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Abstract

This thesis investigates the estimation of the electrical parameters and rotor speed of an
induction machine. In particular, an estimator is developed that determines these quantities
from the stator voltages and currents of the machine. The estimator is novel in the way that
estimation theory is combined with the properties of the dynamic system.

The dynamics of the induction machine are nonlinear, which makes estimaiion difficult.
The dynamic structure of the machine system is studied using participation factors. It is
shown that for small induction machines the dynamic structure of the system is described by
two weakly coupled subsystems with significant difference in time-scales: the slow dynamics
are associated with the mechanical variables while the fast dynamics are associated with the
electrical variabhles. Based on this time-scale separation, two linear regression models are derived
that relate the machine parameters and rotor speed to the stator voltages and currents and their
derivatives. It is shown how so-called state variable fiiters circunvent the unavailability of the
derivative terms.

Due to the time-scale separation between the rates of ch~nge associated with the machine
parameters and the rotor speed, further simplification of the estimator design is attained. The
resuliing estimator is structured as a two-stage procedure, with a fast stage that estimates the
rotor speed, and a slow stage that estimates the machine parameters. The stages are designed
using the recursive least squares estimator for a linear regression model. To take into account
time variations in the parameters, forgetting factors are used.

Numerical simulations are used to demonstrate operation of the estimator. The tracking
capabilities and the performance of the estimator with noisy measurements are discussed. The
design of a test bench to test the algorithm with real data in an off-line mode is described, and
the results of initial validation tests are presented and discussed.

Thesis Supervisor: Dr. George C. Verghese
Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Problem Statement, Contributions, Outline

The advances during the past fifteen years in the areas of power semiconductor devices
and signal processing electronics have made possible the use of induction machine drives
in high performance industrial applications where dc drives were exclusively used. The
interest in induction machine drives follows from the simple and robust structure, low

maintenance, and low cost of these machines compared to de machines.

The control of an induction inachine is considerably more complex than that of dc
machines and this complexity increases when more rigorous specifications are imposed.
For the induction machine drive to have a performance comparable to the dc drive it
is necessary to have an accurate knowledge of the parameters and the electrical and
mechanical variables of the induction machine. Therefore two significant problems
arise in the control of induction machines: first, the estimation or measurement of
the electrical and mechanical variables; second, the estimation or measurement of the
machine parameters. Recent Master’s theses by Seth Sanders [45] and Vincent J. Cotter

[9] on flux estimation offer fine discussions on estimation of the electrical variables, see

also [10,65,56].
This research work addresses the problem of estimating the rotor speed und the
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machine parameters based on measurements of the stator voltages and currents. In
this thesis the design and testing of an estimation algorithm for these quantities is
presented. The approach developed takes advantage of the two-time-scale structure of
the dynamics of the system under consideration. Based on this property two linear
regression models that relate the desired rotor speed and machine parameters with the
stator voltages and currents are derived. These linear regression models are used by
the estimation procedure as reference models for speed and parameter estimation. The
estimation algorithm is derived by using the Recursive Linear Least Squares Estimator
(RLSE) algorithm for a linear regression model. Further simplification on the design is
achieved by taking advantage of the time scale separation between the variations of the
machine parameters and the rotor speed. The end result is that a two-stage estimation
procedure is derived. It has a fast stage that computes an estimate for the rotor speed
using the most recent parameter estimate and a slow stage that update the parameter

estimates periodically.

The contribution of this work lies in the way we combine the tools provided by
estimation theory with the properties of the induction machine system to come out
with an algorithm to estimate the speed and the machine parameters. The methodology
and approach presented promise to be of great use for estimation involving induction
machines as well as other electrical machines, thought further development will be

needed.

Another contribution of this research work is to show how participation factors can
be used to study the structure of nonlinear models and how the obtained results can

be used to develop reduced order models of nonlinear systems.

This thesis is organized as follows. Chapter 1, introduces the induction machine
model and reviews recent literature in speed and parameter estimation for induction
machines. In Chapter 2, the regression models used for speed and parameter estimation

are derived. Chapter 3, discusses the estimation algorithm and introduces some of the

12



issues related to the estimator design. In Chapter 4, the performance of the estimator
is studied by means of simulations. The experimental test-bench and the some results
obtained from testing the estimator with real data are presented in Cheapter 5. A
sumary and suggestions for further reseaich work are presented in Chapter 6. Few
results in the analysis of multiple-time-scales phenomena in induction machines, and
its implications to develop reduced order models for the induction machine are included

in Appendix A.

1.2 Modeling an Induction Machine

The modeling of an induction machine is a well understood area, and [5,30,34] provide
a good description of these models. A brief review is included here to establish the
noiation. To simplify the modeling of the induction machine, hysteresis and magnetic
diffusion are neglected, and a model with lumped parameters is presented. A good
assumption for the machines under consideration is the assumption of magnetic linearity

and sinusoidally distributed windings in the stator.

The voltages across the terminals of the machine are related to the phase currents

and the flux linkage by the matrix equation

[ d’l/’ e
v=Ri+— (1.1)

T iT]T is the phase

where t is time, v = [vT, vT|T is the terminal voltage vector, i = [i
current vector, and ¢ = [T, 9T]T is the flux linkage vector. The subscripts s and r
stand for stator and rotor quantities. R is the diagonal matrix of phase resistances.

For a squirrel cage induction motor (SCIM) the vector of input voltages take the form

vV, = [V,T, 0]

From the assumption of magnetic linearity, the flux linkage and the phase currents
are related by

¥ =L(6,)i (1.2)



where L(0,) is the inductance matrix and 6, is the rotor position. In the case of a two-
phase, single pole pair smooth air gap induction machine, the resistance and inductance

matrices are symmetric and positive definite, and take the form

R— [ RI 0O LI M exp(J6,) ]

0 R,I]’ L(9:) = M exp(—J8,) LI

where
0 -1
J:[1 O]’ exp(JO,):[

R, and R, are the stator and rotor resistances, and L,, L, and M are ihe stator,

cosf, —sind,
sin 6, cos 4,

rotor and mutual inductance respectively. It is important to point out that three-
phase machines are the most commonly used in high performance applications. These
machines in general have their stator windings connected either in delta or wye, which
allows the use of a power invariant transformation (d-g-0) to transform the three-phase
machine into an equivalent two-phase machine. We can therefore use models of two-

phase machines without loss of generality.

Using conservation of energy and the assumption of magnetic linearity, the mechan-

ical equation of the machine is given by

dw,
H (Z =—-Buw, +Temn — 71 (13)
where
1. 0L(6;) .
Tem = 5! aot 1
1 ,0L1(6,)
= 3 5, ¢

and w, is the rotor speed, B is the friction coefficient, H is the combined inertia of the
rotor plus the mechanical load, 7., is the electromagnetic torque, and 7 is the load

torque.

Combining equations (1.1) to (1.3), a state space representation of the machine

equations can be derived. This is given by:
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d

-Ei- = —'RL—I(Or) ¢+V (1'4)
d w, _ B (Tem - TL)
@ - EYtYT T (1.5)

The dependence of the inductance matrix on the rotor position is because of the
relative displacement between the magnetically coupled circuits of the stator and the
rotor of the machine. This dependence makes difficult the analysis of the induction
machine. Because of the assumption of a sinusoidal distribution of the windings in the
stator, this dependence can be eliminated by transforming the rotor and stator circuits
to a reference frame where the transformed stator and rotor circuits are stationary with

respect to each other. This transformation is due to Blondel-Park [4,42,36].

Let us consider the coordinate transformation on the flux of the form

A=P(d)¢ (1.6)

where

@)= G (17)

(501 ]
o exp(—J(é - 6;))

and A is the Park-transformed flux vector. This transformation can be thought as a co-
ordinate change as illustrated in Figure 1.1. The Park-transforined machine equations

are given by:

dA 1 Jo 00 I
7t-=_(RL +6[0 J])A+w,[0 J],\+[0]v, (1.8)
l,iw,._ B (Tem—'TL)
@ - HYTTH (1.9)
1 M r[ 03
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‘1’\ y &

Figure 1.1: Park-Transformation of the Electrical Variables.

A= Li (1.11)

where

L={31 L1

and § is the angular speed of the reference frame. The most commonly used reference

LI MI ]

frames are the stator-fixed frame and the synchronous reference frame. These are
obtained by letting § = 0 and ¢ = 0 for the stator-fixed frame and § = w. and

¢ = wet + v ( we is the voltage source frequency and v an arbitrary phase) for the

synchronous frame.

A simplified representation of the machine equations (1.8) to (1.11) can be obtained
by using the isomorphism between the complex numbers a + jb and matrices of the
form al + bJ [41,45]. Using this isomorphism, equations (1.8)-(1.11) referred to the

stator reference frame are given by:

d—t:\z—(flf;‘l——w,[g 3])5‘+[(1)]6. (1.12)
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i = H H (1.13)
M S

Tom = T3 1™ (% %) (1.14)

X=10L1 (1.15)

where £ = [f,, f.17, f, = fua + 5 fogr f» = fea + i frq and f stands for voltages, currents,
or flux linkages, and d and q refers to the direct and quadrature components. The

transformed resistance and inductance matrices are given by

~ L.l M L. _ R, 0

L B [ M Lr ] ’ R B [ O Rr ]
It is important to point out that under constant speed operation equation (1.12) is the
model of a linear time invariant (LTI) system. Under constant speed operation it is

therefore possible to compute a closed expression for the transfer function from stator

voltage to stator current. This is given by:

_ %r'(s‘l"%_jwr)
_82+(M_jw'),+g,aﬁ.(l jw,)

o T.

