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Abstract

In this thesis we build on connections between discrete and continuous optimization. In the first
part of the thesis we propose faster second-order convex optimization algorithms for classical graph
algorithmic problems. Our main contribution is to show that the runtime of interior point methods
is closely connected to spectral connectivity notions in the underlying graph, such as electrical
conductance and effective resistance. We explore these connections along two orthogonal directions:
Making manual interventions to the graph to improve connectivity, or keeping track of connectivity
so as to make faster updates. These ideas lead to the first runtime improvement for the minimum
cost flow problem in more than 10 years, as well as faster algorithms for problems like negative-weight
shortest path and minimum cost perfect matching.

In the second part of the thesis, we investigate efficient optimization algorithms for problems
relevant to machine learning that have some discrete element, such as sparse or low rank structure. We
introduce a new technique, called adaptive regularization, which eliminates the sparsity performance
degradation caused by ℓ2 projections onto structured non-convex domains, like the set of sparse
vectors or low rank matrices. This leads to improving the sparsity guarantee of one of the most well
known sparse optimization algorithms, IHT.
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Chapter 1

Introduction

Optimization is a central ingredient in many disciplines, including engineering, science, economics, and
operations research, with tasks such as linear programming (LP) or semi-definite programming (SDP)
being among the most commonly encountered. Owing to this broad applicability of optimization
and especially due to the surge in machine learning (ML) research that is being observed in the last
decade, there has been tremendous work in analyzing various aspects of optimization algorithms, as
well as developing new ones to tackle emergent challenges. Even though optimization algorithms
are generally built to operate in a continuous (high-dimensional) space, a lot of practical problems
naturally induce discrete constraints, such as ones related to selecting a subset of variables, constraints
coming from graph structure, or integrality restrictions. Incorporating discrete constraints generally
introduces significant challenges, and can easily make a problem depart from the realm of polynomial
solvability. Yet, it has been demonstrated time and time again that insights from the continuous
world are often a game-changer for solving discrete problems. Classical examples include LP
relaxations for approximation algorithms and primal-dual algorithms, and more recent ones are solving
approximate maximum flow with gradient descent [152, 97], or 𝑘-server with mirror descent [27],
among many others. In this thesis, we will introduce new connections between continuous and
discrete optimization for a variety of problems, including graph algorithms, submodular optimization,
and sparse optimization.

Part I: Optimization on Graphs

Traditional graph algorithms, which make use of combinatorial notions such as paths and cuts and
have been extensively studied for decades, seem to be limited by long-standing efficiency barriers.
On the other hand, continuous optimization has emerged as a versatile and powerful toolbox to help
overcome these limitations. Casting discrete graph problems as continuous optimization tasks allows
one to argue about the algorithm in the language of high-dimensional geometry, by applying the
bedrock of optimization—gradient descent. This view reveals the geometric properties which affect
the performance of the algorithm, effects which the algorithm designer can then try to mitigate
by employing either graph-theoretic interventions, or optimization techniques like regularization.
This conceptual approach has led to breakthroughs in many problems, including approximate
maximum flow [39, 152, 97], minimum cost flow in dense graphs [106, 26, 25], maximum flow in
sparse graphs [118, 117, 115, 95, 73], and minimum cost flow in sparse graphs [44, 42, 10, 11]. A
catalyst to these results has been the groundbreaking work of Spielman and Teng [155] for solving
Laplacian linear systems, which introduced a quiver of modern (spectral) graph-algorithmic ideas.

Interestingly, the flux of innovative ideas between the discrete and the continuous world goes
both ways. In other words, not only does continuous optimization prove useful in the study of

11



graph algorithms, but conversely the study of graph algorithms also gives us deep insights into more
general optimization tasks like linear programming, insights which might have been too abstract to
conceive in the general setting. At the same time, graph structure is becoming increasingly relevant
in machine learning.

Minimum Cost Flow Arguably, the problem that reigns in this area is the minimum cost flow
problem, whose goal is to find the cheapest way to route a given demand in a capacitated graph. Its
importance stems not only from the fact that it is ubiquitous in fields such as transportation and
finance, but also because of its generality, as it contains problems like maximum flow, negative-weight
shortest path, and minimum-cost bipartite matching as special cases. For many years, the state of
the art runtime for sparse graphs was ̃︀𝑂 (︁𝑚3/2 log𝑂(1)(𝑈 +𝑊 )

)︁
, where 𝑚 is the number of edges in

the graph and 𝑈,𝑊 are upper bounds on edge capacities and costs respectively, and it resulted from
an appropriate instantiation of interior point method [44]. A natural question to ask then is:

Can we speed up interior point methods for minimum cost flow?

In order to understand what this question entails, it is important to have some insights into
how interior point methods work. Path-following interior point methods involve an iterative process,
each step of which involves solving a linear system of the form A⊤VAx = b (1), where A is the
constraint matrix of the LP and V = diag(v) is a diagonal matrix of positive weights, one per
constraint. In particular, there are two ways in which the structure of the matrix A⊤VA influences
the total runtime. One is, it affects how fast we are able to solve all the linear systems of the form
(1) that arise throughout the algorithm, and the other one is how well-conditioned the solutions
to these systems are, which in turn affects the largest value that the step size can be set to, and
consequently determines the number of iterations.

When we are working with graphs, (1) is commonly a Laplacian system on the input graph with
edge weights given by v . Our first contribution is to relate the electrical conductance of this graph
with the magnitude of the entries in x . In particular, high conductance implies that x has small
entries, which can be used to obtain an efficient algorithm for (a modified) interior point method on
high-conductance graphs.

Unfortunately, guaranteeing that the conductance is always high is not an easy task, because
the edge weights can change significantly throughout the algorithm. Besides, some of the weights
eventually converge to 0 (this is because some constraints become tight), so it is guaranteed that
some edges have arbitrarily bad conductance. In order to alleviate this issue, we modify the graph to
improve its conductance. After necessary post-processing to repair these modifications, this leads to
an ̃︀𝑂 (︀𝑚4/3 log𝑊

)︀
time algorithm for minimum cost flow on a graph with 𝑚 edges, unit capacities,

and costs bounded by 𝑊 in absolute value. It also leads to an algorithm with the same runtime for
negative-weight shortest path and minimum cost bipartite b-matching, improving the runtimes of all
these problems.

Even though the unit-capacity result makes considerable progress, it is hardly satisfying for cases
when the edge capacities are large. This is because the magnitude of perturbations in the problem
parameters depends polynomially on the edge capacities, and polynomial perturbations lead to a
polynomial runtime overhead. To alleviate this issue, we refrain from trying to manually improve the
graph’s conductance, and instead focus on solving (1) faster, and in particular, in sublinear time. This
dynamic problem can be cast more generally as maintaining the solution to a dynamically-changing
Laplacian system in sublinear time. Interestingly, it turns out that the runtime of the updates
required to dynamically solve (1) is also closely related to the magnitude of entries of the solution
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vector x . This leads to sublinear runtime, albeit only for unit-capacity graphs. Generalizing this idea
to graphs with general capacities requires a substantially more fine-grained analysis, which reveals
that the requirement for the entries of x to be small is too strong, and can instead be replaced by
an electrical energy argument. This leads to a runtime of ̃︀𝑂 (︀𝑚3/2−𝛿 log(𝑈 +𝑊 )

)︀
for some small

𝛿 > 0 for minimum cost flow, which is the first runtime improvement in more than ten years.

Beyond flows The question about speeding up linear programs is also interesting to be asked in a
broader context. When can we efficiently solve (and how efficiently can we solve) a convex program
with an exponential number of constraints? A prime example of such a problem is submodular
function minimization (SFM). Although still under the umbrella of convex optimization, this problem
is much harder than graph problems, and the fastest known algorithm for it runs in ̃︀𝑂 (︀𝑛3)︀, where 𝑛
is the size of the ground set of the function [107]. Even though this runtime is too slow for large-scale
applications, the SFM instances that arise in practice often have special structure. Specifically, the
function to be minimized is often decomposable, i.e. can be written as the sum of much simpler (e.g.
𝑂(1)-sized) submodular functions. Examples include hypergraph cut with 𝑂(1)-sized edges, image
segmentation, and MAP inference.

Algorithms for this problem have used ideas from both traditional (discrete) algorithms (e.g.
augmenting paths), and continuous optimization algorithms (e.g. coordinate descent). As none of
these approaches have an ideal runtime, but they have complementary strengths and weaknesses,
the question arises:

Can we bridge discrete and continuous approaches for the decomposable submodular minimization
problem?

This part of the thesis will study how to achieve this by designing a hybrid discrete-continuous
optimization algorithm, which works by a combination of a preconditioned iterative method and̃︀𝑂 (1) calls to a maximum flow oracle. This is quite surprising, as the submodular minimization
problem is not directly related to graphs. Using the recent breakthrough result of [37] which gives
an almost-linear time maximum flow algorithm, this leads to an almost-linear time algorithm for
decomposable submodular minimization, when all functions in the decomposition are ̃︀𝑂 (1)-sized.

Part II: Optimization Under Sparsity Constraints

How much can we compress a machine learning model while not sacrificing predictive performance?
How fast can we produce such a model and what are the types of structured sparsity constraints
that we can impose? What is the tradeoff between sparsity and runtime?

Modern machine learning tasks deal with huge amounts of data. For this reason, it is important
for the model that is being produced to be as concise as possible, something that is especially crucial
in applications with limited processing and storage capabilities. These questions naturally arise in
the field of machine learning, and are also relevant in the fields of optimization and compressed
sensing. While training a machine learning model, e.g. a linear model, is a continuous optimization
task, it is often useful to include additional discrete constraints. Examples include forcing an upper
bound on the number of features that are used, imposing a low rank structure to the solution, or
injecting relational knowledge by a pre-specified graph. Such use cases are encountered for example
in ML feature engineering, neural network model compression, ML design under budget constraints,
and relationship-aware models for biology.
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Sparse optimization Sparse optimization refers to the task of minimizing a function 𝑓(x ) under
a sparsity constraint ‖x‖0 ≤ 𝑠, which restricts the vector x to have at most 𝑠 non-zero entries.
As is often the case, the introduction of the discrete sparsity constraint results to the problem
being NP-hard. The most common way to overcome this issue is to relax the non-convex sparsity
constraint to its convex relaxation, i.e. the ℓ1 constraint ‖x‖1 ≤ 𝜆, making the problem amenable
to convex optimization algorithms while at the same time returning a solution of relaxed sparsity
𝑠′ ≥ 𝑠. Other approaches include selecting coordinates incrementally in a greedy fashion (e.g. the
orthogonal matching pursuit (OMP) algorithm [135] or Frank-Wolfe methods [69]), and performing
projected gradient descent on the space of 𝑠-sparse solutions (e.g. the iterative hard thresholding
(IHT) algorithm [19]). Yet, none of these are ideal: For convex 𝑓 , OMP guarantees sparsity
𝑠′ ≤ 𝑂

(︁
𝜅 log 𝑓(0)−𝑓(x*)

𝜀

)︁
· 𝑠, while IHT guarantees 𝑠′ ≤ 𝑂

(︀
𝜅2
)︀
· 𝑠, where 𝜅 is the (restricted)

condition number of 𝑓 . It is natural to ask whether we can get the best of both worlds, i.e. no
dependence on the desired error tolerance 𝜀, and a linear instead of quadratic dependence on the
condition number.

Is there a sparse convex optimization algorithm that guarantees sparsity 𝑠′ ≤ 𝑂(𝜅) · 𝑠?

In the second part of the thesis, we will show that this question can be answered affirmatively.
In fact, by a more careful analysis, we will show that a simple modification to the IHT algorithm is
enough to achieve this bound, thus essentially reducing the quadratic condition number dependence
of IHT to linear, with no significant runtime overhead. This is made possible by a new technique
that we call adaptive regularization, which avoids the sparsity performance degradation caused by
projections onto structured non-convex domains, like the set of 𝑠-sparse vectors.

Low rank optimization Beyond sparsity, different measures often better capture the sparsity
structure of a particular problem. For matrix problems, the most common measure of simplicity
is rank, which is the sparsity of the matrix spectrum. The low rank optimization problem asks
to minimize a function 𝑓(A) acting on matrices, under the constraint that rank(A) ≤ 𝑟. Matrix
completion, low rank matrix approximation, and robust principal component analysis, which are
central problems in machine learning and signal processing, are all captured by the low rank
optimization problem by appropriate choice of 𝑓 . Algorithms for these problems are closely connected
to sparse optimization algorithms, and indeed most algorithms for the latter have analogues for
the former, albeit with some additional difficulties. In this thesis, we propose simple greedy and
local search algorithms for low rank convex optimization, and show their theoretical and practical
advantage.

1.1 Structure of the Thesis

Part I: Optimization on Graphs. In the first part of the thesis, we examine connections between
flow algorithms and convex optimization, with the goal on one hand to design and analyze faster
graph algorithms that are based on convex optimization, and simultaneously on the other hand
to determine how purely graph algorithmic ideas tie back to the efficiency of convex optimization
algorithms, even providing insights for problems not directly related to graphs.

• In Chapter 3, we will develop a way to speed up the number of iterations of interior
point method when applied to the unit-capacity minimum cost flow problem, which leads to
improving the runtime from ̃︀𝑂 (︀𝑚10/7

)︀
[42] to ̃︀𝑂 (︀𝑚4/3

)︀
. By known reductions [42], this leads
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to similarly faster algorithms for negative-weight shortest paths and minimum cost b-matching.
This chapter is based on the paper Circulation Control for Faster Minimum Cost Flow in
Unit-Capacity Graphs [10], which is joint work with Aleksander Mądry and Adrian Vladu.

• In Chapter 4, we will continue with the minimum cost flow problem, this time with general
(polynomially bounded) capacities. We will show that, by closely examining structural proper-
ties of electrical flows using spectral graph theory, we can speed up the amortized runtime of
each interior point method iteration by discarding a large fraction of the graph. It is based
on the paper Faster Sparse Minimum Cost Flow by Electrical Flow Localization [11], which is
joint work with Aleksander Mądry and Adrian Vladu.

• In Chapter 5, we will study the connection between flow problems and submodular mini-
mization. We will show that, when the submodular function is decomposable as the sum of̃︀𝑂 (1)-sized submodular functions, it can be minimized by ̃︀𝑂 (1) calls to any maximum flow
oracle. It is based on the paper Decomposable Submodular Function Minimization via Maximum
Flow [9], which is joint work with Adam Karczmarz, Anish Mukherjee, Piotr Sankowski, and
Adrian Vladu.

Part II: Optimization Under Sparsity Constraints. In the second part of the thesis, we deal
with problems arising from resource-constrained machine learning and compressed sensing. We study
optimization under sparsity constraints, which are discrete constraints that enforce a bound on the
size of the predictor model. Our goal will be to present efficient optimization algorithms that can
approach the optimal sparsity level. All the papers on which the second part of the thesis is based
are joint works with Maxim Sviridenko.

• In Chapter 6 we develop algorithms for sparse convex optimization, where the goal is to
optimize a convex function under the constraint that the solution has a bounded number of
non-zero entries. It will be based on a new technique which we call adaptive regularization,
and is used to improve the sparsity of the returned solution, based on the paper Sparse Convex
Optimization via Adaptively Regularized Hard Thresholding [14].

• Then, in Chapter 7 we show how to alleviate the high computational overhead of the algorithm
in the previous chapter, while achieving a similar sparsity bound. This is based on Iterative Hard
Thresholding with Adaptive Regularization: Sparser Solutions Without Sacrificing Runtime [12].

• In Chapter 8 we study convex optimization with a low rank constraint, which is related to
problems like low rank approximation and robust principal components analysis. This is based
on the paper Local Search Algorithms for Rank-Constrained Convex Optimization [13].
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Chapter 2

Background

In this chapter, we will briefly present the background material necessary for following the rest of the
thesis. This consists of commonly used notation, fundamental notions from convex analysis that will
be extensively used throughout, as well as notation and fundamental theorems about graphs—one of
the main objects this thesis is concerned about.

2.1 Basic Notation

Vectors. For any 𝑘 ∈ Z≥0, we denote [𝑘] = {1, 2, . . . , 𝑘}. We will use bold to refer to vectors or
matrices. We denote by 0 the all-zero vector, 1 the all-one vector, O the all-zero matrix, and by I
the identity matrix (with dimensions understood from the context). Additionally, we will denote by
1𝑖 the 𝑖-th basis vector, i.e. the vector that is 0 everywhere except at position 𝑖, where it is 1.

We apply scalar operations to vectors with the interpretation that they are applied element-wise.
For example, given two vectors x ,y ∈ R𝑛, x/y represents the vector whose 𝑖th entry is 𝑥𝑖/𝑦𝑖.
Similarly, xy is the element-wise product of x and y , and x 2 is the element-wise square of vector
x . We use the inline notation (x ;y) to represent the concatenation of vectors x and y . For any
x ∈ R𝑛, we also denote the support of x by supp(x ) := {𝑖 : 𝑥𝑖 ̸= 0} .

Where not ambiguous, we use the uppercase symbol corresponding to a symbol denoting a vector,
to represent the diagonal matrix of that vector. In other words, given r ∈ R𝑛, R = diag(r) is a
matrix whose diagonal entries are 𝑟1, . . . , 𝑟𝑛 and off-diagonal entries are 0.

Norms and Inner Products. Given two vectors x and y of the same dimension, we use ⟨x ,y⟩
or x⊤y to denote their inner product. For any 𝑝 ∈ R≥1, we denote the ℓ𝑝 norm of some vector
x ∈ R𝑛 as

‖x‖𝑝 =

(︃
𝑛∑︁
𝑖=1

|𝑥𝑖|𝑝
)︃1/𝑝

,

as well as the special cases ‖x‖0 = |{𝑖 ∈ [𝑛] : 𝑥𝑖 ̸= 0}| and ‖x‖∞ = max
𝑖∈[𝑛]

|𝑥𝑖| . ‖x‖0 is also called

the sparsity of x . For any ℓ𝑝 norm and a non-negative weight vector w ∈ R𝑛≥0, we also define the
weighted ℓ𝑝 norm of a vector x ∈ R𝑛 as:

‖x‖w ,𝑝 =

(︃
𝑛∑︁
𝑖=1

𝑤𝑖 |𝑥𝑖|𝑝
)︃1/𝑝

.
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For two matrices A,B ∈ R𝑚×𝑛, we denote by ⟨A,B⟩ their Frobenius inner product, i.e.
𝑚∑︀
𝑖=1

𝑛∑︀
𝑗=1

𝐴𝑖𝑗𝐵𝑖𝑗 , which is also equal to the trace Tr(A⊤B). We also let ‖A‖2 be the spectral norm of

A, i.e. the largest singular value of A, ‖A‖𝐹 :=
√︀
⟨A,A⟩ be the Frobenius norm of A, and ‖A‖*

be the nuclear norm of A, i.e. the sum of its singular values.

Definition 2.1.1 (Dual norm). Given a norm ‖·‖, its dual norm is defined as

‖y‖* = max
‖x‖≤1

⟨y ,x ⟩ .

Restrictions and Thresholding. For any vector x ∈ R𝑛 and set 𝑆 ⊆ [𝑛], we denote by x𝑆 the
vector that results from x after zeroing out all the entries except those in indices given by 𝑆. For
any 𝑡 ∈ R and x ∈ R𝑛, we denote by x≥𝑡 the vector that results from setting all the entries of
x that are less than 𝑡 to 0. For a differentiable function 𝑓 : R𝑛 → R, its gradient ∇𝑓(x ), and a
set of indices 𝑆 ⊆ [𝑛], we denote ∇𝑆𝑓(x ) := (∇𝑓(x ))𝑆 . We also define the thresholding operator
𝐻𝑠(x ) to be equal to x𝑅, where 𝑅 are the 𝑠 entries of x with largest absolute value (breaking
ties arbitrarily). We override the thresholding operator 𝐻𝑟(A) when the argument is a matrix A,
defining 𝐻𝑟(A) = U diag (𝐻𝑟(𝜆))V

⊤, where U diag(𝜆)V ⊤ is the singular value decomposition of
A. In other words, 𝐻𝑟(A) only keeps the top 𝑟 singular components of A.

For a matrix A ∈ R𝑚×𝑛, a subset of rows 𝐶 ⊆ [𝑚] and subset of columns 𝐹 ⊆ [𝑛], we denote by
A𝐶𝐹 the matrix that results by setting all the elements 𝐴𝑖𝑗 where 𝑖 /∈ 𝐶 or 𝑗 /∈ 𝐹 to 0 and keeping
the rest intact.

2.2 Convex Analysis

One of the useful features of using continuous optimization is that it replaces the ad hoc potentials
and analytic tools of discrete algorithms by principled, generic mathematical properties and tools.
For example, one can analyze algorithms for a discrete optimization problem by turning it into a
continuous function in high-dimensional space, then studying fundamental analytic properties of this
function, such as convexity, smoothness, and Lipschitzness. In this section, we will go over the most
widely used of these properties. As we will be mostly dealing with differentiable functions throughout
the thesis, we tailor our definitions for differentiable functions. Given a function 𝑓 : R𝑛 → R, we will
denote its gradient at x by ∇𝑓(x ) ∈ R𝑛 and its Hessian at x (when defined) by ∇2𝑓(x ) ∈ R𝑛×𝑛.

Convexity. The most important notion will undoubtedly be convexity. This is partially because
it comes hand in hand with a polynomial time algorithm for minimizing such a function. In fact,
when posed with an algorithmic problem about which not much is known, the principled approach is
to first attempt to reduce it to minimizing a convex function. Let us get some insight into what
convexity is. A set 𝑆 ⊆ R𝑛 is convex if it is closed under convex combinations, i.e. for any x ,y ∈ 𝑆
and 𝜏 ∈ [0, 1], the solution z = 𝜏x + (1− 𝜏)y that lies in the straight line between x and y , also
belongs to 𝑆. A function 𝑓 : R𝑛 → R is then convex if all its level sets are convex. Alternatively, if
any linear Taylor approximation of 𝑓 lower bounds the value of 𝑓 everywhere, i.e. for any x ,y ∈ R𝑛
we have 𝑓(y) ≥ 𝑓(x ) + ⟨∇𝑓(x ),y − x ⟩.

The power of this simple property comes from the fact that it is always possible to reach an
optimal solution by following a straight line from any feasible solution, while always staying feasible.
What is somewhat of a mystery is why this property, which on its surface can appear quite restrictive,
is so commonly encountered in practice, and even when it fails to hold, the optimization frameworks
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that are built on convex foundations are still practically applicable and with surprisingly good
performance.

The most basic yet important algorithm for convex functions is the gradient descent algorithm,
which minimizes a convex function by repeatedly moving in the negative direction of the gradient:
x ′ = x − 𝜂∇𝑓(x ), where 𝜂 > 0 is a problem-dependent (and often iteration-dependent) parameter
called the step size.

Lipschitzness and smoothness. While convexity is sufficient to obtain a polynomial time
algorithm, functions encountered often have more “niceness” properties. In particular, if the value or
the gradient of a function change erratically while moving in the problem domain, it can be easy to
overshoot the optimum, thus requiring the algorithm to use very small step sizes and compromising
efficiency.

It is known that, as long as the function is Lipschitz, the (sub)gradient descent (or more generally
mirror descent) algorithm can be analyzed to give useful convergence bounds. The Lipschitzness
property is expressed by a bound on the norm of the gradient of the function. and it gives a bound
on how fast the value of the function can change in the underlying norm. Specifically, 𝑓 : R𝑛 → R is
called 𝐿-Lipschitz with respect to a norm ‖·‖ if for any x ∈ R𝑛 we have ‖∇𝑓(x )‖* ≤ 𝐿.

In some cases, it is beneficial to exploit the smoothness of the function, i.e. how fast the gradient
changes in the underlying norm. Algorithmically, this gives us a predictable change in the gradient
along the update step, and thus also a lower bound on the step size and a convergence analysis
of gradient descent. Smoothness also gives an upper bound on the error of the first-order Taylor
expansion of 𝑓 . 𝑓 : R𝑛 → R is called 𝛽-smooth with respect to a norm ‖·‖ if for any x ,y ∈ R𝑛 we
have 𝑓(y) ≤ 𝑓(x ) + ⟨∇𝑓(x ),y − x ⟩+ (𝛽/2) ‖y − x‖2.

Strong convexity and condition number. Sometimes, the rate of change of the gradient can
also be lower bounded. Together with smoothness, this property called strong convexity implies
that not only the gradient is correlated with the direction to the optimal solution, but is strongly
correlated. Together, the smoothness and strong convexity properties lead to very favorable, linear
convergence rates for gradient descent. Concretely, 𝑓 : R𝑛 → R is called 𝛼-strongly convex with
respect to a norm ‖·‖ if for any x ,y ∈ R𝑛 we have 𝑓(y) ≥ 𝑓(x ) + ⟨∇𝑓(x ),y − x ⟩+ (𝛼/2) ‖y − x‖2.
If 𝑓 is both smooth and strongly convex with respect to the ℓ2 norm, then we can define the condition
number 𝜅 ≥ 1 as 𝛽/𝛼, where 𝛽 > 0 is the smallest constant (or infimum) such that 𝑓 is 𝛽-smooth
and 𝛼 > 0 is the largest constant (or supremum) such that 𝑓 is 𝛼-strongly convex.

Sparse supports. In some applications like compressed sensing, the function is only going to
be well-conditioned along sparse directions. This leads to a generalization of all the previous
definitions. Specifically, a function is called 𝛽-smooth at sparsity level 𝑠 ≥ 1 if for any x ,y ∈ R𝑛
with ‖y − x‖0 ≤ 𝑠 we have

𝑓(y) ≤ 𝑓(x ) + ⟨∇𝑓(x ),y − x ⟩+ (𝛽/2) ‖y − x‖2 .

We denote the smallest such constant 𝛽 by 𝛽𝑠 and call it the restricted smoothness constant (RSS
constant). Completely analogously, 𝑓 is called 𝛼-strongly convex at sparsity level 𝑠 ≥ 1 if for any
x ,y ∈ R𝑛 with ‖y − x‖0 ≤ 𝑠 we have

𝑓(y) ≥ 𝑓(x ) + ⟨∇𝑓(x ),y − x ⟩+ (𝛼/2) ‖y − x‖2 .
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We denote the largest such constant 𝛼 by 𝛼𝑠 and call it the restricted strong convexity constant (RSC
constant). Then, the restricted condition number (RCN) of 𝑓 is denoted by 𝜅𝑠 ≥ 1 and defined as
𝛽𝑠/𝛼𝑠. The properties defined above are also closely connected to the well-known restricted isometry
property, which is commonly used in compressed sensing. We say that a function 𝑓 has the restricted
isometry property (RIP) at sparsity level 𝑠 if 𝛽𝑠, 𝛼𝑠 ∈ R>0. Then, the RIP constant of 𝑓 at sparsity
level 𝑠 is defined as 𝛿𝑠 = 𝜅𝑠−1

𝜅𝑠+1 .
1

Projections. The previously outlined gradient descent algorithm works for the problem of uncon-
strained minimization (i.e. minimizing over R𝑛). If there are additional constraints, the minimization
is over a subset of R𝑛. This is tackled by incorporating an additional step to gradient descent,
which projects the solution iterate onto the feasible set. The resulting algorithm is often called
projected gradient descent. It is thus important to introduce notation for projections. Given a
subspace 𝒱 ⊆ R𝑛, we will denote the orthogonal (ℓ2) projection operator onto 𝒱 as Π 𝒱 ∈ R𝑛×𝑛. In
particular, for any matrix A ∈ R𝑚×𝑛 we denote by im(A) = {Ax | x ∈ R𝑛} the image of A and by
ker(A) = {x | A⊤x = 0} the kernel of A. Therefore, Π im(A) = A

(︀
A⊤A

)︀+
A⊤ is the orthogonal

projection onto the image of A and Π ker(A⊤) = I −Π im(A) the orthogonal projection onto the
kernel of A⊤, where (·)+ denotes the Moore-Penrose matrix pseudoinverse.

2.3 Graphs and Flows

Graphs are significant in their own right because of their direct applications, but a perhaps even more
crucial aspect of their significance comes because of their role in the context of bridging discrete and
continuous optimization. They are the most simple mathematical objects that have a meaningful and
non-trivial dual nature: Either as combinatorial objects consisting of vertices and edges connecting
these, or as algebraic objects representing linear operators in a high-dimensional space.

Graphs as sets of vertices and edges. A (directed) graph 𝐺 = (𝑉,𝐸) is a mathematical object
consisting of a set of vertices 𝑉 and a set of edges 𝐸. Each edge (or sometimes arc, in the case
of directed graphs) 𝑒 of 𝐺 is a link that connects a certain (ordered) pair of vertices (𝑢, 𝑣) to each
other. 𝑢 is called the tail of edge 𝑒, and 𝑣 is called its head. We denote by 𝐸+(𝑢) the set of edges
that have 𝑢 as their tail and 𝐸−(𝑢) those that have 𝑢 as their head. When undirected, will write
𝑒 ∼ 𝑣 to denote the set of edges 𝑒 ∈ 𝐸 that have 𝑣 as their endpoint. A walk in 𝐺 is a sequence
of vertices, where each pair of successive vertices are connected by an edge, and its length is the
number of vertices minus 1. A path is simply a walk without repeated vertices. We also use the
notation 𝐺 = (𝑉,𝐸, c) to denote a weighted graph, where c ∈ R|𝐸| is a cost vector and each edge
𝑒 is associated by a real-valued cost 𝑐𝑒. When a graph 𝐺(𝑉,𝐸) is clear from context, we will use
𝑛 = |𝑉 | to denote the number of vertices and 𝑚 = |𝐸| to denote the number of edges.

Graphs as linear operators. An alternative way to view a graph is to encode it as a matrix.
One common way to do so is by the adjacency matrix of a graph. This matrix A ∈ R𝑛×𝑛 has one
row and one column for each vertex, and a real number in the corresponding position (𝑢, 𝑣) that is
equal to 0 if the edge (𝑢, 𝑣) does not exist in the graph, and 1 (or some other number if the graph
is weighted) if the edge exists. One way to glimpse at the usefulness of the adjacency matrix is to
raise it to a natural power A𝑘 and notice that the entry at position (𝑢, 𝑣) of this matrix is equal
to the total number of distinct walks from 𝑢 to 𝑣 with length exactly 𝑘. The cumbersomeness of

1We note that this is a more general definition than the one usually given, but it is equivalent up to a rescaling of 𝑓 .
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computing the same quantity in the combinatorial version shows the power of the dual nature of
graphs. For various technical reasons, we will be instead using a related but different matrix called
the incidence matrix B ∈ R𝑚×𝑛. The rows of this matrix correspond to edges and the columns to
vertices, and the row corresponding to edge 𝑒 = (𝑢, 𝑣) is all-zero except 1 at position 𝑢 and −1 at
position 𝑣 (if the graph is undirected, then it can be made directed by arbitrarily orienting each
edge). When applied to vectors, B turns vertex potentials into edge potential drops, and B⊤ turns
flows into vertex demands.

Flows. Given a graph 𝐺 we view a flow in 𝐺 as a vector f ∈ R𝑚 that assigns a value to each arc of
𝐺. If this value is negative we interpret it as having a flow of |𝑓𝑒| flowing in the direction opposite to
the arc orientation. This convention is especially useful when discussing flows in undirected graphs.

We will be working with flows in 𝐺 that satisfy a certain demand d ∈ R𝑛 such that
∑︀

𝑢 𝑑𝑢 = 0.
We say that a flow f satisfies or routes demand d if it satisfies the flow conservation constraints
with respect to the demands. That is:∑︁

𝑒∈𝐸+(𝑢)

𝑓𝑒 −
∑︁

𝑒∈𝐸−(𝑢)

𝑓𝑒 = 𝑑𝑢, for all 𝑢 ∈ 𝑉 , (2.1)

or simply B⊤f = d by using the incidence matrix. Intuitively, these constraints enforce that the net
balance of the total in-flow into vertex 𝑢 and the total out-flow leaving that vertex is equal to 𝑑𝑢. A
flow for which the demand vector d is zero everywhere is called a circulation.

We say that a flow f is feasible (or that it respects capacities) in 𝐺 if it obeys the capacity
constraints:

0 ≤ 𝑓𝑒 ≤ 𝑢𝑒, for all 𝑒 ∈ 𝐸 , (2.2)

where u ∈ R𝑚 is a vector of arc capacities.
We can now arrive at the definition of the minimum cost flow problem, which is one of the most

widely studied and general flow problems:

Definition 2.3.1 (Minimum cost flow). Given a directed graph 𝐺 = (𝑉,𝐸, c) with demands d ∈ R𝑛
and capacities u ∈ R𝑚>0, the minimum cost flow problem asks to compute a flow f that

• routes the demand: B⊤f = d ,

• respects the capacities: 0 ≤ f ≤ u , and

• minimizes the cost: ⟨c, f ⟩.

We will denote such an instance of minimum cost flow by the tuple (𝐺, c,d ,u).

If we drop the capacity constraint, we obtain the transshipment problem. If we also replace the
demand by a unit 𝑠− 𝑡 demand, we obtain the shortest path problem. If we instead drop the cost
minimization constraint and replace the demand by an (appropriately scaled) 𝑠 − 𝑡 demand, we
obtain the maximum flow problem. We can thus see why the above formulation is so widely studied
and powerful.

2.4 Electrical Flows and Laplacians

Electrical flows. The flow problems mentioned in the previous section can be formulated as ℓ∞
or ℓ1 flow minimization under appropriate constraints. For various reasons, it is natural and useful

21



to also study ℓ2 flow minimization. Natural, because the ℓ2 norm is the objective minimized by
flow processes in nature, e.g. in electricity, hydraulics, and random walks. It also leads to a more
robust solution. For example, penalizing the ℓ1 norm of the flow provides an optimal solution for
computing the shortest path in a routing problem. However, when subject to real world situations
like unexpected network changes or diversity requirements, it is desirable to have a more robust
solution (i.e. consisting of more than a single path), even if it is not optimal. As for the usefulness,
ℓ2 minimization can serve as a proxy for ℓ1 or ℓ∞ minimization, thus allowing one to solve these
with a potentially simpler ℓ2 oracle.

Concretely, given a graph 𝐺(𝑉,𝐸) with edge resistances r ∈ R𝑚>0, a flow f ∈ R𝑚 is called an
electrical flow if it minimizes the energy

∑︀
𝑒∈𝐸

𝑟𝑒𝑓
2
𝑒 among all flows routing the demand of f (i.e.

d = B⊤f ). Electrical flows are very closely connected to graph Laplacians. In particular, the
electrical flow f induced by the demand d with resistances r is given by f = R−1BL+d , where
L = B⊤R−1B is the Laplacian of 𝐺 with resistances r .

Potential embeddings. The dual notion to that of a flow is the potential embedding. In fact,
the energy optimality of a flow f can be certified by a potential embedding 𝜑 ∈ R𝑛 that satisfies
Ohm’s law for all edges 𝑒 = (𝑢, 𝑣), i.e. 𝜑𝑣 − 𝜑𝑢 = 𝑟𝑒𝑓𝑒, or just B𝜑 = rf by using the incidence
matrix. Given resistances r , we will say that a potential embedding 𝜑 induces the flow f = B𝜑

r ,
and conversely, given an electrical flow, we will say that it induces the potentials that certify its
energy optimality. The energy of a potential embedding is defined to be equal to the energy of the
electrical flow induced by 𝜑:

𝐸r (𝜑) =
∑︁
𝑒∈𝐸

(B𝜑)2𝑒
𝑟𝑒

.

It should be noted that even though every potential embedding induces an electrical flow with some
demand, not every flow is electrical. For example, a flow cycle can never be electrical. This can also
be witnessed by the fact that potential embeddings live in 𝑛-dimensional space but flows live in
𝑚-dimensional space, so there are “more” flows than potential embeddings.

Electrical energy statements. For any valid demand and resistances, there exists an electrical
flow that routes the demand. It useful to abstract away from the electrical flow, which is the solution
to an ℓ2 minimization problem, and directly deal with the energy required to route a particular
demand. This will be a very useful potential throughout, since it is much more stable than tracking
the electrical flow.

For any valid demand (⟨1,d⟩ = 0) and resistances r > 0, we denote by

ℰr (d) = min
𝜑:L𝜑=d

𝐸r (𝜑)

the total energy that is required to route the demand d with resistances r , where L = B⊤R−1B is
the Laplacian of 𝐺. We extend this definition for a d that is not a demand vector (⟨1,d⟩ ≠ 0), as
ℰr (d) = ℰr

(︁
d − ⟨1,d⟩

𝑛 · 1
)︁
. We now outline various properties of energy, that show its predictability

and make it a suitable quantity to be used as a potential in the analysis of algorithms.

Fact 2.4.1 (Energy statements). Consider a graph 𝐺(𝑉,𝐸) with resistances r .

• For any x ,y ∈ R𝑛, we have
√︀
ℰr (x + y) ≤

√︀
ℰr (x ) +

√︀
ℰr (y).
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• Consider a vector d ∈ R𝑛. Then,

max
𝜑:𝐸r (𝜑)≤1

⟨d ,𝜑⟩ =
√︀
ℰr (d) .

• For any resistances r ′ ≤ 𝛼r for some 𝛼 ≥ 1 and any d ∈ R𝑛, we have ℰr ′(d) ≤ 𝛼 · ℰr (d)

Proof. We let L = B⊤R−1B be the Laplacian of 𝐺 with resistances r . For the first one, we have√︀
ℰr (x + y) = ‖x + y‖L+ ≤ ‖x‖L+ + ‖y‖L+ =

√︀
ℰr (x ) +

√︀
ℰr (y), where we used the triangle

inequality.
The second one follows since 𝐸r (𝜑) = ‖𝜑‖2L and ℰr (d) = ‖d‖2L+ and the norms ‖·‖L and ‖·‖L+

are dual.
For the third one, we note that

(︀
B⊤R′−1B

)︀+ ⪯ 𝛼·(︀B⊤R−1B
)︀+, and so ℰr ′(d) = ‖d‖2(B⊤R′−1B)+ ≤

𝛼 ‖d‖2(B⊤R−1B)+ = 𝛼 · ℰr (d).

Other than its use as a potential, we will also use energy as a metric. Just like in the context
of shortest paths the right distance metric to use is the shortest path distance, in the context of
electrical flows the right distance metric is the effective resistance. Roughly, effective resistance
measures how close two vertices (or sets of vertices) of the graph are by how much energy is needed
to transport flow between them. In contrast to shortest path distance, which only depends on the
length of the shortest path between the two vertices, effective resistance also takes the number of
alternative (edge-disjoint) paths into account.

Definition 2.4.2 (Effective resistances). Consider a graph 𝐺(𝑉,𝐸) with resistances r and any pair
of vertices 𝑢, 𝑣 ∈ 𝑉 . We denote by 𝑅𝑒𝑓𝑓 (𝑢, 𝑣) the energy required to route 1 unit of flow from 𝑢 to 𝑣,
i.e. 𝑅𝑒𝑓𝑓 (𝑢, 𝑣) = ℰr (1𝑢 − 1𝑣). This is called the effective resistance between 𝑢 and 𝑣. We extend
this definition to work with vertex subsets 𝑋,𝑌 ⊆ 𝑉 , such that 𝑅𝑒𝑓𝑓 (𝑋,𝑌 ) is the effective resistance
between the vertices 𝑥, 𝑦 that result from contracting 𝑋 and 𝑌 . When used as an argument of 𝑅𝑒𝑓𝑓 ,
an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is treated as the vertex subset {𝑢, 𝑣}.

Asymptotic notation. We use ̃︀𝑂 (𝑡) to denote a quantity that is 𝑂(𝑡 log𝑘 𝑡) for some constant
𝑘 ≥ 0. When the main problem parameter is clear from context (e.g. the number of edges in a
graph), we will use ̃︀𝑂 (1) to denote a quantity that is 𝑂(log𝑘𝑚) for some constant 𝑘 ≥ 0.
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Part I

Optimization on Graphs
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Chapter 3

Circulation Control for Faster Minimum
Cost Flow in Unit-Capacity Graphs

3.1 Introduction

Finding the least costly way to route a demand through a network is a fundamental algorithmic
primitive. Within the context of algorithmic graph theory it is captured as the minimum cost flow
problem, in which given a graph with costs on its arcs and a set of demands on its vertices, one needs
to find a flow that routes the demand while minimizing its cost. This problem has received significant
attention [4] and inspired the development of new algorithmic techniques. For example, Orlin’s
network simplex algorithm [133] offered an explanation of the excellent behavior that the simplex
method exhibits in practice when applied to flow problems. More broadly, the recent progress on
algorithms for the flow problems [44, 39, 118, 105, 152, 97, 117, 136, 42, 150, 153, 115, 114] has
been an instance of the general approach to graph algorithms that leverages the tools of continuous
optimization, rather than classical combinatorial techniques. Also, there exist efficient reductions
that enable us to leverage algorithms for the minimum cost flow problem to solve a host of other
fundamental problems, including the maximum flow problem, the minimum cost bipartite matching
problem, and the shortest path problem with negative weights.

3.1.1 Our Contributions

In this chapter, we present an 𝑚4/3+𝑜(1) log𝑊 -time algorithm for the minimum cost flow problem in
graphs with unit capacities, where 𝑊 denotes the bound on the magnitude of the arc costs. This
improves upon the previously known ̃︀𝑂(𝑚10/7 log𝑊 ) running time bound of Cohen et al. [42] and
matches the running times of the recent algorithms due to Liu and Sidford [115, 114] for the unit
capacity maximum flow problem.

Similarly to most of the relevant prior work, our algorithm at its core relies on an interior point
method, but the variant of the interior point method we design and employ is directly attuned to
the combinatorial properties of the graph. In particular, in contrast to [42], we do not rely on a
reduction to the bipartite perfect b-matching problem (which requires a sophisticated analysis).
Instead, our algorithm operates directly in the space of circulations of the original graph.

One can also draw an analogy between the network simplex method [133] and ours. The former
navigated the corners of a feasible polytope and improved an existing suboptimal solution through
pushing flow around cycles. In contrast, we iteratively improve our existing suboptimal solution by
augmenting it with circulations, but navigate through the strict interior of the polytope, seeking to
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keep a specific condition called centrality satisfied. Also, while in the network simplex case, the key
difficulty is in finding the right pivoting rule, our approach shifts the attention towards finding the
right circulation to augment the flow with so as to maintain the centrality invariant.

A key ingredient of our approach is a custom preconditioning method, which enables us to control
the flows we use to update the solution in each iteration. We derive a new way to tie the conductance
of the graph to a certain guarantee on the flows computed in the preconditioned graph. This allows
us to perform a better, tighter analysis of the quality of the preconditioner we use.

On a more technical level, our work provides a number of insights into the underlying interior
point method. In particular, in our 𝑚11/8+𝑜(1) log𝑊 -time algorithm (that we develop first), the
progress steps we perform in order to reduce the duality gap of our current solution are cast as a
refinement procedure, which simply attempts to correct a residual. This procedure is very similar
to iterative refinement—widely used in the more restricted case of minimizing convex quadratic
functions [167, 81]. Also, in contrast to the classic approach for maintaining constraint feasibility
during the interior point method update step—which relies on controlling the ℓ2 norm of the relative
updates to the slack variables—we want to perform steps for which it is only guaranteed that these
relative updates are small in ℓ∞ norm. To this end, we employ a custom residual correction procedure
that works by re-weighting the capacity constraints. (It is worth noting that a similar procedure has
been used in [115].1)

This paves the way for the final algorithm that has the further improved running time of
𝑚4/3+𝑜(1) log𝑊 . As a matter of fact, the key bottleneck to obtaining a faster algorithm using the
above approach is the need to ensure that the residual error in the solution obtained after performing
a step bounded in ℓ∞ norm can be reduced to zero. This requires increasing the weights on the
constraint barriers, and these weight increases are exactly what limits the exponent in the running
time to 11/8. The step problem we need to solve, however, is well conditioned within a local ℓ∞ ball
around the current iterate. Therefore, being able to certify that the point returned by solving the
step problem optimally lies within this local ℓ∞ ball, implies that we can efficiently find it using a
direct optimization subroutine. This latter observation is the key insight in the very recent preprint
by Liu-Sidford [114] that enables them to improve the running time for maximum flow in graphs
with unit capacity. We employ this insight in our setting in order to obtain an improved running
time for unit-capacity minimum cost flow as well.

Finally, in order to guarantee that the ℓ∞ norm of each progress step is indeed as small as needed,
we employ a convex optimization subroutine with mixed ℓ2 and ℓ𝑝 terms [103], instead of solving a
linear system of equations in each update step as is typically done. (Such subroutine was similarly
used by Liu and Sidford [115, 114], in a slightly different form.)

3.1.2 Previous Work

Due to the size of the existing literature on the studied problems, we focus our discussion only on
the works that are the most relevant to our results and refer the reader to [74] and Section 1.2 in [42]
for a more detailed discussion.

In 2013, Mądry [118] developed an algorithm that produces an optimal solution to the unit
capacity maximum flow problem in ̃︀𝑂(𝑚10/7) time and thus improves over a long standing running
time barrier of ̃︀𝑂(𝑛3/2) in the case of sparse graphs. An important characteristic of this approach
was the careful tracking of an electrical energy quantity which allowed to control the step size.
The underlying approach was then simplified by providing a more direct correspondence between
the update steps of the interior point method and computing augmenting paths via electrical flow

1While our analysis aims to enforce a small ℓ2 norm of the residual error, [115] seek to control the ℓ4 norm of the
congestion vector. These techniques turn out to be largely equivalent.
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computations [117]. This framework has been also extended to a more general setting of unit capacity
minimum cost flow [42], achieving a running time of ̃︀𝑂(𝑚10/7 log𝑊 ), where 𝑊 upper bounds the
largest cost of a graph edge in absolute value.

In a different context, motivated by new developments involving regression problems [52, 28, 1],
Kyng et al. [103] studied the ℓ𝑝 regression problems on graphs, obtaining an algorithm which runs
in 𝑚1+𝑜(1) time for a range of large values of 𝑝. This algorithm’s running time was subsequently
further improved by Adil and Sachdeva [2].

Liu and Sidford [115] have recently obtained an improved algorithm for the unit capacity
maximum flow problem with a running time of 𝑚11/8+𝑜(1). One of their key insights was that the
work on ℓ𝑝-regression problems enables treating energy control as a self-contained problem in each
iteration of the interior point method, rather than maintaining energy as a global potential over
the whole course of the algorithm, which was the case in previous work. Then, in their recent
follow-up work, Liu and Sidford [114] strengthen the step problem primitive by directly optimizing a
regularized log barrier function as opposed to performing a sequence of regularized Newton step.
This led to a running time of 𝑚4/3+𝑜(1) for the unit capacity maximum flow problem.

3.1.3 Organization of the Chapter

We begin with technical preliminaries in Section 3.2. In Section 3.3, we present our interior point
framework specialized to minimum cost flow, and provide a basic analysis which yields an algorithm
running in ̃︀𝑂(𝑚3/2 log𝑊 ) time. We further refine our framework in Section 3.4, where we develop
the key tools needed for our results, giving a faster, 𝑚11/8+𝑜(1) log𝑊 -time algorithm for obtaining the
solution to a slightly perturbed instance of the original minimum cost flow problem. In Section 3.5
we then show how to use existing combinatorial techniques to repair this perturbed instance. Finally,
in Section 3.6, we demonstrate how to combine the framework developed in the previous sections
with an insight from the recent work of Liu and Sidford [114] to achieve the final running time of
𝑚4/3+𝑜(1) log𝑊 .

3.2 Preliminaries

The unit capacity minimum cost flow problem is to find a flow f ∈ R𝑚 that meets the unit capacity
constraints 0 ≤ 𝑓𝑒 ≤ 1 for all 𝑒 ∈ 𝐸 and routes the demand d , while minimizing the cost

∑︀
𝑒∈𝐸

𝑐𝑒𝑓𝑒.

Cycle Basis. A set of circulations 𝒞 in 𝐺 is called a cycle basis if any circulation in 𝐺 can be
expressed as a linear combination of circulations in 𝒞. If 𝐺 is connected, the dimension of a cycle
basis of 𝐺 is 𝑚− 𝑛+ 1.

3.3 Minimum Cost Flow by Circulation Improvement

In this section we present our (customized) interior point method–based framework for solving the
minimum cost flow problem, setting the foundations for the faster algorithm of Section 3.4.

3.3.1 LP Formulation and Interior Point Method

We first cast the minimum cost flow problem as a linear program that we then proceed to solve
using an interior point method.
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LP formulation. It will be useful to consider the parametrization of a flow in terms of the
circulation space of the graph. The goal of this re-parametrization is to initialize the interior point
method with an initial flow f 0 which routes the prescribed demand d , then iteratively improve it by
adding circulations to get a flow which routes the same demand d but has lower duality gap. It
is noteworthy that the specific parametrization of the circulation space is irrelevant to the interior
point method, due to its affine invariance. We will elaborate on this point later. For us it will be a
useful tool for understanding the centrality condition arising from the interior point method and
applying more aggressive progress steps.

Given the (connected) underlying graph 𝐺 = (𝑉,𝐸), let C ∈ R𝑚×(𝑚−𝑛+1) be a matrix whose
columns encode the characteristic vectors of a basis for 𝐺’s circulation space.

In order to construct such a matrix, we let 𝐶1, 𝐶2, ..., 𝐶𝑚−𝑛+1 be an arbitrary cycle basis for 𝐺,
where we ignore the arc orientations. An easy way to produce one is to consider a spanning tree
𝑇 ⊆ 𝐺. For each arc (𝑢, 𝑣) ∈ 𝐸 which is not in 𝑇 , consider the unique path in 𝑇 connecting 𝑣 and
𝑢. The arcs on this path along with the arc (𝑢, 𝑣) determine a cycle in the basis. More specifically,
consider the set of arcs of 𝐺 present in 𝐶𝑖, sorted according to the order in which they are visited
along the cycle, starting with the off-tree arc (𝑢, 𝑣), then continuing with those witnessed along the
tree path from 𝑣 to 𝑢. If an arc 𝑒 ∈ 𝐸 has the opposite orientation to the one corresponding to the
traversal of the cycle, we represent it as 𝑒, otherwise we write it just as 𝑒.

Now, letting 𝐶𝑖 consist of a subset of arcs in 𝐸, each of which appears either with its original
orientation 𝑒, or the opposite orientation 𝑒, we write the 𝑖𝑡ℎ column of matrix C as follows.

C 𝑒,𝑖 =

⎧⎪⎨⎪⎩
1 , if 𝑒 ∈ 𝐶𝑖 ,
−1 , if 𝑒 ∈ 𝐶𝑖 ,
0 , otherwise.

We can now use C to represent any circulation in 𝐺. Given any x ∈ R𝑚−𝑛+1 we have that
f = Cx is a circulation. Furthermore the sign of each coordinate 𝑓𝑒, 𝑒 = (𝑢, 𝑣) ∈ 𝐸, shows whether
f 𝑒 is a flow that runs in the same direction as 𝑒 or vice-versa, i.e. 𝑓𝑒 > 0 if f carries flow from 𝑢 to
𝑣, and similarly 𝑓𝑒 < 0 if f carries flow from 𝑣 to 𝑢. On the other hand, for any circulation f ∈ R𝑚
there exists an x ∈ R𝑚−𝑛+1 such that f = Cx (or in other words the image of C is the space of
circulations).

Now let f 0 be a flow in 𝐺 such that for each arc 𝑒 ∈ 𝐸, 0 < (f 0)𝑒 < 1, and f 0 routes the demand
d . The minimum cost flow problem can be cast as the following linear program:

min ⟨c,Cx ⟩ (3.1)
0 ≤ f 0 +Cx ≤ 1 .

We see that the objective value of this linear program differs by a term of ⟨c, f 0⟩ from the original
objective. We did not include it here, since it is a constant. It is useful to also consider its dual:

max −⟨1− f 0,y
+⟩ − ⟨f 0,y

−⟩ (3.2)

C⊤ (︀y+ − y−)︀ = −C⊤𝑐

y+,y− ≥ 0 .

The objective we are left to solve simply suggests that in order to find the minimum cost flow
in the graph with unit capacities, we equivalently have to find the minimum cost circulation in
the residual graph under shifted capacity constraints. This carries a significant similarity with
the network simplex algorithm [133], which has been used in the past as a specialization of the
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simplex method to the minimum cost flow problem. It essentially consisted of maintaining a solution
routing the prescribed demand d , and iteratively improving it by pushing flow around a cycle, while
satisfying capacity constraints. Rather than performing such updates, which always maintain a flow
on the boundary of polytope corresponding to the set of feasible solutions, the interior point method
maintains a more sophisticated condition on these intermediate solutions. Another similar approach
can be found in [98], where updates are iteratively pushed around cycles in order to solve Laplacian
linear systems.

Like these methods, our approach will be to repeatedly improve the cost of the solution by
pushing augmenting circulations. Crucially, maintaining a solution centrality condition, stemming
from interior point methods, will allow us to make significant progress during each augmentation step.
Figure 3-1 is the high-level procedure for this algorithm. It consists of an initialization procedure
Initialize which is described in Section 3.3.3, repeated circulation augmentations using procedure
Augment as described in Section 3.3.4, and finally a standard procedure Repair to round the
returned solution with low duality gap to an optimal integral one (described in Section 3.5). The
faster algorithm of Section 3.4 will also follow the same format, but the Augment and Repair
routines will be more sophisticated.

MinCostFlow(𝐺, c,d ; 𝜀)

1. 𝐺′, c′,w , f , 𝜇← Initialize(𝐺, c,d).

2. While 𝜇𝑚 > 𝜀:

3. w , f , 𝜇← Augment(𝐺′, c′, 𝜀;w , f , 𝜇).

4. f ← Repair(𝐺′, c′,d ; f ).

5. Return f .

Figure 3-1: Minimum Cost Flow by Circulation Improvement

Barrier Formulation. In order to apply an interior point method on (3.1), we need to replace
the feasibility constraints by a convex barrier function. We seek a nearly optimal solution, i.e. one
that has small duality gap. The vanilla interior point method consists of iteratively finding the
optimizer x𝜇 for a family of functions parametrized by 𝜇 > 0

min
x∈R𝑚−𝑛+1

𝐹w
𝜇 (x ) =

1

𝜇
· ⟨c,Cx ⟩ −

∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 · log(1− f 0 −Cx )𝑒 + 𝑤−

𝑒 · log(f 0 +Cx )𝑒
)︀
. (3.3)

where 𝑤+
𝑒 , 𝑤

−
𝑒 > 0 are weights on the flow capacity constraints. In order to find the optimizer x𝜇,

one performs Newton method on 𝐹w
𝜇 , after warm starting with x𝜇(1+𝛿) for some 𝛿 > 0.

While classical methods maintain w = 1 at all times, this extra parameter has been introduced
in previous work in order to allow the method to make progress more aggressively. To simplify
notation we define the slack vector s = (s+; s−) as

s+ = 1− f 0 −Cx , (3.4)
s− = f 0 +Cx , (3.5)
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representing the upper slack (i.e. the distance of the current flow f = f 0+Cx to the upper capacity
constraint of f ≤ 1) and the lower slack (i.e. the distance from the current flow to the lower capacity
constraint 0 ≤ f ). We will use the vector w = (w+;w−) to represent the weights for the two sets of
barriers that we are using.

3.3.2 Optimality and Duality Gap

In order to describe the method and analyze it, it is important to understand the optimality
conditions for 𝐹w

𝜇 . We say that a vector x which minimizes 𝐹w
𝜇 is central (or satisfies centrality).

This condition is described in the following lemma, whose proof can be found in Appendix 9.1.5.

Lemma 3.3.1. The vector x is a minimizer for 𝐹w
𝜇 if and only if

C⊤
(︂
w+

s+
− w−

s−

)︂
= −C⊤c

𝜇
. (3.6)

Furthermore the vector y = (y+;y−) with y+ = 𝜇 · w+

s+
, y− = 𝜇 · w−

s− is a feasible dual vector, and
the duality gap of the primal-dual solution (x ,y) is exactly 𝜇‖w‖1.

Maintaining the centrality condition (3.6) will be the key challenge in obtaining a faster interior
point method for this linear program. This emphasizes the fact that the aim of this method is
to construct a feasible set of slacks s+ = 1 − f 0 − Cx > 0 and s− = f 0 + Cx > 0 such that
C⊤

(︁
w+

s+
− w−

s−

)︁
= −C⊤c

𝜇 for a very small 𝜇 > 0. It is important to note that even though the
existence of such an x needs to be guaranteed, it is not necessary to explicitly maintain it. This will
be apparent in the definition below.

Definition 3.3.2 (𝜇-central flow). Given weights w = (w+;w−) ∈ R2𝑚
>0 , a flow 0 < f < 1 is called

𝜇-central with respect to w if for some cycle basis matrix C ∈ R𝑚×(𝑚−𝑛+1),

C⊤
(︂

w+

1− f
− w−

f

)︂
= −C⊤c

𝜇
(3.7)

for some 𝜇 > 0. We will call the parameter 𝜇 the centrality of f with respect to w .

It should be noted that the precise choice of cycle basis C in the above definition is irrelevant,
as the property is invariant under the choice of cycle basis.

3.3.3 Initialization

The initialization procedure description and analysis is standard and thus deferred to Section 9.1.1.
From now on we assume that 𝐺 is the graph produced by the procedure in Section 9.1.1, together
with a 𝜇-central flow with 𝜇 ≤ 2‖c‖2.

3.3.4 The Augmentation Procedure and Routing the Residual

The Augment procedure can be seen in Figure 3-2. It consists of computing an augmenting flow̃︀f by solving a linear system, augmenting the current solution by that flow, and finally calling a
correction procedure in order to enforce the centrality of the solution.

We think of the interior point method as iteratively augmenting a feasible flow 0 < f < 1

satisfying C⊤
(︁

w+

1−f −
w−

f

)︁
= −C⊤c

𝜇 into another flow f ′ such that C⊤
(︁

w+

1−f ′ − w−

f ′

)︁
= −C⊤c

𝜇′
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Augment(𝐺, c, 𝜀;w , f , 𝜇)

• Given f : 𝜇-central flow with respect to weights w .

• Returns f ′′ : 𝜇′-central flow with respect to weights w ′.

1. Let ̃︀f be a solution to (3.10), where

h = 𝛿

(︂
w+

1− f
− w−

f

)︂
.

2. Compute the congestion vector 𝜌 = (𝜌+;𝜌−) as 𝜌+𝑒 =
̃︀𝑓𝑒

1−𝑓𝑒 , 𝜌
−
𝑒 = − ̃︀𝑓𝑒

𝑓𝑒
, cf. (3.11).

3. Augment flow f ′ = f + ̃︀f .

4. Correct residual given by h ′ = −
(︁

w+

1−f ′ − w−

f ′ + c
𝜇/(1+𝛿)

)︁
using Lemma 3.3.9 and get new

weights w ′, flow f ′′, and centrality parameter 𝜇′.

5. Return w ′, f ′′, 𝜇′.

Figure 3-2: Circulation improvement step

where 𝜇′ = 𝜇/(1 + 𝛿) for some 𝛿 > 0. The magnitude of 𝛿 for which we are able to do so dictates
the rate of the convergence of the method, since in 𝑂(𝛿−1) such iterative steps, the parameter 𝜇 is
reduced to half, and hence the duality gap also reduces by a factor of 1/2, per Lemma 3.3.1.

We can interpret such an iterative step as a residual-fixing procedure. Given a flow f with slacks
s+ = 1− f > 0, s− = f > 0, we consider the residual

C⊤
(︂
w+

s+
− w−

s−
+

c

𝜇′

)︂
= ∇𝐹w

𝜇′ (x ) ,

which is exactly the amount by which the target condition (3.6) fails to be satisfied. We denote the
current residual as ∇𝐹w

𝜇 (x ) = −C⊤h for some h ∈ R𝑚. The goal of the iterative step is therefore
to provide a feasible update rule to the flow such that the residual shrinks in some metric. To do so,
we must first define a few useful notions.

Definition 3.3.3 (Energy of the residual). Given a residual −C⊤h for some h ∈ R𝑚 and positive
vectors w = (w+;w−) ∈ R2𝑚, s = (s+; s−) ∈ R2𝑚 we define the energy to route h with resistances
determined by (w , s) as

ℰw ,s(h) = miñ︀y :C⊤(̃︀y+h)=0

1

2

∑︁
𝑒∈𝐸

(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂−1

(̃︀𝑦𝑒)2 . (3.8)

The following lemma gives equivalent formulations for the energy which will be useful for our
analysis. Its proof can be found in Appendix 9.1.5.
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Lemma 3.3.4 (Equivalent energy formulations). Given h ∈ R𝑚 and w , s ∈ R2𝑚, one can write:

ℰw ,s(h) = max̃︀f=C ̃︀x ⟨h , ̃︀f ⟩ − 1

2

∑︁
𝑒∈𝐸

(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
( ̃︀𝑓𝑒)2 . (3.9)

Equivalently, the following conditions are satisfied:

̃︀f = C ̃︀x , (3.10)

C⊤
(︂

w+

(s+)2
+

w−

(s−)2

)︂ ̃︀f = C⊤h .

The latter equality can be re-stated in terms of the congestion vector

𝜌 :=

(︃
𝜌+ =

̃︀f
s+

;𝜌− =
−̃︀f
s−

)︃
(3.11)

as

C⊤
(︂
w+𝜌+

s+
− w−𝜌−

s−

)︂
= C⊤h . (3.12)

The energy can then be written as

ℰw ,s(h) =
1

2

∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 (𝜌

+
𝑒 )

2 + 𝑤−
𝑒 (𝜌

−
𝑒 )

2
)︀
=

1

2

∑︁
𝑒∈𝐸

(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
( ̃︀𝑓𝑒)2 .

Using Lemma 3.3.4 we can prove that under certain conditions we can update the flow while
simultaneously maintaining its feasibility and reducing the residual. Let us first define a residual
correction step.

Definition 3.3.5 (Residual correction). Let w , s ∈ R2𝑚 where w > 0 and f = f 0+Cx is a feasible
flow with slacks s+ = 1 − f > 0, s− = f > 0, and let ∇𝐹w

𝜇 (x ) = −C⊤h be the corresponding
residual. A residual correction step is defined as an update to the x vector, and implicitly to the flow
vector f via:

x ′ = x + ̃︀x , (3.13)

f ′ = f +C ̃︀x = f + ̃︀f , (3.14)

where ̃︀x is the solution to the linear system

̃︀f = C ̃︀x , (3.15)

C⊤
(︂

w+

(s+)2
+

w−

(s−)2

)︂ ̃︀f = C⊤h . (3.16)

Since ̃︀f is a circulation, this shows that the residual correction steps of the vanilla interior point
method preserve the demand d by adding an augmenting circulation to the current flow f . It is also
important to ensure that such updates do not break the LP feasibility constraints, i.e. 0 ≤ f ≤ 1 at
all times. This will be made true by appropriately scaling the residual, thus enforcing ‖𝜌‖∞ < 1/4,
or equivalently

⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ < 1
4 min {1− 𝑓𝑒, 𝑓𝑒} for all 𝑒 ∈ 𝐸.
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It is worth noting that the flow ̃︀f which corresponds to solving the linear system from (3.13-3.14)
can be computed in ̃︀𝑂(𝑚) time using a fast Laplacian solver [155, 98, 41, 137]. This may not be
immediately obvious given the cycle basis formulation. But, in fact, this follows very easily from
writing the linear system solve as a convex quadratic minimization problem. We do not go into
further detail here, since we will elaborate more on this topic in Section 3.4.

In order to analyze the algorithm, we use energy as a potential function.

Lemma 3.3.6 (Energy after residual correction). Let w ∈ R2𝑚 where w > 0, and f = f 0 +
Cx be a flow vector with slacks s > 0. Let c ∈ R𝑚 and the residual −C⊤h = ∇𝐹w

𝜇 (x ) =

C⊤
(︁
w+

s+
− w−

s− + c
𝜇

)︁
for some 𝜇 > 0 and 𝜌 ∈ R2𝑚 be the corresponding congestion vector. Then a

residual correction step produces a new flow f ′ = f 0 +Cx ′ with slacks s ′ and residual −C⊤h ′ =

∇𝐹w
𝜇 (x ′) = C⊤

(︁
w+

(s+)′ −
w−

(s−)′ +
c
𝜇

)︁
such that

ℰw ,s′(h ′) ≤ 1

2

∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 (𝜌

+
𝑒 )

4 + 𝑤−
𝑒 (𝜌

−
𝑒 )

4
)︀
.

The proof can be found in Appendix 9.1.5. As a corollary, we show that if the energy required
to route the residual is small to begin with, after performing a step from Lemma 3.3.6, it quickly
contracts.

Corollary 3.3.7. Let w ∈ R2𝑚 where w ≥ 1, and f = f 0 +Cx be a flow vector with slacks s > 0
and residual ∇𝐹w

𝜇 (x ) = −C⊤h . Updating x and f via a residual correction step as in Lemma 3.3.6
yields a new flow f ′ = f 0 +Cx ′ with slacks s ′ > 0 and residual ∇𝐹w

𝜇 (x ′) = −C⊤h ′ such that

ℰw ,s′(h ′) ≤ 2 · ℰw ,s(h)2 .

We defer the proof to Appendix 9.1.5.
Corollary 3.3.7 shows that with a good initialization, residual correction steps decrease the energy

of the residual very fast. In other words, starting from a 𝜇-central flow f one can quickly obtain a
𝜇′-central flow f ′ with a smaller duality gap, i.e. with 𝜇′ < 𝜇. This is the workhorse of the vanilla
interior point method that we proceed to analyze in Section 3.3.5.

Before that, we introduce an additional residual correction step that ensures that our solution
is always exactly central. Since residual correction reduces the residual very fast, i.e. energy gets
reduced to 𝜀 in 𝑂(log log 𝜀−1) steps, we can intuitively think of it as a method which effectively
removes the residual in ̃︀𝑂 (1) steps. To make this intuition rigorous, we first reduce the residual
energy to 𝑚−𝑂(1), then we force optimality conditions by changing the weights w . While this perfect
correction step is generally unnecessary, it will make the description and analysis of our algorithm
somewhat cleaner since we will always be able to assume exact centrality.

Lemma 3.3.8 (Perfect correction). Let w ∈ R2𝑚 be a set of weights such that 1 ≤ w , and let
f = f 0+Cx be a flow vector with slacks s > 0 and residual ∇𝐹w

𝜇 (x ) = −C⊤h such that ℰw ,s(h) ≤
𝜀 ≤ 1/100. Then one can compute weights w ′ ∈ R2𝑚 such that w ≤ w ′ and ‖w ′−w‖1 ≤ ‖w‖1 ·4

√
𝜀

for which the residual ∇𝐹w ′
𝜇′ (x ) = 0, where 𝜇′ ≤ 𝜇(1 + 2

√
𝜀).

The complete proof can be found in Appendix 9.1.5. This lemma shows that after performing
residual correction until the energy becomes smaller than 𝑚−20/4, we can slightly increase the
weights from w to w ′ such that for the new objective, x exactly satisfies the optimality condition,
as in Equation (3.6). The effect of this perfect correction is an extremely small increase in the sum
of weights and the current duality gap. While this step is not essential, it enables us to ensure that
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for all the essential points in our analysis we are able to assume exact centrality, which comes at a
negligible expense, but makes all of our proofs much cleaner. This is summarized in the following
lemma, whose proof can be found in Appendix 9.1.5:

Lemma 3.3.9. Suppose that ∇𝐹w
𝜇 (x ) = −C⊤g for some vector g , and

ℰw ,s(g) ≤ 1/4 .

Then using 𝑂(log log ‖w‖1) iterations of a vanilla residual correction step, we can obtain a new
instance with weights w ′ ≥ w and 𝜇′ ≤ 𝜇(1 + 1

2‖w‖
−11
1 ) such that

∇𝐹w ′
𝜇′ (x

′) = 0 .

and ‖w ′ −w‖1 ≤ ‖w‖−10
1 .

3.3.5 Vanilla Interior Point Method

At this point we are ready to describe a basic interior point method, which requires ̃︀𝑂 (︀𝑚1/2
)︀

iterations. The following lemma shows that once we have a 𝜇-central flow, we can scale down 𝜇 by a
significant factor such that the new residual can be routed with low energy. The proof appears in
Appendix 9.1.5.

Lemma 3.3.10. Let f = f 0 +Cx be a 𝜇-central flow with respect to weights w ∈ R2𝑚, and with
slacks s. Let 𝛿 = 1

(2‖w‖1)1/2
, 𝜇′ = 𝜇/(1 + 𝛿), and the corresponding residual ∇𝐹w

𝜇′ (x ) = −C
⊤h ′.

Then one has that

ℰw ,s(h ′) ≤ 1/4 .

Together with Corollary 3.3.7 this enables us to recover a simple analysis of the classical ̃︀𝑂 (︀𝑚1/2
)︀

iteration bound. This is shown in the following lemma, whose proof appears in Appendix 9.1.5.

Lemma 3.3.11. Given a 𝜇0-central flow with respect to weights 1 and 𝜇0 = 𝑚𝑂(1), we can obtain
a minimum cost flow solution with duality gap at most 𝜀 = 1/𝑚𝑂(1) using ̃︀𝑂 (︀𝑚1/2

)︀
calls to the

residual correction procedure (Definition 3.3.5).

As previously discussed, each iteration of the interior point point method can be implemented iñ︀𝑂(𝑚) time using fast Laplacian solvers. This carries over to an algorithm with a total running time
of ̃︀𝑂(𝑚3/2 log𝑊 ), matching that of previous classical algorithms.

As we saw in the proof above the major shortcoming of this method consists of only being able to
scale down the parameter 𝜇 by 1 + 1/Ω(𝑚1/2) in every step, the reason being that while advancing
from 𝜇 to a smaller 𝜇′ we only rely on Lemma 3.3.10 to certify the fact that the new residual can be
corrected.

Instead, in what follows we choose to employ a stronger method to produce a new point which
satisfies centrality and has a smaller parameter 𝜇. To do so we employ a more sophisticated procedure
for producing the new iterate, which also forces some more drastic changes in the weights w .

Finally, we make an important observation concerning the vectors that need to be maintained
throughout the algorithm.

Observation 3.3.12. A linear system solving oracle which returns the vector C ̃︀x rather than ̃︀x
when solving the linear system described in Equations (3.11), (3.12) suffices to execute the algorithm.
This is because we never need to maintain the explicit solution x but rather only the flow f = Cx
and corresponding slacks, as the interior point method works in the space of slacks.

34



3.4 A Faster Algorithm for Minimum Cost Flow

Our improved algorithm will be based on the interior point method framework that was developed
in Section 3.3. The main bottleneck for the running time of that algorithm stems from the fact that
the augmenting circulation we compute might not allow us to decrease the duality gap by more than
a factor of 1 + 1/Ω(

√
𝑚), as otherwise it is generally impossible to guarantee that the circulation

will never congest some edges by more than the available capacity. Hence the iteration bound of̃︀𝑂(𝑚1/2), common to standard interior point methods.
We alleviate this difficulty by adding an ℓ𝑝 regularization term for the augmenting flow in

the objective (3.9), similarly to [115]. In [115], the authors follow the idea of [117] by computing
augmenting 𝑠-𝑡 flows. A crucial ingredient is the fact that the congestion of these resulting augmenting
flows is then immediately bounded by using a result from [117] which states that as long as there
is enough 𝑠-𝑡 residual capacity, these flows come together with an electrical potential embedding,
where no edge is too stretched.

However, this property is specific to the 𝑠-𝑡 maximum flow problem. To apply a similar argument
for the minimum cost flow problem, one would need to guarantee that all cuts of the graph have
sufficient residual capacity, which is not automatically enforced as in the case of 𝑠-𝑡 max flow. In
order to enforce this cut property, we further regularize our objective in a different way. We do this
by temporarily superimposing a star on top of our graph, thus obtaining an augmented graph. This
transformation improves the conductance properties of the graph, ensuring that there is enough
residual capacity in all cuts of the graph.

In Section 3.4.1, we describe the regularized step problem and outline the guarantees of the
solution. In particular, the bias introduced by the regularizers implies that the augmenting flow is
not a circulation anymore, and that we have introduced an additional residual for our solution in
the barrier objective. We bound the magnitude of both of these perturbations and “undo” them at a
later stage. Finally, we present our electrical stretch guarantee, which serves as the crucial ingredient
in both preserving feasibility and maintaining centrality.

In Section 3.4.2 we state our choice of regularization parameters and their consequences.
Even though the electrical stretch guarantee suffices for all purposes if the interior point method

barrier terms are unweighted, as soon as weights come in the guarantee is affected. In particular,
for any edge whose forward and backward weights are too imbalanced, the electrical stretch and
congestion bounds that we obtain loosen. In Section 3.4.3 we deal with this issue by ensuring that
the forward and backward weights for each edge are always relatively balanced, while introducing an
additional demand perturbation.

In Section 3.4.4 we provide the full view of the algorithm, which consists of combining all the
ingredients of the previous sections, together with a residual routing scheme that includes both
vanilla centering steps and constraint re-weighting to obtain an ℓ∞-based interior point method
rather than an ℓ4-based one, as achieved by the vanilla algorithm.

As we mentioned, the solution obtained by the interior point method is for a minimum cost flow
problem with a slightly perturbed demand. In Section 3.5, we outline an approach given in [42] that
given this solution, one can turn it into an optimal solution for the original demand, as long as the
total demand perturbation is small.

3.4.1 Regularized Newton Step

The initialization procedure from Section 3.3.3 produces a solution with large duality gap, i.e. 𝑂(𝜇𝑚)
where 𝜇 ≤ 2‖c‖2. Our goal will be to reduce this by gradually lowering the parameter 𝜇, while
maintaining centrality. While in general to achieve this we require solving a sequence of linear
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ModifiedAugment(𝐺, c, 𝜀;w , f , 𝜇)

• Given f : 𝜇-central flow with respect to weights w .

• Returns f ′′ : 𝜇′-central flow with respect to weights w ′′′ and with perturbed demand.

1. w , f ← BalanceWeights(𝐺;w , f ).

2. Augment graph 𝐺 to 𝐺⋆.

3. Let ̃︀f be a minimizer to (3.18) where ℎ𝑒 = 𝛿
(︁
𝑤+

𝑒
1−𝑓𝑒 −

𝑤−
𝑒
𝑓𝑒

)︁
for each 𝑒 ∈ 𝐸 and Δh be the

residual perturbation.

4. Augment flow f ′ ← f + ̃︀f .

5. Compute congestion vector 𝜌 = (𝜌+;𝜌−) as 𝜌+𝑒 =
̃︀𝑓𝑒

1−𝑓𝑒 , 𝜌
−
𝑒 = − ̃︀𝑓𝑒

𝑓𝑒
.

6. Compute new slacks (s+)′ = 1− f ′ and (s−)′ = f ′.

7. Correct residual for congested edges:

(𝑤+
𝑒 )

′ =

⎧⎨⎩𝑤+
𝑒 + (𝑠+𝑒 )′

(𝑠−𝑒 )′
· 𝑤−

𝑒 (𝜌
−
𝑒 )

2 , if |𝜌−𝑒 | ≥ 𝐶∞ ,

𝑤+
𝑒 , otherwise,

(𝑤−
𝑒 )

′ =

⎧⎨⎩𝑤−
𝑒 + (𝑠−𝑒 )′

(𝑠+𝑒 )′
· 𝑤+

𝑒 (𝜌
+
𝑒 )

2 , if |𝜌+𝑒 | ≥ 𝐶∞ ,

𝑤−
𝑒 , otherwise.

8. Correct perturbed residual given by h ′ = −
(︁
(w+)′

(s+)′ −
(w−)′

(s−)′ +
c

𝜇/(1+𝛿) +Δh
)︁

using
Lemma 3.4.19 and get new weights w ′′, flow f ′′, and centrality parameter 𝜇′.

9. Compute new slacks (s+)′′ = 1− f ′′ and (s−)′′ = f ′′.

10. Adjust weights to restore exact centrality:

(𝑤+
𝑒 )

′′′ = (𝑤+
𝑒 )

′′ +max
{︀
0,−(𝑠+𝑒 )′′ ·Δℎ𝑒

}︀
,

(𝑤−
𝑒 )

′′′ = (𝑤−
𝑒 )

′′ +max
{︀
0, (𝑠−𝑒 )

′′ ·Δℎ𝑒
}︀
.

11. Return w ′′′, f ′′, 𝜇′.

Figure 3-3: Modified circulation improvement step
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systems of equations (as we saw in Section 3.3.5), here we choose to solve a slightly perturbed linear
system.

In order to do so, we modify the optimization problem from (3.9) by adding two regularization
terms, which will force the produced solution to be well-behaved. In addition, we allow the newly
produced flow ̃︀f , which we will use to update the current solution, to not be a circulation, as long as
the demand it routes is small in ℓ1 norm. While this breaks the structure of the problem we are
solving, it only does so mildly – therefore once the interior point method has finished running we
can repair the broken demand using combinatorial techniques.

Mixed Objective. To specify the regularized objective, we first augment the graph 𝐺 with 𝑂(𝑚)
extra edges, which are responsible for routing a subset of the flows that would otherwise force the
output of the objective to be too degenerate.

Definition 3.4.1 (Weighted degree). Given a graph 𝐺(𝑉,𝐸) and a weight vector w = (w+;w−) ∈
R2𝑚, the weighted degree of 𝑣 ∈ 𝑉 in 𝐺 with respect to w is defined as 𝑑w𝑣 =

∑︀
𝑒∼𝑣(𝑤

+
𝑒 + 𝑤−

𝑒 ).

Definition 3.4.2. Given a graph 𝐺 = (𝑉,𝐸) we define the augmented graph 𝐺⋆ = (𝑉 ∪ {𝑣⋆}, 𝐸⋆),
where 𝐸⋆ = 𝐸 ∪ 𝐸′ and 𝐸′ is obtained by constructing ⌈𝑑w𝑣 ⌉ parallel edges (𝑣, 𝑣⋆) for each 𝑣 ∈ 𝑉 .

Furthermore, if C is a cycle basis for 𝐺, we let C⋆ be a cycle basis for 𝐺⋆ obtained by appending
columns to C , i.e.

C⋆ =

[︂
C P1

0 P2

]︂
. (3.17)

We observe that |𝐸′| =
∑︀
𝑣∈𝑉
⌈𝑑w𝑣 ⌉ ≤

∑︀
𝑣∈𝑉

(𝑑w𝑣 + 1) ≤ 3‖w‖1. We can now write the regularized

objective.

Definition 3.4.3. Given a vector h , we define the regularized objective as

max̃︀f=C⋆̃︀x
∑︁
𝑒∈𝐸

ℎ𝑒 · ̃︀𝑓𝑒 − 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
− 𝑅⋆

2

∑︁
𝑒∈𝐸′

( ̃︀𝑓𝑒)2 − 𝑅𝑝
𝑝

∑︁
𝑒∈𝐸∪𝐸′

( ̃︀𝑓𝑒)𝑝 , (3.18)

where 𝑝 > 2 is an even positive integer, and 𝑅⋆, 𝑅𝑝 are some appropriately chosen non-negative
scalars.

While this objective might seem difficult to handle, the fact that we are solving a problem on
graphs makes it feasible for our purposes. In particular, the works of [103, 2] show that this objective
can be solved to high precision in time 𝑂(𝑚1+𝑜(1)), whenever 𝑝 is sufficiently large. We will make
this statement more rigorous, but for simplicity let us for now assume that we can solve (3.18)
exactly. In Appendix 9.1.3 we will show how to handle the solver error.

Let us now understand the effect of the augmenting edges 𝐸′. Since they allow routing some of
the flow through 𝑣⋆, if we look at the restriction of ̃︀f to the edges of 𝐺 we see that it stops being a
circulation. Let ̃︀d be the demand routed by the restriction of ̃︀f to 𝐺. We will see that ̃︀f satisfies
optimality conditions for an objective similar to (3.18) among all flows that route the demand ̃︀d in
𝐺.

Before that, we give a useful lemma that, given a residual −C⊤h , can be used to certify an
upper bound on the energy required to route it. We capture this via the following definition.
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Definition 3.4.4. Given a vector h , weights w , and slacks s, we define

ℰmax(h ,w , s) =
1

2

∑︁
𝑒∈𝐸

ℎ2𝑒 ·
(︂

𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂−1

. (3.19)

Lemma 3.4.5. Given weights w , slacks s, and a residual −C⊤h , we have that

ℰw ,s(h) ≤ ℰmax(h ,w , s) .

Furthermore, if h = 𝛿
(︁
w+

s+
− w−

s−

)︁
, we have that

ℰmax(h ,w , s) ≤ 1

2
𝛿2 ‖w‖1 .

The proof of this lemma is given in Appendix 9.1.5. We are now ready to state the lemma that
gives guarantees for the restriction of ̃︀𝑓 to 𝐺.

Lemma 3.4.6 (Optimality in the non-augmented graph). Let ̃︀f⋆ = C⋆̃︀x⋆ be the optimizer of the
regularized objective from (3.18), and let ̃︀f be its restriction to the edges of 𝐺. Let ̃︀d be the demand
routed by ̃︀f in 𝐺. Then ̃︀f optimizes the objective

max̃︀f :̃︀f routes ̃︀d in G

⟨
h , ̃︀f ⟩− 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
− 𝑅𝑝

𝑝

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)𝑝 . (3.20)

Furthermore

C⊤
(︂

w+

(s+)2
+

w−

(s−)2

)︂
· ̃︀f = C⊤ (h +Δh) , (3.21)

where Δh = −𝑅𝑝(̃︀f )𝑝−1 , and

‖̃︀d‖1 ≤ (︂6‖w‖1 · ℰmax(h ,w , s)

𝑅⋆

)︂1/2

, (3.22)

‖̃︀f⋆‖𝑝 ≤ (︂𝑝 · ℰmax(h ,w , s)

𝑅𝑝

)︂1/𝑝

. (3.23)

Finally, the energy required to route the perturbed residual can be bounded by the energy required to
route the original residual:

1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2(︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
≤ 4 · ℰmax(h ,w , s) . (3.24)

Proof. Let ̃︀f⋆ = ̃︀f + ̃︀f ′
where ̃︀f ′

is the restriction of ̃︀f⋆ to the edges incident to 𝑣⋆. By computing the
first order derivative in ̃︀x⋆, optimality conditions for (3.18) imply that for any circulation g in 𝐺⋆
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one has that ⟨
g ,

[︃
h − ̃︀f · (︁ w+

(s+)2
+ w−

(s−)2

)︁
−𝑅𝑝 · (̃︀f )𝑝−1

−𝑅⋆ · ̃︀f ′
−𝑅𝑝 · (̃︀f ′

)𝑝−1

]︃⟩
= 0 . (3.25)

Therefore, restricting ourselves to circulations supported only in the non-preconditioned graph
𝐺, one has that for any circulation in g ′ = Cz in 𝐺:⟨

g ′,h − ̃︀f · (︂ w+

(s+)2
+

w−

(s−)2

)︂
−𝑅𝑝 · (̃︀f )𝑝−1

⟩
= 0 , (3.26)

and equivalently ⟨
z ,C⊤

(︂
h − ̃︀f · (︂ w+

(s+)2
+

w−

(s−)2

)︂
−𝑅𝑝 · (̃︀f )𝑝−1

)︂⟩
= 0 . (3.27)

Since this holds for any test vector z , it must be that the second term in the inner product is 0.
Rearranging, it yields the identity from (3.21).

Now we verify that this is the first order optimality condition for the objective in (3.20).
Parametrizing the flows that route d via ̃︀f = Cx + ̃︀f d where ̃︀f d is an arbitrary flow which routes
d in 𝐺, and setting the derivative with respect to x equal to 0, we obtain exactly (3.21).

Let us proceed to bound the norm of the demand routed by ̃︀f . Consider the value of the objective
in (3.18) after truncating it to only the first two terms, which we can write as:

∑︁
𝑒∈𝐸

ℎ𝑒 · ̃︀𝑓𝑒 − 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
(3.28)

≤ 1

2

∑︁
𝑒∈𝐸

ℎ2𝑒 ·
(︂

𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂−1

(3.29)

= ℰmax(h ,w , s) , (3.30)

where we used the fact that ⟨a , b⟩ ≤ 1
2‖a‖

2 + 1
2‖b‖

2.

Note that the value of the regularized objective (3.18) is at least 0 since we can always substitutẽ︀x = 0 and obtain exactly 0. By re-arranging,

𝑅⋆
2

∑︁
𝑒∈𝐸′

( ̃︀𝑓 ′𝑒)2 (3.31)

≤
∑︁
𝑒∈𝐸

ℎ𝑒 · ̃︀𝑓𝑒 − 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
− 𝑅𝑝

𝑝

∑︁
𝑒∈𝐸∪𝐸′

( ̃︀𝑓⋆)𝑝𝑒 (3.32)

≤
∑︁
𝑒∈𝐸

ℎ𝑒 · ̃︀𝑓𝑒 − 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
(3.33)

≤ ℰmax(h ,w , s) , (3.34)

where we also used the fact that the last term of (3.32) is non-positive and (3.30). Therefore (3.34)
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enables us to upper bound ∑︁
𝑒∈𝐸′

( ̃︀𝑓 ′𝑒)2 ≤ 2

𝑅⋆
ℰmax(h ,w , s) , (3.35)

which implies that

∑︁
𝑒∈𝐸′

⃒⃒⃒ ̃︀𝑓 ′𝑒 ⃒⃒⃒ ≤ |𝐸′|1/2 ·

(︃∑︁
𝑒∈𝐸′

( ̃︀𝑓 ′𝑒)2
)︃1/2

(3.36)

≤
(︂
3‖w‖1 ·

2

𝑅⋆
ℰmax(h ,w , s)

)︂1/2

(3.37)

=

(︂
6‖w‖1 · ℰmax(h ,w , s)

𝑅⋆

)︂1/2

, (3.38)

a quantity that upper bounds the demand perturbation. Using a similar argument we can upper
bound

⃦⃦⃦̃︀f⋆⃦⃦⃦
𝑝
. We have

𝑅𝑝
𝑝

∑︁
𝑒∈𝐸∪𝐸′

( ̃︀𝑓⋆)𝑝𝑒 (3.39)

≤
∑︁
𝑒∈𝐸

ℎ𝑒 · ̃︀𝑓𝑒 − 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
− 𝑅⋆

2

∑︁
𝑒∈𝐸′

( ̃︀𝑓 ′𝑒)2 (3.40)

≤
∑︁
𝑒∈𝐸

ℎ𝑒 · ̃︀𝑓𝑒 − 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
(3.41)

≤ ℰmax(h ,w , s) , (3.42)

thus concluding that

⃦⃦⃦̃︀f⋆⃦⃦⃦
𝑝
=

(︃ ∑︁
𝑒∈𝐸∪𝐸′

( ̃︀𝑓⋆)𝑝𝑒
)︃1/𝑝

≤
(︂
𝑝 · ℰmax(h ,w , s)

𝑅𝑝

)︂1/𝑝

. (3.43)

Finally, once more using the same argument, we have that

1

4

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
≤
∑︁
𝑒∈𝐸

ℎ𝑒 · ̃︀𝑓𝑒 − 1

4

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
− 𝑅⋆

2

∑︁
𝑒∈𝐸′

( ̃︀𝑓 ′𝑒)2 − 𝑅𝑝
𝑝

∑︁
𝑒∈𝐸∪𝐸′

( ̃︀𝑓⋆)𝑝𝑒
≤
∑︁
𝑒∈𝐸

ℎ𝑒 · ̃︀𝑓𝑒 − 1

4

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
≤ 2 · ℰmax(h ,w , s) ,
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therefore

1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
≤ 4 · ℰmax(h ,w , s) .

Finally, we present an important property of the solution of the regularized Newton step, which
will be crucial for obtaining the final result.

Lemma 3.4.7. Let ̃︀f⋆ be the solution of the regularized objective (3.18) and ̃︀f its restriction on 𝐺,
and suppose that ‖w‖1 ≥ 3. Then one has that over the edges 𝑒 ∈ 𝐸:⃒⃒⃒⃒(︂

𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2
+𝑅𝑝 · ̃︀𝑓𝑝−2

𝑒

)︂ ̃︀𝑓𝑒 − ℎ𝑒 ⃒⃒⃒⃒ ≤ 𝛾 , (3.44)

where

𝛾 =
(︁
𝑅⋆ +𝑅𝑝 · ‖̃︀f ⋆‖𝑝−2

∞

)︁1/2
·

⃦⃦⃦⃦
⃦⃦⃦⃦ h√︂

(w+ +w−)
(︁

w+

(s+)2
+ w−

(s−)2

)︁
⃦⃦⃦⃦
⃦⃦⃦⃦
∞

· 32 log ‖w‖1 .

Furthermore, this implies that (︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
·
⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ ≤ |ℎ𝑒|+ 𝛾 . (3.45)

Since the proof is technical, we defer it to Section 9.1.2.

3.4.2 Choice of Regularization Parameters

Now we state our choice of regularization parameters 𝑅𝑝, 𝑅⋆ and their consequences. In particular,
they affect the ℓ∞ norm of the flow ̃︀f we obtain by solving the regularized objective, and the
preconditioning guarantee (Lemma 3.4.7) which will be essential to obtain the correct trade-off
between iteration complexity and demand perturbation.

Definition 3.4.8. Given a weight vector w , we will use the following values for the parameters 𝑝,
𝑅𝑝 and 𝑅⋆:

𝑝 = min
{︁
𝑘 ∈ 2Z : 𝑘 ≥ (log𝑚)1/3

}︁
,

𝑅𝑝 = 𝑝 ·
(︀
106 · 𝛿2‖w‖1 · log ‖w‖1

)︀𝑝+1
,

𝑅⋆ = 3 · 𝛿2‖w‖21 .

This immediately yields the following useful corollaries.

Corollary 3.4.9. For our specific choice of 𝑝, the regularized objective from (3.18) can be solved to
high precision in 𝑚1+𝑜(1) time. We can, furthermore, assume an exact solution.
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Proof. We use Theorem 9.1.5 which was proved in [103, 2]. The objective in (3.18) matches exactly
the type handled there. For our choice of 𝑝, the running time is

2𝑂(𝑝3/2)𝑚1+𝑂(1/
√
𝑝) = 2𝑂

√
log𝑛𝑚1+1/(log1/6 𝑛) = 𝑚1+𝑜(1) .

Furthermore, the resulting solution has a quasi-polynomially small error 2−(log𝑚)𝑂(1) , which can be
neglected in our analysis, per the discussion in Section 9.1.3.

The proofs of the following two corollaries appear in Appendix 9.1.5 and 9.1.5, respectively.

Corollary 3.4.10. Let ̃︀f ⋆ be the solution obtained by solving (3.18) and ̃︀f be its restriction to 𝐺.
For our specific choice of regularization parameters we have

‖̃︀f⋆‖𝑝 ≤ 1

106 · 𝛿2‖w‖1 · log ‖w‖1
.

Corollary 3.4.11. For the choice of h = 𝛿
(︁
w+

s+
− w−

s−

)︁
, and as long as 𝛿 ≤ ‖w‖−(1/4+𝑜(1))

1 the 𝛾
in Lemma 3.4.7 can be upper bounded by

𝛾 = 𝛿2‖w‖1 · 32
√
6 · log ‖w‖1 .

3.4.3 Weight Invariants

Total weight invariant. Our interior point method will inherently increase edge weights. However,
the total increase has to remain bounded by 𝑂(𝑚) in order to be able to guarantee an upper bound
on the energy ℰw ,s(h). We state the following invariant that we intend to always enforce, in order
to ensure that this is the case:

Invariant 3.4.12. The sum of weights is bounded: ‖w‖1 ≤ 3𝑚 .

Weight balancing. Before proceeding with the description of the method, we define a notion
that will be used by the algorithm to deal with severe edge weight imbalances. Such imbalances can
limit the usability of Lemma 3.4.7 and lead to the augmenting flow ̃︀f being infeasible or expensive
to correct.

Definition 3.4.13 (Balanced edges). An edge 𝑒 ∈ 𝐸 is called balanced if max {𝑤+
𝑒 , 𝑤

−
𝑒 } ≤ 𝛿 ‖w‖1

or min {𝑤+
𝑒 , 𝑤

−
𝑒 } ≥ 96 · 𝛿4 ‖w‖21. Otherwise it is called imbalanced.

Even though imbalanced edges can generally emerge, we are able to balance them by manually
reducing the disparity between 𝑤+

𝑒 and 𝑤−
𝑒 , while breaking the flow demand by a controllable amount.

We will maintain the following invariant right before solving the regularized objective:

Invariant 3.4.14. All edges are balanced.

In Section 3.4.4 we will see that there is a way to enforce Invariant 3.4.14 while only increasing
the weight and breaking the demand by a small amount. The main motivation behind keeping
edges balanced is that it implies that each edge either has a favorable stretch property, or is not too
congested:

Lemma 3.4.15. Let ̃︀f be the restriction of the regularized problem (3.18) solution to 𝐺, with
h = 𝛿

(︁
w+

s+
− w−

s−

)︁
and congestion 𝜌, where 𝛿 ≤ ‖w‖−(1/4+𝑜(1))

1 . If 𝑒 ∈ 𝐸 is balanced, then

max {|𝜌+𝑒 | , |𝜌−𝑒 |} < 𝐶∞ or
⃒⃒⃒
𝑤+

𝑒 𝜌
+
𝑒

𝑠+𝑒

⃒⃒⃒
+
⃒⃒⃒
𝑤−

𝑒 𝜌
−
𝑒

𝑠−𝑒

⃒⃒⃒
≤ 6𝛾, where 𝐶∞ = 1

2𝛿
√

2‖w‖1
.

The proof of this lemma appears in Appendix 9.1.5.
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3.4.4 Executing the Interior Point Method

Having defined the regularized objective, we now show how to execute the interior point method
using the solution returned by a high precision solver. Since the solution to this objective does
not exactly match the guarantee required in (3.11-3.12), we will have to do some slight manual
adjustments.

In the vanilla interior point method analysis that we saw earlier, we witnessed a very stringent
requirement on the condition that we are able to correct a residual. Namely, we required that the
energy required to route it decreases in every iteration of the correction step, which was guaranteed
by the fact that after performing the first correction step the upper bound on energy

∑︀
𝑤𝑖𝜌

4
𝑖 is at

most a small constant (i.e. 1/4).
This requirement is too strong since, as a matter of fact, the most important obstacle handled by

interior point methods is preserving slack feasibility. In our specific context this means that we want
to perform updates to the current flow without violating capacity constraints, which is guaranteed
by a weaker ℓ∞ bound, i.e. ‖𝜌‖∞ ≤ 1/2. While this condition is sufficient to preserve feasibility, it
is not clear that after performing the corresponding update to the flow, the energy required to route
the residual will be small, so the resulting residual can be reduced to 0. Instead we can enforce this
property by canceling the components of the gradient which cause this energy to be large.

Definition 3.4.16 (Perturbed residual correction). Consider a flow f with the corresponding slack
vector s > 0, weights w and parameter 𝜇 > 0, with a corresponding residual ∇𝐹w

𝜇 (x ) = −C⊤h

where h = 𝛿
(︁
w+

s+
− w−

s−

)︁
and 𝛿 ≤ ‖w‖−1/4

1 /2. The perturbed residual correction step is defined as
an update to f via:

f ′ = f + ̃︀f , (3.46)

(s−)′ = s− + ̃︀f , (3.47)

(s+)′ = s+ − ̃︀f , (3.48)

where ̃︀f is the solution to the linear system

𝜌+ =
̃︀f
s+

, (3.49)

𝜌− =
−̃︀f
s−

, (3.50)

C⊤
(︂
w+𝜌+

s+
− w−𝜌−

s−

)︂
= C⊤(h +Δh) , (3.51)

such that

‖𝜌‖∞ ≤
1

2
, (3.52)

for some perturbation Δh , followed by the updates to the w vector via:

(𝑤+
𝑒 )

′ =

⎧⎨⎩𝑤+
𝑒 + (𝑠+𝑒 )′

(𝑠−𝑒 )′
· 𝑤−

𝑒 (𝜌
−
𝑒 )

2 if |𝜌−𝑒 | ≥ 𝐶∞ ,

𝑤+
𝑒 otherwise,

(3.53)
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and

(𝑤−
𝑒 )

′ =

⎧⎨⎩𝑤−
𝑒 + (𝑠−𝑒 )′

(𝑠+𝑒 )′
· 𝑤+

𝑒 (𝜌
+
𝑒 )

2 if |𝜌+𝑒 | ≥ 𝐶∞ ,

𝑤−
𝑒 otherwise,

(3.54)

where
𝐶∞ =

1

2𝛿
√︀
2 ‖w‖1

.

We also give a short lemma, which upper bounds the amount by which ‖w‖1 gets increased
when applying the perturbed residual correction.

Lemma 3.4.17. Let w and w ′ be the old and new weights, respectively, as described in Defini-
tion 3.4.16. Then one has that

‖w ′ −w‖1 ≤ 192
√
2 · 𝛾 ·

(︀
𝛿2‖w‖1

)︀3/2
.

Proof. Let 𝑆+ = {𝑒 ∈ 𝐸 : |𝜌+𝑒 | ≥ 𝐶∞} and 𝑆− = {𝑒 ∈ 𝐸 : |𝜌−𝑒 | ≥ 𝐶∞}. The total weight increase
is equal to ∑︁

𝑒∈𝑆+

(︀
(𝑤−

𝑒 )
′ − 𝑤−

𝑒

)︀
+
∑︁
𝑒∈𝑆−

(︀
(𝑤+

𝑒 )
′ − 𝑤+

𝑒

)︀
.

Let us upper bound the weight increase contributed by a single edge 𝑒 ∈ 𝑆+. The respective bound
will follow for an edge in 𝑆− by symmetry. We have

(𝑤−
𝑒 )

′ − 𝑤−
𝑒 = (𝑠−𝑒 )

′ · 𝑤
+
𝑒 (𝜌

+
𝑒 )

2

(𝑠+𝑒 )′
≤ 4 · 𝑠−𝑒 ·

𝑤+
𝑒 (𝜌

+
𝑒 )

2

𝑠+𝑒
= 4 · 𝑠−𝑒 · |𝜌+𝑒 | ·

⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
.

By Lemma 9.20, all the edges in 𝑆+ ∪ 𝑆− have the low stretch property:⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑤−
𝑒 𝜌

−
𝑒

𝑠−𝑒

⃒⃒⃒⃒
≤ 6𝛾 ,

and so
(𝑤−

𝑒 )
′ − 𝑤−

𝑒 ≤ 4 · 𝑠−𝑒 · |𝜌+𝑒 | ·
⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
≤ 24𝛾|𝜌+𝑒 | .

The total weight increase due to 𝑆+ is thus:∑︁
𝑒∈𝑆+

(︀
(𝑤−

𝑒 )
′ − 𝑤−

𝑒

)︀
≤ 24𝛾

∑︁
𝑒∈𝑆+

⃒⃒
𝜌+𝑒
⃒⃒
.

Symmetrically for 𝑆− we get ∑︁
𝑒∈𝑆−

(︀
(𝑤+

𝑒 )
′ − 𝑤+

𝑒

)︀
≤ 24𝛾

∑︁
𝑒∈𝑆−

⃒⃒
𝜌−𝑒
⃒⃒
,

and so

‖w ′ −w‖1 ≤ 24𝛾 · ‖𝜌𝑆+∪𝑆−‖1 .

Now, since by Lemma 3.4.6 the energy to route the perturbed residual is bounded by the energy to
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route the original residual,

‖𝜌‖22 ≤
∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 (𝜌

+
𝑒 )

2 + 𝑤−
𝑒 (𝜌

−
𝑒 )

2
)︀
=
∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2(︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
≤ 8 · ℰmax(h ,w , s) ,

we have that

‖𝜌𝑆+∪𝑆−‖1 ≤ ‖𝜌‖
2
2 ·max

{︁⃦⃦
1/𝜌+

𝑆+

⃦⃦
∞ ,
⃦⃦
1/𝜌−

𝑆−

⃦⃦
∞

}︁
≤ 8 · ℰmax(h ,w , s) · 𝐶−1

∞

≤ 4 · 𝛿2‖w‖1 · 2 · 𝛿
√︀
‖w‖1

= 8
√
2 ·
(︀
𝛿2‖w‖1

)︀3/2
.

Thus we conclude that

‖w ′ −w‖1 ≤ 192
√
2 · 𝛾 ·

(︀
𝛿2‖w‖1

)︀3/2
.

The effect of the weight updates is to zero out the coordinates in the new residual that contribute a
lot to energy. We formalize this intuition in the lemma below, whose proof appears in Appendix 9.1.5.

Lemma 3.4.18. Suppose that we perform a perturbed residual correction step as described in
Definition 3.4.16 and obtain a solution x ′ with weights w ′, residual ∇𝐹w ′

𝜇 (x ′) = −C⊤g , and let Δh
be the perturbation of the residual. Then we have that

ℰw ′,s′(g +Δh) ≤ 1/4 . (3.55)

The next short lemma is a straightforward application of the vanilla correction and perfect
correction routines, which shows that while only very slightly perturbing weights, we can obtain an
instance where ∇𝐹w ′′

𝜇 (x ′′)−C⊤Δh = 0.

Lemma 3.4.19. Suppose that ∇𝐹w ′
𝜇 (x ′) = −C⊤g for some vector g , and

ℰw ′,s′(g +Δh) ≤ 1/4 .

Then using 𝑂(log log𝑚) iterations of a vanilla residual correction step, we can obtain a new instance
with weights w ′′ and 𝜇′ ≤ 𝜇(1 + 1

2‖w‖
−11
1 ) such that

∇𝐹w ′′
𝜇′ (x ′′) = C⊤Δh .

and ‖w ′′ −w ′‖1 ≤ ‖w ′‖−10
1 .

Proof. We apply Lemma 3.3.9 for the perturbed function 𝐹w ′
𝜇 (x ) = 𝐹w ′

𝜇 (x )− ⟨Δh ,Cx ⟩ to obtain a
new solution f ′′ = f 0 +Cx ′′ and a new set of weights w ′′ ≥ w ′ such that w ′′ ≤ w ′(1−𝑚−10) and
∇𝐹w ′′

𝜇′ (x ′′)−C⊤Δh = ∇𝐹w ′′
𝜇′ (x ′′) = 0.

Lemma 3.4.20. Suppose we have an instance where ∇𝐹w
𝜇 (x ) = C⊤Δh . Then there exists a set of

weights w ′ ≥ w such that ∇𝐹w ′
𝜇 (x ) = 0 and ‖w ′ −w‖1 ≤ ‖Δh‖1.
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Proof. By definition we have

C⊤c

𝜇
+C⊤

(︂
w+

s+
− w−

s−

)︂
= C⊤Δh . (3.56)

We can restore exact centrality by perturbing the weights via the simple update:

(w+)′ = w+ − s+ · (Δh)≤0 , (3.57)
(w−)′ = w− + s− · (Δh)≥0 . (3.58)

Plugging into the above identity immediately yields the desired condition:

∇𝐹w ′
𝜇 (x ) =

C⊤c

𝜇
+C⊤

(︂
(w+)′

s+
− (w−)′

s−

)︂
=

C⊤c

𝜇
+C⊤

(︂
w+

s+
− w−

s−

)︂
+C⊤

(︂
(w+)′ −w+

s+
− (w−)′ −w−

s−

)︂
= C⊤Δh −C⊤Δh

= 0 .

Finally, we bound

‖w ′ −w‖1 = −⟨s+, (Δh)≤0⟩+ ⟨s−, (Δh)≥0⟩ ≤ ‖s‖∞ · ‖Δh‖1 ≤ ‖Δh‖1 .

For the final inequality we crucially used the fact that all slacks are at most 1.

Combining Lemmas 3.4.18 and 3.4.20 together with the vanilla correction step (Corollary 3.3.7
and Lemma 3.3.8) we can derive an improved correction step based on the solution to the regularized
objective. First we show that indeed this is possible, i.e. for a particular choice of regularization
parameters we obtain a step with ‖𝜌‖∞ ≤ 1/2.

Lemma 3.4.21 (Feasibility lemma). Suppose we have an instance with weights w and slacks s,
residual −C⊤h where h = 𝛿

(︁
w+

s+
− w−

s−

)︁
, and ‖w‖−1/2

1 ≤ 𝛿 ≤ ‖w‖−(1/4+𝑜(1))
1 . Then by solving the

regularized objective we obtain a flow ̃︀f satisfying

𝜌+ =
̃︀f
s+

,

𝜌− =
−̃︀f
s−

,

C⊤
(︂
w+𝜌+

s+
− w−𝜌−

s−

)︂
= C⊤(h +Δh) .

such that:

1. the congestion satisfies
‖𝜌‖∞ ≤ 1/2 ,

2. the perturbation Δh is bounded

‖Δh‖1 ≤ 𝑝 · ‖w‖1/𝑝1 · (106 · 𝛿2‖w‖1 log ‖w‖1)2 ,
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3. the flow ̃︀f routes a demand ̃︀d such that

‖̃︀d‖1 ≤ 1 .

Proof.

1. Let us first verify the crucial feature of ̃︀f , namely that it ensures a low congestion ‖𝜌‖∞ ≤ 1/2.
For our specific choice of h we can upper bound, by applying Lemma 3.4.5:

ℰmax(h ,w , s) ≤ 1

2
𝛿2‖w‖1 .

First we note that for this choice of parameters we can upper bound, using Corollary 3.4.10:

‖̃︀f ‖∞ ≤ ‖̃︀f ‖𝑝 ≤ 1

106 · 𝛿2‖w‖1 · log ‖w‖1
. (3.59)

By Lemma 3.4.15, for each edge 𝑒 ∈ 𝐸 we either have

max
{︀⃒⃒
𝜌+𝑒
⃒⃒
,
⃒⃒
𝜌−𝑒
⃒⃒}︀
< 𝐶∞ =

1

2𝛿
√︀

2 ‖w‖1
≤ 1/2

by our assumption on 𝛿, in which case we are done, or the low stretch property⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑤−
𝑒 𝜌

−
𝑒

𝑠−𝑒

⃒⃒⃒⃒
≤ 6𝛾

holds, where by Corollary 3.4.11

𝛾 = 𝛿2‖w‖1 · 32
√
6 · log ‖w‖1 .

This implies that

⃒⃒
𝜌+𝑒
⃒⃒
=

⃒⃒⃒⃒
𝜌+𝑒 𝑠

+
𝑒 ·

𝜌+𝑒
𝑠+𝑒

⃒⃒⃒⃒1/2
=

(︂⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ · ⃒⃒⃒⃒𝜌+𝑒
𝑠+𝑒

⃒⃒⃒⃒)︂1/2

≤
(︂

1

106 · 𝛿2 ‖w‖1 · log ‖w‖1
· 6𝛾
)︂1/2

<
1

2
.

The argument for 𝜌−𝑒 is symmetric. Therefore we have that ‖𝜌‖∞ ≤ 1/2.

2. Now let us upper bound the ℓ1 norm of the perturbation Δh . Per Lemma 3.4.6, our step
produced by solving the regularized objective yields

Δh = −𝑅𝑝(̃︀f )𝑝−1 .

Therefore we can control

‖Δh‖1 = 𝑅𝑝‖̃︀f ‖𝑝−1
𝑝−1 ≤ 𝑅𝑝

(︂
‖w‖

1
𝑝−1

− 1
𝑝

1 · ‖̃︀f ‖𝑝)︂𝑝−1

= 𝑅𝑝‖w‖1/𝑝1 · ‖̃︀f ‖𝑝−1
𝑝 .
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Using (3.59) we further upper bound this by

‖Δh‖1 ≤ 𝑝 · (106 · 𝛿2‖w‖1 · log ‖w‖1)𝑝+1 · ‖w‖1/𝑝1 ·
(︂

1

106 · 𝛿2‖w‖1 · log ‖w‖1

)︂𝑝−1

≤ 𝑝 · ‖w‖1/𝑝1 ·
(︀
106 · 𝛿2‖w‖1 · log ‖w‖1

)︀2
.

3. Finally, let us upper bound the demand routed by ̃︀f . For the demand perturbation, by
Lemma 3.4.6 one has that after optimizing the regularized objective the resulting flow ̃︀f routes a
demand ̃︀d such that

‖̃︀d‖1 ≤ (︂6‖w‖1 · ℰmax(h ,w , s)

𝑅⋆

)︂1/2

≤
(︂
3𝛿2‖w‖21
𝑅⋆

)︂1/2

= 1 ,

which gives us what we needed.

Definition 3.4.22 (Weight balancing procedure). Given a flow f that is 𝜇-central with respect to
weights w and with slacks s, let 𝑆 ⊆ 𝐸 be the set of edges that are not balanced (Invariant 3.4.14).
The weight balancing procedure consists of computing new weights w ′ such that

• For each 𝑒 ∈ 𝑆: If 𝑤+
𝑒 ≤ 𝑤−

𝑒 then 𝑤
′+
𝑒 = 96 · 𝛿4 ‖w‖21, 𝑤

′−
𝑒 = 𝑤−

𝑒 , while if 𝑤+
𝑒 > 𝑤−

𝑒 then
𝑤

′+
𝑒 = 𝑤+

𝑒 , 𝑤′−
𝑒 = 96 · 𝛿4 ‖w‖21.

• For each 𝑒 /∈ 𝑆 we set 𝑤′+
𝑒 = 𝑤+

𝑒 , 𝑤′−
𝑒 = 𝑤−

𝑒 .

Additionally, we compute a flow f ′ with slacks s ′ > 0 such that

w
′+

s ′+
− w

′−

s ′− =
w+

s+
− w−

s−
.

Lemma 3.4.23 (Weight balancing lemma). Given f ,w , s, 𝑆 and 𝜇 as in Definition 3.4.22 after
applying the weight balancing procedure we get a 𝜇-central flow f ′ with respect to weights w ′ ≥ w
and with slacks s ′ such that all edges satisfy Invariant 3.4.14 with respect to w ′ and s ′. Additionally⃦⃦

w ′ −w
⃦⃦
1
≤ 96 · |𝑆| · 𝛿4 ‖w‖21 ,

and ⃦⃦
d ′ − d

⃦⃦
1
≤ |𝑆| ,

and ‖𝑑′ − 𝑑‖1 ≤ |𝑆| where d is the demand routed by f and d ′ the demand routed by f ′.

Proof. Let 𝑒 ∈ 𝑆 and without loss of generality 𝑤+
𝑒 < 96 · 𝛿4 ‖w‖21 and 𝑤−

𝑒 > 𝛿 ‖w‖1. First of all, we
have 𝑤′+

𝑒 = 96 ·𝛿4 ‖w‖21 > 𝑤+
𝑒 and the weight increase 𝑤′+

𝑒 −𝑤+
𝑒 is at most 96 ·𝛿4 ‖w‖21. Furthermore,

let us look at the function 𝑔(𝑡) = 𝑤
′+
𝑒

1−𝑡 −
𝑤

′−
𝑒
𝑡 for 𝑡 ∈ (0, 1). This is a continuous increasing function

with lim
𝑡→0

𝑔(𝑡) = −∞ and lim
𝑡→1

𝑔(𝑡) =∞. Therefore there exists a unique 𝑓 ′𝑒 ∈ (0, 1) such that

𝑤
′+
𝑒

1− 𝑓 ′𝑒
− 𝑤

′−
𝑒

𝑓 ′𝑒
=

𝑤+
𝑒

1− 𝑓𝑒
− 𝑤−

𝑒

𝑓𝑒
.
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As 𝑓𝑒, 𝑓 ′𝑒 ∈ (0, 1), the demand perturbation |𝑓 ′𝑒 − 𝑓𝑒| on this edge is at most 1. Putting everything
together, we get that ‖w ′ −w‖1 ≤ 96 · |𝑆| · 𝛿4 ‖w‖21 and

⃦⃦
d ′ − d

⃦⃦
1
≤ |𝑆|.

Lemma 3.4.24 (Progress lemma). Given a central instance with parameter 𝜇 and weights w , we
can obtain a new central instance with parameter 𝜇/(1 + 𝛿) and weights w ′′′ +Δw ≥ w with

𝛿 ≥ 𝑚−1/4/10 ,

such that

‖w ′′′ −w‖1 ≤ ‖Δw‖1

+
(︀
𝛿2‖w +Δw‖1

)︀5/2 · 6 · 104 · log ‖w +Δw‖1
+𝑚−10

+
(︀
106 · 𝛿2‖w +Δw‖1 · log ‖w +Δw‖1

)︀2 · 𝑝 · ‖w +Δw‖1/𝑝1 .

where Δw ≥ 0 is the weight increase caused by applying the procedure described in Definition 3.4.22
on weights w . Furthermore, the demand perturbation is ̃︀d +Δ̃︀d , where

‖̃︀d‖1 ≤ 1 .

and Δ̃︀d is the demand perturbation caused by applying the procedure described in Definition 3.4.22
on weights w .

Proof. We first apply the weight balancing procedure as described in Definition 3.4.22 to get new
weights w +Δw ≥ w .

We will apply the residual correction step with the flow ̃︀f guaranteed by Lemma 3.4.21, which
guarantees that the corresponding flow yields a congestion ‖𝜌‖∞ ≤ 1/2. As this step is obtained for
a perturbed residual ∇𝐹w+Δw

𝜇 (x ) −C⊤h = −C⊤ (h +Δh), it means that after executing it we
obtain an instance with weights w ′ and slacks s ′ such that

ℰw ′,s′(h
′ +Δh) ≤ 1/4 ,

where∇𝐹w ′
𝜇 (x ) = −C⊤h ′. This follows from applying Lemma 3.4.18. Therefore, using Lemma 3.4.19

we can obtain a new point where
∇𝐹w ′′

𝜇 (x ′′) = C⊤Δh ,

for a slight change in weights from w ′ to w ′′. Finally, applying Lemma 3.4.20 we can establish exact
centrality

∇𝐹w ′′′
𝜇 (x ′′) = 0 ,

while slightly increasing weights from w ′′ to w ′′′.
Having described the method, let us first bound the weight change it causes. By Lemma 3.4.17 we

have that the weight increase ‖w ′ − (w +Δw) ‖1 caused by performing the perturbations described
in Definition 3.4.16 is upper bounded by

192
√
2 · 𝛾 · (𝛿2‖w +Δw‖1)3/2 ,

where
𝛾 = 𝛿2‖w +Δw‖1 · 32

√
6 · log ‖w +Δw‖1 .

Furthermore, restoring the condition that ∇𝐹w ′′
𝜇 (x ′′) = C⊤Δh is done while increasing the ℓ1 norm
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of the weight vector by ‖w ′′ −w ′‖1 ≤ 𝑚−10 and restoring exact centrality via Lemma 3.4.6 costs us
a further weight increase ‖w ′′′ −w ′′‖1 that is upper bounded by

‖Δh‖1 ≤ 𝑝 · ‖w +Δw‖1/𝑝1 · (106 · 𝛿2‖w +Δw‖1 log ‖w +Δw‖1)2 ,

where we used the guarantee from Lemma 3.4.21. Therefore we conclude that

‖w ′′′ −w‖1 = ‖Δw‖1 + ‖w ′ − (w +Δw)‖1 + ‖w ′′ −w ′‖1 + ‖w ′′′ −w ′′‖1
≤ ‖Δw‖1

+
(︀
𝛿2‖w +Δw‖1

)︀5/2 · 6 · 104 · log ‖w +Δw‖1
+𝑚−10

+
(︀
106 · 𝛿2‖w +Δw‖1 · log ‖w‖1

)︀2 · 𝑝 · ‖w +Δw‖1/𝑝1 .

Finally, the two steps in which the flow demand changes is the weight balancing procedure,
in which the change in demand is Δ̃︀d , and the step when we restrict the regularized problem
solution to the non-augmented graph. In the latter case, the change in demand ̃︀d can be upper
bounded by Lemma 3.4.21 by at most 1 in ℓ1 norm. Thus the demand will be perturbed by
‖d ′ − d‖1 = ‖̃︀d +Δ̃︀d‖1 ≤ 1 + ‖Δ̃︀d‖1. This concludes the proof.

Lemma 3.4.24 is the main workhorse of the improved algorithm. It shows that we can make large
progress within the interior point method, while paying for some demand perturbation and for some
slight increase in ‖w‖1. In order to guarantee sufficient progress, all we are left to do is to ensure
that we can set an appropriate 𝛿 such that the sum of weights never increases beyond 𝑂(𝑚). This is
a mere consequence of the result given above.

Lemma 3.4.25. Suppose we have a 𝜇-central instance with weights w ≥ 1, where ‖w‖1 ≤ 2𝑚+ 1
and 𝜇 = 𝑚𝑂(1). Let 𝜀 = 𝑚−𝑂(1), and let 𝛿 = 𝑚−(3/8+𝑜(1)). In ̃︀𝑂(𝛿−1) iterations of the procedure
described in Lemma 3.4.24 we obtain an instance with duality gap at most 𝜀 with a total demand
perturbation of ̃︀𝑂(𝛿−1).

Proof. We perform a sequence of iterations as described in Lemma 3.4.24.
We will argue that within 𝑇 = ̃︀𝑂(𝛿−1 log(𝑚𝜇𝜀−1)) iterations of the procedure described in

Lemma 3.4.24 the barrier weights will always satisfy ‖w‖1 ≤ 3𝑚. We need to take into account the
total increase guaranteed by Lemma 3.4.24, together with the possible weight increases caused by
the weight balancing procedure.

First let us bound the total number of balancing operations, since each of these can increase a
single weight by a significant amount. First, from Definition 3.4.22 we see that once an edge gets
balanced it will never become unbalanced again, as weights are monotonic.

Furthermore, we see that such an operation can only occur when the largest of the two paired
weights is at least 𝛿‖w‖1 ≥ 2𝑚𝛿, since we maintain w ≥ 1. Under the invariant that throughout the
entire algorithm ‖w‖1 ≤ 3𝑚, we therefore see that this can only happen at most (3𝑚)/(2𝑚𝛿) = 3/(2𝛿)
times. Invoking Lemma 3.4.23 we therefore get that the total weight change caused by these operations
is at most

3

2𝛿
· 96 · 𝛿4 · (3𝑚)2 = 1296 · 𝛿3𝑚2 .

In addition, we incur weight increases due to the progress steps; per Lemma 3.4.24, within each of
the 𝑇 iterations, ‖w‖1 increases by at most

(𝛿2(3𝑚))5/2 · 6 · 104 · log 3𝑚+𝑚−10 + 1012 · 𝑝𝛿4(3𝑚)2+1/𝑝 · log2(3𝑚) .
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Therefore the total weight increase over 𝑇 iterations is at most

̃︀𝑂 (︁(︁𝛿4𝑚5/2 + 𝑝𝛿3𝑚2+1/𝑝
)︁
log(𝑚𝜇𝜀−1)

)︁
which is 𝑜(𝑚) as long as

𝛿 ≤ 1/max
(︁
𝑚3/8+𝑜(1), 𝑝1/3𝑚(1+1/𝑝)/3+𝑜(1)

)︁
= 1/𝑚3/8+𝑜(1) .

Thus this specific choice of 𝛿 insures that the invariant ‖w‖1 ≤ 3𝑚 is satisfied throughout the entire
run of the algorithm.

Finally, we bound the total perturbation in demand suffered by the flow we maintain. From
Lemma 3.4.18 each progress step perturbs the demand by at most 1 in ℓ1 norm. Furthermore, the
weight balancing operations may perturb it by an additional 3

2𝛿 overall. Summing up we obtain the
desired claim.

Combining with the repairing procedure elaborated in [42], which we show how to adapt to our
present setting in Section 3.5, we obtain the main theorem.

Theorem 3.4.26. Given a directed graph 𝐺(𝑉,𝐸, c) with 𝑚 arcs and 𝑛 vertices, such that ‖c‖∞ ≤
𝑊 , and a demand vector d ∈ Z𝑛, in 𝑚11/8+𝑜(1) log𝑊 time we can obtain a flow f which routes
d in 𝐺 while satisfying the capacity constraints 0 ≤ f ≤ 1 and minimizing the cost

∑︀
𝑒∈𝐸 𝑐𝑒𝑓𝑒, or

certifies that no such flow exists.

Proof. Before proceeding, we note that Lemma 3.4.25 assumes that the initial centrality parameter 𝜇
is bounded by a polynomial in 𝑚. This may not be exactly true as the initial centering (Lemma 9.1.2)
is done while setting a parameter 𝜇 which is upper bounded by 𝑚𝑂(1)𝑊 . As Lemma 3.4.25 which
bounds the number of iterations of our interior point method assumes that initially 𝜇 = 𝑚𝑂(1),
we need to enforce the property that the method in the lemma is only called on instances where
𝑊 = 𝑚𝑂(1).

Similarly to [42], we enforce this property by employing the scaling technique of [71]. Thus, we
reduce the problem to solving 𝑂(log𝑊 ) instances of the problem, where costs are polynomially
bounded. Without doing so, the running time of our algorithm would have depended super-linearly
in log𝑊 .

For each of the 𝑂(log𝑊 ) instances, we proceed as follows. First, we apply Lemma 9.1.2 to obtain
a 𝜇-central solution for 𝜇 = 𝑚𝑂(1). Then, we apply Lemma 3.4.25 with 𝜀 = 𝑚−3 to obtain a flow f
which routes a perturbed demand d ′ where ‖d ′ − d‖1 ≤ 𝑚3/8+𝑜(1), and is close to optimal, in the
sense that it is accompanied by dual variables which certify a duality gap of 𝑂(𝑚−3). Note that
each of the 𝑚3/8+𝑜(1) iterations of the algorithm from Lemma 3.4.25 requires solving the regularized
objective (3.18) to high precision, which due to our choice of parameter 𝑝 (Corollary 3.4.9) can be
done in 𝑚1+𝑜(1) time. Finally, we apply Lemma 3.5.4 to repair this flow in 𝑚11/8+𝑜(1) time. Hence
the total running time is 𝑚11/8+𝑜(1).

We can certify infeasibility (the case where the demand can not be routed while satisfying the
capacity constraints), by looking at the arcs used by the returned optimal solution. The initialization
procedure assumes that a demand satisfying flow can be routed in the graph. This is done by adding
to the graph 𝑂(𝑚) arcs with high costs (see Lemma 9.1.1). Using Lemma 9.1.1 we see that simply
inspecting the optimal solution returned for this graph we can decide if the routing is infeasible in
𝐺.
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BalanceWeights(𝐺;w , f )

1. For each 𝑒 ∈ 𝐸:

2. If 𝑤+
𝑒 < 96 · 𝛿4 ‖w‖21 and 𝑤−

𝑒 > 𝛿 ‖w‖1 then 𝑤′+
𝑒 ← 96 · 𝛿4 ‖w‖21, 𝑤

′−
𝑒 ← 𝑤−

𝑒 .

3. If 𝑤+
𝑒 > 𝛿 ‖w‖1 and 𝑤−

𝑒 < 96 · 𝛿4 ‖w‖21 then 𝑤′+
𝑒 ← 𝑤+

𝑒 , 𝑤′−
𝑒 ← 96 · 𝛿4 ‖w‖21.

4. Set 0 < f ′ < 1 such that w
′+

1−f ′ − w
′−

f ′ = w+

1−f −
w−

f .

5. Return w ′, f ′.

Figure 3-4: Weight balancing procedure

3.5 Repairing the Flow

In this section we show that the flow produced in Section 3.4 can be repaired in such a way that we
obtain an optimal flow for the original problem. This can be done by applying the combinatorial
fixing techniques used in [42]. Let us first recall a few useful definitions concerning the bipartite
perfect b-matching problem.

Bipartite Perfect b-matching. For a given weighted bipartite graph 𝐺 = (𝑉,𝐸) with 𝑉 = 𝑉1∪𝑉2
where 𝑉1 and 𝑉2 are the two sets of bipartition and a demand vector b ∈ R𝑉+, a perfect b-matching is
a vector x ∈ R𝐸+ such that

∑︀
𝑒∈𝐸(𝑣) 𝑥𝑒 = 𝑏𝑣 for all 𝑣 ∈ 𝑉 . A perfect b-matching is a generalization of

perfect matching; in the particular case where all b’s equal 1, integer b-matchings (or 1-matchings)
are exactly perfect matchings. We require that b(𝑉1) = b(𝑉2) as otherwise they trivially do not
exist.

The weighted bipartite perfect b-matching problem is defined as follows: given a weighted bipartite
graph 𝐺 = (𝑉,𝐸, c), return a perfect b-matching in 𝐺 that has minimum weight, or conclude that
there is no perfect b-matching in 𝐺. The dual problem to the weighted perfect bipartite b-matching
is a b-vertex packing problem where we want to find a vector y ∈ R𝑉 satisfying the following LP

max
∑︁
𝑣∈𝑉

𝑦𝑣𝑏𝑣,

𝑦𝑢 + 𝑦𝑣 ≤ 𝑤𝑢𝑣 ∀𝑢, 𝑣 ∈ 𝐸.

We employ the following result which follows from a direct application of Lemmas 35, 37, and
Theorem 40 in [42].

