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Abstract

This thesis investigates the design and implementation of an active object-based nav-
igation system. Localization refers to the capability of a mobile robot to determine
its position relative to a prior map of the environment. Localization based on fiducial
markers, such as AprilTags, has been a popular technique used widely in many labo-
ratories for over a decade; however, it is desirable to enable a mobile robot to navigate
based on the objects that occur naturally in a given environment. The goal of using
real objects as “geometric beacons” for robot navigation was identified many years
ago. In practice, however, it has been challenging to develop metrically accurate robot
localization systems that use semantic, object-based maps. Recent years have seen
tremendous progress in the use of machine learning techniques to recognize objects
from camera images, including 6 degree-of-freedom (DOF) object pose estimation.
Using these machine learning capabilities for robot navigation is an important appli-
cation, yet research in creating real-time object-based localization systems has been
limited. One of the difficulties is that to obtain accurate 6DOF object pose estimates,
typically the object needs to be centered in the field of view of the camera, and viewed
from a favorable viewing distance. To help meet this need, this thesis has developed
a pan-tilt actively controlled camera mount, and deployed it on a small mobile robot,
to explore capabilities for improved object-based navigation. By running a detector
in real-time as the robot navigates through the world, the active pan-tilt head can
actively track an object of interest; 6DOF pose estimates from the object are used to
estimate the robot’s pose. The performance of the system is analyzed using ground
truth provided by an OptiTrack motion capture system. Future work will extend the
system to track multiple objects and to perform active SLAM.

Thesis Supervisor: John J. Leonard
Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

1.1 Outline

This thesis focuses on the design and implementation of an active object-based nav-

igation platform. This chapter introduces the motivation behind the system and its

potential usefulness, and discusses relevant work. Chapter 2 goes through the design

of the system in technical detail, discussing each of its critical sub-components, its

control scheme, and its network architecture. Chapter 3 presents the results of ini-

tial experiments, comparing the performance of various object detection algorithms.

Chapter 4 presents a summary and discusses possibilities for future development.

1.2 Background and Motivation

Simultaneous Localization and Mapping (SLAM) is the process of mapping the geo-

metric features of an unknown environment, and concurrently estimating the location

of a mobile agent within that map [17]. Existing approaches to the SLAM problem

are highly dependent on available sensor information and computational resources.

One approach that has become increasingly popular is to leverage the rich visual in-

formation from camera sensors. Though evaluating camera data is computationally

expensive, recent advances in CPU and GPU technology have made real-time im-

plementation of computer vision much more feasible. Incorporating vision in SLAM
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algorithms can drastically improve the accuracy and reliability of the localization

estimates.

Accurate localization is vital for the safe navigation of potentially hazardous

terrain. For visual-based localization methods, that accuracy is dependent on the

amount of texture available in a scene. Visual SLAM is therefore much more difficult

in smooth-terrain or low-light environments. For robots tasked with navigating the

sandy surface of Mars [25], poorly-illuminated stretches of space [22], or sparse bodies

of water [12], maximizing the amount of actionable visual information boils down to a

deceptively simple question: how do you determine where to look next? The problem

then becomes one of active vision, a subset of active perception [2].

1.2.1 Active Vision

Active vision is generally defined as the study of perception-focused modeling and

control strategies. This is notably distinct from “active sensing,” a term commonly

seen in computer vision and robotics literature. Active sensors are those that emit

a signal (e.g. light, laser, ultrasonic, etc.) and measure the reflected response from

the environment. Active vision, however, deals with the process of employing passive

sensors (those that receive emitted signals, but do not transmit), such as cameras,

actively, a sensing approach which more closely resembles human perception. In

nature, vision is a highly intentional and exploratory process: we are constantly

adjusting and adapting our eyes and bodies to better view the world. More generally

stated, we adhere to a sensing strategy, one which optimizes the intake of information.

Active vision is simply the robotic parallel – real-time sensor manipulation and path

planning, based on stored models, to maximize efficiency in pursuit of a goal.

Active vision techniques can be an incredibly useful tool for vision-based SLAM.

