑃 ,

and 𝑇𝐴 simultaneously. The posterior presented in figure 4-17 demonstrates a com-

bination of features we pointed out in the above validation study. We notice reduction

in uncertainty for all the biological and carbonate variables along with agreement with

the observed data. The learned 𝑓(𝑆(𝑧);𝜔) is mostly positive, and the pdf of the 𝑎(𝜔)

parameter is concentrated in the middle. Overall, we achieve our learning objective
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(a) Prior (b) Posterior

Figure 4-14: Uncertainty before and after assimilating the GOMECC-2 nitrate and
chlorophyll-a data (converted to 𝑁 and 𝑃 , respectively, using the relationships pro-
vided in table 4.1). (a): State uncertainty at the end of model run, realizations for
the salinity forcing term (𝑓(𝑆(𝑧);𝜔); colored according to their respective normalized
probability density values (red for 1 and white for 0); bottom-left) and probability
distribution for the temperature coefficient (𝑎(𝜔); bottom-right). These are exactly
the same as those in figure 4-13(b) and acts as the prior; (b): Posterior obtained after
assimilating the GOMECC-2 data (marked with red ‘⋆’ symbol). The GOMECC-2
total alkalinity (𝑇𝐴) data (marked with green ‘⋆’ symbol) is utilized for validation
purposes. State and 𝑓(𝑆(𝑧);𝜔) ensembles are overlayed with their corresponding
prior and posterior means. We also provide both prior and posterior PDF for 𝑎(𝜔)
parameter for easy comparison (bottom-right).
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(a) Prior (b) Posterior

Figure 4-15: Uncertainty before and after assimilating the GOMECC-2 nitrate (con-
verted to 𝑁 using the relationship provided in table 4.1) and total alkalinity data.
The GOMECC-2 chlorophyll-a data (converted to 𝑃 using the relationship provided
in table 4.1, marked with green ‘⋆’ symbol) is utilized for validation purposes. The
rest of the description is the same as in figure 4-14.
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(a) Prior (b) Posterior

Figure 4-16: Uncertainty before and after assimilating the GOMECC-2 chlorophyll-
a (converted to 𝑃 using the relationship provided in table 4.1) and total alkalinity
data. The GOMECC-2 nitrate data (converted to 𝑁 using the relationship provided
in table 4.1, marked with green ‘⋆’ symbol) is utilized for validation purposes. The
rest of the description is the same as in figure 4-14.
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(a) Prior (b) Posterior

Figure 4-17: Uncertainty before and after assimilating the GOMECC-2 nitrate,
chlorophyll-a (converted to 𝑁 and 𝑃 , respectively, using the relationships provided
in table 4.1), and total alkalinity data. The rest of the description is the same as in
figure 4-14.

of simultaneous estimation of states, parameter, and the functional form of salinity

based forcing term in an existing biogeochemical model for the GoM.

4.4 Summary

In the present study, we demonstrated the application of our novel PDE-based Bayesian

model learning framework for discovery of missing processes and interactions in exist-

ing ocean acidification (OA) models using real-world data. OA related in-situ mea-

surements were made during the Gulf of Mexico and East Coast Carbon (GOMECC-
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2) Cruise on its last day, August 13, 2012, in the Gulf of Maine (GoM) region.

We configured a one-dimensional (1-D) coupled physical-biological-carbonate model

optimized for the GoM region and utilized model-data misfits to simultaneously es-

timate states, an uncertain parameter, and discover functional form of a missing

process with quantifiable uncertainty. The 1-D biogeochemical model consisted of a

diffusion-reaction PDE for the physics part, a four-component nutrients (𝑁), phyto-

plankton (𝑃 ), zooplankton (𝑍), and detritus (𝐷) model for the biological part, and

a two-component dissolved inorganic carbon (𝐷𝐼𝐶) and total alkalinity (𝑇𝐴) model

for the carbonate part based on the Hadley Centre Ocean Carbon Cycle (HadOCC)

model [123]. The lack of ability to account for changes in 𝑇𝐴 due to advection of

water masses of different salinity arising from precipitation, riverine input, and other

oceanographic processes was compensated by adding an uncertain salinity based forc-

ing term to the existing 𝑇𝐴 equation. The salinity based forcing term was parame-

terized using 4 continuous and stochastic piece-wise linear functions, and discovered

using the observed GOMECC-2 data. Other sources of uncertainty include initial

conditions, and a coefficient in the term parameterizing temperature effect on phy-

toplankton growth and other biological rates. The initial condition uncertainty was

estimated based on the historical in-situ observations made for the months of July /

August for the variables of salinity, nitrate, and chlorophyll-a, and assimilating data

from a nearby buoy operating during the time of interest. A model run quantifying

these different sources of uncertainties provided the prior estimate of the state con-

ditions around the GOMECC-2 observation locations on August 13, 2012. Observed

GOMECC-2 data for nitrate, chlorophyll-a, and 𝑇𝐴 are assimilated for simultaneous

estimation of all the multidisciplinary states, temperature coefficient parameter, and

the salinity based forcing term. The learned salinity based forcing term was found

to be positive, and corresponded to the need for increasing the 𝑇𝐴 concentration, in

order to fill the gap between the 𝑇𝐴 initial condition estimate and the observed data

through the model evolution. The states and the temperature coefficient experienced

reduction in uncertainty in accordance with the observed data, and was validated by

a data hold-out validation study.
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Overall, our novel Bayesian model learning framework is effective in real-world

data applications, and could be utilized to learn and discover parameterizations of

missing processes and interactions with quantifiable uncertainty estimates in different

scientific problems.
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Chapter 5

Improving Uncertainty Quantification

and Observation Planning

Obtaining an accurate and informative prior is an important first step in a Bayesian

learning methodology. However, uncertainty evolution and quantification in high-

dimensional systems, like ocean flows, are in general computationally prohibitive. To

mitigate this issue in our Bayesian learning framework, we use the dynamically or-

thogonal (DO) equations [11, 12, 13, 14, 15], which propagates the uncertainty in

a reduced subspace, thus rendering it computationally feasible. The computational

speed-up occurs due to the truncation of relatively less important directions (modes)

of uncertainty propagation. However, this comes at the expense of accuracy. It then

becomes necessary to limit any sources of additional inaccuracies, such as incompat-

ible numerical schemes. In this chapter, we will develop theory and apply existing

techniques to properly handle stochastic boundary conditions, complex geometries,

advection term, and augment the DO subspace as and when required to capture the

effects of the truncated modes. Further, we will also discuss mutual information-based

observation planning to answer what, when, and where to observe to best achieve our

learning objectives in resource-constrained environments.
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5.1 Stochastic Boundary Conditions1

Boundary conditions determine the uniqueness of the solution of a PDE system, thus,

strongly affecting the dynamics of the solution. Unfortunately, boundary conditions

(BCs) are also a major source of uncertainty, and it is imperative to account for

them during uncertainty evolution. However, it is not straightforward to solve for

a low-rank solution which also sufficiently satisfies the uncertain BCs. The existing

approaches can be broadly classified into two categories, weak and strong imposition

methods. In the weak imposition of stochastic BCs, it is ensured that the solution

in the interior satisfies the BCs only up to 2𝑛𝑑 moment, and has been derived for the

DO equations [11, 14, 9]. On the other hand, the strong imposition method ensures

that each realization of the approximate solution in the interior satisfies the same

boundary conditions as the exact solution, or a well controlled approximation of them,

and has only been derived for the Dual DO equations [135]. Dual DO equations are a

variant of the original DO equations, where the condition for dynamic orthogonality is

imposed on the stochastic coefficients, instead of the modes, intending to better treat

stochastic BCs. Section 4.5.5 in Lin, 2020 [9] provides a nice juxtaposition between

the two. In this section, we will first visit the derivation of the weak imposition of

BCs for the DO equations, followed by the derivation of the corresponding strong

imposition of BCs, for a general stochastic dynamical system of the form,

𝜕𝑢(𝑥, 𝑡;𝜔)

𝜕𝑡
= ℒ[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡, 𝜔),𝑥, 𝑡;𝜔], 𝑥 ∈ 𝐷, 𝑡 ∈ 𝒯 and 𝜔 ∈ Ω

𝑢(𝑥, 0;𝜔) = 𝑢0(𝑥;𝜔), 𝑥 ∈ 𝐷 and 𝜔 ∈ Ω

ℬ[𝑢]|𝜕𝐷 = 𝑏(𝑥, 𝑡;𝜔), 𝑥 ∈ 𝜕𝐷, 𝑡 ∈ 𝒯 and 𝜔 ∈ Ω

(5.1)

where ℬ is a boundary operator, such as a Dirichlet or Neumann operator. In what

follows, we assume it is a linear operator for simplicity.

1Done with inputs from Dr. Jing Lin
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5.1.1 Weak Imposition of BCs

Starting with the DO decomposition of the state variable denoted by,

𝑢(𝑥, 𝑡;𝜔) = �̄�(𝑥, 𝑡) +
𝑆∑︁

𝑖=1

𝑌𝑖(𝑡;𝜔)�̃�𝑖(𝑥, 𝑡), 𝑥 ∈ 𝐷, 𝑡 ∈ 𝒯 and 𝜔 ∈ Ω (5.2)

we can derive the mean, modes, and coefficients evolution equations as done in ap-

pendix A,

𝜕�̄�(𝑥, 𝑡)

𝜕𝑡
= E[ℒ[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡;𝜔),𝑥, 𝑡;𝜔]], 𝑥 ∈ 𝐷, 𝑡 ∈ 𝒯 (5.3)

𝜕�̃�𝑖(𝑥, 𝑡)

𝜕𝑡
=

𝑆∑︁
𝑗=1

𝐶−1
𝑌𝑖𝑌𝑗

Π⊥
𝑢 [E[𝑌𝑗(𝑡;𝜔)ℒ[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡;𝜔),𝑥, 𝑡;𝜔]]]

𝑥 ∈ 𝐷, 𝑡 ∈ 𝒯 ,∀𝑖 ∈ {1, ..., 𝑆}, (5.4)
d𝑌𝑖(𝑡;𝜔)

d𝑡
= ⟨ℒ[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡;𝜔),𝑥, 𝑡;𝜔] − E[ℒ[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡;𝜔),𝑥, 𝑡;𝜔]], �̃�𝑖(𝑥, 𝑡)⟩

𝑡 ∈ 𝒯 ,∀𝑖 ∈ {1, ..., 𝑆} . (5.5)

The boundary conditions for the mean and modes equations will be derived using a

second order moment matching. We start by plugging the DO decomposition (equa-

tion 5.2) into the boundary conditions (equation 5.1),

ℬ[�̄�]|𝜕𝐷 +
𝑆∑︁

𝑖=1

𝑌𝑖ℬ[𝑢𝑖]|𝜕𝐷 = �̄�(𝑥, 𝑡) + (𝑏(𝑥, 𝑡;𝜔) − �̄�(𝑥, 𝑡)), 𝑥 ∈ 𝜕𝐷 . (5.6)

Equating the mean and the stochastic part, we obtain,

ℬ[�̄�]|𝜕𝐷 = �̄�(𝑥, 𝑡), 𝑥 ∈ 𝜕𝐷 , (5.7)

and,

𝑌𝑖ℬ[𝑢𝑖]|𝜕𝐷 = (𝑏(𝑥, 𝑡;𝜔) − �̄�(𝑥, 𝑡)), 𝑥 ∈ 𝜕𝐷 . (5.8)
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Projecting equation 5.8 onto the space spanned by the coefficients,

E[𝑌𝑗𝑌𝑖]ℬ[𝑢𝑖]|𝜕𝐷 = E[𝑌𝑗(𝑏(𝑥, 𝑡;𝜔) − �̄�(𝑥, 𝑡))], 𝑥 ∈ 𝜕𝐷

=⇒ ℬ[𝑢𝑖]|𝜕𝐷 = 𝐶−1
𝑌𝑖𝑌𝑗

E[𝑌𝑗(𝑏(𝑥, 𝑡;𝜔) − �̄�(𝑥, 𝑡))], 𝑥 ∈ 𝜕𝐷 , ∀𝑖 ∈ {1, ..., 𝑆} .

(5.9)

Equations 5.7 and 5.9 provide the BCs for the mean and the modes equations, respec-

tively. A similar approach for handling stochastic BCs is also mentioned in Cheng et

al. 2013 [136] and Maître et al. 2002 [137]. However, in this method, the orthonor-

mality of the modes is only maintained in the interior, and there is no guarantee of a

good alignment of the stochastic subspace of the BCs and the DO coefficients space,

which determines the accuracy of this approach.

5.1.2 Strong Imposition of BCs

The strong imposition of BCs requires a realization-wise match between a controlled

approximation of the interior and the boundary realizations. In order to achieve this,

we start by splitting the DO modes into two categories, unforced and forced. Let 𝑅

be the number of unforced modes (𝑢𝑖’s) with zero boundary conditions, and 𝑀 be

the number of forced modes (𝑣𝑖’s) with non-zero boundary conditions. To enforce the

connection between the interior and the boundaries, the overall S-rank (𝑆 = 𝑅+𝑀)

approximation is,

𝑢(𝑥, 𝑡;𝜔) = �̄�(𝑥, 𝑡) +
𝑅∑︁
𝑖=1

�̃�𝑖(𝑥, 𝑡)𝑌𝑖(𝑡;𝜔) +
𝑀∑︁
𝑖=1

𝑣𝑖(𝑥, 𝑡)𝑍𝑖(𝑡;𝜔) . (5.10)

Plugging this modified DO decomposition into the stochastic BCs (equation 5.1), and

assuming a linear boundary operator ℬ, we obtain,

ℬ[�̄�(𝑥, 𝑡)]|𝜕𝐷 +
𝑅∑︁
𝑖=1

ℬ[�̃�𝑖(𝑥, 𝑡)]|𝜕𝐷𝑌𝑖(𝑡;𝜔) +
𝑀∑︁
𝑖=1

ℬ[𝑣𝑖(𝑥, 𝑡)]|𝜕𝐷𝑍𝑖(𝑡;𝜔)

= 𝑏(𝑥, 𝑡;𝜔), 𝑥 ∈ 𝜕𝐷

(5.11)
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thus, the mean field is subject to,

ℬ[�̄�(𝑥, 𝑡)]|𝜕𝐷 = �̄�(𝑥, 𝑡), 𝑥 ∈ 𝜕𝐷 , (5.12)

and, as we assumed ℬ[�̃�𝑖(𝑥, 𝑡)]|𝜕𝐷 = 0, 𝑥 ∈ 𝜕𝐷, we get,

𝑀∑︁
𝑖=1

ℬ[𝑣𝑖(𝑥, 𝑡)]|𝜕𝐷𝑍𝑖(𝑡;𝜔) = 𝑏(𝑥, 𝑡;𝜔) − �̄�(𝑥, 𝑡) . (5.13)

We further assume a KL decomposition for the stochastic component of the boundary

condition in the basis of 𝑍𝑖(𝑡;𝜔), ∀𝑖 ∈ {1, ...,𝑀}, and in order to get an unique

decomposition, impose E[𝑍𝑖(𝑡;𝜔)𝑍𝑗(𝑡 𝜔)] = 𝛿𝑖𝑗. Thus, we get,

ℬ[𝑣𝑖(𝑥, 𝑡)]|𝜕𝐷 = E[(𝑏(𝑥, 𝑡;𝜔) − �̄�(𝑥, 𝑡))𝑍𝑖(𝑡;𝜔)], 𝑥 ∈ 𝜕𝐷, ∀𝑖 ∈ {1, ...,𝑀} .

(5.14)

It should be noted that 𝑍𝑖(𝑡;𝜔) are pre-known and need not to be solved for. Sub-

stituting the modified DO decomposition (equation 5.10) into the generic stochastic

PDE (equation 5.1), we get,

𝜕�̄�(𝑥, 𝑡)

𝜕𝑡
+

𝑅∑︁
𝑖=1

[︂
𝜕�̃�𝑖(𝑥, 𝑡)

𝜕𝑡
𝑌𝑖(𝑡;𝜔) + �̃�𝑖(𝑥, 𝑡)

𝑑𝑌𝑖(𝑡;𝜔)

𝑑𝑡

]︂

+
𝑀∑︁
𝑖=1

[︂
𝜕𝑣𝑖(𝑥, 𝑡)

𝜕𝑡
𝑍𝑖(𝑡;𝜔) + 𝑣𝑖(𝑥, 𝑡)

𝑑𝑍𝑖(𝑡;𝜔)

𝑑𝑡

]︂
= ℒ[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡, 𝜔),𝑥, 𝑡;𝜔] .

(5.15)

Applying the expectation operator, we get the mean equation,

𝜕�̄�(𝑥, 𝑡)

𝜕𝑡
= E[ℒ[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡;𝜔),𝑥, 𝑡;𝜔]] , (5.16)
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and substituting it back, we obtain,

𝑅∑︁
𝑖=1

[︂
𝜕�̃�𝑖(𝑥, 𝑡)

𝜕𝑡
𝑌𝑖(𝑡;𝜔) + �̃�𝑖(𝑥, 𝑡)

𝑑𝑌𝑖(𝑡;𝜔)

𝑑𝑡

]︂
+

𝑀∑︁
𝑖=1

[︂
𝜕𝑣𝑖(𝑥, 𝑡)

𝜕𝑡
𝑍𝑖(𝑡;𝜔) + 𝑣𝑖(𝑥, 𝑡)

𝑑𝑍𝑖(𝑡;𝜔)

𝑑𝑡

]︂
= ℒ[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡, 𝜔),𝑥, 𝑡;𝜔] − E[ℒ[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡;𝜔),𝑥, 𝑡;𝜔]]

≡ ℒ*[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡, 𝜔),𝑥, 𝑡;𝜔] .

(5.17)

In order to close the system, we need to impose some additional constraints. We

impose the original DO conditions on the unforced modes,

⟨
𝜕�̃�𝑖(𝑥, 𝑡)

𝜕𝑡
, �̃�𝑗(𝑥, 𝑡)

⟩
= 0 , ∀𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ {1, ..., 𝑅} , (5.18)

and also impose the condition that the stochastic coefficients corresponding to the

forced and unforced modes are orthogonal to each other,

E[𝑌𝑖(𝑡;𝜔)𝑍𝑗(𝑡;𝜔)] = 0 , ∀𝑖 ∈ {1, ..., 𝑅}, 𝑗 ∈ {1, ...,𝑀} . (5.19)

It should be noted that no constraints were imposed on the forced modes. We can de-

rive the evolution equations for �̃�𝑖’s by simply projecting equation 5.17 onto 𝑍𝑗(𝑡;𝜔),

𝜕𝑣𝑖(𝑥, 𝑡)

𝜕𝑡
= E[ℒ*[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡, 𝜔),𝑥, 𝑡;𝜔]𝑍𝑖(𝑡;𝜔)], ∀𝑖 ∈ {1, ...,𝑀} . (5.20)

Substituting this back in equation 5.17,

𝑅∑︁
𝑖=1

[︂
𝜕�̃�𝑖(𝑥, 𝑡)

𝜕𝑡
𝑌𝑖(𝑡;𝜔) + �̃�𝑖(𝑥, 𝑡)

𝑑𝑌𝑖(𝑡;𝜔)

𝑑𝑡

]︂
=Π⊥

𝑍ℒ*[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡, 𝜔),𝑥, 𝑡;𝜔]

−
𝑀∑︁
𝑖=1

𝑣𝑖(𝑥, 𝑡)
𝑑𝑍𝑖(𝑡;𝜔)

𝑑𝑡
,

(5.21)
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and taking inner product with �̃�𝑗(𝑥, 𝑡), we get,

𝑑𝑌𝑗(𝑡;𝜔)

𝑑𝑡
=
⟨︀
Π⊥

𝑍ℒ*[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡, 𝜔),𝑥, 𝑡;𝜔], �̃�𝑗(𝑥, 𝑡)
⟩︀

−
𝑀∑︁
𝑖=1

⟨𝑣𝑖(𝑥, 𝑡), �̃�𝑗(𝑥, 𝑡)⟩
𝑑𝑍𝑖(𝑡;𝜔)

𝑑𝑡
, ∀𝑗 ∈ {1, ..., 𝑅} .

(5.22)

Finally, substituting equation 5.22 into equation 5.21, followed by projecting onto the

subspace of 𝑌𝑖’s, we get the evolution equations for the unforced modes,

𝑅∑︁
𝑖=1

E[𝑌𝑖(𝑡;𝜔)𝑌𝑗(𝑡;𝜔)]
𝜕�̃�𝑖(𝑥, 𝑡)

𝜕𝑡
=E[Π⊥

�̃� Π⊥
𝑍ℒ*[𝑢(𝑥, 𝑡;𝜔),𝛼(𝑡, 𝜔),𝑥, 𝑡;𝜔]𝑌𝑗(𝑡;𝜔)]

− Π⊥
�̃�

[︃
𝑀∑︁
𝑖=1

𝑣𝑖(𝑥, 𝑡)
𝑑𝑍𝑖(𝑡;𝜔)

𝑑𝑡

]︃
.

(5.23)

In case of stationary stochastic BCs, we have 𝑑𝑍𝑖(𝑡;𝜔)
𝑑𝑡

= 0, thus decoupling the equa-

tions for the forced modes, and the unforced modes and stochastic coefficients.

5.1.3 Application Results and Discussions

In order to compare the performance of the proposed method of strong imposition

(section 5.1.2) of stochastic BCs, with their weak imposition (section 5.1.1), we use

the flow past cylinder case with a stochastic inlet BC for our experiments. The do-

main setup is exactly the same as that used in section 2.3.4, but with the seamount

replaced by a cylinder. The flow is governed by the Navier-Stokes equations with

initial condition (IC) and inlet Dirichlet BC uncertainties. Stochastic initial condi-

tions are specified for the velocity field, with the mean velocity field initialized using

a strong perturbation, and the modes initialized using a boundary-mollified spatial

covariance function [11]. A mean perturbation which is exponentially decaying from

its origin is specified upstream and is asymmetric w.r.t. to the centerline to help

induce the vortex shedding. While the stochastic inlet Dirichlet BC determines the

effective Reynolds number for each realization. To create the inlet Dirichlet bound-
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ary profiles, we use an ensemble of fourth order polynomial, such that all the profiles

are confined between parabolas corresponding to a Reynolds number between 40 and

140, as shown in figure 5-1. In our experiments, we pick the realizations correspond-

ing to representative low and high inlet velocities, and rely on comparisons with the

corresponding Monte Carlo (MC) runs.

Figure 5-1: Realizations of the stochastic boundary condition for the inlet Dirichlet
for the 𝑢-velocity field. The horizontal axis corresponds to the 𝑧-axis of the domain
(figure 2-1), and vertical axis is the magnitude of velocity.

First, we analyze the performance of the weak imposition of stochastic BCs. For

the DO simulation, 10 modes and 10,000 realizations were used. The initial statistics

of the setup are presented in figure 5-2. The flow is allowed to develop until 𝑇 = 50,

and the evolved statistics are shown in figure 5-3. Focusing on the 𝑢 and 𝑣 velocity

standard deviation fields in figure 5-3, we can notice that there is only uncertainty

in the wake of the cylinder, and none near the inlet, thus pointing towards the fact

that the inlet BC uncertainty is misaligned w.r.t. interior uncertainty. We also

pick two realizations for our comparison, one corresponding to a low inlet velocity

(realization #496) and another for a high inlet velocity (realization #7203). The inlet

velocities are also directly proportional to the strength of the vortex shedding. As

compared to their MC counterparts started from exactly the same ICs, in figure 5-4,

we notice vortex shedding of the wrong strengths for either of these realizations in

their approximate solutions.

Second, we analyse the performance of strong imposition of stochastic BCs. Once
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Figure 5-2: Initial condition statistics for the experiment corresponding to the weak
imposition of stochastic boundary conditions. The first and the second rows corre-
spond to 𝑢− and 𝑣− velocities respectively, with mean field, first mode, and standard
deviation fields going left to right. In the third row, going from left to right, the first
two corresponds to vorticity for reconstructed DO realizations #496 and #7203, and
the third is 𝑢−velocity second mode. In the fourth row, going from left to right, the
first is second 𝑣−velocity mode, followed by the third modes for 𝑢− and 𝑣−velocities
respectively. The last row corresponds to kernel density fits for the first three stochas-
tic coefficients.
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Figure 5-3: Statistics for the experiment corresponding to the weak imposition of
stochastic boundary conditions, at time 𝑇 = 50. Description is same as figure 5-2.
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(a) Realization #496 (b) Realization #7203

Figure 5-4: Comparison between reconstructed DO realizations and the corresponding
monte carlo runs for the experiment with weak imposition of stochastic boundary
conditions, at time 𝑇 = 50. The left and right columns corresponds to the 𝑢− and 𝑣−
velocities respectively. The first row corresponds to the reconstructed DO realization,
the second to the monte carlo run, and the third is their absolute difference, along
with the relative % of spatial average of 𝐿2 error in the title.

again, we choose 10,000 realizations, and a total of 10 modes, with 7 unforced and

3 forced modes. The initial conditions are presented in figure 5-5, and are the same

as the previous experiment, for the 7 unforced modes. The forced modes are zero

in the interior initially, but with non-zero boundary values which are assigned based

on the dominant singular vectors of the BC ensemble. Thus, there is indiscernible

difference between the initial conditions for the previous and the current experiments

in figures 5-2 and 5-5, respectively. The flow is allowed to develop until 𝑇 = 50,

and the statistics are presented in figure 5-6. In this experiment, we can notice a

comparatively higher strength of uncertainty throughout the domain. Specifically,

the u velocity standard deviation near the inlet shows the impression of the BC

uncertainty. In figure 5-7, the instantaneous flow of realizations #496 and #7203

also qualitatively matches their MC counterparts. The difference between the MC

realizations and the approximate solutions are significant, however, and could be

attributed to the phase mismatch in the shedding.

We also plot the temporal variation of the space-averaged standard deviation value

for both u-, and v-velocities in figure 5-8. For the strong stochastic BC imposition

experiment, we compute both, the standard deviation due to only the contribution
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Figure 5-5: Initial condition statistics for the experiment corresponding to the strong
imposition of stochastic boundary conditions. Description is same as figure 5-2.
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Figure 5-6: Statistics for the experiment corresponding to the strong imposition of
stochastic boundary conditions, at time 𝑇 = 50. Description is same as figure 5-2.
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(a) Realization 496

(b) Realization 7203

Figure 5-7: Comparison between reconstructed DO realizations and the corresponding
monte carlo runs for the experiment with strong imposition of stochastic boundary
conditions, at time 𝑇 = 50. Description is same as figure 5-4.

from unforced modes, and from both the unforced and forced modes combined. It can

be noticed that the contribution to standard deviation from just the unforced modes

in case of strong imposition is of similar magnitude as the contribution of all the
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modes in case of weak imposition. Thus, as expected, all the additional uncertainty

due to the stochastic inlet is captured by the forced modes when the method of strong

imposition of stochastic BCs is used.

(a) Weak imposition of stochastic BCs (b) Strong imposition of stochastic BCs

Figure 5-8: Variation of spatially averaged standard deviation over time. Black lines
corresponds to 𝑢−velocity, and green lines corresponds to 𝑣−velocity. In (b), the lines
marked with “∘" only accounts for standard deviation computed using the unforced
modes, while the lines marked with “*" accounts for both unforced and forced modes.

5.2 Numerical Challenges and Implementations

In the present thesis, the numerical experiments involve complex geometries and mul-

tidisciplinary dynamics. Thus, in this section, we elaborate on the methods adopted

to address the numerical issues pertaining to these specific requirements.

5.2.1 Ghost Cell Immersed Boundary Method

For most of the Bayesian learning experiments in this thesis, we use a 2D finite-volume

(FV) framework [80] which uses an uniform staggered Cartesian grid for the spatial

discretization. Due to the rectangular nature of the grid, boundaries with complex and

smooth geometries are approximated as a staircase. This means that the boundary

conditions are actually enforced on the approximate staircase boundary which has

ramifications on the accuracy and conservation properties of the numerical schemes.

The literature is abound with methods to accurately handle complex boundaries
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with structured Cartesian grids, and are popularly termed as immersed boundary

(IB) methods. Mittal and Iaccarino, 2005 [138] provides a comprehensive review of

IB methods.

Based on the code structure of the existing FV framework, ease of implementation,

and current requirements, the ghost-cell immersed boundary method (GCIBM) pro-

posed in Tseng and Ferziger, 2003 [139] was chosen to be implemented to increase the

accuracy in handling complex boundary shapes. In this method, based on the loca-

tion of the actual boundaries, the center of FV cells are divided in to fluid, ghost, and

solid cells, as shown in figure 5-9. For each ghost cell, we identify an image point, and

then use biliniear interpolation to calculate the state variable at that image point.

Followed by this, we simply enforce the exact boundary condition at center of the

ghost cell and the image point, which also happens to lie at the actual boundary.

We implemented the GCIBM method to handle both Dirichlet and Neumann BCs,

and for both DO mean and modes equations. This method preserves up to second

order accuracy of the numerical schemes. For more implementation and algorithmic

details, the reader is referred to Tseng and Ferziger, 2003 [139].

We utilize a deterministic Couette flow experiment to test the implementation of

the GCIBM in the 2D FV framework [80]. The setup consists of two concentric rings

rotating at different angular velocities and no slip boundary conditions, as shown in

figure 5-10. This is a challenging experiment due to the circular boundaries embedded

in a uniform Cartesian grid. The analytical velocity field in cylindrical coordinates is

given by,

𝑢𝜃 =

(︂
𝑅2

2𝜔2 −𝑅2
1𝜔1

𝑅2
2 −𝑅2

1

)︂
𝑟 +

(︂
𝜔1 − 𝜔2

𝑅2
2 −𝑅2

1

)︂
𝑅2

1𝑅
2
2

𝑟
, and 𝑢𝑟 = 0 , (5.24)

where 𝑅1 and 𝜔1 are respectively the radii and the angular velocity of the inner

cylinder, while 𝑅2 and 𝜔2 are that of the outer cylinder. We solve the Navier-Stokes

equations using numerical schemes that are second order accurate both in space and

time. For comparison, the analytical 𝑢−velocity, along with the absolute difference

w.r.t. to the staircase approximation of the boundary and GCIBM at a grid size of
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Figure 5-9: Schematic denoting the split of underlying Cartesian grid cells into fluid-,
ghost-, and solid-cells based on the location of the cell-center relative to the actual
boundary denoted by the solid curve with “⊕” symbol. Symbol “∘” with “IP” marks
the location of the image points for the corresponding ghost-cells, and lies on the
perpendicular drawn from the ghost-cell to the actual boundary curve.

30×30, are presented in figure 5-11. We can clearly see that the maximum error occurs

near the boundaries in the case of the staircase approximation. We further perform

a convergence study by computing the average error incurred at three different grid

resolutions. A log-log plot between the average error and the number of grid-points

in one direction is provided in figure 5-11d, and as expected, the implementation of

GCIBM maintains the original second-order accuracy of the spatial discretization of

the existing numerical schemes in the FV framework.

5.2.2 Advection Schemes

Advection is the most problematic and tricky term to handle in the Navier-Stokes or

the advection-diffusion-reaction equations, due to its non-linear nature. Advection

schemes which remain both stable and accurate in the presence of steep gradients

and shocks, such as upwinding, total variation diminishing (TVD), and essentially

non-oscillatory (ENO) schemes, invariably use diverse rules depending on the sign

of the advecting velocity. This does not pose any challenge in the case of evolution

of stochastic PDEs using DO methodology in which only tracer fields are uncertain

and one could easily use any of the existing non-linear advection schemes. However,

when uncertainty is introduced in the velocity fields, the use of these non-linear ad-
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Figure 5-10: Schematic for two concentric cylinders rotating at different angular
velocities with fluid in between. “𝑟” and “𝜃” denotes the cylindrical coordinate system.

vection schemes poses a challenge. This is due to the fact that the velocity modes do

not contain any directional information, and it would be computationally ineffiient to

recreate all realizations and explicitly examine their individual velocity directions. As

investigated by Feppon and Lermusiaux, 2018 [14], only linear advection schemes pre-

serve the DO decomposition. Thus, we use central difference (CD) schemes. However,

CD schemes are unstable with the simple Euler time stepping, hence, we implement

them in conjugation with Heun’s method for time-integration in the FV framework

[80]. In addition, the use of CD schemes for advection is known to cause spurious

oscillations. To remove spurious oscillation to stabilize the system, we use a popular

spatial filter, called the Shapiro filter. Apart from being easy to use and implement,

Shapiro filters are also linear, thus preserving the DO decomposition.

We utilize a simple experiment of flow past a seamount with initial condition and

Reynolds number uncertainties in the Navier-Stokes equations, and coupled with a 3-

component NPZ model. We use 60 DO modes and 10,000 realization. Other details of

the setup are similar to that described earlier in sections 2.3 & 3.3. The flow is evolved

using a previous version of the FV framework [80] which utilizes a TVD scheme for

both DO mean and modes equations, along with Euler time-stepping. For the terms

being advected by the velocity modes, an average value is used, computed using the

190



(a) Analytical 𝑢−velocity (b) |Analytical - Staircase|
𝑢−velocity

(c) |Analytical - GCIBM|
𝑢−velocity

(d) Convergence Study

Figure 5-11: Experiment with deterministic Couette flow between two concentric
cylinders rotating at different angular velocities. (a) Analytical 𝑢−velocity in the
Cartesian coordinates (equation 5.24); (b) Absolute difference between the analytical
𝑢−velocity and that computed numerically with staircase approximation of the curved
boundaries; (c) Same as (b) but with numerical solution computed with ghost-cell
immersed boundary method (GCIBM) for the boundaries; (d) Variation of spatially
averaged error in 𝑢− and 𝑣−velocities w.r.t. the analytical solution, and correspond-
ing to different grid-resolutions. “Original code” refers to the use of staircase approx-
imation.
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(a) Total variation diminishing (TVD)
scheme and Euler time-stepping

(b) Central difference scheme, Shapiro
filter (8, 1, 5), and Heun’s method for
time-integration

Figure 5-12: Reconstructed nutrient field realization at time 𝑇 = 5 and 𝑅𝑒 = 100,
computed using different numerical schemes for advection and time-integration. The
top plots corresponds to the approximate DO solution; the middle plots to the monte
carlo simulation; and the bottom plots to their absolute difference. The numerical
schemes used are mentioned in the respective captions. The trio of (8, 1, 5) denotes the
order, number of applications, and time-step frequency of application of the Shapiro
filter.

TVD scheme with original and opposite signs of the velocity modes. Using the same

initial conditions, and grid resolution, the flow is also evolved using a second-order CD

scheme for space, Heun’s method for time integration, and a 8𝑡ℎ order Shapiro filter

applied once every 5 time-steps. In figure 5-12, we compare a reconstructed nutrient

field realization after the evolution of the flow up until time 𝑇 = 5, and corresponding

to the Reynolds number 100. We notice the presence of spurious oscillations only in

the case of TVD and Euler schemes, thus demonstrating both the need and advantage

of using linear advection and higher-order time-integration schemes, with filtering.
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5.3 Data Assimilation with Subspace Augmentation

and Adaptive Covariance Inflation

A data assimilation step is basically an application of the Bayes rule under some

assumptions, thus, it follows the constraint that the posterior of the augmented states

and parameters should be contained within the support of the corresponding prior.

In the case of data assimilation in a low-dimensional subspace, this also translates

to the fact that the subspace cannot be modified based on the observations in a

Bayesian sense. If the subspace is relatively off w.r.t. to the ground truth, it leads

to discarding some of the information contained in the observations. However, this

discarded information could inform us about the mismatch between the ground truth

and the subspace. The goal of subspace augmentation is to utilize such information

to correct the subspace.

We will utilize the methodology for data-driven subspace augmentation developed

in Lin, 2020 [9] at every data assimilation step, to demonstrate the ability for meet-

ing our learning objective even when starting with a subspace of insufficient size to

capture the uncertainty evolution of a high-dimensional nonlinear system. Let the

observation be denoted by 𝑦 ∈ R𝑁𝑌 , while the observation space is as defined by the

observation model equation 2.3 and is denoted by 𝒪 ∈ span{𝐻�̃�} ∈ R𝑁𝑌 ×𝑆. The

methodology for subspace augmentation first involves finding an equivalent observa-

tion 𝑦* ∈ 𝒪, such that replacing 𝑦 with 𝑦* in the Bayesian update will yield the

exact same posterior. The unused part of the innovation vector, (𝑦− 𝑦*), is then fed

to a goodness-of-fit test to determine if the existing subspace is sufficiently incorrect

to warrant an augmentation or not. If the 𝑝-value (popular statistical measure used

for hypothesis testing; [140]) is small, the existing subspace is amended with a rank-1

update such that the modified 𝒪 contains 𝑦. The DO coefficient corresponding to this

new mode is initialized using uncorrelated Gaussian noise with zero mean and with

a variance equal to that of the last mode of the existing prior. Further, most of the

times it is also the case that the uncertainty in our prior is undermined by the model

errors we have not taken into account. Thus, to avoid over-confidence in what the
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truth should be, we incorporate a safety measure by inflating the prior uncertainty

using the adaptive covariance inflation methodology developed in Lin, 2020 [9]. For

algorithmic details, the reader is referred to the sections 5.4.4 and 5.5.1 of Lin, 2020

[9].

For our experiments, we consider the 3-component NPZ model with uncertainties

in the initial conditions of the biological states, Ivlev grazing parameter, and the

functional form of the zooplankton mortality term, whether it is quadratic or not.

The setup is the same as earlier in sections 2.3 & 2.4.1, a flow past a seamount with

sparse observations collected downstream. The goal is to learn all the biological states,

regular parameter Λ, and the functional form of the zooplankton mortality using a

special stochastic parameter, simultaneously, by assimilating the observations. The

methodology to initialize the state fields, parameters, etc. is the same as earlier.

However, we only use 2 DO modes, which are insufficient to quantify the evolving

uncertainty in the system. We utilize noisy observations measured at 8 locations.

Values of the various parameters associated with the experiments are provided in

table 5.1. We perform two experiments with an identical initial setup, however,

one with and the other without data-driven subspace augmentation and adaptive

covariance inflation. In figures 5-13 and 5-14, we provide the mean of the posterior

biological states, pdf of the parameters after the last assimilation step (𝑇 = 25), in

addition to the variation of normalized RMSE over time. We can notice that with

subspace augmentation and covariance inflation, RMSE either decreases or more-or-

less remains same at every assimilation step (except for 𝑇 = 13 which corresponds to

a dynamics related event; figure 5-13). However, without subspace augmentation and

covariance inflation, the change in RMSE is quite random (figure 5-14). In the latter

case, the pdf of Ivlev grazing parameter is bi-modal, thus demonstrating ambiguity in

the learned value of the parameter. Using the subspace augmentation and covariance

inflation however helps with more accurate evolution of uncertainty, hence leading

to more confidence and better learning of the Ivlev parameter. We do not see any

perceivable differences in the mean fields. We also provide the increase in the size of

the subspace over time in figure 5-15, as the number of modes are raised to 8 starting
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from 2.

For further comparison, we conduct another experiment, again without subspace

augmentation and adaptive covariance inflation, however, this time we use 8 DO-

modes. This is equal to the maximum size of the subspace reached at the end of

the experiment with subspace augmentation and adaptive covariance inflation. The

posterior state after the last assimilation step is provided in figure 5-16. Especially

in the pdf of the Ivlev parameter, we again notice multiple peaks, and the highest

peak is also clearly off than the true parameter value. This demonstrates that even

a subspace of size 8 is insufficient to capture the evolving uncertainty correctly. An

accurate evolution of uncertainty is essential for obtaining a representative prior, and

in turn a sufficiently accurate posterior.

5.4 Observation Planning

In real-world applications where data collection is a luxury, having a scientifically

sound knowledge about what, when, and where to observe is crucial for achieving the

learning objectives. The use of mutual information (MI) for determining optimal

observation locations has been previously explored in our group, and developed to

work in conjugation with the GMM-DO filter [9, 141]. In the present work, apart

from extending the use of MI-based optimal observation location selection for n mul-

tidisciplinary problems, we will also utilize MI for the purpose of identifiability and

predictability. Finally, we will showcase applications to realistic ocean simulations.

5.4.1 Computing Mutual Information (MI)

MI can be computed between any two random variables (RVs), without any con-

straint on them being scalars, or vectors of the same dimensions. MI between random

variables, 𝑋 and 𝑌 , is an information-theoretic measure of the amount of relevant

information contained in one w.r.t. the other variable, and is mathematically given
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Parameters Values
Biogeochemical model NPZ
Diffusion constants both horizontal and vertical, 𝒦 0
Light attenuation due to sea water, 𝑘𝑤 (𝑚−1) 0.067
Initial slope of the P-I curve, 𝛼 ((𝑊 𝑚−2 𝑑𝑎𝑦)−1) 0.025
Surface photosynthetically available radiation, 𝐼𝑜 (𝑊 𝑚−2) 158.075
Phytoplankton maximum uptake rate, 𝑉𝑚 (𝑑𝑎𝑦−1) 1.5
Half-saturation for phytoplankton uptake of nutrients, 𝐾*

𝑢

(𝑚𝑚𝑜𝑙 𝑁 𝑚−3)
1

Phytoplankton specific mortality rate, Ξ (𝑑𝑎𝑦−1) 0.1
Zooplankton specific excretion and mortality rate, Γ (𝑑𝑎𝑦−1) 0.145
Presence of absence of quadratic zooplankton term, 𝑎 unif{0, 1}
Quadratic zooplankton specific excretion and mortality rate, Γ2

(𝑑𝑎𝑦−1)
0.2

Zooplankton maximum grazing rate, 𝑅𝑚 (𝑑𝑎𝑦−1) 0.52
Ivlev constant, Λ ((𝑚𝑚𝑜𝑙 𝑁 𝑚−3)−1) unif(0.1,

0.2)
Fraction of zooplankton grazing egested, 𝛾 0.3
Detritus decomposition rate, Φ (𝑑𝑎𝑦−1) 1.03
Inverse of Eddy viscosity based Reynolds number, Λ𝑅𝑒 1
Number of Modes, 𝑁𝑆 See text
Number of MC samples, 𝑁𝑀𝐶 1000
State being observed 𝑍

Observation error standard deviation,
√
𝑅 0.05

Measurement noise standard deviation 0.03
Size of Observation vector, 𝑁𝑌 8
Observation start time 1
Time interval between assimilation steps 2
Observation end time 25
𝑝-value threshold 0.1%
Maximum covariance inflation, 𝜌𝑚𝑎𝑥 1.1

Table 5.1: Values of the various biological and hyper- parameters used in data-driven
subspace augmentation experiments. 𝑁𝑇 = 30 𝑚𝑚𝑜𝑙 𝑁 𝑚−3, 𝐻 = 50 𝑚 and time-
scale of 1 𝑑𝑎𝑦, are the scales used for non-dimensionalization.
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Figure 5-13: The posterior state of the NPZ model based stochastic dynamical system
used in experiment with subspace augmentation and adaptive covariance inflation,
and starting with only 2 DO-modes, at 𝑇 = 25 (i.e. after 13 observational episodes).
The first two columns consist of the true (left) and mean (right) field of the N, P
and Z tracer fields. In the third column, the first plot will show the variation of
normalized root-mean-square-error (RMSE) with time for various stochastic state
variables and parameters. The next two plots contain the probability distribution
of Λ(𝜔), and 𝑎(𝜔) (to learn presence or absence of quadratic zoo. mortality), with
their true values marked with blue dotted lines. The velocity field is deterministic
with 𝑅𝑒 = 1. The white circles on the zooplankton true field marks the observation
locations.
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Figure 5-14: The posterior state of the NPZ model based stochastic dynamical system
used in experiment without subspace augmentation and adaptive covariance infla-
tion, and with only 2 DO-modes, at 𝑇 = 25 (i.e. after 13 observational episodes).
Description same as figure 5-13.