Theorem 3.5.1. Consider an instance 𝐺 = (𝑉,𝐸, c) of the weighted perfect bipartite b-matching
problem, where ‖b−̂︀b‖1 ≤ 𝑃 , and ‖b‖1 = 𝑂(𝑚). Given a feasible primal-dual pair of variables (x ,y)
with duality gap at most 𝑚−2, in 𝑂(𝑃𝑚 +𝑚 log 𝑛) time we can compute an optimal primal-dual
pair (̂︀x , ̂︀y) to the perfect ̂︀b-matching problem, or conclude that no such matching exists.

In order to apply this theorem we need to convert our instance into a b-matching instance with
small duality gap. The output we receive from Lemma 3.4.25 is a flow f which routes a slightly
different demand d from the one we originally intended. Furthermore f satisfies the centrality
condition C⊤

(︁
w−

f −
w+

1−f

)︁
= C⊤ c

𝜇 for a small value of 𝜇.
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From Flow to Bipartite 𝑏-Matching. We convert this solution into a corresponding bipartite
𝑏-matching problem in a new bipartite graph 𝐺′(𝑉1 ∪ 𝑉2, 𝐸′, c′), defined as follows:

1. for each vertex 𝑣 ∈ 𝑉 , create the corresponding vertex in 𝑉1;

2. for each arc 𝑒 ∈ 𝐸, create a vertex 𝑣𝑒 ∈ 𝑉2;

3. for each arc 𝑒 = (𝑢, 𝑣) ∈ 𝐸 create edges (𝑢, 𝑣𝑒) with cost 𝑐𝑒 and (𝑣, 𝑣𝑒) with cost 0.

Let d be the demand routed by f . For the bipartite graph 𝐺′, we define the b vector as follows:

1. for each 𝑣 ∈ 𝑉 set for the corresponding vertex 𝑣 in 𝑉1: 𝑏𝑣 = |𝐸+(𝑣)|+ 𝑑𝑣.

2. for each 𝑣2 ∈ 𝑉2 set 𝑏𝑣2 = 1.

We can easily verify that an optimal primal-dual solution to the b-matching problem in 𝐺′ maps
to an optimal primal-dual solution to the minimum cost flow problem in 𝐺.

Lemma 3.5.2. Let (x ,y) be a pair of feasible primal-dual variables for the b-matching problem in
the graph 𝐺′, constructed according to the rules defined above. These can be mapped to a pair (f , z )
of optimal feasible primal-dual variables for the minimum cost flow problem in 𝐺. Furthermore, this
mapping can be constructed in linear time.

Proof. Let x be the optimal b-matching, and let y be its dual vector certifying optimality.
We construct f as follows: for each arc 𝑒 = (𝑢, 𝑣) ∈ 𝐺 we look at the corresponding gadget in 𝐺′

consisting of vertices 𝑢, 𝑣 ∈ 𝑉1 and 𝑣𝑒 ∈ 𝑉2 and set 𝑓𝑒 = 𝑥𝑢,𝑣𝑒 .
First we verify that f is feasible. For each arc 𝑒 = (𝑢, 𝑣) ∈ 𝐺, the corresponding vertex 𝑣𝑒 ∈ 𝑉2

has 𝑏𝑒 = 1, and therefore 𝑥𝑢,𝑣𝑒 + 𝑥𝑣,𝑣𝑒 = 1. As both are non-negative it means that in 𝐺, 0 ≤ 𝑓𝑒 ≤ 1.
Next we verify that f indeed routes the demand it is supposed to route, i.e. d . By definition we

have that for each 𝑣 ∈ 𝑉1, ∑︁
(𝑣,𝑣𝑒)∈𝐸′

𝑥𝑣,𝑣𝑒 = 𝑏𝑣 = |𝐸+(𝑣)|+ 𝑑𝑣 .

Therefore the demand at vertex 𝑣 can be written as∑︁
𝑒=(𝑢,𝑣)∈𝐸

𝑓𝑒 −
∑︁

𝑒′=(𝑣,𝑢)∈𝐸

𝑓𝑒′ =
∑︁

𝑒=(𝑢,𝑣)∈𝐸

(1− 𝑓𝑒)− |𝐸+(𝑣)|+
∑︁

𝑒′=(𝑣,𝑢)∈𝐸

𝑓𝑒′

=
∑︁

(𝑣,𝑣𝑒)∈𝐸′

𝑥𝑣,𝑣𝑒 − |𝐸+(𝑣)|

= 𝑑𝑣 .

Finally we certify optimality for f by exhibiting feasible dual variables which satisfy complementary
slackness. For the LP formulation defined in Section 3.3.1 we require for each arc 𝑒 ∈ 𝐸 two
non-negative dual variables 𝑧−𝑒 and 𝑧+𝑒 such that summing up along each cycle

𝑧+𝑒 − 𝑧−𝑒 + 𝑐𝑒

with the appropriate sign depending on the orientation of the encountered arcs, we obtain exactly 0.
For each 𝑒 = (𝑢, 𝑣) ∈ 𝐸, we define them as

𝑧−𝑒 = 𝑐𝑒 − 𝑦𝑢 − 𝑦𝑣𝑒 ,
𝑧+𝑒 = −𝑦𝑣 − 𝑦𝑣𝑒 .

53



Feasibility is obvious since 𝑧+𝑒 , 𝑧−𝑒 ≥ 0 because y is a feasible vector and hence for each edge the sum
of the 𝑦’s of its vertices is upper bounded by the cost, and summing up 𝑧−𝑒 − 𝑧+𝑒 along any cycle we
obtain exactly the sum of the costs 𝑐𝑒 along that cycle, summed up with the appropriate sign.

We finally certify optimality for f by verifying that (f , (z−; z+)) satisfy complementary slackness.
We have that for each arc (𝑢, 𝑣) ∈ 𝐸,

𝑓𝑒𝑧
−
𝑒 = 𝑥𝑢𝑣𝑒(𝑐𝑒 − 𝑦𝑢 − 𝑦𝑣𝑒) = 0

(1− 𝑓𝑒)𝑧+𝑒 = 𝑥𝑣𝑣𝑒(−𝑦𝑣 − 𝑦𝑣𝑒) = 0 ,

where we used the fact that (x ,y) satisfy complementary slackness. Hence f is optimal in 𝐺.

Our goal will be to obtain an optimal primal-dual solution for a ̂︀b-matching problem which
carries over to an optimal solution to the minimum cost flow problem in 𝐺 with the original demand̂︀d .

In order to do so, we first convert our flow instance with small duality gap to a b-matching
instance with the same duality gap. Afterwards, we fix the resulting b-matching to optimality and
we convert it to an optimal ̂︀b-matching which maps to a flow ̂︀f routing the original demand ̂︀d in 𝐺,
via Theorem 3.5.1.

In order to do so, we use the 𝜇-central solution produced by the interior point method in
Section 3.4, with 𝜇 = 𝑂(𝑚−10). Recalling that our current solution satisfies

C⊤
(︂
𝜇w−

f
− 𝜇w+

1− f

)︂
= C⊤c ,

we set primal-dual variables (x ,y) for 𝐺′ as follows:

1. for each arc 𝑒 = (𝑢, 𝑣) ∈ 𝐸, set 𝑥𝑢,𝑣𝑒 = 𝑓𝑒 and 𝑥𝑣,𝑣𝑒 = 1− 𝑓𝑒.

2. pick an arbitrary vertex 𝑣0 ∈ 𝑉 and set its corresponding 𝑦𝑣0 = 0; then perform a breadth-first
search in 𝐺 (ignoring orientations) starting from 𝑣, and for each vertex visited for the first
time when traversing an arc 𝑒 = (𝑢, 𝑣) (in any direction) such that 𝑦𝑢 − 𝑦𝑣 = 𝜇𝑤+

𝑒
1−𝑓𝑒 −

𝜇𝑤−
𝑒

𝑓𝑒
− 𝑐𝑒;

3. for all 𝑣𝑒 ∈ 𝑉2 where 𝑒 = (𝑢, 𝑣) ∈ 𝐸, set 𝑦𝑣𝑒 = −𝑦𝑢 −
𝜇𝑤−

𝑒
𝑓𝑒

+ 𝑐𝑒 = −𝑦𝑣 − 𝜇𝑤−
𝑒

1−𝑓𝑒 .

Having defined 𝐺′ together with its demand vector b and corresponding primal-dual solution
(x ,y), let us show that indeed this is a feasible solution and it has low duality gap.

Lemma 3.5.3. The primal-dual solution (x ,y) constructed above is feasible and has duality gap
𝜇‖w‖1.

Proof. First we check feasibility. Primal feasibility holds trivially by construction. For dual feasibility,
consider for each arc 𝑒 = (𝑢, 𝑣) ∈ 𝐸 the two edges appearing in its corresponding gadget in 𝐺′,
(𝑢, 𝑣𝑒) and (𝑣, 𝑣𝑒). For the former we have

𝑦𝑢 + 𝑦𝑣𝑒 = −
𝜇𝑤−

𝑒

𝑓𝑒
+ 𝑐𝑒 ≤ 𝑐𝑢,𝑣𝑒

and for the latter
𝑦𝑣 + 𝑦𝑣𝑒 = −

𝜇𝑤+
𝑒

1− 𝑓𝑒
≤ 𝑐𝑣,𝑣𝑒 = 0 .
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Therefore the dual constraints of the b-matching problem are also satisfied. Finally we write the
duality gap via∑︁

𝑒=(𝑢,𝑣)∈𝐸′

𝑥𝑒(𝑐𝑒 − 𝑦𝑢 − 𝑦𝑣) =
∑︁

𝑒=(𝑢,𝑣)∈𝐸

(𝑓𝑒(𝑐𝑒 − 𝑦𝑢 − 𝑦𝑣𝑒) + (1− 𝑓𝑒)(0− 𝑦𝑣 − 𝑦𝑣𝑒))

=
∑︁

𝑒=(𝑢,𝑣)∈𝐸

(︂
𝑓𝑒 ·

𝜇𝑤−
𝑒

𝑓𝑒
+ (1− 𝑓𝑒) ·

𝜇𝑤+
𝑒

1− 𝑓𝑒

)︂
=

∑︁
𝑒=(𝑢,𝑣)∈𝐸

𝜇(𝑤−
𝑒 + 𝑤+

𝑒 )

= 𝜇‖w‖1 .

Now we are ready to state the main result of this section.

Lemma 3.5.4. Given a target integral demand ̂︀d , a flow f satisfying 𝜇-centrality with weights w such
that ‖w‖1 = 𝑂(𝑚), 𝜇 = 𝑂(𝑚−10), and f routes a demand d we can obtain in time ̃︀𝑂(‖d − ̂︀d‖1 ·𝑚)
a flow ̂︀f which is optimal among all flows routing ̂︀d .

Proof. Using Lemma 3.5.3 we can convert the flow instance into a b-matching instance with duality
gap 𝑂(𝑚−2). Now we can invoke Theorem 3.5.1 to convert the matching into an optimal ̂︀b-matching
where ̂︀b corresponds to the demand ̂︀d that the flow is supposed to route in 𝐺. We see that by
construction ‖b − ̂︀b‖1 = ‖d − ̂︀d‖1. Therefore obtaining the corresponding optimal ̂︀b-matching is
done in time 𝑂((‖d − ̂︀d‖1 + log 𝑛)𝑚). Finally applying Lemma 3.5.2 we obtain the optimal flow ̂︀f
in 𝐺.

3.6 Improving the Running Time to 𝑚4/3+𝑜(1) log𝑊

The running time of the algorithm we presented above hits a barrier of 𝑚11/8+𝑜(1) log𝑊 . The key
bottleneck there is the post-processing we do on the residual error of the (intermediate) solutions we
obtain after performing each progress step. Indeed, while the length of our steps is dictated by the
ℓ∞-norm of our step size ‖𝜌‖∞ (which is, in a sense optimal), it is unclear how to ensure that the
energy required to route a flow that fixes the corresponding residual error is sufficiently small, without
overly increasing the weights of the constraint barriers. In fact, the extent of weight perturbations
necessary for this post-processing step are exactly what determines the 𝑚11/8+𝑜(1) log𝑊 running
time. All the other weight perturbations, which are caused by the regularization terms, are much
milder and would lead to the desired 𝑚4/3+𝑜(1) log𝑊 running time.

After the first version of [10] was posted, Liu and Sidford [114] published a preprint that obtains
an improved running time for the unit-capacity maximum flow. The main technique introduced
in that paper boils down exactly to avoiding the aforementioned bottleneck. Roughly, instead of
advancing from a central point to the next one via a progress step followed by a sequence of residual
correction steps, they instead directly solve the optimization problem which lands them at the next
central point.

To do so, one must guarantee that this optimization problem is well-conditioned at all times, in
the sense that the objective has a Hessian which always stays within a constant factor from the one
at the origin. While such a Hessian stability condition is not true in general, Liu and Sidford [114]
modify the logarithmic barriers they use by extending them with quadratics outside the region
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where they would be naturally well-behaved. The resulting new objective function can be efficiently
optimized by slightly extending the mixed ℓ2-ℓ𝑝 solver of Kyng et al [103] (see Appendix 9.1.4).

Incorporating this idea in our framework yields a the desired running time improvement of our
unit-capacity minimum cost flow algorithm as well. Most of the details, particularly those involving
preconditioning and weight perturbations carry over from the previous sections. In fact, the only
change to the algorithm needed is to replace the regularized Newton step (cf. line 3 in Figure 3-3)
with solving a regularized problem which directly involves the logarithmic barrier. (Furthermore,
lines 7 and 8 are no longer required.)

Method Overview. Let us specify the ideal optimization problem which we would solve in order
to advance along the central path. Suppose we have a 𝜇-central instance i.e. we have a flow
f = f 0 +Cx which satisfies

C⊤
(︂

w+

1− f 0 −Cx
− w−

f 0 +Cx

)︂
= −C⊤c

𝜇
. (3.60)

as it optimizes the convex objective

min
x
𝐹w
𝜇 (x ) = min

x

1

𝜇
⟨c,Cx ⟩ −

∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 log(1− f 0 −Cx )𝑒 + 𝑤−

𝑒 log(f 0 +Cx )𝑒
)︀
.

Our goal is to design an optimization procedure which enables us to augment f with a circulation
C ̃︀x in order to obtain an optimizer for

min
x ′

𝐹w
𝜇/(1+𝛿)(x

′) = min
x ′

1 + 𝛿

𝜇
⟨c,Cx ′⟩ −

∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 log(1− f 0 −Cx ′)𝑒 + 𝑤−

𝑒 log(f 0 +Cx ′)𝑒
)︀

= miñ︀x
1 + 𝛿

𝜇
⟨c, f +C ̃︀x ⟩ −∑︁

𝑒∈𝐸

(︀
𝑤+
𝑒 log(1− f −C ̃︀x )𝑒 + 𝑤−

𝑒 log(f +C ̃︀x )𝑒)︀ .
We can equivalently rewrite this optimization procedure, after adding a constant term to it, as

miñ︀x Ψw ,f
𝜇/(1+𝛿)(̃︀x ) ,

where

Ψw ,f
𝜇/(1+𝛿)(̃︀x ) : = 𝐹w

𝜇/(1+𝛿)(x + ̃︀x )− 1 + 𝛿

𝜇
⟨c, f ⟩+

∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 log(1− 𝑓𝑒) + 𝑤−

𝑒 log 𝑓𝑒
)︀

=
1 + 𝛿

𝜇
⟨c,C ̃︀x ⟩ −∑︁

𝑒∈𝐸

(︂
𝑤+
𝑒 log

(︂
1− C ̃︀x

1− f

)︂
𝑒

+ 𝑤−
𝑒 log

(︂
1+

C ̃︀x
f

)︂
𝑒

)︂
.

Optimizing this function is hard to do in general. However, assuming its optimal augmenting
circulation C ̃︀x satisfies ⃦⃦⃦⃦

C ̃︀x
min{f ,1− f }

⃦⃦⃦⃦
∞
≤ 1

10
, (3.61)

which in other words, says that augmenting f with C ̃︀x will not come close to breaking the feasibility
constraints, we can instead solve a well-conditioned objective obtained by replacing the log’s with a
better behaved function ̃︁log satisfying log(1 + 𝑡) = ̃︁log(1 + 𝑡) whenever |𝑡| ≤ 1/10.
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More precisely, we use the definition from [114] which we reproduce below:

̃︁log(1 + 𝑡) =

⎧⎪⎨⎪⎩
log(1 + 𝑡), if 𝑡 ∈ [−𝜃, 𝜃] ,
log(1 + 𝜃) + (𝑡− 𝜃) · log′(1 + 𝜃) + (𝑡− 𝜃)2 · 12 log

′′(1 + 𝜃), if 𝑡 > 𝜃 ,

log(1− 𝜃) + (𝑡+ 𝜃) · log′(1− 𝜃) + (𝑡+ 𝜃)2 · 12 log
′′(1− 𝜃), if 𝑡 < −𝜃 ,

where we set 𝜃 = 1/10. We can also easily verify that on the boundary of the interval [−𝜃, 𝜃] the first
and second order derivatives exactly match those of log(1 + 𝑡). The essential feature is that outside
this range, the second derivative stays constant, whereas in the case of log(1+ 𝑡) it changes very fast.

Using this, we can define the minimization problem

miñ︀x ̃︀Ψw ,f
𝜇/(1+𝛿)(̃︀x ) ,

where

̃︀Ψw ,f
𝜇/(1+𝛿)(̃︀x ) := 1 + 𝛿

𝜇
⟨c,C ̃︀x ⟩ −∑︁

𝑒∈𝐸

(︂
𝑤+
𝑒
̃︁log(︂1− C ̃︀x

1− f

)︂
𝑒

+ 𝑤−
𝑒
̃︁log(︂1+

C ̃︀x
f

)︂
𝑒

)︂
. (3.62)

Observation 3.6.1. If the minimizer ̃︀x of ̃︀Ψw ,f
𝜇/(1+𝛿)(̃︀x ) satisfies the low-congestion condition from

(3.61), then it also minimizes Ψw ,f
𝜇/(1+𝛿)(̃︀x ).

Due to the fact that the second order derivatives of ̃︁log are bounded, ̃︀Ψw ,f
𝜇/(1+𝛿)(̃︀x ) is well-

conditioned and, as a matter of fact can easily be minimized by using a small number of calls to
a routine which minimizes quadratics over the set of circulations. As specified in [114] this can
be easily done by using fast Laplacian system solvers. However, the main difficulty that arises is
ensuring that the minimizer ̃︀x satisfies the confition from (3.61).

Enforcing this property is non-trivial, and requires regularizing the function ̃︀Ψw ,f
𝜇/(1+𝛿) in an

identical manner to the way we did it in the analysis from Section 3.4. Most of the results we used
there carry over, after performing some minor modifications in the analysis.

Regularizing the Objective. In order to enforce the required property, we add two regularization
terms to our optimization step. Just like in Section 3.4.1 we augment the graph 𝐺 to 𝐺⋆, which has
a cycle basis C⋆, and in this graph we write down the equivalent concave maximization problem for
(3.62), which we regularize with two extra terms. We slightly abuse notation by making ̃︀Ψw ,f

𝜇/(1+𝛿) act
on an element in the circulation space of 𝐺⋆, with the meaning that the linear and logarithmic terms
only act on edges in 𝐸:

max̃︀f⋆=C⋆̃︀x −̃︀Ψw ,f
𝜇/(1+𝛿)(̃︀x )− 𝑅⋆

2

∑︁
𝑒∈𝐸′

( ̃︀𝑓⋆)2𝑒 − 𝑅𝑝
𝑝

∑︁
𝑒∈𝐸∪𝐸′

( ̃︀𝑓⋆)𝑝𝑒 . (3.63)

Writing ̃︀f⋆ = ̃︀f + ̃︀f ′
where ̃︀f is the restriction of ̃︀f⋆ to the edges 𝐸 of 𝐺, and ̃︀f ′

is the restriction
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to the augmenting edges 𝐸′, and using the centrality condition (3.60), we can further write this as

max̃︀f⋆=C⋆̃︀x(1 + 𝛿)

⟨
w+

1− f
− w−

f
, ̃︀f⟩+

∑︁
𝑒∈𝐸

(︃
𝑤+
𝑒
̃︁log(︃1− ̃︀𝑓𝑒

1− 𝑓𝑒

)︃
+ 𝑤−

𝑒
̃︁log(︃1 + ̃︀𝑓𝑒

𝑓𝑒

)︃)︃

− 𝑅⋆
2

∑︁
𝑒∈𝐸′

( ̃︀𝑓 ′𝑒)2 − 𝑅𝑝
𝑝

∑︁
𝑒∈𝐸∪𝐸′

( ̃︀𝑓⋆)𝑝𝑒 . (3.64)

Note that this optimization problem can be solved efficiently using Lemma 9.1.7. The key reason
is that all the terms except for the one involving 𝑝 powers of the flow ̃︀𝑓 have a second order derivative
which is either constant, or which stays bounded within a small multiplicative factor from the one
at 0. Similarly to before, the solver from Lemma 9.1.7 yields a high-accuracy, yet inexact solution.
We can, however, assume we obtain an exact solution by performing minor perturbations to our
problem, in a manner similar to the one discussed in Section 9.1.3.

We can now write the first order optimality condition for the objective in (3.63), thus providing
an analogue of Lemma 3.4.6. Before doing so, we give the following helper lemma, which will be the
main driver of the results in this section. It intuitively states that the optimal solution to (3.64)
can be thought of as the solution to a regularized Newton step as the one in (3.18), but where
the coefficients of the quadratic 1

2

∑︀
𝑒∈𝐸

̃︀𝑓2𝑒 · (︁ 𝑤+
𝑒

(𝑠+𝑒 )2
+ 𝑤−

𝑒

(𝑠−𝑒 )2

)︁
have been slightly perturbed by a small

multiplicative constant.

Lemma 3.6.2 (Optimality with average Hessian). Let ̃︀f⋆ = C⋆̃︀x⋆ be the optimizer of (3.64), and let̃︀f⋆ = ̃︀f + ̃︀f ′
, where the two components are supported on 𝐸 and 𝐸′, respectively. Then there exists a

vector 𝛼 = (𝛼+;𝛼−), (1 + 𝜃)−2 · 1 ≤ 𝛼 ≤ (1− 𝜃)−2 · 1, which can be explicitly computed, such that
for any circulation g in C⋆,⟨

g ,

[︃
𝛿
(︁

w+

1−f −
w−

f

)︁
− ̃︀f (︁𝛼+w+

(1−f )2
+ 𝛼−w−

f 2

)︁
−𝑅𝑝 · (̃︀f )𝑝−1

−𝑅⋆ · ̃︀f ′
−𝑅𝑝 · (̃︀f ′

)𝑝−1

]︃⟩
= 0 .

Proof. We write the first order optimality condition for (3.64). We have that for any circulation g
in 𝐺⋆:⟨
g ,

[︃
(1 + 𝛿)

(︁
w+

1−f −
w−

f

)︁
+w+ · ∇̃︀f ̃︁log (︁1− ̃︀f

1−f

)︁
+w− · ∇̃︀f ̃︁log (︁1+

̃︀f
f

)︁
−𝑅𝑝 · (̃︀f )𝑝−1

−𝑅⋆ · ̃︀f ′
−𝑅𝑝 · (̃︀f ′

)𝑝−1

]︃⟩
= 0 .

Next we use the expansion

𝑑

𝑑𝑥
̃︁log (︁1 + 𝑥

𝑎

)︁
=

1

𝑎
· ̃︁log′ (︁1 + 𝑥

𝑎

)︁
=

1

𝑎
·
(︂
1 +

𝑥

𝑎

∫︁ 1

0

̃︁log′′ (︁1 + 𝑡 · 𝑥
𝑎

)︁
𝑑𝑡

)︂
.

From the definition of ̃︁log we know that its second order derivative is always stable which enables us
to bound

− 1

(1− 𝜃)2
≤
∫︁ 1

0

̃︁log′′ (︁1 + 𝑡 · 𝑥
𝑎

)︁
𝑑𝑡 ≤ − 1

(1 + 𝜃)2
,

hence for some 𝛼 ∈ [(1 + 𝜃)−2, (1− 𝜃)−2], one has

𝑑

𝑑𝑥
̃︁log (︁1 + 𝑥

𝑎

)︁
=

1

𝑎
· ̃︁log′ (︁1 + 𝑥

𝑎

)︁
=

1

𝑎
− 𝛼 · 𝑥

𝑎2
.
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Therefore there exists a vector 𝛼 = (𝛼+;𝛼−) satisfying (1 + 𝜃)−2 · 1 ≤ 𝛼 ≤ (1− 𝜃)−2 · 1 such that⟨
g ,

[︃
(1 + 𝛿)

(︁
w+

1−f −
w−

f

)︁
+w+ · ∇̃︀f ̃︁log (︁1− ̃︀f

1−f

)︁
+w− · ∇̃︀f ̃︁log (︁1+

̃︀f
f

)︁
−𝑅𝑝 · (̃︀f )𝑝−1

−𝑅⋆ · ̃︀f ′
−𝑅𝑝 · (̃︀f ′

)𝑝−1

]︃⟩

=

⟨
g ,

[︃
𝛿
(︁

w+

1−f −
w−

f

)︁
− ̃︀f (︁𝛼+w+

(1−f )2
+ 𝛼−w−

f 2

)︁
−𝑅𝑝 · (̃︀f )𝑝−1

−𝑅⋆ · ̃︀f ′
−𝑅𝑝 · (̃︀f ′

)𝑝−1

]︃⟩
= 0 ,

which is what we needed.

Lemma 3.6.2 enables us to use an optimality condition very similar to the one we had before in
Section 3.4. As a matter of fact, all the remaining statements are nothing but "robust" versions of
those we previously used. Essential here are new versions of Lemma 3.4.6 and Lemma 3.4.7 which
accommodate the extra multiplicative factors on resistances. Roughly, our goal is to provide upper
bounds on ‖̃︀f ‖∞ and ‖̃︀f /min{1− f , f }2‖∞, which together will imply that the condition from
(3.61) is satisfied.

After proving that this is the case, we will show how to advance to the next point on the central
path – the regularization terms on (3.64) will require us to increase the weights w in order to obtain
optimality for the non-regularized objective i.e. ∇̃︀Ψw ,f

𝜇/(1+𝛿)(̃︀x ) = 0. Nevertheless, this procedure is
essentially identical to the one we previously used in Lemma 3.4.20.

3.6.1 Bounding Congestion

Here we show that the congestion condition from (3.61) is satisfied, and hence the minimizer of
(3.64) also minimizes the expression after replacing ̃︁log with log. The proofs are almost identical to
those from Section 3.4. For consistency we will use the slack notation

s− = f , s+ = 1− f ,

and use the shorthand notation for the residual

h = 𝛿

(︂
w+

s+
− w−

s−

)︂
.

We first give a short lemma providing an optimality condition for the restriction of the flow ̃︀f⋆
computed by (3.64) to the edges 𝐸 of the original graph 𝐺.

Lemma 3.6.3 (Optimality in the non-augmented graph). Let ̃︀f⋆ = C⋆̃︀x⋆ be the optimizer of (3.63)
and let ̃︀f be its restriction to the edges of 𝐺. Let ̃︀d be the demand routed by ̃︀f in 𝐺. Then there
exists a vector 𝛼 = (𝛼+;𝛼−) ∈ R2𝑚, 1

(1+𝜃)2
· 1 ≤ 𝛼 ≤ 1

(1−𝜃)2 · 1, which can be explicitly computed,
such that

C⊤ ·
(︂
𝛼+w+

(s+)2
+
𝛼−w−

(s−)2

)︂
· ̃︀f = C⊤(h +Δh) (3.65)
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where Δh = −𝑅𝑝(̃︀f )𝑝−1 , and

‖̃︀d‖1 ≤ 3

(︂
‖w‖1 · ℰmax(h ,w , s)

𝑅⋆

)︂1/2

,

‖̃︀f⋆‖𝑝 ≤ (︃𝑝 · 32ℰmax(h ,w , s)

𝑅𝑝

)︃1/𝑝

.

The proof can be found in Appendix 9.1.5.
Next we provide a guarantee enforced by the component of the regularizer involving augmenting

edges.

Lemma 3.6.4. Let ̃︀f⋆ be the solution of the regularized objective and ̃︀f its restriction on 𝐺, and
suppose that ‖w‖1 ≥ 3. Then there exists a vector 𝛼 = (𝛼+;𝛼−) ∈ R2𝑚 such that for all edges
𝑒 ∈ 𝐸: ⃒⃒⃒⃒(︂

𝛼+
𝑒 𝑤

+
𝑒

(𝑠+𝑒 )2
+
𝛼−
𝑒 𝑤

−
𝑒

(𝑠−𝑒 )2
+𝑅𝑝 · ̃︀𝑓𝑝−2

𝑒

)︂ ̃︀𝑓𝑒 − ℎ𝑒 ⃒⃒⃒⃒ ≤ 𝛾 , (3.66)

where

𝛾 =
(︁
𝑅⋆ +𝑅𝑝 · ‖̃︀f⋆‖𝑝−2

∞

)︁1/2
·

⃦⃦⃦⃦
⃦⃦⃦⃦ h√︂

(w+ +w−)
(︁
𝛼+w+

(s+)2
+ 𝛼−w−

(s−)2

)︁
⃦⃦⃦⃦
⃦⃦⃦⃦
∞

· 32 log ‖w‖1 .

Furthermore, this implies that (︂
𝛼+
𝑒 𝑤

+
𝑒

(𝑠+𝑒 )2
+
𝛼−
𝑒 𝑤

−
𝑒

(𝑠−𝑒 )2

)︂
·
⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ ≤ |ℎ𝑒|+ 𝛾 . (3.67)

The proof is essentially identical to that of Lemma 3.4.7. We discuss it at the end of Ap-
pendix 9.1.2.

Combining Lemmas 3.6.3 and 3.6.4 we can finally prove the main statement of this section. This
will be true for as long as the condition we specified in Definition 3.4.13 holds. This condition will
be later enforced by performing the balancing operation we also specified in Definition 3.4.22.

In order to obtain the desired congestion bound, we set our regularization parameters identically
to Definition 3.4.8:

𝑝 = min
{︁
𝑘 ∈ 2Z : 𝑘 ≥ (log𝑚)1/3

}︁
,

𝑅𝑝 = 𝑝 ·
(︀
106 · 𝛿2‖w‖1 · log ‖w‖1

)︀𝑝+1
,

𝑅⋆ = 3 · 𝛿2‖w‖21 .

Lemma 3.6.5 (Congestion bound). Suppose that all edges 𝑒 ∈ 𝐸 are balanced, per Definition 3.4.13,
and 𝛿 > 10 · ‖w‖−1/2

1 . Then the restriction ̃︀f of the flow ̃︀f⋆ computed via (3.64) satisfies the
low-congestion condition (3.61).

Proof. Lemma 3.4.15 proves that if all edges are balanced, for any flow ̂︀f in 𝐺 such that for all 𝑒 ∈ 𝐸(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
·
⃒⃒⃒ ̂︀𝑓𝑒 ⃒⃒⃒ ≤ |ℎ𝑒|+ 𝛾 ,
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where h = 𝛿
(︁
w+

s+
− w−

s−

)︁
, then for each 𝑒 ∈ 𝐸 it is true that max {|̂︀𝜌+𝑒 | , |̂︀𝜌−𝑒 |} < 𝐶∞ or

⃒⃒⃒
𝑤+

𝑒 ̂︀𝜌+𝑒
𝑠+𝑒

⃒⃒⃒
+⃒⃒⃒

𝑤−
𝑒 ̂︀𝜌−𝑒
𝑠−𝑒

⃒⃒⃒
≤ 6𝛾, where ̂︀𝜌+𝑒 =

̂︀𝑓𝑒
𝑠+𝑒

, ̂︀𝜌−𝑒 = − ̂︀𝑓𝑒
𝑠−𝑒

, and 𝐶∞ = 1

2𝛿
√

2‖w‖1
. We apply this statement for

⃒⃒⃒ ̂︀𝑓𝑒 ⃒⃒⃒ := 𝛼+
𝑒 𝑤

+
𝑒

(𝑠+𝑒 )2
+ 𝛼−

𝑒 𝑤
−
𝑒

(𝑠−𝑒 )2

𝑤+
𝑒

(𝑠+𝑒 )2
+ 𝑤−

𝑒

(𝑠−𝑒 )2

⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ ≥ 1

(1 + 𝜃)2

⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ ,
which also implies that |𝜌+𝑒 | =

⃒⃒⃒ ̃︀𝑓𝑒
𝑠+𝑒

⃒⃒⃒
≤ (1 + 𝜃)2 |̂︀𝜌+𝑒 | , |𝜌−𝑒 | = ⃒⃒⃒ ̃︀𝑓𝑒

𝑠−𝑒

⃒⃒⃒
≤ (1 + 𝜃)2 |̂︀𝜌−𝑒 |. Note that we now

have (︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂ ⃒⃒⃒ ̂︀𝑓𝑒 ⃒⃒⃒ = (︂𝛼+
𝑒 𝑤

+
𝑒

(𝑠+𝑒 )2
+
𝛼−
𝑒 𝑤

−
𝑒

(𝑠−𝑒 )2

)︂
·
⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ ≤ |ℎ𝑒|+ 𝛾 ,

and thus we get that for all 𝑒 ∈ 𝐸 at least one of

max
{︀⃒⃒
𝜌+𝑒
⃒⃒
,
⃒⃒
𝜌−𝑒
⃒⃒}︀
≤ (1 + 𝜃)2 ·max

{︀⃒⃒̂︀𝜌+𝑒 ⃒⃒ , ⃒⃒̂︀𝜌−𝑒 ⃒⃒}︀ < (1 + 𝜃)2 · 𝐶∞

and ⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑤−
𝑒 𝜌

−
𝑒

𝑠−𝑒

⃒⃒⃒⃒
≤ (1 + 𝜃)2 ·

(︂⃒⃒⃒⃒
𝑤+
𝑒 ̂︀𝜌+𝑒
𝑠+𝑒

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑤−
𝑒 ̂︀𝜌−𝑒
𝑠−𝑒

⃒⃒⃒⃒)︂
≤ 6 · (1 + 𝜃)2 · 𝛾

is true. Using the fact that 𝛿 > 10 · ‖w‖−1/2
1 , the former becomes max {|𝜌+𝑒 | , |𝜌−𝑒 |} =

(1+𝜃)2

2𝛿
√

2‖w‖1
< 1

20 .

For all the remaining edges, we have⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑤−
𝑒 𝜌

−
𝑒

𝑠−𝑒

⃒⃒⃒⃒
≤ 6 · (1 + 𝜃)2 · 𝛾 = 6 · (1 + 𝜃)2 · 𝛿2‖w‖1 · 32

√
6 · log ‖w‖1 ,

which, combined with

⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ ≤ ‖̃︀f ‖𝑝 ≤ (︃𝑝 · 32ℰmax(h ,w , s)

𝑅𝑝

)︃1/𝑝

≤

(︃
𝑝 · 34𝛿

2‖w‖1
𝑝 (106 · 𝛿2‖w‖1 log ‖w‖1)𝑝+1

)︃1/𝑝

≤ 1

106 · 𝛿2‖w‖1 log ‖w‖1

gives

⃒⃒
𝜌+𝑒
⃒⃒
=

(︂⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ · ⃒⃒⃒⃒𝜌+𝑒
𝑠+𝑒

⃒⃒⃒⃒)︂1/2

≤
(︂

1

106 · 𝛿2‖w‖1 log ‖w‖1
· 6 · (1 + 𝜃)2 · 𝛿2‖w‖1 · 32

√
6 log ‖w‖1

)︂1/2

<
1

20
.

Symmetrically, we get that |𝜌−𝑒 | < 1
20 and so we are done.
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3.6.2 Making Progress

Here we show how to use the flow obtained from optimizing (3.64) in order to achieve centrality for
a new parameter 𝜇/(1 + 𝛿), at the expense of slightly increasing weights from w to some w ′.

Lemma 3.6.6 (Almost-centrality after executing step). Let ̃︀f⋆ be the optimizer of (3.64) and let ̃︀f
be its restriction to the edges of 𝐺. Then

C⊤
(︂
(1 + 𝛿)

(︂
w+

1− f
− w−

f

)︂
−
(︂

w+

1− f − ̃︀f − w−

f + ̃︀f
)︂)︂

= C⊤ ·𝑅𝑝 · (̃︀f )𝑝−1 .

Proof. Writing the optimality condition for (3.64), and using Lemma 3.6.5, we obtain

C⊤

(︃
(1 + 𝛿)

(︂
w+

1− f
− w−

f

)︂
+w+ · ∇̃︀f log

(︃
1−

̃︀f
1− f

)︃
+w− · ∇̃︀f log

(︃
1+

̃︀f
f

)︃
−𝑅𝑝 · (̃︀f )𝑝−1

)︃
= 0 ,

which we can rewrite equivalently as

C⊤
(︂
(1 + 𝛿)

(︂
w+

1− f
− w−

f

)︂
−
(︂

w+

1− f − ̃︀f − w−

f + ̃︀f
)︂)︂

= C⊤ ·𝑅𝑝 · (̃︀f )𝑝−1 ,

which is what we needed.

As we can see, the regularization terms have two effects. One is that the update ̃︀f is not exactly a
circulation, so this will account for some change in the routed demand. The other effect is that after
augmenting the current flow f with ̃︀f we do not obtain a central solution, as shown in Lemma 3.6.6.
We proceed to fix this manually by slightly increasing the weights w . This follows from applying
Lemma 3.4.20 to the residual Δh = −𝑅𝑝(̃︀f )𝑝−1, which produces a central solution with a new set of

weights w ′ ≥ w such that ‖w ′ −w‖1 ≤ 𝑅𝑝 ·
∑︀
𝑒∈𝐸

⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒𝑝−1
.

We are now ready to characterize the amount of progress we make in a single iteration of the
method previously described.

Lemma 3.6.7 (Progress lemma). Given a 𝜇-central instance, i.e. a flow f and balanced weights w
such that

C⊤
(︂

w+

1− f
− w−

f

)︂
= −C⊤c

𝜇
,

in the time require to solve (3.64) we can obtain a 𝜇/(1 + 𝛿)-central instance, i.e. a flow f + ̃︀f and
weights w ′ ≥ w , such that

C⊤
(︂

w+

1− f − ̃︀f − w−

f + ̃︀f
)︂

= −(1 + 𝛿)
C⊤c

𝜇
,

where
‖w ′ −w‖1 ≤ 𝑝 · 1012 · 𝛿4‖w‖2+1/𝑝

1 · log2 ‖w‖1 ,

and ̃︀f routes a demand ̃︀d such that
‖̃︀d‖1 ≤ 3/2 .
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Proof. Using Lemma 3.6.3 and Lemma 3.6.6, after solving (3.64) we obtain an augmenting flow ̃︀f
routing a demand ̃︀d with

‖̃︀d‖1 ≤ 3

(︂
‖w‖1 · ℰmax(h ,w , s)

𝑅⋆

)︂1/2

≤ 3

(︃
‖w‖1 · 12𝛿

2‖w‖1
3𝛿2‖w‖21

)︃1/2

< 3/2 ,

such that

C⊤
(︂
(1 + 𝛿)

(︂
w+

1− f
− w−

f

)︂
−
(︂

w+

1− f − ̃︀f − w−

f + ̃︀f
)︂)︂

= C⊤ ·𝑅𝑝 · (̃︀f )𝑝−1 .

We then increase the weights w to w ′ to make the right-hand side of this identity equal to 0. Per
Lemma 3.4.20, this increases the weights to w ′ such that

‖w ′ −w‖1 = 𝑅𝑝 ·
∑︁
𝑒∈𝐸

⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒𝑝−1
≤ 𝑅𝑝

(︁
𝑚

1
𝑝−1

− 1
𝑝 · ‖̃︀f ‖𝑝)︁𝑝−1

≤ 𝑅𝑝 · ‖w‖1/𝑝1 · ‖̃︀f ‖𝑝−1
𝑝 ,

where we used the fact that ‖w‖1 ≥ 𝑚. From Lemma 3.6.3, we have that for our specific choice of
regularization parameters,

‖̃︀f ‖𝑝 ≤ (︃𝑝 · 32ℰmax(h ,w , s)

𝑅𝑝

)︃1/𝑝

≤ 1

106 · 𝛿2‖w‖1 log ‖w‖1
.

Therefore

‖w ′ −w‖1 ≤
(︁
𝑝 ·
(︀
106 · 𝛿2‖w‖1 · log ‖w‖1

)︀𝑝+1
)︁
· ‖w‖1/𝑝1 ·

(︂
1

106 · 𝛿2‖w‖1 log ‖w‖1

)︂𝑝−1

= 𝑝 ·
(︀
106 · 𝛿2‖w‖1 · log ‖w‖1

)︀2 · ‖w‖1/𝑝1 = 𝑝 · 1012 · 𝛿4‖w‖2+1/𝑝
1 · log2 ‖w‖1 .

3.6.3 Wrapping Up

We can now give the main statement of this section, which follows from running the interior point
method, based on the guarantee provided by Lemma 3.6.7.

Lemma 3.6.8. Suppose we have a 𝜇-central instance with weights w ≥ 1, where ‖w‖1 ≤ 2𝑚+ 1
and 𝜇 = 𝑚𝑂(1). Let 𝜀 = 𝑚−𝑂(1), and let 𝛿 = 𝑚−(1/3+𝑜(1)). In time dominated by ̃︀𝑂(𝛿−1) iterations
of the procedure described in Lemma 3.6.7 we obtain an instance with duality gap at most 𝜀 with a
total demand perturbation of ̃︀𝑂(𝛿−1).

Proof. We perform a sequence of iterations as described in Lemma 3.6.7. These are interspersed
with calls to the weight balancing procedure (Lemma 3.4.23), required in order to maintain the
invariant needed by Lemma 3.6.5.

We will argue that within 𝑇 = ̃︀𝑂(𝛿−1 log(𝑚𝜇𝜀−1)) iterations the barrier weights will always
satisfy ‖w‖1 ≤ 3𝑚. We need to take into account the total increase guaranteed by Lemma 3.6.7
together with the possible weight increases caused by the weight balancing procedure.

First let us bound the total number of balancing operations, since each of these can increase a
single weight by a significant amount. First, from Definition 3.4.22 we see that once an edge gets
balanced it will never become unbalanced again, as weights are monotonic.
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Furthermore, we see that such an operation can only occur when the largest of the two paired
weights is at least 𝛿‖w‖1 ≥ 2𝑚𝛿, since we maintain w ≥ 1. Under the invariant that throughout the
entire algorithm ‖w‖1 ≤ 3𝑚, we therefore see that this can only happen at most (3𝑚)/(2𝑚𝛿) = 3/(2𝛿)
times. Invoking Lemma 3.4.23 we therefore get that the total weight change caused by these operations
is at most

3

2𝛿
· 96 · 𝛿4 · (3𝑚)2 = 1296 · 𝛿3𝑚2 .

In addition, we incur weight increases due to the progress steps; per Lemma 3.6.7, within each of
the 𝑇 iterations, ‖w‖1 increases by at most

𝑝 · 1012 · 𝛿4(3𝑚)2+1/𝑝 · log2(3𝑚) .

Therefore the total weight increase over 𝑇 iterations is at most

̃︀𝑂 (︁(︁𝑝𝛿3𝑚2+1/𝑝
)︁
log(𝑚𝜇𝜀−1)

)︁
which is 𝑜(𝑚) as long as

𝛿 ≤ 1/
(︁
𝑝1/3𝑚(1+1/𝑝)/3+𝑜(1)

)︁
= 1/𝑚1/3+𝑜(1) .

Thus this specific choice of 𝛿 insures that the invariant ‖w‖1 ≤ 3𝑚 was satisfied throughout the
entire run of the algorithm.

Finally, we bound the total perturbation in demand suffered by the flow we maintain. Each of
the ̃︀𝑂(𝛿−1) iterations perturbs the demand by at most 3/2 in ℓ1 norm, and the weight balancing
operations may perturb the demand by an additional 3

2𝛿 overall. Summing up we obtain the desired
claim.

This enables us to obtain a running time of 𝑚4/3+𝑜(1) for minimum cost flow in unit-capacity
graphs. The proof is identical to that of Theorem 3.4.26, we use scaling to obtain a logarithmic
dependence in 𝑊 , and resort to the fixing procedure from Section 3.5 to repair the demand
perturbation. The time required to implement each iteration of the interior point method is
dominated by the time required by one call to the solver in Theorem 9.1.7, which is 𝑚1+𝑜(1) by our
choice of parameters.

Theorem 3.6.9. Given a directed graph 𝐺(𝑉,𝐸, c) with 𝑚 arcs and 𝑛 vertices, such that ‖c‖∞ ≤𝑊 ,
and a demand vector d ∈ Z𝑛, in 𝑚4/3+𝑜(1) log𝑊 time we can obtain a flow f which routes d in 𝐺
while satisfying the capacity constraints 0 ≤ f ≤ 1 and minimizing the cost

∑︀
𝑒∈𝐸 𝑐𝑒𝑓𝑒, or certifies

that no such flow exists.
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Chapter 4

Faster Sparse Minimum Cost Flow by
Electrical Flow Localization

4.1 Introduction

In the last decade, continuous optimization has proved to be an invaluable tool for designing graph
algorithms, often leading to significant improvements over the best known combinatorial algorithms.
This has been particularly true in the context of flow problems—arguably, some of the most prominent
graph problems [44, 39, 105, 118, 152, 97, 106, 136, 117, 42, 151, 150, 153, 115, 114, 10, 26, 25].
Indeed, these developments have brought a host of remarkable improvements in a variety of regimes,
such as when seeking only approximate solutions, or when the underlying graph is dense. However,
most of these improvements did not fully address the challenge of seeking exact solutions in sparse
graphs. Fortunately, the improvements for that regime eventually emerged [118, 117, 42, 115, 114,
10]. They still suffered though from an important shortcoming: they all had a polynomial running
time dependency in the graph’s capacities, and hence—in contrast to the classical combinatorial
algorithms—they did not yield efficient algorithms in the presence of arbitrary capacities. Recently,
Gao, Liu and Peng [73] have finally changed this state of affairs by providing the first exact maximum
flow algorithm to break the ̃︀𝑂 (︁𝑚3/2 log𝑂(1) 𝑈

)︁
barrier for sparse graphs with general capacities

(bounded by 𝑈). Their approach, however, crucially relies on a preconditioning technique that is
specific to the maximum flow problem and, in particular, having an 𝑠-𝑡 demand—rather than a
general one. As a result, the corresponding improvement held only for that particular problem.

In this chapter, we demonstrate how to circumvent these limitations and provide the first
algorithm that breaks the ̃︀𝑂 (︁𝑚3/2 log𝑂(1)(𝑈 +𝑊 )

)︁
barrier for the minimum cost flow problem in

sparse graphs with general demands, capacities (bounded by 𝑈), and costs (bounded by 𝑊 ). This
algorithm runs in time ̃︀𝑂 (︀𝑚3/2−1/762 log(𝑈 +𝑊 )

)︀
.

4.1.1 Previous work

In 2013, Mądry [118] presented the first running time improvement to the maximum flow problem
since the ̃︀𝑂 (𝑚

√
𝑛 log𝑈) algorithm of [75] in the regime of sparse graphs with small capacities.

To this end, he presented an algorithm that runs in time ̃︀𝑂 (︀𝑚10/7poly(𝑈)
)︀
, where 𝑈 is a bound

on edge capacities, breaking past the ̃︀𝑂 (︀𝑚3/2
)︀

running time barrier that has for decades resisted
improvement attempts. The main idea in that work was to use an interior point method with an
improved number of iterations guarantee that was delivered via use of an adaptive re-weighting of
the central path and careful perturbations of the problem instance. Building on this framework,
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a series of subsequent works [117, 115, 114] has brought the runtime of sparse max flow down tõ︀𝑂 (︀𝑚4/3poly(𝑈)
)︀
. (With the most recent of these works crucially relying on nearly-linear time ℓ𝑝

flows [103].) In parallel [42, 10], the running time of the more general minimum cost flow problem
was reduced to ̃︀𝑂 (︀𝑚4/3poly(𝑈) log𝑊

)︀
, where 𝑊 is a bound on edge costs.

However, even though these algorithms offer a significant improvement when 𝑈 is relatively
small, the question of whether there exists an algorithm faster than ̃︀𝑂 (︁𝑚3/2 log𝑂(1) 𝑈

)︁
for sparse

graphs with general capacities remained open. In fact, a polynomial dependence on capacities or
costs seems inherent in the central path re-weighting technique used in all the aforementioned works.
Recently, [73] finally made progress on this question by developing an algorithm for the maximum
flow problem that runs in time ̃︀𝑂 (︀𝑚3/2−1/328 log𝑈

)︀
. The source of improvement here was different

from previous works, in the sense that it was not based on decreasing the number of iterations of the
interior point method. Instead, it was based on devising a data structure to solve the dynamically
changing Laplacian system required by the interior point method in sublinear time per iteration.

The new approach put forth by [73], despite being quite different to the prior ones, still
leaned on the preconditioning approach of [117], as well as on other properties that are specific
to the maximum flow problem. For this reason, this improvement did not extend to the min-
imum cost flow problem with general capacities, for which the fastest known runtime was still̃︀𝑂 (︀𝑚 log(𝑈 +𝑊 ) + 𝑛1.5 log2(𝑈 +𝑊 )

)︀
[25] and ̃︀𝑂(𝑚3/2 log𝑂(1)(𝑈 +𝑊 )) [44] in the sparse regime.

4.1.2 Our result

In this work, we give an algorithm for the minimum cost flow problem with a running time of̃︀𝑂 (︀𝑚3/2−1/762 log(𝑈 +𝑊 )
)︀
. This is the first improvement for sparse graphs with general capacities

over [44], which runs in time ̃︀𝑂 (︁𝑚3/2 log𝑂(1)(𝑈 +𝑊 )
)︁
. Specifically, we prove that:

Theorem 4.1.1. Given a graph 𝐺(𝑉,𝐸) with edge costs c ∈ Z𝑚[−𝑊,𝑊 ], a demand d ∈ R𝑛,
and capacities u ∈ Z𝑚(0,𝑈 ], there exists an algorithm that with high probability runs in timẽ︀𝑂 (︀𝑚3/2−1/762 log(𝑈 +𝑊 )

)︀
and returns a flow f ∈ [0,u ] in 𝐺 such that f routes the demand

d and the cost ⟨c, f ⟩ is minimized.

4.1.3 High level overview of our approach

As we build on the approach presented in [73], we first briefly overview some of the key ideas
introduced there that will also be relevant for our discussion. The maximum flow interior point
method by [117] works by, repeatedly over ̃︀𝑂 (

√
𝑚) steps, taking an electrical flow step that is a

multiple of ̃︀f = R−1BL+B⊤1𝑠𝑡 ,

where L = B⊤R−1B is a Laplacian matrix and r are resistances that change per step. However, ̃︀f
has 𝑚 entries and takes ̃︀𝑂 (𝑚) to compute, which gives the standard ̃︀𝑂 (︀𝑚3/2

)︀
bound. To go beyond

this, [73] show that it suffices to compute ̃︀f for only a sublinear number of high-congestion entries
of ̃︀f , where congestion is defined as 𝜌 =

√
r̃︀f . By known linear sketching results, these edges can

be detected by computing the inner product ⟨q ,𝜌⟩ for a small number of randomly chosen vectors
q ∈ R𝑚. Crucially, given a vertex subset 𝐶 ⊆ 𝑉 of sublinear size that contains 𝑠 and 𝑡, this inner
product can be equivalently written as the following sublinear-sized inner product

⟨q ,𝜌⟩ =
⟨
𝜋𝐶
(︂
B⊤ q√

r

)︂
, 𝑆𝐶+d

⟩
, (4.1)
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where 𝑆𝐶 := 𝑆𝐶(𝐺,𝐶) is the Schur complement of 𝐺 onto 𝐶, d is equal to B⊤1𝑠𝑡, and 𝜋𝐶 (·)
is a demand projection onto 𝐶. Therefore, the problem is reduced to maintaining two quantities:
𝜋𝐶
(︁
B⊤ q√

r

)︁
and (𝑆𝐶(𝐺,𝐶))+d in sublinear time per operation. The latter is computed by using

the dynamic Schur complement data structure of [51], and the former can be maintained by a careful
use of random walks.

We now describe our approach. Instead of using the interior point method formulation of [117]
which only applies to the maximum flow problem, we use the one by [10] for the, more general,
minimum cost flow problem.

There are now several obstacles to making this approach work by maintaining the quantity ⟨q ,𝜌⟩:

Preconditioning A significant difference between [117] and [10] is that while the former is able
to guarantee that the magnitude of the electrical potentials computed in each step is inversely
proportional to the duality gap, meaning that a large duality gap implies potential embeddings of
low stretch, no such preconditioning method is known for minimum cost flow. In fact, [10] used
demand perturbations to show that a weaker bound on the potentials can be achieved, which was
still sufficient for their purposes. Unfortunately, this bound is not strong enough to be used in the
analysis of [73].

In order to alleviate this issue, we completely remove preconditioning from the picture by only
requiring a bound on the energy of the electrical potentials (instead of their magnitude). In particular,
given an approximate demand projection ̃︀𝜋𝐶 (︁B⊤ q√

r

)︁
, identity (4.1) is used to detect congested

edges. In [73], there is a uniform upper bound on the entries of the potential embedding 𝜑 = 𝑆𝐶+d
because of preconditioning, thus the error in (4.1) can be bounded bỹ⃦⃦⃦⃦︀𝜋𝐶 (︂B⊤ q√

r

)︂
− 𝜋𝐶

(︂
B⊤ q√

r

)︂⃦⃦⃦⃦
1

‖𝜑‖∞ .

As we do not have a good bound on ‖𝜑‖∞, we instead use an alternative upper bound on the error:√︃
ℰr
(︂̃︀𝜋𝐶 (︂B⊤ q√

r

)︂
− 𝜋𝐶

(︂
B⊤ q√

r

)︂)︂√︀
𝐸r (𝜑) ,

where ℰr (·) gives the energy to route a demand with resistances r , and 𝐸r (·) gives the energy of
a potential embedding with resistances r . As the standard interior point method step satisfies
𝐸r (𝜑) ≤ 1, all our efforts focus on ensuring that√︃

ℰr
(︂̃︀𝜋𝐶 (︂B⊤ q√

r

)︂
− 𝜋𝐶

(︂
B⊤ q√

r

)︂)︂
≤ 𝜀 (4.2)

for some error parameter 𝜀. One issue is the fact that the energy depends on the current resistances,
therefore even if at some point the error of the demand projection is low, after a few iterations it
might increase because of resistance changes. We deal with this issue by taking the stability of
resistances along the central path into account. This allows us to upper bound how much this error
increases after a number of iterations. The resistance stability lemma is a generalization of the one
used in [73].

Unfortunately, even though (4.2) seems like the right type of guarantee, it is unclear how to
ensure that it is always true. Specifically, it involves efficiently computing the hitting probabilities
from some vertex 𝑣 to 𝐶 in an appropriate norm, which ends up being non-trivial. Instead, we show
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that the following weaker error bound can be ensured with high probability:⃒⃒⃒⃒⟨̃︀𝜋𝐶 (︂B⊤ q√
r

)︂
− 𝜋𝐶

(︂
B⊤ q√

r

)︂
,𝜑

⟩⃒⃒⃒⃒
≤ 𝜀 , (4.3)

where 𝜑 is a fixed potential vector with 𝐸r (𝜑) ≤ 1. Interestingly, this guarantee is still sufficient for
our purposes.

Costs and general demand There is a fundamental obstacle to using the approach of [73] once
edge costs are introduced. In particular, for the maximum flow problem, the demand pushed by
the electrical flow in each iteration is an 𝑠-𝑡 demand, so—up to scaling—it is always constant. In
minimum cost flow on the other hand, the augmenting flow is a multiple of c−R−1BL+B⊤c. Here
it is not possible to locate a sublinear number of congested edges just by looking at the electrical
flow term R−1BL+B⊤c, as there might be significant cancellations with c. We instead use the

following equivalent form:
1
s+

− 1
s−

r −R−1BL+B⊤
1
s+

− 1
s−

r , which allows us to ignore the first term
because it is small and concentrate on the electrical flow term. One issue that arises is the fact
that the demand vector B⊤

1
s+

− 1
s−

r now depends on slacks, and as a result changes throughout the
interior point method. This issue can be handled relatively easily.

A more significant issue concerns the vertex sparsifier. In fact, the vertex sparsifier framework
around which [73] is based only accepts demands that are supported on the vertex set 𝐶 of the
sparsifier. As |𝐶| is sublinear in 𝑛, this only captures demands with sublinear support, one such

example being max flow with support 2. However, our demand vector B⊤
1
s+

− 1
s−

r in general will be
supported on 𝑛 vertices. Even though it might seem impossible to get around this issue, we show
that the special structure of 𝐶 allows us to push the demand to a small number of vertices. More
specifically, we show that if one projects all of the demand onto 𝐶, the flow induced by this new
demand will not differ much from the one with the original demand. Concretely, given a Laplacian
system L𝜑 = d , we decompose it into two systems L𝜑(1) = 𝜋𝐶(d) and L𝜑(2) = d − 𝜋𝐶(d), where
𝜋𝐶(d) is the projection of d onto 𝐶. Intuitively, the latter system computes the electrical flow to
push all demands to 𝐶, and the former to serve this 𝐶-supported demand. We show that, as long as
𝐶 is a congestion reduction subset (as it is also the case in [73]), 𝜑(2) has negligible contribution in
the electrical flow, thus it can be ignored. More specifically, in Section 4.4.1 we prove the following
lemma:

Lemma 4.4.3. Consider a graph 𝐺(𝑉,𝐸) with resistances r and Laplacian L, a 𝛽-congestion
reduction subset 𝐶, and a demand d = 𝛿B⊤ q√

r
for some 𝛿 > 0 and q ∈ [−1, 1]𝑚. Then, the potential

embedding defined as

𝜑 = L+
(︀
d − 𝜋𝐶 (d)

)︀
has congestion 𝛿 · ̃︀𝑂 (︀1/𝛽2)︀, i.e.

⃦⃦⃦
B𝜑√
r

⃦⃦⃦
∞
≤ 𝛿 · ̃︀𝑂 (︀1/𝛽2)︀.

Now, for computing 𝜑(1), we need to get an approximate estimate of 𝜋𝐶(d). Even though
the most natural approach would be to try to maintain 𝜋𝐶(d) under vertex insertions to 𝐶, this
approach has issues related to the fact that our error guarantee is based on a fixed potential vector.
In particular, if we used an estimate of 𝜋𝐶(d), then the potential vector in (4.3) would depend on
the randomness of this estimate, and as a result the high probability guarantee would not work.

Instead, we show that it is not even neccessary to maintain 𝜋𝐶(d) very accurately. In fact, it
suffices to exactly compute it only every few iterations of the algorithm, and use this estimate for the
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calculation. What allows us to do this is the following lemma, which bounds the change of 𝜋𝐶(d)
measured in energy, after a sequence of vertex insertions and resistance changes.

Lemma 4.4.12. Consider a graph 𝐺(𝑉,𝐸) with resistances r0, q0 ∈ [−1, 1]𝑚, a 𝛽-congestion
reduction subset 𝐶0, and a fixed sequence of updates, where the 𝑖-th update 𝑖 ∈ {0, 𝑇 − 1} is of the
following form:

• AddTerminal(𝑣𝑖): Set 𝐶𝑖+1 = 𝐶𝑖 ∪ {𝑣𝑖} for some 𝑣𝑖 ∈ 𝑉 ∖𝐶𝑖, 𝑞𝑖+1
𝑒 = 𝑞𝑖𝑒, 𝑟

𝑖+1
𝑒 = 𝑟𝑖𝑒

• Update(𝑒𝑖, q , r): Set 𝐶𝑖+1 = 𝐶𝑖, 𝑞𝑖+1
𝑒 = 𝑞𝑒 𝑟

𝑖+1
𝑒 = 𝑟𝑒, where 𝑒𝑖 ∈ 𝐸(𝐶𝑖)

Then, with high probability,√︃
ℰr𝑇

(︂
𝜋𝐶0,r0

(︂
B⊤ q0

𝑆√
r0

)︂
− 𝜋𝐶𝑇 ,r𝑇

(︂
B⊤ q𝑇𝑆√

r𝑇

)︂)︂
≤ ̃︀𝑂(︃ max

𝑖∈{0,...,𝑇−1}

⃦⃦⃦⃦
r𝑇

r 𝑖

⃦⃦⃦⃦1/2
∞

𝛽−2

)︃
· 𝑇 .

If we call this demand projection estimate 𝜋𝑜𝑙𝑑, the quantity that we would like to maintain (4.1)
now becomes

⟨q ,𝜌⟩ ≈
⟨
𝜋𝐶
(︂
B⊤ q√

r

)︂
, 𝑆𝐶+𝜋𝑜𝑙𝑑

⟩
.

Therefore all that’s left is to efficiently maintain approximations to demand projections of the form
𝜋𝐶
(︁
B⊤ q√

r

)︁
.

Bounding demand projections. An important component for showing that demand projections
can be updated efficiently is bounding the magnitude of an entry 𝜋𝐶∪{𝑣}

𝑣 (B⊤ 1𝑒√
𝑟𝑒
) of the projection,

for some fixed edge 𝑒 = (𝑢,𝑤). This is apparent in the following identity which shows how a demand
projection changes after inserting a vertex:

𝜋𝐶∪{𝑣} (d) = 𝜋𝐶 (d) + 𝜋𝐶∪{𝑣}
𝑣 (d) ·

(︀
1𝑣 − 𝜋𝐶(1𝑣)

)︀
. (4.4)

In [73] this projection entry is upper bounded by (𝑝
𝐶∪{𝑣}
𝑣 (𝑢) + 𝑝

𝐶∪{𝑣}
𝑣 (𝑤)) · 1√

𝑟𝑒
, where 𝑝𝐶∪{𝑣}

𝑣 (𝑢) is
the probability that a random walk starting at 𝑢 hits 𝑣 before 𝐶. This bound can be very bad as 𝑟𝑒
can be arbitrarily small, although in the particular case of max flow it is possible to show that such
low-resistance edges cannot get congested and thus are not of interest.

In order to overcome this issue, we provide a different bound, which in contrast works best when
𝑟𝑒 is small.

Lemma 4.4.6. Consider a graph 𝐺(𝑉,𝐸) with resistances r and a subset of vertices 𝐶 ⊆ 𝑉 . For
any vertex 𝑣 ∈ 𝑉 ∖𝐶 we have that⃒⃒⃒⃒

𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ 1𝑒√

r

)︂⃒⃒⃒⃒
≤ (𝑝𝐶∪{𝑣}

𝑣 (𝑢) + 𝑝𝐶∪{𝑣}
𝑣 (𝑤)) ·

√
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑒)
.

Here 𝑅𝑒𝑓𝑓 (𝑣, 𝑒) is the effective resistance between 𝑣 and 𝑒. In fact, together with the other upper
bound mentioned above, this implies that⃒⃒⃒⃒

𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ 1𝑒√

r

)︂⃒⃒⃒⃒
≤ (𝑝𝐶∪{𝑣}

𝑣 (𝑢) + 𝑝𝐶∪{𝑣}
𝑣 (𝑤)) · 1√︀

𝑅𝑒𝑓𝑓 (𝑣, 𝑒)
,
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which no longer depends on the value of the resistance 𝑟𝑒.
As we will see, it suffices to approximate 𝜋𝐶∪{𝑣}

𝑣

(︁
B⊤ 1𝑒√

r

)︁
up to additive accuracy roughlŷ︀𝜀 · (𝑝𝐶∪{𝑣}

𝑣 (𝑢) + 𝑝
𝐶∪{𝑣}
𝑣 (𝑤))/

√︀
𝑅𝑒𝑓𝑓 (𝐶, 𝑣) for some error parameter ̂︀𝜀 > 0. Thus, Lemma 4.4.6

immediately implies that for any edge 𝑒 such that 𝑅𝑒𝑓𝑓 (𝑣, 𝑒)g𝑅𝑒𝑓𝑓 (𝐶, 𝑣), this term is small enough
to begin with, and thus can be ignored.

Important edges. In order to ensure that the demand projection can be updated efficiently, we
focus only on the demand coming from a special set of edges, which we call important. These are
the edges that are close (in effective resistance metric) to 𝐶 relative to their own resistance 𝑟𝑒.
In fact, the farther an edge is from 𝐶 in this sense, the smaller its worst-case congestion, and so
non-important edges do not influence the set of congested edges that we are looking for. At a high
level, this is because parts of the graph that are very far in the potential embedding have minimal
interactions with each other.

Definition 4.1.2 (Important edges). An edge 𝑒 ∈ 𝐸 is called 𝜀-important (or just important) if
𝑅𝑒𝑓𝑓 (𝐶, 𝑒) ≤ 𝑟𝑒/𝜀2.

Based on the above discussion, we seek to find congested edges only among important edges.

Lemma 4.4.9 (Localization lemma). Let 𝜑* be any solution of

L𝜑* = 𝛿 · 𝜋𝐶
(︂
B⊤ p√

r

)︂
,

where r are any resistances, p ∈ [−1, 1]𝑚, and 𝐶 ⊆ 𝑉 . Then, for any 𝑒 ∈ 𝐸 that is not 𝜀-important
we have

⃒⃒⃒
B𝜑*
√
r

⃒⃒⃒
𝑒
≤ 12𝜀.

One issue is that the set of important edges changes whenever 𝐶 changes. However, we show
that, because of the stability of resistances along the central path, the set of important edges only
needs to be updated once every few iterations.

4.2 Preliminaries

Given 𝑥, 𝑦 ∈ R and 𝛼 ∈ R≥1, we say that 𝑥 and 𝑦 𝛼-approximate each other and write 𝑥 ≈𝛼 𝑦 if
𝛼−1 ≤ 𝑥/𝑦 ≤ 𝛼.

Definition 4.2.1 (Schur complement). Given a graph 𝐺(𝑉,𝐸) with Laplacian L ∈ R𝑛×𝑛 and a
vertex subset 𝐶 ⊆ 𝑉 as well as 𝐹 = 𝑉 ∖𝐶, 𝑆𝐶(𝐺,𝐶) := L𝐶𝐶 − L𝐶𝐹L

−1
𝐹𝐹L𝐹𝐶 (or just 𝑆𝐶) is called

the Schur complement of 𝐺 onto 𝐶.

Fact 4.2.2 (Cholesky factorization). Given a matrix L ∈ R𝑛×𝑛, a subset 𝐶 ⊆ [𝑛], and 𝐹 = [𝑛]∖𝐶,
we have

L+ =

(︂
I −L−1

𝐹𝐹L𝐹𝐶
0 I

)︂(︂
L−1
𝐹𝐹 0
0 𝑆𝐶(L, 𝐶)+

)︂(︂
I 0

−L𝐶𝐹L−1
𝐹𝐹 I

)︂
.

4.2.1 Random walks

Definition 4.2.3 (Hitting probabilities). Consider a graph 𝐺(𝑉,𝐸) with resistances r . For any
𝑢, 𝑣 ∈ 𝑉 , 𝐶 ⊆ 𝑉 , we denote by 𝑝𝐶,r𝑣 (𝑢) the probability that for random walk that starts from 𝑢
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and uses edges with probability proportional to 1
r , the first vertex of 𝐶 to be visited is 𝑣. When not

ambiguous, we will use the notation 𝑝𝐶𝑣 (𝑢).

Definition 4.2.4 (Demand projection). Consider a graph 𝐺(𝑉,𝐸) and a demand vector d . For
any 𝑣 ∈ 𝑉 , 𝐶 ⊆ 𝑉 , we define 𝜋𝐶,r𝑣 (d) =

∑︀
𝑢∈𝑉

𝑑𝑢𝑝
𝐶,r
𝑣 (𝑢) and call the resulting vector 𝜋𝐶,r (d) ∈ R𝑛

the demand projection of d onto 𝐶. When not ambiguous, we will use the notation 𝜋𝐶(d).

For convenience, when we write 𝜋𝐶(d) we might also refer to the restriction of this vector to 𝐶.
This will be clear from the context, and, as 𝜋𝐶𝑣 (d) = 0 for any 𝑣 /∈ 𝐶, no ambiguity is introduced.

Fact 4.2.5 ([73]). Given a graph 𝐺(𝑉,𝐸) with Laplacian L, a vertex subset 𝐶 ⊆ 𝑉 , and d ∈ R𝑛,
we have

𝜋𝐶(d) = d𝐶 − L𝐶𝐹L
−1
𝐹𝐹d𝐹 .

Additionally, [︀
L+d

]︀
𝐶
= 𝑆𝐶+𝜋𝐶(d) ,

where 𝑆𝐶 is the Schur complement of 𝐺 onto 𝐶.

An important property of the demand projection is that the energy required to route it is
upper bounded by the energy required to route the original demand. The proof can be found in
Section 9.2.2.

Lemma 4.2.6. Let d be a demand vector, let r be resistances, and let 𝐶 ⊆ 𝑉 be a subset of vertices.
Then

ℰr
(︀
𝜋𝐶(d)

)︀
≤ ℰr (d) .

The following lemma relates the effective resistance between a vertex and a vertex set, to the
energy to route a particular demand, based on a demand projection.

Lemma 4.2.7 (Effective resistance and hitting probabilities). Given a graph 𝐺(𝑉,𝐸) with resistances
r , any vertex set 𝐴 ⊆ 𝑉 and vertex 𝑢 ∈ 𝑉 ∖𝐴, we have 𝑅𝑒𝑓𝑓 (𝑢,𝐴) = ℰr (1𝑢 − 𝜋𝐴(1𝑢)).

Proof. Let L be the Laplacian of 𝐺 with resistances r and 𝐹 = 𝑉 ∖𝐴. We first prove that

ℰr (1𝑢 − 𝜋𝐴(1𝑢)) = 1⊤𝑢L
−1
𝐹𝐹1𝑢 .

This is because

ℰr (1𝑢 − 𝜋𝐴(1𝑢))
= ⟨1𝑢 − 𝜋𝐴(1𝑢),L+(1𝑢 − 𝜋𝐴(1𝑢))⟩

=

⟨
1𝑢 −

(︂
0 0

−L𝐴𝐹L−1
𝐹𝐹 I

)︂
1𝑢,L

+

(︂
1𝑢 −

(︂
0 0

−L𝐴𝐹L−1
𝐹𝐹 I

)︂
1𝑢

)︂⟩
=

⟨(︂
I 0

−L𝐴𝐹L−1
𝐹𝐹 I

)︂(︂
1𝑢 +

(︂
0

L𝐴𝐹L
−1
𝐹𝐹1𝑢

)︂)︂
,(︂

L−1
𝐹𝐹 0
0 𝑆𝐶(L, 𝐴)+

)︂(︂
I 0

−L𝐴𝐹L−1
𝐹𝐹 I

)︂(︂
1𝑢 +

(︂
0

L𝐴𝐹L
−1
𝐹𝐹1𝑢

)︂)︂⟩
=

⟨
1𝑢,

(︂
L−1
𝐹𝐹 0
0 𝑆𝐶(L, 𝐴)+

)︂
1𝑢

⟩
= ⟨1𝑢,L−1

𝐹𝐹1𝑢⟩ .
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On the other hand, note that 𝑅𝑒𝑓𝑓 (𝑢,𝐴) = ̂︀𝑅𝑒𝑓𝑓 (𝑢, ̂︀a), where ̂︀𝑅 are the effective resistances in a
graph ̂︀𝐺 that results after contracting 𝐴 to a new vertex ̂︀a. It is easy to see that the Laplacian of
this new graph is

̂︀L =

(︂
L𝐹𝐹 L𝐹𝐴1

1⊤L𝐴𝐹 1⊤L𝐹𝐴1

)︂
.

We look at the system ̂︀L(︂𝑥
𝑎

)︂
= 1𝑢 − 1̂︀a , where 𝑎 is a scalar. The solution is given by

x = L−1
𝐹𝐹 (1𝑢 − 𝑎 · L𝐹𝐴1) .

However, as 1 ∈ ker(̂︀L) by the fact that it is a Laplacian, we can assume that 𝑎 = 0 by shifting.
Therefore x = L−1

𝐹𝐹1𝑢, and so we can conclude that

𝑅𝑒𝑓𝑓 (𝑢,𝐴) = ⟨1𝑢 − 1̂︀a , ̂︀L+
(1𝑢 − 1̂︀a)⟩

= ⟨1𝑢,L−1
𝐹𝐹1𝑢⟩ .

So we have proved that 𝑅𝑒𝑓𝑓 (𝑢,𝐴) = ℰr (1𝑢 − 𝜋𝐴(1𝑢)) and we are done.

Finally, the following lemma relates the effective resistance between a vertex and a vertex set, to
the effective resistance between vertices.

Lemma 4.2.8. Given a graph 𝐺(𝑉,𝐸) with resistances r , any vertex set 𝐴 ⊆ 𝑉 and vertex 𝑢 ∈ 𝑉 ∖𝐴,
we have

1

|𝐴|
·min
𝑣∈𝐴

𝑅𝑒𝑓𝑓 (𝑢, 𝑣) ≤ 𝑅𝑒𝑓𝑓 (𝑢,𝐴) ≤ min
𝑣∈𝐴

𝑅𝑒𝑓𝑓 (𝑢, 𝑣) .

Proof. Let L be the Laplacian of 𝐺 with resistances r , and note that 𝑅𝑒𝑓𝑓 (𝑢, 𝑣) =
⃦⃦⃦
L+/2(1𝑢 − 1𝑣)

⃦⃦⃦2
2

and, by Lemma 4.2.7, 𝑅𝑒𝑓𝑓 (𝑢,𝐴) =
⃦⃦⃦
L+/2(1𝑢 − 𝜋𝐴(1𝑢))

⃦⃦⃦2
2
. Expanding the latter, we have

𝑅𝑒𝑓𝑓 (𝑢,𝐴) =

⃦⃦⃦⃦
⃦∑︁
𝑣∈𝐴

𝜋𝐴𝑣 (1𝑢) · L+/2(1𝑢 − 1𝑣)

⃦⃦⃦⃦
⃦
2

2

=
∑︁
𝑣∈𝐴

(︀
𝜋𝐴𝑣 (1𝑢)

)︀2 ⃦⃦⃦
L+/2(1𝑢 − 1𝑣)

⃦⃦⃦2
2
+
∑︁
𝑣∈𝐴

∑︁
𝑣′∈𝐴
𝑣′ ̸=𝑣

𝜋𝐴𝑣 (1𝑢)𝜋
𝐴
𝑣′(1𝑢)⟨1𝑢 − 1𝑣′ ,L

+(1𝑢 − 1𝑣)⟩ .

Now, note that 𝜋𝐴𝑣 (1𝑢), 𝜋𝐴𝑣′(1𝑢) ≥ 0. Additionally, let 𝜑 = L+(1𝑢 − 1𝑣) be the potential embedding
that induces a 1-unit electrical flow from 𝑣 to 𝑢. As the potential embedding stretches between 𝜑𝑣
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and 𝜑𝑢, we have that 𝜑𝑣′ ≤ 𝜑𝑢, so ⟨1𝑢 − 1𝑣′ ,L
+(1𝑢 − 1𝑣)⟩ = 𝜑𝑢 − 𝜑𝑣′ ≥ 0. Therefore,

𝑅𝑒𝑓𝑓 (𝑢,𝐴) ≥
∑︁
𝑣∈𝐴

(︀
𝜋𝐴𝑣 (1𝑢)

)︀2 ⃦⃦⃦
L+/2(1𝑢 − 1𝑣)

⃦⃦⃦2
2

≥ 1

|𝐴|
∑︁
𝑣∈𝐴

𝜋𝐴𝑣 (1𝑢) ·𝑅𝑒𝑓𝑓 (𝑢, 𝑣)

≥ 1

|𝐴|
min
𝑣∈𝐴

𝑅𝑒𝑓𝑓 (𝑢, 𝑣) ,

where we used the Cauchy-Schwarz inequality and the fact that
∑︀
𝑣∈𝐴

𝜋𝐴𝑣 (1𝑢) = 1.

4.3 Interior Point Method with Dynamic Data Structures

The goal of this section is to show that, given a data structure for approximating electrical flows in
sublinear time, we can execute the min cost flow interior point method with total runtime faster
than ̃︀𝑂 (︀𝑚3/2

)︀
.

4.3.1 LP formulation and background

We present the interior point method setup that we will use, which is from [10]. Our goal is to solve
the following minimum cost flow linear program:

min ⟨c,Cx ⟩
0 ≤ f 0 +Cx ≤ u ,

where f 0 is a flow with B⊤f 0 = d and C is an 𝑚× (𝑚− 𝑛+ 1) matrix whose image is the set of
circulations in 𝐺.

In order to use an interior point method, the following log barrier objective is defined:

min
x
𝐹𝜇(x ) =

⟨
c

𝜇
,Cx

⟩
−
∑︁
𝑒∈𝐸

(︀
log
(︀
f 0 +Cx

)︀
𝑒
+ log

(︀
u − (f 0 +Cx )

)︀
𝑒

)︀
. (4.5)

For any parameter 𝜇 > 0, the optimality condition of (4.5) is called the centrality condition and is
given by

C⊤
(︂
c

𝜇
+

1

s+
− 1

s−

)︂
= 0 , (4.6)

where f = f 0 + Cx , and s+ = u − f , s− = f are called the positive and negative slacks of f
respectively.

This leads us to the following definitions.

Definition 4.3.1 (𝜇-central flow). Given a minimum cost flow instance with costs c, demands d
and capacities u , as well as a parameter 𝜇 > 0, we will say that a flow f (and its corresponding
slacks s and resistances r) is 𝜇-central if B⊤f = d , s > 0, and it satisfies the centrality condition
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(4.6), i.e.

C⊤
(︂
c

𝜇
+

1

s+
− 1

s−

)︂
= 0 .

Additionally, we will denote such flow by f (𝜇) (and its corresponding slacks and resistances by s(𝜇)
and r(𝜇), respectively).

Definition 4.3.2 ((𝜇, 𝛼)-central flow). Given parameters 𝜇 > 0 and 𝛼 ≥ 1, we will say that a flow
f with resistances r > 0 is (𝜇, 𝛼)-central if r ≈𝛼 r(𝜇). We will also call its corresponding slacks s
and resistances r (𝜇, 𝛼)-central.

Given a 𝜇-central flow f and some step size 𝛿 > 0, the standard (Newton) step to obtain an
approximately 𝜇/(1 + 𝛿)-central flow f ′ = f + ̃︀f is given by

̃︀f =− 𝛿

𝜇

c

r
+
𝛿

𝜇
R−1BL+B⊤ c

r

= 𝛿
1
s+
− 1

s−

r
− 𝛿R−1BL+B⊤

1
s+
− 1

s−

r

= 𝛿 · 𝑔(s)− 𝛿R−1BL+B⊤𝑔(s)

where r = 1
(s+)2

+ 1
(s−)2

and we have denoted 𝑔(s) =
1
s+

− 1
s−

r .

Fact 4.3.3. Using known scaling arguments, can assume that costs and capacities are bounded by
poly(𝑚), while only incurring an extra logarithmic dependence in the largest network parameter [71].

We also use the fact that the resistances in the interior point method are never too large, which
is proved in Appendix 9.2.2.

Fact 4.3.4. For any 𝜇 ∈ (1/poly(𝑚), poly(𝑚)), we have ‖r(𝜇)‖∞ ≤ 𝑚
̃︀𝑂(log𝑚).

4.3.2 Making progress with approximate electrical flows

The following lemma shows that we can make 𝑘 steps of the interior point method by computing
𝑂(𝑘4) (1 +𝑂(𝑘−6))-approximate electrical flows. The proof is essentially the same as in [73], but we
provide it for completeness in Appendix 9.2.3.

Lemma 4.3.5. Let f 1, . . . , f 𝑇+1 be flows with slacks s𝑡 and resistances r 𝑡 for 𝑡 ∈ [𝑇 + 1], where
𝑇 = 𝑘

𝜀step
for some 𝑘 ≤

√
𝑚/10 and 𝜀step = 10−5𝑘−3, such that

• f 1 is (𝜇, 1 + 𝜀solve/8)-central for 𝜀solve = 10−5𝑘−3

• For all 𝑡 ∈ [𝑇 ] and 𝑒 ∈ 𝐸, 𝑓 𝑡+1
𝑒 =

⎧⎨⎩𝑓𝑒(𝜇) + 𝜀step
𝑡∑︀
𝑖=1

̃︀𝑓 𝑖𝑒 if ∃𝑖 ∈ [𝑡] : ̃︀𝑓 𝑖𝑒 ̸= 0

𝑓1𝑒 otherwise
, where

̃︀f *𝑡
= 𝛿𝑔(s𝑡)− 𝛿(R𝑡)−1B

(︁
B⊤(R𝑡)−1B

)︁+
B⊤𝑔(s𝑡)

for 𝛿 = 1√
𝑚

and ⃦⃦⃦√
r 𝑡
(︁̃︀f *𝑡

− ̃︀f 𝑡)︁⃦⃦⃦
∞
≤ 𝜀

for 𝜀 = 10−6𝑘−6.
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Then, setting 𝜀step = 𝜀solve = 10−5𝑘−3 and 𝜀 = 10−6𝑘−6 we get that s𝑇+1 ≈1.1 s
(︁
𝜇/(1 + 𝜀step𝛿)

𝑘𝜀−1
step

)︁
.

From now and for the rest of Section 4.3 we fix the values of 𝜀step, 𝜀solve, 𝜀 based on this lemma.
Using this lemma together with the following recentering procedure also used in [73], we can exactly
compute a

(︁
𝜇/(1 + 𝜀step/

√
𝑚)𝑘𝜀

−1
step

)︁
-central flow.

Lemma 4.3.6. Given a flow f with slacks s such that s ≈1.1 s(𝜇) for some 𝜇 > 0, we can compute
f (𝜇) in ̃︀𝑂 (𝑚).

4.3.3 The Locator data structure

From the previous lemma it becomes obvious that the only thing left is to maintain in sublinear
time an approximation to

𝛿𝑔(s𝑡)− 𝛿(R𝑡)−1B(B⊤(R𝑡)−1B)+B⊤𝑔(s𝑡) .

for 𝛿 = 1/
√
𝑚. This is the job of the (𝛼, 𝛽, 𝜀)-Locator data structure, which computes all the

entries of this vector that have magnitude ≥ 𝜀. We note that the guarantees of this data structure
are similar to the ones in [73], but our locator requires an extra parameter 𝛼 which is a measure of
how much resistances can deviate before a full recomputation has to be made.

Definition 4.3.7 ((𝛼, 𝛽, 𝜀)-Locator). An (𝛼, 𝛽, 𝜀)-Locator is a data structure that maintains
valid slacks s and resistances r , and can support the following operations against oblivious adversaries
with high probability:

• Initialize(f ): Set s+ = u − f , s− = f , r = 1
(s+)2

+ 1
(s−)2

.

• Update(𝑒, f ): Set 𝑠+𝑒 = 𝑢𝑒 − 𝑓𝑒, 𝑠−𝑒 = 𝑓𝑒, 𝑟𝑒 = 1
(𝑠+𝑒 )2

+ 1
(𝑠−𝑒 )2

. Works under the condition that

𝑟max
𝑒 /𝛼 ≤ 𝑟𝑒 ≤ 𝛼 · 𝑟min

𝑒 ,

where 𝑟max
𝑒 and 𝑟min

𝑒 are the maximum and minimum resistance values that edge 𝑒 has had
since the last call to BatchUpdate.

• BatchUpdate(𝑍, f ): Set 𝑠+𝑒 = 𝑢𝑒 − 𝑓𝑒, 𝑠−𝑒 = 𝑓𝑒, 𝑟𝑒 =
1

(𝑠+𝑒 )2
+ 1

(𝑠−𝑒 )2
for all 𝑒 ∈ 𝑍.

• Solve(): Let

̃︀f *
= 𝛿𝑔(s)− 𝛿R−1B(B⊤R−1B)+B⊤𝑔(s) , (4.7)

where 𝛿 = 1√
𝑚

. Returns an edge set 𝑍 of size ̃︀𝑂 (︀𝜀−2
)︀

that with high probability contains all 𝑒

such that
√
𝑟𝑒

⃒⃒⃒ ̃︀𝑓*𝑒 ⃒⃒⃒ ≥ 𝜀.
The data structure works as long as the total number of calls to Update, plus the sum of |𝑍| for all
calls to BatchUpdate is 𝑂(𝛽𝑚).

In Section 4.4 we will prove the following lemma, which constructs an (𝛼, 𝛽, 𝜀)-Locator and
outlines its runtime guarantees:
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Lemma 4.3.8 (Efficient (𝛼, 𝛽, 𝜀)-Locator). For any graph 𝐺(𝑉,𝐸) and parameters 𝛼 ≥ 1, 𝛽 ∈
(0, 1), 𝜀 ≥ ̃︀Ω (︀𝛽−2𝑚−1/2

)︀
, and ̂︀𝜀 ∈ (︁̃︀Ω (︀𝛽−2𝑚−1/2

)︀
, 𝜀
)︁
, there exists an (𝛼, 𝛽, 𝜀)-Locator for 𝐺 with

the following runtimes per operation:

• Initialize(f ): ̃︀𝑂 (︀𝑚 · (︀̂︀𝜀−4𝛽−8 + ̂︀𝜀−2𝜀−2𝛼2𝛽−4
)︀)︀

.

• Update(𝑒, f ): ̃︀𝑂 (︁𝑚 · ̂︀𝜀𝛼1/2

𝜀3
+ ̂︀𝜀−4𝜀−2𝛽−8 + ̂︀𝜀−2𝜀−4𝛼2𝛽−6

)︁
amortized.

• BatchUpdate(𝑍, f ): ̃︀𝑂 (︁𝑚 · 1
𝜀2

+ |𝑍| · 1
𝜀2𝛽2

)︁
.

• Solve(): ̃︀𝑂 (︀𝛽𝑚 · 1
𝜀2

)︀
.

Note that even though a Locator computes a set that contains all 𝜀-congested edges, it does not
return the actual flow values. The reason for that is that it only works against oblivious adversaries,
and allowing (randomized) flow values to affect future updates constitutes an adaptive adversary. As
in [73], we resolve this by sanitizing the outputs through a different data structure called Checker,
which computes the flow values and works against semi-adaptive adversaries. As the definition and
implementation of Checker is orthogonal to our contribution and also does not affect the final
runtime, we defer the discussion to Appendix 9.2.6. To simplify the presentation in this section, we
instead define the following idealized version of it, called PerfectChecker.

Definition 4.3.9 (𝜀-PerfectChecker). For any error 𝜀 > 0, an 𝜀-PerfectChecker is an
oracle that given a graph 𝐺(𝑉,𝐸), slacks s, resistances r , supports the following operations:

• Update(𝑒, f ): Set 𝑠+𝑒 = 𝑢𝑒 − 𝑓𝑒, 𝑠−𝑒 = 𝑓𝑒, 𝑟𝑒 = 1
(𝑠+𝑒 )2

+ 1
(𝑠−𝑒 )2

.

• Check(𝑒): Compute a flow value ̃︀𝑓𝑒 such that
√
𝑟𝑒

⃒⃒⃒ ̃︀𝑓𝑒 − ̃︀𝑓*𝑒 ⃒⃒⃒ ≤ 𝜀, where

̃︀f *
= 𝛿𝑔(s)− 𝛿R−1B(B⊤R−1B)+B⊤𝑔(s) ,

with 𝛿 = 1/
√
𝑚. If

√
𝑟𝑒

⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ < 𝜀/2 return 0, otherwise return ̃︀𝑓𝑒.
4.3.4 The minimum cost flow algorithm

Now, we will show how the data structure defined in Section 4.3.3 can be used to make progress
along the central path. The main lemma that analyzes the performance of the minimum cost flow
algorithm given access to an (𝛼, 𝛽, 𝜀)-Locator is Lemma 4.3.10. Also, the skeleton of the algorithm
is described in Algorithm 1.

Lemma 4.3.10 (MinCostFlow). Let ℒ be an (𝛼, 𝛽, 𝜀)− Locator, f be a 𝜇-central flow where
𝜇 = poly(𝑚), and 𝑘 ∈

[︀
𝑚1/316

]︀
, 𝛽 ≥ ̃︀Ω (︀𝑘3/𝑚1/4

)︀
, ̂︀𝑇 ∈ [︁ ̃︀𝑂 (︀𝑚1/2/𝑘

)︀]︁
be some parameters. There is

an algorithm that with high probability computes a 𝜇′-central flow f ′, where 𝜇′ ≤ 𝑚−10. Additionally,
the algorithm runs in time ̃︀𝑂 (︀𝑚3/2/𝑘

)︀
, plus

• ̃︀𝑂 (︀𝑘3𝛽−1/2
)︀

calls to ℒ.Initialize,

• ̃︀𝑂 (︀𝑚1/2𝑘3
)︀

calls to ℒ.Solve,
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Algorithm 1 Minimum Cost Flow
1: procedure MinCostFlow(𝐺, c,d ,u)
2: f̄ , 𝜇 = Initialize(𝐺, c,d ,u) ◁ Lemma 4.3.12. f̄ is 𝜇-central at all times.
3: 𝑖 = 0
4: while 𝜇 ≥ 𝑚−10 do
5: if 𝑖 is a multiple of ⌊𝜀solve

√
𝛽𝑚/𝑘⌋ then ◁ Re-initialize when |𝐶| exceeds 𝑂(𝛽𝑚).

6: ℒ = Locator.Initialize(f̄ ) with error 𝜀/2
7: if 𝑖 is a multiple of ⌊𝜀solve

√
𝛽Checker𝑚/𝑘⌋ then

8: 𝒞𝑖 = Checker.Initialize(f̄ , 𝜀, 𝛽Checker) for 𝑖 ∈ [𝑘𝜀−1
step]

9: if 𝑖 is a multiple of ⌊0.5𝛼1/4/𝑘 − 1⌋ then ◁ Update important edges when ℒ.r0 expires
10: ℒ.BatchUpdate(∅)
11: f̄ , 𝜇 = MultiStep(f̄ , 𝜇)
12: if 𝑖 is a multiple of ̂︀𝑇 then
13: 𝑍 = ∅
14: for 𝑒 ∈ 𝐸 do
15: 𝑠+𝑒 = 𝑢𝑒 − 𝑓𝑒, 𝑠−𝑒 = 𝑓𝑒
16: if 𝑠+𝑒 ̸≈𝜀solve/16 ℒ.𝑠

+
𝑒 or 𝑠−𝑒 ̸≈𝜀solve/16 ℒ.𝑠

−
𝑒 then

17: 𝒞𝑖.Update(𝑒, f̄ ) for 𝑖 ∈ [𝑘𝜀−1
step]

18: 𝑍 = 𝑍 ∪ {𝑒}
19: ℒ.BatchUpdate(𝑍, f̄ )
20: else
21: for 𝑒 ∈ 𝐸 do
22: 𝑠+𝑒 = 𝑢𝑒 − 𝑓𝑒, 𝑠−𝑒 = 𝑓𝑒
23: if 𝑠+𝑒 ̸≈𝜀solve/8 ℒ.𝑠

+
𝑒 or 𝑠−𝑒 ̸≈𝜀solve/8 ℒ.𝑠

−
𝑒 then

24: 𝒞𝑖.Update(𝑒, f̄ ) for 𝑖 ∈ [𝑘𝜀−1
step]

25: ℒ.Update(𝑒, f̄ )

26: 𝑖 = 𝑖+ 1

27: return Round(𝐺, c,d ,u , f̄ ) ◁ Lemma 4.3.13
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• ̃︀𝑂 (︁𝑚1/2
(︁
𝑘6 ̂︀𝑇 + 𝑘15

)︁)︁
calls to ℒ.Update,

• ̃︀𝑂 (︀𝑚1/2𝛼−1/4
)︀

calls to ℒ.BatchUpdate(∅), and

• ̃︀𝑂 (︁𝑚1/2𝑘−1 ̂︀𝑇−1
)︁

calls to ℒ.BatchUpdate(𝑍, f̄ ) for some 𝑍 ≠ ∅, f̄ . Additionally, the sum

of |𝑍| over all such calls is ̃︀𝑂 (︀𝑚𝑘3𝛽1/2)︀.
The proof appears in Appendix 9.2.3. Its main ingredient is the following lemma, which easily

follows from Lemma 4.3.5 and essentially shows how 𝑘 steps of the interior point method can be
performed in ̃︀𝑂 (𝑚) instead of ̃︀𝑂 (𝑚𝑘). Its proof appears in Appendix 9.2.3.

Lemma 4.3.11 (MultiStep). Let 𝑘 ∈ {1, . . . ,
√
𝑚/10}. We are given f (𝜇), an (𝛼, 𝛽, 𝜀/2)-

Locator ℒ, and an 𝜀-PerfectChecker 𝒞, such that

• ℒ.r = 𝒞.r are (𝜇, 1 + 𝜀solve/8)-central resistances, and

• ℒ.r0 are (𝜇0, 1 + 𝜀solve/8)-central resistances, where 𝜇0 ≤ 𝜇 · (1 + 𝜀step/
√
𝑚)

̂︀𝑇 and ̂︀𝑇 =
(0.5𝛼1/4 − 𝑘)𝜀−1

step. Additionally, for any resistances ̂︀r that ℒ had at any point since the last
call to ℒ.BatchUpdate, ̂︀r are (�̂�, 1.1)-central for some �̂� ∈ [𝜇, 𝜇0].

Then, there is an algorithm that with high probability computes f (𝜇′), where 𝜇′ = 𝜇/(1 +

𝜀step/
√
𝑚)𝑘𝜀

−1
step. The algorithm runs in time ̃︀𝑂 (𝑚), plus 𝑂(𝑘16) calls to ℒ.Update, 𝑂(𝑘4) calls to

ℒ.Solve, and 𝑂(𝑘16) calls to 𝒞.Update and 𝒞.Check. Additionally, ℒ.r and 𝒞 are unmodified.

Algorithm 2 MultiStep
1: procedure MultiStep(f , 𝜇) ◁ Makes equivalent progress to 𝑘 interior point method steps
2: ̂︀r = ℒ.r ◁ Save resistances to restore later
3: for 𝑖 = 1, . . . , 𝑘𝜀−1

step do
4: 𝑍 = ℒ.Solve()
5: for 𝑒 ∈ 𝑍 do ◁ 𝑍: Set of edges with sufficiently changed flow
6: ̃︀𝑓𝑒 = 𝒞𝑖.Check(𝑒)
7: if ̃︀𝑓𝑒 ̸= 0 then
8: 𝑓𝑒 = 𝑓𝑒 + 𝜀step ̃︀𝑓𝑒
9: ℒ.Update(𝑒, f )

10: 𝒞𝑗 .TemporaryUpdate(𝑒, f ) for 𝑗 ∈
[︀
𝑖+ 1, 𝑘𝜀−1

step

]︀
11: 𝜇 = 𝜇/(1 + 𝜀step/

√
𝑚)𝑘𝜀

−1
step

12: f = Recenter(f , 𝜇) ◁ Lemma 4.3.6
13: for 𝑒 ∈ 𝐸 do
14: if ℒ.𝑟𝑒 ̸= ̂︀𝑟𝑒 then
15: ℒ.Update(𝑒, ̂︀r) ◁ Return Locator resistances to their original state
16: Call 𝒞𝑖.Rollback() to undo all TemporaryUpdates for all 𝒞𝑖
17: return f , 𝜇
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4.3.5 Proof of Theorem 4.1.1

Correctness. First of all, we apply capacity and cost scaling [71] to make sure that ‖c‖∞ , ‖u‖∞ =
poly(𝑚). These incur an extra factor of log(𝑈 +𝑊 ) in the runtime.

We first get an initial solution to the interior point method by using the following lemma:

Lemma 4.3.12 (Interior point method initialization, Appendix A in [10]). Given a min cost flow
instance ℐ = (𝐺(𝑉,𝐸), c,d ,u), there exists an algorithm that runs in time 𝑂(𝑚) and produces a
new min cost flow instance ℐ ′ =

(︀
𝐺′(𝑉 ′, 𝐸′), c′,d ′,u ′)︀, where |𝑉 ′| = 𝑂(|𝑉 |) and |𝐸′| = 𝑂(|𝐸|), as

well as a flow f such that

• f is 𝜇-central for ℐ ′ for some 𝜇 = Θ(‖c‖2)

• Given an optimal solution for ℐ ′, an optimal minimum cost flow solution for ℐ can be computed
in 𝑂(𝑚)

Therefore we now have a poly(𝑚)-central solution for an instance ℐ. We can now apply
Lemma 4.3.10 to get a 𝜇′-central solution with 𝜇′ ≤ 𝑚−10. Then we can apply the following lemma
to round the solution, which follows from Lemma 5.4 in [10].

Lemma 4.3.13 (Interior point method rounding). Given a min cost flow instance ℐ and a 𝜇-central
flow f for 𝜇 ≤ 𝑚−10, there is an algorithm that runs in time ̃︀𝑂(𝑚) and returns an optimal integral
flow.

By Lemma 4.3.12, this solution can be turned into an exact solution for the original instance. As
Lemma 4.3.10 succeeds with high probability, the whole algorithm does too.

Runtime. To determine the final runtime, we analyze each operation in Algorithm 1 separately.
The Initialize (Lemma 4.3.12) and Round (Lemma 4.3.13) operations take time ̃︀𝑂 (𝑚). Now,

the runtime of Lemma 4.3.10 is ̃︀𝑂 (︀𝑚3/2/𝑘
)︀

plus the runtime incurred because of calls to the locator
ℒ. We will use the runtimes per operation from Lemma 4.3.8.
ℒ.Solve: This operation is run ̃︀𝑂 (︀𝑚1/2𝑘3

)︀
times, and each of these costs ̃︀𝑂 (︁𝛽𝑚

𝜀2

)︁
= ̃︀𝑂 (︀𝑚𝑘12𝛽)︀.

Therefore in total ̃︀𝑂 (︀𝑚3/2𝑘15𝛽
)︀
.

We pick 𝛽 by 𝑚3/2𝑘15𝛽 ≤ 𝑚3/2/𝑘 as 𝛽 = 𝑘−16, so the runtime is ̃︀𝑂 (︀𝑚3/2/𝑘
)︀
. Note that this

satisfies the constraint 𝛽 ≥ ̃︀Ω (︀𝑘3/𝑚1/4
)︀

as long as 𝑘 ≤ ̃︀Ω (︀𝑚1/76
)︀
.

ℒ.BatchUpdate: This is run ̃︀𝑂 (︀𝑚1/2/𝛼1/4
)︀

times with empty arguments, each of which
takes time ̃︀𝑂 (︀𝑚/𝜀2)︀ = ̃︀𝑂 (︀𝑚𝑘12)︀. The total runtime because of these is ̃︀𝑂 (︀𝑚3/2𝑘12𝛼−1/4

)︀
. As we

need this to be below ̃︀𝑂 (︀𝑚3/2/𝑘
)︀
, we set 𝛼 = 𝑘52.

This operation is also run ̃︀𝑂 (︁𝑚1/2𝑘−1 ̂︀𝑇−1
)︁

times with some non-empty argument 𝑍, each of

which takes time ̃︀𝑂 (︀𝑚/𝜀2 + |𝑍|/(𝜀2𝛽2))︀ = ̃︀𝑂 (︀𝑚𝑘12 + 𝑘44|𝑍|
)︀
. As by Lemma 4.3.10 the total sum

of |𝑍| over all calls is ̃︀𝑂 (︀𝑚𝑘3𝛽1/2)︀ = ̃︀𝑂 (︀𝑚𝑘−5
)︀
, we get a runtime of

̃︀𝑂 (︁𝑚1/2𝑘−1 ̂︀𝑇−1 ·𝑚𝑘12 + 𝑘44 ·𝑚𝑘−5
)︁
= ̃︀𝑂 (︁𝑚3/2𝑘11 ̂︀𝑇−1 +𝑚𝑘39

)︁
.

In order to set the first term to be at most ̃︀𝑂 (︀𝑚3/2/𝑘
)︀
, we set ̂︀𝑇 = 𝑘12.

Therefore the total runtime of this operation is ̃︀𝑂 (︀𝑚3/2/𝑘 +𝑚𝑘39
)︀
.
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ℒ.Update: This is run ̃︀𝑂 (︁𝑚1/2
(︁
𝑘6 ̂︀𝑇 + 𝑘15

)︁)︁
= ̃︀𝑂 (︀𝑚1/2𝑘18

)︀
times and the amortized cost

per operation is

̃︀𝑂(︃𝑚 · ̂︀𝜀𝛼1/2

𝜀3
+ ̂︀𝜀−4𝜀−2𝛽−8 + ̂︀𝜀−2𝜀−4𝛼2𝛽−6

)︃
= ̃︀𝑂 (︀𝑚 · 𝑘44̂︀𝜀+ 𝑘140̂︀𝜀−4 + 𝑘224̂︀𝜀−2

)︀
,

so in total
𝑚3/2𝑘62̂︀𝜀+𝑚1/2𝑘158̂︀𝜀−4 +𝑚1/2𝑘242̂︀𝜀−2 .

As we need the first term to be ̃︀𝑂 (︀𝑚3/2/𝑘
)︀
, we set ̂︀𝜀 = 𝑘−63. Therefore the total runtime is

̃︀𝑂 (︁𝑚3/2/𝑘 +𝑚1/2𝑘410 +𝑚1/2𝑘368
)︁
= ̃︀𝑂 (︁𝑚3/2/𝑘 +𝑚1/2𝑘410

)︁
.

ℒ.Initialize: This is run ̃︀𝑂 (︀𝑘3𝛽−1/2
)︀
= 𝑘11 times in total, and the runtime for each run is

̃︀𝑂 (︀𝑚 · (︀̂︀𝜀−4𝛽−8 + ̂︀𝜀−2𝜀−2𝛼2𝛽−4
)︀)︀

= ̃︀𝑂 (︀𝑚 · (︀𝑘380 + 𝑘306
)︀)︀

= ̃︀𝑂 (︀𝑚 · 𝑘380)︀ ,
so in total ̃︀𝑂 (︀𝑚𝑘380)︀.

Therefore, for the whole algorithm, we get ̃︀𝑂 (︀𝑚3/2/𝑘 +𝑚1/2𝑘410 +𝑚𝑘380
)︀

which after balancing
gives 𝑘 = 𝑚1/762.

4.4 An Efficient (𝛼, 𝛽, 𝜀)-Locator

In this section we will show how to implement an (𝛼, 𝛽, 𝜀)-Locator, as defined in Definition 4.3.7.
In order to maintain the approximate electrical flow ̃︀f required by Lemma 4.3.8 we will keep a vertex
sparsifier in the form of a sparsified Schur complement onto some vertex set 𝐶. As in [73], we choose
𝐶 to be a congestion reduction subset.

Definition 4.4.1 (Congestion reduction subset [73]). Given a graph 𝐺(𝑉,𝐸) with resistances r and
any parameter 𝛽 ∈ (0, 1), a vertex subset 𝐶 ⊆ 𝑉 is called a 𝛽-congestion reduction subset (or just
congestion reduction subset) if:

• |𝐶| ≤ 𝑂(𝛽𝑚)

• For any 𝑢 ∈ 𝑉 , a random walk starting from 𝑢 that visits ̃︀Ω (︀𝛽−1 log 𝑛
)︀

distinct vertices hits 𝐶
with high probability

• If we generate deg(𝑢) random walks from each 𝑢 ∈ 𝑉 ∖𝐶, the expected number of these that hit
some fixed 𝑣 ∈ 𝑉 ∖𝐶 before 𝐶 is ̃︀𝑂 (︀1/𝛽2)︀. Concretely:∑︁

𝑢∈𝑉
deg(𝑢) · 𝑝𝐶∪{𝑣}

𝑣 (𝑢) ≤ ̃︀𝑂 (︀1/𝛽2)︀ . (4.8)

The following lemma shows that such a vertex subset can be constructed efficiently:

Lemma 4.4.2 (Construction of congestion reduction subset [73]). Given a graph 𝐺(𝑉,𝐸) with
resistances r and a parameter 𝛽 ∈ (0, 1), there is an algorithm that generates a 𝛽-congestion
reduction subset in time ̃︀𝑂 (︀𝑚/𝛽2)︀.
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Intuitively, (4.8) says that “not too many” random walks go through a given vertex before reaching
𝐶. This property is crucial for ensuring that when inserting a new vertex into 𝐶, the data structure
will not have to change too much. As we will see in Section 4.4.1, this property plays an even more
central role when general demands are introduced, as it allows us to show that the demands outside
𝐶 can be pushed to 𝐶. Additionally, in Section 4.4.2 we will use it to show that edges that are too
far from 𝐶 in effective resistance metric are not important, in the sense that neither can they get
congested, nor can their demand congest anything else.

4.4.1 Moving demands to the sparsifier

The goal of this section is to show that if 𝐶 is a congestion reduction subset, then any demand of the
form d = B⊤ q√

r
for some q ∈ [−1, 1]𝑚 can be approximated by 𝜋𝐶(d), i.e. its demand projection

onto 𝐶 (Definition 4.2.4). This allows us to move all demands to the sublinear-sized 𝐶 and thus
enables us to work with the Schur complement of 𝐺 onto 𝐶.

Lemma 4.4.3. Consider a graph 𝐺(𝑉,𝐸) with resistances r and Laplacian L, a 𝛽-congestion
reduction subset 𝐶, and a demand d = 𝛿B⊤ q√

r
for some 𝛿 > 0 and q ∈ [−1, 1]𝑚. Then, the potential

embedding defined as

𝜑 = L+
(︀
d − 𝜋𝐶 (d)

)︀
has congestion 𝛿 · ̃︀𝑂 (︀1/𝛽2)︀, i.e.

⃦⃦⃦
B𝜑√
r

⃦⃦⃦
∞
≤ 𝛿 · ̃︀𝑂 (︀1/𝛽2)︀.

We first prove a restricted version of the lemma where d is an 𝑠− 𝑡 demand. Then, Lemma 4.4.3
follows trivially by applying (4.8).

Lemma 4.4.4. Consider a graph 𝐺(𝑉,𝐸) with resistances r and Laplacian L, a 𝛽-congestion
reduction subset 𝐶, and a demand d = 𝛿B⊤ 1𝑠𝑡√

r
for some 𝛿 > 0 and (𝑠, 𝑡) ∈ 𝐸∖𝐸(𝐶). Then, for the

potential embedding defined as

𝜑 = L+
(︀
d − 𝜋𝐶 (d)

)︀
it follows that for any 𝑒 = (𝑢, 𝑣) ∈ 𝐸 we have⃒⃒⃒⃒

(B𝜑)𝑒√
𝑟𝑒

⃒⃒⃒⃒
≤ 2𝛿 ·

(︁
𝑝𝐶∪{𝑢}
𝑢 (𝑠) + 𝑝𝐶∪{𝑣}

𝑣 (𝑠) + 𝑝𝐶∪{𝑢}
𝑢 (𝑡) + 𝑝𝐶∪{𝑣}

𝑣 (𝑡)
)︁
.

The proof of Lemma 4.4.4 appears in Appendix 9.2.4.

4.4.2 𝜀-Important edges

In this section we will show that the effect of edges that are “far” from the congestion reduction
subset 𝐶 is negligible, as both their congestion and the congestion incurred because of their demands
are small. More specifically, given a demand d supported on 𝐶 with energy ≤ 1, i.e. ℰr (d) ≤ 1, the
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congestion 𝜌 = R−1/2BL+d𝐶 that it induces satisfies:

|𝜌𝑒| =
⃒⃒⃒⟨
1𝑒,R

−1/2BL+d
⟩⃒⃒⃒

=

⃒⃒⃒⃒⟨
B⊤ 1𝑒√

r
,L+d

⟩⃒⃒⃒⃒
=

⃒⃒⃒⃒⟨
𝜋𝐶
(︂
B⊤ 1𝑒√

r

)︂
, 𝑆𝐶+d𝐶

⟩⃒⃒⃒⃒
≤

√︃
ℰr
(︂
𝜋𝐶
(︂
B⊤ 1𝑒√

r

)︂)︂
ℰr (d)

≤

√︃
ℰr
(︂
𝜋𝐶
(︂
B⊤ 1𝑒√

r

)︂)︂
.

For the last equality we used Fact 4.2.5, for the first inequality we applied Cauchy-Schwarz, and for
the second one we used the upper bound on the energy required to route d . Therefore, if we bound
the energy of the projection of B⊤ 1𝑒√

r
onto 𝐶, we can also bound the congestion of 𝑒. This is done

in the following lemma, whose proof appears in Appendix 9.2.4.

Lemma 4.4.5. Consider a graph 𝐺(𝑉,𝐸) with resistances r and 𝐶 ⊆ 𝑉 . Then, for all 𝑒 ∈ 𝐸∖𝐸(𝐶)
we have √︃

ℰ𝑟
(︂
𝜋𝐶
(︂
B⊤ 1𝑒√

𝑟𝑒

)︂)︂
≤ 6 ·

√︂
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝐶, 𝑒)
.

This is the consequence of the following lemma, which bounds the magnitude of the projection
on a specific vertex, based on its effective resistance distance from 𝑒, as well as hitting probabilities
from 𝑒 to 𝐶. The proof appears in Appendix 9.2.5.

Lemma 4.4.6. Consider a graph 𝐺(𝑉,𝐸) with resistances r and a subset of vertices 𝐶 ⊆ 𝑉 . For
any vertex 𝑣 ∈ 𝑉 ∖𝐶 we have that⃒⃒⃒⃒

𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ 1𝑒√

r

)︂⃒⃒⃒⃒
≤ (𝑝𝐶∪{𝑣}

𝑣 (𝑢) + 𝑝𝐶∪{𝑣}
𝑣 (𝑤)) ·

√
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑒)
.

This lemma is complementary to the more immediate property⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ 1𝑒√

r

)︂⃒⃒⃒⃒
≤ (𝑝𝐶∪{𝑣}

𝑣 (𝑢) + 𝑝𝐶∪{𝑣}
𝑣 (𝑤)) · 1

√
𝑟𝑒
,

and they are both used in Section 4.5 in order to estimate demand projections. In fact, the just by
multiplying these two, we get the following lemma, which is nice because it doesn’t depend on 𝑟𝑒:

Lemma 4.4.7. Consider a graph 𝐺(𝑉,𝐸) with resistances r and a subset of vertices 𝐶 ⊆ 𝑉 . For
any vertex 𝑣 ∈ 𝑉 ∖𝐶 we have that⃒⃒⃒⃒

𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ 1𝑒√

r

)︂⃒⃒⃒⃒
≤ (𝑝𝐶∪{𝑣}

𝑣 (𝑢) + 𝑝𝐶∪{𝑣}
𝑣 (𝑤)) · 1√︀

𝑅𝑒𝑓𝑓 (𝑣, 𝑒)
.
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By the previous discussion, Lemma 4.4.6 implies that if |𝜌𝑒| ≥ 𝜀, then 𝑅𝑒𝑓𝑓 (𝐶, 𝑒) ≤ 𝑟𝑒 · 36𝜀2 . This
motivates the following definition of 𝜀-important edges.

Definition 4.4.8 (Important edges). An edge 𝑒 ∈ 𝐸 is called 𝜀-important (or just important) if
𝑅𝑒𝑓𝑓 (𝐶, 𝑒) ≤ 𝑟𝑒/𝜀2.

Now it is time for the main lemma of this section, which uses Lemma 4.4.5 to show that if
our goal is to detect edges with congestion ≥ 𝜀, it is sufficient to restrict to computing demand
projections of Ω(𝜀)-important edges. Its proof appears in Appendix 9.2.4.

Lemma 4.4.9 (Localization lemma). Let 𝜑* be any solution of

L𝜑* = 𝛿 · 𝜋𝐶
(︂
B⊤ p√

r

)︂
,

where r are any resistances, p ∈ [−1, 1]𝑚, and 𝐶 ⊆ 𝑉 . Then, for any 𝑒 ∈ 𝐸 that is not 𝜀-important
we have

⃒⃒⃒
B𝜑*
√
r

⃒⃒⃒
𝑒
≤ 6𝜀.

4.4.3 Proving Lemma 4.3.8

Before moving to the description of how Locator works and its proof, we will provide a lemma
which bounds how fast a demand projection changes.

We will use the following observation, which states that if our congestion reduction subset 𝐶
contains an 𝛽𝑚-sized uniformly random edge subset, then with high probability, effective resistance
neighborhoods that are disjoint from 𝐶 only have ̃︀𝑂 (︀𝛽−1

)︀
edges. Note that this is will be true

throughout the algorithm as long as the resistances do not depend on the randomness of 𝐶. This is
true, as resistance updates are only ever given as inputs to Locator.

Lemma 4.4.10 (Few edges in a small neighborhood). Let 𝛽 ∈ (0, 1) be a parameter and 𝐶 be a
vertex set which contains a subset of 𝛽𝑚 edges sampled at random. Then with high probability, for
any 𝑣 ∈ 𝑉 ∖𝐶 we have that |𝑁𝐸(𝑣,𝑅𝑒𝑓𝑓 (𝐶, 𝑣)/2)| ≤ 10𝛽−1 ln𝑚, where

𝑁𝐸(𝑣,𝑅) := {𝑒 ∈ 𝐸 | 𝑅𝑒𝑓𝑓 (𝑒, 𝑣) ≤ 𝑅} .

Proof. Suppose that for some vertex 𝑣 ∈ 𝑉 ∖𝐶, |𝑁𝐸(𝑢,𝑅𝑒𝑓𝑓 (𝐶, 𝑣)/2)| ≥ 10𝛽−1 ln𝑚. Since by
construction 𝐶 contains a random edge subset of size 𝛽𝑚, with high probability𝑁𝐸(𝑢,𝑅𝑒𝑓𝑓 (𝐶, 𝑢)/2)∩
𝐶 ̸= ∅, so there exists 𝑢 ∈ 𝐶 such that 𝑅𝑒𝑓𝑓 (𝑢, 𝑣) ≤ 𝑅𝑒𝑓𝑓 (𝐶, 𝑣)/2. This is a contradiction since
𝑢 ∈ 𝐶 implies 𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤ 𝑅𝑒𝑓𝑓 (𝑢, 𝑣). Union bounding over all 𝑣 yields the claim.

Using this fact, we can now show that the change of the demand projection (measured in energy)
is quite mild. The proof of the following lemma can be found in Appendix 9.2.4.

Lemma 4.4.11 (Projection change). Consider a graph 𝐺(𝑉,𝐸) with resistances r , q ∈ [−1, 1]𝑚,
and a 𝛽-congestion reduction subset 𝐶. Then, with high probability,√︃

ℰr
(︂
𝜋𝐶∪{𝑣}

(︂
B⊤ q√

r

)︂
− 𝜋𝐶

(︂
B⊤ q√

r

)︂)︂
≤ ̃︀𝑂 (︀𝛽−2

)︀
.

The above lemma can be applied over multiple vertex insertions and resistance changes, to bound
the overall energy change. This is shown in the following lemma, which is proved in Appendix 9.2.4:
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Lemma 4.4.12. Consider a graph 𝐺(𝑉,𝐸) with resistances r0, q0 ∈ [−1, 1]𝑚, a 𝛽-congestion
reduction subset 𝐶0, and a fixed sequence of updates, where the 𝑖-th update 𝑖 ∈ {0, . . . , 𝑇 − 1} is of
the following form:

• AddTerminal(𝑣𝑖): Set 𝐶𝑖+1 = 𝐶𝑖 ∪ {𝑣𝑖} for some 𝑣𝑖 ∈ 𝑉 ∖𝐶𝑖, 𝑞𝑖+1
𝑒 = 𝑞𝑖𝑒, 𝑟

𝑖+1
𝑒 = 𝑟𝑖𝑒

• Update(𝑒𝑖, q , r) Set 𝐶𝑖+1 = 𝐶𝑖, 𝑞𝑖+1
𝑒 = 𝑞𝑒 𝑟

𝑖+1
𝑒 = 𝑟𝑒, where 𝑒𝑖 ∈ 𝐸(𝐶𝑖)

Then, with high probability,√︃
ℰr𝑇

(︂
𝜋𝐶0,r0

(︂
B⊤ q0

𝑆√
r0

)︂
− 𝜋𝐶𝑇 ,r𝑇

(︂
B⊤ q𝑇𝑆√

r𝑇

)︂)︂
≤ ̃︀𝑂(︃ max

𝑖∈{0,...,𝑇−1}

⃦⃦⃦⃦
r𝑇

r 𝑖

⃦⃦⃦⃦1/2
∞

𝛽−2

)︃
· 𝑇 .

We are now ready to describe the Locator data structure. We will give an outline here, and
defer the full proof to Appendix 9.2.4. The goal of an (𝛼, 𝛽, 𝜀)-Locator is, given some flow f with
slacks s and resistances r , to compute all 𝑒 ∈ 𝐸 such that

√
𝑟𝑒

⃒⃒⃒ ̃︀𝑓*𝑒 ⃒⃒⃒ ≥ 𝜀, where

̃︀f *
= 𝛿𝑔(s)− 𝛿R−1BL+B⊤𝑔(s)

(L = B⊤R−1B), where 𝛿 = 1/
√
𝑚.

If we set 𝜌*𝑒 =
√
𝑟𝑒 ̃︀𝑓*𝑒 , we can equivalently write

𝜌* = 𝛿
√
r𝑔(s)− 𝛿R−1/2BL+B⊤𝑔(s) ,

and require to find all the entries of 𝜌* with magnitude at least 𝜀. As 𝛿
⃦⃦√

r𝑔(s)
⃦⃦
∞ ≤ 𝛿 ≤ 𝜀/100,

we can concentrate on the second term, and denote

𝜌′* = 𝛿R−1/2BL+B⊤𝑔(s)

for convenience.
First, we use Lemma 4.4.3 to show that

𝛿
⃦⃦⃦
R−1/2BL+

(︀
𝑔(s)− 𝜋𝐶(𝑔(s))

)︀⃦⃦⃦
∞
≤ 𝛿 · ̃︀𝑂 (︀𝛽−2

)︀
≤ 𝜀/100 .

Now, let’s set 𝜋𝑜𝑙𝑑 = 𝜋𝐶
0 (︀
𝑔(s0)

)︀
, where 𝐶0 was the vertex set of the sparsifier and s0 the slacks

after the last call to BatchUpdate. As we will be calling BatchUpdate at least every 𝑇 calls to
Update for some 𝑇 ≥ 1, Lemma 4.4.12 implies that

𝛿
⃦⃦⃦
R−1/2BL+

(︀
𝜋𝐶(𝑔(s))− 𝜋𝑜𝑙𝑑

)︀⃦⃦⃦
∞
≤ 𝛿 · ̃︀𝑂 (︀𝛼𝛽−2

)︀
𝑇 ≤ 𝜀/100 ,

as long as 𝑇 ≤ 𝜀
√
𝑚/ ̃︀𝑂 (︀𝛼𝛽−2

)︀
.

Importantly, we will never be removing vertices from 𝐶, so 𝐶0 ⊆ 𝐶. This implies that it suffices
to find the large entries of

𝛿R−1/2BL+𝜋𝑜𝑙𝑑 .

Now, note that for any edge 𝑒 that was not 𝜀/(100𝛼)-important for 𝐶0 and corresponding
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resistances r0, we have

𝛿
⃒⃒⃒
R−1/2BL+𝜋𝑜𝑙𝑑

⃒⃒⃒
𝑒

≤ 𝛿

√︃
ℰr (𝜋𝐶0(B⊤ 1𝑒√

r
))
√︀
ℰr (𝜋𝑜𝑙𝑑)

≤ 𝛿 ·
√
𝛼

𝜀

100𝛼
·
√
2𝛼𝑚

= 𝜀/50 ,

where we used Lemma 4.4.5 and the fact that ℰr (𝜋𝐶
0
(𝑔(s0))) ≤ 2ℰr (𝑔(s0)) ≤ 2𝛼𝑚. Therefore it

suffices to approximate
𝛿I 𝑆R

−1/2BL+𝜋𝑜𝑙𝑑 ,

where 𝑆 was the set of 𝜀
100𝛼 -important edges last computed during the last call to BatchUpdate.

Now, we will use the sketching lemma from (Lemma 5.1, [73] v2), which shows that in order to
find all Ω(𝜀) large entries of this vector, it suffices to compute the inner products

𝛿

⟨
𝜋𝐶
(︂
B⊤ q 𝑖𝑆√

r

)︂
, 𝑆𝐶+𝜋𝑜𝑙𝑑

⟩
for 𝑖 ∈ [ ̃︀𝑂 (︀𝜀−2

)︀
] up to 𝑂(𝜀) accuracy. Here 𝑆𝐶 is the Schur complement onto 𝐶.

Based on this, there are two types of quantities that we will maintain:

• ̃︀𝑂 (︀1/𝜀2)︀ approximate demand projections ̃︀𝜋𝐶 (︁B⊤ q 𝑖
𝑆√
r

)︁
, and

• an approximate Schur complement ̃︂𝑆𝐶 of 𝐺 onto 𝐶.

For the latter, we will directly use the dynamic Schur complement data structure DynamicSC that
was also used by [73] and is based on [51]. For completeness, we present this data structure in
Appendix 9.2.1.

For the former, we will need ̃︀𝑂 (︀1/𝜀2)︀ data structures for maintaining demand projections onto
𝐶, under vertex insertions to 𝐶. The guarantees of each such a data structure, that we call an
(𝛼, 𝛽, 𝜀)-DemandProjector, are as follows.

Definition 4.4.13 ((𝛼, 𝛽, 𝜀)-DemandProjector). Let ̂︀𝜀 ∈ (0, 𝜀) be a tradeoff parameter. Given
a graph 𝐺(𝑉,𝐸), resistances r , and a vector q ∈ [−1, 1]𝑚, an (𝛼, 𝛽, 𝜀)-DemandProjector is
a data structure that maintains a vertex subset 𝐶 ⊆ 𝑉 and an approximation to the demand
projection 𝜋𝐶

(︁
B⊤ q√

r

)︁
, with high probability under oblivious adversaries. The following operations

are supported:

• Initialize(𝐶, r , q , 𝑆,𝒫): Initialize the data structure in order to maintain an approximation of
𝜋𝐶
(︁
B⊤ q𝑆√

r

)︁
, where 𝐶 ⊆ 𝑉 is a 𝛽-congestion reduction subset, r are resistances, q ∈ [−1, 1]𝑚,

and 𝑆 ⊆ 𝐸 is a subset of 𝛾-important edges. 𝒫 = {𝒫𝑢,𝑒,𝑖 | 𝑢 ∈ 𝑉, 𝑒 ∈ 𝐸, 𝑢 ∈ 𝑒, 𝑖 ∈ [ℎ]} for
some ℎ ∈ Z≥1, is a set of independent random walks from 𝑢 to 𝐶 for any 𝑢.

• AddTerminal(𝑣, ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣)): Insert 𝑣 into 𝐶. Also, ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣) is an estimate of 𝑅𝑒𝑓𝑓 (𝐶, 𝑣)
such that ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≈2 𝑅𝑒𝑓𝑓 (𝐶, 𝑣). Returns an estimate

̃︀𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ q√

r

)︂
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for the demand projection of q onto 𝐶 ∪ {𝑣} at coordinate 𝑣 such that⃒⃒⃒⃒̃︀𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ q√

r

)︂
− 𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q√

r

)︂⃒⃒⃒⃒
≤ ̂︀𝜀√︀

𝑅𝑒𝑓𝑓 (𝑣, 𝐶)
.

• Update(𝑒, r ′, q ′): Set 𝑟𝑒 = 𝑟′𝑒 and 𝑞𝑒 = 𝑞′𝑒, where 𝑒 ∈ 𝐸(𝐶), and 𝑞′𝑒 ∈ [−1, 1]. Furthermore,
𝑟′𝑒 satisfies the inequality 𝑟max

𝑒 /𝛼 ≤ 𝑟′𝑒 ≤ 𝛼 · 𝑟min
𝑒 , where 𝑟min

𝑒 and 𝑟max
𝑒 represent the minimum,

respectively the maximum values that the resistance of 𝑒 has had since the last call to Initialize.

• Output(): Output ̃︀𝜋𝐶 (︁B⊤ q𝑆√
r

)︁
such that such that after 𝑇 ≤ 𝑛𝑂(1) calls to AddTerminal,

for any fixed vector 𝜑, 𝐸r (𝜑) ≤ 1, with high probability⃒⃒⃒⃒⟨̃︀𝜋𝐶 (︂B⊤ q𝑆√
r

)︂
− 𝜋𝐶

(︂
B⊤ q𝑆√

r

)︂
,𝜑

⟩⃒⃒⃒⃒
≤ ̂︀𝜀 · √𝛼 · 𝑇 .

We will implement such a data structure in Section 4.5, where we will prove the following lemma:

Lemma 4.4.14 (Demand projection data structure). For any graph 𝐺(𝑉,𝐸) and parameterŝ︀𝜀 ∈ (0, 𝜀), 𝛽 ∈ (0, 1), there exists an (𝛼, 𝛽, 𝜀)-DemandProjector for 𝐺 which, given access to
ℎ = ̃︀Θ(̂︀𝜀−4𝛽−6 + ̂︀𝜀−2𝛽−2𝛾−2) precomputed independent random walks from 𝑢 to 𝐶 for each 𝑒 ∈ 𝐸,
𝑢 ∈ 𝑒, has the following runtimes per operation:

• Initialize: ̃︀𝑂 (𝑚).

