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ABSTRACT

In data networks, a packet has to wait for other packets in a variety of situations.
The aim of this work is to model and minimize the delay for the special case in which
' the packets are transmitted over two different links of different speeds. This system
is modelled as a First In First Out queue and its delay is analyzed.

A single waiting queue is used to feed customefs to both the servers. To deter-
mine how to use the servers to serve the customers, a threshold strategy is proposed.
The threshold that minimizes the delay is computed as a function of the arrival and
service rates. The threshold strategy is compared with a similar strategy for the
two server non-FIFO queue. The optimal threshold is compared with the threshold
determined by the intuitive greedy algorithm. The performance of the system with

the optimal threshold is compared with its performance with the greedy threshold. .
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1 Introduction

In many queueing systems we come across situations in which two or more
servers are available but they do not work at the same speed. Examples
of such systems range from the check out counter of a supermarket to a
computer with different peripherals working at different speeds.

Our primary interest lies in packet-switched computer networks in which
two nodes might be connected by two or more links of different capacities.
In such cases it is important to know how to use the links to achieve opti-
mum performance. We use mean system delay as the performance measure -

and make the following assumptions to model such a system.

1. Packets arrive at a node for transmission according to a Poisson pro-

cess with arrival rate ).

2. The transmission time for a packet over link ¢ is an exponentially
distributed random variable with mean “l. We will include the prop-
agation delay in the transmission time. The exponential transmission
time assumption will not be good if the propagation delay is large.
We will restrict ourselves to the situation in which there are exactly

two links, i.e. 1=1,2.

3. A packet being transmitted over a link has to be completely trans-
mitted over that link. In other words, switching links is not allowed
in the middle of a transmission. This assumption comes from the

observation that an ARQ protocol operating on these transmissions




will not be able to recognize a packet as a packet if it is transmitted

in two parts over two different links.

4. There is infinite storage space at each node.

The above assumptions do not model the delay incurred in re-ordering
the packets at the destination node. This delay is important in a number
of cases. A multi-packet message can not be used until all its packets are
re-ordered. In a voice communication system, the delay is important and
the total delay includes the re-ordering delay as well. Another example
in which re-ordering is important is when a network wants to use another
network as a link to communicate between two of its parts. The packets
should stay in order in the network being used as a link, so that the link
level protocols of the other network will work.

To model the re-ordering delay we will add an additional constraint to

the system.

5. FIFO constraint: Let us call a packet a predecessor of another packet
if the former arrived in the system before the latter. We will as-
sume that a packet that is transmitted to the destination before one
or more of its predecessors must wait for the predecessors to finish
transmission. The packet exits the system as soon as all its prede-
cessors complete transmission. This constraint takes the re-ordering

delay into account.




2 Background

This problem, without the FIFO constraint, was analyzed by Larsen and
Agrawala [3]. They proposed and analyzed a threshold queueing strategy
to minimize the mean system delay. This system works with the following

assumptions.

1. The customer arrival process is assumed to be a Poisson process with

mean arrival rate .

2. The service times for the two servers are exponentially distributed
with mean service rates u; and u, respectively. Server 1 is assumed

to be faster than server 2, i.e. u; > ps.
3. The queue is stable, i.e. y; + pz > A.
4. The queue has infinite capacity.

5. Whenever a customer is available to receive service, server 1 remains

busy.

6. Server 2 stays idle if the number of customers in the system is below
a certain threshold. If the number increases beyond the threshold,
server 2 starts serving a customer. Once it starts to serve, the server
does not stop until that customer is completed. After that, if the
number of customers in the system is still beyond the threshold, the
server takes another customer. Otherwise, it becomes idle. In partic-

ular if the threshold is m, the second server will stay active if there



are more than m customers in the system including the one being

served by server 1.

Larsen and Agrawala [3] have taken the mean number of customers in
the system N as their performance measure; N is proportional to the mean
system delay D according to Little’s formula AD = N.

This system can be described as a continuous time Markov chain as
shown in figure 1. The state description has two components. The first, a
number, represents the total number of customers in the system including -
those being served. The second, either I or B, denotes whether server 2 is

idle or busy, respectively.

The following expression [3] gives the mean number of customers in the

system
T (v, 1) = nn+r)+Ik, [(Vl + vy —1)° Z:§-=oju;"f +(@E+1) (1 +re—1) + 1] Vs,
m\V1, V2 (h+v,—1) {U1 + 2o [(V1 + vy —1) Ej‘:o”{ + 1] sz‘.}
(1)
where

Vv, = [J]_/A (2)

v = pg/A (3)
_ L3] Py t—J vi+ v+ 1\ i i

R () ey o

and m is the threshold.
The boundary between the region in the vyv2—plane where m is the

optimal threshold and the region where m + 1 is the optimal threshold is



Figure 1: Transition diagram for the Markov chain of a heterogeneous two-
server queue operating at threshold m.
The arrival rate is 1, and the service rates at the two servers are p;

and us.



approximately

131 m
=m+1_(m+1)2 (5)

%]

Hence, the optimum threshold m* can be approximated by

»

v —1 +'\/4U2 -+ (U]_ - ].)2
m' =

2V2

(6)

Lin and Kumar [4] proved that for a two-server heterogeneous queueing
system, a threshold strategy is optimal for minimizing the mean number
of customers in the system N or the mean system delay D. To prove this,
they formulated the queue as a discrete time Markov chain by introducing
dummy customers. The Markov decision process was considered with the

cost criterion

C = E[N(¢)8"]

where N(t) is the number of customers in the system at time ¢, and 8 is
some discount factor less than 1.