H(s) (1.16)

where T, = L. /R, is the rotor time constant and ¢ = L,L, — M?%. Note that the rotor
speed w, enters as a parameter in the coeflicients of this transfer function as well as
other machine parameters. This transfer function is central to the estimation algorithm
developed in this thesis. The use of this transfer function to estimate rotor speed and

machine paramaters was introduced in [45].

1.3 Literature Review: Speed Estimation

The common approach in high performance control of induction machine drive systems

involves the use of a speed transducer connected to the shaft of the machine. The use of

17



this transducer has two major drawbacks. First, it obstructs the mechanical interface
between the motor and the load, interfering with the requirements of tight coupling or
close spacing in the mechanical layout or imposing the application of undesirable gear
trains or belts. Second, it generally requires the use of brushes or light sources that
require maintenaice, which represents a weak link in the system in terms of reliability.
Therefore, the use of the transducer in the induction machine drive systems spoils the
mechanical simplicity and robust structure of the machine, which are two of the most

important reasons to use these drives instead of their dc counterpart.

Three basic approaches can be identified in the literature that addresses the problem
of speed estimation based on measurements of the stator voltages and currents. First,
because the rotor speed is a state variable of the system, a nonlinear observer can be
used to estimate the rotor speed as part of the state vector of the machine. Second,
since the speed can be thought of as a parameter in the electrical equations of the
induction machine, and if all the electrical quantities and the machine parameters are
known, it might be possible to estimate the rotor speed frcm equation (1.8). Third,

since the rotor speed w, and the slip w, are related by,
Wy = We — Wyt (1.17)

where w, is the frequency of the eclectrical signals, an indirect way to estimate the
rotor speed is by estimating the slip. Note that because of (1.17) estimating the slip is

equivalent to estimate the rotor speed.

1.3.1 Rotor Speed as a State Variable

Because of the nonlinearities involved in the machine model, the estimation of the state
variables of the induction machine requires the use of a nonlinear observer. The most
common approach to the nonlinear observer problem is using the Extended Kalman
Filter (EKF). This algorithm is based on the application of the linear Kalman filter

to a linearization of the system model and measurement equation around the current

18



estimate of the state. The reader is referred to [6] for a formal treatment of this subject.
The EKF has been applied to the problem of induction machine speed and parameter
estimation by Hillenbrand [24].

To introduce Hillenbrand’s approach, let us review the machine model that he uses
in his estimation algorithm. The machine model in the stator reference frame, with the

stator flux, stator current, and the rotor speed as state variables, is given by:

dA,

= —Ri.+3, (1.18)
di& _ Rr . Lr 3 RaLr + RrLc . ~ Lr -~

7 = (Fge)h - (P e u e Fa )
dw,- _ B 1 N ~» 1 ¢
= __F%+FM4%Q_H” (1.20)

Because the stator currents and voltages are known quantities, it is only necessary to
estimate the stator flux and the rotor speed. This could be done by using a reduced
order observer based on equations (1.18) and (1.20). If we have available the value of
the derivative of the stator current, the measurement equation for the EKF is given by
(1.19). The special feature of the reduced order model used by Hillenbrand is that for
a known value of the stator current, equations (1.18) and (1.20) are linear in the state
dynamics, with nonlinearities only in the measurement equations, which makes easier
the application of the EKF to the solution of this problem. In his implementation, Hil-
lenbrand uses a discrete time model derived from these equations. Since the dcrivative
of the stator current is not directly available as a measurable quantity, in this algerithm
the signals are prefiltered by “mod-function” filters and the output signals are used as
the measured signals by the estimation algorithm. To incorporate the estimation of the
rotor time constant, the state vector is augmented to include this variable as another
state variable, see [6] for an explanation of this procedure, where the EKF is used for

the simultaneous estimation of state and parameters.

Hillenbrand’s simulation results are encouraging, but neither stability nor conver-

gence are discussed. Implementation issues are not addressed, even though it is claimed
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that the implementation of this algorithm could be simple using a microprocessor.

1.3.2 Rotor Speed as a Parameter in the Machine Electrical
Equations

Looking at the electrical equations of the induction machine (1.8) we can see that the
speed can be thought of as a parameter in these equations. Therefore, if the values of
the machine parameters as well as the electrical variables are available, the rotor speed

can be estimated from (1.8).

de Fornel et al.’s Speed Estimator

In [11] de Fornel et al. derive an expression for the rotor speed in terms of the rotor
flux, stator current and the derivative of the stator current. The machine model used
in the derivation of this algorithm is the model referred to the synchronous reference
frame with the constraint that the reference axis is aligned with the stator current
vector. This model, using the stator currents and the rotor flux as state variables, is

given by the following set of equations:

d), 1 M,

Z = ~(gI-wa) Mt g, (1.21)
di, R,L? + R, M? ) M M L.

prli ‘( oL? ‘+“=~')'-+(f;“‘"'7’)*'+7"° (1.22)

Because of the constraint that the stator current lies along the reference axis of the
machine, the second component of the matrix equation (1.22) is equal to zero, i.e.

1,2 = 0.

If the values of the rotor flux, the stator current and the derivative of the sta-
tor current are known in (1.22), the rotor speed can be estimated from either of the

components of the vector equation:

R,L? + R.M? awﬂ R o di,

I+ ia+'~r'Ar’—

- w,J/\,. = - ( ML?, -M- L,. Hd_t (123)
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Because of the constraint set on the stator current, the second component of the matrix
equation (1.23) does not have a derivative term on it. Both estimators are studied in
{11]. Their results show that the estimator without the derivative term has the better

performance.

A point which is not very clear in this paper is the following. Assuming that the
derivative of the stator current is known, the only quantity that is not directly available
is the rotor flux. The rotor flux can be estimated from (1.21). However, to compute
this estimate it is necessary to know the value of the speed. The slip and the rotor
speed are related by:

Wol = We — Wy
where w,; stands for slip. In [11] the relationship between slip and the rotor speed is not
made clear and in the derivation these look like two unrelated quantities. Simulation
results are presented that show a satisfactory performance of the algorithm. However,
the stability and convergence properties of the algorithm are not studied. The fact
that the estimate of the rotor speed has to be used for the rotor flux estimation leaves

many unclear points about the stability and robustness of this algorithm.

Tamai et al.’s Model Reference Approach

In this sectior. we present the basic idea of the speed estimator presented in [50]. The
speed estimator presented in this paper is based on the theory of Model Referrnce

Adaptive Systems (MRAS) [33]. A block diagram that will be used to explain this

approach is presented in Figure 1.2.

The basic idea behind this approach is as follows. The induction machine is the
reference system whose parameters, we want to estimate. The adjustable model is an
ideal vector-controlled induction motor model, in which the rotor speed enters as a
parameter. The rotor speed in the adjustable model is tuned so that the difference

betw=en the cutput of the induction machine and the output of the adjustable model
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Figure 1.2: Model Reference Adaptive System for Rotor Speed Estimation.

is made equal to zero. When the error is made equal to zero, if the input signal is rich

enough, the speed estimate @, should be equal to the value of the rotor speed.

1.3.3 Slip Estimation

An indirect way to estimate the rotor speed is by estimating the slip. If an estimate of
the slip is available it is obvious that an estimate of the rotor speed can be obtained.
Also, to control induction machines sometimes is more desirable to use slip rather than
rotor speed. Two basic forms of slip estimators can be identified in the literature on

slip estimation, namely steady state and dynamic slip estimators.
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1.3.3.1 Steady State Slip Estimators

The estimators studied in this subsection are based on the assumption that the electrical

variables of the machine are in steady state.

Abbondanti and Brennen’s Estimator

The first estimator studied in this section was originally presented by Abbondanti and
Brennen in [2]. This estimator is based on the fact that at low values of slip the steady

state electromagnetic torque is proportional to the slip, i.e.