Developing robust and accurate SLAM algorithms involves evaluating their perfor-

mance on real-world data. Collecting useful data with passively controlled sensors

can be a tedious and repetitive process for both autonomous and manually oper-

ated robots. Incorporating active vision optimizes the information being gathered,

resulting in the quicker collection of more useful data.
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Davison’s 1998 PhD thesis at the University of Oxford [7] was an important early

work in mobile robot navigation using active vision. Davison’s system used the Yorick

active pan-tilt stereo camera head developed by Sharkey et al. [28]. Using the Shi

and Tomasi feature detector [29], Davison created a real-time active visual naviga-

tion system that was many years ahead of its time. Strong results were obtained

using traditional feature-based computer vision techniques, by focusing the camera’s

attention on selected features of interest during the course of a navigation run. A

complete visual SLAM system was demonstrated using computational resources that

were extremely limited compared to what is available today. The superiority of the

active vision approach was clearly demonstrated.

However, in many ways the active vision approach championed by Bajcsy, Davison,

and others has fallen out of favor in modern robotic vision system development. Often,

computer vision algorithms are applied to curated data sets, in which a human has

guided the visual data collection process, rather than “turning a robot loose” to make

its own observations of the world. Building truly autonomous, self-learning robots

will require robots that can collect their own data, choosing “where to look” to find

interesting objects and to self-navigate. Now is an interesting time to revisit historical

active visual navigation objectives, as typified by Davison’s seminal thesis, combining

today’s state-of-the-art 6DOF object detection and pose estimation techniques with

modern pose graph robot localization capabilities.

This thesis focuses on the design and development of such a system, for use in

object-based visual navigation experiments, by actively steering the pan and tilt an-

gles of a mounted camera to keep a target object in the field of view (FOV). Another

relevant active vision approach (and an interesting possibility for future research) is

the active tuning of a camera’s intrinsic parameters, as explored by Micheloni and

Foresti [19].
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1.3 Related Works

1.3.1 Visual Servoing Systems

Active vision goes hand in hand with visual servoing: the use of machine vision to

perform closed-loop position control of a robot end-effector [14]. One of the ma-

jor classifications of visual servoing systems distinguishes between image-based and

position-based control schemes. [5, 26].

In image-based servoing, control values are computed using features extracted

from the image. This technique is often seen in surveillance applications, with Pan

Tilt Zoom (PTZ) cameras being used to track a moving target [9, 27]. Such systems

often rely on tried and true feature extraction and optical flow algorithms [13, 29, 30],

for estimating the motion of the target or region-of-interest (ROI). In addition to

controlling the pan and tilt of a camera, active control of the camera’s focal length

has been used in conjunction with structure from motion (SFM) based estimations

of object scale [8, 33]. This approach not only keeps the moving target centered in

the FOV, but keeps its size consistent across frames.

In position-based servoing, feedback uses a combination of extracted image fea-

tures, intrinsic camera parameters, and known geometric models of the target object.

Together, these are used to estimate the target’s 6-DOF pose with respect to the cam-

era, and that pose estimate is what determines the control values. The error signal

is then defined in coordinates of the task-space rather than directly in terms image

features. While this a more computationally expensive process, the position based

controller is not as highly coupled as its image-based counterpart. It is, however, more

sensitive to camera calibration errors. Position-based visual servoing also depends on

the availability of a known target object model, so feature-based approaches are more

appropriate in situations where no such model is available. This has historically been

the approach for space operations, for instance [11, 15].

The "right" visual servoing approach or feature extraction method to use is highly

situation-dependent. The task is made even more complicated if dynamics are intro-

duced. Visual servoing systems are limited by the frame rate of the camera, which
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can introduce a delay into the feedback system. Simple proportional controllers are

often implemented (and tend to be sufficient) for stationary targets. To achieve de-

cent performance when tracking a moving object, however, more care must be taken

when designing the controller.

Since the system outlined in this thesis was intended for use in object-based nav-

igation experiments (with known, stationary target objects), a position-based visual

servoing approach was used in conjunction with a simple proportional-derivative (PD)

controller. This is discussed in greater detail in the next chapter.