As the first step, it was shown that to minimize the cost C, the faster
server (server 1) should always be kept active. This was done using the
value iteration method. Then the policy iteration method [2] was used,
starting from threshold 0. It was shown that starting from such a strategy
with threshold ¢, the policy iteration yields another threshold strategy with
threshold at most ¢ + 1. This means that if the iteration converges it will
yield a threshold strategy for the discounted cost criterion C.

It was shown that the undiscounted cost criterion, i.e. § = 1, which

is equivalent to minimum mean delay, is a limiting case of the discounted

9



cost criterion and the above mentioned result holds there.
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3 FIFO two-server queue

We will focus our attention on the First-in-First-out(FIFO) heterogeneous
two server queueing system. The additional assumptions over the system

analyzed by Larsen and Agrawala [3] are as follows.

1. There is a waiting room after the service. If the service of a particular
customer is completed before one or more of its predecessors, the
customer waits in the waiting room for the predecessors to complete
their service. As soon as all the predecessors complete their service,

the customer departs the system.
2. The size of the waiting room after service is infinite.
3. The system is stable, i.e. p; + pz > A.

4. The arrival rate A is 1. This assumption does not reduce the generality

of the system as it only changes the unit of time used.

The first problem is how to use the system. Should there be two separate

queues for the two servers or one single queue?

3.1 Why one queue?

Intuitively it is easy to see why a single queue from where customers are
fed to both the servers should be superior to a system in which a customer
is assigned to either server 1 or server 2 immediately after the arrival. The

intuitive reason is that if we defer our decision until the time when it is

11



absolutely necessary to assign a customer to one server or the other, we
get more information about the system compared to the case in which we
decide earlier. Therefore the former should be able to perform better.
More precisely, let us suppose we are using a single queue, and the
customers are fed to the servers according to some rule. One possible rule is
to assign each customer either number 1 or number 2 immediately upon its
arrival according to some rule. Customers are served by the correspondingly
numbered server. Customers for each server are served in FIFO order.
This situation is exactly the same as a two queue system and therefore
it will have the same performance. Therefore, any performance that can be
achieved with the two queue system can also be achieved using the single
queue system. Hence a single queue system is at least as good as the two

queue system.

3.2 The Greedy Algorithm

One intuitive way to feed the customers to the servers from a single queue is
by using the greedy algorithm. This algorithm works as follows. Whenever
a server is free, we calculate the expected delay for each customer currently
in the system under each of the following two assumptions:

(i) The customer goes to the free server and starts receiving service
immediately.

(ii) The customer and all its predecessors wait in the queue and receive
service from the busy server when their turn comes.

This calculation is done according to the arrival time of the customers

12



in the queue, beginning from the customer that arrived first. The first
customer for which the expected delay in case (i) is strictly smaller than
that in case (ii) goes to the free server to receive service.

When both the servers are free the customer in front of the queue goes
to the server with lower mean service time. After this the second free server
will take a customer into service according to the rule described earlier.

In the case when server 1 is faster than server 2, whenever server 1
becomes free the first customer in the queue is fed to server 1. However,
when server 2 is free, a customer will go to server 2 only if there are enough
customers in front of it to make the expected delay for server 1 higher
than the mean service time of server 2. This suggests a threshold strategy
with easily computable thresholds. Figure 10 shows that for a non-FIFO
two server queue, the threshold calculated by the greedy algorithm is not
always the same as the optimal threshold calculated in [3]. The same can
be expected for the FIFO queue as well. In a later section we will try to
explain intuitively, why the optimal threshold should be different from the
one given by the greedy algorithm.

13



4 Threshold Strategy for the
FIFO Queueing System

We propose a threshold strategy similar to the one given by Larsen and

Agrawala [3]. To understand how it works let us look at figure 2.

The overall queueing system has two subsystems: system A where the
customers arrive and get served, and system B where a customer waits for
its predecessors to complete service at system A. The overall system will
be referred to as system C.

System A is exactly like the system discussed earlier in section 2. It has

a single stream of arrivals according to a Poisson process with rate 1, and

1
s

and “lz respectively. We wish to use the threshold strategy on system A

the two servers have exponentially distributed service times with mean

and it will be assumed that p; > py,.

The threshold strategy will work on this system as follows

1. Server 1 will continue to serve customers as long as there are cus-

tomers waiting for service.

2. Server 2 will start to serve a customer only when the total number of
customers in system A, including the customer receiving service from _

server 1, is greater than a threshold m.

Server 2 starts serving the (m+ 1)th customer in the system counting
from the one being served by server 1 at that instant. This is different

from the non-FIFO queue because in a non-FIFO queue the order in

14
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Figure 2: The subsystems of the FIFO, heterogeneous two-server queue



which the customers are served does not change the mean delay as
long as preference is not given according to the length of the service
times of the customers [{1]. In the FIFO queueing system a customer
that does not finish service can keep many other customers waiting.
Therefore it is important in the FIFO system to specify which partic-

ular customer server 2 will take when it has to serve some customer.