Figure 5-15: Increase in DO modes with time for the experiment with subspace
augmentation and adaptive covariance inflation. The experiment is started with just
2 modes, and they increase up to 8 in number.
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Figure 5-16: The posterior state of the NPZ model based stochastic dynamical sys-
tem used in experiment without subspace augmentation and adaptive covariance
inflation, and with 8 DO-modes, at 𝑇 = 25 (i.e. after 13 observational episodes).
Description same as figure 5-13.
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by [142],

𝐼(𝑋;𝑌 ) =

∫︁
𝑥∈𝑋

∫︁
𝑦∈𝑌

𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑑𝑥𝑑𝑦 . (5.25)

Computing MI is non-trivial, however, there exists a closed-form expression for Gaus-

sian distributions. Thus, one could in principle fit a Gaussian to the joint of the RVs,

and MI can be computed analytically [143]. This however does not lead to an accu-

rate result in the case of non-Gaussian distributions. A GMM-based non-Gaussian

method has been developed in Lolla, 2016 [141] and Lin, 2020 [9]. Starting with the

samples from 𝑋 and 𝑌 , the methodology first involves fitting a GMM to the joint

of 𝑋 and 𝑌 . After a GMM is fitted, expectation of the logarithm factor in the MI

(equation 5.25) is approximated by drawing samples from the GMM, evaluating the

logarithm factor at each realization using the GMM pdf, and computing the expec-

tation by taking the average, also called the Monte Carlo method. Further, due to

the transformation invariant property of MI, we can equivalently compute MI in the

DO subspace which makes it computationally efficient.

We can use a simple experiment to demonstrate the advantage of using GMM-

based MI computation. This experiment will also simultaneously demonstrate the

advantage of using MI over covariance, and GMM-based non-Gaussian filter over the

classic Kalman filter. We consider two scalar RVs with a parabolic joint distribution,

𝑋 ∼ 𝒩 (0, 1) and 𝑌 = 𝑋2 + 𝒩 (0, 𝜎2) , (5.26)

where 𝒩 (0, 1) is a normal distribution, and an uncorrelated noise with 𝜎 << 1 is

added to avoid numerical issues. 10,000 random samples are plotted in figure 5-

17, and intuitively, if we were to observe one of the RV, we would expect to gain

knowledge about the other RV. However, covariance as an information measure for

this distribution leads to the opposite conclusion, because of it being much smaller

than 1. Along with this, computing MI using a Gaussian fit gives a value of 0.0258.

Though, just knowing the magnitude of MI does not contribute to our intuition

about the amount of information contained in one variable for the other, however,

the value of 0.0258 does seem to be low and goes against our original intuition. On
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Figure 5-17: Joint sample distribution for 𝑋 ∼ 𝒩 (0, 1) and 𝑌 = 𝑋2 +𝒩 (0, 𝜎2) with
𝜎 << 1.

the other hand, computing MI using a fit of 10 GMMs gives us a value of 1.251 for

the same system, which seems more reasonable. In order to corroborate our original

intuition, let us observe the RV 𝑌 , and infer 𝑋. For comparison, we assimilate the

data using the classic Kalman filter and the GMM-DO filter, and the results are

provided in figure 5-18. A fit of 10 GMM and 2 DO modes were used for the GMM-

DO filter. Ideally, the information about the value of 𝑌 should make the posterior

concentrate around the corresponding 𝑋 intersections along the parabola, and this

is only achieved with the GMM-DO filter as it is able to capture the non-linear and

non-Gaussian relationship. The Gaussian assumption in the classic Kalman filter is

insufficient for this experiment.

5.4.2 Optimal Locations

Due to the vastness of the ocean and the challenges associated with running in-situ

experiments, ocean observations are both sparse in space and time. In such a resource-

constrained environment, picking the observation locations with the most amount of

information for your learning objectives at a given time is essential, yet a non trivial
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(a) Kalman filter (GMM with 1 component)

Figure 5-18: The result of data assimilation after observing the value 𝑦 = 5 and using
different filters. The top-left plot corresponds to the joint distributions, while the
right and the bottom ones showcase the marginals of 𝑌 and 𝑋 respectively. The dots
denotes the monte carlo samples and the lines, kernel density fits. The ellipses mark
the 1st standard deviation of the Gaussians and the color intensity their individual
normalized weights, with darker shades of red mapping to 1 and lighter to 0, for
the prior Gaussian-Mixture-Model (GMM) fit. The shades of green marks the same,
however, for the posterior GMM fits. The black dot marks the observed true value.
(Cont.)
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(b) GMM-DO filter

Figure 5-18: The result of data assimilation after observing the value 𝑦 = 5 and using
different filters. The top-left plot corresponds to the joint distributions, while the
right and the bottom ones showcase the marginals of 𝑌 and 𝑋 respectively. The dots
denotes the monte carlo samples and the lines, kernel density fits. The ellipses mark
the 1st standard deviation of the Gaussians and the color intensity their individual
normalized weights, with darker shades of red mapping to 1 and lighter to 0, for
the prior Gaussian-Mixture-Model (GMM) fit. The shades of green marks the same,
however, for the posterior GMM fits. The black dot marks the observed true value.
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task. Due to the fine computational grid used, the number of possibilities to test grow

exponentially. For example, given the size of your state as 𝑈 ∈ R𝑁𝑋 , if one wants

to pick a combination of 𝒴 ∈ R𝑁𝑌 number of locations, then a simple combinatorial

search requires 𝑁𝑋 !
(𝑁𝑋−𝑁𝑌 )!𝑁𝑌 !

number of MI computations, which grows very quickly

for large 𝑁𝑋 . However, it is possible to use a greedy algorithm for our problem at

hand, and using the submodularity property, theoretical bounds can be proven about

the optimality of greedy search answer w.r.t. to the global maximum. The result for

the bound on optimality of greedy search for a submodular function was first proven

by Nemhauser et al., 1978 [144], while it was first used in the context of MI in Krause

et al., 2008 [143]. Lin, 2020 [9] provides an in-depth analysis of submodularity of

MI for data assimilation problems like ours. The goal of the work in this section

is to perform greedy sub-modular maximization to find the set of best locations to

observer nutrients so as to simultaneously learn all the uncertain biological states,

Ivlev grazing parameter, and the presence or absence of the zooplankton mortality

term. The initial setup of the experiment is the same as that described in section 2.4.1,

the system is evolved till time 𝑇 = 5. The goal is to make nutrient observations at

four locations and find the set of best locations to learn the states, parameters and the

model at time 𝑇 = 5 itself. The target RVs or often called the verification variables,

consist of variables 𝑉 (𝑡;𝜔) = [𝑎(𝜔),Λ(𝜔),𝑁 (𝑡;𝜔),𝑃 (𝑡;𝜔),𝑍(𝑡;𝜔)] at 𝑡 = 5. The

greedy submodular maximization is a simple algorithm which will start with an empty

set of observation locations and computes the MI between 𝑉 (𝑡;𝜔) and 𝑁(𝑥, 𝑡;𝜔)

at every grid location which gives us an MI field. The location of the grid point

with highest MI value is added to the set of observation locations. We recompute

the MI field by computing MI between 𝑉 (𝑡;𝜔) and 𝑁(𝑥, 𝑡;𝜔) conditioned on the

already selected observations, at every grid location apart from the locations in the

existing observation set. We repeat this process until we find the required number of

observations. We compare the set of four observations locations found by the greedy

algorithm, with those randomly picked throughout the domain. We compute their

combined MI content for the verification variable, and we also perform one step of

data assimilation using the GMM-DO filter and compute the normalized root-mean-
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Figure 5-19: The background consists of the true nutrient field at 𝑇 = 5 from which
observations are extracted. Overlayed are different sets of four observation locations,
and their mutual information content, and normalized posterior RMSE if they were
assimilated. The red box and arrow marks the set of locations found using the greedy
submodular maximization.

square-error (RMSE) of the combined posterior biological states, Λ(𝜔), and 𝑎(𝜔). The

results are provided in the figure 5-19, and we can easily notice that the set of four

locations found using the greedy submodular maximization has a significantly higher

MI and leads to the smallest RMSE for the posterior as compare to the other randomly

picked sets of observation locations. It is also interesting to note that the location of

the observation set found by the greedy search lies inside the phytoplankton bloom,

and the location and extent of the phytoplankton bloom is what is most sensitive to

the value of the Ivlev parameter, and zooplankton mortality. Picking observations

even just slightly below contains significantly lowers the amount of information.

5.4.3 Identifiability

Especially in ecosystem models, due to multidisciplinary dynamics, it is the case that

the available data is not informative enough for some of the learning objectives, and

is known as the problem of identifiability in the ocean ecosystem modeling scientific

community [145]. Apart from selecting the observation locations, one first needs to
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decide the state variable to be measured. As the instruments needed to measure

each of the biological or physical variables are drastically different and expensive,

it is not practical to carry all of them when embarking on a scientific expedition

in the ocean to make in-situ observations. Thus, it becomes important to make a

scientifically-sound decision about the instruments to carry. We propose to leverage

MI for selecting the candidate variables which will definitely be informative about

the learning objectives we really care about. Let us consider the NPZ system with

Ivlev grazing parameter (Λ(𝜔)) and phytoplankton mortality rate parameter (Ξ(𝜔))

uncertainties. We initialize and evolve our system in the same fashion as done in

earlier experiments (section 2.3). The goal is to quantify the identifiability of the Λ(𝜔)

and Ξ(𝜔) parameters from phytoplankton observations. We compute MI between

phytoplankton state at every grid location, 𝑃 (𝑥, 𝑡;𝜔), and either of these uncertain

parameters individually. The MI fields are provided in figure 5-20, and we can notice

that the phytoplankton barely contains any information about Ξ(𝜔) anywhere in

the domain, and thus, its observations will be ineffective in reducing its uncertainty.

Once we have identified the candidate variables which would be the most effective for

our learning objectives, we can utilize the greedy submodular maximization (section

5.4.2) to decide the locations at which observations should be made.

5.4.4 Predictability

The lack of ability to represent all the processes and interactions in the real-world

leads to the need to introduce various sources of uncertainties in our dynamical system

based models, followed by their accurate quantification and evolution. A system is

called to have lost its predictability when the errors have grown so much that the

forecast offers no better prediction than a randomly chosen field for the system [146].

Alternatively, it could be interpreted as the amount of time taken for the information

to decay in a system. The knowledge of predictability could help us guide the temporal

frequency of the of the observations needed, which could help with determining the

operational needs and constraints of the observation experiments.

There are numerous ways in which scientists try to measure and quantify the pre-
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Figure 5-20: Mutual information fields consisting of mutual information computed
between phytoplankton at each grid point and phytoplankton mortality rate parame-
ter (Ξ(𝜔)) in the top, and between phytoplankton at each grid point and Ivlev grazing
parameter (Λ(𝜔)) in the bottom, at time 𝑡 = 5.

dictability limits. For example, using the evolution of mean-squared error, however,

this requires the knowledge of the truth for comparison; the decay of auto-correlation,

which is more relevant to deterministic systems; or using the Mahalanobis distance

[147]. The use of MI as a measure for quantifying predictability of a system with

knowledge of only the initial conditions and fixed boundary conditions, also called

predictability of the first kind, was first proposed long ago by Leung and North, 1989

[148]. However, it is discarded especially in case of high-dimensional multidisciplinary

systems due to the computational challenges associated with computing MI [147].

To demonstrate the use of MI for estimating the predictability limit for a high-

dimensional multidisciplinary systems, we utilize the experimental setup of NPZ sys-

tem with Ivlev grazing parameter, and quadratic zooplankton mortality uncertainty

(section 2.4.1). Along with this, we also consider the Reynolds number to be uncer-

tain along with the initial velocity as described in section 3.4.1. No data is assimilated

in the current experiment. MI is computed between augmented state variables and

the uncertain parameters at the initial time (𝑇 = 0) with those at later times. The
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Figure 5-21: Variation of mutual information computed between augmented states
and parameters at initial time (𝑡 = 0), and at later times. See section 5.4.4 for more
details.

variation of MI with time is presented in figure 5-21. We notice an exponential decay

in the amount of information retained by the system about the initial conditions at

the later time, with a decay scale of the order of 2-3 non-dimensional times. This

corroborates with our personal experience while setting up the corresponding learning

experiment. In order to successfully learn the system, the observational episode had

to be started relatively earlier than experiments with uncertainty only in the biogeo-

chemical part, at 𝑡 = 1 vs. 𝑡 = 5, and subsequent observations were assimilated after

every 2 non-dimensional times. The predictability limit is in general sensitive to the

initial uncertainty, numerical error, and in our case would also be dependent on the

error introduced due to truncating the DO modes and evolving the uncertainty in

an reduced space. A detailed sensitivity study is required. It is however beyond the

scope of the current thesis.

5.4.5 Applications to Realistic Ocean Simulations

In this section, we briefly mention two collaborative research projects involving realis-

tic ocean simulations, for which MI-based analyses were performed to identify optimal

observation locations.
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Northern Arabian Sea Circulation autonomous research (NASCar) pro-

gram2: This US Office of Naval Research (ONR) funded program employs a variety

of autonomous and Lagrangian platforms and sensor systems to investigate the dy-

namics of the northern Arabian Sea. One of the goals of our group’s NASCar contri-

bution was to apply our theory and schemes for optimal path planning and optimal

ocean sampling with swarms of autonomous vehicles. In what comes next, the finite-

time Lyapunov exponent (FTLE) computations were performed by Dr. Chinmay S.

Kulkarni and Mr. Arkopal Dutt, and the text is copied verbatim from Lermusiaux

et al., 2017 [1]. In Figure 5-22, we illustrate how MI fields forecasts can be used

to identify the locations for observing different types of data that would be most

informative about the velocity field or Lagrangian coherent structures. A particular

realization of the ensemble forecast of the forward-time FTLE field over an interval

of three days (March 27 to March 30, 2017) is shown (Figure 5-22a). The ridges of

the forward-time FTLE field correspond to repelling Lagrangian coherent structures

(i.e., material lines from which parcel trajectories separate the most). The white box

marks the region for which the zoomed-in FTLE field is shown on the right. Winds

and upper-ocean dynamics lead to rapid variability in the surface velocity field (not

shown). When the velocity field is rapidly varying, the features in the FTLE field

cannot be identified with the velocity field at one particular time instance. In Figure

5-22c,d we show forecast MI fields between candidate observations of salinity any-

where in the small domain (white box in Figure 5-22a), and the verification variable,

which is a field defined over the whole small domain. The MI field between salin-

ity and the scalar field of zonal velocity over the small domain indicates that the

most informative salinity data locations are around 12.6∘𝑁 , 58.2∘𝐸. The MI field

between salinity and the FTLE field over the small domain (from which coherent

structures can be estimated) indicates the most informative salinity data locations

are around 12.5∘𝑁 , 58.7∘𝐸. The informative locations in this field lie on the edge

of a high-salinity intrusion (not shown here). We also note the differences in the

locations of the most informative data in the two fields, confirming that observation

2http://mseas.mit.edu/Sea_exercises/NASCar-OPS-17/
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data locations that are highly informative for one verification variable may not be

so for another. In Figure 5-22e-g we show forecast MI fields between velocity and

the forward-time FTLE field. The MI field between zonal velocity and forward-time

FTLE field indicates that the most informative locations are around 12.5∘𝑁 , 58.8∘𝐸.

In contrast, when meridional velocity is measured, the most informative data loca-

tions lie near 11.6∘𝑁 , 59.2∘𝐸. Also, there are more candidate observation locations

that are highly informative about coherent structures when measuring either velocity

component than when measuring salinity. Furthermore, if we were to observe both

zonal and meridional velocity, the MI about the coherent structures is logically higher

than when we measure only one of the components. This full velocity MI is, however,

maximized when the observation locations are around 12.3∘𝑁 , 58.8∘𝐸 and 11.7∘𝑁 ,

59.6∘𝐸.

Coherent Lagrangian Pathways from the Surface Ocean to Interior (CA-

LYPSO)3: As a part of this ONR funded research project, we used MI to predict

where and when to deploy drifters so as to best identify and explore subduction re-

gions in the Alboran Sea from March 27 to April 11, 2019. For example, we answered

where and which state variable to measure at the surface to maximize information

about the temperature of a parcel starting at the location 35.8∘𝑁 , 3.128∘𝑊 , and 4𝑚

depth on April 8, 2019 12Z that is predicted to subduct by more than 100𝑚. In order

to do this, we computed the MI between different state variables such as temperature,

salinity, zonal and meridional velocities at 0𝑚 in the whole domain on April 8, 2019

12Z, with the temperature at the starting location of the parcel. Similarly, we also

computed MI of these different state variables at the surface on April 8, 2019 12Z

with the parcel’s final location (35.418∘𝑁 , 1.98∘𝑊 , and 106𝑚 depth) on April 12,

2019 12Z. Areas of high MI provide the candidate observation locations that would

best inform our learning goals, as shown in figure 5-23.

3http://mseas.mit.edu/Sea_exercises/CALYPSO/2019/
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Figure 5-22: Adaptive sampling predictions for velocity or coherent structure fields.
(a-b) Forecast realization of the forward-time finite-time Lyapunov exponent (FTLE)
field (a) and of the same FTLE field but zoomed in a small domain (b), marked
by the white box in (a). (c-g) Forecast mutual information fields within this small
domain, between the observation variable at any location in the domain and the
verification variable which is here always a field defined over that small domain.
The five mutual information fields forecasts are between each of the following pairs
of observation and verification variables: (c) salinity and zonal velocity field, (d)
salinity and forward-time FTLE field, (e) zonal velocity and forward-time FTLE
field, (f) meridional velocity and forward-time FTLE field, and (g) velocity (both
components) and forward-time FTLE field. These mutual information fields forecast
the most informative observation locations for estimating the verification variable
over the small domain. Note that the color bars of panels (c-g) differ. This figure and
caption exactly appeared in Lermusiaux et al., 2017 [1].
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Figure 5-23: Mutual information between zonal velocity on the surface on April 8,
2019 12Z, with the temperature at the location 1.98∘𝑊 , 35.418∘𝑁 and 106𝑚 depth
on April 12, 2019 12Z.

5.5 Summary

In this chapter, we first derived the methodology to ensure realization-wise match-

ing between a controlled approximation of the interior and boundary realizations

respectively (strong imposition of boundary conditions), by splitting dynamically or-

thogonal (DO) modes into unforced and forced, and re-deriving the DO equations.

Using an experiment based on the flow past a cylinder with stochastic initial and

inlet Dirichlet boundary conditions, we compared the performance of strong vs. weak

(interior satisfying the boundaries only up to 2𝑛𝑑 moment) imposition of stochastic

boundary conditions. Next, we discussed the implementation of ghost cell immersed

boundary method (GCIBM) to handle complex and smooth obstacle / boundary ge-

ometries accurately in the 2D finite-volume (FV) framework used in the experiments

throughout this thesis. A deterministic Couette flow experiment was utilized to test

the implementation of the GCIBM method. We also compare the performance and

advantages of using linear vs. non-linear advection schemes with DO methodology

in the case of uncertain flow field. We find central-difference scheme for advection

and Heun’s method for time-integration, along with applying the Shapiro filter to

be able to eliminate the presence of spurious oscillations in the stochastic simula-
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tions. To deal with cases where the size of the initial subspace becomes insufficient to

capture the uncertainty evolution, we implemented the methodology for data-driven

subspace augmentation and covariance inflation developed in Lin, 2020 [9]. The im-

plemented method utilizes the discarded information contained in the projection of

the observations lying outside the current subspace to make rank-1 updates. Using an

experiment based on the three-component NPZ system with uncertainty in the initial

conditions of the biological states, Ivlev grazing parameter, and the functional form

of the zooplankton mortality term, we demonstrated an improvement in learning in

the presence of data-driven subspace augmentation and covariance inflation. Finally,

we showcased how mutual information can be efficiently computed and utilized for

observation planning for high-dimensional multidisciplinary systems. We were able to

derive scientifically sound knowledge to help make decisions about what (identifiabil-

ity), when (predictability), and where (optimal locations) to observe in both idealized

and realistic ocean simulations.
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Chapter 6

Neural Closure Models for Dynamical

Systems1

Most models only resolve spatio-temporal scales, processes, and field variables to a

certain level of accuracy because of the high computational costs associated with

high-fidelity simulations. Such truncation of scales, processes, or variables often limit

the reliability and usefulness of simulations, especially for scientific, engineering, and

societal applications where longer-term model predictions are needed to guide de-

cisions. There are many ways to truncate high-fidelity models to low-fidelity mod-

els. Examples abound and three main classes of truncations are: evolving the origi-

nal dynamical system in a reduced space, e.g., using reduced-order-models (ROMs)

[149, 150]); coarsening the model resolution to the scales of interest [151, 152]; and

reducing the complexity or number of state variables, components, and parameter-

izations [153, 154, 155]. In many applications, the neglected and unresolved terms

along with their interactions with the resolved ones can become important over time,

and a variety of modeling techniques have been developed to represent the missing

terms. Techniques that express these missing terms as functions of modeled state vari-

ables and parameters are referred to as closure models. A main challenge is that no

one closure approach to date is directly applicable to all four main classes of model

1This chapter is published as: Gupta, A., & Lermusiaux, P. F. (2021). Neural closure models for
dynamical systems. Proceedings of the Royal Society A, 477(2252), 20201004.
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truncations. Another is that closure models are only well-defined for either linear

problems or simple cases. Finally, they can easily become ineffective in the face of

nonlinearities.

Due to the explosion of use of a variety of machine learning methods for solving or

simulating dynamical systems, a number of data-driven methods have been proposed

for the closure problem. Most of them attempt to learn a neural network as the

instantaneous map between the low-fidelity solution and the residual of the high- and

low-fidelity solution, or their residual dynamics [156, 157, 2, 158, 159]. They often

use recurrent networks such as long-short term memory networks (LSTMs), gated

recurrent units (GRUs) etc., with justification based on the Mori-Zwanzig formulation

[160, 161, 162] and embedding theorems by Whitney [163] and Takens [164]. These

approaches do not however take into account accumulation of numerical time-stepping

error in the presence of neural-networks during training. and uniformly-spaced high-

fidelity data to be able to compute the time derivative of the state with high level

of accuracy. Such requirement on the training data can be a luxury in a lot of

scenarios. The requirement of very frequent snapshot data of the system is also

true for methods which achieve model discovery using sparse-regression and provide

interpretable learned models [24, 27, 159]. All of the above issues are addressed

by using neural ordinary differential equations (nODEs; [33]) and some researchers

recently used nODEs for closure modeling. Some directly learn the ODE system from

high-fidelity simulation data without using the available low-fidelity models [165],

which could lead to the requirement of bigger neural networks. Others combine

nODEs with model discovery using sparse-regression [166] or only learn the values

of parameters in existing closure models [167]. Nearly all existing studies primarily

only attempt to address the closure for ROMs. Finally, the existing machine learned

closure models are not yet used for long-term predictions, i.e. forecasting significantly

outside of the time-period to which the training data belonged to.

In the present study, we propose a new neural delay differential equations (nDDEs)

based framework to learn closure parameterizations for low-fidelity models using data

from high-fidelity simulations and to increase the long-term predictive capabilities of
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these models. Instead of using ODEs, we learn non-Markovian closure models using

DDEs. We base the theoretical justification for using DDEs on the Mori-Zwanzig

formulation [160, 161, 162] and the presence of inherent delays in many dynamical

systems [168], especially biological systems [169, 170]. We refer to the new modeling

approach as neural closure models. We demonstrate that our methodology drastically

improves the predictive capability of low-fidelity models for the main classes of model

truncations. Specifically, our neural closure models efficiently account for truncated

modes in ROMs, capture the effects of subgrid-scale processes in coarse models, and

augment the simplification of complex mathematical models. We also provide adjoint

equation derivations and network architectures needed to efficiently implement nD-

DEs, for both discrete and distributed delays. In the case of distributed delays, we

propose a novel architecture consisting of two coupled neural networks, which elim-

inates the need for using recurrent architectures for incorporating memory. We find

that our nDDE closures substantially improve nODE closures and outperform classic

dynamic closures such as the Smagorinsky subgrid-scale model. We explain the better

performance of nDDE closures based on information theory and the amount of past-

information being included. Our first two classes of simulation experiments utilize

the advecting shock problem governed by the Burger’s partial differential equation

(PDE), with low-fidelity models derived either by proper-orthogonal-decomposition

Galerkin projection [171] or by reducing the spatial grid resolution. Our third class

of experiments considers marine biological models of varying complexities [3, 39, 172]

and then their physical-biogeochemical extensions, with low-fidelity models obtained

by aggregation of components and other simplifications of processes and parame-

terizations. Finally, we analyze computational complexity and explain the limited

additional computational cost due to the presence of neural closure models.

6.1 Closure Problems

The need for closure modeling in dynamical systems arises for a variety of reasons.

They often involve computational costs considerations, but also include the lack of
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data to resolve complex real processes, the limited understanding of fundamental

dynamics, and the inherent nonlinear growth of uncertainties due to model errors

and predictability limits [e.g. 173, 174, 175, 176]. In this section, we examine three

main classes of low-fidelity models that can require closure modeling.

6.1.1 Reduced Order Modeling

Let us consider a nonlinear dynamical system with state variable 𝑢 ∈ R𝑁 and the

full-order-model (FOM) dynamics governed by,

𝑑𝑢(𝑡)

𝑑𝑡
= 𝐿𝑢(𝑡) + ℎ(𝑢(𝑡)), with 𝑢(0) = 𝑢0 , (6.1)

where 𝐿 ∈ R𝑁×𝑁 is the linear, and ℎ(·) : R𝑁 → R𝑁 the nonlinear, part of the system.

We are mainly interested in dynamical systems whose solution could be effectively

approximated on a manifold of lower dimension, 𝒱 ∈ R𝑚 ⊂ R𝑁 [e.g. 13]. Ideally, the

dimension of this manifold is much smaller than that of the system, i.e. 𝑚 << 𝑁 .

For the classic Galerkin-based reduced-order modeling, a linear decomposition of the

form,

𝑢(𝑡) ≈ �̄�+ 𝑉 𝑎 (6.2)

is used, where �̄� ∈ R𝑁 is a reference value, the columns of 𝑉 = [𝑣1, ..., 𝑣𝑚] ∈ R𝑁×𝑚

a basis of the 𝑚-dimensional subspace 𝒱 , and 𝑎 ∈ R𝑚 the vector of coefficients

corresponding to the reduced basis. A popular choice for this basis is the proper-

orthogonal-decomposition (POD) that defines the subspace such that the manifold 𝒱

preserves the variance of the system as much as possible when projected on 𝑉 for a

given 𝑚. The reference value (�̄�) is then commonly chosen as the mean of the system

state, in order to prevent the first reduced coefficient from containing the majority of

the energy of the system and to help stabilize the reduced system [177].

Now, substituting Eq. 6.2 into Eq. 6.1, and projecting the result on the orthonor-

mal modes 𝑉 , we obtain the following set of ordinary differential equations for the
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coefficients 𝑎,

𝑑𝑎

𝑑𝑡
= 𝑉 𝑇𝐿𝑉 𝑎+ 𝑉 𝑇ℎ(�̄�+ 𝑉 𝑎) + 𝑉 𝑇𝐿�̄� , with 𝑎(0) = 𝑉 𝑇 (𝑢0 − �̄�) . (6.3)

This𝑚 dimensional system, with𝑚 << 𝑁 , is computationally much cheaper than the

original FOM Eq. 6.2. This method of dimensionality reduction is commonly referred

to as the POD Galerkin Projection (POD-GP) method. It can suffer from a number

of issues. First, the truncated modes can play an important role in the dynamical

behaviour of the system, and neglecting them can thus lead to a very different forecast

[150]. Second, the error in the reduced state may be simply too large for truncation,

i.e. the POD reduction is not efficient. Third, if steady POD are employed, they may

quickly become irrelevant for the evolving system state [12, 13, 14]. To address these

issues, several methods try to represent the effect of the truncated modes. The most

common approaches introduce a nonlinear parameterization of the coefficients [e.g.

178] in Eq. 6.3, however, they are not yet generally applicable to all classes of closures.

The geometric interpretation of the goal of closure modeling for ROMs is sketched

in Fig. 6-1. The FOM solution of our dynamical system lies outside the lower di-

mension manifold, 𝒱 . A ROM approximate solution, denoted by 𝑢𝑅𝑂𝑀 , starts with

the projection of the full-order initial condition onto the manifold, 𝑉 𝑉 𝑇𝑢(0), but

quickly diverges from the actual projection of the full-order solution onto the mani-

fold (𝑉 𝑉 𝑇𝑢), often leading to a significant source of error. A closure model in this

case basically attempts to keep the updated “closed" solution, 𝑢𝑅𝑂𝑀+𝐶 , as close as

possible to the actual projection of the FOM solution (𝑉 𝑉 𝑇𝑢) which can be seen as

the truth.

6.1.2 Subgrid-Scale Processes

A key decision while setting up any numerical simulation is the selection of spatio-

temporal resolution, which is in general limited by the computing power available.

Using a coarse resolution (low-fidelity) model may however lead to a number of un-

desired artifacts, such as missing critical scales and processes for longer-term predic-

tions or numerical diffusion that causes unintended or unacceptable results [179, 180].
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Figure 6-1: Geometric interpretation of the closure for reduced-order-models (ROMs).
𝑢 ( ): Solution to the full-order-model (FOM); 𝑉 𝑉 𝑇𝑢 ( ): Projection of 𝑢 on the
subspace 𝑉 ; 𝑢𝑅𝑂𝑀 ( ): Solution to the proper-orthogonal-decomposition Galerkin-
projection (POD-GP) ROM; and, 𝑢𝑅𝑂𝑀+𝐶 ( ): Solution to POD-GP ROM with
closure. Adapted from [2].

These artifacts become especially important in the case of ocean models. For exam-

ple, present-day global observing systems and global model solutions only resolve

open-ocean mesoscale processes (𝒪(10 − 100𝑘𝑚)), but the submesocale (subgrid-

scale) processes do have global consequences, in relation to the mechanisms of energy

dissipation in the general circulation, vertical flux of material concentrations, and

intermediate-scale horizontal dispersal of materials [181, 182, 183]. The neglected

and unresolved scales along with their interactions with the resolved ones are then

at the core of closure parameterizations. Most present oceanic models consist of

a nonlinear system of PDEs, each of a nonlinear advection type, supplemented by

other possible diagnostic nonlinear equations, and boundary conditions. There is

however no unique way of defining such parameterizations and multiple approaches

such as non-dimensional analyses, physical balance hypotheses, statistical correlation

constraints, and other empirical methods are commonly employed to develop closure

models. Similar statements can be made for atmospheric, Earth system, and climate

models [184]. For all these applications, a general approach for subgrid-scale closures

would thus be most useful.
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6.1.3 Simplification of Complex Dynamical Systems

Due to incomplete understanding and limited measurements, it is common when

modeling real dynamical systems in nature and engineering that the dynamics can-

not be accurately explained just by using conservation laws and fundamental process

equations. We refer to such systems as complex dynamical systems. The number

of candidate models and equations can then be almost as large as the number of

modelers. The resulting models also vary greatly in terms of their complexity. More

complex models can capture key processes and feedbacks. Complexity is increased

by adding more parameters and parameterizations to the existing components (state

variables) of the dynamical model, but at some point, it quickly becomes inevitable

to add and model new components to capture the underlying real processes accu-

rately, hence further increasing model complexity [185, 39, 186]. This is common,

for example, in marine ecosystem models, where simpler models only resolve the

broad biogeochemical classes, while more complex models capture detailed sub-classes

[155, 153]. Increasing the number of components however can come at great compu-

tational cost, can increase the overall uncertainty, and can lead to loss of accuracy

or stability due to the nonlinearities. Also, the unknown parameters for models with

more components are calibrated from available data and the optimization process

and parameter estimation quickly become challenging with the increase in complex-

ity, due to the simultaneous explosion in the number of unknown parameters [187].

Thus, instead of adding more unknown parameterizations or increasing the number

of components, one might use adaptive models [188, 61] and in general the present

neural closure models with time delays to incorporate the effects of missing processes

in low-complexity models, enabling them to adapt and emulate the response from

high-complexity models.

6.2 Theory and Methodology

In this section, we develop the theory and methodology for learning data-assisted clo-

sure models for dynamical systems. We first review the Mori-Zwanzig (MZ) formula-
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tion [160, 161, 162] which derives the exact functional form of the effects of truncated

dynamics for common reduced models. Unfortunately, apart for very simple linear

dynamical systems, the use of this formulation is challenging without making unjus-

tified approximations and simplifications. We then discuss the presence of delays in

complex dynamical systems, and their impact on modeling [169]. Motivated by both

the MZ formulation and the presence of delays, we finally derive the new nDDEs

and neural closure models, including adjoint equations and network architectures, for

both discrete and distributed delays.

6.2.1 Mori-Zwanzig Formulation and Delays in Complex Dy-

namical Systems

Without loss of generality, the full nonlinear dynamical system model is written as,

𝑑𝑢𝑘(𝑡)

𝑑𝑡
= 𝑅𝑘(𝑢(𝑡), 𝑡) , with 𝑢𝑘(0) = 𝑢0𝑘 , 𝑘 ∈ F . (6.4)

The full state vector is 𝑢 = ({𝑢𝑘}), 𝑘 ∈ F = R∪U, where R is the set corresponding

to the resolved variables (e.g. coarse field or reduced variables), and U the set cor-

responding to the unresolved variables (e.g. subgrid field or complement variables),

which as a union, F, form the set for full space of variables. We also denote 𝑢 = {�̂�, �̃�}

where �̂� = ({𝑢𝑘}), 𝑘 ∈ R and �̃� = ({𝑢𝑘}), 𝑘 ∈ U. Similarly, 𝑢0 = {�̂�0, �̃�0}, with

�̂�0 = ({𝑢0𝑘}), ∈ R and �̃�0 = ({𝑢0𝑘}), 𝑘 ∈ U.

The Mori-Zwanzig (MZ) formulation allows rewriting the above nonlinear system

of ODEs as,

𝜕

𝜕𝑡
𝑢𝑘(𝑢0, 𝑡) = 𝑅𝑘(�̂�(𝑢0, 𝑡))⏟  ⏞  

Markovian

+𝐹𝑘(𝑢0, 𝑡)⏟  ⏞  
Noise

+

∫︁ 𝑡

0

𝐾𝑘(�̂�(𝑢0, 𝑡− 𝑠), 𝑠)𝑑𝑠⏟  ⏞  
Memory

, 𝑘 ∈ R ,
(6.5)

where 𝑅𝑘 is as in the full model dynamics (Eq. D.1). Importantly, the above equation

is an exact representation of Eq. D.1 for the resolved components. A derivation

is provided in the Supplementary Information (Sec. D.1). Eq. D.5 provides useful
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guidance for closure modeling. The first term in Eq. D.5 is the Markovian term

dependent only on the values of the variables at the present time, while the closure

consists of two terms: the noise term and a memory term that is non-Markovian. We

can further simplify Eq. D.5 by applying the 𝑃 projection and using the fact that the

noise term lives in the null space of 𝑃 for all times, which could be easily proved.

For ROMs with initial conditions devoid of any unresolved dynamics, i.e. �̃�0 = 0 and

thus 𝑢0 = �̂�0, we then retain the exact dynamics after the projection step, noticing

in this case that 𝑃𝑢𝑘(𝑢0, 𝑡) = 𝑢𝑘(�̂�0, 𝑡),∀𝑘 ∈ R,

𝜕

𝜕𝑡
𝑢𝑘(�̂�0, 𝑡) = 𝑃𝑅𝑘(�̂�(�̂�0, 𝑡)) + 𝑃

∫︁ 𝑡

0

𝐾𝑘(�̂�(�̂�0, 𝑡− 𝑠), 𝑠)𝑑𝑠, 𝑘 ∈ R . (6.6)

Hence, for such systems, the closure model would only consider the non-Markovian

memory term. The above derivation of the MZ formulation has been adapted from

[160, 2, 162].

The MZ formulation clearly shows that a non-Markovian closure term requir-

ing time-lagged state information is theoretically needed to model the unresolved or

missing dynamics. This theoretical basis directly applies to the first two classes of

low-fidelity dynamical systems (Sec. 6.1), ROMs and coarse resolution models. For

the third category, the simplification of complex dynamical systems, we emphasize

biological and chemical systems. Many are modeled using ODEs, with one state

variable per biological or chemical component. Such ODEs implicitly assume that

information between state variables is exchanged instantaneously. In reality, how-

ever, there are often time-delays for several reasons. First, changes in populations

or reactions have non-negligible time-scales [e.g. 189, 190, 168]. Such time-scales

are introduced in more complex models by modeling intermediate state variables.

Hence, the time response of lower-complexity models can be comparable to that of

high-complexity models only by explicitly introducing delays [189, 191, 169, 170].

Second, many reactive systems are modeled assuming smooth concentration fields of

state variables governed by PDEs with fluid flow advection and/or mixing, leading

to advection-diffusion-reaction PDEs [192, 193]. In that case, simplified models still
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require time-delays due to the neglected reactive or biogeochemical dynamics but now

also due to truncated modes and/or subgrid-scale processes of numerical models. For

all of these reasons, the need for memory based closure terms is clearly justified to

represent complex dynamical systems.

There are some results for data-assisted / data-driven closure modeling based on

the MZ formulation. Some schemes create a coupled system of stochastic differen-

tial equation using appropriate hidden-variables for approximate Markovization of

the non-Markovian term [194, 195]. Others use a variational approach to derive

nonlinear parameterizations approximating the Markovian term [196]. Schemes us-

ing machine learning to learn non-Markovian residual of the high- and low-fidelity

dynamics limit themselves to specific functional forms for the residual term, simple

Euler time-stepping scheme, and very frequent and uniformly-spaced training data

[159, 2, 157]. They also lack the rigorous use of the theory for time-delay systems

[197].

6.2.2 Neural Delay Differential Equations

The non-Markovian closure terms with time-lagged state information lead us to delay

differential equations (DDEs) [198]. DDEs have been widely used in many fields

such as biology [199, 200], pharmacokinetic-pharmacodynamics [201], chemistry [202],

economics [203], transportation [204], control theory [205], climate dynamics [206,

207], etc. Next, we summarize the state of the art for learning and solving differential

equations using neural-networks (NNs) and develop theory and schemes for neural

DDEs including adjoint equations for backpropagation.

The interpretation of residual networks as time integration schemes and flow maps

for dynamical systems has led to pioneering development of neural ordinary differen-

tial equations (nODEs) [33]. A nODE parameterizes an ODE using a neural-network

and solves the initial value problem (IVP) given by,

𝑑𝑢(𝑡)

𝑑𝑡
= 𝑓𝑁𝑁(𝑢(𝑡), 𝑡; 𝜃) , 𝑡 ∈ (0, 𝑇 ] , with 𝑢(0) = 𝑢𝑜 , (6.7)
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where 𝑓𝑁𝑁 is the prescribed neural-network and 𝜃 are the weights. Starting from

the initial conditions, the nODE (Eq. 6.7) is integrated forward in time using any

time-integration scheme, and then gradients are computed based on a loss function

using the adjoint sensitivity method. The gradient computation boils down to solving

a second ODE backwards in time. Using standard backpropagation for Eq. 6.7 has

however several issues: it would be very memory expensive as one needs to store the

state at every time step; its computational cost would increase when using higher-

order time-integration or implicit schemes; and, it might become infeasible if the

forward time-integration code does not support automatic differentiation. The ad-

joint method, however, provides a backpropagation for nODEs [33] that is memory

efficient and flexible as it treats the time-integration scheme as a “black-box”. In

our case, we need to incorporate state-delays. Though extending the nODE frame-

work to incorporate DDEs comes under the ambit of universal differential equations

(UDEs) [34], deeper investigations are warranted. First, the UDEs are presently im-

plemented using the Julia library DiffEqFlux.jl [208] which can perform automatic

adjoint equation solves, but other popular open-source languages such as Python and

R, and ML-Frameworks such as TensorFlow [209], PyTorch [210], etc., would require

explicit derivation and coding of the corresponding adjoint equations. Second, we

need to study two different types of DDEs, the discrete and distributed delays, which

it turns out require different architectures. Next, we thus develop the theory and

schemes for efficient implementation of neural delay differential equations (nDDEs)

in any programming language.

Discrete Delays

The most popular form of delay differential equations (DDEs) is,

𝑑𝑢(𝑡)

𝑑𝑡
= 𝑓(𝑢(𝑡), 𝑢(𝑡− 𝜏1), ..., 𝑢(𝑡− 𝜏𝐾), 𝑡), 𝑡 ∈ (0, 𝑇 ] ,

with 𝑢(𝑡) = ℎ(𝑡), 𝑡 ≤ 0 ,

(6.8)
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where 𝜏1, ..., 𝜏𝐾 are 𝐾 number of discrete-delays (discrete DDEs). Instead of a single

initial value as in the case of ODEs, DDEs require specification of a history function,

ℎ(𝑡). Due to the presence of a given fixed number delays, we can parameterize the

above system by replacing the time-derivative function with potentially any type of

NNs. For example, to use fully-connected NNs we would concatenate all the delayed

states vertically to form the input vector, or concatenate them horizontally to form

an input matrix for a convolutional NN. However, recurrent NN (RNN) architectures,

such as simple-RNNs, LSTMs, GRUs, etc., are ideal and most efficient for our need

due to the time-series nature of the delayed states. We can assume that the discrete

delays are evenly spaced (this is not a hard requirement as we can easily extend

schemes to irregularly spaced discrete-delays using ODE-RNNs [211], but for brevity

we make this assumption) and use a RNN with weights 𝜃. Hence, our new discrete-

DDE system can be written as,

𝑑𝑢(𝑡)

𝑑𝑡
= 𝑓𝑅𝑁𝑁(𝑢(𝑡), 𝑢(𝑡− 𝜏1), ..., 𝑢(𝑡− 𝜏𝐾), 𝑡; 𝜃), 𝑡 ∈ (0, 𝑇 ] ,

with 𝑢(𝑡) = ℎ(𝑡), 𝑡 ≤ 0 ,

(6.9)

where 𝑓𝑅𝑁𝑁(∙; 𝜃) is the recurrent architecture. We refer to this parameterization of

discrete DDEs as discrete-nDDE. The graphical representation of Eq. 6.9 in time-

discretized form is depicted in Figure 6-2a. Let data be available at 𝑀 times,

𝑇1 < ... < 𝑇𝑀 ≤ 𝑇 . We then optimize the total loss function given by, ℒ =∫︀ 𝑇

0

∑︀𝑀
𝑖=1 𝑙(𝑢(𝑡))𝛿(𝑡−𝑇𝑖)𝑑𝑡, where 𝑙(∙) are scalar loss functions such as mean-squared-

error (MSE), and 𝛿(𝑡) is the Kronecker delta function. To perform this optimization

with any gradient descent algorithm, we need the gradient of the loss function w.r.t.

the weights of the RNN, 𝜃. Using the adjoint sensitivity method [212] to compute

the required gradients, we start by writing the Lagrangian for the above system,

𝐿 =ℒ(𝑢(𝑡)) +

∫︁ 𝑇

0

𝜆𝑇 (𝑡) (𝑑𝑡𝑢(𝑡) − 𝑓𝑅𝑁𝑁(𝑢(𝑡), 𝑢(𝑡− 𝜏1), ..., 𝑢(𝑡− 𝜏𝐾), 𝑡; 𝜃)) 𝑑𝑡

+

∫︁ 0

−𝜏𝐾

𝜇𝑇 (𝑡)(𝑢(𝑡) − ℎ(𝑡))𝑑𝑡 ,

(6.10)
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where 𝜆(𝑡) and 𝜇(𝑡) are the Lagrangian variables. In order to find the gradients of 𝐿

w.r.t. 𝜃, we first solve the following adjoint equation (for brevity we denote, 𝜕
𝜕(∙) ≡ 𝜕(∙)

and 𝑑
𝑑(∙) ≡ 𝑑(∙)),

𝑑𝑡𝜆
𝑇 (𝑡) =

𝑀∑︁
𝑖=1

𝜕𝑢(𝑡)𝑙(𝑢(𝑡))𝛿(𝑡− 𝑇𝑖)

− 𝜆𝑇 (𝑡)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(𝑢(𝑡), 𝑢(𝑡− 𝜏1), ..., 𝑢(𝑡− 𝜏𝐾), 𝑡; 𝜃)

−
𝐾∑︁
𝑖=1

𝜆𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁 (𝑢(𝑡+ 𝜏𝑖), 𝑢(𝑡− 𝜏1 + 𝜏𝑖), ..., 𝑢(𝑡− 𝜏𝐾 + 𝜏𝑖), 𝑡+ 𝜏𝑖; 𝜃) ,

𝑡 ∈ [0, 𝑇 ) ,

𝜆(𝑡) = 0, 𝑡 ≥ 𝑇 .