V‘Z
Tem ~ Mer—mwll (1.24)

We

where V,, represents the peak value of the stator voltage. If the value of the steady
state electromagnetic torque is known, the slip can be estimated from (1.24). Since the
electromagnetic torque is not directly measurable, [2] estimates it from an estimate of
the airgap power. The electromagnetic torque and the airgap power in steady state are

related by

TemWe = Pg (1.25)

where P, stands for airgap power. The airgap power can be estimated from stator

voltages and currents using:

~

P,=vTi, —iT R,i, (1.26)

Combining (1.24) to (1.26), Abbondanti’s estimator is obtained. The equation for the

estimator is given by

. vIi, —iTR,i,
Wy = W— (1.27)

Different implementations of this estimator are shown in [2,53]. In [53], it is noted that

this estimator is accurate only in steady state operation.
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Naunin’s Estimator

A similar estimator is presented by Naunin in [40]. This estimator is similar to Abbon-
danti’s estimator in the sense that a linear relationship between slip and torque is used.
This linear relationship is derived from experimental data rather than using (1.24). It
is pointed out that this relationship is valid for a limited range of slip. The estimator
is implemented as part of a digital control system and the experimental results seem
to be satisfactory. However, it is observed that for low speed operation the system

becomes unstable.

de Fornel et al.’s Steady State Slip Estimators

Another approach to the problem of slip estimation based on the steady state assump-
tion is presented by de Fornel et al. in [12]. The electrical equations of the machine

moddl in the synchronous rotating frame in steady state are given by:

(RI+w.LA)i, + w. MJi, = v, (1.28)
waM3i, + (BRI +wyLd)i, = 0 (1.29)

Since the stator currents and voltages can be measured, equations (1.28) and (1.29)
form a system of four equations and three unknowns. Solving for the rotor current in

(1.28) and substituting back into (1.29) results in

O RA)i| = I - (RI-wLDi  (130)

L,
w,,i: [JV, + ( L

A slip estimator can be obtained from either of the components of the vector equation
(1.30). To compensate for parameter variation, a rotor resistance estimation method
is implemented as part of the estimation algorithm in {12]. Simulation results are
presented in the paper that show the performance of the estimator with and without

rotor resistance variation.
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The second steady state slip estimator presented in this section is based on another
paper by de Fornel et al. [13]. The model used tc derive this estimator is given by
equations (1.21) and (1.22) with the reference ~xis aligned with the stator current
vector. Assuming steady state conditions on the electrical variables from (1.21), an

equation that relates the slip to the rotor flux is given by

_ 1 /\rl
B Tr Ar2

Wal (1.31)

If the value of the rotor flux is known, the slip can be estimated from (1.31). A
rotor flux observer is implemented as part of the control algorithm, but the rotor flux
estimate is dependent on the slip estimate. The simulation results presented show a
good performance of the controlled system and show a good performance for the slip
estimation. Issues related to robustness, stability and convergence of the estimation

algorithm are not addressed, however.

1.3.3.2 Dynamic Slip Estimators

The poor performance of steady state estimators during electric transient conditions
motivates the design of algorithms that take into account the dynamics of the electrical

subsystem.

Joetten and Maeder’s Estimater

In Joetten and Maeder’s [27] a slip estimator is presented that tries to incorporate
electrical transients into the slip estimation. The machine model used for this estimator
is the model in stator fixed coordinates, see eq. (1.8) with ¢ = 6 = 0. The electrical

subsystem equations are given by:

d\
2 (a8 0] [5] oo
A=

Li (1.33)
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Two expressions for the electromagnetic torque that are used later are:

Tem = A?Jir (1.34)
Tem = %i,TJ,\, (1.35)

If the control algorithm is such that the magnitude of the rotor flux is kept constant,

the rotor flux derivative can be approximated by,

dA,
dt

~ w I\, (1.36)

Combining (1.32) through (1.34) we get that

Wyl
=R,

AT, (1.37)

Using (1.35) and (1.37) an equation for the slip in terms of the rotor flux and the stator
current is obtained. This is given by

T J ),
AT,

(1.38)

Wy =

SR

If the stator current and the rotor flux are known, an estimate of the slip can be
obtained from (1.38). However, the rotor flux is not directly available. A flux estimator
is implemented in {27). The flux estimator is derived from (1.32) and (1.36) and is given
by

A = —wf]'w.l (v, ~ R, - Li,%) (1.39)
where \ stands for flux estimate. Note that it is assumed that the derivative of the
stator current is available. The implementation in [27] uses a differentiator as part of
the estimation algorithm. In general the use of a differentiator is undesirable because
of the noise, but [27] claims that it has a smoothing effect. The effect of the machine

parameters on the performance of the estimator is discussed. A control algorithm where

this estimator is used is presented in [49).

In a paper by Nabae et al. [39] a similar slip estimator to the one presented in [27],

based on equation (1.38), is used. The difference is that a rotor flux observer is used,
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instead of (1.39), to estimate the rotor flux. The rotor flux observer is based on the

direct flux observer scheme [45,56,55], the equations for the observer being given by

d\, L. . o.
- = 27 (Vo — Raa) = 37, (1.40)

That eliminates the use of a differentiator in the rotor flux estimator. Note that the
flux estimate does not depends on the estimate of the slip, unlike with the flux observer
used in [12]. However, as discussed in [45,56,55] this rotor flux estimati~~ scheme has
two major drawbacks: first, its poor behavior at low speeds; and second, the estimation
error (i.e. the difference between the estimated and real values of the rotor flux) does

not go to zero.

1.4 Literature Review: Parameter Estimation

The modeling of an induction machine is a well studied area, and equations (1.8)-(1.10)
are accepted as being a good model of the induction machine for control purposes.
The question that comes to mind is how we estimate the parameters of this model,
ie. R, R, ,L,,L., M. In general, two approaches can be followed. First, off-line
identification can be performed, collecting a batch of data from the induction machine

and subsequently, as a separate procedure, estimating the values of the parameters.

A well known off-line procedure involves two tests, the no-load and locked rotor
tests [18]. Further improvements to the parameter values estimated from the no-load
and locked rotur tests can be obtained by including other operating conditions in the
estimation procedure. A paper by Bellini et al. [3] describes an estimation procedure
that includes data on torque, speed, stator currents and voltages at different operat-
ing conditions. The parameter estimation procedure is formulated as a constrained
nonlinear optimization problem, where the data is fitted to the steady state torque
characteristic. The constraints are obtained from physical knowledge of the system. A

different procedure is presented by Consoli et al. in [8], who identify the parameters
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of a linearized reduced order model of the induction machine. In both cases the least

squares criterion is used for identification.

The obvious disadvantage of the off-line methods is that the variation in the machine
parameters during machine operation is not taken into account. The estimated value of
the machine parameters can be used in machine simulations and for contrc! design. In
control design the use of these parameters presents a tradeoff between implementation
and performance, i.e. it is easier to design a control algorithm for a system with known
parameters than for a system where the parameters are time varying quantities, but as

the parameters change the performance may degrade.

'The development of high performance control algorithms, like field oriented control
[5,34,35], have made possible the use of induction machine drives where formerly dc
drives were exclusively used. Most of these high performance control algorithms rely on
an accurate knowledge of the machine parameters at all times. Because the machine
parameters change widely during machine operation, it is necessary to estimate the
values of these parameters during operation. The machine model then is updated

when variations in the machine parameters are detected.

Motivated by the importance of the rotor time constant or rotor resistance in field
oriented control [31], most of the on-line parameter estimation methods discussed in
the literature are devoted to their estimation. In most of the cases, except Hillenbrand
[24], the measured variables are the rotor speed and the stator voltages and currents, so
the estimation procedure is based on equation {1.8). Therefore, it is not surprising tiiat
most of the parameter estimation algorithms presented in the literature are analogous to
the speed estimators discussed previously, where the speed is considered as a parameter
of equation (1.8) too. We will therefore, not repeat the analysis done for the speed

estimation algorithms, but simply give the classification of the literature in this area.

In principle the extended Kalman filter (EKF) is applicable to the speed and pa-
rameter estimation problems. In [14,24,59] the EKF is used to estimate part of the
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state vector of the induction machine and the state vector is augmented to include the
rotor time constant. The static estimators for rotor resistance or rotor time constant
are presented in [25,32,38,57], i.e. an expression for these parameters is derived from
equations (1.28)-(1.29) and used to estimate them, based on measurements of the ro-
tor speed and the stator voltages and currents. Different parameter tuning algorithms
following the MRAS approach arc contained in [20,19,29,48], where the parameter tun-
ing is done by monitoring the parameter variations indirectly, using a quantity that is
defined as a function of the machine variables to monitor the change of the machine
parameters. If the machine parameters and the model parameters are equal, the value
of this function for the machine and the model should be the same. If the parameter
changes, the value of the fuaction for the model and the machine differ. This difference
is feed to a tuning procedure that change the model parameter values until the output

of the model and the machine are equal.

A few observations can be made about these algorithmms. First, some of these
methods are parameter dependent themselves, i.e. depend on the inductances, which
change with operating conditions too. Second, the robustness and stability properties
of these adaptive control algorithms are not discussed and sometimes implementation

issues are not addressed.
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Chapter 2

Linear Regression Models for Speed
and Parameter Estimation

2.1 Introduction

Most of the approaches followed for speed estimation involve the use or the equations of
the electrical subsystem (1.8) of the machine. In some of these schemes, it is assumed
that an accurate knowledge of the machine parameters is available. As a result of this
assumption these schemes are parameter dependent themselves. Since the machine
parameters change during operation, the performance of the estimator will be affected
by these variations. Therefore, to be able to estimate the rotor speed accurately, the

estimator itself should involve a mechanism to compensate for parameter variations.

In this chapter we will present two linear regression models that relate the speed
and the machine parameters to the stator voltages and currents. Therefore, the speed
and parameter estimation problem for the induction machine will be reformulated as

the problem of estimating the parameters of a linear regression model.
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2.2 Two-Time-Scale Phenomena in Induction Ma-
chines

Induction machines involve dynamic phenomena with widely spread time constants.
This ia due to the difference between the time constants associated with the electiical
and mechanical subsystems. Based on this phenomenon, we are able to decompose the
dynamic structure of the machine into its fast and slow subsystems. Reduced order
models of the machine can be developed using the time scale decomposition. The

resulting models can be used for estimation purposes.