1.3.2 Object Pose Estimation

Object-based SLAM systems incorporate 6-DOF pose predictions of known visual

landmarks in the construction of their maps. State-of-the-art pose estimation net-

works [16, 31, 32] rely on large amounts of training data, but real-world images

annotated with high accuracy pose information are limited in availability and time-

consuming to generate. Recent advances have made synthetic data an inexpensive

and promising alternative for training learning-based estimators. The largest hurdle

for synthetic data generation is what is referred to as "bridging the reality gap." Net-

works trained on synthetic data typically do not behave as expected or perform as

well when placed in novel real-world environments. One major step towards spanning

that gap, however, is the emergence of photo-realistic synthetic data, as introduced

by Nvidia’s Deep Object Pose Estimator (DOPE) [31].

DOPE uses a combination of photorealism and domain randomization to rapidly

generate large quantities of high quality synthetic labeled training data. The DOPE

network is trained on the popular YCB set of object models [4, 3], and achieves state-

of-the-art 6-DOF object detection and pose estimation performance when tested in

novel environments. To further boost performance of both object pose estimation

and object-level SLAM, Lu et al. [18] introduced a SLAM-supported self-training

procedure for fine tuning pose estimations during robotic navigation.

The active object-based navigation system outlined in this thesis used both fidu-

cial markers (specifically AprilTags [23]) and YCB objects as targets in various ex-

12



periments. Detection and pose estimation for YCB objects was performed using the

DOPE detector [31]. The visual servoing module that was implemented in the sys-

tem successfully tracked both classes of target object and kept them in the camera’s

FOV. This system could be a useful tool for conducting future object-level SLAM

experiments.
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Chapter 2

Robotic Navigation System Design

2.1 Mobile Robot Platform

The robotic base of the system is the Jackal Unmanned Ground Vehicle (UGV)

developed by Clearpath Robotics (see Figure 2-1) [6]. This four-wheeled, rover-

style mobile robot is marketed as an out-of-the-box robotics research platform, and

comes equipped with GPS, Wireless and Bluetooth modules, an Inertial Measurement

Unit (IMU), and an internal x86 PC running Ubuntu, all of which are integrated with

the Robot Operating System (ROS). The Jackal UGV is small, rugged, and comes

with a mounting platform designed for easy mechanical integration of custom pay-

loads.

The Jackal has four fixed wheels, with the left and right pairs belted together such

that they are constrained to move at the same velocity. The Jackal can then be ana-

lyzed as a two-wheeled differential drive system for the purposes of tracking odometry.

The wheels are driven by two motors, each equipped with a set of optical encoders.

The robot’s key specifications are summarized in Table 2.1. This sort of commercial

solution dramatically reduces the startup time for conducting experiments.

The Jackal has a dedicated set of existing ROS packages for simulation, naviga-

tion, and control. When the Jackal’s internal computer is powered on, the top-level

ROS launch file is started automatically, and subsequently calls lower-level launch

files to establish WiFi communication and start the integrated sensors. The Jackal’s

14



Figure 2-1: A depiction of the Jackal Unmanned Ground Vehicle (UGV) from
Clearpath Robotics, which was used as a mobile robot base for this iteration of the
system.

External Dimensions 508 x 430 x 250 mm
(20 x 17 x 10 in)

Battery 270 watt-hours
Lithium Ion

Weight 17kg (37lbs) User Power 5V at 5A
12V at 10A
24V at 20A

Max. Payload 20kg (44lbs) Max.Speed 2.0m/s

Table 2.1: The table above lists the relevant technical specs for the Jackal UGV. [6]
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initial position on wake is captured and used as a reference for subsequent odometry

calculations, and also serves as the fixed reference frame (/base_link) for the Jackal’s

various coordinate frame transforms. All of these transforms are tracked over time

and published to the \tf ROS topic.

The Jackal’s navigation stack makes heavy use of the move_base ROS package,

a navigation tool that generates plans for a mobile base to navigate to a global goal

position. This package can be used with or without an environment map. Given a

tolerance specified by the user, the ROS node uses available odometry information

(and laser scan data if present) to output safe velocity commands for 2D navigation.