(6.11)

Details of the derivation of the above adjoint Eq. 6.11 are in the accompanying Sup-

plementary Information. Note that Eq. 6.11 needs to be solved backward in time,

and one would require access to 𝑢(𝑡), 0 ≤ 𝑡 ≤ 𝑇 . In the original nODE work [33],

Eq. 6.9 is solved backward in time and augmented with the adjoint Eq. 6.11, so as

to shrink the memory footprint by avoiding the need to save 𝑢 at every time-step.

Solving Eq. 6.9 backward can however lead to catastrophic numerical instabilities as

is well known in data assimilation [213, 214]. Improvements have been proposed, such

as the ANODE method [215], but they are not applicable in case of DDEs. In our

present implementation, in order to access 𝑢(𝑡), 0 ≤ 𝑡 ≤ 𝑇 , while solving the adjoint

equation, we create and continuously update an interpolation function using the 𝑢

obtained at every time-step as we solve Eq. 6.9 forward in time. To be more memory

efficient, we can, for example, use the method of checkpointing [216], or the interpo-

lated reverse dynamic method (IRDM) [217]. After solving for 𝜆, we can compute

the required gradients as,

𝑑𝜃𝐿 = −
∫︁ 𝑇

0

𝜆𝑇 (𝑡)𝜕𝜃𝑓𝑅𝑁𝑁(𝑢(𝑡), 𝑢(𝑡− 𝜏1), ..., 𝑢(𝑡− 𝜏𝐾), 𝑡; 𝜃)𝑑𝑡 . (6.12)
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Finally, using any gradient descent algorithm, we can find the optimal values of the

weights 𝜃.

Distributed Delays

In some applications, the delay is distributed over some past time-period [218],

𝑑𝑢(𝑡)

𝑑𝑡
= 𝑓

(︂
𝑢(𝑡),

∫︁ 𝑡−𝜏1

𝑡−𝜏2

𝑔(𝑢(𝜏), 𝜏)𝑑𝜏, 𝑡

)︂
, 𝑡 ∈ (0, 𝑇 ] ,

with 𝑢(𝑡) = ℎ(𝑡), 𝑡 ≤ 0 .

(6.13)

It should be noted that the discrete DDEs can be written as a special case of dis-

tributed DDEs using dirac-delta functions. We can approximate the two functions

𝑓 and 𝑔 using two different neural-networks, and re-write the above Eqs. 6.13 as our

new coupled discrete DDEs,

𝑑𝑢(𝑡)

𝑑𝑡
= 𝑓𝑁𝑁 (𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃) , 𝑡 ∈ (0, 𝑇 ]

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑔𝑁𝑁(𝑢(𝑡− 𝜏1), 𝑡− 𝜏1;𝜑) − 𝑔𝑁𝑁(𝑢(𝑡− 𝜏2), 𝑡− 𝜏2;𝜑), 𝑡 ∈ (0, 𝑇 ]

with 𝑢(𝑡) = ℎ(𝑡), 𝜏2 ≤ 𝑡 ≤ 0 , and 𝑦(0) =

∫︁ −𝜏1

−𝜏2

𝑔𝑁𝑁(ℎ(𝑡), 𝑡;𝜑)𝑑𝑡 ,

(6.14)

where 𝑓𝑁𝑁(∙; 𝜃) and 𝑔𝑁𝑁(∙;𝜑) are the two NNs parameterized by 𝜃 and 𝜑 respectively.

We refer to this parameterization of distributed DDEs as distributed-nDDE. The

graphical representation of the above system (Eqs. 6.14) in time-discretized form is

depicted in Figure 6-2b. Interestingly in the case of distributed-delays, we obtain a

novel architecture consisting of two coupled NNs, which enables us to incorporate

memory without the use of any recurrent networks such as RNN, LSTMs, GRUs,

etc. We can consider 𝑓𝑁𝑁 as the main network, and 𝑔𝑁𝑁 as the auxiliary network.

Again, we define a scalar loss function given by ℒ =
∫︀ 𝑇

0

∑︀𝑀
𝑖=1 𝑙(𝑢(𝑡))𝛿(𝑡−𝑇𝑖)𝑑𝑡 for the

available data at 𝑀 times, 𝑇1 < ... < 𝑇𝑀 ≤ 𝑇 . The Lagrangian for the above system
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is,

𝐿 =ℒ(𝑢(𝑡)) +

∫︁ 𝑇

0

𝜆𝑇 (𝑡)(𝑑𝑡𝑢(𝑡) − 𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)) 𝑑𝑡

+

∫︁ 𝑇

0

𝜇𝑇 (𝑡) (𝑑𝑡𝑦(𝑡) − 𝑔𝑁𝑁(𝑢(𝑡− 𝜏1), 𝑡− 𝜏1;𝜑) + 𝑔𝑁𝑁(𝑢(𝑡− 𝜏2), 𝑡− 𝜏2;𝜑)) 𝑑𝑡

+

∫︁ 0

−𝜏2

𝛾𝑇 (𝑡)(𝑢(𝑡) − ℎ(𝑡))𝑑𝑡+ 𝛼𝑇

(︂
𝑦(0) −

∫︁ −𝜏1

−𝜏2

𝑔𝑁𝑁(ℎ(𝑡), 𝑡;𝜑)𝑑𝑡

)︂
,

(6.15)

where 𝜆(𝑡), 𝜇(𝑡), 𝛾(𝑡), and 𝛼 are the Lagrangian variables. In order to find the gradi-

ents of 𝐿 w.r.t. the parameters of the two NNs, we first solve the following coupled

adjoint equations backward in time,

𝑑𝑡𝜆
𝑇 (𝑡) =

𝑀∑︁
𝑖=1

𝜕𝑢(𝑡)𝑙(𝑢(𝑡))𝛿(𝑡− 𝑇𝑖) − 𝜆𝑇 (𝑡)𝜕𝑢(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)

− 𝜇𝑇 (𝑡+ 𝜏1)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)

+ 𝜇𝑇 (𝑡+ 𝜏2)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑) , 𝑡 ∈ [0, 𝑇 )

𝑑𝑡𝜇
𝑇 (𝑡) = − 𝜆𝑇 (𝑡)𝜕𝑦(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃) , 𝑡 ∈ [0, 𝑇 )

𝜆𝑇 (𝑡) = 0 and 𝜇𝑇 (𝑡) = 0, 𝑡 ≥ 𝑇 .

(6.16)

Details of the derivation of the above adjoint Eq. 6.16 are in the Supplementary Infor-

mation. For accessing 𝑢 values while solving the adjoint equations, we use the same

approach as for our discrete-nDDE (Sec. 6.2.2). After solving for 𝜆 and 𝜇, we can

compute the required gradients as,

𝑑𝜃𝐿 = −
∫︁ 𝑇

0

𝜆𝑇 (𝑡)𝜕𝜃𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)𝑑𝑡 ,

𝑑𝜑𝐿 = −
∫︁ 𝑇

0

𝜇𝑇 (𝑡) (𝜕𝜑𝑔𝑁𝑁(𝑢(𝑡− 𝜏1), 𝑡− 𝜏1;𝜑) − 𝜕𝜑𝑔𝑁𝑁(𝑢(𝑡− 𝜏2), 𝑡− 𝜏2;𝜑)) 𝑑𝑡

− 𝜇𝑇 (0)

∫︁ −𝜏1

−𝜏2

𝜕𝜑𝑔𝑁𝑁(ℎ(𝑡), 𝑡;𝜑)𝑑𝑡 .

(6.17)
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Finally, using any gradient descent algorithm, we can optimize the neural-networks

𝑓𝑁𝑁 and 𝑔𝑁𝑁 , and find the optimal values of the weights 𝜃 and 𝜑.

6.2.3 Neural Closure Models

Now that we have the framework for representing delay differential equations using

neural-networks, we can replace the non-Markovian memory term in Eq. D.6 using

nDDEs to obtain a hybrid closure model which could be trained using data from

high-fidelity simulations or real observations. The modified low-fidelity dynamical

system with the nDDE closures, which approximates the high-fidelity model would

be given by,

𝜕�̂�(𝑡)

𝜕𝑡
= 𝑃𝑅(�̂�(𝑡))⏟  ⏞  

Low-Fidelity

+ 𝑓𝑅𝑁𝑁(�̂�(𝑡), �̂�(𝑡− 𝜏1), ..., �̂�(𝑡− 𝜏𝐾), 𝑡; 𝜃)⏟  ⏞  
Neural Closure

�̂�(0) = �̂�0, 𝑡 ≤ 0

(6.18)

using discrete-delays, or by,

𝜕�̂�(𝑡)

𝜕𝑡
= 𝑃𝑅(�̂�(𝑡))⏟  ⏞  

Low-Fidelity

+ 𝑓𝑁𝑁

(︂
�̂�(𝑡),

∫︁ 𝑡−𝜏1

𝑡−𝜏2

𝑔𝑁𝑁(�̂�(𝜏), 𝜏 ;𝜑)𝑑𝜏, 𝑡; 𝜃

)︂
⏟  ⏞  

Neural Closure

�̂�(0) = �̂�0, 𝑡 ≤ 0

(6.19)

using distributed-delays. The initial conditions at 𝑡 = 0, �̂�0, can be used for 𝑡 <

0 as well, as an approximation. Apart from the neural-network architectures, the

amount of delay to be used also becomes a hyperparameter to tune. These novel

neural closure models provides extreme flexibility in designing the non-Markovian

memory term in order to incorporate subject matter expert insights. At the same

time, we can also learn the unknown parts of the Markovian low-fidelity model using

nODEs if the need arises. Next, we will compare the performance and advantages

of using no-delays (nODEs), discrete-delays (discrete-nDDEs), and distributed-delays

(distributed-nDDEs) in closure terms for various low-fidelity dynamical systems.
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RNN RNN RNN

DNN

0

∫

(a) Discrete-nDDE

DNN

DNN

DNN

∫

- ∫

(b) Distributed-nDDE

Figure 6-2: Graphical representation of the time discretized neural delay differential
equations (nDDEs). The blocks labeled RNN and DNN represent any recurrent or
deep neural-network architectures respectively. The block labeled

∫︀
symbolizes any

time-integration scheme.
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6.3 Application Results and Discussion

After presenting the main classes of low-fidelity dynamical models that require clo-

sure (Sec. 6.1), we derived a novel, versatile, and rigorous methodology for learning

and modeling non-Markovian closure terms using nDDEs (Sec. 6.2). The resulting

neural closure models have their underpinning in the Mori-Zwanzig formulation and

the presence of inherent delays in models of complex dynamical systems such as bio-

geochemical systems. Now, we evaluate the performance and advantages of these new

neural closure models over those of neural ODEs (Markovian).

We run experiments encompassing each of the classes of low-fidelity models (Sec. 6.1).

For each experiment, we follow the same training protocol for nODEs (no-delays) and

the two nDDEs, discrete-nDDE (discrete-delays) and distributed-nDDE (distributed-

delays), closure models. The training data are regularly sampled from high-fidelity

simulations in all experiments, but this is not a requirement. We use performance

over the validation period (past the period for which high-fidelity data snapshots are

used for training) to fine tune various training related hyperparameters. The final

evaluation is based on much longer-term future prediction performance, well past

these periods. As the field of scientific machine learning (SciML; [37]) is relatively

new, the metrics for performance evaluation vary greatly. On the one hand, many

learning studies randomly sample small time-sequences from a given period for which

high-fidelity data are available, and then split them into training, validation, and test

sets [165]. As the training, validation, and test sets belong to the same time-domain,

hence, the learned networks are only evaluated for their interpolation performance

and predicting the unseen data becomes easy for them. On the other hand, for the few

studies where the training and test (prediction) periods do not overlap, the prediction

period is often much shorter than the training period [219]. In the present work, we

consider a more stringent evaluation. First, our validation period does not overlap

the training period. Second, our future prediction period is equal to or much longer

than the training and validation periods, and has no overlap with either. Hence, we

strictly measure the out-of-sample/generalization performance of the learned network
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for its extrapolation capabilities into the future. Of course, other evaluation metrics

are possible and there is indeed a need for standardization of evaluation procedures in

the SciML community. In the rest of the paper, for all the figure, table, and section

references prefixed with “SI-”, we direct the reader to the Supplementary Information.

6.3.1 Experiments 1: Advecting Shock - Reduced Order Model

For the first experiments, neural closure models learn the closure of proper-orthogonal-

decomposition Galerkin projection (POD-GP) based reduced order model of the ad-

vecting shock problem. The full-order-model (FOM) for this problem is given by the

Burger’s equation,
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕2𝑥
, (6.20)

where 𝜈 is the non-dimensional diffusion coefficient. The initial and boundary condi-

tions are

𝑢(𝑥, 0) =
𝑥

1 +
√︁

1
𝑡0

exp
(︀
𝑅𝑒𝑥

2

4

)︀ , 𝑢(0, 𝑡) = 0, and 𝑢(𝐿, 𝑡) = 0 , (6.21)

where 𝑅𝑒 = 1/𝜈 and 𝑡0 = exp(𝑅𝑒/8). Let the POD of the state variable 𝑢(𝑥, 𝑡) be

given by, 𝑢(𝑥, 𝑡) = �̄�(𝑥) +
∑︀𝑚

𝑖=1 𝑢𝑖(𝑥)𝑎𝑖(𝑡), we obtain the reduced-order equations as

outlined in Section 6.1.1,

𝑑𝑎𝑘
𝑑𝑡

= −
⟨
�̄�
𝜕�̄�

𝜕𝑥
, 𝑢𝑘

⟩
− 𝑎𝑖

⟨
𝑢𝑖
𝜕�̄�

𝜕𝑥
, 𝑢𝑘

⟩
− 𝑎𝑗

⟨
�̄�
𝜕𝑢𝑗
𝜕𝑥

, 𝑢𝑘

⟩
− 𝑎𝑖𝑎𝑗

⟨
𝑢𝑖
𝜕𝑢𝑗
𝜕𝑥

, 𝑢𝑘

⟩
+

⟨
𝜈
𝜕2�̄�

𝜕𝑥2
, 𝑢𝑘

⟩
+ 𝑎𝑖

⟨
𝜈
𝜕2𝑢𝑖
𝜕𝑥2

, 𝑢𝑘

⟩
,

with 𝑎𝑘(0) = ⟨(𝑢(𝑥, 0) − �̄�(𝑥)), 𝑢𝑘(𝑥)⟩ .

(6.22)

We solve the FOM (Eqs. 6.20 and 6.21) for 𝑅𝑒 = 1000, 𝐿 = 1, and maximum time 𝑇 =

4.0. The singular value decomposition (SVD) of this solution form the POD modes

for the ROM. We only keep the first three modes which capture 60.8% of energy,

and evolve the corresponding coefficients using Eq. 6.22, thus requiring a closure.

The high-fidelity or true coefficients are obtained solving the FOM (Eq. 6.20) with
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initial conditions without the contribution from the unresolved modes, i.e. 𝑢(𝑥, 0) =

�̄�(𝑥)+
∑︀3

𝑖=1 𝑢𝑖(𝑥)𝑎𝑖(0), and projecting the obtained solution onto the first three modes.

For comparison, we also present the true coefficients in Fig. 6-3, which is what the

ROMs with neural closure are trying to match. For this true data generation, we

solve the FOM using an explicit Runge-Kutta (RK) time-integration of order (4)5

(dopri5 ; [134]) with adaptive time-stepping (storing data at time-steps of ∆𝑡 = 0.01)

and grid spacing of ∆𝑥 = 0.01, using finite-difference schemes (upwind for advection

and central difference for diffusion).

Our three test periods for the advecting shock ROM (Eq. 6.22) with three modes

are as follows. For training our neural closure models, we only use the true coefficient

values up to time 𝑡 = 2.0. For validation (used only to tune hyperparameters), we use

true coefficient values from 𝑡 = 2.0 to 𝑡 = 4.0. Finally for testing, we make a future

prediction from 𝑡 = 4.0 to final time 𝑇 = 6.0. We compare the three different closures:

nODE (no-delays), discrete-nDDE, and distributed-nDDE with architecture details

presented in Table D.1. The architectures are not exactly the same for the three

cases, but they are set-up to be of comparable expressive power. Mostly, we employ

a bigger architecture for the no-delays case in order to help it compensate the lack of

past information. We also ensure that the networks are neither under-parameterized

nor over-parameterized. Along with the classical hyperparameters such as batch size,

number of iterations per epoch, number of epochs, learning rate schedule, etc., we

also have the delay values (𝜏1, ..., 𝜏𝐾 for discrete-nDDE; and 𝜏1, 𝜏2 for distributed-

nDDE) as additional hyperparameters to tune. We chose to use six discrete delays for

the discrete-nDDE in the present experiments. The values of other hyperparameters

are given in Sec. D.3.2. For evaluation, at each epoch, we evolve the coefficient of

the learned system ({𝑎𝑝𝑟𝑒𝑑(𝑇𝑖) = {𝑎𝑝𝑟𝑒𝑑𝑘 (𝑇𝑖)}3𝑘=1}𝑀𝑖=1) using the RK time-integration

scheme mentioned earlier, and compare them with the true coefficients ({𝑎𝑡𝑟𝑢𝑒(𝑇𝑖)}𝑀𝑖=1)

using the time-averaged 𝐿2 error, ℒ = 1
𝑀

∑︀𝑀
𝑖=1

(︂√︁∑︀3
𝑘=1 |𝑎

𝑝𝑟𝑒𝑑
𝑘 (𝑇𝑖) − 𝑎𝑡𝑟𝑢𝑒𝑘 (𝑇𝑖)|2

)︂
,

which is also our loss function for training. The error for the time period 𝑡 = 0 to 2.0

forms the training loss, the error for 𝑡 = 2.0 to 4.0 the validation loss, and the error

for 𝑡 = 4.0 to 6.0 the prediction loss.
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The performance of the three neural closure models after 200 epochs (the stochas-

tic gradient descent nearly converges, see Fig. D-1a) is evaluated by comparison with

the true coefficients and with the POD-GP coefficients spanning training, valida-

tion, and future prediction periods. Results are shown in Figure 6-3. The details of

the architectures employed are in Table D.1. We find that using no-delays (nODE),

discrete-delays (discrete-nDDE), and distributed-delays (distributed-nDDE) perform

equally well for the training period, exactly matching the true coefficients. As soon

as one enters the validation period, all the neural closure models starts to slightly

diverge, with the nODE diverging the most by the end of prediction period. Im-

portantly, both nDDE closures maintain a great improvement over just using the

POD-GP model, and showcase a better performance than the nODE closure, even

though the latter had a deeper architecture with significantly more trainable param-

eters. We also find that the performance of the distributed-nDDE closure is a little

better than that of the discrete-nDDE closure for the prediction period. In a similar

set of experiments, Maulik et. al., 2020 (section 3.1, “Advecting Shock", [165]) used

nODE and LSTM to learn the time evolution of the first three high-fidelity (true)

coefficients without utilizing the known physics/low-fidelity model. As a result, they

required bigger architectures and more time samples for training data than we do.

This confirms our benefits of learning only the unknown closure model. Due to the

highly nonlinear nature of neural networks, analytical stability analyses are not di-

rect. Nonetheless, we provide empirical stability results by reporting the evolution

of the root-mean-square-error (RMSE) (Fig. 6-3). We find that both discrete-nDDE

and distributed-nDDE closures, due to the existence of delays, may have a stronger

dissipative character and thus show much better stability at later times than the

POD-GP and the nODE closure.

One might expect the distributed-delay (distributed-nDDE) to always perform

better than the discrete-nDDE closure because of the presence of the integral of the

state variable over a delay period instead of the state variable at specific points in

the past. The former thus seemingly contains more information, but there is in fact

no guarantee for this being true in all cases. We can derive an intuition for this from
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Figure 6-3: Comparison of the true coefficients (solid) with the coefficients from
the POD-GP ROM (dashed-dot) and from the POD-GP ROMs augmented with
the three different learned neural closure models at the end of training (dashed).
For each neural closure, the training period is from 𝑡 = 0 to 2.0, the valida-
tion period from 𝑡 = 2.0 to 4.0, and the future prediction period from 𝑡 =
4.0 to 6.0. Top-left: neural ODEs with no-delays (nODE); Top-right: neural DDEs
with discrete-delays (Discrete-nDDE); Bottom-left: neural DDEs with distributed-
delays (Distributed-nDDE). Bottom-right: Evolution of root-mean-squared-error

(RMSE(𝑡) =
√︁

1
3

∑︀3
𝑘=1 |𝑎

𝑝𝑟𝑒𝑑
𝑘 (𝑡) − 𝑎𝑡𝑟𝑢𝑒𝑘 (𝑡)|2) of coefficients from the four different

ROMs. These results correspond to the architectures detailed in Table D.1.
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information theory. According to the data processing inequality [142], let 𝑋 and 𝑌

be two random variables, then,

𝐼(𝑔(𝑋);𝑌 ) ≤ 𝐼(𝑋;𝑌 ) , (6.23)

where 𝐼 is the mutual information and 𝑔 is any function which post-processes𝑋. Now,

if 𝑋 is composed of 𝐾 random variables, 𝑋 = {𝑋1, ..., 𝑋𝐾}, and 𝑔(𝑋) = 𝑋1+...+𝑋𝐾 ,

then,

𝐼(𝑋1 + ...+𝑋𝐾 ;𝑌 ) ≤ 𝐼({𝑋1, ..., 𝑋𝐾};𝑌 ) . (6.24)

If we consider the effect of the integral of the state variable over the delay period in the

case of distributed-nDDE as a data processing step, this might actually be decreasing

the information content as compared to the discrete-nDDE closure. We use “might",

even though Eq. 6.24 is a strong bound, because in the present experiments we only

use six delay values for the discrete-nDDE, while the integral in the distributed-nDDE

is computed using many past state values, and also the architectures are different.

Hence, a direct comparison using the data processing inequality (Eq. 6.24) is not

possible, but it provides us with a plausible explanation.

In addition to the results just illustrated, we completed many other experiments-1

to assess the sensitivity of our framework to various hyperparameters. In all cases,

the time-period corresponding to the training data should be at least equal to one

characteristic time-scale of the dynamics, otherwise the prediction performance de-

teriorated, as shown in the Fig. D-2a and discussed in Sec. D.3.3. Adding the neural

closure to the low-fidelity model improved its matching with the high-fidelity data

in nearly all cases. Its performance deteriorated with increasing the length of the

time-sequences used to form the batches, and also with increasing the batch-size (the

number of iterations per epoch is a dependent hyperparameter as mentioned ear-

lier). This also led to an increase in training time. Depth of the networks affected

the performance significantly, with shallower networks performing poorly than deeper

networks as expected, however, the incremental gain in performance starts to taper off

after certain depths (see Fig. D-2b and Sec. D.3.3). Using an exponentially decaying
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learning schedule over a constant learning rate tremendously improved learning per-

formance and reduced the number of epochs needed. Further, training times slightly

increased when using more delay times in the case of discrete-nDDE. In general, we

found that the training time for discrete-nDDEs was similar to that for distributed-

nDDEs. Such behaviors by machine learning methods are difficult to anticipate in

advance but they should be mentioned.

Overall, in the experiments-1, we find that using memory-based neural closure

models as we derived from the Mori-Zwanzig formulation is advantageous over just a

Markovian closure. Using the new nDDEs as closure models helps maintain general-

izability of the learned models for longer time-periods, and significantly reduces the

longer-term prediction error of the ROM.

6.3.2 Experiments 2: Advecting Shock - Subgrid-Scale Pro-

cesses

In the second experiments, we again use the advecting shock problem governed by the

Burger’s equation (Eq. 6.20), but we now reduce the computational cost of the FOM

by coarsening the spatial resolution, again leading to the need of a closure model

(Sec. 6.1.2). For the high-fidelity/high-resolution solution, we employ a fine grid with

the number of grid point in the 𝑥 direction 𝑁𝑥 = 100, while for the low-fidelity/low-

resolution solution, we employ a 4 times coarser grid with 𝑁𝑥 = 25. A comparison of

high- and low- resolution solutions solved using exactly the same numerical schemes

and data stored at every time-step of ∆𝑡 = 0.01 is provided in Fig. 6-4. We observe

that by decreasing the resolution, we introduce numerical diffusion and error in the

location of the shock peak at later times. The goal of the neural closure models in

these experiments is thus to augment the low-resolution model such that it matches

the sub-sampled/interpolated high-resolution solution at the coarse (low-resolution)

grid points.

For training our neural closure models for the low-resolution discretization with

𝑁𝑥 = 25, we use the same training regiment as in Experiments-1 (Sec. 6.3.1), with
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(a) (b)

(c) (d)

Figure 6-4: Comparison of solutions of Burger’s equation (Eq. 6.20) for different grid
resolutions. (a): Solution for a high-resolution grid with number of grid points,
𝑁𝑥 = 100; (b): Solution for a low-resolution grid with 𝑁𝑥 = 25; (c): High-resolution
solution interpolated onto the low-resolution grid. (d): Absolute difference between
fields in panels (b) and (c). We also provide a pair of time-averaged errors, specifically:
𝐿2 error; and RMSE considering only the grid points where the error is at least 2%
of the maximum velocity value, denoted by RMSE(>2%).

architectures details presented in Table D.1. In order to exploit the fact that each

grid point only affects its immediate neighbors over a single time-step, we use 1-

D convolutional layers for these experiments. For the nODE, we again employ a

deeper architecture with more trainable parameters, and for the discrete-nDDE,

six discrete delay values are again used. The values of the other hyperparame-

ters are in Sec. D.3.2. the validation period from 𝑡 = 1.25 to 2.5, and the fu-

ture prediction period from 𝑡 = 2.5 to 5.0. We have chosen a prediction period

of the combined length of training and validation periods. For time-integration,

we use the Vode scheme [220] with adaptive time-stepping. The true data are

generated by interpolating the high-resolution solution onto the low-resolution grid
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({{𝑢𝑡𝑟𝑢𝑒(𝑥𝑘, 𝑇𝑖)}𝑁𝑥=25
𝑘=1 }𝑀𝑖=1), as shown in Fig. 6-4c, and we use the time-averaged 𝐿2

error, ℒ = 1
𝑀

∑︀𝑀
𝑖=1

(︂√︁∑︀𝑁𝑥=25
𝑘=1 |𝑢𝑝𝑟𝑒𝑑(𝑥𝑘, 𝑇𝑖) − 𝑢𝑡𝑟𝑢𝑒(𝑥𝑘, 𝑇𝑖)|2

)︂
, as the loss function.

The performance of the three neural closure models after 250 epochs (the stochas-

tic gradient descent nearly converges, see Fig. D-1b) is evaluated by taking the abso-

lute difference with the high-resolution solution interpolated onto the low-resolution

grid (Fig. 6-4c) spanning training, validation, and prediction periods. We further

benchmark our performance against the popular Smagorinsky model [221] used for

subgrid-scale turbulence closure in large eddy simulation (LES). For the Burger’s

Eq. 6.20, it introduces a dynamic turbulent eddy viscosity (𝜈𝑒) leading to,

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2
+

𝜕

𝜕𝑥

(︂
𝜈𝑒
𝜕𝑢

𝜕𝑥

)︂
, (6.25)

where 𝜈𝑒 = (𝐶𝑠∆𝑥)2
⃒⃒
𝜕𝑢
𝜕𝑥

⃒⃒
and 𝐶𝑠 is the Smagorinsky constant. Results are shown

in Fig. 6-5. The details of the architectures employed are in Table D.1. As shown

by the error fields of the baseline (Fig. 6-4d) and closure models (Fig. 6-5), and by

the corresponding pairs of averaged error numbers (see Figs.), all closures improve

the baseline. However, the nODE and Smagorinsky closures only lead to a 55-60%

decrease in error, while the nDDE closures achieve a 80-90% decrease. Despite the

deeper architecture for the nODE, both the discrete-nDDE and distributed-nDDE

(with smaller architectures) again achieve smaller errors, for the whole period of

𝑡 = 0 to 5.0. This means that they have lower numerical diffusion, thus capturing the

targeted subgrid-scale process. As opposed to the findings of experiments-1 (Fig. 6-

3), in the present experiments-2, the discrete-nDDE performs slightly better than the

distributed-nDDE in the prediction period.

We now study the effect of changing the amount of past information incorporated

in the closure model on the time-averaged 𝐿2 error. For this, we fix 𝜏1 = 0 for the

distributed-nDDE closure, and vary the values of only 𝜏2, keeping the architecture

the same (Table D.1). First, for the time-averaged training loss (not shown), we

found no discernible trend and differences were mostly due the stochastic gradient

descent. Second, for the validation period, Fig. 6-6a shows the statistical summary
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(a) Smagorinsky LES model

(b) Neural closure model with no-delays (nODE)

(c) Neural closure model with discrete-delays (Discrete-nDDE)

(d) Neural closure model with distributed-delays (Distributed-nDDE)

Figure 6-5: Solutions of the Burger’s PDE on the low-resolution grid with different
closure models (left-column), and their absolute differences (right-column) with the
high-resolution solution interpolated onto the low-resolution grid (Fig. 6-4c). For the
trained neural closure models, the training period is from 𝑡 = 0 to 1.25, the validation
period from 𝑡 = 1.25 to 2.5, and the prediction period from 𝑡 = 2.5 to 5.0. For each
closure, we also provide the pair of time-averaged errors (see Fig. 6-4 for description).
(a): Smagorinsky LES model with 𝐶𝑠 = 1.0; (b), (c), (d): different neural closure
models. These results correspond to the architectures detailed in Table D.1.
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of the validation losses (time-averaged 𝐿2 error) between the last epochs 200 to 250,

for different delay-period lengths. In order to ensure statistical soundness of the

results, 10− 15 repeats of the training were done, and the results aggregated for each

delay-period length. Results indicate that the validation loss first decreases and then

increases as we incorporate more-and-more past information, starting from a very

small delay period. For a specified architecture, neither too little nor too much past

information is helpful: there is likely an optimal amount of information to incorporate.

The initial improvement in the performance of the closure models as the delay period

is increased is due to the increase in information content about the recent past.

However, a particular network architecture of finite size will have a limit on capturing

the increasing information content effectively due to its limited expressive power,

thus leading to a decrease in performance when too much information is provided.

An estimate of the range of delay period lengths to consider can be obtained from

properties of the given dynamical system such as the main time-scales, e.g. advection

and diffusion times-scales in the present system, and main decorrelation times of state

variables. Overall, from Fig. 6-6a, we can notice the optimal delay period length to be

around 0.075. Similar trends between performance of neural closure models and delay

period lengths were also found in Experiments-1 (not shown). Some published studies

attempt to derive analytical expressions for the optimal memory length, making many

approximations in the process [222, 159]. A final option is to learn the delay amount as

a part of the training process itself, however, this requires modified adjoint equations.

We conducted again a series of experiments-2 to assess the sensitivity to the

various other hyperparameters, and found similar trends (not shown here) as in

the experiments-1. Finally, we noticed that using the dopri5 [134] time-integration

scheme severely impaired the learning ability in the experiments-2.

Overall, these results demonstrate the superiority of using our new memory-based

closure models in capturing subgrid-scale processes.

242



(a) Experiments - 2 (b) Experiments - 3a

Figure 6-6: Variation of distributed-nDDE closure validation loss (time-averaged 𝐿2

error) averaged over the last 50 training epoch for Experiments-2 & 3a. All the exper-
iments have 𝜏1 = 0, and different 𝜏2 (horizontal-axis). Note that 𝜏2 = 0 corresponds
to the nODE closure. We use boxplots to provide statistical summaries for multiple
training repeats done for each experiment. The box and its whiskers provide a five
number summary: minimum, first quartile (Q1), median (orange solid line), third
quartile (Q3), and maximum, along with outliers (black circles) if any.

6.3.3 Experiments 3a: 0-D Marine biological Models

For our third experiments, we use neural closure models to incorporate the effects

of missing processes and state variables in lower-complexity biological models, thus

targeting the third class of closure modeling (Sec. 6.1.3). Marine biological models

are based on ODEs that describe the food-web interactions in the ecosystem. They

can vary greatly in terms of complexity [39]. The marine biological models used in

our experiments are adapted from Newberger et. al., 2003 ([3]). They were used to

simulate the ecosystem in the Oregon coastal upwelling zone. They provide hierarchi-

cal embedded models compatible with each other. We employ the three-component

NPZ model (nutrients (𝑁), phytoplankton (𝑃 ), and zooplankton (𝑍)), and the five-

component NNPZD model (ammonia (𝑁𝐻4), nitrate (𝑁𝑂3), 𝑃 , 𝑍, and detritus (𝐷))

in a zero-dimensional setting (0-D; only temporal variation). The low complexity
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NPZ model is given by,

𝑑𝑁

𝑑𝑡
= −𝐺 𝑃𝑁

𝑁 +𝐾𝑢

+ Ξ𝑃 + Γ𝑍 +𝑅𝑚𝛾𝑍(1 − exp−Λ𝑃 )

𝑑𝑃

𝑑𝑡
= 𝐺

𝑃𝑁

𝑁 +𝐾𝑢

− Ξ𝑃 −𝑅𝑚𝑍(1 − exp−Λ𝑃 )

𝑑𝑍

𝑑𝑡
= 𝑅𝑚(1 − 𝛾)𝑍(1 − exp−Λ𝑃 ) − Γ𝑍

with 𝑁(0) = 𝑇𝑏𝑖𝑜, 𝑃 (0) = 0, and 𝑍(0) = 0 ,

(6.26)

with 𝐺 representing the optical model,

𝐺 = 𝑉𝑚
𝛼𝐼

(𝑉 2
𝑚 + 𝛼2𝐼2)1/2

, and 𝐼(𝑧) = 𝐼0 exp(𝑘𝑤𝑧) , (6.27)

where 𝑧 is depth and 𝐼(𝑧) models the availability of sunlight for photo-chemical reac-

tions. The parameters in Eqs. 6.26 and 6.27 are: 𝑘𝑤, light attenuation by sea water; 𝛼,

initial slope of the 𝑃 − 𝐼 curve; 𝐼0, surface photosynthetically available radiation; 𝑉𝑚,

phytoplankton maximum uptake rate; 𝐾𝑢, half-saturation for phytoplankton uptake

of nutrients; Ξ, phytoplankton specific mortality rate; 𝑅𝑚, zooplankton maximum

grazing rate; Λ, Ivlev constant; 𝛾, fraction of zooplankton grazing egested; Γ, zoo-

plankton specific excretion/mortality rate; and 𝑇𝑏𝑖𝑜, total biomass concentration. In

the NPZ model (Eq. 6.26), the nutrient uptake by phytoplankton is governed by a

Michaelis-Menten formulation, which amounts to a linear uptake relationship at low

nutrient concentrations that saturates to a constant at high concentrations. The

grazing of phytoplankton by zooplankton follows a similar behavior: their growth

rate becomes independent of 𝑃 in case of abundance, but proportional to available 𝑃

when resources are scarce, hence zooplankton grazing is modeled by an Ivlev function.

The death rates of both 𝑃 and 𝑍 are linear, and a portion of zooplankton grazing in

the form of excretion goes directly to nutrients.

In the higher complexity NNPZD model, the nutrients are divided into ammonia

and nitrates, which are the two most important forms of nitrogen in the ocean. With

the intermediate of decomposed organic matter, detritus, the NNPZD model captures

new processes such as: phytoplankton cells preferentially taking up ammonia over ni-
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trate because the presence of ammonia inhibits the activity of the enzyme nitrate

reductase essential for the uptake kinetics; the pool of ammonium coming from rem-

ineralization of detritus; and part of this ammonium pool getting oxidized to become

a source of nitrate called the process of nitrification, etc. Overall, the NNPZD model

is given by,

𝑑𝑁𝑂3

𝑑𝑡
= Ω𝑁𝐻4 −𝐺

[︂
𝑁𝑂3

𝑁𝑂3 +𝐾𝑢

exp−Ψ𝑁𝐻4

]︂
𝑃

𝑑𝑁𝐻4

𝑑𝑡
= − Ω𝑁𝐻4 + Φ𝐷 + Γ𝑍 −𝐺

[︂
𝑁𝐻4

𝑁𝐻4 +𝐾𝑢

]︂
𝑃

𝑑𝑃

𝑑𝑡
= 𝐺

[︂
𝑁𝑂3

𝑁𝑂3 +𝐾𝑢

exp−Ψ𝑁𝐻4 +
𝑁𝐻4

𝑁𝐻4 +𝐾𝑢

]︂
𝑃 − Ξ𝑃 −𝑅𝑚𝑍(1 − exp−Λ𝑃 )

𝑑𝑍

𝑑𝑡
= 𝑅𝑚(1 − 𝛾)𝑍(1 − exp−Λ𝑃 ) − Γ𝑍

𝑑𝐷

𝑑𝑡
= 𝑅𝑚𝛾𝑍(1 − exp−Λ𝑃 ) + Ξ𝑃 − Φ𝐷

with 𝑁𝑂3(0) = 𝑇𝑏𝑖𝑜/2, 𝑁𝐻4(0) = 𝑇𝑏𝑖𝑜/2,

𝑃 (0) = 0, 𝑍(0) = 0, and 𝐷(0) = 0 ,

(6.28)

where the new parameters are: Ψ, 𝑁𝐻4 inhibition parameter; Φ, detritus decompo-

sition rate; and Ω, 𝑁𝐻4 oxidation rate.

Solutions of the above two models are presented in Fig. 6-7. Different values of

the parameters and initial conditions set these models in different dynamical regimes.

From the responses in time, the present solutions in experiments-3a are in a stable

nonlinear limit-cycle regime. The 𝑁 class in the NPZ model is a broader class en-

compassing 𝑁𝑂3, 𝑁𝐻4, and 𝐷 from the NNPZD model. Since the NNPZD model

resolves many more processes, the concentrations of 𝑁𝑂3 +𝑁𝐻4 +𝐷, 𝑃 , and 𝑍 differ

significantly from the 𝑁 , 𝑃 , and 𝑍 of the NPZ model. The goal of the neural closure

models in these experiments is thus to augment the low-complexity NPZ model such

that it matches the aggregated states of the high-complexity NNPZD model.

For training our neural closure models for the NPZ model, we use the same train-

ing regiment as in Experiments-1 & 2 (Secs. 6.3.1 & 6.3.2), with architectures de-
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(a) NPZ Model (b) NNPZD Model

(c) Comparison of NPZ and NNPZD Models

Figure 6-7: Solutions of the marine biological models used in Experiments-3a
(concentrations vs. time in days). Parameter values used are (adopted from
[3]): 𝑘𝑤 = 0.067 𝑚−1, 𝛼 = 0.025 (𝑊 𝑚−2 𝑑)−1, 𝑉𝑚 = 1.5 𝑑−1, 𝐼0 =
158.075 𝑊 𝑚−2, 𝐾𝑢 = 1 𝑚𝑚𝑜𝑙 𝑁 𝑚−3, Ψ = 1.46 (𝑚𝑚𝑜𝑙 𝑁 𝑚−3)−1, Ξ =
0.1 𝑑−1, 𝑅𝑚 = 1.52 𝑑−1, Λ = 0.06 (𝑚𝑚𝑜𝑙 𝑁 𝑚−3)−1, 𝛾 = 0.3, Γ = 0.145 𝑑−1,
Φ = 0.175 𝑑−1, Ω = 0.041 𝑑−1, 𝑧 = −25 𝑚, and 𝑇𝑏𝑖𝑜 = 30 𝑚𝑚𝑜𝑙 𝑁 𝑚−3.
(a): Nutrient-Phytoplankton-Zooplankton (NPZ) model (Eq. 6.26); (b): Nitrate-
Ammonia-Phytoplankton-Zooplankton-Detritus (NNPZD) model (Eq. 6.28); (c):
Comparison between 𝑁𝑂3 + 𝑁𝐻4 + 𝐷, 𝑃 , and 𝑍 from the NNPZD model (solid)
with 𝑁 , 𝑃 and 𝑍 from the NPZ model (dashed-dot).

tails presented in Table D.2. For the nODE, we again employ a bigger architecture,

and for the discrete-nDDE, six discrete delay values are again used. The values

of other hyperparameters are given in Sec. D.3.2. The training period ranges from

𝑡 = 0 to 30 𝑑𝑎𝑦𝑠, validation period from 𝑡 = 30 to 60 𝑑𝑎𝑦𝑠; and the prediction

period from 𝑡 = 60 to 330 𝑑𝑎𝑦𝑠. We have chosen a prediction period nine times

longer than the training period. For biological ODE models, there exists invariant

knowledge about the system, such as biological state variables cannot be negative,

and the sum of all the states remains constant with time (this can be verified by sum-

ming the ODEs of NPZ or NNPZD models). We enforce the constraints as follows.

The positivity is enforced as a penalization term in the loss function. The constant

total biomass constraint is embedded in the architectures of neural closures by intro-
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ducing a new custom layer named, BioConstrainLayer. This layer is applied at the

end, and expects an input of size 1. The output of this layer is formed by splitting

the input into three with the proportions, 𝛽, −1, and 1 − 𝛽; where 𝛽 is a trainable

parameter. This ensures that summing the right hand side of the augmented NPZ

model does not leave any new residual due to the neural closure terms. The stiffness

of such biological ODE models also poses a challenge in maintaining these desired

properties [223]. The flexibility of our framework however allows the use of appro-

priate time-stepping schemes, such as A-stable implicit schemes, etc., to overcome

stiffness. The true data are generated by aggregating the variables of the NNPZD

model (𝑁 ≡ 𝑁𝑂3 +𝑁𝐻4 +𝐷, 𝑃, and 𝑍; {{𝐵𝑡𝑟𝑢𝑒(𝑇𝑖)}𝐵∈{𝑁,𝑃,𝑍}}𝑀𝑖=1). Finally, we use

the dopri5 [134] scheme with adaptive time-stepping and simulation data were stored

at every ∆𝑡 = 0.05 days for all our time-integration requirements, along with a 𝐿2

error loss function, ℒ = 1
𝑀

∑︀𝑀
𝑖=1

(︁√︁∑︀
𝐵∈{𝑁,𝑃,𝑍} |𝐵𝑝𝑟𝑒𝑑(𝑇𝑖) −𝐵𝑡𝑟𝑢𝑒(𝑇𝑖)|2

)︁
.

The performance of the three neural closure models augmenting the NPZ is evalu-

ated after 350 epochs of training (the stochastic gradient descent nearly converges, as

evident from the Fig. D-1c) by comparison with the aggregated biology variables from

the high-complexity NNPZD model (Eq. 6.28) spanning training, validation, and pre-

diction periods. Results are presented in Figure 6-8. The details of the architectures

employed are in Table D.2. When compared with the aggregated NNPZD variables

(true variables), we find again that despite the bigger architecture of the nODE, it

starts to develop significant errors around 𝑡 = 180 𝑑𝑎𝑦𝑠 and quickly gets out-of-phase

thereafter (Fig. 6-8a). The discrete-nDDE and distributed-nDDE, both with smaller

architectures, are however able to match the true variables for nearly the whole pe-

riod of 𝑡 = 0 to 330 𝑑𝑎𝑦𝑠 (Fig. 6-8b), with only distributed-nDDE starting to getting

out-of-phase after 𝑡 = 270 𝑑𝑎𝑦𝑠 (Fig. 6-8c) at the end of the long prediction period.