Intuitively it is easy to see why server 2 should take the (m + 1)th
customer and not some customer earlier in the queue. The reasoning
is that if it is better for server 2 to take the ith customer (: < m), it
should not wait for the arrival of (m + 1)th customer to start serving

the t1th customer. A better reasoning is given in the appendix.

For a given value of threshold (say m), system A can be represented as
a Markov chain shown in figure 1. We know the mean delay of system A
as a function of m,x; and u, as given by equation 1 and Little’s formula.

Now, if we can analyze system B itself then we can determine the mean
delay for system C.

The arrivals to system B are the departures of system A. Since system
A is assumed to be stable, the mean rate of arrivals to system B is A
which is assumed to be 1. However, we do not know the exact statistics
of the process. The difficulty in analyzing system B is that the amount of
time a customer stays in this system depends upon the future arrivals to
system B. This is because a customer in system B waits for the arrival of
all the customers that went into system A earlier. Therefore the available

information about system A can not be used to analyze system C directly.
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We can get around the difficulty of solving system B by the following

observations.

Observation 1: The arrivals to system A, which are the same as the
arrivals to system C, are independent of the state of system A immediately
prior to their arrival. Therefore every arrival finds system A in a typical

state.

Observation 2: The statistics of system C delay for a customer is com-
pletely determined by the state of system A at the time of the customer’s

arrival to system A.

This means that if we can find the statistics of the delay for a customer
as a function of the state of system A at the time of the customer’s arrival,

the mean delay for system C can be calculated.

4.1 What are the statistics of the delay of a cus-

tomer?

Let us take X;, X, and X); as exponentially distributed random variables

: 11 1
with mean i and o

respectively. Also, let Y;* denote the random
variable which is the sum of k exponential, independent and identically
distributed random variables each with mean ”ll fort =1, % fori=2and -
1 s
pre for ¢ = 12.

Let us assume that system A is operating with a threshold m. Since the

service times are exponentially distributed, the distribution of the residual

service time for a customer receiving service at the instant of an arrival is

17



exponential with the same mean because of the memoryless property of the
distribution.

We will look at the following different cases.

Case 1 Upon arrival the customer finds:

(i) 5 < m customers in system A including those receiving service

and,
(ii) server 2 idle.

- Immediately after this arrival the number of customers in the system
is less than m + 1. Therefore, server 2 will stay idle and this new
customer will be served by server 1. Also this new customer will not
have to wait in system B. Hence the amount of time this customer
spends in system C is a sum of j + 1 independent, exponentially

distributed random variables with mean ﬁ which is Y711,

Case 2 Upon arrival the customer finds:
() § < m customers in system A including those being served and,
(ii) server 2 busy.

The customer will be served by server 1. But if server 2 does not
complete the service of the customer it is serving, then this new cus-
tomer will have to wait in system B. This is because the customer
being served by server 2 arrived into the system before this new cus-
tomer. The delay of this customer in system A will be distributed
as the sum of j independent, exponentially distributed random vari-

ables with mean u—ll The amount of time the customer being served

18



by server 2 will stay in system A is exponentially distributed with
mean "—" Therefore the overall delay for the new customer in system

C will be max[Y7, X;).

- Case 3 Upon arrival the customer finds:
(i) m customers in system A.
(ii) server 2 idle.

Server 2 is idle and the customer is (m + 1)th in the system. This
means that the new customer will be served by server 2. In this case
the amount of time the new customer will stay in system A will be
exponentially distributed with mean i But the customer might have
to wait for one or more of the m customers waiting for server 1. The
amount of time taken by server 1 to complete service of m customers
is distributed as the sum of m independent, exponentially distributed
random variables with mean “1—1- Therefore the overall system C delay

for the new customer will be max[Y™, X;].
Case 4 Upon arrival the customer finds:

(i) m customers in system A

(ii) server 2 busy.

This customer will be served by server 1, since after completing the
current customer, server 2 will find this new customer at number m
or less. In this case the new customer will spend a time distributed as

the sum of m independent, exponential random variables with mean

19



L in system A. The amount of time the customer currently being

(3}
served by server 2 will spend in system A is an exponential random
variable with mean ;}; Therefore, the new customer will have to wait

in system C for an amount of time which is max[¥;™, X,]|.

The fact that the waiting time for system C for this case and case 3
are the same is important and will help us in finding the distribution

of the delay for the next case.

Case 5 Upon arrival the customer finds j > m customers in the system.

Let us divide the wait of this customer into two parts. Let the first
part be from the time of arrival until the customer sees exactly m
customers ahead in system A including the ones being served and the

second pa.rﬁ be from that time till the departure of the customer.

Both the servers will be busy during the first part of the wait. There-
fore the customer will advance at the rate of x; + ;. Therefore the
first part of the delay will be a random variable distributed as the sum
of j—m independent, exponentially distributed random variables with

1 . . j—m
mean _—— which is ¥j; .