Alternatively, the user can send velocity commands to the robot manually, using

a handheld controller connected to the Jackal via Bluetooth. By designating the

Jackal’s IP address as the ROS Master, a remote computer on the same network can

access and share ROS topic information with the Jackal. The remote computer can

also be used to SSH into the Jackal’s onboard computer for streamlined control.

2.2 Position-Based Visual Servoing Pan-Tilt Module

Initial plans for the data-collection system incorporated an off-the-shelf three-axis

camera-stabilizing gimbal. Due to various hardware and software difficulties, however,

this was replaced by a simple servo-driven pan-tilt system, pictured in Figure 2-2.

The pan-tilt module was driven by two goBilda 2000 Series Dual Mode Servo motors

(see Figure 2-3), which can easily be programmed into one of two different control

modes. The default mode operates on position feedback control, in which a PWM

signal is used to control the servo’s angular position with up to 300∘ of travel. When

toggled into continuous rotation mode, the servo uses proportional speed control,

with speed commands based on the sent PWM signal. For this thesis, both the pan

and tilt servos were used in the default configuration and commanded via position

control. The motors were run at 5V, with power drawn from the Jackal’s wired 5V

supply. These particular motors were chosen for their technical specifications, which

are described in Table 2.2.
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Figure 2-2: The above figure shows a labeled depiction of the visual servoing module.
Two goBilda Servo Motors are stacked in a pan-tilt configuration, with a mounted
RGB-D camera. The camera is topped with a set of retro-reflective markers for motion
tracking, and the whole assembly is affixed directly to the Jackal using 3D-printed
mounting plate.

Figure 2-3: The visual servoing module used two goBilda 2000 Series servo motors,
like the one shown above, to actively steer the pan and tilt angles of the camera.

17



Weight 58g
Gear Ratio 135:1

Voltage Range 4.8V ∼ 7.4V
No-load Speed (4.8V) 0.11 sec/60° (90RPM)
Stall Torque (4.8V) 7.9 kg.cm (110 oz-in)

Max PWM Range (Default Mode 500 - 2500𝜇s
Travel per 𝜇s (Default Mode) 0.15∘/𝜇s

Table 2.2: The table above lists the relevant technical specifications for the goBilda
servo motors used. [10]

2.2.1 USB Servo Controller

The pan-tilt system’s two servo motors were connected to a Micro Maestro 6-Channel

USB Servo Controller from Pololu, shown in Figure 2-4. This device supports USB,

TTY Serial (5V), and internal scripting control methods. Each of the Micro Mae-

stro’s six channels has individual built-in speed and acceleration control, and can

be configured as a servo output, electronic speed control, digital output, or analog

input. For the purposes of these experiments, the assigned pan and tilt channels were

configured as servo outputs and controlled via USB. The USB cable was connected

to the Jackal’s onboard computer.

The Maestro device outputs precise servo pulse signals, with 0.25𝜇𝑠 pulse width

resolution, making it well-suited for multi-servo robotic applications. To execute

commands, Maestro has its own stack-based scripting language. To make the code

more comprehensible for debugging, a modified version of a custom python class was

used to run various Maestro scripts over USB serial. A ROS node would receive the

desired pan or tilt motor positions, and call the methods in this python class in order

to access motor information, or to send Maestro commands to the corresponding

motor channel.

It is important to note that the Maestro PWM signals were sent in units of quarter-

microseconds. The goBilda motors used had a travel of 0.15∘ per microsecond, and

maximum travel of 300∘ in the default control mode. The pan motor was free to travel

the entirety of this distance, but the tilt motor was constrained due to the pan-tilt

module’s mechanical configuration. To avoid stalling the motors, the dedicated ROS

18



Figure 2-4: The above figure depicts the Micro Maestro 6-Channel USB Servo Con-
troller. This device was used to send USB servo commands from the Jackal to the
motors to control the pan and tilt angle of the camera.

node would convert the desired angular positions to quarter-microseconds, and clamp

the resulting value to the known bounds of each axis before sending any commands

to the Maestro controller.