These results are corroborated by the time evolution of the RMSE and average cross-

correlation for the three variables over the prediction period (Fig. 6-8d). From the

progression of the time-averaged 𝐿2 loss (here, the error between the variables from

the closure-model-augmented NPZ system, and the true variables), the nODE per-

forms either equally well or better than both discrete-nDDE and distributed-nDDE
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during training and validations periods (Fig. D-1c), however, it is not able to maintain

long-term accuracy. We also notice very large spikes in the first half of the training

regime, which are due to weights of the neural-networks taking values that lead to

negative biology variables. As training progresses, we however don’t observe this be-

havior anymore because the trainable weights starts to converge towards biologically

feasible regimes. In conclusion, using a memory based closure for a low-complexity

model can efficiently help emulate the high-complexity model dynamics.

As for experiments-2, we conducted a series of experiments-3a, to study the effect

of changing the amount of past information incorporated in the neural closure models.

In Fig. 6-6b, we show the variation of the average validation loss (time-averaged 𝐿2

error) between the last epochs 300 to 350, for different delay-period lengths (𝜏1 = 0,

and 𝜏2 varying in case of distributed-nDDE). In order to ensure statistical soundness of

the results, 10−12 repeats of the training were done, and the results were aggregated

for each delay-period length (excluding the runs which diverged). We again find an

optimal memory length for a specified architecture, however, with more and more runs

failing to converge for longer delay period lengths. For the present system, estimates

of delay period lengths to consider can be obtained from the time-scales of biological

behaviors and adjustments, and from the decorrelation times of the biological state

variables. Taking into account the limited effectiveness of a network architecture

of finite size for capturing increasing information content, from Fig. 6-6b, we find

an optimal delay period length to be around 1 𝑑𝑎𝑦. We also conducted a series of

experiments-3a to study the sensitivity to the various hyperparameters, and found

similar trends (not shown here) as in experiments-1 & 2. For good performance, we

further found that using a small enough time-step was critical as well as limiting the

number of internal steps in the dopri5 [134] time-integration scheme, while penalizing

negative values in the loss function did not make much of a difference. Whenever

multiple terms are present in the loss function enforcing different inherent properties

of the system, they should be normalized (e.g. using non-dimensional variables) and

given appropriate relative weights.

In general, the ecosystem ODEs are coupled with regional or global ocean mod-
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(a) Neural closure model with no-delays (nODE)

(b) Neural closure model with discrete-delays (Discrete-nDDE)

(c) Neural closure model with distributed-delays (Distributed-nDDE)

(d) Performance comparison of different neural closure models

Figure 6-8: Comparison of the biological variables from the learned NPZ model aug-
mented with the three neural closure models (dashed), aggregated variables from the
NNPZD model (ground truth; solid), and variables from the NPZ model (dashed-dot)
at the end of training. For each neural closure, the training period is from 𝑡 = 0 to 30
days, the validation period is from 𝑡 = 30 to 60 days, while prediction period is from
𝑡 = 60 to 330 days. (a), (b), (c): different neural closure models; (d): the left plot
shows the evolution of root-mean-squared-error (RMSE), and the right plot shows
the average cross-correlation (only for the prediction period) w.r.t. the ground truth.
These results correspond to the architectures detailed in Table D.2.
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eling systems, leading to advection-diffusion-reaction PDEs [62]. If highly complex

ecosystem models are employed, a very large number of PDE state variables need

to be solved for, rendering the computations very expensive. A large number of un-

known parameter values as well as uncertain initial conditions then also need to be

estimated, requiring specific methods [e.g. 84]. The available biogeochemical observa-

tions are not always sufficient for calibrating these many unknown parameters and for

estimating initial conditions of high-complexity models. If the corresponding errors

are large, this can lead to integrating models in the wrong dynamical regimes [e.g.

224]. Finally, in some applications, one is only interested in the aggregated state vari-

ables as the output, but cannot use low-complexity models because their dynamics

are too inaccurate for the goals of the applications. Using neural closure models as

shown here, one can increase the accuracy of the low-complexity models to match

the response of high-complexity models (possibly up to models such as ERSEM [46])

without adding the computational burden of modeling all the intermediate biological

states and processes, while reducing the effects of other uncertainties listed above.

Results of our neural closures in 1-D PDEs is showcased next.

6.3.4 Experiments 3b: 1-D Marine Biogeochemical Models

For our final set of experiments, we extend the ODE models used in Experiments-

3a (Sec. 6.3.3) to contain a vertical dimension (thus, 1-D) and vertical eddy mixing

parameterized by the operator, 𝜕/𝜕𝑧 (𝐾𝑧(𝑧,𝑀)𝜕/𝜕𝑧(∙)), where 𝐾𝑧 is a dynamic eddy

diffusion coefficient. A mixed layer of varying depth (𝑀 = 𝑀(𝑡)) is used as a physical

input to the ecosystem models. Thus, each biological state variable 𝐵(𝑧, 𝑡) is governed

by the following non-autonomous PDE,

𝜕𝐵

𝜕𝑡
= 𝑆𝐵 +

𝜕

𝜕𝑧

(︂
𝐾𝑧(𝑧,𝑀(𝑡))

𝜕𝐵

𝜕𝑧

)︂
, (6.29)
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where 𝑆𝐵 are the corresponding biology source terms, which also makes it stiff. The

dynamic depth-dependent diffusion parameter 𝐾𝑧 is given by,

𝐾𝑧(𝑧,𝑀(𝑡)) = 𝐾𝑧𝑏 +
(𝐾𝑧0 −𝐾𝑧𝑏)(arctan(−𝛾(𝑀(𝑡) − 𝑧)) − arctan(−𝛾(𝑀(𝑡) −𝐷)))

arctan(−𝛾𝑀(𝑡)) − arctan(−𝛾(𝑀(𝑡) −𝐷))
,

(6.30)

where 𝐾𝑧𝑏 and 𝐾𝑧0 are the diffusion at the bottom and surface respectively, 𝛾 is the

thermocline sharpness, and 𝐷 is the total depth. The 1-D model and parameteriza-

tions are adapted from Eknes and Evensen, 2002 [4], and Newberger et. al., 2003 [3].

They simulate the seasonal variability in upwelling, sunlight, and biomass vertical

profiles. The dynamic mixed layer depth, surface photosynthetically-available radia-

tion 𝐼0(𝑡), and biomass fields 𝐵(𝑧, 𝑡) are shown in Figure 6-9a. The radiation 𝐼0(𝑡)

and total biomass concentration, 𝑇𝑏𝑖𝑜(𝑧, 𝑡), affect 𝑆𝐵 and the initial conditions.

For these Experiments-3b, we consider 20 grid points in the vertical and use the

dopri5 [134] scheme with adaptive time-stepping. Data is stored at every time-step

of ∆𝑡 = 0.1 𝑑𝑎𝑦𝑠 for all our time-integration requirements. Solutions of aggregated

states of the high-complexity 1-D NNPZD model (true data) and their absolute dif-

ference with the corresponding low-complexity 1-D NPZ model states are provided

in Figs. 6-9a & 6-9b, respectively. For training our neural closure models for the

1-D NPZ model, we use the same training regiment as in Experiments-1, 2, & 3a

(Secs. 6.3.1, 6.3.2, & 6.3.3). We note that in the 1-D NPZ model, the local mixing

across depths occurs only due to the eddy diffusion term, and not to the biology

source terms. Thus, we employ 1-D convolutional layers with receptive fields of size

1. We again use the custom layer, BioConstrainLayer (Sec. 6.3.3), to ensure that the

sum of the biology source terms of the augmented 1-D NPZ model does not leave

any new residual due to the neural closure terms. Along with this, we define a new

custom layer, called AddExtraChannels, to add additional channels to the input of

this layer. We add one for the depths at different grid points, and the other for the

corresponding values of available sunlight for photo-chemical reactions (𝐼(𝑧, 𝑡)). The

architectures details for the three closure models used are presented in Table D.2.

For the nODE, we again employ a bigger architecture, and for the discrete-nDDE,
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only four discrete delay values are used. The values of other hyperparameters are

given in Sec. D.3.2. The training period ranges from 𝑡 = 0 to 30 𝑑𝑎𝑦𝑠 and validation

period from 𝑡 = 30 to 60 𝑑𝑎𝑦𝑠, both within the first season. The prediction period,

however, ranges from 𝑡 = 60 to 364 𝑑𝑎𝑦𝑠: it is more than 10 times longer than the

training period and involves the four seasons. Together, the three periods span a full

year. For loss function, we combine the 𝐿2 errors, considering all the biological states

computed for individual depths, and then averaged over all the depths and times,

ℒ = 1
𝑀

∑︀𝑀
𝑖=1

(︁
1
𝑁𝑧

∑︀𝑁𝑧=20
𝑘=1

(︁√︁∑︀
𝐵∈{𝑁,𝑃,𝑍} |𝐵𝑝𝑟𝑒𝑑(𝑧𝑘, 𝑇𝑖) −𝐵𝑡𝑟𝑢𝑒(𝑧𝑘, 𝑇𝑖)|2

)︁)︁
.

The performance of the three neural closure models augmenting the 1-D NPZ

model is evaluated after 200 epochs of training (the stochastic gradient descent nearly

converges, see Fig. D-1d). The truth fields are the aggregated biology variables from

the high-complexity 1-D NNPZD model (Eqs. 6.28 & 6.29) spanning training, valida-

tion, and prediction periods. Results are presented in Figure 6-9. We find again that

despite the bigger architecture for the nODE case, it develops spurious oscillations

around 𝑡 = 250 𝑑𝑎𝑦𝑠. The discrete-nDDE and distributed-nDDE, both with smaller

architectures, however match well with the true variables for nearly the full year of

simulation, about 10 months of which is future prediction. The distributed-nDDE

performs slightly better than its counterpart. In Fig. 6-9, we also provide averaged

error numbers for the baseline (Fig. 6-9b) and the different closure models, all of

which improve the baseline. As in Experiments-3a, we again notice large spikes in

the starting of the training regime, for the same reason as given earlier, and similar

trends for hyperparameter sensitivity. We also found that the Experiments-3b were

affected by the choice of loss function. For example, using 𝐿2 error computed for each

biological state vector (containing values for all the depths) and then averaging over

the number of biological states and times deteriorated the quality of learning.

Despite the presence of complex physical processes and relatively large dimensions

as compared to the previous experiments, the nDDEs closures were found to effectively

match the high-complexity model and maintain long-term accuracy.
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(a) Aggregated NNPZD model states (ground truth)

(b) NPZ model (without neural closure model)

(c) NPZ model augmented with no-delay neural closure (nODE)

Figure 6-9: Comparison of the 1-D physical-biogeochemical PDE models used in
Experiments-3b with and without closure models. Along with the parameter val-
ues mentioned in Figure 6-7, we consider: a sinusoidal variation in 𝐼𝑜(𝑡); linear
vertical variation in total biomass 𝑇𝑏𝑖𝑜(𝑧) from 10 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at the surface to
30 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at 𝑧 = 100 𝑚; 𝐾𝑧𝑏 = 0.0864 (𝑚2/𝑑𝑎𝑦); 𝐾𝑧0 = 8.64 (𝑚2/𝑑𝑎𝑦);
𝛾 = 0.1 𝑚−1; and 𝐷 = −100 𝑚, all adapted from [3, 4]. For the neural closure
models, the training period is from 𝑡 = 0 to 30 days, the validation period from
𝑡 = 30 to 60 days, and the long future prediction period from 𝑡 = 60 to 364 days.
(a): Top plots show the yearly variation of solar radiation and the bottom plots the
aggregated states from the NNPZD model (ground truth) overlaid with the dynamic
mixed layer depth in dashed red lines. In the subsequent plots (b), (c), (d), and (e),
we show the absolute difference of the different neural closure cases with the ground
truth. For each case, we also provide the pair of time-averaged errors (see Fig. 6-4
for description). These results correspond to the architectures given in Table D.2.
(Cont.)

253



(d) NPZ model augmented with discrete-delay neural closure (Discrete-nDDE)

(e) NPZ model augmented with distributed-delay neural closure (Distributed-nDDE)

Figure 6-9: Comparison of the 1-D physical-biogeochemical PDE models used in
Experiments-3b with and without closure models. Along with the parameter val-
ues mentioned in Figure 6-7, we consider: a sinusoidal variation in 𝐼𝑜(𝑡); linear
vertical variation in total biomass 𝑇𝑏𝑖𝑜(𝑧) from 10 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at the surface to
30 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at 𝑧 = 100 𝑚; 𝐾𝑧𝑏 = 0.0864 (𝑚2/𝑑𝑎𝑦); 𝐾𝑧0 = 8.64 (𝑚2/𝑑𝑎𝑦);
𝛾 = 0.1 𝑚−1; and 𝐷 = −100 𝑚, all adapted from [3, 4]. For the neural closure
models, the training period is from 𝑡 = 0 to 30 days, the validation period from
𝑡 = 30 to 60 days, and the long future prediction period from 𝑡 = 60 to 364 days.
(a): Top plots show the yearly variation of solar radiation and the bottom plots the
aggregated states from the NNPZD model (ground truth) overlaid with the dynamic
mixed layer depth in dashed red lines. In the subsequent plots (b), (c), (d), and (e),
we show the absolute difference of the different neural closure cases with the ground
truth. For each case, we also provide the pair of time-averaged errors (see Fig. 6-4
for description). These results correspond to the architectures given in Table D.2.
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6.3.5 Computational Complexity

It is crucial to analyze complexity and in particular the cost of adding a neural

closure model to a low-fidelity model. In this section, we analyze the computational

complexity in terms of flop (floating point operations) count for evaluating the right-

hand-side (RHS) of the low-fidelity models, and for the forward-pass of the neural

closure models [225]. We will also comment on the training costs. The Burger’s PDE

considered for Experiments-1&2 (Secs. 6.3.1 & 6.3.2) has a nonlinear advection term.

Hence, for the POD-GP ROM and the FOM, the upper flops is of the order of the

square of number of resolved modes and of the spatial grid resolution, respectively.

In general, for reaction terms and biogeochemical systems, the number of nonlinear

parameterizations present are of the order of the number of components in the model.

Hence, even for Experiments-3a (Sec. 6.3.3), the upper flops is of the order of the

square of the number of biological components. For Experiments-3b (Sec. 6.3.4), the

upper flops is also affected by the diffusion terms. Let the number of state variables

in the low-fidelity models be 𝑁 ∈ N, thus the leading order computational complexity

would be 𝒪(𝑐𝑁2), where 𝑐 ∈ R+ is some constant dependent on the numerical schemes

used for spatial discretization, the exact functional form of the RHS, etc.

Now, when neural closure models are added to the low-fidelity models, the time

integration requires a forward pass through the neural-network. This cost varies with

the neural architecture and model type, here either a fully-connected or convolu-

tional, and discrete-nDDE or distributed-nDDE, respectively. As observed in our

experiments, using delays in the closure model enables us to use shallower networks,

with a depth independent of the number of state variables (𝑁). We also found that

the width of the networks was similar to, or smaller than, 𝑁 . In case of distributed-

nDDEs, we observed that the width of the auxiliary network (𝑔𝑁𝑁) could be on an

average nearly half the size of the main network (𝑓𝑁𝑁). Let the size of the hidden

state for the RNN in discrete-nDDEs be 𝑁ℎ ∈ N, and the number of neurons in the

hidden layers of the main and auxiliary networks in the case of distributed-nDDEs be

𝑁ℎ and 𝑁ℎ/2, respectively, with 𝑁ℎ . 𝑁 . It could be easily shown that the leading
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order complexity for a single iteration of RNN would be 𝒪(𝑁2
ℎ + 𝑁ℎ𝑁), which is

due to the hidden and input state vectors being multiplied by the weight matrices,

while the application of activation function would be 𝒪(𝑁ℎ) only. As the number of

discrete-delays in discrete-nDDEs are independent of 𝑁 and 𝒪(1), it does not affect

the complexity of the RNN. The complexity of the first hidden layer and/or the out-

put layer of the deep neural-networks used in discrete-nDDEs and distributed-nDDEs

(main network, 𝑓𝑁𝑁) will be 𝒪(𝑁ℎ𝑁) and 𝒪(𝑁ℎ(𝑁 +𝑁ℎ/2)), respectively, while for

the remaining hidden layers, it will be 𝒪(𝑁2
ℎ). Focusing on the integral of the auxiliary

network (𝑔𝑁𝑁) over the delay period in distributed-nDDEs, if implemented efficiently,

at every time-step, we only need to compute the integral twice over periods of size

∆𝑡, each adjacent to the ends of the present delay-period. We can add and subtract

these integrals over ∆𝑡 periods to compute the overall integral in a rolling window

sense. Hence, the contribution to the computational cost by the auxiliary network

would be 𝒪(𝑁ℎ𝑁/2) (for first hidden layer) and 𝒪(𝑁2
ℎ/4) (subsequent hidden layers).

Considering 𝐷 ∈ N as the depth for all of the networks considered, the complexity

for the forward pass through the discrete-nDDE closure is 𝒪(𝐷𝑁2
ℎ + 𝐷𝑁ℎ𝑁), while

for distributed-nDDE, it is 𝒪((3/2)𝑁ℎ𝑁 + (7/4)𝐷𝑁2
ℎ). These costs were computed

considering fully-connected layers, however, will only be cheaper in case of convolu-

tional layers. Thus, the additional computational cost due to the presence of neural

closure models is of similar or lower complexity than the existing low-fidelity model.

Estimating the computational cost/complexity of training in flops is not common

because apart from time-integrating the forward model and adjoint equations, there

are many other operations such as here: automatic differentiation through the neural

networks; creation and use of interpolation functions; the integral to compute the

final derivatives; the gradient descent step, etc. The overall cost also depends on

the number of epochs needed for convergence. The present training cost is of course

non-negligible, as with any supervised learning algorithm. However, in applications

where one needs to repeatedly solve a low-fidelity model, investing in a one-time cost

of training a neural closure model can later lead to accuracy close to that of the high-

fidelity model with only a small increase in the computational cost of the low-fidelity
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model.

6.4 Summary

We developed a novel, versatile, rigorous, and unified methodology to learn closure

parameterizations for low-fidelity models using data from high-fidelity simulations.

The Mori-Zwanzig formulation [160, 161, 162] and the presence of inherent delays

in complex dynamical systems [226], especially biological systems [169, 170], justify

the need for non-Markovian closure parameterizations. To learn such non-Markovian

closures, our new neural closure models extend neural ordinary differential equations

(nODEs; [33]) to neural delay differential equations (nDDEs). Our nDDEs do not

require access to the high-fidelity model or frequent enough and uniformly-spaced

high-fidelity data to compute the time derivative of the state with high accuracy.

Further, it enables the accounting of errors in the time-evolution of the states in the

presence of neural networks during training. We derive the adjoint equations and

network architectures needed to efficiently implement the nDDEs, for both discrete

and distributed delays, agnostic to the specifics of the time-integration scheme, and

capable of handling stiff systems. For distributed-delays, we propose a novel architec-

ture consisting of two coupled deep neural networks, which enables us to incorporate

memory without the use of any recurrent architectures.

Through simulation experiments, we showed that our methodology drastically im-

proves the long-term predictive capability of low-fidelity models for the main classes

of model truncations. Specifically, our neural closure models efficiently account for

truncated modes in reduced-order-models (ROMs), capture the effects of subgrid-

scale processes in coarse models, and augment the simplification of complex biolog-

ical and non-autonomous physical-biogeochemical models. Our first two classes of

simulation experiments utilize the advecting shock problem governed by the Burger’s

PDE, with its low-fidelity models derived either by proper-orthogonal-decomposition

Galerkin projection or by reducing the spatial grid resolution. Our third class of exper-

iments considers marine biological ODEs of varying complexities and their physical-
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biogeochemical PDE extensions with non-autonomous dynamic parameterizations.

The low-fidelity models are obtained by aggregation of components and other sim-

plifications of processes and parameterizations. In each of these classes, results con-

sistently show that using non-Markovian over Markovian closures improves the accu-

racy of the learned system while also requiring smaller network architectures. Our

use of the known-physics/low-fidelity model also helps to reduce the required size

of the network architecture and the number of time samples for the training data.

We also outperform classic dynamic closures such as the Smagorinsky subgrid-scale

model. These results are obtained using stringent evaluations: we compare the per-

formance of the learned system for the training period (during which high-fidelity

data snapshots are used for training) and validation period (during which hyperpa-

rameter tuning occurs) as often done, but we also compare it for much longer-term

future prediction periods with no overlap with the preceding two. We even consider a

prediction period reaching 10 times the length of the training/validation period, thus

successfully demonstrating the extrapolation capabilities of nDDE closures.

In our experiments, we find that just using a few numbers of discrete delays might

perform equally well or better than using a distributed delay which involves an inte-

gral of the state variable over a delay period. We provide a plausible explanation of

this counter-intuitive observation using the data processing inequality from informa-

tion theory. We also show that there exists an optimal amount of past information

to incorporate for a specified architecture and the relevant time-scales present in the

dynamical system, thus indicating that neither too little nor too much past infor-

mation is helpful. Finally, a computational complexity analysis using flop (floating

point operation) count proves that the additional computational cost due to the pres-

ence of our neural closure models is of similar or lower complexity than the existing

low-fidelity model.

The present work provides a unified framework to learn non-Markovian closure

parameterization using delay differential equations and neural networks. It enables

the use of the often elusive Mori-Zwanzig formulation [160, 161, 162] in its full glory

without unjustified approximations and simplifications. Our nDDE closures are not
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just limited to the shown experiments, but could be widely extended to other fields

such as control theory, robotics, pharmacokinetic-pharmacodynamics, chemistry, eco-

nomics, biological regulatory systems, etc.

Addendum

As an extension to the above work, in appendix E, we develop the methodology to

seamlessly estimate the optimal delay-period length for distributed-nDDEs, instead

of brute-force tuning as a hyperparameter. We propose to learn the optimal delay-

period length from data along with the other trainable neural-network weights. We

evaluate the performance of our methodology using a series of experiments consisting

of a two-variable system with known delay, and the advecting shock problem governed

by the Burger’s equation (section 6.3.2).

Also, figure 6-10, made by combining elements from figures 6-2 & 6-9 to represent

our neural closure models framework, was selected for the cover of Proceedings of the

Royal Society A, August 2021 edition.
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Figure 6-10: The background is a spatio-temporal zooplankton field, simulated us-
ing a complex nonlinear 5-component 1-D physical-biogeochemical model. Seasonal
variability is forced through the surface photosynthetically-available radiation and
mixed layer depth, each of which vary in time. The 5-component model is one of
the dynamical systems used to illustrate our novel neural closure modeling. Overlaid
on the zooplankton field is the graphical representation of the time-discretized dis-
tributed neural delay differential equation (Distributed-nDDE). The blocks labeled
DNN and the integral symbol represent any deep neural-network architecture and
time-integration scheme. Appeared on the cover of Proceedings of the Royal Society
A, August 2021 edition.
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Chapter 7

Generalized Neural Closure Models

with Interpretability

Complex dynamical systems are used for predictions in many domains. However,

due to computational cost constraints, models are often truncated, coarsened, or

aggregated. As the neglected and unresolved terms become important, the utility of

model predictions diminishes. There is a great deal of research on methods to model

the missing dynamics and, with the advent of machine learning, there has been a

renewed interest to learn the missing dynamics in a data-driven fashion [159, 156, 158,

157, 2, 227, 228]. Such techniques that express the missing dynamics as functions of

modeled state variables and parameters are referred to as closure models.

The need for closure modeling in dynamical systems arises for a variety of reasons,

ranging from computational cost considerations, preference of simpler models over

complex ones due to overparameterization, or just lack of scientific understanding

of processes involved in the system of interest. The simpler or the known model is

often called a low-fidelity model, while the complex counterpart or the real-world

data is called high-fidelity model/data. Encompassing various scenarios, low-fidelity

models could be categorized into three categories: 1. Reduced order models, in which

the original high-dimensional dynamical system is projected and solved in a reduced

space. While it is computationally cheaper to solve the low-dimensional system,

these models quickly start to accumulate errors due to the missing interactions with
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the truncated dimensions [15, 14, 12]; 2. Coarse resolution models, in which we only

resolve the scales of interest. In these cases, the neglected and unresolved scales, along

with their interactions with the resolved ones, are important and lead to unintended

and unacceptable effects at global scales [180, 179, 183, 181, 182]; 3. Simple models,

which are used due to incomplete understanding of processes and interactions, leading

to a gross and incorrect approximation of the real-world phenomena [39, 186, 185].

In our recently published work [229], which also acts as a precursor to the present

study, we developed a novel neural delay differential equations (nDDEs) based frame-

work to learn closure parameterizations for low-fidelity models using data from high-

fidelity simulations to increase the long-term predictive capabilities of these models,

called neural closure models. The need for using time-delays in closure parameteriza-

tions is deep rooted in the presence of inherent delays in real-world systems [169, 170],

and theoretical justification from the Mori-Zwanzig formulation [161, 162, 160, 163].

Using nDDEs for closure modeling has a number of advantages such as allowing for the

use of smaller architectures and accounting for the accumulation of numerical time-

stepping error in the presence of neural-networks (NNs) during training. Addition-

ally, nDDEs are agnostic to the time-integration scheme, they handle unevenly-spaced

training data, and have good performance over prediction periods much longer than

the training or validation periods. Moreover, when it comes to the melding of compu-

tational physics and machine learning (scientific machine learning; SciML [37]), there

are other desirable properties as well, such as, generalization over different compu-

tational grid resolutions, initial conditions, boundary conditions, domain geometries,

physical or problem specific parameters, and interpretability. There are a number of

approaches in the field of SciML which attempt to address these properties of inter-

ests. However, on average, they are only able to address a subset of these, especially

for partial differential equations (PDEs) based dynamical systems. This is often the

case because NNs are typically used with the discretized ordinary differential equa-

tion (ODE) form of the corresponding PDEs, which makes it inherently difficult to

generalize to changes in boundary conditions, domain geometry, and computational

grid. Recently, a few studies have taken steps at addressing this drawback. Sirignano
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et al. [227] augments the underlying PDE with a neural network, however they only

learn a Markovian closure. The inputs to the neural network include the state, its

spatial derivatives, and a fixed number of neighbouring grid points. They also provide

an accompanying discrete adjoint PDE for efficient training. Saha et al. [228] uses a

radial basis functions based collocation method to allow for mesh-free embedding of

NNs, however, it also only learns a Markovian closure, does not take into account the

accumulation of time-integration error, and lacks interpretability.

In the present study, we propose an unified approach based on neural partial

delay differential equations (nPDDEs) which augments low-fidelity models in their

PDE forms with both Markovian and non-Markovian closures parameterized with

NNs. The input to each of the closure terms could potentially consist of the modeled

states, their spatial derivatives, problem specific parameters, etc. This is followed by

discretization using the desired numerical schemes. The melding of the low-fidelity

model and NNs in the continuous spatio-temporal space automatically allows for gen-

eralizability to computational grid resolution, boundary conditions, initial conditions,

and also provides interpretability. We refer to our new framework as generalized neu-

ral closure models (gnCM), and it is extendable to any popular numerical method

used in computational physics. Further, we also provide adjoint PDE derivations

in the continuous form, thus allowing one to implement across differentiable and

non-differentiable computational physics codes, and also different machine learning

frameworks. Through a series of experiments, we demonstrate the flexibility of our

framework to learn closures either in an interpretable fashion, a black-box fashion, or

both simultaneously, using the prior scientific knowledge about the problem at hand.

We also demonstrate the generalizability of our learned closures to changes in physical

parameters relevant to the problem, grid resolution, initial conditions and boundary

conditions. Our first class of simulation experiments use the advecting shock prob-

lem governed by the KdV-Burgers and the classic Burgers PDE. Our learned closure

model finds missing terms, rediscovers the leading discretization error, and a correc-

tion to the non-linear advection term. We find that training on data corresponding to

just a few combinations of grid resolution and Reynolds number is sufficient to ensure
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that the learned closures are generalizable and outperforms the popular Smagorin-

sky subgrid-scale closure model. Our second class of experiments is based on ocean

acidification models, where we learn the functional form of certain ambiguous biolog-

ical processes and compensate for lack of complexity in simpler low-fidelity models.

Finally, we comment on the computational advantages of our new gnCM framework.

7.1 Theory and Methodology

The functional form of the closure models representing the missing dynamics is de-

rived by the Mori-Zwanzig formulation [161, 162, 160, 163], which proves it to be

dependent on the time-lagged state dynamics. Along with this formulation, many

chemical or biological systems are modeled assuming smooth concentration fields of

state variables governed by PDEs with fluid flow advection and/or mixing, leading to

advection-diffusion-reaction PDEs. Such PDE systems implicitly assume that infor-

mation between state variables is exchanged instantaneously at any spatial location.

In reality, however, there are often time delays for several reasons. First, changes in

populations or reactions have non-negligible time scales. Such time delays are cap-

tured in more complex models by modeling intermediate state variables. In the case

of lower complexity models, the time response can be made to approximate that of

high-complexity models by explicitly introducing delays [169, 170]. Second, time de-

lays arise due to the truncated modes and/or missing subgrid-scale processes. For all

of these reasons, the need for memory-based closure terms is clearly justified to rep-

resent complex dynamical systems. The above arguments in favor of memory-based

closure terms are thoroughly discussed in Gupta and Lermusiaux, 2021 [229].

The need for non-Markovian closure terms to augment low-fidelity models was

motivated in the preceding paragraph. Furthermore, it is often the case that the low-

fidelity model is additionally outright missing Markovian terms due to truncation or

ambiguity in functional form of some of the terms. As a result, we can assume that the

full closure model is actually a combination of Markovian and non-Markovian terms,

where each could potentially be modeled using NNs. To help with interpretability
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of the learned weights of the NNs of the closure models, we further assume that the

closure terms will be dependent on the state variables, their spatial derivatives, and

combinations of these belonging to a function library. The non-Markovian term is

considered to have a finite time-delay (𝜏) associated with it. Given a continuous state

vector comprising of 𝑁𝑠 different states, 𝑢(𝑥, 𝑡) : R × [0, 𝑇 ] → R𝑁𝑠 , let us consider a

dynamical system belonging to domain Ω of the following form,

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= ℒ

(︂
𝑢(𝑥, 𝑡),

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, ..., 𝑥, 𝑡; 𝜈

)︂
⏟  ⏞  

𝐿𝑜𝑤−𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦 / 𝐾𝑛𝑜𝑤𝑛 𝑀𝑜𝑑𝑒𝑙

+ ℱ𝑁𝑁

(︂
𝑢(𝑥, 𝑡),

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, ..., 𝑥, 𝑡;𝜑

)︂
⏟  ⏞  

𝑀𝑎𝑟𝑘𝑜𝑣𝑖𝑎𝑛 𝐶𝑙𝑜𝑠𝑢𝑟𝑒 𝑇𝑒𝑟𝑚

+

∫︁ 𝑡

𝑡−𝜏

𝒢𝑁𝑁

(︂
𝑢(𝑥, 𝑠),

𝜕𝑢(𝑥, 𝑠)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑠)

𝜕𝑥2
, ..., 𝑥, 𝑠; 𝜃

)︂
𝑑𝑠⏟  ⏞  

𝑁𝑜𝑛−𝑀𝑎𝑟𝑘𝑜𝑣𝑖𝑎𝑛 𝐶𝑙𝑜𝑠𝑢𝑟𝑒 𝑇𝑒𝑟𝑚

, 𝑥 ∈ Ω, 𝑡 ≥ 0,

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡), 𝑡 ≤ 0 and ℬ(𝑢(𝑥, 𝑡)) = 𝑔(𝑥, 𝑡), 𝑥 ∈ 𝜕Ω, 𝑡 ≥ 0 ,

(7.1)

where ℒ, ℱ𝑁𝑁 , and 𝒢𝑁𝑁 are non-linear functions parameterized with 𝜈, 𝜑, and 𝜃, re-

spectively. 𝜈 are problem specific parameters associated with the physical/biological/chemical

phenomenon of interest, while 𝜑 and 𝜃 are the NN weights. The operator ℬ repre-

sents appropriate boundary conditions such as Dirichlet, Neumann, etc. which are

needed to solve the system uniquely. Furthermore, we note that we have assumed a

one-dimensional (1D) domain, however, the method is easily extendable to 2D and

3D domains.

7.1.1 Neural Partial Delay Differential Equations

The goal of the present study is to add both Markovian and non-Markovian terms to

the low-fidelity models in their PDE forms. This results in what are known as partial

delay differential equations (PDDEs; DDEs are a subclass of PDDEs, in the same

fashion as ODEs are for PDEs). They are widely used in ecology, control theory,
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biology and climate dynamics, to name a few application areas, and are especially

useful in situations where both spatial and temporal evolution matter [230].

In this section we derive the theory and schemes for PDDEs parameterized us-

ing NNs and learned from data, called neural partial delay differential equations

(nPDDEs). Without loss of generality, and for brevity, we limit ourselves to nPDDEs

with a Markovian term and a non-Markovian term with distributed delays. The low-

fidelity model could be considered to be absorbed in the Markovian closure term,

and the presence of discrete delays is a special case of distributed delays. Hence, our

nPDDE is of the form,

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= ℱ𝑁𝑁

(︂
𝑢(𝑥, 𝑡),

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, ...,

𝜕𝑑𝑢(𝑥, 𝑡)

𝜕𝑥𝑑
, 𝑥, 𝑡;𝜑

)︂
+

∫︁ 𝑡

𝑡−𝜏

𝒢𝑁𝑁

(︂
𝑢(𝑥, 𝑠),

𝜕𝑢(𝑥, 𝑠)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑠)

𝜕𝑥2
, ...,

𝜕𝑑𝑢(𝑥, 𝑠)

𝜕𝑥𝑑
, 𝑥, 𝑠; 𝜃

)︂
𝑑𝑠 ,

𝑥 ∈ Ω, 𝑡 ≥ 0,

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡), 𝑡 ≤ 0 and ℬ(𝑢(𝑥, 𝑡)) = 𝑔(𝑥, 𝑡) 𝑥 ∈ 𝜕Ω, 𝑡 ≥ 0 .

(7.2)

As compared to PDEs, PDDEs require the specification of a history function (ℎ(𝑥, 𝑡))

for the initial conditions. ℱ𝑁𝑁(∙;𝜑) and 𝒢𝑁𝑁(∙; 𝜃) are two NNs parameterized by

𝜑 and 𝜃, respectively. For generality, we assume the NNs to be functions of an

arbitrary number of spatial derivatives, with the highest order defined by 𝑑 ∈ Z+.

We can rewrite the above equation 7.2 as an equivalent system of coupled PDDEs
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with discrete delays,

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= ℱ𝑁𝑁

(︂
𝑢(𝑥, 𝑡),

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, ...,

𝜕𝑑𝑢(𝑥, 𝑡)

𝜕𝑥𝑑
, 𝑥, 𝑡;𝜑

)︂
+ 𝑦(𝑥, 𝑡) ,

𝑥 ∈ Ω, 𝑡 ≥ 0 ,

𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
= 𝒢𝑁𝑁

(︂
𝑢(𝑥, 𝑡),

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, ...,

𝜕𝑑𝑢(𝑥, 𝑡)

𝜕𝑥𝑑
, 𝑥, 𝑡; 𝜃

)︂
− 𝒢𝑁𝑁

(︂
𝑢(𝑥, 𝑡− 𝜏),

𝜕𝑢(𝑥, 𝑡− 𝜏)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑡− 𝜏)

𝜕𝑥2
, ...,

𝜕𝑑𝑢(𝑥, 𝑡− 𝜏)

𝜕𝑥𝑑
, 𝑥, 𝑡− 𝜏 ; 𝜃

)︂
,

𝑥 ∈ Ω, 𝑡 ≥ 0 ,

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡), 𝑡 ≤ 0 and ℬ(𝑢(𝑥, 𝑡)) = 𝑔(𝑥, 𝑡), 𝑥 ∈ 𝜕Ω, 𝑡 ≥ 0 ,

𝑦(𝑥, 0) =

∫︁ 0

−𝜏

𝒢𝑁𝑁

(︂
ℎ(𝑥, 𝑠),

𝜕ℎ(𝑥, 𝑠)

𝜕𝑥
,
𝜕2ℎ(𝑥, 𝑠)

𝜕𝑥2
, ...,

𝜕𝑑ℎ(𝑥, 𝑠)

𝜕𝑥𝑑
𝑥, 𝑠; 𝜃

)︂
𝑑𝑠 .

(7.3)

Let us assume that high-fidelity data is available at 𝑀 discrete times, 𝑇1 < ... < 𝑇𝑀 ≤

𝑇 , and at 𝑁(𝑇𝑖) spatial locations (𝑥𝑇𝑖
𝑘 ∈ Ω,∀𝑘 ∈ 1, ..., 𝑁(𝑇𝑖)) for each of the times.

Thus, we define the scalar loss function as, 𝐿 = 1
𝑀

∑︀𝑀
𝑖=1

1
𝑁(𝑇𝑖)

∑︀𝑁(𝑇𝑖)
𝑘=1 𝑙(𝑢(𝑥𝑇𝑖

𝑘 , 𝑇𝑖)) ≡∫︀ 𝑇

0
1
𝑀

∑︀𝑀
𝑖=1

∫︀
Ω

1
𝑁(𝑇𝑖)

∑︀𝑁(𝑇𝑖)
𝑘=1 𝑙(𝑢(𝑥, 𝑡))𝛿(𝑥−𝑥𝑇𝑖

𝑘 )𝛿(𝑡−𝑇𝑖)𝑑𝑥𝑑𝑡 ≡
∫︀ 𝑇

0
1
𝑀

∑︀𝑀
𝑖=1

1
|Ω|

∫︀
Ω
�̂�(𝑢(𝑥, 𝑡))𝛿(𝑡−

𝑇𝑖)𝑑𝑥𝑑𝑡, where 𝑙(∙) are scalar loss functions such as mean-absolute-error (MAE), and

𝛿(∙) is the Kronecker delta function. In order to derive the adjoint PDEs, we start

with the Lagrangian corresponding to the above system,

L = 𝐿(𝑢(𝑥, 𝑡)) +

∫︁ 𝑇

0

∫︁
Ω

𝜆𝑇 (𝑥, 𝑡) (𝜕𝑡𝑢(𝑥, 𝑡) −ℱ𝑁𝑁(∙, 𝑡;𝜑) − 𝑦(𝑥, 𝑡)) 𝑑𝑥𝑑𝑡

+

∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡) (𝜕𝑡𝑦(𝑥, 𝑡) − 𝒢𝑁𝑁(∙, 𝑡; 𝜃) + 𝒢𝑁𝑁(∙, 𝑡− 𝜏 ; 𝜃)) 𝑑𝑥𝑑𝑡

+

∫︁
Ω

𝛼𝑇 (𝑥)

(︂
𝑦(𝑥, 0) −

∫︁ 0

−𝜏

𝒢𝑁𝑁(ℎ(𝑥, 𝑡), 𝜕𝑥ℎ(𝑥, 𝑡), 𝜕𝑥2ℎ(𝑥, 𝑡), ..., 𝜕𝑥𝑑ℎ(𝑥, 𝑡), 𝑥, 𝑡; 𝜃)𝑑𝑡

)︂
𝑑𝑥 ,

(7.4)

where 𝜆(𝑥, 𝑡), 𝜇(𝑥, 𝑡) and 𝛼(𝑥) are the Lagrangian variables. To find the gradients of

L w.r.t. 𝜑 and 𝜃, we first solve the following adjoint PDEs (for brevity we denote,
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𝜕/𝜕(∙) ≡ 𝜕(∙), and 𝑑/𝑑(∙) ≡ 𝑑(∙)),

0 =
1

𝑀

1

|Ω|

𝑀∑︁
𝑘=1

𝜕𝑢(𝑥,𝑡)�̂�(𝑢(𝑥, 𝑡))𝛿(𝑡− 𝑇𝑘)

− 𝜕𝑡𝜆
𝑇 (𝑥, 𝑡) − 𝜆𝑇 (𝑥, 𝑡)𝜕𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡) +

𝑑∑︁
𝑖=1

(−1)𝑖+1𝜕𝑥𝑖

(︀
𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑖𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)

)︀
− 𝜇𝑇 (𝑥, 𝑡)𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃) +

𝑑∑︁
𝑖=1

(−1)𝑖+1𝜕𝑥𝑖

(︀
𝜇𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑖𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
+ 𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃) −

𝑑∑︁
𝑖=1

(−1)𝑖+1𝜕𝑥𝑖

(︀
𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕𝑥𝑖𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
,

𝑥 ∈ Ω , 𝑡 ∈ [0, 𝑇 ) ,

0 = −𝜆𝑇 (𝑥, 𝑡) − 𝜕𝑡𝜇
𝑇 (𝑥, 𝑡) , 𝑥 ∈ Ω , 𝑡 ∈ [0, 𝑇 ) ,

(7.5)

with initial conditions, 𝜆(𝑥, 𝑡) = 𝜇(𝑥, 𝑡) = 0, 𝑡 ≥ 𝑇 . The boundary conditions are

derived based on those of the forward PDDE and they satisfy,

0 =
𝑑∑︁

𝑖=0

𝑑−𝑖−1∑︁
𝑗=0

(−1)𝑗+1𝜕𝑥𝑗

(︀
𝜆𝑇 (𝑥, 𝑡)𝜕𝜕

𝑥𝑗+𝑖+1𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)
)︀
𝑑𝜃𝜕𝑥𝑖𝑢(𝑥, 𝑡)

+
𝑑∑︁

𝑖=0

𝑑−𝑖−1∑︁
𝑗=0

(−1)𝑗+1𝜕𝑥𝑗

(︀
𝜇𝑇 (𝑥, 𝑡)𝜕𝜕

𝑥𝑗+𝑖+1𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡)
)︀
𝑑𝜃𝜕𝑥𝑖𝑢(𝑥, 𝑡)

−
𝑑∑︁

𝑖=0

𝑑−𝑖−1∑︁
𝑗=0

(−1)𝑗+1𝜕𝑥𝑗

(︀
𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕

𝑥𝑗+𝑖+1𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡)
)︀
𝑑𝜃𝜕𝑥𝑖𝑢(𝑥, 𝑡) ,

𝑥 ∈ 𝜕Ω, 𝑡 ∈ [𝑡, 𝑇 ) .

(7.6)

Details of the derivation of the above adjoint PDEs is in section F.1. Note, that the

adjoint PDEs need to be solved backward in time, and one would require access

to 𝑢(𝑥, 𝑡),∀𝑥 ∈ Ω, 0 ≤ 𝑡 ≤ 𝑇 . In our current implementation, we create and

continuously update an interpolation function using the 𝑢 obtained at every time-

step as we solve the forward model (equation 7.2). To be more memory efficient, we

can use the method of checkpointing [216]. After solving for the Lagrangian variables,
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𝜆(𝑥, 𝑡) and 𝜇(𝑥, 𝑡), we can compute the required gradients as,

𝑑𝜃ℒ = −
∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝜃𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝑥𝑑𝑡+

∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝜃𝒢𝑁𝑁(∙, 𝑡− 𝜏 ; 𝜃)𝑑𝑥𝑑𝑡

−
∫︁
Ω

𝜇𝑇 (𝑥, 0)

∫︁ 0

−𝜏

𝜕𝜃𝒢𝑁𝑁(ℎ(𝑥, 𝑡), 𝜕𝑥ℎ(𝑥, 𝑡), 𝜕𝑥𝑥ℎ(𝑥, 𝑡), 𝑥, 𝑡; 𝜃)𝑑𝑡𝑑𝑥 ,

𝑑𝜑ℒ = −
∫︁ 𝑇

0

∫︁
Ω

𝜆𝑇 (𝑥, 𝑡)𝜕𝜑ℱ𝑁𝑁(∙, 𝑡;𝜑)𝑑𝑥𝑑𝑡 .