A natural way to decompose the machine model is into its mechanical and electrical
subsystems [54]. The nonlinearities involved in the induction machine model make it
difficult to understand how the electrical and mechanical subsystems interact. One way
to study this structure is by looking at the linearized model of the induction machine
operating at constant speed. This model turns out to be time invariant, which makes
possible the use of the participation factors introduced in [43] to study the local dynamic
structure of the linearized machine model. The analysis and the derived reduced order
models are presented in Appendix A and in [51]. In this section we only present some

of the results for small induction machines.

The eigenvalues of the linearized model for a 3 hp machine are shown in Table 2.1
and the corresponding participation factors in Table 2.2. Based on the participation
factors we are able to discern clear dynamic patterns, i.e. associations between state
variables and modes of the linearized model. There are three groups: the stator eigen-
values p, 2, the rotor eigenvalues 3 4 and a rotor speed eigenvalue pg. Note that the fast
eigenvalues (i.c. the ones with the larger real part) are associated with the electrical
subsystem and the slow eigenvalue is associated with the mechanical variable. There-
fore, we are able to decompose the machine model of the 3 hp induction motor into
its fast and slow subsystems, where the fast subsystem involves the electrical variables

while the slow subsystem involves the mechanical ones. It is shown in Appendix A that
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Name Value
12 | -86.62+315.71
Hag | -228.44171.04

He -4.38

Table 2.1: Eigenvalues of the 3 hp Induction Machine.

State Participation Factors
Variable | p12 M3.4 Ms
As1 0.5722 | -0.0722 (0
As2 0.5732 | -0.0732 | 0.0001
AR1 -0.0730 | 0.5834 | -0.0207
AR2 -0.0715 | 0.5712 | 0.0005
w, -0.0009 | -0.0092 | 1.0200

Table 2.2: Participation Factors for the 3 hp Machine.

this decomposition will hold for small machines only; for large machines a different

slow/fast decomposition holds.

The implication of this two-time-scale property is that if we look at the evolution
of the electrical and mechanical variables in an interval of time much smaller than
the mechanical time constant, we will see that the machine fluxes and currents may
change significantly, while the rotor speed will remain almost constant. Therefore,
the electrical equations of the machine model (1.8) essentially constitute a linear time

invariant system (LTI) during that interval of time.

It is important to point out that the rotor speed as well as the machine parameters
enter as parameters of (1.8). We shall see later that a parameter estimation algorithm
based on the electrical equations, with a convergence rate faster than the mechanical
time constant, will be able to estimate rotor speed and machine parameters based on

measurements of the stator voltages and currents.
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In the estimation methods reviewed in Chapter 1 we saw how the electrical equations
were used to derive expressions for the rotor speed or machine parameters in terms of the
electrical quantities. To solve the problem of the unaveilability of the derivative terms
and of the rotor quantities, the electrical quantities were assumed to be in steady state
and rotor flux estimators were implemented. Therefore the assumption of separation
of time scales between the electrical and mechanical subsystems as well as the use of
the electrical equations for speed and parameter estimation has been widely used by
the different methods presented in the literature. In the next sections we use the time
scale separation property to come out with a linear regression model that relates the
rotor speed and machine parameters to the stator voltages and currents. Furthermore
we show how, by using so-called state variable filiers, the problem with the derivative

terms is avoided.

2.3 Derivation of the Linear Regression Models

Over a short interval of time the evolution of the electrical variables of the machine
can be approximated by an LTI model. The transfer function between stator currents

and stator voltages for this LTI model was computed and given in (1.16).

In this section we will derive two linear regression models based on (1.16). The
estimation algorithm will estimate the parameters of these linear regression models.
From these estimates, estimates of the machine parameters as well as the rotor speed

can be obtained.
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2.3.1 Linear Regression Model for Speed and Parameter Es-
timation

Let us, for notational simplicity, rename the transfer function coefficients in the follow-

ing way:
o o REFRL
w = 22 (i) (2.1)
v B

Using this notation the transfer function (1.16) is given by:

b13 + bo

He) = S et a

(2.2)

Taking the inverse Laplace transform, a second order differential equation relating
stator voltages and currents can be obtained from (2.2). This equation is given by:

d*i,
dt?

dv,
dt + bova

F a2 4 ai, = b
ay 7 + aot, = 0y

(We have, for notational simplicity, droped the tildes used in the development of (1.12).

Solving for the second derivative of the stator current we get:

a)
dz i' di, . dva ao «
az | @ " d ”‘] by (29)
bo

Let us assume for the moment that the derivatives are availabie as measurable quan-
tities. Later on we will see how, by applying a filter to the stator voltages and currents,
we handle the problem of the derivative terms while keeping the linear relationship

between the measurable quantities and the parameters to be estimated.
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Since we would like to implement this algorithm digitally, let us define the measure-

ment equation at time kA, where A is the sampling interval. This is given by:

ys(k) = Ce(k) ¢ (2.4)
where
2.
ys(k) = % at time kA
di. . dv. .
Cylk) = |- v at time kA
0; = [a1 ao by ;bo)T is the vector of unknown parameters

where the subscript f refers to full regressor, since this model relates speed and pa-
rameters to the stator voltages and currents. Note that this is in a linear regression
form, i.e. the unknown parameters and the measurements are linearly related. On-line
parameter estimation methods for this type of model are widely discussed in the litera-
ture on system identification, see for ¢.zample [37,58]. By estimating the parameters of
the regressor model (2.4) we can identify the parameters described in (2.1). With alge-
braic combinations of these quantities, we can obtain many of the machine paramaters,

including rotor speed w,, the rotor time constant T;, L./, R,, etc.

2.3.2 Linear Regression Model for Speed-Only Estimation

A variation of equation (2.3) can be obtained if the machine parameters are known.
In this case the known quantities become the “measurements” and the speed becomes
the only parameter to be esiimated. Following this procedure, a linear regressor model

where the speed is the only unknown parameter is obtained,

Yu(k) = Cu(k) we (2.5)
where
_ d, R,L,+R.L,di R.R,. L. dv, R,
vu(k) = dt+ o dt+ o l'_cr dt_o'v'
.(di, L.R, . L,
Cw(k) =1 (E + ty — 7 va)

35



where all the quantities are measured at time kA. The subscript w is used here to

point out the difference between this model and (2.4).

2.4 Avoiding Derivatives

The derivatives of the stator voltages and currents are not available as measurable
quantities, so it is not possible to directly use the linear regression models derived
previously for the estimation of speed and machine parameters. The question that
arises is what kind of signal processing can be done to the measurable quantities (i.e.
stator voltages and currents) so that the linear regression models are still useful for
speed and parameter estimation. In this section we will present one possible method.

A general treatment of this problem is presented in [16].

2.4.1 Linear Transformation of the Data

The linear structure of the regression model makes easy the use of a linear operator
to solve the problem with the derivative terms. If a linear operator T(-) is applied to

both sides of (2.4) we get:
T(y(k)) = T(C(k)) 0

Let us pick a T(-) that commutes with the derivative operator inside (2.4). We are

then able to interchange the derivative and T(-) operations, i.e.

dz(t)\
T( av ) = gt ()
Let us introduce the notation

di

20(t) = 5’—5}9
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to denote the i-th derivative of the transformed quantity and of the function z(t)

respectively.

Using this notation, the transformed linear regression model! for speed and param-

eter estimation (2.4) is given by:

g(k) = C(k) 0 (2.6)

where

g(k) = Ty(i,) at time kA
Ck) = [-T() — To(2,) Ti(vs) To(v,)] at time kA

# = some asin (2.4)

The operator T(-) will be chosen so that all the quantities in (2.6) are obtainable
without differentiation from measurable quantities. Note that by using the trans-
formed stator voltages and currents, and their transformed derivatives instead of the
true quantities, we are able to keep the linear relationship between parameters and
measurements, which makes easier the estimation process. Therefore, instead of using
the true derivatives of the stator voltages and currents, the estimation algorithm will
use the derivatives of the transformed stator voltages and currents for estimation pur-
poses. The use of this signal processing method for speed and parameter estimation is

illustrated in Figure 2.1.

Up to this point we have said nothing specific about the selection of T(-). It is clear
that the choice of T(-) will affect the properties of the estimation scheme, e.g. the kind
of information produced, the speed of convergence to the solution, the possible bias of

the solution, the influence of noise.
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Figure 2.1: Speed and Parameter Estimation with Transformed Stator Voltages and
Currents.

2.4.2 State Variable Fiiter

One possible T(:) is a stable LTI filter with impulse response f(t). Applying this

transformation to the equation (2.3) we get,

ay
f*i£2)(t)_—_[_f*i('1) —f *1, f*'vsl) f*v,]l(;: (27)
bo

where + denotes convolution. To get something of the form (2.6) we will need the

following relationships (assume that z(t) is bounded),

(f*z)(t) = /o”f(t-f)z(r)dr
(Fx=®) ) = =(0)5(0)+ [ £t —T)a(r) dr
(F2®) (1) = =(0)£(0) +2D(0) JO©) + [ Ot = 7)a(r) dr

38



If we pick f(t) such that f(0) = f(1)(0) = 0 we get that

fez®) = f04g (2.8)
f * z(® = f(z) * T (2.9)

These relationships can be used in (2.7) to process the stator voltages and currents and

obtain the measurements for the estimation procedure.