2.2.2 Visual Servoing Control Algorithm

The pan-tilt module was controlled using position-based visual servoing techniques.

The motor commands were determined by a simple proportional-derivative (PD) con-

trol algorithm. The reference signal for the controller was a tuple containing the target

object’s estimated pose relative to the camera frame. The goal was to keep the target

object centered in the camera’s FOV, so the error metric at any point was the dis-

tance from the camera frame’s center (determined by the known depth and width of

the image stream) to the projected pixel coordinates of the target object’s centroid.

For a given error term, 𝑒, the resulting command, 𝑈 ′ was then:

𝑈 ′ = 𝑈 +𝐾𝑝 * 𝑒+𝐾𝑑
𝑑𝑒

𝑑𝑡

Where 𝑈 is the current outgoing motor command (accessed via the Maestro) for

the given channel, 𝐾𝑝 is a proportional control parameter, and 𝐾𝑑 is a derivative

control parameter. 𝐾𝑝 and 𝐾𝑑 were tuned empirically.
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Figure 2-5: The Intel RealSense D435 RGB-D camera, shown here, is a stereoscopic
depth camera that was mounted on top of the pan-tilt module. The visual data from
the camera was used for object detection and 6-DOF pose estimation.

Dimensions Connector
90mm x 25mm x 25mm USB-C 3.1

Depth RGB
FOV: 87∘ x 58∘ FOV: 69∘ x 42∘

Resolution: Up to 1280 x 720 Resolution: 1920 x 1080
Frame Rate: Up to 90fps Frame Rate: 30fps

Table 2.3: The table above lists relevant technical specifications for the Intel Re-
alSense D435 camera.

2.3 RGB-D Camera

The camera mounted to the pan-tilt module was an Intel RealSense D435, pictured

in Figure 2-5. The D435 is a stereoscopic depth camera well-suited for high-speed

robotic applications, with a wide field of view (FOV), a global shutter, and a range

of up to 10m. It features four distinct imaging modules: a left and right IR-camera

pair for streaming depth information, an RGB module for mapping color image data

to depth data, and a laser IR dot projector for increased depth information accuracy.

The D435’s technical specifications are summarized in table 2.3.
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2.4 System Assembly

The pan-tilt module was mounted directly to the Jackal using a 3D-printed bracket.

The D435 camera was attached to the pan-tilt, with its neutral position configured

such that it was facing the side of the Jackal. In this configuration, the camera was

free to point inwards as the base circumnavigated a target object. The Maestro device

was also mounted directly to the Jackal, and the pan and tilt servos were wired to

two of its channels. The Maestro USB cable was connected to the Jackal’s computer.

The D435, however, was connected to a separate remote laptop running Ubuntu.

While the Jackal is capable of streaming the video data, its onboard computer does

not have enough processing power to efficiently detect the target objects. So for this

iteration of the system, the camera was tethered to a remote workstation, configured

to be a ROS client of the Jackal. The final system assembly is pictured in Figure

2-6. Note the addition of masking tape to the outside of the wheels. The experiments

were performed in a carpeted room, and the interaction between the tire tread and

the carpet caused the Jackal to shake aggressively as it rotated, resulting in poor

quality video data. Adding tape to the tires is the official recommended solution from

Clearpath Robotics, and the addition resulted in much smoother robot movements.

2.5 Motion Capture System

The experiments were conducted in a room fitted with an OptiTrack motion capture

system [24], which was used to obtain ground truth measurements. The setup con-

sisted of 6 OptiTrack Prime-13 cameras (see Figure 2-7a) mounted in the corners and

sides of the ceiling. Each camera was connected to a central Power over Ethernet

(PoE) Switch, which distributed data and power to each device while also transmit-

ting data to a dedicated host PC running Ubuntu. Due to the camera system’s large

data bandwidth, the host PC was running on an isolated network.