(7.7)

Finally, using any stochastic gradient descent algorithm, we can find the optimal

values of the weights 𝜑 and 𝜃.

Furthermore, for interpretability – especially for the Markovian closure term –

we can use a simple NN architecture with no hidden layers and linear activation.

However, non-linearity can be introduced by having input features which are combi-

nations of the states and their derivatives belonging to a function library. This will

be equivalent to a linear combination of the input features. Along with this, a 𝐿1

regularization on the NN weights, and pruning below a threshold could help promote

sparsity. Although this approach may seem similar to SINDy [24, 25, 27], it is very

different because it accounts for accumulation of time-integration errors during train-

ing and does not require training data to be rich enough to allow for the computation

of temporal and spatial derivatives.

The forward model (equation 7.1 or 7.2) and the adjoint PDEs (equation 7.5) are

discretized and integrated using numerical schemes [5], such as, finite differences, col-

location methods, etc. Our approach, where we augment the NN based closures first

followed by numerical discretization, ensures that the burden of generalization over

boundary conditions, domain geometry, and computational grid resolution, along with

computing the relevant spatial derivatives is handled by the numerical schemes, and

not by the learned NNs. This also automatically makes the learning only dependent

on local features and affine equivariant, similar to numerical schemes.
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Figure 7-1: Overview of the generalized neural closure models (gnCM) framework.
The blocks labeled DNN represent any deep neural-network architectures. The block
labeled

∫︀
symbolizes any time-integration scheme. DDE stands for delay differential

equation.
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7.2 Application Results and Discussion

We now evaluate the performance and advantages of our new closure modeling frame-

work (gnCM) in terms of generalizabity over grid resolutions, boundary and initial

conditions, and problem specific parameters. Our experiments will encompass vari-

ous scenarios which require closure, and we will also attempt to interpret the learned

closures.

Our training and evaluation protocol is similar to that established in Gupta and

Lermusiaux, 2021 [229]. In all our experiments, the training data is regularly sampled

in both space and time from the high-fidelity simulations, however, this is not a re-

quirement. We use performance over the validation period (past the period for which

high-fidelity data snapshots are used for training) to fine-tune various training related

hyperparameters. The final evaluation is based on continuous evolution through the

training and validation periods, followed with longer-term future predictions. We also

compare the learned closure with the known true model, whenever available. In the

rest of the paper, for all the figure, table, and section references prefixed with “SI-”,

we direct the reader to the Supplementary Information.

7.2.1 Experiments 1a: Advecting Shock - Model Ambiguity

Models for advecting shock are important to study various physical phenomena such

as wind-driven surface waves. The Korteweg de Vries (KdV)-Burgers equation is often

used in the study of the weak effects of dispersion, dissipation, and non-linearity in

wave propagation [231]. In the first set of experiments, we consider a 1D domain

where we only have the prior knowledge about the existence of the advection term,

𝜕𝑢

𝜕𝑡
= −𝑢𝜕𝑢

𝜕𝑥
, (7.8)

which acts as the low-fidelity model. The other dominant effects are unknown and

need to be discovered. We assume these unknown effects to be mainly Markovian in

nature and that they can be modeled using a linear combination from a library of
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functions comprising of terms up to 3rd order spatial derivatives and arising in the

generalized KdV-Burgers equation:
{︁

𝜕2𝑢
𝜕𝑥2 ,

𝜕3𝑢
𝜕𝑥3 , 𝑢

𝜕𝑢
𝜕𝑥
, 𝑢2 𝜕𝑢

𝜕𝑥

}︁
.

The high-fidelity model (truth) consists of two solitary waves colliding with each

other, governed by the equation,

𝜕𝑢

𝜕𝑡
= −6𝑢

𝜕𝑢

𝜕𝑥
− 𝜕3𝑢

𝜕𝑥3
, (7.9)

with initial and boundary conditions given by,

𝑢(𝑥, 0) = 2𝜂21sech[𝜂1(𝑥− 𝑥1)] + 2𝜂22sech[𝜂2(𝑥− 𝑥2)],

𝑢(−𝐿, 𝑡) = 0,
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝐿

= 0, and
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2

⃒⃒⃒⃒
𝑥=𝐿

= 0 ,
(7.10)

where 𝑥1 is the location, 2𝜂21 is the amplitude, and 1/𝜂1 is the width of the first soliton

wave, whereas 𝑥2 is the location, 2𝜂22 is the amplitude, and 1/𝜂2 is the width of the

second soliton wave, initially. The analytical solution of the above system is given by,

𝑢(𝑥, 𝑡) =
8(𝜂21 − 𝜂22)(𝜂21 cosh 𝜃2 + 𝜂22 sinh 𝜃1)

((𝜂1 − 𝜂2) cosh(𝜃1 + 𝜃2) + (𝜂1 + 𝜂2) cosh(𝜃1 − 𝜃2))2
, (7.11)

where 𝜂1 ≥ 𝜂2, and 𝜃1 and 𝜃2 are given by,

𝜃1 = 𝜂1(𝑥− 𝑥1 − 4𝜂21𝑡) ,

𝜃2 = 𝜂1(𝑥− 𝑥2 − 4𝜂22𝑡) .
(7.12)

We choose 𝐿 = 10, maximum time 𝑇 = 1.5, 𝜂1 = 1.2, 𝜂2 = 0.8, 𝑥1 = −6.0 and

𝑥2 = −2.0. All the numerical solutions are obtained by using finite difference schemes.

For the advection term, 2𝑛𝑑 order accurate upwind [232] was used, while all other

terms and derivatives were discretized with 4𝑡ℎ order accurate central-difference. Fur-

thermore, the Vode scheme [220] with adaptive time-stepping was used. Further, we

employ a fine grid with 𝑁𝑥 = 200 number of grid points in the 𝑥−direction in order to

keep the discretization errors low. The comparison between the numerical solution of

the low-fidelity model (equation 7.8) with the analytical solution of the high-fidelity
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model (equations 7.9, 7.10 & 7.11) is provided in the figure 7-2. Both the models

start from the same initial condition, however, their evolved solutions are drastically

different from each other. In the case of the high-fidelity model, it can be observed

that the two solitons interact elastically, i.e., their amplitudes and physical forms are

unchanged before and after the interaction, however, they do experience a phase shift

in their positions. On the contrary, in the case of the low-fidelity model, the two

solitons do not even come close to interacting with each other.

For the gnCM, we only consider the Markovian term with a simple neural network

with no hidden layer and only linear activation in the output layer, in-effect equivalent

to a linear combination of the inputs. The training data consists of the analytical

solution (equation 7.11) sampled at time intervals of 0.01 until time 𝑡 = 1.0, with

a validation period from 1.0 ≤ 𝑡 ≤ 1.25. In all the experiments, we use both ℒ1

and ℒ2 regularizations for the weights of the neural network, and prune them if

their value drops below a certain threshold (only if weightage of ℒ1 regularization is

non-zero), in order to promote sparsity. The set of tuned hyperparameters used to

generate the results presented next, are provided in the supplementary information,

section F.2.2. Given the analytical solution, {𝑢𝑡𝑟𝑢𝑒(𝑥, 𝑇𝑖), −𝐿 ≤ 𝑥 ≤ 𝐿}𝑀𝑖=1, the

loss function is based on time and space averaged mean-absolute-error (MAE), ℒ =

1
𝑀

∑︀𝑀
𝑖=1

∫︀ 𝐿

−𝐿
1
2𝐿
|𝑢𝑝𝑟𝑒𝑑(𝑥, 𝑇𝑖) − 𝑢𝑡𝑟𝑢𝑒(𝑥, 𝑇𝑖)|𝑑𝑥. We perform 6 repeats of the experiment

with exactly the same set of hyperparameters, and the learned model with mean and

standard deviation of the weights is as follows,

𝜕𝑢

𝜕𝑡
= −𝑢𝜕𝑢

𝜕𝑥
− (4.9680 ± 0.0008)𝑢

𝜕𝑢

𝜕𝑥
− (1.0105 ± 0.0002)

𝜕3𝑢

𝜕𝑥3
. (7.13)

The true coefficients corresponding to the learned 𝑢𝜕𝑢
𝜕𝑥

and 𝜕3𝑢
𝜕𝑥3 terms are −5.0 and

−1.0, respectively. The learned closure is able to recover the true model, and the

slight discrepancy in the learned coefficients is to compensate for the very small dis-

cretization error. To illustrate this, we compare the root-mean-square-error (RMSE),

ℒ = 1
𝑀

∑︀𝑀
𝑖=1

√︁∑︀𝑁𝑥

𝑗=1
1
𝑁𝑥

(𝑢𝑝𝑟𝑒𝑑(𝑥𝑗, 𝑇𝑖) − 𝑢𝑡𝑟𝑢𝑒(𝑥𝑗, 𝑇𝑖))2, of the learned closure and the

true model solved using the same numerical schemes. The RMSE (mean and standard
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Figure 7-2: Comparison of the numerical solution of the KdV-Burgers equation with
only the advection term (equation 7.8; low-fidelity model; middle plot), with the
analytical solution corresponding to the equation with stronger advection and 3𝑟𝑑

order derivative term (equations 7.9, 7.10 & 7.11; high-fidelity model; left plot). The
low-fidelity model is solved on a grid with 𝑁𝑥 = 200 grid points, and the absolute
difference between the two solutions is provided in the right plot.

deviation) obtained for the learned closure and the true model solved numerically is

0.0063 ± 0.0014 and 0.0251, respectively. Thus, on average, the learned closure leads

to a smaller RMSE.

The learning was sensitive to the batch-time, and higher values were especially

detrimental to convergence. This behavior is in general observed when the error

between the low- and high-fidelity models is large. Using a smaller batch-size and

regularization weightages lead to slightly different values of the learned coefficients.

This is especially noted for the 𝑢2 𝜕𝑢
𝜕𝑥

term, whose weight tends towards a non-zero

value with a very small magnitude. In the current set of experiments, the learning

framework is able to recover the known true model and, due to this, we do not

additionally focus on demonstrating generalization over initial conditions, boundary

conditions, and grid resolution.
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7.2.2 Experiments 1b: Advecting Shock - Subgrid-scale Pro-

cesses

In the second set of experiments we consider the classic form of the Burgers equation

as the governing model,

𝜕𝑢

𝜕𝑡
= −𝑢𝜕𝑢

𝜕𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑥2
, 0 ≤ 𝑥 ≤ 𝐿, 𝑡 ∈ (0, 𝑇 ] , (7.14)

where 𝜈 is the diffusion coefficient. The initial and boundary conditions are

𝑢(𝑥, 0) =
𝑥

1 +
√︁

1
𝑡0

exp
(︀
𝑅𝑒𝑥

2

4

)︀ , 𝑢(0, 𝑡) = 0, and
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝐿

= 0 , (7.15)

where Reynolds number, 𝑅𝑒 = 1/𝜈 and 𝑡0 = exp(𝑅𝑒/8). The analytical solution of

the Burgers equation with the above mentioned initial and boundary conditions is

given by,

𝑢(𝑥, 𝑡) =
𝑥/(𝑡+ 1)

1 +
√︁

𝑡+1
𝑡0

exp
(︀
𝑅𝑒 𝑥2

4𝑡+4

)︀ . (7.16)

However, when the discrete version of the above equation is solved numerically, the

numerical solution incurs errors from three sources; 1. Projection error, which ac-

counts for the fact that the exact solution is approximated using a finite number

of degrees of freedom. This error cannot be avoided; 2. Discretization error, which

accounts for the fact that partial derivatives which appear in the continuous problem

are approximated on the computational grid using Finite Difference, Finite Volume,

Finite Element (or other similar) schemes; 3. Resolution error, which accounts for the

fact that the absence of some scales of the exact solution result in the evaluation of

the non-linear flux function to be inexact, even if the discretization error is driven to

zero [233].

To numerically solve the Burgers equation (7.14), we use a finite difference scheme.

Specifically, we use 1𝑠𝑡 order accurate upwind for the advection term, 2𝑛𝑑 order
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accurate central-difference for the diffusion term, and the Vode scheme for adap-

tive time-stepping. Thus, the leading order discretization error term is given by,

−Δ𝑥
2
𝑢𝜕2𝑢
𝜕𝑥2 + 𝒪(∆𝑥2), where ∆𝑥 is the uniform grid-spacing. The terms in 𝒪(∆𝑥2)

contains spatial derivatives of order 3 and above. First, we only consider a Markovian

closure, as a linear combination of a library of four terms, { ∆𝑥
(︀
𝜕𝑢
𝜕𝑥

)︀2
,∆𝑥3

(︁
𝜕2𝑢
𝜕𝑥2

)︁2
,

∆𝑥2
(︁

𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥2

)︁
,∆𝑥

(︁
𝑢𝜕2𝑢
𝜕𝑥2

)︁
}, out of which three are up to second degree combinations

of 𝜕𝑢
𝜕𝑥

and 𝜕2𝑢
𝜕𝑥2 , and the fourth is the leading order discretization error term itself.

Each of the terms is multiplied with appropriate powers of ∆𝑥, such that, the clo-

sure terms are dimensionally consistent with the other already existing terms in the

Burgers equation. 4𝑡ℎ order accurate central and upwind finite-difference schemes

[232] were used to compute the spatial derivatives in the Markovian closure, in order

to eliminate additional sources of discretization error for our analysis. The training

data consists of the analytical solution up until 𝑇 = 4.0 solved in a domain of length

𝐿 = 1.25 and saved at every 0.01 time-intervals, for three different combinations

of 𝑁𝑥 (number of grid points in 𝑥−direction) and 𝑅𝑒. The chosen (𝑁𝑥, 𝑅𝑒) pairs,

{(100, 50), (150, 750), and (200, 1250)}, are such that, the −Δ𝑥
2
𝑢𝜕2𝑢
𝜕𝑥2 term is really the

leading source of error. In every epoch, we parse through the training data of each

of these pairs, selected in random order by sampling without replacement. We tune

the hyperparameters based on performance in the training period (0.0 ≤ 𝑡 ≤ 4.0)

and the validation period (4.0 ≤ 𝑡 ≤ 6.0), and these are provided in section F.2.2.

The Markovian closure model is a simple neural network with no hidden layers and

only linear activation in the output layer, in-effect equivalent to a linear combina-

tion of the inputs. Given the analytical solution, {𝑢𝑡𝑟𝑢𝑒(𝑥, 𝑇𝑖), 0 ≤ 𝑥 ≤ 𝐿}𝑀𝑖=1, the

loss function is once again the time and space averaged mean-absolute-error (MAE),

ℒ = 1
𝑀

∑︀𝑀
𝑖=1

∫︀ 𝐿

0
1
𝐿
|𝑢𝑝𝑟𝑒𝑑(𝑥, 𝑇𝑖) − 𝑢𝑡𝑟𝑢𝑒(𝑥, 𝑇𝑖)|𝑑𝑥. We perform 8 repeats of the same

experiment with the tuned hyperparameters, and the learned model with mean and
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standard deviation of the coefficients is as follows,

ℱ𝑁𝑁

(︃
∆𝑥

(︂
𝜕𝑢

𝜕𝑥

)︂2

,∆𝑥3
(︂
𝜕2𝑢

𝜕𝑥2

)︂2

,∆𝑥2
(︂
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑥2

)︂
,∆𝑥

(︂
𝑢
𝜕2𝑢

𝜕𝑥2

)︂
;𝜑

)︃

= (0.133 ± 0.017)∆𝑥

(︂
𝜕𝑢

𝜕𝑥

)︂2

+ (0.009 ± 0.023)∆𝑥3
(︂
𝜕2𝑢

𝜕𝑥2

)︂2

− (0.323 ± 0.022)∆𝑥

(︂
𝑢
𝜕2𝑢

𝜕𝑥2

)︂
.

(7.17)

We first compare the performance of the learned closure w.r.t. using the true leading

discretization error term (−Δ𝑥
2
𝑢𝜕2𝑢
𝜕𝑥2 ) as the closure itself. For both the cases, we evolve

the Burgers equation with the respective closure terms up until 𝑇 = 8.0 (beyond

training and validation time-periods), for (𝑁𝑥, 𝑅𝑒) pairs in the 2D domain spanned

by 50 ≤ 𝑁𝑥 ≤ 200 and 50 ≤ 𝑅𝑒 ≤ 1500. In figure 7-4 we provide the 𝑅𝑀𝑆𝐸(> 2%)

error (see figure 7-3 for description). In the case of using the true leading discretization

error term as the closure, it can be noted that increasing 𝑅𝑒 and lowering 𝑁𝑥 values

leads to instabilities in the solution which causes it to explode. On the contrary, in the

learned closure case, even though it was not shown any training data in the high 𝑅𝑒

and low𝑁𝑥 regime, it is still able to lead to a stable solution, and, on average, performs

better than its counterpart in the other regions of the (𝑁𝑥, 𝑅𝑒) domain. In order to

interpret the learned closure, we rewrite it by substituting, 𝜕
𝜕𝑥

(︀
𝑢𝜕𝑢
𝜕𝑥

)︀
=
(︀
𝜕𝑢
𝜕𝑥

)︀2
+
(︁
𝑢𝜕2𝑢
𝜕𝑥2

)︁
in equation 7.17,

ℱ𝑁𝑁

(︃
∆𝑥

(︂
𝜕𝑢

𝜕𝑥

)︂2

,∆𝑥3
(︂
𝜕2𝑢

𝜕𝑥2

)︂2

,∆𝑥2
(︂
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑥2

)︂
,∆𝑥

(︂
𝑢
𝜕2𝑢

𝜕𝑥2

)︂
;𝜑

)︃

= (0.133 ± 0.017)∆𝑥
𝜕

𝜕𝑥

(︂
𝑢
𝜕𝑢

𝜕𝑥

)︂
+ (0.009 ± 0.023)∆𝑥3

(︂
𝜕2𝑢

𝜕𝑥2

)︂2

− (0.456 ± 0.012)∆𝑥

(︂
𝑢
𝜕2𝑢

𝜕𝑥2

)︂
.

(7.18)

Thus, the learned closure contains the ∆𝑥
(︁
𝑢𝜕2𝑢
𝜕𝑥2

)︁
term with a coefficient of correct

sign but slightly smaller value – in absolute value – in comparison to that of the

true leading discretization error term. Along with that, the other significant term,

∆𝑥 𝜕
𝜕𝑥

(︀
𝑢𝜕𝑢
𝜕𝑥

)︀
, corresponds to a first order Taylor series correction to the non-linear
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advection term, and could potentially help with mitigating the resolution error high-

lighted earlier.

Next, keeping the same Markovian closure term formulation as earlier, we addi-

tionally introduce the non-Markovian closure term with inputs, {𝑢, 𝜕𝑢
𝜕𝑥
, 𝜕

2𝑢
𝜕𝑥2 , 𝜈,∆𝑥},

discretized using 4𝑡ℎ order finite-difference schemes, and the neural network (NN)

architecture given in table F.1. The output of the NN is multiplied with |𝑢| to ensure

that the contribution of the non-Markovian closure term is zero in the right-hand

parts of the domain where the shock is yet to reach. As the non-Markovian closure

term is non-linear, we do not explicitly make the inputs dimensionally consistent with

other terms in the Burgers equation. The overall training and evaluation setup is kept

the same as earlier, however, this time four pairs of (𝑁𝑥, 𝑅𝑒) were used such that all

four combinations of high and low 𝑁𝑥 and 𝑅𝑒 are contained in the training data.

The chosen pairs were, {(50, 750), (200, 750), (50, 1250), (200, 1250)}. The tuned set

of hyperparameters are provided in section F.2.2. The time-delay, 𝜏 = 0.075, is

based on the optimal-time delay established for the Burgers equation experiments

in Gupta and Lermusiaux, 2021 [229]. We perform 7 repeats of the experiment

with exactly the same set of tuned hyperparameters. The learned coefficients for

the Markovian term are different than those in equation 7.17 due to the presence of

the non-Markovian term, however, once again, the most weightage is given to the

∆𝑥
(︀
𝜕𝑢
𝜕𝑥

)︀2 and ∆𝑥
(︁
𝑢𝜕2𝑢
𝜕𝑥2

)︁
terms. Upon inspection, the weights of the input layer of

the NN in the non-Markovian term being multiplied with 𝜈 were consistently found

to be particularly small (𝒪(10−4)), indicating that the learned closure is independent

of 𝜈. For one of the experiment runs, the performance for (𝑁𝑥, 𝑅𝑒) pairs in the 2D

domain spanned by 50 ≤ 𝑁𝑥 ≤ 200 and 50 ≤ 𝑅𝑒 ≤ 1500 is provided in figure 7-4,

and compared with the popular Smagorinsky model used for subgrid-scale turbulence

closure in large eddy simulations (LES). To the Burgers equation (7.14), this model

introduces a dynamic turbulent eddy viscosity (𝜈𝑒) resulting in,

𝜕𝑢

𝜕𝑡
= −𝑢𝜕𝑢

𝜕𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑥2
+

𝜕

𝜕𝑥

(︂
𝜈𝑒
𝜕𝑢

𝜕𝑥

)︂
, (7.19)
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where 𝜈𝑒 = (𝐶𝑠∆𝑥)2
⃒⃒
𝜕𝑢
𝜕𝑥

⃒⃒
and 𝐶𝑠 is the Smagorinsky constant. As the rectangle

formed by the training (𝑁𝑥, 𝑅𝑒) pairs is only a subset of the rectangle in which

we evaluate the learned closure, we are testing both interpolation and extrapolation

performance w.r.t. changing the physical parameter governing the model and grid

resolution. It can clearly be noted that the learned neural closure model outperforms

the Smagorinsky model. As claimed earlier, we expect the learned closure to be

also generalizable over different boundary conditions. We tested this by modifying

the boundary conditions. The analytical solution (equation 7.16) used in training

corresponded to Neumann boundary conditions on the right edge of the domain. This

was changed to a zero Dirichlet boundary condition. Furthermore, the length of the

domain was decreased to 𝐿 = 1, and 𝑁𝑥 = 50 number of equally-spaced grid-points

were used in our low-fidelity model with 𝑅𝑒 = 1000. Since no closed form analytical

solution exists for the Dirichlet boundary conditions case, we solve the system with

𝑁𝑥 = 1000 grid-points and use that as the true solution for comparing the performance

of our learned closure. In figure 7-5, we can notice that the learned closure is able to

keep the errors remarkably low throughout the time period encompassing training,

testing, and prediction.

In general, the quality of learning was less sensitive to the batch-time hyperpa-

rameter, however, higher values led to more interpretable closures. Using lower-order

finite-difference schemes for the closure inputs did not compromise on the perfor-

mance of the learned closures, however it did lead to a decrease in interpretability.

Sensitivity to other hyperparameters was similar to that observed in Experiments-1a.

7.2.3 Experiments 2a: Ocean Acidification - Model Ambiguity

Next, we will use our framework to determine the functional form of certain processes

in ocean acidification (OA) models. These models help to study essential aspects of

carbonate chemistry and biological production cycles, and their interplay with global

warming. For this set of experiments, we will use a model similar to the Hadley

Centre Ocean Carbon Cycle (HadOCC) model [123], where the biological part will

consist of a modified version of four components (nutrients (N), phytoplankton (P),
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Figure 7-3: Comparison of the numerical solution of the Burgers equation (with
𝑅𝑒 = 1000) on a low-resolution grid (equations 7.14 & 7.15; low-fidelity model; middle
plot), with its corresponding analytical solution (equation 7.16; high-fidelity model;
left plot). The low-fidelity model is solved on a grid with 𝑁𝑥 = 50 grid points,
and the absolute difference between the two solutions is provided in the right plot.
We also provide a pair of time-averaged errors, specifically: root-mean-squared-error
(RMSE); and RMSE considering only the grid points where the error is at least 2%
of the maximum velocity value, denoted by RMSE(> 2%).

zooplankton (Z), and detritus (D)) developed by Tian et al. [77] for the Gulf of Maine,

along with dissolved inorganic carbon (DIC), total alkalinity (TA) for the carbonate

part. The NPZD model is given by,

𝑑𝑁

𝑑𝑡
= −𝑈𝑃 + 𝜆𝐺𝑍 + 𝜀𝐷 ,

𝑑𝑃

𝑑𝑡
= 𝑈𝑃 −𝐺𝑍 −𝑚𝑃𝑃 ,

𝑑𝑍

𝑑𝑡
= 𝛾𝐺𝑧 −𝑀𝑍(𝑍) ,

𝑑𝐷

𝑑𝑡
= (1 − 𝛾 − 𝜆)𝐺𝑍 +𝑚𝑃𝑃 +𝑀𝑍(𝑍) − 𝜀𝐷 ,

(7.20)

with 𝑈𝑃 representing the phytoplankton growth, regulated by nitrogen limitation

based on Michaelis-Menten kinetics (𝑓(𝑁)), and photosynthetically active radiation

(𝑓(𝐼)), 𝐺𝑍 the zooplankton grazing, 𝑀𝑍(𝑍) the zooplankton mortality, given by,

𝑈𝑃 = 𝜇𝑚𝑎𝑥𝑓(𝑁)𝑓(𝐼)𝑃, 𝑓(𝑁) =
𝑁

𝑁 +𝐾𝑁

,

𝑓(𝐼) = (1 − exp(𝛼𝐼/𝜇𝑚𝑎𝑥)) exp(−𝛽𝐼/𝜇𝑚𝑎𝑥)

𝐼(𝑧) = 𝐼0 exp(−𝑘𝑊 𝑧), 𝐺𝑍 =
𝑔𝑚𝑎𝑥𝑍𝑃

2

𝑃 2 +𝐾2
𝑃

.

(7.21)
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(a) Leading discretization error term as clo-
sure

(b) gnCM with only Markovian closure term

(c) Smagorinsky closure (d) gnCM

Figure 7-4: Performance of Burgers equation (equations 7.14 & 7.15) with different
closure models evaluated for various (𝑁𝑥, 𝑅𝑒) pairs in the 2D domain spanned by
50 ≤ 𝑁𝑥 ≤ 200 and 50 ≤ 𝑅𝑒 ≤ 1500. The error provided is the 𝑅𝑀𝑆𝐸(> 2%) (see
figure 7-3 for description) computed w.r.t. the corresponding analytical solutions
(equation 7.16) for 0.0 ≤ 𝑡 ≤ 8.0 in a domain of length 𝐿 = 1.25. (a): Leading dis-
cretization error term, −Δ𝑥

2
𝑢𝜕2𝑢
𝜕𝑥2 , as closure. The white region in the top-left denotes

an unconverged numerical solution; (b): Learned generalized neural closure model
(gnCM) with only the Markovian term; (c): Smagorinsky LES model with 𝐶𝑠 = 1.0;
(d): Learned gnCM with both Markovian and non-Markovian closure terms. The red
⋆’s mark the (𝑁𝑥, 𝑅𝑒) pairs used as training data.
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(a) No closure

(b) gnCM

Figure 7-5: Solution of the Burgers equation with and without the learned generalized
neural closure model (gnCM) for 𝑅𝑒 = 1000, a low-resolution grid (𝑁𝑥 = 50), and
zero Dirichlet boundary condition on the right edge. For each case, we also provide
the pair of time-averaged errors (see figure 7-3 for description).
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In the above equations, the concentration of biological variables is in 𝑚𝑚𝑜𝑙 𝑁 𝑚−3

(measured in nitrogen), 𝑧 is depth, and the other parameters are given as: 𝜇𝑚𝑎𝑥 is the

maximum growth rate of phytoplankton; 𝐾𝑁 is the half-saturation constant; 𝛼 and

𝛽 are the light-growth slope and inhibition coefficient; 𝐼0 is photosynthetically active

radiation (PAR) at the sea surface and 𝑘𝑊 is the attenuation coefficient of water; 𝑔𝑚𝑎𝑥

is the zooplankton maximum grazing rate and 𝐾𝑃 the half-saturation constant for

zooplankton grazing; 𝛾 is the assimilation coefficient; 𝑚𝑧 is the zooplankton mortality

coefficient; 𝑚𝑝 is the phytoplankton mortality coefficient; 𝜆 is the active respiration

zooplankton expressed as a fraction of grazing; 𝜀 is the remineralization rate of detri-

tus. The carbon in the system is coupled with the nitrogen by fixed carbon-nitrogen

ratios, 𝐶𝑃 , 𝐶𝑍 , and 𝐶𝐷,

𝑑(𝐷𝐼𝐶)

𝑑𝑡
= −𝐶𝑃

𝑑𝑃

𝑑𝑡
− 𝐶𝑍

𝑑𝑍

𝑑𝑡
− 𝐶𝐷

𝑑𝐷

𝑑𝑡
− 𝛾𝑐𝐶𝑃𝑈𝑃 ,

𝑑(𝑇𝐴)

𝑑𝑡
= − 1

𝜌𝑤

𝑑𝑁

𝑑𝑡
− 2𝛾𝑐𝐶𝑃𝑈𝑃

𝜌𝑤
,

(7.22)

and neither DIC or TA has any effect on the biology because phytoplankton growth

is not carbon limited. The last term in the DIC equation represents the precipitation

of calcium carbonate to form shells and other hard body parts, which subsequently

sink below the euphotic zone, also known as “hard flux”. This flux is modeled to be

proportional (and additional) to the uptake of carbon for primary production. Also,

the chemistry dictates the decrease in total alkalinity by two molar equivalents for each

mole of carbonate precipitated. In general, since TA is measured in 𝑚𝑚𝑜𝑙 𝑘𝑔−1 (or

𝜇𝑚𝑜𝑙 𝑘𝑔−1), we divide the right-hand-side (RHS) of the TA equation by the density

of the sea-water (𝜌𝑤). Moreover, the units of DIC concentration are 𝑚𝑚𝑜𝑙 𝑚−3.

The above biological and carbonate models are often coupled with physical models

to introduce both spatial and temporal components. For our experiments, we use a

1-D diffusion-reaction PDE with vertical eddy mixing parameterized by the operator

𝜕/𝜕𝑧 (𝐾𝑧(𝑧,𝑀)𝜕/𝜕𝑧(∙)), where 𝐾𝑧 is a dynamic eddy diffusion coefficient. A mixed

layer of varying depth (𝑀 = 𝑀(𝑡)) is used as a physical input to the OA models.

Thus, each biological and carbonate state variable 𝐵(𝑧, 𝑡) is governed by the following
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non-autonomous PDE,

𝜕𝐵

𝜕𝑡
= 𝑆𝐵 +

𝜕

𝜕𝑧

(︂
𝐾𝑧(𝑧,𝑀(𝑡))

𝜕𝐵

𝜕𝑧

)︂
, (7.23)

𝐾𝑧(𝑧,𝑀(𝑡)) = 𝐾𝑧𝑏+
(𝐾𝑧0 −𝐾𝑧𝑏)(arctan(−𝛾𝑡(𝑀(𝑡) − 𝑧)) − arctan(−𝛾𝑡(𝑀(𝑡) −𝐷𝑧)))

arctan(−𝛾𝑡𝑀(𝑡)) − arctan(−𝛾𝑡(𝑀(𝑡) −𝐷𝑧))
,

(7.24)

where 𝐾𝑧𝑏 and 𝐾𝑧0 are the diffusion at the bottom and surface, respectively, 𝛾𝑡 is the

thermocline sharpness, and 𝐷𝑧 is the total depth. The 1-D model and parameteri-

zations are adapted from Eknes and Evensen, 2002 [4], and Newberger et. al., 2003

[3]. They simulate the seasonal variability in upwelling, sunlight, and biomass ver-

tical profiles. The dynamic mixed layer depth, surface photosynthetically-available

radiation 𝐼0(𝑡), and biomass fields 𝐵(𝑧, 𝑡) are shown in figure 7-6. The radiation 𝐼0(𝑡)

and total biomass concentration, 𝑇𝑏𝑖𝑜(𝑧, 𝑡), affects 𝑆𝐵 and the initial conditions.

Often, for each biological process, there are as many functional forms as the num-

ber of biologists out there [40]. A set of parameter values and functional forms which

might work in a particular part of the ocean may not work anywhere else. As an

additional source of complexity, there may be seasonal variability in these functional

forms. In the current set of experiments, we assume that we have only prior knowledge

about the existence of a linear zooplankton mortality term (𝑀𝑍(𝑍) = 𝑚𝑍

2
𝑍), which

forms our low-fidelity model. We further assume that the true zooplankton mortality

consists of an additional quadratic dependence, 𝑀𝑍(𝑍) = 𝑚𝑍

2
(𝑍 + 𝑍2), forming our

high-fidelity model. Our Markovian closure term will belong to a linear combina-

tion of a library of popular mortality functions [40], {𝑍,𝑍2, 𝑍2

1+𝑍
, exp𝑍}. Initializing

the 𝑁 state with the depth varying total biomass concentration and zero concentra-

tions for the 𝑃 , 𝑍, and 𝐷 states, we first do a one month spin-off of just the NPZD

model without the diffusion term and a constant sea-surface solar radiation in order

to determine the stable equilibrium of the biological states. These equilibrium states

form the initial conditions for the respective states in the NPZD-OA model, and to

initialize 𝐷𝐼𝐶 we multiply the equilibrium state for 𝑁 with the nitrogen-to-carbon

ratio which is considered nearly equal to the value of 𝐶𝑃 . 𝑇𝐴 is often assumed to
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have a dependence on salinity and biological processes [126]. The contribution from

salinity (𝑆 in 𝑃𝑆𝑈) is modeled using a linear relationship optimized for the Gulf of

Maine, 𝑇𝐴 =

⎧⎪⎨⎪⎩(198.10 + 61.75𝑆)/1000 , 𝑆 < 32.34

(744.41 + 44.86𝑆)/1000 , 𝑆 ≥ 32.34

(Dr. Patrick J. Haley Jr., pers.

comm.), while the biological impact is given by equation 7.22. We assume a station-

ary salinity profile described using a sigmoid function 𝑆(𝑧) = 𝐴 + 𝐾−𝐴
(𝐶+𝑄 exp(−𝐵𝑧))1/𝜈

with 𝐴 = 31.4 𝑃𝑆𝑈 , 𝐾 = 32.8 𝑃𝑆𝑈 , 𝐶 = 1.0, 𝑄 = 0.5, 𝐵 = 0.25, and 𝜈 = 2.0.

Thus, we can initialize TA based on salinity and evolve it using equation 7.22 cou-

pled with equation 7.23. In figure 7-6, we provide a year long simulation for the

NPZD-OA model with linear and quadratic 𝑍 mortality terms, and easily notice the

low 𝑍 concentration and enhanced 𝑃 bloom in the later case. Values of the model

parameters are provided in section F.2. We use a 2𝑛𝑑 order central difference scheme

for the spatial discretization (𝑁𝑧 = 20), and dopri5 [134] time integration scheme

with adaptive time-stepping.

For the neural closure model – we only consider the Markovian term – we use

once again a simple neural network with no hidden layers and linear activation in

the output layer, which is in-effect equivalent to a linear combination of the inputs.

The training data consists of the true/high-fidelity model solution sampled at time

intervals of 0.1 day until time 𝑡 = 30 𝑑𝑎𝑦𝑠, {{𝐵𝑡𝑟𝑢𝑒(𝑧, 𝑇𝑖)}𝐵∈{𝑁,𝑃,𝑍,𝐷,𝐷𝐼𝐶,𝑇𝐴}}𝑀𝑖=1.

Using weight constraints for the output layer, we enforce biomass conservation in

the 𝑁 , 𝑃 , 𝑍, and 𝐷 equations and couple with 𝐷𝐼𝐶 and 𝑇𝐴 equations in the

same fashion as that in the known system (equations 7.20 and 7.22). Architec-

tural details are provided in the table F.1, and the tuned set of training hyperpa-

rameters are included in section F.2.2. We use a MAE based loss function, ℒ =

1
𝑀

∑︀𝑀
𝑖=1

∫︀ 𝐷

0
1
𝐷

√︁∑︀
𝐵∈{𝑁,𝑃,𝑍,𝐷,𝐷𝐼𝐶,𝑇𝐴}

1
𝜎𝐵

|𝐵𝑝𝑟𝑒𝑑(𝑧, 𝑇𝑖) −𝐵𝑡𝑟𝑢𝑒(𝑧, 𝑇𝑖)|𝑑𝑧. Here, 𝜎𝐵’s are

hyperparameters to scale the importance of different state variables based on their

magnitudes. After multiple hyperparameter tuning experiments, values of 𝜎𝑁 =

1, 𝜎𝑃 = 0.25, 𝜎𝑍 = 1, 𝜎𝐷 = 1, 𝜎𝐷𝐼𝐶 = 2, 𝜎𝑇𝐴 = 0.1, were found to aid in learning.

In 7 repeats of the experiment with exactly the same hyperparameters, the learned

models consisted of no contribution of the closure to the 𝑁 , 𝑃 , and 𝑇𝐴 equations,
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while for the 𝑍, 𝐷, and 𝐷𝐼𝐶 equations the contributions were found – with mean

and standard deviation – to be (−0.02996 ± 0.00014)𝑍2, (0.03001 ± 0.00013)𝑍2, and

(−0.05603± 0.00136)𝑍2, respectively. For reference, the true contribution of the zoo-

plankton quadratic mortality term to the 𝑍, 𝐷, and 𝐷𝐼𝐶 equations are given as

−0.02998𝑍2, 0.02998𝑍2, and −0.05621𝑍2, respectively.

Multiple experiments were done to study the effects of hyperparameters, such as

batch-time, batch-size, regularization factors, etc., and the convergence to the true

model was the most severely compromised when increasing batch-time and changing

the loss-scaling for individual state variables.

7.2.4 Experiments 2b: Ocean Acidification - Model Simplifi-

cation

For the last set of experiments we consider the low complexity model to be the three-

component NPZ model,

𝑑𝑁

𝑑𝑡
= −𝑈𝑃 + (1 − 𝛾)𝐺𝑍 +𝑚𝑃𝑃 +

𝑚𝑍

2
𝑍 ,

𝑑𝑃

𝑑𝑡
= 𝑈𝑃 −𝐺𝑍 −𝑚𝑃𝑃 ,

𝑑𝑍

𝑑𝑡
= 𝛾𝐺𝑧 −

𝑚𝑍

2
𝑍 ,

(7.25)

coupled with the carbonate system using fixed carbon-nitrogen ratios, 𝐶𝑃 , and 𝐶𝑍 ,

𝑑(𝐷𝐼𝐶)

𝑑𝑡
= −𝐶𝑃

𝑑𝑃

𝑑𝑡
− 𝐶𝑍

𝑑𝑍

𝑑𝑡
− 𝛾𝑐𝐶𝑃𝑈𝑃 ,

𝑑(𝑇𝐴)

𝑑𝑡
= − 1

𝜌𝑤

𝑑𝑁

𝑑𝑡
− 2𝛾𝑐𝐶𝑃𝑈𝑃

𝜌𝑤
,

(7.26)

and finally with the 1-D diffusion-reaction PDE given by equation 7.23. The high-

fidelity model is the same as that used in Experiments-2a (section 7.2.3), where we also

model the intermediate state of detritus, thus capturing additional processes such as

remineralization and quadratic zooplankton mortality (𝑀𝑍(𝑍) = 𝑚𝑍

2
(𝑍+𝑍2)). Since

the NPZD-OA model resolves more processes, the concentrations of 𝑁 + 𝐷 (aggre-
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Figure 7-6: Solutions (concentrations vs. time in days; 𝑁 , 𝑃 , 𝑍, 𝐷 in 𝑚𝑚𝑜𝑙 𝑁 𝑚−3,
𝐷𝐼𝐶 in 𝑚𝑚𝑜𝑙 𝑚−3, and 𝑇𝐴 in 𝑚𝑚𝑜𝑙 𝑘𝑔−1) of the ocean acidification model used
in Experiments-2a, corresponding to different functional forms for the zooplank-
ton mortality term. Left-column: The top plot shows the yearly variation of so-
lar radiation and the subsequent plots depict the states from the NPZD-OA model
with 𝑀𝑍(𝑍) = 𝑚𝑍

2
(𝑍 + 𝑍2) (ground truth), overlaid with the dynamic mixed layer

depth in dashed red lines; Middle-column: States from the NPZD-OA model with
𝑀𝑍(𝑍) = 𝑚𝑍

2
𝑍 (low-fidelity); Right-column: Absolute difference between the corre-

sponding states in the left- and middle- column. For each case, we also provide the
pair of time-averaged errors (see figure 7-3 for description).
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gated state), 𝑃 , 𝑍, 𝐷𝐼𝐶, and 𝑇𝐴 differ significantly from the 𝑁 , 𝑃 , 𝑍, 𝐷𝐼𝐶, and 𝑇𝐴

of the NPZ-OA model, as shown in figure 7-7. The goal of the current experiments

is to simultaneously learn the functional form of the zooplankton mortality terms

using the Markovian closure term, and account for the missing intermediate state

of detritus through the non-Markovian closure term. Once again, our Markovian

closure consists of a linear combination of a library of popular mortality functions

[40], {𝑍,𝑍2, 𝑍2

1+𝑍
, exp𝑍}. Additionally, we use a deep neural network for the non-

Markovian closure term, with 𝑁(𝑧, 𝑡), 𝑃 (𝑧, 𝑡), 𝑍(𝑧, 𝑡), and 𝐼(𝑧, 𝑡) as the input. The

inclusion of photosynthetically active radiation, 𝐼(𝑧, 𝑡), makes the non-Markovian

closure term non-autonomous. The architecture for the neural network used in the

non-Markovian closure term is provided in table F.1. We do not include the states

𝐷𝐼𝐶(𝑧, 𝑡) and 𝑇𝐴(𝑧, 𝑡) among the inputs in order to preserve one-way coupling be-

tween the biological and carbonate system. Along with this, biomass conservation

and coupling of the carbonate system by converting to nitrogen (same fashion as in

equations 7.25 and 7.26) is maintained in the non-Markovian closure terms by ma-

nipulating the channels of the output layer. On the other hand, in the Markovian

layer, these constraints are imposed by constraining the weights of the output layer.

To help with learning, we further impose the condition that the contribution of the

Markovian closure term to the 𝑃 equation is exactly equal to zero. See table F.1 for

implementational details of these constraints.

The training data consists of solving the NPZD-OA model with 𝑀(𝑍) = 𝑚𝑍

2
(𝑍 +

𝑍2), and the solution sampled at time intervals of 0.1 day until time 𝑡 = 60 𝑑𝑎𝑦𝑠,

{{𝐵𝑡𝑟𝑢𝑒(𝑧, 𝑇𝑖)}𝐵∈{𝑁+𝐷,𝑃,𝑍,𝐷𝐼𝐶,𝑇𝐴}}𝑀𝑖=1. Performance of the learned model in the val-

idation interval of 60 𝑑𝑎𝑦𝑠 ≤ 𝑡 ≤ 120 𝑑𝑎𝑦𝑠 is used to tune the hyperparameters,

provided in section F.2.2. We again use a MAE based loss function,

ℒ = 1
𝑀

∑︀𝑀
𝑖=1

∫︀ 𝐷

0
1
𝐷

√︁∑︀
𝐵∈{𝑁,𝑃,𝑍,𝐷𝐼𝐶,𝑇𝐴}

1
𝜎𝐵

|𝐵𝑝𝑟𝑒𝑑(𝑧, 𝑇𝑖) −𝐵𝑡𝑟𝑢𝑒(𝑧, 𝑇𝑖)|𝑑𝑧, with 𝜎𝑁 =

1, 𝜎𝑃 = 0.25, 𝜎𝑍 = 1, 𝜎𝐷𝐼𝐶 = 2, 𝜎𝑇𝐴 = 0.1 (similar to those used in experiments-

2a). A time delay of 𝜏 = 2.5 𝑑𝑎𝑦𝑠 was used for the non-Markovian closure term based

on the optimal delay value study performed in Gupta and Lermusiaux, 2021 [229].