One possible filter is the so called State Variable Filter (SVF). This is a stable LTI

low-pass filter with transfer function F(s) of the form

1

F(s) =
(2) 8™ 4 fmoa8™ 14+ frs+ fo

(2.10)

This filter is realized in the standard controllable form, where m-1 is the maximum

order of the desired derivative.

In Figure 2.2 & block diagram of a third-order SVF is shown. Note that if we take
as outputs the output of each integrator, the transformed signal and its derivatives are
obtained. The normalized Bode plots of the transfer functions from the input to each
of the outputs are shown in Figure 2.3. Ideally, if the measurements were noise free
we could differentiate the stator voltages and currents to obtain the desired quantities
for the estimator. However, due to noise effects this is not possible. By looking at
the SVF Bode plots in Figure 2.3 it is clear that at frequencies below cutoff the filter
basically differentiates the input signal. At higher frequencies the SVF provides the

roll-off necessary for noise rejection.

Techniques for the design of filters of the form (2.10), e.g. Butterworth, Chebyschev,
Bessel, are widely discussed in the literature. Certainly, the critical parameter in this
design will be filter bandwidth. The selection of the bandwidth will represent a tradeoff
between the noise rejection properties of the SVF and the richness of the signals input
to the estimation algorithm. A rule of thumb is that the bandwidth should be greater

than the system bandwidth. An upper bound will be given by the noise.
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Figure 2.2: Third Order State Variable Filter.

Some examples involving the use of state variable filters in estimation algorithms
for electromechanical system are presented in {21,22,26]. An example involving another
kind of signal processing is presented in (17,24], where modulating functions (or mod-

functions) [16] were used.
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Chapter 3

Recursive Least Squares Estimation
of Speed and Machine Parameters

3.1 Introduction

In Chapter 2 two linear regression models that relate rotor speed and machine param-
eters to stator voltages and currents were presented. In this chapter we will develop an
- algorithm to estimate the machine parameters as well as the rotor specd using these two
models. The derivation involves the use of the Recursive Linear Least Squares Estima-
tion (RLSE) algorithm to estimate the parameters of the linear regression models (2.4)
and (25)

This chapter is structured as follows. First, a brief introduction to output error
methods to estimate the parameters of a linear regression model is given. Second,
an introduction to the RLSE algorithm to estimate time varying parameters using a

forgetting factor is given. Third, the algorithm design procedure is presented.
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3.2 Output Error Methods for the Estimation of
the Parameters of a Linear Regression Model

In Chapter 2 the induction machine speed and parameter estimation problem was

reformulated as the parameter estimation problem for a linear regression model:
y(k) = C(k) 0 (3.1)

where y(k)eC and 6, CT(k) e C*. Here C" denotes the n-dimensional complex space.

One way tc estimate the parameters of this model is by comparing the measured
output y(k) with its best estimate based on the available information up to time (k —
1)A, namely j(k/k — 1). The basic idea of the estimation algorithm is to tune the
parameters of the model so that the model will fit as closely as possible, in some sense,

the measured behavior of the system.

Let us define the output error e(k) to be the difference between the model output

and the system output. That is,

e(k) = y(k) — §(k/k — 1)

The estimation algorithm will lock at e(k) and adjust the model parameters accordingly.

This is illustrated in Figure 3.1.

The form of the estimator we are interested in is linear. That is,
(k) = 8(k — 1) + K(k)e(k) (3.2)

where §(k) is the parameter estimate at time k, K(k) is the updating gain and e(k) is
the output error. Estimators of the form (3.2) appear in many contexts in estimation
theory. The parameter updating is done according to the product K(k)e(k). The design
problem turns out to be: how to choose the updating gain such that the algorithm meets

tiie desired performance specifications.
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Adjustable Model

Figure 3.1: Output Error Methods for Parameter Estimation.

The prime objective of this research work is the design and testing of an estimation
algorithm that will ¢rack variations in rotor speed as well as in the machine parameters.
Taking a look at equation (3.2), we can see that in order for the estimation algorithm
to be able to track parameter variations, it should stay alert. This is done by keeping
the updating gain K(k) from going to zero. Another requirement will be that the

algorithm has good performance under the presence of noise in the measurements.

There are many ways to achieve these objectives. The reader is referred to [23,37,58]
for farther information. In this chapter we introduce the algorithm used in this thesis

to perform this task.
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3.3 Recursive Linear Least Squares Parameter Es-
timation for a Linear Regression Model

A common criterion used to measure how well the model fits the measured behavior of

the system is the weighted sum of squares of the output error magnitude:

Ji(0) = ?; Bk,1) e (Lel) (3.3)

where A(k,l) is a weighting sequence and e*(l) is the complex conjugate of e(!). The
updating gain is picked to minimize this criterion. The weighting sequence is chosen
such that it gives more weight to the most recent measurements, while discarding old
data that might not contain information about the present value of the parameters.

By picking B(k,{) in this way we will keep the updating gain fromn going to zero [37].

In this context, the estimation problem can be reformulated as a constrained op-

timization problem. That is, the value of the parameter estimate at time kA is given

by
(k) = arg min Ji(9)
dectd
subject to

y(l) = C()O(l), 1=1,2,...k

In its present formulation, the solution of this problem will require the knowledge
of all measurements up to time kKA. This is undesirable from the standpoint of real
time implementation. However, it turns out that a recursive solution to this problem

exists, and can be easily computed.

First, let us pick the weighting sequence 3(k,[) such that

Blk,l) = o(k)B(k-1,0), 1<I<k-1 (3.4)
Bl k) = 1 (3.5)
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where a(k) is a positive number with magnitude less than one. This means that we

may write
e

ﬂ(kvl)‘: H a(m)

m=l+1

The recursive solution for the estimation problem posed previously is then given by:

b(k) = b(k—1)+K(k) (y(k) - C(k)d(k —1)) (3.6)

K(k) = P(k--1)CH(k) (a(k) + C(k) P(k - 1) CH(k))_l (3.7)
P(k—1)C(k — 1) CH(k — 1) P(k — 1) .

P(k) = Plk-1)- L T Ck—1) P(r— 1) CFIk — 1)) (3.8)

P(0) = I (3.9)

where p is a positive number that reflects our confidence in the initial estimate 6(0)
of the parameter values. Note that this algorithm has the form specified in (3.2).
The new parameter estimate is based only on the previous estimate #(k — 1) and the
measurements at time kA. Therefore, we only need to store the current estimate and

the covariance! matrix P(k — 1).

The current formulation of the RLS algorithm allows the minimum of Ji(8) to fall
anywhere in the parameter space C*. Due to physical constraints, this condition is
undesirable. For example, negative resistances and inductances are meaningless. Also,
the machine parameters can only assume certain ranges of values. Therefore, in order
to obtain estimates with physical meaning, those constraints have to be incorporated
into the algorithm (3.6)-(3.8). To satisfy these constraints, the algorithm (3.6)-(3.8)
should incorporate a projection into the region of allowed parameters values D.,. That
implies that instead of using the “true” RLS estimate as described by (3.6) as the

parameter update at time kA4, its projection into D,, is used.

!The term covariance is used in this context to point out the similarity between the structure of the
estimator given by (3.6) to (3.8) and the Kalman filter. In general this matrix does not represent the
covariance of the estimation error.
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3.3.1 Forgetting Factors to Account for Time Variations

An intuitive way to take into account time variations of the sysiem parameters is by
giving more weight to the most recent measurements in (3.3). This can be done by

letting the weighting sequence ((k,!) be of the form,

ﬂ(k,l) = a:_l

0< a9 <1

or equivalent by
a(k) = Qo (3.10)

This kind of weighting will give an exponentially fading memory to the estimator.

To understand the effect of the forgetting factor upon algorithm performance, let us

take a look at the equation describing the propagation of the inverse covariance matrix

R(k):

R(k) = P~ (k) (3.11)
R(k) = apR(k—1)+ CH(k)C(k) (3.12)

From this equation it is clear that R(k) is at least a positive semidefinite matrix.
This is a first order matrix difference equation, so for ap < 1 this is a stable system.
The solution for this can be easily computed and is given by,

R(k) = o*R(0) + zkj ak-lcH(C(l) (3.13)

=1

Proper operation of the algorithm requires the covariance matrix to be kept positive
definite [37]. It is clear from (3.11) that this is equivalent to keep R(k) positive definite.
Two things will be of great importance for this: the forgetting factor and the richness
of the input signals. The latter is an important condition required for the convergencc

of least squares algorithm [23].
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If the forgetting factor is small the new value of R(k) given by (3.12) will be de-
pendent mostly on the term C#(k)C(k), which in general is only positive semidefinite.
This will have the effect of making R(k) semidefinite with the effect of P(k) to blow
up. As ag approaches 1 the matrices become better behaved. The richness condition
on the input signals forces C(l) to vary sufficiently as 1 varies, so that the sumation

in (3.13) results in a sufficiently positive definite matrix.

In all cases, due to the fact that (3.12) represents the model of a stable system and
assuming C(k) to be bounded, the solution R(k) is bounded. Furthermore, if R(k) is
positive definite, the inverse in (3.11) is defined. Using these facts it is clear then that
the effect of the forgetting factor is to keep the covariance matrix P(k) from going to

zero, and therefore, keeping the updating gain from vanishing.