The OptiTrack system utilized a motion capture software, Motive 3.0, for calibra-

tion and tracking operations. Any object intended to be tracked, such as the Jackal
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Figure 2-6: The above figure depicts the object-based navigation system described in
this chapter in its fully assembled state.

or camera, was outfitted with a series of special retro-reflective markers (see Figure

2-7b) arranged in a unique, asymmetrical configuration, as in Figure 2-7c. Once a

marker configuration was calibrated in the software, the associated object’s position

and orientation could be precisely tracked and published to the network.

VRPN

This thesis used the Virtual Reality Peripheral Network (VRPN) libraries, a toolset

for implementing network interfaces for peripheral hardware devices. The dedi-

cated PC acting as the host computer for the peripherals (in this case the various

tracking cameras) publishes data to a VRPN Server. An existing ROS wrapper,

vrpn_client_ros, was used to establish a VRPN Client to access the messages being

published to the server. The client was run on a separate laptop, which was concur-

rently communicating with the Jackal. As the client was implemented with ROS, the

tracking data for each object could be published in the form of ROS Pose messages,

or as separate coordinate frames in the \tf tree. A diagram illustrating the network

architecture and the flow of information in the system is shown in Figure 2-8
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(a) Six OptiTrack Prime-13 cameras were
used for motion capture of various cali-
brated target objects.

(b) A depiction of a single retro-reflective
marker used tracked by the motion cap-
ture system.

(c) This multi-marker configuration was used for tracking the position of the camera.

Figure 2-7: Various components used for motion capture.
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Figure 2-8: The above diagram shows the full network architecture for the system
described in this thesis. Raw data from six motion capture cameras is collected and
synced by a PoE switch device, which is sent to a remote computer acting as a VRPN
server. A separate computer formatted as a VRPN client receives that data via ROS
as a series of pose messages. Concurrently, the VRPN Client subscribes to and logs
the Jackal’s odometry estimates, and raw camera data from the D435. The latter is
processed by pose estimators and is converted into an error metric which is sent back
to the Jackal. The Jackal uses that error in conjunction with the outgoing commands
read from the Maestro, and sends an updated set of servo commands to the pan-tilt
module via the Maestro.
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Chapter 3

Experiments

The assembled system’s performance was tested through a series of experiments in

which the robot, manually driven via handheld controller, was used to circumnavigate

a chosen target object. The raw camera data from the D435 was used for 6-DOF

object pose estimation, which in turn was used to generate visual servoing commands

that would maximize the object detections. The object pose estimations were used

to extract the estimated pose of the D435 camera, which was then compared to a

ground truth camera trajectory from the motion capture system.

Figure 3-1: The above pattern is a fiducial marker, specifically tag 0 from the 36h11
family of AprilTags. This tag was used as an object target for the first series of
experiments in this thesis.
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3.1 AprilTag Detection and Pose Estimation

The first set of experiments was collected with an AprilTag fiducial marker as a target

object [23]. The specific AprilTag family that was used was 36h11, and focused on

the tag with ID 0, shown in Figure 3-1. To extract the pose used to generate visual

servoing commands, a simple script was implemented which coupled OpenCV image

processing and a python-based tag detector. To analyze the collected data in post-

processing, this thesis used apriltag_ros, a ROS wrapper for a popular visual fiducial

detection algorithm. Figure 3-2 illustrates how the pan-tilt camera automatically

tracked the AprilTag during circumnavigation. A set of example images with labeled

pose estimates (as seen by the actively steered camera) is shown in Figure 3-3.

The robot circumnavigated the tag for one, three, or five laps in each trial. As a

“stress test” of the object pose estimation, and to motivate the potential benefits of

the active-object navigation approach for an underwater application, we repeated the

experiment with the AprilTag detector in a dark room. A flashlight was affixed to

the pan-tilt module such that it would travel with the camera and act as a spotlight.

Figure 3-4 shows typical detections for this situation, including a handful of outlier

detections. Under these conditions, the AprilTag detector performance is slightly

degraded, however the system still achieved good object tracking.