• AddTerminal: ̃︀𝑂 (︀̂︀𝜀−4𝛽−8 + ̂︀𝜀−2𝛽−6𝛾−2
)︀
.

• Update: 𝑂(1).

• Output: 𝑂(𝛽𝑚+ 𝑇 ), where 𝑇 is the number of calls made to AddTerminal after the last
call to Initialize.

Now we describe the way we will use the DemandProjectors and DynamicSC to get an
(𝛼, 𝛽, 𝜀)-Locator ℒ.

Algorithm 3 Locator ℒ.Initialize

1: procedure ℒ.Initialize(f )
2: s+ = u − f , s− = f , r = 1

(s+)2
+ 1

(s−)2

3: Q = Sketching matrix produced by (Lemma 5.1, [73] v2)
4: DynamicSC = DynamicSC.Initialize(G, ∅, r , 𝜀, 𝛽)
5: 𝐶 = DynamicSC.𝐶 ◁ 𝛽-congestion reduction subset
6: Estimate ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑒) ≈4 𝑅𝑒𝑓𝑓 (𝐶, 𝑒) using Lemma 9.2.3
7: 𝑆 =

{︁
𝑒 ∈ 𝐸 | ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑒) ≤ 𝑟𝑒 · (︀100𝛼𝜀 )︀2}︁

8: ℎ = ̃︀Θ (︀̂︀𝜀−4𝛽−6 + ̂︀𝜀−2𝜀−2𝛼2𝛽−2
)︀

9: Sample walks 𝒫𝑢,𝑒,𝑖 from 𝑢 to 𝐶 for 𝑒 ∈ 𝐸 ∖ 𝐸(𝐶), 𝑢 ∈ 𝑒, 𝑖 ∈ [ℎ] (Lemma 5.15, [73] v2)
10: DP𝑖 = DemandProjector.Initialize(𝐶, r , q 𝑖, 𝑆,𝒫) for all rows q 𝑖 of Q
11: ℒ.BatchUpdate(∅)

ℒ.Initialize: Every time ℒ.Initialize is called, we first generate a 𝛽-congestion reduction
subset 𝐶 based on Lemma 4.4.2 (takes time ̃︀𝑂 (︀𝑚/𝛽2)︀), then a sketching matrix Q and its rows q 𝑖 for
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𝑖 ∈
[︁ ̃︀𝑂 (︀1/𝜀2)︀]︁ as in (Lemma 5.1, [73] v2) (takes time ̃︀𝑂 (︀𝑚/𝜀2)︀), and finally random walks 𝒫𝑢,𝑒,𝑖 from

𝑢 to 𝐶 for each 𝑢 ∈ 𝑉 , 𝑒 ∈ 𝐸∖𝐸(𝐶) with 𝑢 ∈ 𝑒, and 𝑖 ∈ [ℎ], where ℎ = ̃︀𝑂 (︀̂︀𝜀−4𝛽−6 + ̂︀𝜀−2𝜀−2𝛼2𝛽−2
)︀

as in (Lemma 5.15, [73] v2) (takes time ̃︀𝑂 (︀ℎ/𝛽2)︀ for each (𝑢, 𝑒)).
We also compute ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑢) ≈2 𝑅𝑒𝑓𝑓 (𝐶, 𝑢) for all 𝑢 ∈ 𝑉 as described in Lemma 9.2.3 so

that we can let 𝑆 be a subset of 𝜀/(100𝛼)-important edges that contains all 𝜀/(200𝛼)-important
edges. This takes time ̃︀𝑂 (𝑚). Then, we call DynamicSC.Initialize(𝐺,𝐶, r , 𝑂(𝜀), 𝛽) (from
Appendix 9.2.1) to initialize the dynamic Schur complement onto 𝐶, with error tolerance 𝑂(𝜀), which
takes time ̃︀𝑂 (︁𝑚 · 1

𝜀4𝛽4

)︁
, as well as DemandProjector.Initialize(𝐶, r , q , 𝑆,𝒫) for the ̃︀𝑂 (︀1/𝜀2)︀

DemandProjectors, i.e. one for each q ∈ {q 𝑖 | 𝑖 ∈ [ ̃︀𝑂 (︀1/𝜀2)︀]}. Also, we compute

𝜋𝑜𝑙𝑑 = 𝜋𝐶
(︁
B⊤𝑔(s)

)︁
,

which takes ̃︀𝑂 (𝑚) as in DemandProjector.Initialize. All of this takes ̃︀𝑂 (︁𝑚 · (︁ 1̂︀𝜀4𝛽8 + 𝛼2̂︀𝜀2𝜀2𝛽4

)︁)︁
.

Algorithm 4 Locator ℒ.Update and ℒ.BatchUpdate

1: procedure Update(𝑒 = (𝑢,𝑤), f )
2: 𝑠+𝑒 = 𝑢𝑒 − 𝑓𝑒, 𝑠−𝑒 = 𝑓𝑒, 𝑟𝑒 = 1

(𝑠+𝑒 )2
+ 1

(𝑠−𝑒 )2

3: ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑢) = DynamicSC.AddTerminal(𝑢)
4: ̃︀𝑅𝑒𝑓𝑓 (𝐶 ∪ {𝑢}, 𝑤) = DynamicSC.AddTerminal(𝑤)
5: 𝐶 = 𝐶 ∪ {𝑢,𝑤}
6: for 𝑖 = 1, . . . , ̃︀𝑂 (︀1/𝜀2)︀ do
7: DP𝑖.AddTerminal(𝑢, ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑢))
8: DP𝑖.AddTerminal(𝑤, ̃︀𝑅𝑒𝑓𝑓 (𝐶 ∪ {𝑢}, 𝑤))
9: DynamicSC.Update(𝑒, 𝑟𝑒)

10: for 𝑖 = 1 . . . ̃︀𝑂 (︀1/𝜀2)︀ do
11: DP𝑖.Update(𝑒, r , q 𝑖)

12: procedure BatchUpdate(𝑍, f )
13: s+ = u − f , s− = f , r = 1

(s+)2
+ 1

(s−)2

14: Estimate ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑒) ≈4 𝑅𝑒𝑓𝑓 (𝐶, 𝑒) using Lemma 9.2.3
15: 𝑆 =

{︁
𝑒 ∈ 𝐸 | ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑒) ≤ 𝑟𝑒 · (︀100𝛼𝜀 )︀2}︁

◁ 𝜀
100𝛼 -important edges

16: for 𝑒 = (𝑢,𝑤) ∈ 𝑍 do
17: DynamicSC.AddTerminal(𝑢)
18: DynamicSC.AddTerminal(𝑤)
19: 𝐶 = 𝐶 ∪ {𝑢,𝑤}
20: DynamicSC.Update(𝑒, 𝑟𝑒)

21: for 𝑖 =
[︁ ̃︀𝑂 (︀1/𝜀2)︀]︁ do

22: DP𝑖.Initialize(𝐶, r , q 𝑖, 𝑆,𝒫)

23: 𝜋𝑜𝑙𝑑 =
1√
𝑚
· 𝜋𝐶

(︂
B⊤

1
s+

− 1
s−

r

)︂
◁ Compute exactly using Laplacian solve

ℒ.Update: Now, whenever ℒ.Update is called on an edge 𝑒, either 𝑒 ∈ 𝐸(𝐶) or 𝑒 /∈ 𝐸(𝐶). In
the first case we simply call Update on DynamicSC and all DemandProjectors.

In the second case, we first call DynamicSC.AddTerminal on one endpoint 𝑣 of 𝑒. After
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doing this we can also get an estimate ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≈2 𝑅𝑒𝑓𝑓 (𝐶, 𝑣) by looking at the edges between
𝐶 and 𝑣 in the sparsified Schur complement. By the guarantees of the expander decomposition
used inside DynamicSC [73], the number of expanders containing 𝑣, amortized over all calls
to DynamicSC.AddTerminal, is 𝑂(poly log(𝑛)). As the sparsified Schur complement contains̃︀𝑂 (︀1/𝜀2)︀ neighbors of 𝑣 from each expander, the amortized number of neighbors of 𝑣 in the sparsified
Schur complement is ̃︀𝑂 (︀1/𝜀2)︀, and the amortized runtime to generate them (by random sampling)
is ̃︀𝑂 (︀1/𝜀2)︀.

Given the resistances 𝑟1, . . . , 𝑟𝑙 of these edges, setting ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣) =

(︂
𝑙∑︀

𝑖=1
𝑟−1
𝑖

)︂−1

we guaran-

tee that ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≈1+𝑂(𝜀) 𝑅𝑒𝑓𝑓 (𝐶, 𝑣), by the fact that DynamicSC maintains an (1 + 𝑂(𝜀))-
approximate sparsifier of the Schur complement. Then, we call AddTerminal(𝑣, ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣)) on all
DemandProjectors.

After repeating the same process for the other endpoint of 𝑒, we finally call Update on
DynamicSC and all DemandProjectors. This takes time ̃︀𝑂 (︁ 1

𝜀2𝛽2

)︁
because of the Schur comple-

ment and amortized ̃︀𝑂 (︁𝑚 · ̂︀𝜀𝛼1/2

𝜀 + 1̂︀𝜀4𝛽8 + 𝛼2̂︀𝜀2𝜀2𝛽−6

)︁
for each of the demand projectors, so the total

amortized runtime is ̃︀𝑂 (︁𝑚 · ̂︀𝜀𝛼1/2

𝜀3
+ 1̂︀𝜀4𝜀2𝛽8 + 𝛼2̂︀𝜀2𝜀4𝛽6

)︁
.

ℒ.BatchUpdate: When ℒ.BatchUpdate is called on a set of edges 𝑍, we add them one by
one in the DynamicSC data structure following the same process as in ℒ.Update. For the demand
projectors, we first manually insert the endpoints of these edges into 𝐶 and then re-initialize all
DemandProjectors, by calling Initialize with a new subset 𝑆 of 𝜀

200𝛼 -important edges that
contains all 𝜀

100𝛼 -important edges. Such a set can be computed by estimating 𝑅𝑒𝑓𝑓 (𝐶, 𝑢) for all
𝑢 ∈ 𝑉 ∖𝐶 up to a constant factor and, by Lemma 9.2.3, takes time ̃︀𝑂 (𝑚). Also, we compute

𝜋𝑜𝑙𝑑 = 𝜋𝐶
(︁
B⊤𝑔(s)

)︁
,

which takes ̃︀𝑂 (𝑚) as in DemandProjector.Initialize. The total runtime of this is ̃︀𝑂 (︀𝑚/𝜀2 + |𝑍|/(𝛽2𝜀2))︀.
Algorithm 5 Locator ℒ.Solve

1: procedure Solve()
2: ̃︂𝑆𝐶 = DynamicSC.̃︂𝑆𝐶()
3: 𝜑𝑜𝑙𝑑 =̃︂𝑆𝐶+

𝜋𝑜𝑙𝑑
4: v = 0
5: for 𝑖 = 1, . . . , ̃︀𝑂 (︀1/𝜀2)︀ do
6: ̃︀𝜋𝑖 = DP𝑖.Output()
7: 𝑣𝑖 = ⟨̃︀𝜋𝑖,𝜑𝑜𝑙𝑑⟩
8: 𝑍 = Recover(v , 𝜀/100) ◁ Recovers all 𝜀/2-congested edges (Lemma 5.1, [73] v2)
9: return 𝑍

ℒ.Solve: When ℒ.Solve is called, we set ̃︂𝑆𝐶 = DynamicSC.𝑆𝐶(), call Output on all
DemandProjectors to obtain vectors ̃︀𝜋𝑖 which are estimators for 𝜋𝐶(B⊤ q 𝑖

𝑆√
r
) in the sense of

Definition 4.4.13. Then we compute 𝑣𝑖 = ⟨̃︀𝜋𝑖,̃︂𝑆𝐶+
𝜋𝑜𝑙𝑑⟩ where 𝜋𝑜𝑙𝑑 is the demand projection that

was computed exactly the last time BatchUpdate was called. These computed terms represent an
approximation to the update in (Q𝜌)𝑖 between two consecutive calls of ℒ.Solve. As we will show
in the appendix, ⟨̃︀𝜋𝑖,̃︂𝑆𝐶+

𝜋𝑜𝑙𝑑⟩ is an 𝜀-additive approximation of ⟨𝜋𝐶(B⊤ q 𝑖
√
r
),L+𝜋𝐶(B⊤𝑔(s))⟩ for
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all 𝑖 ∈
[︁ ̃︀𝑂 (︀1/𝜀2)︀]︁. The key fact that makes this approximation feasible is that although updates

to the demand projection are hard to approximate with few samples, when hitting them with the
deterministic vector 𝜋𝑜𝑙𝑑, the resulting inner products strongly concentrate. The runtime of this is̃︀𝑂 (︀𝛽𝑚/𝜀2)︀.

Using these computed values with the ℓ2 heavy hitter data structure (Lemma 5.1, [73] v2) we
get all edges with congestion more than 𝜀. The total runtime is ̃︀𝑂 (︀𝛽𝑚/𝜀2)︀.
4.5 The Demand Projection Data Structure

The main goal of this section is to construct an (𝛼, 𝛽, 𝜀)-DemandProjector, as defined in
Definition 4.4.13, and thus prove Lemma 4.4.14. The most important operation that needs to be
implemented in order to prove Lemma 4.4.14 is to maintain the demand projection after inserting a
vertex 𝑣 ∈ 𝑉 ∖𝐶 to 𝐶. In order to do this, we use the following identity from [73]:

𝜋𝐶∪{𝑣} (d) = 𝜋𝐶 (d) + 𝜋𝐶∪{𝑣}
𝑣 (d) ·

(︀
1𝑣 − 𝜋𝐶(1𝑣)

)︀
, (4.9)

where d is any demand (in our case, we have d = B⊤ q𝑆√
r

for some 𝑆 ⊆ 𝐸). For this, we need to

compute approximations to 𝜋𝐶∪{𝑣}
𝑣

(︁
B⊤ q𝑆√

r

)︁
and 𝜋𝐶 (1𝑣).

In Section 4.5.1, we will show that if 𝑆 is a subset of 𝛾-important edges, we can efficiently
estimate 𝜋𝐶∪{𝑣}

𝑣

(︁
B⊤ q𝑆√

r

)︁
up to additive accuracy ̂︀𝜀

𝑅𝑒𝑓𝑓 (𝐶,𝑣)
by sampling random walks to 𝐶 starting

only from edges with relatively high resistance. For the remaining edges, the 𝛾-importance property
will imply that we are not losing much by ignoring them.

Then, in Section 4.5.2 we will show how to approximate 1𝑣 − 𝜋𝐶(1𝑣). This is equivalent to
estimating the hitting probabilities from 𝑣 to 𝐶. The guarantee that we would ideally like to get is
on the error to route

ℰr
(︀̃︀𝜋𝐶(1𝑣)− 𝜋𝐶(1𝑣))︀ ≤ ̂︀𝜀2𝑅𝑒𝑓𝑓 (𝐶, 𝑣) . (4.10)

Note that this is not possible to do efficiently for general 𝐶. For example, suppose that the hitting
distribution is uniform. In this case, Ω(|𝐶|) random walks are required to get a bound similar to
(4.10). However, it might still be possible to guarantee it by using the structure of 𝐶, and this
would simplify some parts of our analysis. Instead, we are going to work with the following weaker
approximation bound: For any fixed potential vector 𝜑 ∈ R𝑛 with 𝐸r (𝜑) ≤ 1, we have w.h.p.⃒⃒⟨︀̃︀𝜋𝐶(1𝑣)− 𝜋𝐶(1𝑣),𝜑⟩︀⃒⃒ ≤ ̂︀𝜀√︁𝑅𝑒𝑓𝑓 (𝐶, 𝑣) . (4.11)

Now, using these estimation lemmas, we will bound how our demand projection degrades when
inserting a new vertex into 𝐶. This is stated in the following lemma and proved in Appendix 9.2.5.

Lemma 4.5.1 (Inserting a new vertex to 𝐶). Consider a graph 𝐺(𝑉,𝐸) with resistances r , q ∈
[−1, 1]𝑚, a 𝛽-congestion reduction subset 𝐶, and 𝑣 ∈ 𝑉 ∖𝐶. We also suppose that we have an estimate
of the 𝐶−𝑣 effective resistance such that ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≈2 𝑅𝑒𝑓𝑓 (𝐶, 𝑣), as well as to independent random
walks 𝒫𝑢,𝑒,𝑖 for each 𝑢 ∈ 𝑉 ∖𝐶, 𝑒 ∈ 𝐸∖𝐸(𝐶) with 𝑢 ∈ 𝑒, 𝑖 ∈ [ℎ], where each random walk starts from
𝑢 and ends at 𝐶.

If we let 𝑆 be a subset of 𝛾-important edges for 𝛾 > 0, then for any error parameter ̂︀𝜀 > 0 we
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can compute ̃︀𝜋𝐶∪{𝑣}
𝑣

(︁
B⊤ q𝑆√

r

)︁
∈ R and ̃︀𝜋𝐶∪{𝑣}

(︁
B⊤ q𝑆√

r

)︁
∈ R ∈ R𝑛 such that with high probabilitỹ⃒⃒⃒⃒︀𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q𝑆√

r

)︂
− 𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q𝑆√

r

)︂⃒⃒⃒⃒
≤ ̂︀𝜀√︀

𝑅𝑒𝑓𝑓 (𝐶, 𝑣)
,

as long as ℎ = ̃︀Ω (︀̂︀𝜀−4𝛽−6 + ̂︀𝜀−2𝛽−2𝛾−2
)︀
. Furthermore, for any fixed 𝜑, 𝐸r (𝜑) ≤ 1, after 𝑇 insertions

after the last call to Initialize, with high probability⃒⃒⃒⃒⟨̃︀𝜋𝐶∪{𝑣}
(︂
B⊤ q𝑆√

r

)︂
− 𝜋𝐶∪{𝑣}

(︂
B⊤ q𝑆√

r

)︂
,𝜑

⟩⃒⃒⃒⃒
≤ ̂︀𝜀𝑇 ,

as long as ℎ = ̃︀Ω (︀̂︀𝜀−2𝛽−4𝛾−2
)︀
.

Algorithm 6 DemandProjector DP.AddTerminal

1: procedure DP.AddTerminal(𝑣, ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣))
2: if 𝑣 ∈ 𝐶 then
3: return
4: 𝑡 = 𝑡+ 1
5: ̃︀𝜋𝐶∪{𝑣}

𝑣

(︁
B⊤ q𝑆√

r

)︁
= 0

6: for 𝑢, 𝑒 ∈ 𝑆, 𝑖 such that 𝒫𝑢,𝑒,𝑖 ∋ 𝑣 and ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤ 1

(min{̂︀𝜀/ ̃︀𝑂(𝛽−2),𝛾/4})
2 𝑟𝑒 do

7: if 𝑒 = (𝑢, *) then
8: ̃︀𝜋𝐶∪{𝑣}

𝑣

(︁
B⊤ q𝑆√

r

)︁
= ̃︀𝜋𝐶∪{𝑣}

𝑣

(︁
B⊤ q𝑆√

r

)︁
+ 1

ℎ
𝑞𝑒√
𝑟𝑒

9: else
10: ̃︀𝜋𝐶∪{𝑣}

𝑣

(︁
B⊤ q𝑆√

r

)︁
= ̃︀𝜋𝐶∪{𝑣}

𝑣

(︁
B⊤ q𝑆√

r

)︁
− 1

ℎ
𝑞𝑒√
𝑟𝑒

11: Shortcut 𝒫𝑢,𝑒,𝑖 at 𝑣
12: ℎ′ = ̃︀𝑂 (︀̂︀𝜀−2𝛽−4𝛾−2

)︀
13: ̃︀𝜋𝐶 (1𝑣) = 0
14: for 𝑖 = 1, . . . ℎ′ do
15: Run random walk from 𝑣 to 𝐶 with probabilities prop. to r−1, let 𝑢 be the last vertex
16: ̃︀𝜋𝐶𝑢 (1𝑣) = ̃︀𝜋𝐶𝑢 (1𝑣) +

1
ℎ′

17: ̃︀𝜋𝐶∪{𝑣}(B⊤ q𝑆√
r
) = ̃︀𝜋𝐶(B⊤ q𝑆√

r
) + ̃︀𝜋𝐶∪{𝑣}

𝑣 (B⊤ q𝑆√
r
) · (1𝑣 − ̃︀𝜋𝐶(1𝑣))

18: 𝐶 = 𝐶 ∪ {𝑣}, 𝐹 = 𝐹∖{𝑣}

4.5.1 Estimating 𝜋
𝐶∪{𝑣}
𝑣

(︁
B⊤ q𝑆√

r

)︁
There is a straightforward algorithm to estimate 𝜋𝐶∪{𝑣}

𝑣

(︁
B⊤ q𝑆√

r

)︁
. For each edge 𝑒 = (𝑢,𝑤) ∈

𝐸∖𝐸(𝐶), sample a number of random walks from 𝑢 and 𝑤 until they hit 𝐶 ∪ {𝑣}. Then, add to the
estimate 𝑞𝑒√

𝑟𝑒
times the fraction of the random walks starting from 𝑢 that contain 𝑣, minus 𝑞𝑒√

𝑟𝑒
times

the fraction of the random walks starting from 𝑤 that contain 𝑣. [73] uses this sampling method
together with the following concentration bound, to get a good estimate if the resistances of all
congested edges are sufficiently large.

Lemma 4.5.2 (Concentration inequality 1 [73]). Let 𝑆 = 𝑋1+ · · ·+𝑋𝑛 be the sum of 𝑛 independent
random variables. The range of 𝑋𝑖 is {0, 𝑎𝑖} for 𝑎𝑖 ∈ [−𝑀,𝑀 ]. Let 𝑡, 𝐸 be positive numbers such
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that 𝑡 ≤ 𝐸 and
𝑛∑︀
𝑖=1
|E[𝑋𝑖]| ≤ 𝐸. Then

Pr [|𝑆 − E[𝑆]| > 𝑡] ≤ 2 exp

(︂
− 𝑡2

6𝐸𝑀

)︂
.

Unfortunately, in our setting there is no reason to expect these resistances to be large, so the
variance of this estimate might be too high. We have already introduced the concept of important
edges in order to alleviate this problem, and proved that we only need to look at important edges.
Even if all edges of which the demand projection is estimated are important (i.e. close to 𝐶), however,
𝑣 can still be far from 𝐶. This is an issue, since we don’t directly estimate projections onto 𝐶, but
instead estimate the projection onto 𝐶 ∪ {𝑣} and then from 𝑣 onto 𝐶.

Intuitively, however, if 𝑣 is far from 𝐶, it should also be far from the set of important edges, so
the insertion of 𝑣 should not affect their demand projection too much. As the distance upper bound
between an important edge and 𝐶 is relative to the scale of the resistance of that edge, this statement
needs be more fine-grained in order to take the resistances of important edges into account.

More concretely, in the following lemma, which is proved in Appendix 9.2.5, we show that if
we only compute demand projection estimates for edges 𝑒 such that 𝑟𝑒 ≥ 𝑐2𝑅𝑒𝑓𝑓 (𝐶, 𝑣) for some
appropriately chosen 𝑐 > 0, then we can guarantee a good bound on the number of random walks
we need to sample.

For the remaining edges, we will show that the energy of their contributions to the projection is
negligible, so that we can reach to our desired statement in Lemma 4.5.4.

Lemma 4.5.3. Consider a graph 𝐺(𝑉,𝐸) with resistances r , q ∈ [−1, 1]𝑛, a 𝛽-congestion reduction
subset 𝐶, as well as 𝑣 ∈ 𝑉 ∖𝐶. If for some 𝑐 > 0 we are given a set of edges

𝑆′ ⊆
{︂
𝑒 ∈ 𝐸∖𝐸(𝐶) | 𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤

1

𝑐2
𝑟𝑒

}︂
,

then for any 𝛿′1 > 0 we can compute ̃︀𝜋𝐶∪{𝑣}
𝑣

(︁
B⊤ q𝑆′√

r

)︁
∈ R such that with high probabilitỹ⃒⃒⃒⃒︀𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤q𝑆′√

r

)︂
− 𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤q𝑆′√

r

)︂⃒⃒⃒⃒
≤ 𝛿′1
𝛽𝑐
√︀
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

.

The algorithm requires access to ̃︀𝑂 (︁𝛿′−2
1 log 𝑛 log 1

𝛽

)︁
independent random walks from 𝑢 to 𝐶 for each

𝑢 ∈ 𝑉 ∖𝐶 and 𝑒 ∈ 𝐸∖𝐸(𝐶) with 𝑢 ∈ 𝑒.

This leads us to the desired statement for this section, whose proof appears in Appendix 9.2.5.

Lemma 4.5.4 (Estimating 𝜋𝐶∪{𝑣}
𝑣

(︁
B⊤ q√

r

)︁
). Consider a graph 𝐺(𝑉,𝐸) with resistances r , q ∈

[−1, 1]𝑛, a 𝛽-congestion reduction subset 𝐶, as well as 𝑣 ∈ 𝑉 ∖𝐶. If we are given a set 𝑆 of
𝛾-important edges for some 𝛾 ∈ (0, 1) and an estimate ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≈2 𝑅𝑒𝑓𝑓 (𝐶, 𝑣), then for any
𝛿1 ∈ (0, 1) we can compute ̃︀𝜋𝐶∪{𝑣}

𝑣

(︁
B⊤ q𝑆√

r

)︁
∈ R such that with high probabilitỹ⃒⃒⃒⃒︀𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q𝑆√

r

)︂
− 𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q𝑆√

r

)︂⃒⃒⃒⃒
≤ 𝛿1√︀

𝑅𝑒𝑓𝑓 (𝐶, 𝑣)
. (4.12)
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The algorithm requires ̃︀𝑂 (︀𝛿−4
1 𝛽−6 + 𝛿−2

1 𝛽−2𝛾−2
)︀

independent random walks from 𝑢 to 𝐶 for each
𝑢 ∈ 𝑉 ∖𝐶 and 𝑒 ∈ 𝐸∖𝐸(𝐶) with 𝑢 ∈ 𝑒.

Additionally, we have⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ q𝑆√

r

)︂⃒⃒⃒⃒
≤ 1

𝛾
√︀
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

· ̃︀𝑂(︂ 1

𝛽2

)︂
.

4.5.2 Estimating 𝜋𝐶(1𝑣)

In contrast to the quantity 𝜋𝐶∪{𝑣}
𝑣

(︁
B⊤ q√

r

)︁
, where there are cancellations between its two components

𝜋
𝐶∪{𝑣}
𝑣

(︃ ∑︀
𝑒=(𝑢,𝑤)∈𝐸

𝑞𝑒√
𝑟𝑒
1𝑢

)︃
and 𝜋

𝐶∪{𝑣}
𝑣

(︃ ∑︀
𝑒=(𝑢,𝑤)∈𝐸

− 𝑞𝑒√
𝑟𝑒
1𝑤

)︃
(as B⊤ q√

r
sums up to 0), in 𝜋𝐶 (1𝑣)

there are no cancellations. The goal is to simply estimate the hitting probabilities from 𝑣 to the
vertices of 𝐶, which can be done by sampling a number of random walks from 𝑣 to 𝐶.

As discussed before, even though ideally we would like to have an error bound of the form√︀
ℰr (̃︀𝜋𝐶(1𝑣)− 𝜋𝐶(1𝑣)) ≤ 𝛿2√︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣), our analysis is only able to guarantee that for any fixed

potential vector 𝜑 with 𝐸r (𝜑) ≤ 1, with high probability
⃒⃒
⟨𝜑, ̃︀𝜋𝐶(1𝑣)− 𝜋𝐶(1𝑣)⟩⃒⃒ ≤ 𝛿2√︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣).

However, this is still sufficient for our purposes.
In Appendix 9.2.5 we prove the following general concentration inequality, which basically states

that we can estimate the desired hitting probabilities as long as we have a bound on the ℓ2 norm of
the potentials 𝜑 weighted by the hitting probabilities.

Lemma 4.5.5 (Concentration inequality 2). Let 𝜋 be a probability distribution over [𝑛] and ̃︀𝜋 an
empirical distribution of 𝑍 samples from 𝜋. For any �̄� ∈ R𝑛 with

⃦⃦
�̄�
⃦⃦2
𝜋,2
≤ 𝒱, we have

Pr
[︀⃒⃒
⟨̃︀𝜋 − 𝜋, �̄�⟩⃒⃒ > 𝑡

]︀
≤ 1

𝑛100
+ ̃︀𝑂 (log (𝑛 · 𝒱/𝑡)) exp

(︃
− 𝑍𝑡2̃︀𝑂 (︀𝒱 log2 𝑛)︀

)︃
.

We will apply it for �̄� = 𝜑− 𝜑𝑣 · 1, and it is important to note that ℰr (�̄�) = ℰr (𝜑). In order to
get a bound on

⃦⃦
�̄�
⃦⃦2
𝜋𝐶(1𝑣),2

, we use the following lemma, which is proved in Appendix 9.2.5.

Lemma 4.5.6 (Bounding the second moment of potentials). For any graph 𝐺, resistances r ,
potentials 𝜑 with 𝐸r (𝜑) ≤ 1, 𝐶 ⊆ 𝑉 and 𝑣 ∈ 𝑉 ∖𝐶 we have ‖𝜑− 𝜑𝑣1‖2𝜋𝐶(1𝑣),2

≤ 8 ·𝑅𝑒𝑓𝑓 (𝐶, 𝑣).

To give some intuition on this, consider the case when 𝑉 = 𝐶 ∪ {𝑣} = {1, . . . , 𝑘} ∪ {𝑣}, and
there are edges 𝑒1, . . . , 𝑒𝑘 between 𝐶 and 𝑣, one for each vertex of 𝐶. Then, we have 𝜋𝐶𝑖 (1𝑣) =

(𝑟𝑒𝑖)
−1/

𝑘∑︀
𝑖=1

(𝑟𝑒𝑖)
−1, and so

⃦⃦
�̄�
⃦⃦2
𝜋𝐶(1𝑣),2

=

𝑘∑︁
𝑖=1

(𝜑𝑖 − 𝜑𝑣)2

𝑟𝑒𝑖
·

(︃
𝑘∑︁
𝑖=1

(𝑟𝑒𝑖)
−1

)︃−1

≤ ℰr (�̄�) ·𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤ 𝑅𝑒𝑓𝑓 (𝐶, 𝑣) .

We finally arrive at the desired statement about estimating 𝜋𝐶(1𝑣).

Lemma 4.5.7 (Estimating 𝜋𝐶(1𝑣)). Consider a graph 𝐺(𝑉,𝐸) with resistances r , a 𝛽-congestion
reduction subset 𝐶, as well as 𝑣 ∈ 𝑉 ∖𝐶. Then, for any 𝛿2 > 0, we can compute ̃︀𝜋𝐶 (1𝑣) ∈ R𝑛 such
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that with high probability ⃒⃒
⟨𝜑, ̃︀𝜋𝐶 (1𝑣)− 𝜋𝐶 (1𝑣)⟩

⃒⃒
≤ 𝛿2 ·

√︁
𝑅𝑒𝑓𝑓 (𝐶, 𝑣) , (4.13)

where 𝜑 ∈ R𝑛 is a fixed vector with 𝐸r (𝜑) ≤ 1. The algorithm computes ̃︀𝑂 (︁ log𝑛
𝛿22

)︁
random walks

from 𝑣 to 𝐶.

Proof. Because both ̃︀𝜋𝐶(1𝑣) and 𝜋𝐶(1𝑣) are probability distributions, the quantity (4.13) doesn’t
change when a multiple of 1 is added to 𝜑, and so we can replace it by �̄� = 𝜑− 𝜑𝑣1.

Now, ̃︀𝜋𝐶 (1𝑣) will be defined as the empirical hitting distribution that results from sampling
𝑍 random walks from 𝑣 to 𝐶. Directly applying the concentration bound in Lemma 4.5.5 and
setting 𝑍 = ̃︀𝑂 (︁ log𝑛

𝛿22

)︁
, together with the fact that

⃦⃦
�̄�
⃦⃦2
𝜋𝐶(1𝑣),2

≤ 8 ·𝑅𝑒𝑓𝑓 (𝐶, 𝑣) by Lemma 4.5.6 and
log log𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤ 𝑂(log log 𝑛), we get

Pr

[︂⃒⃒
⟨̃︀𝜋𝐶(1𝑣)− 𝜋𝐶(1𝑣), �̄�⟩⃒⃒ > 𝛿2 ·

√︁
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

]︂
<

1

𝑛10
.

4.5.3 Proof of Lemma 4.4.14

We are now ready for the proof of Lemma 4.4.14.

Proof of Lemma 4.4.14. Let DP be a demand projection data structure. We analyze its operations
one by one.

Algorithm 7 DemandProjector DP.Initialize

1: procedure DP.Initialize(𝐶, r , q , 𝑆,𝒫)
2: Initialize 𝐶, r , q , 𝑆,𝒫
3: 𝐹 = 𝑉 ∖𝐶
4: ℎ = ̃︀𝑂 (︀̂︀𝜀−4𝛽−6 + ̂︀𝜀−2𝛽−4𝛾−2

)︀
◁ #random walks for each pair 𝑢 ∈ 𝑉 , 𝑒 ∈ 𝐸 with 𝑢 ∈ 𝑒

5: 𝑡 = 0 ◁ #calls to AddTerminal since last call to UpdateFull
6: 𝜑 = L+

𝐹𝐹

[︁
B⊤ q𝑆√

r

]︁
𝐹

7: ̃︀𝜋𝐶 (︁B⊤ q𝑆√
r

)︁
=
[︁
B⊤ q𝑆√

r

]︁
𝐶
− L𝐶𝐹𝜑

DP.Initialize(𝐶, r , q , 𝑆,𝒫): We initialize the values of 𝐶, r , q , 𝑆,𝒫. Then we exactly compute
the demand projection, i.e. ̃︀𝜋𝐶 (︁B⊤ q𝑆√

r

)︁
= 𝜋𝐶

(︁
B⊤ q𝑆√

r

)︁
, which takes time ̃︀𝑂 (𝑚) as shown in [73].

More specifically, we have 𝜋𝐶
(︁
B⊤ q𝑆√

r

)︁
=
(︀
I L𝐶𝐹L

−1
𝐹𝐹

)︀
B⊤ q𝑆√

r
which only requires applying the

operators L−1
𝐹𝐹 and L𝐶𝐹 .

DP.AddTerminal(𝑣, ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣)): We will serve this operation by applying Lemma 4.5.1. It is
important to note that the error guarantee for the Output procedure increases with every call to
AddTerminal, so in general we have a bounded budget for the number of calls to thus procedure
before having to call again Initialize.

We apply Lemma 4.5.1 to obtain ̃︀𝜋𝐶∪{𝑣}
𝑣 (B⊤ q𝑆√

r
), and update the estimate ̃︀𝜋𝐶∪{𝑣}

𝑣

(︁
B⊤ q𝑆√

r

)︁
. The

former can be achieved with ℎ = ̃︀𝑂 (︀̂︀𝜀−4𝛽−6 + ̂︀𝜀−2𝛽−2𝛾−2
)︀

random walks. Note that these random
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walks are already stored in 𝒫, so accessing each of them takes time ̃︀𝑂 (1). Using the congestion
reduction property of 𝐶, we see that the running time of the procedure, which is dominated by
shortcutting the random walks is ̃︀𝑂 (︀ℎ𝛽−2

)︀
, which gives the claimed bound. The latter can be

achieved with ℎ′ = ̃︀𝑂 (︀̂︀𝜀−2𝛽−4𝛾−2
)︀

fresh random walks. Due to the congestion reduction property,
simulating each of these requires ̃︀𝑂 (︀𝛽−2

)︀
time.

Algorithm 8 DemandProjector DP.Update and DP.Output

1: procedure DP.Update(𝑒, r ′, q ′)
2: if 𝑒 ∈ 𝑆 then

3: ̃︀𝜋𝐶 (︁B⊤ q𝑆√
r

)︁
= ̃︀𝜋𝐶 (︁B⊤ q𝑆√

r

)︁
+

(︂
𝑞′𝑒√
𝑟′𝑒
− 𝑞𝑒√

𝑟𝑒

)︂
·B⊤1𝑒

4: 𝑞𝑒 = 𝑞′𝑒, 𝑟𝑒 = 𝑟′𝑒
5: procedure DP.Output()
6: return ̃︀𝜋𝐶 (︁B⊤ q𝑆√

r

)︁
DP.Update(𝑒, r ′, q ′): We update the values of 𝑟𝑒, 𝑞𝑒. We also update the projection, by noting
that since 𝑒 ∈ 𝐸(𝐶),

𝜋𝐶
(︂
B⊤ q ′
√
r ′

)︂
= 𝜋𝐶

(︂
B⊤ q√

r

)︂
+

(︃
𝑞′𝑒√︀
𝑟′𝑒
− 𝑞𝑒√

𝑟𝑒

)︃
B⊤1𝑒 ,

so we change ̃︀𝜋𝐶 (︁B⊤ q√
r

)︁
by the same amount, which takes time 𝑂(1) and does not introduce any

additional error in our estimate.
DP.Output(): We output our estimate ̃︀𝜋𝐶 (︁B⊤ q𝑆√

r

)︁
. Per Lemma 4.5.1 we see that each of the

previous 𝑇 calls to AddTerminal add an error to our estimate of at most ̂︀𝜀 in the sense that if Δ𝑡

were the true change in the demand projection at the 𝑡𝑡ℎ insertion, and ̃︀Δ𝑡
were the update made to

our estimate, then ⃒⃒⃒⟨ ̃︀Δ𝑡
−Δ𝑡,𝜑

⟩⃒⃒⃒
≤ ̂︀𝜀 ,

w.h.p. for any fixed 𝜑 such that 𝐸r 𝑡(𝜑) ≤ 1, where r 𝑡 represents the resistances when 𝑡𝑡ℎ call to
AddTerminal is made. Equivalently, for any nonzero 𝜑,

1√︀
𝐸r 𝑡(𝜑)

⃒⃒⃒⟨ ̃︀Δ𝑡
−Δ𝑡,𝜑

⟩⃒⃒⃒
≤ ̂︀𝜀 ,

By the invariant satisfied by the resistances passed as parameters to the AddTerminal routine,
we have that r 𝑡 ≤ 𝛼 · r𝑇 for all 𝑡. Therefore 1/𝐸r𝑇 (𝜑) ≤ 𝛼/𝐸r 𝑡(𝜑). So we have that

1√︀
𝐸r𝑇 (𝜑)

⃒⃒⃒⟨ ̃︀Δ𝑡
−Δ𝑡,𝜑

⟩⃒⃒⃒
≤ ̂︀𝜀 · √𝛼 .

Summing up over 𝑇 insertions, we obtain the desired error bound. Furthermore, note that returning
the estimate takes time proportional to |𝐶|, which is ̃︀𝑂 (𝛽𝑚+ 𝑇 ).

94



Chapter 5

Decomposable Submodular Function
Minimization via Maximum Flow

5.1 Introduction

A significant amount of work has been dedicated to the study of submodular functions. While this
topic has garnered a lot of excitement from the theory community due to its the multiple connections
to diverse algorithmic areas [116, 78], on the practical side minimizing submodular functions has
been intensively used to model discrete problems in machine learning. MAP inference in Markov
Random Fields [99], image segmentation [8, 147], clustering [126], corpus extraction problems [110]
are just a few success stories of submodular minimization.

Polynomial time algorithms for this problem have been known ever since the 80’s [78], and they
have seen major running time improvements in more recent years [143, 84, 61, 132, 107, 35]. However,
the massive scale of the problems that use submodular minimization nowadays drives the need for
further developments.

One great advantage offered by the submodular functions that occur in practice is that they are
structured. For example, in many common cases (hypergraph cuts [165], covering functions [158],
MAP inference [60, 99, 166]) these can be decomposed into sums of simple submodular functions
defined on small subsets. For these instances, prior work [90, 131, 56, 57, 94] has focused on providing
efficient algorithms in the regime where the functions in the decomposition admit fast optimization
oracles.

Notably, many of these recent developments have leveraged a mix of ideas coming from both
discrete and continuous optimization. In particular, Ene et al. [57] present algorithms for decompos-
able function minimization that are based on both continuous methods (i.e. gradient descent) and
discrete algorithms, as the authors employ a version of the preflow-push algorithm for maximum
flow [76]. As this work was paralleled by multiple improvements to the running time for maximum
flow [118, 117, 114, 95, 25, 73], most of which stemmed from innovations in convex optimization,
it seemed plausible that the same new optimization techniques could be helpful for improving the
running times of other fundamental problems in combinatorial optimization, including submodular
function minimization. In this context, a particularly intriguing question emerged:

Can we leverage the techniques used to obtain faster algorithms for maximum flow to provide faster
algorithms for submodular function minimization?

We answer this question in the affirmative, by showing how to solve decomposable submodular
function minimization using black-box access to any routine that can compute the maximum flow in
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a capacitated directed graph. To compare the running times, in the case where all the functions
in the decomposition act on 𝑂(1) elements of the ground set and are polynomially bounded (such
as the case of a hypergraph cut function, with 𝑂(1) sized hyperedges), our algorithm has – up to
polylogarithmic factors – the same running time as that of computing maximum flow in a sparse
graph with 𝑂(|𝑉 |) vertices, and polynomial integral capacities [75, 25, 73].

As it turns out, to achieve this it is not sufficient to directly use off-the-shelf maximum flow
algorithms. Instead, our approach is based on solving submodular minimization in the more general
parametric setting, where we further parametrize the problem with an additional time-dependent
penalty term on the elements in the set, and want to simultaneously solve all the problems in this
family. In turn, our reduction requires solving the parametric minimum cut problem, which has been
intensely studied in the classical graph theoretic literature [72, 122, 160, 77]. In this setting, which
is essentially a particular case of parametric submodular minimization, the capacities of certain arcs
in the graph evolve in a monotonic fashion.

While some of the existing work on parametric cuts and flows does provide efficient algorithms
via reductions to maximum flow [160], the type of parametric capacities it supports does not cover
the requirements for our more general scenario. Therefore, we develop a new efficient algorithm
for computing parametric cuts under a broad range of parametric capacities. Our algorithm is
nearly optimal from the perspective of weakly-polynomial time algorithms, since its running time
matches (up to polylogarithmic factors involving certain parameters) that of the fastest maximum
flow algorithm in a directed graph with integer capacities. In addition, our reduction also provides
novel improvements in several other regimes, involving the strongly polynomial case, and that of
planar graphs, both of which may be of independent interest.

5.1.1 Our Results

In this chapter we establish further connections between discrete and continuous optimization to
provide an efficient algorithm for solving the decomposable submodular function minimization
problem in the more general parametric setting. Our algorithm is at its core based on a continuous
optimization method, but whose progress steps are driven by a new combinatorial algorithm we devise
for the parametric cut problem. In this sense, our approach leverages the paradigm of combinatorial
preconditioning from scientific computing literature [156, 17, 102, 162].

To properly state our main result, we need to introduce some notation. Let 𝑉 = {1, . . . , 𝑛} and
let 𝐹 : 2𝑉 → N a submodular set function with the special property that

𝐹 (𝑆) =
𝑟∑︁
𝑖=1

𝐹𝑖(𝑆), for all 𝑆 ⊆ 𝑉 ,

where each 𝐹𝑖 : 2𝑉 → N is a submodular set function acting on a subset 𝑉𝑖 ⊆ 𝑉 of elements, in the
sense that 𝐹𝑖(𝑆) = 𝐹𝑖(𝑆 ∩ 𝑉𝑖) for all 𝑆 ⊆ 𝑉 . Let EO𝑖 be the time required to evaluate 𝐹𝑖(𝑆) for any
𝑆 ⊆ 𝑉𝑖, and let 𝒪𝑖 be the time required to minimize 𝐹𝑖(𝑆) + 𝑤(𝑆) over 𝑉𝑖, where 𝑤 is any linear
function, and suppose that max𝑆⊆𝑉 𝐹 (𝑆) = 𝑛𝑂(1). Furthermore, for each 𝑖 ∈ 𝑉 let 𝜓𝑖 : R→ R be a
strictly convex function satisfying 𝑛−𝑂(1) ≤ |𝜓′′

𝑖 (𝑥)| ≤ 𝑛𝑂(1) and |𝜓′
𝑖(0)| ≤ 𝑛𝑂(1).

Then our main theorem is the following.

Theorem 5.1.1. There is an algorithm which for all 𝜆 ∈ R simultaneously optimizes the objective

min
𝑆⊆𝑉

𝐹 (𝑆) +
∑︁
𝑖∈𝑆

𝜓′
𝑖(𝜆)
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by returning a vector 𝑥 such that for any 𝜆 ∈ R the set 𝑆𝜆 = {𝑢 : 𝑥𝑢 ≥ 𝜆} satisfies

𝐹 (𝑆𝜆) +
∑︁
𝑢∈𝑆𝜆

𝜓′(𝜆) ≤ min
𝑆⊆𝑉

𝐹 (𝑆) +
∑︁
𝑢∈𝑆

𝜓′(𝜆) + 𝜀 .

Furthermore, if 𝑇maxflow(𝑛,𝑚) is the time required to compute the maximum flow in a directed graph
with polynomially bounded integral capacities, then our algorithm runs in time

̃︀𝑂(︂max
𝑖
|𝑉𝑖|2

(︂ 𝑟∑︁
𝑖=1

|𝑉𝑖|2𝒪𝑖 + 𝑇maxflow

(︂
𝑛, 𝑛+

𝑟∑︁
𝑖=1

|𝑉𝑖|2
)︂)︂

log
1

𝜀

)︂
.

To better understand this result, let us consider the case where each submodular function in
the decomposition acts on a small number of elements, i.e. |𝑉𝑖| = 𝑂(1). In this case we have the
following corollary:

Corollary 5.1.1. If each function 𝐹𝑖 in the decomposition acts on 𝑂(1) elements of the ground set,
then we can the solve parametric submodular minimization problem to 𝜀 precision in time

̃︀𝑂(︂𝑇maxflow(𝑛, 𝑛+ 𝑟) log
1

𝜀

)︂
.

While our statements concern the parametric setting, it is easy to use them to recover the
solution to the standard submodular minimization problem. Simply by letting 𝜓′

𝑖(𝑡) = 𝑡 for all 𝑖,
and thresholding the returned vector at 0 we obtain the desired result. Using Goldberg-Rao [75] or
the current state of the art maximum flow advancements [25, 73, 37], we see that this significantly
improves over all the previous algorithms for decomposable submodular minimization, in the regime
where all sets 𝑉𝑖 are small. Following [57] it has remained widely open whether algorithms improving
upon the ̃︀𝑂(min{𝑛2, 𝑛𝑟} log𝑂(1)(1/𝜀)) running time exist, and it has been conjectured that faster
running times could be obtained by leveraging the newer techniques for graph algorithms based on
interior point methods.

Using [37], we obtain a running time of 𝑂
(︀
(𝑛+ 𝑟)1+𝑜(1) log 1/𝜀

)︀
.

The crucial subroutine our algorithm is based on is a novel efficient algorithm for solving the
parametric cut problem using a maximum flow oracle. We give an overview of our reduction and its
additional applications in Section 5.3, and describe it in detail in Appendix 9.3.3.

5.1.2 Previous Work

Related Works on Submodular Minimization Submodular function minimization is a classical
problem in combinatorial optimization, which goes back to the seminal work of Edmonds [54]. The
first polynomial-time algorithm was obtained by Grötschel et al. [78] using the ellipsoid method. This
was followed by a plethora of improvements, among which the more recent ones [43, 91] leveraged
related techniques. On a different front, there has been significant work dedicated to obtaining
strongly polynomial time algorithms for this problem [61, 84, 85, 132, 143, 107, 43, 91].

For the more structured regime of decomposable submodular function minimization, algorithms
based on both discrete and continuous methods have been developed. Kolmogorov [100] has shown
that this problem reduces to computing maximum submodular flows, and gave an algorithm for this
problem based on augmenting paths. This was followed by further algorithms based on discrete
methods [8, 60]. The continuous methods are based on convex optimization on the submodular base
polytope, which is also used here. Notably, Stobbe and Krause [158] tackled this problem using
gradient descent, Nishihara et al. [131] used alternating projections to obtain an algorithm with
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linear convergence, Ene and Nguyen [56] achieved an improved algorithm with a linear convergence
rate based on accelerated coordinate descent, while Ene et al. provided further improvements both
via gradient descent and combinatorial techniques [57].

Related Works on Parametric Min Cut The seminal work of Gallo et al. [72] studied the
generalization of the maximum flow problem where some edge-capacities, instead of being fixed, are
allowed to be (possibly different) monotonic functions of a single parameter. They showed how to
modify certain versions of the push-relabel algorithm for ordinary maximum flow to the parametric
problem with the same asymptotic time complexity. In particular, using the Goldberg-Tarjan
max-flow algorithm [76] they gave an 𝑂(𝑛𝑚 log(𝑛2/𝑚)) time bound for the parametric version. Their
algorithm can compute the min cuts either when a set of parameter values are given [79] or the
capacity functions are all affine functions of the parameter 𝜆.

Several other max-flow algorithms were also shown to fit into their framework (see e.g., [77])
though all requiring Ω(𝑚𝑛) time in the worst case. Further generalizations of the parametric min-cut
problems have also been considered [122, 77]. When all parameterized capacities are equal to the
parameter 𝜆, Tarjan et al. [160] give a divide and conquer approach that can use any maximum flow
algorithm as a black box and is a factor min{𝑛, log(𝑛𝑈)} worse.

5.2 Background and Preliminaries

5.2.1 Submodular Set Functions and Convex Analysis

Let 𝑉 be a finite ground set of size 𝑛, and we assume w.l.o.g. that 𝑉 = {1, . . . , 𝑛}. A set function
𝐹 : 2𝑉 → R is submodular if 𝐹 (𝐴) + 𝐹 (𝐵) ≥ 𝐹 (𝐴 ∪𝐵) + 𝐹 (𝐴 ∩𝐵) for any two sets 𝐴,𝐵 ⊆ 𝑉 .
We are concerned with minimizing submodular set functions of the form 𝐹 =

∑︀𝑟
𝑖=1 𝐹𝑖, where each

𝐹𝑖 is a submodular set function:

min
𝐴⊆𝑉

𝐹 (𝐴) = min
𝐴⊆𝑉

𝑟∑︁
𝑖=1

𝐹𝑖 (𝐴) .

For the rest of the chapter we will assume that 𝐹𝑖 are non-negative, integral, and that max𝑆⊆𝑉 𝐹 (𝑆) ≤
𝐹max. The non-negativity constraint holds without loss of generality, as we can simply shift each 𝐹𝑖
by a constant until it becomes non-negative. For rational functions that are represented on bounded
bit precision, the integrality can be enforced simply by scaling them, at the expense of increasing
𝐹max. As we will see, some of our subroutines depend on the magnitude of 𝐹max, so we will generally
assume that this is polynomially bounded.

As in previous works [131, 56, 57, 94], in this chapter we are concerned with the regime where
each function 𝐹𝑖 in the decomposition acts on few elements of the ground set 𝑉 . More precisely for
each 𝑖 ∈ {1, . . . , 𝑟} there is a small set 𝑉𝑖 ⊆ 𝑉 such that 𝐹𝑖(𝐴) = 𝐹𝑖(𝐴 ∩ 𝑉𝑖) for all 𝐴 ⊆ 𝑉 . We
assume w.l.o.g. that 𝐹𝑖(∅) = 𝐹𝑖(𝑉𝑖), which we discuss in more detail in Section 9.3.4. The running
time of our algorithm depends on max1≤𝑖≤𝑟 |𝑉𝑖|. This assumption is important as, furthermore, the
final running time of our algorithm depends on (i) the time 𝒪𝑖 to optimize functions of the form
𝐹𝑖(𝑆) + 𝑤(𝑆) over 𝑉𝑖, where 𝑤 is a linear function and (ii) the time EO𝑖 to evaluate 𝐹𝑖 for subsets
of 𝑉𝑖. In the case where |𝑉𝑖| = 𝑂(1), this is also constant time.

Given an arbitrary vector 𝑤 ∈ R𝑛 and a subset 𝐴 ⊆ 𝑉 , we use the notation 𝑤 (𝐴) =
∑︀

𝑖∈𝐴𝑤𝑖.

Definition 5.2.1. Given a submodular set function 𝐹 : 2𝑉 → R, such that 𝐹 (∅) = 0, its submodular
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base polytope 𝐵 (𝐹 ) is defined as follows:

𝐵 (𝐹 ) = {𝑤 ∈ R𝑛 : 𝑤 (𝐴) ≤ 𝐹 (𝐴) for all 𝐴 ⊆ 𝑉, 𝑤 (𝑉 ) = 𝐹 (𝑉 )} .

Definition 5.2.2. Given a submodular set function 𝐹 : 2𝑉 → R, 𝐹 (∅) = 0, its Lovász extension
𝑓 : R𝑛 → R is defined over [0, 1]𝑛 as the convex closure of 𝐹 . However, it will be more convenient to
consider its extension of R𝑛, given by

𝑓 (𝑥) =

∫︁ ∞

0
𝐹 ({𝑖 : 𝑥𝑖 ≥ 𝑡}) 𝑑𝑡+

∫︁ 0

−∞
(𝐹 ({𝑖 : 𝑥𝑖 ≥ 𝑡})− 𝐹 (𝑉 )) 𝑑𝑡 .

Fact 5.2.1. It is well known [15] that the Lovász extension of a submodular set function 𝐹 can be
equivalently characterized in terms of its submodular base polytope 𝐵 (𝐹 ). More precisely, if 𝐹 (∅) = 0,
then:

𝑓 (𝑥) = max
𝑤∈𝐵(𝐹 )

⟨𝑤, 𝑥⟩ .

For parametric submodular function minimization we consider a family of functions parameterized
by 𝛼 ∈ R:

𝐹𝛼 (𝐴) = 𝐹 (𝐴) +
∑︁
𝑖∈𝐴

𝜓′
𝑖 (𝛼) , (5.1)

where 𝜓𝑗 : R→ R are strictly convex differentiable functions, satisfying lim𝛼→−∞ 𝜓′
𝑖(𝛼) = −∞ and

lim𝛼→∞ 𝜓′
𝑖(𝛼) =∞, for all 𝑖. A common example is 𝜓′

𝑗(𝛼) = 𝛼, which imposes an ℓ1 penalty on the
size of the set 𝐴. It is shown in [36, 15] that minimizing 𝐹𝛼 (𝐴) for the entire range of scalars 𝛼
amounts to minimizing a regularized version of the Lovász extension.

Lemma 5.2.3. Let 𝐹𝛼 be the family of parameterized submodular set functions defined as in (5.1),
where 𝜓𝑖 are strictly convex functions. Let 𝑓 be the Lovász extension of 𝐹 , and consider the
optimization problem

min
𝑥∈R𝑛

𝑓 (𝑥) +
∑︁
𝑖∈𝑉

𝜓𝑖 (𝑥𝑖) . (5.2)

Let 𝐴𝛼 = argmin𝐴⊆𝑉 𝐹𝛼 (𝐴), and let 𝑥* be the minimizer of (5.2). Then

𝐴𝛼 = {𝑖 : 𝑥*𝑖 ≥ 𝛼} . (5.3)

For completeness we reproduce the proof of Lemma 5.2.3 in Section 9.3.2.
Via convex duality one can prove that minimizing (5.2) is equivalent to a dual optimization

problem on the submodular base polytope 𝐵(𝐹 ):

min
𝑤∈𝐵(𝐹 )

∑︁
𝑖∈𝑉

𝜓*
𝑖 (−𝑤𝑖) , (5.4)

where 𝜓*
𝑖 is the Fenchel dual of 𝜓𝑖.

Definition 5.2.4 (Fenchel dual). Let 𝑔 : R𝑛 → R ∪ {−∞,+∞} be a convex function. Its Fenchel
dual or convex conjugate 𝑔* : R𝑛 → R ∪ {−∞,+∞} is defined as

𝑔*(𝑤) = sup
𝑥
⟨𝑤, 𝑥⟩ − 𝑔(𝑥) .

We will refer to (5.2) as the primal problem and (5.4) as the dual problem. The algorithm
described in this chapter will focus on optimizing (5.4) while strongly leveraging the decomposable
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structure of 𝐹 . We assume that all functions 𝜓𝑖 have “nice” second derivatives, which will play an
important role in the algorithm, since this will also ensure that the minimizers of (5.2) and (5.4) are
unique.

Assumption 5.2.2. The function 𝜓𝑖 is 𝐿-smooth and 𝜎-strongly convex for all 𝑖 ∈ 𝑉 . Equivalently
for each 𝑖, its second derivative satisfies 0 < 𝜎 ≤ 𝜓′′

𝑖 (𝑥) ≤ 𝐿, for all 𝑥 ∈ R. Furthermore,
|𝜓′
𝑖(0)| ≤ 𝑛𝑂(1), for all 𝑖 ∈ 𝑉 .

This condition also helps us ensure that we can efficiently convert between the primal and dual
spaces onto which the 𝜓𝑖 and its Fenchel dual 𝜓*

𝑖 act. Also, whenever it is convenient, we will use
the notation 𝜓(𝑥) =

∑︀
𝑖∈𝑉 𝜓𝑖(𝑥𝑖), 𝜓

*(𝑦) =
∑︀

𝑖∈𝑉 𝜓
*
𝑖 (𝑦𝑖).

5.2.2 Overview of Approach

Decomposable Submodular Minimization Here we provide an overview of our approach for
minimizing decomposable submodular functions. Our approach for the parametric setting yields
a strictly stronger result without sacrificing running time, so we will focus on this more general
problem.

Our approach is based on minimizing a convex function on the submodular base polytope 𝐵(𝐹 ).
As it has been seen in previous works [15], in order to solve the parametric problem (5.1), it suffices
to solve the dual problem (5.4), which is a convex optimization problem over 𝐵(𝐹 ). For convenience
let us denote by ℎ(𝑤) =

∑︀
𝑖∈𝑉 𝜓

*
𝑖 (−𝑤𝑖), so that our objective becomes computing min𝑤∈𝐵(𝐹 ) ℎ(𝑤).

We use an iterative method, which maintains a point 𝑤 ∈ 𝐵(𝐹 ) and updates it in such a way
that the objective value improves significantly in each step. To do so, we find a polytope 𝑃 such that

𝑤 +
1

𝛼
· 𝑃 ⊆ 𝐵(𝐹 ) ⊆ 𝑤 + 𝑃 (5.5)

and such that we can efficiently minimize 𝜓 over 𝑤 + 1
𝛼 · 𝑃 . If we can find the minimizer 𝑤′ over

𝑤 + 1
𝛼 · 𝑃 , then moving our iterate to 𝑤′ also guarantees that

ℎ(𝑤′)− ℎ(𝑤*) ≤
(︂
1− 1

𝛼

)︂
(ℎ(𝑤)− ℎ(𝑤*)) ,

where 𝑤* is the minimizer of ℎ over 𝐵(𝐹 ). This is true due to the convexity of ℎ. Indeed, let̃︀𝑤 = 𝑤+ 𝑡(𝑤*−𝑤) where 𝑡 = max{𝑡 ≤ 1 : 𝑤+ 𝑡(𝑤*−𝑤) ∈ 𝑤+ 1
𝛼𝑃}; in other words ̃︀𝑤 represents the

furthest point on the segment connecting 𝑤 and 𝑤* such that ̃︀𝑤 still lies inside the small polytope
𝑤 + 1

𝛼𝑃 . Due to the sandwiching property of the polytopes (5.5), we have that 𝑡 ≥ 1/𝛼. Hence,
using the convexity of ℎ, we obtain that

ℎ( ̃︀𝑤)− ℎ(𝑤*) = ℎ(𝑤 + 𝑡(𝑤* − 𝑤))− ℎ(𝑤*) ≤ (1− 𝑡) (ℎ(𝑤)− ℎ(𝑤*)) ≤ (1− 1/𝛼)(ℎ(𝑤)− ℎ(𝑤*)) .

Since 𝑤′ minimizes ℎ over 𝑤 + 1
𝛼 · 𝐵(𝐹 ), we must have ℎ(𝑤′) ≤ ℎ( ̃︀𝑤), and we obtain the desired

progress in function value. Thus iterating ̃︀𝑂(𝛼) times we obtain a high precision solution, which
we then convert back to a combinatorial solution to the original problem using some careful error
analysis.

More importantly, we need to address the question of finding a polytope 𝑃 satisfying (5.5).
To do so, for each 𝑖, we define the “residual” submodular functions 𝐹 ′

𝑖 (𝐴) = 𝐹𝑖(𝐴)− 𝑤𝑖(𝐴) for
all 𝐴 ⊆ 𝑉 , where 𝑤𝑖 ∈ 𝐵(𝐹𝑖) such that

∑︀𝑟
𝑖=1𝑤𝑖 = 𝑤. The existence of such a decomposition of

𝑤 ∈ 𝐵(
∑︀𝑟

𝑖=1 𝐹𝑖) is well-known, and goes back to Edmonds [53]. Very importantly, we note that
since 𝐹𝑖 were non-negative, 𝐹 ′

𝑖 remain non-negative submodular set functions.
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It is known [45] that non-negative submodular set functions can be approximated by graph
cuts. Following the proof from [45], for each 𝑖 we construct a graph on 𝑂(|𝑉𝑖|) vertices whose cuts
approximate the value of 𝐹 ′

𝑖 within a factor of 𝑂(|𝑉𝑖|2). Combining all these graphs into a single
one, we obtain a weighted directed graph on 𝑂(|𝑉 |) vertices and 𝑂(|𝑉 |+

∑︀𝑟
𝑖=1 |𝑉𝑖|2) arcs such that

its cut function 𝐺 approximates 𝐹 ′ within a factor of 𝑂(max𝑖 |𝑉𝑖|2).
Crucially, we can show that if 𝐺 is the cut function which approximates 𝐹 ′, then we also have

that
1

max𝑖 |𝑉𝑖|2
·𝐵(𝐺) ⊆ 𝐵(𝐹 ′

𝑖 ) ⊆ 𝐵(𝐺) ,

and therefore it suffices to implement a routine that minimizes ℎ over 𝑤 + 1
max𝑖 |𝑉𝑖|2 ·𝐵(𝐺) in order

to obtain an algorithm that terminates in ̃︀𝑂(max𝑖 |𝑉𝑖|2) such iterations.
To implement this routine, we devise a new combinatorial algorithm for solving the parametric flow

problem, with general parameterized capacities. By comparison to previous literature, our algorithm
efficiently leverages a maximum flow oracle on a sequence of graphs obtained via contracting edges,
and whose running time is up to polylogarithmic factors equal to that of computing a maximum
flow in a capacitated directed graph with 𝑂(|𝑉 |) vertices and 𝑂(|𝑉 |+

∑︀𝑟
𝑖=1 |𝑉𝑖|2) arcs.

Following this, we convert the combinatorial solution to the parametric flow problem into a
solution to its corresponding dual problem on the submodular base polytope, which returns the new
iterate 𝑤′.

Throughout the algorithm we need to control the errors introduced by the fact that both the
solution we receive for the parametric flow problem and the one we return as an approximate
minimizer of ℎ over 𝐵(𝐹 ) are approximate, but these are easily tolerable since our main routines
return high precision solutions.

5.3 Parametric Min 𝑠, 𝑡-Cut

In the general parametric min 𝑠, 𝑡-cut problem [72], the capacities of the source’s outgoing edges
(𝑠, 𝑣) are (possibly different) nonnegative real nondecreasing functions of a parameter 𝜆 ∈ D, where
D ⊆ R is some domain, whereas the capacities of the sink’s incoming edges 𝑣𝑡 are nonincreasing
functions of 𝜆. The goal is to compute the representation of the cut function 𝜅 : D → R such
that 𝜅(𝜆) equals the capacity of the minimum 𝑠, 𝑡-cut in 𝐺𝜆 obtained from 𝐺 by evaluating the
parameterized capacity functions at 𝜆. It is known that 𝜅 consists of 𝑂(𝑛) pieces, where 𝜅 equals
the parameterized capacity of some fixed cut in 𝐺.

More formally, let 𝜆min ∈ D be such that the minimal min 𝑠, 𝑡-cuts of 𝐺𝜆min
and 𝐺𝜆′ are equal

for all 𝜆′ ∈ D, 𝜆′ < 𝜆min. Similarly, let 𝜆max ∈ D be such that the minimal min 𝑠, 𝑡-cuts of 𝐺𝜆max

and 𝐺𝜆′ are equal for all 𝜆′ ∈ D with 𝜆′ > 𝜆max. We will consider 𝜆min and 𝜆max inputs to our
problem. Then, there exist 𝑂(𝑛) breakpoints Λ = {𝜆1, . . . , 𝜆𝑘}, 𝜆min = 𝜆0 < 𝜆1 < . . . < 𝜆𝑘 and an
embedding of vertices 𝜏 : 𝑉 → Λ ∪ {𝜆min,∞} such that for all 𝑖 = 0, . . . , 𝑘 − 1, 𝜆′ ∈ [𝜆𝑖, 𝜆𝑖+1) ∩ D,
𝜅(𝜆′) equals the capacity of the cut 𝑆(𝜆𝑖) = {𝑣 ∈ 𝑉 : 𝜏(𝑣) ≤ 𝜆𝑖} in 𝐺𝜆′ , and also 𝑆(𝜆𝑘) is a min
𝑠, 𝑡-cut of 𝐺𝜆max .

Motivated by our submodular minimization application, our algorithm in the most general setting
solves the 𝜀-approximate parametric min 𝑠, 𝑡-cut problem.

Definition 5.3.1 (𝜀-approximate parametric min 𝑠, 𝑡-cut). Let Λ, 𝜏 , and 𝑆 : D→ 2𝑉 be as defined
above. A pair (Λ, 𝜏) is called an 𝜀-approximate parametric min 𝑠, 𝑡-cut of 𝐺 if:

1. For 𝑖 = 0, . . . , 𝑘 − 1, 𝑆(𝜆𝑖) is a min 𝑠, 𝑡-cut of 𝐺𝜆′ for all 𝜆′ ∈ [𝜆𝑖, 𝜆𝑖+1 − 𝜀) ∩ D.
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2. 𝑆(𝜆𝑘) is a min 𝑠, 𝑡-cut of 𝐺𝜆max.

3. For 𝑖 = 0, . . . , 𝑘 − 1, 𝑆(𝜆𝑖) ( 𝑆(𝜆𝑖+1).

We prove that an 𝜀-approximate parametric min 𝑠, 𝑡-cut yields breakpoints within 𝜀 additive
error wrt. to the breakpoints of the exact parametric min 𝑠, 𝑡-cut. Our algorithm solves the above
problem assuming only constant-time black-box access to the capacity functions.

Theorem 5.3.2. Let 𝑅 = 𝜆max−𝜆min be an integral multiple of 𝜀 > 0. Let 𝑇maxflow(𝑛
′,𝑚′) = Ω(𝑚′+

𝑛′) be a convex function bounding the time needed to compute maximum flow in a graph with 𝑛′ vertices
and 𝑚′ edges obtained from 𝐺𝜆 by edge/vertex deletions and/or edge contractions (with merging
parallel edges by summing their capacities) for any 𝜆 = 𝜆min + ℓ𝜀 and any integer ℓ ∈ [0, 𝑅/𝜀]. Then,
𝜀-approximate parametric min 𝑠, 𝑡-cut in 𝐺 can be computed in 𝑂(𝑇maxflow(𝑛,𝑚 log 𝑛) · log 𝑅

𝜀 · log 𝑛)
time.

The algorithm is recursive. In order to ensure uniqueness of the minimum cuts considered, it
always computes cuts with minimal 𝑠-side.

Roughly speaking, given initial guesses 𝜆min, 𝜆max the algorithm finds, using
𝑂(log((𝜆max − 𝜆min)/𝜀)) maximum flow computations, the most balanced split 𝜆1, 𝜆2 of the domain
such that (1) the 𝑠-sides for all the min-cuts of 𝐺𝜆′ for 𝜆′ > 𝜆2 have size at least 𝑛/2, (2) the 𝑡-sides
of all the min-cuts of 𝐺𝜆′ for 𝜆′ < 𝜆1 have size at least 𝑛/2, (3) 𝜆2 − 𝜆1 ≤ 𝜀. We then recurse on the
intervals [𝜆min, 𝜆1] and [𝜆2, 𝜆max] on minors of 𝐺 with at least 𝑛/2 vertices contracted. Even though
the contraction requires merging parallel edges in order to have at most 𝑚+ 𝑛 (as opposed to 2𝑚)
edges in the recursive calls, we are able to guarantee that the capacity functions in the recursive
calls are all obtained by shifting the original capacity functions by a real number, and thus can be
evaluated in constant time as well. Since the number of vertices decreases by a factor of two in every
recursive call, one can prove that for each level of the recursion tree, the sum of numbers of vertices
in the calls at that level is 𝑂(𝑛), whereas the sum of sizes of edge sets is 𝑂(𝑚+ 𝑛 log 𝑛).

We show that the 𝜀-approximate algorithm can be turned into an exact algorithm in two important
special cases. First of all, if the capacity functions are low-degree (say, at most 4) polynomials with
integer coefficients in [−𝑈,𝑈 ], then one can compute parametric min 𝑠, 𝑡-cut only 𝑂(polylog{𝑛,𝑈})
factors slower than best known max-flow algorithm for integer capacities [73, 25, 75]. Second, we can
solve the discrete domain case, i.e., when D has finite size ℓ with only 𝑂(polylog{𝑛, ℓ}) multiplicative
overhead wrt. the respective maximum flow algorithm.

Moreover, since our reduction runs maximum flow computations only on minors of the input
graph 𝐺, it also yields very efficient parametric min 𝑠, 𝑡-cut algorithms for planar graphs. In
particular, since near-optimal strongly-polynomial 𝑠, 𝑡-max flow algorithms for planar graphs are
known [22, 58], we obtain near-optimal algorithms for the integer polynomial capacity functions (as
above) and discrete domains. What is perhaps more surprising, using our reduction we can even
obtain a strongly polynomial exact parametric min 𝑠, 𝑡-cut algorithm for planar graphs with linear
capacity functions with real coefficients. The algorithm runs in �̃�(𝑛1.21875) time and constitutes the
only known subquadratic strongly polynomial parametric min-𝑠, 𝑡-cut algorithm.

The details of our parametric min 𝑠, 𝑡-cut algorithm and its applications are covered in Ap-
pendix 9.3.3. It should be noted that the idea of using cuts contraction is not new and appeared
previously in [160]. Compared to [160], our reduction provably handles more general parameterized
capacity functions. As it does not operate on any auxiliary networks that may not preserve structural
properties of 𝐺, but merely on minors of 𝐺, it proves much more robust in important special cases
such as planar graphs. Finally, we believe that our reduction is also more natural and operates on
the breakpoints of the cut function directly, whereas the reduction of [160] operates on so-called
balanced flows.
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5.4 Parametric Decomposable Submodular Minimization via Base
Polytope Approximations

5.4.1 Algorithm Overview

In Algorithm 9 we give the description of our the main routine.

Algorithm 9 Parametric Decomposable Submodular Function Minimization
1: Input: 𝜀: error tolerance ◁ Returns 𝜀-optimal solution of min

𝑤∈𝐵(𝐹 )
𝜓*(−𝑤)

2: Set 𝑤0,𝑖 = 0 for 𝑖 ∈ [𝑟] ◁ Initialize a feasible solution
3: Set 𝑇 = 𝛼 log 𝜓*(−𝑤0)+𝜓(0)

𝜀
4: for 𝑡 = 1 . . . 𝑇 do
5: Set 𝐺𝑖(𝑉𝑖, 𝐸𝑖, 𝑐𝑖) = GraphApprox(𝑤𝑡−1,𝑖), for 𝑖 ∈ [𝑟], and construct 𝐺(𝑉,𝐸, 𝑐) by combin-

ing the graphs 𝐺𝑖
6: Set 𝜑(𝑥) := 𝜓(𝑥) + ⟨

𝑟∑︀
𝑖=1

𝑤𝑡−1,𝑖, 𝑥⟩

7: Set ̃︀𝑤 = FindMinCuts(𝐺(𝑉,𝐸, 𝑐), 𝜑, 1
3𝐿) ◁ Find parametric min 𝑠, 𝑡-cuts

8: Round all the entries of ̃︀𝑤 to the nearest integer
9: Decompose ̃︀𝑤 =

∑︀𝑟
𝑖=1 ̃︀𝑤𝑖, with ̃︀𝑤𝑖 ∈ 𝐵(𝐺𝑖) using Lemma 5.4.3.

10: Set 𝑤𝑡,𝑖 = 𝑤𝑡−1,𝑖 + ̃︀𝑤𝑖, for all 𝑖 ∈ [𝑟].

11: return
𝑟∑︀
𝑖=1

𝑤𝑇,𝑖

5.4.2 Removing Assumptions

In Section 5.2 we assumed that for all 𝑖, 𝐹𝑖(∅) = 𝐹𝑖(𝑉𝑖) = 0 and 𝐹𝑖(𝑆) ≥ 0 for all 𝑆. These
assumptions hold without loss of generality. In Section 9.3.4 we show how to preprocess the input
such that these assumptions are valid.

5.4.3 From Parametric Minimum Cut to Cut Base Polytope Optimization

In this section, we will focus on the problem of minimizing a convex function over the base polytope
of the 𝑠, 𝑡-cut function of a graph 𝐺(𝑉 ∪ {𝑠, 𝑡}, 𝐸, 𝑐). We define the 𝑠, 𝑡-cut function 𝐺 : 2𝑉 → R as
𝐺(𝑆) = 𝑐+(𝑆 ∪ {𝑠}) for 𝑆 ⊆ 𝑉 , and let 𝐵(𝐺) be the base polytope of 𝐺. Now, the parametric min
𝑠, 𝑡-cut problem can be written as

min
𝑆⊆𝑉

𝐺(𝑆) +
∑︁
𝑢∈𝑆

𝜑′𝑢(𝜆) , (5.6)

where the capacity of an edge (𝑢, 𝑡) at time 𝜆 is 𝑐𝑢𝑡 + 𝜑′𝑢(𝜆) and 𝜑 is a function satisfying Assump-
tion 5.2.2. In particular, our goal in this section is, given solutions to (5.6) for all 𝜆, to solve the
following dual problem:

min
𝑤∈𝐵(𝐺)

𝜑*(−𝑤) . (5.7)

Definition 5.4.1 (𝑊 -restricted function). A submodular function 𝐹 : 2𝑉 → R≥0 is called 𝑊 -
restricted if 𝐹 (𝑆) = 𝐹 (𝑆 ∩𝑊 ) for all 𝑆 ⊆ 𝑉 , where 𝑊 ⊆ 𝑉 .

103



As the cut functions 𝐺(𝑆) that we will be concerned with will be decomposable, i.e. 𝐺(𝑆) =
𝑟∑︀
𝑖=1

𝐺𝑖(𝑆) for all 𝑆 ⊆ 𝑉 , we introduce the following notion of a decomposition of some 𝑤 ∈ 𝐵(𝐺) into

a sum of 𝑤𝑖 ∈ 𝐵(𝐺𝑖).

Definition 5.4.2 (𝐹 -decomposition). Let 𝐹 : 2𝑉 → R≥0 with |𝑉 | = 𝑛 be a submodular function

that is decomposable, i.e. 𝐹 (𝑆) =
𝑟∑︀
𝑖=1

𝐹𝑖(𝑆) for all 𝑆 ⊆ 𝑉 , where 𝐹𝑖 : 2𝑉 → R≥0 are submodular

functions. Then for any 𝑤 ∈ 𝐵(𝐹 ) there exist vectors 𝑤1, . . . , 𝑤𝑟 ∈ R𝑛, where 𝑤𝑖 ∈ 𝐵(𝐹𝑖) for all

𝑖 ∈ [𝑟] and
𝑟∑︀
𝑖=1

𝑤𝑖 = 𝑤. We call the sequence of vectors 𝑤1, . . . , 𝑤𝑟 an (𝐹1, . . . , 𝐹𝑟)-decomposition of

𝑤, or just an 𝐹 -decomposition of 𝑤 if the 𝐹𝑖’s are clear from context.

What follows is the main lemma of this section, whose full proof appears in Appendix 9.3.5.

Lemma 5.4.3 (From parametric min-cut to cut base polytope optimization). Consider a graph
𝐺(𝑉,𝐸, 𝑐 ≥ 0) and a function 𝜑(𝑥) =

∑︀
𝑢∈𝑉

𝜑𝑢(𝑥𝑢) that satisfies Assumption 5.2.2. Additionally,

let 𝐺(𝑆) = 𝑐+(𝑆) for all 𝑆 ⊆ 𝑉 be the cut function associated with the graph, and suppose it is

decomposable as 𝐺(𝑆) =
𝑟∑︀
𝑖=1

𝐺𝑖(𝑆) where 𝐺𝑖 : 2𝑉 → Z≥0 are 𝑉𝑖-restricted cut functions defined as

𝐺𝑖(𝑆) = 𝑐𝑖+(𝑆) that correspond to graphs 𝐺𝑖(𝑉,𝐸, 𝑐𝑖 ≥ 0), and 𝑐 =
𝑟∑︀
𝑖=1

𝑐𝑖.

We define an extended vertex set 𝑉 ′ = 𝑉 ∪ {𝑠, 𝑡} with edge set 𝐸′ = 𝐸 ∪
⋃︀
𝑢∈𝑉

(𝑠, 𝑢) ∪
⋃︀
𝑢∈𝑉

(𝑢, 𝑡),

the parametric capacity of an edge (𝑢, 𝑣) ∈ 𝐸′ as

𝑐𝜆(𝑢, 𝑣) =

⎧⎪⎨⎪⎩
max{0, 𝜑′𝑢(−𝜆)} if 𝑢 ∈ 𝑉, 𝑣 = 𝑡

max{0,−𝜑′𝑢(−𝜆)} if 𝑢 = 𝑠, 𝑣 ∈ 𝑉
𝑐𝑢𝑣 otherwise

and let (Λ, 𝜏) be a 1
3𝐿 -approximate parametric min 𝑠, 𝑡-cut of 𝐺′(𝑉 ′, 𝐸′, 𝑐𝜆).

There exists an algorithm that, given (Λ, 𝜏), outputs ̃︀𝑤* = argmin
𝑤∈𝐵(𝐺)

𝜑*(−𝑤) and a 𝐺-decomposition

̃︀𝑤*1, . . . , ̃︀𝑤*𝑟 of ̃︀𝑤*. The running time of this algorithm is 𝑂
(︂
𝑛+

𝑟∑︀
𝑖=1
|𝑉𝑖|2

)︂
.

5.4.4 Dual Progress Analysis in One Step

Lemma 5.4.4 (Dual progress in one step). Let 𝐹 : 2𝑉 → Z≥0 be a submodular function that is

separable, i.e. 𝐹 (𝑆) =
𝑟∑︀
𝑖=1

𝐹𝑖(𝑆) for all 𝑆 ⊆ 𝑉 , where 𝐹𝑖 : 2𝑉 → Z≥0 are 𝑉𝑖-restricted submodular

functions with 𝐹𝑖(∅) = 0. Additionally, let 𝜓 : R𝑛 → R be a function that satisfies Assumption 5.2.2,
where |𝑉 | = 𝑛.

Given a feasible dual solution 𝑤 ∈ 𝐵(𝐹 ) and an 𝐹 -decomposition 𝑤1, . . . , 𝑤𝑟 ∈ Z𝑛 of 𝑤, there is an
algorithm that outputs a vector 𝑤′ ∈ Z𝑛, along with an (𝐹1, . . . , 𝐹𝑟)-decomposition 𝑤′1, . . . , 𝑤′𝑟 ∈ Z𝑛
of 𝑤′, such that

𝜓*(−𝑤′)− 𝜓*(−𝑤*) ≤
(︂
1− 1

𝛼

)︂
(𝜓*(−𝑤)− 𝜓*(−𝑤*))
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where 𝛼 = max
𝑖∈[𝑟]
{|𝑉𝑖|2/4} and 𝑤* = argmin

𝑤*∈𝐵(𝐹 )
𝜓*(−𝑤*) is the dual optimum. The running time of the

algorithm is

̃︀𝑂(︃ 𝑟∑︁
𝑖=1

|𝑉𝑖|2𝒪𝑖 + 𝑇maxflow

(︃
𝑛, 𝑛+

𝑟∑︁
𝑖=1

|𝑉𝑖|2
)︃)︃

.

The full proof of Lemma 5.4.4 appears in Appendix 9.3.5.

5.4.5 Main Theorem

Proof of Theorem 5.1.1. We repeatedly apply Lemma 5.4.4, and let 𝑤0, . . . , 𝑤𝑇 be the iterates after
𝑇 = 𝛼 log 𝜓*(−𝑤0)−𝜓*(−𝑤*)

𝜁 iterations. We have

𝜓*(−𝑤𝑇 )− 𝜓*(−𝑤*) ≤
(︂
1− 1

𝛼

)︂
(𝜓*(−𝑤𝑇−1)− 𝜓*(−𝑤*)) .

Applying induction over 𝑇 steps we obtain that

𝜓*(−𝑤𝑇 )− 𝜓*(−𝑤*) ≤
(︂
1− 1

𝛼

)︂𝑇
(𝜓*(−𝑤0)− 𝜓*(−𝑤*)) ≤ 𝑒−𝑇/𝛼(𝜓*(−𝑤0)− 𝜓*(−𝑤*)) ≤ 𝜁 .

We have obtained a high precision solution to the objective (5.4). Finally, setting 1
𝜁 = poly(𝐿𝜎𝑛𝐹max/𝜀) =

𝑛𝑂(1)/𝜀 and applying Corollary 9.3.1 to convert from this solution to the actual sets, we obtain the
desired solution.

As Assumption 5.2.2 implies 𝜓*(−𝑤0)− 𝜓*(−w*) = 𝑛𝑂(1), the total running time is

̃︀𝑂(︂max
𝑖
|𝑉𝑖|2

(︂ 𝑟∑︁
𝑖=1

|𝑉𝑖|2𝒪𝑖 + 𝑇maxflow

(︂
𝑛, 𝑛+

𝑟∑︁
𝑖=1

|𝑉𝑖|2
)︂)︂

log
1

𝜀

)︂
.
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Chapter 6

Sparse Convex Optimization via
Adaptively Regularized Hard
Thresholding

6.1 Introduction

Sparse Convex Optimization is the problem of optimizing a convex objective, while constraining the
sparsity of the solution (its number of non-zero entries). Variants and special cases of this problem
have been studied for many years, and there have been countless applications in Machine Learning,
Signal Processing, and Statistics. In Machine Learning it is used to regularize models by enforcing
parameter sparsity, since a sparse set of parameters often leads to better model generalization.
Furthermore, in a lot of large scale applications the number of parameters of a trained model is
a significant factor in computational efficiency, thus improved sparsity can lead to improved time
and memory performance. In applied statistics, a single extra feature translates to a real cost from
increasing the number of samples. In compressed sensing, finding a sparse solution to a Linear
Regression problem can be used to significantly reduce the sample size for the recovery of a target
signal. In the context of these applications, decreasing sparsity by even a small amount while not
increasing the accuracy can have a significant impact.

6.1.1 Sparse Optimization

Given a function 𝑓 : R𝑛 → R and any 𝑠*-sparse (unknown) target solution 𝑥*, the Sparse Optimization
problem is to find an 𝑠-sparse solution 𝑥, i.e. a solution with at most 𝑠 non-zero entries, such that
𝑓(𝑥) ≤ 𝑓(𝑥*)+𝜀 and 𝑠 ≤ 𝑠*𝛾, where 𝜀 > 0 is a desired accuracy and 𝛾 ≥ 1 is an approximation factor
for the target sparsity. Even if 𝑓 is a convex function, the sparsity constraint makes this problem
non-convex, and it has been shown that it is an intractable problem, even when 𝛾 = 𝑂

(︁
2log

1−𝛿 𝑛
)︁

and 𝑓 is the Linear Regression objective [127, 63]. However, this worst-case behavior is not observed
in practice, and so a large body of work has been devoted to the analysis of algorithms under the

assumption that the restricted condition number 𝜅𝑠+𝑠* =
𝜌+
𝑠+𝑠*

𝜌−
𝑠+𝑠*

(or just 𝜅 = 𝜌+

𝜌− ) of 𝑓 is bounded

[127, 146, 170, 16, 113, 89, 169, 148, 149, 89, 154]. Note: Here, 𝜌+𝑠+𝑠* is the maximum smoothness
constant of any restriction of 𝑓 on an (𝑠+ 𝑠*)-sparse subset of coordinates and 𝜌−𝑠+𝑠* is the minimum
strong convexity constant of any restriction of 𝑓 on an (𝑠+ 𝑠*)-sparse subset of coordinates.

The first algorithm for this problem, often called Orthogonal Matching Pursuit (OMP) or Greedy,
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was analyzed by [127] for Linear Regression, and subsequently for general 𝑓 by [146], obtaining the
guarantee that the sparsity of the returned solution is 𝑂

(︁
𝑠*𝜅 log 𝑓(𝑥0)−𝑓(𝑥*)

𝜀

)︁
. 1 In applications

where having low sparsity is crucial, the dependence of sparsity on the required accuracy 𝜀 is
undesirable. The question of whether this dependence can be removed was answered positively [146,
89] giving a sparsity guarantee of 𝑂(𝑠*𝜅2). As remarked in [146], this bound sacrifices the linear
dependence on 𝜅, while removing the dependence on 𝜀 and 𝑓(𝑥0)− 𝑓(𝑥*).

Since then, there has been some work on improving these results by introducing non-trivial
assumptions, such as the target solution 𝑥* being close to globally optimal. More specifically,
[170] defines the Restricted Gradient Optimal Constant (RGOC) at level 𝑠, 𝜁𝑠 (or just 𝜁) as the
ℓ2 norm of the top-𝑠 elements in ∇𝑓(𝑥*) and analyzes an algorithm that gives sparsity 𝑠 =
𝑂 (𝑠*𝜅 log (𝑠*𝜅)), and such that 𝑓(𝑥) ≤ 𝑓(𝑥*) +𝑂(𝜁2/𝜌−). [154] strengthens this bound to 𝑓(𝑥) ≤
𝑓(𝑥*) +𝑂(𝜁2/𝜌+) with sparsity 𝑠 = 𝑂 (𝑠*𝜅 log 𝜅). However, this means that 𝑓(𝑥) might be much
larger than 𝑓(𝑥*) + 𝜀 in general. To the best of our knowledge, no improvement has been made over
the 𝑂

(︁
𝑠*min

{︁
𝜅𝑓(𝑥

0)−𝑓(𝑥*)
𝜀 , 𝜅2

}︁)︁
bound in the general case.

Related work. Sparse convex optimization is closely related to the problem of optimizing a convex
function under a rank constraint, which is a very general optimization problem encompassing matrix
completion, robust principal component analysis, and others. Close analogues of OMP and OMPR
that give guarantees on the rank of the solution based on the condition number have been analyzed
for this setting [144, 13].

Another line of work studies a maximization version of the sparse convex optimization problem
as well as its generalizations for matroid constraints [6, 55, 38].

6.1.2 Sparse Solution and Support Recovery

Often, as is the case in compressed sensing, one needs a guarantee on the closeness of the solution
𝑥 to the target solution 𝑥* in absolute terms, rather than in terms of the value of 𝑓 . The goal is
usually either to recover (a superset of) the target support, or to ensure that the returned solution
is close to the target solution in ℓ2 norm. The results for this problem either assume a constant
upper bound on the Restricted Isometry Property (RIP) constant 𝛿𝑟 := 𝜅𝑟−1

𝜅𝑟+1 for some 𝑟 (RIP-based
recovery), or that 𝑥* is close to being a global optimum (RIP-free recovery). This problem has been
extensively studied and is an active research area in the vast compressed sensing literature. See also
the survey by [21].

In the seminal papers of [33, 32, 46, 31] it was shown that for the Linear Regression problem when
𝛿2𝑠* <

√
2− 1 ≈ 0.41, the LASSO algorithm [161] can recover a solution with ‖𝑥− 𝑥*‖22 ≤ 𝐶𝑓(𝑥*),

where 𝐶 is a constant depending only on 𝛿2𝑠* and 𝑓(𝑥*) = 1
2 ‖𝐴𝑥

* − 𝑏‖22 is the error of the target
solution2. Since then, a multitude of results of similar flavor have appeared, either giving related
guarantees for the LASSO algorithm while improving the RIP upper bound [67, 30, 64, 29, 124, 7]
which culminate in a bound of 𝛿2𝑠* < 0.6248, or showing that similar guarantees can be obtained by
greedy algorithms under more restricted RIP conditions, but that are typically faster than LASSO
[130, 129, 128, 19, 87, 65, 66]. See also the comprehensive surveys by [68, 125].

[128] presents a greedy algorithm called CoSaMP and shows that for Linear Regression it achieves
a bound in the form of [31] while having a more efficient implementation. Their method works for
the more restricted RIP upper bound of 𝛿2𝑠* < 0.025, or 𝛿4𝑠* < 0.4782 as improved by [68]. [19]
proves that another greedy algorithm called Iterative Hard Thresholding (IHT) achieves a similar

1Even though [127] states a less general result, this is what is implicitly proven.
2𝑓(𝑥*) is also commonly denoted as 1

2
‖𝜂‖22, where 𝐴𝑥* = 𝑏+ 𝜂, i.e. 𝜂 is the measurement noise.

108



bound to that of CoSaMP for Linear Regression, with the condition 𝛿3𝑠* < 0.067, which is improved
to 𝛿2𝑠* < 1

3 by [87] and to 𝛿3𝑠* < 0.5774 by [65].
The RIP-free line of research has shown that strong results can be achieved without a RIP upper

bound, given that the target solution is sufficiently close to being a global optimum. These results
typically require that 𝑠 is significantly larger than 𝑠*. In particular, [170] shows that if 𝜁 is the
RGOC of 𝑓 it can be guaranteed that ‖𝑥− 𝑥*‖2 ≤ 2

√
6 𝜁
𝜌− (or (1 +

√
6) 𝜁
𝜌− with a slightly tighter

analysis). [154] strengthens this bound to
(︁
1 +

√︁
1 + 5

𝜅

)︁
𝜁
𝜌− . Furthermore, it has been shown that

as long as a “Signal-to-Noise” condition holds, one can actually recover a superset of the target
support. Typically the condition is a lower bound on |𝑥*min|, the minimum magnitude non-zero entry

of the target solution. Different lower bounds that have been devised include Ω

(︂√
𝑠+𝑠*‖∇𝑓(𝑥*)‖∞

𝜌−
𝑠+𝑠*

)︂
[89], which was later improved to Ω

(︂√︂
𝑓(𝑥*)−𝑓(𝑥*)

𝜌−2𝑠

)︂
, where 𝑥* is an optimal 𝑠-sparse solution [169].

Finally, [154] improves the sparsity bound to 𝑂(𝑠*𝜅 log (𝑠*𝜅)) in the statistical setting and [149]
shows that the sparsity can be brought down to 𝑠 = 𝑠*+𝑂(𝜅2) if a stronger lower bound of Ω

(︁√
𝜅 𝜁𝜌

)︁
is assumed.

6.1.3 Our Work

In this work we present a new algorithm called Adaptively Regularized Hard Thresholding (ARHT),
that closes the longstanding gap between the 𝑂

(︁
𝑠*𝜅𝑓(𝑥

0)−𝑓(𝑥*)
𝜀

)︁
and 𝑂

(︀
𝑠*𝜅2

)︀
bounds by getting a

sparsity of 𝑂(𝑠*𝜅) and thus achieving the best of both worlds. As [63] shows that for a general class
of algorithms (including greedy algorithms like OMP, IHT as well as LASSO) the linear dependence
on 𝜅 is necessary even for the special case of Sparse Regression, our result is tight for this class of
algorithms. In Section 6.5.1 we briefly describe this example and also state a conjecture that it
can be turned into an inapproximability result in Conjecture 6.5.1. Furthermore, in Section 6.5.2
we show that the 𝑂(𝑠*𝜅2) sparsity bound is tight for OMPR, thus highlighting the importance of
regularization in our method. Our algorithm is efficient, as it requires roughly 𝑂

(︁
𝑠 log3 𝑓(𝑥

0)−𝑓(𝑥*)
𝜀

)︁
iterations, each of which includes one function minimization in a restricted support of size 𝑠 and is
simple to describe and implement. Furthermore, it directly implies non-trivial results in the area of
compressed sensing.

We also provide a new analysis of OMPR [87] and show that under the condition that 𝑠 > 𝑠* 𝜅
2

4 ,

or equivalently under the RIP condition 𝛿𝑠+𝑠* <
2
√

𝑠
𝑠*−1

2
√

𝑠
𝑠*+1

, it is possible to approximately minimize

the function 𝑓 up to some error depending on the RIP constant and the closeness of 𝑥* to global
optimality. More specifically, we show that for any 𝜀 > 0 OMPR returns a solution 𝑥 such that

𝑓(𝑥) ≤ 𝑓(𝑥*) + 𝜀+ 𝐶1(𝑓(𝑥
*)− 𝑓(𝑥opt)) ,

where 𝑥opt is the globally optimal solution, as well as

‖𝑥− 𝑥*‖22 ≤ 𝜀+ 𝐶2(𝑓(𝑥
*)− 𝑓(𝑥opt))] ,

where 𝐶1, 𝐶2 are constants that only depend on 𝑠
𝑠* and 𝛿𝑠+𝑠* . An important feature of our approach

is that it provides a meaningful tradeoff between the RIP constant upper bound and the sparsity of
the solution, even when the sparsity 𝑠 is arbitrarily close to 𝑠*. In other words, one can relax the
RIP condition at the expense of increasing the sparsity of the returned solution. Furthermore, our
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Table 6.1: Compressed sensing tradeoffs implied by Theorem 6.4.2: Sparsity vs RIP condition

𝑠 RIP condition

𝑠* 𝛿2𝑠* < 0.33
2𝑠* 𝛿3𝑠* < 0.47
3𝑠* 𝛿4𝑠* < 0.55
30𝑠* 𝛿31𝑠* < 0.83

analysis applies to general functions with bounded RIP constant.
Experiments with real data suggest that ARHT and a variant of OMPR which we call Exhaustive

Local Search achieve promising performance in recovering sparse solutions.

6.1.4 Comparison to Previous Work

In this section we compare our results with previous work on sparse optimization, solution, and
support recovery.

Sparse Optimization

Our Algorithm 15 (ARHT) returns a solution with 𝑠 = 𝑂(𝑠*𝜅) without any additional assumptions,
thus significantly improving over the bound𝑂

(︁
𝑠*min

{︁
𝜅𝑓(𝑥

0)−𝑓(𝑥*)
𝜀 , 𝜅2

}︁)︁
that was known in previous

work. This proves that neither any dependence on the required solution accuracy 𝜀, nor the quadratic
dependence on the condition number 𝜅 is necessary. Furthermore, no assumption on the function or
the target solution is required to achieve this bound. Importantly, previous results imply that our
bound is tight up to constants for a general class of algorithms, including Greedy-type algorithms
and LASSO [63].

Sparse Solution Recovery

In Corollary 6.3.11, we show that the improved guarantees of Theorem 6.3.1 immediately imply that
ARHT gives a bound of ‖𝑥− 𝑥*‖2 ≤ (2 + 𝜃) 𝜁

𝜌− for any 𝜃 > 0, where 𝜁 is the Restricted Gradient
Optimal Constant. This improves the constant factor in front of the corresponding results of [170,
154].

As we saw, our Theorem 6.4.2 directly implies that OMPR gives an upper bound on ‖𝑥− 𝑥*‖22
of the same form as the RIP-based bounds in previous work, under the condition 𝛿𝑠+𝑠* <

2
√

𝑠
𝑠*−1

2
√

𝑠
𝑠*+1

.

While previous results either concentrate on the case 𝑠 = 𝑠*, or 𝑠g𝑠*, our analysis provides a way
to trade off increased sparsity for a more relaxed RIP bound, allowing for a whole family of RIP
conditions where 𝑠 is arbitrarily close to 𝑠*. Specifically, if we set 𝑠 = 𝑠* our work implies recovery
for 𝛿2𝑠* < 1

3 ≈ 0.33, which matches the best known bound for any greedy algorithm [87], although it
is a stricter condition than the 𝛿2𝑠* < 0.62 required by LASSO [68]. Table 6.1 contains a few such
RIP bounds implied by our analysis and shows that it readily surpasses the bounds for Subspace
Pursuit 𝛿3𝑠* < 0.35, CoSaMP 𝛿4𝑠* < 0.48, and OMP 𝛿31𝑠* < 0.33 [87, 170]. Another important
feature compared to previous work is that all our guarantees are not restricted to Linear Regression
and are true for any function 𝑓 , as long as it satisfies the required RIP condition, which makes the
result more general.
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Sparse Support Recovery

Corollary 6.3.12 shows that as a direct consequence of our work, the condition |𝑥*min| >
𝜁
𝜌− suffices

for our algorithm to recover a superset of the support with size 𝑠 = 𝑂(𝑠*𝜅). Compared to [89],
we improve both the size of the superset, as well as the condition, since

√
𝑠
‖∇𝑓(𝑥*)‖∞

𝜌− ≥
√︀

𝑠
𝑠*

𝜁
𝜌− =

Ω
(︁
𝜁
𝜌−

)︁
. Compared to [149], the bounds on the superset size are incomparable in general, but our

|𝑥*min| condition is more relaxed, since
√
𝜅 𝜁
𝜌− = Ω( 𝜁

𝜌− ). Finally, [169] works under the condition

|𝑥*min| >

√︂
2(𝑓(𝑥*)− min

‖𝑥‖0≤𝑠
𝑓(𝑥))

𝜌− , which is more relaxed since this quantity is always in
[︁

1√
𝜅
𝜁
𝜌− ,

𝜁
𝜌−

]︁
, but

uses a larger superset size of 𝑂(𝑠*𝜅2) instead of 𝑂(𝑠*𝜅). Although not explicitly stated, [170, 154]

also give a similar lower bound of
√︁
1 + 10

𝜅
𝜁
𝜌− which we improve by a constant factor.

6.1.5 Runtime discussion

ARHT has the advantage of being very simple to implement in practice. The runtime of Algorithm 15
(ARHT) is comparable to that of the most efficient greedy algorithms (e.g. OMP/OMPR), as it
requires a single function minimization per iteration. On the other hand, Algorithm 13 (Exhaustive
Local Search) is less efficient, as it requires 𝑂(𝑛) function minimizations in each iteration, although
in practice one might be able to speed it up by exploiting the fact that the problems being solved in
each iteration are very closely related.

6.1.6 Naming Conventions

The algorithm that we call Orthogonal Matching Pursuit (OMP), is also known as “Greedy” [127],
“Fully Corrective Forward Greedy Selection” or just “Forward Selection”. What we call Orthogonal
Matching Pursuit with Replacement (OMPR) [87] is also known by various other names. It is
referenced in [146] as a simpler variant of their “Fully Corrective Forward Greedy Selection with
Replacement” algorithm, or just Forward Selection with Replacement, or “Partial Hard Thresholding
with parameter 𝑟 = 1 (PHT(𝑟) where 𝑟 = 1)” [88] which is a generalization of Iterative Hard
Thresholding. Finally, what we call Exhaustive Local Search is essentially a variant of “Orthogonal
Least Squares” that includes replacement steps, and also appears in [146] as “Fully Corrective Forward
Greedy Selection with Replacement”, or just “Forward Stepwise Selection with Replacement”. See
also [20] regarding naming conventions.
Remark: Most of the results in the literature either only apply to, or are only presented for the
Linear Regression problem. Since all of our results apply to general function minimization, we
present them as such.

6.2 Preliminaries

We will make use of ̃︀𝜅𝑠 = 𝜌+2 /𝜌
−
𝑠 which is at most 𝜅𝑠 as long as 𝑠 ≥ 2. The following lemma stems

from the definitions of 𝜌+2 , 𝜌
+
1 and can be used to relate 𝜌+2 with 𝜌+1

Lemma 6.2.1. For any function 𝑓 that has the RSC property at sparsity level ≥ 2 and RSS constants
𝜌+1 , 𝜌

+
2 at sparsity levels 1 and 2 respectively, we have 𝜌+2 ≤ 2𝜌+1 .
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Proof. For any 𝑥, 𝑦 ∈ R𝑛 such that |supp(𝑦 − 𝑥)| ≤ 2, We will prove that

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+ 2𝜌+1
2
‖𝑦 − 𝑥‖22 .

Let 𝑦 = 𝑥+ 𝛼1⃗𝑖 + 𝛽1⃗𝑗 for some 𝑖, 𝑗 ∈ [𝑛] and 𝛼, 𝛽 ∈ R. We assume 𝑖 ̸= 𝑗 and since otherwise the
claim already follows from RSS at sparsity level 1. We apply the RSS property with sparsity level 1
to get the inequalities

𝑓(𝑥+ 2𝛼1⃗𝑖) ≤ 𝑓(𝑥) + 2⟨∇𝑓(𝑥), 𝛼1⃗𝑖⟩+ 4
𝜌+1
2

⃦⃦⃦
𝛼1⃗𝑖

⃦⃦⃦2
2

and

𝑓(𝑥+ 2𝛽1⃗𝑗) ≤ 𝑓(𝑥) + 2⟨∇𝑓(𝑥), 𝛽1⃗𝑗⟩+ 4
𝜌+1
2

⃦⃦⃦
𝛽1⃗𝑗

⃦⃦⃦2
2
.

Now, by using convexity (more precisely restricted convexity at sparsity level 2 that is implied by
RSC) we have

𝑓(𝑦) = 𝑓(𝑥+ 𝛼1⃗𝑖 + 𝛽1⃗𝑗)

≤ 1

2

(︁
𝑓(𝑥+ 2𝛼1⃗𝑖) + 𝑓(𝑥+ 2𝛽1⃗𝑗)

)︁
≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝛼1⃗𝑖 + 𝛽1⃗𝑗⟩+

2𝜌+1
2

⃦⃦⃦
𝛼1⃗𝑖 + 𝛽1⃗𝑗

⃦⃦⃦2
2

= 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+ 2𝜌+1
2
‖𝑦 − 𝑥‖22 .

Definition 6.2.2 (Restricted Gradient Optimal Constant (RGOC)). Given a differentiable function
𝑓 and a “target” solution 𝑥*, the Restricted Gradient Optimal Constant [170] at sparsity level 𝑠 is
the minimum 𝜁𝑠 ∈ R+ such that

|⟨∇𝑓(𝑥*), 𝑦⟩| ≤ 𝜁𝑠 ‖𝑦‖2
for all 𝑠-sparse 𝑦. Setting 𝑦 = ∇𝑆𝑓(𝑥*) for some set 𝑆 with |𝑆| ≤ 𝑠, this implies that 𝜁𝑠 ≥ ‖∇𝑆𝑓(𝑥*)‖.
An alternative definition is that 𝜁𝑠 is the ℓ2 norm of the 𝑠 elements of ∇𝑓(𝑥*) with highest absolute
value.

Definition 6.2.3 (𝑆-restricted minimizer). Given 𝑓 : R𝑛 → R, 𝑥* ∈ R𝑛, and 𝑆 ⊆ [𝑛], we will call
𝑥* an 𝑆-restricted minimizer of 𝑓 if supp(𝑥*) ⊆ 𝑆 and for all 𝑥 such that supp(𝑥) ⊆ 𝑆 we have
𝑓(𝑥*) ≤ 𝑓(𝑥).

In Lemma 6.2.4 we state a standard martingale concentration inequality that we will use. See
also [40] for more on martingales.

Lemma 6.2.4 (Martingale concentration inequality [40]). Let 𝑌0 = 0, 𝑌1, . . . , 𝑌𝑛 be a martingale
with respect to the sequence 𝑖1, . . . , 𝑖𝑛 such that

Var (𝑌𝑘 | 𝑖1, . . . , 𝑖𝑘−1) ≤ 𝜎2

and
𝑌𝑘−1 − 𝑌𝑘 ≤𝑀 ,
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for all 𝑘 ∈ [𝑛], then for any 𝜆 > 0,

Pr [𝑌𝑛 ≤ −𝜆] ≤ 𝑒−𝜆
2/(2(𝑛𝜎2+𝑀𝜆/3)) .

6.2.1 Algorithms

ℓ1 optimization (LASSO)

The LASSO approach is to relax the ℓ0 constraint into an ℓ1 one, thus solving the following
optimization problem:

min
𝑥

𝑓(𝑥) + 𝜆 ‖𝑥‖1 , (6.1)

for some parameter 𝜆 > 0.

Iterative Hard Thresholding (IHT):

[19] define the hard thresholding operator 𝐻𝑟(𝑥) as

[𝐻𝑟(𝑥)]𝑖 =

⎧⎪⎨⎪⎩
𝑥𝑖 if |𝑥𝑖| is one of the 𝑟 entries of 𝑥

with largest magnitude
0 otherwise

.

Using this, the algorithm is described in Algorithm 10.

Algorithm 10 Iterative Hard Thresholding (IHT)

1: function IHT(𝑠, 𝑇 )
2: function to be minimized 𝑓 : R𝑛 → R
3: number of iterations 𝑇
4: output sparsity 𝑠
5: 𝑆0 ← ∅
6: 𝑥0 ← 0⃗
7: for 𝑡 = 0 . . . 𝑇 − 1 do
8: 𝑥𝑡+1 ← 𝐻𝑠

(︀
𝑥𝑡 − 𝜂∇𝑓(𝑥𝑡)

)︀
9: return 𝑥𝑇

Orthogonal Matching Pursuit (Greedy/OMP/Fwd stepwise selection)

The algorithm is described in Algorithm 11.

Orthogonal Matching Pursuit with Replacement (Local search/OMPR/Fwd stepwise
selection with replacement steps)

The algorithm is described in Algorithm 12.

Exhaustive Local Search

The algorithm in this section is similar to OMPR, in that it iteratively inserts a new element in
the support while removing one from it at the same time. While, as in OMPR, the element to be
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Algorithm 11 Greedy/OMP/Fwd stepwise selection

1: function greedy(𝑠)
2: function to be minimized 𝑓 : R𝑛 → R
3: output sparsity 𝑠
4: 𝑥0 ← 0⃗
5: for 𝑡 = 0 . . . 𝑠− 1 do
6: 𝑖← argmax

{︀
|∇𝑖𝑓(𝑥𝑡)|

⃒⃒
𝑖 ∈ [𝑛]∖𝑆𝑡

}︀
7: 𝑆𝑡+1 ← 𝑆𝑡 ∪ {𝑖}
8: 𝑥𝑡+1 ← argmin

{︀
𝑓(𝑥)

⃒⃒
supp(𝑥) ⊆ 𝑆𝑡+1

}︀
9: return 𝑥𝑠

Algorithm 12 Orthogonal Matching Pursuit with Replacement
1: function OMPR(𝑠)
2: function to be minimized 𝑓 : R𝑛 → R
3: output sparsity 𝑠
4: 𝑆0 ← [𝑠]
5: 𝑥0 ← argmin

{︀
𝑓(𝑥)

⃒⃒
supp(𝑥) ⊆ 𝑆0

}︀
6: 𝑡← 0
7: while true do
8: 𝑖← argmax

{︀
|∇𝑖𝑓(𝑥𝑡)|

⃒⃒
𝑖 ∈ [𝑛]∖𝑆𝑡

}︀
9: 𝑗 ← argmin

{︀
|𝑥𝑡𝑗 |

⃒⃒
𝑗 ∈ 𝑆𝑡

}︀
10: 𝑆𝑡+1 ← 𝑆𝑡 ∪ {𝑖}∖{𝑗}
11: 𝑥𝑡+1 ← argmin

{︀
𝑓(𝑥)

⃒⃒
supp(𝑥) ⊆ 𝑆𝑡+1

}︀
12: if 𝑓(𝑥𝑡+1) ≥ 𝑓(𝑥𝑡) then
13: break
14: 𝑡← 𝑡+ 1

15: 𝑇 ← 𝑡
16: return 𝑥𝑇

removed is the minimum magnitude entry, the one to be inserted is chosen to be the one which
results in the maximum decrease in the value of the objective. It is described in Algorithm 13.

Remark 6.2.5. In the following sections, we will denote the minimization objective by 𝑓 , the RSS

and RSC parameters 𝜌+2 and 𝜌−𝑠+𝑠* by 𝜌+ and 𝜌− respectively, as well as 𝜅 =
𝜌+
𝑠+𝑠*

𝜌−
𝑠+𝑠*

and ̃︀𝜅 =
𝜌+2

𝜌−
𝑠+𝑠*

.

Note that the use of 𝜌+2 instead of 𝜌+1 used in some works is not restrictive. As shown in Lemma 6.2.1,

𝜌+2 ≤ 2𝜌+1 and so in all the bounds involving ̃︀𝜅, it can be replaced by 2
𝜌+1

𝜌−
𝑠+𝑠*

, thus only losing a factor

of 2. Furthermore, we state our results in terms of ̃︀𝜅 as opposed to 𝜅. This is always more general
since ̃︀𝜅 ≤ 𝜅.

In order to simplify the exposition, we will assume that min
𝑥
𝑓(𝑥) = 0. This property can be

ensured by adding a constant to 𝑓 .

When no additional context is provided, we denote current solution by 𝑥 and the target solution
𝑥*, with respective support sets 𝑆 and 𝑆* and sparsities 𝑠 = |𝑆| and 𝑠* = |𝑆*|.
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Algorithm 13 Exhaustive Local Search
1: function to be minimized 𝑓 : R𝑛 → R
2: target sparsity 𝑠
3: number of iterations 𝑇
4: 𝑆0 ← [𝑠]
5: 𝑥0 ← argmin

{︀
𝑓(𝑥)

⃒⃒
supp(𝑥) ⊆ 𝑆0

}︀
6: for 𝑡 = 0 . . . 𝑇 − 1 do
7: 𝑗 ← argmin

𝑗∈𝑆𝑡

𝑥2𝑗

8: 𝑖← argmin
𝑖∈[𝑛]∖𝑆𝑡

{︂
min

𝑥 : supp(𝑥)⊆𝑆𝑡∪{𝑖}∖{𝑗}
𝑓(𝑥)

}︂
9: 𝑆𝑡+1 ← 𝑆𝑡 ∪ {𝑖}∖{𝑗}

10: 𝑥𝑡+1 ← argmin
{︀
𝑓(𝑥)

⃒⃒
supp(𝑥) ⊆ 𝑆𝑡+1

}︀
11: if 𝑓(𝑥𝑡+1) ≥ 𝑓(𝑥𝑡) then
12: return 𝑥𝑡

13: return 𝑥𝑇

6.3 Adaptively Regularized Hard Thresholding (ARHT)

6.3.1 Overview and Main Theorem

Our algorithm is essentially a hard thresholding algorithm (and more specifically OMPR, also known
as PHT(1)) with the crucial novelty that it is applied on an adaptively regularized objective function.
Hard thresholding algorithms maintain a solution 𝑥 supported on 𝑆 ⊆ [𝑛], which they iteratively
update by inserting new elements into the support set 𝑆 and removing the same number of elements
from it, in order to preserve the sparsity of 𝑥. More specifically, OMPR makes one insertion and
one removal in each iteration. In order to evaluate the element 𝑖 to be inserted into 𝑆, OMPR
uses the fact that, because of smoothness, (∇𝑖𝑓(𝑥))

2

2𝜌+2
is a lower bound on the decrease of 𝑓(𝑥) caused

by inserting 𝑖 into the support, and therefore picks 𝑖 to maximize |∇𝑖𝑓(𝑥)|. Similarly, in order to
evaluate the element 𝑗 to be removed from 𝑆, OMPR uses the fact that 𝜌+2

2 𝑥
2
𝑗 upper bounds the

increase of 𝑓(𝑥) caused by setting 𝑥𝑗 = 0, and therefore picks 𝑗 to minimize |𝑥𝑗 |. However, the real

worth of 𝑗 might be as small as 𝜌−2
2 𝑥

2
𝑗 , so the upper bound can be loose by a factor of 𝜌

+
2

𝜌−2
≥ 𝜌+2

𝜌−
𝑠+𝑠*

= ̃︀𝜅.

We eliminate this discrepancy by running the algorithm on the regularized function 𝑔(𝑧) :=

𝑓(𝑧) +
𝜌+2
2 ‖𝑧‖

2
2. As the restricted condition number of 𝑔 is now 𝑂(1), the real worth of a removal

candidate 𝑗 matches the upper bound up to a constant factor.
However, even though 𝑔 is now well conditioned, the analysis can only guarantee the quality

of the solution in terms of the original objective 𝑓 if the regularization is not applied on elements
𝑆*, i.e. 𝜌+2

2

⃦⃦
𝑥𝑅∖𝑆*

⃦⃦2
2

for some sufficiently large 𝑅 ⊆ [𝑛]; if this is the case, a solution with sparsity
𝑂(𝑠*̃︀𝜅) can be recovered. Unfortunately, there is no way of knowing a priori which elements not to
regularize, as this is equivalent to finding the target solution. As a result, the algorithm can get
trapped in local minima, which are defined as states in which one iteration of the algorithm does not
decrease 𝑔(𝑥), even though 𝑥 is a suboptimal solution in terms of 𝑓 (i.e. 𝑓(𝑥) > 𝑓(𝑥*)).

The main contribution of this work is to characterize such local minima and devise a procedure
that is able to successfully escape them, thus allowing 𝑥 to converge to a desired solution for the
original objective.

The core algorithm is presented in Algorithm 14. The full algorithm additionally requires some
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standard routines like binary search and is presented in Algorithm 15.

Algorithm 14 Adaptively Regularized Hard Thresholding core routine

1: function ARHT_core(𝑠, ̂︀𝑓*, 𝜀)
2: function to be minimized 𝑓 : R𝑛 → R
3: target sparsity 𝑠
4: target value ̂︀𝑓* (current guess for the optimal value)
5: target error 𝜀
6: Define 𝑔𝑅(𝑥) := 𝑓(𝑥) +

𝜌+2
2 ‖𝑥𝑅‖

2
2 for all 𝑅 ⊆ [𝑛].

7: 𝑅0 ← [𝑛]
8: 𝑆0 ← [𝑠]
9: 𝑥0 ← argmin

supp(𝑥)⊆𝑆0

𝑔𝑅0(𝑥)

10: 𝑇 = 2𝑠 log
𝑓 (⃗0)−min

𝑥
𝑓(𝑥)

𝜀 (number of iterations)
11: for 𝑡 = 0 . . . 𝑇 − 1 do
12: if min

supp(𝑥)⊆𝑆𝑡
𝑓(𝑥) ≤ ̂︀𝑓* then

13: return argmin
supp(𝑥)⊆𝑆𝑡

𝑓(𝑥)

14: 𝑖← argmax
𝑖∈[𝑛]

|∇𝑖𝑔𝑅𝑡(𝑥𝑡)|

15: 𝑗 ← argmin
𝑗∈𝑆𝑡

|𝑥𝑗 |

16: 𝑆𝑡+1 ← 𝑆𝑡 ∪ {𝑖}∖{𝑗}
17: 𝑥𝑡+1 ← argmin

supp(𝑥)⊆𝑆𝑡+1

𝑔𝑅𝑡(𝑥)

18: if 𝑔𝑅𝑡(𝑥𝑡)− 𝑔𝑅𝑡(𝑥𝑡+1) < 1
𝑠

(︁
𝑔𝑅𝑡(𝑥𝑡)− ̂︀𝑓*)︁ then

19: 𝑆𝑡+1 ← 𝑆𝑡

20: Sample 𝑖 ∈ 𝑅𝑡 proportional to (𝑥𝑡𝑖)
2

21: 𝑅𝑡+1 ← 𝑅𝑡∖{𝑖}
22: 𝑥𝑡+1 ← argmin

supp(𝑥)⊆𝑆𝑡+1

𝑔𝑅𝑡+1(𝑥)

23: return 𝑥𝑇

In the following, we will let ̂︀𝑓* denote a guess on the target value 𝑓(𝑥*). Also, 𝑥0 will denote the
initial solution, which is an 𝑆0-restricted minimizer for an arbitrary set 𝑆0 ⊆ [𝑛] with |𝑆0| = 𝑠. In
Algorithm 14, 𝑆0 is defined explicitly as [𝑠], however in practice one might want to pick a better
initial set (e.g. returned by running OMP).

It should be noted that even though the value 𝜌+2 is used by the algorithm to define the regularizer,
exact knowledge of 𝜌+2 is not required, and an upper bound 𝑈 on it can be used. Of course, the
final sparsity and runtime bound will then depend on 𝑈/𝜌−𝑠+𝑠* instead of 𝜌+2 /𝜌

−
𝑠+𝑠* . One such upper

bound is 2𝜌+1 . For linear and logistic regression where 𝐴 is the (# examples) × (# features) data
matrix, 𝜌+1 is the maximum ℓ2 norm of a column of the data matrix 𝐴 (so 𝜌+1 = 1 if the columns
of 𝐴 are normalized). More generally, getting such a bound would depend on the specific function

we are trying to minimize. For example, if we are trying to minimize
𝑚∑︀
𝑖=1

𝐿(𝐴𝑥)𝑖 where 𝐴 is a data

matrix with normalized columns and 𝐿 : R→ R is a 1-smooth loss function, then 𝜌+1 ≤ 1 so 2 is a
good upper bound for 𝜌+2 . Another option is to run the algorithm for different candidate values for
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Algorithm 15 Adaptively Regularized Hard Thresholding

1: function ARHT_robust(𝑠, ̂︀𝑓*, 𝜀)
2: function to be minimized 𝑓 : R𝑛 → R
3: 𝑥ret ← 0⃗
4: for 𝑧 = 1 . . . 5 log

(︁
6𝑛 log 𝑓 (⃗0)

𝜀

)︁
do

5: 𝑥← ARHT_core(𝑠, ̂︀𝑓*, 𝜀)
6: if 𝑓(𝑥) < 𝑓(𝑥ret) then
7: 𝑥ret ← 𝑥
8: return 𝑥ret

9: function ARHT(𝑠, 𝜀)
10: function to be minimized 𝑓 : R𝑛 → R
11: target sparsity 𝑠
12: target error 𝜀
13: 𝑙← 0⃗
14: 𝑟 ← 𝑓 (⃗0)
15: 𝑏← 0⃗
16: while 𝑟 − 𝑙 > 𝜀 do
17: 𝑚← 𝑙+𝑟

2
18: 𝑥← ARHT_robust(𝑠,𝑚, 𝜀/3)
19: if 𝑓(𝑥) > 𝑚+ 𝜀/3 then
20: 𝑙← 𝑚
21: else
22: 𝑏← 𝑥
23: 𝑟 ← 𝑓(𝑥)

24: return 𝑏

𝜌+2 until we get the desired performance.
We are now ready for the main result of this section. It basically states that for any solution

𝑥* with sparsity 𝑠*, a solution 𝑥 with 𝑓(𝑥) ≤ 𝑓(𝑥*) + 𝜀 and sparsity 𝑂(𝜅𝑠*) can be recovered
by Algorithm 15. In comparison, previously known analyses could guarantee either a sparsity
𝑂(𝜅𝑠* log 𝑓 (⃗0)

𝜀 ) (OMP) or 𝑂(𝜅2𝑠*) (OMPR, IHT, LASSO). It is useful to note here that, because
of the constant factor in front of 𝜅𝑠* (which is less than 20), this result cannot be directly used to
obtain compressed sensing results with sparsity close to 𝑠*, but is instead useful in the asymptotic
regime (with relaxed sparsity 𝑠g𝑠*).

Theorem 6.3.1. Given a function 𝑓 and an (unknown) 𝑠*-sparse solution 𝑥*, with probability
at least 1 − 1

𝑛 Algorithm 15 returns an 𝑠-sparse solution 𝑥 with 𝑓(𝑥) ≤ 𝑓(𝑥*) + 𝜀, as long as

𝑠 ≥ 𝑠*max{4̃︀𝜅+ 7, 12̃︀𝜅+ 6}. The number of iterations is 𝑂
(︁
𝑠 log2 𝑓 (⃗0)𝜀 log

(︁
𝑛 log 𝑓 (⃗0)

𝜀

)︁)︁
.

The following corollary that bounds the total runtime can be immediately extracted. Note that
in practice the total runtime heavily depends on the choice of 𝑓 , and it can often be improved for
various special cases (e.g. linear regression).

Corollary 6.3.2 (Theorem 6.3.1 runtime). If we denote by 𝐺 the time needed to compute ∇𝑓 and
by 𝑀 the time to minimize 𝑓 in a restricted subset of [𝑛] of size 𝑠, the total runtime of Algorithm 15
is 𝑂

(︁
(𝐺+𝑀)𝑠 log2 𝑓 (⃗0)𝜀 log

(︁
𝑛 log 𝑓 (⃗0)

𝜀

)︁)︁
. If gradient descent is used for the implementation of the
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inner optimization problem, then 𝑀 = 𝑂
(︁
𝐺̃︀𝜅 log 𝑓 (⃗0)

𝜀

)︁
and so the total runtime can be bounded by

𝑂
(︁
𝐺𝑠̃︀𝜅 log3 𝑓 (⃗0)𝜀 log

(︁
𝑛 log 𝑓 (⃗0)

𝜀

)︁)︁
.

Before proving the above theorem, we provide the main components that are needed for its proof.
It is important to split the iterations of Algorithm 14 into two categories: Those that make enough
progress, i.e. for which the condition in Line 19 of Algorithm 14 is false, and those that don’t, i.e.
for which the condition in Line 19 is true. We call the former Type 1 iterations and the latter Type 2
iterations. Intuitively, Type 1 iterations signify that 𝑔(𝑥) is decreasing at a sufficient rate to achieve
the desired convergence, while Type 2 iterations indicate a local minimum that should be dealt with.
Our argument consists of two steps: Showing that as long as there are enough Type 1 iterations, a
desired solution will be obtained (Lemma 6.3.3), and bounding the total number of Type 2 iterations
with constant probability (Lemma 6.3.4).

Lemma 6.3.3 (Convergence rate). If Algorithm 14 executes at least 𝑇1 = 𝑠 log 𝑔(𝑥0)− ̂︀𝑓*
𝜀 Type 1

iterations, then 𝑓(𝑥𝑇 ) ≤ ̂︀𝑓* + 𝜀.

The proof of this lemma can be found in Appendix 9.4.1.

Lemma 6.3.4 (Bounding Type 2 iterations). If 𝑠 ≥ 𝑠*max{4̃︀𝜅+ 7, 12̃︀𝜅+ 6} and ̂︀𝑓* ≥ 𝑓(𝑥*), then
with probability at least 0.2 the number of Type 2 iterations is at most (𝑠* − 1)(4̃︀𝜅+ 6).

The proof of this lemma appears in Section 6.3.2. These lemmas can now be directly used to
obtain the following lemma, which states the performance guarantee of the ARHT core routine
(Algorithm 14).

Lemma 6.3.5 (Algorithm 14 guarantee). If 𝑠 ≥ 𝑠*max{4̃︀𝜅 + 7, 12̃︀𝜅 + 6} and ̂︀𝑓* ≥ 𝑓(𝑥*), with
probability at least 0.2 ARHT_core(𝑠, ̂︀𝑓*, 𝜀) returns an 𝑠-sparse solution 𝑥 such that 𝑓(𝑥) ≤ ̂︀𝑓* + 𝜀.

Proof. By Lemma 6.3.4, with probability at least 0.2 there will be at most (𝑠* − 1)(4̃︀𝜅+ 6) Type 2
iterations. This means that the number of Type 1 iterations is at least

𝑇 − (𝑠* − 1)(4̃︀𝜅+ 6) ≥ 𝑠 log 𝑓 (⃗0)
𝜀
≥ 𝑠 log 𝑔

0(𝑥0)− ̂︀𝑓*
𝜀

,

where the latter inequality follows from the fact that 𝑓 (⃗0) = 𝑔0(⃗0) ≥ 𝑔0(𝑥0) and ̂︀𝑓* ≥ 𝑓(𝑥*) ≥ 0.
Lemma 6.3.3 then implies that 𝑓(𝑥𝑇 ) ≤ ̂︀𝑓* + 𝜀.

In other words, as long as ̂︀𝑓* ≥ 𝑓(𝑥*), a solution of value ≤ ̂︀𝑓* + 𝜀 will be found. As the value
𝑓(𝑥*) is not known a priori, ̂︀𝑓* is just an estimate for it. We perform binary search over ̂︀𝑓*, as
described in Algorithm 15. The reason we need this estimate of 𝑓(𝑥*) is line 19 of Algorithm 14. As
our algorithm is randomized, we use this estimate to decide whether there was enough progress in one
iteration (Type 1 iteration), or not (Type 2 iteration, in which case we perform the randomization
step). If ̂︀𝑓* is smaller than 𝑓(𝑥*), the algorithm might mistake a Type 1 iteration for a Type 2
iteration, thus performing the randomization step even though the algorithm makes enough progress.
On the other hand, if ̂︀𝑓* is much larger than 𝑓(𝑥*), the algorithm might terminate with a suboptimal
solution of value much larger than 𝑓(𝑥*).