There are many possibilities for picking ag. The selection depends on how fast the
parameters change as a function of time. A good choice of ap must take into account the
time constants of the parameter variations as well as the sampling rate. It is interesting
to think of the forgetting factor o as

A
a = exp (- =)

Te
where A is the sampling period and 7, is the exponential age-weighting time constant:

the smaller 7., the faster the prior data will be aged, and thus forgotten by the estimator.

Solving for 7. we get
A

"= ia(ad)

(3.14)

A good choice of ag would be to pick it so that the time constant of the exponential
weighting is smaller than the time constant associated with the parameter time varia-

tion, so that in a time interval of length 7. the variation of the parameters is relatively

small.

The faster the time variation is, the smaller the time constant of the exponential

weighting should be. A small time constani can be obtained by using # small forgetting
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factor or a small sampling interval A. Due to the covariance blow up phenomena
described previously, numerical problems may arise when a small forgetting factor is
used. Also, associated with small forgetting factors are higher steady state gains which
make the algorithm more susceptible to noise?. On the other hand, by increasing the
sampling rate, more computational power is needed. Therefore, the selection of the
forgetting factor will be a compromise between noise immunity, computational power,

and tracking capabilities. In practice a common choice for aq is

0.99< ao <0.998
0.002< £ <o0.01

We can see that the number of significant samples in the estimator memory N can be

approximated by [58],

,

JN = _C

A 1-2
In practice [37], it has been found useful to use a time varying forgetting factor a(k)

which initially is smaller than ao but approaches it asymptotically. In this manner, we

will have an algorithm with initially small memory but growing towards the specified

length as time increases. This helps initial convergence by removing the effects of initial

conditions quickly. When a(k) = oy, these effects decay with a fixed time constant.

3.4 Design of the Estimator

In the previous section, we presented the RLSE algorithm using forgetting fectors for
the estimation of time-varying parameters in a linear regression model. In this section
we will show how the RLSE algorithm is used in combination with the regression
models (2.4) and (2.5) to develop an algorithm to estimate the speed and parameters

of the induction machine.

3This is not surprising since smaller forgetting factors lead to less averaging of the noise
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3.4.i1 Time-Scale Separation Between Parameters and Speed

Physically, we might expect that the rate of change of the machine parameters is slower
than the rate of change associated with the rotor speed. In its present formulation the
RLSE algorithm using forgetting factors does not take into account differences in the
parameters’ rates of chaige. This will result in a problem when the differences between
the rates of change of the different parameters are significant. That is, for the fast
parameters we will need to use either a small forgetting factor or high sampling rates

in the hardware implementation of the algorithm.

To illustrate this point, simulation results for the RLSE speed estimator, based
on (2.5), are shown in Figure 3.2. The parameters of the machine model are given in
Table 3.1. The sampling rate is set to 1 kHz. Note how the tracking capabilities of the
algorithm are affected by the forgetting factor. The larger the forgetting factor, the
larger the tracking error. It seems that a forgetting factor of 0.7 will do a reasonable
job. On the other hand using a forgetting factor of 0.7 for the full RLSE speed and

parameters estimator, based on (2.4), will cause the covariance matrix P(k) to blow
up.

Since the machine parameters change during operation, it will be necessary to pe-
riodically update the values of the parameters used by the speed-only estimator (i.e.
the RLSE based on (2.5)) in order to have an accurate speed estimate. A simulation
result for the speed-only estimator with the rotor resistance changed by 50 % is shown
in Figure 3.4. Note that having the wrong parameter values will introduce bias into

the steady state value of the estimate.

There is evidently a conflict between the desired speed tracking capabilities and
issues related to the implementation of the algorithm. If the RLSE based on (2.4) is
used to do both speed and parameter estimation, we will require (expensive) hardware

with fast computational power in order to do good speed tracking. A solution to this is
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Figure 3.2: Simulation Results for the Speed-Only Estimator for ap = 0.7: (a) Speed
Estimate, (b) Error in Speed Estimate.
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Parameter | Value
Name
R, 0.4350

R, 0.8160 £

L, 0.0713 H

L, 0.0713 H

M 0.0693 H

Table 3.1: Parameters of the 3 hp Machine

proposed next, using a iwo-stage estimator. This estimator takes advantage of the time

scale separation between the variations in the rotor speed and the machine parameters.

3.4.2 Two-Stage Estimator

Due to the time scale separation between variations in the machine parameters and the
rotor speed, the estimation procedure will be decomposed into two parallel procedures:
a fast estimator that will be in charge of estimating only the rotor speed and an
estimator that will estimate the machine parameters. This is illustrated in Figure 3.5.
The fast or speed-only estimator is the RLSE for the regression model (2.5). Similarly,
the slow or full estimator is the RLSE for the regressionmodel (2.4).

The algorithm will work as follows. The main procedure is the speed-only estimator,
while the full estimator will work as an auxiliary procedure that will interrupt the

speed-only estimator to update the parameter values used by the speed-only estimator.

Due to this two-stage estimation procedure, we are able to design each estimator
independently, so the designer can choose the design parameters so that each estimator
has the tracking capabilities necessary for each estimation problem. The speed-only
estimator is designed with a small forgetting factor so that it can track the faster vari-
ations associated with the rotor speed. For the speed-cnly estimator a small forgetting

factor will not represent a problem, since the associated inverse covariance matrix is a
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scalar quantity. The full estimator can use a larger forgetting factor since the param-
eter variations are slower. This will improve the estimator’s numerical robustness. A

flowchart describing the two-stage estimator is shown in Figure 3.6.

The recursion is started with the speed only estimator using the initial parameter
values obtained from the blocked-rotor end no-load tests. Aftcr certain amount of
time the full estimator interrupts the speed-on's estimator and takes control over the
estimation. Before computing the new i - .a: .eter estimate the imaginary part of é, of
the full estimator is updated by incorporating the most recent estimate of the rotor
speed &, obtained from the speed-only estimator. This is needed because during the
time when the full estimator is off the rotor speed may have changed significantly from
the value at the time when the last parameter update was made. After updating the
machine purameters the control of the estimation is transfer back to the speed-only
estimator. Note that even thought the speed is estimated as part of the parameters
in the full estimator the obtained value is not used by the speed-only estimator when
the control is transfer back. This is because in the simulations we observed that the

estimates behave better when this is done.
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Figure 3.6: Flowchart of the Estimation Algorithm.
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Chapter 4

Simulation Studies for the
Estimation Algorithm

4.1 Introduction

The study of the estimator from the analytical point of view is very difficuit due to
the nonlinear time-varying nature of the algorithin. In this section we will study the
performance of the estimator tirough simulations. We will focus our attention on trying
to understand its tracking capabilities and study the performance of the estimator under

uncertainties in the nieasured quantities.

4.2 Study of Tracking Capabilities

In this section the estimatur tracking capabilities for speed and parameter variations
using noise free measurements are studied. The parameters of the machine used are

the same as in Table 3.1. The estimator parameters for the simulation are as follows:

@ (0) = 0
0,(0) = [ 285.48 1136.07 228.20 2611.65 |”
Ou0 = 0.7
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P0) = I
A time varying forgetting factor of the form

ag(k) = go ag(k — 1) + (1 — go) ay,

where

as(0) = 0.9, ay, =099, go=0.99

was used by the full estimator. The subscripts w and f refer to the speed-only and
full estimator respectively. The values for the time varying forgetting factor of the

parameter estimator are obtained from empirical information presented in [37].

The simulation results are shown in Figures 4.1. Only real parts of the complex
coefficients a,, ag, b; by are plotted. The results show that the algorithm exhibits a

good tracking performance for speed variations as well as for parameter variations.

Note the interesting behavior of the parameters estimates. The parameters associ-
ated with the coefficients of the derivative quantities, a; g, b;, converge faster than those
associated with the non derivative terms agr,bor. This behavior can be explained by

looking at the sensitivity of y(k) with respect to these parameters. That is,

dy(k)  di,
da1 - _.E-
dy(k) _

dag ‘
dy(k) dv,
db,  dt

dy(k)

dby

Since the richness of the derivative terms is larger than the richness of the non
derivative terms, y(k) is more sensitive to the parameters associated with the derivative

terms. Therefore, is reasonable to think that a, and b, are more identifiable from the
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measured quantities than ay and b,. Note that the sensitivity parameters described

previously are highly dependent on scaling of the measurements.
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4.3 Effect of Disturbances

The estimation algorithm presented in Chapter 3 was based on a deterministic problem
formulation. We have shown, by means of simulations, the ability of this algorithm to
estimate and track variations of the rotor speed and the induction machine parameters.
In the case where measurements of stator voltages and currents are corrupted by noise,

it is of interest to study the behavior of the proposed estimator as well.

In its present formulation, the estimaior based on least squares assumes that the
uncertainty is constrained to be in the measurement y(k) while the C(k) matrix of the
linear regression model is assumed to be known perfectly. However, since C(k) and y(k)
are both dependent on the measurements obtained from the output of the state variable
filter, we will have uncertainties present in both quantities. If the uncertainty in C(k)
is small, we should expect that the estimator based on the least squares criterion should
produce good estimates of the parameter vector §. However, as the unccrtainty in C(k)

increases, the estimates based on the least squares should be poor.