At the beginning of the second part of the delay, the customer will
either go to server 2 to receive service or wait for server 1. The
former will take place if server 2 is idle at that point, the latter will
take place otherwise. These two situations are exactly like case 3 and
- case 4 respectively. As it was noted earlier, the delay is the same in

both the cases which is max[¥;™, X,|.

20



Therefore system C delay for this new customer is Yj; ™ +max[Y™, X,).

Now we have the delay statistics of a customer conditioned on the state
of system A at the time of arrival. The mean delay of the system can be

calculated for a given threshold using these statistics.

21



5 Calculations

5.1 Mean values of the different random variables

() X1,X2 and X;; are exponentially distributed random variables with

1 1 1
#1143 and Bs1+pa

mean respectively.
(ii) Yy* is the random variable which is the sum of k independent, exponen-

tially distributed random variables, each with mean u—ll Therefore

o) = o
Similarly,
E[v}] = ’% and
k
E Yl';] - K1+ po

(i) Z = max [X,, Y]

To determine the mean of the random variable Z, let us look at two
independent Poisson arrival processes, process 1 and process 2, with rates
#1 and pg respectively. The sum of these two processes is another Poisson
arrival process with rate (u; + p2). Let us call it process 3. At any point of
time, the probability that the next arrival of process 3 will be from process
lis “—1-‘_%“—3 and the probability that it will be from process 2 is ;ﬁ_’“—z

Since the probability distributions of all the inter-arrival times are mem-
oryless, let us start from any random time. The mean time taken for k
arrivals from process 1 is f; The probability that there will be no arrival
from process 2 during this time is (—‘ﬂ—)k The reason for this is the fol-

B1tp2
lowing. Starting from any point, let E; be the event that the next arrival

22



of process 3 is from process 1. Since the interarrival times have memoryless
distributions, the instant of the arrival is a renewal point for the processes.
Therefore the event of getting k arrivals from process 1 before any arrival
from process 2 is k independent repetitions of event E; in succession. Hence
. ey e . 1. k
its probability is [P(E})]* which is equal to (“—l’f‘z) .

Therefore the probability of having at least one arrival from process 2

before k arrivals of process 1 is [1 - (“—l‘i}‘z) k]. Or,

k
P(Yt>Xx,) = 1- (2 ) 7
( ' z) (#1+#z ™
k
P(YF< X, = £1 ) 8
(v <x%) (u1+uz @
Now,
Z = max [V}, Y+ W]
where
W= X,-Yf
or
Z =Yf+V
where
0 ifw<o
V =
W otherwise
Therefore

E[Z] = E[Y}]+E[V]

k
= — +E[V]
231
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but

E[V] = E[W|W >0]P(W > 0)
= E[X;- Y} X; > Ylk] P(X,> )

Conditioned on the event that X; > Yl", which is the same as the event
that there is no arrival from process 2 before k arrivals from process 1, the
mean wait for an arrival from process 2 after the kth arrival from process

lis L. Or

™

1
E[X,-YiX, > Y] = -
or E[V] = 1 . )k
B2 \ p1+ U2
k 1 M1 )k
or EZl = —+ — 9
2] M1 W2 (#1 + Y2 (©)

Table 1 lists the mean delay for a customer in system C as a function of
the state of system A at the time of the customer’s arrival. The threshold

for system A is assumed to be m.

5.2 Calculation of the mean delay for two simple cases

Case 1: For this case we will assume that the operating threshold is 1.
As earlier, the arrival rate A is assumed to be 1, and the service rate is y,
for server 1 and p, for server 2. The Markov chain for system A for this

threshold is shown in figure 3.

The detailed balance equations for this chain is as follows,

Pig (1 +u2) = pypm (10)

24



Table 1: Table of the mean delay of a customer as a function of the state

of system A at the time of the customer’s arrival

Number of customers | State of server 2 | Mean overall delay for the
in system A at the customer
time of the arrival
. 1
0 1dle‘ '“—l'
. 2
1 1dle “—l
. . ﬂ
) idle ™
m—1 idle n
b1
: m 1 ( u \™
m idle M1 + Ha m+#z)
A1
1 busy B + B2 (Mlﬂl:)z
2 1w
2 busy [13% + b2 (#1+M2)
' i1 (_m Y
J busy gy (u1+ua)
m_ 1 m \™
m busy B1 + B2 (#1+M2)
1 m 1 a \™
m+ 1 busy B1t+p2 + 731 + 2] (m+#z)
2 m o1 p \™
m + 2 A busy ptms T prrga (u;+u=)
nom om o 1w \T
n busy B1tH2 + 31 + 7%} (F1+Mz)
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Figure 3: Markov chain of system A for threshold = 1
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Pir = (Pis +Ps2g) H2 (11)

Por = Pisé1 + Pi1gH2 (12)
and
Pig = D 1 for i > 2 (13)
8 B+ kg
The steady state probabilities are as follows,
Hi1l2
= 24 u + 14
Por Py, (2 + 11 + o) (14)
p2 (1 + p1 + pa)
= 15
Pir P2 1+ g ( )
K1
= 16
Pis Pw1 T 1 ( )
1
= 17
PsB P2s i+ 2 ( )
’ 1 -2
B = P fort > 2 18
PiB 2B (”’1 +”2) ( )
and
-1