In 9 repeats of the experiment with exactly the same set of hyperparameters, the
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mean and standard deviation of the learned contribution of the Markovian closure

term to the 𝑍 equation is given by, (−0.03000 ± 0.00067)𝑍2. For reference, the true

contribution of the quadratic mortality term to the 𝑍 equation is −0.02998𝑍2. Due

to the weight constraints, the contribution of the Markovian closure term to other

equations is exactly zero. We evaluate the performance of the learned neural closure

model for long predictions, spanning over 1 year (365 𝑑𝑎𝑦𝑠). The comparison with

true/high-fidelity data for one of the experiments is provided in figure 7-7. Overall,

the learned closure keeps the errors low throughout the 1 year time-period, apart

from a slight increase observed for the OA states after ∼ 200 𝑑𝑎𝑦𝑠.

Multiple experiments were done to study the effects of hyperparameters, such

as batch-time, batch-size, regularization factors, etc., and their effects were similar

to that observed in previous experiments. The peculiar thing which was noticed

in the current experiments resulted from using larger neural network architectures

for the non-Markovian term, which led to the learned coefficients for the Markovian

term having very high variability on repeats of the experiments with the same set of

hyperparameters. This is probably because of the increased expressive power of the

non-Markovian term, which over-shadows the significance of the learned Markovian

term.

7.2.5 Computational Advantage

In Gupta and Lermusiaux, 2021 [229], through a flop-count analysis, we proved that

the additional computational cost due to the presence of neural closure models is

of similar or lower complexity than the existing low-fidelity model. However, in our

current generalized framework, we have additional computational advantages. First,

the size of the neural network architecture is completely independent of the number

of discretized state variables, and only dictated by the number of local features to

be used as inputs to the gnCM terms. Second, as the same neural networks gets

applied locally at every grid points, it naturally is possible to use batches of the

size of the number of grid points. It has been reported that larger batch sizes could

lead to performance speed-ups in forward pass through neural networks during the
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Figure 7-7: Comparison of the ocean acidification models used in Experiments-2b with
and without closure models. The parameter values and concentration units are same
as those provided in figure 7-6. For the generalized neural closure model (gnCM),
the training period is from t = 0 to 60 𝑑𝑎𝑦𝑠, the validation period from t = 60 to
120 𝑑𝑎𝑦𝑠, and the future prediction period from t = 120 to 364 𝑑𝑎𝑦𝑠. Left-column:
The top plot shows the yearly variation of solar radiation and the subsequent plots
depict the aggregated states from the NPZD-OA model with 𝑀𝑍(𝑍) = 𝑚𝑍

2
(𝑍 + 𝑍2)

(ground truth), overlaid with the dynamic mixed layer depth in dashed red lines;
Middle-column: Absolute difference between the corresponding states in the left-
column and those from the NPZ-OA model with 𝑀𝑍(𝑍) = 𝑚𝑍

2
𝑍 (low-fidelity); Right-

column: Absolute difference between the corresponding states from the low-fidelity
model augmented with the learned gnCM and the ground truth. For each case, we
also provide the pair of time-averaged errors (see figure 7-3 for description).
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inference stage [234]. Estimating the leading flop-count order for training is non-

trivial due to the presence of a number of operations ranging from time-integration

of the forward model and adjoint PDEs; automatic differentiation through the neural

networks; creation and use of interpolation functions; the integral to compute the final

derivatives; the gradient descent step, etc. All these operations lead to training costs

which are non-negligible. However, the generalizability of our learned neural closure

over boundary conditions, initial conditions, domain, problem-specific parameters,

etc. makes it easy to justify the one-time training cost.

7.3 Summary

In the present study, we propose a novel extention to neural closure models [229]

which makes them readily generalizable over computational grid resolution, bound-

ary conditions, initial conditions, and also provide interpretability. Our developed

generalized neural closure models (gnCMs) are based on neural partial delay differ-

ential equations (nPDDEs) which augments low-fidelity models in their PDE forms

with both Markovian and non-Markovian closure parameterized with neural networks

(NNs). The melding in the continuous spatio-temporal space is then followed with

numerical discretization. This ensures that the burden of generalization, along with

computing the relevant spatial derivatives is carried by the numerical schemes, and

not by the learned NNs. The space-time continuous form of the gnCMs also makes

it very easy to interpret the learned closures. For efficient training, we also provide

adjoint PDE derivations in the continuous form, thus enabling implementation across

differentiable and non-differentiable computational physics codes, different machine

learning frameworks, and allowing the method to be agnostic to the numerical meth-

ods being used. It further removes any requirements on the availability of regularly

spaced training data in both space and time, and also accounts for errors in the

time-evolution of the states in the presence of neural networks during training.

Through a series of experiments, we demonstrate the interpretability and gener-

alizability of our learned closures. Our first class of simulation experiments use the
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advecting shock problem governed by the KdV-Burgers and the classic Burgers PDE,

where the low-fidelity models are either missing terms or contain errors due to un-

resolved subgrid-scale processes. When presented with a function library containing

terms of spatial derivatives of different orders and their combinations, grid-resolution,

and the Reynolds number as the input to the closure terms, our leaned closure mod-

els find the known missing terms, rediscovers the leading discretization error and a

correction to the non-linear advection term, and also Reynolds number independence.

We find that training on data corresponding to just 3 − 4 combinations of number

of grid points and Reynolds number with particular boundary conditions is sufficient

to ensure that the learned closures are generalizable and outperforms the popular

Smagorinsky subgrid-scale closure model. Our second class of experiments is based

on one-dimensional, non-autonomous ocean acidification models, which couple phys-

ical, biological, and carbonate states, processes and interactions in the ocean. In our

experiments, the low-fidelity models have ambiguity in the functional form of certain

biological processes and lacks in complexity due to missing intermediate state. The

learned closure models are simultaneously able to learn an interpretable functional

form of the ambiguous biological process with the Markovian closure term, and ac-

count for the missing state with the non-Markovian term. In terms of computational

advantage, our new framework naturally lends itself to batching across computational

grid points during the forward pass through the NNs in the closure terms, thus leading

to potential performance speed-ups.

Our present work allows one to learn both Markovian and non-Markovian clo-

sure parameterization based on NNs, and at the same time, tackles the issues of

generalizabity and interpretability which are often the bottleneck when it comes to

using machine learning for computational physics problems. The generalizability and

interpretability properties also makes it easier to justify the often computationally

expensive training stage, thus enabling wider adoption.
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Chapter 8

Conclusions and Future Work

8.1 Summary of the Thesis

Advanced predictive models are commonly used for a variety of research and soci-

etal needs. However, due to the complexity of the real-world phenomena, the level

of scientific understanding, and computational cost consideration, models are always

missing some scales, processes, or variables, which limits the utility of their predic-

tions. Thus, in this thesis, we developed novel Bayesian learning and deep learning

methods to learn and discover missing dynamics in existing / low-fidelity dynamical

system models.

First, we started with a Bayesian approach, which is inherently advantageous for

melding observations with models, as it provides the ability to take into account rigor-

ously all the existing prior knowledge in the learning process, and accompany with the

associated uncertainty estimates. We built upon and drastically extend the approach

developed by Lu and Lermusiaux 2014 & 2021 [10, 8] and Lin, 2020 [9] for the simulta-

neous estimation of states and parameters along with discrimination among candidate

models in high-dimensional stochastic dynamical systems using sparse observations.

However, often none of the candidate models is exactly equal to the true model, or

the functional form is yet completely elusive to scientists. Is is nonetheless common

for the candidate models to be compatible with each other. For example, only certain

functional terms in a model are unknown, or there are competing formulations for the
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terms, or low complexity models are embedded in higher complexity models. These

situations were addressed in two novel ways: first, using special stochastic parame-

ters to unify all the candidates into a single general model; second, parameterizing

unknown functions using stochastic piece-wise polynomial functions, allowing us to

search in an infinite candidate space. Our new methodology not only seamlessly and

rigorously discriminated between existing models, but also extrapolated out of the

space of models to discover newer ones. In all cases, the results were generalizable

and interpretable, and our Bayesian estimations provided much more than maximum

likelihood estimates: they predicted and updated the complete joint probability distri-

bution of states, parameters, and models. All of this was achieved just at the cost of a

single stochastic model simulation with parameter estimation. When the observations

are not sufficiently informative to learn and eliminate all but one model, parameter

value, or state variable field, our Bayesian learning provided the correct multi-modal

probability distributions. Algorithmically, our rigorous PDE-based Bayesian learning

framework combined the Dynamically Orthogonal (DO) equations [11, 12, 13, 14, 15]

with the Gaussian mixture model (GMM) DO filtering algorithm [16, 17] for the si-

multaneous nonlinear, non-Gaussian inference of the states, parameters, and model

equations.

We showcased the performance and applicability of our Bayesian model learning

framework using both, identical-twin and real-world data experiments. Our identical-

twin experiments consisted of lower-trophic-level marine ecosystem and fish models

setup in a two-dimensional idealized domain with flow past a seamount representing

upwelling due to a sill or strait. Experiments had varying levels of complexity due to

different learning objectives and flow and ecosystem dynamics. The flow dynamics

encompassed steady, chaotic, nonhydrostatic features, and was itself uncertain in

some experiments. The learning objectives included state and parameter estimation,

discriminating between functional terms and model complexity, learning unknown

functional terms from scratch, and interdisciplinary learning. We also demonstrated

smoothing backward in time. In the real-world data experiment, we configured a

one-dimensional coupled physical-biological-carbonate model to simulate the state
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conditions on the last day of the second Gulf of Mexico and East Coast Carbon

(GOMECC-2) research cruise in the Gulf of Maine region. Using the observed ocean

acidification data, we learned and discovered a salinity based forcing term added to

the total alkalinity (𝑇𝐴) equation to account for changes in 𝑇𝐴 due to advection of

water masses of different salinity caused due to precipitation, riverine input, and other

oceanographic processes. Simultaneously, we also estimated the multidisciplinary

states and an uncertain parameter. Crucially, we provided probability distributions

for each learned quantity including the learned model functions in all of the learning

experiments.

In Bayesian learning, obtaining an accurate and informative prior is imperative.

Thus, we developed new theory and techniques to improve uncertainty quantification

in multidisciplinary settings using the DO methodology [11, 12, 13, 14, 15] used in

our Bayesian model learning framework. The developed techniques were aimed at

accurately handling stochastic boundary conditions, complex geometries, advection

terms, and to augment the DO subspace as and when needed to capture the effects

of the truncated modes. Further, we also discussed mutual information based ob-

servation planning to answer what, when, and where to measure to best achieve the

learning objectives in resource-constrained environments.

On the deep learning side, we developed a novel, versatile, rigorous, and unified

methodology to learn time-delayed closure parameterizations for missing dynamics.

The need for non-Markovian closure parameterizations was justified using the Mori-

Zwanzig formulation [160, 161, 162] and the presence of inherent delays in real-world

systems [226], especially biological systems [169, 170]. To learn such non-Markovian

closures, our new neural closure models (nCMs) extended neural-ordinary-differential-

equations [33] to neural-delay-differential-equations. We also developed a novel exten-

sion to the nCMs framework which renders it readily interpretable and generalizable

over computational grid resolution, boundary conditions, and initial conditions. Our

developed generalized nCMs are based on neural-partial-delay-differential-equations

(nPDDEs) that augmented low-fidelity models in their original PDE forms with both

Markovian and non-Markovian closure parameterized with neural networks (NNs).
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The melding in the continuous spatiotemporal space was then followed by numerical

discretization, which ensured that the burden of generalization, along with computing

the relevant spatial derivatives is carried by the numerical schemes, and not by the

learned NNs. The space-time continuous form also made it very easy to interpret the

learned closures. We derived the adjoint equations and network architectures needed

to efficiently implement the nDDEs and nPDDEs, agnostic to the specifics of the

time-integration schemes, across differentiable and non-differentiable computational

physics codes, in different machine learning frameworks, and also for non-uniformly-

spaced spatiotemporal training data.

Through simulation experiments, we showed that our neural closure methodol-

ogy drastically improved the long-term predictive capability of low-fidelity models

for the main classes of model truncations. Specifically, our neural closure models

efficiently accounted for truncated modes in reduced-order-models, captured the ef-

fects of subgrid-scale processes in coarse models, and augmented the simplification

of complex and non-autonomous physical-biogeochemical models. We also showed

that there exists an optimal amount of past information to incorporate, and pro-

vided methodology to learn it from data during the training process. Computational

advantages were also discussed.

Applications of our Bayesian learning and neural closure modeling framework are

not just limited to the experiments shown in this thesis. They can be widely extended

to other fields such as control theory, robotics, pharmacokinetic-pharmacodynamics,

chemistry, economics, biological regulatory systems, etc.

8.2 Future Work

Scientific machine learning as a field has a long way to go, and the results and con-

tributions presented in this thesis could be greatly extended in many different ways

and applied to a variety of problems.

Possible future extensions for the Bayesian model learning framework involves, its

incorporation in the recently-developed probabilistic Dynamically Orthogonal prim-

296



itive equation (DO-PE) regional ocean modeling system [235, 236, 237, 238]. The

MSEAS DO-PE is combination of the MSEAS PE model [63, 64] with the DO method-

ology to perform probabilistic predictions in realistic ocean models, extending ensem-

ble approaches [84, 239]. Such combination would enable the use real-world ocean

observations collected by a variety of platforms [96] and would allow realistic model

learning and also possibly the discovery new models still unknown to the scientific

community. Our methodological results could also be applied to other ocean domains

or to other disciplines. For example, it could be utilized to improve and learn plastic

pollution models, which is also poses a threat to humanity [240]. It could also be

useful for ocean acoustics prediction and inference [241, 242], for the optimization of

reduced order models and onboard learning [243, 244, 245], and for the planning of

underwater vehicles [246, 1, 247, 248, 249, 250, 251].

The nCMs framework could be extended to account for uncertainties, and noise

in the training data. This would enable developing new model closures for stochastic

dynamical systems. The optimal delay value learning can be further derived and

implemented for the generalized nCMs framework, which would make it easier to use

the framework out-of-the-box. For applications to realistic models and real-world

ocean data, as for the Bayesian learning, the generalized nCM framework could be

coupled with the MSEAS PE model and applied to other ocean areas and modeling

domains.

Overall, there is a need to convert all the developed frameworks to robust soft-

ware packages, and so enable efficient transfer of knowledge and sharing with other

scientists and develop applications to new problems.
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Appendix A

Dynamically Orthogonal (DO)

Equations

In this appendix, we derive the dynamically orthogonal (DO) equations [11, 12, 14, 13]

used in this paper for efficient reduced-dimension probabilistic evolution of high-

dimensional stochastic dynamical systems with various sources of uncertainties.

Let us consider a general stochastic dynamical system which encompasses the

different model uncertainty scenarios encountered in this paper for the biological

tracer fields (or any other fields such as velocity, temperature, etc.). The stochastic

dynamical system is defined on the domain 𝒟, governing the dynamics of 𝜑(𝑥, 𝑡;𝜔) :

R𝑛× [0, 𝑇 ] → R𝑁𝜑 the stochastic state vector comprising 𝑁𝜑 tracer state fields, where

𝜔 is the realization index belonging to a measurable sample space Ω, and given by,

𝜕𝜑(𝑥, 𝑡;𝜔)

𝜕𝑡
= ℒ[𝜑(𝑥, 𝑡;𝜔),𝜃(𝜔),𝛽(𝜔),𝑥, 𝑡;𝜔] + ̂︀ℒ[𝜑(𝑥, 𝑡;𝜔),𝛼(𝜔),𝑥, 𝑡;𝜔]

+ ̃︀ℒ[𝜑(𝑥, 𝑡;𝜔),𝛾(𝜔),𝑥, 𝑡;𝜔], 𝑥 ∈ 𝒟, 𝑡 ∈ [0, 𝑇 ], 𝜔 ∈ Ω ,

with 𝜑(𝑥, 0;𝜔) = 𝜑𝑜(𝑥;𝜔) ,

and ℬ[𝜑(𝑥, 𝑡;𝜔)] = 𝑏(𝑥, 𝑡;𝜔), 𝑥 ∈ 𝜕𝒟, 𝑡 ∈ [0, 𝑇 ], 𝜔 ∈ Ω .

(A.1)

𝜑𝑜(𝑥;𝜔), ℬ, and 𝑏(𝑥, 𝑡;𝜔) are the stochastic initial conditions, boundary condition

operators, and boundary values respectively. The functional form of the first dynam-

ics term ℒ[∙] is assumed to be known, however contains 𝑁𝜃 uncertain parameters
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𝜃(𝜔). The second term ̂︀ℒ[∙] is uncertain but belongs to a family of candidate func-

tions, and parameterized using 𝑁𝛼 special stochastic parameters 𝛼(𝜔). ̂︀ℒ[∙] could

also contain uncertain regular parameters 𝜃(𝜔). The third term ̃︀ℒ[∙] has a func-

tional form completely unknown, and is parameterized using 𝑁𝛾 stochastic expansion

coefficients 𝛾(𝜔). In the above general stochastic dynamical system, it is also as-

sumed that candidate models of different complexities are combined using 𝑁𝛽 special

stochastic parameters 𝛽(𝜔). The 𝛽𝑘(𝜔)’s multiplied with the original state variables

(as described in Sect. 2.2.1), are assumed to be absorbed into 𝜑𝑖’s and not explicitly

shown, however, 𝛽𝑘(𝜔)’s can still appear on the right-hand-side (RHS), as in ℒ[∙] and̂︀ℒ[∙].

For efficient reduced-dimension probabilistic evolution of high-dimensional sys-

tems, the DO methodology [11, 12, 14, 13, 15] employs a generalized, time-dependent

Karhunen-Loéve decomposition of a stochastic state vector up to arbitrary precision,

𝜑(𝑥, 𝑡;𝜔) = �̄�(𝑥, 𝑡) +
𝑁𝑠∑︁
𝑖=1

𝑌𝑖(𝑡;𝜔)𝜑𝑖(𝑥, 𝑡) . (A.2)

The stochastic state 𝜑(𝑥, 𝑡;𝜔) is decomposed into a mean, �̄�(𝑥, 𝑡) ∈ R𝑁𝜑 , 𝑁𝑠 de-

terministic modes, 𝜑𝑖(𝑥, 𝑡) ∈ R𝑁𝜑 , and stochastic coefficients, 𝑌𝑖(𝑡;𝜔) ∈ R. We can

define the stochastic subspace 𝑉𝑆 = 𝑠𝑝𝑎𝑛{𝜑𝑖(𝑥, 𝑡)}𝑁𝑠
𝑖=1 as the linear space spanned by

the 𝑁𝑠 deterministic modes. They are chosen in such a way that the dominant un-

certainty resides in 𝑉𝑆. Hence, we employ orders of magnitude less number of modes

as compared to the dimension of the discretized state variables or of the domain grid

𝑁𝑥, i.e. 𝑁𝑠 ≪ 𝑁𝜑𝑁𝑥. Similarly, uncertain regular and special parameters can be

split into mean and deviation part, 𝜃(𝜔) = 𝜃 + D𝜃(𝜔), 𝛼(𝜔) = �̄� + D𝛼(𝜔), and

𝛽(𝜔) = 𝛽 + D𝛽(𝜔).

Non-linear terms on the RHS are handled using local Taylor series expansion

around the statistical means of states and parameters. We use the 1st order Taylor
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series expansion for the ℒ[∙] and the ̂︀ℒ[∙] terms,

ℒ[𝜑(𝑥, 𝑡;𝜔),𝜃(𝜔),𝛽(𝜔),𝑥, 𝑡;𝜔] ≈ ℒ|𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

+
𝜕ℒ
𝜕𝜑

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

𝑁𝑠∑︁
𝑖=1

𝜑𝑖𝑌𝑖

+

𝑁𝜃∑︁
𝑖=1

𝜕ℒ
𝜕𝜃𝑖

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

D𝜃
𝑖 +

𝑁𝛽∑︁
𝑖=1

𝜕ℒ
𝜕𝛽

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

D𝛽
𝑖 ,

̂︀ℒ[𝜑(𝑥, 𝑡;𝜔),𝛼(𝜔),𝑥, 𝑡;𝜔] ≈ ̂︀ℒ|𝜑=𝜑,
𝛼=�̄�

+
𝜕 ̂︀ℒ
𝜕𝜑

⃒⃒⃒⃒
𝜑=𝜑,
𝛼=�̄�

𝑁𝑠∑︁
𝑖=1

𝜑𝑖𝑌𝑖

+
𝑁𝛼∑︁
𝑖=1

𝜕 ̂︀ℒ
𝜕𝛼𝑖

⃒⃒⃒⃒
𝜑=𝜑,
𝛼=�̄�

D𝛼
𝑖 .

(A.3)

Using a higher-order polynomial approximation leads to higher accuracy for the DO

evolution, however, at the same time increasing the computational costs. For a more

detailed discussion on the scaling of computational costs with the order of polyno-

mial approximation, please refer to Gupta, 2016 [92]. Handling the ̃︀ℒ[∙] term is less

straightforward because of the need to evaluate the interval in which a state realiza-

tion value lies at every location in the domain (see Sect. 2.2.2). Thus, currently we

evaluate the ̃︀ℒ[∙] term for every state realization in a Monte-Carlo way. However,

this could potentially be circumvented and made more efficient in the future by using

techniques such as clustering [73].

To derive the DO equations, we substitute the KL decomposition (Eq. A.2) into

the stochastic system (Eq. A.1). In order to get a closed-form system, we impose

additional constraints on the modes. As shown in Sapsis and Lermusiaux, 2009 ([11]),

an appropriate constraint is the DO condition: the rate of change of the stochastic

subspace being orthogonal to itself, expressed as,

𝑑𝑉𝑆

𝑑𝑡
⊥ 𝑉𝑆 ⇔

⟨
𝜕𝜑𝑖(𝑥, 𝑡)

𝜕𝑡
,𝜑𝑗(𝑥, 𝑡)

⟩
= 0 ∀𝑖, 𝑗 ∈ {1, ..., 𝑁𝑠} , (A.4)

where the operator ⟨𝑎, 𝑏⟩ represents the spatial inner-product of arbitrary vectors

𝑎 = [𝑎1, 𝑎2, ...]𝑇 and 𝑏 = [𝑏1, 𝑏2, ...]𝑇 defined by ⟨𝑎, 𝑏⟩ =
∫︀
𝒟
∑︀

𝑖(𝑎
𝑖𝑏𝑖)𝑑𝒟. Note that the
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DO condition (Eq. A.4) also implies the preservation of orthogonality for the basis

{𝜑𝑖(𝑥, 𝑡)}𝑁𝑠
𝑖=1 themselves, since,

𝜕

𝜕𝑡
⟨𝜑𝑖(𝑥, 𝑡),𝜑𝑗(𝑥, 𝑡)⟩ =

⟨
𝜕𝜑𝑖(𝑥, 𝑡)

𝜕𝑡
,𝜑𝑗(𝑥, 𝑡)

⟩
+

⟨
𝜑𝑖(𝑥, 𝑡),

𝜕𝜑𝑗(𝑥, 𝑡)

𝜕𝑡

⟩
= 0,

∀𝑖, 𝑗 ∈ {1, ..., 𝑁𝑠} . (A.5)

Substituting the expansion (Eq. A.2) into the stochastic dynamical model (Eq. A.1)

with the help of DO condition (Eq. A.4), a unique set of independent evolution

equations can be derived for mean, modes, and stochastic coefficients. These are the

DO evolution equations (omitting function arguments for brevity),

𝜕�̄�

𝜕𝑡
= ℒ|𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

+ ̂︀ℒ| 𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

+ E[ ̃︀ℒ] ,

𝜕�̃�𝑖

𝜕𝑡
= 𝑄𝑖 −

𝑁𝑠∑︁
𝑗=1

⟨𝑄𝑖, �̃�𝑗⟩�̃�𝑗 ,

𝑑𝑌𝑖
𝑑𝑡

=
𝑁𝑠∑︁
𝑚=1

⟨𝐹𝑚, �̃�𝑖⟩𝑌𝑚 +

𝑁𝜃∑︁
𝑚=1

⟨
𝜕ℒ
𝜕𝜃𝑖

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

, �̃�𝑖

⟩
D𝜃

𝑚 +

𝑁𝛽∑︁
𝑚=1

⟨
𝜕ℒ
𝜕𝛽

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

, �̃�𝑖

⟩
D𝛽

𝑚

+

𝑁𝜃∑︁
𝑚=1

⟨
𝜕 ̂︀ℒ
𝜕𝜃𝑖

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

, �̃�𝑖

⟩
D𝜃

𝑚 +
𝑁𝛼∑︁
𝑚=1

⟨
𝜕 ̂︀ℒ
𝜕𝛼𝑖

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

, �̃�𝑖

⟩
D𝛼

𝑚 +

𝑁𝛽∑︁
𝑚=1

⟨
𝜕 ̂︀ℒ
𝜕𝛽𝑖

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

, �̃�𝑖

⟩
D𝛽

𝑚

+
⟨ ̃︀ℒ − E[ ̃︀ℒ], �̃�𝑖

⟩
,

(A.6)
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where,

𝑄𝑖 =
𝜕ℒ
𝜕𝜑

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

𝜑𝑖 +
𝑁𝑠∑︁
𝑗=1

𝑁𝜃∑︁
𝑛=1

𝐶−1
𝑌𝑖𝑌𝑗

𝐶D𝜃
𝑛𝑌𝑗

𝜕ℒ
𝜕𝜃𝑛

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

+
𝑁𝑠∑︁
𝑗=1

𝑁𝛽∑︁
𝑛=1

𝐶−1
𝑌𝑖𝑌𝑗

𝐶D𝛽
𝑛𝑌𝑗

𝜕ℒ
𝜕𝛽𝑛

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

+
𝜕 ̂︀ℒ
𝜕𝜑

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

𝜑𝑖 +
𝑁𝑠∑︁
𝑗=1

𝑁𝜃∑︁
𝑛=1

𝐶−1
𝑌𝑖𝑌𝑗

𝐶D𝜃
𝑛𝑌𝑗

𝜕 ̂︀ℒ
𝜕𝜃𝑛

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

+
𝑁𝑠∑︁
𝑗=1

𝑁𝛼∑︁
𝑛=1

𝐶−1
𝑌𝑖𝑌𝑗

𝐶D𝛼
𝑛𝑌𝑗

𝜕 ̂︀ℒ
𝜕𝛼𝑛

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

+
𝑁𝑠∑︁
𝑗=1

𝑁𝛽∑︁
𝑛=1

𝐶−1
𝑌𝑖𝑌𝑗

𝐶D𝛽
𝑛𝑌𝑗

𝜕 ̂︀ℒ
𝜕𝛽𝑛

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

+
𝑁𝑠∑︁
𝑗=1

𝐶−1
𝑌𝑖𝑌𝑗

E[𝑌𝑗 ̃︀ℒ] ,

𝐹𝑚 =
𝜕ℒ
𝜕𝜑

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,

𝛽=𝛽

𝜑𝑚 +
𝜕 ̂︀ℒ
𝜕𝜑

⃒⃒⃒⃒
𝜑=𝜑,

𝜃=𝜃,
𝛼=�̄�,

𝛽=𝛽

𝜑𝑚 ,

(A.7)

where E[∙] represents the expectation operator, and 𝐶−1
𝑌𝑖𝑌𝑗

represents the inverse of

the cross-covariance between 𝑖𝑡ℎ and 𝑗𝑡ℎ stochastic coefficients, where 𝐶𝑌𝑖𝑌𝑗
is given

by,

𝐶𝑌𝑖,𝑌𝑗
= E[𝑌𝑖(𝑡;𝜔)𝑌𝑗(𝑡;𝜔)] . (A.8)

We can also obtain the boundary condition for the mean field,

ℬ[𝜑(𝑥, 𝑡)]|𝑥∈𝜕𝒟 = E[𝑏(𝑥, 𝑡;𝜔)] , (A.9)

and for the modes field as,

ℬ[𝜑𝑖(𝑥, 𝑡)]|𝑥∈𝜕𝒟 =
𝑁𝑠∑︁
𝑗=1

E[𝑌𝑗(𝑡;𝜔)𝑏(𝑥, 𝑡;𝜔)]𝐶−1
𝑌𝑖𝑌𝑗

. (A.10)

The initial conditions can be found by approximating the initial field 𝜑𝑜(𝑥;𝜔) using

the DO decomposition. Complete derivation of the DO equations, along with dis-

cussion on computational cost saving can be found in several of the existing papers
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on DO methodology [11, 12, 14, 13]. For a more detailed discussion on handling

stochastic boundary condition, please refer to Gupta, 2016 & 2022 ([92, 252]).

Furthermore, special attention needs to be given to the difference in the amount

and magnitude of uncertainty in different state variables, which is often the case in

multidisciplinary dynamics. This can be achieved by using appropriate scaling while

defining the inner-product operator. Let 𝜑𝑖(𝑥, 𝑡) = [𝜑1
𝑖 (𝑥, 𝑡), ..., 𝜑

𝑁𝜑

𝑖 (𝑥, 𝑡)], and the

inner-product be defined as,

⟨𝜑𝑖(𝑥, 𝑡),𝜑𝑗(𝑥, 𝑡)⟩ =
1

|𝒟|

∫︁
𝒟

𝑁𝜑∑︁
𝑘

(︃
1

𝜎2
𝑛𝑑,𝑘

𝜑𝑘
𝑖 𝜑

𝑘
𝑗

)︃
𝑑𝒟 , (A.11)

where |𝒟| is the area (volume) of the domain, while 𝜎𝑛𝑑,∙ represents the expected

standard deviation of the corresponding state variable. 𝜎𝑛𝑑,∙ determines the relative

weighting given to different state variables during the DO evolution.
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Appendix B

Gaussian Mixture Model (GMM)-DO

Filter

The DO methodology introduced in the Appendix A helps to effectively evolve uncer-

tainty between assimilation steps, i.e. provide prior probability distributions for the

state variables. For the assimilation step, we employ a framework based on Gaussian

Mixture Models (in order to preserve non-Gaussian statistics of state variables) and

Bayes law, called the GMM-DO filter. The GMM-DO filter consists of a recursive

succession of two steps: a forecast step and an update step. Due to the affine trans-

formation between stochastic coefficients and state variables, a Bayesian update of

the state variable distribution can be achieved through an equivalent update of the

stochastic coefficient distribution. Hence, the GMM-DO filter takes advantage of this

fact to achieve efficient reduced-dimension Bayesian state variable inference [16, 17].

In this section, we will only focus on deriving the GMM-DO filter for state variables.

We start from either a discretized initial stochastic state distribution in the DO

form or the posterior state distribution from the assimilation of data at time 𝑡𝑘−1, i.e.

the GMM-DO posterior at time 𝑡𝑘−1, Φ𝑎
𝑘−1 = Φ̄𝑎

𝑘−1 + Φ̃𝑎
𝑘−1𝑌

𝑎
𝑘−1 where, in general,

Φ̄(𝑡) ∈ R𝑁𝜑𝑁𝑥 represents the discretized mean, Φ̃(𝑡) ∈ R𝑁𝜑𝑁𝑥×𝑁𝑠 represents the matrix

of discretized modes and 𝑌 (𝑡;𝜔) ∈ R𝑁𝑠 or 𝑌 (𝑡) ∈ R𝑁𝑠×𝑁𝑟 represents stochastic

coefficient matrix with 𝑁𝑟 being the number of Monte-Carlo samples. Next, we use

the DO equations (A.6 & A.7) to evolve the probabilistic description of the state
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vector in time, arriving at the forecast for observation time 𝑡𝑘, Φ𝑓
𝑘 = Φ̄𝑓

𝑘 + Φ̃
𝑓

𝑘𝑌
𝑓
𝑘 .

Observations are made available at time 𝑡𝑘 in accordance with the observation model

equation (Eq. 2.3; for brevity, we drop the subscript time index 𝑘). Now, the overall

goal is to update the mean (Φ̄𝑓 ) and stochastic coefficients (𝑌 𝑓 ) of the forecast

in accordance with the realized observations 𝑦 to obtain GMM-DO estimate of the

posterior mean (Φ̄𝑎) and stochastic coefficients (𝑌 𝑎).

The first step is approximating the prior probability distribution of the stochastic

coefficients in the DO subspace using a GMM,

𝑝𝑌 𝑓 (𝑌 𝑓 ) ≈
𝑁GMM∑︁
𝑗=1

𝜋𝑓
𝑌 ,𝑗 ×𝒩 (𝑌 𝑓 ;𝜇𝑓

𝑌 ,𝑗,Σ
𝑓
𝑌 ,𝑗) ∀𝑌 𝑓 ∈ R𝑁𝑠 , (B.1)

where 𝑁GMM is the to-be-determined number of GMM components, 𝜋𝑓
𝑌 ,𝑗 ∈ [0, 1] the

𝑗𝑡ℎ component weight (also
∑︀𝑁GMM

𝑗=1 𝜋𝑓
𝑌 ,𝑗 = 1), 𝜇𝑓

𝑌 ,𝑗 the 𝑗𝑡ℎ component mean vec-

tor and Σ𝑓
𝑌 ,𝑗 the 𝑗𝑡ℎ component covariance matrix. This approximation is found

by performing a semiparametric fit to the Monte-Carlo samples used to numerically

evolve the stochastic coefficients. Specifically, the expectation-maximization (EM)

algorithm for GMMs [253] is used to find maximum likelihood estimate for the GMM

parameters 𝜋𝑓
𝑌 ,𝑗, 𝜇

𝑓
𝑌 ,𝑗 and Σ𝑓

𝑌 ,𝑗, while the selection of the number of GMM compo-

nents (𝑁GMM) is determined by the Bayesian Information Criterion (BIC) [254] by

successively fitting GMMs of increasing complexity (i.e. GMM = 1, 2, 3, ...) until a

minimum of the BIC is obtained.

Finally, we perform a Bayesian update of the GMM prior of stochastic coefficients

based on the Gaussian observation model (Eq. 2.3) to get another GMM by conjugacy

[16]. The posterior stochastic coefficient distribution is given by,

𝑝𝑌 𝑎(𝑌 𝑎) ≈
𝑁GMM∑︁
𝑗=1

𝜋𝑎
𝑌 ,𝑗 ×𝒩 (𝑌 𝑎;𝜇𝑎

𝑌 ,𝑗,Σ
𝑎
𝑌 ,𝑗) , ∀𝑌 𝑎 ∈ R𝑁𝑠 , (B.2)
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where,

𝜋𝑎
𝑌 ,𝑗 =

𝜋𝑓
𝑌 ,𝑗 ×𝒩 (𝑦; �̃�𝜇𝑓

𝑌 ,𝑗, �̃�Σ𝑓
𝑌 ,𝑗�̃�

𝑇 + 𝑅)∑︀𝑁GMM
𝑚=1 𝜋𝑓

𝑌 ,𝑚 ×𝒩 (𝑦; �̃�𝜇𝑓
𝑌 ,𝑚, �̃�Σ𝑓

𝑌 ,𝑚�̃�
𝑇 + 𝑅)

, ∀𝑗 ∈ {1, ..., 𝑁GMM} ,

𝜇𝑎
𝑌 ,𝑗 = �̂�𝑎

𝑌 ,𝑗 −
𝑁GMM∑︁
𝑚=1

𝜋𝑎
𝑌 ,𝑚 × �̂�𝑎

𝑌 ,𝑚 , ∀𝑗 ∈ {1, ..., 𝑁GMM} ,

Σ𝑎
𝑌 ,𝑗 = (𝐼 − �̃�𝑗�̃�)Σ𝑓

𝑌 ,𝑗 , ∀𝑗 ∈ {1, ..., 𝑁GMM} ,

(B.3)

with the following definitions,

�̃� = 𝐻Φ̃ ,

𝑦 = 𝑦 −𝐻Φ̄𝑓 ,

�̂�𝑎
𝑌 ,𝑗 = 𝜇𝑓

𝑌 ,𝑗 + �̃�𝑗(𝑦 − �̃�𝜇𝑓
𝑌 ,𝑗) , ∀𝑗 ∈ {1, ..., 𝑁GMM} ,

�̃�𝑗 = Σ𝑓
𝑌 ,𝑗�̃�

𝑇 (�̃�Σ𝑓
𝑌 ,𝑗�̃�

𝑇 + 𝑅)−1 ≡ Φ̃
𝑇
𝐾𝑗 , ∀𝑗 ∈ {1, ..., 𝑁GMM} .

(B.4)

Using an affine transformation, we can show that the posterior GMM stochastic

coefficient distribution (Eq. B.2) is equivalent to the posterior GMM state space

distribution, if the state vector mean is updated according to,

Φ̄𝑎 = Φ̄𝑓 + Φ̃

𝑁GMM∑︁
𝑗=1

𝜋𝑎
𝑌 ,𝑗 × �̂�𝑎

𝑌 ,𝑗 . (B.5)

In this whole update process, no matrices were manipulated of size larger than

𝑁𝜑𝑁𝑥 × 𝑆 ≪ (𝑁𝜑𝑁𝑥)2, thus, making this method computationally feasible for large-

dimensional systems.

At last, new Monte-Carlo samples are drawn from the posterior GMM stochastic

coefficient distribution (Eq. B.2) and are dynamically evolved using the DO evolution

equations until new observations come in and the filtering process is repeated. Hence,

the GMM-DO filter along with the DO evolution equations provide an efficient and

computationally feasible Bayesian inference methodology for high-dimensional, non-

linear stochastic dynamical systems.
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Appendix C

State Augmentation

In order to perform simultaneous estimation of uncertain parameters and states, we

employ state augmentation [58]. We start by decomposing the stochastic regular

parameters (𝜃(𝜔) ∈ R𝑁𝜃), special parameters (𝛼(𝜔) ∈ R𝑁𝛼 and 𝛽(𝜔) ∈ R𝑁𝛽), and

expansion coefficients (𝛾(𝜔) ∈ R𝑁𝛾 ) into their means and uncertain parts,

𝜃(𝜔) = 𝜃 + D𝜃(𝜔) ,

𝛼(𝜔) = �̄� + D𝛼(𝜔) ,

𝛽(𝜔) = 𝛽 + D𝛽(𝜔) ,

𝛾(𝜔) = 𝛾 + D𝛾(𝜔) .

(C.1)

The augmented state vector can be written as,

Φaug(𝑡;𝜔) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃(𝜔)

𝛼(𝜔)

𝛽(𝜔)

𝛾(𝜔)

Φ(𝑡;𝜔)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R𝑁𝜑𝑁𝑥+𝑁𝜃+𝑁𝛼+𝑁𝛽+𝑁𝛾 . (C.2)

Now, let us write the DO decomposition for this new augmented system. We define a

new coefficient matrix in which each parameter uncertainty amounts to an additional
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scalar stochastic coefficient,

𝐷𝑌 (𝑡;𝜔) =
[︁
D𝜃(𝜔)|D𝛼(𝜔)|D𝛽(𝜔)|D𝛾(𝜔)|𝑌 (𝑡;𝜔)

]︁
∈ R𝑁𝑠+𝑁𝜃+𝑁𝛼+𝑁𝛽+𝑁𝛾 , (C.3)

a new modes matrix with parameters having unit modes,

Φ̃aug(𝑡) =

⎡⎣𝐼 0

0 Φ̃(𝑡)

⎤⎦ ∈ R(𝑁𝜑𝑁𝑥+𝑁𝜃+𝑁𝛼+𝑁𝛽+𝑁𝛾)×(𝑁𝑠+𝑁𝜃+𝑁𝛼+𝑁𝛽+𝑁𝛾) , (C.4)

and a new augmented mean vector,

Φ̄aug(𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃

�̄�

𝛽

𝛾

Φ̄(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R𝑁𝜑𝑁𝑥+𝑁𝜃+𝑁𝛼+𝑁𝛽+𝑁𝛾 . (C.5)

Thus, the DO decomposition of the augmented state is given by,

Φaug(𝑡;𝜔) = Φ̄aug(𝑡) +

𝑁𝑠+𝑁𝜃+𝑁𝛼
+𝑁𝛽+𝑁𝛾∑︁

𝑖=1

Φ̃aug,𝑖(𝑡)𝐷𝑌𝑖(𝑡;𝜔)

= Φ̄aug(𝑡) + Φ̃aug(𝑡)𝐷𝑌 (𝑡;𝜔) .

(C.6)

We can also define the new observation model as,

𝒴 =
[︁
0 𝐻

]︁
Φaug + 𝑉 , 𝑉 ∼ 𝒩 (0,𝑅)

= 𝐻augΦaug + 𝑉 ,
(C.7)

where 𝐻 is the original observation matrix, and 𝐻aug ∈ R𝑁𝑦×(𝑁𝜑𝑁𝑥+𝑁𝜃+𝑁𝛼+𝑁𝛽+𝑁𝛾)

the augmented observation matrix, while Φaug is the augmented state ensemble.

We can consider the above augmented state vector as forecast for time 𝑡𝑘, and

follow the GMM-DO algorithm presented in appendix B to obtain posterior distribu-

tions of the parameters and state variables. One of the main advantages of the above
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methodology is the fact that it does not share the same stochastic coefficients between

the states and parameters but still captures their joint distribution. Sometimes there

can be orders of magnitude difference between state variables and parameters. In

such cases, sharing of stochastic coefficients can lead to inefficient DO representation

and evolution as they might require additional modes to effectively capture and evolve

the joint uncertainty between states and parameters, thus increasing our computa-

tional cost. It might also be the case, that the presence of large numbers of uncertain

parameters requires additional GMM components while fitting the augmented coeffi-

cient matrix. Because assimilation happens only at sparse times, this would not cause

any significant increase in the overall computational costs.
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Appendix D

Supplementary Information: Neural

Closure Models for Dynamical

Systems

D.1 Mori-Zwanzig Formulation

Without loss of generality, the full nonlinear dynamical system model is written as,

𝑑𝑢𝑘(𝑡)

𝑑𝑡
= 𝑅𝑘(𝑢(𝑡), 𝑡) , with 𝑢𝑘(0) = 𝑢0𝑘 , 𝑘 ∈ F . (D.1)

The full state vector is 𝑢 = ({𝑢𝑘}), 𝑘 ∈ F = R∪U, where R is the set corresponding

to the resolved variables (e.g. coarse field or reduced variables), and U the set cor-

responding to the unresolved variables (e.g. subgrid field or complement variables),

which as a union, F, form the set for full space of variables. We also denote 𝑢 = {�̂�, �̃�}

where �̂� = ({𝑢𝑘}), 𝑘 ∈ R and �̃� = ({𝑢𝑘}), 𝑘 ∈ U. Similarly, 𝑢0 = {�̂�0, �̃�0}, with

�̂�0 = ({𝑢0𝑘}), ∈ R and �̃�0 = ({𝑢0𝑘}), 𝑘 ∈ U.