The probability of success in the previous lemma can be boosted by repeating multiple times.
Combining these arguments will lead us to the proof of Theorem 6.3.1. First, we turn the result of
Lemma 6.3.5 into a high probability result by repeating multiple times:
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Lemma 6.3.6. If 𝑠 ≥ 𝑠*max{4̃︀𝜅+ 7, 12̃︀𝜅+ 6} and ̂︀𝑓* ≥ 𝑓(𝑥*), ARHT_robust(𝑠, ̂︀𝑓*, 𝜀) returns an
𝑠-sparse solution 𝑥 such that 𝑓(𝑥) ≤ ̂︀𝑓* + 𝜀 with probability at least 1− 1

6𝑛 log
𝑓 (⃗0)
𝜀

.

Proof. From Lemma 6.3.5, the probability that a given call to ARHT_core fails is at most 0.8. Since
this random experiment is executed 5 log

(︁
6𝑛 log 𝑓 (⃗0)

𝜀

)︁
times independently, the probability that it

never succeeds is at most (0.8)
5 log

(︁
6𝑛 log

𝑓 (⃗0)
𝜀

)︁
< 1

6𝑛 log
𝑓 (⃗0)
𝜀

, therefore the statement follows.

Lemma 6.3.7. If 𝑠 ≥ 𝑠*max{4̃︀𝜅+ 7, 12̃︀𝜅+ 6}, ARHT(𝑠, 𝜀) (in Algorithm 15) returns an 𝑠-sparse
solution 𝑥 such that 𝑓(𝑥) ≤ 𝑓(𝑥*) + 𝜀. The algorithm succeeds with probability at least 1− 1

𝑛 . and

the number of calls to ARHT_robust is ≤ 6 log 𝑓 (⃗0)
𝜀 .

Proof. First we will bound the number of calls to ARHT_robust. Let 𝐿𝑘 be the equal to 𝑟 − 𝑙
before the 𝑘-th iteration in Line 21 of Algorithm 15. Then either 𝐿𝑘+1 = 𝐿𝑘/2 (Line 25) or
𝐿𝑘+1 ≤ 𝐿𝑘/2 + 𝜀/3 < 5𝐿𝑘/6 (Line 28). Therefore in any case we have 𝐿𝑘+1 < 5𝐿𝑘/6 which implies
that after 𝑇 = 6 log 𝑓 (⃗0)

𝜀 iterations we will have 𝑟 − 𝑙 ≤ 𝜀.
Now let us compute the probability that all the calls to ARHT_robust are successful. The

number of such calls is at most 6 log 𝑓 (⃗0)
𝜀 and we know each one of them independently fails with

probability less than 1

6𝑛 log
𝑓 (⃗0)
𝜀

, so by a union bound the probability that at least one call fails is less

than 1
𝑛 .

To prove correctness, note that by Lemma 6.3.6, for each 𝑟 ≥ 𝑓(𝑥*) we have
𝑓(ARHT_robust(𝑠, 𝑟, 𝜀/3)) ≤ 𝑟 + 𝜀/3. After Line 20 of Algorithm 15, we will have 𝑙 = 0 ≤ 𝑓(𝑥*).
In the while construct, it is always true that 𝑓(𝑥*) ≥ 𝑙. This is initially true, as we saw. For each 𝑚
chosen in Line 22 and 𝑥 in Line 23, note that if 𝑓(𝑥) > 𝑚+ 𝜀/3, then by Lemma 6.3.6 𝑓(𝑥*) > 𝑚
and so the invariant that 𝑓(𝑥*) ≥ 𝑙 stays true. On the other hand, it is always true that 𝑓(𝑏) ≤ 𝑟.
Initially this is so because 𝑓 (⃗0) = 𝑟, and when we decrease 𝑟 to some 𝑓(𝑥) we also update 𝑏 = 𝑥.
This implies that in the end of the algorithm the returned solution will have the required property,
since we will have 𝑓(𝑏) ≤ 𝑟 ≤ 𝑙 + 𝜀 ≤ 𝑓(𝑥*) + 𝜀.

The proof Theorem 6.3.1 now easily follows.
Proof of Theorem 6.3.1. Lemma 6.3.7 already establishes the correctness of the algorithm with
probability at least 1− 1

𝑛 . For the runtime, note that ARHT_core takes 𝑂
(︁
𝑠 log 𝑓 (⃗0)

𝜀

)︁
iterations,

ARHT_robust takes 𝑂
(︁
log
(︁
𝑛 log 𝑓 (⃗0)

𝜀

)︁)︁
iterations, and ARHT takes 𝑂

(︁
log 𝑓 (⃗0)

𝜀

)︁
iterations. In

conclusion, the total number of iterations is 𝑂
(︁
𝑠 log2 𝑓 (⃗0)𝜀 log

(︁
𝑛 log 𝑓 (⃗0)

𝜀

)︁)︁
, each of which requires a

constant number of minimizations of 𝑓 . �

6.3.2 Bounding Type 2 Iterations

When 𝑥 has significant ℓ22 mass in the target support, the regularization term 𝜌+2
2 ‖𝑥‖

2
2 might penalize

the target solution too much, leading to a Type 2 iteration. In this case, we use random sampling
to detect an element in the optimal support and unregularize it. This procedure escapes all local
minima, thus leading to a bound in the total number of Type 2 iterations.

More concretely, we show that if at some iteration of the algorithm the value of 𝑔(𝑥) does not
decrease sufficiently (Type 2 iteration), then roughly at least a 1̃︀𝜅 -fraction of the ℓ22 mass of 𝑥 lies
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in the target support 𝑆*. We exploit this property by sampling an element 𝑖 proportional to 𝑥2𝑖
and removing its corresponding term from the regularizer (unregularizing it). We show that with
constant probability this will happen at most 𝑂(𝑠*̃︀𝜅) times, as after that all the elements in 𝑆* will
have been unregularized.

When referring to the 𝑡-th iteration of Algorithm 14, we let 𝑥𝑡 be the current solution with
support set 𝑆𝑡 and 𝑅𝑡 ⊆ [𝑛] the current regularization set as defined in the algorithm. For ease of
notation, we will drop the subscript of the regularizer, i.e. Φ𝑡(𝑧) :=

𝜌+2
2 ‖𝑧𝑅𝑡‖22 and of the regularized

function, i.e. 𝑔𝑡(𝑧) := 𝑓(𝑧) + Φ𝑡(𝑧). Note that by definition of the algorithm 𝑥𝑡 is an 𝑆𝑡-restricted
minimizer of 𝑔𝑡.

Let (𝜌+2 )
′ and (𝜌−𝑠+𝑠*)

′ be RSS and RSC parameters of 𝑔𝑡. We start with a lemma that relates
(𝜌+2 )

′ to 𝜌+2 and (𝜌−𝑠+𝑠*)
′ to 𝜌−𝑠+𝑠* , and is proved in Appendix 9.4.1.

Lemma 6.3.8 (RSC, RSS of regularized function). (𝜌+2 )
′ ≤ 2𝜌+2 and (𝜌−𝑠+𝑠*)

′ ≥ 𝜌−𝑠+𝑠*

This states that the restricted smoothness and strong convexity constants of the regularized
function are always within a constant factor of those of the original function, and thus we can make
our statements in terms of the RSC, RSS of the original function. Next, we present a lemma that
establishes a lower bound on the progress 𝑔𝑡(𝑥𝑡)− 𝑔𝑡+1(𝑥𝑡+1) in one iteration. This will be helpful
in order to diagnose the cause of having insufficient progress in one iteration.

Lemma 6.3.9 (ARHT Progress Lemma). If ̂︀𝑓* ≥ 𝑓(𝑥*), for the progress 𝑔𝑡(𝑥𝑡)− 𝑔𝑡(𝑥𝑡+1) in Line
19 of Algorithm 14 it holds that

𝑔𝑡(𝑥𝑡)− 𝑔𝑡(𝑥𝑡+1)

≥ 𝜌−

2|𝑆*∖𝑆𝑡|𝜌+
(︁
𝑓(𝑥𝑡)− 𝑓(𝑥*) + ⟨∇𝑆𝑡∖𝑆*Φ𝑡(𝑥𝑡), 𝑥𝑡𝑆𝑡∖𝑆*⟩ −

1

2𝜌−
⃦⃦
∇𝑆𝑡∩𝑆*Φ𝑡(𝑥𝑡)

⃦⃦2
2

)︁
− 𝜌+(𝑥𝑡𝑗)2 .

Proof. The proof will proceed as follows: We first use the smoothness of 𝑔𝑡 to get a lower bound
on the progress in one step, 𝑔𝑡(𝑥𝑡) − 𝑔𝑡(𝑥𝑡+1). This lower bound will depend on ‖∇𝑆*∖𝑆𝑡𝑔𝑡(𝑥𝑡)‖22,
which is the norm of the gradient of 𝑔𝑡 restricted to the set 𝑆*∖𝑆𝑡, as well as (𝑥𝑡𝑗)

2, where 𝑗 is the
position of the minimum-magnitude entry of 𝑥𝑡. Then, we use the strong convexity of 𝑔𝑡 to relate
‖∇𝑆*∖𝑆𝑡𝑔𝑡(𝑥𝑡)‖22 to the difference in function value 𝑓(𝑥𝑡)− 𝑓(𝑥*), plus some terms that come from
the regularizer.

First of all, since the condition in Line 12 (“if min
supp(𝑥)⊆𝑆𝑡

𝑓(𝑥) ≤ ̂︀𝑓*”) was not triggered, we have

that min
supp(𝑥)⊆𝑆𝑡

𝑓(𝑥) > ̂︀𝑓* ≥ 𝑓(𝑥*) and so 𝑆*∖𝑆𝑡 ̸= ∅. By Lemma 6.3.8 we have that (𝜌+)′ ≤ 2𝜌+,

therefore the decrease in 𝑔𝑡 that is achieved is

𝑔𝑡(𝑥𝑡)− 𝑔𝑡(𝑥𝑡+1)

≥ max
𝜂∈R

{︁
𝑔𝑡(𝑥𝑡)− 𝑔𝑡(𝑥𝑡 + 𝜂1⃗𝑖 − 𝑥𝑡𝑗 1⃗𝑗)

}︁
≥ max

𝜂∈R

{︁
−⟨∇𝑔𝑡(𝑥𝑡), 𝜂1⃗𝑖 − 𝑥𝑡𝑗 1⃗𝑗⟩ − 𝜌+𝜂2 − 𝜌+(𝑥𝑡𝑗)2

}︁
:= 𝐵 .

Note that, as defined by the algorithm, 𝑥𝑡 is an 𝑆𝑡-restricted minimizer of 𝑔𝑡 and since 𝑗 ∈ 𝑆𝑡, we
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have ∇𝑗𝑔𝑡(𝑥𝑡) = 0. Therefore

𝐵 =max
𝜂∈R
{−⟨∇𝑔𝑡(𝑥𝑡), 𝜂1⃗𝑖⟩ − 𝜌+𝜂2 − 𝜌+(𝑥𝑡𝑗)2}

=

[︀
∇𝑖𝑔𝑡(𝑥𝑡)

]︀2
4𝜌+

− 𝜌+(𝑥𝑡𝑗)2

≥ max
𝑘∈𝑆*∖𝑆

[︀
∇𝑘𝑔𝑡(𝑥𝑡)

]︀2
4𝜌+

− 𝜌+(𝑥𝑡𝑗)2

≥
⃦⃦
∇𝑆*∖𝑆𝑡𝑔𝑡(𝑥𝑡)

⃦⃦2
2

4|𝑆*∖𝑆𝑡|𝜌+
− 𝜌+(𝑥𝑡𝑗)2 ,

(6.2)

where we used the fact that 𝑖 was picked to maximize
⃒⃒
∇𝑘𝑔𝑡(𝑥𝑡)

⃒⃒
. Now we would like to relate this

to 𝑔𝑡(𝑥𝑡)− 𝑓(𝑥*) (and not 𝑔𝑡(𝑥𝑡)− 𝑔𝑡(𝑥*)). By applying the Restricted Strong Convexity property,

𝑓(𝑥*)− 𝑓(𝑥𝑡)

≥ ⟨∇𝑓(𝑥𝑡), 𝑥* − 𝑥𝑡⟩+ 𝜌−

2

⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2

≥ ⟨∇𝑓(𝑥𝑡), 𝑥* − 𝑥𝑡⟩+ 𝜌−

2

⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+
𝜌−

2

⃦⃦
(𝑥𝑡 − 𝑥*)𝑆𝑡∩𝑆*

⃦⃦2
2
.

Now note that 𝑓(𝑥𝑡) = 𝑔𝑡(𝑥𝑡)− Φ𝑡(𝑥𝑡), ∇𝑆𝑡𝑔𝑡(𝑥𝑡) = 0⃗ (since 𝑥𝑡 is an 𝑆𝑡-restricted minimizer of 𝑔𝑡),
and ∇Φ𝑡(𝑥𝑡) = ∇𝑆𝑡Φ𝑡(𝑥𝑡) therefore

⟨∇𝑓(𝑥𝑡), 𝑥* − 𝑥𝑡⟩
= ⟨∇𝑔𝑡(𝑥𝑡), 𝑥* − 𝑥𝑡⟩ − ⟨∇Φ𝑡(𝑥𝑡), 𝑥* − 𝑥𝑡⟩
= ⟨∇𝑔𝑡𝑆*∖𝑆𝑡(𝑥𝑡), 𝑥*𝑆*∖𝑆𝑡⟩+ ⟨∇𝑆𝑡∖𝑆*Φ𝑡(𝑥𝑡), 𝑥𝑡𝑆𝑡∖𝑆*⟩+ ⟨∇𝑆𝑡∩𝑆*Φ𝑡(𝑥𝑡), (𝑥𝑡 − 𝑥*)𝑆𝑡∩𝑆*⟩ .

Plugging this into the previous inequality, we get

𝑓(𝑥*)− 𝑓(𝑥𝑡)

≥ ⟨∇𝑔𝑡𝑆*∖𝑆𝑡(𝑥𝑡), 𝑥*𝑆*∖𝑆𝑡⟩+
𝜌−

2

⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+ ⟨∇𝑆𝑡∖𝑆*Φ𝑡(𝑥𝑡), 𝑥𝑡𝑆𝑡∖𝑆*⟩

+ ⟨∇𝑆𝑡∩𝑆*Φ𝑡(𝑥𝑡), (𝑥𝑡 − 𝑥*)𝑆𝑡∩𝑆*⟩+ 𝜌−

2

⃦⃦
(𝑥𝑡 − 𝑥*)𝑆𝑡∩𝑆*

⃦⃦2
2

≥ − 1

2𝜌−
⃦⃦
∇𝑆*∖𝑆𝑡𝑔𝑡(𝑥𝑡)

⃦⃦2
2
+ ⟨∇𝑆𝑡∖𝑆*Φ𝑡(𝑥𝑡), 𝑥𝑡𝑆𝑡∖𝑆*⟩ −

1

2𝜌−
⃦⃦
∇𝑆𝑡∩𝑆*Φ𝑡(𝑥𝑡)

⃦⃦2
2
,

where we twice used the inequality ⟨𝑢, 𝑣⟩ + 𝜆
2 ‖𝑣‖

2
2 ≥ −

1
2𝜆 ‖𝑢‖

2
2 for any 𝜆 > 0. This inequality is

derived by expanding 1
2

⃦⃦⃦
1√
𝜆
𝑢+
√
𝜆𝑣
⃦⃦⃦2
2
≥ 0. So plugging in

⃦⃦
∇𝑆*∖𝑆𝑡𝑔𝑡(𝑥𝑡)

⃦⃦2
2

into (6.2),

𝐵

≥ 𝜌−

2|𝑆*∖𝑆𝑡|𝜌+
(︁
𝑓(𝑥𝑡)− 𝑓(𝑥*) + ⟨∇𝑆𝑡∖𝑆*Φ𝑡(𝑥𝑡), 𝑥𝑡𝑆𝑡∖𝑆*⟩ −

1

2𝜌−
⃦⃦
∇𝑆𝑡∩𝑆*Φ𝑡(𝑥𝑡)

⃦⃦2
2

)︁
− 𝜌+(𝑥𝑡𝑗)2 .

Let 𝑅 ⊆ [𝑛] be the set of currently regularized elements. The following invariant is a crucial
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ingredient for bringing the sparsity from 𝑂(𝑠*̃︀𝜅2) down to 𝑂(𝑠*̃︀𝜅), and we intend to enforce it at all
times. It essentially states that there will always be enough elements in the current solution that are
being regularized.

Invariant 6.3.10.
|𝑅 ∩ 𝑆| ≥ 𝑠*max{1, 8̃︀𝜅}

To give some intuition on this, ARHT owes its improved ̃︀𝜅 dependence on the regularizer 𝜌+

2 ‖𝑥‖
2
2.

However, during the algorithm, some elements are being unregularized. Our analysis requires that the
current solution support always contains Ω (𝑠*̃︀𝜅) regularized elements, which is what Invariant 6.3.10
states.

We can now proceed to show that, with constant probability, Algorithm 14 will only have 𝑂(𝑠*̃︀𝜅)
Type 2 iterations, which is the goal of this section.
Proof of Lemma 6.3.4. The idea of the proof is to use the progress bound in Lemma 6.3.9 to
obtain a necessary condition under which the progress (i.e. the decrease of 𝑔𝑡(𝑥𝑡)) is not sufficient in
one iteration (thus, we have a Type 2 iteration). For our choice of regularizer, this condition implies
that at least an Ω( 1̃︀𝜅) fraction of the ℓ22 mass of 𝑥𝑡 lies in the optimal support set 𝑆*, which means
that we can find an element in 𝑆* with decent probability by appropriately sampling an element of
𝑥𝑡. We finally apply a probabilistic analysis over all iterations, to show that if each sampled element
is unregularized, with constant probability the total number of Type 2 iterations cannot exceed
Θ(̃︀𝜅𝑠*).

We first observe some useful properties of our regularizer, which can be verified by simple
substitution. The definition of Φ𝑡(𝑥𝑡) implies that

⟨∇𝑆𝑡∖𝑆*Φ𝑡(𝑥𝑡), 𝑥𝑡𝑆𝑡∖𝑆*⟩ = 𝜌+⟨𝑥𝑡(𝑅𝑡∩𝑆𝑡)∖𝑆* , 𝑥𝑡𝑆𝑡∖𝑆*⟩

= 𝜌+
∑︁

𝑖∈(𝑅𝑡∩𝑆𝑡)∖𝑆*

𝑥2𝑖

= 𝜌+
∑︁

𝑖∈𝑅𝑡∖𝑆*

𝑥2𝑖

= 𝜌+
⃦⃦⃦
𝑥𝑡𝑅𝑡∖𝑆*

⃦⃦⃦2
2
,

(6.3)

where the second-to-last equality follows because 𝑥𝑡 is 0 outside of 𝑆𝑡. For the same reason, we also
have ⃦⃦

∇𝑆𝑡∩𝑆*Φ𝑡(𝑥𝑡)
⃦⃦2
2
= (𝜌+)2

⃦⃦
𝑥𝑡𝑅𝑡∩𝑆*

⃦⃦2
2
. (6.4)

By combining (6.3) and (6.4) we get that

Φ𝑡(𝑥𝑡) =
1

2
⟨∇𝑆𝑡∖𝑆*Φ𝑡(𝑥𝑡), 𝑥𝑡𝑆𝑡∖𝑆*⟩+

1

2𝜌+
⃦⃦
∇𝑆𝑡∩𝑆*Φ𝑡(𝑥𝑡)

⃦⃦2
2
. (6.5)

Equations (6.3),(6.4), and (6.5) will be used later on. Now, before the first iteration we have⃒⃒
𝑅0 ∩ 𝑆0

⃒⃒
=
⃒⃒
𝑆0
⃒⃒
= 𝑠. Since in each Type 2 iteration we have

⃒⃒
𝑅𝑡+1

⃒⃒
=
⃒⃒
𝑅𝑡
⃒⃒
− 1,⃒⃒

𝑅𝑡 ∩ 𝑆𝑡
⃒⃒
≥ 𝑠− [number of Type 2 iterations up to 𝑡] .
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This implies that for the first (𝑠* − 1)(4̃︀𝜅+ 6) Type 2 iterations,

|𝑅𝑡 ∩ 𝑆𝑡| ≥ 𝑠− (𝑠* − 1)(4̃︀𝜅+ 6) ≥ 𝑠*max{1, 8̃︀𝜅} , (6.6)

since 𝑠 ≥ 𝑠*max {4̃︀𝜅+ 7, 12̃︀𝜅+ 6}. From this it follows that

|(𝑅𝑡 ∩ 𝑆𝑡)∖𝑆*| = |𝑅𝑡 ∩ 𝑆𝑡| − |𝑅𝑡 ∩ 𝑆𝑡 ∩ 𝑆*|
≥ 𝑠*max{1, 8̃︀𝜅} − |𝑆𝑡 ∩ 𝑆*|
≥ |𝑆*∖𝑆𝑡|8̃︀𝜅
= |𝑆*∖𝑆𝑡|8𝜌

+

𝜌−

and so

(𝑥𝑡𝑗)
2 ≤ 1

|(𝑅𝑡 ∩ 𝑆𝑡)∖𝑆*|

⃦⃦⃦
𝑥𝑡(𝑅𝑡∩𝑆𝑡)∖𝑆*

⃦⃦⃦2
2

≤ 𝜌−

8|𝑆*∖𝑆𝑡|𝜌+
⃦⃦⃦
𝑥𝑡𝑅𝑡∖𝑆*

⃦⃦⃦2
2

=
𝜌−

8|𝑆*∖𝑆𝑡|(𝜌+)2
⟨∇𝑆𝑡∖𝑆*Φ𝑡(𝑥𝑡), 𝑥𝑡𝑆𝑡∖𝑆*⟩ ,

where 𝑗 ∈ 𝑆𝑡 is the element that the algorithm removes from 𝑆𝑡, and we used (6.3). Combining this
inequality with the statement of Lemma 6.3.9 we have

𝑔𝑡(𝑥𝑡)− 𝑔𝑡(𝑥𝑡+1)

≥ 𝜌−

2|𝑆*∖𝑆𝑡|𝜌+
(︁
𝑓(𝑥𝑡)− 𝑓(𝑥*) + ⟨∇𝑆𝑡∖𝑆*Φ𝑡(𝑥𝑡), 𝑥𝑡𝑆𝑡∖𝑆*⟩ −

1

2𝜌−
⃦⃦
∇𝑆𝑡∩𝑆*Φ𝑡(𝑥𝑡)

⃦⃦2
2

)︁
− 𝜌+(𝑥𝑡𝑗)2

≥ 𝜌−

2|𝑆*∖𝑆𝑡|𝜌+
(︁
𝑓(𝑥𝑡)− 𝑓(𝑥*) + 3

4
⟨∇𝑆𝑡∖𝑆*Φ𝑡(𝑥𝑡), 𝑥𝑡𝑆𝑡∖𝑆*⟩ −

1

2𝜌−
⃦⃦
∇𝑆𝑡∩𝑆*Φ𝑡(𝑥𝑡)

⃦⃦2
2

)︁
.

(6.7)

By definition of a Type 2 iteration,

𝑔𝑡(𝑥𝑡)− 𝑔𝑡(𝑥𝑡+1) <
1

𝑠

(︁
𝑔𝑡(𝑥𝑡)− ̂︀𝑓*)︁

≤ 𝜌−

2|𝑆*∖𝑆𝑡|𝜌+
(︀
𝑔𝑡(𝑥𝑡)− 𝑓(𝑥*)

)︀
=

𝜌−

2|𝑆*∖𝑆𝑡|𝜌+
(︀
𝑓(𝑥𝑡)− 𝑓(𝑥*) + Φ𝑡(𝑥𝑡)

)︀ , (6.8)

where we used the fact that 𝑠 ≥ 2𝑠*̃︀𝜅 ≥ 2|𝑆*∖𝑆𝑡|̃︀𝜅 and 𝑓(𝑥*) ≤ ̂︀𝑓*. Combining inequalities (6.7) and
(6.8) we get

Φ𝑡(𝑥𝑡) >
3

4
⟨∇𝑆𝑡∖𝑆*Φ𝑡(𝑥𝑡), 𝑥𝑡𝑆𝑡∖𝑆*⟩ −

1

2𝜌−
⃦⃦
∇𝑆𝑡∩𝑆*Φ𝑡(𝑥𝑡)

⃦⃦2
2
,

or equivalently, by replacing Φ𝑡(𝑥𝑡) from (6.5),

1

2

(︂
1

𝜌−
+

1

𝜌+

)︂ ⃦⃦
∇𝑆𝑡∩𝑆*Φ𝑡(𝑥𝑡)

⃦⃦2
2
>

1

4
⟨∇𝑆𝑡∖𝑆*Φ(𝑥𝑡), 𝑥𝑡𝑆𝑡∖𝑆*⟩ .
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Further applying (6.3) and (6.4), we equivalently get

2 (1 + ̃︀𝜅) ⃦⃦𝑥𝑡𝑅𝑡∩𝑆*
⃦⃦2
2
>
⃦⃦⃦
𝑥𝑡𝑅𝑡∖𝑆*

⃦⃦⃦2
2
. (6.9)

Now, note that in Lines 21-22 the algorithm picks an element 𝑖 ∈ 𝑅𝑡 with probability proportional
to (𝑥𝑡𝑖)

2 and unregularizes it, i.e. sets 𝑅𝑡+1 ← 𝑅𝑡∖{𝑖}. We denote this probability distribution over
𝑖 ∈ 𝑅𝑡 by 𝒟. From what we have established already in (6.9), we can lower bound the probability
that 𝑖 lies in the target support:

Pr
𝑖∼𝒟

[𝑖 ∈ 𝑆*] =

⃦⃦
𝑥𝑡𝑅𝑡∩𝑆*

⃦⃦2
2⃦⃦

𝑥𝑡𝑅𝑡∩𝑆*

⃦⃦2
2
+
⃦⃦⃦
𝑥𝑡𝑅𝑡∖𝑆*

⃦⃦⃦2
2

>

1
2(1+̃︀𝜅)

1 + 1
2(1+̃︀𝜅)

=
1

2̃︀𝜅+ 3

:= 𝑝 .

(6.10)

Note that this event can happen at most once for each 𝑖 ∈ 𝑆* during the whole execution of the
algorithm, since each element can only be removed once from the set of regularized elements.

We will prove that with constant probability the number of Type 2 steps will be at most
(𝑠* − 1)(4̃︀𝜅+ 6) := 𝑏. For 1 ≤ 𝑘 ≤ 𝑏, we define the following random variables:

• 𝑖𝑘 ∈ [𝑛] is the index picked in the 𝑘-th Type 2 iteration, or ⊥ if there are less than 𝑘 Type 2
iterations.

• 𝑞𝑘 is the probability of picking an index in the optimal support in the 𝑘-th Type 2 iteration
(i.e. 𝑖𝑘 ∈ 𝑆*):

𝑞𝑘 =

⎧⎨⎩
⃦⃦⃦
𝑥𝑡𝑘
𝑅𝑡𝑘∩𝑆*

⃦⃦⃦2
2
/
⃦⃦⃦
𝑥𝑡𝑘
𝑅𝑡𝑘

⃦⃦⃦2
2

if 𝑖𝑘 ̸=⊥

0 otherwise
,

where 𝑡𝑘 ∈ [𝑇 ] is the index of the 𝑘-th Type 2 iteration within all iterations of the algorithm.
Note that, by (6.10), 𝑞𝑘 > 0 implies 𝑞𝑘 ≥ 𝑝.

• 𝑋𝑘 is 1 if the index picked in the 𝑘-th Type 2 step was in the optimal support:

𝑋𝑘 =

{︃
1 with probability 𝑞𝑘
0 otherwise

Our goal is to upper bound Pr

[︂
𝑏∑︀

𝑘=1

𝑋𝑘 ≤ 𝑠* − 1

]︂
. This automatically implies the same upper bound

on the probability that there will be more than 𝑏 Type 2 iterations.
We define another sequence of random variables 𝑌0, . . . , 𝑌𝑏, where 𝑌0 = 0, and

𝑌𝑘 =

{︃
𝑌𝑘−1 +

𝑝
𝑞𝑘
− 𝑝 if 𝑋𝑘 = 1

𝑌𝑘−1 − 𝑝 if 𝑋𝑘 = 0
,
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for 𝑘 ∈ [𝑏]. Since if 𝑞𝑘 > 0 we have 𝑝
𝑞𝑘
≤ 1, it is immediate that

𝑌𝑘 − 𝑌𝑘−1 ≤ 𝑋𝑘 − 𝑝

and so 𝑌𝑏 ≤
𝑏∑︀

𝑘=1

𝑋𝑘 − 𝑏𝑝. Furthermore,

E [𝑌𝑘 | 𝑖1, . . . , 𝑖𝑘−1] = 𝑌𝑘−1 + 𝑞𝑘

(︂
𝑝

𝑞𝑘
− 𝑝
)︂
− (1− 𝑞𝑘) 𝑝

= 𝑌𝑘−1 ,

meaning that 𝑌0, . . . , 𝑌𝑏 is a martingale with respect to 𝑖1, . . . , 𝑖𝑏. We will apply the inequality from
Lemma 6.2.4. We compute a bound on the differences

𝑌𝑘−1 − 𝑌𝑘 =

{︃
𝑝− 𝑝

𝑞𝑘
if 𝑋𝑘 = 1

𝑝 if 𝑋𝑘 = 0
(6.11)

≤ 𝑝

and the variance

Var (𝑌𝑘 | 𝑖1, . . . , 𝑖𝑘−1) = E
[︁
(𝑌𝑘 − E [𝑌𝑘 | 𝑖1, . . . , 𝑖𝑘−1])

2 | 𝑖1, . . . , 𝑖𝑘−1

]︁
= E

[︁
(𝑌𝑘 − 𝑌𝑘−1)

2 | 𝑖1, . . . , 𝑖𝑘−1

]︁
= 𝑞𝑘 ·

(︂
𝑝− 𝑝

𝑞𝑘

)︂2

+ (1− 𝑞𝑘) · 𝑝2

= 𝑞𝑘 · 𝑝2
(︂
1− 2

𝑞𝑘
+

1

𝑞2𝑘

)︂
+ (1− 𝑞𝑘) · 𝑝2

= 𝑝2
(︂

1

𝑞𝑘
− 1

)︂
≤ 𝑝 ,

where we used (6.11) along with the fact that 𝑞𝑘 ≥ 𝑝. Using the concentration inequality from
Lemma 6.2.4 we obtain

Pr

[︃
𝑏∑︁

𝑘=1

𝑋𝑘 ≤ 𝑠* − 1

]︃
≤ Pr [𝑌𝑏 ≤ 𝑠* − 1− 𝑏 · 𝑝]

≤ 𝑒−(𝑏𝑝−𝑠*+1)2/(2(𝑏·𝑝+𝑝·(𝑏𝑝−𝑠*+1)/3))

= 𝑒−(𝑠*−1)/(2(2+𝑝/3))

≤ 𝑒−1/(2(2+1/9))

< 0.8 ,

where we used the fact that 𝑏𝑝 = 2(𝑠*−1), 𝑠* ≥ 2 (otherwise the problem is trivial), and 𝑝 = 1
2̃︀𝜅+3 ≤

1
3 .

Therefore we conclude that the probability that we have not unregularized the whole set 𝑆* after 𝑏
steps is at most 0.8. Since we can only have a Type 2 step if there is a regularized element in 𝑆*

(this is immediate e.g. from (6.10)), this implies that with probability at least 0.2 the number of
Type 2 steps is at most 𝑏 = (𝑠* − 1)(4̃︀𝜅+ 6).
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6.3.3 Corollaries

As the first corollary of Theorem 6.3.1, we show that it directly implies solution recovery bounds
similar to those of [170], while also improving the recovery bound by a constant factor.

Corollary 6.3.11 (Solution recovery). Given a function 𝑓 and an (unknown) 𝑠*-sparse solution 𝑥*,
such that the Restricted Gradient Optimal Constant at sparsity level 𝑠 is 𝜁, i.e.

|⟨∇𝑓(𝑥*), 𝑦⟩| ≤ 𝜁 ‖𝑦‖2 ,

for all 𝑠-sparse 𝑦 and as long as

𝑠 ≥ 𝑠*max {4̃︀𝜅+ 7, 12̃︀𝜅+ 6} ,

Algorithm 15 ensures that
𝑓(𝑥) ≤ 𝑓(𝑥*) + 𝜀

and

‖𝑥− 𝑥*‖2 ≤
𝜁

𝜌−

(︃
1 +

√︃
1 + 2𝜀

𝜌−

𝜁2

)︃
.

For any 𝜃 > 0 and 𝜀 ≤ 𝜁2

𝜌− 𝜃(1 +
𝜃
2), this implies that

‖𝑥− 𝑥*‖2 ≤ (2 + 𝜃)
𝜁

𝜌−
.

Proof. By strong convexity we have

𝜀 ≥ 𝑓(𝑥)− 𝑓(𝑥*)

≥ ⟨∇𝑓(𝑥*), 𝑥− 𝑥*⟩+ 𝜌−

2
‖𝑥− 𝑥*‖22

≥ −𝜁 ‖𝑥− 𝑥*‖2 +
𝜌−

2
‖𝑥− 𝑥*‖22 ,

therefore

𝜌−

2
‖𝑥− 𝑥*‖22 − 𝜁 ‖𝑥− 𝑥

*‖2 − 𝜀 ≤ 0 ,
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looking at which as a quadratic polynomial in ‖𝑥− 𝑥*‖2, it follows that

‖𝑥− 𝑥*‖2 ≤
𝜁 +

√︀
𝜁2 + 2𝜀𝜌−

𝜌−

=
𝜁

𝜌−

(︃
1 +

√︃
1 + 2𝜀

𝜌−

𝜁2

)︃

= (2 + 𝜃)
𝜁

𝜌−
,

by setting 𝜀 = 𝜁2

𝜌−

(︀
𝜃 + 1

2𝜃
2
)︀
.

The next corollary shows that our Theorem 6.3.1 can be also used to obtain support recovery
results under a “Signal-to-Noise” condition given as a lower bound to |𝑥*min|.
Corollary 6.3.12 (Support recovery). As long as

𝑠 ≥ 𝑠*max {4̃︀𝜅+ 7, 12̃︀𝜅+ 6}

and |𝑥*min| >
𝜁
𝜌− , Algorithm 15 with 𝜀 < − 1

2𝜌− 𝜁
2 + 𝜌−

2 (𝑥*min)
2 returns a solution 𝑥 with support 𝑆

such that
𝑆* ⊆ 𝑆 .

Proof. Let us suppose that 𝑆*∖𝑆𝑡 ̸= ∅. By restricted strong convexity we have

− 1

2𝜌−
𝜁2 +

𝜌−

2
(𝑥*min)

2 > 𝜀

≥ 𝑓(𝑥)− 𝑓(𝑥*)

≥ ⟨∇𝑓(𝑥*), 𝑥− 𝑥*⟩+ 𝜌−

2
‖𝑥− 𝑥*‖22

≥ ⟨∇𝑓(𝑥*), 𝑥⟩+ 𝜌−

2

⃦⃦
𝑥𝑆𝑡∖𝑆*

⃦⃦2
2
+
𝜌−

2

⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2

≥ − 1

2𝜌−
⃦⃦
∇𝑆𝑡∖𝑆*𝑓(𝑥*)

⃦⃦2
2
+
𝜌−

2

⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2

≥ − 1

2𝜌−
𝜁2 +

𝜌−

2
(𝑥*min)

2

a contradiction. Here we used the fact that by local optimality ∇𝑆*𝑓(𝑥*) = 0⃗, the inequality
⟨𝑢, 𝑣⟩+ 𝜆

2 ‖𝑣‖
2
2 ≥ −

1
2𝜆 ‖𝑢‖

2
2 for any vectors 𝑢, 𝑣 and scalar 𝜆 > 0, and the fact that

⃦⃦
∇𝑆𝑡∖𝑆*𝑓(𝑥*)

⃦⃦2
2
≤

𝜁2 by Definition 6.2.2. Therefore 𝑆* ⊆ 𝑆𝑡.

6.4 Analysis of Orthogonal Matching Pursuit with Replacement
(OMPR)

6.4.1 Overview and Main Theorem

The OMPR algorithm was first described (under a different name) in [146]. It is an extension of
OMP but after each iteration some element is removed from 𝑆𝑡 so that the sparsity remains the
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same. The algorithm description is in Algorithm 12.
For each iteration 𝑡 of Algorithm 12, we will define a solution

̃︀𝑥𝑡 = argmin
supp(𝑥)⊆𝑆𝑡∪𝑆*

𝑓(𝑥)

to be the optimal solution supported on 𝑆𝑡∪𝑆*. Furthermore, we let 𝑥* be the optimal (𝑠+𝑠*)-sparse
solution, i.e.

𝑥* = argmin
|supp(𝑥)|≤𝑠+𝑠*

𝑓(𝑥) .

By definition, the following chain of inequalities holds

min
𝑥∈R𝑛

𝑓(𝑥) ≤ 𝑓(𝑥*) ≤ 𝑓(̃︀𝑥𝑡) ≤ min{𝑓(𝑥𝑡), 𝑓(𝑥*)} .

We will denote 𝜇 =
√︁

𝑠*

𝑠 . The following technical lemma is important for our approach, and
roughly states that if there is significant ℓ2 norm difference between 𝑥𝑡 and 𝑥*, at least one of 𝑥𝑡, 𝑥*

is significantly larger than ̃︀𝑥𝑡 in function value. Its importance lies on the fact that instead of directly
applying strong convexity between 𝑥𝑡 and 𝑥*, it gets a tighter bound by making use of ̃︀𝑥𝑡.
Lemma 6.4.1. For any function 𝑓 with RSC constant 𝜌− at sparsity level 𝑠 + 𝑠* and any two
solutions 𝑥𝑡,𝑥* with respective supports 𝑆𝑡, 𝑆* and sparsity levels 𝑠, 𝑠*, we have that(︁√︀

𝑓(𝑥𝑡)− 𝑓(̃︀𝑥𝑡) +√︀𝑓(𝑥*)− 𝑓(̃︀𝑥𝑡))︁2 ≥ 𝜌−

2

(︂⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+
⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2

)︂
.

The proof can be found in Appendix 9.4.1.
The following theorem is the main result of this section. Its strength lies in its generality, and

various useful corollaries can be directly extracted from it. It can be seen as a careful and general
analysis of OMPR, and, in contrast to Theorem 6.3.1, the interesting part is not the asymptotic
sparsity bound (which is 𝑂(𝜅2𝑠*) and is known), but the constant factor in front of it, which allows
its use in recovering a solution with sparsity close to 𝑠*, under a RIP bound. It roughly states that
for any solution 𝑥* that is 𝑠*-sparse, OMPR can be used to obtain a solution 𝑥

• with sparsity ≤ 𝜅2𝑠* that comes arbitrarily close to 𝑥* in function value, i.e. 𝑓(𝑥) ≤ 𝑓(𝑥*) + 𝜀

• with sparsity ≤ 𝜅2𝑠*/4 that approximates 𝑥* in function value, and the approximation depends
on how close 𝑥* is to being a global optimum.

The latter can be used to obtain compressed sensing results, as it gives sparsity very close to 𝑠* given
that upper bounds on 𝜅 (equivalently, RIP upper bounds) are met. In comparison with previously
known results, our work is the first to obtain compressed sensing RIP bounds for general functions 𝑓
and for a wide range of sparsity levels from 𝑠* to much larger than that.

Theorem 6.4.2. Given a function 𝑓 , an (unknown) 𝑠*-sparse solution 𝑥*, a desired solution sparsity
level 𝑠, and error parameters 𝜀 > 0 and 0 < 𝜃 < 1, Algorithm 12 returns an 𝑠-sparse solution 𝑥 such
that
• If ̃︀𝜅√︁ 𝑠*

𝑠 ≤ 1, then

𝑓(𝑥) ≤ 𝑓(𝑥*) + 𝜀
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in 𝑂
(︁√

𝑠𝑠* log 𝑓(𝑥0)−𝑓(𝑥*)
𝜀

)︁
iterations.

• If 1 < ̃︀𝜅√︁ 𝑠*

𝑠 < 2− 𝜃, then

𝑓(𝑥) ≤ 𝑓(𝑥*) +𝐵

where

𝐵 = 𝜀+
4(1− 𝜃)

(︁̃︀𝜅√︁ 𝑠*

𝑠 − 1
)︁

(︁
2− ̃︀𝜅√︁ 𝑠*

𝑠 − 𝜃
)︁2 (𝑓(𝑥*)− 𝑓(𝑥*))

in 𝑂
(︁√

𝑠𝑠*

𝜃 log 𝑓(𝑥0)−𝑓(𝑥*)
𝐵

)︁
iterations.

6.4.2 Progress Lemma and Theorem Proof

The main ingredient needed to prove Theorem 6.4.2 is the following lemma, which bounds the
progress of Algorithm 12 in one iteration.

Lemma 6.4.3 (OMPR Progress Lemma). We can bound the progress of one step of the algorithm
by distinguishing the following three cases:
• If 𝜇̃︀𝜅 ≤ 1, then

𝑓(𝑥𝑡+1)− 𝑓(𝑥*) ≤
(︀
𝑓(𝑥𝑡)− 𝑓(𝑥*)

)︀(︂
1− 𝜇

|𝑆*∖𝑆𝑡|

)︂
• If 𝜇̃︀𝜅 > 1 and 𝑓(𝑥*) = 𝑓(̃︀𝑥𝑡), then

𝑓(𝑥𝑡+1)− 𝑓(𝑥*) ≤
(︀
𝑓(𝑥𝑡)− 𝑓(𝑥*)

)︀
·
(︂
1− 𝜇

|𝑆*∖𝑆𝑡|
(2− 𝜇̃︀𝜅))︂

• If 𝜇̃︀𝜅 > 1 and 𝑓(𝑥*) > 𝑓(̃︀𝑥𝑡), then

𝑓(𝑥𝑡+1)− 𝑓(𝑥*) ≤
(︀
𝑓(𝑥𝑡)− 𝑓(𝑥*)

)︀
·

⎛⎝1− 𝜇

|𝑆*∖𝑆𝑡|

⎛⎝2− 𝜇̃︀𝜅− 2(𝜇̃︀𝜅− 1)√︁
𝑓(𝑥𝑡)−𝑓(̃︀𝑥𝑡)
𝑓(𝑥*)−𝑓(̃︀𝑥𝑡) − 1

⎞⎠⎞⎠

Proof. The proof will proceed as follows: We will use the smoothness and strong convexity of 𝑓 to
get a bound on the progress of one step of the algorithm in decreasing 𝑓 , based on 𝑓(𝑥𝑡)− 𝑓(𝑥*).
This progress will be offset by the ℓ2 norm of 𝑥* restricted to 𝑆*∖𝑆𝑡. We use Lemma 6.4.1 to upper
bound this norm by a quantity that depends on 𝑓(𝑥𝑡)− 𝑓(̃︀𝑥𝑡) and 𝑓(𝑥*)− 𝑓(̃︀𝑥𝑡), where ̃︀𝑥𝑡 is the
optimal solution in the joint support 𝑆𝑡 ∪ 𝑆*. Finally, by a careful case analysis based on the value
of 𝜇, we obtain the three bullet points in the lemma statement.

First of all, if 𝑆* ⊆ 𝑆𝑡 then, since 𝑥𝑡 is an 𝑆𝑡-restricted minimizer, we have 𝑓(𝑥𝑇 ) ≤ 𝑓(𝑥𝑡) ≤ 𝑓(𝑥*)
and we are done. So suppose otherwise, i.e. 𝑆*∖𝑆𝑡 ̸= ∅ and 𝑓(𝑥𝑡) > 𝑓(𝑥*). Let 𝑖 = argmax

𝑖/∈𝑆𝑡

⃒⃒
∇𝑖𝑓(𝑥𝑡)

⃒⃒
and 𝑗 = argmin

𝑗∈𝑆𝑡

⃒⃒⃒
𝑥𝑡𝑗

⃒⃒⃒
. By definition of OMPR (Algorithm 12) and restricted smoothness of 𝑓 , we
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have
𝑓(𝑥𝑡+1) ≤ min

𝜂∈R
𝑓(𝑥𝑡 + 𝜂1⃗𝑖 − 𝑥𝑡𝑗 1⃗𝑗)

≤ min
𝜂∈R

𝑓(𝑥𝑡) + ⟨∇𝑓(𝑥𝑡), 𝜂1⃗𝑖 − 𝑥𝑡𝑗 1⃗𝑗⟩+
𝜌+

2

⃦⃦⃦
𝜂1⃗𝑖 − 𝑥𝑡𝑗 1⃗𝑗

⃦⃦⃦2
2

= min
𝜂∈R

𝑓(𝑥𝑡) + 𝜂∇𝑖𝑓(𝑥𝑡) +
𝜌+

2
𝜂2 +

𝜌+

2
(𝑥𝑡𝑗)

2

= 𝑓(𝑥𝑡)−
(︀
∇𝑖𝑓(𝑥𝑡)

)︀2
2𝜌+

+
𝜌+

2
(𝑥𝑡𝑗)

2

≤ 𝑓(𝑥𝑡)−
⃦⃦
∇𝑆*∖𝑆𝑡𝑓(𝑥𝑡)

⃦⃦2
2

2𝜌+|𝑆*∖𝑆𝑡|
+

𝜌+

2|𝑆𝑡∖𝑆*|

⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2
,

(6.12)

where the second to last equality follows from the fact that ∇𝑗𝑓(𝑥𝑡) = 0⃗, as 𝑥𝑡 is an 𝑆𝑡-restricted
minimizer of 𝑓 , and the last inequality since

(𝑥𝑡𝑗)
2 = min

𝑗∈𝑆𝑡∖𝑆*
(𝑥𝑡𝑗)

2 ≤

⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2

|𝑆𝑡∖𝑆*|
.

Re-arranging (6.12), we get

|𝑆*∖𝑆𝑡|(𝑓(𝑥𝑡)− 𝑓(𝑥𝑡+1)) ≥
⃦⃦
∇𝑆*∖𝑆𝑡𝑓(𝑥𝑡)

⃦⃦2
2

2𝜌+
− 𝜌+

2

|𝑆*∖𝑆𝑡|
|𝑆𝑡∖𝑆*|

⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2
. (6.13)

On the other hand, by restricted strong convexity of 𝑓 ,

𝑓(𝑥*)− 𝑓(𝑥𝑡) ≥ ⟨∇𝑓(𝑥𝑡), 𝑥* − 𝑥𝑡⟩+ 𝜌−

2

⃦⃦
𝑥* − 𝑥𝑡

⃦⃦2
2

= ⟨∇𝑆*∖𝑆𝑡𝑓(𝑥𝑡), 𝑥*𝑆*∖𝑆𝑡⟩+
𝜌−

2

⃦⃦
𝑥* − 𝑥𝑡

⃦⃦2
2

≥ ⟨∇𝑆*∖𝑆𝑡𝑓(𝑥𝑡), 𝑥*𝑆*∖𝑆𝑡⟩+
𝜌−

2

⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+
𝜌−

2

⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2

≥ ⟨∇𝑆*∖𝑆𝑡𝑓(𝑥𝑡), 𝑥*𝑆*∖𝑆𝑡⟩+
𝜇𝜌+

2

⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2

+
𝜌− − 𝜇𝜌+

2

⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+
𝜌−

2

⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2

≥ − 1

2𝜇𝜌+
⃦⃦
∇𝑆*∖𝑆𝑡𝑓(𝑥𝑡)

⃦⃦2
2
+
𝜌− − 𝜇𝜌+

2

⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+
𝜌−

2

⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2
,

(6.14)

where the first equality follows from the fact that ∇𝑆𝑡𝑓(𝑥𝑡) = 0⃗ as 𝑥𝑡 is an 𝑆𝑡-restricted minimizer
of 𝑓 and the last inequality from using the fact that ⟨𝑢, 𝑣⟩+ 𝜆

2 ‖𝑣‖
2
2 ≥ −

1
2𝜆 ‖𝑢‖

2
2 for any 𝜆 > 0.

Re-arranging (6.14), we get

1

2𝜇𝜌+
⃦⃦
∇𝑆*∖𝑆𝑡𝑓(𝑥𝑡)

⃦⃦2
2
≥ 𝑓(𝑥𝑡)− 𝑓(𝑥*)− 𝜇𝜌+ − 𝜌−

2

⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+
𝜌−

2

⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2
.
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By substituting this into (6.13),

|𝑆*∖𝑆𝑡|(𝑓(𝑥𝑡)− 𝑓(𝑥𝑡+1))

≥ 𝜇
(︀
𝑓(𝑥𝑡)− 𝑓(𝑥*)

)︀
− 𝜇2𝜌+ − 𝜇𝜌−

2

⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+
𝜇𝜌−

2

⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2
− 𝜌+

2

|𝑆*∖𝑆𝑡|
|𝑆𝑡∖𝑆*|

⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2
.

Note that by our choice of 𝜇 and since 𝑠* ≤ 𝑠,

𝜇2𝜌+ = 𝜌+
𝑠*

𝑠
≥ 𝜌+ 𝑠

* − |𝑆* ∩ 𝑆𝑡|
𝑠− |𝑆* ∩ 𝑆𝑡|

= 𝜌+
|𝑆*∖𝑆𝑡|
|𝑆𝑡∖𝑆*|

and so

𝜇
(︀
𝑓(𝑥𝑡)− 𝑓(𝑥*)

)︀
− 𝜇2𝜌+ − 𝜇𝜌−

2

⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+
𝜇𝜌−

2

⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2
− 𝜌+

2

|𝑆*∖𝑆𝑡|
|𝑆𝑡∖𝑆*|

⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2

≥ 𝜇(𝑓(𝑥𝑡)− 𝑓(𝑥*))− 𝜇

2

(︀
𝜇𝜌+ − 𝜌−

)︀(︂⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+
⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2

)︂
,

concluding that

|𝑆*∖𝑆𝑡|(𝑓(𝑥𝑡)− 𝑓(𝑥𝑡+1)) ≥ 𝜇(𝑓(𝑥𝑡)− 𝑓(𝑥*))− 𝜇

2

(︀
𝜇𝜌+ − 𝜌−

)︀(︂⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+
⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2

)︂
.

For 𝜇̃︀𝜅 ≤ 1⇔ 𝜇𝜌+ − 𝜌− ≤ 0, this automatically implies that

𝑓(𝑥𝑡)− 𝑓(𝑥𝑡+1) ≥ 𝜇

|𝑆*∖𝑆𝑡|
(︀
𝑓(𝑥𝑡)− 𝑓(𝑥*)

)︀
⇔𝑓(𝑥𝑡+1)− 𝑓(𝑥*) ≤

(︂
1− 𝜇

|𝑆*∖𝑆𝑡|

)︂(︀
𝑓(𝑥𝑡)− 𝑓(𝑥*)

)︀
.

On the other hand, if 𝜇̃︀𝜅 > 1 we have

|𝑆*∖𝑆𝑡|
(︀
𝑓(𝑥𝑡)− 𝑓(𝑥𝑡+1)

)︀
≥ 𝜇(𝑓(𝑥𝑡)− 𝑓(𝑥*))− 𝜇

2

(︀
𝜇𝜌+ − 𝜌−

)︀(︂⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+
⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2

)︂
≥ 𝜇(𝑓(𝑥𝑡)− 𝑓(𝑥*))− 𝜇 (𝜇̃︀𝜅− 1)

(︁√︀
𝑓(𝑥𝑡)− 𝑓(̃︀𝑥𝑡) +√︀𝑓(𝑥*)− 𝑓(̃︀𝑥𝑡))︁2 ,

where we used Lemma 6.4.1. If 𝑓(𝑥*) = 𝑓(̃︀𝑥𝑡) it is immediate that

𝑓(𝑥𝑡+1)− 𝑓(𝑥*) ≤
(︂
1− 𝜇

|𝑆*∖𝑆𝑡|
(2− 𝜇̃︀𝜅))︂(︀𝑓(𝑥𝑡)− 𝑓(𝑥*))︀ ,

so let us from now on assume that 𝑓(𝑥*) > 𝑓(̃︀𝑥𝑡) and set 𝑎 = 𝑓(𝑥𝑡)− 𝑓(̃︀𝑥𝑡), 𝑎′ = 𝑓(𝑥𝑡+1)− 𝑓(̃︀𝑥𝑡),
and 𝑏 = 𝑓(𝑥*)− 𝑓(̃︀𝑥𝑡). From what we have concluded before

|𝑆*∖𝑆𝑡|
(︀
𝑎− 𝑎′

)︀
≥ 𝜇(𝑎− 𝑏)− 𝜇(𝜇̃︀𝜅− 1)

(︁√
𝑎+
√
𝑏
)︁2

,
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or equivalently

𝑎′ − 𝑏 ≤
(︂
1− 𝜇

|𝑆*∖𝑆𝑡|

)︂
(𝑎− 𝑏) + 𝜇

|𝑆*∖𝑆𝑡|
(𝜇̃︀𝜅− 1)

(︁√
𝑎+
√
𝑏
)︁2

= (𝑎− 𝑏)

⎛⎜⎝1− 𝜇

|𝑆*∖𝑆𝑡|

⎛⎜⎝1− (𝜇̃︀𝜅− 1)

(︁√
𝑎+
√
𝑏
)︁2

𝑎− 𝑏

⎞⎟⎠
⎞⎟⎠

= (𝑎− 𝑏)

(︃
1− 𝜇

|𝑆*∖𝑆𝑡|

(︃
1− (𝜇̃︀𝜅− 1)

√︀
𝑎
𝑏 + 1√︀
𝑎
𝑏 − 1

)︃)︃

= (𝑎− 𝑏)

(︃
1− 𝜇

|𝑆*∖𝑆𝑡|

(︃
1− (𝜇̃︀𝜅− 1)

(︃
1 +

2√︀
𝑎
𝑏 − 1

)︃)︃)︃

= (𝑎− 𝑏)

(︃
1− 𝜇

|𝑆*∖𝑆𝑡|

(︃
2− 𝜇̃︀𝜅− 2(𝜇̃︀𝜅− 1)√︀

𝑎
𝑏 − 1

)︃)︃
,

Replacing back 𝑎, 𝑎′, 𝑏, the desired statement follows:

𝑓(𝑥𝑡+1)− 𝑓(𝑥*) ≤ (𝑓(𝑥𝑡)− 𝑓(𝑥*)) ·

⎛⎝1− 𝜇

|𝑆*∖𝑆𝑡|

⎛⎝2− 𝜇̃︀𝜅− 2(𝜇̃︀𝜅− 1)√︁
𝑓(𝑥𝑡)−𝑓(̃︀𝑥𝑡)
𝑓(𝑥*)−𝑓(̃︀𝑥𝑡) − 1

⎞⎠⎞⎠ .

The proof of Theorem 6.4.2 now follows by appropriately applying Lemma 6.4.3.

Proof of Theorem 6.4.2. We will directly apply Lemma 6.4.3 over the course of multiple iterations.
For the second bullet of the theorem statement, the progress bound of Lemma 6.4.3 also depends on
(𝑓(𝑥𝑡) − 𝑓(̃︀𝑥𝑡))/(𝑓(𝑥*) − 𝑓(̃︀𝑥𝑡)). We show that, as long as 𝑓(𝑥) is singificantly larger than 𝑓(𝑥*),
this can be lower bounded by a sufficiently large quantity, leading to fast convergence.

Case 1: 𝜇̃︀𝜅 ≤ 1.

By Lemma 6.4.3, we have

𝑓(𝑥𝑇 )− 𝑓(𝑥*) ≤
(︀
𝑓(𝑥𝑇−1)− 𝑓(𝑥*)

)︀(︂
1− 𝜇

|𝑆*∖𝑆𝑇−1|

)︂
≤
(︀
𝑓(𝑥𝑇−1)− 𝑓(𝑥*)

)︀ (︁
1− 𝜇

𝑠*

)︁
≤
(︀
𝑓(𝑥𝑇−1)− 𝑓(𝑥*)

)︀
𝑒−

𝜇
𝑠*

≤ . . .

≤
(︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
𝑒−𝑇

𝜇
𝑠*

≤ 𝜀 ,

for our choice of 𝑇 = 𝑂
(︁√

𝑠𝑠* log 𝑓(𝑥0)−𝑓(𝑥*)
𝜀

)︁
and replacing 𝜇 =

√︁
𝑠*

𝑠 .

Case 2: 𝜇̃︀𝜅 > 1.

Let 𝒜 be the set of 0 ≤ 𝑡 ≤ 𝑇 − 1 such that 𝑓(𝑥*) = 𝑓(̃︀𝑥𝑡) and ℬ the set of 0 ≤ 𝑡 ≤ 𝑇 − 1 such

132



that 𝑓(𝑥*) > 𝑓(̃︀𝑥𝑡). By Lemma 6.4.3, for 𝑡 ∈ 𝒜 we then have

𝑓(𝑥𝑡+1)− 𝑓(𝑥*) ≤
(︀
𝑓(𝑥𝑡)− 𝑓(𝑥*)

)︀(︂
1− 𝜇

|𝑆*∖𝑆𝑡|
(2− 𝜇̃︀𝜅))︂

≤
(︀
𝑓(𝑥𝑡)− 𝑓(𝑥*)

)︀ (︁
1− 𝜇

𝑠*
(2− 𝜇̃︀𝜅))︁ .

We now consider the case 𝑡 ∈ ℬ. By Lemma 6.4.3,

𝑓(𝑥𝑡+1)− 𝑓(𝑥*) ≤
(︀
𝑓(𝑥𝑡)− 𝑓(𝑥*)

)︀
·

⎛⎝1− 𝜇

|𝑆*∖𝑆𝑡|

⎛⎝2− 𝜇̃︀𝜅− 2(𝜇̃︀𝜅− 1)√︁
𝑓(𝑥𝑡)−𝑓(̃︀𝑥𝑡)
𝑓(𝑥*)−𝑓(̃︀𝑥𝑡) − 1

⎞⎠⎞⎠ . (6.15)

Let us suppose that the theorem statement is not true. This implies

𝑓(𝑥𝑡)− 𝑓(𝑥*) ≥ 𝑓(𝑥𝑇 )− 𝑓(𝑥*)

> 𝜀+
4(1− 𝜃)(𝜇̃︀𝜅− 1)

(2− 𝜇̃︀𝜅− 𝜃)2 (𝑓(𝑥*)− 𝑓(𝑥*))

≥ 𝜀+ 4(1− 𝜃)(𝜇̃︀𝜅− 1)

(2− 𝜇̃︀𝜅− 𝜃)2 (𝑓(𝑥*)− 𝑓(̃︀𝑥𝑡))
≥ 4(1− 𝜃)(𝜇̃︀𝜅− 1)

(2− 𝜇̃︀𝜅− 𝜃)2 (𝑓(𝑥*)− 𝑓(̃︀𝑥𝑡)) ,
(6.16)

for all 0 ≤ 𝑡 ≤ 𝑇 . Therefore

𝑓(𝑥𝑡)− 𝑓(̃︀𝑥𝑡) > (︂4(1− 𝜃)(𝜇̃︀𝜅− 1)

(2− 𝜇̃︀𝜅− 𝜃)2 + 1

)︂
(𝑓(𝑥*)− 𝑓(̃︀𝑥𝑡))

=

(︂
4(1− 𝜃)(𝜇̃︀𝜅− 1) + 4 + (𝜇̃︀𝜅+ 𝜃)2 − 4(𝜇̃︀𝜅+ 𝜃)

(2− 𝜇̃︀𝜅− 𝜃)2
)︂
· (𝑓(𝑥*)− 𝑓(̃︀𝑥𝑡))

=
(𝜇̃︀𝜅− 𝜃)2

(2− 𝜇̃︀𝜅− 𝜃)2 (𝑓(𝑥*)− 𝑓(̃︀𝑥𝑡)) ,
or equivalently for all 𝑡 ∈ ℬ√︃

𝑓(𝑥𝑡)− 𝑓(̃︀𝑥𝑡)
𝑓(𝑥*)− 𝑓(̃︀𝑥𝑡) − 1 >

𝜇̃︀𝜅− 𝜃
2− 𝜇̃︀𝜅− 𝜃 − 1 =

2(𝜇̃︀𝜅− 1)

2− 𝜇̃︀𝜅− 𝜃 .
Replacing this into (6.15), we get that for any 𝑡 ∈ ℬ

𝑓(𝑥𝑡+1)− 𝑓(𝑥*) ≤ (𝑓(𝑥𝑡)− 𝑓(𝑥*)) ·

⎛⎝1− 𝜇

|𝑆*∖𝑆𝑡|

⎛⎝2− 𝜇̃︀𝜅− 2(𝜇̃︀𝜅− 1)√︁
𝑓(𝑥𝑡)−𝑓(̃︀𝑥𝑡)
𝑓(𝑥*)−𝑓(̃︀𝑥𝑡) − 1

⎞⎠⎞⎠
≤ (𝑓(𝑥𝑡)− 𝑓(𝑥*))

(︂
1− 𝜇

|𝑆*∖𝑆𝑡|
𝜃

)︂
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and so combining it with the case 𝑡 ∈ 𝒜 and using the fact that 𝜇̃︀𝜅 < 2− 𝜃 ⇔ 𝜃 < 2− 𝜇̃︀𝜅,
𝑓(𝑥𝑇 )− 𝑓(𝑥*) ≤

(︀
𝑓(𝑥𝑇−1)− 𝑓(𝑥*)

)︀(︂
1− 𝜇

|𝑆*∖𝑆𝑇−1|
min {2− 𝜇̃︀𝜅, 𝜃})︂

≤
(︀
𝑓(𝑥𝑇−1)− 𝑓(𝑥*)

)︀ (︁
1− 𝜇

𝑠*
𝜃
)︁

≤
(︀
𝑓(𝑥𝑇−1)− 𝑓(𝑥*)

)︀
𝑒−

𝜇
𝑠* 𝜃

≤ . . .

≤ (𝑓(𝑥0)− 𝑓(𝑥*))𝑒−𝑇
𝜇
𝑠* 𝜃

= 𝜀+
4(1− 𝜃)(𝜇̃︀𝜅− 1)

(2− 𝜇̃︀𝜅− 𝜃)2 (𝑓(𝑥*)− 𝑓(𝑥*)) ,

where the last equality follows by our choice of

𝑇 =

√
𝑠𝑠*

𝜃
log

𝑓(𝑥0)− 𝑓(𝑥*)
𝐵

and replacing 𝜇 =
√︁

𝑠*

𝑠 . This is a contradiction. �

6.4.3 Corollaries of Theorem 6.4.2

The first corollary states that in the “noiseless” case (i.e. when the target solution is globally optimal),
the returned solution can reach arbitrarily close to the target solution. For 𝑠 = 𝑠*, it gives the
same condition of ̃︀𝜅 < 2 (or 𝛿 < 1/3) as in [87], while working for any function 𝑓 . For 𝑠 > 𝑠*, it
additionally gives a tradeoff between the sparsity and the RIP bound required for the algorithm.

Corollary 6.4.4 (Noiseless case). If ̃︀𝜅√︁ 𝑠*

𝑠 < 2 and 𝑥* is a globally optimal solution, i.e. 𝑓(𝑥*) =
min
𝑧

𝑓(𝑧), Algorithm 12 returns a solution with

𝑓(𝑥) ≤ 𝑓(𝑥*) + 𝜀

in 𝑂

(︃
√
𝑠𝑠*

2−̃︀𝜅√︁ 𝑠*
𝑠

log 𝑓(𝑥0)−𝑓(𝑥*)
𝜀

)︃
iterations.

Proof. We apply Theorem 6.4.2 with 𝜃 = 1
2

(︁
2− ̃︀𝜅√︁ 𝑠*

𝑠

)︁
.

The following result is in the usual form of sparse recovery results, which provide a bound on
‖𝑥− 𝑥*‖2 given a RIP constant upper bound. It provides a tradeoff between the RIP constant and
the sparsity of the returned solution. Similar results can be found e.g. in [31] using LASSO, albeit
they only apply to case of linear regression (𝑓(𝑥) = 1

2‖𝐴𝑥− 𝑏‖
2
2) and do not offer a sparsity tradeoff.

Corollary 6.4.5 (ℓ2 solution recovery). Given any parameters 𝜀 > 0 and 0 < 𝜃 < 1, the returned
solution 𝑥 of Algorithm 12 will satisfy

‖𝑥− 𝑥*‖22 ≤ 𝜀+ 𝐶
(︁
𝑓(𝑥*)−min

𝑧
𝑓(𝑧)

)︁
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as long as

𝛿𝑠+𝑠* <
(2− 𝜃)

√︀
𝑠
𝑠* − 1

(2− 𝜃)
√︀

𝑠
𝑠* + 1

,

where 𝐶 is a constant that depends only on 𝜃, 𝛿𝑠+𝑠* , and 𝑠
𝑠* .

Proof. By triangle inequality and strong convexity, and letting ̃︀𝑥* be the optimal solution in
supp(𝑥) ∪ supp(𝑥*), we have

‖𝑥− 𝑥*‖22 ≤ 2
(︀
‖𝑥− ̃︀𝑥*‖22 + ‖𝑥* − ̃︀𝑥*‖22)︀

≤ 4

1− 𝛿𝑠+𝑠*
(𝑓(𝑥)− 𝑓(̃︀𝑥*) + 𝑓(𝑥*)− 𝑓(̃︀𝑥*))

=
4

1− 𝛿𝑠+𝑠*
(𝑓(𝑥)− 𝑓(𝑥*) + 2(𝑓(𝑥*)− 𝑓(̃︀𝑥*)))

=
4

1− 𝛿𝑠+𝑠*

(︁
𝑓(𝑥)− 𝑓(𝑥*) + 2(𝑓(𝑥*)−min

𝑧
𝑓(𝑧))

)︁
.

Now, by applying Theorem 6.4.2 for some error tolerance ̂︀𝜀 > 0, we get

𝑓(𝑥) ≤ 𝑓(𝑥*) + ̂︀𝜀+ ̂︀𝐶(𝑓(𝑥*)− 𝑓(𝑥*)) ≤ 𝑓(𝑥*) + ̂︀𝜀+ ̂︀𝐶(𝑓(𝑥*)−min
𝑧
𝑓(𝑧)) ,

for some ̂︀𝐶 > 0, and so we conclude that

‖𝑥− 𝑥*‖22 ≤
4̂︀𝜀

1− 𝛿𝑠+𝑠*
+

4( ̂︀𝐶 + 2)

1− 𝛿𝑠+𝑠*
(𝑓(𝑥*)−min

𝑧
𝑓(𝑧)) .

The statement follows by setting 𝜀 = 4̂︀𝜀
1−𝛿𝑠+𝑠*

and 𝐶 = 4( ̂︀𝐶+2)
1−𝛿𝑠+𝑠*

.

In particular, for 𝑠 = 𝑠*, the above lemma implies recovery under the condition 𝛿2𝑠* < 1
3 .

6.5 Lower Bounds

6.5.1 Ω(𝑠*𝜅) Lower Bound due to [63]

In Appendix B of [63] a matrix 𝐴 ∈ R𝑚×𝑛 and a vector 𝑏 ∈ R𝑚 are constructed and let us define
𝑓(𝑥) = 1

2 ‖𝐴𝑥− 𝑏‖
2
2. If we let 𝑆* = {1, . . . , 𝑛− 2} and 𝑆* = {𝑛− 1, 𝑛}, then 𝑓 has the property that

min
supp(𝑥)⊆𝑆*

𝑓(𝑥) = min
supp(𝑥)⊆𝑆*

𝑓(𝑥) = 0 ,

but for any 𝑆 ⊂ 𝑆*,

min
supp(𝑥)⊆𝑆

𝑓(𝑥) > 0 .

Furthermore, for any 𝑆 ⊂ 𝑆* and 𝑥 = argmin
supp(𝑥)⊆𝑆

𝑓(𝑥), it is true that

max
𝑖∈𝑆*

|∇𝑖𝑓(𝑥)| < min
𝑖∈𝑆*∖𝑆

|∇𝑖𝑓(𝑥)| .

135



This means that for any algorithm with an OMP-like criterion like Orthogonal Matching Pursuit,
Orthogonal Matching Pursuit with Replacement, Iterative Hard Thresholding, and Partial Hard
Thresholding, if the initial solution does not have an intersection with 𝑆*, then it will never have,
therefore implying that the sparsity returned by the algorithm is |𝑆| = 𝑛− 2 = Ω(𝑛). As for this
construction 𝜅 = 𝜌+𝑛

𝜌−𝑛
= 𝑂 (𝑛), there exists a constant 𝑐 such that the sparsity of the returned solution

cannot be less than 𝑐𝑠*𝜅, since 𝑠*𝜅 = 𝑂(𝑛) = 𝑂(|𝑆|). Therefore none of these algorithms can
improve the bound 𝑂(𝑠*𝜅) of Theorem 6.3.1 by more than a constant factor. This example also
applies to ARHT and Exhaustive Local Search.

It seems difficult to get past this example and achieve sparsity 𝑠 = 𝑂(𝑠*𝜅1−𝛿) for some 𝛿 > 0.
We conjecture that there might be a way to turn the above example into an inapproximability result:

Conjecture 6.5.1. For any 𝛿 > 0, there is no polynomial time algorithm that given a matrix
𝐴 ∈ R𝑚×𝑛, a vector 𝑏 ∈ R𝑚, a target sparsity 𝑠* ≥ 1, and a desired accuracy 𝜀 > 0, returns an
𝑠 = 𝑂(𝑠*𝜅1−𝛿𝑠+𝑠*)-sparse solution 𝑥 such that ‖𝐴𝑥− 𝑏‖22 ≤ min

‖𝑥*‖0≤𝑠*
‖𝐴𝑥* − 𝑏‖22 + 𝜀, if such a solution

exists.

6.5.2 Ω(𝑠*𝜅2) Lower Bound for OMPR

The following lemma shows that, without regularization, OMPR requires sparsity Ω(𝑠*𝜅2) in general,
and therefore the sparsity upper bound is tight. We assume that the algorithm is run for a fixed 𝑇
iterations, even when the solution stops improving, for a clearer presentation.

Lemma 6.5.2. There is a function 𝑓(𝑥) = 1
2 ‖𝐴𝑥− 𝑏‖

2
2 where 𝐴 ∈ R𝑛×𝑛 and 𝑏 ∈ R𝑛 and a target

solution 𝑥* of 𝑓 with sparsity 𝑠*, as well as a set 𝑆 ⊆ [𝑛] with |𝑆| = Θ(𝑠*𝜅2) such that OMPR
initialized with support set 𝑆 returns a solution 𝑥 with 𝑓(𝑥) = 𝑓(𝑥*) + Θ(𝑠*𝜅2).

Proof. Without loss of generality we assume that 𝜅 is an even integer and set 𝑛 = 𝑠*
(︀
1 + 𝜅+ 𝜅2

)︀
.

We then partition [𝑛] into three intervals 𝐼1 = [1, 𝑠*], 𝐼2 = [𝑠* + 1, 𝑠*(1 + 𝜅)], 𝐼3 = [𝑠*(1 + 𝜅) +
1, 𝑠*(1 + 𝜅+ 𝜅2)]. We define the diagonal matrix 𝐴 ∈ R𝑛×𝑛 such that

𝐴𝑖𝑖 =

⎧⎪⎨⎪⎩
1 if 𝑖 ∈ 𝐼1√
𝜅 if 𝑖 ∈ 𝐼2

1 if 𝑖 ∈ 𝐼3

and vector 𝑏 ∈ R𝑛 such that

𝑏𝑖 =

⎧⎪⎨⎪⎩
𝜅
√
1− 4𝛿 if 𝑖 ∈ 𝐼1√
𝜅
√
1− 2𝛿 if 𝑖 ∈ 𝐼2

1 if 𝑖 ∈ 𝐼3
,

where 𝛿 > 0 is a sufficiently small scalar used to avoid ties in the steps of the algorithm. The target
solution is defined as

𝑥*𝑖 =

{︃
𝜅(1− 4𝛿) if 𝑖 ∈ 𝐼1
0 if 𝑖 ∈ 𝐼2 ∪ 𝐼3

and its value is 𝑓(𝑥*) = 𝑠*𝜅2(1 − 𝛿). Now consider any initial support set 𝑆0 ⊂ 𝐼3 such that
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|𝑆0| = 𝑠*𝜅2/2. The initial solution will then be

𝑥0𝑖 =

{︃
0 if 𝑖 ∈ 𝐼1 ∪ 𝐼2 ∪ 𝐼3∖𝑆0

1 if 𝑖 ∈ 𝑆0

and its value 𝑓(𝑥0) = 𝑠*𝜅2
(︀
5
4 − 3𝛿

)︀
= 𝑓(𝑥*) + Θ(𝑠*𝜅2). The gradient at 𝑥0 is

∇𝑖𝑓(𝑥0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝜅
√
1− 4𝛿 if 𝑖 ∈ 𝐼1

−𝜅
√
1− 2𝛿 if 𝑖 ∈ 𝐼2

−1 if 𝑖 ∈ 𝐼3∖𝑆0

0 if 𝑖 ∈ 𝑆0

,

therefore the algorithm will pick 𝑆1 = 𝑆0 ∪ {𝑖0}∖{𝑗0} for some 𝑖0 ∈ 𝐼2 and some 𝑗0 ∈ 𝑆0, since the
gradient entries in 𝐼2 have the largest magnitude among those in [𝑛]. The new solution will be

𝑥1𝑖 =

⎧⎪⎨⎪⎩
0 if 𝑖 ∈ 𝐼1 ∪ 𝐼2 ∪ 𝐼3∖𝑆1

√
1− 2𝛿 if 𝑖 = 𝑖0

1 if 𝑖 ∈ 𝑆1∖{𝑖0}

with value 𝑓(𝑥1) = 𝑠*𝜅2
(︀
5
4 − 3𝛿

)︀
− 1

2(𝜅(1− 2𝛿)− 1) and gradient

∇𝑖𝑓(𝑥1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝜅
√
1− 4𝛿 if 𝑖 ∈ 𝐼1

−𝜅
√
1− 2𝛿 if 𝑖 ∈ 𝐼2∖𝑆1

−1 if 𝑖 ∈ 𝐼3∖𝑆1

0 if 𝑖 ∈ 𝑆1

and therefore the algorithm will pick 𝑆2 = 𝑆1 ∪ {𝑖1}∖{𝑖0} for some 𝑖1 ∈ 𝐼2. 𝑖0 will be the one to
be removed from 𝑆1 because 𝑥𝑖0 has the smallest magnitude out of all entries in 𝑆1. Continuing
this process, the algorithm will always have 𝑆𝑡 ∩ 𝐼2 = 1 and 𝑆𝑡 ∩ 𝐼3 = |𝑆𝑡| − 1, and so 𝑓(𝑥𝑡) =
𝑠*𝜅2

(︀
5
4 − 3𝛿

)︀
− 1

2(𝜅(1− 2𝛿)− 1) = 𝑓(𝑥*) + Θ(𝑠*𝜅2) for 𝑡 ≥ 1.

6.6 Experiments

6.6.1 Overview

In this section we evaluate the training performance of different algorithms in the tasks of Linear
Regression and Logistic Regression. More specifically, for each algorithm we are interested in how
the loss over the training set (the quality of the solution) evolves as a function of the the sparsity of
the solution, i.e. the number of non-zeros.

The algorithms that we will consider are LASSO, Orthogonal Matching Pursuit (OMP), Orthogonal
Matching Pursuit with Replacement (OMPR), Adaptively Regularized Hard Thresholding (ARHT)
(Algorithm 15), and Exhaustive Local Search (Algorithm 13). We run our experiments on publicly
available regression and binary classification data sets, out of which we have presented those on
which the algorithms have significantly different performance between each other. In some of the
other data sets that we tested, we observed that all algorithms had similar performance. The results
are presented in Figures 6-1, 6-2, 6-3, 6-4. Also, in Figure 6-5 we present a runtime comparison
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between ARHT and Exhaustive Local Search in the year and census datasets. Another relevant class
of algorithms that we considered was ℓ𝑝 Appproximate Message Passing algorithms [48, 171]. Brief
experiments showed its performance in terms of sparsity for 𝑝 ≤ 0.5 to be promising (on par with
OMPR and ARHT although these had much faster runtimes), however a detailed comparison is left
for future work.

In both types of objectives (linear and logistic) we include an intercept term, which is present in
all solutions (i.e. it is always counted as +1 in the sparsity of the solution). For consistency, all
greedy algorithms (OMPR, ARHT, Exhaustive Local Search) are initialized with the OMP solution
of the same sparsity.

We note that this section is not supposed to be a conclusive experimental evaluation of the
aforementioned algorithms, but rather a preliminary set of experiments that gives partial evidence for
their performance. A more extensive future experimental evaluation should focus on implementing
runtime-optimized versions of these algorithms and generating sparsity vs loss and loss vs runtime
plots for a larger collection of real datasets and with more datapoints and features.

These experiments suggest that Exhaustive Local Search outperforms the other algorithms.
However, ARHT also has promising performance and it might be preferred because of better
computational efficiency. As a general conclusion, however, both Exhaustive Local Search and
ARHT give sparser solutions than other known methods in all the examples we tested. We leave a
comprehensive comparison for future work. As a limitation, we observe that ARHT has inconsistent
performance in some cases, oscillating between the Exhaustive Local Search and OMPR solutions.
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Figure 6-1: Comparison of different algorithms in the Regression data sets cal_housing and year
using the Linear Regression loss.
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Figure 6-2: Comparison of different algorithms in the Regression data sets comp-activ-harder and
slice using the Linear Regression loss.
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Figure 6-3: Comparison of different algorithms in the Binary classification data sets census and
kddcup04_bio using the Logistic Regression loss.
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Figure 6-4: Comparison of different algorithms in the Binary classification data sets letter and ijcnn1
using the Logistic Regression loss.
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Figure 6-5: Comparison of the loss of a solution vs time elapsed to compute it, between ARHT and
Exhaustive Local Search. The first experiment is on the year dataset (90 total features) with fixed
sparsity 8 and the second is on the census dataset (401 total features) with fixed sparsity 7. We
note that in the first case Exhaustive Local Search returns significantly sparser solutions without
too significant time overhead compared to ARHT. However, in the second case ARHT computes a
solution of similar loss to that of Exhaustive Local Search, but around 40 times faster. We attribute
this to the fact that the Exhaustive Local Search has an extra 𝑛 factor in the runtime, so it doesn’t
scale as well as ARHT as the number of features increases. Note: The reason there are “steps” in the
plot is that the solution is improved at discrete time steps, i.e. whenever an insertion and removal
from the solution support improves the solution.

For experimental evaluation we used well known and publicly available data sets. Their names
and basic properties are outlined in Table 6.2.
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Table 6.2: Data sets used for experimental evaluation. The columns are the data set name, the
number of examples 𝑚, and the number of features 𝑛. The data sets can be downloaded here.

Name 𝑛 𝑑 problem

kddcup04_bio 145750 74 binary
cal_housing 20639 8 regression
census 299284 401 binary
comp-activ-harder 8191 12 regression
ijcnn1 24995 22 binary
letter 20000 16 binary
slice 53500 384 regression
year 463715 90 regression

6.6.2 Setup Details

Basic Definitions

The two quantities that take part in our experiments are the sparsity and the loss of a particular
solution. We have already defined and discussed the former at length. The latter refers to the
training loss for the problems of Linear Regression and Logistic Regression. We let 𝑚 denote the
number of examples and 𝑛 the number of features in each example.

In the Linear Regression task we are given the data set (𝐴, 𝑏), where 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚. The
columns of 𝐴 correspond to features and the rows to examples. The (ℓ2 Linear Regression) loss of a
solution 𝑥 ∈ R𝑛 is defined as ℓ2_loss(𝑥) = 1

2 ‖𝐴𝑥− 𝑏‖
2
2.

In the Logistic Regression task we are given the data set (𝐴, 𝑏), where 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ {0, 1}𝑚.
The columns of 𝐴 correspond to features and the rows to examples. The (Logistic Regression) loss
of a solution 𝑥 ∈ R𝑛 is defined as

logistic_loss(𝑥) =
∑︁
𝑖∈[𝑚]

(−𝑏𝑖 log 𝜎(𝐴𝑥)𝑖 − (1− 𝑏𝑖) log(1− 𝜎(𝐴𝑥)𝑖)) ,

where 𝜎 : R→ R defined as 𝜎(𝑡) = 1
1+𝑒−𝑡 is the sigmoid function.

Data Pre-processing

We apply a very basic form of pre-processing to the data. More specifically, we use one-hot encoding
to turn categorical features into numerical ones. Then, we discard any examples with missing data
so that all the entries of 𝐴 are defined. We also augment the matrix 𝐴 with an extra all-ones column
(i.e. 1⃗) in order to encode the constant (𝑦-intercept) term into 𝐴, and we scale all the columns of 𝐴
so that their ℓ2 norm is 1. Finally, for the case of ARHT we further augment 𝐴 in order to encode
the regularizer as well. We do this by adding an identity matrix as extra rows. In other words,

𝐴←
(︂
𝐴
𝐼

)︂
and 𝑏←

(︂
𝑏

0⃗

)︂
.

6.6.3 Implementation Details

The code has been implemented in python3, with libraries numpy, sklearn, and scipy.
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Inner Optimization Problem

All the algorithms except for LASSO rely on an inner optimization routine in a restricted subset
of coordinates in each step. The inner optimization problem consists of solving a standard Linear
Regression or Logistic Regression problem using only a submatrix of 𝐴 defined by a subset of 𝑠 of
its columns. For that, we use LinearRegression and LogisticRegression from sklearn.linear_model.
For Logistic Regression we used an LBFGS solver with 1000 iterations.

Overall Algorithm

The LASSO solver we used is Lasso from sklearn.linear_model with 1000 iterations. As LASSO is
not tuned in terms of a required sparsity 𝑠, but rather in terms of the regularization parameter 𝛼,
for each sparsity level we applied binary search on 𝛼 in order to find a parameter 𝛼 that gives the
required sparsity.

For ARHT, we used a fixed number of 20 iterations at Line 5 of Algorithm 15. In Line 19 of
Algorithm 14 we slightly weaken the progress condition to

𝑔𝑅𝑡(𝑥𝑡)− 𝑔𝑅𝑡(𝑥𝑡+1) ≥ 10−3

𝑠

(︀
𝑔𝑅𝑡(𝑥𝑡)− opt

)︀
. (6.17)

Furthermore, we do not perform a fixed number of iterations. Instead, we use a stopping criterion:
If the progress condition (6.17) is not met and at least half the elements in 𝑥𝑡 have already been
unregularized, i.e.

⃒⃒
𝑆𝑡∖𝑅𝑡

⃒⃒
≥ 1

2

⃒⃒
𝑆𝑡
⃒⃒
, then we stop. If a desirable solution has not been found, it

means that this might be an unsuccessful run, and early termination can be used to detect such runs
early and re-start, thus improving the runtime. The routine which samples an index 𝑖 proportional to
𝑥2𝑖 was implementing by a standard sampling method that uses binary search on 𝑖 and flips a random
coin at each step. This requires computation of interval sums of 𝑥2𝑖 , which is done by computing
partial sums.
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Chapter 7

Iterative Hard Thresholding with
Adaptive Regularization: Sparser
Solutions Without Sacrificing Runtime

7.1 Introduction

Sparse optimization is the task of optimizing a function 𝑓 over 𝑠-sparse vectors, i.e. those with at
most 𝑠 non-zero entries. Examples of such optimization problems arise in machine learning, with the
goal to make models smaller for efficiency, generalization, or interpretability reasons, and compressed
sensing, where the goal is to recover an 𝑠-sparse signal from a small number of measurements. A
closely related problem is low rank optimization, where the sparsity constraint is instead placed on
the spectrum of the solution (which is a matrix). This problem is central in matrix factorization,
recommender systems, robust principal components analysis, among other tasks. More generally,
structured sparsity constraints have the goal of capturing the special structure of a particular task by
restricting the set of solutions to those that are “simple” in an appropriate sense. Examples include
group sparsity, tree- and graph-structured sparsity. For more on generalized sparsity measures see
e.g. [142].

Among the huge number of algorithms that have been developed for the sparse optimization
problems, three stand out as the most popular ones:

• The LASSO [161], which works by relaxing the ℓ0 (sparsity) constraint to an ℓ1 constraint,
thus convexifying the problem.

• Orthogonal matching pursuit (OMP) [135], which works by building the solution greedily
in an incremental fashion.

• Iterative hard thresholding (IHT) [19], which performs projected gradient descent on the
set of sparse solutions.

Among these, IHT is generally the most efficient, since it has essentially no overhead over plain
gradient descent, making it the tool of choice for large-scale applications.
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7.1.1 Iterative Hard Thresholding (IHT)

Consider the sparse convex optimization problem

min
‖x‖0≤𝑠

𝑓(x ) , (7.1)

where 𝑓 is convex and ‖x‖0 is the number of non-zero entries in the vector x , i.e. the sparsity of x .
IHT works by repeatedly performing the following iteration

x 𝑡+1 = 𝐻𝑠′
(︀
x 𝑡 − 𝜂 · ∇𝑓(x 𝑡)

)︀
, (7.2)

where 𝐻𝑠′ is the hard thresholding operator that zeroes out all but the top 𝑠′ entries, for some
(potentially relaxed) sparsity level 𝑠′, and 𝜂 > 0 is the step size.

As (7.1) is known to be NP-hard [127] and even hard to approximate [63], an extra assumption
needs to be made for the performance of the algorithm to be theoretically evaluated in a meaningful
way. The most common assumption is that the (restricted) condition number of 𝑓 is bounded by 𝜅
(or the restricted isometry property constant is bounded by 𝛿 [31]), but other assumptions have been
studied as well, such as incoherence [47] and weak supermodularity [109]. The performance is then
measured in terms of the sparsity 𝑠′ of the returned solution, as well as its error (value of 𝑓).

As it is known [89], IHT is guaranteed to return an 𝑠′ = 𝑂(𝑠𝜅2)-sparse solution x with 𝑓(x ) ≤
𝑓(x *) + 𝜀. In fact, as we show in Section 9.5.5, the 𝜅2 factor cannot be improved in the analysis.
Recently, [14] presented an algorithm called ARHT, which improves the sparsity to 𝑠′ = 𝑂(𝑠𝜅).
However, their algorithm is much less efficient than IHT, for many reasons. So the question emerges:

Is there a sparse convex optimization algorithm that returns 𝑂(𝑠𝜅)-sparse solutions, but whose
runtime efficiency is comparable to IHT?

The main contribution of our work is to show that this goal can be achieved, and done so by a
surprisingly simple tweak to IHT.

7.1.2 Reconciling Sparsity and Efficiency: Regularized IHT

Our main result is the following theorem, which states that running IHT on an adaptively regularized
objective function returns 𝑂(𝑠𝜅)-sparse solutions that are 𝜀-optimal in function value, while having
no significant runtime overhead over plain gradient descent.

Theorem 7.1.1 (Regularized IHT). Let 𝑓 ∈ R𝑛 → R be a convex function that is 𝛽-smooth and
𝛼-strongly convex1, with condition number 𝜅 = 𝛽/𝛼, and x * be an (unknown) 𝑠-sparse solution.
Then, running Algorithm 16 with 𝜂 = (2𝛽)−1 and 𝑐 = 𝑠′/(4𝑇 ) for

𝑇 = 𝑂

(︃
𝜅 log

𝑓(x 0) + (𝛽/2)
⃦⃦
x 0
⃦⃦2
2
− 𝑓(x *)

𝜀

)︃

iterations starting from an arbitrary 𝑠′ = 𝑂(𝑠𝜅)-sparse solution x 0, the algorithm returns an 𝑠′-sparse
solution x𝑇 such that 𝑓(x𝑇 ) ≤ 𝑓(x *) + 𝜀. Furthermore, each iteration requires 𝑂(1) evaluations of
𝑓 , ∇𝑓 , and 𝑂(𝑛) additional time.

1The theorem also holds if the smoothness and strong convexity constants are replaced by (𝑠′ + 𝑠)-restricted
smoothness and strong convexity constants.
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To achieve this result, we significantly refine and generalize the adaptive regularization technique
of [14]. This refined version fixes many of the shortcomings of the original, by (i) not requiring
re-optimization in every iteration (a relic of OMP-style algorithms), (ii) taking ̃︀𝑂 (𝜅) instead of̃︀𝑂 (𝑠𝜅) iterations, (iii) being deterministic, (iv) not requiring knowledge of the optimal function value
𝑓(𝑥*) thus avoiding the overhead of an outer binary search, and (v) being more easily generalizable
to other settings, like low rank minimization.

In short, our main idea is to run IHT on a regularized function

𝑔(x ) = 𝑓(x ) + (𝛽/2) ‖x‖2w ,2 ,

where ‖x‖2w ,2 =
∑︀𝑛

𝑖=1𝑤𝑖𝑥
2
𝑖 and w are non-negative weights. These weights change dynamically

during the algorithm, in a way that depends on the value of x . The effect is that now the IHT step
will instead be given by

x 𝑡+1 = 𝐻𝑠′
(︀(︀
1− 0.5w 𝑡

)︀
x 𝑡 − 𝜂 · ∇𝑓(x 𝑡)

)︀
,

which is almost the same as (7.2), except that it has an extra term that biases the solution towards
0. Additionally, in each step the weights w 𝑡 are updated based on the current solution as

𝑤𝑡+1
𝑖 =

(︃
𝑤𝑡𝑖 ·

(︃
1− 𝑐 · 𝑤

𝑡
𝑖(𝑥

𝑡
𝑖)
2

‖x 𝑡‖2𝑤𝑡,2

)︃)︃
≥1/2

for some parameter 𝑐 > 0, where (·)≥1/2 denotes zeroing out all the entries that are < 1/2 and
keeping the others intact.

In Section 7.2, we will go over the central ideas of our refined adaptive regularization technique,
and also explain how it can be extended to deal with more general sparsity measures.

7.1.3 Beyond Sparsity: Low Rank Optimization

As discussed, our new techniques transfer to the problem of minimizing a convex function under a
rank constraint. In particular, we prove the following theorem:

Theorem 7.1.2 (Adaptive Regularization for Low Rank Optimization). Let 𝑓 ∈ R𝑚×𝑛 → R be a
convex function with condition number 𝜅 and consider the low rank minimization problem

min
rank(A)≤𝑟

𝑓(A) . (7.3)

For any error parameter 𝜀 > 0, there exists a polynomial time algorithm that returns a matrix A

with rank(A) ≤ 𝑂
(︁
𝑟
(︁
𝜅+ log 𝑓(O)−𝑓(A*)

𝜀

)︁)︁
and 𝑓(A) ≤ 𝑓(A*) + 𝜀, where O is the all-zero matrix

and A* is any rank-𝑟 matrix.

This result can be compared to the Greedy algorithm of [13], which works by incrementally
adding a rank-1 component to the solution and achieves rank 𝑂(𝑟𝜅 log 𝑓(O)−𝑓(A*)

𝜀 ), as well as their
Local Search algorithm, which works by simultaneously adding a rank-1 component and removing
another, and achieves rank 𝑂(𝑟𝜅2). In contrast, our Theorem 7.1.2 returns a solution with rank
𝑂
(︁
𝑟
(︁
𝜅+ log 𝑓(O)−𝑓(A*)

𝜀

)︁)︁
.
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7.1.4 Related Work

The sparse optimization and compressed sensing literature has a wealth of different algorithms
and analyses. Examples include the seminal paper of [31] on recovery with LASSO and followup
works [64], the CoSaMP algorithm [128], orthogonal matching pursuit and variants [127, 146, 87,
14] iterative hard thresholding [19, 89], hard thresholding pursuit [65, 169, 148, 149], partial hard
thresholding [88], and message passing algorithms [48]. For a survey on compressed sensing, see [21,
68].

A family of algorithms that is closely related to IHT are Frank-Wolfe (FW) methods [69], which
have been used for dealing with generalized sparsity constraints [86]. The basic version can be
viewed as a variant of OMP without re-optimization in each iteration. Block-FW methods are
more resemblant of IHT without the projection step, see e.g. [5] for an application to the low rank
minimization problem.

[112] presented an interesting connection between hard and soft thresholding algorithms by
studying a concavity property of the thresholding operator, and proposed new thresholding operators.

Recently it has been shown [138] that IHT can be guaranteed to work for sparse optimization
of non-convex functions, under appropriate assumptions. In particular, [138] studies a stochastic
version of IHT for sparse deep learning problems, from both a theoretical and practical standpoint.

7.2 The Adaptive Regularization Method

Consider the sparse optimization problem

min
‖x‖0≤𝑠

𝑓(x ) (7.4)

on a convex function 𝑓 with condition number at most 𝜅, and an optimal solution x * that is
supported on the set of indices 𝑆* ⊆ [𝑛].

The main hurdle towards solving this problem is that it is NP hard. Therefore, it is common
to relax it by a factor depending on 𝜅. In fact, IHT requires relaxing the sparsity constraint by a
factor of 𝑂(𝜅2) (i.e. ‖x‖0 ≤ 𝑂(𝑠𝜅2)), in order to return a near-optimal solution. Also, the 𝜅2 factor
is tight for IHT (see Appendix 9.5.5).

Remark We state all our results in terms of the condition number 𝜅, even though the statements
can be strengthened to depend on the restricted condition number 𝜅𝑠′+𝑠, specifically the condition
number restricted on (𝑠′ + 𝑠)-sparse directions. We state our results in this weaker form for clarity
of presentation.

7.2.1 Regularized IHT

Perhaps surprisingly, there is a way to regularize the objective by a weighted ℓ2 norm so that running
IHT on the new objective will only require relaxing the sparsity by 𝑂(𝜅):

min
‖x‖0≤𝑠

𝑓(x ) + (𝛽/2) ‖x‖2w ,2 . (7.5)

One way to do this is by setting the weights w to be 1 everywhere except in the indices from 𝑆*,
where it is set to 0. An inquisitive reader will protest that this is not a very useful statement, since
it requires knowledge of 𝑆*, which was our goal to begin with. In fact, we could just as easily have
used the regularizer (𝛽/2) ‖x − x *‖22, thus penalizing everything that is far from the optimum!
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7.2.2 Learning Weights

Our main contribution is to show that the optimal weights w can in fact be learned in the duration
of the algorithm2. More precisely, consider running IHT starting from the setting of w = 1. The
regularized objective (7.5) is now 𝑂(1)-conditioned, which is great news. On the other hand, (7.5) is
not what we set out to minimize. In other words, even though this approach might work great for
minimizing (7.5), it might (and generally will) fail to achieve sufficient decrease in (7.4)—one could
view this as the algorithm getting trapped in a local minimum.

Our main technical tool is to characterize these local minima, by showing that they can only
manifest themselves if the current solution x satisfies the following condition:

‖x𝑆*‖2w ,2 ≥ Ω(𝜅−1) ‖x‖2w ,2 . (7.6)

In words, this means that a significant fraction of the mass of the current solution lies in the support
𝑆* of the optimal solution. Interestingly, this gives us enough information based on which to update
the regularization weights w in a way that the sum of weights in 𝑆* drops fast enough compared to
the total sum of weights. This implies that the vector w moves in a direction that correlates with
the direction of the optimal weight vector.

These are the core ideas needed to bring the sparsity overhead of IHT from 𝑂(𝜅2) down to 𝑂(𝜅).

7.2.3 Beyond Sparsity: Learning Subspaces

One can summarize the approach of the previous section in the following more general way: If we
know that the optimal solution x * lies in a particular low-dimensional subspace (in our case this
was the span of 1𝑖 for all 𝑖 ∈ 𝑆*), then we can define a regularization term that penalizes all the
solutions based on their distance to that subspace. Of course, this subspace is unknown to us, but
we can try to adaptively modify the regularization term every time the algorithm gets stuck, just as
we did in the previous section.

More concretely, given a collection 𝒜 of unit vectors from R𝑛 (commonly called atoms), we define
the following problem:

min
rank𝒜(x )≤𝑟

𝑓(x ) , (7.7)

where rank𝒜(x ) is the smallest number of vectors from 𝒜 such that x can be written as their
linear combination. We can pick 𝒜 = {11,12, . . . ,1𝑛} to obtain the sparse optimization problem,
𝒜 = {vec(uv⊤) | ‖u‖2 = ‖v‖2 = 1} for the low rank minimization problem, and other choices of
𝒜 can capture more sophisticated problem constraints such as graph structure. Defining an IHT
variant for these more general settings is usually straightforward, although the analysis for even
obtaining a rank overhead of 𝑂(𝜅2) does not trivially follow and depends on the structure of 𝒜.

So, how would a regularizer look in this more general setting? Given our above discussion, it is
fairly simple to deduce it. Consider a decomposition of x as the sum of rank-1 components from
𝒜 = {a1,a2, . . . ,a |𝒜|}:

x =
∑︁
𝑖∈𝑆

a 𝑖 ,

2The idea of adaptively learning regularization weights looks on the surface similar to adaptive gradient algorithms
such as AdaGrad [50]. An important difference is that these algorithms regularize the function around the current
solution, while we regularize it around the origin. Still, this is a potentially intriguing connection that deserves to be
investigated further.
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where rank𝒜(a 𝑖) = 1, and let 𝐿* = span({a 𝑖 | 𝑖 ∈ 𝑆*}) be a low-dimensional subspace that contains
the optimal solution and 𝐿*

⊥ is its complement. We can then define the regularizer

Φ*(x ) = (𝛽/2)
∑︁
𝑖∈𝑆

⃦⃦⃦
Π 𝐿*

⊥
a 𝑖

⃦⃦⃦2
2
,

where Π 𝐿*
⊥

is the orthogonal projection onto the subspace perpendicular to 𝐿*—in other words⃦⃦⃦
Π 𝐿*

⊥
a 𝑖

⃦⃦⃦
2

is the ℓ2 distance from a 𝑖 to 𝐿*. An equivalent but slightly more concise way is to write:

Φ*(x ) = (𝛽/2)

⟨
Π 𝐿*

⊥
,
∑︁
𝑖∈𝑆

a 𝑖a
⊤
𝑖

⟩
.

Then, we can replace the unknown projection matrix Π 𝐿*
⊥

by a weight matrix W initialized at I ,
and proceed by adaptively modifying W as we did in the previous section.

It should be noted that the full analysis of this framework is not automatic for general 𝒜, and
there are several technical challenges that arise depending on the choice of 𝒜. In particular, it does
not directly apply to the low rank minimization case, and we end up using a different choice of
regularizer. However, the discussion in this section should serve as a basic framework for improving
the IHT analysis in more general settings, as in particular it did to motivate the low rank optimization
analysis that we will present in Section 7.4.

7.3 Sparse Optimization Using Regularized IHT

The main result of this section is an efficient algorithm for sparse optimization of convex functions
that, even though is a slight modification of IHT, improves the sparsity by an 𝑂(𝜅) factor, where
𝜅 is the condition number. The regularized IHT algorithm is presented in Algorithm 16 and its
analysis is in Theorem 7.1.1, whose proof can be found in Appendix 9.5.2.

Algorithm 16 Regularized IHT

x 0: initial 𝑠′-sparse solution
w0 = 1: initial regularization weights
𝜂: step size, 𝑇 : #iterations
𝑐: weight step size
for 𝑡 = 0 . . . 𝑇 − 1 do

x 𝑡+1 = 𝐻𝑠′
(︀
(1− 0.5w 𝑡)x 𝑡 − 𝜂 · ∇𝑓(x 𝑡)

)︀
w 𝑡+1 =

(︁
w 𝑡 − 𝑐 · (w 𝑡x 𝑡)2/

⃦⃦
x 𝑡
⃦⃦2
w 𝑡,2

)︁
≥1/2

if 𝑓(x 𝑡+1) + (4𝜂)−1
⃦⃦
x 𝑡+1

⃦⃦2
w 𝑡+1,2

> 𝑓(x 𝑡) + (4𝜂)−1
⃦⃦
x 𝑡
⃦⃦2
w 𝑡+1,2

then
x 𝑡+1 = x 𝑡 ◁ In practice there is no need to perform this step.

Theorem 7.1.1 (Regularized IHT). Let 𝑓 ∈ R𝑛 → R be a convex function that is 𝛽-smooth and
𝛼-strongly convex, with condition number 𝜅 = 𝛽/𝛼, and x * be an (unknown) 𝑠-sparse solution. Then,
running Algorithm 16 with 𝜂 = (2𝛽)−1 and 𝑐 = 𝑠′/(4𝑇 ) for

𝑇 = 𝑂

(︃
𝜅 log

𝑓(x 0) + (𝛽/2)
⃦⃦
x 0
⃦⃦2
2
− 𝑓(x *)

𝜀

)︃
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iterations starting from an arbitrary 𝑠′ = 𝑂(𝑠𝜅)-sparse solution x 0, the algorithm returns an 𝑠′-sparse
solution x𝑇 such that 𝑓(x𝑇 ) ≤ 𝑓(x *) + 𝜀. Furthermore, each iteration requires 𝑂(1) evaluations of
𝑓 , ∇𝑓 , and 𝑂(𝑛) additional time.

The main ingredient for proving Theorem 7.1.1 is Lemma 7.3.1, which states that each step
of the algorithm either makes substantial (multiplicative) progress in an appropriately regularized
function 𝑓(x ) + (𝛽/2) ‖x‖2w ,2, or a significant fraction of the mass of x 2 lies in 𝑆*, which is the
support of the target solution. This latter condition allows us to adapt the weights w in order to
obtain a new regularization function that penalizes the target solution less. The proof of the lemma
can be found in Appendix 9.5.3.

Lemma 7.3.1 (Regularized IHT step progress). Let 𝑓 ∈ R𝑛 → R be a convex function that is
𝛽-smooth and 𝛼-strongly convex, 𝜅 = 𝛽/𝛼 be its condition number, and x * be any 𝑠-sparse solution.

Given any 𝑠′-sparse solution x ∈ R𝑛 where

𝑠′ ≥ (128𝜅+ 2)𝑠

and a weight vector w ∈ ({0} ∪ [1/2, 1])𝑛 such that ‖w‖1 ≥ 𝑛− 𝑠′/2, we make the following update:

x ′ = 𝐻𝑠′
(︀
(1− 0.5w)x − (2𝛽)−1∇𝑓(x )

)︀
.

Then, at least one of the following two conditions holds:

• Updating x makes regularized progress:

𝑔(x ′) ≤ 𝑔(x )− (16𝜅)−1(𝑔(x )− 𝑓(x *)) ,

where
𝑔(x ) := 𝑓(x ) + (𝛽/2) ‖x‖2w ,2

is the ℓ2-regularized version of 𝑓 with weights given by w . Note: The regularized progress
statement is true as long as x is suboptimal, i.e. 𝑔(x ) > 𝑓(x *). Otherwise, we just have
𝑔(x ′) ≤ 𝑔(x ).

• x is significantly correlated to the optimal support 𝑆* := supp(x *):

‖x𝑆*‖2w2,2 ≥ (4𝜅+ 6)−1 ‖x‖2w ,2 ,

and the regularization term restricted to 𝑆* is non-negligible:

(𝛽/2) ‖x𝑆*‖2w2,2 ≥ (8𝜅+ 8)−1 (𝑔(x )− 𝑓(x *)) .

Comparison to ARHT. The ARHT algorithm of [14] is also able to achieve a sparsity bound of
𝑂(𝑠𝜅). However, their algorithm is not practically desirable for a variety of reasons.

• First of all, it follows the OMP (more accurately, OMP with Removals) paradigm, which
makes local changes to the support of the solution by inserting or removing a single element
of the support, and then fully re-optimizing the function on its restriction to this support.
Even though the support will generally be very small compared to the ambient dimension
𝑛, this is still a significant runtime overhead. In contrast, regularized IHT does not require
re-optimization.
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Additionally, the fact that in the ARHT only one new element is added at a time leads to an
iteration count that scales with 𝑠𝜅, instead of the 𝜅 of regularized IHT. This is a significant
speedup, since both algorithms have to evaluate the gradient in each iteration. Therefore,
regularized IHT will require 𝑂(𝑠) times fewer gradient evaluations.

• When faced with the non-progress condition, in which the regularized function value does not
decrease sufficiently, ARHT moves by selecting a random index 𝑖 with probability proportional
to 𝑥2𝑖 , and proceeds to unregularize this element, i.e. remove it from the sum of regularization
terms. Instead, our algorithm is completely deterministic. This is achieved by allowing a
weighted regularization term, and gradually reducing the regularization weights instead of
dropping terms.

• ARHT requires knowledge of the optimal function value 𝑓(x *). The reason is that in each
iteration they need to gauge whether enough progress was made in reducing the value of the
regularized function 𝑔, compared to how far it is from the optimal function value. If so, they
would perform the unregularization step. In contrast, our analysis does not require these two
cases (updates to x or w) to be exclusive, and in fact simultaneously updates both, regardless
of how much progress was made in 𝑔. Thus, our algorithm avoids the expensive overhead of an
outer binary search over the optimal value 𝑓(x *).

For all these reasons, as well as its striking simplicity, we believe that regularized IHT can prove
to be a useful practical sparse optimization tool.

7.4 Low Rank Optimization Using Regularized Local Search

In this section we present a regularized local search algorithm for low rank optimization of convex
functions, that returns an 𝜀-optimal solution with rank 𝑂

(︁
𝑟
(︁
𝜅+ log 𝑓(O)−𝑓(A*)

𝜀

)︁)︁
, where 𝑟 is the

target rank. The algorithm is based on the Local Search algorithm of [13], but also uses adaptive
regularization, which leads to a lot new technical hurdles that are addressed in the analysis. This is
presented in Theorem 7.1.2 and proved in Appendix 9.5.4.

Theorem 7.1.2 (Adaptive Regularization for Low Rank Optimization). Let 𝑓 ∈ R𝑚×𝑛 → R be a
convex function with condition number 𝜅 and consider the low rank minimization problem

min
rank(A)≤𝑟

𝑓(A) . (7.8)

For any error parameter 𝜀 > 0, there exists a polynomial time algorithm that returns a matrix A

with rank(A) ≤ 𝑂
(︁
𝑟
(︁
𝜅+ log 𝑓(O)−𝑓(A*)

𝜀

)︁)︁
and 𝑓(A) ≤ 𝑓(A*) + 𝜀, where O is the all-zero matrix

and A* is any rank-𝑟 matrix.

Discussion about 𝜀 dependence. Some of the technical issues in the rank case have to do with
operator non-commutativity and thus pose no issue in the sparsity case. In particular, the extra
log 𝑓(O)−𝑓(A*)

𝜀 dependence in the rank comes exactly because of these issues. However, we think that
it should be possible to completely remove this dependence in the future by a more careful analysis.

Discussion about computational efficiency. We note that the goal of this section is to show
an improved rank bound, and not to argue about the computational efficiency of such an algorithm.
It might be possible to derive an efficient algorithm by transforming the proof in Theorem 7.1.2 into
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a proof for a matrix IHT algorithm, which might be significantly more efficient, as it will not require
solving linear systems in each iteration. Still, there are a lot of remaining issues to be tackled, as
currently the algorithm requires computing multiple singular value decompositions and orthogonal
projections in each iteration. Therefore working on a computationally efficient algorithm that can
guarantee a rank of 𝑂(𝑟𝜅) is a very interesting direction for future research.

Matrix regularizer Getting back into the main ingredients of Theorem 7.1.2, we describe the
choice of our regularizer. As we are working over general rectangular matrices, we use two regularizers,
one for the left singular vectors and one for the right singular vectors of A. Concretely, given two
weight matrices Y ,W such that O ⪯ Y ⪯ I , O ⪯W ⪯ I , we define

Φ(A) = (𝛽/4)
(︁
⟨W ,AA⊤⟩+ ⟨Y ,A⊤A⟩

)︁
,

where 𝛽 is a bound on the smoothness of 𝑓 . The gradient of the regularized function is

∇𝑔(A) = ∇𝑓(A) + (𝛽/2) (WA+AY ) ,

and the new solution 𝐴 is defined as

𝐴 = 𝐻𝑠′−1 (A)− 𝜂𝐻1 (∇𝑔(A)) ,

where we remind that the thresholding operator 𝐻𝑟 : R𝑚×𝑛 → R𝑚×𝑛 that is used in the algorithm
returns the top 𝑟 components of the singular value decomposition of a matrix, i.e. given M =
𝑘∑︀
𝑖=1

𝜆𝑖u 𝑖v
⊤
𝑖 , where 𝜆1 ≥ · · · ≥ 𝜆𝑘 are the singular values and 𝑟 ≤ 𝑘, 𝐻𝑟(M ) =

𝑟∑︀
𝑖=1

𝜆𝑖u 𝑖v
⊤
𝑖 . In

other words, we drop the bottom rank-1 component of A and add the top rank-1 component of the
gradient.

After taking a step, we re-optimize over matrices with the current left and right singular space,
also known as performing a fully corrective step, as in [144, 13]. To do this, we first compute the
SVD UΣV ⊤ of 𝐴 and then solve the optimization problem min

A=UXV⊤
𝑔𝑡(A). For simplicity we

assume that this optimization problem can be solved exactly, but the analysis can be modified to
account for the case when we have an approximate solution and we are only given a bound on the
norm of the gradient (projected onto the relevant subspace), i.e.

⃦⃦
Π im(U )∇𝑔𝑡(A)Π im(V )

⃦⃦
𝐹
.

Whenever there is not enough progress, we make the following updates on the weight matrices
W and Y :

W ′ = W −WAA⊤W /⟨W ,AA⊤⟩
Y ′ = Y −YA⊤AY /⟨Y ,A⊤A⟩ .

The full algorithm description is in Algorithm 25, Appendix 9.5.4. In the algorithm description
we assume that 𝑓(A*) is known. This assumption can be removed by performing binary search over
this value, as in [14].

7.5 Experiments

Introduction. In this section we present numerical experiments in order to compare the perfor-
mance of IHT and regularized IHT (Algorithm 16) in training sparse linear models. In particular, we
will look at the tasks of linear regression and logistic regression using both real and synthetic data.
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In the former, we are given a matrix A ∈ R𝑚×𝑛, where each row represents an example and each
column a feature, and a vector b ∈ R𝑚 that represents the ground truth outputs, and our objective
is to minimize the ℓ2 loss

(1/2) ‖Ax − b‖22 .

In logistic regression, b has binary instead of real entries, and our objective is to minimize the logistic
loss

−
𝑚∑︁
𝑖=1

(𝑏𝑖 log 𝜎(Ax )𝑖 + (1− 𝑏𝑖) log(1− 𝜎(Ax )𝑖))⏟  ⏞  
𝑙(x )

,

where 𝜎(𝑧) = (1 + 𝑒−𝑧)
−1 is the sigmoid function. As is common, we look at the regularized logistic

regression objective:

𝑙(x ) + (𝜌/2) ‖x‖22 ,

for some 𝜌 > 0. For our experiments we use 𝜌 = 0.1.

Preprocessing and choice of parameters. The only preprocessing we perform is to center the
columns of A, i.e. we subtract the mean of each column from each entry of the column, and then
scale the columns to unit ℓ2 norm. This ensures that for any sparsity parameter 𝑠′ ∈ [𝑛], the function
𝑓 is 𝑠′-smooth when restricted to 𝑠′-sparse directions, or in other words the 𝑠′-restricted smoothness
constant of 𝑓 is at most 𝑠′. Thus we set our smoothness estimate to 𝛽 := 𝑠′. Our smoothness
estimate 𝛽 influences the (regularized) IHT algorithm in two ways. First, as the step size of the
algorithm is given by 1/𝛽, a value of 𝛽 that is too large can slow down the algorithm, or even get it
stuck to a local minimum. Second, the strength of the regularization term in regularized IHT should
be close to the (𝑠+ 𝑠′)-restricted smoothness constant, as shown in the analysis of Theorem 7.1.1.

Even though having a perfectly accurate estimate of the smoothness constant is not necessary, a
more accurate estimate improves the performance of the algorithm. In fact, the estimate 1/𝑠′ for the
step size is generally too conservative. When used in practice, one should either tune this parameter
or use a variable/adaptive step size to achieve the best results.

For the weight step size of regularized IHT, we set the weight step size to 𝑐 = 𝑠′/𝑇 , but we also
experiment with how changing 𝑐 affects the performance of the algorithm. The downside of this
setting is that it requires knowing the number of iterations a priori. However, in practice one could
tune 𝑐 and then run the algorithm for 𝑂(𝑠′/𝑐) iterations. Note that ideally, based on the theoretical
analysis, 𝑇 would be proportional to the restricted condition number of 𝑓 , however this quantity is
hard to compute in general. Another idea to avoid this in practice could be to let 𝑐 be a variable
step size.

Implementation. Both the IHT and regularized IHT algorithms are incredibly simple, and can
be described in a few lines of python code, as can be seen in Figure 9-1, Appendix 9.5.1. Note that
in comparison to Algorithm 16 we do not perform the conditional assignment. All the experiments
were run on a single 2.6GHz Intel Core i7 core of a 2019 MacBook Pro with 16GB DDR4 RAM
using Python 3.9.10.
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7.5.1 Real data

We first experiment with real data, specifically the year regression dataset from UCI [49] and the rcv1
binary classification dataset [108], which have been previously used in the literature. Performance
on other datasets was similar. In Figure 7-1 (a)-(b) we have a comparison between the error of
the solution returned by IHT and regularized IHT for a fixed sparsity level. Specifically, if we
let x ** be the (dense) global minimizer of 𝑓 , we plot the logarithm of the (normalized) excess
loss (𝑓(x ) − 𝑓(x **))/𝑓(0) against the number of iterations. Note that 𝑓(x **) will typically be
considerably lower than the loss of the sparse optimum 𝑓(x *). In order to make a fair comparison, for
each algorithm we pick the best fixed step size of the form 2𝑖/𝑠 for integer 𝑖 ≥ 0, where 𝑠 is the fixed
sparsity level. The best step sizes of IHT and regularized IHT end up being 2/𝑠, 4/𝑠 respectively for
the linear regression example, and 8/𝑠, 16/𝑠 respectively for the logistic regression example.

We notice that initially regularized IHT has a much higher error than IHT, but after some
iterations it is lower than IHT. This phenomenon is to be expected, because the algorithm runs on a
regularized function, and so tries to keep not just 𝑓(x ) but also ‖x‖22 small. After some iterations,
when the algorithm has learnt regularization weights that are closer to the optimal ones, it converges
to sparser solutions than IHT (equivalently, lower error solutions with the same sparsity, which is
what is shown in the plot).

In Figure 7-1 (c) we compare IHT and regularized IHT for different sparsity levels on the year
dataset. If 𝑒1 and 𝑒2 are the excess errors of IHT and regularized IHT respectively, we plot 𝑒2/𝑒1,
which is the relative excess error of regularized IHT with respect to that of IHT. We notice a
reduction of up to 40% on the excess error. In Figure 7-1 (d) we examine the effect of the choice of
the weight step size 𝑐. We conclude that 𝑐 can give a tradeoff between runtime and accuracy, as
setting it to a large value will lead to faster weight decay and thus resemble IHT, while a small value
of 𝑐 will lead to slow weight decrease, which will lead to more iterations but also potentially recover
an improved solution. Here we can see an interesting tradeoff between the number of iterations and
the error of the solution that is eventually returned. In particular, the larger 𝑐 is, the faster the
degradation of regularization weights. Thus, for 𝑐→∞, the algorithm tends to be the same as IHT.
On the other hand, with smaller values of 𝑐, one can get an improved error rate, but at the cost of a
larger number of iterations. This is because the regularization weights decrease slowly, and so in the
early iterations of the algorithm the regularization term will account for a significant fraction of the
objective function value.

7.5.2 Synthetic data

We now turn to synthetically generated linear regression instances. The first result presented in
Figure 7-2 (a) is the hard IHT instance that we derived in our lower bound in Appendix 9.5.5. This
experiment shows that there exist examples where, with bad initialization, IHT cannot decrease the
objective at all (i.e. is stuck at a local minimum), while regularized IHT with the same initialization
manages to reduce the loss by more than 70%.

The second result is a result in the well known setting of sparse signal recovery from linear
measurements. We generate a matrix A with entries that are sampled i.i.d. from the standard
normal distribution, an 𝑠-sparse signal x again with entries sampled i.i.d. from the standard normal
distribution, and an observed vector b := Ax . The goal is to recover x by minimizing the objective

𝑓(x ) = (1/2) ‖Ax − b‖22 .

In Figure 7-2 (b), we plot the normalized value of this objective, after running both IHT and
regularized IHT for the same number of iterations. Here we pick the best step size per instance,
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(a) (b)

(c) (d)

Figure 7-1: (a)-(b): IHT vs Regularized IHT performance on the year and rcv1 datasets with fixed
sparsity levels 𝑠 = 11 and 𝑠 = 10 respectively. On the 𝑥 axis we have number of iterations and on
the 𝑦 axis we have the normalized excess loss (compared to the dense global optimum), in log scale.
The excess loss of regularized IHT is less than that of IHT, specifically 17.3% and 17.2% respectively
less in the two experiments. (c): Excess error of regularized IHT relative to IHT in the year dataset,
where sparsity values range from 1 to 30. Both algorithms are run for 𝑇 = 800 iterations. (d): Error
rate vs number of iterations of regularized IHT on the year dataset with fixed sparsity 𝑠 = 11 and
step size 𝜂 = 4/𝑠, using different values for the weight step size 𝑐.
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(a) (b)

Figure 7-2: (a): A demonstration of a 80% decrease in loss by using regularized IHT instead of
IHT on the hard instance for IHT presented in Section 9.5.5. We have generated the data with a
condition number of 𝜅 = 20, and a planted sparse solution with sparsity 𝑠 = 2. The dimension is
𝑛 = 842. It can be observed that, for the given initialization vector, IHT never makes any progress
on decreasing the error. In contrast, regularized IHT is able to decrease it by almost a factor of 5.
(b): Sparse signal recovery, where A is an 100× 800 measurement matrix, the sparsity level ranges
from 1 to 100, and each algorithm is run for 240 iterations. Bands of 1 standard error are shown,
after running each data point 20 times independently.

starting from 𝜂 = 1/𝑠 and increasing in multiples of 1.2. Also, for each fixed value of 𝑠 and algorithm,
we run the experiments 20 times in order to account for the variance. The results show a superiority
in the performance of regularized IHT for the sparse signal recovery task.
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Chapter 8

Local Search Algorithms for
Rank-Constrained Convex Optimization

8.1 Introduction

Given a real-valued convex function 𝑅 : R𝑚×𝑛 → R on real matrices and a parameter 𝑟* ∈ N, the
rank-constrained convex optimization problem consists of finding a matrix 𝐴 ∈ R𝑚×𝑛 that minimizes
𝑅(𝐴) among all matrices of rank at most 𝑟*:

min
rank(𝐴)≤𝑟*

𝑅(𝐴) (8.1)

Even though 𝑅 is convex, the rank constraint makes this problem non-convex. Furthermore, it is
known that this problem is NP-hard and even hard to approximate ([127, 63]).

In this work, we propose efficient greedy and local search algorithms for this problem. Our
contribution is twofold:

1. We provide theoretical analyses that bound the rank and objective value of the solutions
returned by the two algorithms in terms of the rank-restricted condition number, which is
the natural generalization of the condition number for low rank subspaces. The results are
significantly stronger than previous known bounds for this problem.

2. We experimentally demonstrate that, after careful performance adjustments, the proposed
general-purpose greedy and local search algorithms have superior performance to other methods,
even for some of those that are tailored to a particular problem. Thus, these algorithms can be
considered as a general tool for rank-constrained convex optimization and a viable alternative
to methods that use convex relaxations or alternating minimization.

The rank-restricted condition number Similarly to the work in sparse convex optimization,
a restricted condition number quantity has been introduced as a reasonable assumption on 𝑅. If
we let 𝜌+𝑟 be the maximum smoothness bound and 𝜌−𝑟 be the minimum strong convexity bound
only along rank-𝑟 directions of 𝑅 (these are called rank-restricted smoothness and strong convexity
respectively), the rank-restricted condition number is defined as 𝜅𝑟 = 𝜌+𝑟

𝜌−𝑟
. If this quantity is bounded,

one can efficiently find a solution 𝐴 with 𝑅(𝐴) ≤ 𝑅(𝐴*) + 𝜀 and rank 𝑟 = 𝑂(𝑟* · 𝜅𝑟+𝑟* 𝑅(0)
𝜀 ) using a

greedy algorithm ([144]). However, this is not an ideal bound since the rank scales linearly with 𝑅(0)
𝜀 ,

which can be particularly high in practice. Inspired by the analogous literature on sparse convex
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optimization by [127, 146, 170, 89] and more recently [14], one would hope to achieve a logarithmic
dependence or no dependence at all on 𝑅(0)

𝜀 . In this chapter we achieve this goal by providing an
improved analysis showing that the greedy algorithm of [144] in fact returns a matrix of rank of
𝑟 = 𝑂(𝑟* · 𝜅𝑟+𝑟* log 𝑅(0)

𝜀 ). We also provide a new local search algorithm together with an analysis
guaranteeing a rank of 𝑟 = 𝑂(𝑟* · 𝜅2𝑟+𝑟*). Apart from significantly improving upon previous work on
rank-restricted convex optimization, these results directly generalize a lot of work in sparse convex
optimization, e.g. [127, 146, 89]. Our algorithms and theorem statements can be found in Section 8.2.

Runtime improvements Even though the rank bound guaranteed by our theoretical analyses is
adequate, the algorithm runtimes leave much to be desired. In particular, both the greedy algorithm
of [144] and our local search algorithm have to solve an optimization problem in each iteration in
order to find the best possible linear combination of features added so far. Even for the case that
𝑅(𝐴) = 1

2

∑︀
(𝑖,𝑗)∈Ω

(𝑀 − 𝐴)2𝑖𝑗 , this requires solving a least squares problem on |Ω| examples and 𝑟2

variables. For practical implementations of these algorithms, we circumvent this issue by solving
a related optimization problem that is usually much smaller. This instead requires solving 𝑛 least
squares problems with total number of examples |Ω|, each on 𝑟 variables. This not only reduces the
size of the problem by a factor of 𝑟, but also allows for a straightforward distributed implementation.
Interestingly, our theoretical analyses still hold for these variants. We propose an additional heuristic
that reduces the runtime even more drastically, which is to only run a few (less than 10) iterations of
the algorithm used for solving the inner optimization problem. Experimental results show that this
modification not only does not significantly worsen results, but for machine learning applications
also acts as a regularization method that can dramatically improve generalization. These matters, as
well as additional improvements for making the local search algorithm more practical, are addressed
in Section 8.2.3.

Roadmap In Section 8.2, we provide the descriptions and theoretical results for the algorithms
used, along with several modifications to boost performance. In Section 8.3, we evaluate the proposed
greedy and local search algorithms on optimization problems like robust PCA. Then, in Section 8.4
we evaluate their generalization performance in machine learning problems like matrix completion.

8.2 Algorithms & Theoretical Guarantees

In Sections 8.2.1 and 8.2.2 we state and provide theoretical performance guarantees for the basic
greedy and local search algorithms respectively. Then in Section 8.2.3 we state the algorithmic
adjustments that we propose in order to make the algorithms efficient in terms of runtime and
generalization performance. A discussion regarding the tightness of the theoretical analysis is deferred
to Appendix 9.6.

When the dimension is clear from context, we will denote the all-ones vector by 1, and the vector
that is 0 everywhere and 1 at position 𝑖 by 1𝑖. Given a matrix 𝐴, we denote by im(𝐴) its column
span. One notion that we will find useful is that of singular value thresholding. More specifically,

given a rank-𝑘 matrix 𝐴 ∈ R𝑚×𝑛 with SVD
𝑘∑︀
𝑖=1

𝜎𝑖𝑢
𝑖𝑣𝑖⊤ such that 𝜎1 ≥ · · · ≥ 𝜎𝑘, as well as an integer

parameter 𝑟 ≥ 1, we define 𝐻𝑟(𝐴) =
𝑟∑︀
𝑖=1

𝜎𝑖𝑢
𝑖𝑣𝑖⊤ to be the operator that truncates to the 𝑟 highest

singular values of 𝐴.
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8.2.1 Greedy

Algorithm 17 (Greedy) was first introduced in [144] as the GECO algorithm. It works by iteratively
adding a rank-1 matrix to the current solution. This matrix is chosen as the rank-1 matrix that best
approximates the gradient, i.e. the pair of singular vectors corresponding to the maximum singular
value of the gradient. In each iteration, an additional procedure is run to optimize the combination
of previously chosen singular vectors.

In [144] guarantee on the rank of the solution returned by the algorithm is 𝑟*𝜅𝑟+𝑟*
𝑅(0)
𝜀 . The

main bottleneck in order to improve on the 𝑅(0)
𝜀 factor is the fact that the analysis is done in terms

of the squared nuclear norm of the optimal solution. As the worst-case discrepancy between the
squared nuclear norm and the rank is 𝑅(0)/𝜀, their bounds inherit this factor. Our analysis works
directly with the rank, in the spirit of sparse optimization results (e.g. [144, 89, 14]). A challenge
compared to these works is the need for a suitable notion of “intersection” between two sets of vectors.
The main technical contribution of this work is to show that the orthogonal projection of one set of
vectors into the span of the other is such a notion, and, based on this, to define a decomposition of
the optimal solution that is used in the analysis.