Py = [#1#2 (2+upr1+p) (a+ Mz)2 (19)

2B 1+ u,; M1+ pz—1

where p;; is the steady state probability of the state (i,J )
Let d;; denote the mean delay of a customer that arrives when system
A is in state (¢,J); then,
1

doy = —
H1

1 1
dyy = —'+—( £1 )
B p2 \ g1t 2
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1 1
dip = —-I-—-( o )
M1 p2 \ Bt Ha

1 1
dip = —+—

K1 U2

 — 2 1 1 .
dip = ! + — 4 — fors > 2

w1+ p2 M1 p2

Therefore the mean delay is

D = zdilpu
1 1 ulpz) B1+ B2
= - — 2+ +u2) +
[(#1'*'#2 ﬂz) (1+#z @+ umtp) (1 + iz — 1)7] 2P

1 1 1
+(Z+I_L;—ﬂ1+ﬂz) (20)
where p,g is given by equation 19.
Case 2: For this case we will assume that the operating threshold is 2.
As earlier, the arrival rate A is assumed to be 1, and the service rate is u;
for server 1 and u, for server 2. The Markov chain for system A for this

threshold is shown in figure 4.

The detailed balance equations for this case are as follows,

Pip (1 +42) = pypm (21)
Pzp (1+H2) = Pspir — Pipiz (22)
Pzr = (Pip + P25+ Psp) b2 (23)
Pur = Partr + (P1p + P2p) K2 (24)
Por = Pir#1+PigH2 (25)
and
1

Pis = Pi-1)B fori>3 (26)

M1+ Y2

28



Figure 4: Markov chain of system A for threshold = 2
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Solving for the steady state probabilities we get the following

2 (212 — py + p2)

= + p2 + 27

Por Pssiy [m B T B+ ot ) (27)
B2 — g1+ 4}

= + uz + 28

Pur PspH1 [m Hz 7 1 + 2 (2+p + Mz)] (28)
g1 (14 p2)
Par pw[ Lt 1+ p2 (24 p1 + p2) (29)
K3
_ 30
p (1 + pa)

_ 31

P2s PsB [1+uz (2 + p1 + 02 , (31)
1 .
P = Psp———— for:>3 (32)
(k1 + p2)™° ;
- and
2 2
Uy (2ﬂ2 — p1+ ﬂz)

= [(T+m+4]) (11 +p2) +

P3p [( K1 “1) (#1 l"‘z) 1 + s (2 + Py + “2)
papz (1 + po) p1+ pa ]_1 (33)
1+ pz(24+m+p2) wmt+p—1 '

and from table 1

1
doy = —
1391
2
dy = —
M1
2 1 1731 2
dyy = —+——( )
K1 p2 \ M1+ M2
1 1
dip = —+—( £1 )
' w1 p2 \H1+ p2
2
2 1
dp = —+—( o )
B“1 g2 \p1+ e
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t—2 2 1 M1 ) .

dipg = +—+ — fort >3
B M1+ Hp2 p1 W (#1+#z

Therefore the mean delay, i.e.

D = > duyp,
- 2
- [ () e >
where .
F = i M i (ﬂ'l"‘:ﬂz) ] [ui (b - piz) + faip (22_+M;1++”§:)]
_ 2
e (#1 +uz) [”1 Tty +‘:z (2’:L1 :1‘2)“2)

! 7| |
M1 —

A u1+#z 1+uz(2+u1+uz)
[ pytope ]

(g1 + p2 — 1)2

and p;p is as given by equation 33.

(35)

As is obvious from the calculations above, this system does not lend
itself to nice expressions for the mean system delay and therefore it is
difficult to find closed form expressions for the optimum threshold. In the

next subsection we will look at a way to numerically compute the mean

delay.

5.3 Numerical Computation

To compute the mean delay of system C the following two values are needed:

the steady state probabilities of system A and the mean delay of a customer
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as a function of the state of system A at the time of its arrival.

The mean delay of a customer as a function is listed in table 1. The
steady state probabilities for system A are computed by using the detailed
balance equations for the Markov chain across the cutsets shown in figure 5.

We start by assuming

Pip=1

The balance of flow across cutset 1 gives

£1P2p = P1p (1 + p2)

Similarly by equating the flow across cutset n(< m) gives

n
B1P(nt1)B = K2 )_Pip + Pnp
i=1
Since at each step the terms on the right hand side are known, we calculate
one p(,.y)p at each step until we reach P(m+1)B-
Cutset number m 4 1 gives the following equation
m+1

Pmi = H2 ) Pip

i=1

which readily gives p,,;.
Similarly cutset number m + j (1 < j < m + 1) gives
' m41—j

P(m+1-5)1 = K1P(m+2-5)1 T H2 Z P(m+1-5)B

i=1

In this equation also, all the right hand terms are known from the previous
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cutset 2m+1 cutset 2m cutset m+2

cutset { cutset 2 cutset m

Figure 5: Markov chain, showing the cutsets used for the detailed balance

equations for numerical computation
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calculations. Therefore by solving the balance equation across the cutset
one by one we can calculate p;; for 1t < m and p;g fori < m+ 1.