We can write the above non-linear system of ODEs (Eq. D.1) exactly as a system

of linear PDEs by casting it in the Liouville form,

𝜕𝜑𝑘

𝜕𝑡
= 𝐿𝜑𝑘 , with 𝜑𝑘(𝑢0, 0) = 𝑢0𝑘 , 𝑘 ∈ F , (D.2)
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where the Liouville operator is 𝐿 =
∑︀

𝑖∈F𝑅𝑖(𝑢0)
𝜕

𝜕𝑢0𝑖
, with 𝑅𝑖 denoting element 𝑖 of

the full model dynamics (Eq. D.1). The solution of Eq. D.2 is given by 𝑢𝑘(𝑢0, 𝑡) =

𝜑𝑘(𝑢0, 𝑡) = 𝑒𝑡𝐿𝜑𝑘(𝑢0, 0). Hence, we can also rewrite Eq. D.2 as,

𝜕

𝜕𝑡
𝑒𝑡𝐿𝑢0𝑘 = 𝐿𝑒𝑡𝐿𝑢0𝑘 , 𝑘 ∈ F . (D.3)

Now, let 𝑃 be a orthogonal projection on the space of functions of the resolved

initial conditions �̂�0, such that, for any nonlinear function ℎ(𝑢0) = ℎ({�̂�0, �̃�0}), then

𝑃 (ℎ(𝑢0)) = ℎ(�̂�0). Similarly, 𝑄 = 𝐼 − 𝑃 is the projection on the null space of

𝑃 . It is important to note that the projectors 𝑃 and 𝑄 used in this formulation

are fundamentally different from 𝐿2 projectors. Using the Dyson’s formula 𝑒𝑡𝐿 =

𝑒𝑡𝑄𝐿 +
∫︀ 𝑡

0
𝑒(𝑡−𝑠)𝐿𝑃𝐿𝑒𝑠𝑄𝐿𝑑𝑠, and noting that 𝐿 and 𝑒𝑡𝐿 commute, we can then exactly

rewrite Eq. D.3 as,

𝜕

𝜕𝑡
𝑒𝑡𝐿𝑢0𝑘 = 𝑒𝑡𝐿𝑃𝐿𝑢0𝑘 + 𝑒𝑡𝑄𝐿𝑄𝐿𝑢0𝑘 +

∫︁ 𝑡

0

𝑒(𝑡−𝑠)𝐿𝑃𝐿𝑒𝑠𝑄𝐿𝑄𝐿𝑢0𝑘𝑑𝑠 , 𝑘 ∈ R , (D.4)

which is called the Mori-Zwanzig (MZ) formulation. Importantly, the above equation

is an exact representation of Eq. D.3 for the resolved components. For convenience, we

denote 𝐹𝑘(𝑢0, 𝑡) = 𝑒𝑡𝑄𝐿𝑄𝐿𝑢0𝑘 and 𝐾𝑘(𝑢0, 𝑡) = 𝑃𝐿𝐹𝑘(𝑢0, 𝑡), and thus further rewrite

Eq. D.4 as,

𝜕

𝜕𝑡
𝑢𝑘(𝑢0, 𝑡) = 𝑅𝑘(�̂�(𝑢0, 𝑡))⏟  ⏞  

Markovian

+𝐹𝑘(𝑢0, 𝑡)⏟  ⏞  
Noise

+

∫︁ 𝑡

0

𝐾𝑘(�̂�(𝑢0, 𝑡− 𝑠), 𝑠)𝑑𝑠⏟  ⏞  
Memory

, 𝑘 ∈ R ,
(D.5)

where 𝑅𝑘 is again the same as that in the full model dynamics given by Eq. D.1.

Eq. D.5 provides useful guidance for closure modeling. The first term in Eq. D.5 is

the Markovian term dependent only on the values of the variables at the present time,

while the closure consists of two terms: the noise term and a memory term that is

non-Markovian. We can further simplify Eq. D.5 by applying the 𝑃 projection and

using the fact that the noise term lives in the null space of 𝑃 for all times, which

could be easily proved. For ROMs with initial conditions devoid of any unresolved
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dynamics, i.e. �̃�0 = 0 and thus 𝑢0 = �̂�0, we then retain the exact dynamics after the

projection step, noticing in this case that 𝑃𝑢𝑘(𝑢0, 𝑡) = 𝑢𝑘(�̂�0, 𝑡),∀𝑘 ∈ R,

𝜕

𝜕𝑡
𝑢𝑘(�̂�0, 𝑡) = 𝑃𝑅𝑘(�̂�(�̂�0, 𝑡)) + 𝑃

∫︁ 𝑡

0

𝐾𝑘(�̂�(�̂�0, 𝑡− 𝑠), 𝑠)𝑑𝑠, 𝑘 ∈ R . (D.6)

Hence, for such systems, the closure model would only consider the non-Markovian

memory term. The above derivation of the MZ formulation has been adapted from

[160, 2, 162].

D.2 Adjoint Equations for Neural Delay Differential

Equations

Here, we provide a detailed derivation of adjoint equations for neural DDEs with

discrete and distributed delays. For related derivations, we refer to [255, 212].

D.2.1 Discrete-nDDE

The neural-network parameterized discrete DDE is given by,

𝑑𝑢(𝑡)

𝑑𝑡
= 𝑓𝑅𝑁𝑁(𝑢(𝑡), 𝑢(𝑡− 𝜏1), ..., 𝑢(𝑡− 𝜏𝐾), 𝑡; 𝜃), 𝑡 ∈ (0, 𝑇 ]

𝑢(𝑡) = ℎ(𝑡), 𝑡 ≤ 0

(D.7)

where 𝜏1, ..., 𝜏𝐾 are 𝐾 number of discrete delays and 𝑓𝑅𝑁𝑁(∙, 𝑡; 𝜃) is any recurrent

architecture with trainable parameters 𝜃. Let data be available at 𝑀 times, 𝑇1 < ... <

𝑇𝑀 ≤ 𝑇 . Our goal is to optimize the total loss function, ℒ =
∫︀ 𝑇

0

∑︀𝑀
𝑖=1 𝑙(𝑢(𝑡))𝛿(𝑡−𝑇𝑖)𝑑𝑡

(where 𝑙(∙) are scalar loss functions such as mean-squared-error (MSE), and 𝛿(𝑡) is

the Kronecker delta function), given the data and nDDE.
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We first start by writing the Lagrangian for the above system,

𝐿 =ℒ(𝑢(𝑡)) +

∫︁ 𝑇

0

𝜆𝑇 (𝑡) (𝑑𝑡𝑢(𝑡) − 𝑓𝑅𝑁𝑁(𝑢(𝑡), 𝑢(𝑡− 𝜏1), ..., 𝑢(𝑡− 𝜏𝐾), 𝑡; 𝜃)) 𝑑𝑡

+

∫︁ 0

−𝜏𝐾

𝜇𝑇 (𝑡)(𝑢(𝑡) − ℎ(𝑡))𝑑𝑡

(D.8)

where 𝜆(𝑡) and 𝜇(𝑡) are the Lagrangian variables, and where, for brevity, we use
𝜕

𝜕(∙) ≡ 𝜕(∙) and 𝑑
𝑑(∙) = 𝑑(∙) from now on. We also assume that the loss function (ℒ)

and the initial conditions (ℎ(𝑡), 𝑡 ≤ 0) are independent of 𝜃. Hence, the derivative of

the Lagrangian w.r.t. 𝜃 is given by,

𝑑𝜃𝐿 =𝜕𝑢(𝑡)ℒ(𝑢(𝑡))𝑑𝜃𝑢(𝑡) +

∫︁ 𝑇

0

𝜆𝑇 (𝑑𝜃𝑑𝑡𝑢(𝑡) − 𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝜃𝑢(𝑡)

− 𝜕𝑢(𝑡−𝜏1)𝑓𝑅𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝜃𝑢(𝑡− 𝜏1)...− 𝜕𝑢(𝑡−𝜏𝐾)𝑓𝑅𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝜃𝑢(𝑡− 𝜏𝐾)

− 𝜕𝜃𝑓𝑅𝑁𝑁(∙, 𝑡; 𝜃))𝑑𝑡.

(D.9)

Using integration-by-parts, we can write,

∫︁ 𝑇

0

𝜆𝑇𝑑𝜃𝑑𝑡𝑢(𝑡)𝑑𝑡 = 𝜆𝑇 (𝑇 )𝑑𝜃𝑢(𝑇 ) − 𝜆𝑇 (0)𝑑𝜃𝑢(0) −
∫︁ 𝑇

0

𝑑𝑡𝜆
𝑇 (𝑡)𝑑𝜃𝑢(𝑡)𝑑𝑡 (D.10)
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and by change of variables,

∫︁ 𝑇

0

𝜆𝑇 (𝑡)𝜕𝑢(𝑡−𝜏𝑖)𝑓𝑅𝑁𝑁(𝑢(𝑡), 𝑢(𝑡− 𝜏1), ..., 𝑢(𝑡− 𝜏𝐾), 𝑡; 𝜃)𝑑𝜃𝑢(𝑡− 𝜏𝑖)𝑑𝑡

=

∫︁ 𝑇−𝜏𝑖

−𝜏𝑖

𝜆𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(𝑢(𝑡+ 𝜏𝑖), 𝑢(𝑡− 𝜏1 + 𝜏𝑖), ..., 𝑢(𝑡− 𝜏𝐾 + 𝜏𝑖), 𝑡+ 𝜏𝑖; 𝜃)𝑑𝜃𝑢(𝑡)𝑑𝑡

=

∫︁ 𝑇

0

𝜆𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(𝑢(𝑡+ 𝜏𝑖), 𝑢(𝑡− 𝜏1 + 𝜏𝑖), ..., 𝑢(𝑡− 𝜏𝐾 + 𝜏𝑖), 𝑡+ 𝜏𝑖; 𝜃)𝑑𝜃𝑢(𝑡)𝑑𝑡

+

∫︁ 0

−𝜏𝑖

𝜆𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(𝑢(𝑡+ 𝜏𝑖), 𝑢(𝑡− 𝜏1 + 𝜏𝑖), ..., 𝑢(𝑡− 𝜏𝐾 + 𝜏𝑖), 𝑡+ 𝜏𝑖; 𝜃)𝑑𝜃𝑢(𝑡)𝑑𝑡

−
∫︁ 𝑇

𝑇−𝜏𝑖

𝜆𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(𝑢(𝑡+ 𝜏𝑖), 𝑢(𝑡− 𝜏1 + 𝜏𝑖), ..., 𝑢(𝑡− 𝜏𝐾 + 𝜏𝑖), 𝑡+ 𝜏𝑖; 𝜃)𝑑𝜃𝑢(𝑡)𝑑𝑡

=

∫︁ 𝑇

0

𝜆𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(𝑢(𝑡+ 𝜏𝑖), 𝑢(𝑡− 𝜏1 + 𝜏𝑖), ..., 𝑢(𝑡− 𝜏𝐾 + 𝜏𝑖), 𝑡+ 𝜏𝑖; 𝜃)𝑑𝜃𝑢(𝑡)𝑑𝑡

+

∫︁ 0

−𝜏𝑖

𝜆𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(𝑢(𝑡+ 𝜏𝑖), 𝑢(𝑡− 𝜏1 + 𝜏𝑖), ..., 𝑢(𝑡− 𝜏𝐾 + 𝜏𝑖), 𝑡+ 𝜏𝑖; 𝜃)𝑑𝜃𝑢(𝑡)𝑑𝑡 .

(D.11)

We further assume 𝜆(𝑡) = 0, 𝑡 ≥ 𝑇 . Inserting everything back into Eq. D.9, we

obtain,

𝑑𝜃𝐿 =

∫︁ 𝑇

0

(︃
𝑀∑︁
𝑖=1

𝜕𝑢(𝑡)𝑙(𝑢(𝑡))𝛿(𝑡− 𝑇𝑖) − 𝑑𝑡𝜆
𝑇 (𝑡) − 𝜆𝑇 (𝑡)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(𝑢(𝑡), 𝑢(𝑡− 𝜏1), ..., 𝑢(𝑡− 𝜏𝐾), 𝑡; 𝜃)

−
𝐾∑︁
𝑖=1

𝜆𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(𝑢(𝑡+ 𝜏𝑖), 𝑢(𝑡− 𝜏1 + 𝜏𝑖), ..., 𝑢(𝑡− 𝜏𝐾 + 𝜏𝑖), 𝑡+ 𝜏𝑖; 𝜃)

)︃
𝑑𝜃𝑢(𝑡)𝑑𝑡

−
∫︁ 𝑇

0

𝜆𝑇 (𝑡)𝜕𝜃𝑓𝑅𝑁𝑁(𝑢(𝑡), 𝑢(𝑡− 𝜏1), ..., 𝑢(𝑡− 𝜏𝐾), 𝑡; 𝜃)𝑑𝑡+ 𝜆𝑇 (𝑇 )𝑑𝜃𝑢(𝑇 ) − 𝜆𝑇 (0)𝑑𝜃𝑢(0)

+
𝐾∑︁
𝑖=1

∫︁ 0

−𝜏𝑖

𝜆𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(𝑢(𝑡+ 𝜏𝑖), 𝑢(𝑡− 𝜏1 + 𝜏𝑖), ..., 𝑢(𝑡− 𝜏𝐾 + 𝜏𝑖), 𝑡+ 𝜏𝑖)𝑑𝜃𝑢(𝑡)𝑑𝑡 .

(D.12)

The last two term in the above equation is zero because of the user-defined initial

condition are independent of 𝜃. Further, we aim to eliminate of 𝑑𝜃𝑢(𝑡) everywhere,

because avoiding the need to compute it explicitly is the main premise of the adjoint
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method. We can do this if we assume,

𝑑𝑡𝜆
𝑇 (𝑡) =

𝑀∑︁
𝑖=1

𝜕𝑢(𝑡)𝑙(𝑢(𝑡))𝛿(𝑡− 𝑇𝑖) − 𝜆𝑇 (𝑡)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(𝑢(𝑡), 𝑢(𝑡− 𝜏1), ..., 𝑢(𝑡− 𝜏𝐾), 𝑡; 𝜃)

−
𝐾∑︁
𝑖=1

𝜆𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑓𝑅𝑁𝑁(𝑢(𝑡+ 𝜏𝑖), 𝑢(𝑡− 𝜏1 + 𝜏𝑖), ..., 𝑢(𝑡− 𝜏𝐾 + 𝜏𝑖), 𝑡+ 𝜏𝑖; 𝜃), 𝑡 ∈ [0, 𝑇 )

𝜆(𝑡) = 0, 𝑡 ≥ 𝑇

(D.13)

Finally, after solving the above adjoint equation in 𝜆(𝑡), we can compute the required

derivative 𝑑𝜃𝐿 as,

𝑑𝜃𝐿 = −
∫︁ 𝑇

0

𝜆𝑇 (𝑡)𝜕𝜃𝑓𝑅𝑁𝑁(𝑢(𝑡), 𝑢(𝑡− 𝜏1), ..., 𝑢(𝑡− 𝜏𝐾), 𝑡; 𝜃)𝑑𝑡 . (D.14)

D.2.2 Distributed-nDDE

The neural network parameterized distributed DDE is given by,

𝑑𝑢(𝑡)

𝑑𝑡
= 𝑓𝑁𝑁

(︂
𝑢(𝑡),

∫︁ 𝑡−𝜏1

𝑡−𝜏2

𝑔𝑁𝑁(𝑢(𝜏), 𝜏 ;𝜑)𝑑𝜏, 𝑡; 𝜃

)︂
, 𝑡 ∈ (0, 𝑇 ]

𝑢(𝑡) = ℎ(𝑡), 𝑡 ≤ 0

(D.15)

where 𝜏2 ≥ 𝜏1 are the delay amounts; and 𝑓𝑁𝑁(∙; 𝜃), 𝑔𝑁𝑁(∙;𝜑) are neural-networks

with trainable parameters 𝜃, 𝜑 respectively. By introducing a new variable 𝑦(𝑡) =∫︀ 𝑡−𝜏1
𝑡−𝜏2

𝑔𝑁𝑁(𝑢(𝜏), 𝜏 ;𝜑)𝑑𝜏 , we can rewrite the above equation as a coupled discrete

DDEs,

𝑑𝑢(𝑡)

𝑑𝑡
= 𝑓𝑁𝑁 (𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃) , 𝑡 ∈ (0, 𝑇 ]

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑔𝑁𝑁(𝑢(𝑡− 𝜏1), 𝑡− 𝜏1;𝜑) − 𝑔𝑁𝑁(𝑢(𝑡− 𝜏2), 𝑡− 𝜏2;𝜑), 𝑡 ∈ (0, 𝑇 ]

𝑢(𝑡) = ℎ(𝑡), 𝜏2 ≤ 𝑡 ≤ 0

𝑦(0) =

∫︁ −𝜏1

−𝜏2

𝑔𝑁𝑁(ℎ(𝑡), 𝑡;𝜑)𝑑𝑡

(D.16)
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Also, let data be available at 𝑀 times, 𝑇1 < ... < 𝑇𝑀 ≤ 𝑇 . Our goal is to optimize the

scalar loss function, ℒ(𝑢(𝑡)) =
∫︀ 𝑇

0

∑︀𝑀
𝑖=1 𝑙(𝑢(𝑡))𝛿(𝑡− 𝑇𝑖)𝑑𝑡, given the data and nDDE.

We will again start by writing the Lagrangian for this setup,

𝐿 =ℒ(𝑢(𝑡)) +

∫︁ 𝑇

0

𝜆𝑇 (𝑡)(𝑑𝑡𝑢(𝑡) − 𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)) 𝑑𝑡

+

∫︁ 𝑇

0

𝜇𝑇 (𝑡) (𝑑𝑡𝑦(𝑡) − 𝑔𝑁𝑁(𝑢(𝑡− 𝜏1), 𝑡− 𝜏1;𝜑) + 𝑔𝑁𝑁(𝑢(𝑡− 𝜏2), 𝑡− 𝜏2;𝜑)) 𝑑𝑡

+

∫︁ 0

−𝜏2

𝛾𝑇 (𝑡)(𝑢(𝑡) − ℎ(𝑡))𝑑𝑡+ 𝛼𝑇

(︂
𝑦(0) −

∫︁ −𝜏1

−𝜏2

𝑔𝑁𝑁(ℎ(𝑡), 𝑡;𝜑)𝑑𝑡

)︂
,

(D.17)

where 𝜆(𝑡), 𝜇(𝑡), 𝛾(𝑡), and 𝛼 are the Lagrangian variables. Now in this case, we need

to obtain the derivatives of the Lagrangian w.r.t. both 𝜃 and 𝜑. We will first obtain

𝑑𝜃𝐿,

𝑑𝜃𝐿 =𝜕𝑢(𝑡)ℒ(𝑢(𝑡))𝑑𝜃𝑢(𝑡) +

∫︁ 𝑇

0

𝜆𝑇 (𝑡)
(︀
𝑑𝜃𝑑𝑡𝑢(𝑡) − 𝜕𝑢(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)𝑑𝜃𝑢(𝑡)

−𝜕𝑦(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)𝑑𝜃𝑦(𝑡) − 𝜕𝜃𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)
)︀
𝑑𝑡

+

∫︁ 𝑇

0

𝜇𝑇 (𝑡)
(︀
𝑑𝜃𝑑𝑡𝑦(𝑡) − 𝜕𝑢(𝑡−𝜏1)𝑔𝑁𝑁(𝑢(𝑡− 𝜏1), 𝑡− 𝜏1;𝜑)𝑑𝜃𝑢(𝑡− 𝜏1)

+𝜕𝑢(𝑡−𝜏2)𝑔𝑁𝑁(𝑢(𝑡− 𝜏2), 𝑡− 𝜏2;𝜑)𝑑𝜃𝑢(𝑡− 𝜏2)
)︀
𝑑𝑡 .

(D.18)

Using integration-by-parts, we can write,

∫︁ 𝑇

0

𝜆𝑇 (𝑡)𝑑𝜃𝑑𝑡𝑢(𝑡)𝑑𝑡 =𝜆𝑇 (𝑇 )𝑑𝜃𝑢(𝑇 ) − 𝜆𝑇 (0)𝑑𝜃𝑢(0) −
∫︁ 𝑇

0

𝑑𝑡𝜆
𝑇 (𝑡)𝑑𝜃𝑢(𝑡)𝑑𝑡∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝑑𝜃𝑑𝑡𝑦(𝑡)𝑑𝑡 =𝜇𝑇 (𝑇 )𝑑𝜃𝑦(𝑇 ) − 𝜇𝑇 (0)𝑑𝜃𝑦(0) −
∫︁ 𝑇

0

𝑑𝑡𝜇
𝑇 (𝑡)𝑑𝜃𝑦(𝑡)𝑑𝑡

(D.19)
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and by change of variables,

∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝜕𝑢(𝑡−𝜏𝑖)𝑔𝑁𝑁(𝑢(𝑡− 𝜏𝑖),𝑡− 𝜏𝑖;𝜑)𝑑𝜃𝑢(𝑡− 𝜏𝑖)𝑑𝑡

=

∫︁ 𝑇−𝜏𝑖

−𝜏𝑖

𝜇𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)𝑑𝜃𝑢(𝑡)𝑑𝑡

=

∫︁ 𝑇

0

𝜇𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)𝑑𝜃𝑢(𝑡)𝑑𝑡

+

∫︁ 0

−𝜏𝑖

𝜇𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)𝑑𝜃𝑢(𝑡)𝑑𝑡

−
∫︁ 𝑇

𝑇−𝜏𝑖

𝜇𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)𝑑𝜃𝑢(𝑡)𝑑𝑡

=

∫︁ 𝑇

0

𝜇𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)𝑑𝜃𝑢(𝑡)𝑑𝑡

+

∫︁ 0

−𝜏𝑖

𝜇𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)𝑑𝜃𝑢(𝑡)𝑑𝑡

(D.20)

We further assume 𝜇(𝑡) = 0, 𝑡 ≥ 𝑇 . Inserting everything back (Eqs. D.19 and D.20)

into Eq. D.18, and keeping in mind that the initial condition ℎ(𝑡) is independent of

𝜃, we obtain,

𝑑𝜃𝐿 =

∫︁ 𝑇

0

(︃
𝑀∑︁
𝑖=1

𝜕𝑢(𝑡)𝑙(𝑢(𝑡))𝛿(𝑡− 𝑇𝑖) − 𝑑𝑡𝜆
𝑇 (𝑡) − 𝜆𝑇 (𝑡)𝜕𝑢(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)

− 𝜇𝑇 (𝑡+ 𝜏1)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑) + 𝜇𝑇 (𝑡+ 𝜏2)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)

)︂
𝑑𝜃𝑢(𝑡)𝑑𝑡

−
∫︁ 𝑇

0

𝜆𝑇 (𝑡)𝜕𝜃𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)𝑑𝑡

+

∫︁ 𝑇

0

(−𝑑𝑡𝜇𝑇 (𝑡) − 𝜆𝑇 (𝑡)𝜕𝑦(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃))𝑑𝜃𝑦(𝑡)𝑑𝑡

+ 𝜆𝑇 (𝑇 )𝑑𝜃𝑢(𝑇 ) + 𝜇𝑇 (𝑇 )𝑑𝜃𝑦(𝑇 ) .

(D.21)

Again, the objective is to avoid the need to compute 𝑑𝜃𝑢(𝑡) and 𝑑𝜃𝑦(𝑡), hence we

assume, 𝜇(𝑡) = 0, 𝑡 ≥ 𝑇 ; and 𝜆(𝑇 ) = 0. We can write the following coupled adjoint
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equations,

𝑑𝑡𝜆
𝑇 (𝑡) =

𝑀∑︁
𝑖=1

𝜕𝑢(𝑡)𝑙(𝑢(𝑡))𝛿(𝑡− 𝑇𝑖) − 𝜆𝑇 (𝑡)𝜕𝑢(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)

− 𝜇𝑇 (𝑡+ 𝜏1)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)

+ 𝜇𝑇 (𝑡+ 𝜏2)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑) , 𝑡 ∈ [0, 𝑇 )

𝑑𝑡𝜇
𝑇 (𝑡) = − 𝜆𝑇 (𝑡)𝜕𝑦(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃) , 𝑡 ∈ [0, 𝑇 )

𝜆𝑇 (𝑡) = 0 and 𝜇𝑇 (𝑡) = 0, 𝑡 ≥ 𝑇 .

(D.22)

Finally after solving the coupled adjoint equations in 𝜆(𝑡) and 𝜇(𝑡), we can compute

the required derivative, 𝑑𝜃𝐿 as,

𝑑𝜃𝐿 = −
∫︁ 𝑇

0

𝜆𝑇 (𝑡)𝜕𝜃𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)𝑑𝑡 . (D.23)

Now, we find the derivative of the Lagrangian w.r.t 𝜑,

𝑑𝜑𝐿 =𝜕𝑢(𝑡)ℒ(𝑢(𝑡))𝑑𝜑𝑢(𝑡) +

∫︁ 𝑇

0

𝜆𝑇 (𝑡)
(︀
𝑑𝜑𝑑𝑡𝑢(𝑡) − 𝜕𝑢(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)𝑑𝜑𝑢(𝑡)

−𝜕𝑦(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)𝑑𝜑𝑦(𝑡)
)︀
𝑑𝑡+

∫︁ 𝑇

0

𝜇𝑇 (𝑡) (𝑑𝜑𝑑𝑡𝑦(𝑡)

−𝜕𝑢(𝑡−𝜏1)𝑔𝑁𝑁(𝑢(𝑡− 𝜏1), 𝑡− 𝜏1;𝜑)𝑑𝜑𝑢(𝑡− 𝜏1)

+𝜕𝑢(𝑡−𝜏2)𝑔𝑁𝑁(𝑢(𝑡− 𝜏2), 𝑡− 𝜏2;𝜑)𝑑𝜑𝑢(𝑡− 𝜏2)

−𝜕𝜑𝑔𝑁𝑁(𝑢(𝑡− 𝜏1), 𝑡− 𝜏1;𝜑) + 𝜕𝜑𝑔𝑁𝑁(𝑢(𝑡− 𝜏2), 𝑡− 𝜏2;𝜑)) 𝑑𝑡

+ 𝛼𝑇𝑑𝜑𝑦(0) − 𝛼𝑇

∫︁ −𝜏1

−𝜏2

𝜕𝜑𝑔𝑁𝑁(ℎ(𝑡), 𝑡;𝜑)𝑑𝑡 .

(D.24)
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using integration-by-parts and change of variables, we can write,

∫︁ 𝑇

0

𝜆𝑇 (𝑡)𝑑𝜑𝑑𝑡𝑢(𝑡)𝑑𝑡 = 𝜆𝑇 (𝑇 )𝑑𝜑𝑢(𝑇 ) − 𝜆𝑇 (0)𝑑𝜑𝑢(0) −
∫︁ 𝑇

0

𝑑𝑡𝜆
𝑇 (𝑡)𝑑𝜑𝑢(𝑡)𝑑𝑡 .∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝑑𝜑𝑑𝑡𝑦(𝑡)𝑑𝑡 = 𝜇𝑇 (𝑇 )𝑑𝜑𝑦(𝑇 ) − 𝜇𝑇 (0)𝑑𝜑𝑦(0) −
∫︁ 𝑇

0

𝑑𝑡𝜇
𝑇 (𝑡)𝑑𝜑𝑦(𝑡)𝑑𝑡 .∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝜕𝑢(𝑡−𝜏𝑖)𝑔𝑁𝑁(𝑢(𝑡− 𝜏𝑖), 𝑡− 𝜏𝑖;𝜑)𝑑𝜑𝑢(𝑡− 𝜏𝑖)𝑑𝑡 =∫︁ 𝑇

0

𝜇𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)𝑑𝜑𝑢(𝑡)𝑑𝑡

+

∫︁ 0

−𝜏𝑖

𝜇𝑇 (𝑡+ 𝜏𝑖)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)𝑑𝜑𝑢(𝑡)𝑑𝑡 .

(D.25)

Substituting these in Eq. D.24, and keeping in mind that the initial condition ℎ(𝑡) is

independent of 𝜑, we obtain,

𝑑𝜑𝐿 =

∫︁ 𝑇

0

(︃
𝑀∑︁
𝑖=1

𝜕𝑢(𝑡)𝑙(𝑢(𝑡))𝛿(𝑡− 𝑇𝑖) − 𝑑𝑡𝜆
𝑇 (𝑡) − 𝜆𝑇 (𝑡)𝜕𝑢(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)

− 𝜇𝑇 (𝑡+ 𝜏1)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑) + 𝜇𝑇 (𝑡+ 𝜏2)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)

)︂
𝑑𝜑𝑢(𝑡)𝑑𝑡

+

∫︁ 𝑇

0

𝜇𝑇 (𝑡) (−𝜕𝜑𝑔𝑁𝑁(𝑢(𝑡− 𝜏1), 𝑡− 𝜏1;𝜑) + 𝜕𝜑𝑔𝑁𝑁(𝑢(𝑡− 𝜏2), 𝑡− 𝜏2;𝜑)) 𝑑𝑡

+

∫︁ 𝑇

0

(−𝑑𝑡𝜇𝑇 (𝑡) − 𝜆𝑇 (𝑡)𝜕𝑦(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃))𝑑𝜑𝑦(𝑡)𝑑𝑡

− 𝜇𝑇 (0)𝑑𝜑𝑦(0) + 𝛼𝑇𝑑𝜑𝑦(0) − 𝛼𝑇

∫︁ −𝜏1

−𝜏2

𝜕𝜑𝑔𝑁𝑁(ℎ(𝑡), 𝑡;𝜑)𝑑𝑡

(D.26)

As we already satisfy the adjoint equations (Eq. D.22), and letting 𝛼𝑇 = 𝜇𝑇 (0), we

arrive at the expression for 𝑑𝜑𝐿,

𝑑𝜑𝐿 = −
∫︁ 𝑇

0

𝜇𝑇 (𝑡) (𝜕𝜑𝑔𝑁𝑁(𝑢(𝑡− 𝜏1), 𝑡− 𝜏1;𝜑) − 𝜕𝜑𝑔𝑁𝑁(𝑢(𝑡− 𝜏2), 𝑡− 𝜏2;𝜑)) 𝑑𝑡

− 𝜇𝑇 (0)

∫︁ −𝜏1

−𝜏2

𝜕𝜑𝑔𝑁𝑁(ℎ(𝑡), 𝑡;𝜑)𝑑𝑡 .

(D.27)
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D.3 Experimental Setup

D.3.1 Architectures

In Tables D.1 & D.2 we provide architectural details of the various neural closure mod-

els used in the main text. We also provide the variation of training and validation loss

with training epochs corresponding to these architectures in Fig. D-1. These results

were picked among multiple repeats of training done with exactly the same hyper-

parameters (described next), with 3-5 repeats for discrete-nDDE in all the different

experimental cases; 3-5 repeats for nODE and distributed-nDDE in experiments-

1 & 3b; and 10-15 repeats for nODE and distributed-nDDE in experiments-2 & 3a

(the same which were used for optimal delay length analysis).

D.3.2 Hyperparameters

The values of the various training hyperparameters used in the experiments are listed

next. In all the experiments, the number of iterations per epoch are calculated by

dividing the number of time-steps in the training period by batch-size multiplied the

length of short time-sequences, adding 1, and rounding up to the next integer.

Experiments-1: For training, we randomly select short time-sequences spanning

only 6 time-steps and extract data at every other time-step to form batches of size 2;

18 iterations per epoch; exponentially decaying learning rate (LR) schedule (initial

LR of 0.075, decay rate of 0.97, and 18 decay steps); RMSprop optimizer; and end

training at 200 epochs.

Experiments-2: We use a batch size of 8 created by randomly selecting short

time-sequences spanning 6 time-steps and extracting data at every other time-step; 4

iterations per epoch; exponentially decaying learning rate (LR) schedule with initial

LR of 0.075, decay rate of 0.97, and 4 decay steps; RMSprop optimizer; and end

training at 250 epochs.

Experiments-3a: We use a batch size of 4 created by randomly selecting short

time-sequences spanning 6 time-steps and extracting data at every other time-step; 26
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Category
Experiment - 1 Experiment - 2

Architecture Act. Delays
Trainable
Parame-
ters

Architecture Act. Delays
Trainable
Parame-
ters

nODE (No-
Delays)

𝑓𝑁𝑁

None 158

𝑓𝑁𝑁

None 424

Input layer with
3 neurons

none Input of size 25 × 1 none

5 FC hidden
layer with 5
neurons

tanh Conv1D layer with 𝐾𝑆 =
3 × 4, 𝑆 = 1

swish

FC output layer
with 3 neurons

linear 4 Conv1D layer with
𝐾𝑆 = 3 × 5, 𝑆 = 1

swish

Conv1D-T layer with
𝐾𝑆 = 3 × 3, 𝑆 = 1

swish

3 Conv1D-T layer with
𝐾𝑆 = 3 × 2, 𝑆 = 1

swish

Conv1D-T output layer
with 𝐾𝑆 = 3 × 1, 𝑆 = 1

linear

Discrete-
nDDE

𝑓𝑅𝑁𝑁 𝜏1 =
0.025,
𝜏2 = 0.05,
...,
𝜏6 = 0.15

63

𝑓𝑅𝑁𝑁 𝜏1 =
0.025,
𝜏2 = 0.05,
...,
𝜏6 = 0.15

110

Input layer with
3 neurons

none Input of size 25 × 1 none

Simple RNN
layer with 5
neurons

tanh Simple RNN Conv1D
layer with 𝐾𝑆 = 3 × 3,
𝑆 = 1

swish

FC output layer
with 3 neurons

linear Conv1D layer with 𝐾𝑆 =
3 × 2, 𝑆 = 1

swish

Conv1D-T layer with
𝐾𝑆 = 3 × 2, 𝑆 = 1

swish

Conv1D-T output layer
with 𝐾𝑆 = 3 × 1, 𝑆 = 1

linear

Distributed-
nDDE

𝑓𝑁𝑁

𝜏1 = 0.0,
𝜏2 = 0.075

110

𝑓𝑁𝑁

𝜏1 = 0.0,
𝜏2 = 0.075

361

Input layer with
5 neurons

none Input of size 25 × 2 none

2 FC hidden
layer with 5
neurons

tanh Conv1D layer with 𝐾𝑆 =
3 × 4, 𝑆 = 1

swish

FC output layer
with 3 neurons

linear 2 Conv1D layer with
𝐾𝑆 = 3 × 5, 𝑆 = 1

swish

Conv1D-T layer with
𝐾𝑆 = 3 × 3, 𝑆 = 1

swish

Conv1D-T layer with
𝐾𝑆 = 3 × 2, 𝑆 = 1

swish

Conv1D-T output layer
with 𝐾𝑆 = 3 × 1, 𝑆 = 1

linear

𝑔𝑁𝑁 𝑔𝑁𝑁

Input layer with
3 neurons

none Input of size 25 × 1 none

2 FC hidden
layer with 3
neurons

tanh Conv1D layer with 𝐾𝑆 =
3 × 2, 𝑆 = 1

swish

FC output layer
with 2 neurons

linear Conv1D layer with 𝐾𝑆 =
3 × 3, 𝑆 = 1

swish

Conv1D-T layer with
𝐾𝑆 = 3 × 3, 𝑆 = 1

swish

Conv1D-T output layer
with 𝐾𝑆 = 3 × 1, 𝑆 = 1

linear

Table D.1: Architectures for different neural closure models used in Experiments-1
and 2. FC stands for fully-connected, Conv1D for convolutional-1D, and Conv1D-T for
convolutional-1D transpose layers. The size of the convolutional layer filters is mentioned
by the kernel size (𝐾𝑆; where the first dimension corresponds to the receptive field, and
second to the number of channels), along with the number of strides (𝑆).
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Category
Experiment - 3a Experiment - 3b

Architecture Act. Delays
Trainable
Parame-
ters

Architecture Act. Delays
Trainable
Parame-
ters

nODE (No-
Delays)

𝑓𝑁𝑁

None 317

𝑓𝑁𝑁

None 987
Input layer with
3 neurons

none Input of size 20 × 3 none

6 FC hidden
layer with 7
neurons

tanh AddExtraChannels{z,
I(z, t)}

none

FC hidden layer
with 1 neuron

linear Conv1D layers with
𝐾𝑆 = 1 × 5, 𝑆 = 1;
𝐾𝑆 = 1 × 7, 𝑆 = 1;
𝐾𝑆 = 1 × 9, 𝑆 = 1;
𝐾𝑆 = 1 × 11, 𝑆 = 1;
𝐾𝑆 = 1 × 13, 𝑆 = 1;
𝐾𝑆 = 1 × 13, 𝑆 = 1;
𝐾𝑆 = 1 × 11, 𝑆 = 1;
𝐾𝑆 = 1 × 9, 𝑆 = 1;
𝐾𝑆 = 1 × 7, 𝑆 = 1;
𝐾𝑆 = 1 × 5, 𝑆 = 1;
𝐾𝑆 = 1 × 3, 𝑆 = 1

swish

BioConstrainLayer
with output of
size 3

linear Conv1D layer with 𝐾𝑆 =
1 × 1, 𝑆 = 1

linear

BioConstrainLayer with
output of size 20 × 3

linear

Discrete-
nDDE

𝑓𝑅𝑁𝑁

𝜏1 = 0.75,
𝜏2 = 1.5,
..., 𝜏6 =
4.5

142

𝑓𝑅𝑁𝑁

𝜏1 = 0.5,
𝜏2 = 1.0,
𝜏3 = 1.5,
𝜏4 = 2.0

426

Input layer with
3 neurons

none Input of size 20 × 3 none

Simple RNN
layer with 7
neurons

tanh Simple RNN Conv1D
layer with 𝐾𝑆 = 1 × 5,
𝑆 = 1

swish

FC hidden layer
with 7 neurons

tanh AddExtraChannels{z,
I(z, t)}

none

FC hidden layer
with 1 neuron

linear Conv1D layers with
𝐾𝑆 = 1 × 7, 𝑆 = 1;
𝐾𝑆 = 1 × 9, 𝑆 = 1;
𝐾𝑆 = 1 × 9, 𝑆 = 1;
𝐾𝑆 = 1 × 7, 𝑆 = 1;
𝐾𝑆 = 1 × 5, 𝑆 = 1;
𝐾𝑆 = 1 × 3, 𝑆 = 1

swish

BioConstrainLayer
with output of
size 3

linear Conv1D layer with 𝐾𝑆 =
1 × 1, 𝑆 = 1

linear

BioConstrainLayer with
output of size 20 × 3

linear

Table D.2: Architectures for different neural closure models used in Experiments-
3a and 3b. FC stands for fully-connected, and Conv1D for convolutional-1D layers.
The size of the convolutional layer filters is mentioned by the kernel size (𝐾𝑆; where
the first dimension corresponds to the receptive field, and second to the number
of channels), along with the number of strides (𝑆). While AddExtraChannels and
BioConstrainLayer are custom layers described in the main text (Secs. 6.3.3 & 6.3.4).
(Cont.)
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Distributed-
nDDE

𝑓𝑁𝑁

𝜏1 = 0.0,
𝜏2 = 2.5

195

𝑓𝑁𝑁

𝜏1 = 0.0,
𝜏2 = 2.0

477

Input layer with
11 neurons

none Input of size 20 × 5 none

2 FC hidden
layer with 7
neurons

tanh AddExtraChannels{z,
I(z, t)}

none

FC hidden layer
with 1 neurons

linear Conv1D layers with
𝐾𝑆 = 1 × 7, 𝑆 = 1;
𝐾𝑆 = 1 × 9, 𝑆 = 1;
𝐾𝑆 = 1 × 9, 𝑆 = 1;
𝐾𝑆 = 1 × 7, 𝑆 = 1;
𝐾𝑆 = 1 × 5, 𝑆 = 1;
𝐾𝑆 = 1 × 3, 𝑆 = 1

swish

BioConstrainLayer
with output of
size 3

linear Conv1D layer with 𝐾𝑆 =
1 × 1, 𝑆 = 1

linear

BioConstrainLayer with
output of size 20 × 3

linear

𝑔𝑁𝑁 𝑔𝑁𝑁

Input layer with
3 neurons

none Input of size 20 × 3 none

2 FC hidden
layer with 5
neurons

tanh Conv1D layers with
𝐾𝑆 = 1 × 3, 𝑆 = 1;
𝐾𝑆 = 1 × 5, 𝑆 = 1;
𝐾𝑆 = 1 × 7, 𝑆 = 1;
𝐾𝑆 = 1 × 5, 𝑆 = 1

swish

FC output layer
with 4 neurons

linear Conv1D output layer
with 𝐾𝑆 = 1 × 2, 𝑆 = 1

linear

Table D.2: Architectures for different neural closure models used in Experiments-
3a and 3b. FC stands for fully-connected, and Conv1D for convolutional-1D layers.
The size of the convolutional layer filters is mentioned by the kernel size (𝐾𝑆; where
the first dimension corresponds to the receptive field, and second to the number
of channels), along with the number of strides (𝑆). While AddExtraChannels and
BioConstrainLayer are custom layers described in the main text (Secs. 6.3.3 & 6.3.4).
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iterations per epoch; exponentially decaying learning rate (LR) schedule with initial

LR of 0.05, decay rate of 0.97, and 26 decay steps; RMSprop optimizer; and end

training at 350 epochs.

Experiments-3b: We use a batch size of 8 (4 for only distributed-nDDE) created

by randomly selecting short time-sequences spanning 6 time-steps and extracting

data at every other time-step; 8 (14 for only distributed-nDDE) iterations per epoch;

exponentially decaying learning rate (LR) schedule with initial LR of 0.05, decay rate

of 0.97, and 8 (14 for only distributed-nDDE) decay steps; RMSprop optimizer; and

end training at 200 epochs.

D.3.3 Sensitivity to Network Size and Training Period Length

We performed various hyperparameter studies for all the different experimental cases

presented in the main paper. However, here we only show the effect of network size

and training period length on the performance of experiments-1 with distributed-

nDDE closure.

First, we varied the length of the training period while keeping the architecture and

other hyperparameters the same (as mentioned above, Secs. D.3.1 & D.3.2). We chose

5 different training lengths (all starting from 𝑡 = 0), with the longest encompassing

one time-period for the coefficient corresponding to mode 3. In Fig. D-2a, we provide

the root-mean-square-error (RMSE) as it evolves with time, spanning the training,

validation, and prediction periods. We can notice, that in each case, the network is

able to exactly match the true coefficients upto the end of training period. While

the long-term performance drastically improves on providing more-and-more training

data by increasing the training period length.

Second, we only vary the depth of the network, while keeping all other training

details exactly the same (as mentioned above, Sec. D.3.2). We chose three different

network sizes by changing the number of hidden layers, with architectural details

presented in Table D.3. Often, smaller networks are underparameterized limiting their

expressivity, while overly large networks might become overparameterized limiting

their generalizability for predictions. In Fig. D-2b, we provide variation of training
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(a) Experiment-1

(b) Experiment-2

(c) Experiment-3a

(d) Experiment-3b

Figure D-1: Variation with epochs of training (left column), and validation (right column)
time-averaged 𝐿2 loss for the three neural closure models, while training for each of the
Experiments-1, 2, 3a, and 3b. These results accompany Figs. 6-3, 6-5, 6-8, & 6-9 in the
main text, and the architectures detailed in Tables D.1 & D.2 .
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Category Architecture Act. Delays
Trainable
Parame-
ters

Small

𝑓𝑁𝑁

𝜏1 =
0.0,
𝜏2 =
0.075

38

Input layer with 5 neurons none
FC output layer with 3 neu-
rons linear

𝑔𝑁𝑁

Input layer with 3 neurons none
FC hidden layer with 3 neu-
rons tanh

FC output layer with 2 neu-
rons linear

Medium

𝑓𝑁𝑁

𝜏1 =
0.0,
𝜏2 =
0.075

110

Input layer with 5 neurons none
2 FC hidden layer with 5 neu-
rons tanh

FC output layer with 3 neu-
rons linear

𝑔𝑁𝑁

Input layer with 3 neurons none
2 FC hidden layer with 3 neu-
rons tanh

FC output layer with 2 neu-
rons linear

Big

𝑓𝑁𝑁

𝜏1 =
0.0,
𝜏2 =
0.075

152

Input layer with 5 neurons none
3 FC hidden layer with 5 neu-
rons tanh

FC output layer with 3 neu-
rons linear

𝑔𝑁𝑁

Input layer with 3 neurons none
3 FC hidden layer with 3 neu-
rons tanh

FC output layer with 2 neu-
rons linear

Table D.3: Architectures of different sizes for distributed-nDDE used in hyperparameter
sensitivity study for Experiments-1.

and validation losses with training epochs, and can notice that the small network

struggles to close the system.