As shown, the pan-tilt module was able to actively center the AprilTag target

from every viewing angle along its trajectory in both the well-lit and poorly-lit en-

vironment. The AprilTag’s high-contrast pattern and non-reflective surface allow for

robust detection in both scenarios. A bird’s-eye view of the camera pose as esti-

mated by the AprilTag detector throughout the trajectory is shown in Figure 3-5,

and plotted against the ground truth camera position taken from the motion capture

system during each trial. A circular marker in each plot shows the location of the

target object during the experiment. The detector’s estimated camera trajectory was

compared to that of the motion capture system, using euclidean distance as an error

metric. The average distance error is recorded in Table 3.1.
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Figure 3-2: Several views of the pan-tilt camera tracking an object during circum-
navigation.
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Figure 3-3: Above is a collection of images labeled with 6-DOF pose estimations as
seen by the D435 camera while the Jackal circumnavigated an AprilTag.

Figure 3-4: Above is a collection of images labeled with 6-DOF pose estimations as
seen by the D435 camera while the Jackal circumnavigated an AprilTag in low-light
conditions.

1 Lap 3 Laps 5 laps Dark
Mean Error(m) 0.0107 0.0091 0.0098 0.0106

Table 3.1: Above is a table showing the average euclidean distance between the pose
estimation of an AprilTag detector and the ground truth estimate of a motion capture
system along a trajectory. The error is calculated for a 1, 3, and 5-lap path in ideal
lighting conditions, as well as one "dark" trajectory taken in a low-light environment.
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(a) 1 Lap (b) 3 Laps

(c) 5 Laps (d) Low-Light

Figure 3-5: The above plots show the X and Y position of the camera as estimated
by the AprilTag detector in red. The corresponding ground truth measurements from
the motion capture system are plotted in blue. The circular marker at the centroid
of the trajectory marks the location of the target object being circumnavigated. The
first three plots were generated in ideal lighting conditions, while the last plot was
taken in a low-light scenario.
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1 Lap 3 Laps 5 laps Dark
Mean Error(m) 0.0988 0.0444 0.0453 0.1576

Table 3.2: Above is a table showing the average euclidean distance between the
object-pose estimation of a DOPE detector and the ground truth estimate of a motion
capture system along a trajectory. The error is calculated for a 1, 3, and 5-lap path
in ideal lighting conditions, as well as one "dark" trajectory taken in a low-light
environment.

3.2 YCB Object Detection and Pose Estimation

The second set of experiments repeated the process with a YCB object as the target,

and with a DOPE detector [31] performing object detection and pose estimation. The

specific YCB object used was the 003 cracker box. The robot once again circumnavi-

gated the target object for one, three, or five laps in ideal lighting conditions, followed

by a dark room. An example set of images with labeled pose estimates as seen by the

camera in a well-lit environment is shown in Figure 3-6. The images clearly show that

the DOPE detector is able to detect the object from every viewing angle and provide

an accurate pose estimate. In the dark scenario, however, the DOPE detector dis-

plays a noticeable drop in performance. The target object has a much more reflective

surface than the AprilTag, particularly the back panel which has significant white

space. The result is a major increase in missed or false detections. An example set

of images for this experiment are shown in Figure 3-7. Future work will investigate

strategies to achieve improved tracking in the presence of these types of outliers.

‘A bird’s-eye view of the camera pose was calculated using the DOPE detections,

and was plotted against the ground truth trajectory from the motion capture system

for each experiment. The results are shown in Figure 3-8. As with the AprilTag

detector, the DOPE detector’s camera pose estimates were compared to the ground

truth measurements using euclidean distance as an error metric. The average distance

error for the DOPE experiments is recorded in Table 3.2. A graphical comparison of

the error values for the AprilTag detector and the DOPE detector is shown in Figure

3-9.
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Figure 3-6: Object detection and pose estimation for various times during a typical
mission, while circumnavigating an object.
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Figure 3-7: Object detection and pose estimation for various times during a typical
mission, while circumnavigating an object in a low-light environment.
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(a) 1 Lap (b) 3 Laps