For ¢t > m + 1, p,;p can be calculated by

1
Pip = i +#2P(.'-1)B
In this way we get a scaled version of the steady state probabilities of
system A. After this we sum all the computed values of the steady state
probabilities. This sum will not be equal to 1. By dividing the computed
values by this sum we get the correct values of steady state probabilities

for system A.

The expression for the mean delay
D= Z Diydis

is used to compute the mean delay for system C.
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6 Results

In this section the results from the numerical calculation will be discussed.

Figure 6 shows the plot of delay vs. threshold for a particular set of
values of the service rates. The delay is computed only for integer values of
the threshold and the points are connected by straight lines. For this plot
p1 and pg are 2.0 and 1.0 respectively. The time unit is chosen in such a
way that the arrival rate A is 1. The delay is also given in the same time
unit. This curve shows two interesting features typical of such plots.

(i) There is some threshold which minimizes the delay. The minimum
occurs at one or two thresholds but in the cases when two thresholds min-
imize the delay, the two thresholds differ by 1.

(ii) As the threshold increases, mean delay approaches a limit (for y; > 1)
which is equal to the mean delay of the system when only the faster server
is present.

Intuitively the second feature can be explained as follows: As the thresh-
old becomes larger and larger, fewer and fewer customers are served by the
slow server and the system works almost like a single-server queue with
only the fast server.

Figure 7 shows the comparison between the delays for a heterogeneous
two-server queue with or without the First-in-First-out restriction. As
should be expected, the delay for the queue with the FIFO restriction is
higher than that without the FIFO restriction because of the re-ordering

delay in the former.

Another interesting thing to be noted from this plot is that the minimum
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A=1.0, p,=2.0, u,=1.0
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Figure 6: Delay vs. threshold for a non-FIFO queue
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Figure 7: Comparison between the delays for a FIFO and a non-FIFO

heterogeneous two-server queue
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occurs at a higher threshold in the FIFO queue than the non-FIFO queue.
An intuitive argument for this will be given later.

| Figure 8 shows the different regions where different values of the thresh-
old are optimum. The most striking feature here is that the curves marking
the boundaries between the regions where two different values of the thresh-
old are optimum are almost straight lines. This plot gives the optimum

threshold scheme for any given pair of service rates, i.e. u; and y,.

Figure 9 compares the optimum threshold regions of the FIFO hetero-
geneous two-server queue with that of the non-FIFO queue. The most
noticeable thing here is that for all the tested values of u; and s, the
optimum threshold for the FIFO case is higher than the threshold for the
non-FIFO case. The same thing was noticed in figure 7 as well. An infuitive
reasoning is as follows.

Let us suppose that we have a FIFO and a non-FIFO queue with the
same arrival and service rates in the exact same state with server 2 being
idle. If all the customers wait for server 1 then their mean delay is the same
in both the queues. However, if customer number k goes to server 2, in the
FIFO queueing system, its expected delay is E[max(Y;*"!, X;)], but in the
non-FIFO queue, its expected delay is E[X3|. Since

E[max(Y;""", X2)] > E[X]

therefore, sending a customer to server 2 is a worse alternative in the FIFO
queue compared to the non-FIFO queue. Hence in the FIFO queue, a
customer should be sent to server 2 only if the wait for server 1 is too la,rge.

This implies that the threshold for the FIFO queue should be higher than
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Figure 8: pyps—plane, partitioned into different optimal threshold regions
for a FIFO queue.(A = 1)
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Figure 9: Comparison between the optimal threshold for a FIFO and a _

non-FIFO queue

Solid lines represent the bounda.ri&» of optimal threshold regions for
a FIFO queue and the dotted lines represent the boundaries for a non-
FIFO queue. m is the optimal threshold for the FIFO queue and m, is the

optimal threshold for the non-FIFO queue.
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the threshold for the non-FIFO queue.
However, the argument is not rigorous because a change in the threshold
changes all the state probabilities as well as the delays and it is not obvious

that a comparison can be made between the two systems with different

thresholds.

6.1 Greedy vs. optimal threshold for a non-FIFO queue

The threshold given by the greedy algorithm for a non-FIFO queue is
]
H2

This is because when server 2 is idle, the expected delay of customer
number j is -‘f; if it waits for server 1 and i if it goes to server 2. Therefore,
when server 2 is idle, customer number lﬁ:_l + 1 will be the customer sent
to server 2 according to the algorithm described in section 3.2.

Figure 10 compares the threshold regions according to the greedy algo-
rithm with the optimal threshold regions on the pju;—plane. As can be
seen from the graph, the optimal threshold is either lower than or equal to

the threshold given by the greedy algorithm.

A proof is given below to show why the optimal threshold should be
lower than the greedy threshold when "f: is greater than an integer by a
very small amount.

Let us consider a situation in which u; = (k+¢€)u2, where k is an integer
and € is a very small positive number. We will assume that ¢ is equal to 0
for all purposes except when determining the greedy threshold. The greedy
algorithm in this case suggesfs a threshold of k.
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M2
M)
|

Figure 10: Comparison between the thresholds determined by the greedy |
algorithm and the optimal thresholds in a non-FIFO queue.