We focus our attention on trying to understand the effect of these uncertainties
in an intuitive manner, rather than complicating our discussion with examination of
random processes. Furthermore, to keep the discussion simple, our attention is limited
to the constant speed and paraneters case. The reason for this is that by keeping the
speed and parameters constant the resulting machine model is time invariant, so it is

easier to visualize the effects of the disturbances on the performance of the estimator.

4.3.1 Batch Estimation

Since we are dealing with constant speed and parameters, it is possible to estimate the
values of the rotor and machine parameters in batch mode. In this section we will look
at the noise effects on the batch estimates of the speed and machine parameters for the

full regressor model (2.4).
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Let us define the following vector quantities:

Y. = (1) y(2) ... y(k)]"
C. = [cF(1) €¥(2)..cH (k)"

In terms of these vector quantities the measurement equation is given by,
Y,=C.0
The least squares estimate is the value of § that minimizes:
J(0) = (Yi — Ci8) (Y1 — Cy6)

and is given by

6= (cfc.)” v, (4.1)

In Table 4.1 the baich LS estimates of the transfer function coefficients for different
signal to noise ratios (SNRs)! are shown. From these results we can see that by increas-
ing the uncertainty in C; the LS estimate degrades. The effect of the uncertainty in
C. on the parameter estimates using least squares is to introduce bias in the estimatee.
Furthermore, those parameters associated with the filtered stator voltages and currents
have the largest estimation errors. The estimates of the coeflicients associzcted with the
filtered derivatives seem to be more robust to the uncertainty in C,. This agrees with

the sensitivity analysis done previously.

4.3.2 Two-Stage Estimator with Noisy Measurements

In the previous section we studied how noise in the measurements can affect the esti-
mates of the rotor speed and machine parameters by looking at the batch estimates.

In this section we will study, by means of simulations the effect of noisy measurements

IThe SNR in this example is defined as the minimum SNR of the signals output by the state variable
filters. The SNR is computed as the ratio of the mean square value of the signal over the mean squared
value of the noise.
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Parameter SNR

True | 166.36 | 6.6542 | 1.6636 | .01863
w, 360.00 | 360.26 | 355.60 | 343.94 | -123.34
air 317.20 | 317.23 | 319.52 | 324.09 | 475.19
QoR 126.23 | 957.07 | -6,469.1 | -16,907 | -26,304
b, 253.56 | 253.59 | 253.94 | 254.09 | 228.18
bor 2901.8 | 2019.5 | 2766.0 | 2572.4 | 8924.8

Table 4.1: Batch LS Estimates of the Speed and Real Part of the Transfer Function
Coefficients for the Constant Speed and Parameters Case.

upon the performance of the actual two-stage estimaior. We will limit our attention to
the constant speed and parameter case, and exemine the convergence and the steady

state behavior of the estimator.

Before looking at the simulation results, let us discnss how the noise affects the
estimator behavior. If the estimates at some time lock in with the true values of the
parameters, the output error will be due mainly to the measurement noise. However,
since the updating gain will never go to zero, the noise will drive the estimator, changing
the values of the parameter estimate accordingly. As a result the estimates will never
converge to the true value of the parameters. Rather, they will be randomly varying

quantities with mean around the steady-state values shown in Table 4.1.

The simulatiop results for ¢he noise free and noisy LTI case are shown in Figures 4.4
to 4.9. The estimates for the noise free case converge fast to their true values. For
the noisy case (SNR = 1.66), the speed and parameter estimates have a different
behavior. First, the estimates do not converge to their true values; they are randomly
varying quantities with means close to the values predicted by the batch estimmates given
previously. Due to the smaller forgetting factor the speed estimate is much noisier than
the parameter estimates. This is not surprising because, by using a smaller forgetting

factor, the averaging over the noise is smaller. In general the selection of forgetting
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factor will represent a tradeoff between tracking capabilities and noise immunity.

4.4 Final Comments on Simulations

We ran many simulations of the estimator. In this section we sumarize some obser-
vations regarding the two-stage estimator that are not brought out by the simulation

results shown here:

o The convergence rate is highly affected by initial conditions. Specifically, picking
the initial covariance matrix. P(0), to be large (small) makes the algorithm to
converge fast (slow). However, with large initial covariance we have the worst

transient behavior because of the large overshoots.

e The speed-only estimator will converge (during constant speed), or stay close
to the true value (during speed transients) whenever the estimated value of the
parameters is close to their true value. If the error in the estimated parameters
is large the speed estimator will not get close to the true value of the speed until

the parameters get close to their true values.

e After extended operation the estimator may become unstable due to roundoff
errors. This is because the covariance matrix P(k) becomes negative definite. To
avoid that, better methods for computing the covariance matrix P(k) are needed.
Also the covariance matrix can get very small so periodic covariance resetting is

needed in order to mantain the tracking capabilities of the algorithm.

e During steady state operation of the machine, the richness of the signals may
decrease making the covariance matrixx of the full estimator blow up. So it is
desirable to use time varying forgetting factors so that in steady state they are
close to 1. Another method is to incorporate a richness test that turn on or off

the estimator depending on the richness of the signals input to the algorithm.
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Figure 4.4: Performance of the Two-Stage Estimator (LTI with Noise Free Measure-
ments): (a) True Speed and Speed Estimate, (b) Error in the Speed Estimate.
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Chapter 5

Off-Line Experiments and Results

5.1 Introduction

The estimator simulations presented previously werc useful to understand and predict
the behavior of the estimator. The next logical step in evaluating this algorithm is to
test it off-line on data taken from an actual induction machine drive. In order to test
the estimator with real-world data, we designed a test bench using Industrial Drives’
ASC-3 induction machine drive system. The test bench was designed to provide the
outputs of the state variable filters as inputs to the estimation algorithm. The idea is
to have a system suitable for eventual on-line experimentation as well. The rotor speed

is also measured by a tachometer, to compare with its estimated value.

The data for off-line experimentation is acquired using the data acquisistion system
DAS-20 from MetraByte Co. The acquired data is then downloaded to a VAX 11/175
computer where it is processed using the MATRIXX software package on which our
algorithms and simulations were carried cut. Figure 5.1 shows a block diagram of the

experimental system.

Tests on real data have only recently begun, and have not yet produced results of
the quality that we would like to {and expect to) eventually see. This chapter describes

the hardware available for experimentation and gives some suggestions to improve its
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Figure 5.1: Experimental Set-Up for Off-Line Experimentation.

performance. In particular, difficulties with the signal processing board are mentioned.

The chapter then describes the experiments carried so far and discussed their results.

5.2 Experimental Set-Up

5.2.1 Hardware for Experiment

5.2.1.1 Drive System

All the experiments of this thesis were conducted using an induction machine drive

system (model ASC3) donated by Industrial Drives, Inc. The system includes a three

phase rectifier, an inverter, a controller board, and a 3.1 hp induction motor. As

supplied, the drive system was equipped with a tachometer to provide speed measure-

ments, and Hall effect sensors with the required buffering circuitry to provide current
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measurements. A resistively loaded dc generator was used to provide a mechanical load

to the motor.

5.2.1.2 Data Acquisition and Signal Conditioning Hardware

For data acquisition MetraByte’s DAS-20 data acquisition system was used. Metra-
Byte’s model DAS-20 is a multifunction high speed analog/digital I/O expansion board
for the IBM PC that can be used for data acquisition and signal analysis. For our pur-
poses it provides 16 analog input channels, the necessary A/D conversion as well as
the capability to store the data into the computer memory from where it can be ac-
cessed for further analysis. The DAS-20 system is installed in a Compac-386 personal

computer.

Since voltage signals are not provided by the ASC3 system, a three phase Y-Y step-
down transformer was connected in parallel to the induction motor. The transformer
provides the isolation from the high voltage output of the inverter and normalizes the
300 V signals to voltage levels that can be handled by the signal processing hardware.
The machine phase voltages can be obtained from the phase voltages of the transformer
secondary winding. If the transformer has high input impedance in the high voltage
winding, it will not disturb the drive system. A scope picture of the line and phase
voltages output by the transformer is shown in Figure 5.2. The upper trace is the line
voltage and the lower trace is the phase voltage. Another posibility is to get the voltage
signals from the inverter gating signals. The last idea seems more reasonable from the

point of view of industrial implementation.

A signal processing and data conditioning board was designed to provide the nec-
essary anti-aliasing and state variable filtering for the current and voltage signals. The
board consists of four anti-aliasing and state variable filtering stages connected in par-
allel to process the two measured voltage signals (v,,, v.,) and the two current signals

(%a, tc). The outputs of the board are +10 V signals for the filtered stator line currents
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Figure 5.2: Scope Picture of the Line and Phase Voltages Output by the Transformer

i.; and i.; and the filtered line to neutral voltages vans and v, g with the desired corre-
sponding derivative terms. The speed signal is acquired to compare with its estimate.

This sums up to 11 output analog channels that are fed to the DAS-20.

The anti-aliasing and state variable filtering circuits are shown in Figure 5.3. For
the hardware implementation of the filters, a standard 741 was used to implement the
anti-aliasing filter and National Semiconductor’s AF100 state variable active filter was
used for the state variable filter. Since the maximum frequency of the fundamental
component of the current and voltage signals is 150 Hz (at 4000 rpm), the bandwidth
of the anti-aliasing and state variable filter was chosen al 500 Hz. Each filter stage
was designed using second order Bessel filters with cutofl frequencies of 500 Hz. For
strict anti-aliasing, the sampling rate should be larger than 1000 Hz. This is needed to

preserve the richness of the signals input to the estimation algorithm.