(c) 5 Laps (d) Low-Light

Figure 3-8: The above plots show the X and Y position of the camera as estimated
by the DOPE detector as red circles. The corresponding ground truth measurements
from the motion capture system are plotted in blue. The cross-shaped marker at the
centroid of the trajectory marks the location of the target object being circumnav-
igated. The first three plots were generated in ideal lighting conditions, while the
last plot was taken in a dark scenario. The data from the dark experiment shows
significantly more outliers, particularly when the detector is looking at the back of
the target, which has more white space and is highly reflective.
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Figure 3-9: The above bar graph compares the average distance error of the AprilTag
detector with that of the DOPE detector across all trials. The AprilTag detector
shows very consistent performance. The DOPE detector produced more outliers,
particularly in the dark scenario which saw a significant drop in performance.
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Chapter 4

Conclusion

4.1 Summary

This thesis laid out the design and development of a modular robotic platform for

active object-based navigation. This first iteration of the platform was used to collect

data for comparing multiple object detection and 6-DOF pose estimation algorithms,

specifically an AprilTag detector and NVIDIA’s DOPE detector, against ground truth

trajectory data from a motion capture system. The platform’s pan-tilt module al-

lowed for a camera sensor to be controlled (via visual servoing) separately from the

movement of the platform’s robotic base. This resulted in much smoother maneuvers

than those typically achievable by a tank-drive style robot trying to maintain focus

on a circumnavigated target object.

4.2 Future Work

The largest limiting factor with the current iteration of the system is the Jackal’s

onboard processor. While the default computer is sufficient for controlling the mobile

base and performing dead reckoning, it shows significant lag when running AprilTag

detection and pose estimation on a live camera feed. The published detections are

only sufficient for visual servoing with the pan-tilt module when the mobile base

travels at very low speeds. Tracking DOPE objects in this manner is not even an
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option at the moment. The weights that DOPE uses to detect a known object in

a scene are stored in files that are too large to keep on the Jackal. Additionally,

DOPE detection is far more computationally expensive than AprilTag detection, so

the detector would not publish nearly fast enough to use for visual servoing.

Due to the Jackal’s limited onboard memory and processing speed, the data col-

lection was carried out with the camera tethered to a separate laptop running all

of the image processing and object pose estimation operations. While tethering the

Jackal is effective, it requires much more careful maneuvering when collecting data,

to ensure that the cable does not occlude the camera as the robot rotates. Ideally

the Jackal would be running untethered, and all computer vision functionality would

be run locally. The next iteration of the system will upgrade the Jackal’s computer

to a more advanced alternative, such as an NVIDIA Jetson, which has the processing

capability to quickly run DOPE detection. This is a common update for the Jackal,

and the process for upgrading the onboard computer is well-documented by Clearpath

Robotics.

Future iterations of the system will also incorporate multi-object tracking. The

current system has the pan-tilt module tracking a single class of object at any given

time (be it an AprilTag with a known ID, or a single YCB object). While the

current control algorithm can be configured to recognize multiple classes of object in

a single scene, those objects must be explicitly programmed in order of priority. At

the moment, there is no method for handling multiple instances of the same object

in a single scene; in the presence of multiple identical objects, the pan-tilt module

will sporadically shift its focus between them. For the system to successfully operate

in the presence of multiple objects, it needs to incorporate a generalized scheme for

prioritizing which object class (and which instance of that class, if applicable) to

focus on in a given moment. The primary target could, for example, be the YCB

object with the highest detection score, or the closest visible AprilTag. An interesting

avenue for future research would be to employ an information-based metric to balance

exploration vs. exploitation in object selection, as investigated by Mu et al. [20, 21].

Another option would be to incorporate additional elements of active vision. The
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simple servo-controlled pan-tilt could be replaced with a gimbal with more degrees of

freedom (such as a roll axis). Initial plans for this system also involved the addition of

a motorized zoom lens. In addition to active steering, another possibility is actively

tuning the camera’s intrinsic parameters, as explored by Micheloni and Foresti [19].

Having active control over camera exposure/brightness would be particularly useful

in environments with difficult lighting conditions.

In addition, the system is expected to be useful to collect new data sets to enabling

training of more effective 6DOF object pose estimators, for a broader class of objects

— for example, using the self-improving object pose estimation approach developed

by Lu et al. [18].
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