329



(a) Effect on performance for change in training period
length

(b) Change in time-average 𝐿2 loss with change in the network size

Figure D-2: Experiments-1 sensitivity to network size and training period length.
(a): Evolution of root-mean-squared-error (RMSE) of coefficients for distributed-
nDDEs trained with different training period length, and with same architectures
and other hyperparameter values. These results correspond to the distributed-nDDE
architecture detailed in Table D.1. (b): Variation with epochs of training (left), and
validation (right) time-averaged 𝐿2 loss for the three different sized distributed-nDDE
architectures detailed in Table D.3.
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Appendix E

Learning the Optimal Delay for

Neural Closure Models

In the earlier developed framework of neural closure models (nCMs; [229]), we were

successfully able to use the neural delay differential equations (nDDEs) to learn non-

Markovian closure parameterizations for known-physics/low-fidelity models. Using a

series of experiments we demonstrated the existence of an optimal amount of past in-

formation to incorporate for a specified architecture which was related to the relevant

time scaled present in the dynamical system. The delay-period lengths in the existing

framework are treated as hyperparameters, which in-turn are tuned by brute-force

search based on performance over the validation time-period. An initial estimate

of the range of delay-period lengths to consider can be obtained from properties of

the given dynamical system such as the main time scales, e.g. physical and biolog-

ical times scales, and main decorrelation times of state variables. The estimation of

time-delays has always been elusive and impaired the use of delay differential equa-

tions for real-world systems. A survey of the existing time-delay estimation methods

can be found in Björklund, 2003 [256], however they are limited by various model

assumptions, thus limiting their applicability to our framework.

In order to seamlessly estimate the optimal delay-period length, we propose to

learn it from the data along with the other trainable neural-network weights. We

evaluate the performance of the optimal delay learning extension of our existing frame-
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work using a series of experiments consisting of a two-variable system with known

delay, and the advecting shock problem governed by the Burgers equation (section

6.3.2).

E.1 Theory and Methodology

We will limit ourselves to the case of nDDEs with distributed delays and 𝜏1 = 0 fixed.

Thus, apart from the neural-network weights, we will have 𝜏2 ≡ 𝜏 as a trainable

parameter. Based on equation 6.14, the considered distributed-nDDE is given by,

𝑑𝑢(𝑡)

𝑑𝑡
= 𝑓𝑁𝑁 (𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃) , 𝑡 ∈ (0, 𝑇 ]

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑) − 𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑), 𝑡 ∈ (0, 𝑇 ]

with 𝑢(𝑡) = ℎ(𝑡), 𝜏 ≤ 𝑡 ≤ 0 , and 𝑦(0) =

∫︁ 0

−𝜏

𝑔𝑁𝑁(ℎ(𝑡), 𝑡;𝜑)𝑑𝑡 .

(E.1)

Again assuming a scalar loss function given by, ℒ =
∫︀ 𝑇

0

∑︀𝑀
𝑖=1 𝑙(𝑢(𝑡))𝛿(𝑡 − 𝑇𝑖)𝑑𝑡, for

the available data at 𝑀 times, 0 ≤ 𝑇1 < ... < 𝑇𝑀 ≤ 𝑇 , the Lagrangian for the above

system is,

𝐿 =ℒ(𝑢(𝑡)) +

∫︁ 𝑇

0

𝜆𝑇 (𝑡)(𝑑𝑡𝑢(𝑡) − 𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)) 𝑑𝑡

+

∫︁ 𝑇

0

𝜇𝑇 (𝑡) (𝑑𝑡𝑦(𝑡) − 𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑) + 𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑)) 𝑑𝑡

+

∫︁ 0

−𝜏

𝛾𝑇 (𝑡)(𝑢(𝑡) − ℎ(𝑡))𝑑𝑡+ 𝛼𝑇

(︂
𝑦(0) −

∫︁ 0

−𝜏

𝑔𝑁𝑁(ℎ(𝑡), 𝑡;𝜑)𝑑𝑡

)︂
.

(E.2)

Adjoint equations for the Lagrangian variables, 𝜆(𝑡) and 𝜇(𝑡), and gradients for the

neural-network weights, 𝑑𝜃𝐿 and 𝑑𝜑𝐿, are the same as derived earlier, equation 6.16

with 𝜏1 = 0 and 𝜏2 ≡ 𝜏 . However, in the current section, the goal is to additionally
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derive 𝑑𝜏𝐿. Taking the derivative of equation E.2 w.r.t. 𝜏 , we get,

𝑑𝜏𝐿 =𝜕𝑢(𝑡)ℒ(𝑢(𝑡))𝑑𝜏𝑢(𝑡) +

∫︁ 𝑇

0

𝜆𝑇 (𝑡)
(︀
𝑑𝜏𝑑𝑡𝑢(𝑡) − 𝜕𝑢(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)𝑑𝜏𝑢(𝑡)

−𝜕𝑦(𝑡)𝑓𝑁𝑁(𝑢(𝑡), 𝑦(𝑡), 𝑡; 𝜃)𝑑𝜏𝑦(𝑡)
)︀
𝑑𝑡

+

∫︁ 𝑇

0

𝜇𝑇 (𝑡)
(︀
𝑑𝜏𝑑𝑡𝑦(𝑡) − 𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)𝑑𝜏𝑢(𝑡)

+𝜕𝑢(𝑡−𝜏)𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑)𝑑𝜏𝑢(𝑡− 𝜏) + 𝜕𝑡−𝜏𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑)𝑑𝜏 (𝑡− 𝜏)
)︀
𝑑𝑡

+ 𝛼𝑇 (𝑑𝜏𝑦(0) + 𝑔𝑁𝑁(ℎ(−𝜏),−𝜏 ;𝜑)𝑑𝜏 (−𝜏)) ,

(E.3)

where, for brevity of notation, we use 𝑢(𝑡) ≡ 𝑢(𝑡, 𝜏, 𝜃, 𝜑) and 𝑦(𝑡) ≡ 𝑦(𝑡, 𝜏, 𝜃, 𝜑)).

Using integration-by-parts, we can write,

∫︁ 𝑇

0

𝜆𝑇 (𝑡)𝑑𝜏𝑑𝑡𝑢(𝑡)𝑑𝑡 =𝜆𝑇 (𝑇 )𝑑𝜏𝑢(𝑇 ) − 𝜆𝑇 (0)𝑑𝜏𝑢(0) −
∫︁ 𝑇

0

𝑑𝑡𝜆
𝑇 (𝑡)𝑑𝜏𝑢(𝑡)𝑑𝑡 ,∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝑑𝜏𝑑𝑡𝑦(𝑡)𝑑𝑡 =𝜇𝑇 (𝑇 )𝑑𝜏𝑦(𝑇 ) − 𝜇𝑇 (0)𝑑𝜏𝑦(0) −
∫︁ 𝑇

0

𝑑𝑡𝜇
𝑇 (𝑡)𝑑𝜏𝑦(𝑡)𝑑𝑡 ,

(E.4)

and recall that 𝜆(𝑇 ) = 0, 𝑑𝜏𝑢(0) = 0, and 𝜇(𝑇 ) = 0. Further using a change of

variable yields,

∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝜕𝑢(𝑡−𝜏)𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑)𝑑𝜏𝑢(𝑡− 𝜏)𝑑𝑡

=

∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝜕𝑢(𝑡−𝜏)𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑) (𝜕𝑡−𝜏𝑢(𝑡− 𝜏)𝑑𝜏 (𝑡− 𝜏) + 𝜕𝜏𝑢(𝑡− 𝜏)) 𝑑𝑡 .

(E.5)
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Notice, 𝜕𝑡−𝜏𝑢(𝑡 − 𝜏) ≡ 𝑑𝑡𝑢(𝑡 − 𝜏), and if 𝑑𝜏𝑢(𝑡) = 𝑧(𝑡), then 𝜕𝜏𝑢(𝑡 − 𝜏) = 𝑧(𝑡 − 𝜏).

Additionally, letting 𝑠 = 𝑡− 𝜏 , we get,

∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝜕𝑢(𝑡−𝜏)𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑) (𝜕𝑡−𝜏𝑢(𝑡− 𝜏)𝑑𝜏 (𝑡− 𝜏) + 𝜕𝜏𝑢(𝑡− 𝜏)) 𝑑𝑡

=

∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝜕𝑢(𝑡−𝜏)𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑) (−𝑑𝑡𝑢(𝑡− 𝜏) + 𝑧(𝑡− 𝜏)) 𝑑𝑡

=

∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝜕𝑢(𝑡−𝜏)𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑) (−𝑑𝑡𝑢(𝑡− 𝜏)) 𝑑𝑡

+

∫︁ 𝑇−𝜏

−𝜏

𝜇𝑇 (𝑠+ 𝜏)𝜕𝑢(𝑠)𝑔𝑁𝑁(𝑢(𝑠), 𝑠;𝜑)𝑧(𝑠)𝑑𝑠

=

∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝜕𝑢(𝑡−𝜏)𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑) (−𝑑𝑡𝑢(𝑡− 𝜏, 𝜏)) 𝑑𝑡

+

∫︁ 𝑇

0

𝜇𝑇 (𝑡+ 𝜏)𝜕𝑢(𝑡)𝑔𝑁𝑁(𝑢(𝑡), 𝑡;𝜑)𝑧(𝑡)𝑑𝑡 .

(E.6)

Plugging everything back, and using the adjoint equations, we are left with,

𝑑𝜏𝐿 =

∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝜕𝑢(𝑡−𝜏)𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑) (−𝑑𝑡𝑢(𝑡− 𝜏)) 𝑑𝑡

− 𝜇𝑇 (0)𝑔𝑁𝑁(ℎ(−𝜏),−𝜏 ;𝜑) −
∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝜕𝑡−𝜏𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑)𝑑𝑡

= −
∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝜕𝑢(𝑡−𝜏)𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑)𝑑𝑡𝑢(𝑡− 𝜏)𝑑𝑡

− 𝜇𝑇 (0)𝑔𝑁𝑁(ℎ(−𝜏),−𝜏 ;𝜑) −
∫︁ 𝑇

0

𝜇𝑇 (𝑡)𝜕𝑡−𝜏𝑔𝑁𝑁(𝑢(𝑡− 𝜏), 𝑡− 𝜏 ;𝜑)𝑑𝑡 .

(E.7)

The above expression can be used in the stochastic gradient descent step to update

𝜏 .

E.2 Application Results and Discussion

Next, we use a series of experiments to demonstrate the feasibility of learning the

optimal delay value simultaneously with the weights of the neural-networks.
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E.2.1 Experiments 1: 2D Spiral

In the first set of experiments, we use a simple two-variable dynamical system with

distributed delays, given by,

⎡⎣𝑑𝑡𝑢1(𝑡)
𝑑𝑡𝑢2(𝑡)

⎤⎦ =

⎡⎣−0.1 1.0

−1.0 −0.1

⎤⎦𝑇
⎛⎜⎝
⎡⎣𝑢1(𝑡)
𝑢2(𝑡)

⎤⎦−
∫︁ 𝑡

𝑡−1.9

⎡⎣ 0.1 −1.0

−1.0 0.1

⎤⎦𝑇 ⎡⎣𝑢1(𝑡)
𝑢2(𝑡)

⎤⎦ 𝑑𝑡
⎞⎟⎠ (E.8)

The solution of the above DDE system with initial conditions, 𝑢1(0) = 1.0 and 𝑢2(0) =

0.0, is presented in figure E-1. We use the dopri5 [134] scheme for time-integration.

For our learning experiments, we assume that the delay value and entries of the

matrices in equation E.8 are unknown. Further, training data is available up until

𝑡 = 40 at every 0.05 time-steps. The system with unknown parameters and delay

takes the form, ⎡⎣𝑑𝑡𝑢1(𝑡)
𝑑𝑡𝑢2(𝑡)

⎤⎦ = 𝐴1

⎡⎣𝑢1(𝑡)
𝑢2(𝑡)

⎤⎦+ 𝐴2

∫︁ 𝑡

𝑡−𝜏

𝐵

⎡⎣𝑢1(𝑡)
𝑢2(𝑡)

⎤⎦ 𝑑𝑡 (E.9)

where 𝐴1, 𝐴2, 𝐵, and 𝜏 will be learned from the training data. The initial conditions

are the same as the true system. For training, we randomly select short time sequences

spanning 75 time-steps (batch-time) and extract data at every other time-step to form

batches of size 2; we use 6 iterations per epoch; we use an exponentially decaying

learning rate (LR) schedule with initial LR of 0.075, decay rate of 0.97, and 6 decay

steps; the RMSprop optimizer is used; we train for a total of 200 epochs. We further

bound the value of 𝜏 with an upper limit of 3.0 and use 𝐿2 regularization with a factor

of 0.0005. We learned 𝜏𝑙𝑒𝑎𝑟𝑛𝑒𝑑 = 1.92, and on repeated training with slightly different

hyperparameters, it remained within 2% of the true delay value. Prediction up until

time 𝑡 = 8.0 using the learned system is presented in figure E-1 for comparison with

the truth.
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Figure E-1: Comparison of the true and learned two-variable dynamical system de-
fined by equations E.8 & E.9 respectively. The left plot provides the temporal trajec-
tories of the two state variables and the right plot provides the corresponding phase
portrait. We train using data only up until 𝑡 = 40 and make predictions from 𝑡 = 40
to 𝑡 = 80.

E.2.2 Experiments 2: Advecting shock - subgrid-scale pro-

cesses

In the second set of experiments we again use the setup of the advecting shock problem

governed by the Burgers equation from earlier (section 6.3.2). Keeping everything

the same, such as the architecture, low-fidelity model, high-fidelity data, and barring

some of the hyperparameters, our goal is to additionally learn the delay value for

the distributed-nDDE closure. We perform 8 identical training experiments, with a

batch-time of 75 time-steps, extracting data at every other time-step to form batches

of size 2, with 3 iterations per epoch. We use an upper limit of 1.0 for 𝜏 , and

an 𝐿2 regularization with a factor of 0.0001. The evolution of 𝜏𝑙𝑒𝑎𝑟𝑛𝑒𝑑 as training

progresses is provided in figure E-2. It can be noted that the learned delay value

converges to ∼ 0.4 which is of the order of the advection time-scale in the problem.

The batch-time hyperparameter had the most impact on convergence of the delay

value. For the batch-time, a value greater than a factor of 10 was needed compared

to the experiments in which delay value was an user-defined hyperparameter (section

6.3.2). During every iteration, the discrepancy between the predicted state and the

true / high-fidelity state helped in computing the gradients needed to update the

trainable parameters. Further, it takes longer time-integration for discrepancies to
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Figure E-2: The evolution of the learned delay value as a function of training epoch
for the distributed-nDDE closure used for learning subgrid-scale processes in Burgers’
equation. We use boxplots to provide statistical summaries for multiple training
repeats done for the same set of hyperparameters.

sneak in due to a small change in the delay value as compared to the weights of the

neural-networks, thus requiring a larger batch-time.
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Appendix F

Supplementary Information:

Generalized Neural Closure Models

with Interpretability

F.1 Adjoint Equations for Neural Partial Delay Dif-

ferential Equations

In this section we provide a detailed derivation of adjoint equations for neural partial

delay differential equations (nPDDEs). The below derivation is inspired by the adjoint

equation derivation for a general PDE by Li and Petzold, 2004 [257] and Cao et al.,

2002 [258]. Our nPDDE is of the form,

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
=ℱ𝑁𝑁

(︂
𝑢(𝑥, 𝑡),

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, ...,

𝜕𝑑𝑢(𝑥, 𝑡)

𝜕𝑥𝑑
, 𝑥, 𝑡;𝜑

)︂
+

∫︁ 𝑡

𝑡−𝜏

𝒢𝑁𝑁

(︂
𝑢(𝑥, 𝑠),

𝜕𝑢(𝑥, 𝑠)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑠)

𝜕𝑥2
, ...,

𝜕𝑑𝑢(𝑥, 𝑠)

𝜕𝑥𝑑
, 𝑥, 𝑠; 𝜃

)︂
𝑑𝑠 ,

𝑥 ∈ Ω, 𝑡 ≥ 0,

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡), 𝑡 ≤ 0 and ℬ(𝑢(𝑥, 𝑡)) = 𝑔(𝑥, 𝑡), 𝑥 ∈ 𝜕Ω, 𝑡 ≥ 0 .

(F.1)
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As compared to PDEs, PDDEs require specification of a history function (ℎ(𝑥, 𝑡)) for

the initial conditions. ℱ𝑁𝑁(∙;𝜑) and 𝒢𝑁𝑁(∙; 𝜃) are two neural networks (NNs) pa-

rameterized by 𝜑 and 𝜃, respectively. We consider the presence of an arbitrary number

of spatial derivatives, with the highest order defined by 𝑑 ∈ Z+. We can rewrite the

above equation F.1 as an equivalent system of coupled PDDEs with discrete delays,

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
=ℱ𝑁𝑁

(︂
𝑢(𝑥, 𝑡),

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, ...,

𝜕𝑑𝑢(𝑥, 𝑡)

𝜕𝑥𝑑
, 𝑥, 𝑡;𝜑

)︂
+ 𝑦(𝑥, 𝑡) ,

𝑥 ∈ Ω, 𝑡 ≥ 0,

𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
=𝒢𝑁𝑁

(︂
𝑢(𝑥, 𝑡),

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, ...,

𝜕𝑑𝑢(𝑥, 𝑡)

𝜕𝑥𝑑
, 𝑥, 𝑡; 𝜃

)︂
− 𝒢𝑁𝑁

(︂
𝑢(𝑥, 𝑡− 𝜏),

𝜕𝑢(𝑥, 𝑡− 𝜏)

𝜕𝑥
,
𝜕2𝑢(𝑥, 𝑡− 𝜏)

𝜕𝑥2
, ...,

𝜕𝑑𝑢(𝑥, 𝑡− 𝜏)

𝜕𝑥𝑑
, 𝑥, 𝑡− 𝜏 ; 𝜃

)︂
,

𝑥 ∈ Ω, 𝑡 ≥ 0,

𝑢(𝑥, 𝑡) =ℎ(𝑥, 𝑡), 𝑡 ≤ 0 and ℬ(𝑢(𝑥, 𝑡)) = 𝑔(𝑥, 𝑡), 𝑥 ∈ 𝜕Ω, 𝑡 ≥ 0

𝑦(𝑥, 0) =

∫︁ 0

−𝜏

𝒢𝑁𝑁

(︂
ℎ(𝑥, 𝑠),

𝜕ℎ(𝑥, 𝑠)

𝜕𝑥
,
𝜕2ℎ(𝑥, 𝑠)

𝜕𝑥2
, ...,

𝜕𝑑ℎ(𝑥, 𝑠)

𝜕𝑥𝑑
𝑥, 𝑠; 𝜃

)︂
𝑑𝑠 .

(F.2)

Let us assume that high-fidelity data is available at M discrete times, 𝑇1 < ... <

𝑇𝑀 ≤ 𝑇 , and at 𝑁(𝑇𝑖) spatial locations (𝑥𝑇𝑖
𝑘 ∈ Ω, ∀𝑘 ∈ 1, ..., 𝑁(𝑇𝑖)) for each of the

times. We define the scalar loss function as 𝐿 = 1
𝑀

∑︀𝑀
𝑖=1

1
𝑁(𝑇𝑖)

∑︀𝑁(𝑇𝑖)
𝑘=1 𝑙(𝑢(𝑥𝑇𝑖

𝑘 , 𝑇𝑖)) ≡∫︀ 𝑇

0
1
𝑀

∑︀𝑀
𝑖=1

∫︀
Ω

1
𝑁(𝑇𝑖)

∑︀𝑁(𝑇𝑖)
𝑘=1 𝑙(𝑢(𝑥, 𝑡))𝛿(𝑥−𝑥𝑇𝑖

𝑘 )𝛿(𝑡−𝑇𝑖)𝑑𝑥𝑑𝑡 ≡
∫︀ 𝑇

0
1
𝑀

∑︀𝑀
𝑖=1

1
|Ω|

∫︀
Ω
�̂�(𝑢(𝑥, 𝑡))𝛿(𝑡−

𝑇𝑖)𝑑𝑥𝑑𝑡, where 𝑙(∙) are scalar loss functions such as mean-squared-error (MSE), and

𝛿(∙) is the Kronecker delta function. In order to derive the adjoint PDEs, we start

with the Lagrangian corresponding to the above system,

L =𝐿(𝑢(𝑥, 𝑡)) +

∫︁ 𝑇

0

∫︁
Ω

𝜆𝑇 (𝑥, 𝑡) (𝜕𝑡𝑢(𝑥, 𝑡) −ℱ𝑁𝑁(∙, 𝑡;𝜑) − 𝑦(𝑥, 𝑡)) 𝑑𝑥𝑑𝑡

+

∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡) (𝜕𝑡𝑦(𝑥, 𝑡) − 𝒢𝑁𝑁(∙, 𝑡; 𝜃) + 𝒢𝑁𝑁(∙, 𝑡− 𝜏 ; 𝜃)) 𝑑𝑥𝑑𝑡

+

∫︁
Ω

𝛼𝑇 (𝑥)

(︂
𝑦(𝑥, 0) −

∫︁ 0

−𝜏

𝒢𝑁𝑁(ℎ(𝑥, 𝑡), 𝜕𝑥ℎ(𝑥, 𝑡), 𝜕𝑥2ℎ(𝑥, 𝑡), ..., 𝜕𝑥𝑑ℎ(𝑥, 𝑡), 𝑥, 𝑡; 𝜃)𝑑𝑡

)︂
𝑑𝑥 ,

(F.3)
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where 𝜆(𝑥, 𝑡), 𝜇(𝑥, 𝑡) and 𝛼(𝑥) are the Lagrangian variables. We start by taking

the derivative of the Lagrangian (equation F.3) w.r.t. 𝜃 (for brevity we denote,

𝜕/𝜕(∙) ≡ 𝜕(∙), and 𝑑/𝑑(∙) ≡ 𝑑(∙)),

𝑑𝜃L =

∫︁ 𝑇

0

∫︁
Ω

1

𝑀

1

|Ω|

𝑀∑︁
𝑖=1

𝜕𝑢(𝑥,𝑡)�̂�(𝑢(𝑥, 𝑡))𝛿(𝑡− 𝑇𝑖)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡+

∫︁ 𝑇

0

∫︁
Ω

𝜆𝑇 (𝑥, 𝑡) (𝜕𝑡𝑑𝜃𝑢(𝑥, 𝑡)

−𝜕𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡;𝜑)𝑑𝜃𝑢(𝑥, 𝑡) − 𝜕𝜕𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡;𝜑)𝑑𝜃𝜕𝑥𝑢(𝑥, 𝑡)

−𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡;𝜑)𝑑𝜃𝜕𝑥𝑥𝑢(𝑥, 𝑡) − 𝑑𝜃𝑦(𝑥, 𝑡)
)︀
𝑑𝑥𝑑𝑡+

∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡) (𝜕𝑡𝑑𝜃𝑦(𝑥, 𝑡)

−𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝜃𝑢(𝑥, 𝑡) − 𝜕𝜕𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝜃𝜕𝑥𝑢(𝑥, 𝑡)

−𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝜃𝜕𝑥𝑥𝑢(𝑥, 𝑡)

−𝜕𝜃𝒢𝑁𝑁(∙, 𝑡; 𝜃) + 𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡− 𝜏 ; 𝜃)𝑑𝜃𝑢(𝑥, 𝑡− 𝜏)

+𝜕𝜕𝑥𝑢(𝑥,𝑡−𝜏)𝒢𝑁𝑁(∙, 𝑡− 𝜏 ; 𝜃)𝑑𝜃𝜕𝑥𝑢(𝑥, 𝑡− 𝜏)

+𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡−𝜏)𝒢𝑁𝑁(∙, 𝑡− 𝜏 ; 𝜃)𝑑𝜃𝜕𝑥𝑥𝑢(𝑥, 𝑡− 𝜏) + 𝜕𝜃𝒢𝑁𝑁(∙, 𝑡− 𝜏 ; 𝜃)
)︀
𝑑𝑥𝑑𝑡

+

∫︁
Ω

𝛼𝑇 (𝑥)

(︂
𝑑𝜃𝑦(𝑥, 0) −

∫︁ 0

−𝜏

𝜕𝜃𝐺𝑁𝑁(ℎ(𝑥, 𝑡), 𝜕𝑥ℎ(𝑥, 𝑡), 𝜕𝑥𝑥ℎ(𝑥, 𝑡), 𝑥, 𝑡; 𝜃)𝑑𝑡

)︂
𝑑𝑥 .

(F.4)

Using integration-by-parts, we get,

∫︁ 𝑇

0

∫︁
Ω

𝜆𝑇 (𝑥, 𝑡)𝜕𝑡𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡 =

∫︁
Ω

[𝜆𝑇 (𝑥, 𝑡)𝑑𝜃𝑢(𝑥, 𝑡)]

⃒⃒⃒⃒𝑇
0

−
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑡𝜆
𝑇 (𝑥, 𝑡)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡 ,

(F.5)

∫︁ 𝑇

0

∫︁
Ω

𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)𝜕𝑥𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

=

∫︁ 𝑇

0

∫︁
𝜕Ω

𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑥
(︀
𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡 ,

(F.6)
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∫︁ 𝑇

0

∫︁
Ω

𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)𝜕𝑥𝑥𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

=

∫︁ 𝑇

0

∫︁
𝜕Ω

𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)𝜕𝑥𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑥
(︀
𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)

)︀
𝜕𝑥𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

=

∫︁ 𝑇

0

∫︁
𝜕Ω

𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)𝜕𝑥𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
(︂∫︁ 𝑇

0

∫︁
𝜕Ω

𝜕𝑥
(︀
𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑥𝑥
(︀
𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

)︂
,

(F.7)∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝑢(𝑥,𝑡−𝜏)𝒢𝑁𝑁(∙, 𝑡− 𝜏)𝑑𝜃𝑢(𝑥, 𝑡− 𝜏)𝑑𝑥𝑑𝑡

=

∫︁ 𝑇−𝜏

−𝜏

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

=

∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

𝑇−𝜏

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

+

∫︁ 0

−𝜏

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡 .

(F.8)

Using the fact that 𝜇𝑇 (𝑥, 𝑡) = 0,∀𝑡 ≥ 𝑇 and 𝑑𝜃𝑢(𝑥, 𝑡) = 0,∀𝑡 ≤ 0, we get,

∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝑢(𝑥,𝑡−𝜏)𝒢𝑁𝑁(∙, 𝑡− 𝜏 ; 𝜃)𝑑𝜃𝑢(𝑥, 𝑡− 𝜏)𝑑𝑥𝑑𝑡

=

∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡 .

(F.9)
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Similarly, we also get,

∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑢(𝑥,𝑡−𝜏)𝒢𝑁𝑁(∙, 𝑡− 𝜏 ; 𝜃)𝜕𝑥𝑑𝜃𝑢(𝑥, 𝑡− 𝜏)𝑑𝑥𝑑𝑡

=

∫︁ 𝑇

0

∫︁
𝜕Ω

𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑥
(︀
𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡 ,

(F.10)

∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡−𝜏)𝒢𝑁𝑁(∙, 𝑡− 𝜏 ; 𝜃)𝜕𝑥𝑥𝑑𝜃𝑢(𝑥, 𝑡− 𝜏)𝑑𝑥𝑑𝑡

=

∫︁ 𝑇

0

∫︁
𝜕Ω

𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝜕𝑥𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
(︂∫︁ 𝑇

0

∫︁
𝜕Ω

𝜕𝑥
(︀
𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑥𝑥
(︀
𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

)︂
.

(F.11)

Plugging everything in yields,

𝑑𝜃L =

∫︁ 𝑇

0

∫︁
Ω

1

𝑀

1

|Ω|

𝑀∑︁
𝑖=1

𝜕𝑢(𝑥,𝑡)�̂�(𝑢(𝑥, 𝑡))𝛿(𝑡− 𝑇𝑖)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑡𝜆
𝑇 (𝑥, 𝑡)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝜆𝑇 (𝑥, 𝑡)𝜕𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
𝜕Ω

𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

+

∫︁ 𝑇

0

∫︁
Ω

𝜕𝑥
(︀
𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
𝜕Ω

𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)𝜕𝑥𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

+

∫︁ 𝑇

0

∫︁
𝜕Ω

𝜕𝑥
(︀
𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑥𝑥
(︀
𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡
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−
∫︁ 𝑇

0

∫︁
Ω

𝜆𝑇 (𝑥, 𝑡)𝑑𝜃𝑦(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁
Ω

𝜇𝑇 (𝑥, 0)𝑑𝜃𝑦(𝑥, 0)𝑑𝑥−
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑡𝜇
𝑇 (𝑥, 𝑡)𝑑𝜃𝑦(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
𝜕Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

+

∫︁ 𝑇

0

∫︁
Ω

𝜕𝑥
(︀
𝜇𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
𝜕Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝜕𝑥𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

+

∫︁ 𝑇

0

∫︁
𝜕Ω

𝜕𝑥
(︀
𝜇𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑥𝑥
(︀
𝜇𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝜃𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝑥𝑑𝑡

+

∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

+

∫︁ 𝑇

0

∫︁
𝜕Ω

𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑥
(︀
𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

+

∫︁ 𝑇

0

∫︁
𝜕Ω

𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝜕𝑥𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

−
∫︁ 𝑇

0

∫︁
𝜕Ω

𝜕𝑥
(︀
𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

+

∫︁ 𝑇

0

∫︁
Ω

𝜕𝑥𝑥
(︀
𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕𝑥𝑥𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
𝑑𝜃𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡

+

∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝜃𝒢𝑁𝑁(∙, 𝑡− 𝜏 ; 𝜃)𝑑𝑥𝑑𝑡

+

∫︁
Ω

𝛼𝑇 (𝑥)𝑑𝜃𝑦(𝑥, 0)

−
∫︁
Ω

𝛼𝑇 (𝑥)

∫︁ 0

−𝜏

𝜕𝜃𝒢𝑁𝑁(ℎ(𝑥, 𝑡), 𝜕𝑥ℎ(𝑥, 𝑡), 𝜕𝑥𝑥ℎ(𝑥, 𝑡), 𝑥, 𝑡; 𝜃)𝑑𝑡𝑑𝑥 .

(F.12)

344



Collecting all the terms with
∫︀
Ω
, 𝑑𝜃𝑢(𝑥, 𝑡), and 𝑑𝜃𝑦(𝑥, 𝑡), we get the following adjoint

PDEs,

0 =
1

𝑀

1

|Ω|

𝑀∑︁
𝑘=1

𝜕𝑢(𝑥,𝑡)�̂�(𝑢(𝑥, 𝑡))𝛿(𝑡− 𝑇𝑘)

− 𝜕𝑡𝜆
𝑇 (𝑥, 𝑡) − 𝜆𝑇 (𝑥, 𝑡)𝜕𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡) +

𝑑∑︁
𝑖=1

(−1)𝑖+1𝜕𝑥𝑖

(︀
𝜆𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑖𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)

)︀
− 𝜇𝑇 (𝑥, 𝑡)𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃) +

𝑑∑︁
𝑖=1

(−1)𝑖+1𝜕𝑥𝑖

(︀
𝜇𝑇 (𝑥, 𝑡)𝜕𝜕𝑥𝑖𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
+ 𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃) −

𝑑∑︁
𝑖=1

(−1)𝑖+1𝜕𝑥𝑖

(︀
𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕𝑥𝑖𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡; 𝜃)

)︀
,

𝑥 ∈ Ω , 𝑡 ∈ [0, 𝑇 ) ,

0 = −𝜆𝑇 (𝑥, 𝑡) − 𝜕𝑡𝜇
𝑇 (𝑥, 𝑡) , 𝑥 ∈ Ω , 𝑡 ∈ [0, 𝑇 ) ,

(F.13)

with initial conditions, 𝜆(𝑥, 𝑡) = 𝜇(𝑥, 𝑡) = 0, 𝑡 ≥ 𝑇 . The boundary conditions are

derived based on that of the forward PDE such that they satisfy,

0 =
𝑑∑︁

𝑖=0

𝑑−𝑖−1∑︁
𝑗=0

(−1)𝑗+1𝜕𝑥𝑗

(︀
𝜆𝑇 (𝑥, 𝑡)𝜕𝜕

𝑥𝑗+𝑖+1𝑢(𝑥,𝑡)ℱ𝑁𝑁(∙, 𝑡)
)︀
𝑑𝜃𝜕𝑥𝑖𝑢(𝑥, 𝑡)

+
𝑑∑︁

𝑖=0

𝑑−𝑖−1∑︁
𝑗=0

(−1)𝑗+1𝜕𝑥𝑗

(︀
𝜇𝑇 (𝑥, 𝑡)𝜕𝜕

𝑥𝑗+𝑖+1𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡)
)︀
𝑑𝜃𝜕𝑥𝑖𝑢(𝑥, 𝑡)

−
𝑑∑︁

𝑖=0

𝑑−𝑖−1∑︁
𝑗=0

(−1)𝑗+1𝜕𝑥𝑗

(︀
𝜇𝑇 (𝑥, 𝑡+ 𝜏)𝜕𝜕

𝑥𝑗+𝑖+1𝑢(𝑥,𝑡)𝒢𝑁𝑁(∙, 𝑡)
)︀
𝑑𝜃𝜕𝑥𝑖𝑢(𝑥, 𝑡) ,

𝑥 ∈ 𝜕Ω, 𝑡 ∈ [𝑡, 𝑇 ) .

(F.14)

Note that adjoint PDE needs to be solved backward in time, and one would require

access to 𝑢(𝑥, 𝑡),∀𝑥 ∈ Ω, 0 ≤ 𝑡 ≤ 𝑇 . After solving for the Lagrangian variables,
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𝜆(𝑥, 𝑡) and 𝜇(𝑥, 𝑡), we can compute the required gradients as follows:

𝑑𝜃ℒ = −
∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝜃𝒢𝑁𝑁(∙, 𝑡; 𝜃)𝑑𝑥𝑑𝑡+

∫︁ 𝑇

0

∫︁
Ω

𝜇𝑇 (𝑥, 𝑡)𝜕𝜃𝒢𝑁𝑁(∙, 𝑡− 𝜏 ; 𝜃)𝑑𝑥𝑑𝑡

−
∫︁
Ω

𝜇𝑇 (𝑥, 0)

∫︁ 0

−𝜏

𝜕𝜃𝒢𝑁𝑁(ℎ(𝑥, 𝑡), 𝜕𝑥ℎ(𝑥, 𝑡), 𝜕𝑥𝑥ℎ(𝑥, 𝑡), 𝑥, 𝑡; 𝜃)𝑑𝑡𝑑𝑥 .

(F.15)

If we restart the above derivation by taking derivative of the Lagrangian (equation

F.3) w.r.t. 𝜑, we will arrive at the same adjoint PDEs (equations F.13 & F.14), and

the required gradient will be given by,

𝑑𝜑ℒ = −
∫︁ 𝑇

0

∫︁
Ω

𝜆𝑇 (𝑥, 𝑡)𝜕𝜑ℱ𝑁𝑁(∙, 𝑡;𝜑)𝑑𝑥𝑑𝑡 . (F.16)

Finally, using any stochastic gradient descent algorithm, we can find the optimal

values of the weights 𝜑 and 𝜃.

F.2 Experimental Setup

F.2.1 Architectures

The architectures used to generate the results corresponding to different experiments

are provided in table F.1. The implementation details of the various biological and

carbonate constraints imposed on the neural closure terms in experiments 2a & 2b

are also provided.

F.2.2 Hyperparameters

The values of the tuned training hyperparameters corresponding to different exper-

iments are listed next. In all the experiments, the number of iterations per epoch

are calculated by dividing the number of time-steps in the training period by the

batch-size multiplied by the length of short time-sequences, adding 1, and rounding

up to the next integer.
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Experiments-1a:

For training, we randomly select short time-sequences spanning 3 time-steps (batch-

time) and extract data at every time-step to form batches of size 16; 4 iterations per

epoch are used; an exponentially decaying learning rate (LR) schedule is used with

initial LR of 0.075, decay rate of 0.97, and 4 decay steps; the RMSprop optimizer is

employed; training is for a total of 150 epochs. ℒ1 and ℒ2 regularization with factors

of 1.5 × 10−3 and 1 × 10−5, respectively, is used; the weights are pruned if the value

drops below 5 × 10−3.

Experiments-1b:

Only Markovian closure case: We randomly select short time-sequences spanning

30 time-steps (batch-time) and extract data at every other time-step to form batches

of size 2. In total 24 iterations per epoch are used, with every 8 of them belonging

to one of the (𝑁𝑥, 𝑅𝑒) pairs. An exponentially decaying learning rate (LR) schedule

with initial LR of 0.025, decay rate of 0.95, and 24 decay steps is used; the RMSprop

optimizer is used; we train for a total of 30 epochs. We also use both ℒ1 and ℒ2

regularization for the weights of the neural network with factors of 5 × 10−4 and

5 × 10−4, respectively, along with pruning of the weights if their value drops below

5 × 10−3.

Both Markovian and non-Markovian closures case: A batch-time of 30 time-

steps is used with data extracted at every other time-step to form batches of size 2; 32

iterations per epoch are used, with every 8 of them belonging to one of the (𝑁𝑥, 𝑅𝑒)

pairs; an exponentially decaying learning rate (LR) schedule is employed with an

initial LR of 0.01, decay rate of 0.95, and 32 decay steps; the RMSprop optimizer is

used; we train for a total of 30 epochs. We also use both ℒ1 and ℒ2 regularization for

the weights of the neural network with factors of 1.5×10−3 and 1×10−5, respectively,

along with pruning of the weights if their value drops below 5 × 10−3.
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Experiments-2a:

Parameter values used in the ocean acidification model are (adopted from [77, 4]):

𝑔𝑚𝑎𝑥 = 0.7 𝑑𝑎𝑦−1; 𝑘𝑊 = 0.08 𝑚−1; 𝐾𝑁 = 0.5 𝑚𝑚𝑜𝑙 𝑁 𝑚−3; 𝐾𝑃 = 0.25 𝑚𝑚𝑜𝑙 𝑁 𝑚−3;

𝑚𝑃 = 0.08 𝑑𝑎𝑦−1(𝑚𝑚𝑜𝑙 𝑁 𝑚−3)−1; 𝑚𝑍 = 0.030 𝑑𝑎𝑦−1(𝑚𝑚𝑜𝑙 𝑁 𝑚−3)−1; 𝜇𝑚𝑎𝑥 =

2.808 𝑑𝑎𝑦−1; 𝛼 = 0.14 (𝑊 𝑚−2 𝑑𝑎𝑦)−1; 𝛽 = 0.0028 (𝑊 𝑚−2 𝑑𝑎𝑦)−1; 𝜖 = 0.015 𝑑𝑎𝑦−1;

𝜆 = 0.3; 𝛾 = 0.4; a sinusoidal variation in 𝐼𝑜(𝑡); linear vertical variation in total

biomass 𝑇𝑏𝑖𝑜(𝑧) from 10 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at the surface to 20 𝑚𝑚𝑜𝑙 𝑁 𝑚−3 at 𝑧 = 100 𝑚;

𝐾𝑧𝑏 = 0.0864 (𝑚2/𝑑𝑎𝑦); 𝐾𝑧0 = 8.64 (𝑚2/𝑑𝑎𝑦); 𝛾𝑡 = 0.1 𝑚−1; 𝐷𝑧 = −100 𝑚; and

𝜌𝑤 = 1000 𝑘𝑔/𝑚3. For training, we randomly select short time-sequences spanning 3

time-steps (batch-time) and extract data at every other time-step to form batches of

size 4; we use 26 iterations per epoch; an exponentially decaying learning rate (LR)

schedule is used with initial LR of 0.075, decay rate of 0.97, and 26 decay steps; the

RMSprop optimizer is adopted; training is terminated at 200 epochs. We also use

both ℒ1 and ℒ2 regularization for the weights of the neural network with factors of

1.5× 10−3 and 1× 10−3, respectively, along with pruning of the weights if their value

drops below 5 × 10−3.

Experiments-2b:

We use a batch-time of 3 time-steps with data extracted at every other time-step

to form batches of size 8; we use 26 iterations per epoch; an exponentially decaying

learning rate (LR) schedule is applied with initial LR of 0.075, decay rate of 0.97, and

26 decay steps; the RMSprop optimizer is employed; training is terminated at 200

epochs. We also use both ℒ1 and ℒ2 regularization for the weights of the Markovian

closure with factors of 1.5 × 10−3 and 1 × 10−3, respectively, along with pruning

of the weights if their value drops below 5 × 10−3. For the neural network in the

non-Markovian closure term, only ℒ2 regularization with a factor of 1× 10−5 is used.

Finally, for all the experiments and their multiple repeats with the exact same

tuned hyperparameters, we provide variation of training and validation error as train-

ing progresses (figure F-1).
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Experi-
ments

Markovian Term Non-Markovian Term

Architecture Act. Trainable Weights Architecture Act. Delays Trainable
Weights

1a
ℱ𝑁𝑁

4Input layer with
4 neurons

none

Dense output
layer with 1
neurons

linear

1b

ℱ𝑁𝑁

4

𝒢𝑁𝑁

0.075 198

Input layer with
4 neurons

none Input layer with
5 neurons

none

Dense output
layer with 1
neurons

linear Dense hidden
layer with 10
neurons

swish

Dense hidden
layer with 7
neurons

swish

2 Dense hidden
layers with 5
neurons

swish

Dense hidden
layer with 3
neurons

swish

Dense output
layer with 1
neuron

linear

Multiply output with |𝑢|

2a

ℱ𝑁𝑁 18 (effective)

𝑤 =

⎡⎢⎢⎢⎢⎢⎢⎣
−(𝑤2 + 𝑤3 + 𝑤4)

𝑤2

𝑤3

𝑤4

−𝐶𝑃𝑤2 − 𝐶𝑍𝑤3 − 𝐶𝐷𝑤4

(𝑤2 + 𝑤3 + 𝑤4)/𝜌𝑤

⎤⎥⎥⎥⎥⎥⎥⎦
Input layer with
6 neurons

none

Dense output
layer with 6
neurons

linear

2b

ℱ𝑁𝑁 4 (effective)

𝑤 =

⎡⎢⎢⎢⎢⎣
−𝑤3

0
𝑤3

−𝐶𝑍𝑤3

𝑤3/𝜌𝑤

⎤⎥⎥⎥⎥⎦
𝒢𝑁𝑁

2.5 65
Input layer with
4 neurons

none Input layer with
4 neurons

none

Dense output
layer with 5
neurons

linear 2 Dense hidden
layer with 5 neu-
rons

swish

Dense output
layer with 4
neurons

linear

𝒢𝑁𝑁 =

⎡⎢⎢⎢⎢⎣
−(𝒢1

𝑁𝑁 + 𝒢2
𝑁𝑁)

𝒢1
𝑁𝑁

𝒢2
𝑁𝑁

𝒢3
𝑁𝑁

𝒢4
𝑁𝑁/𝜌𝑤

⎤⎥⎥⎥⎥⎦
Table F.1: Architectures for different generalized neural closure models used in the
four sets of experiments. We explicitly provide the constraints on the weights and
output layer of neural networks used in different experiments. {𝑤𝑖}4𝑖=1 are row vectors
of the weight matrix. “Effective” number of trainable weights do not count the ones
which are not free or are overwritten due to the imposed constraints. 𝐶𝑃 , 𝐶𝑍 , and
𝐶𝐷 are the carbon-nitrogen ratios for phytoplanktons, zooplanktons, and detritus,
respectively. 𝜌𝑤 is seawater density.
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(a) Experiments-1a

(b) Experiments-1b (gnCM with only Markovian closure term)

(c) Experiments-1b (gnCM with both Markovian and non-Markovian closure terms)

Figure F-1: Variation of training (left column) and validation (right column) loss with
epochs, for each of the experiments-1a, 1b, 2a, and 2b. We use boxplots to provide
statistical summaries for multiple training repeats done for each set of experiments.
The box and its whiskers provide a five number summary: minimum, first quartile
(Q1), median (orange solid line), third quartile (Q3), and maximum, along with
outliers (black circles) if any. These results accompany the architectures detailed in
table F.1. (cont.)
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(d) Experiments-2a

(e) Experiments-2b

Figure F-1: Variation of training (left column) and validation (right column) loss with
epochs, for each of the experiments-1a, 1b, 2a, and 2b. We use boxplots to provide
statistical summaries for multiple training repeats done for each set of experiments.
The box and its whiskers provide a five number summary: minimum, first quartile
(Q1), median (orange solid line), third quartile (Q3), and maximum, along with
outliers (black circles) if any. These results accompany the architectures detailed in
table F.1.
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