Solid lines represent the boundaries of optimal threshold regions and
dotted lines represent the boundary of the greedy threshold regions. In
each region m is the optimal threshold and m, is the greedy threshold.
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Now let us look at the following situation. Suppose there are exactly k
customers in the system and server 2 is idle. Let us number the customers
from 1 to k according to their arrival time, number 1 being the one that
arrived earliest.

Let us compare the mean delay of the two systems: the original system
that uses the greedy threshold k all the time, and the modified system that
uses a threshold of k — 1 in the beginning, sending customer number k to
server 2 and then switching to the greedy threshold. |

In the modified system, if no service completion takes place at server 1
before the next arrival to the system, then at the time of the next arrival,
customer number k can still be receiving service from server 2. Since the
service tiﬁ:le at server 2 has a memoryless distribution, the state of the
system at the time of the latest arrival is exactly the same as in the original
system. Hence, the expected delay of the customers remains unchanged by
the decision to use a threshold of k — 1 at the present instant.

However, if no service completion takes place at server 1 before the
next arrival but a service completion at server 2 takes place in the modified
system, then the mean delay of the new arrival is unchanged because in
the original system it would have gone to server 2 and experienced a mean
delay of “—12, but in the modified system, it waits for server 1 and experiences
a mean delay of TfT But the number of customers in the system is smaller
at the time of the new arrival for the modified system. Since the same
threshold is going to be used in both the systems after this point, the
average number of customers in the modified system will be less than or

equal to the average number of customers in the original system at each
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time instant in the future. This means that the mean delay will be smaller
for the modified system.

In all the other cases the mean delay of all the customers either stays
the same or becomes smaller in the modified system. This implies that one
use of threshold k& — 1 followed by the use of threshold k is better than the
use of threshold k. Using the result from Markov decision theory (2] we
conclude that use of threshold k — 1 will give lower mean delay than the
use of threshold k.

This will be true as € increases until € becomes big enough to offset the
advantage gained by sending customer number k to server 2, by increasing

the mean delay of customer k& when it goes to server 2.

6.2 Greedy vs. optimal threshold for the FIFO queue

A careful analysis is needed to find the greedy threshold for a FIFO queue.
When server 2 is idle, the expected system delay of customer number j is -‘f;
if it waits for server 1. However, if customer j goes to server 2 for service,
then its delay will be distributed as max [Ylj -1 Xz] where Y7 ™! and X, are

as defined in section 5.1. Hence, in this case the expected delay of customer

j-1 1( ™ )"“
+_
H1 M2 \ Y1+ M2

Therefore, the greedy threshold for the FIFO queue is the smallest in-

Jis

teger k for which
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Figure 11: Comparison between the thresholds determined by the greedy

algorithm and the optimal thresholds in a FIFO queue.

Solid lines represent the boundaries of optimal threshold regions and
dotted lines represent the boundary of the greedy threshold regions. In
each region m is the optimal threshold and m, is the greedy threshold.
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B k
k+1> k+1( p,l)

“1 I #_2 by + opg
k
1 1
= > —-( at ) (36)
Hi K2 \ p1 + f2
Hence, if
1 1 ( K1 )'
“ M2 \ 1+ uo
or,
lo -1
r = g K2 Og K1 (37)
log uy — log (u1 + K2)
then,

k= [r] (38)

Figure 11 compares the regions of different greedy thresholds with the
regions of different optimum thresholds on the pu;— plane. This plot has

two interesting features.

() The boundaries between two regions of different greedy thresholds
are straight lines passing through the origin. This is because these
boundaries satisfy

1 r
l=—( #Il ) forr=0,1,2... (39)
H1 b2 \ M1+ K2

For a given r the points satisfying equation 39 also satisfy

K2

_=z

H1

where z is the solution to

z(1+2)" =1 (40)
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This shows that these boundaries should be straight lines passing
through the origin with slopes given by the solutions of equation 40
forr=0,1,2....

(ii) Just as for the non-FIFO queue, in this case also, the optimal threshold
is either lower than or equal to the greedy threshold. However, it is

not intuitively obvious why this should be so.

The reason it is not obvious is the following. Suppose p; and .

1 _ 1( ™ )"‘1_E (a1)

satisfy

I ™ K1t M2
for some small ¢ > 0. We will assume that ¢ is equal to O for all
purposes except when determining the greedy threshold. The greedy
algorithm gives a threshold of k in this case.

We try to look at the situation in which system A of the queue is
in state (k,I). Let us compare the mean delay of the two systems:
the original system that uses the greedy threshold k and the modi-
fied system that uses a threshold of k¥ — 1 in the beginning, sending
customer number k to server 2 and then switching to the greedy
threshold. We can look at the following different cases; case 3 below

is the non-obvious one.

Case 1: If in the modified system, no service completion takes place
at either server before the next arrival to the system, the decision to
use a threshold of k — 1 instead of k¥ does not make any difference in

mean delay because of the memoryless property of the service times.
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Case 2: In the modified system, if a service completion takes place at
server 2 before the next arrival to the queue, but no service completion
takes place at server 1, the expected delay for the new arrival remains
the same. This is because, in the modified system, the new customer
will see k — 1 customers in the system and therefore wait for server 1.
Hence, it will experience a mean delay of ﬁ In the original system, it
would have seen k customers in front and would have gone to server 2.
This would have made the mean delay for the new customer equal to
% + i (;‘iﬁ) . By assuming that ¢ = 0 in equation 41 we conclude

that the mean delay for the new customer remains unchanged in the

modified system.