Algorithm 17 Greedy
1: procedure Greedy(𝑟 ∈ N : target rank)
2: function to be minimized 𝑅 : R𝑚×𝑛 → R
3: 𝑈 ∈ R𝑚×0 ◁ Initially rank is zero
4: 𝑉 ∈ R𝑛×0

5: for 𝑡 = 0 . . . 𝑟 − 1 do
6: 𝜎𝑢𝑣⊤ ← 𝐻1(∇𝑅(𝑈𝑉 ⊤)) ◁ Max singular value 𝜎 and corresp. singular vectors 𝑢, 𝑣
7: 𝑈 ←

(︀
𝑈 𝑢

)︀
◁ Append new vectors as columns

8: 𝑉 ←
(︀
𝑉 𝑣

)︀
9: 𝑈, 𝑉 ← Optimize(𝑈, 𝑉 )

10: return 𝑈𝑉 ⊤

11: procedure Optimize(𝑈 ∈ R𝑚×𝑟, 𝑉 ∈ R𝑛×𝑟)
12: 𝑋 ← argmin

𝑋∈R𝑟×𝑟

𝑅(𝑈𝑋𝑉 ⊤)

13: return 𝑈𝑋, 𝑉

Theorem 8.2.1 (Algorithm 17 (greedy) analysis). Let 𝐴* be any fixed optimal solution of (8.1)
for some function 𝑅 and rank bound 𝑟*, and let 𝜀 > 0 be an error parameter. For any integer
𝑟 ≥ 2𝑟* · 𝜅𝑟+𝑟* log 𝑅(0)−𝑅(𝐴*)

𝜀 , if we let 𝐴 = Greedy(𝑟) be the solution returned by Algorithm 17,
then 𝑅(𝐴) ≤ 𝑅(𝐴*) + 𝜀. The number of iterations is 𝑟.

The proof of Theorem 8.2.1 can be found in Appendix 9.6.

8.2.2 Local Search

One drawback of Algorithm 1 is that it increases the rank in each iteration. Algorithm 2 is a
modification of Algorithm 1, in which the rank is truncated in each iteration. The advantage of
Algorithm 2 compared to Algorithm 1 is that it is able to make progress without increasing the rank
of A, while Algorithm 1 necessarily increases the rank in each iteration. More specifically, because
of the greedy nature of Algorithm 1, some rank-1 components that have been added to A might
become obsolete or have reduced benefit after a number of iterations. Algorithm 2 is able to identify
such candidates and remove them, thus allowing it to continue making progress.
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Algorithm 18 Local Search
1: procedure Local_Search(𝑟 ∈ N : target rank)
2: function to be minimized 𝑅 : R𝑚×𝑛 → R
3: 𝑈 ← 0𝑚×𝑟 ◁ Initialize with all-zero solution
4: 𝑉 ← 0𝑛×𝑟
5: for 𝑡 = 0 . . . 𝐿− 1 do ◁ Run for 𝐿 iterations
6: 𝜎𝑢𝑣⊤ ← 𝐻1(∇𝑅(𝑈𝑉 ⊤)) ◁ Max singular value 𝜎 and corresp. singular vectors 𝑢, 𝑣
7: 𝑈, 𝑉 ← Truncate(𝑈, 𝑉 ) ◁ Reduce rank of 𝑈𝑉 ⊤ by one
8: 𝑈 ←

(︀
𝑈 𝑢

)︀
◁ Append new vectors as columns

9: 𝑉 ←
(︀
𝑉 𝑣

)︀
10: 𝑈, 𝑉 ← Optimize(𝑈, 𝑉 )

11: return 𝑈𝑉 ⊤

12: procedure Truncate(𝑈 ∈ R𝑚×𝑟, 𝑉 ∈ R𝑛×𝑟)
13: 𝑈Σ𝑉 ⊤ ← SVD(𝐻𝑟−1(𝑈𝑉

⊤)) ◁ Keep all but minimum singular value
14: return 𝑈Σ, 𝑉

Theorem 8.2.2 (Algorithm 18 (local search) analysis). Let 𝐴* be any fixed optimal solution of
(8.1) for some function 𝑅 and rank bound 𝑟*, and let 𝜀 > 0 be an error parameter. For any integer
𝑟 ≥ 𝑟* · (1 + 8𝜅2𝑟+𝑟*), if we let 𝐴 = Local_Search(𝑟) be the solution returned by Algorithm 18,

then 𝑅(𝐴) ≤ 𝑅(𝐴*) + 𝜀. The number of iterations is 𝑂
(︁
𝑟*𝜅𝑟+𝑟* log

𝑅(0)−𝑅(𝐴*)
𝜀

)︁
.

The proof of Theorem 8.2.2 can be found in Appendix 9.6.

8.2.3 Algorithmic adjustments

Inner optimization problem The inner optimization problem that is used in both greedy and
local search is:

min
𝑋∈R𝑟×𝑟

𝑅(𝑈𝑋𝑉 ⊤) . (8.2)

It essentially finds the choice of matrices 𝑈 ′ and 𝑉 ′, with columns in the column span of 𝑈 and 𝑉
respectively, that minimizes 𝑅(𝑈 ′𝑉

′⊤). We, however, consider the following problem instead:

min
𝑉 ∈R𝑛×𝑟

𝑅(𝑈𝑉 ⊤) . (8.3)

Note that the solution recovered from (8.3) will never have worse objective value than the one
recovered from (8.2), and that nothing in the analysis of the algorithms breaks. Importantly, (8.3)
can usually be solved much more efficiently than (8.2). As an example, consider the following
objective that appears in matrix completion: 𝑅(𝐴) = 1

2

∑︀
(𝑖,𝑗)∈Ω

(𝑀 −𝐴)2𝑖𝑗 for some Ω ⊆ [𝑚]× [𝑛]. If

we let ΠΩ(·) be an operator that zeroes out all positions in the matrix that are not in Ω, we have
∇𝑅(𝐴) = −ΠΩ(𝑀 −𝐴). The optimality condition of (8.2) now is 𝑈⊤ΠΩ(𝑀 − 𝑈𝑋𝑉 ⊤)𝑉 = 0 and
that of (8.3) is 𝑈⊤ΠΩ(𝑀 − 𝑈𝑉 ⊤) = 0. The former corresponds to a least squares linear regression
problem with |Ω| examples and 𝑟2 variables, while the latter can be decomposed into 𝑛 independent

systems 𝑈⊤

(︃ ∑︀
𝑖:(𝑖,𝑗)∈Ω

1𝑖1
⊤
𝑖

)︃
𝑈𝑉 𝑗 = 𝑈⊤ΠΩ (𝑀1𝑗), where the variable is 𝑉 𝑗 which is the 𝑗-th column

of 𝑉 . The 𝑗-th of these systems corresponds to a least squares linear regression problem with
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|{𝑖 : (𝑖, 𝑗) ∈ Ω}| examples and 𝑟 variables. Note that the total number of examples in all systems
is
∑︀
𝑗∈[𝑛]
|{𝑖 : (𝑖, 𝑗) ∈ Ω}| = |Ω|. The choice of 𝑉 here as the variable to be optimized is arbitrary.

In particular, as can be seen in Algorithm 19, in practice we alternate between optimizing 𝑈 and
𝑉 in each iteration. It is worthy of mention that the Optimize_Fast procedure is basically the
same as one step of the popular alternating minimization procedure for solving low rank problems.
As a matter of fact, when our proposed algorithms are viewed from this lens, they can be seen as
alternating minimization interleaved with rank-1 insertion and/or removal steps.

Algorithm 19 Fast inner Optimization

1: procedure Optimize_Fast(𝑈 ∈ R𝑚×𝑟, 𝑉 ∈ R𝑛×𝑟, 𝑡 ∈ N : iteration index of algorithm)
2: if 𝑡 mod 2 = 0 then
3: 𝑋 ← argmin

𝑋∈R𝑚×𝑟

𝑅(𝑋𝑉 ⊤)

4: return 𝑋,𝑉
5: else
6: 𝑋 ← argmin

𝑋∈R𝑛×𝑟

𝑅(𝑈𝑋⊤)

7: return 𝑈,𝑋

Singular value decomposition As modern methods for computing the top entries of a singular
value decomposition scale very well even for large sparse matrices ([120, 159, 163]), the “insertion”
step of greedy and local search, in which the top entry of the SVD of the gradient is determined, is
quite fast in practice. However, these methods are not suited for computing the smallest singular
values and corresponding singular vectors, a step required for the local search algorithm that we
propose. Therefore, in our practical implementations we opt to perfom the alternative step of directly
removing one pair of vectors from the representation 𝑈𝑉 ⊤. A simple approach is to go over all 𝑟
possible removals and pick the one that increases the objective by the least amount. A variation of
this approach has been used by [144]. However, a much faster approach is to just pick the pair of
vectors 𝑈1𝑖, 𝑉 1𝑖 that minimizes ‖𝑈1𝑖‖2‖𝑉 1𝑖‖2. This is the approach that we use, as can be seen in
Algorithm 20.

Algorithm 20 Fast rank reduction

1: procedure Truncate_Fast(𝑈 ∈ R𝑚×𝑟, 𝑉 ∈ R𝑛×𝑟)
2: 𝑖← argmin

𝑖∈[𝑟]
‖𝑈1𝑖‖2‖𝑉 1𝑖‖2

3: return
(︀
𝑈[𝑚],[1,𝑖−1] 𝑈[𝑚],[𝑖+1,𝑟]

)︀
,
(︀
𝑉[𝑛],[1,𝑖−1] 𝑉[𝑛],[𝑖+1,𝑟]

)︀
◁ Remove column 𝑖

After the previous discussion, we are ready to state the fast versions of Algorithm 17 and
Algorithm 18 that we use for our experiments. These are Algorithm 8.2.3 and Algorithm 21. Notice
that we initialize Algorithm 21 with the solution of Algorithm 8.2.3 and we run it until the value of
𝑅(·) stops decreasing rather than for a fixed number of iterations.

Algorithm 8.2.3 (Fast Greedy). The Fast Greedy algorithm is defined identically as Algorithm 17,
with the only difference that it uses the Optimize_Fast routine as opposed to the Optimize routine.
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Algorithm 21 Fast Local Search
1: procedure Fast_Local_Search(𝑟 ∈ N : target rank)
2: function to be minimized 𝑅 : R𝑚×𝑛 → R
3: 𝑈, 𝑉 ← solution returned by Fast_Greedy(𝑟)
4: do
5: 𝑈prev, 𝑉prev ← 𝑈, 𝑉
6: 𝜎𝑢𝑣⊤ ← 𝐻1(∇𝑅(𝑈𝑉 ⊤)) ◁ Max singular value 𝜎 and corresp. singular vectors 𝑢, 𝑣
7: 𝑈, 𝑉 ← Truncate_Fast(𝑈, 𝑉 ) ◁ Reduce rank of 𝑈𝑉 ⊤ by one
8: 𝑈 ←

(︀
𝑈 𝑢

)︀
◁ Append new vectors as columns

9: 𝑉 ←
(︀
𝑉 𝑣

)︀
10: 𝑈, 𝑉 ← Optimize_Fast(𝑈, 𝑉, 𝑡)
11: while 𝑅(𝑈𝑉 ⊤) < 𝑅(𝑈prev𝑉

⊤
prev)

12: return 𝑈prev𝑉
⊤
prev

8.3 Optimization Applications

An immediate application of the above algorithms is in the problem of low rank matrix recovery.
Given any convex distance measure between matrices 𝑑 : R𝑚×𝑛 ×R𝑚×𝑛 → R≥0, the goal is to find a
low-rank matrix 𝐴 that matches a target matrix 𝑀 as well as possible in terms of 𝑑: min

rank(𝐴)≤𝑟*
𝑑(𝑀,𝐴)

This problem captures a lot of different applications, some of which we go over in the following
sections.

8.3.1 Low-rank approximation on observed set

A particular case of interest is when 𝑑(𝑀,𝐴) is the Frobenius norm of 𝑀 −𝐴, but only applied to
entries belonging to some set Ω. In other words, 𝑑(𝑀,𝐴) = 1

2‖ΠΩ(𝑀−𝐴)‖2𝐹 . We have compared our
Fast Greedy and Fast Local Search algorithms with the SoftImpute algorithm of [121] as implemented
by [141], on the same experiments as in [121]. We have solved the inner optimization problem required
by our algorithms by the LSQR algorithm [134]. More specifically, 𝑀 = 𝑈𝑉 ⊤ + 𝜂 ∈ R100×100, where
𝜂 is some noise vector. We let every entry of 𝑈, 𝑉, 𝜂 be i.i.d. normal with mean 0 and the entries
of Ω are chosen i.i.d. uniformly at random over the set [100]× [100]. The experiments have three
parameters: The true rank 𝑟* (of 𝑈𝑉 ⊤), the percentage of observed entries 𝑝 = |Ω|/104, and the
signal-to-noise ratio SNR. We measure the normalized MSE, i.e. ‖ΠΩ(𝑀 −𝐴)‖2𝐹 /‖ΠΩ(𝑀)‖2𝐹 . The
results can be seen in Figure 8-1, where it is illustrated that Fast Local Search sometimes returns
significantly more accurate and lower-rank solutions than Fast Greedy, and Fast Greedy generally
returns significantly more accurate and lower-rank solutions than SoftImpute.

8.3.2 Robust principal component analysis (RPCA)

The robust PCA paradigm asks one to decompose a given matrix 𝑀 as 𝐿 + 𝑆, where 𝐿 is a
low-rank matrix and 𝑆 is a sparse matrix. This is useful for applications with outliers where directly
computing the principal components of 𝑀 is significantly affected by them. For a comprehensive
survey on Robust PCA survey one can look at [24]. The following optimization problem encodes the
above-stated requirements:

min
rank(𝐿)≤𝑟*

‖𝑀 − 𝐿‖0 (8.4)
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(a) 𝑟* = 5, 𝑝 = 0.2, 𝑆𝑁𝑅 = 10 (b) 𝑟* = 6, 𝑝 = 0.5, 𝑆𝑁𝑅 = 1

Figure 8-1: Objective value error vs rank in the problem of Section 8.3.1.

where ‖𝑋‖0 is the sparsity (i.e. number of non-zeros) of 𝑋. As neither the rank constraint or the ℓ0
function are convex, [34] replaced them by their usual convex relaxations, i.e. the nuclear norm ‖ · ‖*
and ℓ1 norm respectively. However, we opt to only relax the ℓ0 function but not the rank constraint,
leaving us with the problem:

min
rank(𝐿)≤𝑟*

‖𝑀 − 𝐿‖1 (8.5)

In order to make the objective differentiable and thus more well-behaved, we further replace the ℓ1

norm by the Huber loss 𝐻𝛿(𝑥) =

{︃
𝑥2/2 if |𝑥| ≤ 𝛿
𝛿|𝑥| − 𝛿2/2 otherwise

, thus getting: min
rank(𝐿)≤𝑟*

∑︀
𝑖𝑗
𝐻𝛿(𝑀 − 𝐿)𝑖𝑗 .

This is a problem on which we can directly apply our algorithms. We solve the inner optimization
problem by applying 10 L-BFGS iterations.

In Figure 8-2 one can see an example of foreground-background separation from video using
robust PCA. The video is from the BMC 2012 dataset [164]. In this problem, the low-rank part
corresponds to the background and the sparse part to the foreground. We compare three algorithms:
Our Fast Greedy algorithm, standard PCA with 1 component (the choice of 1 was picked to get
the best outcome), and the standard Principal Component Pursuit (PCP) algorithm ([34]), as
implemented in [111], where we tuned the regularization parameter 𝜆 to achieve the best result. We
find that Fast Greedy has the best performance out of the three algorithms in this sample task.

8.4 Machine Learning Applications

8.4.1 Regularization techniques

In the previous section we showed that our proposed algorithms bring down different optimization
objectives aggressively. However, in applications where the goal is to obtain a low generalization error,
regularization is needed. We considered two different kinds of regularization. The first method is to
run the inner optimization algorithm for less iterations, usually 2-3. Usually this is straightforward
since an iterative method is used. For example, in the case 𝑅(𝐴) = 1

2‖ΠΩ(𝑀 − 𝐴)‖2𝐹 the inner
optimization is a least squares linear regression problem that we solve using the LSQR algorithm.
The second one is to add an ℓ2 regularizer to the objective function. However, this option did not
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Figure 8-2: Foreground-background separation from video. From left to right: Fast Greedy with
rank=3 and Huber loss with 𝛿 = 20. Standard PCA with rank=1. Principal Component Pursuit
(PCP) with 𝜆 = 0.002. Both PCA and PCP have visible "shadows" in the foreground that appear as
"smudges" in the background. These are less obvious in a still frame but more apparent in a video.

provide a substantial performance boost in our experiments, and so we have not implemented it.

8.4.2 Matrix Completion with Random Noise

In this section we evaluate our algorithms on the task of recovering a low rank matrix 𝑈𝑉 ⊤ after
observing ΠΩ(𝑈𝑉

⊤ + 𝜂), i.e. a fraction of its entries with added noise. As in Section 8.3.1, we
use the setting of [121] and compare with the SoftImpute method. The evaluation metric is the
normalized MSE, defined as (

∑︀
(𝑖,𝑗)/∈Ω

(𝑈𝑉 ⊤ −𝐴)2𝑖𝑗)/(
∑︀

(𝑖,𝑗)/∈Ω
(𝑈𝑉 ⊤)2𝑖𝑗), where 𝐴 is the predicted matrix

and 𝑈𝑉 ⊤ the true low rank matrix. A few example plots can be seen in Figure 8-3 and a table of
results in Table 8.1. We have implemented the Fast Greedy and Fast Local Search algorithms with 3
inner optimization iterations. In the first few iterations there is a spike in the relative MSE of the
algorithms that use the Optimize_Fast routine. We attribute this to the aggressive alternating
minimization steps of this procedure and conjecture that adding a regularization term to the objective
might smoothen the spike. However, the Fast Local Search algorithm still gives the best overall
performance in terms of how well it approximates the true low rank matrix 𝑈𝑉 ⊤, and in particular
with a very small rank—practically the same as the true underlying rank.

8.4.3 Recommender Systems

In this section we compare our algorithms on the task of movie recommendation on the Movielens
datasets [80]. In order to evaluate the algorithms, we perform random 80%-20% train-test splits that
are the same for all algorithms and measure the mean RMSE in the test set. If we let Ω ⊆ [𝑚]× [𝑛]
be the set of user-movie pairs in the training set, we assume that the true user-movie matrix is low
rank, and thus pose (8.1) with 𝑅(𝐴) = 1

2‖ΠΩ(𝑀 −𝐴)‖2𝐹 . We make the following slight modification
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(a) 𝑘 = 5, 𝑝 = 0.2, 𝑆𝑁𝑅 = 10 (b) 𝑘 = 6, 𝑝 = 0.5, 𝑆𝑁𝑅 = 1

Figure 8-3: Test error vs rank in the matrix completion problem of Section 8.4.2. Bands of ±1
standard error are shown. Note that SoftImpute starts to overfit for ranks larger than 12 in (a).
The “jumps” at around rank 5-7 happen because of overshooting (taking too large a step) during
the insertion the rank-1 component in both Fast Greedy and Fast Local Search. More specifically,
these implementations only apply 3 iterations of the inner optimization step, which in some cases
are too few to amend the overshooting. However, after a few more iterations of the algorithm the
overshooting issue is resolved (i.e. the algorithm has had enough iterations to scale down the rank-1
component that caused the overshooting).

Algorithm random_error_13 random_error_1 random_error_2

SoftImpute ([121]) 0.1759/10 0.2465/28 0.2284/30

Fast Greedy (Algorithm 8.2.3) 0.0673/30 0.1948/13 0.1826/21

Fast Local Search (Algorithm 21) 0.0613/14 0.1952/15 0.1811/15

Table 8.1: Lowest test error for any rank in the matrix completion problem of Section 8.4.2, and
associated rank returned by each algorithm. In the form error/rank.

in order to take into account the range of the ratings [1, 5]: We clip the entries of 𝐴 between 1 and 5
when computing ∇𝑅(𝐴) in Algorithm 8.2.3 and Algorithm 21. In other words, instead of ΠΩ(𝐴−𝑀)
we compute the gradient as ΠΩ(clip(𝐴, 1, 5)−𝑀). This is similar to replacing our objective by a
Huber loss, with the difference that we only do so in the steps that we mentioned and not the inner
optimization step, mainly for runtime efficiency reasons.

The results can be seen in Table 8.2. We do not compare with Fast Local Search, as we found
that it only provides an advantage for small ranks (< 30), and otherwise matches Fast Greedy. For
the inner optimization steps we have used the LSQR algorithm with 2 iterations in the 100K and
1M datasets, and with 3 iterations in the 10M dataset. Note that even though the SVD algorithm
by [101] as implemented by [83] (with no user/movie bias terms) is a highly tuned algorithm for
recommender systems that was one of the top solutions in the famous Netflix prize, it has comparable
performance to our general-purpose Algorithm 8.2.3.

Finally, Table 8.3 demonstrates the speedup achieved by our algorithms over the basic greedy
implementation. It should be noted that the speedup compared to the basic greedy of [144]
(Algorithm 17) is larger as rank increases, since the fast algorithms scale linearly with rank, but the
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Algorithm MovieLens 100K MovieLens 1M MovieLens 10M

NMF ([104]) 0.9659 0.9166 0.8960

SoftImpute 1.0106 0.9599 0.957

Alternating Minimization 0.9355 0.8732 0.8410

SVD ([101]) 0.9533 0.8743 0.8315

Fast Greedy (Algorithm 8.2.3) 0.9451 0.8714 0.8330

Table 8.2: Mean RMSE and standard error among 5 random splits for 100K and 1M with standard
errors < 0.01, and 3 random splits for 10M with standard errors < 0.001. The rank of the prediction
is set to 100 except for NMF where it is 15 and Fast Greedy in the 10M dataset where it is chosen
to be 35 by cross-validation. Alternating Minimization is a well known algorithm (e.g. [157]) that
alternatively minimizes the left and right subspace, and also uses Frobenius norm regularization.
For SoftImpute and Alternating Minimization we have found the best choice of parameters by
performing a grid search over the rank and the multiplier of the regularization term. We have found
the best choice of parameters by performing a grid search over the rank and the multiplier of the
regularization term. We ran 20 iterations of Alternating Minimization in each case.

basic greedy scales quadratically.

Algorithm Figure 8-3 (a) Movielens 100K Movielens 1M

SoftImpute 10.6 9.4 40.6

Alternating Minimization 18.9 252.0 1141.4

Greedy ([144]) 18.8 418.4 4087.3

Fast Greedy 10.2 43.4 244.2

Fast Local Search 10.8 46.1 263.0

Table 8.3: Runtimes (in seconds) of different algorithms for fitting a rank=30 solution in various
experiments. Code written in python and tested on an Intel Skylake CPU with 16 vCPUs.

It is important to note that our goal here is not to be competitive with the best known algorithms
for matrix completion, but rather to propose a general yet practically applicable method for rank-
constrained convex optimization. For a recent survey on the best performing algorithms in the
Movielens datasets see [139]. It should be noted that a lot of these algorithms have significant
performance boost compared to our methods because they use additional features (meta information
about each user, movie, timestamp of a rating, etc.) or stronger models (user/movie biases, "implicit"
ratings). A runtime comparison with these recent approches is an interesting avenue for future work.
As a rule of thumb, however, Fast Greedy has roughly the same runtime as SVD ([101]) in each
iteration, i.e. 𝑂(|Ω|𝑟), where Ω is the set of observable elements and 𝑟 is the rank. As some better
performing approaches have been reported to be much slower than SVD (e.g. SVD++ is reported to
be 50-100x slower than SVD in the Movielens 100K and 1M datasets ([83]), this might also suggest
a runtime advantage of our approach compared to some better performing methods.

8.5 Conclusions

We presented simple algorithms with strong theoretical guarantees for optimizing a convex function
under a rank constraint. Although the basic versions of these algorithms have appeared before,
through a series of careful runtime, optimization, and generalization performance improvements
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that we introduced, we have managed to reshape the performance of these algorithms in all fronts.
Via our experimental validation on a host of practical problems such as low-rank matrix recovery
with missing data, robust principal component analysis, and recommender systems, we have shown
that the performance in terms of the solution quality matches or exceeds other widely used and
even specialized solutions, thus making the argument that our Fast Greedy and Fast Local Search
routines can be regarded as strong and practical general purpose tools for rank-constrained convex
optimization. Interesting directions for further research include the exploration of different kinds of
regularization and tuning for machine learning applications, as well as a competitive implementation
and extensive runtime comparison of our algorithms.
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Chapter 9

Appendix

9.1 Appendix for Chapter 3

9.1.1 Initializing the Interior Point Method

We require finding an initial f 0 for which the solution can be easily brought to centrality. To do so,
we modify the original graph by adding a set of 𝑂(𝑚) arcs with high cost 𝑐∞ = (𝑚+ 1)‖c‖∞ such
that the flow which pushes exactly 1/2 units on every arc in the modified graph routes the original
demand d .

The consequence of adding such these edges is that, while the solution to the original problem
remains unchanged, since it will never be beneficial to use an arc with cost 𝑐∞ in the optimal solution.
Meanwhile initializing f 0 = 1/2 ensures that the flow on each arc is equally far from the upper
and the lower barrier, and therefore their contributions to the gradient will cancel. This will make
centering trivially easy.

First let us show that such an augmentation is indeed possible.

Lemma 9.1.1. Let 𝐺 = (𝑉,𝐸, c) be a directed graph with |𝐸| = 𝑚 arcs with unit capacity, |𝑉 | = 𝑛
vertices, costs on arcs c ≥ 0, and let d ∈ Z𝑛 be a demand vector

∑︀𝑛
𝑖=1 𝑑𝑖 = 0.

Then there exists a graph 𝐺′ = (𝑉 ′, 𝐸′, c′) with at most 2𝑚 unit-capacity arcs, and a demand
vector d ′ such that the flow f ′ = 1/2 routes the demand d ′ in 𝐺′.

Furthermore if (f ′)* is a flow in 𝐺′ with 0 ≤ (f ′)* ≤ 1 and which routes d ′ such that the cost
⟨c′, f ′⟩ is minimized, then one can convert it in 𝑂(𝑚) time into a flow f * which routes d in 𝐺, such
that 0 ≤ f * ≤ 1 and the cost ⟨c, f ⟩ is minimized, or certify that no such flow exists.

Proof. First we construct the graph 𝐺′. Let 𝑉 ′ = 𝑉 ∪ {𝑣0}, where 𝑣0 is a new vertex. Initialize
𝑆 = ∅. For each vertex 𝑣 ∈ 𝑉 , let ℓ(𝑣) = 𝑑𝑣 − 1

2(|𝐸
−(𝑣)|−|𝐸+(𝑣)|), representing the excess flow at

vertex 𝑣 after routing f = 1/2 on each arc. Let 𝑐∞ = (𝑚 + 1)‖c‖∞. For each 𝑣 where ℓ(𝑣) > 0,
create 2ℓ(𝑣) arcs (𝑣, 𝑣0) with cost 𝑐∞, and add them to 𝑆. Similarly, for each 𝑣 where ℓ(𝑣) < 0
create −2ℓ(𝑣) arcs (𝑣0, 𝑣) with cost 𝑐∞ and add them to 𝑆. Note that 2ℓ(𝑣) is an integer, since d is
integral. Let 𝐸′ = 𝐸 ∪ 𝑆 and c′ be the corresponding cost vector where arcs in 𝐸 preserve their
original cost c, while those in 𝑆 have cost 𝑐∞. Let 𝑑′𝑣 = 𝑑𝑣 for all 𝑣 ∈ 𝑉 and 𝑑′𝑣0 = 0.

Now let (f ′)* be the minimum cost flow in 𝐺′ which satisfies capacity constraints. If (f ′)* is
not supported on any arcs in 𝑆, then (f ′)* is also a feasible flow in 𝐺. Furthermore it must be the
optimal flow in 𝐺, since otherwise (f ′)* would not have been optimal in 𝐺′. If (f ′)* has nonzero
flow on some arc in 𝑆, then we must conclude that it is impossible to route d in 𝐺 while satisfying
capacity constraints.
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Suppose it were possible to do so using a flow f *. Then, consider the circulation g = f * − (f ′)*.
Now convert g into a minimal circulation ̃︀g which preserves the flows on 𝑆 as follows: while g
contains a cycle without any arcs in 𝑆, decrease the value of all flows along that cycle by the
minimum value of the flow along it. This operation always zeroes out the flow on at least one edge,
so the process must finish. Furthermore note that the cost of any such cycle must be non-positive,
since otherwise we contradict the optimality of f *.

At this point we are left with a circulation ̃︀g which does not contain any cycles supported only in
𝐸, and whose cost is at at least ⟨c, g⟩ ≥ 0; the latter inequality follows from the optimality of (f ′)*.

Using the fact that ̃︀g does not contain cycles supported in 𝐸, we get that the restriction to the
arcs in 𝐸, ̃︀g |𝐸 satisfies ‖̃︀g |𝐸‖1 ≤ 𝑚·‖̃︀g |𝑆‖1, where ̃︀g |𝑆 is the corresponding restriction to 𝑆. Therefore
|⟨c, ̃︀g |𝐸⟩| ≤ ‖c‖∞·‖̃︀g |𝐸‖1 ≤ 𝑚·‖c‖∞·‖̃︀g |𝑆‖1. Since by definition ⟨c, ̃︀g |𝑆⟩ = −𝑐∞·‖̃︀g |𝑆‖1, we conclude
that ⟨c, ̃︀g⟩ = ⟨c, ̃︀g |𝐸⟩ + ⟨c, ̃︀g |𝑆⟩ ≤ 𝑚 · ‖c‖∞ · ‖̃︀g |𝑆‖1 − 𝑐∞ · ‖̃︀g |𝑆‖1 = ‖̃︀g |𝑆‖1 · (𝑚‖c‖∞ − 𝑐∞) < 0.
This yields a contradiction, so a feasible f * can not possibly exist.

At this point, using the reduction given above, we can assume without loss of generality that the
flow f = 1/2 · 1 routes the demand d .

Lemma 9.1.2. If f = 1/2 ·1 routes the input demand d , then in the time dominated by 𝑂(log log𝑚)
residual correction steps, we can produce a solution f = Cx and a set of weights w ≥ 1 such that
‖w‖1 ≤ 2𝑚+ 1 and ∇𝐹w

𝜇 (x ) = 0, for 𝜇 ≤ 2‖c‖2.

Proof. For this flow f = Cx we have that s+ = s− = 1/2 and the corresponding residual satisfies
∇𝐹 1

𝜇 (x ) = C⊤c
𝜇 . Per Definition 3.3.3 we can certify an upper bound on ℰ1,s(∇𝐹 1

𝜇 (x )) using
y = (0; c/𝜇) which shows that

ℰ1,s(∇𝐹 1
𝜇 (x )) ≤

1

2
·
⟨︀
(s+; s−)2, (0; c/𝜇)2

⟩︀
=

1

2
· 1

4𝜇2
· ‖c‖22 .

Therefore setting 𝜇 = ‖c‖2 we have that the energy is at most 1/8, which fulfills the conditions
required by Corollary 3.3.7 and Lemma 3.3.8 to produce in the time dominated by 𝑂(log log𝑚)
residual correction steps a solution x and a weight vector w ≥ 1 such that ‖w − 1‖1 ≤ 2𝑚−9 ≤ 1
for which ∇𝐹w

𝜇′ (x ) = 0, where 𝜇′ ≤ ‖c‖2(1 +𝑚−10) ≤ 2‖c‖2.

9.1.2 Preconditioning Proof

In this section we provide the proof for Lemma 3.4.7.

Proof of Lemma 3.4.7. Let ̃︀f⋆ = ̃︀f + ̃︀f ′
. Writing the optimality condition for (3.18) we obtain

C⋆
⊤(r̃︀f⋆ − h) = 0 , (9.1)

where

r =

{︃
w+

(s+)2
+ w−

(s−)2
+𝑅𝑝 · (̃︀f )𝑝−2 for edges in 𝐸,

𝑅⋆ +𝑅𝑝 · (̃︀f ′
)𝑝−2 for edges in 𝐸′.

Since C⋆ is a cycle basis for𝐺⋆, the condition (9.1) implies that along any cycle in𝐺⋆ the (appropriately
signed) sum of weights r̃︀f⋆ − h is exactly 0. This means that these weights are determined by
an embedding of the vertices of 𝐺⋆ onto the line, c.f. Lemma 9.1.3. Hence there exists a vector
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𝜑 ∈ R|𝑉 ∪{𝑣⋆}| such that for every edge (𝑢, 𝑣) ∈ 𝐸 ∪ 𝐸′:

𝑟𝑒( ̃︀𝑓⋆)𝑒 − ℎ𝑒 = 𝜑𝑢 − 𝜑𝑣 . (9.2)

Also, to shorten notation, let us define

w̄ = w+ +w− . (9.3)

Next we will prove that the coordinates of 𝜑 must lie within a short interval. The intuition here
relies on the fact that the preconditioning edges make the graph 𝐺⋆ have good enough expansion;
in turn, using an argument similar to [96] which was subsequently employed under various forms
in [97, 118, 42] we argue that good expansion means that all the vertices are close to each other in
the potential embedding.

Given a scalar 𝑡, let 𝑆𝑡 be the set of edges (𝑢, 𝑣) for which 𝑡 ∈ (min{𝜑𝑢, 𝜑𝑣},max{𝜑𝑢, 𝜑𝑣}). Our
proof proceeds by lower bounding for each 𝑡:

∑︁
(𝑢,𝑣)∈𝑆𝑡

�̄�𝑢𝑣
|𝜑𝑢 − 𝜑𝑣|

≥

(︁∑︀
(𝑢,𝑣)∈𝑆𝑡

√
�̄�𝑢𝑣√
𝑟𝑢𝑣

)︁2
∑︀

(𝑢,𝑣)∈𝑆𝑡

|𝜑𝑢−𝜑𝑣 |
𝑟𝑢𝑣

, (9.4)

which we obtained using Cauchy-Schwarz.

Next we observe that the quantity in the denominator is upper bounded by∑︁
(𝑢,𝑣)∈𝑆𝑡

|𝜑𝑢 − 𝜑𝑣|
𝑟𝑢𝑣

≤
∑︁

(𝑢,𝑣)∈𝑆𝑡

|ℎ𝑢𝑣|
𝑟𝑢𝑣

. (9.5)

We can see why this is true by using the fact that ̃︀f⋆ is a circulation, therefore along any cut 𝑆𝑡 one
has ∑︁

(𝑢,𝑣)∈𝑆𝑡

𝜑𝑢>𝜑𝑣

( ̃︀𝑓⋆)𝑢𝑣 = ∑︁
(𝑢,𝑣)∈𝑆𝑡

𝜑𝑢≤𝜑𝑣

( ̃︀𝑓⋆)𝑢𝑣 ,
i.e. the sum of the values of flows going from left to right is equal to the sum of values of flows going
from right to left in the embedding.

By substituting ( ̃︀𝑓⋆)𝑢𝑣 with the value determined from (9.2) we equivalently obtain that∑︁
(𝑢,𝑣)∈𝑆𝑡

𝜑𝑢>𝜑𝑣

ℎ𝑢𝑣 + |𝜑𝑢 − 𝜑𝑣|
𝑟𝑢𝑣

=
∑︁

(𝑢,𝑣)∈𝑆𝑡

𝜑𝑢≤𝜑𝑣

ℎ𝑢𝑣 − |𝜑𝑢 − 𝜑𝑣|
𝑟𝑢𝑣

,

and by rearranging∑︁
(𝑢,𝑣)∈𝑆𝑡

|𝜑𝑢 − 𝜑𝑣|
𝑟𝑢𝑣

=
∑︁

(𝑢,𝑣)∈𝑆𝑡

𝜑𝑢>𝜑𝑣

−ℎ𝑢𝑣
𝑟𝑢𝑣

+
∑︁

(𝑢,𝑣)∈𝑆𝑡

𝜑𝑢≤𝜑𝑣

ℎ𝑢𝑣
𝑟𝑢𝑣
≤

∑︁
(𝑢,𝑣)∈𝑆𝑡

|ℎ𝑢𝑣|
𝑟𝑢𝑣

.
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Therefore, plugging (9.5) into (9.4), we obtain

∑︁
(𝑢,𝑣)∈𝑆𝑡

�̄�𝑢𝑣
|𝜑𝑢 − 𝜑𝑣|

≥

(︁∑︀
(𝑢,𝑣)∈𝑆𝑡

√
�̄�𝑢𝑣√
𝑟𝑢𝑣

)︁2
∑︀

(𝑢,𝑣)∈𝑆𝑡

|ℎ𝑢𝑣 |
𝑟𝑢𝑣

≥

∑︀
(𝑢,𝑣)∈𝑆𝑡

√
�̄�𝑢𝑣√
𝑟𝑢𝑣

max |ℎ𝑢𝑣 |/𝑟𝑢𝑣√
�̄�𝑢𝑣/

√
𝑟𝑢𝑣

=

⎛⎝ ∑︁
(𝑢,𝑣)∈𝑆𝑡

√
�̄�𝑢𝑣√
𝑟𝑢𝑣

⎞⎠ · 1

‖hw̄−1/2r−1/2‖∞
.

(9.6)

At this point we can prove that the all the values in 𝜑 lie within a small interval. In order to do so we
will crucially use the augmenting edges, which endow 𝐺⋆ with better expansion properties. Suppose
w.l.o.g. that 𝜑𝑣⋆ = 0. For every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 ∪𝐸′, let 𝑚𝑒 = min{𝜑𝑢, 𝜑𝑣}, 𝑀𝑒 = max{𝜑𝑢, 𝜑𝑣}.
For all edges in 𝑒 = (𝑢, 𝑣⋆) ∈ 𝐸′ (of which multiple copies can occur) we define

�̄�𝑒 = 1 .

Hence we may define for 𝑡 ≥ 0:

𝐹 (𝑡) =
∑︁

(𝑢,𝑣)∈𝐸∪𝐸′

𝑀𝑢𝑣≥𝑡

�̄�𝑢𝑣 ·
𝑀𝑢𝑣 −max{𝑚𝑢𝑣, 𝑡}

|𝜑𝑢 − 𝜑𝑣|
, (9.7)

which represents the sum of weighted fractions of edges that are on the right side of the cut at
position 𝑡 on the real line.

Our goal is to show that since 𝐹 (𝑡) decreases very fast, we do not need to increase 𝑡 very
much before we run out of edges i.e. 𝐹 (𝑡) becomes 0. Indeed, (9.6) offers a lower bound on the
instantaneous decrease of 𝐹 (𝑡), as 𝑡 increases. The reason is that all the augmenting edges (𝑣⋆, 𝑢)
for 𝜑𝑢 > 𝑡 appear in the cut. This also means that 𝐹 (𝑡) > 0 if 𝑆𝑡 ̸= ∅ and 𝐹 (𝑡) = 0 otherwise.

Intuitively (9.6) states that when slightly increasing 𝑡, 𝐹 (𝑡) must decrease by a constant factor,
scaled by the change in 𝑡. To formalize this we simply use the fact that∑︁

(𝑢,𝑣)∈𝑆𝑡

√
�̄�𝑢𝑣√
𝑟𝑢𝑣

=
∑︁

(𝑢,𝑣)∈𝑆𝑡

�̄�𝑢𝑣√
�̄�𝑢𝑣𝑟𝑢𝑣

≥
∑︁

(𝑢,𝑣⋆)∈𝑆𝑡

�̄�𝑢𝑣⋆√
�̄�𝑢𝑣⋆𝑟𝑢𝑣⋆

≥ 1

max𝑒∈𝐸′
√
�̄�𝑒𝑟𝑒

· 𝐹 (𝑡)
2

, (9.8)

which follows from the inequality

𝐹 (𝑡) ≤
∑︁
𝑒∈𝑆𝑡

�̄�𝑒 ≤ 2 ·
∑︁

𝑒∈𝑆𝑡∩𝐸′

�̄�𝑒 .

The latter is ensured by the fact that by definition each vertex 𝑣 ∈ 𝑉 is incident to at least∑︀
𝑒∈𝐸:𝑒∼𝑣 �̄�𝑒 augmenting edges in 𝐸′. Furthermore, even if 𝐹 (𝑡) is very small but 𝑆𝑡 is still

nonempty, we can use the lower bound∑︁
(𝑢,𝑣)∈𝑆𝑡

√
�̄�𝑢𝑣√
𝑟𝑢𝑣

=
∑︁

(𝑢,𝑣)∈𝑆𝑡

�̄�𝑢𝑣√
�̄�𝑢𝑣𝑟𝑢𝑣

≥ |𝑆𝑡|
max𝑒∈𝐸′

√
�̄�𝑒𝑟𝑒

≥ 1

max𝑒∈𝐸′
√
�̄�𝑒𝑟𝑒

. (9.9)

Combining (9.6), (9.8), and (9.9) we obtain that if 𝑆𝑡 is nonempty, or equivalently 𝐹 (𝑡) > 0, then∑︁
(𝑢,𝑣)∈𝑆𝑡

�̄�𝑢𝑣
|𝜑𝑢 − 𝜑𝑣|

≥ 1

‖hw̄−1/2r−1/2‖∞ ·max𝑒∈𝐸′
√
�̄�𝑒𝑟𝑒

·max{𝐹 (𝑡)/2, 1} . (9.10)
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As a matter of fact, this tells us that 𝐹 must decrease very fast, since from the definition (9.7) we
have that 𝐹 is a continuous function, differentiable almost everywhere, such that at all points 𝑡 ≥ 0
where it is differentiable it satisfies

𝑑

𝑑𝑡
𝐹 (𝑡) = −

∑︁
(𝑢,𝑣)∈𝐸∪𝐸′

𝑀𝑢𝑣≥𝑡

�̄�𝑢𝑣
|𝜑𝑢 − 𝜑𝑣|

≤ −
∑︁

(𝑢,𝑣)∈𝑆𝑡

�̄�𝑢𝑣
|𝜑𝑢 − 𝜑𝑣|

.

Thus using (9.10) and Lemma 9.1.4 we obtain that 𝐹 (𝑇 ) = 0 for

𝑇 = ‖hw̄−1/2r−1/2‖∞ ·max
𝑒∈𝐸′

√
�̄�𝑒𝑟𝑒 · (1 + 2 log𝐹 (0))

≤ ‖hw̄−1/2r−1/2‖∞ ·max
𝑒∈𝐸′

√
�̄�𝑒𝑟𝑒 · (1 + 2 log(4‖w‖1)) , (9.11)

where the last inequality follows from accounting the weights of the augmenting edges in 𝐸′.

Using the identical argument for vertices embedded to the left of 𝑣⋆, we conclude that (9.11)
yields an upper bound on 𝑀𝑒 −𝑚𝑒, and therefore, for all edges 𝑒 ∈ 𝐸

|𝑟𝑒 ̃︀𝑓𝑒 − ℎ𝑒| ≤ max
𝑒∈𝐸′

√
�̄�𝑒𝑟𝑒 · ‖hw̄−1/2r−1/2‖∞ · 2(1 + 2 log(4‖w‖1))

≤ max
𝑒∈𝐸′

√
�̄�𝑒𝑟𝑒 · ‖hw̄−1/2r−1/2‖∞ · 32 log ‖w‖1 .

Now we use Lemma 3.4.6 to obtain that for all (𝑢, 𝑣⋆) = 𝑒 ∈ 𝐸′:

�̄�𝑒𝑟𝑒 = 𝑅⋆ +𝑅𝑝 · ( ̃︀𝑓 ′𝑒)𝑝−2 ≤ 𝑅⋆ +𝑅𝑝 · ‖̃︀f ′
‖𝑝−2
∞ ,

which ensures that⃒⃒⃒⃒(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2
+𝑅𝑝( ̃︀𝑓𝑒)𝑝−2

)︂ ̃︀𝑓𝑒 − ℎ𝑒 ⃒⃒⃒⃒ ≤ (︁𝑅⋆ +𝑅𝑝 · ‖̃︀f⋆‖𝑝−2
∞

)︁1/2
·
⃦⃦⃦⃦

h√
w̄r

⃦⃦⃦⃦
∞
· 32 log ‖w‖1 ,

(9.12)

and therefore that⃒⃒⃒⃒(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂ ̃︀𝑓𝑒 − ℎ𝑒 ⃒⃒⃒⃒ ≤ ⃒⃒⃒𝑅𝑝 · ( ̃︀𝑓𝑒)𝑝−1
⃒⃒⃒
+
(︁
𝑅⋆ +𝑅𝑝 · ‖̃︀f⋆‖𝑝−2

∞

)︁1/2
(9.13)

·

⃦⃦⃦⃦
⃦⃦⃦⃦ h√︂

(w+ +w−)
(︁

w+

(s+)2
+ w−

(s−)2

)︁
⃦⃦⃦⃦
⃦⃦⃦⃦
∞

· 32 log ‖w‖1 , (9.14)

which is what we needed.
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We can furthermore establish a similar upper bound on⃒⃒⃒⃒
𝑤+
𝑒

(𝑠+𝑒 )2
· ̃︀𝑓𝑒 ⃒⃒⃒⃒ ≤ ⃒⃒⃒⃒(︂ 𝑤+

𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2
+𝑅𝑝 ·

(︁ ̃︀𝑓𝑒)︁𝑝−2
)︂ ̃︀𝑓𝑒 ⃒⃒⃒⃒

≤ |ℎ𝑒|+max
𝑒∈𝐸′

√
�̄�𝑒𝑟𝑒 · ‖hw̄−1/2r−1/2‖∞ · 32 log ‖w‖1

≤ |ℎ𝑒|+
(︁
𝑅⋆ +𝑅𝑝 · ‖̃︀f⋆‖𝑝−2

∞

)︁1/2
·

⃦⃦⃦⃦
⃦⃦⃦⃦ h√︂

(w+ +w−)
(︁

w+

(s+)2
+ w−

(s−)2

)︁
⃦⃦⃦⃦
⃦⃦⃦⃦
∞

· 32 log ‖w‖1 ,

and an identical upper bound on
⃒⃒⃒
𝑤−

𝑒

(𝑠−𝑒 )2
· ̃︀𝑓𝑒 ⃒⃒⃒.

Lemma 9.1.3. Let 𝐺 be a graph with 𝑛 vertices and 𝑚 edges, and C be a matrix that encodes a
cycle basis for 𝐺, in the sense that for any x , Cx is a circulation in 𝐺 and for any circulation f in
𝐺, there exists a vector x such that f = Cx . Suppose that y ∈ R𝑚 is a vector such that C⊤y = 0.
Then there exists a vector 𝜑 ∈ R𝑛 such that for all (𝑢, 𝑣) ∈ 𝐸 one has that 𝑦𝑢𝑣 = 𝜑𝑢 − 𝜑𝑣.

Proof. By definition, the image of C is the space of circulations in 𝐺. Therefore the kernel of C⊤

is orthogonal to the space of circulations in 𝐺, and therefore so is the vector y . Now consider the
incidence matrix B ∈ R𝑚×𝑛, which is constructed as follows: for each edge (𝑢, 𝑣) ∈ 𝐸, add a row in
with two nonzero entries, +1 at position 𝑢, and −1 at position 𝑣. One can easily see that kerB⊤

is exactly the space of circulations, as the B⊤ operator acts on flows by returning the vector of
demands that they route. Hence y lies in the image of B , i.e. y = B𝜑. By the definition of B , the
conclusion follows.

Lemma 9.1.4. Let 𝐹 : R≥0 → R≥0 be a continuous function, differentiable almost everywhere, such
that 𝐹 (0) ≥ 0. Suppose that for all 𝑡 ≥ 0 where 𝐹 (𝑡) > 0 and 𝑑𝐹 (𝑡)/𝑑𝑡 exists, we have

𝑑

𝑑𝑡
𝐹 (𝑡) ≤ − 1

𝛼
max

{︂
𝐹 (𝑡)

2
, 1

}︂
,

for some 𝛼 > 0. Then
𝐹 (𝛼(1 + 2 log𝐹 (0))) = 0 .

Proof. Let 𝑇 > 0 be any point for which 𝐹 (𝑇 ) > 0. From the hypothesis we know that the
instantaneous decrease in 𝐹 at all points 𝑡 ∈ [0, 𝑇 ] is at least 𝑑𝑡/𝛼. Hence we have that:

𝐹 (𝑇 ) ≤ min
0≤𝑡≤𝑇

𝐹 (𝑡)− 𝑇 − 𝑡
𝛼

.

Furthermore, using the fact that the instantaneous decrease in 𝐹 (𝑡) is at least 𝐹 (𝑡)/(2𝛼), we solve
the corresponding ODE to obtain that for all 𝑡,

𝐹 (𝑡) ≤ 𝐹 (0) exp
(︂
− 𝑡

2𝛼

)︂
.
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Combining the two inequalities, and setting 𝑡 = 2𝛼 log𝐹 (0), we get that

𝐹 (𝑇 ) ≤ 1− 𝑇 − 2𝛼 log𝐹 (0)

𝛼
= (1 + 2 log𝐹 (0))− 𝑇

𝛼
.

which implies that 𝑇 ≤ 𝛼(1 + 2 log𝐹 (0)), since 𝐹 (𝑇 ) ≥ 0.

Finally, we discuss how to adapt the proof of Lemma 3.4.7 to obtain the Lemma 3.6.4.

Proof of Lemma 3.6.4. This proof is identical to that of Lemma 3.4.7. The main difference consists
of including the 𝛼 factors in the definition of r for edges in 𝑒, more specifically, we let:

r =

{︃
𝛼+w+

(s+)2
+ 𝛼−w−

(s−)2
+𝑅𝑝 · (̃︀f )𝑝−2 for edges in 𝐸,

𝑅⋆ +𝑅𝑝 · (̃︀f ′
)𝑝−2 for edges in 𝐸′.

Using this new definition for r , the remaining proof carries over by following the exact same steps as
before.

9.1.3 Solving the Mixed Objective

Invoking the Solver

Producing a high precision solution to the regularized objective in (3.18) can be done efficiently in
our particular setting, where we aim to optimize a mixed ℓ2-ℓ𝑝 objective in the space of circulations.
To this extent we use the following result from [103], also restated and improved in [2].

Theorem 9.1.5. For any 𝑝 ≥ 2, given weights r ∈ R|𝐸|
≥0 , and a cost vector g ∈ R|𝐸| define the

function defined over circulations f in 𝐺:

𝑣𝑎𝑙(f ) =
∑︁
𝑒

𝑔𝑒𝑓𝑒 + 𝑟𝑒𝑓
2
𝑒 + |𝑓𝑒|𝑝 .

Given any circulation f for which all the parameters are bounded by 2(log𝑛)
𝑂(1) we can compute a

circulation ̃︀f such that

𝑣𝑎𝑙(̃︀f )−𝑂𝑃𝑇 ≤ 1

2(log𝑚)𝑂(1)
(𝑣𝑎𝑙(f )−𝑂𝑃𝑇 ) + 1

2(log𝑚)𝑂(1)

in 2𝑂(𝑝3/2)𝑚1+𝑂(1/
√
𝑝) time.

For large values of 𝑝 this solves the regularized objective defined in (3.18) to high precision in
almost linear time 𝑂

(︀
𝑚1+𝑜(1)

)︀
, which is comparably fast to the time required to minimize a convex

quadratic function in the space of circulations via fast Laplacian solvers.

Discussion on Solver Errors

Throughout Chapter 3 we assume that the solutions to the regularized objective are exact. This is
not exactly true due to the approximate nature of the solver specified in Theorem 9.1.5. Instead,
we argue that the entire analysis we showed carries over even if the solver returns a solution which
carries some small error.
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Consider the equivalent problem of minimizing the negative of the objective Φ(x ) stated in (3.18).
We verify that at a point x such that the current flow ̃︀f = C⋆x , its Hessian is

∇2Φ(x ) = C⋆
⊤DC⋆

where D is a diagonal matrix whose entries are defined such that

(D)𝑒,𝑒 =

{︃
𝑤+

𝑒

(𝑠+𝑒 )2
+ 𝑤−

𝑒

(𝑠−𝑒 )2
+ (𝑝− 1)𝑅𝑝( ̃︀𝑓𝑒)𝑝−2 if 𝑒 ∈ 𝐸 ,

𝑅⋆ +𝑅𝑝(𝑝− 1)( ̃︀𝑓𝑒)𝑝−2 if 𝑒 ∈ 𝐸′ .

Our choice of regularization parameters yield an upper bound on ‖̃︀f ‖∞ as we showed in the proof of
Lemma 3.4.6 (Equation (3.43)), which together with our choice of regularization parameters (Sec-
tion 3.4.2) and the invariants that 1 ≤ w and ‖w‖1 = 𝑂(𝑚) ensure that 𝑅𝑝( ̃︀𝑓𝑒)𝑝−2 ≤ ̃︀𝑂((𝛿2𝑚)3) =
𝑜(𝑚). Assuming that we always maintain all our slacks large enough i.e. for all 𝑒: 𝜏−1 ≤ 𝑓𝑒 ≤ 1−𝜏−1,
for 𝜏 = 𝑚𝑂(1), we see that D is always well-conditioned in the sense that all of its diagonal entries
are between 𝜏−2 and 𝑀 = 𝑂(𝑚𝜏2). We will discuss later how to maintain this property.1

Under this assumption we can therefore use basic tools from convex analysis to argue that after
optimizing Φ to high precision, the gradient of the returned solution is small. Let x be the solution
returned by the high-precision solver such that Φ(x ) ≤ Φ(x *) + 𝜀. Letting ∇Φ(x ) = C⋆

⊤h for some
vector h , we can write

‖∇Φ(x )‖*
C⋆

⊤C⋆
=

⃦⃦⃦⃦∫︁ 1

0
∇2Φ((1− 𝑡)x * + 𝑡x )(x − x *)𝑑𝑡

⃦⃦⃦⃦*
C⋆

⊤C⋆

≤ max
𝑡∈[0,1]

⃦⃦
∇2Φ((1− 𝑡)x * + 𝑡x )

⃦⃦
‖·‖

C⋆⊤C⋆
→‖·‖*

C⋆⊤C⋆

· ‖x − x *‖C⋆
⊤C⋆

≤ max
D diagonal

D𝑖𝑖∈[𝑀−1,𝑀 ]

⃦⃦⃦
C⋆

⊤DC⋆

⃦⃦⃦
‖·‖

C⋆⊤C⋆
→‖·‖*

C⋆⊤C⋆

· ‖x − x *‖C⋆
⊤C⋆

.

Here we use the notation
‖x‖C⋆

⊤C⋆
= ‖C⋆x‖2 ,

‖f ‖*
C⋆

⊤C⋆
= max

x :‖x‖
C⋆⊤C⋆

≤1
⟨f ,x ⟩ ,

and
‖A‖‖·‖

C⋆⊤C⋆
→‖·‖*

C⋆⊤C⋆

= max
x :‖x‖

C⋆⊤C⋆
≤1
‖Ax‖*

C⋆
⊤C⋆

.

Using these definitions we can further write

‖C⋆
⊤DC⋆‖‖·‖

C⋆⊤C⋆
→‖·‖*

C⋆⊤C⋆

= max
x :‖x‖

C⋆⊤C⋆
≤1
‖C⋆

⊤DC⋆x‖*C⋆
⊤C⋆

= max
x :‖C⋆x‖2≤1

max
y :‖C⋆y‖2≤1

⟨C⋆
⊤DC⋆x ,y⟩

= max
f ,g :‖f ‖2≤1,‖g‖2≤1

⟨Df , g⟩

≤ max
𝑖

D 𝑖𝑖 .

1Alternatively, we can enforce lower and upper bounds on the entries of D by adding an additional small quadratic
regularizer to the edges in 𝐸.
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Next we bound the distance ‖x − x *‖C⋆
⊤C⋆

. To do so, we Taylor expand:

Φ(x )− Φ(x *) =
1

2
(x − x *)⊤

(︂∫︁ 1

0
∇2Φ((1− 𝑡)x * + 𝑡x )𝑑𝑡

)︂
(x − x *)

=
1

2

⎛⎝⃦⃦⃦⃦∫︁ 1

0
∇2Φ((1− 𝑡)x * + 𝑡x )𝑑𝑡

⃦⃦⃦⃦
‖·‖

C⋆⊤C⋆
→‖·‖*

C⋆⊤C⋆

‖x − x *‖C⋆
⊤C⋆

⎞⎠2

≥ 1

2

(︂
min
𝑖

D 𝑖𝑖 · ‖x − x *‖C⋆
⊤C⋆

)︂2

.

Since the solution we obtain satisfies Φ(x )− Φ(x *) ≤ 𝜀, we thus infer that

‖x − x *‖C⋆
⊤C⋆
≤

√
2𝜀

min𝑖D 𝑖𝑖
.

Plugging into the upper bound on the gradient norm, we obtain that:

‖∇Φ(x )‖*
C⋆

⊤C⋆
≤ max𝑖D 𝑖𝑖

min𝑖D 𝑖𝑖
·
√
2𝜀 .

Since we have that ∇Φ(x ) = C⋆
⊤h , this implies an upper bound on the norm of h . Indeed we have

that ‖C⋆
⊤h‖*

C⋆
⊤C⋆

= maxy :‖C⋆y‖≤1⟨C⋆
⊤h ,y⟩ = maxy :‖C⋆y‖≤1⟨h ,C⋆y⟩ = ‖h‖2. Therefore the same

upper bound also holds for ‖h‖2. Hence under the assumption that all slacks are lower bounded
by a small polynomial, we can obtain that ‖h‖2 ≤ 𝑀−1 by setting 𝜀 to an appropriately small
polynomial.

Therefore after (approximately) solving the regularized objective (3.18) we can set its gradient
exactly to 0 only by slightly perturbing the linear term. This extra error, in turn, gets passed to
Lemma 3.4.20 which removes the error by slightly modifying the weight vector w . Although this
operation may enable some weights to decrease by a tiny amount below 1, this can be prevented
simply by uniformly upscaling all the weights. The centrality property will be then achieved for a
slightly smaller parameter 𝜇 and the weight increase will be upper bounded by an arbitrary inverse
polynomial in 𝑚 thus negligible.

Finally, Lemma 9.1.6 ensures that as a matter of fact all slacks are always polynomially lower
bounded, and so our claim holds. Furthermore, all calls to the solver in Theorem 9.1.5 are made on
instances where all parameters are well-conditioned, as required.

Lemma 9.1.6 (Slack lower bound). When invoking the mixed objective solver during the procedure
described in Theorem 3.4.26, at all times we have that min {𝑠+𝑒 , 𝑠−𝑒 } ≥ 1/𝑚𝑂(1) for all edges 𝑒 ∈ 𝐸.

Proof. We note that the stretch condition from Lemma 3.4.7 holds for any h . We apply it once for
h = w+

s+
− w−

s− and once for h = c
𝜇 . For the former, since⃦⃦⃦⃦

⃦⃦⃦⃦
⃒⃒⃒
w+

s+
− w−

s−

⃒⃒⃒
√︂
(w+ +w−)

(︁
w+

(s+)2
+ w−

(s−)2

)︁
⃦⃦⃦⃦
⃦⃦⃦⃦
∞

≤ 1 ,
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we get⃦⃦⃦⃦(︂
w+

(s+)2
+

w−

(s−)2
+𝑅𝑝 · ̃︀f 𝑝−2

)︂ ̃︀f − (︂w+

s+
− w−

s−

)︂⃦⃦⃦⃦
∞

= 𝑂(𝛿‖w‖1 · log ‖w‖1) = 𝑂(𝑚) , (9.15)

and for the latter, since

⃦⃦⃦⃦
⃦⃦ c

𝜇√︂
(w++w−)

(︁
w+

(s+)2
+ w−

(s−)2

)︁
⃦⃦⃦⃦
⃦⃦
∞

≤ 𝑊 ·𝑚4

2 , we get

⃦⃦⃦⃦(︂
w+

(s+)2
+

w−

(s−)2
+𝑅𝑝 · ̃︀f 𝑝−2

)︂ ̃︀f − c

𝜇

⃦⃦⃦⃦
∞

= 𝑂(𝛿‖w‖1 ·𝑊 ·𝑚4 · log ‖w‖1) = 𝑚𝑂(1) . (9.16)

Combining (9.15) and (9.16) and using the triangle inequality we get that⃦⃦⃦⃦
w+

s+
− w−

s−

⃦⃦⃦⃦
∞
≤
⃦⃦⃦⃦
c

𝜇

⃦⃦⃦⃦
∞

+𝑚𝑂(1) = 𝑚𝑂(1) .

Since max {𝑠+𝑒 , 𝑠−𝑒 } ≥ 1
2 , using the triangle inequality and the fact that 1 ≤ 𝑤+

𝑒 , 𝑤
−
𝑒 ≤ 𝑂(𝑚) in the

above inequality implies that min {𝑠+𝑒 , 𝑠−𝑒 } ≥ 1/𝑚𝑂(1).

9.1.4 Strengthening the Mixed Objective Solver

In this section we prove that the ℓ2-ℓ𝑝 solver from [103] can be extended to handle a broader class of
optimization problems on graphs. This will be useful in order to solve the optimization problem
required by the improved method we present in Section 3.6. We next state the main lemma we prove
in this section.

Lemma 9.1.7. Let a graph 𝐺 = (𝑉,𝐸) with 𝑚 edges, and a family of functions {𝑔𝑒}𝑒∈𝐸, 𝑔𝑒 : R→ R
such that each function satisfies

⃒⃒⃒
ln 𝑔′′𝑒 (𝑥)

𝑔′′𝑒 (0)

⃒⃒⃒
≤ 𝛼, for all 𝑥 ∈ R. Let the function defined over circulations

f in 𝐺: ̃︁𝑣𝑎𝑙(f ) =∑︁
𝑒

𝑔𝑒(𝑓𝑒) + |𝑓𝑒|𝑝 .

We can compute a circulation ̃︀f such that

̃︁𝑣𝑎𝑙(̃︀f )−𝑂𝑃𝑇 ≤ 1

2(log𝑚)𝑂(1)
(̃︁𝑣𝑎𝑙(f )−𝑂𝑃𝑇 ) + 1

2(log𝑚)𝑂(1)

in 2𝑂(𝛼+𝑝3/2)𝑚1+𝑂(1/
√
𝑝) time.

The proof closely follows the lines of the iterative refinement proofs from the original paper [1].
Intuitively, since 𝑔 has bounded second order derivatives, it is always well approximated by a
quadratic. Therefore the solver from Theorem 9.1.5 can be used iteratively to improve the error of
the current solution.

Iterative refinement is based on the following basic statement.

Lemma 9.1.8. Let a linear subspace 𝒳 ⊆ R𝑚 , let ℎ, 𝑘 : 𝒳 → R be convex twice-differentiable
functions, and let x ,x * ∈ R𝑚 such that x * minimizes ℎ. Suppose that 𝑘 satisfies

𝑘(𝑐𝛿) ≤ 𝑐2𝑘(𝛿) ,
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for all 𝑐 ∈ R, 𝛿 ∈ 𝒳 , such that

𝑘(𝛿) ≤ ℎ(x + 𝛿)− ℎ(x )− ⟨∇ℎ(x ), 𝛿⟩ ≤ 𝛽 · 𝑘(𝛿) ,

for any 𝛿 ∈ 𝒳 . Then letting
𝛿* = argmin

𝛿∈𝒳
⟨∇ℎ(x ), 𝛿⟩+ 𝑘(𝛿)

and 𝛿♯ ∈ 𝒳 such that

⟨∇ℎ(x ), 𝛿♯⟩+ 𝑘(𝛿♯) ≤ 1

𝛾
(⟨∇ℎ(x ), 𝛿*⟩+ 𝑘(𝛿*)) + 𝜀 ,

one has that
ℎ(x )− ℎ(x + 𝛿♯) ≥ 1

𝛽𝛾
(ℎ(x )− ℎ(x *))− 𝜀

𝛽
.

Proof. Using the hypothesis, we have that

ℎ(x + 𝛿♯/𝛽) ≤ ℎ(x ) + ⟨∇ℎ(x ), 𝛿♯/𝛽⟩+ 𝛽 · 𝑘(𝛿♯/𝛽)

≤ ℎ(x ) + 1

𝛽

(︁
⟨∇ℎ(x ), 𝛿♯⟩+ 𝑘(𝛿♯)

)︁
,

where we used the right hand side of the sandwiching inequality from the hypothesis, and the fact
that 𝑘(𝛿♯/𝛽) ≤ 𝑘(𝛿♯)/𝛽2.

Next we plug in the relation between 𝛿* and 𝛿♯ to obtain:

ℎ(x + 𝛿♯/𝛽) ≤ ℎ(x ) + 1

𝛽𝛾
(⟨∇ℎ(x ), 𝛿*⟩+ 𝑘(𝛿*)) +

𝜀

𝛽

≤ ℎ(x ) + 1

𝛽𝛾
(⟨∇ℎ(x ),x * − x ⟩+ 𝑘(x * − x )) +

𝜀

𝛽
,

where the latter inequality follows from the fact that 𝛿* minimizes ⟨∇ℎ(x ), 𝛿*⟩+ 𝑘(𝛿*), so plugging
in x * − x as an argument can only increase the sum of these two terms. Finally, we plug in the left
hand side of the sandwiching inequality, i.e.

⟨∇ℎ(x ),x * − x ⟩+ 𝑘(x * − x ) ≤ h(x *)− h(x ) ,

which combined with the previous inequality yields,

ℎ(x )− ℎ(x + 𝛿♯/𝛽) ≥ 1

𝛽𝛾
(ℎ(x )− ℎ(x *))− 𝜀

𝛽
,

which is what we needed.

We apply Lemma 9.1.8 for a custom choice of 𝑘, which is dictated by the specific family of
functions {𝑔𝑒}𝑒∈𝐸 ..

In order to do so, we also require a sandwiching inequality for the
∑︀
𝑓𝑝𝑒 term. We use the

following inequality from [103].

Lemma 9.1.9 ([103], p. 11). Let 𝑥, 𝛿 ∈ R and 𝑝 ≥ 2. Then

2−𝑂(𝑝)(𝑥𝑝−2𝛿2 + 𝛿𝑝) ≤ (𝑥+ 𝛿)𝑝 − 𝑥𝑝 − 𝑝𝑥𝑝−1 ≤ 2𝑂(𝑝)(𝑥𝑝−2𝛿2 + 𝛿𝑝) .
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Using Lemmas 9.1.8 and 9.1.9, we can now define an appropriate function 𝑘 for each circulation
f . In order to do so, we use the following simple lemma.

Lemma 9.1.10. Let ̃︁𝑣𝑎𝑙(f ) specified as in Lemma 9.1.7, and let a circulation f . Then one has that
for any circulation 𝛿:∑︁

𝑒

(︂
𝑒−𝛼𝑔′′𝑒 (0)

2
𝛿2𝑒 + 2−𝑂(𝑝)(𝑓𝑝−2

𝑒 𝛿2𝑒 + 𝛿𝑝𝑒)

)︂
≤ ̃︁𝑣𝑎𝑙(f + 𝛿)− ̃︁𝑣𝑎𝑙(f )− ⟨∇̃︁𝑣𝑎𝑙(f ), 𝛿⟩

≤
∑︁
𝑒

(︂
𝑒𝛼𝑔′′𝑒 (0)

2
𝛿2𝑒 + 2𝑂(𝑝)(𝑓𝑝−2

𝑒 𝛿2𝑒 + 𝛿𝑝𝑒)

)︂
.

Proof. We require lower bounding and upper bounding the terms of order higher than 1, after
expanding ̃︁𝑣𝑎𝑙(f + 𝛿) around ̃︁𝑣𝑎𝑙(f ). To do so, we first notice that by the hypothesis in Lemma 9.1.7
we have

𝑒−𝛼𝑔′′𝑒 (0)

2
𝛿2 ≤ 𝑔𝑒(𝑥+ 𝛿)− 𝑔𝑒(𝑥)− 𝑔′𝑒(𝑥)𝛿 ≤

𝑒𝛼𝑔′′𝑒 (0)

2
𝛿2 .

Similarly, we use Lemma 9.1.9 to lower and upper bound the higher order terms of 𝑓𝑝𝑒 for each 𝑒.
Combining, we obtain the desired claim.

Now we can prove that we can decrease ̃︁𝑣𝑎𝑙(𝑓) − 𝑂𝑃𝑇 very fast, which in turn enables us to
prove the main lemma in this section.

Proof of Lemma 9.1.7. We use Lemma 9.1.8 where we define the functions 𝑘𝑒 based on Lemma 9.1.10.
More precisely, for each 𝑒 ∈ 𝐸 we let

𝑘(𝛿) =
∑︁
𝑒

𝑘𝑒(𝛿𝑒) ,

where
𝑘𝑒(𝛿𝑒) =

𝑒−𝛼𝑔′′𝑒 (0)

2
𝛿2𝑒 + 2−𝑂(𝑝)(𝑓𝑝−2

𝑒 𝛿2𝑒 + 𝛿𝑝𝑒) .

Using Lemma 9.1.10 we verify that

𝑘(𝛿) ≤ ̃︁𝑣𝑎𝑙(f + 𝛿)− ̃︁𝑣𝑎𝑙(f )− ⟨∇̃︁𝑣𝑎𝑙(f ), 𝛿⟩ ≤ max{𝑒2𝛼, 2𝑂(𝑝)} · 𝑘(𝛿) .

We use the solver from Theorem 9.1.5 to approximately minimize 𝑘(𝛿) plus the corresponding linear
term. Then, for our specific setting, we can apply Lemma 9.1.8 with

𝛾 = 1 +
1

2(log𝑚)𝑂(1)
,

𝜀 =
1

2(log𝑚)𝑂(1)
,

𝛽 = max{𝑒2𝛼, 2𝑂(𝑝)} ,

to get that the newly obtained iterate f ′ satisfies

̃︁𝑣𝑎𝑙(f )− ̃︁𝑣𝑎𝑙(f ′) ≥ 1

𝛽𝛾
(̃︁𝑣𝑎𝑙(f )−𝑂𝑃𝑇 )− 𝜀

𝛽
.
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Therefore executing this step for 𝑇 iterations, we obtain f 𝑇 such that

̃︁𝑣𝑎𝑙(f 𝑇 )−𝑂𝑃𝑇 ≤ (︂1− 1

𝛽𝛾

)︂𝑇 (︁̃︁𝑣𝑎𝑙(f )−𝑂𝑃𝑇)︁+ 𝜀

𝛽

(︃
𝑇−1∑︁
𝑡=0

(︂
1− 1

𝛽𝛾

)︂𝑡)︃

≤
(︂
1− 1

𝛽𝛾

)︂𝑇 (︁̃︁𝑣𝑎𝑙(f )−𝑂𝑃𝑇)︁+ 𝜀𝛾 .

Hence setting 𝑇 = 𝛽𝛾(log𝑚)𝑂(1) we make

̃︁𝑣𝑎𝑙(f 𝑇 )−𝑂𝑃𝑇 ≤ 1

2(log𝑚)𝑂(1)
(̃︁𝑣𝑎𝑙(f )−𝑂𝑃𝑇 ) + 1

2(log𝑚)𝑂(1)
.

Hence we require 𝑇 = (𝑒2𝛼 + 2𝑂(𝑝)) log𝑂(1)𝑚 iterations to obtain the target accuracy. Together with
the running time guarantee from Theorem 9.1.5 we obtain the claim.

9.1.5 Deferred Proofs

Proof of Lemma 3.3.1

Proof. Writing first order optimality conditions for (3.3), we have

∇𝐹w
𝜇 (x ) =

C⊤c

𝜇
+C⊤

(︂
w+

s+
− w−

s−

)︂
.

Setting this to 0 yields the conclusion. Now letting y = 𝜇 · w/s, we see that y ≥ 0 since both
weights w and slacks s are non-negative, and C⊤ (y+ − y−) = −C⊤𝑐, from which we conclude that
y is a feasible dual vector. Finally, we can write the duality gap as

⟨c,Cx ⟩+ ⟨1− f 0,y
+⟩+ ⟨f 0,y

−⟩ = −⟨C⊤(y+ − y−),x ⟩+ ⟨1− f 0,y
+⟩+ ⟨f 0,y

−⟩
= ⟨1− f 0 −Cx ,y+⟩+ ⟨f 0 +Cx ,y−⟩ = ⟨s+, 𝜇 ·w+/s+⟩+ ⟨s−, 𝜇 ·w−/s−⟩
= 𝜇‖w‖1 .

Proof of Lemma 3.3.4

Proof. We write

ℰw ,s(h) = miñ︀y :C⊤(̃︀y+h)=0

1

2

∑︁
𝑒∈𝐸

(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂−1

(̃︀𝑦𝑒)2
= miñ︀y max̃︀x

1

2

∑︁
𝑒∈𝐸

(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂−1

(̃︀𝑦𝑒)2 − ⟨̃︀x ,C⊤ (̃︀y + h)⟩

= max̃︀x miñ︀y
1

2

∑︁
𝑒∈𝐸

(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂−1

(̃︀𝑦𝑒)2 − ⟨C ̃︀x , ̃︀y + h⟩
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The solution to the inner optimization problem is ̃︀y =
(︁

w+

(s+)2
+ w−

(s−)2

)︁
C ̃︀x , therefore by substituting

we get

ℰw ,s(h) = max̃︀x ⟨h ,C ̃︀x ⟩ − 1

2

∑︁
𝑒∈𝐸

(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
(C ̃︀x )2𝑒

= max̃︀f=C ̃︀x ⟨h , ̃︀f ⟩ − 1

2

∑︁
𝑒∈𝐸

(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
( ̃︀𝑓𝑒)2 ,

proving (3.9). Now the first order optimality condition of this problem is given by

C⊤
(︂

w+

(s+)2
+

w−

(s−)2

)︂
· (C ̃︀x ) = C⊤h

or equivalently, by setting ̃︀f = C ̃︀x ,

C⊤
(︂

w+

(s+)2
+

w−

(s−)2

)︂
· ̃︀f = C⊤h .

If ̃︀x , ̃︀f are solutions to the above linear system, this implies

ℰw ,s(h) = ⟨h ,C ̃︀x ⟩ − 1

2

∑︁
𝑒∈𝐸

(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
(C ̃︀x )2𝑒

= ⟨C⊤h , ̃︀x ⟩ − 1

2

∑︁
𝑒∈𝐸

(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
(C ̃︀x )2𝑒

=
1

2

∑︁
𝑒∈𝐸

(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
(C ̃︀x )2𝑒

=
1

2

∑︁
𝑒∈𝐸

(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
( ̃︀𝑓𝑒)2 .

The equations in terms of 𝜌 follow by simple substitution.

Proof of Lemma 3.3.6

Proof. We explicitly write the new residual after performing the update. We have:

−C⊤h ′ := ∇𝐹w
𝜇 (x ′) = C⊤

(︂
w+

(s+)′
− w−

(s−)′
+

c

𝜇

)︂
= C⊤

(︂
w+

s+
− w−

s−
+

c

𝜇

)︂
+C⊤

(︂
w+

(s+)′
− w+

s+
− w−

(s−)′
+

w−

s−

)︂
(1)
= −C⊤

(︂
w+𝜌+

s+
− w−𝜌−

s−

)︂
+C⊤

(︂
w+𝜌+

s+(1− 𝜌+)
− w−𝜌−

s−(1− 𝜌−)

)︂
= C⊤

(︂
w+(𝜌+)2

s+(1− 𝜌+)
− w−(𝜌−)2

s−(1− 𝜌−)

)︂
= C⊤

(︂
w+(𝜌+)2

(s+)′
− w−(𝜌−)2

(s−)′

)︂
,
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where (1) follows from Equations (3.11) and (3.12) and from writing

(s+)′ = s+ −C ̃︀x = s+
(︂
1− C ̃︀x

s+

)︂
= s

(︀
1− 𝜌+

)︀
(s−)′ = s− +C ̃︀x = s−

(︂
1+

C ̃︀x
s+

)︂
= s

(︀
1− 𝜌−

)︀
.

Now we can upper bound the energy required to route the new residual with resistances determined
by (w , s ′), by substituting ̃︀y =

w+(𝜌+)2

(s+)′
− w−(𝜌−)2

(s−)′

into Definition 3.3.3, after noting that

C⊤̃︀y = C⊤
(︂
w+(𝜌+)2

(s+)′
− w−(𝜌−)2

(s−)′

)︂
= −C⊤h ′ .

We thus obtain

ℰw ,s′(h ′) ≤ 1

2

∑︁
𝑒∈𝐸

(︁
𝑤+

𝑒 (𝜌+𝑒 )2

(𝑠+𝑒 )′
− 𝑤−

𝑒 (𝜌−𝑒 )2

(𝑠−𝑒 )′

)︁2
𝑤+

𝑒

(𝑠+𝑒 )′2
+ 𝑤−

𝑒

(𝑠−𝑒 )′2

≤ 1

2

∑︁
𝑒∈𝐸

(︁
𝑤+

𝑒 (𝜌+𝑒 )2

(𝑠+𝑒 )′

)︁2
+
(︁
𝑤−

𝑒 (𝜌−𝑒 )2

(𝑠−𝑒 )′

)︁2
𝑤+

𝑒

(𝑠+𝑒 )′2
+ 𝑤−

𝑒

(𝑠−𝑒 )′2

≤ 1

2

∑︁
𝑒∈𝐸

(︁
𝑤+

𝑒 (𝜌+𝑒 )2

(𝑠+𝑒 )′

)︁2
𝑤+

𝑒

(𝑠+𝑒 )′2

+

(︁
𝑤−

𝑒 (𝜌−𝑒 )2

(𝑠−𝑒 )′

)︁2
𝑤−

𝑒

(𝑠−𝑒 )′2

=
1

2

∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 (𝜌

+
𝑒 )

4 + 𝑤−
𝑒 (𝜌

−
𝑒 )

4
)︀
.

Proof of Corollary 3.3.7

Proof. From Lemma 3.3.4 we have that

ℰw ,s(h) =
1

2

∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 (𝜌

+
𝑒 )

2 + 𝑤−
𝑒 (𝜌

−
𝑒 )

2
)︀
.

Since w ≥ 1 we have that
‖𝜌‖2∞ ≤ 2 · ℰw ,s(h) .

Using Lemma 3.3.6 we upper bound

ℰw ,s′(h ′) ≤ 1

2

∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 (𝜌

+
𝑒 )

4 + 𝑤−
𝑒 (𝜌

−
𝑒 )

4
)︀
≤ 1

2
‖𝜌‖2∞ ·

∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 (𝜌

+
𝑒 )

2 + 𝑤−
𝑒 (𝜌

−
𝑒 )

2
)︀
≤ 2 · ℰw ,s(h)2 .

Proof Lemma 3.3.8

Proof. By Lemma 3.3.4 we know that there exists a vector 𝜌 such that

C⊤h = C⊤
(︂
w+𝜌+

s+
− w−𝜌−

s−

)︂
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and
ℰw ,s(h) =

1

2

∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 (𝜌

+
𝑒 )

2 + 𝑤−
𝑒 (𝜌

−
𝑒 )

2
)︀
≤ 𝜀 .

Therefore ‖𝜌‖∞ ≤
√
2𝜀. Now let w ′ = w(1+𝜌)

1−‖𝜌‖∞ and 𝜇′ = 𝜇
1−‖𝜌‖∞ . We have that

∇𝐹w ′
𝜇′ (x ) = C⊤

(︂
(w+)′

s+
− (w−)′

s−
− c

𝜇′

)︂
=

1

1− ‖𝜌‖∞
·
(︂
C⊤

(︂
w+

s+
− w−

s−
− c

𝜇

)︂
+C⊤

(︂
w+𝜌+

s+
− w−𝜌−

s−

)︂)︂
=

1

1− ‖𝜌‖∞
·
(︁
−C⊤h +C⊤h

)︁
= 0 .

Furthermore, by this construction we see that w ≤ w ′, and that

w ′ ≤ w · 1 + ‖𝜌‖∞
1− ‖𝜌‖∞

≤ w · 1 +
√
2𝜀

1−
√
2𝜀
≤ w · (1 + 4

√
𝜀) ,

whenever 𝜀 ≤ 1/100. Therefore the total increase in weight is at most 4
√
𝜀‖w‖1. Furthermore the

loss of duality gap is determined by 𝜇′ ≤ 𝜇(1 + 2
√
𝜀).

Proof of Lemma 3.3.9

Proof. We first perform 𝑂(log log ‖w‖1) vanilla residual correction steps as described in Defini-
tion 3.3.5 to obtain a new solution f ′ = f 0 +Cx ′ with residual ∇𝐹w

𝜇 (x ′) = −C⊤g ′ and low energy
ℰw ,s′(g ′) ≤ ‖w‖−22

1 /16. Then we apply the perfect correction step from Lemma 3.3.8 to eliminate
the residual −C⊤g ′ by obtaining a new set of weights w ′ ≥ w such that ‖w ′ −w‖1 ≤ ‖w‖−10) and
∇𝐹w ′

𝜇′ (x
′) = 0 where 𝜇′ ≤ 𝜇(1 + 1

2‖w‖
−11
1 ).

Proof of Lemma 3.3.10

Proof. Since f is 𝜇-central, we can write:

∇𝐹w
𝜇′ (x ) = C⊤

(︂
w+

s+
− w−

s−
+

c

𝜇′

)︂
= (1 + 𝛿)C⊤

(︂
w+

s+
− w−

s−
+

c

𝜇

)︂
− 𝛿C⊤

(︂
w+

s+
− w−

s−

)︂
= −𝛿C⊤

(︂
w+

s+
− w−

s−

)︂
,

and so we can set h ′ = 𝛿
(︁
w+

s+
− w−

s−

)︁
. Using Definition 3.3.3 we can upper bound the energy

required to route this residual by exhibiting the solution ̃︀y = −𝛿
(︁
w+

s+
− w−

s−

)︁
after noting that
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C⊤ (︀̃︀y + h ′)︀ = 0:

ℰw ,s(h ′) ≤ 1

2
𝛿2
∑︁
𝑒∈𝐸

(︁
𝑤+

𝑒

𝑠+𝑒
− 𝑤−

𝑒

𝑠−𝑒

)︁2
𝑤+

𝑒

(𝑠+𝑒 )2
+ 𝑤−

𝑒

(𝑠−𝑒 )2

≤ 1

2
𝛿2
∑︁
𝑒∈𝐸

(︁
𝑤+

𝑒

𝑠+𝑒

)︁2
+
(︁
𝑤−

𝑒

𝑠−𝑒

)︁2
𝑤+

𝑒

(𝑠+𝑒 )2
+ 𝑤−

𝑒

(𝑠−𝑒 )2

≤ 1

2
𝛿2

⎛⎜⎝∑︁
𝑒∈𝐸

(︁
𝑤+

𝑒

𝑠+𝑒

)︁2
𝑤+

𝑒

(𝑠+𝑒 )2

+
∑︁
𝑒∈𝐸

(︁
𝑤−

𝑒

𝑠−𝑒

)︁2
𝑤−

𝑒

(𝑠−𝑒 )2

⎞⎟⎠
=

1

2
𝛿2 ‖𝑤‖1 ,

which is at most 1/4 as long as 𝛿 ≤ 1
(2‖w‖1)1/2

.

Proof of Lemma 3.3.11

Proof. Given a 𝜇-central flow and using Lemma 3.3.10 we see that setting 𝛿 = 1
(2‖w‖1)1/2

and

𝜇′ = 𝜇(1− 𝛿) we obtain ℰw ,s(h) ≤ 1/4, where −C⊤h = ∇𝐹w
𝜇′ (x ). Hence applying Corollary 3.3.7

for 𝑂(log log𝑚) iterations we obtain a new flow f ′ = f 0+Cx ′ with slacks s ′ and residual −C⊤h ′ =
∇𝐹w

𝜇′ (x
′) such that ℰw ,s′(h ′) ≤ 𝑚−20/4.

Finally, applying the perfect correction step from Lemma 3.3.8 we obtain a new set of weights
w ′ ≥ w , such that w ′ ≤ w(1 +𝑚−10) and ∇𝐹w ′

𝜇′′ (x
′) = 0 for 𝜇′′ ≤ 𝜇′(1 +𝑚−10). In other words, f ′

is 𝜇′′-central with respect to w ′.

Since the increase in weights is very small, iterating this procedure for 𝑂(𝑚1/2 log𝑚) steps
maintains the invariant that ‖w‖1 ≤ 2𝑚+ 1. Furthermore, in each iteration the parameter 𝜇 gets
scaled down by a factor of 1 + 1

(4‖w‖1)1/2
≥ 1 + 1

3𝑚1/2 , after which it gets slightly scaled up by at

most 1 +𝑚−10 due to the perfect correction step. Hence within 𝑂(𝑚1/2 log 𝑚𝜇0

𝜀 ) = 𝑂(𝑚1/2 log𝑚)
iterations, the parameter 𝜇 gets scaled down by a factor of Ω(𝑚𝜇0/𝜀), which thus implies that the
final duality gap will be 𝑂

(︁
3𝑚·𝜇0
𝑚𝜇0/𝜀

)︁
= 𝑂(𝜀).

Proof of Lemma 3.4.5

Proof. For the first inequality, we use the test vector ̃︀y = −h into Definition 3.3.3. For the second
one, we have

ℰmax(h ,w , s) =
1

2

∑︁
𝑒∈𝐸

𝛿2
(︁
𝑤+

𝑒

𝑠+𝑒
− 𝑤−

𝑒

𝑠−𝑒

)︁2
𝑤+

𝑒

(𝑠+𝑒 )2
+ 𝑤−

𝑒

(𝑠−𝑒 )2

≤ 1

2
𝛿2
∑︁
𝑒∈𝐸

(︁
𝑤+

𝑒

𝑠+𝑒

)︁2
+
(︁
𝑤−

𝑒

𝑠−𝑒

)︁2
𝑤+

𝑒

(𝑠+𝑒 )2
+ 𝑤−

𝑒

(𝑠−𝑒 )2

≤ 1

2
𝛿2
∑︁
𝑒∈𝐸

⎛⎜⎝
(︁
𝑤+

𝑒

𝑠+𝑒

)︁2
𝑤+

𝑒

(𝑠+𝑒 )2

+

(︁
𝑤−

𝑒

𝑠−𝑒

)︁2
𝑤−

𝑒

(𝑠−𝑒 )2

⎞⎟⎠ =
1

2
𝛿2
∑︁
𝑒∈𝐸

(𝑤+
𝑒 + 𝑤−

𝑒 )

=
1

2
𝛿2 ‖w‖1 .
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Proof of Corollary 3.4.10

Proof. We can upper bound using Lemma 3.4.6:

‖̃︀f ⋆‖𝑝 ≤ (︂𝑝 · ℰmax(h ,w , s)

𝑅𝑝

)︂1/𝑝

≤

(︃
𝑝 · 12𝛿

2‖w‖1
𝑝 · (106 · 𝛿2‖w‖1 · log ‖w‖1)𝑝+1

)︃1/𝑝

≤ 1

106 · 𝛿2‖w‖1 · log ‖w‖1
. (9.17)

Proof of Corollary 3.4.11

Proof. We have

𝛾 =
(︁
𝑅⋆ +𝑅𝑝 · ‖̃︀f ⋆‖𝑝−2

∞

)︁1/2
·

⃦⃦⃦⃦
⃦⃦⃦⃦ h√︂

(w+ +w−)
(︁

w+

(s+)2
+ w−

(s−)2

)︁
⃦⃦⃦⃦
⃦⃦⃦⃦
∞

· 32 log ‖w‖1 .

In particular, for sufficiently large 𝑚 and since ‖̃︀f ⋆‖∞ ≤ ‖̃︀f ⋆‖𝑝 we have

𝑅𝑝

⃦⃦⃦̃︀f ⋆⃦⃦⃦𝑝−2

∞
≤
𝑝
(︀
106 · 𝛿2 ‖w‖1 · log ‖w‖1

)︀𝑝+1

(106 · 𝛿2 ‖w‖1 · log ‖w‖1)
𝑝−2 ≤ 𝑝 ·

(︀
106 · 𝛿2 ‖w‖1 · log ‖w‖1

)︀3
=
(︀
𝛿2‖w‖1

)︀3 · 𝑝 · (︀106 · log ‖w‖1)︀3 < 3𝛿2 ‖w‖21 = 𝑅⋆ ,

(9.18)

where the last inequality follows from the assumption on 𝛿. Furthermore, we bound the term under
the ℓ∞ norm as:

|ℎ𝑒|√︂
(𝑤+

𝑒 + 𝑤−
𝑒 )
(︁

𝑤+
𝑒

(𝑠+𝑒 )2
+ 𝑤−

𝑒

(𝑠−𝑒 )2

)︁ = 𝛿

⃒⃒⃒
𝑤+

𝑒

𝑠+𝑒
− 𝑤−

𝑒

𝑠−𝑒

⃒⃒⃒
√︂
(𝑤+

𝑒 + 𝑤−
𝑒 )
(︁

𝑤+
𝑒

(𝑠+𝑒 )2
+ 𝑤−

𝑒

(𝑠−𝑒 )2

)︁

= 𝛿

⎛⎜⎝
(︁
𝑤+

𝑒

𝑠+𝑒
− 𝑤−

𝑒

𝑠−𝑒

)︁2
(𝑤+

𝑒 + 𝑤−
𝑒 )
(︁

𝑤+
𝑒

(𝑠+𝑒 )2
+ 𝑤−

𝑒

(𝑠−𝑒 )2

)︁
⎞⎟⎠

1/2

≤ 𝛿

(︃
1

𝑤+
𝑒 + 𝑤−

𝑒

(︃
(𝑤+

𝑒 /𝑠
+
𝑒 )

2

𝑤+
𝑒 /(𝑠

+
𝑒 )2

+
(𝑤−

𝑒 /𝑠
−
𝑒 )

2

𝑤−
𝑒 /(𝑠

−
𝑒 )2

)︃)︃1/2

= 𝛿 .

(9.19)

Combining (9.18) and (9.19), we get the upper bound

𝛾 ≤ (2 ·𝑅⋆)1/2 · 𝛿 · 32 log ‖w‖1 = 𝛿2 ‖w‖1 · 32
√
6 · log ‖w‖1 = 𝛾 .
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Proof of Lemma 3.4.15

Proof. We restate (3.45) in terms of 𝛾 ≥ 𝛾:(︂
𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
·
⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ ≤ |ℎ𝑒|+ 𝛾 .

More specifically we will use the following, which the above implies for the setting of h =

𝛿
(︁
w+

s+
− w−

s−

)︁
: (︂

𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
·
⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ ≤ 𝑤+

𝑒 𝛿

𝑠+𝑒
+
𝑤−
𝑒 𝛿

𝑠−𝑒
+ 𝛾

or equivalently since 𝜌+𝑒 and 𝜌−𝑒 have opposite signs:⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑤−
𝑒 𝜌

−
𝑒

𝑠−𝑒

⃒⃒⃒⃒
≤ 𝑤+

𝑒 𝛿

𝑠+𝑒
+
𝑤−
𝑒 𝛿

𝑠−𝑒
+ 𝛾 . (9.20)

Assume without loss of generality that 𝑠+𝑒 ≤ 𝑠−𝑒 , and so |𝜌+𝑒 | ≥ |𝜌−𝑒 |. Now, for the sake of contradiction
we suppose that |𝜌+𝑒 | ≥ 𝐶∞ and

⃒⃒⃒
𝑤+

𝑒 𝜌
+
𝑒

𝑠+𝑒

⃒⃒⃒
+
⃒⃒⃒
𝑤−

𝑒 𝜌
−
𝑒

𝑠−𝑒

⃒⃒⃒
> 6𝛾. We consider the two cases of Definition 3.4.13:

(1) max {𝑤+
𝑒 , 𝑤

−
𝑒 } ≤ 𝛿 ‖w‖1: Since 0 < 𝑠+𝑒 ≤ 𝑠−𝑒 < 1 and 𝑠+𝑒 + 𝑠−𝑒 = 1, we have that 𝑠−𝑒 ≥ 1

2 .
Therefore 𝑤−

𝑒 𝛿

𝑠−𝑒
≤ 2 · 𝛿2 ‖w‖1 ≤ 2 · 𝛾. We conclude that⃒⃒⃒⃒

𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑤−
𝑒 𝜌

−
𝑒

𝑠−𝑒

⃒⃒⃒⃒
≤ 𝑤+

𝑒 𝛿

𝑠+𝑒
+
𝑤−
𝑒 𝛿

𝑠−𝑒
+ 𝛾 ≤ 1

2

⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+ 3𝛾 ,

since |𝜌+𝑒 | ≥ 𝐶∞ = 1

2𝛿
√

2‖w‖1
≥ 2𝛿 by our assumption on 𝛿. Thus

⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑤−
𝑒 𝜌

−
𝑒

𝑠−𝑒

⃒⃒⃒⃒
≤ 6𝛾 ,

a contradiction.

(2) min {𝑤+
𝑒 , 𝑤

−
𝑒 } ≥ 96 · 𝛿4 ‖w‖21: We will first prove that

⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ < 2𝛿. Suppose to the contrary. We

have that |𝜌−𝑒 | =
| ̃︀𝑓𝑒|
𝑠−𝑒
≥
⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ ≥ 2𝛿, so⃒⃒⃒⃒

𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑤−
𝑒 𝜌

−
𝑒

𝑠−𝑒

⃒⃒⃒⃒
≤ 𝑤+

𝑒 𝛿

𝑠+𝑒
+
𝑤−
𝑒 𝛿

𝑠−𝑒
+ 𝛾 ≤ 1

2

⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

1

2

⃒⃒⃒⃒
𝑤−
𝑒 𝜌

−
𝑒

𝑠−𝑒

⃒⃒⃒⃒
+ 𝛾

and thus ⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑤−
𝑒 𝜌

−
𝑒

𝑠−𝑒

⃒⃒⃒⃒
≤ 2𝛾 ,
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a contradiction, therefore
⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ < 2𝛿. This immediately implies that 2𝛿 >

⃒⃒⃒ ̃︀𝑓𝑒 ⃒⃒⃒ = |𝜌+𝑒 | 𝑠+𝑒 ≥ 𝐶∞𝑠
+
𝑒 ,

and so 𝑠+𝑒 ≤ 2𝛿/𝐶∞. Therefore we get⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
≥

(96 · 𝛿4 ‖w‖21)𝐶∞
2𝛿/𝐶∞

= 48 · 𝛿3 ‖w‖21 · 𝐶
2
∞ .

Since 𝐶2
∞ = 1

8𝛿2‖w‖1
, we conclude that

⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
≥ 6 · 𝛿 ‖w‖1 ≥ 3

𝑤−
𝑒 𝛿

𝑠−𝑒
,

where we used the fact that ‖𝑤‖∞ ≤ ‖𝑤‖1 and the fact that 𝑠−𝑒 ≥ 1
2 . Therefore⃒⃒⃒⃒

𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑤−
𝑒 𝜌

−
𝑒

𝑠−𝑒

⃒⃒⃒⃒
≤ 𝑤+

𝑒 𝛿

𝑠+𝑒
+
𝑤−
𝑒 𝛿

𝑠−𝑒
+ 𝛾 ≤ 1

2

⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

1

3

⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+ 𝛾 .

Therefore we conclude that ⃒⃒⃒⃒
𝑤+
𝑒 𝜌

+
𝑒

𝑠+𝑒

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑤−
𝑒 𝜌

−
𝑒

𝑠−𝑒

⃒⃒⃒⃒
≤ 6𝛾 ,

again a contradiction.

Proof of Lemma 3.4.18

Proof. Let us analyze the new residual after performing the update described in (3.47-3.48). Just
like in the standard correction step which we analyzed in Section 3.3.4, here we can write:

∇𝐹w
𝜇 (x ′) =

C⊤c

𝜇
+C⊤

(︂
w+

(s+)′
− w−

(s−)′

)︂
= ∇𝐹w

𝜇 (x ) +C⊤
(︂

w+

(s+)′
− w−

(s−)′

)︂
−C⊤

(︂
w+

s+
− w−

s−

)︂
= C⊤Δh −C⊤

(︂
w+𝜌+

s+
− w−𝜌−

s−

)︂
+C⊤

(︂
w+

(s+)′
− w−

(s−)′

)︂
−C⊤

(︂
w+

s+
− w−

s−

)︂
= C⊤Δh −C⊤

(︂
w+(1+ 𝜌+)

s+
− w−(1+ 𝜌−)

s−

)︂
+C⊤

(︂
w+

(s+)′
− w−

(s−)′

)︂
= C⊤Δh −C⊤

(︂
w+(1+ 𝜌+)(1− 𝜌+)

(s+)′
− w−(1+ 𝜌−)(1− 𝜌−)

(s−)′

)︂
+C⊤

(︂
w+

(s+)′
− w−

(s−)′

)︂
= C⊤Δh +C⊤

(︂
w+(𝜌+)2

(s+)′
− w−(𝜌−)2

(s−)′

)︂
.

Therefore

∇𝐹w
𝜇 (x ′)−C⊤Δh = C⊤

(︂
w+(𝜌+)2

(s+)′
− w−(𝜌−)2

(s−)′

)︂
.
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Next we show that modifying the weights from w to w ′ sets a subset of these entries to 0, which will
enable us to correct this new perturbed residual. Using the weight update described in (3.53-3.54)
we obtain

−C⊤ (g +Δh)

= ∇𝐹w ′
𝜇 (x ′)−C⊤Δh

= C⊤ c

𝜇
−C⊤Δh +C⊤

(︂
(w+)′

(s+)′
− (w−)′

(s−)′

)︂
= ∇𝐹w

𝜇 (x ′)−C⊤Δh +C⊤
(︂
(w+)′ −w+

(s+)′
− (w−)′ −w−

(s−)′

)︂
= ∇𝐹w

𝜇 (x ′)−C⊤Δh +C⊤

(︃
w− (𝜌−)

2

(s−)′
· 1|𝜌−|≥𝐶∞ −

w+ (𝜌+)
2

(s+)′
· 1|𝜌+|≥𝐶∞

)︃

= C⊤
(︂(︂

w+(𝜌+)2

(s+)′
· 1|𝜌+|<𝐶∞

)︂
−
(︂
w−(𝜌−)2

(s−)′
· 1|𝜌−|<𝐶∞

)︂)︂
.

Finally, using Lemma 3.3.4 we certify an upper bound on

ℰw ′,s′(g +Δh) ≤ ℰmax(g +Δh ,w ′, s ′)

=
1

2

∑︁
𝑒∈𝐸

(︁(︁
w+(𝜌+)2

(s+)′ · 1|𝜌+|<𝐶∞

)︁
−
(︁
w−(𝜌−)2

(s−)′ · 1|𝜌−|<𝐶∞

)︁)︁2
𝑒

𝑤
′+
𝑒

(𝑠+𝑒 )′2
+ 𝑤

′−
𝑒

(𝑠−𝑒 )′2

≤ 1

2

∑︁
𝑒∈𝐸

|𝜌+𝑒 |<𝐶∞

(︁
𝑤+

𝑒 (𝜌+𝑒 )2

(𝑠+𝑒 )′

)︁2
𝑤

′+
𝑒

(𝑠+𝑒 )′2

+
1

2

∑︁
𝑒∈𝐸

|𝜌−𝑒 |<𝐶∞

(︁
𝑤−

𝑒 (𝜌−𝑒 )2

(𝑠−𝑒 )′

)︁2
𝑤

′−
𝑒

(𝑠−𝑒 )′2

≤ 1

2

∑︁
𝑒∈𝐸

|𝜌+𝑒 |<𝐶∞

𝑤+
𝑒 (𝜌

+
𝑒 )

4 +
1

2

∑︁
𝑒∈𝐸

|𝜌−𝑒 |<𝐶∞

𝑤−
𝑒 (𝜌

−
𝑒 )

4

≤ 1

2
𝐶2
∞ ·
∑︁
𝑒∈𝐸

(︀
𝑤+
𝑒 (𝜌

+
𝑒 )

2 + 𝑤−
𝑒 (𝜌

−
𝑒 )

2
)︀

=
1

2
𝐶2
∞ ·
∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2(︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
≤ 1

2
𝐶2
∞ · 8 · ℰmax(h ,w , s)

≤ 2𝛿2‖w‖1
8𝛿2‖w‖1

=
1

4
,

where we used the fact that w ′ ≥ w , (3.24), and Lemma 3.4.5.

Proof of Lemma 3.6.3

Proof. Let ̃︀f⋆ = ̃︀f + ̃︀f ′
where ̃︀f ′

is the restriction of ̃︀f⋆ to the edges incident to 𝑣⋆. To prove (3.65),
note that from Lemma 3.6.2 there exists a vector 𝛼 = (𝛼+;𝛼−), (1 + 𝜃)−2 · 1 ≤ 𝛼 ≤ (1− 𝜃)−2 · 1,
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such that for any circulation g = C⋆z ⋆ in 𝐺⋆,⟨
g ,

[︃
h − ̃︀f (︁𝛼+w+

(s+)2
+ 𝛼−w−

(s−)2

)︁
−𝑅𝑝 · (̃︀f )𝑝−1

−𝑅⋆ · ̃︀f ′
−𝑅𝑝 · (̃︀f ′

)𝑝−1

]︃⟩
= 0 . (9.21)

Restricting ourselves to circulations supported only in the non-preconditioned graph 𝐺, one has that
for any circulation in g ′ = Cz in 𝐺:⟨

z ,C⊤
(︂
h +Δh − ̃︀f (︂𝛼+w+

(s+)2
+
𝛼−w−

(s−)2

)︂)︂⟩
= 0

Since this holds for any test vector z , it must be that the second term in the inner product is 0.
Rearranging, it yields the identity from (3.65). Next, we notice that (9.21) is the optimality condition
of the following objective:

max̃︀f⋆=C⋆̃︀x
⟨
h , ̃︀f ⟩− 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂𝛼+
𝑒 𝑤

+
𝑒

(𝑠+𝑒 )2
+
𝛼−
𝑒 𝑤

−
𝑒

(𝑠−𝑒 )2

)︂
− 𝑅⋆

2

∑︁
𝑒∈𝐸′

( ̃︀𝑓 ′𝑒)2 − 𝑅𝑝
𝑝

∑︁
𝑒∈𝐸∪𝐸′

( ̃︀𝑓⋆)𝑝𝑒 . (9.22)

Let us proceed to bound the norm of the demand routed by ̃︀f . Consider the value of the objective
in (9.22) after truncating it to only the first two terms, which we can write as:⟨

h , ̃︀f ⟩− 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂𝛼+
𝑒 𝑤

+
𝑒

(𝑠+𝑒 )2
+
𝛼−
𝑒 𝑤

−
𝑒

(𝑠−𝑒 )2

)︂
(9.23)

≤
∑︁
𝑒∈𝐸

ℎ𝑒 · ̃︀𝑓𝑒 − 1

3

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂ 𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂
(9.24)

≤ 3

4

∑︁
𝑒∈𝐸

ℎ2𝑒 ·
(︂

𝑤+
𝑒

(𝑠+𝑒 )2
+

𝑤−
𝑒

(𝑠−𝑒 )2

)︂−1

(9.25)

=
3

2
ℰmax(h ,w , s) , (9.26)

where we used 𝛼 ≥ 1
(1+𝜃)2

· 1 > 2
3 · 1 and the fact that ⟨a , b⟩ ≤ 1

2‖a‖
2 + 1

2‖b‖
2.

Note that the value of the regularized objective (9.22) is at least 0 since we can always substitutẽ︀x = 0 and obtain exactly 0. By re-arranging,

𝑅⋆
2

∑︁
𝑒∈𝐸′

( ̃︀𝑓 ′𝑒)2 (9.27)

≤
⟨
h , ̃︀f ⟩− 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂𝛼+
𝑒 𝑤

+
𝑒

(𝑠+𝑒 )2
+
𝛼−
𝑒 𝑤

−
𝑒

(𝑠−𝑒 )2

)︂
− 𝑅𝑝

𝑝

∑︁
𝑒∈𝐸∪𝐸′

( ̃︀𝑓⋆)𝑝𝑒 (9.28)

≤
⟨
h , ̃︀f ⟩− 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂𝛼+
𝑒 𝑤

+
𝑒

(𝑠+𝑒 )2
+
𝛼−
𝑒 𝑤

−
𝑒

(𝑠−𝑒 )2

)︂
(9.29)

≤ 3

2
ℰmax(h ,w , s) , (9.30)

206



where we also used the fact that the last term of (9.28) is non-positive and (9.26). Therefore (9.30)
enables us to upper bound ∑︁

𝑒∈𝐸′

( ̃︀𝑓 ′𝑒)2 ≤ 3

𝑅⋆
ℰmax(h ,w , s) , (9.31)

which implies that

∑︁
𝑒∈𝐸′

⃒⃒⃒ ̃︀𝑓 ′𝑒 ⃒⃒⃒ ≤ |𝐸′|1/2 ·

(︃∑︁
𝑒∈𝐸′

( ̃︀𝑓 ′𝑒)2
)︃1/2

(9.32)

≤
(︂
3‖w‖1 ·

3

𝑅⋆
ℰmax(h ,w , s)

)︂1/2

(9.33)

= 3

(︂
‖w‖1 · ℰmax(h ,w , s)

𝑅⋆

)︂1/2

, (9.34)

a quantity that upper bounds the demand perturbation. Using a similar argument we can upper
bound

⃦⃦⃦̃︀f⋆⃦⃦⃦
𝑝
. We have

𝑅𝑝
𝑝

∑︁
𝑒∈𝐸∪𝐸′

( ̃︀𝑓⋆)𝑝𝑒 (9.35)

≤
⟨
h , ̃︀f ⟩− 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂𝛼+
𝑒 𝑤

+
𝑒

(𝑠+𝑒 )2
+
𝛼−
𝑒 𝑤

−
𝑒

(𝑠−𝑒 )2

)︂
− 𝑅⋆

2

∑︁
𝑒∈𝐸′

( ̃︀𝑓 ′𝑒)2 (9.36)

≤
⟨
h , ̃︀f ⟩− 1

2

∑︁
𝑒∈𝐸

( ̃︀𝑓𝑒)2 · (︂𝛼+
𝑒 𝑤

+
𝑒

(𝑠+𝑒 )2
+
𝛼−
𝑒 𝑤

−
𝑒

(𝑠−𝑒 )2

)︂
(9.37)

≤ 3

2
ℰmax(h ,w , s) , (9.38)

thus concluding that

⃦⃦⃦̃︀f⋆⃦⃦⃦
𝑝
=

(︃ ∑︁
𝑒∈𝐸∪𝐸′

( ̃︀𝑓⋆)𝑝𝑒
)︃1/𝑝

≤

(︃
𝑝 · 32ℰ

max(h ,w , s)

𝑅𝑝

)︃1/𝑝

. (9.39)

9.2 Appendix for Chapter 4

9.2.1 Maintaining the Schur Complement

Following the scheme from [73] we maintain a dynamic Schur complement of the graph onto a
subset of terminals 𝐶. The approach follows rather directly from [73] and leverages the recent work
of [18] to dynamically maintain an edge sparsifier of the Schur complement of the graph onto 𝐶.
Compared to [73] we do not require a parameter that depends on the adaptivity of the adversary. In
addition, when adding a vertex to 𝐶 we also return a (1+ 𝜀)-approximation of the effective resistance
𝑅𝑒𝑓𝑓 (𝑣, 𝐶), which gets returned by the function call.

Lemma 9.2.1 (DynamicSC (Theorem 4, [73])). There is a DynamicSC data structure supporting
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the following operations with the given runtimes against oblivious adversaries, for constants 0 <
𝛽, 𝜀 < 1:

• Initialize(𝐺,𝐶(init), r , 𝜀, 𝛽): Initializes a graph 𝐺 with resistances r and a set of safe terminals
𝐶(safe). Sets the terminal set 𝐶 = 𝐶(safe) ∪ 𝐶(init). Runtime: ̃︀𝑂 (︀𝑚𝛽−4𝜀−4

)︀
.

• AddTerminal(𝑣 ∈ 𝑉 (𝐺)): Returns ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≈2 𝑅𝑒𝑓𝑓 (𝐶, 𝑣) and adds 𝑣 as a terminal.
Runtime: Amortized ̃︀𝑂 (︀𝛽−2𝜀−2

)︀
.

• TemporaryAddTerminals(Δ𝐶 ⊆ 𝑉 (𝐺)): Adds all vertices in the set Δ𝐶 as (temporary)
terminals. Runtime: Worst case ̃︀𝑂 (︀𝐾2𝛽−4𝜀−4

)︀
, where 𝐾 is the total number of terminals

added by all of the TemporaryAddTerminals operations that have not been rolled back
using Rollback. All TemporaryAddTerminals operations should be rolled back before
the next call to AddTerminals.

• Update(𝑒, 𝑟): Under the guarantee that both endpoints of 𝑒 are terminals, updates 𝑟𝑒 = 𝑟.
Runtime: Worst case ̃︀𝑂 (1).

• ̃︂𝑆𝐶(): Returns a spectral sparsifier ̃︂𝑆𝐶 ≈1+𝜀 𝑆𝐶(𝐺,𝐶) (with respect to resistances r) with̃︀𝑂 (︀|𝐶|𝜀−2
)︀

edges. Runtime: Worst case ̃︀𝑂 (︀(︀𝛽𝑚+ (𝐾𝛽−2𝜀−2)2
)︀
𝜀−2
)︀

where 𝐾 is the total
number of terminals added by all of the TemporaryAddTerminals operations that have not
been rolled back.

• Rollback(): Rolls back the last Update, AddTerminals, or TemporaryAddTerminals
if it exists. The runtime is the same as the original operation.

Finally, all calls return valid outputs with high probability. The size of 𝐶 should always be 𝑂(𝛽𝑚).

This data structure is analyzed in detail in [73]. Additionally, let us show that an approximation
to 𝑅𝑒𝑓𝑓 (𝑣, 𝐶) can be efficiently computed along with the AddTerminal operation. To get an
estimate we simply inspect the neighbors of 𝑣 in the sparsified Schur complement of 𝐶 ∪ {𝑣} and
compute the inverse of the sum of their inverses. This is indeed a 1+𝑂(𝜀)-approximation, as effective
resistances are preserved within a 1 +𝑂(𝜀) factor in the sparsifier.

To show that this operation takes little amortized time, we note that by the proof appearing
in [73, Lemma 6.2], vertex 𝑣 appears in amortized ̃︀𝑂 (1) expanders maintained dynamically. As
the dynamic sparsifier keeps ̃︀𝑂 (︀𝜀−2

)︀
neighbors of 𝑣 from each expander, the number of neighbors

to inspect with each call is ̃︀𝑂 (︀𝜀−2
)︀
, which also bounds the time necessary to approximate the

resistance.

9.2.2 Auxiliary Lemmas

Lemma 4.2.6. Let d be a demand vector, let r be resistances, and let 𝐶 ⊆ 𝑉 be a subset of vertices.
Then

ℰr
(︀
𝜋𝐶(d)

)︀
≤ ℰr (d) .

Proof. Letting 𝐹 = 𝑉 ∖ 𝐶, and L be the Laplacian of the underlying graph, we can write

𝜋𝐶(d) = d𝐶 − L𝐶𝐹L
−1
𝐹𝐹d𝐹 .

By factoring L+ as

L+ =

[︂
𝐼 0

−L−1
𝐹𝐹L𝐹𝐶 𝐼

]︂ [︂
𝑆𝐶(L, 𝐶)+ 0

0 L−1
𝐹𝐹

]︂ [︂
𝐼 −L𝐶𝐹L−1

𝐹𝐹

0 𝐼

]︂
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we can write

ℰr (d) = d⊤L+d =

[︂
𝜋𝐶(d)
d𝐹

]︂⊤ [︂
𝑆𝐶(L, 𝐶)+ 0

0 L−1
𝐹𝐹

]︂ [︂
𝜋𝐶(d)
d𝐹

]︂
= ‖𝜋𝐶(d)‖2𝑆𝐶(L,𝐶)+ + ‖d𝐹 ‖2L−1

𝐹𝐹
.

Furthermore, we can use the same factorization to write

ℰr (𝜋𝐶(d)) =
[︂
𝜋𝐶(d)

0

]︂⊤ [︂
𝑆𝐶(L, 𝐶)+ 0

0 L−1
𝐹𝐹

]︂ [︂
𝜋𝐶(d)

0

]︂
= ‖𝜋𝐶(d)‖2𝑆𝐶(L,𝐶)+ ,

which proves the claim.

Lemma 9.2.2. For any 𝜇 ∈ (1/poly(𝑚), poly(𝑚)), we have ‖r(𝜇)‖∞ ≤ 𝑚
̃︀𝑂(log𝑚).

Proof. By Appendix A in [10], for some 𝜇0 = Θ(‖c‖2), the solution f = u/2 has⃦⃦⃦⃦
C⊤

(︂
c

𝜇0
+

1

s+
− 1

s−

)︂⃦⃦⃦⃦
(C⊤RC )+

≤ 1/10 .

This implies that min𝑒 {𝑠𝑒(𝜇0)+, 𝑠𝑒(𝜇0)−} ≥ min𝑒 𝑢𝑒/4 ≥ 1/4, and so ‖r(𝜇0)‖∞ ≤ 𝑂(1). Additinally,
‖c‖∞ ∈ [1, poly(𝑚)], so 𝜇0 = Θ(poly(𝑚)).

Now, for any integer 𝑖 ≥ 0 we let 𝜇𝑖+1 = 𝜇𝑖 · (1− 1/
√
𝑚)

√
𝑚/10. By Lemma 9.2.7 we have that

r (𝜇𝑖+1) ≈𝑚2 r (𝜇𝑖), and so

r

(︂
1

poly(𝑚)

)︂
= r(𝜇 ̃︀𝑂(log𝑚)

) ≤
(︂

9

100
𝑚2

)︂ ̃︀𝑂(log𝑚)

r(𝜇0) ≤ 𝑚
̃︀𝑂(log𝑚)r(𝜇0) ≤ 𝑚

̃︀𝑂(log𝑚) .

Lemma 9.2.3. Given a graph 𝐺(𝑉,𝐸) with resistances r and any parameter 𝜀 > 0, there exists an
algorithm that runs in time ̃︀𝑂 (︀𝑚/𝜀2)︀ and produces a matrix Q ∈ R ̃︀𝑂(1/𝜀2)×𝑛 such that with high
probability for any 𝑢, 𝑣 ∈ 𝑉 ,

𝑅𝑒𝑓𝑓 (𝑢, 𝑣) ≈1+𝜀 ‖Q1𝑢 −Q1𝑣‖22

9.2.3 Deferred Proofs from Section 4.3

Central path stability bounds

Lemma 9.2.4 (Central path energy stability). Consider a minimum cost flow instance on a graph
𝐺(𝑉,𝐸). For any 𝜇 > 0 and 𝜇′ = 𝜇/(1 + 1/

√
𝑚)𝑘 for some 𝑘 ∈ (0,

√
𝑚/10), we have∑︁

𝑒∈𝐸

(︂
1

𝑠𝑒(𝜇)+ · 𝑠𝑒(𝜇′)+
+

1

𝑠𝑒(𝜇)− · 𝑠𝑒(𝜇′)−

)︂(︀
𝑓𝑒(𝜇

′)− 𝑓𝑒(𝜇)
)︀2 ≤ 2𝑘2

Proof of Lemma 9.2.4. We let 𝛿 = 1/
√
𝑚, f = f (𝜇), s = s(𝜇), r = r(𝜇), f ′ = f (𝜇′), s ′ = s(𝜇′),
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and r ′ = r(𝜇′). We also set ̃︀f = f ′ − f . By definition of centrality we have

C⊤
(︂

1

s−
− 1

s+

)︂
= C⊤ c

𝜇

C⊤
(︂

1

s− + ̃︀f − 1

s+ − ̃︀f
)︂

= C⊤ c

𝜇′
,

which, after subtracting, give

C⊤
(︂

1

s− + ̃︀f − 1

s−
− 1

s+ − ̃︀f +
1

s+

)︂
= C⊤

(︂
c

𝜇′
− c

𝜇

)︂
⇔ C⊤

(︃(︃
1

s−(s− + ̃︀f ) + 1

s+(s+ − ̃︀f )
)︃̃︀f)︃ = −

(︁
(1 + 𝛿)𝑘 − 1

)︁
C⊤ c

𝜇
.

As ̃︀f = Cx for some x , after taking the inner product of both sides with x we get⟨̃︀f ,(︃ 1

s−(s− + ̃︀f ) + 1

s+(s+ − ̃︀f )
)︃̃︀f⟩ = −

(︁
(1 + 𝛿)𝑘 − 1

)︁⟨c

𝜇
, ̃︀f⟩ . (9.40)

We will now prove that −
⟨

c
𝜇 ,
̃︀f ⟩ ≤ 𝑘√𝑚. First of all, by differentiating the centrality condition

C⊤
(︂
c

𝜈
+

1

s(𝜈)+
− 1

s(𝜈)−

)︂
= 0

with respect to 𝜈 we get

C⊤
(︂
− c

𝜈2
+

(︂
1

(s(𝜈)+)2
+

1

(s(𝜈)−)2

)︂
𝑑f (𝜈)

𝑑𝜈

)︂
= 0 ,

or equivalently

C⊤
(︂
r(𝜈)

𝑑f (𝜈)

𝑑𝜈

)︂
= −1

𝜈
C⊤

(︂
1

s(𝜈)+
− 1

s(𝜈)−

)︂
.

If we set 𝑔(s) =
1
s+

− 1
s−

r , this can also be equivalently written as

𝑑f (𝜈)

𝑑𝜈
= −1

𝜈

(︁
𝑔(s(𝜈))− (R(𝜈))−1B(B⊤(R(𝜈)−1)B)+B⊤𝑔(s(𝜈))

)︁
.
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We have

−
⟨
c

𝜇
, ̃︀f⟩ = −

∫︁ 𝜇′

𝜈=𝜇

⟨
c

𝜇
, 𝑑f (𝜈)

⟩
=

1

𝜇

∫︁ 𝜇′

𝜈=𝜇

⟨
𝜈

s(𝜈)−
− 𝜈

s(𝜈)+
,
1

𝜈

(︁
𝑔(s(𝜈))− (R(𝜈))−1B(B⊤(R(𝜈))−1B)+B⊤𝑔(s(𝜈))

)︁⟩
𝑑𝜈

= − 1

𝜇

∫︁ 𝜇′

𝜈=𝜇

⟨√︀
r(𝜈)𝑔(s(𝜈)),Π ker(B⊤(R(𝜈))−1/2)

√︀
r(𝜈)𝑔(s(𝜈))

⟩
𝑑𝜈

=
1

𝜇

∫︁ 𝜇

𝜈=𝜇′

⃦⃦⃦
Π ker(B⊤(R(𝜈))−1/2)

√︀
r(𝜈)𝑔(s(𝜈))

⃦⃦⃦2
2
𝑑𝜈

≤ 1

𝜇

∫︁ 𝜇

𝜈=𝜇′

⃦⃦⃦√︀
r(𝜈)𝑔(s(𝜈))

⃦⃦⃦2
2
𝑑𝜈

≤ 1

𝜇

∫︁ 𝜇

𝜈=𝜇′
𝑚𝑑𝜈

= 𝑚
𝜇− 𝜇′

𝜇

= 𝑚(1− (1 + 𝛿)−𝑘)

≤ 𝛿𝑘𝑚
= 𝑘
√
𝑚,

where Π ker(B⊤(R(𝜈))−1/2) = I − (R(𝜈))−1/2B(B⊤(R(𝜈))−1B)+B⊤(R(𝜈))−1/2 is the orthogonal
projection onto the kernel of B⊤(R(𝜈))−1/2.

Plugging this into (9.40) and using the fact that (1 + 𝛿)𝑘 ≤ 1 + 1.1𝛿𝑘 = 1 + 1.1𝑘/
√
𝑚, we get∑︁

𝑒∈𝐸

(︂
1

𝑠𝑒(𝜇)+ · 𝑠𝑒(𝜇′)+
+

1

𝑠𝑒(𝜇)− · 𝑠𝑒(𝜇′)−

)︂(︀
𝑓𝑒(𝜇

′)− 𝑓𝑒(𝜇)
)︀2 ≤ 2𝑘2 .

We give an auxiliary lemma which converts between different kinds of slack approximations.

Lemma 9.2.5. We consider flows f , f ′ with slacks s, s ′ and resistances r , r ′. Then,

max

{︂⃒⃒⃒⃒
𝑠′+𝑒 − 𝑠+𝑒
𝑠+𝑒

⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝑠′−𝑒 − 𝑠−𝑒
𝑠−𝑒

⃒⃒⃒⃒}︂
≤
√
𝑟𝑒
⃒⃒
𝑓 ′𝑒 − 𝑓𝑒

⃒⃒
≤
√
2max

{︂⃒⃒⃒⃒
𝑠′+𝑒 − 𝑠+𝑒
𝑠+𝑒

⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝑠′−𝑒 − 𝑠−𝑒
𝑠−𝑒

⃒⃒⃒⃒}︂
and if 𝑟𝑒 ̸≈1+𝛾 𝑟

′
𝑒 for some 𝛾 ∈ (0, 1), then

√
𝑟𝑒 |𝑓 ′𝑒 − 𝑓𝑒| ≥ 𝛾/6.

Proof. For the first one, note that

𝑟𝑒 =
1

(𝑠+𝑒 )2
+

1

(𝑠−𝑒 )2
∈
[︂
max

{︂
1

(𝑠+𝑒 )2
,

1

(𝑠−𝑒 )2

}︂
, 2max

{︂
1

(𝑠+𝑒 )2
,

1

(𝑠−𝑒 )2

}︂]︂
.

Together with the fact that |𝑓 ′𝑒 − 𝑓𝑒| = |𝑠′+𝑒 − 𝑠+𝑒 | = |𝑠′−𝑒 − 𝑠−𝑒 |, it implies the first statement.
For the second one, without loss of generality let 𝑠+𝑒 ≤ 𝑠−𝑒 , so by the previous statement

we have
√
𝑟𝑒 |𝑓 ′𝑒 − 𝑓𝑒| ≥

|𝑠′+𝑒 −𝑠+𝑒 |
𝑠+𝑒

. If this is < 𝛾/6 then (1 − 𝛾/6)𝑠+𝑒 ≤ 𝑠′+𝑒 ≤ (1 + 𝛾/6)𝑠+𝑒 , so
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𝑠′+𝑒 ≈1+𝛾/3 𝑠
+
𝑒 . However, we also have that |𝑠

′−
𝑒 −𝑠−𝑒 |
𝑠−𝑒

≤ |𝑠
′+
𝑒 −𝑠+𝑒 |
𝑠+𝑒

≤ 𝛾/6, so 𝑠′−𝑒 ≈1+𝛾/3 𝑠
−
𝑒 . Therefore,

𝑟′𝑒 =
1

(𝑠′+𝑒 )2
+ 1

(𝑠′−𝑒 )2
≈1+𝛾

1
(𝑠+𝑒 )2

+ 1
(𝑠−𝑒 )2

= 𝑟𝑒, a contradiction.

The following lemma is a fine-grained explanation of how resistances can change.

Lemma 9.2.6. Consider a minimum cost flow instance on a graph 𝐺(𝑉,𝐸) and parameters 𝜇 > 0
and 𝜇′ ≥ 𝜇/(1+1/

√
𝑚)𝑘, where 𝑘 ∈ (0,

√
𝑚/10). For any 𝑒 ∈ 𝐸 and 𝛾 ∈ (0, 1) we let change(𝑒, 𝛾) be

the largest integer 𝑡(𝑒) ≥ 0 such that there are real numbers 𝜇 = 𝜇1(𝑒) > 𝜇2(𝑒) > · · · > 𝜇𝑡(𝑒)+1(𝑒) = 𝜇′

with
√︀
𝑟𝑒(𝜇𝑖) |𝑓𝑒(𝜇𝑖+1)− 𝑓𝑒(𝜇𝑖)| ≥ 𝛾 for all 𝑖 ∈ [𝑡(𝑒)].

Then,
∑︀
𝑒∈𝐸

(change(𝑒, 𝛾))2 ≤ 𝑂(𝑘2/𝛾2).

Proof of Lemma 9.2.6. First, we assume that without loss of generality, 𝑟𝑒(𝜇𝑖+1(𝑒)) ≈(1+6𝛾)2 𝑟𝑒(𝜇𝑖(𝑒))
for all 𝑒 ∈ 𝐸 and 𝑖 ∈ [𝑡(𝑒)]. If this is not true, then by continuity there exists a 𝜈 ∈ (𝜇𝑖+1, 𝜇𝑖)
such that 𝑟𝑒(𝜇𝑖+1(𝑒)) ̸≈1+6𝛾 𝑟𝑒(𝜈) and 𝑟𝑒(𝜈) ̸≈1+6𝛾 𝑟𝑒(𝜇𝑖(𝑒)). By Lemma 9.2.5, this implies that√︀
𝑟𝑒(𝜇𝑖+1(𝑒)) |𝑓𝑒(𝜈)− 𝑓𝑒(𝜇𝑖+1(𝑒))| ≥ 𝛾 and

√︀
𝑟𝑒(𝜈) |𝑓𝑒(𝜇𝑖(𝑒))− 𝑓𝑒(𝜈)| ≥ 𝛾. Therefore we can break

the interval (𝜇𝑖+1, 𝜇𝑖) into (𝜇𝑖+1, 𝜈) and (𝜈, 𝜇𝑖) and make the statement stronger.
Similarly, we also assume that 𝑟𝑒(𝜈) ≈(1+6𝛾)3 𝑟𝑒(𝜇𝑖(𝑒)) for all 𝑒 ∈ 𝐸, 𝑖 ∈ [𝑡(𝑒)], and 𝜈 ∈ (𝜇𝑖+1, 𝜇𝑖).

If this is not the case, then by using the fact that 𝑟𝑒(𝜇𝑖+1(𝑒)) ≈(1+6𝛾)2 𝑟𝑒(𝜇𝑖(𝑒)), we also get that
𝑟𝑒(𝜇𝑖+1) ̸≈1+6𝛾 𝑟𝑒(𝜈), and so we can again break the interval as before and obtain a stronger
statement.

Now, we look at the following integral:

ℰ :=

∫︁ 𝜇′

𝜈=𝜇

∑︁
𝑒∈𝐸

𝑟𝑒(𝜈)

(︂
𝑑𝑓𝑒(𝜈)

𝑑𝜈

)︂2

|𝑑𝜈| ,

where 𝑑𝑓𝑒(𝜈) is the differential of the flow 𝑓𝑒(𝜈) with respect to the centrality parameter. Similarly
to Lemma 9.2.4, we use the following equation that describes how the flow changes:

𝑑f (𝜈)

𝑑𝜈
= −1

𝜈

(︁
𝑔(s(𝜈))− (R(𝜈))−1B(B⊤(R(𝜈)−1)B)+B⊤𝑔(s(𝜈))

)︁
.

This implies that⃦⃦⃦⃦√︀
r(𝜈)

𝑑f (𝜈)

𝑑𝜈

⃦⃦⃦⃦2
2

=
1

𝜈2

⃦⃦⃦√︀
r(𝜈)𝑔(s(𝜈))− (R(𝜈))−1/2B(B⊤(R(𝜈)−1)B)+B⊤𝑔(s(𝜈))

⃦⃦⃦2
2

≤ 1

𝜈2

⃦⃦⃦(︁
𝐼 − (R(𝜈))−1/2B(B⊤(R(𝜈)−1)B)+B⊤(R(𝜈))−1/2

)︁√
r𝑔(s(𝜈))

⃦⃦⃦2
2

≤ 1

𝜈2
⃦⃦√

r𝑔(s(𝜈))
⃦⃦2
2

≤ 𝑚

𝜈2
,

and so

ℰ ≤
∫︁ 𝜇′

𝜈=𝜇

𝑚

𝜈2
|𝑑𝜈| = 𝑚

(︂
1

𝜇′
− 1

𝜇

)︂
≤ 𝑚1.1𝛿𝑘

𝜇
= 1.1𝑘

√
𝑚/𝜇 . (9.41)

212



On the other hand, for any 𝑒 ∈ 𝐸 and 𝑖 ∈ [𝑡(𝑒)] we have∫︁ 𝜇𝑖+1(𝑒)

𝜈=𝜇𝑖(𝑒)
𝑟𝑒(𝜈)

(︂
𝑑𝑓𝑒(𝜈)

𝑑𝜈

)︂2

|𝑑𝜈| ≥ 𝑟𝑒(𝜇𝑖(𝑒))

(1 + 6𝛾)3

∫︁ 𝜇𝑖+1(𝑒)

𝜈=𝜇𝑖(𝑒)

(︂
𝑑𝑓𝑒(𝜈)

𝑑𝜈

)︂2

|𝑑𝜈|

≥ 𝑟𝑒(𝜇𝑖(𝑒))

(1 + 6𝛾)3

(︁∫︀ 𝜇𝑖+1(𝑒)
𝜈=𝜇𝑖(𝑒)

⃒⃒⃒
𝑑𝑓𝑒(𝜈)
𝑑𝜈

⃒⃒⃒
|𝑑𝜈|

)︁2
∫︀ 𝜇𝑖+1(𝑒)
𝜈=𝜇𝑖(𝑒)

|𝑑𝜈|

=
𝑟𝑒(𝜇𝑖(𝑒))

(1 + 6𝛾)3(𝜇𝑖(𝑒)− 𝜇𝑖+1(𝑒))
(𝑓(𝜇𝑖(𝑒))− 𝑓(𝜇𝑖+1(𝑒)))

2

≥ 𝛾2

36(1 + 6𝛾)3(𝜇𝑖(𝑒)− 𝜇𝑖+1(𝑒))
,

where we used the Cauchy-Schwarz inequality. Now, note that

∫︁ 𝜇𝑡(𝑒)+1(𝑒)

𝜈=𝜇1(𝑒)
𝑟𝑒(𝜈)

(︂
𝑑𝑓𝑒(𝜈)

𝑑𝜈

)︂2

|𝑑𝜈| ≥
𝑡(𝑒)∑︁
𝑖=1

𝛾2

(1 + 6𝛾)3(𝜇𝑖(𝑒)− 𝜇𝑖+1(𝑒))

≥ 𝛾2(𝑡(𝑒))2

(1 + 6𝛾)3(𝜇− 𝜇′)

≥ 𝛾2(𝑡(𝑒))2
√
𝑚

(1 + 6𝛾)3𝑘𝜇
,

where remember that 𝑡(𝑒) = change(𝑒, 𝛾) and we again used Cauchy-Schwarz. Summing this up for
all 𝑒 ∈ 𝐸 and combining with (9.41), we get that

∑︀
𝑒∈𝐸

(change(𝑒, 𝛾))2 ≤ 𝑂(𝑘2/𝛾2).

Lemma 9.2.7 (Central path ℓ∞ slack stability). Consider a minimum cost flow instance on a graph
𝐺(𝑉,𝐸). For any 𝜇 > 0 and 𝜇′ = 𝜇/(1 + 1/

√
𝑚)𝑘 for some 𝑘 ∈ (0,

√
𝑚/10), we have

s(𝜇′) ≈3𝑘2 s(𝜇) .

Proof of Lemma 9.2.7. By Lemma 9.2.4, for any 𝑒 ∈ 𝐸 we have that(︂
1

𝑠𝑒(𝜇)+ · 𝑠𝑒(𝜇′)+
+

1

𝑠𝑒(𝜇)− · 𝑠𝑒(𝜇′)−

)︂(︀
𝑓𝑒(𝜇

′)− 𝑓𝑒(𝜇)
)︀2 ≤ 2𝑘2 . (9.42)

If 𝑠𝑒(𝜇′)+ = (1 + 𝑐) · 𝑠𝑒(𝜇)+ for some 𝑐 ≥ 0, then

(𝑓𝑒(𝜇
′)− 𝑓𝑒(𝜇))2 = 𝑐2(𝑠𝑒(𝜇)

+)2

and
𝑠𝑒(𝜇)

+ · 𝑠𝑒(𝜇′)+ = (1 + 𝑐)(𝑠𝑒(𝜇)
+)2 ,

so by (9.42) we have that 𝑐 ≤ 3𝑘2.
Similarly, if 𝑠𝑒(𝜇′)+ = (1 + 𝑐)−1 · 𝑠𝑒(𝜇)+ for some 𝑐 ≥ 0, then

(𝑓𝑒(𝜇
′)− 𝑓𝑒(𝜇))2 = 𝑐2(𝑠𝑒(𝜇

′)+)2
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and
𝑠𝑒(𝜇)

+ · 𝑠𝑒(𝜇′)+ = (1 + 𝑐)(𝑠𝑒(𝜇
′)+)2 ,

so by (9.42) we have that 𝑐 ≤ 3𝑘2.

We have proved that 𝑠𝑒(𝜇′)+ ≈3𝑘2 𝑠𝑒(𝜇)
+ and by symmetry we also have 𝑠𝑒(𝜇′)− ≈3𝑘2 𝑠𝑒(𝜇)

−.

Proof of Lemma 4.3.5

Our goal is to keep track of how close f * remains to centrality (in ℓ2 norm) and how close f
remains to f * in ℓ∞ norm. From these two we can conclude that at all times f is close in ℓ∞ to the
central flow. We first prove the following lemma, which bounds how the distance of f * to centrality
(measured in energy of the residual) degrades when taking a progress step.

Lemma 9.2.8. Let f * be a flow with slacks s* and resistances r*, and f be a flow with slacks s
and resistances r , where s ≈1+𝜀solve s

* for some 𝜀solve ∈ (0, 0.1). We define f ′* = f * + 𝜀step̃︀f *
for

some 𝜀step ∈ (0, 0.1) (and the new slacks s ′*), where

̃︀f *
= 𝛿𝑔(s)− 𝛿R−1B(B⊤R−1B)+B⊤𝑔(s) , (9.43)

𝛿 = 1√
𝑚

, and 𝑔(s) :=
1
s+

− 1
s−

r . If we let h = c
𝜇 + 1

s*+ −
1

s*− and h ′ =
c(1+𝜀step𝛿)

𝜇 + 1
s′*+ −

1
s′*− be the

residuals of f * and f ′* for some 𝜇 > 0, then⃦⃦⃦
C⊤h ′

⃦⃦⃦
H

+ ≤ (1 + 𝜀step𝛿)
⃦⃦⃦
C⊤h

⃦⃦⃦
H

+ + 5

⃦⃦⃦⃦
r*

r̄

⃦⃦⃦⃦1/2
∞

𝜀solve · 𝜀step + 2

⃦⃦⃦⃦
r ′*

r̄

⃦⃦⃦⃦1/2
∞

𝜀2step ,

where r̄ are some arbitrary resistances and H = C⊤RC .

Proof. Let 𝜌+ = 𝜀step̃︀f *
/s*+ and 𝜌− = −𝜀step̃︀f *

/s*−. First of all, it is easy to see that

‖𝜌‖2 ≤
⃦⃦⃦ s

s*

⃦⃦⃦
∞

⃦⃦⃦⃦
s*

s
𝜌

⃦⃦⃦⃦
2

≤ 𝜀step(1 + 𝜀solve)
⃦⃦⃦̃︀f *⃦⃦⃦

r ,2

= 𝜀step𝛿(1 + 𝜀solve)
⃦⃦⃦√

r𝑔(s)−R−1/2B(B⊤R−1B)+B⊤𝑔(s)
⃦⃦⃦
2

= 𝜀step𝛿(1 + 𝜀solve)
⃦⃦⃦(︁

I −R−1/2B(B⊤R−1B)+B⊤R−1/2
)︁√

r𝑔(s)
⃦⃦⃦
2

≤ 𝜀step𝛿(1 + 𝜀solve)
⃦⃦√

r𝑔(s)
⃦⃦
2

= 𝜀step𝛿(1 + 𝜀solve)

⃦⃦⃦⃦
⃦⃦ 1

s+
− 1

s−√︁
1

(s+)2
+ 1

(s−)2

⃦⃦⃦⃦
⃦⃦
2

≤ 𝜀step𝛿(1 + 𝜀solve)
√
𝑚

= 𝜀step(1 + 𝜀solve) .
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We bound the energy to route the residual of f ′* as⃦⃦⃦
C⊤h ′

⃦⃦⃦
H

+

=

⃦⃦⃦⃦
C⊤h +C⊤

(︂
𝜀step𝛿c

𝜇
+

1

s ′*+
− 1

s*+
− 1

s ′*−
+

1

s*−

)︂⃦⃦⃦⃦
H

+

=

⃦⃦⃦⃦
C⊤h +C⊤

(︂
𝜀step𝛿c

𝜇
+
𝜌+

s ′*+
− 𝜌−

s ′*−

)︂⃦⃦⃦⃦
H

+

=

⃦⃦⃦⃦
C⊤h +C⊤

(︂
𝜀step𝛿c

𝜇
+
𝜌+

s*+
− 𝜌−

s*−

)︂
+C⊤

(︂
(𝜌+)2

s ′*+
− (𝜌−)2

s ′*−

)︂⃦⃦⃦⃦
H

+
.

Now, using (9.43) we get that r̃︀f *
= 𝛿r𝑔(s) − 𝛿B(B⊤R−1B)+B⊤𝑔(s) and so C⊤

(︁
r̃︀f *)︁

=

𝛿C⊤ (r𝑔(s)), which follows by the fact that for any 𝑖, 1⊤𝑖 C
⊤B =

(︀
B⊤C1𝑖

)︀⊤
= 0, since C1𝑖 is a

circulation by definition of C . As r̃︀f *
=
(︁

1
(s+)2

+ 1
(s−)2

)︁ ̃︀f *
= 𝜀−1

step
s*+

(s+)2
𝜌+ − 𝜀−1

step
s*−

(s−)2
𝜌−, we have

𝜀step𝛿C
⊤ (r𝑔(s)) = C⊤

(︁
s*+

(s+)2
𝜌+ − s*−

(s−)2
𝜌−
)︁

and so⃦⃦⃦⃦
C⊤h +C⊤

(︂
𝜀step𝛿c

𝜇
+
𝜌+

s*+
− 𝜌−

s*−

)︂
+C⊤

(︂
(𝜌+)2

s ′*+
− (𝜌−)2

s ′*−

)︂⃦⃦⃦⃦
H

+

=

⃦⃦⃦⃦
C⊤h +C⊤

(︂
𝜀step𝛿c

𝜇
+ 𝜀step𝛿r𝑔(s)−

s*+

(s+)2
𝜌+ +

s*−

(s−)2
𝜌− +

𝜌+

s*+
− 𝜌−

s*−

)︂
+C⊤

(︂
(𝜌+)2

s ′*+
− (𝜌−)2

s ′*−

)︂⃦⃦⃦⃦
H

+

=
⃦⃦⃦
C⊤h + 𝜀step𝛿C

⊤
(︂
c

𝜇
+ r𝑔(s)

)︂
+C⊤

(︃(︃
1−

(︂
s*+

s+

)︂2
)︃
𝜌+

s*+
−

(︃
1−

(︂
s*−

s−

)︂2
)︃
𝜌−

s*−

)︃

+C⊤
(︂
(𝜌+)2

s ′*+
− (𝜌−)2

s ′*−

)︂ ⃦⃦⃦
H

+

≤ (1 + 𝜀step𝛿)
⃦⃦⃦
C⊤h

⃦⃦⃦
H

+ + 5

⃦⃦⃦⃦
r*

r̄

⃦⃦⃦⃦1/2
∞

𝜀solve · 𝜀step + 2

⃦⃦⃦⃦
r ′*

r̄

⃦⃦⃦⃦1/2
∞

𝜀2step
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where we have used the triangle inequality, the fact that

𝜀step𝛿

⃦⃦⃦⃦
C⊤

(︂
c

𝜇
+ r𝑔(s)

)︂⃦⃦⃦⃦
H

+

= 𝜀step𝛿

⃦⃦⃦⃦
C⊤

(︂
c

𝜇
+

1

s+
− 1

s−

)︂⃦⃦⃦⃦
H

+

≤ 𝜀step𝛿
⃦⃦⃦⃦
C⊤

(︂
c

𝜇
+

1

s*+
− 1

s*−

)︂⃦⃦⃦⃦
H

+
+ 𝜀step𝛿

⃦⃦⃦⃦
C⊤

(︂
1

s+
− 1

s*+
− 1

s−
+

1

s*−

)︂⃦⃦⃦⃦
H

+

≤ 𝜀step𝛿
⃦⃦⃦⃦
C⊤

(︂
c

𝜇
+

1

s*+
− 1

s*−

)︂⃦⃦⃦⃦
H

+
+ 𝜀step𝛿

⃦⃦⃦⃦
r*

r̄

⃦⃦⃦⃦1/2
∞

⃦⃦⃦⃦
C⊤

(︂
1

s+
− 1

s*+
− 1

s−
+

1

s*−

)︂⃦⃦⃦⃦
(C⊤R*C )+

≤ 𝜀step𝛿
⃦⃦⃦
C⊤h

⃦⃦⃦
H

+ + 𝜀step𝛿

⃦⃦⃦⃦
r*

r̄

⃦⃦⃦⃦1/2
∞

⃦⃦⃦⃦
⃦⃦⃦ 1

s+
− 1

s*+ −
1
s− + 1

s*−(︁
1

(s*+)2
+ 1

(s*−)2

)︁1/2
⃦⃦⃦⃦
⃦⃦⃦
2

≤ 𝜀step𝛿
⃦⃦⃦
C⊤h

⃦⃦⃦
H

+ + 𝜀step𝛿

⃦⃦⃦⃦
r*

r̄

⃦⃦⃦⃦1/2
∞

⎛⎜⎝
⃦⃦⃦⃦
⃦⃦⃦ 1

s+
− 1

s*+(︁
1

(s*+)2

)︁1/2
⃦⃦⃦⃦
⃦⃦⃦
2

+

⃦⃦⃦⃦
⃦⃦⃦ 1

s− −
1

s*−(︁
1

(s*−)2

)︁1/2
⃦⃦⃦⃦
⃦⃦⃦
2

⎞⎟⎠
= 𝜀step𝛿

⃦⃦⃦
C⊤h

⃦⃦⃦
H

+ + 𝜀step𝛿

⃦⃦⃦⃦
r*

r̄

⃦⃦⃦⃦1/2
∞

(︂⃦⃦⃦⃦
s*+

s+
− 1

⃦⃦⃦⃦
2

+

⃦⃦⃦⃦
s*−

s−
− 1

⃦⃦⃦⃦
2

)︂
≤ 𝜀step𝛿

⃦⃦⃦
C⊤h

⃦⃦⃦
H

+ + 𝜀step𝛿

⃦⃦⃦⃦
r*

r̄

⃦⃦⃦⃦1/2
∞

2𝜀solve
√
𝑚 (as s ≈1+𝜀solve s

*)

= 𝜀step𝛿
⃦⃦⃦
C⊤h

⃦⃦⃦
H

+ + 2

⃦⃦⃦⃦
r*

r̄

⃦⃦⃦⃦1/2
∞

𝜀step𝜀solve

and similarly, using
⃦⃦⃦
1−

(︀
s*

s

)︀2⃦⃦⃦
∞
≤ 𝜀solve(2 + 𝜀solve), the fact that

⃦⃦⃦
C⊤

(︃(︃
1−

(︂
s*+

s+

)︂2
)︃
𝜌+

s*+
−

(︃
1−

(︂
s*−

s−

)︂2
)︃
𝜌−

s*−

)︃
+C⊤

(︂
(𝜌+)2

s ′*+
+

(𝜌−)2

s ′*−

)︂ ⃦⃦⃦
H

+

≤
⃦⃦⃦⃦
r*

r̄

⃦⃦⃦⃦1/2
∞

𝜀solve(2 + 𝜀solve) ‖𝜌‖2 +
⃦⃦⃦⃦
r ′*

r̄

⃦⃦⃦⃦1/2
∞
‖𝜌‖24

≤
⃦⃦⃦⃦
r*

r̄

⃦⃦⃦⃦1/2
∞

𝜀step𝜀solve(2 + 𝜀solve)(1 + 𝜀solve) +

⃦⃦⃦⃦
r ′*

r̄

⃦⃦⃦⃦1/2
∞

𝜀2step(1 + 𝜀solve)
2

≤ 3

⃦⃦⃦⃦
r*

r̄

⃦⃦⃦⃦1/2
∞

𝜀step𝜀solve + 2

⃦⃦⃦⃦
r ′*

r̄

⃦⃦⃦⃦1/2
∞

𝜀2step .

We will also use the following lemma, which is standard [10].

Lemma 9.2.9 (Small residual implies ℓ∞ closeness). Given a flow f = f 0 +Cx with slacks s and
resistances r , if

⃦⃦⃦
C⊤

(︁
c
𝜇 + 1

s+
− 1

s−

)︁⃦⃦⃦
(C⊤RC )+

≤ 1/1000 then f is (𝜇, 1.01)-central.

Applying Lemma 9.2.8 for 𝑇 = 𝑘
𝜀step

iterations, we get the lemma below, which measures the
closeness of f * to the central path in ℓ2 after 𝑇 iterations.

216



Lemma 9.2.10 (Centrality of f *). Let f *1, . . . , f *𝑇+1 be flows with slacks s*1, . . . , s*𝑇+1 and
resistances r*1, . . . , r*𝑇+1, and f 1, . . . , f 𝑇+1 be flows with slacks s1, . . . , s𝑇+1 and resistances
r1, . . . , r𝑇+1, such that s𝑡 ≈1+𝜀solve s*𝑡 for all 𝑡 ∈ [𝑇 ], where 𝑇 = 𝑘

𝜀step
for some 𝑘 ≤

√
𝑚/10,

𝜀step ∈ (0, 0.1) and 𝜀solve ∈ (0, 0.1). Additionally, we have that

• f *1 is 𝜇-central

• For all 𝑡 ∈ [𝑇 ], f *𝑡+1 = f *𝑡 + 𝜀step · ̃︀f 𝑡, where⃦⃦⃦√
r 𝑡
(︁̃︀f *𝑡

− ̃︀f 𝑡)︁⃦⃦⃦
∞
≤ 𝜀 ,

̃︀f *𝑡
= 𝛿𝑔(s𝑡)− 𝛿(R𝑡)−1B

(︁
B⊤(R𝑡)−1B

)︁+
B⊤𝑔(s𝑡)

and 𝛿 = 1√
𝑚

.

Then, f *𝑇+1 is (𝜇/(1+𝜀step𝛿)𝑇 , 1.01)-central, as long as we set 𝜀step ≤ 10−5𝑘−3 and 𝜀solve ≤ 10−5𝑘−3.

Proof. For all 𝑡 ∈ [𝑇 + 1], we denote the residual of f *𝑡 as h 𝑡 =
c(1+𝜀step𝛿)𝑡−1

𝜇 + 1
s+,*𝑡 − 1

s−,*𝑡 . Note
that C⊤h1 = 0 as f *1 is 𝜇-central.

We assume that the statement of the lemma is not true, and let ̂︀𝑇 be the smallest 𝑡 ∈ [𝑇 + 1]
such that f *𝑡 is not (𝜇/(1 + 𝜀step𝛿)

𝑡−1, 1.01)-central. Obviously ̂︀𝑇 > 1. This means that f *𝑡 is
(𝜇/(1 + 𝜀step𝛿)

𝑡−1, 1.01)-central for all 𝑡 ∈ [ ̂︀𝑇 − 1], i.e. s*𝑡 ≈1.01 s
(︀
𝜇/(1 + 𝜀step𝛿)

𝑡−1
)︀
.

Also, note that by Lemma 9.2.7 about slack stability, and since (1 + 𝜀step𝛿)
|̂︀𝑇−𝑡| ≤ (1 + 𝛿)1.1𝑘, we

have s
(︀
𝜇/(1 + 𝜀step𝛿)

𝑡−1
)︀
≈3.7𝑘2 s

(︁
𝜇/(1 + 𝜀step𝛿)

̂︀𝑇−1
)︁

for all 𝑡 ∈ [𝑇 + 1]. Additionally, note that,
as shown in proof of Lemma 9.2.8, we havẽ⃦⃦⃦⃦︀f *̂︀𝑇−1

⃦⃦⃦⃦
r ̂︀𝑇−1,∞

≤
⃦⃦⃦⃦̃︀f *̂︀𝑇−1

⃦⃦⃦⃦
r ̂︀𝑇−1,2

≤ 1 ,

so ⃦⃦⃦⃦
⃦ s*

̂︀𝑇
s*̂︀𝑇−1

− 1

⃦⃦⃦⃦
⃦
∞

= 𝜀step

⃦⃦⃦⃦
⃦⃦ ̃︀f

̂︀𝑇−1

s*̂︀𝑇−1

⃦⃦⃦⃦
⃦⃦
∞

≤ 𝜀step(1 + 𝜀solve)

⃦⃦⃦⃦√︀
r ̂︀𝑇−1̃︀f ̂︀𝑇−1

⃦⃦⃦⃦
∞

≤ 𝜀step(1 + 𝜀solve)

(︂⃦⃦⃦⃦√︀
r ̂︀𝑇−1̃︀f *̂︀𝑇−1

⃦⃦⃦⃦
∞

+ 𝜀

)︂
≤ 𝜀step(1 + 𝜀solve) (1 + 𝜀)

≤ 1.3𝜀step .

From this we conclude that s*
̂︀𝑇 ≈1+2.6𝜀step s*

̂︀𝑇−1, and from the previous discussion we get that

s*
̂︀𝑇 ≈1+2.6𝜀step s*

̂︀𝑇−1 ≈1.01 s(𝜇/(1 + 𝜀step𝛿)
̂︀𝑇−1) ≈3.7𝑘2 s(𝜇/(1 + 𝜀step𝛿)

𝑡−1) ≈1.01 s
*𝑡 ,

so s*
̂︀𝑇 ≈4𝑘2 s*𝑡 for all 𝑡 ∈ [ ̂︀𝑇 − 1].
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On the other hand, if we apply Lemma 9.2.8 ̂︀𝑇 − 1 times with r̄ = r*̂︀𝑇 , we get⃦⃦⃦
C⊤h

̂︀𝑇 ⃦⃦⃦(︁
C⊤R

̂︀𝑇C
)︁+

=
⃦⃦⃦
C⊤h

̂︀𝑇 ⃦⃦⃦
H

+

≤ (1 + 𝜀step𝛿)
⃦⃦⃦
C⊤h

̂︀𝑇−1
⃦⃦⃦
H

+ + 5

⃦⃦⃦⃦
⃦r*̂︀𝑇−1

r̄

⃦⃦⃦⃦
⃦
1/2

∞

𝜀step · 𝜀solve + 2

⃦⃦⃦⃦
⃦r*̂︀𝑇

r̄

⃦⃦⃦⃦
⃦
1/2

∞

𝜀2step

. . .

≤ 5

̂︀𝑇−1∑︁
𝑡=1

(1 + 𝜀step𝛿)
̂︀𝑇−𝑡−1

⃦⃦⃦⃦
r*𝑡

r*̂︀𝑇
⃦⃦⃦⃦1/2
∞

𝜀step · 𝜀solve + 2

̂︀𝑇−1∑︁
𝑡=1

(1 + 𝜀step𝛿)
̂︀𝑇−𝑡−1

⃦⃦⃦⃦
r*𝑡+1

r*̂︀𝑇
⃦⃦⃦⃦1/2
∞

𝜀2step

≤ 6𝑇 max
𝑡∈[̂︀𝑇−1]

⃦⃦⃦⃦
r*𝑡

r*̂︀𝑇
⃦⃦⃦⃦1/2
∞

𝜀step · 𝜀solve + 2.4𝑇 max
𝑡∈[̂︀𝑇−1]

⃦⃦⃦⃦
r*𝑡+1

r*̂︀𝑇
⃦⃦⃦⃦1/2
∞

𝜀2step

≤ 24𝑇𝑘2𝜀step · 𝜀solve + 10𝑇𝑘2𝜀2step

= 24𝑘3𝜀solve + 10𝑘3𝜀step

≤ 1/1000 ,

where we used the fact that (1 + 𝜀step𝛿)
̂︀𝑇 ≤ 𝑒𝜀step𝛿𝑇 = 𝑒𝛿𝑘 ≤ 1.2 and our setting of 𝜀solve ≤ 10−5𝑘−3

and 𝜀step ≤ 10−5𝑘−3. By Lemma 9.2.9 this implies that f *̂︀𝑇 is (𝜇/(1 + 𝜀step𝛿)
̂︀𝑇−1, 1.01)-central, a

contradiction.

We are now ready to prove the following lemma, which is the goal of this section:

Lemma 4.3.5. Let f 1, . . . , f 𝑇+1 be flows with slacks s𝑡 and resistances r 𝑡 for 𝑡 ∈ [𝑇 + 1], where
𝑇 = 𝑘

𝜀step
for some 𝑘 ≤

√
𝑚/10 and 𝜀step = 10−5𝑘−3, such that

• f 1 is (𝜇, 1 + 𝜀solve/8)-central for 𝜀solve = 10−5𝑘−3

• For all 𝑡 ∈ [𝑇 ], f 𝑡+1 =

⎧⎨⎩f (𝜇) + 𝜀step
𝑡∑︀
𝑖=1

̃︀f 𝑖 if ∃𝑖 ∈ [𝑡] : ̃︀f 𝑖 ̸= 0

f 1 otherwise
, where

̃︀f *𝑡
= 𝛿𝑔(s𝑡)− 𝛿(R𝑡)−1B

(︁
B⊤(R𝑡)−1B

)︁+
B⊤𝑔(s𝑡)

for 𝛿 = 1√
𝑚

and ⃦⃦⃦√
r 𝑡
(︁̃︀f *𝑡

− ̃︀f 𝑡)︁⃦⃦⃦
∞
≤ 𝜀

for 𝜀 = 10−6𝑘−6.

Then, setting 𝜀step = 𝜀solve = 10−5𝑘−3 and 𝜀 = 10−6𝑘−6 we get that s𝑇+1 ≈1.1 s
(︁
𝜇/(1 + 𝜀step𝛿)

𝑘𝜀−1
step

)︁
.

Proof. We set f *1 = f (𝜇) and for each 𝑡 ∈ [𝑇 ],

f *𝑡+1 = f *𝑡 + 𝜀step̃︀f *𝑡
,
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and the corresponding slacks s*𝑡 and resistances r*𝑡. Let ̂︀𝑇 be the first 𝑡 ∈ [𝑇 + 1] such that
s
̂︀𝑇 ̸≈1+𝜀solve s

*̂︀𝑇 . Obviously 𝑡 > 1 as s1 ≈1+𝜀solve/8 s(𝜇) = s*1.

Now, for all 𝑡 ∈ [𝑇 ] we have ⃦⃦⃦√
r 𝑡
(︁̃︀f *𝑡

− ̃︀f 𝑡)︁⃦⃦⃦
∞
≤ 𝜀 .

Fix some 𝑒 ∈ 𝐸. If ̃︀𝑓 𝑡𝑒 = 0 for all 𝑡 ∈ [ ̂︀𝑇 − 1], then we have
√︁
𝑟 ̂︀𝑇𝑒
⃒⃒⃒ ̃︀𝑓*𝑡𝑒 ⃒⃒⃒ =√︀𝑟𝑡𝑒 ⃒⃒⃒ ̃︀𝑓*𝑡𝑒 ⃒⃒⃒ ≤ 𝜀 for all such 𝑡.

This means that √︁
𝑟 ̂︀𝑇𝑒
⃒⃒⃒
𝑓*

̂︀𝑇
𝑒 − 𝑓

̂︀𝑇
𝑒

⃒⃒⃒
≤
√︁
𝑟 ̂︀𝑇𝑒
⃒⃒⃒
𝑓*

̂︀𝑇
𝑒 − 𝑓*1𝑒

⃒⃒⃒
+

√︁
𝑟 ̂︀𝑇𝑒
⃒⃒⃒
𝑓*1𝑒 − 𝑓

̂︀𝑇
𝑒

⃒⃒⃒
=

√︁
𝑟 ̂︀𝑇𝑒
⃒⃒⃒
𝑓*

̂︀𝑇
𝑒 − 𝑓*1𝑒

⃒⃒⃒
+

√︁
𝑟 ̂︀𝑇𝑒 ⃒⃒𝑓*1𝑒 − 𝑓1𝑒 ⃒⃒

≤ 𝜀step
√︁
𝑟 ̂︀𝑇𝑒

̂︀𝑇−1∑︁
𝑡=1

⃒⃒⃒ ̃︀𝑓*𝑡𝑒 ⃒⃒⃒+√︁𝑟 ̂︀𝑇𝑒 ⃒⃒𝑓*1𝑒 − 𝑓1𝑒 ⃒⃒
≤ ̂︀𝑇𝜀step𝜀+√︁𝑟 ̂︀𝑇𝑒 ⃒⃒𝑓*1𝑒 − 𝑓1𝑒 ⃒⃒
≤ 𝑘𝜀+

√
2𝜀solve/8

≤ 𝜀solve/2 ,

as long as 𝜀 ≤ 𝜀solve/(2𝑘) = 𝑂(1/𝑘4). In the second to last inequality we used Lemma 9.2.5.

Otherwise, there exists 𝑡 ∈ [ ̂︀𝑇 − 1] such that ̃︀𝑓 𝑡𝑒 ≠ 0, and by definition 𝑓 ̂︀𝑇
𝑒 = 𝑓𝑒(𝜇) + 𝜀step

̂︀𝑇−1∑︀
𝑡=1

̃︀𝑓 𝑡𝑒,
so √︁

𝑟*̂︀𝑇𝑒
⃒⃒⃒
𝑓*

̂︀𝑇
𝑒 − 𝑓

̂︀𝑇
𝑒

⃒⃒⃒
≤
√︁
𝑟*̂︀𝑇𝑒 ⃒⃒

𝑓*1𝑒 − 𝑓𝑒(𝜇)
⃒⃒
+ 𝜀step

̂︀𝑇−1∑︁
𝑡=1

√︁
𝑟*̂︀𝑇𝑒

⃒⃒⃒ ̃︀𝑓*𝑡𝑒 − ̃︀𝑓 𝑡𝑒 ⃒⃒⃒

≤ 3𝑘2𝜀step

̂︀𝑇−1∑︁
𝑡=1

√︀
𝑟*𝑡𝑒

⃒⃒⃒ ̃︀𝑓*𝑡𝑒 − ̃︀𝑓 𝑡𝑒 ⃒⃒⃒

≤ 3𝑘2𝜀step(1 + 𝜀solve)

̂︀𝑇−1∑︁
𝑡=1

√︀
𝑟𝑡𝑒

⃒⃒⃒ ̃︀𝑓*𝑡𝑒 − ̃︀𝑓 𝑡𝑒 ⃒⃒⃒
≤ 3𝑘2𝜀step(1 + 𝜀solve)𝑇𝜀

≤ 4𝑘3𝜀 ,

where we have used Lemma 9.2.7 and the fact that s𝑡 ≈1+𝜀solve s*𝑡 for all 𝑡 ∈ [ ̂︀𝑇 − 1] which also
implies that

√
r 𝑡 ≈1+𝜀solve

√
r*𝑡. Setting 𝜀 = 𝜀solve

8𝑘3
= 𝑂

(︀
1
𝑘6

)︀
, this becomes ≤ 𝜀solve/2.

Therefore we have proved that
⃦⃦⃦√︀

r*̂︀𝑇 (︁f *̂︀𝑇 − f
̂︀𝑇)︁⃦⃦⃦

∞
≤ 𝜀solve/2, and so s*

̂︀𝑇 ≈1+𝜀solve s
̂︀𝑇 , a

contradiction. Therefore we conclude that s𝑡 ≈1+𝜀solve s
*𝑡 for all 𝑡 ∈ [𝑇 + 1].

Now, as long as 𝜀step, 𝜀solve ≤ 10−5𝑘−3, we can apply Lemma 9.2.10, which guarantees that
s*𝑇+1 ≈1.01 s

(︀
𝜇/(1 + 𝜀step𝛿)

𝑇
)︀
, and so s𝑇+1 ≈1.1 s

(︀
𝜇/(1 + 𝜀step𝛿)

𝑇
)︀
. Therefore we set 𝜀step =

𝜀solve = 10−5𝑘−3 and 𝜀 = 10−6𝑘−6 ≤ 𝜀solve
8𝑘3

.
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Proof of Lemma 4.3.11

Proof. We will apply Lemma 4.3.5 with f 1 being the flow corresponding to the resistances ℒ.r = 𝒞.r ,
and 𝑇 = 𝑘𝜀−1

step. Note that it is important to maintain the invariant ℒ.r = 𝒞.r throughout the
algorithm so that both data structures correspond to the same electrical flow problem. For each
𝑡 ∈ [𝑇 ], for the 𝑡-th iteration, Lemma 4.3.5 requires an estimate ̃︀f 𝑡 such that

⃦⃦⃦√
r 𝑡
(︁̃︀f *𝑡

− ̃︀f 𝑡)︁⃦⃦⃦
∞
≤ 𝜀,

where ̃︀f *𝑡
= 𝛿𝑔(s𝑡)− 𝛿(R𝑡)−1B

(︁
B⊤(R𝑡)−1B

)︁+
B⊤𝑔(s𝑡)

and 𝛿 = 1/
√
𝑚.

We claim that such an estimate can be computed for all 𝑡 by using ℒ and 𝒞. We apply the
following process for each 𝑡 ∈ [𝑇 ]:

• Let 𝑍 be the edge set returned by ℒ.Solve().

• Call 𝒞.Check(𝑒) for each 𝑒 ∈ 𝑍 to obtain flow values ̃︀𝑓 𝑡𝑒.
• Compute f 𝑡 and its slacks s𝑡+1 and resistances r 𝑡+1 as in Lemma 4.3.5, i.e.

𝑓 𝑡+1
𝑒 =

⎧⎨⎩𝑓𝑒(𝜇) + 𝜀step
𝑡∑︀
𝑖=1

̃︀𝑓 𝑖𝑒 if ∃𝑖 ∈ [𝑡] : ̃︀𝑓 𝑖𝑒 ̸= 0

𝑓1𝑒 otherwise
.

This can be computed in 𝑂 (|𝑍|) by adding either 𝜀step ̃︀𝑓 𝑖𝑒 or 𝑓𝑒(𝜇)− 𝑓1𝑒 + 𝜀step ̃︀𝑓 𝑖𝑒 to 𝑓 𝑡𝑒 for each
𝑒 ∈ 𝑍.

• Call ℒ.Update(𝑒, f 𝑡+1) and 𝒞.Update(𝑒, f 𝑡+1) for all 𝑒 in the support of ̃︀f 𝑡. Note that
ℒ.Update works as long as

𝑟max
𝑒 /𝛼 ≤ 𝑟𝑡+1

𝑒 ≤ 𝛼 · 𝑟min
𝑒 ,

where 𝑟max
𝑒 , 𝑟min

𝑒 are the maximum and minimum values of ℒ.𝑟𝑒 since the last call to
ℒ.BatchUpdate. After this, we have ℒ.r = 𝒞.r = r 𝑡+1.

In the above process, when ℒ.Solve() is called we have ℒ.r = r 𝑡 (for 𝑡 = 1 this is true because ℒ.r
are the resistances corresponding to f 1). By the (𝛼, 𝛽, 𝜀/2)-Locator guarantees in Definition 4.3.7,
with high probability 𝑍 contains all the edges 𝑒 such that

√︀
𝑟𝑡𝑒

⃒⃒⃒ ̃︀𝑓*𝑡𝑒 ⃒⃒⃒ ≥ 𝜀/2. Now, for each 𝑒 ∈ 𝑍,

𝒞.Check(𝑒) returns a flow value ̃︀𝑓 𝑡𝑒 such that:

•
√︀
𝑟𝑡𝑒

⃒⃒⃒ ̃︀𝑓 𝑡𝑒 − ̃︀𝑓*𝑡𝑒 ⃒⃒⃒ ≤ 𝜀
• if

√︀
𝑟𝑡𝑒

⃒⃒⃒ ̃︀𝑓*𝑡𝑒 ⃒⃒⃒ < 𝜀/2, then ̃︀𝑓 𝑡𝑒 = 0.

Therefore, the condition that √
r 𝑡
⃦⃦⃦̃︀f 𝑡 − ̃︀f *𝑡⃦⃦⃦

∞
≤ 𝜀

is satisfied. Additionally ̃︀f 𝑡 is independent of the randomness of ℒ, because (the distribution of) ̃︀f 𝑡
would be the same if 𝒞.Check was run for all edges 𝑒.

It remains to show that the Locator requirement

rmax/𝛼 ≤ r 𝑡+1 ≤ 𝛼 · rmin
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is satisfied. Consider the minimum value of 𝑡 for which this is not satisfied. By Lemma 4.3.5, we
have that

s𝜏+1 ≈1.1 s (𝜇/(1 + 𝜀step𝛿)
𝜏 ) (9.44)

for any 𝜏 ∈ [𝑡].
Now let ̂︀r be the resistances of ℒ at any point since the last call to ℒ.BatchUpdate. By the

lemma statement and (9.44), we know that ̂︀r ≈1.12 r(�̂�) for some �̂� ∈ [𝜇/(1 + 𝜀step𝛿)
𝑡, 𝜇0]. However,

we also know that 𝜇0 ≤ 𝜇 · (1 + 𝜀step𝛿)
(0.5𝛼1/4−𝑘)𝜀−1

step and so

�̂�

𝜇/(1 + 𝜀step𝛿)𝑡
≤ (1 + 𝜀step𝛿)

0.5𝛼1/4𝜀−1
step ≤ (1 + 𝛿)0.5𝛼

1/4
,

so by Lemma 9.2.7 we have
s
(︀
𝜇/(1 + 𝜀step𝛿)

𝑡
)︀
≈0.75𝛼1/2 s (�̂�) .

As s𝑡+1 ≈1.1 s
(︀
𝜇/(1 + 𝜀step𝛿)

𝑡
)︀
, we have that s𝑡+1 ≈0.825𝛼1/2 s(�̂�), and so

r 𝑡+1 ≈0.825𝛼 r(�̂�) ≈1.12 ̂︀r .
This means that r 𝑡+1 ≈𝛼 ̂︀r and is a contradiction.

We conclude that the requirements of ℒ are met for all 𝑡, and as a result Lemma 4.3.5 shows that
s𝑇+1 ≈1.1 s

(︁
𝜇/(1 + 𝜀step𝛿)

𝑘𝜀−1
step

)︁
. By Lemma 4.3.6, we can now obtain f

(︁
𝜇/(1 + 𝜀step𝛿)

𝑘𝜀−1
step

)︁
.

Finally, we return ℒ.r and 𝒞 to their original states.

Success probability. We note that all the outputs of 𝒞 are independent of the randomness of ℒ,
and ℒ is only updated based on these outputs. As each operation of ℒ succeeds with high probability,
the whole process succeeds with high probability as well.

Runtime. The recentering operation in Lemma 4.3.6 takes ̃︀𝑂 (𝑚). Additionally, we call ℒ.Solve
𝑘𝜀−1

step = 𝑂(𝑘4) times and, as |𝑍| = 𝑂(1/𝜀2), the total number of times ℒ.Update, 𝒞.Update, and
𝒞.Check are called is 𝑂(𝑘𝜀−1

step𝜀
−2) = 𝑂(𝑘16).

Proof of Lemma 4.3.10

Proof. Let 𝛿 = 1/
√
𝑚. Over a number of 𝑇 = ̃︀𝑂 (︀𝑚1/2/𝑘

)︀
iterations, we will repeatedly apply

MultiStep (Lemma 4.3.11). We will also replace the oracle from Definition 4.3.9 by the Checker
data structure in Section 9.2.6.

Initialization. We first initialize the Locator with error 𝜀/2, by calling ℒ.Initialize(f ). Let
s𝑡 be the slacks ℒ.s before the 𝑡-th iteration and r 𝑡 the corresponding resistances, and s0𝑡 be the
slacks ℒ.r0 before the 𝑡-th iteration and r0𝑡 the corresponding resistances, for 𝑡 ∈ [𝑇 ]. Also, we let
𝜇𝑡 = 𝜇/ (1 + 𝜀step𝛿)

(𝑡−1)𝑘𝜀−1
step . We will maintain the invariant that s𝑡 ≈1+𝜀solve/8 s (𝜇𝑡), which is a

requirement in order to apply Lemma 4.3.11.
As in [73], we will also need to maintain 𝑂(𝑘4) Checkers 𝒞𝑖 for 𝑖 ∈ [𝑂(𝑘4)], so we call

𝒞𝑖.Initialize(f , 𝜀, 𝛽Checker) for each one of these. Note that in general 𝛽Checker ≠ 𝛽, as the vertex
sparsifiers ℒ and 𝒞𝑖 will not be on the same vertex set. As in Lemma 4.3.11, we will maintain the
invariant that ℒ.r = 𝒞𝑖.r for all 𝑖.
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Resistance updates. Assuming that all the requirements of Lemma 4.3.11 (MultiStep) are
satisfied at the 𝑡-th iteration, that lemma computes a flow f̄ = f (𝜇𝑡+1) with slacks s̄. In order to
guarantee that s𝑡+1 ≈1+𝜀solve/8 s (𝜇𝑡+1), we let 𝑍 be the set of edges such that either

𝑠+,𝑡𝑒 ̸≈1+𝜀solve/8 𝑠
+
𝑒 or 𝑠−,𝑡𝑒 ̸≈1+𝜀solve/8 𝑠

−
𝑒

and then call ℒ.Update(𝑒, f̄ ) for all 𝑒 ∈ 𝑍. This guarantees that 𝑠+,𝑡+1
𝑒 = 𝑠+𝑒 and 𝑠−,𝑡+1

𝑒 = 𝑠−𝑒 for
all 𝑒 ∈ 𝑍 and so s𝑡+1 ≈1+𝜀solve/8 s̄ = s (𝜇𝑡+1). We also apply the same updates to the 𝒞𝑖’s using
𝒞𝑖.Update, in order to ensure that they have the same resistances with ℒ.

Batched resistance updates. The number of times ℒ.Update is called can be quite large because
of multiple edges on which error slowly accumulates. This is because in general Ω(𝑚) resistances will
be updated throughout the algorithm. As Locator.Update is only slightly sublinear, this would
lead to an Ω(𝑚3/2)-time algorithm. For this reason, as in [73], we occasionally (every ̂︀𝑇 iterations
for some ̂︀𝑇 ≥ 1 to be defined later) perform batched updates by calling ℒ.BatchUpdate(𝑍, f̄ ),
where 𝑍 is the set of edges such that either

𝑠+,𝑡𝑒 ̸≈1+𝜀solve/16 𝑠
+
𝑒 or 𝑠−,𝑡𝑒 ̸≈1+𝜀solve/16 𝑠

−
𝑒 .

This again guarantees that 𝑠+,𝑡+1
𝑒 = 𝑠+𝑒 and 𝑠−,𝑡+1

𝑒 = 𝑠−𝑒 for all 𝑒 ∈ 𝑍 and so s𝑡+1 ≈1+𝜀solve/16 s̄ =
s (𝜇𝑡+1). Note that after updating ℒ.s and ℒ.r , this operation also sets ℒ.r0 = ℒ.r . We perform
the same resistance updates to the 𝒞𝑖’s in the regular (i.e. not batched) way, using 𝒞𝑖.Update.

Locator requirements. What is left is to ensure that the requirements of Lemma 4.3.11 are
satisfied at the 𝑡-th iteration, as well as that the requirements of ℒ.Update and ℒ.BatchUpdate
from Definition 4.3.7 are satisfied.

The requirements are as follows:

1. Lemma 4.3.11: s0𝑡 ≈1+𝜀solve/8 s
(︀
𝜇0
)︀

for some 𝜇0 ≤ 𝜇𝑡 · (1 + 𝜀step𝛿)
(0.5𝛼1/4−𝑘)𝜀−1

step .

Note that ℒ.s0 is updated every time ℒ.BatchUpdate is called, and after the call we have
ℒ.s0 = ℒ.s ≈1+𝜀solve/16 s(𝜇0) for some 𝜇0 > 0. To ensure that it is called often enough,
we call ℒ.BatchUpdate(∅) every (0.5𝛼1/4/𝑘 − 1)𝜀−1

step iterations. Because of this, we have

𝜇0 ≤ 𝜇𝑡 · (1 + 𝜀step𝛿)
(0.5𝛼1/4/𝑘−1)𝜀−1

step·𝑘 = 𝜇𝑡 · (1 + 𝜀step𝛿)
(0.5𝛼1/4−𝑘)𝜀−1

step . Additionally, for any
resistances ̂︀r that ℒ had at any point since the last call to ℒ.BatchUpdate, it is immediate
that ̂︀r ≈(1+𝜀solve/8)2 r(�̂�)

for some �̂� ∈ [𝜇𝑡, 𝜇
0], as this is exactly the invariant that our calls to ℒ.Update maintain.

Therefore, ̂︀r ≈1.12 r(�̂�).

2. ℒ.Update: 𝑟max
𝑒 /𝛼 ≤ 𝑟𝑡+1

𝑒 ≤ 𝛼 · 𝑟min
𝑒 , where 𝑟min

𝑒 , 𝑟max
𝑒 are the minimum and maximum values

that ℒ.𝑟𝑒 has had since the last call to ℒ.BatchUpdate.

Let ̂︀r be any value of ℒ.r since the last call to ℒ.BatchUpdate. Because of the invariant
maintained by resistance updates (including inside MultiStep), we have that ̂︀r are (�̂�, 1.1)-
central resistances for some �̂� such that

𝜇𝑡+1 ≤ �̂� ≤ 𝜇𝑡+1 · (1 + 𝜀step𝛿)
(0.5𝛼1/4−𝑘)𝜀−1

step ≤ 𝜇𝑡+1 · (1 + 𝛿)0.5𝛼
1/4
.
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As in the previous item, we have that and s0𝑡 are (𝜇0, 1 + 𝜀solve/8)-central. By Lemma 9.2.7
this implies

s(𝜇𝑡+1) ≈0.75𝛼1/2 s(�̂�) ,

and since ̂︀r ≈1.12 r(�̂�), we conclude that r(𝜇𝑡+1) ≈𝛼 ̂︀r .

3. ℒ.BatchUpdate: Between any two successive calls to ℒ.Initialize, the number of edges
updated (number of calls to ℒ.Update plus the sum of |𝑍| for all calls to ℒ.BatchUpdate)
is 𝑂(𝛽𝑚).

We make sure that this is satisfied by calling ℒ.Initialize(f̄ ) every 𝜀solve
√
𝛽𝑚/𝑘 iterations,

where f̄ = f (𝜇𝑡), at the beginning of the 𝑡-th iteration.

Consider any two successive initializations at iterations 𝑡𝑖𝑛𝑖𝑡 and 𝑡𝑒𝑛𝑑 respectively. Let ℓ be the
number of edges 𝑒 that have potentially been updated, i.e. such that either

𝑠𝑒(𝜇𝑡𝑖𝑛𝑖𝑡)+ ̸≈1+𝜀solve/16 𝑠𝑒(𝜇𝑖)
+ or 𝑠𝑒(𝜇𝑡𝑖𝑛𝑖𝑡)− ̸≈1+𝜀solve/16 𝑠𝑒(𝜇𝑖)

−

for some 𝑖 ∈
[︀
𝑡𝑖𝑛𝑖𝑡, 𝑡𝑒𝑛𝑑

]︀
. First, note that this implies that

√︀
𝑟𝑒(𝜇𝑡𝑖𝑛𝑖𝑡) |𝑓𝑒(𝜇𝑡𝑖𝑛𝑖𝑡)− 𝑓𝑒(𝜇𝑖)| >

𝜀solve/16

1 + 𝜀solve/16
> 𝜀solve/17 .

Now, by the fact that 𝑡𝑒𝑛𝑑 − 𝑡𝑖𝑛𝑖𝑡 ≤ 𝜀solve
√
𝛽𝑚/𝑘, we have that

𝜇𝑡𝑖𝑛𝑖𝑡 ≤ 𝜇𝑖 · (1 + 𝜀step𝛿)
𝑘𝜀−1

step·𝜀solve
√
𝛽𝑚/𝑘 ≤ 𝜇𝑖 · (1 + 𝛿)𝜀solve

√
𝛽𝑚 .

By applying Lemma 9.2.6 with 𝑘 = 𝜀solve
√
𝛽𝑚 and 𝛾 = 𝜀solve/17, we get that ℓ ≤ 𝑂(𝛽𝑚).

Therefore the statement follows.

We will also need to show how to implement the PerfectChecker used in MultiStep using
the 𝒞𝑖’s, as well as how to satisfy all Checker requirements.

Checker requirements.

1. Implementing 𝜀-PerfectChecker inside MultiStep.

We follow almost the same procedure as in [73], other than the fact that we also need to
provide some additional information to 𝒞𝑖.Solve. Each call to PerfectChecker.Update
translates to calls to 𝒞𝑖.TemporaryUpdate for all 𝑖. In addition, the 𝑖-th batch of calls
to PerfectChecker.Check inside MultiStep (i.e. that corresponding to a single set of
edges returned by ℒ.Solve) is only run on 𝒞𝑖 using 𝒞𝑖.Check. As each call to 𝒞𝑖.Check is
independent of previous calls to it, we can get correct outputs with high probability even when
we run it multiple times (one for each edge returned by ℒ.Solve).

In order to guarantee that we have a vector 𝜋𝑖𝑜𝑙𝑑 as required by 𝒞𝑖.Check, once every 𝑘4 calls
to MultiStep (i.e. if 𝑡 is a multiple of 𝑘4) we compute

𝜋𝑖𝑜𝑙𝑑 = 𝜋
𝐶𝑖,𝑡
(︁
B⊤𝑔(s(𝜇𝑡))

)︁
for all 𝑖 ∈ [𝑂(𝑘4)], where 𝐶𝑖,𝑡 is the vertex set of the Schur complement data structure stored
internally by the 𝒞𝑖 right before the 𝑡-th call to MultiStep. This can be computed in ̃︀𝑂 (𝑚)
for each 𝑖 as in DemandProjector.Initialize in Lemma 4.4.14. Now, the total number
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of 𝒞𝑖.TemporaryUpdates that have not been rolled back is 𝑂(𝑘16), and the total number
of 𝒞𝑖.Updates over 𝑘4 calls to MultiStep by Lemma 9.2.6 is 𝑂(𝑘10/𝜀2solve) = 𝑂(𝑘16). This
means that the total number of terminal insertions to 𝐶𝑖,𝑡 as well as resistance changes is
𝑂(𝑘16). By Lemma 4.4.12, if 𝐶𝑖 is the current state of the vertex set of the Schur complement
of 𝒞𝑖 and s are the current slacks,

ℰr
(︁
𝜋𝑖𝑜𝑙𝑑 − 𝜋𝐶

𝑖
(𝑔(s))

)︁
≤ ̃︀𝑂 (︀𝛼′𝛽−4

Checker

)︀
· 𝑘32 ,

where 𝛼′ is the largest possible multiplicative change of some 𝒞𝑖.𝑟𝑒 since the computation of
𝜋𝑖𝑜𝑙𝑑. Furthermore, note that 𝜋𝑜𝑙𝑑 is supported on 𝐶𝑖. This is because 𝐶𝑖,𝑡 ⊆ 𝐶𝑖 and 𝐶𝑖,𝑡 does
not contain any temporary terminals.

Now, as we have already proved in Lemma 4.3.11, at any point inside the 𝑡-th call to MultiStep,
𝒞𝑖.r are (�̂�, 1.1)-central resistances for some �̂� ∈ [𝜇𝑡+1, 𝜇𝑡].

Fix �̂� ∈ [𝜇𝑡+1, 𝜇𝑡], �̂�
′ ∈ [𝜇𝑡′+1, 𝜇𝑡′ ], as well as the corresponding resistances of 𝒞𝑖, ̂︀r , ̂︀r ′, where

𝑡′ ≥ 𝑡. Now, note that since we are computing 𝜋𝑖𝑜𝑙𝑑 every 𝑘4 calls to MultiStep, we have that

�̂�

�̂�′
≤ 𝜇𝑡
𝜇𝑡′+1

≤ (1 + 𝜀step𝛿)
𝑘𝜀−1

step·(𝑡′−𝑡+1) ≤ (1 + 𝛿)𝑂(𝑘5) ,

so Lemma 9.2.7 implies that
s(�̂�) ≈𝑂(𝑘10) s(�̂�

′) .

As ̂︀r ≈1.12 r(�̂�) and ̂︀r ′ ≈1.12 r(�̂�′), we get that ̂︀r ≈𝑂(𝑘20) ̂︀r ′. Therefore, 𝛼′ ≤ 𝑂(𝑘20). Setting
𝛽Checker ≥ ̃︀Ω (︀𝛼′1/4𝑘8𝜀−1/2𝑚−1/4

)︀
= ̃︀Ω (︀𝑘16/𝑚1/4

)︀
, we get that

̃︀𝑂 (︀𝛼′𝛽−4
Checker

)︀
· 𝑘32 ≤ 𝜀2𝑚/4 ,

as required by 𝒞𝑖.Check.

Finally, at the end of MultiStep we bring all 𝒞𝑖 to their original state before calling
MultiStep, by calling 𝒞𝑖.Rollback. We also update all the resistances of ℒ to their
original state by calling ℒ.Update.

2. Between any two successive calls to 𝒞𝑖.Initialize, the total number of edges updated at
any point (via 𝒞𝑖.Update or 𝒞𝑖.TemporaryUpdate that have not been rolled back) is
𝑂(𝛽Checker𝑚).

For Update, we can apply a similar analysis as in the Locator case to show that if we call
𝒞𝑖.Initialize every 𝜀solve

√
𝛽Checker𝑚/𝑘 iterations, the total number of updates never exceeds

𝑂(𝛽Checker𝑚). For TemporaryUpdate, note that at any time there are at most 𝑂(𝑘16)
of these that have not been rolled back (this is inside MultiStep). Therefore, as long as
𝑘16 ≤ 𝑂(𝛽Checker𝑚)⇔ 𝛽Checker ≥ Ω(𝑘16/𝑚), the requirement is met.

Output Guarantee. After the application of Lemma 4.3.11 at the last iteration, we will have
f̄ = f (𝜇𝑇+1), where 𝜇𝑇+1 = 𝜇/(1 + 𝜀step𝛿)

̃︀𝑂(𝑚1/2𝜀−1
step) = 𝜇/poly(𝑚) ≤ 𝑚−10.

Success probability. Note that all operations of Locator and Checker work with high proba-
bility. Regarding the interaction of the randomness of these data structures and the fact that they
work against oblivious adversaries, we defer to [73], where there is a detailed discussion of why this
works.
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In short, note that outside of MultiStep, all updates are deterministic (as they only depend
on the central path), and in MultiStep the updates to Locator and Checker only depend
on outputs of a Checker. As each time we are getting the output from a different Checker,
the inputs to 𝒞𝑖.Check are independent of the randomness of 𝒞𝑖, and thus succeed with high
probability. Finally, note that the output of Locator is only passed onto 𝒞𝑖.Check, whose output
is then independent of the inputs received by Locator. Therefore, Locator does not “leak” any
randomness.

Our only deviation from [73] in Checker has to do with the extra input of Checker.Check
(𝜋𝑖𝑜𝑙𝑑). However, note that this is computed outside of MultiStep, and as such the only randomness
it depends on is the 𝛽Checker-congestion reduction subset 𝐶𝑖 generated when calling 𝒞𝑖.Initialize.
As such, it only depends on the internal randomness of 𝒞𝑖. As we mentioned, the output of 𝒞𝑖.Check
is never fed back to 𝒞𝑖, and thus the operation works with high probability.

Runtime (except Checker). Each call to MultiStep (Lemma 4.3.11) takes time ̃︀𝑂 (𝑚) plus
𝑂(𝑘16) calls to ℒ.Update and 𝑂(𝑘4) calls to ℒ.Solve. As the total number of iterations is̃︀𝑂 (︀𝑚1/2/𝑘

)︀
, the total time because of calls to MultiStep is ̃︀𝑂 (︀𝑚3/2/𝑘

)︀
, plus ̃︀𝑂 (︀𝑚1/2𝑘15

)︀
calls to

ℒ.Update and ̃︀𝑂 (︀𝑚1/2𝑘3
)︀

calls to ℒ.Solve.

Now, the total number of calls to ℒ.Initialize is ̃︀𝑂 (︁ 𝑚1/2/𝑘

𝜀solve
√
𝛽𝑚/𝑘

)︁
= ̃︀𝑂 (︀𝑘3𝛽−1/2

)︀
.

The total number of calls to ℒ.BatchUpdate(∅) is ̃︀𝑂 (︁ 𝑚1/2/𝑘

0.5𝛼1/4/𝑘

)︁
= ̃︀𝑂 (︀𝑚1/2𝛼−1/4

)︀
and the

total number of calls to ℒ.BatchUpdate(𝑍, f ) is ̃︀𝑂 (︁𝑚1/2

𝑘 ̂︀𝑇
)︁
. Regarding the size of 𝑍, let us focus

on the calls to ℒ.BatchUpdate(𝑍, f ) between two successive calls to ℒ.Initialize. We already
showed that the sum of |𝑍| over all calls during this interval is 𝑂(𝛽𝑚). Therefore the total sum of
|𝑍| over all iterations of the algorithm is ̃︀𝑂 (︀𝑚𝑘3𝛽1/2)︀.

In order to bound the number of calls to ℒ.Update, we concentrate on those between two
successive calls to ℒ.BatchUpdate(𝑍, f ) in iterations 𝑡𝑜𝑙𝑑 and 𝑡𝑛𝑒𝑤 > 𝑡𝑜𝑙𝑑. After the call to
ℒ.BatchUpdate(𝑍, f ) in iteration 𝑡𝑜𝑙𝑑 we have ℒ.s ≈1+𝜀solve/16 s(𝜇𝑡𝑜𝑙𝑑). Fix 𝜇 ∈

[︀
𝜇(𝑡𝑛𝑒𝑤), 𝜇(𝑡𝑜𝑙𝑑)

]︀
and let ℓ be the number of 𝑒 ∈ 𝐸 such that 𝑠𝑒(𝜇) ̸≈1+𝜀solve/8 𝑠

𝑡𝑜𝑙𝑑
𝑒 . As 𝑠𝑡𝑜𝑙𝑑𝑒 ≈1+𝜀solve/16 𝑠𝑒(𝜇𝑡𝑜𝑙𝑑) by

the guarantees of ℒ.BatchUpdate, this implies that 𝑠𝑒(𝜇) ̸≈1+𝜀solve/16 𝑠𝑒(𝜇𝑡𝑜𝑙𝑑), and so√︁
𝑟𝑒(𝜇𝑡

𝑜𝑙𝑑) |𝑓𝑒(𝜇𝑡𝑜𝑙𝑑)− 𝑓𝑒(𝜇)| ≥
𝜀solve/16

1 + 𝜀solve/16
> 𝜀solve/17 .

As
𝜇𝑡𝑜𝑙𝑑 ≤ 𝜇 · (1 + 𝜀step𝛿)

𝑘𝜀−1
step·̂︀𝑇 ≤ 𝜇 · (1 + 𝛿)𝑘·

̂︀𝑇 ,
by applying Lemma 9.2.6 with 𝑘 = (1 + 𝛿)𝑘·

̂︀𝑇 and 𝛾 = 𝜀solve/17, we get that ℓ ≤ 𝑂(𝑘2 ̂︀𝑇 2𝜀−2
solve). As

there are ̃︀𝑂 (︁𝑚1/2

𝑘 ̂︀𝑇
)︁

calls to ℒ.BatchUpdate(𝑍, f ), the total number of calls to ℒ.Update is

̃︀𝑂 (︁𝑚1/2 ̂︀𝑇𝜀−2
solve

)︁ ̃︀𝑂 (︁𝑚1/2𝑘6 ̂︀𝑇)︁ .
We conclude that we have runtime ̃︀𝑂 (︀𝑚3/2/𝑘

)︀
, plus

• ̃︀𝑂 (︀𝑘3𝛽−1/2
)︀

calls to ℒ.Initialize,

• ̃︀𝑂 (︀𝑚1/2𝑘3
)︀

calls to ℒ.Solve,

• ̃︀𝑂 (︁𝑚1/2
(︁
𝑘6 ̂︀𝑇 + 𝑘15

)︁)︁
calls to ℒ.Update,
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• ̃︀𝑂 (︀𝑚1/2𝛼−1/4
)︀

calls to ℒ.BatchUpdate(∅), and

• ̃︀𝑂 (︁𝑚1/2𝑘−1 ̂︀𝑇−1
)︁

calls to ℒ.BatchUpdate(𝑍, f ).

Runtime of Checker. We look at each operation separately. We begin with the runtime of
Checker.Check. We have

̃︀𝑂
⎛⎜⎝ 𝑚1/2/𝑘⏟  ⏞  

# calls to MultiStep

· 𝑘16⏟ ⏞ 
# calls in each MultiStep

· (𝛽Checker𝑚+ (𝑘16𝛽−2
Checker𝜀

−2)2))𝜀−2⏟  ⏞  
runtime per call

⎞⎟⎠ .

To make the first term ̃︀𝑂 (︀𝑚3/2/𝑘
)︀
, we set 𝛽Checker = 𝑘−28. Note that this satisfies our previous

requirements that 𝛽Checker ≥ ̃︀Ω (︀𝑘16/𝑚)︀ and 𝛽Checker ≥ ̃︀Ω (︀𝑘16/𝑚1/4
)︀

as long as 𝑘 ≤ 𝑚1/176.
Therefore the total runtime because of this operation is ̃︀𝑂 (︀𝑚3/2/𝑘 +𝑚1/2𝑘195

)︀
.

For Checker.Initialize, we have

̃︀𝑂
⎛⎜⎝ 𝑘4⏟ ⏞ 

#Checker𝑠

· 𝑘3𝛽−1/2
Checker⏟  ⏞  

#times initialized

·𝑚𝛽−4
Checker𝜀

−4⏟  ⏞  
runtime per init

⎞⎟⎠ = ̃︀𝑂 (︀𝑚𝑘157)︀ .
For Checker.Update, similarly with the analysis of Locator but noting that there are no

batched updates, we have

̃︀𝑂
⎛⎜⎝ 𝑘4⏟ ⏞ 

#Checkers

· 𝑚𝜀−2
solve⏟  ⏞  

#calls per Checker

· 𝛽−2
Checker𝜀

−2⏟  ⏞  
runtime per call

⎞⎟⎠ = ̃︀𝑂 (︀𝑚𝑘78)︀ .
For Checker.TemporaryUpdate, we have

̃︀𝑂
⎛⎜⎝ 𝑘4⏟ ⏞ 

#Checkers

· 𝑚1/2/𝑘⏟  ⏞  
# calls to MultiStep

· 𝑘16⏟ ⏞ 
# calls per MultiStep

· (𝑘16𝛽−2
Checker𝜀

−2)2⏟  ⏞  
runtime per call

⎞⎟⎠ = ̃︀𝑂 (︁𝑚1/2𝑘187
)︁
.

Finally, note that, by definition, computing the vectors 𝜋𝑖𝑜𝑙𝑑 takes ̃︀𝑂 (︀𝑚3/2/𝑘
)︀
, as we do it once per

𝑘4 calls to MultiStep and it takes ̃︀𝑂 (︀𝑚𝑘4)︀.
As long as 𝑘 ≤ 𝑚1/316, the total runtime because of Checker is ̃︀𝑂 (︀𝑚3/2/𝑘

)︀
.

9.2.4 Deferred Proofs from Section 4.4

Proof of Lemma 4.4.4

We first provide a helper lemma for upper bounding escape probabilities in terms of the underlying
graph’s resistances.

Lemma 9.2.11 (Bounding escape probabilities). Let a graph with resistances r , and consider a
random walk which at each step moves from the current vertex 𝑢 to an adjacent vertex 𝑣 sampled
with probability proportional to 1/𝑟𝑢𝑣. Let 𝑝{𝑢,𝑡}𝑢 (𝑠) represent the probability that a walk starting at 𝑠
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hits 𝑢 before 𝑡. Then

𝑝{𝑢,𝑡}𝑢 (𝑠) =
𝑅𝑒𝑓𝑓 (𝑠, 𝑡)

𝑅𝑒𝑓𝑓 (𝑢, 𝑡)
· 𝑝{𝑠,𝑡}𝑠 (𝑢) ≤

𝑅𝑒𝑓𝑓 (𝑠, 𝑡)

𝑅𝑒𝑓𝑓 (𝑢, 𝑡)
≤ 𝑟𝑠𝑡
𝑅𝑒𝑓𝑓 (𝑢, 𝑡)

.

Proof. Using standard arguments we can prove that if L is the Laplacian associated with the
underlying graph, then

𝑝{𝑢,𝑡}𝑢 (𝑠) =
(1𝑠 − 1𝑡)

⊤L+(1𝑢 − 1𝑡)

𝑅𝑒𝑓𝑓 (𝑢, 𝑡)
.

This immediately yields the claim as we can further write it as

𝑝{𝑢,𝑡}𝑢 (𝑠) =
𝑅𝑒𝑓𝑓 (𝑠, 𝑡)

𝑅𝑒𝑓𝑓 (𝑢, 𝑡)
· (1𝑢 − 1𝑡)

⊤L+(1𝑠 − 1𝑡)

𝑅𝑒𝑓𝑓 (𝑠, 𝑡)
=
𝑅𝑒𝑓𝑓 (𝑠, 𝑡)

𝑅𝑒𝑓𝑓 (𝑢, 𝑡)
· 𝑝{𝑠,𝑡}𝑠 (𝑢) ≤

𝑅𝑒𝑓𝑓 (𝑠, 𝑡)

𝑅𝑒𝑓𝑓 (𝑢, 𝑡)
,

where we crucially used the symmetry of L. The final inequality is due to the fact that 𝑅𝑒𝑓𝑓 (𝑠, 𝑡) ≤ 𝑟𝑠𝑡.
Now let us prove the claimed identity for escape probabilities. Let 𝜓 be the vector defined by

𝜓𝑖 = 𝑝
{𝑢,𝑡}
𝑢 (𝑖) for all 𝑖 ∈ 𝑉 , which clearly satisfies 𝜓𝑢 = 1 and 𝜓𝑡 = 0. Furthermore, for all 𝑖 /∈ {𝑢, 𝑡}

we have

𝜓𝑖 =
∑︁
𝑗∼𝑖

𝑟−1
𝑖𝑗∑︀

𝑘∼𝑖 𝑟
−1
𝑖𝑘

𝜓𝑗 ,

which can be written in short as

(L𝜓)𝑖 = 0 for all 𝑖 /∈ {𝑠, 𝑡} .

Now we solve the corresponding linear system. We interpret 𝜓 as electrical potentials corresponding
to routing 1/𝑅𝑒𝑓𝑓 (𝑢, 𝑡) units of electrical flow from 𝑢 to 𝑡. Indeed, by Ohm’s law, this corresponds
to a potential difference 𝜓𝑢 − 𝜓𝑡 = 1. Furthermore, this shows that

𝜓𝑠 − 𝜓𝑡 = (1𝑠 − 1𝑡)
⊤L+(1𝑢 − 1𝑡) ·

1

𝑅𝑒𝑓𝑓 (𝑢, 𝑡)
,

which concludes the proof.

Now we are ready to prove the main statement.

Proof of Lemma 4.4.4. Note that the demand can be decomposed as d − 𝜋𝐶(d) = d1 − d2, where
d1 = 1𝑠√

𝑟𝑠𝑡
− 𝜋𝐶( 1𝑠√

𝑟𝑠𝑡
) and d2 = 1𝑡√

𝑟𝑠𝑡
− 𝜋𝐶( 1𝑡√

𝑟𝑠𝑡
). Now let 𝑝1 be the probability distribution of

𝑠−𝐶 random walks obtained via a random walk from 𝑠 with transition probabilities proportional to
inverse resistances. Similarly, let 𝑝2 be the probability distribution of 𝑡− 𝐶 random walks obtained
by running the same process starting from 𝑡.

Now, it is well known that an electrical flow is the sum of these random walks, i.e.

R−1BL+d1 =
1
√
𝑟𝑠𝑡
· E𝑃∼𝑝1 [𝑛𝑒𝑡(𝑃 )]

and similarly for d2

R−1BL+d2 =
1
√
𝑟𝑠𝑡
· E𝑃∼𝑝2 [𝑛𝑒𝑡(𝑃 )] ,

where 𝑛𝑒𝑡(𝑃 ) ∈ R𝑚 is a flow vector whose 𝑒-th entry is the net number of times the edge 𝑒 = (𝑢, 𝑣)
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is used by 𝑃 . Therefore we can write:⃒⃒⃒⃒
𝜑𝑢 − 𝜑𝑣√

𝑟𝑢𝑣

⃒⃒⃒⃒
=
√
𝑟𝑢𝑣
⃒⃒
R−1BL+d

⃒⃒
𝑢𝑣

=

√︂
𝑟𝑢𝑣
𝑟𝑠𝑡

⃒⃒
E𝑃 1∼𝑝1

[︀
𝑛𝑒𝑡𝑒(𝑃

1)
]︀
− E𝑃 2∼𝑝2

[︀
𝑛𝑒𝑡𝑒(𝑃

2)
]︀⃒⃒
.

Let us also subdivide 𝑒 by inserting an additional vertex 𝑤 in the middle (i.e. 𝑟𝑢𝑤 = 𝑟𝑤𝑣 = 𝑟𝑢𝑣/2).
This has no effect in the random walks, but will be slightly more convenient in terms of notation.
The first expectation term can be expressed as

E𝑃 1∼𝑝1
[︀
𝑛𝑒𝑡𝑒(𝑃

1)
]︀
= Pr

𝑃 1∼𝑝1

[︀
𝑃 1 visits 𝑡 before 𝐶 ∪ {𝑤}

]︀
· E𝑃 1∼𝑝1

[︀
𝑛𝑒𝑡𝑒(𝑃

1) | 𝑃 1 visits 𝑡 before 𝐶 ∪ {𝑤}
]︀

+ Pr
𝑃 1∼𝑝1

[︀
𝑃 1 visits 𝑤 before 𝐶 ∪ {𝑡}

]︀
· E𝑃 1∼𝑝1

[︀
𝑛𝑒𝑡𝑒(𝑃

1) | 𝑃 1 visits 𝑡 before 𝐶 ∪ {𝑡}
]︀
.

Now, note that

E𝑃 1∼𝑝1
[︀
𝑛𝑒𝑡𝑒(𝑃

1) | 𝑃 1 visits 𝑡 before 𝐶 ∪ {𝑤}
]︀
= E𝑃 2∼𝑝2

[︀
𝑛𝑒𝑡𝑒(𝑃

2)
]︀
.

Additionally,

Pr
𝑃 1∼𝑝1

[︀
𝑃 1 visits 𝑤 before 𝐶 ∪ {𝑡}

]︀
= Pr

𝑃 1∼𝑝1

[︀
𝑃 1 visits 𝑤 before 𝐶

]︀
· Pr
𝑃 1∼𝑝1

[︀
𝑃 1 visits 𝑤 before 𝑡 | 𝑃 1 visits 𝑤 before 𝐶

]︀
The first term of the product is 𝑝𝐶∪{𝑤}

𝑤 (𝑠). For the second term, we define a new graph ̂︀𝐺 by deleting
𝐶, and denote the hitting probabilities in ̂︀𝐺 by ̂︀p. Then, the second term is equal to ̂︀p{𝑡,𝑤}𝑤 (𝑠).

We have concluded that

E𝑃 1∼𝑝1
[︀
𝑛𝑒𝑡𝑒(𝑃

1)
]︀
≤ E𝑃 2∼𝑝2

[︀
𝑛𝑒𝑡𝑒(𝑃

2)
]︀
+ 𝑝𝐶∪{𝑤}

𝑤 (𝑠) · ̂︀p{𝑡,𝑤}𝑤 (𝑠) .

Combining this with the symmetric argument for 𝑝2 shows that⃒⃒
E𝑃 1∼𝑝1

[︀
𝑛𝑒𝑡𝑒(𝑃

1)
]︀
− E𝑃 2∼𝑝2

[︀
𝑛𝑒𝑡𝑒(𝑃

2)
]︀⃒⃒
≤ 𝑝𝐶∪{𝑤}

𝑤 (𝑠) · ̂︀p{𝑡,𝑤}𝑤 (𝑠) + 𝑝𝐶∪{𝑤}
𝑤 (𝑡) · ̂︀p{𝑠,𝑤}𝑤 (𝑡) .

Using Lemma 9.2.11 and the fact that ̂︀𝑅𝑒𝑓𝑓 (𝑤, 𝑡) ≥ 𝑟𝑢𝑣/4 ( ̂︀𝑅𝑒𝑓𝑓 are the effective resistances in̂︀𝐺), we can bound ̂︀𝑝{𝑡,𝑤}𝑤 (𝑠) ≤ min{1, 𝑟𝑠𝑡̂︀𝑅𝑒𝑓𝑓 (𝑤, 𝑡)} ≤ min{1, 4 𝑟𝑠𝑡
𝑟𝑢𝑣
} ,

and the same upper bound holds for ̂︀p{𝑠,𝑤}𝑤 (𝑡). Therefore,⃒⃒
E𝑃 1∼𝑝1

[︀
𝑛𝑒𝑡𝑒(𝑃

1)
]︀
− E𝑃 2∼𝑝2

[︀
𝑛𝑒𝑡𝑒(𝑃

2)
]︀⃒⃒

≤ min{1, 4 𝑟𝑠𝑡
𝑟𝑢𝑣
}
(︁
𝑝𝐶∪{𝑤}
𝑤 (𝑠) + 𝑝𝐶∪{𝑤}

𝑤 (𝑡)
)︁

≤ 2

√︂
𝑟𝑠𝑡
𝑟𝑢𝑣

(︁
𝑝𝐶∪{𝑤}
𝑤 (𝑠) + 𝑝𝐶∪{𝑤}

𝑤 (𝑡)
)︁

≤ 2

√︂
𝑟𝑠𝑡
𝑟𝑢𝑣

(︁
𝑝𝐶∪{𝑢}
𝑢 (𝑠) + 𝑝𝐶∪{𝑣}

𝑣 (𝑠) + 𝑝𝐶∪{𝑢}
𝑢 (𝑡) + 𝑝𝐶∪{𝑣}

𝑣 (𝑡)
)︁
.
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Putting everything together, we have that⃒⃒⃒⃒
𝜑𝑢 − 𝜑𝑣√

𝑟𝑢𝑣

⃒⃒⃒⃒
≤ 2

(︁
𝑝𝐶∪{𝑢}
𝑢 (𝑠) + 𝑝𝐶∪{𝑣}

𝑣 (𝑠) + 𝑝𝐶∪{𝑢}
𝑢 (𝑡) + 𝑝𝐶∪{𝑣}

𝑣 (𝑡)
)︁
.

Proof of Lemma 4.4.5

Proof. Let d = B⊤ 1𝑒√
r

and 𝑒 = (𝑢,𝑤). Note that ℰ𝑟 (d) ≤ 𝑟𝑒 · ( 1√
𝑟𝑒
)2 = 1, therefore the case that

remains is

𝑅𝑒𝑓𝑓 (𝐶, 𝑒) ≥ 36 · 𝑟𝑒 . (9.45)

For each 𝑣 ∈ 𝐶 by Lemma 4.4.6 we have that

⃒⃒
𝜋𝐶𝑣 (d)

⃒⃒
≤ (𝑝𝐶𝑣 (𝑢) + 𝑝𝐶𝑣 (𝑤)) ·

√
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑒)
.

Now, we would like to bound the energy of routing 𝜋𝐶(d) by the energy to route it via 𝑤. For each
𝑣 ∈ 𝐶 we let d𝑣 be the following demand:

d𝑣 = 𝜋𝐶𝑣 (d) · (1𝑣 − 1𝑤) .

Note that 𝜋𝐶(d) =
∑︀
𝑣∈𝐶

d𝑣. We have,

√︁
ℰr (𝜋𝐶(d)) =

⎯⎸⎸⎷ℰr (︃𝜋𝐶 (︃∑︁
𝑣∈𝐶

d𝑣

)︃)︃

≤
∑︁
𝑣∈𝐶

√︁
ℰr (𝜋𝐶 (d𝑣))

≤
∑︁
𝑣∈𝐶

(𝑅𝑒𝑓𝑓 (𝑣, 𝑤))
1/2
⃒⃒
𝜋𝐶𝑣 (d)

⃒⃒
≤
∑︁
𝑣∈𝐶

(𝑅𝑒𝑓𝑓 (𝑣, 𝑤))
1/2 · (𝑝𝐶𝑣 (𝑢) + 𝑝𝐶𝑣 (𝑤)) ·

√
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑒)
.

Now, note that, because 𝑅𝑒𝑓𝑓 is a metric,

𝑅𝑒𝑓𝑓 (𝑣, 𝑢) ≥ 𝑅𝑒𝑓𝑓 (𝑣, 𝑤)− |𝑅𝑒𝑓𝑓 (𝑣, 𝑤)−𝑅𝑒𝑓𝑓 (𝑣, 𝑢)|
≥ 𝑅𝑒𝑓𝑓 (𝑣, 𝑤)− 𝑟𝑒

≥ 𝑅𝑒𝑓𝑓 (𝑣, 𝑤)−
1

36
𝑅𝑒𝑓𝑓 (𝐶, 𝑒)

≥ 35

36
𝑅𝑒𝑓𝑓 (𝑣, 𝑤) ,
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where we used the triangle inequality twice, (9.45), and also the fact that 𝑅𝑒𝑓𝑓 (𝑣, 𝑤) ≥ 𝑅𝑒𝑓𝑓 (𝐶, 𝑒)
because 𝑣 ∈ 𝐶 and 𝑤 ∈ 𝑒. Now, note also that

𝑅𝑒𝑓𝑓 (𝑣, 𝑒) ≥
1

2
min{𝑅𝑒𝑓𝑓 (𝑣, 𝑤), 𝑅𝑒𝑓𝑓 (𝑣, 𝑢) ≥

1

2
· 35
36
𝑅𝑒𝑓𝑓 (𝑣, 𝑤)} ,

so

2
∑︁
𝑣

(𝑅𝑒𝑓𝑓 (𝑣, 𝑤))
1/2 · (𝑝𝐶𝑣 (𝑢) + 𝑝𝐶𝑣 (𝑤)) ·

√
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑒)

≤ 2

√︂
2 · 36

35

∑︁
𝑣

(𝑝𝐶𝑣 (𝑢) + 𝑝𝐶𝑣 (𝑤)) ·
√︂

𝑟𝑒
𝑅𝑒𝑓𝑓 (𝑣, 𝑒)

≤ 6 ·
√︂

𝑟𝑒
𝑅𝑒𝑓𝑓 (𝐶, 𝑒)

,

where we used the fact that
∑︀
𝑣∈𝐶

(𝑝𝐶𝑣 (𝑢)+𝑝
𝐶
𝑣 (𝑤)) = 2 and 𝑅𝑒𝑓𝑓 (𝑣, 𝑒) ≥ 𝑅𝑒𝑓𝑓 (𝐶, 𝑒) because 𝑣 ∈ 𝐶.

Proof of Lemma 4.4.9

Proof. By definition of the fact that 𝑒 is not 𝜀-important, we have

𝑅𝑒𝑓𝑓 (𝐶, 𝑒) > 𝑟𝑒/𝜀
2 .

Using the fact that the demand 𝜋𝐶
(︁
B⊤ p√

r

)︁
is supported on 𝐶 and Lemma 4.4.5, we get

⃒⃒⃒⟨
1𝑒,R

−1/2B𝜑*
⟩⃒⃒⃒

=

⃒⃒⃒⃒⟨
𝜋𝐶
(︂
B⊤ 1𝑒√

r

)︂
,𝜑*

𝐶

⟩⃒⃒⃒⃒
≤

√︃
ℰr
(︂
𝜋𝐶
(︂
B⊤ 1𝑒√

r

)︂)︂
·
√︀
𝐸r (𝜑

*)

=

√︃
ℰr
(︂
𝜋𝐶
(︂
B⊤ 1𝑒√

r

)︂)︂
· 𝛿

√︃
ℰr
(︂
𝜋𝐶
(︂
B⊤ p√

r

)︂)︂
≤ 6

√︂
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝐶, 𝑒)
· 𝛿
√
𝑚

≤ 6𝜀 .
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Proof of Lemma 4.4.11

Proof. We note that√︃
ℰr
(︂
𝜋𝐶∪{𝑣}(B⊤ q√

r
)− 𝜋𝐶(B⊤ q√

r
)

)︂
=

⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣 (B⊤ q√

r
)

⃒⃒⃒⃒ √︁
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

≤
∑︁

𝑒=(𝑢,𝑤)∈𝐸

⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣 (B⊤ 𝑞𝑒√

𝑟𝑒
1𝑒)

⃒⃒⃒⃒ √︁
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

≤
∑︁

𝑒=(𝑢,𝑤)∈𝐸

(𝑝𝐶∪{𝑣}
𝑣 (𝑢) + 𝑝𝐶∪{𝑣}

𝑣 (𝑤)) ·min

⎧⎨⎩
√︃
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

𝑟𝑒
,

√︀
𝑟𝑒𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

𝑅𝑒𝑓𝑓 (𝑒, 𝑣)

⎫⎬⎭ ,

where we used Lemma 4.4.6. For some sufficiently large 𝑐 to be defined later, we partition 𝐸 into 𝑋
and 𝑌 , where 𝑋 = {𝑒 ∈ 𝐸 | 𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤ 𝑐2 · 𝑟𝑒 or 𝑟𝑒𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤ 𝑐2 · (𝑅𝑒𝑓𝑓 (𝑒, 𝑣))2} and 𝑌 = 𝐸∖𝑋.
We first note that

∑︁
𝑒=(𝑢,𝑤)∈𝑋

(𝑝𝐶∪{𝑣}
𝑣 (𝑢) + 𝑝𝐶∪{𝑣}

𝑣 (𝑤)) ·min

⎧⎨⎩
√︃
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

𝑟𝑒
,

√︀
𝑟𝑒𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

𝑅𝑒𝑓𝑓 (𝑒, 𝑣)

⎫⎬⎭
≤ 𝑐 ·

∑︁
𝑒=(𝑢,𝑤)∈𝑋

(𝑝𝐶∪{𝑣}
𝑣 (𝑢) + 𝑝𝐶∪{𝑣}

𝑣 (𝑤))

≤ 𝑐 · ̃︀𝑂 (︀𝛽−2
)︀
,

where the last inequality follows by the congestion reduction property.
Now, let 𝑒 = (𝑢,𝑤) ∈ 𝑌 . We will prove that both 𝑢 and 𝑤 are much closer to 𝑣 than 𝐶. This, in

turn, will imply that their hitting probabilities on 𝑣 are roughly the same, and so they mostly cancel
out in the projection.

First of all, we let 𝑅𝑒𝑓𝑓 (𝐶, 𝑣) = 𝑐21 · 𝑟𝑒 and 𝑟𝑒𝑅𝑒𝑓𝑓 (𝐶, 𝑣) = 𝑐22 · (𝑅𝑒𝑓𝑓 (𝑒, 𝑣))2, for some 𝑐1, 𝑐2 > 0,
where by definition 𝑐1, 𝑐2 ≥ 𝑐. Now, we assume without loss of generality that𝑅𝑒𝑓𝑓 (𝑢, 𝑣) ≤ 𝑅𝑒𝑓𝑓 (𝑤, 𝑣),
and so

𝑅𝑒𝑓𝑓 (𝑢, 𝑣) ≤ 2𝑅𝑒𝑓𝑓 (𝑒, 𝑣) =
2

𝑐2

√︁
𝑟𝑒𝑅𝑒𝑓𝑓 (𝐶, 𝑣) =

2

𝑐1𝑐2
𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤

2

𝑐1𝑐2
(𝑅𝑒𝑓𝑓 (𝐶, 𝑢) +𝑅𝑒𝑓𝑓 (𝑢, 𝑣)) ,

so

𝑅𝑒𝑓𝑓 (𝑢, 𝑣) ≤
2

𝑐1𝑐2

1− 2
𝑐1𝑐2

𝑅𝑒𝑓𝑓 (𝐶, 𝑢) =
2

𝑐1𝑐2 − 2
𝑅𝑒𝑓𝑓 (𝐶, 𝑢) ≤

3

𝑐1𝑐2
𝑅𝑒𝑓𝑓 (𝐶, 𝑢) . (9.46)

Futhermore, note that

𝑅𝑒𝑓𝑓 (𝑤, 𝑣) ≤ 𝑅𝑒𝑓𝑓 (𝑢, 𝑣)+ 𝑟𝑒 ≤
(︂

2

𝑐1𝑐2
+

1

𝑐21

)︂
𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤

(︂
2

𝑐1𝑐2
+

1

𝑐21

)︂
(𝑅𝑒𝑓𝑓 (𝐶,𝑤)+𝑅𝑒𝑓𝑓 (𝑤, 𝑣)) ,

and so we have

𝑅𝑒𝑓𝑓 (𝑤, 𝑣) ≤
2

𝑐1𝑐2
+ 1

𝑐21

1− 2
𝑐1𝑐2
− 1

𝑐21

𝑅𝑒𝑓𝑓 (𝐶,𝑤) ≤ 3

(︂
1

𝑐1𝑐2
+

1

𝑐21

)︂
𝑅𝑒𝑓𝑓 (𝐶,𝑤) . (9.47)
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Now, by Lemma 9.2.11 together with (9.46) we have

𝑝𝐶∪{𝑣}
𝑣 (𝑢) ≥ 1− 3

𝑐1𝑐2

and with (9.47) we have

𝑝𝐶∪{𝑣}
𝑣 (𝑤) ≥ 1− 3

(︂
1

𝑐1𝑐2
+

1

𝑐21

)︂
,

therefore ⃒⃒⃒
𝑝𝐶∪{𝑣}
𝑣 (𝑢)− 𝑝𝐶∪{𝑣}

𝑣 (𝑤)
⃒⃒⃒
≤ 6

(︂
1

𝑐1𝑐2
+

1

𝑐21

)︂
.

So, ⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣 (B⊤ 𝑞𝑒√

𝑟𝑒
1𝑒)

⃒⃒⃒⃒ √︁
𝑅𝑒𝑓𝑓 (𝐶, 𝑣) =

⃒⃒⃒
𝑝𝐶∪{𝑣}
𝑣 (𝑢)− 𝑝𝐶∪{𝑣}

𝑣 (𝑤)
⃒⃒⃒ √︃𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

𝑟𝑒

≤ 6

(︂
1

𝑐1𝑐2
+

1

𝑐21

)︂
· 𝑐1

= 6

(︂
1

𝑐2
+

1

𝑐1

)︂
= 𝑂

(︂
1

𝑐

)︂
.

Now, we will apply Lemma 4.4.10 to prove that with high probability |𝑌 | ≤ ̃︀𝑂 (︀𝛽−1
)︀
. The reason

we can apply the lemma is that for any 𝑒 = (𝑢,𝑤) ∈ 𝑌 , we have

𝑅𝑒𝑓𝑓 (𝑒, 𝑣) =
1

𝑐1𝑐2
𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤

1

2
𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ,

and so 𝑌 ⊆ 𝑁𝐸(𝑣,𝑅𝑒𝑓𝑓 (𝐶, 𝑣)/2). Therefore, we get that

∑︁
𝑒=(𝑢,𝑤)∈𝑌

⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣 (B⊤ 𝑞𝑒√

𝑟𝑒
1𝑒)

⃒⃒⃒⃒ √︁
𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤ 𝑐−1 · ̃︀𝑂 (︀𝛽−1

)︀
.

Overall, we conclude that√︃
ℰr
(︂
𝜋𝐶∪{𝑣}(B⊤ q√

r
)− 𝜋𝐶(B⊤ q√

r
)

)︂
≤ (𝑐+ 𝑐−1) ̃︀𝑂 (︀𝛽−2

)︀
= ̃︀𝑂 (︀𝛽−2

)︀
,

by setting 𝑐 to be a large enough constant.
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Proof of Lemma 4.4.12

Proof. We write

𝜋𝐶
𝑇 ,r𝑇

(︂
B⊤ q𝑇√

r𝑇

)︂
− 𝜋𝐶0,r0

(︂
B⊤ q0

√
r0

)︂
=

∑︁
𝑖 is an AddTerminal

𝜋𝐶
𝑖+1,r 𝑖

𝑣𝑖

(︂
B⊤ q 𝑖√

r 𝑖

)︂
·
(︁
1𝑣𝑖 − 𝜋𝐶

𝑖,r 𝑖
(1𝑣𝑖)

)︁
⏟  ⏞  

d𝐴𝑑𝑑

+
∑︁

𝑖 is an Update

𝜋𝐶
𝑖,r 𝑖

(︂
B⊤

(︂
q 𝑖+1

√
r 𝑖+1

− q 𝑖√
r 𝑖

)︂
1𝑒𝑖

)︂
⏟  ⏞  

d𝑈𝑝𝑑

,

which implies that√︃
ℰr𝑇

(︂
𝜋𝐶𝑇 ,r𝑇

(︂
B⊤ q𝑇√

r𝑇

)︂
− 𝜋𝐶0,r0

(︂
B⊤ q0

√
r0

)︂)︂
≤
√︀
ℰr𝑇 (d𝐴𝑑𝑑) +

√︁
ℰr𝑇 (d𝑈𝑝𝑑) .

We bound each of these terms separately. For the second one, we have that√︁
ℰr𝑇 (d𝑈𝑝𝑑)

≤
∑︁

𝑖 is an Update

√︃
ℰr𝑇

(︂
𝜋𝐶𝑖,r 𝑖

(︂
B⊤

(︂
q 𝑖+1

√
r 𝑖+1

− q 𝑖√
r 𝑖

)︂
1𝑒𝑖

)︂)︂

=
∑︁

𝑖 is an Update

√︃
ℰr𝑇

(︂
B⊤

(︂
q 𝑖+1

√
r 𝑖+1

− q 𝑖√
r 𝑖

)︂
1𝑒𝑖

)︂

≤
∑︁

𝑖 is an Update

(︃√︃
ℰr𝑇

(︂
B⊤ q 𝑖+1

√
r 𝑖+1

1𝑒𝑖

)︂
+

√︃
ℰr𝑇

(︂
B⊤ q 𝑖√

r 𝑖
1𝑒𝑖

)︂)︃

≤ max
𝑖

⃦⃦⃦⃦
r𝑇

r 𝑖

⃦⃦⃦⃦1/2
∞

∑︁
𝑖 is an Update

(︃√︃
ℰr 𝑖+1

(︂
B⊤ q 𝑖+1

√
r 𝑖+1

1𝑒𝑖

)︂
+

√︃
ℰr 𝑖

(︂
B⊤ q 𝑖√

r 𝑖
1𝑒𝑖

)︂)︃

≤ 2max
𝑖

⃦⃦⃦⃦
r𝑇

r 𝑖

⃦⃦⃦⃦1/2
∞

𝑇 .

For the first one, we have√︀
ℰr𝑇 (d𝐴𝑑𝑑)

≤
∑︁

𝑖 is an AddTerminal

⃒⃒⃒⃒
𝜋𝐶

𝑖+1,r 𝑖

𝑣𝑖

(︂
B⊤ q 𝑖√

r 𝑖

)︂⃒⃒⃒⃒
·
√︁
ℰr𝑇

(︀
1𝑣𝑖 − 𝜋𝐶

𝑖,r 𝑖 (1𝑣𝑖)
)︀

≤
⃦⃦⃦⃦
r𝑇

r 𝑖

⃦⃦⃦⃦1/2
∞

∑︁
𝑖 is an AddTerminal

⃒⃒⃒⃒
𝜋𝐶

𝑖+1,r 𝑖

𝑣𝑖

(︂
B⊤ q 𝑖√

r 𝑖

)︂⃒⃒⃒⃒
·
√︁
ℰr 𝑖

(︀
1𝑣𝑖 − 𝜋𝐶

𝑖,r 𝑖 (1𝑣𝑖)
)︀

≤ ̃︀𝑂(︃max
𝑖

⃦⃦⃦⃦
r𝑇

r 𝑖

⃦⃦⃦⃦1/2
∞

𝛽−2

)︃
· 𝑇 ,
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where in the last inequality we used Lemma 4.4.11. The desired statement now follows immediately.

Proof of Lemma 4.3.8

Proof. Initialize(f ): We set s+ = u − f , s− = f , r0 = r = 1
(s+)2

+ 1
(s−)2

.
We first initialize a 𝛽-congestion reduction subset 𝐶 based on Lemma 4.4.2, which takes timẽ︀𝑂 (︀𝑚𝛽−2

)︀
, and a data structure DynamicSC for maintaining the sparsified Schur Complement onto

𝐶, as described in Appendix 9.2.1, which takes time ̃︀𝑂 (︀𝑚𝛽−4𝜀−4
)︀
. We also set 𝐶0 = 𝐶.

Then, we generate an ̃︀𝑂 (︀𝜀−2
)︀
×𝑚 sketching matrix Q as in (Lemma 5.1, [73] v2), which takes

time ̃︀𝑂 (︀𝑚𝜀−2
)︀
, and let its rows be q 𝑖 for 𝑖 ∈ [ ̃︀𝑂 (︀𝜀−2

)︀
].

In order to compute the set of important edges, we use Lemma 9.2.3 after contracting 𝐶, which
shows that we can compute all resistances of the form 𝑅𝑒𝑓𝑓 (𝐶, 𝑢) for 𝑢 ∈ 𝑉 ∖𝐶 up to a factor of 2 iñ︀𝑂 (𝑚). From these, we can get 4-approximate estimates of 𝑅𝑒𝑓𝑓 (𝐶, 𝑒) for 𝑒 ∈ 𝐸∖𝐸(𝐶), using the
fact that

min{𝑅𝑒𝑓𝑓 (𝐶, 𝑢), 𝑅𝑒𝑓𝑓 (𝐶,𝑤)} ≈2 𝑅𝑒𝑓𝑓 (𝐶, 𝑒) .

Then, in 𝑂(𝑚) time, we can easily compute a set of edges 𝑆 such that

{𝑒 | 𝑒 is
𝜀𝛽

𝛼
-important } ⊆ 𝑆 ⊆ {𝑒 | 𝑒 is

𝜀𝛽

4𝛼
-important}

We also need to sample the random walks that will be used inside the demand projection data
structures. We use (Lemma 5.15, [73] v2) to sample ℎ = ̃︀𝑂 (︀̂︀𝜀−4𝛽−6 + ̂︀𝜀−2𝛽−2𝛾−2

)︀
random walks for

each 𝑢 ∈ 𝑉 ∖𝐶 and 𝑒 ∈ 𝐸∖𝐸(𝐶) with 𝑢 ∈ 𝑒, where we set 𝛾 = 𝜀
4𝛼 so that 𝑆 is a subset of 𝛾-important

edges. Note that, by Definition 4.3.7, a 𝛾-important edge will always remain 𝛾-important until
the Locator is re-initialized, as any edge’s resistive distance to 𝐶 can only decrease, and its own
resistance is constant. Therefore 𝑆 can be assumed to always be a subset of 𝛾-important edges.

The runtime to sample the set 𝒫 of these random walks is

̃︀𝑂 (︀𝑚ℎ𝛽−2
)︀
= ̃︀𝑂 (︀𝑚(̂︀𝜀−4𝛽−8 + ̂︀𝜀−2𝛽−4𝛾−2)

)︀
= ̃︀𝑂 (︀𝑚(̂︀𝜀−4𝛽−8 + ̂︀𝜀−2𝜀−2𝛼2𝛽−4)

)︀
.

In order to be able to detect congested edges, we will initialize ̃︀𝑂 (︀𝜀−2
)︀

demand projection
data structures, with the guarantees from Lemma 4.4.14. We will maintain an approximation to
𝜋𝐶(B⊤ q 𝑖

𝑆√
r
) for all 𝑖 ∈ ̃︀𝑂 (︀𝜀−2

)︀
, where q 𝑖 are the rows of the sketching matrix that we have generated,

as well as 𝜋𝑜𝑙𝑑 := 𝜋𝐶0,r0
(︁
B⊤ p0

√
r0

)︁
, where p0 =

√
r0𝑔(s0) =

1
s+,0−

1
s−,0√

r0
.

Specifically, we call
DP𝑖.Initialize(𝐶, r , q 𝑖, 𝑆,𝒫)

for all 𝑖 ∈ [ ̃︀𝑂 (︀𝜀−2
)︀
], and also exactly compute 𝜋𝑜𝑙𝑑, which can be done by calling

DemandProjector.Initialize(𝐶, r ,p, [𝑚],𝒫) .

The total runtime for this operation is dominated by the random walk generation, and is

̃︀𝑂 (︀𝑚(̂︀𝜀−4𝛽−8 + ̂︀𝜀−2𝜀−2𝛼2𝛽−4)
)︀
.

Update(𝑒, f ): We set 𝑠+𝑒 = 𝑢𝑒−𝑓𝑒, 𝑠−𝑒 = 𝑓𝑒, and 𝑟𝑒 = 1
(𝑠+𝑒 )2

+ 1
(𝑠−𝑒 )2

. Then, we also set 𝑝𝑒 =
1

𝑠+𝑒
− 1

𝑠−𝑒√
𝑟𝑒

.
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We distinguish two cases:

• 𝑒 ∈ 𝐸(𝐶):

In this case, we can simply call

DynamicSC.Update(𝑒, 𝑟𝑒)

and
DP𝑖.Update(𝑒, r , q)

for all 𝑖 ∈ [ ̃︀𝑂 (︀𝜀−2
)︀
]. Note that we can do this as DP𝑖 was initialized with resistances r0 and

r0 ≈𝛼 r .

• 𝑒 ∈ 𝐸∖𝐸(𝐶):

We let 𝑒 = (𝑢,𝑤). We want to insert 𝑢 and 𝑤 into 𝐶, but for doing that DP𝑖’s require constant
factor estimates of the resistances 𝑅𝑒𝑓𝑓 (𝐶, 𝑢) and 𝑅𝑒𝑓𝑓 (𝐶 ∪ {𝑢}, 𝑤). In order to get these
estimates, we will use DynamicSC.

We first call
DynamicSC.AddTerminal(𝑢) ,

which takes time ̃︀𝑂 (︀𝛽−2𝜀−2
)︀

and returns ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑢) ≈2 𝑅𝑒𝑓𝑓 (𝐶, 𝑢). Given this estimate, we
can call

DP𝑖.AddTerminal(𝑢, ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑢)) ,
for all 𝑖 ∈ [ ̃︀𝑂 (︀𝜀−2

)︀
], each of which takes time

̃︀𝑂 (︀̂︀𝜀−4𝛽−8 + ̂︀𝜀−2𝛽−6𝛾−2
)︀
= ̃︀𝑂 (︀̂︀𝜀−4𝛽−8 + ̂︀𝜀−2𝜀−2𝛼2𝛽−6

)︀
.

Now, we can set 𝐶 = 𝐶 ∪ {𝑢} and repeat the same process for 𝑤.

Finally, to update the resistance, note that we now have 𝑒 ∈ 𝐸(𝐶), so we apply the procedure
from the first case.

Finally, if the total number of calls to DP𝑖.AddTerminal for some fixed 𝑖 since the last call to
ℒ.BatchUpdate(∅) exceeds 𝜀̂︀𝜀𝛼1/2 (note that the number of calls is actually the same for all 𝑖), we
call ℒ.BatchUpdate(∅) in order to re-initialize the demand projections.

We conclude that the total runtime is

̃︀𝑂(︃𝑚̂︀𝜀𝛼1/2

𝜀3
+ ̂︀𝜀−4𝜀−2𝛽−8 + ̂︀𝜀−2𝜀−4𝛼2𝛽−6

)︃
,

where the first term comes from amortizing the calls to ℒ.BatchUpdate(∅), each of which, as we
will see, takes ̃︀𝑂 (︀𝑚𝜀−2

)︀
.

BatchUpdate(𝑍, f ): First, for each 𝑒 ∈ 𝑍, we set 𝑠+𝑒 = 𝑢𝑒− 𝑓𝑒, 𝑠−𝑒 = 𝑓𝑒, 𝑟0𝑒 = 𝑟𝑒 =
1

(𝑠+𝑒 )2
+ 1

(𝑠−𝑒 )2
,

and 𝑝0𝑒 = 𝑝𝑒 =
1

𝑠+𝑒
− 1

𝑠−𝑒√
𝑟𝑒

.
For each 𝑒 = (𝑢,𝑤) ∈ 𝑍, we call

DynamicSC.AddTerminal(𝑢)

and
DynamicSC.AddTerminal(𝑤)
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(if 𝑢 and 𝑤 are not already in 𝐶), and then we call

DynamicSC.Update(𝑒, 𝑟𝑒) .

Then, we set 𝐶0 = 𝐶 = 𝐶 ∪ (∪(𝑢,𝑤)∈𝑍{𝑢,𝑤}). Additionally, we re-compute 𝜋𝑜𝑙𝑑 based on the new
values of 𝐶0, r0,p0. All of this takes time ̃︀𝑂 (︀𝑚+ |𝑍|𝛽−2𝜀−2

)︀
.

Now, to pass these updates to the DemandProjectors, we first have to re-compute the set of
important edges 𝑆 (with the newly updated resistances) as any set such that

{𝑒 | 𝑒 is
𝜀

𝛼
-important } ⊆ 𝑆 ⊆ {𝑒 | 𝑒 is

𝜀

4𝛼
-important} .

As we have already argued, this takes ̃︀𝑂 (𝑚).
Now, finally, we re-initialize all the DemandProjectors by calling

DP𝑖.Initialize(𝐶, r , q , 𝑆,𝒫) .

for all 𝑖 ∈ [ ̃︀𝑂 (︀𝜀−2
)︀
], where each call takes ̃︀𝑂 (𝑚).

We conclude with a total runtime of

̃︀𝑂 (︀𝑚𝜀−2 + |𝑍|𝛽−2𝜀−2
)︀
.

Solve(): This operation performs the main task of the locator, which is to detect congested edges.
We will do that by using the approximate demand projections that we have been maintaining.

We remind that the congestion vector we are trying to approximate to 𝑂(𝜀) additive accuracy is

𝜌* = 𝛿
√
r𝑔(s)− 𝛿R−1/2BL+B⊤𝑔(s) .

We will first reduce the problem of finding the entries of 𝜌* with magnitude ≥ Ω(𝜀), to the problem
of computing an 𝑂(𝜀)-additive approximation to

𝑣*𝑖 = 𝛿 ·
⟨
𝜋𝐶
(︂
B⊤ q 𝑖𝑆√

r

)︂
,̃︂𝑆𝐶+

𝜋𝐶
0,r0

(︂
B⊤ p0

√
r0

)︂⟩
for all 𝑖 ∈ [ ̃︀𝑂 (︀𝜀−2

)︀
], where ̃︂𝑆𝐶 is the approximate Schur complement maintained in DynamicSC.

Then, we will see how to approximate 𝑣*𝑖 to additive accuracy 𝑂(𝜀) using the demand projection
data structures.

First of all, note that, by definition of 𝑔(s) =
1
s+

− 1
s−

r ,⃦⃦
𝛿
√
r𝑔(s)

⃦⃦
∞ ≤ 𝛿 ≤ 𝜀 ,

so this term can be ignored. Using Lemma 4.4.3, we get that

𝛿
⃦⃦⃦
R−1/2BL+(B⊤𝑔(s)− 𝜋𝐶(B⊤𝑔(s)))

⃦⃦⃦
∞
≤ 𝛿 · ̃︀𝑂 (︀𝛽−2

)︀
≤ 𝜀/2 .

This means that the entries of the vector

𝛿R−1/2BL+𝜋𝐶(B⊤𝑔(s))

that have magnitude ≤ 𝜀 do not correspond to the Ω(𝜀)-congested edges that we are looking for.
Now, we set 𝑇 = |𝐶∖𝐶0|, where 𝐶0 was the congestion reduction subset during the last call to
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BatchUpdate, and apply Lemma 4.4.12. This shows that√︁
ℰr
(︀
𝜋𝑜𝑙𝑑 − 𝜋𝐶

(︀
B⊤𝑔(s)

)︀)︀
≤ ̃︀𝑂 (︁𝛼1/2𝛽−2

)︁
· 𝑇 .

Therefore, if we define
𝜌 = −𝛿R−1/2BL+𝜋𝑜𝑙𝑑 ,

we conclude that

‖𝜌− 𝜌*‖∞ ≤ 𝑂(𝜀)+ 𝛿
⃦⃦⃦
R−1/2BL+

(︁
𝜋𝑜𝑙𝑑 − 𝜋𝐶

(︁
B⊤𝑔(s)

)︁)︁⃦⃦⃦
∞
≤ 𝑂(𝜀)+ 𝛿𝑇 · ̃︀𝑂 (︁𝛼1/2𝛽−2

)︁
≤ 𝑂(𝜀) ,

where we used the fact that 𝑇 = 𝜀̂︀𝜀𝛼1/2 ≤ 𝜀
𝛿𝛽−2𝛼1/2 . Therefore it suffices to estimate 𝜌 up to

𝑂(𝜀)-additive accuracy.

Now, note that, by definition, no edge 𝑒 ∈ 𝐸∖𝑆 is 𝜀/𝛼-important with respect to r0 and 𝐶0. By
using Lemma 4.4.5, for each such edge we get

𝛿
⃒⃒⃒
R−1/2BL+𝜋𝑜𝑙𝑑

⃒⃒⃒
𝑒

≤ 𝛿

√︃
ℰr
(︂
𝜋𝐶0

(︂
B⊤ 1𝑒√

r

)︂)︂√︁
ℰr (𝜋𝑜𝑙𝑑)

≤ 𝛿𝛼

√︃
ℰr0

(︂
𝜋𝐶0

(︂
B⊤ 1𝑒√

r

)︂)︂√︁
ℰr0(𝜋𝑜𝑙𝑑)

≤ 𝛿𝛼 · 𝜀
𝛼
·𝑂(
√
𝑚)

= 𝑂(𝜀) ,

where we also used the fact that ℰr0(𝜋𝐶
0,r0

(𝑔(s0))) ≤ 𝑂(ℰr0(𝑔(s))). Therefore it suffices to
approximate

𝜌′ = 𝛿I 𝑆R
−1/2BL+𝜋𝑜𝑙𝑑 .

Note that here we can replace L+ by
(︂
−L−1

𝐹𝐹L𝐹𝐶
I

)︂̃︂𝑆𝐶+
where ̃︂𝑆𝐶 ≈1+𝜀 𝑆𝐶 and only lose

another additive 𝜀 error, as

𝛿

⃒⃒⃒⃒⟨
1𝑒,R

−1/2BL+𝜋𝑜𝑙𝑑
⟩
− 𝛿

⟨
1𝑒,R

−1/2B

(︂
−L−1

𝐹𝐹L𝐹𝐶
I

)︂̃︂𝑆𝐶+
𝜋𝑜𝑙𝑑

⟩⃒⃒⃒⃒
= 𝛿

⃒⃒⃒⃒⟨
𝜋𝐶
(︂
B⊤ 1𝑒√

r

)︂
,
(︁
𝑆𝐶+ −̃︂𝑆𝐶+

)︁
𝜋𝑜𝑙𝑑

⟩⃒⃒⃒⃒
≤ 𝑂(𝛿𝜀 ·

√
𝑚)

≤ 𝑂(𝜀) ,

where we used the fact that

(1− 𝜀)𝑆𝐶 ⪯̃︂𝑆𝐶 ⪯ (1 + 𝜀)𝑆𝐶 ⇒ −𝑂(𝜀)̃︂𝑆𝐶+
⪯ 𝑆𝐶+ −̃︂𝑆𝐶+

⪯ 𝑂(𝜀)̃︂𝑆𝐶+
.
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and that √︁
ℰr (𝜋𝑜𝑙𝑑) ≤

√︁
ℰr
(︀
𝜋𝐶
(︀
B⊤𝑔(s)

)︀)︀
+
√︁
ℰr
(︀
𝜋𝑜𝑙𝑑 − 𝜋𝐶

(︀
B⊤𝑔(s)

)︀)︀
≤ 𝑂(𝑚) + ̃︀𝑂 (︁𝛼1/2𝛽−2

)︁
· 𝑇

≤ 𝑂(𝑚) ,

where we used the fact that 𝑇 = 𝜀̂︀𝜀𝛼1/2 ≤ 𝜀
𝛿𝛽−2𝛼1/2 ≤

√
𝑚

𝛽−2𝛼1/2 .

Now, we will use the sketching lemma (Lemma 5.1, [73] v2), which shows that in order to find
all entries of

I 𝑆R
−1/2B

(︂
−L𝐹𝐹L𝐹𝐶

I

)︂̃︂𝑆𝐶+
𝜋𝑜𝑙𝑑

with magnitude Ω(𝜀), it suffices to compute the inner products

𝛿

⟨
B⊤ q 𝑖𝑆√

r
,

(︂
−L−1

𝐹𝐹L𝐹𝐶
I

)︂̃︂𝑆𝐶+
𝜋𝑜𝑙𝑑

⟩
= 𝛿

⟨
𝜋𝐶
(︂
B⊤ q 𝑖𝑆√

r

)︂
,̃︂𝑆𝐶+

𝜋𝑜𝑙𝑑
⟩

for 𝑖 ∈ [ ̃︀𝑂 (︀𝜀−2
)︀
], up to additive accuracy

𝜀 ·
⃦⃦⃦⃦
𝛿I 𝑆R

−1/2B

(︂
−L−1

𝐹𝐹L𝐹𝐶
I

)︂̃︂𝑆𝐶+
𝜋𝑜𝑙𝑑

⃦⃦⃦⃦−1

2

≥ Ω(𝜀) ,

where we used the fact that⃦⃦⃦⃦
𝛿I 𝑆R

−1/2B

(︂
−L−1

𝐹𝐹L𝐹𝐶
I

)︂̃︂𝑆𝐶+
𝜋𝑜𝑙𝑑

⃦⃦⃦⃦2
2

= 𝛿2⟨̃︂𝑆𝐶+
𝜋𝑜𝑙𝑑,

(︀
−L𝐶𝐹L−1

𝐹𝐹 I
)︀
L

(︂
−L−1

𝐹𝐹L𝐹𝐶
I

)︂̃︂𝑆𝐶+
𝜋𝑜𝑙𝑑⟩

= 𝛿2
⟨̃︂𝑆𝐶+

𝜋𝑜𝑙𝑑,
(︀
−L𝐶𝐹L−1

𝐹𝐹 I
)︀(︂L𝐹𝐹 L𝐹𝐶

L𝐶𝐹 L𝐶𝐶

)︂(︂
−L−1

𝐹𝐹L𝐹𝐶
I

)︂̃︂𝑆𝐶+
𝜋𝑜𝑙𝑑

⟩
= 𝛿2

⟨̃︂𝑆𝐶+
𝜋𝑜𝑙𝑑, 𝑆𝐶̃︂𝑆𝐶+

𝜋𝑜𝑙𝑑
⟩

≤ 2𝛿2
⟨
𝜋𝑜𝑙𝑑,̃︂𝑆𝐶+

𝜋𝑜𝑙𝑑
⟩

≤ 𝑂(𝛿2𝑚)

= 𝑂(1) .

Now, for the second part of the proof, we would like to compute v such that ‖v − v*‖∞ ≤ 𝑂(𝜀),
where we remind that

v* =

⟨
𝜋𝐶
(︂
B⊤ q 𝑖𝑆√

r

)︂
,̃︂𝑆𝐶+

𝜋𝑜𝑙𝑑
⟩
.

Note that we already have estimates ̃︀𝜋𝐶 (︁B⊤ q 𝑖
𝑆√
r

)︁
given by DP𝑖 for all 𝑖 ∈ [ ̃︀𝑂 (︀𝜀−2

)︀
]. We obtain

these estimates by calling
DP𝑖.Output()
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each of which takes time 𝑂(𝛽𝑚). By the guarantees of Definition 4.4.13, with high probability we
have

𝛿

⃒⃒⃒⃒⟨̃︀𝜋𝐶 (︂B⊤ q 𝑖𝑆√
r

)︂
− 𝜋𝐶

(︂
B⊤ q 𝑖𝑆√

r

)︂
,̃︂𝑆𝐶+

𝜋𝑜𝑙𝑑
⟩⃒⃒⃒⃒
≤ ̂︀𝜀√𝛼𝑇 ,

where we used the fact that
𝐸r (𝛿 ·̃︂𝑆𝐶+

𝜋𝑜𝑙𝑑) ≤ 𝑂(1) .

Now, since by definition BatchUpdate is called every 𝜀̂︀𝜀𝛼1/2 calls to Update, We have 𝑇 ≤ 𝜀̂︀𝜀𝛼1/2

and so

𝛿

⃒⃒⃒⃒⟨̃︀𝜋𝐶 (︂B⊤ q 𝑖𝑆√
r

)︂
− 𝜋𝐶

(︂
B⊤ q 𝑖𝑆√

r

)︂
,̃︂𝑆𝐶+

𝜋𝑜𝑙𝑑
⟩⃒⃒⃒⃒
≤ 𝜀 .

This means that, running the algorithm from (Lemma 5.1, [73] v2), we can obtain an edge set of sizẽ︀𝑂 (︀𝜀−2
)︀

that contains all edges such that |𝜌*𝑒| ≥ 𝑐 · 𝜀 for some constant 𝑐 > 0. By rescaling 𝜀 to get
the right constant, we obtain all edges such that |𝜌*𝑒| ≥ 𝜀/2 with high probability. The runtime is
dominated by the time to get ̃︂𝑆𝐶 and apply its inverse, and is ̃︀𝑂 (︀𝛽𝑚𝜀−2

)︀
.

Success probability We will argue that ℒ uses DynamicSC and the DP𝑖 as an oblivious
adversary. First of all, note that no randomness is injected into the inputs of DynamicSC, as they
are all coming form the inputs of ℒ.

Regarding DP𝑖, note that its only output is given by the call to DP𝑖.Output. However, note
that its output is only used to estimate the inner product⟨

𝜋𝐶
(︂
B⊤ q 𝑖𝑆√

r

)︂
,̃︂𝑆𝐶+

𝜋𝑜𝑙𝑑

⟩
,

from which we obtain the set of congested edges and we directly return it from ℒ. Thus, it does not
influence the state of ℒ,DynamicSC or any future inputs.

9.2.5 Deferred Proofs from Section 4.5

Proof of Lemma 4.4.6

Proof. Let 𝒫𝑣(𝑢) be a random walk that starts from 𝑢 and stops when it hits 𝑣.

𝑝𝐶∪{𝑣,𝑤}
𝑣 (𝑢) = Pr [𝒫𝑣(𝑢) ∩ 𝐶 = ∅ and 𝑤 /∈ 𝒫𝑣(𝑢)]

= Pr [𝒫𝑣(𝑢) ∩ 𝐶 = ∅] · Pr [𝑤 /∈ 𝒫𝑣(𝑢) | 𝒫𝑣(𝑢) ∩ 𝐶 = ∅]
= 𝑝𝐶∪{𝑣}

𝑣 (𝑢) · Pr [𝑤 /∈ 𝒫𝑣(𝑢) | 𝒫𝑣(𝑢) ∩ 𝐶 = ∅]

Consider new resistances ̂︀𝑟, where ̂︀𝑟𝑒 = 𝑟𝑒 for all 𝑒 ∈ 𝐸 not incident to 𝐶 and ̂︀𝑟𝑒 = ∞ for all
𝑒 ∈ 𝐸 incident to 𝐶. Also, let ̂︀p be the hitting probability function for these new resistances. It is
easy to see that

Pr [𝑤 /∈ 𝒫𝑣(𝑢) | 𝒫𝑣(𝑢) ∩ 𝐶 = ∅] = ̂︀p{𝑣,𝑤}𝑣 (𝑢) .

Therefore, we have

𝑝𝐶∪{𝑣,𝑤}
𝑣 (𝑢) = 𝑝𝐶∪{𝑣}

𝑣 (𝑢) · ̂︀p{𝑣,𝑤}𝑣 (𝑢) .
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Now we will bound ̂︀p{𝑣,𝑤}𝑣 (𝑢). Let 𝜓 be electrical potentials for pushing 1 unit of flow from 𝑣 to
𝑤 with resistances ̂︀𝑟 and let 𝑓 be the associated electrical flow. We have that

|𝜓𝑢 − 𝜓𝑤| = |𝑓𝑒|̂︀𝑟𝑒 ≤ ̂︀𝑟𝑒 = 𝑟𝑒 (9.48)

(because |𝑓𝑒| ≤ 1 and 𝑒 is not incident to 𝐶) and

|𝜓𝑣 − 𝜓𝑤| = ̂︀𝑅𝑒𝑓𝑓 (𝑣, 𝑤) ≥ 𝑅𝑒𝑓𝑓 (𝑣, 𝑤) (9.49)

Additionally, by well known facts that connect electrical potential embeddings with random
walks, we have that

𝜓𝑢 = 𝜓𝑤 + ̂︀p{𝑣,𝑤}𝑣 (𝑢)(𝜓𝑣 − 𝜓𝑤) ,

or equivalently ̂︀p{𝑣,𝑤}𝑣 (𝑢) =
𝜓𝑢 − 𝜓𝑤
𝜓𝑣 − 𝜓𝑤

.

Using (9.48) and (9.49), this immediately implies that

̂︀p{𝑣,𝑤}𝑣 (𝑢) ≤ 𝑟𝑒
𝑅𝑒𝑓𝑓 (𝑣, 𝑤)

.

So we have proved that

𝑝𝐶∪{𝑣,𝑤}
𝑣 (𝑢) ≤ 𝑝𝐶∪{𝑣}

𝑣 (𝑢)
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑤)

and symmetrically

𝑝𝐶∪{𝑣,𝑢}
𝑣 (𝑤) ≤ 𝑝𝐶∪{𝑣}

𝑣 (𝑤)
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑢)
.

Now, let’s look at 𝜋𝐶∪{𝑣}
𝑣 (𝐵⊤1𝑒) = 𝑝

𝐶∪{𝑣}
𝑣 (𝑢)− 𝑝𝐶∪{𝑣}

𝑣 (𝑤). Note that

𝑝𝐶∪{𝑣}
𝑣 (𝑢) = 𝑝𝐶∪{𝑣,𝑤}

𝑣 (𝑢) + 𝑝𝐶∪{𝑣,𝑤}
𝑤 (𝑢)𝑝𝐶∪{𝑣}

𝑣 (𝑤)

which we re-write as

𝑝𝐶∪{𝑣}
𝑣 (𝑢)− 𝑝𝐶∪{𝑣}

𝑣 (𝑤) = 𝑝𝐶∪{𝑣,𝑤}
𝑣 (𝑢)− (1− 𝑝𝐶∪{𝑣,𝑤}

𝑤 (𝑢))𝑝𝐶∪{𝑣}
𝑣 (𝑤) ≤ 𝑝𝐶∪{𝑣,𝑤}

𝑣 (𝑢) .

Symmetrically,
𝑝𝐶∪{𝑣}
𝑣 (𝑤)− 𝑝𝐶∪{𝑣}

𝑣 (𝑢) ≤ 𝑝𝐶∪{𝑣,𝑢}
𝑣 (𝑤) .

From these we conclude that⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣 (𝐵⊤1𝑒)

⃒⃒⃒
=
⃒⃒⃒
𝑝𝐶∪{𝑣}
𝑣 (𝑢)− 𝑝𝐶∪{𝑣}

𝑣 (𝑤)
⃒⃒⃒

≤ max
{︁
𝑝𝐶∪{𝑣,𝑤}
𝑣 (𝑢), 𝑝𝐶∪{𝑣,𝑢}

𝑣 (𝑤)
}︁

≤ max

{︂
𝑝𝐶∪{𝑣}
𝑣 (𝑢) · 𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑤)
, 𝑝𝐶∪{𝑣}
𝑣 (𝑤) · 𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑢)

}︂
≤ (𝑝𝐶∪{𝑣}

𝑣 (𝑢) + 𝑝𝐶∪{𝑣}
𝑣 (𝑤)) ·max

{︂
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑤)
,

𝑟𝑒
𝑅𝑒𝑓𝑓 (𝑣, 𝑢)

}︂
,
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which, after dividing by
√
𝑟𝑒 gives⃒⃒⃒

𝜋𝐶∪{𝑣}
𝑣 (𝐵⊤1𝑒)

⃒⃒⃒
≤ (𝑝𝐶∪{𝑣}

𝑣 (𝑢) + 𝑝𝐶∪{𝑣}
𝑣 (𝑤)) ·max

{︂ √
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑤)
,

√
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑢)

}︂
.

Proof of Lemma 4.5.3

Proof. For each 𝑢 ∈ 𝑉 ∖𝐶 and 𝑒 ∈ 𝑆′ with 𝑢 ∈ 𝑒, we generate 𝑍 random walks 𝑃 1(𝑢), . . . , 𝑃𝑍(𝑢)
from 𝑢 to 𝐶 ∪ {𝑣}. We set

̃︀𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆′√

r

)︂
=

∑︁
𝑒=(𝑢,𝑤)∈𝑆′

𝑍∑︁
𝑧=1

1

𝑍

𝑞𝑒√
𝑟𝑒

(︀
1{𝑣∈𝑃 𝑧(𝑢)} − 1{𝑣∈𝑃 𝑧(𝑤)}

)︀
=

∑︁
𝑒=(𝑢,𝑤)∈𝑆′

𝑍∑︁
𝑧=1

(𝑋𝑒,𝑢,𝑧 −𝑋𝑒,𝑤,𝑧) ,

where we have set 𝑋𝑒,𝑢,𝑧 =
1
𝑍

𝑞𝑒√
𝑟𝑒
1{𝑣∈𝑃 𝑧(𝑢)} and 𝑋𝑒,𝑤,𝑧 = − 1

𝑍
𝑞𝑒√
𝑟𝑒
1{𝑣∈𝑃 𝑧(𝑤)}.