However, the number of customers in the modified system at the time
of the new arrival is less than the number of customers in the original
system. Since the two systems use the same threshold in the future,
the average number of customers in the modified system will always
be less than or equal to the corresponding number in the original

system. This makes the modified system better.

Case 3: If one or more service completions take place at server 1, but
none at server 2 before the next arrival to the system, then it is not
clear whether it is better to use a threshold of k¥ — 1 or k. Depending
upon the number of service completions at server 1, the modified
system will have a higher or lower average delay for the future arrivals,
compared to the original system. The appendix provides additional

insight about this issue.
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Figure 12: optimal and greedy threshold delays vs. u, for g, = 1.5

Solid lines represent the delay for optimal threshold and the dotted
lines represent the delay for the greedy threshold
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Figure 13: optimal and greedy threshold delays vs. p; for x; = 3.0

Solid lines represent the delay for optimal threshold and the dotted
lines represent the delay for the greedy threshold




Figures 12 and 13 plot the average delays for the greedy threshold and
the optimal threshold vs. u, for two different values of u, for the non-FIFO
queue. The regions of different optimal thresholds are delimited by the
corner points of the delay curve for optimal threshold. As expected, the
optimal threshold delay curve is continuous but the greedy threshold delay
shows discontinuities at point where the greedy threshold differs from the

optimal threshold.
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7 Conclusion

We have presented the FIFO queueing model to analyze the overall delay
of a packet, including the re-ordering delay, when more than one link is
used to transmit different packets of a message.

A threshold strategy is proposed to use the links for the two link case.
The optimal threshold is computed for the two server FIFO queue. Its
performance is compared with a similar strategy for a non-FIFO queue.
The optimal threshold is also compared with the threshold given by the

intuitive greedy algorithm.
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Appendix

Why should customer number m + 1 go to server 2?7

Let us assume that system A is operating at a threshold m. Let us look
at the queue in system A when server 2 is idle and there are more than m
customers in the system and let us number the customers starting from the
customer receiving service at server 1. At this point server 2 has to take

one of the customers into service.

Conjecture 1 If st is better for server 2 to take customer number :t < m
compared to taking customer number m + 1 into service then m can not be

the optimum threshold.

Let us look at this situation as a Dynamic Programming problem. Sys-
tem A is in some particular state when server 2 is idle and a particular
customer goes to server 2 to receive service according to some policy.

Let us look at the following two policies:

Policy 1: Customer number m + 1 goes to server 2 to receive service.
Policy 2: Customer number ¢ < m goes to server 2 to receive service.

We know that if and only if one use of policy 2, followed by use of policy
1 all the time, is better than use of policy 1 all the time, then policy 2 is
better than policy 1 in the long run [2]. Let us compare the expected delay
of all the customers for the following two cases:

Case 1: One use of policy 2 followed by policy 1 all the time.

Case 2: Use of policy 1 all the time.
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In both the cases, the delay for customer number 1 to 1 — 1 will be
distributed as X;,Y,Y}... upto Y{~! . In case 1, customer number  to
m will have delays of max|Xj,Y{ ™| to max[X;,Y;""'] respectively, but in
case 2, customer number i to m will have delays of ¥} to Y. In both
the cases, customer number m + 1 will have a delay of max[X;,Y™] and
all the customers with numbers j > m + 1 will have a delay of Y{; ™! +
max[X,,Y;™]. This means only customers with number 1 to m experience a
difference in the delay in the two cases. The following table lists the mean

delays of customer numbers 1 to m for the two different cases.

Mean Delay
Customer no. Case 1 Case 2 Difference
1 1
1 238 [38 0
2 2
2 B1 B 0
=1 izl
? 1 12 . 1 0 .
; i1 1 (_m_)“‘ I I T (_ux_)"1
73 B2 \p1tp2 HB1 73} B2 \ p1tp2
m m=1_ 1 (_ux_)"‘_l mool 11 (_Ex_)'""l
B1 B2 \pi1t+ps B B #2 \ p1tuz

Let us now assume that case 1 is better than case 2. This means that the
sum of all the differences should be positive.This implies that the difference
for customer number m should be positive because it is the largest of all
the differences listed above. This means that the greedy threshold for this
system is less than or equal to m — 1. But as can be seen from figure 11,

the optimal threshold is always less than or equal to the greedy threshold.
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Hence, m can not be the optimal threshold.

The above argument is rigorous except it relies on the optimal threshold
being less than or equal to the greedy threshold.

We want to show that conjecture 1 also implies that the optimal thresh-
old is less than or equal to the greedy threshold.

Let us suppose that the optimal threshold is greater than the greedy
threshold. This means that for the)optimal threshold m

11 m-1
S = ( H1 )
w1 H2 \p1 T+ 2

This means that all the terms in the difference column of the table on

page 54 are negative, which in turn implies that case 1 is better than case
2. This implies that it is better for some customer number : < m to go to

server 2 which contradicts conjecture 1.
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