Note that E
𝑃 𝑧(𝑢)

[𝑋𝑒,𝑢,𝑧] =
1
𝑍

𝑞𝑒√
𝑟𝑒
𝑝
𝐶∪{𝑣}
𝑣 (𝑢) and E

𝑃 𝑧(𝑤)
[𝑋𝑒,𝑤,𝑧] = − 1

𝑍
𝑞𝑒√
𝑟𝑒
𝑝
𝐶∪{𝑣}
𝑣 (𝑤). This implies

that our estimate is unbiased, as

E
[︂̃︀𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤q𝑆′√

r

)︂]︂
=

∑︁
𝑒=(𝑢,𝑤)∈𝑆′

𝑞𝑒√
𝑟𝑒
(𝑝𝐶∪{𝑣}
𝑣 (𝑢)− 𝑝𝐶∪{𝑣}

𝑣 (𝑤)) = 𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆′√

r

)︂
.

We now need to show that our estimate is concentrated around the mean. To apply the concentration
bound in Lemma 4.5.2, we need the following bounds:

∑︁
𝑒=(𝑢,𝑤)∈𝑆′

𝑍∑︁
𝑧=1

(|E[𝑋𝑒,𝑢,𝑧]|+ |E[𝑋𝑒,𝑤,𝑧]|) =
∑︁

𝑒=(𝑢,𝑤)∈𝑆′

|𝑞𝑒|√
𝑟𝑒
(𝑝𝐶∪{𝑣}
𝑣 (𝑢) + 𝑝𝐶∪{𝑣}

𝑣 (𝑤)) := 𝐸

max
𝑒=(𝑢,𝑤)∈𝑆′

𝑧∈[𝑍]

max{|𝑋𝑒,𝑢,𝑧|, |𝑋𝑒,𝑤,𝑧|} ≤ max
𝑒∈𝑆′

1

𝑍
√
𝑟𝑒

:=𝑀 .
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So now for any 𝑡 ∈ [0, 𝐸] we have

Pr

[︂⃒⃒⃒⃒̃︀𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆′√

r

)︂
− 𝜋𝐶∪{𝑣}

𝑣 (B⊤q𝑆′√
r
)

⃒⃒⃒⃒
> 𝑡

]︂
≤ 2 exp

(︂
− 𝑡2

6𝐸𝑀

)︂

= 2 exp

⎛⎜⎜⎝− 𝑍𝑡2

6
∑︀

𝑒=(𝑢,𝑤)∈𝑆′

|𝑞𝑒|√
𝑟𝑒
(𝑝
𝐶∪{𝑣}
𝑣 (𝑢) + 𝑝

𝐶∪{𝑣}
𝑣 (𝑤))max𝑒∈𝑆′ 1√

𝑟𝑒

⎞⎟⎟⎠

≤ 2 exp

⎛⎜⎜⎝− 𝑍𝑡2

6
∑︀

𝑒=(𝑢,𝑤)∈𝑆′
(𝑝
𝐶∪{𝑣}
𝑣 (𝑢) + 𝑝

𝐶∪{𝑣}
𝑣 (𝑤))max𝑒∈𝑆′ 1

𝑟𝑒

⎞⎟⎟⎠

≤ 2 exp

⎛⎜⎜⎝− 𝑍𝑡2𝑐2𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

6
∑︀

𝑒=(𝑢,𝑤)∈𝑆′
(𝑝
𝐶∪{𝑣}
𝑣 (𝑢) + 𝑝

𝐶∪{𝑣}
𝑣 (𝑤))

⎞⎟⎟⎠
≤ 2 exp

(︁
−𝑍𝑡2𝑐2𝑅𝑒𝑓𝑓 (𝐶, 𝑣)/ ̃︀𝑂 (︀𝛽−2

)︀)︁
≤ 1

𝑛100
,

where the last inequality follows by setting 𝑍 = ̃︀𝑂(︂ log𝑛 log 1
𝛽

𝛿′21

)︂
and 𝑡 =

𝛿′1
𝛽𝑐
√
𝑅𝑒𝑓𝑓 (𝐶,𝑣)

. Note that

we have used the fact that 𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤ 𝑟𝑒/𝑐
2 for all 𝑒 ∈ 𝑆′, as well as the congestion reduction

property (Definition 4.4.1) ∑︁
𝑒=(𝑢,𝑤)∈𝐸∖𝐸(𝐶)

(𝑝𝐶∪{𝑣}
𝑣 (𝑢) + 𝑝𝐶∪{𝑣}

𝑣 (𝑤)) ≤ ̃︀𝑂 (︀1/𝛽2)︀ .

Proof of Lemma 4.5.4

Proof. In order to compute ̃︀𝜋𝐶∪{𝑣}
𝑣 (B⊤ q𝑆√

r
) we use Lemma 4.5.3 with demand B⊤ q𝑆′√

r
and error

parameter 𝛿′1 > 0, where

{𝑒 ∈ 𝑆 | 𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤ 𝑟𝑒/(2𝑐2)} ⊆ 𝑆′ ⊆ {𝑒 ∈ 𝑆 | 𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤ 𝑟𝑒/𝑐2} ,

and 𝑐 > 0 will be defined later. Note that such a set 𝑆′ can be trivially computed given our effective
resistance estimate ̃︀𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≈2 𝑅𝑒𝑓𝑓 (𝐶, 𝑣). However, algorithmically we do not directly compute
𝑆′, but instead find its intersection with the edges from which a sampled random walk ends up at 𝑣.
(Using the congestion reduction property of 𝐶, this can be done in ̃︀𝑂 (︁𝛿′−2

1 𝛽−2 log 𝑛 log 1
𝛽

)︁
time just

by going through all random walks that contain 𝑣.)
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Now, Lemma 4.5.3 guarantees that⃒⃒⃒⃒̃︀𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆′√

r

)︂
− 𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤q𝑆′√

r

)︂⃒⃒⃒⃒
≤ 𝛿′1
𝛽𝑐
√︀
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

given access to 𝑂(𝛿′−2 log 𝑛 log 1
𝛽 ) random walks for each 𝑢 ∈ 𝑉 ∖𝐶, 𝑒 ∈ 𝑆′ with 𝑢 ∈ 𝑒.

Then, we set ̃︀𝜋𝐶∪{𝑣}
𝑣 (B⊤ q𝑆√

r
) := ̃︀𝜋𝐶∪{𝑣}

𝑣 (B⊤ q𝑆′√
r
), and we have that⃒⃒⃒⃒̃︀𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q𝑆√

r

)︂
− 𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q𝑆√

r

)︂⃒⃒⃒⃒
≤
⃒⃒⃒⃒̃︀𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆′√

r

)︂
− 𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤q𝑆′√

r

)︂⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆 − q𝑆′√

r

)︂⃒⃒⃒⃒
≤ 𝛿′1
𝛽𝑐
√︀
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

+

⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆 − q𝑆′√

r

)︂⃒⃒⃒⃒
.

(9.50)

Now, to bound the second term, we use Lemma 4.4.6, which gives⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆 − q𝑆′√

r

)︂⃒⃒⃒⃒
≤

∑︁
𝑒=(𝑢,𝑤)∈𝑆∖𝑆′

(︁
𝑝𝐶∪{𝑣}
𝑣 (𝑢) + 𝑝𝐶∪{𝑣}

𝑣 (𝑤)
)︁ √

𝑟𝑒
𝑅𝑒𝑓𝑓 (𝑣, 𝑒)

.

Now, note that for each 𝑒 ∈ 𝑆∖𝑆′, 𝑒 is close to 𝐶, but 𝑣 is far from 𝐶, so 𝑅𝑒𝑓𝑓 (𝑣, 𝑒) should be
large. Specifically, by Lemma 4.2.8 we have 𝑅𝑒𝑓𝑓 (𝑣, 𝑒) ≥ 1

2 min {𝑅𝑒𝑓𝑓 (𝑣, 𝑢), 𝑅𝑒𝑓𝑓 (𝑣, 𝑤)}, and by the
triangle inequality

min{𝑅𝑒𝑓𝑓 (𝑣, 𝑢), 𝑅𝑒𝑓𝑓 (𝑣, 𝑤)} ≥ 𝑅𝑒𝑓𝑓 (𝐶, 𝑣)−max{𝑅𝑒𝑓𝑓 (𝐶, 𝑢), 𝑅𝑒𝑓𝑓 (𝐶,𝑤)} ≥ 𝑅𝑒𝑓𝑓 (𝐶, 𝑣)−2𝑅𝑒𝑓𝑓 (𝐶, 𝑒) .

By the fact that 𝑒 is 𝛾-important and that

𝑒 /∈ 𝑆′ ⊇ {𝑒 ∈ 𝑆 | 𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤ 𝑟𝑒/(2𝑐2)} ,

we have 𝑅𝑒𝑓𝑓 (𝐶, 𝑒) ≤ 𝑟𝑒/𝛾2 ≤ 2𝑐2𝑅𝑒𝑓𝑓 (𝐶, 𝑣)/𝛾
2, so

√
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝑣, 𝑒)
≤ 1

1/2− 2𝑐2/𝛾2

√
𝑟𝑒

𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

≤ 𝑐

1/2− 2𝑐2/𝛾2
1√︀

𝑅𝑒𝑓𝑓 (𝐶, 𝑣)
.

By using the congestion reduction property (Definition 4.4.1), we obtain⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆 − q𝑆′√

r

)︂⃒⃒⃒⃒
≤ 𝑐

1/2− 2𝑐2/𝛾2
1√︀

𝑅𝑒𝑓𝑓 (𝐶, 𝑣)
̃︀𝑂(︂ 1

𝛽2

)︂
. (9.51)

Setting 𝑐 = min{𝛿1/ ̃︀𝑂 (︀𝛽−2
)︀
, 𝛾/4} and 𝛿′1 = 𝛽𝑐 · 𝛿1/2, (9.50) becomes⃒⃒⃒⃒̃︀𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q𝑆√

r

)︂
− 𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q𝑆√

r

)︂⃒⃒⃒⃒
≤ 𝛿1√︀

𝑅𝑒𝑓𝑓 (𝐶, 𝑣)
.
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Also, the number of random walks needed for each valid pair (𝑢, 𝑒) is

̃︀𝑂(︂𝛿′−2
1 log 𝑛 log

1

𝛽

)︂
= ̃︀𝑂(︂𝛿−2

1 𝛽−2𝑐−2 log 𝑛 log
1

𝛽

)︂
= ̃︀𝑂(︂(︀𝛿−4

1 𝛽−6 + 𝛿−2
1 𝛽−2𝛾−2

)︀
log 𝑛 log

1

𝛽

)︂
.

For the last part of the lemma, we let 𝑆′′ = {𝑒 ∈ 𝑆 | 𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≤ 𝑟𝑒/ (𝛾/4)2} and write⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ q𝑆√

r

)︂⃒⃒⃒⃒
≤
⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆′′√

r

)︂⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆 − q𝑆′′√

r

)︂⃒⃒⃒⃒
.

For the first term,⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆′′√

r

)︂⃒⃒⃒⃒
≤

∑︁
𝑒=(𝑢,𝑤)∈𝑆′′

(︁
𝑝𝐶∪{𝑣}
𝑣 (𝑢) + 𝑝𝐶∪{𝑣}

𝑣 (𝑤)
)︁ 1
√
𝑟𝑒

≤ 1

(𝛾/4)
√︀
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

̃︀𝑂(︂ 1

𝛽2

)︂
,

and for the second term we have already proved in (9.51) (after replacing 𝑐 by 𝛾/4) that⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤q𝑆 − q𝑆′′√

r

)︂⃒⃒⃒⃒
≤ 𝛾/4√︀

𝑅𝑒𝑓𝑓 (𝐶, 𝑣)
̃︀𝑂(︂ 1

𝛽2

)︂
.

Putting these together, we conclude that⃒⃒⃒⃒
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ q𝑆√

r

)︂⃒⃒⃒⃒
≤ 1

𝛾
√︀
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

· ̃︀𝑂(︂ 1

𝛽2

)︂
.

Proof of Lemma 4.5.5

Proof. For any 𝐼 ⊆ R, we define 𝐹𝐼 = {𝑖 ∈ [𝑛] | |𝜑𝑖| ∈ 𝐼}. For some 0 < 𝑎 < 𝑏 to be defined later,
we partition [𝑛] as

[𝑛] = 𝐹𝐼0 ∪ 𝐹𝐼1 ∪ · · · ∪ 𝐹𝐼𝐾 ∪ 𝐹𝐼𝐾+1
,

where 𝐼0 = [0, 𝑎), 𝐼𝐾+1 = [𝑏,∞), and 𝐼1, . . . , 𝐼𝐾 is a partition of [𝑎, 𝑏) into 𝐾 = 𝑂(log 𝑏
𝑎) intervals

such that for all 𝑘 ∈ [𝐾] we have Φ𝑘 := max
𝑖∈𝐹𝑘

|𝜑𝑖| ≤ 2 ·min
𝑖∈𝐹𝑘

|𝜑𝑖|.

A union bound gives

Pr
[︀⃒⃒
⟨̃︀𝜋 − 𝜋, �̄�⟩⃒⃒ > 𝑡

]︀
≤

𝐾+1∑︁
𝑘=0

Pr

⎡⎣⃒⃒⃒⃒⃒⃒∑︁
𝑖∈𝐼𝑘

(̃︀𝜋𝑖 − 𝜋𝑖)𝜑𝑖
⃒⃒⃒⃒
⃒⃒ > 𝑡/(𝐾 + 2)

⎤⎦ .
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We first examine 𝐼0 and 𝐼𝐾+1 separately. Note that⃒⃒⃒⃒
⃒⃒ ∑︁
𝑖∈𝐹𝐼0

(̃︀𝜋𝑖 − 𝜋𝑖)𝜑𝑖
⃒⃒⃒⃒
⃒⃒ ≤ ‖̃︀𝜋 − 𝜋‖1𝑎 ≤ 2𝑎

and⃒⃒⃒⃒
⃒⃒ ∑︁
𝑖∈𝐹𝐼𝐾+1

(̃︀𝜋𝑖 − 𝜋𝑖)𝜑𝑖
⃒⃒⃒⃒
⃒⃒ ≤ ∑︁

𝑖∈𝐹𝐼𝐾+1

̃︀𝜋𝑖 ⃒⃒𝜑𝑖⃒⃒+ ∑︁
𝑖∈𝐹𝐼𝐾+1

𝜋𝑖
⃒⃒
𝜑𝑖
⃒⃒
≤ 1

𝑏

∑︁
𝑖∈𝐹𝐼𝐾+1

|̃︀𝜋𝑖 − 𝜋𝑖|𝜑2𝑖 ≤ 1

𝑏

∑︁
𝑖∈𝐹𝐼𝐾+1

̃︀𝜋𝑖|𝜑𝑖|+
⃦⃦
𝜑
⃦⃦2
𝜋,2

𝑏

But note that by picking 𝑏 ≥ max
{︁

(𝐾+2)𝑉 𝑎𝑟𝜋(�̄�)
𝑡 ,

√︀
𝑉 𝑎𝑟𝜋(�̄�) · 𝑛101

}︁
, we have 𝑉 𝑎𝑟𝜋(𝜑)

𝑏 ≤ 𝑡/(𝐾 + 2)

and also for any 𝑖 ∈ 𝐹𝐾+1 we have 𝜋𝑖 ≤ 𝑉 𝑎𝑟𝜋(�̄�)
𝑏2

≤ 1
𝑛101 . This means that Pr[̃︀𝜋𝑖 ̸= 0] ≤ 1

𝑛101 , and so
by union bound

Pr

⎡⎣ ∑︁
𝑖∈𝐹𝐼𝐾+1

̃︀𝜋𝑖|𝜑𝑖| ≠ 0

⎤⎦ ≤ 1

𝑛100
.

Now, we proceed to 𝐹1, . . . , 𝐹𝐾 . We draw 𝑍 samples 𝑥1, . . . , 𝑥𝑍 from 𝜋. Then, we also define
the following random variables for 𝑧 ∈ [𝑍] and 𝑖 ∈ [𝑛]:

𝑋𝑧,𝑖 =

{︃
1 if 𝑥𝑧 = 𝑖

0 otherwise

for 𝑖 ∈ [𝑛] and

𝑌𝑧,𝑘 =
1

𝑍

∑︁
𝑖∈𝐹𝑘

𝑋𝑧,𝑖𝜑𝑖

This allows us to write
∑︀
𝑖∈𝐹𝑘

̃︀𝜋𝑖𝜑𝑖 = 𝑍∑︀
𝑧=1

𝑌𝑧,𝑘.

Fix 𝑘 ∈ [𝐾]. We will apply Lemma 4.5.2 on the random variable
𝑍∑︀
𝑧=1

𝑌𝑧,𝑘. We first compute

𝑍∑︁
𝑧=1

|E[𝑌𝑧,𝑘]| =

⃒⃒⃒⃒
⃒⃒∑︁
𝑖∈𝐹𝑘

𝜋𝑖𝜑𝑖

⃒⃒⃒⃒
⃒⃒ ≤∑︁

𝑖∈𝐹𝑘

𝜋𝑖|𝜑𝑖| := 𝐸𝑘

and

max
𝑧∈[𝑍]

|𝑌𝑧,𝑘| ≤
Φ𝑘
𝑍

:=𝑀𝑘 .
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Therefore we immediately have 𝐸𝑘𝑀𝑘 ≤ 2
𝑍

∑︀
𝑖∈𝐹𝑘

𝜋𝑖𝜑
2
𝑖 ≤ 2

𝑍 · 𝑉 𝑎𝑟𝜋(𝜑). By Lemma 4.5.2,

Pr

[︃⃒⃒⃒⃒
⃒
𝑍∑︁
𝑧=1

𝑌𝑧,𝑘 − E

[︃
𝑍∑︁
𝑧=1

𝑌𝑧,𝑘

]︃⃒⃒⃒⃒
⃒ > 𝑡/(𝐾 + 2)

]︃

≤ 2 exp

(︂
− 𝑡2

6𝐸𝑘𝑀𝑘(𝐾 + 2)2

)︂
≤ 2 exp

(︂
− 𝑍𝑡2

12 · 𝑉 𝑎𝑟𝜋(𝜑)(𝐾 + 2)2

)︂
.

Summarizing, and using the fact that 𝐾 = ̃︀𝑂 (︀log(𝑛 · 𝑉 𝑎𝑟𝜋(�̄�)/𝑡2))︀, we get

Pr
[︀⃒⃒
⟨̃︀𝜋 − 𝜋, �̄�⟩⃒⃒ > 𝑡

]︀
≤ ̃︀𝑂(︂ 1

𝑛100

)︂
+ 2 ̃︀𝑂 (︀log (︀𝑛 · 𝑉 𝑎𝑟𝜋(�̄�)/𝑡2)︀)︀ exp(︃− 𝑍𝑡2

12 · ̃︀𝑂 (︀𝑉 𝑎𝑟𝜋(�̄�) log2 𝑛)︀
)︃
.

Proof of Lemma 4.5.6

Proof. Let 𝑆0 = ∅ and and for each 𝑘 ∈ N let

𝑆𝑘 = {𝑖 ∈ [𝑛]∖𝑆𝑘−1 : 𝜑2𝑖 ≤ 2𝑘+1𝑅𝑒𝑓𝑓 (𝐶, 𝑣)} .

Fix some 𝑘 ≥ 2. Note that 𝜑2𝑖 > 2𝑘𝑅𝑒𝑓𝑓 (𝐶, 𝑣) for all 𝑖 ∈ 𝑆𝑘, implying 2𝑘𝑅𝑒𝑓𝑓 (𝐶,𝑣)
𝑅𝑒𝑓𝑓 (𝑆𝑘,𝑣)

< 𝐸r (𝜑) ≤ 1, and
so 𝑅𝑒𝑓𝑓 (𝑆𝑘, 𝑣) > 2𝑘𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≥ 4𝑅𝑒𝑓𝑓 (𝐶, 𝑣). As

𝑅𝑒𝑓𝑓 (𝐶, 𝑣) ≥
1

4
min{𝑅𝑒𝑓𝑓 (𝑆𝑘, 𝑣), 𝑅𝑒𝑓𝑓 (𝐶∖𝑆𝑘, 𝑣)} > min{𝑅𝑒𝑓𝑓 (𝐶, 𝑣),

1

4
𝑅𝑒𝑓𝑓 (𝐶∖𝑆𝑘, 𝑣)} ,

we have 𝑅𝑒𝑓𝑓 (𝐶∖𝑆𝑘, 𝑣) < 4𝑅𝑒𝑓𝑓 (𝐶, 𝑣). This implies that
⃦⃦⃦
𝜋𝐶𝑆𝑘

(1𝑣)
⃦⃦⃦
1
≤ 𝑅𝑒𝑓𝑓 (𝐶∖𝑆𝑘,𝑣)

𝑅𝑒𝑓𝑓 (𝑆𝑘,𝑣)
< 1

2𝑘−2 .

So we conclude that 𝑉 𝑎𝑟𝜋(𝜑) =
∑︀
𝑖∈𝑆𝑘

𝜋𝑖𝜑
2
𝑖 ≤ 1

2𝑘−2 · 2𝑘+1𝑅𝑒𝑓𝑓 (𝐶, 𝑣) = 8𝑅𝑒𝑓𝑓 (𝐶, 𝑣).

Proof of Lemma 4.5.1

Proof. The first part of the statement is given by applying Lemma 4.5.4, and we see that it requires̃︀𝑂 (︀𝛿−4
1 𝛽−6 + 𝛿−2

1 𝛽−2𝛾−2
)︀

random walks for each 𝑢 ∈ 𝑉 ∖𝐶 and 𝑒 ∈ 𝐸∖𝐸(𝐶) with 𝑢 ∈ 𝑒.
For the second part we use the fact that the change in the demand projection after inserting 𝑣

into 𝐶 is given by

𝜋𝐶∪{𝑣}
(︂
B⊤ q𝑆√

r

)︂
− 𝜋𝐶

(︂
B⊤ q𝑆√

r

)︂
= 𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q𝑆√

r

)︂
· (1𝑣 − 𝜋𝐶(1𝑣)) ,

and therefore we can estimate this update via

̃︀𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ q𝑆√

r

)︂
· (1𝑣 − ̃︀𝜋𝐶(1𝑣)) .
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where ̃︀𝜋𝐶∪{𝑣}
𝑣

(︁
B⊤ q𝑆√

r

)︁
is the estimate we computed using Lemma 4.5.4 and ̃︀𝜋𝐶(1𝑣) is obtained by

applying Lemma 4.5.7.
Let us show that this estimation indeed introduces only a small amount of error. For any 𝜑,

such that 𝐸𝑟(𝜑) ≤ 1, we can write⃒⃒⃒⃒⟨̃︀𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ q𝑆√

r

)︂
· (1𝑣 − ̃︀𝜋𝐶(1𝑣))− 𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q𝑆√

r

)︂
· (1𝑣 − 𝜋𝐶(1𝑣)),𝜑

⟩⃒⃒⃒⃒
≤
⃒⃒⃒⃒⟨
𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ q𝑆√

r

)︂
· (𝜋𝐶(1𝑣)− ̃︀𝜋𝐶(1𝑣)),𝜑⟩⃒⃒⃒⃒

+

⃒⃒⃒⃒⟨(︂̃︀𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ q𝑆√

r

)︂
− 𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q𝑆√

r

)︂)︂
· (1𝑣 − 𝜋𝐶(1𝑣)),𝜑

⟩⃒⃒⃒⃒
+

⃒⃒⃒⃒⟨(︂̃︀𝜋𝐶∪{𝑣}
𝑣

(︂
B⊤ q𝑆√

r

)︂
− 𝜋𝐶∪{𝑣}

𝑣

(︂
B⊤ q𝑆√

r

)︂)︂
· (𝜋𝐶(1𝑣)− ̃︀𝜋𝐶(1𝑣)),𝜑⟩⃒⃒⃒⃒ .

At this point we can bound these quantities using Lemmas 4.5.4 and 4.5.7. It is important to
notice that they require that 𝑆 is a set of 𝛾-important edges, for some parameter 𝛾. Our congestion
reduction subset 𝐶 keeps increasing due to vertex insertions. This, however, means that effective
resistances between any vertex in 𝑉 ∖𝐶 and 𝐶 can only decrease, and therefore the set of important
edges can only increase. Thus we are still in a valid position to apply these lemmas.

Using 𝐸r (𝜑) ≤ 1, which allows us to write:

⟨1𝑣 − 𝜋𝐶(1𝑣)),𝜑⟩ ≤ ℰr
(︀
1𝑣 − 𝜋𝐶(1𝑣)

)︀
= 𝑅𝑒𝑓𝑓 (𝑣, 𝐶) ,

we can continue to upper bound the error by:

̃︀𝑂 (︀𝛾−1𝛽−2
)︀√︀

𝑅𝑒𝑓𝑓 (𝐶, 𝑣)
· 𝛿2
√︁
𝑅𝑒𝑓𝑓 (𝐶, 𝑣) +

𝛿1√︀
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

·
√︁
𝑅𝑒𝑓𝑓 (𝐶, 𝑣) +

𝛿1√︀
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

· 𝛿2
√︁
𝑅𝑒𝑓𝑓 (𝐶, 𝑣)

= 𝛿2 · ̃︀𝑂 (︀𝛾−1𝛽−2
)︀
+ 𝛿1 + 𝛿1𝛿2 .

Setting 𝛿1 = ̂︀𝜀/2 and 𝛿2 = ̂︀𝜀𝛽2𝛾/ ̃︀𝑂 (1), we conclude that w.h.p. each operation introduces at most ̂︀𝜀
additive error in the maintained estimate for

⟨̃︀𝜋𝐶(B⊤ q𝑆√
r
),𝜑
⟩
.

Per Lemma 4.5.4, estimating one coordinate of the demand projection requires

̃︀𝑂 (︀𝛿−4
1 𝛽−6 + 𝛿−2

1 𝛽−2𝛾−2
)︀
= ̃︀𝑂 (︀̂︀𝜀−4𝛽−6 + ̂︀𝜀−2𝛽−2𝛾−2

)︀
random walks, and estimating ̃︀𝜋𝐶(B⊤ q𝑆√

r
), per Lemma 4.5.7, requires

̃︀𝑂 (︀𝛿−2
2

)︀
= ̃︀𝑂 (︀̂︀𝜀−2𝛽−4𝛾−2

)︀
random walks. This concludes the proof.

9.2.6 The Checker Data Structure

Theorem 9.2.12 (Theorem 3, [73]). There is a Checker data structure supporting the following
operations with the given runtimes against oblivious adversaries, for parameters 0 < 𝛽Checker, 𝜀 < 1
such that 𝛽Checker ≥ ̃︀Ω (︀𝜀−1/2/𝑚1/4

)︀
.
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• Initialize(f , 𝜀, 𝛽Checker): Initializes the data structure with slacks s+ = u − f , s− = f , and
resistances r = 1

(s+)2
+ 1

(s−)2
. Runtime: ̃︀𝑂 (︀𝑚𝛽−4

Checker𝜀
−4
)︀
.

• Update(𝑒, f ′): Set 𝑠+𝑒 = 𝑢𝑒 − 𝑓 ′𝑒, 𝑠−𝑒 = 𝑓 ′𝑒, and 𝑟𝑒 = 1
(𝑠+𝑒 )2

+ 1
(𝑠−𝑒 )2

. Runtime: Amortized̃︀𝑂 (︀𝛽−2
Checker𝜀

−2
)︀
.

• TemporaryUpdate(𝑒, f ′): Set 𝑠+𝑒 = 𝑢𝑒 − 𝑓 ′𝑒, 𝑠−𝑒 = 𝑓 ′𝑒, and 𝑟𝑒 = 1
(𝑠+𝑒 )2

+ 1
(𝑠−𝑒 )2

. Runtime:

Worst case ̃︀𝑂 (︀(𝐾𝛽−2
Checker𝜀

−2)2
)︀
, where 𝐾 is the number of TemporaryUpdates that have

not been rolled back using Rollback. All TemporaryUpdates should be rolled back before
the next call to Update.

• Rollback(): Rolls back the last TemporaryUpdate if it exists. The runtime is the same
as the original operation.

• Check(𝑒,𝜋𝑜𝑙𝑑): Returns ̃︀𝑓𝑒 such that
√
𝑟𝑒

⃒⃒⃒ ̃︀𝑓𝑒 − ̃︀𝑓*𝑒 ⃒⃒⃒ ≤ 𝜀, where

̃︀f *
= 𝛿𝑔(s)− 𝛿R−1B

(︁
B⊤R−1B

)︁+
B⊤𝑔(s) ,

for 𝛿 = 1/
√
𝑚. Additionally, a vector 𝜋𝑜𝑙𝑑 that is supported on 𝐶 such that

ℰr
(︁
𝜋𝑜𝑙𝑑 − 𝜋𝐶

(︁
B⊤𝑔(s)

)︁)︁
≤ 𝜀2𝑚/4

is provided, where 𝐶 is the vertex set of the dynamic sparsifier in the DynamicSC that is
maintained internally. Runtime: Worst case ̃︀𝑂 (︀(︀𝛽Checker𝑚+ (𝐾𝛽−2

Checker𝜀
−2)2

)︀
𝜀−2
)︀
, where

𝐾 is the number of TemporaryUpdates that have not been rolled back. Additionally, the
output of Check(𝑒) is independent of any previous calls to Check.

Finally, all calls to Check return valid outputs with high probability. The total number of Updates
and TemporaryUpdates that have not been rolled back should always be 𝑂(𝛽Checker𝑚).

This theorem is from [73]. The only difference is in the guarantee of Check. We will now show
how it can be implemented. Let

̃︀f *
= 𝛿𝑔(s)− 𝛿R−1BL+B⊤𝑔(s) .

Let DynamicSC be the underlying Schur complement data structure. We first add the endpoints
𝑢,𝑤 of 𝑒 as terminals by calling

DynamicSC.TemporaryAddTerminals({𝑢,𝑤})

so that the new Schur complement is on the vertex set 𝐶 ′ = 𝐶 ∪ {𝑢,𝑤}. Then, we set

𝜑 = −̃︂𝑆𝐶+
𝜋𝑜𝑙𝑑

and ̃︀𝑓𝑒 = (𝜑𝑢 − 𝜑𝑤)/
√
𝑟𝑒, where ̃︂𝑆𝐶 is the output of DynamicSC.̃︂𝑆𝐶(). Equivalently, note that

̃︀𝑓𝑒 = 𝛿 · 1⊤𝑒 R−1BL+𝜋𝑜𝑙𝑑 .

We will show that
√
𝑟𝑒

⃒⃒⃒ ̃︀𝑓𝑒 − ̃︀𝑓*𝑒 ⃒⃒⃒ ≤ 𝜀.
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We write
√
𝑟𝑒

⃒⃒⃒ ̃︀𝑓𝑒 − ̃︀𝑓*𝑒 ⃒⃒⃒
≤
⃦⃦
𝛿
√
r𝑔(s)

⃦⃦
∞ +

⃦⃦⃦
𝛿R−1/2BL+

(︁
B⊤𝑔(s)− 𝜋𝐶′

(︁
B⊤𝑔(s)

)︁)︁⃦⃦⃦
∞

+
⃦⃦⃦
𝛿R−1/2BL+

(︁
𝜋𝐶

′
(︁
B⊤𝑔(s)

)︁
− 𝜋𝐶

(︁
B⊤𝑔(s)

)︁)︁⃦⃦⃦
∞

+
⃦⃦⃦
𝛿R−1/2BL+

(︁
𝜋𝐶
(︁
B⊤𝑔(s)

)︁
− 𝜋𝑜𝑙𝑑

)︁⃦⃦⃦
∞
.

For the first term, ⃦⃦
𝛿
√
r𝑔(s)

⃦⃦
∞ =

⃦⃦⃦⃦
⃦⃦𝛿 1

s+
− 1

s−√︁
1

(s+)2
+ 1

(s−)2

⃦⃦⃦⃦
⃦⃦
∞

≤ 𝛿 ≤ 𝜀/10 .

Now, by the fact that 𝐶 ′ is a 𝛽Checker-congestion reduction subset by definition in DynamicSC,
Lemma 4.4.3 immediately implies that the second term is ≤ 𝛿 · ̃︀𝑂 (︀𝛽−2

Checker

)︀
≤ 𝜀/10.

For the third term, we apply Lemma 4.4.12, which shows that⃦⃦⃦
𝛿R−1/2BL+

(︁
𝜋𝐶

′
(︁
B⊤𝑔(s)

)︁
− 𝜋𝐶

(︁
B⊤𝑔(s)

)︁)︁⃦⃦⃦
∞

≤ 𝛿 ·
√︁
ℰr
(︀
𝜋𝐶′ (︀B⊤𝑔(s)

)︀
− 𝜋𝐶

(︀
B⊤𝑔(s)

)︀)︀
≤ 𝛿 · ̃︀𝑂 (︀𝛽−2

Checker

)︀
≤ 𝜀/10 ,

as the resistances don’t change and we only have two terminal insertions from 𝐶 to 𝐶 ′.
Finally, the fourth term is⃦⃦⃦
𝛿R−1/2BL+

(︁
𝜋𝐶
(︁
B⊤𝑔(s)

)︁
− 𝜋𝑜𝑙𝑑

)︁⃦⃦⃦
∞
≤ 𝛿 ·

√︁
ℰr
(︀
𝜋𝐶
(︀
B⊤𝑔(s)

)︀
− 𝜋𝑜𝑙𝑑

)︀
≤ 𝛿 · 𝜀

√
𝑚/2 = 𝜀/2 .

We conclude that
√
𝑟𝑒

⃒⃒⃒ ̃︀𝑓𝑒 − ̃︀𝑓*𝑒 ⃒⃒⃒ ≤ 𝜀. Finally, we call DynamicSC.Rollback to undo the
terminal insertions.

The runtime of this operation is dominated by the call to DynamicSC.̃︂𝑆𝐶(), which takes timẽ︀𝑂 (︀(𝛽Checker𝑚+ (𝐾𝛽−2
Checker𝜀

−2)2)𝜀−2
)︀
.

9.3 Appendix for Chapter 5

9.3.1 Approximating Submodular Set Functions with Graph Cuts

It is shown in [45] that submodular set functions defined on a ground set of 𝑛 elements can be 𝑂
(︀
𝑛2
)︀

approximated by directed graph cuts. We state this fact as a lemma, and we include the proof for
completeness in Section 9.3.1 below.

Definition 9.3.1. Given a submodular set function 𝐹 : 2𝑉 → R, such that 𝐹 (∅) = 𝐹 (𝑉 ) = 0, and
a weighted directed graph 𝐺 = (𝑉,𝐸, 𝑐), we say that the cut function of 𝐺 𝛼-approximates 𝐹 if

1

𝛼
𝑐+(𝐴) ≤ 𝐹 (𝐴) ≤ 𝑐+(𝐴) , for all 𝐴 ⊆ 𝑉 .

Lemma 9.3.2. Let 𝑉 = {1, . . . , 𝑛}, and let 𝐹 : 𝑉 → R be a non-negative submodular set function,
satisfying 𝐹 (∅) = 𝐹 (𝑉 ) = 0. Using 𝑂

(︀
𝑛2
)︀

calls to a minimization oracle which can compute for all
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Algorithm 22 Approximate non-negative submodular function 𝐹 = 𝐹 0 − 𝑤0 by graph cuts, where
𝐹 0 : 2𝑉 → R≥0 is the initial submodular function and the shift vector 𝑤0 : 𝑉 → R is given as input

1: function GraphApprox(𝑤0 : 𝑉 → R)
2: Call GraphApproxShifted(𝐹 0 − 𝑤0)

3: function GraphApproxShifted(𝐹 : 2𝑉 → R≥0)

4: Let 𝐸 = {(𝑢, 𝑣) ∈ 𝑉 × 𝑉 : 𝑢 ̸= 𝑣}.
5: for 𝑢, 𝑣 ∈ 𝑉 : 𝑢 ̸= 𝑣 do
6: Compute 𝑤𝑢𝑣 = min 𝐴⊆𝑉 :

𝑢∈𝐴,𝑣 ̸∈𝐴
𝐹 (𝐴).

7: 𝑐𝑢𝑣 = 𝑤𝑢𝑣 .
return 𝐺 = (𝑉,𝐸, 𝑐)

pairs 𝑢, 𝑣 ∈ 𝑉
min
𝐴⊆𝑉

𝑢∈𝐴,𝑣 ̸∈𝐴

𝐹 (𝐴)

one can compute a weighted directed graph 𝐺 (𝑉,𝐸, 𝑐) such that its cut function

𝑐+ (𝐴) :=
∑︁

(𝑢,𝑣)∈𝐸:
𝑢∈𝐴,𝑣 ̸∈𝐴

𝑐𝑢𝑣

(𝑛2/4)-approximates 𝐺. In other words, for any 𝐴 ⊆ 𝑉 the size of the graph cut satisfies:

1

𝑛2/4
· 𝑐+ (𝐴) ≤ 𝐹 (𝐴) ≤ 𝑐+ (𝐴) .

Furthermore, if 𝐹 takes only values that are discrete multiples of Δ, i.e. 𝐹 (𝐴) ∈ Δ · Z≥0 for all 𝐴,
then all elements of 𝑐 are discrete multiples of Δ.

As a consequence, we obtain a good approximation by graph cuts for decomposable submodular
functions where each component in the decomposition acts on few elements, i.e., when 𝐹𝑖(𝐴) =
𝐹𝑖(𝐴 ∩ 𝑉𝑖) for some 𝑉𝑖 ⊆ 𝑉 .

Lemma 9.3.3. Let 𝑉 = {1, . . . , 𝑛}, and let 𝐹𝑖 : 𝑉𝑖 → R, 𝑉𝑖 ⊆ 𝑉 be non-negative submodular
set functions, with 𝐹𝑖(∅) = 𝐹𝑖(𝑉𝑖), for 𝑖 = 1, . . . , 𝑟. In the time required to compute for all pairs
𝑢 ̸= 𝑣 ∈ 𝑉 and for all 1 ≤ 𝑖 ≤ 𝑟

min
𝐴⊆𝑉𝑖

𝑢∈𝐴,𝑣 ̸∈𝐴

𝐹𝑖 (𝐴)

one can compute a weighted directed graph 𝐺 (𝑉,𝐸, 𝑐) such that its cut function (𝑀2/4)-approximates∑︀𝑟
𝑖=1 𝐹𝑖, where 𝑀 = max𝑖=1,𝑟 |𝑉𝑖|.

Proof. For each 𝑖 compute the corresponding graph as in Lemma 9.3.2. Then take the union of
edges over the same vertex set.

We showed that the function 𝐹 (𝐴) is well approximated by the cut function 𝑐+(𝐴) for the graph
we constructed. Note that 𝑐+ is only defined on internal vertices of the graph, excluding 𝑠 and 𝑡.
However this does not affect its submodularity. Therefore the submodular base polytopes for the
two function approximate each other well.
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Lemma 9.3.4. Let 𝐹,𝐺 be two submodular functions defined over the same vertex set 𝑉 such that
𝐹 (∅) = 𝐺(∅) = 0, 𝐹 (𝑉 ) = 𝐺(𝑉 ) = 0, and for any 𝐴 ⊆ 𝑉 , 1

𝛼𝐺(𝐴) ≤ 𝐹 (𝐴) ≤ 𝐺(𝐴). Then their
submodular base polytopes satisfy:

1

𝛼
𝐵(𝐺) ⊆ 𝐵(𝐹 ) ⊆ 𝐵(𝐺) .

Proof. Let any 𝑤 ∈ 𝐵(𝐹 ). Then 𝑤(𝑉 ) = 𝐹 (𝑉 ) = 𝐺(𝑉 ). Furthermore for any set 𝐴 ⊆ 𝑉 , we
have 𝑤(𝐴) ≤ 𝐹 (𝐴) ≤ 𝐺(𝐴). Similarly for any 𝑤 ∈ 𝐺(𝐴), we have 𝑤(𝐴) ≤ 𝐺(𝐴) ≤ 𝛼𝐹 (𝐴), so
𝐵(𝐺) ⊆ 𝛼𝐵(𝐹 ), which yields the claim.

At this point we can prove that the submodular base polytope of the cut function created in
Lemma 9.3.3 approximates the submodular base polytope of the decomposable function

∑︀𝑟
𝑖=1 𝐹𝑖.

Lemma 9.3.5. Let 𝑉 = {1, . . . , 𝑛}, let 𝐹𝑖 : 𝑉𝑖 → R, 𝑉𝑖 ⊆ 𝑉 be non-negative submodular set
functions, with 𝐹𝑖(∅) = 𝐹𝑖(𝑉𝑖), for 𝑖 = 1, . . . , 𝑟, and let 𝐹 =

∑︀𝑟
𝑖=1 𝐹𝑖. In the time required

to solve min𝐴⊆𝑉𝑖:𝑢∈𝐴,𝑣 ̸∈𝐴 𝐹𝑖(𝐴) for all 𝑢, 𝑣 ∈ 𝑉𝑖 and all 𝑖, we can compute a weighted directed
graph 𝐺 = (𝑉,𝐸, 𝑐) such that the submodular base polytope of the cut function 𝑐+(𝐴) satisfies

1
𝑀2/4

𝐵(𝑐+) ⊆ 𝐵(𝐹 ) ⊆ 𝐵(𝑐+), where 𝑀 = max𝑖=1,𝑟 |𝑉𝑖|.

Proof. The proof follows directly from applying Lemma 9.3.3, followed by Lemma 9.3.4.

Proof of Lemma 9.3.2

Proof. To simplify notation let us denote by

𝑤𝑢𝑣 = min
𝐴⊆𝑉

𝑢∈𝐴,𝑣 ̸∈𝐴

𝐹 (𝐴) ,

and let 𝑇𝑢𝑣 be the set achieving this minimum.
Consider the graph defined as follows. For every 𝑢, 𝑣 ∈ 𝑉 , create an arc (𝑢, 𝑣) with weight

𝑐𝑢𝑣 = 𝑤𝑢𝑣. By construction all capacities are discrete multiples of Δ.
Now we can prove the lower bound on 𝐹 . We have that

𝑐+ (𝐴) =
∑︁

𝑢∈𝐴,𝑣 ̸∈𝐴
𝑐𝑢𝑣 ≤

∑︁
𝑢∈𝐴,𝑣 ̸∈𝐴

𝑐𝑢𝑣 =
∑︁

𝑢∈𝐴,𝑣 ̸∈𝐴
𝐹 (𝑇𝑢𝑣) ≤

∑︁
𝑢∈𝐴,𝑣/∈𝐴

𝐹 (𝐴) ≤
(︀
𝑛2/4

)︀
𝐹 (𝐴) .

We used the fact that 𝐹 (𝐴) upper bounds 𝑐𝑢𝑣 for all 𝑢 ∈ 𝐴, 𝑣 ̸∈ 𝐴. Now we prove the upper
bound. For any nonempty set 𝐴 ⊂ 𝑉 we can write 𝐴 =

⋃︀
𝑢∈𝐴

(︁⋂︀
𝑣∈𝑉 ∖𝐴 𝑇𝑢𝑣

)︁
. By twice applying

Lemma 9.3.6, we obtain that

𝐹 (𝐴) ≤
∑︁
𝑢∈𝐴

∑︁
𝑣 ̸∈𝐴

𝐹 (𝑇𝑢𝑣) = 𝑐+ (𝐴) .

Additionally, we have by construction that

𝑐+(∅) = 𝑐+(𝑉 ) = 0 .

251



Lemma 9.3.6. Let 𝐹 be a non-negative submodular set function 𝐹 : 2𝑉 → R, an let 𝐴1, . . . , 𝐴𝑡 be
subsets of 𝑉 . Then

𝐹

(︃
𝑡⋃︁
𝑖=1

𝐴𝑖

)︃
≤

𝑡∑︁
𝑖=1

𝐹 (𝐴𝑖)

and

𝐹

(︃
𝑡⋂︁
𝑖=1

𝐴𝑖

)︃
≤

𝑡∑︁
𝑖=1

𝐹 (𝐴𝑖) .

Proof. We prove by induction on 𝑡. If 𝑡 = 1, both inequalities are equalities. Otherwise, suppose
they hold for 𝑡− 1. Let 𝑆 =

⋃︀𝑡−1
𝑖=1 𝐴𝑖. By submodularity, 𝐹 (𝑆 ∪𝐴𝑡) ≤ 𝐹 (𝑆) + 𝐹 (𝐴𝑡)− 𝐹 (𝑆 ∩𝐴𝑡).

Since 𝐹 is non-negative, so is 𝐹 (𝑆 ∩𝐴𝑡), and therefore 𝐹 (𝑆 ∪𝐴𝑡) ≤ 𝐹 (𝑆) + 𝐹 (𝐴𝑡). Applying the
induction hypothesis this concludes the first part of the proof.

Similarly, let 𝑆 =
⋂︀𝑡−1
𝑖=1 𝐴𝑖. By submodularity, 𝐹 (𝑆 ∩ 𝐴𝑡) ≤ 𝐹 (𝑆) + 𝐹 (𝐴𝑡)− 𝐹 (𝑆 ∪ 𝐴𝑡). Since

𝐹 is non-negative, so is 𝐹 (𝑆 ∪𝐴𝑡), and therefore 𝐹 (𝑆 ∩𝐴𝑡) ≤ 𝐹 (𝑆) + 𝐹 (𝐴𝑡). Again, applying the
induction hypothesis this concludes the second part of the proof.

9.3.2 Parametric Submodular Minimization via Optimization on the Base Poly-
tope

In this section, for completeness, we provide a proof of Lemma 5.2.3, which is based on [15] (see
Chapter 8). In addition, we provide error analysis for reductions between approximate solutions to
the combinatorial parametric submodular minimization problem, its continuous version involving
the Lovász extension, and the dual formulation on the base polytope.

Proof of Lemma 5.2.3. Given any point 𝑥, let 𝛽 ≤ min{0,min𝑖 𝑥𝑖}. Applying the definition of the
Lovász extension, and the fundamental theorem of calculus, we can write:

𝑓(𝑥) +
∑︁
𝑖∈𝑉

𝜓𝑖(𝑥𝑖) =

∫︁ ∞

0
𝐹 ({𝑖 : 𝑥𝑖 ≥ 𝑡})𝑑𝑡+

∫︁ 0

𝛽
(𝐹 ({𝑖 : 𝑥𝑖 ≥ 𝑡})− 𝐹 (𝑉 )) 𝑑𝑡

+
∑︁
𝑖∈𝑉

𝜓𝑖(𝛽) +

∫︁ ∞

𝛽

∑︁
𝑖:𝑥𝑖≥𝑡

𝜓′
𝑖(𝑡)𝑑𝑡

=

∫︁ ∞

𝛽

⎛⎝𝐹 ({𝑖 : 𝑥𝑖 ≥ 𝑡}) + ∑︁
𝑖:𝑥𝑖≥𝑡

𝜓′
𝑖(𝑡)

⎞⎠ 𝑑𝑡+
∑︁
𝑖∈𝑉

𝜓𝑖(𝛽)− 𝛽𝐹 (𝑉 ) .

Note that we crucially used the fact that the parametric term
∑︀

𝑖 𝜓
′
𝑖(𝑡) is separable.

Next we show that if the optimal sets 𝐴𝛼 were different from those defined in (5.3), then we
could obtain a different iterate 𝑥′ such that 𝑓(𝑥′) +

∑︀
𝑖∈𝑉 𝜓𝑖(𝑥

′) ≤ 𝑓(𝑥*) +
∑︀

𝑖∈𝑉 𝜓𝑖(𝑥
*). However,

since 𝜓 is strictly convex, the minimizer of 𝑓(𝑥) +
∑︀

𝑖∈𝑉 𝜓𝑖(𝑥) is unique. This gives a contradiction
leading us to the desired conclusion.

Indeed, let 𝑥′𝑖 = sup𝑖∈𝐴𝛼 𝛼. By the strict convexity property of 𝜓𝑖, we have that for any 𝛼 > 𝛽,
𝐴𝛼 ⊆ 𝐴𝛽 , which we reprove for completeness in Lemma 9.3.7.

Using this fact, we know that if 𝐴𝛼 are the optimizers of 𝐹 (𝐴) +
∑︀

𝑖∈𝑉 𝜓𝑖(𝛼), then we can write:

∫︁ ∞

𝛽

(︃
𝐹 (𝐴𝑡) +

∑︁
𝑖∈𝐴𝑡

𝜓′
𝑖(𝑡)

)︃
𝑑𝑡 =

∫︁ ∞

𝛽

⎛⎝𝐹 ({𝑖 : 𝑥′𝑖 ≥ 𝑡}) + ∑︁
𝑖:𝑥′𝑖≥𝑡

𝜓′
𝑖(𝑡)

⎞⎠ 𝑑𝑡 .
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Since by the optimality of 𝐴𝑡 we have that

𝑓(𝐴𝑡) +
∑︁
𝑖∈𝐴𝑡

𝜓𝑖(𝑡) ≤ 𝐹 ({𝑖 : 𝑥𝑖 ≥ 𝑡}) +
∑︁
𝑖:𝑥𝑖≥𝑡

𝜓′
𝑖(𝑡) ,

it means that letting 𝛽 = min{0,min𝑖 𝑥
′
𝑖,min𝑖 𝑥

*
𝑖 },∫︁ ∞

𝛽

⎛⎝𝐹 ({𝑖 : 𝑥′𝑖 ≥ 𝑡}) + ∑︁
𝑖:𝑥′𝑖≥𝑡

𝜓′
𝑖(𝑡)

⎞⎠ 𝑑𝑡 ≤
∫︁ ∞

𝛽

⎛⎝𝐹 ({𝑖 : 𝑥*𝑖 ≥ 𝑡}) + ∑︁
𝑖:𝑥*𝑖≥𝑡

𝜓′
𝑖(𝑡)

⎞⎠ 𝑑𝑡

and therefore
𝑓(𝑥′) +

∑︁
𝑖∈𝑉

𝜓𝑖(𝑥
′) ≤ 𝑓(𝑥*) +

∑︁
𝑖∈𝑉

𝜓𝑖(𝑥
*) ,

which concludes the proof.

Lemma 9.3.7. Let 𝐹 : 2𝑉 → R be a submodular set function, and let 𝜓𝑖 : R → R be a family of
strictly convex functions, for 𝑖 ∈ 𝑉 . Let 𝐹𝛼(𝐴) = 𝐹 (𝐴) +

∑︀
𝑖∈𝐴 𝜓

′
𝑖(𝛼), and 𝐴𝛼 = argmin𝐴⊆𝑉 𝐹𝛼(𝐴).

If 𝛼 > 𝛽, then 𝐴𝛼 ⊆ 𝐴𝛽.

Proof. By optimality we have that

𝐹 (𝐴𝛼) +
∑︁
𝑖∈𝐴𝛼

𝜓′
𝑖(𝛼) ≤ 𝐹 (𝐴𝛼 ∩𝐴𝛽) +

∑︁
𝑖∈𝐴𝛼∩𝐴𝛽

𝜓′
𝑖(𝛼)

and
𝐹 (𝐴𝛽) +

∑︁
𝑖∈𝐴𝛽

𝜓′
𝑖(𝛽) ≤ 𝐹 (𝐴𝛼 ∪𝐴𝛽) +

∑︁
𝑖∈𝐴𝛼∪𝐴𝛽

𝜓′
𝑖(𝛽) .

Summing up we obtain that∑︁
𝑖∈𝐴𝛼

𝜓′
𝑖(𝛼)−

∑︁
𝑖∈𝐴𝛼∩𝐴𝛽

𝜓′
𝑖(𝛼) +

∑︁
𝑖∈𝐴𝛽

𝜓′
𝑖(𝛽)−

∑︁
𝑖∈𝐴𝛼∪𝐴𝛽

𝜓′
𝑖(𝛽)

≤ 𝐹 (𝐴𝛼 ∩𝐴𝛽) + 𝐹 (𝐴𝛼 ∪𝐴𝛽)− 𝐹 (𝐴𝛼)− 𝐹 (𝐴𝛽)
≤ 0 ,

where we used submodularity in the last step. Therefore∑︁
𝑖∈𝐴𝛼∖𝐴𝛽

(𝜓′
𝑖(𝛼)− 𝜓′

𝑖(𝛽)) ≤ 0 .

Hence we conclude that 𝐴𝛼 ∖𝐴𝛽 = ∅, since by strict convexity we have that for all 𝑖, 𝜓′
𝑖(𝛼) > 𝜓′

𝑖(𝛽),
which would make the term above strictly positive had there been any elements in the set difference.

Next we perform a careful error analysis to bound the total error we incur in the case where the
iterate we consider is not an exact minimizer of (5.2), but has some small error in norm.

Lemma 9.3.8. Under the conditions from Lemma 5.2.3, let ̃︀𝑥 ∈ R be a point satisfying ‖̃︀𝑥−𝑥*‖ ≤ 𝜀,
where 𝑥* is the minimizer of (5.2). Let the sets

̃︀𝐴𝛼 = {𝑖 : ̃︀𝑥𝑖 ≥ 𝛼} .
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If 𝜓𝑖 is 𝜎-strongly convex, for all 𝑖, and max𝐴⊆𝑉 𝐹 (𝐴)−min𝐴′⊆𝑉 𝐹 (𝐴
′) ≤𝑀 , then:

𝐹 ( ̃︀𝐴𝛼) + ∑︁
𝑖∈ ̃︀𝐴𝛼

𝜓′
𝑖(𝛼) ≤ 𝐹 (𝐴𝛼) +

∑︁
𝑖∈𝐴𝛼

𝜓′
𝑖(𝛼) +𝑀𝑛3/2𝜀+ 𝛽𝜀2/2 .

Proof. First, using the smoothness of 𝜓𝑖 we prove that

𝑓(̃︀𝑥) +∑︁
𝑖

𝜓𝑖(̃︀𝑥𝑖) ≤ 𝑓(𝑥*) +∑︁
𝑖

𝜓𝑖(𝑥
*
𝑖 ) +𝑀𝑛3/2𝜀+ 𝛽𝜀2/2 .

To prove this we first note that 𝑓 is Lipschitz, since we can use the fact that entries of the gradient
of the Lovász extension consist of differences between 𝐹 evaluated at different subsets of 𝑉 . Hence
for any 𝑥, |∇𝑖𝑓(𝑥)| ≤ max𝐴⊆𝑉 𝐹 (𝐴)−min𝐴′⊆𝑉 𝐹 (𝐴′) ≤𝑀 , and thus ‖∇𝑓(𝑥)‖ ≤𝑀

√
𝑛. Therefore

𝑓(̃︀𝑥)− 𝑓(𝑥*) ≤𝑀√𝑛‖̃︀𝑥− 𝑥*‖ ≤𝑀√𝑛𝜀 .
Secondly, we use the smoothness of 𝜓𝑖, to obtain that

𝜓𝑖(̃︀𝑥𝑖) ≤ 𝜓𝑖(𝑥*𝑖 ) + 𝜓′
𝑖(𝑥

*
𝑖 )(̃︀𝑥𝑖 − 𝑥*𝑖 ) + 𝛽

2
(̃︀𝑥𝑖 − 𝑥*𝑖 )2

Using Lemma 9.3.10 we see that 𝜓′
𝑖(𝑥

*
𝑖 ) = −𝑤*

𝑖 , where 𝑤* is the optimizer of a certain function over
the base polytope 𝐵(𝐹 ). By the definition of 𝐵(𝐹 ) we have 𝑤*

𝑖 ≤ 𝐹 ({𝑖}) ≤𝑀 and −𝑤*
𝑖 +
∑︀

𝑗 ̸=𝑖𝑤
*
𝑗 =

𝐹 (𝑉 ), so −𝑤*
𝑖 ≥ 𝐹 (𝑉 )−

∑︀
𝑗 ̸=𝑖 𝐹 ({𝑗}) ≥ −𝑀(𝑛− 1). Thus, by applying Cauchy-Schwharz, we have∑︁

𝑖∈𝑉
𝜓′
𝑖(𝑥

*
𝑖 )(̃︀𝑥𝑖 − 𝑥*𝑖 ) ≤ max

𝑖
|𝜓′
𝑖(𝑥

*
𝑖 )|
√
𝑛 · ‖̃︀𝑥− 𝑥*‖ ≤𝑀(𝑛− 1)𝑛1/2𝜀 ,

and thus ∑︁
𝑖∈𝑉

𝜓′
𝑖(̃︀𝑥𝑖)− 𝜓′

𝑖(𝑥
*
𝑖 ) ≤𝑀(𝑛− 1)𝑛1/2𝜀+ 𝛽𝜀2/2 .

Combining with the bound on 𝑓(̃︀𝑥), we obtain our claimed error in function value.
Now we can finalize the argument. Following the proof of Lemma 5.2.3 we write 𝑓(̃︀𝑥)+∑︀𝑖∈𝑉 𝜓

′
𝑖(̃︀𝑥𝑖)

as an integral, and similarly for 𝑥*, to conclude that for 𝛽 = min{0,min𝑖 ̃︀𝑥𝑖,min𝑖 𝑥
*
𝑖 },∫︁ ∞

𝛽

⎛⎝𝐹 ( ̃︀𝐴𝑡) + ∑︁
𝑖∈ ̃︀𝐴𝑡

𝜓′
𝑖(𝑡)

⎞⎠ 𝑑𝑡 ≤
∫︁ ∞

𝛽

(︃
𝐹 (𝐴𝑡) +

∑︁
𝑖∈𝐴𝑡

𝜓′
𝑖(𝑡)

)︃
𝑑𝑡+𝑀𝑛3/2𝜀+ 𝛽𝜀2/2 .

Since by definition 𝐴𝑡 minimizes
∑︀

𝑖∈𝐴𝑡 𝜓′
𝑖(𝑡), we conclude that for all 𝑡,

𝐹 ( ̃︀𝐴𝑡) + ∑︁
𝑖∈ ̃︀𝐴𝑡

𝜓′
𝑖(𝑡) ≤ 𝐹 (𝐴𝑡) +

∑︁
𝑖∈𝐴𝑡

𝜓′
𝑖(𝑡) +𝑀𝑛3/2𝜀+ 𝛽𝜀2/2 .

We can also show that if we obtain an approximate minimizer of the dual problem (5.4) over
𝐵(𝐹 ), we can use it to recover an approximate minimizer of the primal problem (5.2).

Lemma 9.3.9. Let 𝑤* be the minimizer of the dual problem (5.4), and and let 𝑥* be the minimizer
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of the primal problem (5.2). If 𝑤 ∈ 𝐵(𝐹 ) such that∑︁
𝑖∈𝑉

𝜓*
𝑖 (−𝑤𝑖) ≤

∑︁
𝑖∈𝑉

𝜓*
𝑖 (−𝑤*

𝑖 ) + 𝜀 ,

then the point 𝑥 ∈ R𝑛 where 𝑥𝑖 = (𝜓*
𝑖 )

′(−𝑤𝑖) satisfies

‖𝑥− 𝑥*‖ ≤
√︂

2𝐿𝜀

𝜎2
.

Proof. By Lemma 9.3.10 we know that 𝑥* and 𝑤* are related via 𝑥*𝑖 = (𝜓*
𝑖 )

′(−𝑤*
𝑖 ). Therefore we

can write
|𝑥𝑖 − 𝑥*𝑖 | = |(𝜓*

𝑖 )
′(−𝑤𝑖)− (𝜓*

𝑖 )
′(−𝑤*

𝑖 )| ≤
1

𝜎
|𝑤𝑖 − 𝑤*

𝑖 | ,

where in the last inequality we used the fact that 𝜓𝑖 is 𝜎-strongly convex, and hence 𝜓*
𝑖 is 1/𝜎-

smooth [145, 92]. Next we show that |𝑤𝑖 − 𝑤*
𝑖 | is bounded by a function of 𝜀.

Since by assumption 𝜓𝑖 is 𝐿-smooth, its dual 𝜓*
𝑖 is 1/𝐿-strongly convex. Therefore we have that,

for all 𝑖:
𝜓*
𝑖 (−𝑤𝑖) ≥ 𝜓*

𝑖 (−𝑤*
𝑖 ) + (𝜓*

𝑖 )
′(−𝑤*

𝑖 ) · (−𝑤𝑖 − (−𝑤*
𝑖 )) +

𝜎

2
(𝑤*

𝑖 − 𝑤𝑖)2 .

Furthermore, since 𝑤* is an optimizer over 𝐵(𝐹 ), we know by first-order optimality that for any
𝑤 ∈ 𝐵(𝐹 ): ∑︁

𝑖∈𝑉
(𝜓*

𝑖 )
′(−𝑤*

𝑖 ) · (−𝑤𝑖 − (−𝑤*
𝑖 )) ≥ 0 ,

i.e. slightly moving the point from −𝑤* towards −𝑤 can only increase function value. Thus we
obtain that ∑︁

𝑖∈𝑉
𝜓*
𝑖 (−𝑤𝑖) ≥

∑︁
𝑖∈𝑉

𝜓*
𝑖 (−𝑤*

𝑖 ) +
1

2𝐿

∑︁
𝑖∈𝑉

(𝑤*
𝑖 − 𝑤𝑖)2 .

Combining with the hypothesis, this implies that

1

2𝐿

∑︁
𝑖∈𝑉

(𝑤*
𝑖 − 𝑤𝑖)2 ≤ 𝜀 ,

and therefore
‖𝑥− 𝑥*‖2 ≤ 1

𝜎2

∑︁
𝑖∈𝑉

(𝑤𝑖 − 𝑤*
𝑖 )

2 ≤ 2𝐿𝜀

𝜎2
,

which implies the claimed result.

As a corollary of the previous lemmas, we see that an approximate solution to the dual problem
(5.4) yields an approximate solution to the original parametric problem (5.1).

Corollary 9.3.1. Let 𝐹 : 2𝑉 → R be a non-negative submodular set function, and let the the family
of parametric problems defined in (5.1). Let 𝑤 ∈ 𝐵(𝐹 ) such that∑︁

𝑖∈𝑉
𝜓*
𝑖 (−𝑤𝑖) ≤

∑︁
𝑖∈𝑉

𝜓*
𝑖 (−𝑤*

𝑖 ) + 𝜀 ,

where 𝑤* is the true minimizer of the dual problem (5.4). Then for any 𝛼, the set

̃︀𝐴𝛼 = {𝑖 : 𝜓*
𝑖 (−𝑤𝑖) ≥ 𝛼}
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satisfies
𝐹𝛼( ̃︀𝐴𝛼) ≤ 𝐹𝛼(𝐴𝛼) +√𝜀 ·𝑀𝑛3/2

√︀
2𝐿/𝜎2 + 𝜀 · (𝐿/𝜎)2 ,

where 𝐴𝛼 = argmin𝐴⊆𝑉 𝐹𝛼(𝐴).

Proof. From Lemma 9.3.9 we know that the hypothesis implies that the point 𝑥 where 𝑥𝑖 = (𝜓*
𝑖 )(−𝑤𝑖)

satisfies ‖𝑥 − 𝑥*‖ ≤
√︀

2𝐿𝜀/𝜎2. Applying Lemma 9.3.8 we thus obtain that the sets constructed
satisfy

𝐹𝛼( ̃︀𝐴𝛼) ≤ 𝐹𝛼(𝐴𝛼) +𝑀𝑛3/2
√︀

2𝐿𝜀/𝜎2 + 𝐿/2 · (2𝐿𝜀/𝜎2) ,

which yields our claim.

The following helper lemma shows that we can efficiently convert between (exact) solutions to
the primal and dual problems (5.2) and (5.4). Using standard techniques we can prove that these
also enable us to convert between suboptimal solutions, while satisfying certain error bounds.

Lemma 9.3.10. Let 𝑥* be the (unique) minimizer of (5.2), and let 𝑤* be the minimizer of (5.4).
Then 𝑤*

𝑖 = −𝜓′
𝑖(𝑥𝑖) and (𝜓*

𝑖 )
′(−𝑤𝑖) = 𝑥𝑖, for all 𝑖 ∈ 𝑉 .

Proof. We the dual characterization of 𝑓 and Sion’s theorem, to write

min
𝑥∈R𝑛

𝑓(𝑥) +
∑︁
𝑖∈𝑉

𝜓𝑖(𝑥𝑖) = min
𝑥∈R𝑛

max
𝑤∈𝐵(𝐹 )

⟨𝑤, 𝑥⟩+
∑︁
𝑖∈𝑉

𝜓𝑖(𝑥𝑖) = max
𝑤∈𝐵(𝐹 )

min
𝑥∈R𝑛
⟨𝑤, 𝑥⟩+

∑︁
𝑖∈𝑉

𝜓𝑖(𝑥𝑖) .

Since each 𝜓𝑖 acts on a different coordinate we can write the inner minimization problem as

min
𝑥∈R𝑛

∑︁
𝑖∈𝑉

(𝑤𝑖𝑥𝑖 + 𝜓𝑖(𝑥𝑖)) = −
∑︁
𝑖∈𝑉

𝜓*
𝑖 (−𝑤𝑖) ,

where we applied the definition of the Fenchel dual. Furthermore by standard convex analysis [23,
140], as 𝜓′

𝑖 ranges from −∞ to∞ for each 𝑖 we have that (𝜓*
𝑖 )

′(−𝑤𝑖) = 𝑥𝑖, and similarly 𝜓′
𝑖(𝑥𝑖) = −𝑤𝑖.

Thus we can equivalently write (5.2) as

max
𝑤∈𝐵(𝐹 )

−
∑︁
𝑖∈𝑉

𝜓*
𝑖 (−𝑤𝑖) .

By the previous observation, the optima are thus related via (𝜓*
𝑖 )

′(−𝑤*
𝑖 ) = 𝑥*𝑖 , and similarly

𝜓′
𝑖(𝑥

*
𝑖 ) = −𝑤*

𝑖 .

9.3.3 Parametric 𝑠-𝑡 Cuts

In this section we show how to solve the parametric minimum cut problem by efficiently using a
maximum flow oracle. In Section 5.4 we show how to convert the solution obtained by this combi-
natorial routine to a nearly-optimal solution to a related optimization problem on the submodular
base polytope of the corresponding cut function.

In the parametric min 𝑠, 𝑡-cut problem, we are given a directed network 𝐺 = (𝑉,𝐸) with two
distinguished vertices: a source 𝑠 ∈ 𝑉 , and a sink 𝑡 ∈ 𝑉 , 𝑠 ̸= 𝑡. The capacities of individual edges
of 𝐺 are nonnegative functions of a real parameter 𝜆 in some possibly infinite domain D ⊆ R (as
opposed to constants in the classical setting of min 𝑠, 𝑡-cut). Following [72], we assume that the
capacities of edges 𝑠𝑣 ∈ 𝐸 are nondecreasing in 𝜆 and the capacities of edges 𝑣𝑡 ∈ 𝐸 are nonincreasing
in 𝜆. The capacities of all other edges of 𝐺 are constant.

We denote by 𝑐𝜆(𝑢𝑣) : D→ R the capacity function of an edge 𝑢𝑣 ∈ 𝐸. Moreover, we assume
that these edge capacity functions can be evaluated for arbitrary 𝜆 in constant time.
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Roughly speaking, the goal of the parametric min 𝑠, 𝑡-cut problems is to compute a representation
of min 𝑠, 𝑡-cut for all the possible parameters 𝜆. Before we precisely define what this means, let us
introduce some more notation and state some useful properties of (parametric) min-cuts.

Denote by cap(𝐺) the capacity of a min 𝑠, 𝑡-cut in 𝐺. Let 𝐺𝜆′ be the graph with all the
parameterized capacities replaced with the corresponding values for 𝜆 = 𝜆′. For any 𝑆, 𝑠 ∈ 𝑆 ⊆ 𝑉 ∖{𝑡},
let 𝑐𝜆(𝑆) be the capacity function of 𝑆, i.e., the sum of capacity functions 𝑐𝜆(𝑢𝑣) through all 𝑢𝑣
with 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑉 ∖ 𝑆.

Lemma 9.3.2 ([62]). For any 𝐺, there exists a unique minimal minimum 𝑠, 𝑡-cut (𝑆, 𝑇 ) with |𝑆|
smallest possible, such that for any min 𝑠, 𝑡-cut (𝑆′, 𝑇 ′) of 𝐺 we have 𝑆 ⊆ 𝑆′. Given any maximum
𝑠, 𝑡-flow 𝑓 in 𝐺, such a cut can be computed from 𝑓 in 𝑂(𝑚) time.

Proof. Let 𝐺𝑓 be the residual network associated with flow 𝑓 . We let 𝑆 be the set of vertices
reachable from 𝑠 in 𝐺𝑓 (via edges with positive capacity). As proven by Ford and Fulkerson [62,
Theorem 5.5], 𝑆 defined this way does not depend on the chosen maximum flow 𝑓 , and 𝑆 ⊆ 𝑆′ holds.
Clearly, given 𝑓 , 𝑆 can be found using any graph search algorithm.

Ford and Fulkerson [62, Corollary 5.4] showed that for any two min 𝑠, 𝑡-cuts (𝑆1, 𝑇1), (𝑆2, 𝑇2)
of 𝐺, (𝑆1 ∩ 𝑆2, 𝑇1 ∪ 𝑇2) is also a min 𝑠, 𝑡-cut of 𝐺. Gallo et al. [72, Lemma 2.8] gave the following
generalization of this property to parametric min 𝑠, 𝑡-cuts.

Lemma 9.3.3 ([72]). Let 𝜆1 ≤ 𝜆2. For 𝑖 = 1, 2, let (𝑆𝜆𝑖 , 𝑇𝜆𝑖) be some min 𝑠, 𝑡-cut in 𝐺𝜆𝑖. Then
(𝑆𝜆1 ∩ 𝑆𝜆2 , 𝑇𝜆1 ∪ 𝑇𝜆2) is a min 𝑠, 𝑡-cut in 𝐺𝜆1.

Our algorithm will use the following crucial property of parametric minimal min 𝑠, 𝑡-cuts.

Lemma 9.3.4. Let 𝜆1 ≤ 𝜆2. For 𝑖 = 1, 2, let (𝑆𝜆𝑖 , 𝑇𝜆𝑖) be the unique minimal min 𝑠, 𝑡-cut in 𝐺𝜆𝑖.
Then 𝑆𝜆1 ⊆ 𝑆𝜆2.

Proof. The uniqueness of 𝑆𝜆1 and 𝑆𝜆2 follows by Lemma 9.3.2 applied to 𝐺𝜆1 and 𝐺𝜆2 , respectively.
By Lemma 9.3.3, (𝑆𝜆1 ∩ 𝑆𝜆2 , 𝑇𝜆1 ∪ 𝑇𝜆2) is a min 𝑠, 𝑡-cut in 𝐺𝜆1 . By Lemma 9.3.2, we have
𝑆𝜆1 ⊆ 𝑆𝜆1 ∩ 𝑆𝜆2 . It follows that 𝑆𝜆1 ⊆ 𝑆𝜆2 .

Now given Lemma 9.3.4, we can formally state our goal in this section, which is to compute a
parametric min 𝑠, 𝑡-cut defined as follows. Let 𝜆min ∈ D be such that the minimal min 𝑠, 𝑡-cuts of
𝐺𝜆min

and 𝐺𝜆′ are equal for all 𝜆′ ∈ D, 𝜆′ < 𝜆min. Similarly, let 𝜆max ∈ D be such that the minimal
min 𝑠, 𝑡-cuts of 𝐺𝜆max and 𝐺𝜆′ are equal for all 𝜆′ ∈ D with 𝜆′ > 𝜆max. We will consider 𝜆min and
𝜆max additional inputs to our problem.

For simplicity, in the remaining part of this section we denote by 𝑆𝜆 and 𝑇𝜆 the 𝑠-side and the
𝑡-side (resp.) of the minimal min-𝑠, 𝑡-cut of 𝐺𝜆.

Definition 9.3.11 (Parametric min 𝑠, 𝑡-cut). Let Λ = {𝜆1, . . . , 𝜆𝑘} ⊆ D, where 𝑘 ≤ 𝑛 − 1 and
𝜆min < 𝜆1 < . . . < 𝜆𝑘 ≤ 𝜆max. Let 𝜆0 = 𝜆min. Let 𝜏 : 𝑉 → Λ ∪ {𝜆min,∞} be such that 𝜏(𝑠) = 𝜆min

and 𝜏(𝑡) =∞. Let 𝑆(𝑧) = {𝑣 ∈ 𝑉 : 𝜏(𝑣) ≤ 𝑧}. A pair (Λ, 𝜏) is a parametric min 𝑠, 𝑡-cut of 𝐺 if:

1. For 𝑖 = 0, . . . , 𝑘 − 1, 𝑆(𝜆𝑖) is a minimal min 𝑠, 𝑡-cut of 𝐺𝜆′ for all 𝜆′ ∈ [𝜆𝑖, 𝜆𝑖+1) ∩ D.

2. 𝑆(𝜆𝑘) is a minimal min 𝑠, 𝑡-cut of 𝐺𝜆max .

3. For 𝑖 = 0, . . . , 𝑘 − 1, 𝑆(𝜆𝑖) ( 𝑆(𝜆𝑖+1).

It will also prove useful to define an approximate version of parametric min 𝑠, 𝑡-cut.
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Definition 9.3.12 (𝜀-approximate parametric min 𝑠, 𝑡-cut). Let Λ, 𝜏 , and 𝑆 : D → 2𝑉 be as in
Definition 9.3.11. A pair (Λ, 𝜏) is called an 𝜀-approximate parametric min 𝑠, 𝑡-cut of 𝐺 if:

1. For 𝑖 = 0, . . . , 𝑘 − 1, 𝑆(𝜆𝑖) is a minimal min 𝑠, 𝑡-cut of 𝐺𝜆′ for all 𝜆′ ∈ [𝜆𝑖, 𝜆𝑖+1 − 𝜀) ∩ D.

2. 𝑆(𝜆𝑘) is a minimal min 𝑠, 𝑡-cut of 𝐺𝜆max .

3. For 𝑖 = 0, . . . , 𝑘 − 1, 𝑆(𝜆𝑖) ( 𝑆(𝜆𝑖+1).

Lemma 9.3.5. Let (Λ, 𝜏) be the parametric min 𝑠, 𝑡-cut of 𝐺. Let (Λ𝜀, 𝜏𝜀) be an 𝜀-approximate
parametric min 𝑠, 𝑡-cut of 𝐺. Then for all 𝑣 ∈ 𝑉 , 𝜏(𝑣) ≤ 𝜏𝜀(𝑣) ≤ 𝜏(𝑣) + 𝜀.

Proof. Let 𝑆(𝑧) = {𝑣 ∈ 𝑉 : 𝜏(𝑣) ≤ 𝑧}, and 𝑆𝜀(𝑧) = {𝑣 ∈ 𝑉 : 𝜏𝜀(𝑣) ≤ 𝑧}. First of all, 𝜏(𝑣) = ∞ if
and only if 𝜏𝜀(𝑣) = ∞. This is because each of those is equivalent to 𝑣 /∈ 𝑆𝜆max . In this case the
lemma holds trivially.

So in the following let us assume that 𝜏(𝑣) and 𝜏𝜀(𝑣) are both finite. We first prove 𝜏𝜀(𝑣) ≥ 𝜏(𝑣).
If 𝜏(𝑣) = 𝜆min then this follows by 𝜏𝜀(𝑣) ≥ 𝜆min. So suppose 𝜏(𝑣) = 𝜆 for some 𝜆 ∈ Λ. Then by
item (1) of Definition 9.3.11, for any 𝜆′ < 𝜆, 𝑆(𝜆′) is a minimal min 𝑠, 𝑡-cut of 𝐺𝜆′ and 𝑣 /∈ 𝑆(𝜆′). If
we had 𝜏𝜀(𝑣) < 𝜏(𝑣), then 𝑆𝜀(𝜏𝜀(𝑣)) would be a minimal min 𝑠, 𝑡-cut of 𝐺𝜏𝜀(𝑣) such that 𝑣 ∈ 𝑆𝜏𝜀(𝑣)
and 𝜏𝜀(𝑣) < 𝜆, a contradiction.

Now let us prove 𝜏𝜀(𝑣) ≤ 𝜏(𝑣) + 𝜀. To this end, suppose 𝜏𝜀(𝑣) > 𝜏(𝑣) + 𝜀. If 𝜏𝜀(𝑣) = 𝜆min, then
we have 𝜆min > 𝜏(𝑣) + 𝜀 ≥ 𝜆min + 𝜀, a clear contradiction. So let us assume that 𝜏𝜀(𝑣) ∈ Λ𝜀 and let
𝜆* be the element preceding 𝜏𝜀(𝑣) in Λ𝜀, or 𝜆* = 𝜆min if no such element exists. We have 𝑣 /∈ 𝑆𝜆*
and 𝑆𝜆* is a minimal min 𝑠, 𝑡-cut in 𝐺𝜆′ for 𝜆′ = 𝜆* and all 𝜆′ ∈ [𝜆*, 𝜏𝜀(𝑣)− 𝜀). As a result, for any
𝜆′′ < 𝜏𝜀(𝑣)−𝜀, the minimal min 𝑠, 𝑡-cut of 𝐺𝜆′′ does not contain 𝑣 in the 𝑠-side. But 𝜏(𝑣) < 𝜏𝜀(𝑣)−𝜀,
𝑣 ∈ 𝑆(𝜏(𝑣)), and 𝑆(𝜏(𝑣)) is a minimal min 𝑠, 𝑡-cut of 𝐺𝜏(𝑣), a contradiction.

Our main result in this section is the following theorem.

Theorem 5.3.2. Let 𝑅 = 𝜆max−𝜆min be an integral multiple of 𝜀 > 0. Let 𝑇maxflow(𝑛
′,𝑚′) = Ω(𝑚′+

𝑛′) be a convex function bounding the time needed to compute maximum flow in a graph with 𝑛′ vertices
and 𝑚′ edges obtained from 𝐺𝜆 by edge/vertex deletions and/or edge contractions (with merging
parallel edges by summing their capacities) for any 𝜆 = 𝜆min + ℓ𝜀 and any integer ℓ ∈ [0, 𝑅/𝜀]. Then,
𝜀-approximate parametric min 𝑠, 𝑡-cut in 𝐺 can be computed in 𝑂(𝑇maxflow(𝑛,𝑚 log 𝑛) · log 𝑅

𝜀 · log 𝑛)
time.

The rest of this section is devoted to proving Theorem 5.3.2. For a connected subset 𝑋 ⊆ 𝑉 (𝐺),
{𝑠, 𝑡} ̸⊆ 𝑋, let 𝐺/𝑋 denote 𝐺 after merging the vertex set 𝑋 into a single vertex. If the contracted
vertex set 𝑋 contains 𝑠 (𝑡), then the resulting vertex inherits the identity of 𝑠 (𝑡, resp.).

Lemma 9.3.6. Let 𝜆 be arbitrary and let (𝑆𝜆, 𝑇𝜆) be the minimal min 𝑠, 𝑡-cut in 𝐺𝜆. Then:

1. For any 𝜆′ ≥ 𝜆, cap(𝐺𝜆′) = cap(𝐺𝜆′/𝑆𝜆).

2. For any 𝜆′ ≤ 𝜆, cap(𝐺𝜆′) = cap(𝐺𝜆′/𝑇𝜆).

Proof. We only prove item 1, as item 2 is analogous. Since merging vertices is equivalent to
connecting them with infinite capacity edges, it cannot decrease the min 𝑠, 𝑡-cut capacity, i.e.,
cap(𝐺𝜆′) ≤ cap(𝐺𝜆′/𝑆𝜆). On the other hand, by Lemma 9.3.4, the minimal 𝑠, 𝑡 min-cut (𝑆𝜆′ , 𝑇𝜆′) in
𝐺𝜆′ satisfies 𝑆𝜆 ⊆ 𝑆𝜆′ . Hence, the capacity of the 𝑠, 𝑡-cut (𝑆𝜆′/𝑆𝜆, 𝑇𝜆′) in 𝐺𝜆′/𝑆𝜆 is the same as the
capacity cap(𝐺𝜆′) of (𝑆𝜆′ , 𝑇𝜆′) in 𝐺𝜆′ . Consequently, cap(𝐺𝜆′) ≥ cap(𝐺𝜆′/𝑆𝜆).
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Remark 9.3.7. If (𝑆𝜆, 𝑇𝜆) is a minimal min 𝑠, 𝑡-cut in 𝐺𝜆, then 𝐺[𝑆𝜆] is connected by construction
(Lemma 9.3.2). However, 𝐺[𝑇𝜆] might in general consist of several connected components if 𝐺𝜆
contains zero-capacity edges. In that case, we can still obtain 𝐺𝜆′/𝑇𝜆 above using edge/vertex
deletions and edge contractions. Namely, we contract only the connected component 𝐴 of 𝑇𝜆 that
contains 𝑡. For any other component 𝐶𝑖 (𝑖 = 1, . . . , 𝑞) of 𝑇𝜆, its incoming edges start in 𝑆𝜆 and
all have capacity 0 in 𝐺𝜆, and thus also in 𝐺𝜆′ for 𝜆′ < 𝜆. Consequently, removing the vertices of⋃︀𝑞
𝑖=1𝐶𝑖 and subsequently contracting 𝐴 has the same effect on 𝐺𝜆′ as merging the entire 𝑇𝜆, i.e.,

𝐺𝜆′/𝑇𝜆 = 𝐺𝜆′ [𝑉 ∖
⋃︀𝑞
𝑖=1𝐶𝑖]/𝐴.

We use a recursive “divide-and-conquer” algorithm. The input to a recursive procedure
ApxParametricMinCut is a graph 𝐺 = (𝑉,𝐸) with 𝑛 vertices, 𝑚 edges, source 𝑠 and sink
𝑡, the parametric capacity function 𝑐𝜆 : 𝐸 → D → R, and two parameters 𝜆min, 𝜆max such that 𝜀
evenly divides 𝜆max−𝜆min. The output of the procedure is an 𝜀-approximate parametric min 𝑠, 𝑡-cut
({𝜆1, . . . , 𝜆𝑘}, 𝜏) as in Definition 9.3.12. By Lemma 9.3.4, 𝑘 ≤ |𝑉 (𝐺)| − 1.

Algorithm 23 Computing an 𝜀-approximate parametric min 𝑠, 𝑡-cut.
1: Let 𝑠, 𝑡, 𝜀 be globally defined.

2: function ApxParametricMinCut(𝐺 = (𝑉,𝐸), 𝑐𝜆 : 𝐸 → D→ R, 𝜆min ∈ D, 𝜆max ∈ D)
3: if |𝑉 | ≤ 2 then return (∅, {𝑠→ 𝜆min, 𝑡→∞})
4: For any 𝜆′ ∈ D, let 𝑐𝜆[𝜆 = 𝜆′] the capacity function 𝐸 → R of 𝐺𝜆′
5: 𝑆𝜆min

= MinimalMinCut(𝐺, 𝑐𝜆[𝜆 = 𝜆min])
6: 𝑆𝜆max = MinimalMinCut(𝐺, 𝑐𝜆[𝜆 = 𝜆max])
7: if |𝑆𝜆min

| > |𝑉 |/2 then return ApxParametricMinCut(Contract(𝐺, 𝑐𝜆, 𝑆𝜆min
), 𝜆min, 𝜆max)

8: if |𝑆𝜆max | < |𝑉 |/2 then return ApxParametricMinCut(Contract(𝐺, 𝑐𝜆, 𝑉 ∖
𝑆𝜆max), 𝜆min, 𝜆max)

9: (𝜆1, 𝜆2) := (𝜆min, 𝜆max)
10: while 𝜆2 − 𝜆1 > 𝜀 do
11: 𝜆′ := 𝜆1 + ⌊(𝜆2 − 𝜆1)/2𝜀⌋ · 𝜀
12: 𝑆𝜆′ = MinimalMinCut(𝐺, 𝑐𝜆[𝜆 = 𝜆′])
13: if |𝑆𝜆′ | ≥ |𝑉 |/2 then
14: 𝜆2 := 𝜆′

15: else
16: 𝜆1 := 𝜆′

17: For 𝑖 = 1, 2, 𝑆𝜆𝑖 := MinimalMinCut(𝐺, 𝑐𝜆[𝜆 = 𝜆𝑖])
18: (Λ1, 𝜏1) = ApxParametricMinCut(Contract(𝐺, 𝑐𝜆, 𝑉 ∖ 𝑆𝜆1), 𝜆min, 𝜆1)
19: (Λ2, 𝜏2) = ApxParametricMinCut(Contract(𝐺, 𝑐𝜆, 𝑆𝜆2), 𝜆2, 𝜆max)
20: Λ := if |𝑆𝜆1 | = |𝑆𝜆2 | then Λ1 ∪ Λ2 else Λ1 ∪ {𝜆2} ∪ Λ2

21: 𝜏 := {𝑣 ∈ 𝑆𝜆1 → 𝜏1(𝑣), 𝑣 ∈ 𝑉 ∖ 𝑆𝜆2 → 𝜏2(𝑣), 𝑣 ∈ 𝑆𝜆2 ∖ 𝑆𝜆1 → 𝜆2} return (Λ, 𝜏)

The main idea of the procedure ApxParametricMinCut is to find the (approximately) most
balanced minimal 𝑠, 𝑡-cuts 𝑆𝜆1 and 𝑆𝜆2 and use them to reduce the problem size in the recursive
calls significantly. Specifically, we want to find such 𝜆1 ≤ 𝜆2 that |𝑆𝜆1 | ≤ 𝑛/2, |𝑆𝜆2 | ≥ 𝑛/2 and
𝜆2 − 𝜆1 = 𝜀.

Suppose 𝑛 > 2 as otherwise the problem is trivial. First, we compute minimal min-cuts in 𝐺𝜆min

and 𝐺𝜆max . This takes two max-flow runs, i.e., 𝑇maxflow(𝑛,𝑚) time, plus 𝑂(𝑚) time by Lemma 9.3.2.
It might happen that |𝑆𝜆min

| ≤ |𝑆𝜆max | < 𝑛/2 or 𝑛/2 < |𝑆𝜆min
| ≤ |𝑆𝜆max |. In these special cases

we can immediately reduce the vertex set by a factor of at least two by contracting 𝑇𝜆max or 𝑆𝜆min
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22: function MinimalMinCut(𝐺 = (𝑉,𝐸), 𝑐 : 𝐸 → R)
23: 𝑓 = MaxFlow(𝐺, 𝑠, 𝑡, 𝑐) return {𝑣 ∈ 𝑉 : 𝑣 reachable from 𝑠 in the residual network 𝐺𝑓}

24: function Contract(𝐺 = (𝑉,𝐸), 𝑐𝜆 : 𝐸 → D→ R, 𝑋 ⊆ 𝑉 ) ◁ |𝑋 ∩ {𝑠, 𝑡}| = 1

25: 𝑤* := if 𝑠 ∈ 𝑋 then 𝑠 else 𝑡
26: 𝑉 ′ := 𝑉 ∖𝑋 ∪ {𝑤*}
27: 𝐸′ := ∅
28: 𝑐′𝜆 := 𝐸′ → D→ R
29: for 𝑢𝑣 ∈ 𝐸 do
30: 𝑢′ := if 𝑢 ∈ 𝑋 then 𝑤* else 𝑢
31: 𝑣′ := if 𝑣 ∈ 𝑋 then 𝑤* else 𝑣
32: if (𝑢′, 𝑣′) ̸= (𝑠, 𝑡) then
33: if 𝑢′𝑣′ /∈ 𝐸′ then
34: 𝐸′ := 𝐸′ ∪ {𝑢′𝑣′}
35: 𝑐′𝜆(𝑢

′𝑣′) := 𝑐𝜆(𝑢𝑣)
36: else
37: 𝑐′𝜆(𝑢

′𝑣′) := 𝑐′𝜆(𝑢
′𝑣′) + 𝑐𝜆(𝑢𝑣) ◁ We add functions here.

return (𝐺′ = (𝑉 ′, 𝐸′), 𝑐′𝜆)

respectively, and recurse on the reduced graph. By Lemma 9.3.6 and the definition of 𝜆min, 𝜆max

this reduction does not influence the structure of parametric cuts.
So suppose |𝑆𝜆min

| ≤ 𝑛/2 and |𝑆𝜆max | ≥ 𝑛/2. Set 𝜆1 = 𝜆min and 𝜆2 = 𝜆max. So we have
|𝑆𝜆1 | ≤ 𝑛/2 and |𝑆𝜆2 | ≥ 𝑛/2 initially. We maintain this invariant and gradually shrink the interval
[𝜆1, 𝜆2] until its length gets precisely 𝜀 in a binary search-like way. We repeatedly try the pivot
𝜆′ = 𝜆1 + ⌊(𝜆2 − 𝜆1)/2𝜀⌋ · 𝜀 and compute 𝑆𝜆′ . If |𝑆𝜆′ | ≥ 𝑛/2, we set 𝜆2 = 𝜆′, and otherwise we set
𝜆1 = 𝜆′. Note that 𝜆2 − 𝜆1 remains an integer multiple of 𝜀 at all times. The whole process costs
𝑂(log[(𝜆max − 𝜆min)/𝜀]) = 𝑂(log(𝑅/𝜀)) max-flow executions.

Let 𝐺1 = 𝐺/𝑇𝜆1 and 𝐺2 = 𝐺/𝑆𝜆2 . Note that 𝐺1, 𝐺2 may contain parallel edges or a direct 𝑠𝑡
edge as a result of contraction. Hence, these graphs are first preprocessed by (1) removing self-loops
and direct 𝑠𝑡 edges, (2) merging parallel edges by summing their cost functions. The contraction and
preprocessing is performed using the procedure Contract. Note that none of these preprocessing
steps change the minimal cuts of 𝐺1,𝜆 or 𝐺2,𝜆 for any 𝜆: the direct 𝑠𝑡 edges cross all 𝑠, 𝑡-cuts.

Next, we recursively compute 𝜀-approximate parametric min 𝑠, 𝑡-cut in graphs 𝐺1 = 𝐺/𝑇𝜆1 and
𝐺2 = 𝐺/𝑆𝜆2 , The recursive call on 𝐺1 is made with (𝜆min, 𝜆max) set to (𝜆min, 𝜆1), whereas the
recursive call on 𝐺2 uses (𝜆min, 𝜆max) := (𝜆2, 𝜆max). Note that indeed we have 𝐺1,𝜆1 = 𝐺1,𝜆′ for
𝜆′ > 𝜆1 as required since the 𝑡-side of the minimal min 𝑠, 𝑡-cut in 𝐺1,𝜆1 contains only 𝑡. Similarly,
𝐺2,𝜆2 = 𝐺2,𝜆′ for all 𝜆′ < 𝜆2.

Let (Λ1, 𝜏1) = ({𝜆1,1, . . . , 𝜆1,𝑎}, 𝜏1) and (Λ2, 𝜏2) = ({𝜆2,1, . . . , 𝜆2,𝑏}, 𝜏2) be the returned 𝜀-
approximate parametric min 𝑠, 𝑡-cuts of𝐺1 and𝐺2 respectively. We return (Λ, 𝜏) as the 𝜀-approximate
parametric min-𝑠, 𝑡-cut of 𝐺, where

Λ =

{︃
Λ1 ∪ Λ2 if |𝑆𝜆1 | = |𝑆𝜆2 | = 𝑛/2,

Λ1 ∪ {𝜆2} ∪ Λ2 otherwise.
𝜏(𝑣) =

⎧⎪⎨⎪⎩
𝜏1(𝑣) if 𝑣 ∈ 𝑆𝜆1 ,
𝜏2(𝑣) if 𝑣 ∈ 𝑇𝜆2 ,
𝜆2 otherwise.

Let us now prove the correctness of this algorithm. We proceed by induction on 𝑛. For 𝑛 ≤ 2
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this is trivial, so suppose 𝑛 > 3 and that recursive calls are made. Clearly, 𝜆1,𝑎 ≤ 𝜆1 < 𝜆2 < 𝜆2,1.
Item (3) of Definition 9.3.12 follows easily by induction and the definition of 𝜆1, 𝜆2. Let

Λ = {𝜆′1, . . . , 𝜆′𝑘}. That 𝑆(𝜆′𝑖) = {𝑣 ∈ 𝑉 : 𝜏(𝑣) ≤ 𝜆′𝑖} is a minimal min 𝑠, 𝑡-cut of 𝐺𝜆′𝑖 for all 𝜆′𝑖 ∈ Λ
(i.e., item (2) of Definition 9.3.12) follows directly by Lemma 9.3.6 the definitions of 𝜆1, 𝜆2.

Now consider item (1) of Definition 9.3.12. For some 𝑗 < 𝑘 we have 𝜆′𝑗 = 𝜆1,𝑎. For all
𝑖 = 0, . . . , 𝑘 − 1, 𝑖 ̸= 𝑗, item (1), i.e., that 𝑆𝜆′𝑖 is a minimal min 𝑠, 𝑡-cut for all 𝜆′ ∈ [𝜆′𝑖, 𝜆

′
𝑖+1), follows

directly inductively.
If |𝑆𝜆1 | = |𝑆𝜆2 | = 𝑛/2, then 𝑆𝜆1,𝑎 = 𝑆𝜆2 . By induction it follows that 𝑆𝜆1,𝑎 is a minimal min

𝑠, 𝑡-cut of 𝐺𝜆′ for all 𝜆′ ∈ [𝜆2, 𝜆2,1 − 𝜀), and thus also for all 𝜆′ ∈ [𝜆1,𝑎, 𝜆2,1 − 𝜀) = [𝜆′𝑗 , 𝜆
′
𝑗+1 − 𝜀).

If, on the other hand, 𝑆𝜆1 ( 𝑆𝜆2 , then 𝜆′𝑗+1 = 𝜆2. Since 𝑆𝜆1,𝑎 = 𝑆𝜆1 , 𝑆𝜆1,𝑎 is indeed a minimal
min 𝑠, 𝑡-cut for all 𝜆′ ∈ [𝜆1,𝑎, 𝜆2 − 𝜀) = [𝜆′𝑗 , 𝜆

′
𝑗+1 − 𝜀) as 𝜆2 − 𝜀 = 𝜆1.

Note that the input graph of each of the recursive calls has at most 𝑛/2 + 1 vertices. Moreover,
by merging the parallel edges (and summing their costs) after the contraction we can guarantee that
|𝐸(𝐺1)|+ |𝐸(𝐺2)| ≤ |𝐸(𝐺)|+ 𝑛/2. Indeed, observe that the only edges of 𝐺2 that can also appear
in 𝐺1 are those incident to 𝑠 in 𝐺2, and there are at most |𝑇𝜆2 | ≤ 𝑛/2 of them.

There is one important technical detail here: even though the individual functions 𝑐𝜆(𝑢𝑣) (for
the edges 𝑢𝑣 of the original input graph 𝐺) can be evaluated in constant time, after summing 𝑘 of
such functions in the process this cost can be as much as Θ(𝑘). We now argue that this cannot
happen in our case due to preprocessing 𝐺1 and 𝐺2, and the evaluation cost is 𝑂(1) for all edges in
all recursive calls. More concretely, one can show that each edge capacity function in a recursive call
can be expressed as the sum of at most one original capacity function 𝑐𝜆(𝑥𝑦) and a real number.
Indeed, suppose this is the case for some call with input 𝐺. Then, each edge 𝑢𝑣 of 𝐺1 either (1) is
contained in 𝐺 and has not resulted from merging some parallel edges after contraction, (2) has
𝑢 /∈ {𝑠, 𝑡} and 𝑣 = 𝑡 and resulted from merging edges 𝑢𝑧1, . . . , 𝑢𝑧𝑙 such that 𝑧1, . . . , 𝑧𝑙 ∈ 𝑇𝜆1 . The
former case is trivial. In the latter case, for at least 𝑙 − 1 of these 𝑧𝑖 we have 𝑧𝑖 ̸= 𝑡, so 𝑐𝜆(𝑢𝑧𝑖) is a
constant function. Fot at most one 𝑧𝑗 is of the form 𝑐𝜆(𝑥𝑦) + Δ for some original capacity function
𝑐𝜆(𝑥𝑦) and Δ ∈ R. We conclude that the capacity function of 𝑢𝑣 in 𝐺1 is of the same form and
equals 𝑐𝜆(𝑥𝑦) + Δ′, where Δ′ = Δ+

∑︀
𝑖 ̸=𝑗 𝑐𝜆(𝑢𝑧𝑖) ∈ R. The proof for 𝐺2 is analogous.

Now let us analyze the running time of the algorithm. One can easily inductively prove that:

• Each graph at the 𝑖-th level of the recursion tree has less than 𝑛/2𝑖 + 2 vertices; hence, there
are no more than log2 𝑛+ 1 levels in the tree.

• The sum 𝑛𝑖 of numbers of vertices through all the graphs at the 𝑖-th level is less than
2𝑖(𝑛/2𝑖 + 2) ≤ 𝑛+ 2𝑖+1 ≤ 3𝑛.

• Since, the sum 𝑚𝑖 of numbers of edges in graphs at level 𝑖 > 0 satisfies 𝑚𝑖 ≤ 𝑚𝑖−1 + 𝑛𝑖−1/2 ≤
𝑚𝑖−1 + 3𝑛/2, we have 𝑚𝑖 ≤ 𝑚+ 3𝑖𝑛/2 = 𝑂(𝑚+ 𝑛 log 𝑛).

By the above, and since the function 𝑇maxflow is convex, we conclude the total time cost at the 𝑖-th
level is 𝑂 (𝑇maxflow(𝑛,𝑚+ 𝑛 log 𝑛) log(𝑅/𝜀)). Recall that there are 𝑂(log 𝑛) levels and therefore the
total time is 𝑂 (𝑇maxflow(𝑛,𝑚+ 𝑛 log 𝑛) log(𝑅/𝜀) log 𝑛).

Exact Parametric Min 𝑠, 𝑡-Cut

In this section we show how Theorem 5.3.2 implies new bounds on computing exact parametric min
𝑠, 𝑡-cuts in a few interesting settings.
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Integer Polynomial Costs. Suppose all the parametric costs 𝑐𝜆(𝑢𝑣) are of the form 𝑐𝜆(𝑢𝑣) =
𝑄𝑢𝑣(𝜆), where each 𝑄𝑢𝑣 is a (possibly different) constant-degree polynomial with integer coefficients
bounded in the absolute value by an integer 𝑈 > 0 and take nonnegative values on D. Recall 𝑄𝑢𝑣
can have a positive degree only if 𝑢 = 𝑠 or 𝑣 = 𝑡. Moreover, if 𝑢 = 𝑠, then 𝑄𝑢𝑣 is increasing, whereas
when 𝑣 = 𝑡, then 𝑄𝑢𝑣 is decreasing.

Observe that the parametric capacity 𝑐𝜆(𝑆) of any 𝑆, 𝑠 ∈ 𝑆 ⊆ 𝑉 ∖ {𝑡} is a constant-degree
polynomial with integer coefficients bounded by 𝑛𝑈 in absolute value. The same applies to a
difference polynomial 𝑐𝜆(𝑆)− 𝑐𝜆(𝑆′) for any two such sets 𝑆, 𝑆′.

It is known that for a constant-degree polynomials 𝑄 with integer coefficients bounded by 𝑊 :

• The roots of 𝑄 are of absolute value 𝑂(poly(𝑊 )) (e.g., [168]).

• Any two distinct roots of 𝑄 are at least Ω(1/poly(𝑊 )) apart. [119]

This means that by setting 𝜆min = −𝑅/2 and 𝜆max = 𝑅/2 (or slightly less aggressively, if e.g.,
𝑅/2 /∈ D) for a sufficiently large even integer 𝑅 = 𝑂(poly 𝑛𝑈) such that 𝑅/2 exceeds the maximum
possible absolute value of a root of any polynomial of the form 𝑐𝜆(𝑆)− 𝑐𝜆(𝑆′), we will indeed have
𝐺𝜆min

= 𝐺𝜆′ for all 𝜆′ < 𝜆min and 𝐺𝜆max = 𝐺𝜆′ for all 𝜆′ > 𝜆max.
Moreover, assume we compute an 𝜀-approximate parametric min 𝑠, 𝑡-cut (Λ, 𝜏), where

Λ = {𝜆1, . . . , 𝜆𝑘}. Suppose for some 𝑖 there exists 𝜆′, max(𝜆𝑖, 𝜆𝑖+1 − 2𝜀) ≤ 𝜆′ < 𝜆𝑖+1, such
that the minimal 𝑠, 𝑡-cut 𝑆𝜆′ in 𝐺𝜆′ satisfies 𝑆𝜆𝑖 ( 𝑆𝜆′ ( 𝑆𝜆𝑖+1

. Let 𝜆*𝑖 = max(𝜆𝑖, 𝜆𝑖+1 − 2𝜀).
Note that 𝑆𝜆𝑖 = 𝑆𝜆*𝑖 by Definition 9.3.12. Since 𝑆𝜆′ is minimal, 𝑐𝜆(𝑆𝜆𝑖)(𝜆

*
𝑖 ) − 𝑐𝜆(𝑆𝜆′)(𝜆*𝑖 ) ≤ 0

and 𝑐𝜆(𝑆𝜆𝑖)(𝜆
′)− 𝑐𝜆(𝑆𝜆′)(𝜆′) > 0. So the polynomial 𝑐𝜆(𝑆𝜆𝑖) − 𝑐𝜆(𝑆𝜆′) is non-zero and has a

root in the interval [𝜆*𝑖 , 𝜆
′). Similarly one can prove that the polynomial 𝑐𝜆(𝑆𝜆′) − 𝑐𝜆(𝑆𝜆𝑖+1

)
is non-zero and has a root in the interval [𝜆′, 𝜆𝑖+1). We conclude that the product polynomial
[𝑐𝜆(𝑆𝜆𝑖) − 𝑐𝜆(𝑆𝜆′)] · [𝑐𝜆(𝑆𝜆′) − 𝑐𝜆(𝑆𝜆𝑖+1

)] is non-zero, has constant degree, has integer coefficients
of order 𝑂(poly 𝑛𝑈), and has two distinct roots in the interval [𝜆*𝑖 , 𝜆𝑖+1), i.e., less than 2𝜀 apart.
Therefore, if we set 𝜀 so that 1/𝜀 is a sufficiently large integer but still polynomial in 𝑛𝑈 , the
assumption 𝑆𝜆𝑖 ( 𝑆𝜆′ ( 𝑆𝜆𝑖+1

leads to a contradiction. As a result, for all such 𝜆′, 𝑆𝜆′ equals either
𝑆𝜆′ or 𝑆𝜆′′ .

In other words, computing an 𝜀-approximate min 𝑠, 𝑡-cut (Λ, 𝜏), where Λ = {𝜆1, . . . , 𝜆𝑘}, gives as
the structure of all possible minimal min 𝑠, 𝑡-cuts 𝑆𝜆 in the following sense. Suppose Λ* = {𝜆*1, . . . , 𝜆*𝑙 }
is an exact parametric min 𝑠, 𝑡-cut. Then 𝑘 = 𝑙 and 𝑆(𝜆𝑖) = {𝑣 ∈ 𝑉 : 𝜏(𝑣) ≤ 𝜆𝑖) = 𝑆𝜆*𝑖 for all
𝑖 = 1, . . . , 𝑘. To compute 𝜆*𝑖 , it is hence enough to find the unique 𝜆*𝑖 ∈ (𝜆𝑖−1, 𝜆𝑖] such that
𝑐𝜆(𝑆(𝜆𝑖−1))(𝜆

*
𝑖 ) = 𝑐𝜆(𝑆(𝜆𝑖))(𝜆

*
𝑖 ) which boils down to solving a polynomial equation of constant

degree. It is well known that such equations can be solved exactly in constant time for degrees at
most 4.

Observe that if we run our 𝜀-approximate parametric min 𝑠, 𝑡-cut algorithm with 𝜆min, 𝜆max, 𝜀
set as described above, maximum flow is always invoked on some minor 𝐻 of 𝐺𝜆 for 𝜆 that is an
integer multiple of 𝜀. Since, 1/𝜀 is an integer, by multiplying edge costs in 𝐻 by 1/𝜀, we only
need a maximum flow algorithm that can handle integer edge capacities of order 𝑂(poly(𝑛𝑈)). By
plugging in the best-known algorithms for computing max flow with integral capacities, we obtain
the following.

Theorem 9.3.13. Let 𝐺 be a graph whose parameterized capacities are constant-degree polynomials
with integer coefficients in [−𝑈,𝑈 ]. The structure of parametric min 𝑠, 𝑡-cut on 𝐺 can be computed
in:

• 𝑂(𝑚 ·min(𝑚1/2, 𝑛2/3) · polylog{𝑛,𝑈}) time using a combinatorial algorithm [75],
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• 𝑂((𝑚+ 𝑛1.5) · polylog{𝑛,𝑈}) time using the algorithm of [25],

• 𝑂(𝑚1.497 polylog{𝑛,𝑈}) time using the algorithm of [73].

The cut function can be found exacly in additional 𝑂(𝑛) time if the degrees of capacity polynomials
are at most 4.

Discrete Domains. Let us now consider the case when D is discrete and has ℓ elements. Suppose
all parametric costs are arbitrary functions meeting the requirements of the parametric min 𝑠, 𝑡-cut
problem. Then, we can make the 𝜀-approximate algorithm exact by employing the following simple
modifications. We start with 𝜆min = minD and 𝜆max = maxD. In the binary-search like step, we
always choose the middle element of D ∩ [𝜆1, 𝜆2] as the next pivot. This way, all the max-flow
computations are performed on minors of 𝐺𝜆 for 𝜆 ∈ D.

Theorem 9.3.14. Let 𝐺 be a graph with arbitrary parameterized capacities D→ R for a discrete
domain D ⊆ R, where ℓ = |D|. Let 𝑇maxflow(𝑛

′,𝑚′) be defined as in Theorem 5.3.2. Then exact
parametric min 𝑠, 𝑡-cut on 𝐺 can be computed in 𝑂(𝑇maxflow(𝑛,𝑚 log 𝑛) · log ℓ · log 𝑛) time.

Planar Graphs. By Remark 9.3.7, all the max-flow computations in the algorithm of Theorem 5.3.2
are performed on minors of 𝐺. As a result, if the input graph 𝐺 is planar, we can use state-of-the-art
planar max 𝑠, 𝑡-flow algorithms to obtain better bounds on the parametric min-𝑠, 𝑡-cut algorithms
on planar graphs. Since maximum 𝑠, 𝑡-flow for planar graphs can be computed in 𝑂(𝑛 log 𝑛) time
even for real capacities [22, 58], planar parametric min 𝑠, 𝑡-cut can be solved exactly:

• in 𝑂(𝑛 polylog{𝑛,𝑈}) time when parameterized capacities are constant degree polynomials
with integer coefficients in [−𝑈,𝑈 ],

• in 𝑂(𝑛 log3 𝑛 log ℓ) time for discrete domains D ⊆ R of size ℓ.

What may be surprising, our reduction is powerful enough to obtain an interesting subquadratic
strongly polynomial exact algorithm computing parametric min 𝑠, 𝑡-cut in a planar graph with
capacity functions that are arbitrary polynomials of degree no more than 4 and real coefficients.

We now sketch this algorithm. It is based on the parametric search technique [123] (see also [3]).
Suppose we want to solve some decision problem 𝒫(𝛼), where 𝛼 ∈ R, such that if 𝒫(𝛼0) is a yes
instance, then 𝒫(𝛼′) for all 𝛼′′ < 𝛼0 is also a yes instance. We wish to find the maximum 𝛼* for
which 𝒫(𝛼*) is a yes instance. An example problem 𝒫(𝛼) could be “does an 𝑠, 𝑡-flow of value 𝛼 exist
in 𝐺?”. Then, 𝛼* clearly equals the maximum flow in 𝐺.

Suppose we have an efficient strongly polynomial algorithm solving the decision problem. Then,
in practice one could find 𝛼* via binary search given some initial interval containing 𝛼*; however,
in general this would not lead to an exact algorithm for real values of 𝛼*. Parametric search is a
technique for converting a strongly polynomial parallel decision algorithm into a sequential or parallel
strongly polynomial optimization algorithm as explained above. The only requirement to keep in
mind is that the decision algorithm is governed by comparisons, each of which amounts to testing
the sign of some low-degree (say, no more than 4) polynomial in 𝛼. Specifically, suppose we have
a parallel decision algorithm 𝒜 that uses 𝑊𝒜 work and 𝐷𝒜 depth, and also a (possibly the same)
another parallel decision algorithm ℬ with 𝑊ℬ work and 𝐷ℬ depth. Suppose for simplicity all these
quantities are polynomial in 𝑛. Then, parametric search yields a strongly-polynomial optimization
algorithm computing 𝛼* in �̃�(𝐷𝒜 ·𝑊ℬ +𝑊𝒜) work and �̃�(𝐷𝒜 ·𝐷ℬ) depth.

Now back to planar graphs. We will use parametric search in a nested way. First of all, we
will need a decent parallel max flow algorithm for planar graphs. It is well-known (e.g., [58]) that
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the decision variant of the max 𝑠, 𝑡-flow problem on planar graphs is reducible to negative cycle
detection in the dual graph (which is also planar). There exists a parallel negative cycle detection
algorithm on planar graphs with �̃�(𝑛+ 𝑛3/2/𝑑3) work and �̃�(𝑑) depth for any 𝑑 ≥ 1 [93]. Hence,
by using that algorithm as both 𝒜 (for 𝑑 = 𝐷3/7) and ℬ (for 𝑑 = 𝐷4/7), where 𝐷 is a parameter,
we have 𝑊𝒜 = �̃�(𝑛 + 𝑛3/2/𝐷9/7), 𝐷𝒜 = �̃�(𝐷3/7), 𝑊ℬ = �̃�(𝑛 + 𝑛3/2/𝐷12/7), 𝐷ℬ = �̃�(𝐷4/7). So
parametric search yields a strongly-polynomial parallel max-flow algorithm for planar graphs with
work �̃�(𝑛+ 𝑛3/2/𝐷9/7) and depth �̃�(𝐷) for any 𝐷 ≥ 1.

Given a parallel algorithm for max flow in planar graphs, we can use parametric search (instead
of binary search) once again when computing the pair 𝜆1, 𝜆2 in our recursive algorithm. More
specifically, we would like 𝜆1 to be the largest such that |𝑆𝜆1 | ≤ 𝑛/2, whereas 𝜆2 to be the smallest
such that |𝑆𝜆2 | ≥ 𝑛/2. It is easy to see that 𝜆1 and 𝜆2 are precisely neighboring (or the same)
breakpoints of the cut function, i.e., belong to Λ from Definition 9.3.11. To actually compute 𝜆1, 𝜆2,
we use parametric search with 𝒜 set to the obtained parallel max-flow algorithm2, and ℬ to the
best known algorithm that computes a minimum min 𝑠, 𝑡-cut in a planar graph, i.e., a combination
of the max-flow algorithm of [22, 58], and linear time graph search. So, in the outer parametric
search instance we have𝑊𝒜 = �̃�(𝑛 + 𝑛3/2/𝐷9/7), 𝐷𝒜 = �̃�(𝐷), and 𝑊ℬ = �̃�(𝑛). Therefore, the
obtained algorithm runs in �̃�(𝑛3/2/𝐷9/7 +𝐷𝑛) sequential time. By setting 𝐷 = 𝑛7/32, we obtain
�̃�(𝑛1+7/32) = �̃�(𝑛1.21875) time.

We stress that all the algorithms [22, 58, 93] used above proceed by only adding and comparing
edge weights. Adding polynomials cannot increase their degrees, so indeed when these algorithms are
run “generically” for some 𝜆, the control flow depends only on signs of some small degree polynomials.

Theorem 9.3.15. Let 𝐺 be a planar graph whose parameterized capacities are all polynomials of
degree at most 4 with real coefficients. There exists a strongly polynomial algorithm computing
parametric min 𝑠, 𝑡-cut in 𝐺 exactly in �̃�(𝑛1+7/32) time.

9.3.4 Removing Assumptions on 𝐹𝑖

In this section we argue why the assumptions on the functions 𝐹𝑖 introduced in Section 5.2 are
valid without loss of generality. More precisely, we assumed that for all 𝑖, 𝐹𝑖(∅) = 𝐹𝑖(𝑉𝑖) = 0 and
𝐹𝑖(𝑆) ≥ 0 for all 𝑆. Here we show that a simple preprocessing step can enforce all of these conditions.

Without changing the original problem we can shift each 𝐹𝑖 such that it evaluates to 0 on ∅, by
defining 𝐹 𝑖(𝑆) = 𝐹𝑖(𝑆)− 𝐹𝑖(∅). This only changes 𝐹 by a constant term without affecting the sets
that minimize the parametric problem (5.1).

For each 𝑖, we use Lemma 9.3.16 to find a point 𝑤𝑖 ∈ 𝐵(𝐹 𝑖). Using this point, we define
𝐹 𝑖(𝑆) = 𝐹 𝑖(𝑆) − 𝑤𝑖(𝑆). Since by definition 𝑤𝑖(𝑉𝑖) = 𝐹 𝑖(𝑉𝑖), we have that 𝐹 𝑖(𝑉𝑖) = 0. Also, we
have 𝐹 𝑖(∅) = 𝐹 𝑖(∅) = 0. Finally, since 𝑤𝑖(𝑆) ≤ 𝐹 𝑖(𝑆) for all 𝑆, we also have 𝐹 𝑖(𝑆) ≥ 0.

2Actually, it is computing max-flow followed by a graph search to determine the minimal min 𝑠, 𝑡-cut. However,
this latter step does not involve any comparisons on capacities, so its depth can be ignored.
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Now we can equivalently rewrite the parametric problem

𝐹𝛼(𝐴) = 𝐹 (𝐴) +
∑︁
𝑗∈𝐴

𝜓′
𝑗(𝛼)

= 𝐹 (𝐴) +
∑︁
𝑗∈𝐴

𝜓′
𝑗(𝛼) +

(︃
𝑚∑︁
𝑖=1

𝐹𝑖(∅)

)︃

= 𝐹 (𝐴) +
∑︁
𝑗∈𝐴

(︃
𝜓′
𝑗(𝛼) +

𝑟∑︁
𝑖=1

𝑤𝑖(𝑗)

)︃
+

(︃
𝑚∑︁
𝑖=1

𝐹𝑖(∅)

)︃
.

Now we can solve the problem on 𝐹 =
∑︀𝑟

𝑖=1 𝐹 𝑖 with the parametric penalties 𝜓
′
𝑗(𝛼) = 𝜓′

𝑗(𝛼) +∑︀𝑟
𝑖=1𝑤𝑖(𝑗), which maintain the validity of Assumption 5.2.2.
To compute a point in the base polytope of a submodular function we use the following folklore

lemma, which shows that the running time of our initialization procedure is 𝑂(
∑︀𝑟

𝑖=1 |𝑉𝑖| · EO𝑖):

Lemma 9.3.16 ([70]). Let 𝐹 : 2𝑉 → Z be a submodular set function, with 𝐹 (∅) = 0, and let 𝐵(𝐹 )
be its base polytope. Given any 𝑥 ∈ R|𝑉 |, one can compute

arg max
𝑤∈𝐵(𝐹 )

⟨𝑥,𝑤⟩

using 𝑂(|𝑉 |) calls to an evaluation oracle for 𝐹 . Furthermore 𝑤 is integral.

9.3.5 Deferred Proofs

Proof of Lemma 5.4.3

We define the primal and dual optima of this problem, which will be useful for the proof.

Definition 9.3.17 (Graph subproblem minimizers). Let ̃︀𝑥* be the minimizer of

min
𝑥
𝑔(𝑥) + 𝜑(𝑥) , (9.52)

and ̃︀𝑤* be the minimizer of

min
𝑤∈𝐵(𝐺)

𝜑*(−𝑤) . (9.53)

The main tool that we will use for this proof will be the following two structural statements,
which can be extracted from Propositions 4.2 and 8.3 in [15].

Lemma 9.3.18 ([15]). Consider any submodular function 𝐹 : 2𝑉 → R.

1. Fix some 𝑥 ∈ R𝑛. For any 𝑤 ∈ R𝑛, 𝑤 is an optimizer of max
𝑤∈𝐵(𝐹 )

⟨𝑤, 𝑥⟩ if and only if there

exists a permutation 𝜋 of [𝑛] such that 𝑥𝜋1 ≥ 𝑥𝜋2 ≥ · · · ≥ 𝑥𝜋𝑛 and for all 𝑢 ∈ 𝑉 we have

𝑤𝑢 =

{︃
𝐹 ({𝜋1}) if 𝑢 = 1

𝐹 ({𝜋1, 𝜋2, . . . , 𝜋𝑢})− 𝐹 ({𝜋1, 𝜋2, . . . , 𝜋𝑢−1}) if 𝑢 ≥ 2
.
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2. Given a function 𝜑 that satisfies the conditions in Definition 5.2.2, the optimal solution ̃︀𝑥* to
the problem

min
𝑥
𝑓(𝑥) + 𝜑(𝑥) ,

where 𝑓 is the Lovász extension of 𝐹 , is given by

̃︀𝑥*𝑢 = − inf({𝜆 ∈ R : 𝑢 ∈ 𝑆(𝜆)})

for all 𝑢 ∈ 𝑉 , where

𝑆(𝜆) = argmin
𝑆⊆𝑉

𝐹 (𝑆) +
∑︁
𝑢∈𝑆

𝜑′𝑢(−𝜆) .

Additionally, we present two simple lemmas which will be useful in the proof. The first one upper
bounds the ℓ1 diameter of a base polytope, and the second one upper bounds the ℓ1 norm of the
gradient of a function in the base polytope.

Lemma 9.3.8. For any submodular function 𝐹 : 2𝑉 → R≥0 and 𝐹 (𝑆) ≤ 𝐹max for all 𝑆 ⊆ 𝑉 , we
have that

max
𝑤∈𝐵(𝐹 )

‖𝑤‖1 ≤ 2𝑛𝐹max .

Proof. By definition of 𝐵(𝐹 ), for all 𝑢 ∈ 𝑉 we have 𝑤𝑢 ≤ 𝐹 ({𝑢}) ≤ 𝐹max, so
∑︀

𝑢∈𝑉 :𝑤𝑢≥0

𝑤𝑢 ≤ 𝑛𝐹max.

Also,
∑︀
𝑢∈𝑉

𝑤𝑢 = 𝐹 (𝑉 ), so we conclude that

‖𝑤‖1 =
∑︁

𝑢∈𝑉 :𝑤𝑢≥0

𝑤𝑢 −
∑︁

𝑢∈𝑉 :𝑤𝑢<0

𝑤𝑢

= 2
∑︁

𝑢∈𝑉 :𝑤𝑢≥0

𝑤𝑢 − 𝐹 (𝑉 )

≤ 2𝑛𝐹max − 𝐹 (𝑉 )

≤ 2𝑛𝐹max

Lemma 9.3.9. For any submodular function 𝐹 : 2𝑉 → R≥0, 𝐹 (𝑆) ≤ 𝐹max for all 𝑆 ⊆ 𝑉 , and
function 𝜓 : R𝑛 → R satisfying the conditions of Definition 5.2.2 we have that

max
𝑤∈𝐵(𝐹 )

‖∇𝜓*(−𝑤)‖1 ≤
2𝑛𝐹max

𝜎
+ ‖∇𝜓*(0)‖1 .

Proof.

‖∇𝜓*(−𝑤)‖1 ≤ ‖∇𝜓*(−𝑤)−∇𝜓*(0)‖1 + ‖∇𝜓*(0)‖1

≤ 1

𝜎
‖𝑤‖1 + ‖∇𝜓*(0)‖1

≤ 2𝑛𝐹max

𝜎
+ ‖∇𝜓*(0)‖1 ,
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where we used the triangle inequality, the 1
𝜎 -smoothness of the 𝜓*

𝑢’s, and Lemma 9.3.8.

We are now ready to proceed with the proof.

Proof of Lemma 5.4.3. We let Λ = {𝜆1, . . . , 𝜆𝑘}, where 𝜆1 < · · · < 𝜆𝑘, and define 𝑆(𝜆) to be a
minimal set in

argmin
𝑆⊆𝑉

𝐺(𝑆) +
∑︁
𝑢∈𝑆

𝜑′𝑢(−𝜆)

for all 𝜆 ∈ R. Note that this can be equivalently written as

argmin
𝑆⊆𝑉

𝐺(𝑆) +
∑︁
𝑢∈𝑆

max{0, 𝜑′𝑢(−𝜆)} −
∑︁
𝑢∈𝑆

max{0,−𝜑′𝑢(−𝜆)}

= argmin
𝑆⊆𝑉

𝐺(𝑆) +
∑︁
𝑢∈𝑆

max{0, 𝜑′𝑢(−𝜆)}+
∑︁

𝑢∈𝑉 ∖𝑆

max{0,−𝜑′𝑢(−𝜆)} −
∑︁
𝑢∈𝑉

max{0,−𝜑′𝑢(−𝜆)}

= argmin
𝑆⊆𝑉

𝐺(𝑆) +
∑︁
𝑢∈𝑆

max{0, 𝜑′𝑢(−𝜆)}+
∑︁

𝑢∈𝑉 ∖𝑆

max{0,−𝜑′𝑢(−𝜆)}

= argmin
𝑆⊆𝑉

𝑐+𝜆 (𝑆 ∪ {𝑠}) ,

by the definition of the parametric capacities 𝑐𝜆, where 𝑐+𝜆 (𝑆 ∪ {𝑠}) =
∑︀

𝑢∈𝑆∪{𝑠}
𝑣∈𝑉 ∖(𝑆∪{𝑠})

𝑐𝜆(𝑢, 𝑣). Addition-

ally, we denote 𝜀 = 1
3𝐿 for convenience. By the second item of Lemma 9.3.18, we know that the

minimizer of min
𝑥
𝑓(𝑥) + 𝜑(𝑥) is defined as

̃︀𝑥*𝑢 = − inf{𝜆 ∈ R : 𝑢 ∈ 𝑆(𝜆)} .

For all 𝑢 ∈ 𝑉 , let 𝑖𝑢 = argmin
𝑖∈[𝑘]

{𝜆𝑖 | 𝑢 ∈ 𝑆(𝜆𝑖)} and ̃︀𝑥𝑢 = −𝜆𝑖𝑢 . We will first prove that ‖̃︀𝑥−̃︀𝑥*‖∞ ≤ 𝜀.
Now, by definition we have that ̃︀𝑥*𝑢 ≥ ̃︀𝑥𝑢. Additionally, setting 𝜆0 = −∞ for convenience, we have
𝑢 /∈ 𝑆(𝜆𝑖𝑢−1), and 𝑢 ∈ 𝑆(−̃︀𝑥*𝑢), so 𝑆(𝜆𝑖𝑢−1) ⊂ 𝑆(−̃︀𝑥*𝑢). By the first item of Definition 9.3.12, this
implies that

−̃︀𝑥*𝑢 ≥ 𝜆𝑖𝑢 − 𝜀 = −̃︀𝑥𝑢 − 𝜀⇔ ̃︀𝑥*𝑢 ≤ ̃︀𝑥𝑢 + 𝜀 .

Therefore, we have concluded that |̃︀𝑥𝑢 − ̃︀𝑥*𝑢| ≤ 𝜀 for all 𝑢 ∈ 𝑉 , i.e. ‖̃︀𝑥− ̃︀𝑥*‖∞ ≤ 𝜀.
We define a dual solution ̂︀𝑤 = −∇𝜑(̃︀𝑥). We will show that ̃︀𝑤* can be retrieved by roundinĝ︀𝑤. Using the fact that 𝜑𝑢’s are 𝐿-smooth and the optimality condition ̃︀𝑤* = −∇𝜑(̃︀𝑥*) from

Lemma 9.3.10, we get that

‖ ̂︀𝑤 − ̃︀𝑤*‖∞ = ‖∇𝜑(̃︀𝑥)−∇𝜑(̃︀𝑥*)‖∞ ≤ 𝐿‖̃︀𝑥− ̃︀𝑥*‖∞ ≤ 𝐿𝜀 = 1/3 .

On the other hand, by optimality of ̃︀𝑤*, it is a maximizer of max
𝑤∈𝐵(𝐺)

⟨𝑤, ̃︀𝑥*⟩. By the first item

of Lemma 9.3.18, there exists a permutation 𝜋1, . . . , 𝜋𝑛 of 𝑉 such that ̃︀𝑤*
𝑢 = 𝐺({𝜋1, . . . , 𝜋𝑢}) −

𝐺({𝜋1, . . . , 𝜋𝑢−1}) for 𝑢 ∈ 𝑉 . As 𝐺 takes integral values, we have ̃︀𝑤*
𝑢 ∈ Δ · Z for all 𝑢 ∈ 𝑉 , and

since | ̂︀𝑤𝑢 − ̃︀𝑤*
𝑢| < 1/2, we can exactly recover ̃︀𝑤* by rounding each entry of ̂︀𝑤 to the closest integer.

Our next goal is to compute a 𝐺-decomposition of ̃︀𝑤*, which we will do by computing an exact
primal solution and then again applying the first item of Lemma 9.3.18. Given ̃︀𝑤*, we can easily
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recover the primal optimum ̃︀𝑥* = ∇𝜑(− ̃︀𝑤*). In order to recover a decomposition ̃︀𝑤* =
𝑟∑︀
𝑖=1

̃︀𝑤*𝑖, we

use the well-known fact [54] that

max
𝑤∈𝐵(𝐺)

⟨𝑤, 𝑥⟩ = max
𝑤𝑖∈𝐵(𝐺𝑖)

𝑟∑︁
𝑖=1

⟨𝑤𝑖, 𝑥⟩ ,

so for any 𝑖 ∈ [𝑟], ̃︀𝑤*𝑖 necessarily maximizes

max
𝑤𝑖∈𝐵(𝐺𝑖)

⟨𝑤𝑖, ̃︀𝑥*⟩ .
Therefore, by the first item of Lemma 9.3.18, ̃︀𝑤*𝑖 can be recovered by sorting the entries of ̃︀𝑥* in
decreasing order, such that ̃︀𝑥*𝜋1 ≥ ̃︀𝑥*𝜋2 ≥ · · · ≥ ̃︀𝑥*𝜋𝑛 for some permutation 𝜋 of 𝑉 , and then setting

̃︀𝑤*𝑖
𝑢 = 𝐺𝑖({𝜋1, . . . , 𝜋𝑢})−𝐺𝑖({𝜋1, . . . , 𝜋𝑢−1}) (9.54)

for all 𝑢 ∈ 𝑉 . Note that ̃︀𝑤*𝑖’s are in Z𝑛.
The runtime is dominated by the computation of the decomposition in (9.54), which involves

computing prefix cuts for each 𝐺𝑖 and by Lemma 9.3.10 takes time 𝑂
(︂

𝑟∑︀
𝑖=1
|𝑉𝑖|2

)︂
. Therefore, the

total runtime is 𝑂
(︂
𝑛+

𝑟∑︀
𝑖=1
|𝑉𝑖|2

)︂
.

Lemma 9.3.10 (Computing all prefix cut values). Given a graph 𝐺(𝑉,𝐸, 𝑐) with 𝑉 = {1, 2, . . . , 𝑛},
we can compute the values 𝑐+([𝑢]) for all 𝑢 ∈ [𝑛] in time 𝑂(𝑛2).

Proof. We note that 𝑐+(∅) = 0 and for any 𝑢 ≥ 1 we have

𝑐+([𝑢]) = 𝑐+([𝑢− 1]) +
𝑛∑︁

𝑣=𝑢+1

𝑐𝑢𝑣 −
𝑢−1∑︁
𝑣=1

𝑐𝑣𝑢 . (9.55)

Therefore 𝑐+([𝑢]) can be computed in 𝑂(𝑛) given 𝑐+([𝑢− 1]). As we apply (9.55) 𝑛 times, the total
runtime is 𝑂(𝑛2).

Proof of Lemma 5.4.4

We first prove the following lemma, which helps us bound the range of parameters for parametric
min 𝑠, 𝑡-cut.

Lemma 9.3.11. Consider a graph 𝐺(𝑉 ∪ {𝑠, 𝑡}, 𝐸, 𝑐 ≥ 0) and a function 𝜑(𝑥) =
∑︀
𝑢∈𝑉

𝜑𝑢(𝑥𝑢) that

satisfies Assumption 5.2.2. Additionally, let 𝐺(𝑆) = 𝑐+(𝑆 ∪ {𝑠}) for all 𝑆 ⊆ 𝑉 be the cut function
associated with the graph. For any 𝜆 ∈ R, we set 𝑆(𝜆) to be the smallest set that minimizes

min
𝑆⊆𝑉

𝐺(𝑆) +
∑︁
𝑢∈𝑆

𝜑′𝑢(−𝜆) .

Let 𝜌 = max
𝑢∈𝑉
|𝜑′𝑢(0)| and 𝐺max = max

𝑆⊆𝑉
𝐺(𝑆). Then, 𝑆(𝜆min) = ∅ and 𝑆(𝜆max) = 𝑉 , where 𝜆min =

−2𝜌+𝐺max

𝜎 and 𝜆max = 2𝜌+𝐺max

𝜎 .
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Proof. We first note that by the 𝜎-strong convexity of the 𝜑𝑢’s, and since −𝜆min > 0 > −𝜆max, we
have that

𝜑′𝑢(−𝜆min) ≥ 𝜑′𝑢(0) + 𝜎|𝜆min| .

and
𝜑′𝑢(−𝜆max) ≤ 𝜑′𝑢(0)− 𝜎|𝜆max| .

Therefore for any ∅ ≠ 𝑆 ⊆ 𝑉 we have

𝐺(𝑆) +
∑︁
𝑢∈𝑆

𝜑′𝑢(−𝜆min) ≥ 𝐺(𝑆) +
∑︁
𝑢∈𝑆

(𝜑′𝑢(0) + 𝜎|𝜆min|)

≥ 𝐺(𝑆)− |𝑆|𝜌+ |𝑆|𝜎|𝜆min|

= 𝐺(𝑆)− |𝑆|𝜌+ 2|𝑆|𝜎𝜌+𝐺max

𝜎
> 𝐺(𝑆) +𝐺max

≥ 𝐺(∅) ,

where we used the fact that 𝐺(𝑆) ≥ 0 and 𝐺(∅) ≤ 𝐺max, so 𝑆(𝜆min) = ∅. Similarly, for any 𝑆 ⊂ 𝑉
we have

𝐺(𝑆) +
∑︁
𝑢∈𝑆

𝜑′𝑢(−𝜆max) = 𝐺(𝑆) +
∑︁
𝑢∈𝑉

𝜑′𝑢(−𝜆max)−
∑︁

𝑢∈𝑉 ∖𝑆

𝜑′𝑢(−𝜆max)

≥ 𝐺(𝑆) +
∑︁
𝑢∈𝑉

𝜑′𝑢(−𝜆max)−
∑︁

𝑢∈𝑉 ∖𝑆

(︀
𝜑′𝑢(0)− 𝜎|𝜆max|

)︀
≥ 𝐺(𝑆) +

∑︁
𝑢∈𝑉

𝜑′𝑢(−𝜆max) + |𝑉 ∖𝑆| (𝜎|𝜆max| − 𝜌)

= 𝐺(𝑆) +
∑︁
𝑢∈𝑉

𝜑′𝑢(−𝜆max) + |𝑉 ∖𝑆|
(︂
2𝜎
𝜌+𝐺max

𝜎
− 𝜌
)︂

> 𝐺(𝑆) +
∑︁
𝑢∈𝑉

𝜑′𝑢(−𝜆max) +𝐺max

≥ 𝐺(𝑉 ) +
∑︁
𝑢∈𝑉

𝜑′𝑢(−𝜆max) ,

where we used the fact that 𝐺(𝑆) ≥ 0 and 𝐺(𝑉 ) ≤ 𝐺max, so 𝑆(𝜆max) = 𝑉 .

We are now ready for the proof.

Proof of Lemma 5.4.4. We first shift the polytope 𝐵(𝐹 ) so that 𝑤 is translated to 0. Specifically,
for all 𝑆 ⊆ 𝑉 , we let ̂︀𝐹 (𝑆) = 𝐹 (𝑆)− 𝑤(𝑆) and ̂︀𝐹𝑖(𝑆) = 𝐹𝑖(𝑆)− 𝑤𝑖(𝑆) for all 𝑖 ∈ [𝑟]. As we are just
subtracting a linear function, ̂︀𝐹 and the ̂︀𝐹𝑖’s are still submodular functions, and 𝐵( ̂︀𝐹 ) = 𝐵(𝐹 )− 𝑤,
𝐵( ̂︀𝐹𝑖) = 𝐵(𝐹𝑖)−𝑤𝑖 for all 𝑖 ∈ [𝑟]. Note that 𝑤𝑖 ∈ 𝐵(𝐹𝑖) implies that the ̂︀𝐹𝑖’s (and thus also ̂︀𝐹 ) are
non-negative, since ̂︀𝐹𝑖(𝑆) = 𝐹𝑖(𝑆)− 𝑤(𝑆) ≥ 0 ,

and additionally ̂︀𝐹𝑖(∅) = 𝐹𝑖(∅) = 0 and ̂︀𝐹𝑖(𝑉𝑖) = 𝐹𝑖(𝑉𝑖)− 𝑤𝑖(𝑉𝑖) = 0 for all 𝑖 ∈ [𝑟] (also implyinĝ︀𝐹 (∅) = ̂︀𝐹 (𝑉 ) = 0).
We run the algorithm from Lemma 9.3.5 on the ̂︀𝐹𝑖’s to obtain directed graphs 𝐺𝑖(𝑉,𝐸, 𝑐𝑖 ≥ 0)

whose (𝑉𝑖-restricted) cut functions 𝐺𝑖(𝑆) = 𝑐𝑖+(𝑆) 𝛼-approximate ̂︀𝐹𝑖(𝑆), where 𝛼 = max
𝑖∈[𝑟]
{|𝑉𝑖|2/4 +
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|𝑉𝑖|}. More specifically,

1

𝛼
̂︀𝐹𝑖(𝑆) ≤ 𝐺𝑖(𝑆) ≤ ̂︀𝐹𝑖(𝑆) for all 𝑆 ⊆ 𝑉𝑖, 𝐺𝑖(𝑉𝑖) = ̂︀𝐹𝑖(𝑉𝑖) (9.56)

and

1

𝛼

(︀
𝐵(𝐹𝑖)− 𝑤𝑖

)︀
=

1

𝛼
𝐵( ̂︀𝐹𝑖) ⊆ 𝐵(𝐺𝑖) ⊆ 𝐵( ̂︀𝐹𝑖) = 𝐵(𝐹𝑖)− 𝑤𝑖 , (9.57)

We also define the graph 𝐺(𝑉,𝐸, 𝑐 ≥ 0), where 𝑐 =
𝑟∑︀
𝑖=1

𝑐𝑖 and has cut function 𝐺(𝑆) =
𝑟∑︀
𝑖=1

𝐺𝑖(𝑆) for

all 𝑆 ⊆ 𝑉 . Then,

1

𝛼
̂︀𝐹 (𝑆) ≤ 𝐺(𝑆) ≤ ̂︀𝐹 (𝑆) for all 𝑆 ⊆ 𝑉 , 𝐺(𝑉 ) = ̂︀𝐹 (𝑉 ) (9.58)

and

1

𝛼
(𝐵(𝐹 )− 𝑤) ⊆ 𝐵(𝐺) ⊆ 𝐵(𝐹 )− 𝑤 . (9.59)

We absorb the linear term that we subtracted from 𝐹 into the parametric function. Concretely,
we define 𝜑 as 𝜑(𝑥) = 𝜓(𝑥) + ⟨𝑤, 𝑥⟩ for all 𝑥 ∈ R𝑛. It is easy to see that 𝜑(𝑥) is coordinate-wise
separable, as 𝜑(𝑥) =

∑︀
𝑢∈𝑉

𝜑𝑢(𝑥𝑢) where 𝜑𝑢(𝑥𝑢) = 𝜓𝑢(𝑥𝑢) + 𝑤𝑢𝑥𝑢 for all 𝑢 ∈ 𝑉 and that it satisfies

Assumption 5.2.2, since 𝜑′′𝑢(𝑥𝑢) = 𝜓′′
𝑢(𝑥𝑢) and

|𝜑′𝑢(0)| = |𝜓′
𝑢(0) + 𝑤𝑢| ≤ |𝜓′

𝑢(0)|+ 𝐹 ({𝑢}) ≤ |𝜓′
𝑢(0)|+ 𝐹max = 𝑛𝑂(1) .

Additionally, the Fenchel dual of 𝜑𝑢 is a shifted version of 𝜓𝑢, i.e.

𝜑*𝑢(𝑧) = max
𝑦∈R

𝑧𝑦 − 𝜑(𝑦) = max
𝑤∈R

𝑧𝑦 − 𝜓(𝑦)− 𝑤𝑢𝑦 = max
𝑤∈R

(𝑧 − 𝑤𝑢)𝑦 − 𝜓(𝑦) = 𝜓*
𝑢(𝑧 − 𝑤𝑢) .

We will now run the algorithm from Lemma 5.4.3 on graphs 𝐺𝑖 and parametric function 𝜑 to obtain
a dual solution vector ̃︀𝑤. We note that, as 𝐹𝑖’s and 𝑤𝑖’s take integer values, 𝐺𝑖’s take integer values
too. This algorithm takes a 1

3𝐿 -approximate parametric min 𝑠, 𝑡-cut as input, which we first compute
using Theorem 5.3.2, with range of parameters [𝜆min, 𝜆max] given by Lemma 9.3.11. We have

𝜆max − 𝜆min = 4

max
𝑢∈𝑉
|𝜑′𝑢(0)|+max

𝑆⊆𝑉
𝐺(𝑆)

𝜎

≤ 4
max
𝑢∈𝑉
|𝜑′𝑢(0)|+ ̂︀𝐹max

𝜎

≤ 4
max
𝑢∈𝑉
|𝜑′𝑢(0)|+ 𝐹max + ‖𝑤‖1

𝜎

≤ 4
max
𝑢∈𝑉
|𝜑′𝑢(0)|+ (2𝑛+ 1)𝐹max

𝜎

= 𝑛𝑂(1) ,

where we used Lemma 9.3.8 and the fact that the quantities |𝜑′𝑢(0)|, 𝐹max,
1
𝜎 are bounded by 𝑛𝑂(1)

(Assumption 5.2.2).
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Based on Theorem 5.3.2, the time to obtain the 1
3𝐿 -approximate parametric min 𝑠, 𝑡-cut will be

𝑂

(︂
𝑇maxflow(𝑛, |𝐸′| log 𝑛) log 𝜆max − 𝜆min

1/3𝐿
log 𝑛

)︂
= ̃︀𝑂(︃𝑇maxflow

(︃
𝑛, 𝑛+

𝑟∑︁
𝑖=1

|𝑉𝑖|2
)︃)︃

.

So, by applying Lemma 5.4.3, we obtained a dual solution ̃︀𝑤 =
𝑟∑︀
𝑖=1

̃︀𝑤𝑖 for which ̃︀𝑤𝑖 ∈ 𝐵(𝐺𝑖) and

̃︀𝑤 = argmiñ︀𝑤∈𝐵(𝐺)
𝜑*(− ̃︀𝑤) = argmiñ︀𝑤∈𝐵(𝐺)

𝜓*(−𝑤 − ̃︀𝑤) . (9.60)

For all 𝑢 ∈ 𝑉 and 𝑖 ∈ [𝑟], we set 𝑤′𝑖
𝑢 = 𝑤𝑖𝑢 + ̃︀𝑤𝑖𝑢 and 𝑤′

𝑢 =
𝑟∑︀
𝑖=1

𝑤′𝑖
𝑢 . Note that these quantities

are still integral. We now prove the two parts of the lemma statement (feasibility and optimality)
separately.
Feasibility. For any 𝑖 ∈ [𝑟] and 𝑆 ⊆ 𝑉𝑖, we have that

𝑤′𝑖(𝑆) = 𝑤𝑖(𝑆) + ̃︀𝑤𝑖(𝑆) ≤ 𝑤𝑖(𝑆) +𝐺𝑖(𝑆) ≤ 𝑤𝑖(𝑆) + ̂︀𝐹𝑖(𝑆) = 𝑤𝑖(𝑆) + 𝐹𝑖(𝑆)− 𝑤𝑖(𝑆) = 𝐹 𝑖(𝑆) ,

where the second inequality follows from the fact that ̃︀𝑤*𝑖 ∈ 𝐺𝑖. Similarly, we have

𝑤′𝑖(𝑉𝑖) = 𝑤𝑖(𝑉𝑖) + ̃︀𝑤𝑖(𝑉𝑖) = 𝑤𝑖(𝑉𝑖) +𝐺𝑖(𝑉𝑖) = 𝑤𝑖(𝑉𝑖) + ̂︀𝐹𝑖(𝑉𝑖) = 𝐹𝑖(𝑉𝑖) .

So we conclude that 𝑤′𝑖 ∈ 𝐵(𝐹𝑖) for all 𝑖 ∈ [𝑟].
Optimality. Let’s set ℎ(𝑧) := 𝜓*(−𝑧) for all 𝑧 ∈ R𝑛 for notational convenience, so that our goal
is to prove that

ℎ(𝑤′)− ℎ(𝑤*) ≤
(︂
1− 1

𝛼

)︂
(ℎ(𝑤)− ℎ(𝑤*)) .

We will prove a slightly different statement where 𝑤′ is replaced by a solution on the path from 𝑤 to
𝑤*, which is enough because 𝑤′ is optimal in 𝑤 + 𝐵(𝐺). Concretely, we set �̄� = 1

𝛼 (𝑤* − 𝑤) and
instead will prove

ℎ(𝑤 + �̄�)− ℎ(𝑤*) ≤
(︂
1− 1

𝛼

)︂
(ℎ(𝑤)− ℎ(𝑤*)) .

Now, ℎ is a convex function, so applying convexity twice we have

ℎ(𝑤) ≥ ℎ(𝑤 + �̄�) + ⟨∇ℎ(𝑤 + �̄�),−�̄�⟩

= ℎ(𝑤 + �̄�)− 1

𝛼
⟨∇ℎ(𝑤 + �̄�), 𝑤* − 𝑤⟩

(9.61)

and
ℎ(𝑤*) ≥ ℎ(𝑤 + �̄�) + ⟨∇ℎ(𝑤 + �̄�), 𝑤* − 𝑤 − �̄�⟩

= ℎ(𝑤 + �̄�) +
𝛼− 1

𝛼
⟨∇ℎ(𝑤 + �̄�), 𝑤* − 𝑤⟩ .

(9.62)

We divide (9.62) by 𝛼− 1 and then sum it with (9.61), getting

ℎ(𝑤) +
1

𝛼− 1
ℎ(𝑤*) ≥ ℎ(𝑤 + �̄�) +

1

𝛼− 1
ℎ(𝑤 + �̄�) .
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Equivalently,

𝛼

𝛼− 1
(ℎ(𝑤 + �̄�)− ℎ(𝑤*)) ≤ ℎ(𝑤)− ℎ(𝑤*) .

So by rearranging,

ℎ(𝑤 + �̄�)− ℎ(𝑤*) ≤
(︂
1− 1

𝛼

)︂
(ℎ(𝑤)− ℎ(𝑤*)) . (9.63)

Thus we can equivalently write that

𝜓*(−𝑤 − �̄�)− 𝜓*(−𝑤*) ≤
(︂
1− 1

𝛼

)︂
(𝜓*(−𝑤)− 𝜓*(−𝑤*)) . (9.64)

Now, since by (9.59) we have 1
𝛼(𝐵(𝐹 )−𝑤) ⊆ 𝐵(𝐺) and 𝑤* ∈ 𝐵(𝐹 ), we have �̄� = 1

𝛼(𝑤
*−𝑤) ∈ 𝐵(𝐺).

Combinging the fact that ̃︀𝑤 is a minimizer of miñ︀𝑤*∈𝐵(𝐺)
𝜓*(−𝑤 − ̃︀𝑤*) with (9.60) and the fact that

�̄� ∈ 𝐵(𝐺), we have

𝜓*(−𝑤′) = 𝜓*(−𝑤 − ̃︀𝑤) ≤ 𝜓*(−𝑤 − �̄�) .

Combining this with (9.64), we obtain the desired claim:

𝜓*(−𝑤′)− 𝜓*(−𝑤*) ≤
(︂
1− 1

𝛼

)︂
(𝜓*(−𝑤)− 𝜓*(−𝑤*)) . (9.65)

The running time to compute graphs 𝐺𝑖 is 𝑂
(︂

𝑟∑︀
𝑖=1
|𝑉𝑖|2𝒪𝑖

)︂
and the time to run the algorithm from

Lemma 5.4.3 is ̃︀𝑂(︂𝑛+
𝑟∑︀
𝑖=1
|𝑉𝑖|2

)︂
, so the total running time is

̃︀𝑂(︃ 𝑟∑︁
𝑖=1

|𝑉𝑖|2𝒪𝑖 + 𝑇maxflow

(︃
𝑛, 𝑛+

𝑟∑︁
𝑖=1

|𝑉𝑖|2
)︃)︃

.

Algorithm 24 Finding all minimum cuts

1: function FindMinCuts(𝐺(𝑉,𝐸, 𝑐), 𝜑, 𝜀)

2: 𝑉 ′ = 𝑉 ∪ {𝑠, 𝑡}, 𝐸′ = 𝐸 ∪
⋃︀
𝑢∈𝑉
{(𝑢, 𝑡)} ∪

⋃︀
𝑢∈𝑉
{(𝑠, 𝑢)}

3: Define parametric capacities

𝑐𝜆(𝑢, 𝑣) =

⎧⎪⎨⎪⎩
max{0, 𝜑′𝑢(−𝜆)} if 𝑢 ∈ 𝑉, 𝑣 = 𝑡

max{0,−𝜑′𝑢(−𝜆)} if 𝑢 = 𝑠, 𝑣 ∈ 𝑉
𝑐𝑢𝑣 otherwise

4: Set (Λ, 𝜏) =ApxParametricMinCut(𝐺′(𝑉 ′, 𝐸′), 𝑐𝜆, 𝜆min = −𝑛𝑂(1), 𝜆max = 𝑛𝑂(1))
5: Set ̃︀𝑤𝑢 = −𝜑′*𝑢 (−𝜏(𝑢)) for all 𝑢 ∈ 𝑉 return ̃︀𝑤
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9.4 Appendix for Chapter 6

9.4.1 Deferred Proofs

Proof of Lemma 6.3.8

Proof. Φ𝑡 is a quadratic restricted on 𝑅𝑡

Φ(𝑦)− Φ(𝑥)−∇Φ(𝑥)𝑇 (𝑦 − 𝑥)

=
𝜌+2
2

(︁
‖𝑦𝑅𝑡‖22 − ‖𝑥𝑅𝑡‖22 − 2𝑥𝑇𝑅𝑡(𝑦𝑅𝑡 − 𝑥𝑅𝑡)

)︁
=
𝜌+2
2
‖𝑦𝑅𝑡 − 𝑥𝑅𝑡‖22

∈
[︂
0,
𝜌+2
2
‖𝑦 − 𝑥‖22

]︂
and so for any 𝑥, 𝑦 with |supp(𝑦 − 𝑥)| ≤ 𝑠+ 𝑠* (resp. |supp(𝑦 − 𝑥)| ≤ 1) we have

𝑔(𝑦)− 𝑔(𝑥)−∇𝑔(𝑥)𝑇 (𝑦 − 𝑥)
= 𝑓(𝑦)− 𝑓(𝑥)−∇𝑓(𝑥)𝑇 (𝑦 − 𝑥) + Φ(𝑦)− Φ(𝑥)−∇Φ(𝑥)𝑇 (𝑦 − 𝑥)

≥
𝜌−𝑠+𝑠*

2
‖𝑦 − 𝑥‖22 (resp. ≤ 𝜌+2 ‖𝑦 − 𝑥‖

2
2 ) .

Proof of Lemma 6.3.3

Proof. By definition, and setting 𝜏 = 1
𝑠 , in each Type 1 iteration we have

𝑔(𝑥𝑡)− 𝑔(𝑥𝑡+1) ≥ 𝜏
(︀
𝑔(𝑥𝑡)− opt

)︀
⇒𝑔(𝑥𝑡+1)− opt ≤ (1− 𝜏)(𝑔(𝑥𝑡)− opt)

and in each Type 2 iteration we have

𝑔(𝑥𝑡+1)− opt ≤ 𝑔(𝑥𝑡)− opt

(since 𝑔 can only decrease when unregularizing), therefore

𝑓(𝑥𝑇 )− opt ≤ 𝑔(𝑥𝑇 )− opt

≤ (1− 𝜏)𝑇1(𝑔(𝑥0)− opt)

≤ 𝑒−𝜏𝑇1(𝑔(𝑥0)− opt)

≤ 𝜀 ,

where we used the fact that 𝑇1 = 1
𝜏 log

𝑔(𝑥0)−opt
𝜀 .
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import numpy as np

def IHT(n, s):
x = np.zeros(n)
for _ in range(T):

x_new = x - eta * grad(x)
x_new[np.argsort(np.abs(x_new))[:-s]] = 0
x = x_new

return x

def RegIHT(n, s):
x, w = np.zeros(n), np.ones(n)
for _ in range(T):

x_new = (1 - 0.5 * w) * x - 0.5 * eta * grad(x)
x_new[np.argsort(np.abs(x_new))[:-s]] = 0
reg = np.sum(w * x**2)
if reg != 0:

w = w * (1 - c * w * x** 2 / reg)
w[w <= round_th] = 0

x = x_new
return x

Figure 9-1: Our python implementations of IHT, RegIHT, where grad is the gradient function, n
is the total number of features, s is the desired sparsity level, eta is the step size, c is the weight
step size, and round_th is the weight rounding threshold, which we set to 0.5. Note that grad(x) =
np.dot(A.T, np.dot(A, x) - b) for linear regression and grad(x) = np.dot(A.T, expit(np.dot(A,x)) -
b) for logistic regression, where expit is the sigmoid function.

Proof of Lemma 6.4.1

Proof. We have(︁√︀
𝑓(𝑥𝑡)− 𝑓(̃︀𝑥𝑡) +√︀𝑓(𝑥*)− 𝑓(̃︀𝑥𝑡))︁2 ≥ 𝜌−

2

(︀⃦⃦
𝑥𝑡 − ̃︀𝑥𝑡⃦⃦

2
+
⃦⃦
𝑥* − ̃︀𝑥𝑡⃦⃦

2

)︀2
≥ 𝜌−

2

⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2

≥ 𝜌−

2

(︂⃦⃦⃦
𝑥*𝑆*∖𝑆𝑡

⃦⃦⃦2
2
+
⃦⃦⃦
𝑥𝑡𝑆𝑡∖𝑆*

⃦⃦⃦2
2

)︂
,

where the first inequality follows by applying strong convexity to lower bound 𝑓(𝑥𝑡) − 𝑓(̃︀𝑥𝑡) and
𝑓(𝑥*)− 𝑓(̃︀𝑥𝑡) combined with the fact that by definition of ̃︀𝑥𝑡, ∇𝑆𝑡∪𝑆*𝑓(̃︀𝑥𝑡) = 0⃗, and the second is a
triangle inequality.

9.5 Appendix for Chapter 7

9.5.1 Python implementation

In Figure 9-1 we have python implementations of the IHT and regularized IHT algorithms that we
use for our experiments. As can be seen, both implementations are pretty short.
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9.5.2 Proof of Theorem 7.1.1

Theorem 7.1.1 (Regularized IHT). Let 𝑓 ∈ R𝑛 → R be a convex function that is 𝛽-smooth and
𝛼-strongly convex, with condition number 𝜅 = 𝛽/𝛼, and x * be an (unknown) 𝑠-sparse solution with
support 𝑆*. Then, running Algorithm 16 with 𝜂 = (2𝛽)−1 and 𝑐 = 𝑠′/(4𝑇 ) for

𝑇 = 𝑂

(︃
𝜅 log

𝑓(x 0) + (𝛽/2)
⃦⃦
x 0
⃦⃦2
2
− 𝑓(x *)

𝜀

)︃

iterations starting from an arbitrary 𝑠′ = 𝑂(𝑠𝜅)-sparse solution x 0, the algorithm returns an 𝑠′-sparse
solution x𝑇 such that 𝑓(x𝑇 ) ≤ 𝑓(x *) + 𝜀. Furthermore, each iteration requires 𝑂(1) evaluations of
𝑓 , ∇𝑓 , and 𝑂(𝑛) additional time.

Proof. We repeatedly apply Lemma 7.3.1 for

𝑇 = 64(𝜅+ 1) log
𝑓(x 0) + (𝛽/2)

⃦⃦
x 0
⃦⃦2
2
− 𝑓(x *)

𝜀

iterations. We define the regularized function

𝑔𝑡(x ) := 𝑓(x ) + (𝛽/2) ‖x‖2w 𝑡,2 ,

where w 𝑡 are the weights before iteration 𝑡 ∈ [0, 𝑇 − 1]. Specifically, for each 𝑡 we apply Lemma 7.3.1
on the current solution x 𝑡 and obtain the solution x 𝑡+1.

Before moving forward, we give an intuitive summary of the proof and the role of Lemma 7.3.1.
As long as IHT makes “sufficient” progress on the regularized function 𝑔𝑡, this is satisfactory for
the original function 𝑓 as well, because 𝑓(x ) ≤ 𝑔𝑡(x ) for all x . This is the case of the first bullet
of Lemma 7.3.1. If it stops making sufficient progress, this means we are at an (approximate)
sparse optimum for 𝑔𝑡, although it is not necessarily a good sparse solution for 𝑓 , which is the
objective we are aiming to minimize. This is where the second bullet of Lemma 7.3.1 comes in,
which gives necessary conditions for the above non-progress phenomenon (in other words, a partial
characterization of the local minima encountered when running IHT on a regularized function).
Specifically, the following condition is central to our approach:⃦⃦

x 𝑡𝑆*
⃦⃦2
(w 𝑡)2,2

≥ (4𝜅+ 6)−1
⃦⃦
x 𝑡
⃦⃦2
w 𝑡,2

.

We use this condition in the second part of the proof (after Case 2) to motivate a weight update
from w 𝑡 to w 𝑡+1, and show that, exactly because of this condition, a lot of the weight decrease is
concentrated inside the optimal support 𝑆*. As the total weight decrease in 𝑆* is bounded by 𝑠,
this gives a bound on the total number of iterations with insufficient decrease of 𝑔𝑡. If not for this
condition, we would not be able to bound the number of such iterations and would have potentially
remained forever stuck at a local minimum.

Now we are ready to move to the technical proof. In order to make sure that 𝑔𝑡+1(x 𝑡+1) ≤ 𝑔𝑡+1(x 𝑡),
we revert to the previous solution if the one returned by Lemma 7.3.1 has a larger value of 𝑔𝑡+1.
This is exactly what the conditional in Algorithm 16 is for. The property that 𝑔𝑡+1(x 𝑡+1) ≤ 𝑔𝑡+1(x 𝑡)
is only used in the very last part of the proof.

Let us assume that 𝑔𝑡(x 𝑡) > 𝑓(x *) at all times, as otherwise the statement holds by the
fact that 𝑔𝑡(x 𝑡) is non-increasing as a function of 𝑡 and upper bounds 𝑓(x 𝑡) for all 𝑡. We have
𝑔𝑡+1(x 𝑡+1) ≤ 𝑔𝑡(x 𝑡) by the fact that w 𝑡+1 ≤ w 𝑡 and 𝑔𝑡(x 𝑡+1) ≤ 𝑔𝑡(x 𝑡) by the guarantees of
Lemma 7.3.1.
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If the first bullet of Lemma 7.3.1 holds, we have that the value of 𝑔 decreases considerably on
iteration 𝑡, i.e.

𝑔𝑡+1(x 𝑡+1)

≤ 𝑔𝑡(x 𝑡+1)

≤ 𝑔𝑡(x 𝑡)− (16𝜅)−1(𝑔𝑡(x 𝑡)− 𝑓(x *)) .

Let us call these iterations progress iterations, and the other ones (where the second bullet of
Lemma 7.3.1 holds) weight iterations. Now, since 𝑔𝑡(x 𝑡) is non-increasing as a function of 𝑡, after
16𝜅 log 𝑔0(x0)−𝑓(x*)

𝜀 progress iterations we will have

𝑓(x 𝑡) ≤ 𝑔𝑡(x 𝑡) ≤ 𝑓(x *) + 𝜀 ,

and so we will be done. From now on let us assume this is not the case, so there are at least

𝑇 − 16𝜅 log
𝑔0(x 0)− 𝑓(x *)

𝜀
≥ 3𝑇/4

weight iterations.

We remind that in each weight iteration, we have⃦⃦
x 𝑡𝑆*

⃦⃦2
(w 𝑡)2,2

≥ (4𝜅+ 6)−1
⃦⃦
x 𝑡
⃦⃦2
w 𝑡,2

(9.66)

(𝛽/2)
⃦⃦
x 𝑡𝑆*

⃦⃦2
(w 𝑡)2,2

≥ (8𝜅+ 8)−1
(︀
𝑔𝑡(x 𝑡)− 𝑓(x *)

)︀
. (9.67)

In words, (9.66) roughly implies that at least an Ω(1/𝜅) fraction of the mass of (w 𝑡x 𝑡)2 lies inside
𝑆*. Therefore, if we decrease w 𝑡 by a quantity proportional to (w 𝑡x 𝑡)2, the total sum of weights
will decrease at most 𝑂(𝜅) times faster than the sum of weights inside 𝑆*. As the latter quantity
can only decrease by 𝑠 overall, the total decrease of weights will be 𝑂(𝑠𝜅).

Concretely, after each iteration we update the regularization weights as follows:

w 𝑡+1 =
(︁
w 𝑡 − 𝑐 · (w 𝑡x 𝑡)2/

⃦⃦
x 𝑡
⃦⃦2
w 𝑡,2

)︁
≥1/2

,

for some 𝑐 > 0 to be determined later. First of all, note that the weights are non-increasing. Now, if
not for the thresholding operation, it is easy to see that the total weight decrease is at most 𝑐. The
thresholding operation can only double this weight decrease to 2𝑐. Concretely, for all 𝑡 we define a
vector w̄ 𝑡 such that

�̄�𝑡𝑖 =

{︃
𝑤𝑡𝑖 if 𝑤𝑡𝑖 ≥ 1/2

1/2 if 𝑤𝑡𝑖 = 0 .

Clearly, 1
2

(︀
1−w 𝑡

)︀
≤ 1− w̄ 𝑡 ≤ 1−w 𝑡. Now, we have⃦⃦

w̄ 𝑡
⃦⃦
1
−
⃦⃦
w̄ 𝑡+1

⃦⃦
1

≤ 𝑐
⃦⃦
x 𝑡
⃦⃦2
(w 𝑡)2,2

/
⃦⃦
x 𝑡
⃦⃦2
w 𝑡,2

≤ 𝑐 ,
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and, summing up for all 𝑡 we get⃦⃦
1− w̄𝑇

⃦⃦
1
=
⃦⃦
w̄0
⃦⃦
1
−
⃦⃦
w̄𝑇
⃦⃦
1
≤ 𝑐𝑇 .

Therefore, ⃦⃦
1−w𝑇

⃦⃦
1
≤ 2

⃦⃦
1− w̄𝑇

⃦⃦
1
≤ 2𝑐𝑇 ,

and so
⃦⃦
w𝑇
⃦⃦
1
≥ 𝑛− 2𝑐𝑇 .

Therefore, the condition
⃦⃦
w 𝑡
⃦⃦
1
≥ 𝑛 − 𝑠′/2 of Lemma 7.3.1 is satisfied for all 𝑡 as long as

𝑐 ≤ 𝑠′/(4𝑇 ). In order to bound the number of iterations, we distinguish two cases for the sum of
weights inside 𝑆*.

Case 1: The sum of weights inside 𝑆* decreases by ≥ 4𝑠/𝑇 .
This case cannot happen more than 𝑇/4 times since the sum of weights inside 𝑆* can only

decrease by 𝑠 in total. Therefore, case 2 below happens at least 𝑇/2 times.

Case 2: The sum of weights inside 𝑆* decreases by < 4𝑠/𝑇 .
Note that the decrease in the sum of weights in 𝑆* is exactly equal to

∑︁
𝑖∈𝑆*

{︃
𝑐 · (𝑤𝑡𝑖𝑥𝑡𝑖)2/

⃦⃦
x 𝑡
⃦⃦2
w 𝑡,2

if this is ≤ 𝑤𝑡𝑖 − 1/2

𝑤𝑡𝑖 otherwise .

Let 𝑇 * be the set of indices 𝑖 ∈ 𝑆* for which the second case is true, i.e.

𝑐 · (𝑤𝑡𝑖𝑥𝑡𝑖)2/
⃦⃦
x 𝑡
⃦⃦2
w 𝑡,2

> 𝑤𝑡𝑖 − 1/2 .

The total weight decrease from elements in 𝑆*∖𝑇 * is then∑︁
𝑖∈𝑆*∖𝑇 *

𝑐 · (𝑤𝑡𝑖𝑥𝑡𝑖)2/
⃦⃦
x 𝑡
⃦⃦2
w 𝑡,2

= 𝑐
⃦⃦⃦
x 𝑡𝑆*∖𝑇 *

⃦⃦⃦2
(w 𝑡)2,2

/
⃦⃦
x 𝑡
⃦⃦2
w 𝑡,2

≥ 𝑐

4𝜅+ 6

⃦⃦⃦
x 𝑡𝑆*∖𝑇 *

⃦⃦⃦2
(w 𝑡)2,2

/
⃦⃦
x 𝑡𝑆*

⃦⃦2
(w 𝑡)2,2

,

where we used (9.66). As we have assumed that this decrease is less than 4𝑠/𝑇 , we have that⃦⃦
x 𝑡𝑇 *

⃦⃦2
(w 𝑡)2,2

=
⃦⃦
x 𝑡𝑆*

⃦⃦2
(w 𝑡)2,2

−
⃦⃦⃦
x 𝑡𝑆*∖𝑇 *

⃦⃦⃦2
(w 𝑡)2,2

≥
(︂
1− 4𝑠(4𝜅+ 6)

𝑐𝑇

)︂ ⃦⃦
x 𝑡𝑆*

⃦⃦2
(w 𝑡)2,2

≥ (1/2)
⃦⃦
x 𝑡𝑆*

⃦⃦2
(w 𝑡)2,2

,

(9.68)

as long as 𝑐 ≥ 8𝑠(4𝜅+ 6)/𝑇 . We can pick such a 𝑐 as long as

8𝑠(4𝜅+ 6)/𝑇 ≤ 𝑐 ≤ 𝑠′/(4𝑇 )⇔ 𝑠′ ≥ 32(4𝜅+ 6)𝑠 .

Now, to deal with the fact that the sum weights in 𝑇 * might not decrease sufficiently, note that all
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the weights in 𝑇 * are being set to 0, i.e. 𝑤𝑡+1
𝑖 = 0 for all 𝑖 ∈ 𝑇 *. Together with (9.68) and (9.67)

this means that we can make significant progress in function value. To see this, note that

𝑔𝑡+1(x 𝑡+1)

≤ 𝑔𝑡+1(x 𝑡)

≤ 𝑔𝑡(x 𝑡)− (𝛽/2)
⃦⃦
x 𝑡𝑇 *

⃦⃦2
w 𝑡,2

≤ 𝑔𝑡(x 𝑡)− (𝛽/2)
⃦⃦
x 𝑡𝑇 *

⃦⃦2
(w 𝑡)2,2

≤ 𝑔𝑡(x 𝑡)− (𝛽/4)
⃦⃦
x 𝑡𝑆*

⃦⃦2
(w 𝑡)2,2

≤ 𝑔𝑡(x 𝑡)− (16𝜅+ 16)−1
(︀
𝑔𝑡(x 𝑡)− 𝑓(x *)

)︀
,

which can happen at most

16(𝜅+ 1) log
𝑔0(x 0)− 𝑓(x *)

𝜀
≤ 𝑇/4

times.

9.5.3 Proof of Lemma 7.3.1

Lemma 7.3.1 (Regularized IHT step progress). Let 𝑓 ∈ R𝑛 → R be a convex function that is
𝛽-smooth and 𝛼-strongly convex, 𝜅 = 𝛽/𝛼 be its condition number, and x * be any 𝑠-sparse solution.

Given any 𝑠′-sparse solution x ∈ R𝑛 where

𝑠′ ≥ (128𝜅+ 2)𝑠

and a weight vector w ∈ ({0} ∪ [1/2, 1])𝑛 such that ‖w‖1 ≥ 𝑛− 𝑠′/2, we make the following update:

x ′ = 𝐻𝑠′
(︀
(1− 0.5w)x − (2𝛽)−1∇𝑓(x )

)︀
.

Then, at least one of the following two conditions holds:

• Updating x makes regularized progress:

𝑔(x ′) ≤ 𝑔(x )− (16𝜅)−1(𝑔(x )− 𝑓(x *)) ,

where
𝑔(x ) := 𝑓(x ) + (𝛽/2) ‖x‖2w ,2

is the ℓ2-regularized version of 𝑓 with weights given by w . Note: The regularized progress
statement is true as long as x is suboptimal, i.e. 𝑔(x ) > 𝑓(x *). Otherwise, we just have
𝑔(x ′) ≤ 𝑔(x ).

• x is significantly correlated to the optimal support 𝑆* := supp(x *):

‖x𝑆*‖2w2,2 ≥ (4𝜅+ 6)−1 ‖x‖2w ,2 ,

and the regularization term restricted to 𝑆* is non-negligible:

(𝛽/2) ‖x𝑆*‖2w2,2 ≥ (8𝜅+ 8)−1 (𝑔(x )− 𝑓(x *)) .
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Proof. By using the fact that 𝑓 is 𝛽-smooth, and so 𝑔 is 2𝛽-smooth due to w ≤ 1, for any x ′ we
obtain

𝑔(x ′)− 𝑔(x ) ≤
⟨︀
∇𝑔(x ),x ′ − x

⟩︀
+ 𝛽

⃦⃦
x ′ − x

⃦⃦2
2
. (9.69)

We let 𝑆 be the support of x and 𝑆′ the support of x ′, i.e. the set of 𝑠′ indices of the largest
magnitude entries of the vector. Since ∇𝑔(x ) = ∇𝑓(x ) + 𝛽wx , we have

x̄ = x − 𝜂∇𝑔(x ) = (1− 0.5w)x − 𝜂∇𝑓(x ) ,

where 𝜂 = (2𝛽)−1. We let 𝐴 = 𝑆′∖𝑆 be the newly inserted entries and 𝐵 = 𝑆∖𝑆′ be the entries that
were just removed from the support. Note that

x ′ = [x − 𝜂∇𝑔(x )]𝑆′

= x − 𝜂∇𝑆′𝑔(x )− x𝐵

= x − 𝜂∇𝑆′∪𝐵𝑔(x )− x̄𝐵 .

Using (9.69), we have

𝑔(x ′)− 𝑔(x )
≤ ⟨∇𝑔(x ),−𝜂∇𝑆′∪𝐵𝑔(x )− x̄𝐵⟩+ 𝛽 ‖−𝜂∇𝑆′∪𝐵𝑔(x )− x̄𝐵‖22
= −(4𝛽)−1 ‖∇𝑆′∪𝐵𝑔(x )‖22 + 𝛽 ‖x̄𝐵‖22
= −𝛽 ‖𝜂∇𝑆∪𝐴𝑔(x )‖22 + 𝛽 ‖x̄𝐵‖22
≤ −𝛽 ‖𝜂∇𝑆∪𝐴′𝑔(x )‖22 + 𝛽 ‖x̄𝐵′‖22 ,

(9.70)

for any two sets 𝐴′ ∈ [𝑛]∖𝑆 and 𝐵′ ⊆ 𝑆 with |𝐴′| = |𝐵′|. The latter inequality follows because of
the following lemma about IHT:

Lemma 9.5.1. Suppose that we run one step of IHT on vector x supported on 𝑆 for some function
𝑔, and let the updated solution vector be x ′ = x̄ (𝑆∪𝐴)∖𝐵, where x̄ = x − 𝜂∇𝑔(x ). Then, for any
𝐴′ ⊆ [𝑛]∖𝑆 and 𝐵′ ⊆ 𝑆 with |𝐴′| = |𝐵′|, we have

−‖𝜂∇𝐴𝑔(x )‖22 + ‖x̄𝐵‖
2
2 ≤ −‖𝜂∇𝐴′𝑔(x )‖22 + ‖x̄𝐵′‖22 . (9.71)

Proof. If we denote |𝐴| = |𝐵| = 𝑡 and |𝐴′| = |𝐵′| = 𝑡′, then note that by definition of IHT, 𝐴 are
the 𝑡 largest entries in ⃒⃒

x̄ [𝑛]∖𝑆
⃒⃒
= 𝜂

⃒⃒
∇[𝑛]∖𝑆𝑔(x )

⃒⃒
,

and 𝐵 are the 𝑡 smallest entries in |x̄𝑆 |. Similarly, we can assume that 𝐴′ are the 𝑡′ largest entries in
𝜂
⃒⃒
∇[𝑛]∖𝑆𝑔(x )

⃒⃒
and 𝐵′ are the 𝑡′ smallest entries in |x̄𝑆 |, since this way the right hand side of (9.71)

takes its minimum value. If 𝑡′ = 𝑡, we are done. We consider two cases:
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1. 𝑡′ > 𝑡: In this case we have 𝐴′ ⊇ 𝐴, 𝐵′ ⊇ 𝐵, so

− ‖𝜂∇𝐴′𝑔(x )‖22 + ‖x̄𝐵′‖22 + ‖𝜂∇𝐴𝑔(x )‖
2
2 − ‖x̄𝐵‖

2
2

= −
⃦⃦
𝜂∇𝐴′∖𝐴𝑔(x )

⃦⃦2
2
+
⃦⃦
x̄𝐵′∖𝐵

⃦⃦2
2

= −
⃦⃦
x̄𝐴′∖𝐴

⃦⃦2
2
+
⃦⃦
x̄𝐵′∖𝐵

⃦⃦2
2

≥ (𝑡′ − 𝑡)
(︂
− max
𝑖∈𝐴′∖𝐴

(�̄�𝑖)
2 + min

𝑗∈𝐵′∖𝐵
(�̄�𝑗)

2

)︂
≥ 0 ,

where the last inequality follows since, by definition of the IHT step, |�̄�𝑖| ≤ |�̄�𝑗 | for any
𝑖 ∈ 𝐴′∖𝐴 and 𝑗 ∈ 𝐵′∖𝐵. Otherwise, 𝑖 would have taken 𝑗’s place in 𝑆′.

2. 𝑡′ < 𝑡: In this case we have 𝐴′ ⊆ 𝐴, 𝐵′ ⊆ 𝐵. Similarly to the previous case,

− ‖𝜂∇𝐴′𝑔(x )‖22 + ‖x̄𝐵′‖22 + ‖𝜂∇𝐴𝑔(x )‖
2
2 − ‖x̄𝐵‖

2
2

=
⃦⃦
𝜂∇𝐴∖𝐴′𝑔(x )

⃦⃦2
2
−
⃦⃦
x̄𝐵∖𝐵′

⃦⃦2
2

=
⃦⃦
x̄𝐴∖𝐴′

⃦⃦2
2
−
⃦⃦
x̄𝐵∖𝐵′

⃦⃦2
2

≥ (𝑡− 𝑡′)
(︂

min
𝑖∈𝐴∖𝐴′

(�̄�𝑖)
2 − max

𝑗∈𝐵∖𝐵′
(�̄�𝑗)

2

)︂
≥ 0 ,

where the last inequality follows since, by definition of the IHT step, |�̄�𝑖| ≥ |�̄�𝑗 | for any
𝑖 ∈ 𝐴∖𝐴′ and 𝑗 ∈ 𝐵∖𝐵′. Otherwise 𝑖 wouldn’t have taken 𝑗’s place in 𝑆′.

Now, let us assume that the first bullet in the lemma statement is false, i.e.

𝑔(x ′)− 𝑔(x ) > −(16𝜅)−1(𝑔(x )− 𝑓(x *)) .

Setting 𝐴′ = 𝐵′ = ∅ in (9.70), we get that

𝑔(x ′)− 𝑔(x ) ≤ −𝛽 ‖𝜂∇𝑆𝑔(x )‖22 ,

so we conclude that

‖∇𝑆𝑔(x )‖22 <
1

16𝜅𝛽𝜂2
(𝑔(x )− 𝑓(x *)) =

𝛼

4
(𝑔(x )− 𝑓(x *)) . (9.72)

Now, we again use (9.70) but we set 𝐴′ to be the 𝑠 entries from [𝑛]∖𝑆 on which ∇𝑔(x ) has the
largest magnitude, and 𝐵′ to be the 𝑠 entries from 𝑆 on which x̄ has the smallest magnitude. Also,
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let 𝑅 be an arbitrary subset of 𝑆∖𝑆* with size 𝑟 ≥ 2𝑠. We then have

𝑔(x ′)− 𝑔(x )
≤ −(4𝛽)−1 ‖∇𝑆∪𝐴′𝑔(x )‖22 + 𝛽 ‖x̄𝐵′‖22
≤ −(4𝛽)−1 ‖∇𝑆∪𝑆*𝑔(x )‖22 + 𝛽 ‖x̄𝐵′‖22

≤ −(4𝛽)−1 ‖∇𝑆∪𝑆*𝑔(x )‖22 +
𝛽𝑠

|𝑅∖𝑆*|
⃦⃦
x̄𝑅∖𝑆*

⃦⃦2
2

≤ −(4𝛽)−1 ‖∇𝑆∪𝑆*𝑔(x )‖22 +
𝛽𝑠

𝑟 − 𝑠
⃦⃦
x̄𝑅∖𝑆*

⃦⃦2
2
,

(9.73)

where we used the fact that

‖∇𝐴′𝑔(x )‖22 ≥
⃦⃦
∇𝑆*∖𝑆𝑔(x )

⃦⃦2
2

by definition of 𝐴′ (and since |𝑆*∖𝑆| ≤ 𝑠), and the fact that, by definition of 𝐵′ (and since
|𝑅∖𝑆*| ≥ 2𝑠− 𝑠 = |𝐵′|),

1

|𝐵′|
‖x̄𝐵′‖22 ≤

1

|𝑅∖𝑆*|
⃦⃦
x̄𝑅∖𝑆*

⃦⃦2
2
.

In fact, we will let 𝑅 = {𝑖 ∈ 𝑆 | 𝑤𝑖 > 0} be the set of elements that are being regularized. To lower
bound the size 𝑟 of this set, note that by the guarantee of the lemma statement,

𝑛− 𝑠′/2 ≤ ‖w‖1
≤ 𝑛− |{𝑖 ∈ 𝑆 | 𝑤𝑖 = 0}|
= 𝑛− (𝑠′ − 𝑟) ,

so 𝑟 ≥ 𝑠′/2. We conclude that 𝑟 ≥ 2𝑠 since 𝑠′ ≥ 4𝑠.

Now, because of the fact that 𝑓 is 𝛼-strongly convex, we have

𝑓(x *)− 𝑓(x )
≥ ⟨∇𝑓(x ),x * − x ⟩+ (𝛼/2) ‖x * − x‖22
= ⟨∇𝑔(x ),x * − x ⟩ − 𝛽⟨wx ,x * − x ⟩+ (𝛼/2) ‖x * − x‖22
≥ −𝛼−1 ‖∇𝑆∪𝑆*𝑔(x )‖22 − 𝛽⟨wx ,x * − x ⟩+ (𝛼/4) ‖x * − x‖22 ,

(9.74)

where we used the inequality

⟨a , b⟩+ (𝛼/4) ‖b‖22 ≥ −𝛼
−1 ‖a‖22 .

By re-arranging and plugging (9.74) into (9.73), we get

𝑔(x ′)− 𝑔(x )

≤ −(4𝜅)−1
(︁
𝑓(x )− 𝑓(x *)− 𝛽⟨wx ,x * − x ⟩+ (𝛼/4) ‖x * − x‖22

)︁
+

𝛽𝑠

𝑟 − 𝑠
⃦⃦
x̄𝑅∖𝑆*

⃦⃦2
2

= −(4𝜅)−1
(︁
𝑔(x )− 𝑓(x *)− 𝛽⟨wx ,x * − x ⟩ − (𝛽/2) ‖x‖2w ,2 + (𝛼/4) ‖x * − x‖22 −

4𝜅𝛽𝑠

𝑟 − 𝑠
⃦⃦
x̄𝑅∖𝑆*

⃦⃦2
2

)︁
.

(9.75)
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Now, note that by definition of x̄ we have⃦⃦
x̄𝑅∖𝑆*

⃦⃦2
2

≤ 2
⃦⃦
x𝑅∖𝑆*

⃦⃦2
2
+ 2(2𝛽)−2

⃦⃦
∇𝑅∖𝑆*𝑔(x )

⃦⃦2
2

and, since 𝑤𝑖 ≥ 1/2 for each 𝑖 ∈ 𝑅,⃦⃦
x𝑅∖𝑆*

⃦⃦2
2
≤ 2

⃦⃦
x𝑅∖𝑆*

⃦⃦2
w ,2
≤ 2

⃦⃦
x𝑆∖𝑆*

⃦⃦2
w ,2

.

Therefore,

4𝜅𝛽𝑠

𝑟 − 𝑠
⃦⃦
x̄𝑅∖𝑆*

⃦⃦2
2

≤ 16𝜅𝛽𝑠

𝑟 − 𝑠
⃦⃦
x𝑆∖𝑆*

⃦⃦2
w ,2

+
2𝜅𝑠

𝛽(𝑟 − 𝑠)
⃦⃦
∇𝑅∖𝑆*𝑔(x )

⃦⃦2
2

≤ 16𝜅𝛽𝑠

𝑟 − 𝑠
⃦⃦
x𝑆∖𝑆*

⃦⃦2
w ,2

+
𝑠

2(𝑟 − 𝑠)
(𝑔(x )− 𝑓(x *)) ,

where the last inequality follows from (9.72) since 𝑅∖𝑆* ⊆ 𝑆. Plugging this back into (9.75), we get

𝑔(x ′)− 𝑔(x )

≤ −(4𝜅)−1
(︁(︂

1− 𝑠

2(𝑟 − 𝑠)

)︂
(𝑔(x )− 𝑓(x *))

− 𝛽⟨wx ,x * − x ⟩ − (𝛽/2) ‖x‖2w ,2 + (𝛼/4) ‖x * − x‖22 −
16𝜅𝛽𝑠

𝑟 − 𝑠
⃦⃦
x𝑆∖𝑆*

⃦⃦2
w ,2

)︁
= −(4𝜅)−1

(︁(︂
1− 𝑠

2(𝑟 − 𝑠)

)︂
(𝑔(x )− 𝑓(x *))

−𝛽⟨wx𝑆∩𝑆* ,x * − x ⟩+ (𝛼/4) ‖x * − x‖22⏟  ⏞  
≥−(𝜅𝛽)‖x𝑆∩𝑆*‖2

w2,2

+𝛽
⃦⃦
x𝑆∖𝑆*

⃦⃦2
w ,2
− (𝛽/2) ‖x‖2w ,2−

16𝜅𝛽𝑠

𝑟 − 𝑠
⃦⃦
x𝑆∖𝑆*

⃦⃦2
w ,2⏟  ⏞  

≥−(𝛽/4)‖x𝑆∖𝑆*‖2
w,2

)︁

≤ −(4𝜅)−1
(︁(︂

1− 𝑠

2(𝑟 − 𝑠)

)︂
(𝑔(x )− 𝑓(x *))− (𝜅𝛽) ‖x𝑆∩𝑆*‖2w2,2 − (𝛽/2) ‖x𝑆∩𝑆*‖2w ,2 + (𝛽/4)

⃦⃦
x𝑆∖𝑆*

⃦⃦2
w ,2

)︁
≤ −(4𝜅)−1

(︁
0.5 (𝑔(x )− 𝑓(x *))− (𝜅+ 1)𝛽 ‖x𝑆∩𝑆*‖2w2,2 + (𝛽/4)

⃦⃦
x𝑆∖𝑆*

⃦⃦2
w ,2

)︁
,

(9.76)
where we used the fact that

𝑠

2(𝑟 − 𝑠)
≤ 1/2 ,

which holds as long as 𝑠′ ≥ 4𝑠, and

16𝜅𝛽𝑠

𝑟 − 𝑠
≤ 𝛽/4 ,

which holds as long as 𝑟 ≥ 𝑠′/2 and 𝑠′ ≥ (128𝜅+2)𝑠. In the last inequality we also used the property
w/2 ≤ w2, which is by definition of w .

Now, note that, because we have assumed that the first bullet of the statement doesn’t hold, it
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has to be the case that

(1/4) (𝑔(x )− 𝑓(x *))− (𝜅+ 1)𝛽 ‖x𝑆∩𝑆*‖2w2,2 + (𝛽/4)
⃦⃦
x𝑆∖𝑆*

⃦⃦2
w ,2
≤ 0 .

This immediately implies that

(𝜅+ 1)𝛽 ‖x𝑆∩𝑆*‖2w2,2 ≥ (𝛽/4)
⃦⃦
x𝑆∖𝑆*

⃦⃦2
w ,2

⇒ (4𝜅+ 4) ‖x𝑆∩𝑆*‖2w2,2 ≥
⃦⃦
x𝑆∖𝑆*

⃦⃦2
w ,2

⇒ (4𝜅+ 6) ‖x𝑆∩𝑆*‖2w2,2 ≥ ‖x‖
2
w ,2 ,

so

‖x𝑆∩𝑆*‖2w2,2 ≥ (4𝜅+ 6)−1 ‖x‖2w ,2 .

Similarly we also have

(𝜅+ 1)𝛽 ‖x𝑆∩𝑆*‖2w2,2 ≥ (1/4) (𝑔(x )− 𝑓(x *))

⇒ (𝛽/2) ‖x𝑆∩𝑆*‖2w2,2 ≥ (8𝜅+ 8)−1(𝑔(x )− 𝑓(x *)) .

Therefore the second bullet of the statement is true, and we are done.

9.5.4 Low Rank Minimization

Preliminaries

We will use the following simple lemma about Frobenius products between low rank projections and
symmetric PSD matrices. We remind the reader that 𝐻𝑟 (A) is the matrix consisting of the top 𝑟
components from the singular value decomposition of A.

Lemma 9.5.2. For any two symmetric PSD matrices Π ,A ∈ R𝑛×𝑛, where rank(Π ) ≤ 𝑟 and
‖Π ‖2 ≤ 1, we have that

|⟨Π ,A⟩| ≤ Tr [𝐻𝑟(A)] .

Proof. We will use the following inequality for singular values

𝑘∑︁
𝑖=1

𝜎𝑖(𝐴𝐵) ≤
𝑘∑︁
𝑖=1

𝜎𝑖(𝐴)𝜎𝑖(𝐵)

for 𝑘 = 1, . . . , 𝑛, 𝐴,𝐵 ∈ R𝑛×𝑛 and 𝜎1(𝐴) ≥ · · · ≥ 𝜎𝑛(𝐴) are singular values of matrix 𝐴 (see page
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Algorithm 25 Regularized Local Search

A0: initial rank-𝑟′ solution
W 0 = Y 0 = I : initial regularization weights
𝜂: step size, 𝑇 : #iterations
𝑐: weight step size
for 𝑡 = 0, . . . , 𝑇 − 1 do

Φ(A) := (𝛽/4)
(︀⟨︀
W 𝑡,AA⊤⟩︀+ ⟨︀Y 𝑡,A⊤A

⟩︀)︀
𝑔(A) := 𝑓(A) + Φ(A)
𝐴 = 𝐻𝑠′−1

(︀
A𝑡
)︀
− 0.5𝐻1

(︀
𝜂∇𝑔(A𝑡)

)︀
P = (W 𝑡)1/2A𝑡(A𝑡)⊤(W 𝑡)1/2

Q = (Y 𝑡)1/2(A𝑡)⊤A𝑡(Y 𝑡)1/2

Δ = 𝑔(A𝑡)− 𝑓(A*)

if 𝑔(A𝑡)− 𝑔(𝐴) ≥ (𝑟′)−1Δ then
Let UΣV ⊤ be the SVD of 𝐴
A𝑡+1 = argmin

A=UXV⊤
𝑔(A)

W 𝑡+1,Y 𝑡+1 = W 𝑡,Y 𝑡

else if max {Tr [𝐻𝑟 (P)] ,Tr [𝐻𝑟 (Q)]} ≥ (0.4/𝛽)Δ then
A𝑡+1 = A𝑡

W 𝑡+1 = (W 𝑡)1/2
(︀
I − 𝑟−1Π im(P)

)︀
(W 𝑡)1/2

Y 𝑡+1 = (Y 𝑡)1/2
(︀
I − 𝑟−1Π im(Q)

)︀
(Y 𝑡)1/2

else
A𝑡+1 = A𝑡

W 𝑡+1 = W 𝑡 − W 𝑡A𝑡(A𝑡)⊤W 𝑡

⟨W 𝑡,A𝑡(A𝑡)⊤⟩

Y 𝑡+1 = Y 𝑡 − Y 𝑡(A𝑡)⊤A𝑡Y 𝑡

⟨Y 𝑡,(A𝑡)⊤A𝑡⟩
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177 in [82]). Then

|⟨Π ,A⟩| = Tr
[︁
ΠA⊤

]︁
= Tr [ΠA]

=
𝑛∑︁
𝑖=1

𝜎𝑖(ΠA)

≤
𝑛∑︁
𝑖=1

𝜎𝑖(Π )𝜎𝑖(A)

=

𝑟∑︁
𝑖=1

𝜎𝑖(Π )𝜎𝑖(A)

≤
𝑟∑︁
𝑖=1

𝜎𝑖(A)

= Tr [𝐻𝑟(A)] .

Analysis

This section is devoted to proving Theorem 7.1.2, which analyzes an algorithm for low rank
optimization that uses adaptive regularization.

Theorem 7.1.2 (Adaptive Regularization for Low Rank Optimization). Let 𝑓 ∈ R𝑚×𝑛 → R be a
convex function with condition number 𝜅 and consider the low rank minimization problem

min
rank(A)≤𝑟

𝑓(A) . (9.77)

For any error parameter 𝜀 > 0, there exists a polynomial time algorithm that returns a matrix A

with rank(A) ≤ 𝑂
(︁
𝑟
(︁
𝜅+ log 𝑓(O)−𝑓(A*)

𝜀

)︁)︁
and 𝑓(A) ≤ 𝑓(A*) + 𝜀, where A* is any rank-𝑟 matrix.

Proof of Theorem 7.1.2. Let the smoothness and strong convexity parameters of 𝑓 be 𝛽, 𝛼. We

repeatedly apply Lemma 9.5.3 𝑇 ≥ 𝑂
(︂
𝑟𝜅 log

𝑓(A0)+(𝛽/2)‖A0‖2
𝐹
−𝑓(A*)

𝜀

)︂
times starting from solution

A0 = O and weight matrices W 0 = I , Y 0 = I . Thus, we obtain solutions A0, . . . ,A𝑇 , and weights
W 0,W 1, . . . ,W 𝑇 and Y 0,Y 1, . . . ,Y 𝑇 . We let

𝑔𝑡(A)

= 𝑓(A) + (𝛽/4)
(︁
⟨W 𝑡,A𝑡(A𝑡)⊤⟩+ ⟨Y 𝑡, (A𝑡)⊤A⊤⟩

)︁
be the regularized function at iteration 𝑡.

We denote by 𝑇𝑖 the total number of iterations for which item 𝑖 ∈ {1, 2, 3} from the statement of
Lemma 9.5.3 holds.

Consider the 𝑇2 iterations for which item 2 from the statement of Lemma 9.5.3 holds. Without
loss of generality, W is updated at least 𝑇2/2 times. Letting A* = U *Σ*V *⊤ be the singular value
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decomposition of A*, for each such iteration we have

Tr
[︀
Π im(U *)W

𝑡+1Π im(U *)

]︀
≤ Tr

[︀
Π im(U *)W

𝑡Π im(U *)

]︀
− (10𝜅)−1 ,

and for all other types of iterations we have W 𝑡+1 ⪯W 𝑡. Therefore,

Tr
[︀
Π im(U *)W

𝑇Π im(U *)

]︀
≤ Tr

[︀
Π im(U *)W

0Π im(U *)

]︀
− 𝑇2

2
(10𝜅)−1 .

However, note that by the guarantee of Lemma 9.5.3 that W 𝑇 ⪰ O , we have

Tr
[︀
Π im(U *)W

𝑇Π im(U *)

]︀
≥ 0 ,

and because W 0 = I we also know that

Tr
[︀
Π im(U *)W

0Π im(U *)

]︀
= Tr

[︀
Π im(U *)

]︀
≤ 𝑟 .

This implies that 𝑇2 ≤ 20𝜅𝑟.
Now, if 𝑇1 ≥ 16𝑟𝜅 log 𝑔0(A0)−𝑓(A*)

𝜀 , and since 𝑔𝑡(A𝑡) is non-increasing for all 𝑡, we have

𝑔𝑇 (A𝑇 )− 𝑓(A*)

≤
(︀
1− (16𝑟𝜅)−1

)︀𝑇1 (𝑔0(A0)− 𝑓(A*))

≤ 𝜀 ,

so 𝑇1 ≤ 16𝑟𝜅 log 𝑔0(A0)−𝑓(A*)
𝜀 .

Similarly, if 𝑇3 ≥ 10𝑟 log 𝑔0(A0)−𝑓(A*)
𝜀 we have

𝑔𝑇 (A𝑇 )− 𝑓(A*)

≤
(︀
1− (10𝑟)−1

)︀𝑇4 (𝑔0(A0)− 𝑓(A*))

≤ 𝜀 ,

so 𝑇3 ≥ 10𝑟 log 𝑔0(A0)−𝑓(A*)
𝜀 .

Overall, we have that the total number of iterations is

𝑇 =
∑︁

𝑇𝑖 ≤ 36𝑟(𝜅+ 1) log
𝑔0(A0)− 𝑓(A*)

𝜀
.

The only thing left is to ensure that the conditions

Tr
[︀
I −W 𝑡

]︀
≤ 𝑟′/2

Tr
[︀
I −Y 𝑡

]︀
≤ 𝑟′/2

of Lemma 9.5.3 are satisfied for all 𝑡. By the guarantees of Lemma 9.5.3, if one of items 2, 3 holds,
then

Tr
[︀
I −W 𝑡+1

]︀
≤ Tr

[︀
I −W 𝑡

]︀
+ 1 ,
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and if item 1 holds, then
Tr
[︀
I −W 𝑡+1

]︀
= Tr

[︀
I −W 𝑡

]︀
.

As Tr
[︀
I −W 0

]︀
= 0, we have

Tr
[︀
I −W 𝑇

]︀
≤ 𝑇2 + 𝑇3

≤ 20𝜅𝑟 + 10𝑟 log
𝑔0(A0)− 𝑓(A*)

𝜀
≤ 𝑟′/2 ,

where the last inequality holds as long as

𝑟′ ≥ 20𝑟

(︂
2𝜅+ log

𝑔0(A0)− 𝑓(A*)

𝜀

)︂
.

Lemma 9.5.3 (Low rank minimization step analysis). Let 𝑓 : R𝑚×𝑛 → R be a 𝛽-smooth and
𝛼-strongly convex function with condition number 𝜅 = 𝛽/𝛼, and W ∈ R𝑚×𝑚,Y ∈ R𝑛×𝑛 be
symmetric positive semi-definite weight matrices with spectral norm bounded by 1 and such that
Tr [I −W ] ≤ 𝑟′/2 and Tr [I −Y ] ≤ 𝑟′/2 for fixed parameter 𝑟′ ≥ 256𝑟. We define the regularized
function

𝑔(A) := 𝑓(A) + (𝛽/4)
(︁
⟨W ,AA⊤⟩+ ⟨Y ,A⊤A⟩

)︁
⏟  ⏞  

Φ(A)

.

Now, consider a rank-𝑟′ matrix A ∈ R𝑚×𝑛 with singular value decomposition

A = UΛV ⊤ =
∑︁
𝑗∈𝑆

𝜆𝑗u 𝑗v
⊤
𝑗

and with the property that

Π im(U ) · ∇𝑔(A) ·Π im(V ) = O .

For any rank-𝑟 solution A* where 𝑟′ ≥ 256𝑟, there is a procedure that updates A,W ,Y , and for
which exactly one of the following scenarios holds:

1. A is updated to a rank-𝑟′ matrix A′, and W ,Y are not updated. We have sufficient progress
in the regularized function:

𝑔(A′) ≤ 𝑔(A)− (16𝜅𝑟)−1 (𝑔(A)− 𝑓(A*)) .

2. Exactly one of W or Y is updated (wlog W ) to a symmetric PSD W ′ ⪯W , and A is not
updated. We have

Tr
[︀
I −W ′]︀ ≤ Tr[I −W ] + 1
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and

Tr
[︀
Π im(U *)W

′Π im(U *)

]︀
≤ Tr

[︀
Π im(U *)WΠ im(U *)

]︀
− (10𝜅)−1 .

Respectively, for Y :

Tr
[︀
Π im(V *)Y

′Π im(V *)

]︀
≤ Tr

[︀
Π im(V *)YΠ im(V *)

]︀
− (10𝜅)−1 .

3. Exactly one of W or Y is updated (wlog W ) to a symmetric PSD W ′ ⪯W , and A is not
updated. We have sufficient progress in the regularized function, where 𝑔′ is the regularized
function with the new weights:

𝑔′(A) ≤ 𝑔(A)− (10𝑟)−1 (𝑔(A)− 𝑓(A*)) .

Additionally,

Tr
[︀
I −W ′]︀ ≤ Tr[I −W ] + 1

Proof. We attempt to make the update A → A′ as defined in Lemma 9.5.4. If it makes enough
progress, i.e.

𝑔(A′) ≤ 𝑔(A)− (16𝜅𝑟)−1 (𝑔(A)− 𝑓(A*)) ,

we are done. Otherwise, one of the items 2-5 in the statement of Lemma 9.5.4 must hold. Let us
take them one by one.

Item 2:
⟨Π im(U *),WAA⊤W ⟩ ≥ (10𝜅)−1 ⟨W ,AA⊤⟩ .

We update W as

W ′ = W − 𝑐 ·WAA⊤W ,

where 𝑐 = ⟨W ,AA⊤⟩−1. Note that this update preserves symmetry, and

O ⪯W ′ ⪯W .

This is because

𝑐W 1/2AA⊤W 1/2 ⪯ 𝑐⟨W ,AA⊤⟩ · I ⪯ I ,

so

W ′ = W 1/2
(︁
I − 𝑐W 1/2AA⊤W 1/2

)︁
W 1/2 ⪰ O

and
W ′ = W − 𝑐WAA⊤W ⪯W .
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Now, note that

Tr
[︀
I −W ′]︀ = Tr [I −W ] + 𝑐⟨W 2,AA⊤⟩

≤ Tr [I −W ] + 𝑐⟨W ,AA⊤⟩
= Tr [I −W ] + 1 ,

where we used the fact that W 2 ⪯W , and (letting Π * = Π im(U *) for convenience),

Tr
[︀
Π *W ′Π *]︀ = Tr [Π *WΠ *]− 𝑐⟨Π *,WAA⊤W ⟩

≤ Tr [Π *WΠ *]− 𝑐/(10𝜅)⟨W ,AA⊤⟩
= Tr [Π *WΠ *]− (10𝜅)−1 ,

(9.78)

Item 3:
⟨Π im(V *),YA⊤AY ⟩ ≥ (10𝜅)−1 ⟨Y ,A⊤A⟩ .

This is entirely analogous to the previous case.

Item 4:

(𝛽/4)Tr
[︁
𝐻𝑟

(︁
A⊤WA

)︁]︁
≥ 10−1 (𝑔(A)− 𝑓(A*)) . (9.79)

After considering the eigendecomposition

W 1/2AA⊤W 1/2 =
∑︁
𝑖∈[𝑟′]

�̄�𝑖v̄ 𝑖v̄
⊤
𝑖

with �̄�1 ≥ �̄�2 ≥ · · · ≥ �̄�𝑟′ ≥ 0, (9.79) can be re-phrased as

(𝛽/4)
∑︁
𝑖∈[𝑟]

�̄�𝑖 > (1/10) (𝑔(A)− 𝑓(A*)) .

We update W as

W ′ = W 1/2

⎛⎝I − 𝑟−1
∑︁
𝑖∈[𝑟]

v̄ 𝑖v̄
⊤
𝑖

⎞⎠W 1/2

and let 𝑔′ be the new regularized objective. First of all, note that this operation preserves symmetry,
and that O ⪯W ′ ⪯ I , since

∑︀
𝑖∈[𝑟]

v̄ 𝑖v̄
⊤
𝑖 ⪯ I . Additionally,

Tr
[︀
I −W ′]︀ = Tr [I −W ] + 𝑟−1

∑︁
𝑖∈[𝑟]

v̄⊤
𝑖 Wv̄ 𝑖

≤ Tr [W ] + 1
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and

𝑔′(A)− 𝑔(A)

= (𝛽/4)⟨W ′,AA⊤⟩ − (𝛽/4)⟨W ,AA⊤⟩

= −(𝛽/(4𝑟))

⟨
W 1/2

⎛⎝∑︁
𝑖∈[𝑟]

v̄ 𝑖v̄
⊤
𝑖

⎞⎠W 1/2,AA⊤

⟩

= −(𝛽/(4𝑟))
∑︁
𝑖∈[𝑟]

�̄�𝑖

≤ −(10𝑟)−1(𝑔(A)− 𝑓(A*)) ,

Item 5:
(𝛽/4)Tr

[︁
𝐻𝑟

(︁
AYA⊤

)︁]︁
≥ 10−1 (𝑔(A)− 𝑓(A*)) .

This is entirely analogous to the previous case.

Lemma 9.5.4. Let 𝑓 : R𝑚×𝑛 → R be a 𝛽-smooth and 𝛼-strongly convex function with condition
number 𝜅 = 𝛽/𝛼, and W ∈ R𝑚×𝑚,Y ∈ R𝑛×𝑛 be symmetric positive semi-definite weight matrices
with spectral norm bounded by 1 and such that Tr [I −W ] ,Tr [I −Y ] ≤ 𝑟′/2 for some parameter
𝑟′ ≥ 0. We define the regularized function

𝑔(A) := 𝑓(A) + (𝛽/4)
(︁
⟨W ,AA⊤⟩+ ⟨Y ,A⊤A⟩

)︁
⏟  ⏞  

Φ(A)

.

Now, consider a rank-𝑟′ matrix A ∈ R𝑚×𝑛 with singular value decomposition

A = UΛV ⊤ =
∑︁
𝑗∈𝑆

𝜆𝑗u 𝑗v
⊤
𝑗

and with the property that

Π im(U ) · ∇𝑔(A) ·Π im(V ) = O .

We define an updated solution

A′ = A− 𝜂 ·𝐻1(∇𝑔(A))− 𝜆𝑗u 𝑗v⊤
𝑗 ,

where 𝜂 = (2𝛽)−1, 𝐻1(·) returns the top singular component, and 𝑗 ∈ 𝑆 is picked to minimize 𝜆𝑗.
Then, for any rank-𝑟 solution A*, where 𝑟′ ≥ 256𝑟, and its singular value decomposition

A* = U *Λ*V *⊤, at least one of the following conditions holds:

1. We have sufficient progress in the regularized function:

𝑔(A′) ≤ 𝑔(A)− (16𝜅𝑟)−1 (𝑔(A)− 𝑓(A*)) .

2. WAA⊤W is significantly correlated to U *:

⟨Π im(U *),WAA⊤W ⟩ ≥ (10𝜅)−1 ⟨W ,AA⊤⟩ .
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3. YA⊤AY is significantly correlated to V *:

⟨Π im(V *),YA⊤AY ⟩ ≥ (10𝜅)−1 ⟨Y ,A⊤A⟩ .

4. The spectrum of A⊤WA is highly concentrated and responsible for a constant fraction of the
error:

(𝛽/4)Tr
[︁
𝐻𝑟

(︁
A⊤WA

)︁]︁
≥ 10−1 (𝑔(A)− 𝑓(A*)) .

and

5. The spectrum of AYA⊤ is highly concentrated and responsible for a constant fraction of the
error:

(𝛽/4)Tr
[︁
𝐻𝑟

(︁
AYA⊤

)︁]︁
≥ 10−1 (𝑔(A)− 𝑓(A*)) .

Proof. Note that 𝑔 is a 2𝛽-smooth function. This follows because

∇𝑔(A) = ∇𝑓(A) + (𝛽/2) (WA+AY ) ,

and so for any two matrices A,A′,⃦⃦
∇𝑔(A′)−∇𝑔(A)

⃦⃦
𝐹

≤
⃦⃦
∇𝑓(A′)−∇𝑓(A)

⃦⃦
𝐹
+ (𝛽/2)

⃦⃦
W (A′ −A)

⃦⃦
𝐹
+ (𝛽/2)

⃦⃦
(A′ −A)Y

⃦⃦
𝐹

≤ 2𝛽
⃦⃦
A′ −A

⃦⃦
𝐹
,

which is known to imply 2𝛽-smoothness of 𝑔. Here we used the triangle inequality and the fact that
W ,Y ⪯ I . Therefore, we have

𝑔(A′)− 𝑔(A)

≤ ⟨∇𝑔(A),A′ −A⟩+
⃦⃦
∇𝑔(A′)−∇𝑔(A)

⃦⃦
𝐹

⃦⃦
A′ −A

⃦⃦
𝐹

≤ ⟨∇𝑔(A),A′ −A⟩+ 𝛽
⃦⃦
A′ −A

⃦⃦2
𝐹

≤ −𝜂 ‖∇𝑔(A)‖22 + 2𝛽𝜂2 ‖∇𝑔(A)‖22 + 2𝛽𝜆2𝑗

= −(8𝛽)−1 ‖∇𝑔(A)‖22 + 2𝛽𝜆2𝑗 ,

(9.80)

where in the second inequality we used the facts that

⟨∇𝑔(A),−𝜆𝑗u 𝑗v⊤
𝑗 ⟩

= ⟨Π im(U )∇𝑔(A)Π im(V ),−𝜆𝑗u 𝑗v⊤
𝑗 ⟩

= 0

and that, for any two matrices B ,C ,

‖B +C‖2𝐹 ≤ 2 ‖B‖+ 2 ‖C‖2𝐹 .

The last equality follows by our choice of 𝜂. In order to lower bound ‖∇𝑔(A)‖22, we use the strong
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convexity of 𝑓 as follows:

𝑓(A*)− 𝑓(A)

≥ ⟨∇𝑓(A),A* −A⟩+ (𝛼/2) ‖A* −A‖2𝐹
= ⟨∇𝑔(A),A* −A⟩ − ⟨∇Φ(A),A* −A⟩+ (𝛼/2) ‖A* −A‖2𝐹
= ⟨∇𝑔(A),A* −A⟩+ (𝛼/4) ‖A* −A‖2𝐹⏟  ⏞  

𝑃

−⟨∇Φ(A),A* −A⟩+ (𝛼/4) ‖A* −A‖2𝐹 .

(9.81)

Bounding 𝑃 . We let Π im(U ), Π im(V ) be the orthogonal projections onto the images of U and
V respectively, so we can write

A* −A

= Π im(U ) (A
* −A)Π im(V ) +

(︀
I −Π im(U )

)︀
(A* −A)Π im(V ) + (A* −A)

(︀
I −Π im(V )

)︀
= Π im(U ) (A

* −A)Π im(V ) +
(︀
I −Π im(U )

)︀
A*Π im(V ) +A* (︀I −Π im(V )

)︀
.

Now, note that

⟨∇𝑔(A),A* −A⟩
= ⟨∇𝑔(A),

(︀
I −Π im(U )

)︀
A*Π im(V )⟩+ ⟨∇𝑔(A),A* (︀I −Π im(V )

)︀
⟩ ,

where we used the fact that

⟨∇𝑔(A),Π im(U )(A
* −A)Π im(V )⟩

= ⟨Π im(U )∇𝑔(A)Π im(V ),A
* −A⟩

= 0 ,

and

(𝛼/4) ‖A* −A‖2𝐹
≥ (𝛼/4)

⃦⃦(︀
I −Π im(U )

)︀
A*Π im(V )

⃦⃦2
𝐹
+ (𝛼/4)

⃦⃦
A* (︀I −Π im(V )

)︀⃦⃦2
𝐹
.

Additionally, note that for any rank-𝑟 matrix B , we have

⟨∇𝑔(A),B⟩+ (𝛼/4) ‖B‖2𝐹
≥ −𝛼−1 ‖𝐻𝑟 (∇𝑔(A))‖2𝐹
≥ −𝛼−1𝑟 ‖∇𝑔(A)‖22 ,

a proof of which can be found e.g. in Lemma A.6 of [13]. Applying this inequality with

B =
(︀
I −Π im(U )

)︀
A*Π im(V )

and
B = A* (︀I −Π im(V )

)︀
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and summing them up, we obtain

𝑃 = ⟨∇𝑔(A),A* −A⟩+ (𝛼/4) ‖A* −A‖2𝐹
≥ −2𝛼−1𝑟 ‖∇𝑔(A)‖22 .

Plugging this into (9.81) and re-arranging, we get

‖∇𝑔(A)‖22
≥ 𝛼/(2𝑟)

(︁
𝑓(A)− 𝑓(A*)− ⟨∇Φ(A),A* −A⟩+ (𝛼/4) ‖A* −A‖2𝐹

)︁
= 𝛼/(2𝑟)

(︁
𝑔(A)− 𝑓(A*)− Φ(A)−⟨∇Φ(A),A* −A⟩+ (𝛼/4) ‖A* −A‖2𝐹⏟  ⏞  

𝑄

)︁
.

(9.82)

Bounding 𝑄. We know that

−⟨∇Φ(A),A* −A⟩ = −(𝛽/2)⟨WA+AY ,A* −A⟩ .

If we let

A* = U *Λ*V *⊤

be the SVD of A* and Π im(U *), Π im(V *) be the orthogonal projections onto the images of U * and
V * respectively, then we have

− (𝛽/2)⟨WA,A* −A⟩
= −(𝛽/2)⟨WA,Π im(U *)(A

* −A)Π im(V *)⟩+ (𝛽/2)⟨W ,AA⊤⟩ − (𝛽/2)⟨WA,Π im(U *)AΠ im(V *)⟩ .

Looking at the first term of this, we have

− (𝛽/2)⟨WA,Π im(U *)(A
* −A)Π im(V *)⟩+ (𝛼/8) ‖A* −A‖2𝐹

= −(𝛽/2)⟨Π im(U *)WAΠ im(V *),A
* −A⟩+ (𝛼/8) ‖A* −A‖2𝐹

≥ −𝛽2/(2𝛼)
⃦⃦
Π im(U *)WAΠ im(V *)

⃦⃦2
𝐹
.

Similarly for the terms containing Y , we get

− (𝛽/2)⟨AY ,A* −A⟩
= −(𝛽/2)⟨AY ,Π im(U *)(A

* −A)Π im(V *)⟩+ (𝛽/2)⟨Y ,A⊤A⟩ − (𝛽/2)⟨AY ,Π im(U *)AΠ im(V *)⟩ .

and

− (𝛽/2)⟨AY ,Π im(U *)(A
* −A)Π im(V *)⟩+ (𝛼/8) ‖A* −A‖2𝐹

≥ −𝛽2/(2𝛼)
⃦⃦
Π im(U *)AYΠ im(V *)

⃦⃦2
𝐹
.
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In summary, we have

𝑄 = −⟨∇Φ(A),A* −A⟩+ (𝛼/4) ‖A* −A‖2𝐹
≥ −𝛽2/(2𝛼)

⃦⃦
Π im(U *)WAΠ im(V *)

⃦⃦2
𝐹
− 𝛽2/(2𝛼)

⃦⃦
Π im(U *)AYΠ im(V *)

⃦⃦2
𝐹

+ (𝛽/2)⟨W ,AA⊤⟩+ (𝛽/2)⟨Y ,A⊤A⟩
− (𝛽/2)⟨WA,Π im(U *)AΠ im(V *)⟩ − (𝛽/2)⟨AY ,Π im(U *)AΠ im(V *)⟩ .

(9.83)

Now, let us assume that all items 2-5 from the lemma statement are false. For the first term of
(9.83), we have

− 𝛽2/(2𝛼)
⃦⃦
Π im(U *)WAΠ im(V *)

⃦⃦2
𝐹

≥ −𝛽2/(2𝛼)
⃦⃦
Π im(U *)WA

⃦⃦2
𝐹

= −𝛽2/(2𝛼)⟨Π im(U *),WAA⊤W ⟩
≥ −(𝛽/20)⟨W ,AA⊤⟩ ,

where we used item 2 from the lemma statement, and similarly for the second term of (9.83),

− 𝛽2/(2𝛼)
⃦⃦
Π im(U *)AYΠ im(V *)

⃦⃦2
𝐹

≥ −(𝛽/20)⟨Y ,A⊤A⟩ .

Now we look at the second to last term of (9.83), i.e.

− (𝛽/2)⟨WA,Π im(U *)AΠ im(V *)⟩
= −(𝛽/2)⟨WAΠ im(V *)A

⊤,Π im(U *)⟩ .

Now, we use the matrix Holder inequality

− (𝛽/2)⟨WAΠ im(V *)A
⊤,Π im(U *)⟩

≥ −(𝛽/2)
⃦⃦⃦
WAΠ im(V *)A

⊤
⃦⃦⃦
*

⃦⃦
Π im(U *)

⃦⃦
2

≥ −(𝛽/2)
⃦⃦⃦
WAΠ im(V *)A

⊤
⃦⃦⃦
*
,

which can be proved by applying von Neumann’s trace inequality and then the classical Holder
inequality. Now, note that the matrix WAΠ im(V *)A

⊤ is similar to W 1/2AΠ im(V *)A
⊤W 1/2, and

so they have the same eigenvalues. Furthermore, the latter is a symmetric PSD matrix, and so the
former has real positive eigenvalues as well. This means that its singular values are the same as its
eigenvalues, and as a result the nuclear norm is equal to the trace, i.e.

− (𝛽/2)
⃦⃦⃦
WAΠ im(V *)A

⊤
⃦⃦⃦
*

= −(𝛽/2)Tr
(︁
WAΠ im(V *)A

⊤
)︁

= −(𝛽/2)⟨Π im(V *),A
⊤WA⟩

≥ −(𝛽/2)Tr
[︁
𝐻𝑟

(︁
A⊤WA

)︁]︁
≥ −(1/5) (𝑔(A)− 𝑓(A*)) .
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where we also used Lemma 9.5.2 and item 4 from the lemma statement. So we derived that

− (𝛽/2)⟨WA,Π im(U *)AΠ im(V *)⟩
≥ −(1/5) (𝑔(A)− 𝑓(A*)) ,

and similarly for the last term of (9.83),

− (𝛽/2)⟨AY ,Π im(U *)AΠ im(V *)⟩
≥ −(1/5) (𝑔(A)− 𝑓(A*)) .

Plugging the four inequalities that we derived back into (9.83), we get

𝑄 ≥ (𝛽/2− 𝛽/20)⟨W ,AA⊤⟩+ (𝛽/2− 𝛽/20)⟨Y ,A⊤A⟩ − (2/5) (𝑔(A)− 𝑓(A*))

= (9/5)Φ(A)− (2/5) (𝑔(A)− 𝑓(A*))

> (3/2)Φ(A)− (2/5) (𝑔(A)− 𝑓(A*)) .

Finally, combining this with the smoothness inequality (9.80) and the lower bound on ‖∇𝑔(A)‖22
(9.82), we derive

𝑔(A′)− 𝑔(A)

≤ −(16𝜅𝑟)−1
(︁
𝑔(A)− 𝑓(A*) + (1/2)Φ(A)

)︁
+ 2𝛽𝜆2𝑗

= −(16𝜅𝑟)−1
(︁
𝑔(A)− 𝑓(A*)

)︁
− (32𝜅𝑟)−1Φ(A) + 2𝛽𝜆2𝑗 .

What remains is the bound the sum of the last two terms. We remind the reader that A = UΛV ⊤.
Now, letting z equal to the vectorized diagonal of U⊤WU and 𝜆 to the vectorized diagonal of Λ,
note that

‖𝜆‖2z = ⟨Λ2,U⊤WU ⟩ = ⟨W ,AA⊤⟩ ,

using which we derive

𝜆2𝑗 = min
𝑗∈𝑆

𝜆2𝑗 ≤
‖𝜆‖2z
‖z‖1

=
⟨W ,AA⊤⟩
Tr[U⊤WU ]

=
⟨W ,AA⊤⟩

Tr[U⊤U ]− Tr[U⊤(I −W )U ]

≤ ⟨W ,AA⊤⟩
𝑟′ − Tr[I −W ]

≤ ⟨W ,AA⊤⟩
𝑟′/2

≤ ⟨W ,AA⊤⟩
128𝑟𝜅

,
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where we used the fact that

Tr[U⊤(I −W )U ]

= Tr
[︁
(I −W )1/2UU⊤(I −W )1/2

]︁
≤ Tr[I −W ] ,

because the columns of U are orthonormal. We also used the property that Tr[I −W ] ≤ 𝑟′/2 and
the fact that 𝑟′ ≥ 256𝑟𝜅 by the lemma statement.

Similarly, we derive that

𝜆2𝑗 ≤
⟨Y ,A⊤A⟩

128𝑟𝜅
,

and, adding these two inequalities, we have

2𝛽𝜆2𝑗 ≤ (32𝑟𝜅)−1Φ(A) ,

finally concluding that

𝑔(A′)− 𝑔(A) ≤ −(16𝜅𝑟)−1
(︁
𝑔(A)− 𝑓(A*)

)︁
.

9.5.5 Lower Bounds

Lemma 9.5.5 (IHT lower bound). Let 𝑓(x ) := (1/2) ‖Ax − b‖22. For any 𝜅, 𝑠 ≥ 1, 𝑠′ ≤ 0.6𝑠𝜅2,
there exists a (diagonal) matrix A ∈ R𝑛×𝑛 and a vector b ∈ R𝑛 where 𝑛 = 𝑠(𝜅2 + 𝜅 + 1), 𝑓 is
1-strongly convex and 𝜅-smooth, as well as an 𝑠-sparse solution x * and an 𝑠′-sparse solution x , such
that

𝑓(x ) ≥ 𝑓(x *) + 0.1𝑠𝜅2

but
x = 𝐻𝑠′

(︀
x − 𝛽−1∇𝑓(x )

)︀
,

i.e. x is a fixpoint for IHT.

Proof. We use the same example as in [14], Section 5.2: A is diagonal with

A𝑖𝑖 =

⎧⎪⎨⎪⎩
1 if 𝑖 ∈ 𝐼1√
𝜅 if 𝑖 ∈ 𝐼2

1 if 𝑖 ∈ 𝐼3 ,

where 𝐼1 = [𝑠], 𝐼2 = [𝑠+ 1, 𝑠(𝜅+ 1)], 𝐼3 = [𝑠(𝜅+ 1) + 1, 𝑠(𝜅2 + 𝜅+ 1)], and b is defined as

𝑏𝑖 =

⎧⎪⎨⎪⎩
𝜅
√
1− 4𝛿 if 𝑖 ∈ 𝐼1√
𝜅
√
1− 2𝛿 if 𝑖 ∈ 𝐼2

1 if 𝑖 ∈ 𝐼3 ,
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for some sufficiently small 𝛿 > 0 used for tie-breaking. We define

𝑥*𝑖 =

{︃
𝜅
√
1− 4𝛿 if 𝑖 ∈ 𝐼1

0 otherwise

and, for some arbitrary 𝑠′-sized 𝑆 ⊆ 𝐼3

𝑥𝑖 =

{︃
0 if 𝑖 ∈ 𝐼1 ∪ 𝐼2 ∪ 𝐼3∖𝑆
1 otherwise .

Note that 𝑓(x )− 𝑓(x *) = 0.5𝑠𝜅2(1− 4𝛿)− 0.5𝑠′ ≥ 0.1𝑠𝜅2. Furthermore, the gradient is equal to

∇𝑓(x ) = A⊤ (Ax − b)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝜅
√
1− 4𝛿 if 𝑖 ∈ 𝐼1

−𝜅
√
1− 2𝛿 if 𝑖 ∈ 𝐼2

−1 if 𝑖 ∈ 𝐼3∖𝑆
0 if 𝑖 ∈ 𝑆 ,

and since we have 𝛽 = 𝜅,

x − 𝛽−1∇𝑓(x ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
1− 4𝛿 if 𝑖 ∈ 𝐼1√
1− 2𝛿 if 𝑖 ∈ 𝐼2

1/𝜅 if 𝑖 ∈ 𝐼3∖𝑆
1 if 𝑖 ∈ 𝑆 ,

implying that 𝐻𝑠′
(︀
x − 𝛽−1∇𝑓(x )

)︀
= x .

9.6 Appendix for Chapter 8

Preliminaries and Notation

Given an positive integer 𝑘, we denote [𝑘] = {1, 2, . . . , 𝑘}. Given a matrix 𝐴, we denote by ‖𝐴‖𝐹 its
Frobenius norm, i.e. the ℓ2 norm of the entries of 𝐴 (or equivalently of the singular values of 𝐴).
The following lemma is a simple corollary of the definition of the Frobenius norm:

Lemma 9.6.1. Given two matrices 𝐴 ∈ R𝑚×𝑛,𝐵 ∈ R𝑚×𝑛, we have ‖𝐴+𝐵‖2𝐹 ≤ 2
(︀
‖𝐴‖2𝐹 + ‖𝐵‖2𝐹

)︀
.

Proof.
‖𝐴+𝐵‖2𝐹 =

∑︁
𝑖𝑗

(𝐴+𝐵)2𝑖𝑗 ≤ 2
∑︁
𝑖𝑗

(𝐴2
𝑖𝑗 +𝐵2

𝑖𝑗) = 2(‖𝐴‖2𝐹 + ‖𝐵‖2𝐹 )

Definition 9.6.2 (Rank-restricted smoothness, strong convexity, condition number). Given a convex
function 𝑅 ∈ R𝑚×𝑛 → R and an integer parameter 𝑟, the rank-restricted smoothness of 𝑅 at rank 𝑟
is the minimum constant 𝜌+𝑟 ≥ 0 such that for any two matrices 𝐴 ∈ R𝑚×𝑛, 𝐵 ∈ R𝑚×𝑛 such that
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rank(𝐴−𝐵) ≤ 𝑟, we have

𝑅(𝐵) ≤ 𝑅(𝐴) + ⟨∇𝑅(𝐴), 𝐵 −𝐴⟩+ 𝜌+𝑟
2
‖𝐵 −𝐴‖2𝐹 .

Similarly, the rank-restricted strong convexity of 𝑅 at rank 𝑟 is the maximum constant 𝜌−𝑟 ≥ 0 such
that for any two matrices 𝐴 ∈ R𝑚×𝑛, 𝐵 ∈ R𝑚×𝑛 such that rank(𝐴−𝐵) ≤ 𝑟, we have

𝑅(𝐵) ≥ 𝑅(𝐴) + ⟨∇𝑅(𝐴), 𝐵 −𝐴⟩+ 𝜌−𝑟
2
‖𝐵 −𝐴‖2𝐹 .

Given that 𝜌+𝑟 , 𝜌−𝑟 exist and are nonzero, the rank-restricted condition number of 𝑅 at rank 𝑟 is then
defined as

𝜅𝑟 =
𝜌+𝑟
𝜌−𝑟

Note that 𝜌+𝑟 is increasing and 𝜌−𝑟 is decreasing in 𝑟. Therefore, even though our bounds are
proven in terms of the constants 𝜌+1

𝜌−𝑟
and 𝜌+2

𝜌−𝑟
, these quantities are always at most 𝜌+𝑟

𝜌−𝑟
= 𝜅𝑟 as long as

𝑟 ≥ 2, and so they directly imply the same bounds in terms of the constant 𝜅𝑟.

Definition 9.6.3 (Spectral norm). Given a matrix 𝐴 ∈ R𝑚×𝑛, we denote its spectral norm by ‖𝐴‖2.
The spectral norm is defined as

‖𝐴‖2 = max
𝑥∈R𝑛

‖𝐴𝑥‖2
‖𝑥‖2

,

Definition 9.6.4 (Singular value thresholding operator). Given a matrix 𝐴 ∈ R𝑚×𝑛 of rank 𝑘, a
singular value decomposition 𝐴 = 𝑈Σ𝑉 ⊤ such that Σ11 ≥ Σ22 ≥ · · · ≥ Σ𝑘𝑘, and an integer 1 ≤ 𝑟 ≤ 𝑘,
we define 𝐻𝑟(𝐴) = 𝑈Σ′𝑉 ⊤, here Σ′ is a diagonal matrix with

Σ′
𝑖𝑖 =

{︃
Σ𝑖𝑖 if 𝑖 ≤ 𝑟
0 otherwise

In other words, 𝐻𝑟(·) is an operator that eliminates all but the top 𝑟 highest singular values of a
matrix.

Lemma 9.6.5 (Weyl’s inequality). For any matrix 𝐴 and integer 𝑖 ≥ 1, let 𝜎𝑖(𝐴) be the 𝑖-th largest
singular value of 𝐴 or 0 if 𝑖 > rank(𝐴). Then, for any two matrices 𝐴,𝐵 and integers 𝑖 ≥ 1, 𝑗 ≥ 1:

𝜎𝑖+𝑗−1(𝐴+𝐵) ≤ 𝜎𝑖(𝐴) + 𝜎𝑗(𝐵)

A proof of the previous fact can be found e.g. in [59].

Lemma 9.6.6 (𝐻𝑟(·) optimization problem). Let 𝐴 ∈ R𝑚×𝑛 be a rank-𝑘 matrix and 𝑟 ∈ [𝑘] be an
integer parameter. Then 𝑀 = 1

𝜆𝐻𝑟(𝐴) is an optimal solution to the following optimization problem:

max
rank(𝑀)≤𝑟

{⟨𝐴,𝑀⟩ − 𝜆

2
‖𝑀‖2𝐹 } (9.84)
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Proof. Let 𝑈Σ𝑉 ⊤ =
∑︀
𝑖
Σ𝑖𝑖𝑈𝑖𝑉

⊤
𝑖 be a singular value decomposition of 𝐴. We note that (9.84) is

equivalent to

min
rank(𝑀)≤𝑟

‖𝐴− 𝜆𝑀‖2𝐹 := 𝑓(𝑀) (9.85)

Now, note that 𝑓( 1𝜆𝐻𝑟(𝐴)) = ‖𝐴−𝐻𝑟(𝐴)‖2𝐹 =
𝑘∑︀

𝑖=𝑟+1
Σ2
𝑖𝑖. On the other hand, by applying Weyl’s

inequality (Lemma 9.6.5) for 𝑗 = 𝑟 + 1,

𝑓(𝑀) = ‖𝐴− 𝜆𝑀‖2𝐹 =
𝑘+𝑟∑︁
𝑖=1

𝜎2𝑖 (𝐴− 𝜆𝑀) ≥
𝑘+𝑟∑︁
𝑖=1

(𝜎𝑖+𝑟(𝐴)− 𝜎𝑟+1(𝜆𝑀))2 =
𝑘∑︁

𝑖=𝑟+1

Σ2
𝑖𝑖 ,

where the last equality follows from the fact that rank(𝐴) = 𝑘 and rank(𝑀) ≤ 𝑟. Therefore,
𝑀 = 1

𝜆𝐻𝑟(𝐴) minimizes (9.85) and thus maximizes (9.84).

Proof of Theorem 8.2.1 (greedy)

We will start with the following simple lemma about the Frobenius norm of a sum of matrices with
orthogonal columns or rows:

Lemma 9.6.7. Let 𝑈 ∈ R𝑚×𝑟, 𝑉 ∈ R𝑛×𝑟, 𝑋 ∈ R𝑚×𝑟, 𝑌 ∈ R𝑛×𝑟 be such that the columns of 𝑈 are
orthogonal to the columns of 𝑋 or the columns of 𝑉 are orthogonal to the columns of 𝑌 . Then
‖𝑈𝑉 ⊤ +𝑋𝑌 ⊤‖2𝐹 = ‖𝑈𝑉 ⊤‖2𝐹 + ‖𝑋𝑌 ⊤‖2𝐹 .

Proof. If the columns of 𝑈 are orthogonal to those of 𝑋, then 𝑈⊤𝑋 = 0 and if the columns of 𝑉 are
orthogonal to those of 𝑌 , then 𝑌 ⊤𝑉 = 0. Therefore in any case ⟨𝑈𝑉 ⊤, 𝑋𝑌 ⊤⟩ = Tr(𝑉 𝑈⊤𝑋𝑌 ⊤) =
Tr(𝑈⊤𝑋𝑌 ⊤𝑉 ) = 0, implying

‖𝑈𝑉 ⊤ +𝑋𝑌 ⊤‖2𝐹 = ‖𝑈𝑉 ⊤‖2𝐹 + ‖𝑋𝑌 ⊤‖2𝐹 + 2⟨𝑈𝑉 ⊤, 𝑋𝑌 ⊤⟩ = ‖𝑈𝑉 ⊤‖2𝐹 + ‖𝑋𝑌 ⊤‖2𝐹

Additionally, we have the following lemma regarding the optimality conditions of (8.2):

Lemma 9.6.8. Let 𝐴 = 𝑈𝑋𝑉 ⊤ where 𝑈 ∈ R𝑚×𝑟, 𝑋 ∈ R𝑟×𝑟, and 𝑉 ∈ R𝑛×𝑟, such that 𝑋 is the
optimal solution to (8.2). Then for any 𝑢 ∈ im(𝑈) and 𝑣 ∈ im(𝑉 ) we have that ⟨∇𝑅(𝐴), 𝑢𝑣⊤⟩ = 0.

Proof. By the optimality condition of 8.2, we have that

𝑈⊤∇𝑅(𝐴)𝑉 = 0

Now, for any 𝑢 = 𝑈𝑥 and 𝑣 = 𝑉 𝑦 we have

⟨∇𝑅(𝐴), 𝑢𝑣⊤⟩ = 𝑢⊤∇𝑅(𝐴)𝑣 = 𝑥⊤𝑈⊤∇𝑅(𝐴)𝑉 𝑦 = 0

We are now ready for the proof of Theorem 8.2.1.
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Proof. Let 𝐴𝑡−1 be the current solution 𝑈𝑉 ⊤ before iteration 𝑡− 1 ≥ 0. Let 𝑢 ∈ R𝑚 and 𝑣 ∈ R𝑚 be
left and right singular vectors of matrix ∇𝑅(𝐴), i.e. unit vectors maximizing |⟨∇𝑅(𝐴), 𝑢𝑣⊤⟩|. Let

ℬ𝑡 = {𝐵|𝐵 = 𝐴𝑡−1 + 𝜂𝑢𝑣𝑇 , 𝜂 ∈ R}.

By smoothness we have

𝑅(𝐴𝑡−1)−𝑅(𝐴𝑡) ≥ max
𝐵∈ℬ𝑡

{𝑅(𝐴𝑡−1)−𝑅(𝐵)}

≥ max
𝐵∈ℬ𝑡

{︂
−⟨∇𝑅(𝐴𝑡−1), 𝐵 −𝐴𝑡−1⟩ −

𝜌+1
2
‖𝐵 −𝐴𝑡−1‖2𝐹

}︂
≥ max

𝜂

{︂
𝜂⟨∇𝑅(𝐴𝑡−1), 𝑢𝑣

⊤⟩ − 𝜂2 𝜌
+
1

2

}︂
= max

𝜂

{︂
𝜂‖∇𝑅(𝐴𝑡−1)‖2 − 𝜂2

𝜌+1
2

}︂
=
‖∇𝑅(𝐴𝑡−1)‖22

2𝜌+1

where ‖ · ‖2 is the spectral norm (i.e. maximum magnitude of a singular value).

On the other hand, by strong convexity and noting that

rank(𝐴* −𝐴𝑡−1) ≤ rank(𝐴*) + rank(𝐴𝑡−1) ≤ 𝑟* + 𝑟 ,

𝑅(𝐴*)−𝑅(𝐴𝑡−1) ≥ ⟨∇𝑅(𝐴𝑡−1), 𝐴
* −𝐴𝑡−1⟩+

𝜌−𝑟+𝑟*

2
‖𝐴* −𝐴𝑡−1‖2𝐹 . (9.86)

Let 𝐴𝑡−1 = 𝑈𝑉 ⊤ and 𝐴* = 𝑈*𝑉 *⊤. We let Πim(𝑈) = 𝑈(𝑈⊤𝑈)+𝑈⊤ and Πim(𝑉 ) = 𝑉 (𝑉 ⊤𝑉 )+𝑉 ⊤

denote the orthogonal projections onto the images of 𝑈 and 𝑉 respectively. We now write

𝐴* = 𝑈*𝑉 *⊤ = (𝑈1 + 𝑈2)(𝑉 1 + 𝑉 2)⊤ = 𝑈1𝑉 1⊤ + 𝑈1𝑉 2⊤ + 𝑈2𝑉 *⊤

where 𝑈1 = Πim(𝑈)𝑈
* is a matrix where every column of 𝑈* is replaced by its projection on im(𝑈)

and 𝑈2 = 𝑈* − 𝑈1 and similarly 𝑉 1 = Πim(𝑉 )𝑉
* is a matrix where every column of 𝑉 * is replaced

by its projection on im(𝑉 ) and 𝑉 2 = 𝑉 * − 𝑉 1. By setting 𝑈 ′ = (−𝑈 | 𝑈1) and 𝑉 ′ = (𝑉 | 𝑉 1) we
can write

𝐴* −𝐴𝑡−1 = 𝑈 ′𝑉 ′⊤ + 𝑈1𝑉 2⊤ + 𝑈2𝑉 *⊤

where im(𝑈 ′) = im(𝑈) and im(𝑉 ′) = im(𝑉 ). Also, note that

rank(𝑈1𝑉 2⊤) ≤ rank(𝑉 2) ≤ rank(𝑉 *) = rank(𝐴*) ≤ 𝑟*

and similarly rank(𝑈2𝑉 *⊤) ≤ 𝑟*. So now the right hand side of (9.86) can be reshaped as

⟨∇𝑅(𝐴𝑡−1), 𝐴
* −𝐴𝑡−1⟩+

𝜌−𝑟+𝑟*

2
‖𝐴* −𝐴𝑡−1‖2𝐹

= ⟨∇𝑅(𝐴𝑡−1), 𝑈
′𝑉 ′⊤ + 𝑈1𝑉 2⊤ + 𝑈2𝑉 *⊤⟩+

𝜌−𝑟+𝑟*

2
‖𝑈 ′𝑉 ′⊤ + 𝑈1𝑉 2⊤ + 𝑈2𝑉 *⊤‖2𝐹

Now, note that since by definition the columns of 𝑈 ′ are in im(𝑈) and the columns of 𝑉 ′ are in
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im(𝑉 ), Lemma 9.6.8 implies that ⟨∇𝑅(𝐴𝑡−1), 𝑈
′𝑉 ′⊤⟩ = 0. Therefore the above is equal to

⟨∇𝑅(𝐴𝑡−1), 𝑈
1𝑉 2⊤ + 𝑈2𝑉 *⊤⟩+

𝜌−𝑟+𝑟*

2
‖𝑈 ′𝑉 ′⊤ + 𝑈1𝑉 2⊤ + 𝑈2𝑉 *⊤‖2𝐹

≥ ⟨∇𝑅(𝐴𝑡−1), 𝑈
1𝑉 2⊤⟩+ ⟨∇𝑅(𝐴𝑡−1), 𝑈

2𝑉 *⊤⟩+
𝜌−𝑟+𝑟*

2

(︁
‖𝑈1𝑉 2⊤‖2𝐹 + ‖𝑈2𝑉 *⊤‖2𝐹

)︁
≥ 2 min

rank(𝑀)≤𝑟*

{︃
⟨∇𝑅(𝐴𝑡−1),𝑀⟩+

𝜌−𝑟+𝑟*

2
‖𝑀‖2𝐹

}︃

= −2
‖𝐻𝑟*(∇𝑅(𝐴𝑡−1))‖2𝐹

2𝜌−𝑟+𝑟*

≥ −𝑟* ‖∇𝑅(𝐴𝑡−1)‖22
𝜌−𝑟+𝑟*

where the first equality follows by noticing that the columns of 𝑉 ′ and 𝑉 1 are orthogonal to those of
𝑉 2 and the columns of 𝑈 ′ and 𝑈1 are orthogonal to those of 𝑈2, and applying Lemma 9.6.7. The last
equality is a direct application of Lemma 9.6.6 and the last inequality states that the largest squared
singular value is not smaller than the average of the top 𝑟* squared singular values. Therefore we
have concluded that

‖∇𝑅(𝐴𝑡−1)‖22 ≥
𝜌−𝑟+𝑟*

𝑟*
(𝑅(𝐴𝑡−1)−𝑅(𝐴*))

Plugging this back into the smoothness inequality, we get

𝑅(𝐴𝑡−1)−𝑅(𝐴𝑡) ≥
1

2𝑟*𝜅
(𝑅(𝐴𝑡−1)−𝑅(𝐴*))

or equivalently

𝑅(𝐴𝑡)−𝑅(𝐴*) ≤
(︂
1− 1

2𝑟*𝜅

)︂
(𝑅(𝐴𝑡−1)−𝑅(𝐴*)) .

Therefore after 𝐿 = 2𝑟*𝜅 log 𝑅(𝐴0)−𝑅(𝐴*)
𝜀 iterations we have

𝑅(𝐴𝑇 )−𝑅(𝐴*) ≤
(︂
1− 1

2𝑟*𝜅

)︂𝐿
(𝑅(𝐴0)−𝑅(𝐴*))

≤ 𝑒−
𝐿

2𝑟*𝜅 (𝑅(𝐴0)−𝑅(𝐴*))

≤ 𝜀

Since 𝐴0 = 0, the result follows.

Proof of Theorem 8.2.2 (local search)

Proof. Similarly to Section 9.6, we let 𝐴𝑡−1 be the current solution before iteration 𝑡− 1 ≥ 0. Let
𝑢 ∈ R𝑚 and 𝑣 ∈ R𝑚 be left and right singular vectors of matrix ∇𝑅(𝐴), i.e. unit vectors maximizing
|⟨∇𝑅(𝐴), 𝑢𝑣⊤⟩| and let

ℬ𝑡 = {𝐵|𝐵 = 𝐴𝑡−1 + 𝜂𝑢𝑣𝑇 − 𝜎min𝑥𝑦
⊤, 𝜂 ∈ R},
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where 𝜎min𝑥𝑦
⊤ = 𝐴𝑡−1 −𝐻𝑟−1(𝐴𝑡−1) is the rank-1 term corresponding to the minimum singular

value of 𝐴𝑡−1. By smoothness we have

𝑅(𝐴𝑡−1)−𝑅(𝐴𝑡)
≥ max

𝐵∈ℬ𝑡

{𝑅(𝐴𝑡−1)−𝑅(𝐵)}

≥ max
𝐵∈ℬ𝑡

{︂
−⟨∇𝑅(𝐴𝑡−1), 𝐵 −𝐴𝑡−1⟩ −

𝜌+2
2
‖𝐵 −𝐴𝑡−1‖2𝐹

}︂
= max

𝜂∈R

{︂
−⟨∇𝑅(𝐴𝑡−1), 𝜂𝑢𝑣

⊤ − 𝜎min𝑥𝑦
⊤⟩ − 𝜌+2

2
‖𝜂𝑢𝑣⊤ − 𝜎min𝑥𝑦

⊤‖2𝐹
}︂

≥ max
𝜂∈R

{︁
−⟨∇𝑅(𝐴𝑡−1), 𝜂𝑢𝑣

⊤⟩ − 𝜂2𝜌+2 − 𝜎
2
min𝜌

+
2

}︁
= max

𝜂∈R

{︀
𝜂‖∇𝑅(𝐴𝑡−1)‖2 − 𝜂2𝜌+2 − 𝜎

2
min𝜌

+
2

}︀
=
‖∇𝑅(𝐴𝑡−1)‖22

4𝜌+2
− 𝜎2min𝜌

+
2 ,

where in the last inequality we used the fact that ⟨∇𝑅(𝐴𝑡−1), 𝑥𝑦
⊤⟩ = 0 following from Lemma 9.6.8,

as well as Lemma 9.6.1.

On the other hand, by strong convexity,

𝑅(𝐴*)−𝑅(𝐴𝑡−1) ≥ ⟨∇𝑅(𝐴𝑡−1), 𝐴
* −𝐴𝑡−1⟩+

𝜌−𝑟+𝑟*

2
‖𝐴* −𝐴𝑡−1‖2𝐹 .

Let 𝐴𝑡−1 = 𝑈𝑉 ⊤ and 𝐴* = 𝑈*𝑉 *⊤. We write

𝐴* = 𝑈*𝑉 *⊤ = (𝑈1 + 𝑈2)(𝑉 1 + 𝑉 2)⊤ = 𝑈1𝑉 1⊤ + 𝑈1𝑉 2⊤ + 𝑈2𝑉 *⊤

where 𝑈1 is a matrix where every column of 𝑈* is replaced by its projection on im(𝑈) and
𝑈2 = 𝑈* − 𝑈1 and similarly 𝑉 1 is a matrix where every column of 𝑉 * is replaced by its projection
on im(𝑉 ) and 𝑉 2 = 𝑉 * − 𝑉 1. By setting 𝑈 ′ = (−𝑈 | 𝑈1) and 𝑉 ′ = (𝑉 | 𝑉 1) we can write

𝐴* −𝐴𝑡−1 = 𝑈 ′𝑉 ′⊤ + 𝑈1𝑉 2⊤ + 𝑈2𝑉 *⊤

where im(𝑈 ′) = im(𝑈) and im(𝑉 ′) = im(𝑉 ). Also, note that

rank(𝑈1𝑉 2⊤) ≤ rank(𝑉 2) ≤ rank(𝑉 *) = rank(𝐴*) ≤ 𝑟*
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and similarly rank(𝑈2𝑉 *⊤) ≤ 𝑟*. So we now have

⟨∇𝑅(𝐴𝑡−1), 𝐴
* −𝐴𝑡−1⟩+

𝜌−𝑟+𝑟*

2
‖𝐴* −𝐴𝑡−1‖2𝐹

= ⟨∇𝑅(𝐴𝑡−1), 𝑈
′𝑉 ′⊤ + 𝑈1𝑉 2⊤ + 𝑈2𝑉 *⊤⟩+

𝜌−𝑟+𝑟*

2
‖𝑈 ′𝑉 ′⊤ + 𝑈1𝑉 2⊤ + 𝑈2𝑉 *⊤‖2𝐹

= ⟨∇𝑅(𝐴𝑡−1), 𝑈
1𝑉 2⊤ + 𝑈2𝑉 *⊤⟩+

𝜌−𝑟+𝑟*

2
‖𝑈 ′𝑉 ′⊤ + 𝑈1𝑉 2⊤ + 𝑈2𝑉 *⊤‖2𝐹

= ⟨∇𝑅(𝐴𝑡−1), 𝑈
1𝑉 2⊤ + 𝑈2𝑉 *⊤⟩+

𝜌−𝑟+𝑟*

2

(︁
‖𝑈 ′𝑉

′⊤‖2𝐹 + ‖𝑈1𝑉 2⊤‖2𝐹 + ‖𝑈2𝑉 *⊤‖2𝐹
)︁

≥ ⟨∇𝑅(𝐴𝑡−1), 𝑈
1𝑉 2⊤⟩+ ⟨∇𝑅(𝐴𝑡−1), 𝑈

2𝑉 *⊤⟩+
𝜌−𝑟+𝑟*

2

(︁
‖𝑈1𝑉 2⊤‖2𝐹 + ‖𝑈2𝑉 *⊤‖2𝐹

)︁
+
𝜌−𝑟+𝑟*

2
‖𝑈 ′𝑉

′⊤‖2𝐹

≥ 2 min
rank(𝑀)≤𝑟*

{︃
⟨∇𝑅(𝐴𝑡−1),𝑀⟩+

𝜌−𝑟+𝑟*

2
‖𝑀‖2𝐹

}︃
+
𝜌−𝑟+𝑟*

2
‖𝑈 ′𝑉

′⊤‖2𝐹

= −2
‖𝐻𝑟*(∇𝑅(𝐴𝑡−1))‖2𝐹

2𝜌−𝑟+𝑟*
+
𝜌−𝑟+𝑟*

2
‖𝑈 ′𝑉

′⊤‖2𝐹

≥ −𝑟* ‖∇𝑅(𝐴𝑡−1)‖22
𝜌−𝑟+𝑟*

+
𝜌−𝑟+𝑟*

2
‖𝑈 ′𝑉

′⊤‖2𝐹

where the second equality follows from the fact that ⟨∇𝑅(𝐴𝑡−1), 𝑢𝑣
⊤⟩ = 0 for any 𝑢 ∈ im(𝑈), 𝑣 ∈

im(𝑉 ), the third equality from the fact that im(𝑈2) ⊥ im(𝑈 ′) ∪ im(𝑈1) and im(𝑉 2) ⊥ im(𝑉 ′) and
by applying Lemma 9.6.7, and the last inequality from the fact that the largest squared singular
value is not smaller than the average of the top 𝑟* squared singular values. Now, note that since
rank(𝑈1𝑉 1⊤) ≤ 𝑟* < 𝑟 = rank(𝑈𝑉 ⊤),

‖𝑈 ′𝑉 ′⊤‖2𝐹 = ‖𝑈1𝑉 1⊤ − 𝑈𝑉 ⊤‖2𝐹

=

𝑟∑︁
𝑖=1

𝜎2𝑖 (𝑈
1𝑉 1⊤ − 𝑈𝑉 ⊤)

≥
𝑟∑︁
𝑖=1

(𝜎𝑖+𝑟*(𝑈𝑉
⊤)− 𝜎𝑟*+1(𝑈

1𝑉 1⊤))2

=

𝑟∑︁
𝑖=𝑟*+1

𝜎2𝑖 (𝑈𝑉
⊤)

≥ (𝑟 − 𝑟*)𝜎2min(𝑈𝑉
⊤)

= (𝑟 − 𝑟*)𝜎2min(𝐴𝑡−1) ,

where we used the fact that rank(𝑈1𝑉 1⊤) ≤ 𝑟* together with Lemma 9.6.5. Therefore we have
concluded that

‖∇𝑅(𝐴𝑡−1)‖22 ≥
𝜌−𝑟+𝑟*

𝑟*
(𝑅(𝐴𝑡−1)−𝑅(𝐴*)) +

(𝜌−𝑟+𝑟*)
2(𝑟 − 𝑟*)
2𝑟*

𝜎2min
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Plugging this back into the smoothness inequality and setting ̃︀𝜅 =
𝜌+2

𝜌−
𝑟+𝑟*

, we get

𝑅(𝐴𝑡−1)−𝑅(𝐴𝑡) ≥
1

4𝑟*̃︀𝜅(𝑅(𝐴𝑡−1)−𝑅(𝐴*)) +

(︃
𝜌−𝑟+𝑟*(𝑟 − 𝑟*)

8𝑟*̃︀𝜅 − 𝜌+2

)︃
𝜎2min(𝐴𝑡−1)

≥ 1

4𝑟*̃︀𝜅(𝑅(𝐴𝑡−1)−𝑅(𝐴*))

as long as 𝑟 ≥ 𝑟*(1 + 8̃︀𝜅2), or equivalently,

𝑅(𝐴𝑡)−𝑅(𝐴*) ≤
(︂
1− 1

4𝑟*̃︀𝜅
)︂
(𝑅(𝐴𝑡−1)−𝑅(𝐴*)) .

Therefore after 𝐿 = 4𝑟*̃︀𝜅 log 𝑅(𝐴0)−𝑅(𝐴*)
𝜀 iterations we have

𝑅(𝐴𝑇 )−𝑅(𝐴*) ≤
(︂
1− 1

4𝑟*̃︀𝜅
)︂𝐿

(𝑅(𝐴0)−𝑅(𝐴*))

≤ 𝑒−
𝐿

4𝑟*̃︀𝜅 (𝑅(𝐴0)−𝑅(𝐴*))

≤ 𝜀

Since 𝐴0 = 0 and ̃︀𝜅 ≤ 𝜅𝑟+𝑟* , the result follows.

Tightness of the analysis

It is important to note that the 𝜅𝑟+𝑟* factor that appears in the rank bounds of both Theorems 8.2.1
and 8.2.2 is inherent in these algorithms and not an artifact of our analysis. In particular, such lower
bounds based on the restricted condition number have been previously shown for the problem of
sparse linear regression. More specifically, [63] showed that there is a family of instances in which
the analogues of Greedy and Local Search for sparse optimization require the sparsity to be Ω(𝑠*𝜅′)
for constant error 𝜀 > 0, where 𝑠* is the optimal sparsity and 𝜅′ is the sparsity-restricted condition
number. These instances can be easily adjusted to give a rank lower bound of Ω(𝑟*𝜅𝑟+𝑟*) for constant
error 𝜀 > 0, implying that the 𝜅 dependence in Theorem 8.2.1 is tight for Greedy. Furthermore,
specifically for Local Search, [14] additionally showed that there is a family of instances in which the
analogue of Local Search for sparse optimization requires a sparsity of Ω(𝑠*(𝜅′)2). Adapting these
instances to the setting of rank-constrained convex optimization is less trivial, but we conjecture
that it is possible, which would lead to a rank lower bound of Ω(𝑟*𝜅2𝑟+𝑟*) for Local Search.

We present the following lemma, which essentially states that sparse optimization lower bounds for
Orthogonal Matching Pursuit (OMP, [135]) (resp. Orthogonal Matching Pursuit with Replacement
(OMPR, [87])) in which the optimal sparse solution is also a global optimum, immediately carry over
(up to constants) to rank-constrained convex optimization lower bounds for Greedy (resp. Local
Search).

Lemma 9.6.9. Let 𝑓 ∈ R𝑛 → R and 𝑥* ∈ R𝑛 be an 𝑠*-sparse vector that is also a global minimizer
of 𝑓 . Also, let 𝑓 have restricted smoothness parameter 𝛽 at sparsity level 𝑠+ 𝑠* for some 𝑠 ≥ 𝑠* and
restricted strong convexity parameter 𝛼 at sparsity level 𝑠+𝑠*. Then we can define the rank-constrained
problem, with 𝑅 : R𝑛×𝑛 → R,

min
rank(𝐴)≤𝑠*

𝑅(𝐴) := 𝑓(diag(𝐴)) +
𝛽

2
‖𝐴− diag(𝐴)‖2𝐹 , (9.87)
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where diag(𝐴) is a vector containing the diagonal of 𝐴. 𝑅 has rank-restricted smoothness at rank
𝑠+ 𝑠* at most 2𝛽 and rank-restricted strong convexity at rank 𝑠+ 𝑠* at least 𝛼. Suppose that we run
𝑡 iterations of OMP (resp. OMPR) starting from a solution 𝑥, to get solution 𝑥′, and similarly run
𝑡 iterations of Greedy (resp. Local Search) starting from solution 𝐴 = diag(𝑥) (where diag(𝑥) is a
diagonal matrix with 𝑥 on the diagonal) to get solution 𝐴′. Then 𝐴′ is diagonal and diag(𝐴′) = 𝑥′.
In other words, in this scenario OMP and Greedy (resp. OMPR and Local Search) are equivalent.

Proof. Note that for any solution ̂︀𝐴 of 𝑅 we have 𝑅( ̂︀𝐴) ≥ 𝑓(diag( ̂︀𝐴)) ≥ 𝑓(𝑥*), with equality only if̂︀𝐴 is diagonal. Furthermore, rank(diag(𝑥*)) ≤ 𝑠*, meaning that diag(𝑥*) is an optimal solution of
(9.87). Now, given any diagonal solution 𝐴 of (9.87) such that 𝐴 = diag(𝑥), we claim that one step
of either Greedy or Local Search keeps it diagonal. This is because

∇𝑅(𝐴) = diag(∇𝑓(𝑥)) + 𝛽

2
(𝐴− diag(𝐴)) = diag(∇𝑓(𝑥)) .

Therefore the largest eigenvalue of ∇𝑅(𝐴) has corresponding eigenvector 1𝑖 for some 𝑖, which implies
that the rank-1 component which will be added is a multiple of 1𝑖1⊤𝑖 . For the same reason the
rank-1 component removed by Local Search will be a multiple of 1𝑗1⊤𝑗 for some 𝑗. Therefore running
Greedy (resp. Local Search) on such an instance is identical to running OMP (resp. OMPR) on the
diagonal.

Together with the lower bound instances of [63] (in which the global minimum property is true),
it immediately implies a rank lower bound of Ω(𝑟*𝜅𝑟+𝑟*) for getting a solution with constant error
for rank-constrained convex optimization. On the other hand, the lower bound instances of [14] give
a quadratic lower bound in 𝜅 for OMPR. The above lemma cannot be directly applied since the
sparse solutions are not global minima, but we conjecture that a similar proof will give a rank lower
bound of Ω(𝑟*𝜅2𝑟+𝑟*) for rank-constrained convex optimization with Local Search.

Addendum to Section 8.4
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Figure 9-2: One of the splits of the Movielens 100K dataset. We can see that for small ranks the
Fast Local Search solution is better and more stable, but for larger ranks it does not provide any
improvement over the Fast Greedy algorithm.

(a) 𝑘 = 10, 𝑝 = 0.5, 𝑆𝑁𝑅 = 1 (b) 𝑘 = 10, 𝑝 = 0.3, 𝑆𝑁𝑅 = 3

Figure 9-3: Test error vs rank in the matrix completion problem of Section 8.4.2. Bands of ±1
standard error are shown.
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(a) Train error vs rank (b) Test error vs rank

Figure 9-4: Performance of greedy with fully solving the inner optimization problem (left) and
applying 3 iterations of the LSQR algorithm (right) in the matrix completion problem of Section 8.4.2.
𝑘 = 5, 𝑝 = 0.2, 𝑆𝑁𝑅 = 10. Bands of ±1 standard error are shown. This experiment shows why it is
crucial to apply some kind of regularization to the Fast Greedy and Fast Local Search algorithms for
machine learning applications.
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