The DAS-20 has the capability of addressing sequentially the 11 output analog
channels of the signal processing hoard. However, these channels are accessed through

an analog multiplexer (in the DAS-20). Therefore sample-and-hold circuitry is provided
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Figure 5.3: Filtering Circuitry: (a) Anti-aliasing Filter, (b) Staie Variable Filter.
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as a means for holding all eleven signals to wait until conversion.

5.2.2 Software for Off-Line Experimentation

The data acquisition algorithm works in the following way. The outputs of the signal
processing bnard are sampled sequentially, and the corresponding binary values are
stored in the Compac-386 RAM buffer using the DMA feature of the DAS-20. Once
the memory buffer is full, the sampling is stopped. The data is output via a DAS-20
system routine that formats the binary numbers as integers. Later the data is changed
from this integer format into a format that represents the analog voltage processed by
the A/D converter. The resulting data is stored in the hard disk. The overall control
and interface with the DAS-20 system subroutines for off-line data acquisition is done
using a BASIC code program on the Compac-386, see [44]. Using this program we
could have sampling frequencies up to 2 kHz and store up to 2000 samples. For further

reference on the different features of the DAS-20 system the reader is referred to [1].

To see the performance of the data acquisition system, the acquired signals are
compared to the true signals. A plot of the current signals acquired by the DAS-20
system is shown in Figure 5.4. A photo of the actual current signal output by the state

variable filter is shown in Figure 5.5.

5.3 Off-Line Testing

After the data has been collected it can be processed using the MATLAB or MATRIXX
software available at LEES. These two software packages are among the best for control
design and signal processing. During the course of this research work we have been
using both. For this part we used MATRIXX. The estimation algorithms have been
written as MATRIXX macros, and used to process the simulated data. To process

the real data obtained from the system, we feed the real data to the same MATRIXX
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Figure 5.4: Plot of the Current Signal Acquired Signals Using the DAS-20.

Figure 5.5: True Current Signal from the Induction Motor.
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Channel | Scaling
Number | Factor

1 0.9467
133.63
0.3326
45.41
6333
0.3435
48.32
6620

© 00 I TtwN

Table 5.1: Scaling Factor for Each Output Channe! of the Signal Conditioning Board.

macro used to process the data generated by the simulations.

Some pre-processing has to be done on the acquired signals before they are fed
to the estimator. First, they have to be scaled so that the relative magnitudes of
the signals are within the same range as the true signals. The scaling factors for the
signals obtained from the signal processing board are shown in Table 5.1. Second, recall
that the machine and regression models presented in this thesis assume the electrical
variables to be in the dq frame. The measured quantities are in the so called abc
frame [30] so, before feeding the data to the estimator, it has to be transformed to the

dq frame. The transformation matrix to change from the stator currents i, and i, to

[d]=[71- ;—H] (5.1)

In the derivation of this matrix it is assumed that

the dq quantities iy and 1, is,

ib = _(ia +1c)

The same relationship holds between the voltage signals v,, and vy, and the corre-

sponding dq quantities v4 and v,.
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Parameter Value
L, 0.0315 H
L, 0.0315 H
M 0.0293 H
R, 0.3700 2
R, 0.1260 N

Table 5.2: Machine Parameters from Blocked-Rotor and No-Load Test.

Parameter | Value
an 118.35
QoR 353.71

b, 238.74
bor 956.0

Table 5.3: Estimate of the Real Part of the Parameters of the Full Regressor Based on
No-Load and Blocked-Rotor Tests.

5.3.1 Initial Parameter Estimates

An initial estimate of the parameters of the experimental induction motor can be
obtained from the locked rotor and no-load test {18]. The resulting values are shown
in Table 5.2. Estimates of the real parts of the coefficients of the transfer function can

be deduced from this and are shown in Table 5.3.

It is important to point out that the parameter estirnates based on these two tests
might not be very good. This is because the rotor has deep bars so that the effective
resistance changes a lot between the two operating points used for the test. The data

obtained from the test agrees very well with that provided by the manufacturer.
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5.4 Results from Off-Line Experimentation

In the beginning of the chapter we said that a test bench was designed to provide all the
signals needed by the estimator. Due to certain problems with the hardware we were
unable to use the signals output by the state variable filters for offline experimentation.
Instead we only collected the voltage and current signals processed by the anti-aliasing
filters. The state variable filtering was implemented using the System Build facility of
MATRIXX. We expect that the digital implementation of the state variable filters will
work in the same way as the anslog one as long as high sampling rates are used. The
state variable filter implemented in the computer was the same us the one shown in

Figure 2.3 of Chapter 2. A sampling rate of 4 kHz was used.

5.4..1 “onstant Speed Operation (Batch)

Data was collected during constant and time varying speed operation. This is done to

study the performance of the estimator during different transient condiditons.

Since we are operating at constant speed the batch estimates of the parameters
can be obtained following the same procedure as the one described in Chapter 4. Two
different sets of data were collected at w,, = 337.2 rad/sec. From now on we use wp,
to refer to the rotor speed in mechanical degrees and w, as the rotor speed in electrical
degrees. They are related by

wr =N wn,

where N refers to the number of pole pairs of the machine; for the experimental machine
N = 2. For this example w, = 674.4 rad/sec. The resulting batch estimates are shown

in Table 5.4.

The resulting batch estimates show a similar behavior to the simulated data. First
the estimates of the coefficients of the derivative terms are closer to the values obtained

from the blocked-rotor and no-load tests (see Table 5.4) than those associrted witi the
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Parameter Estimate
Example 1 | Example 2
W, 569.82 496.92
1R 1,084.6 1,203.0
QR -1,052,200 -998,%10
by 206.37 209.51
bor -35,527 -31,215

Table 5.4: Experimental Batch Estimates.

nonderivative terms. Furthermore, note that the speed estimate is quite good for the

first case and that the estimate of b; is very good in both cases.

5.4..2 Time Varying Speed (Speed-Only Estimator)

Time variation of the rotor speed was forced by introducing comanding & speed of
wS, = 418 + 104 sin(2nt)
A plot of the measured speed is shown in Figure 5.6.

To continue the data analysis, estimation runs using the speed-only estimator were
done, and the results are plotted in Figures 5.7 and 6.8. Since we were sampling at
4 kHz a forgetting factor of 0.9 were used. Note that the estimates are very 11;)isy. The
effect of the noise is better viewed by looking at the error in the estimate. The error is
very noisy, but after an initial transient it reaches a steady-state condition. In steady

state the error looks like a random process with zero mean.

5.5 Discussion of Results

Let us discuss the performance of the estimator based on the observations from the

experimental data. There are several error sources, including modeling errors and naise
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Figure 5.6: Acquired Rotor Speed Using DAS-20.

disturbances. The errors seen in the figures are due mainly to the noise disturbance.

The obtained results show that by improving the quality of the data acquired it
might be posible to successfully run the estimator. From the batch estimates in the
constant speed case it is clear that we can estimate the rotor speed from the real stator
voltages and currents. Again it is observed that the coefficients associated with the

derivatives are better estimated.

For the off-line experiments it seems rather convenient to only acquire the voltage
and current signals of the machine and do the state variable filtering in MATRIXX.
This allows us to have more flexibility. The only constraint is that we need fast sampling

rates; in these examples we used 4 kHz.

5.6 Suggestions to Improve Test Bench

The state variable filter is currently implemented using the AF"100 state variable active

filter. It seems that the filter introduces a lot of distortion into its bandpass and

85



1500

1000

TV 80 l'll"lll

L

b
3

abasa sl sy

s a v daaaa da s ol s adaaaad i

0 0% A .15 2 25 3 .35 " 45 .5
TIME (SEC.)

(a)

1500

1060

lTl"l 'lllrl"]TlIll]]_i'_'—r
l

b

:

25 3 35 4 .45 2
TIME (SEC.)

(b)

O rTTTY
.
"I
L
-
-
[ NS
~»

Figure 5.7: Estimate of the Rotor Speed Using the Speed-Only Estimator (Example
1): (a) Speed Estimate, (b) Error in Speed Estimate

86



g

f"ll"1ll

0 II l “.
B
-m_
-
.m- FPD I PPN TP T PP T TP SAPIPEP & TN PO
0 05 d 15 o2 25 i ) N ) 45 .5
TIME (SEC.)
(a)
1200
MLL tenr |y eaf s
m:_ "l""l'
00 |-
- i
EAk
ok
-GOOP‘ 1 fsaal ' P ] L 1.
0 .05 A 45 2 2D o3 35 4 45 5
TIME (SEC.)
(b)

Figure 5.8: Estimate of the Rotor Speed Using the Speed-Only Estimator (Example
2): (a) Speed Estimate, (b) Error in Speed Estimate.

87



highpass output at low frequencies, so higher quality filters should be used. Also we
need to check for possible noise sources that are affecting the quality of the acquired

signals. As seen in the time varying experiments, the estimates are very noisy.
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Chapter 6

Summary and Suggestions for
Further Work

6.1 Summary

In this thesis we have addressed the problem of estimating the rotor speed and ma-
chine parameters based on measurements of the statc: voltages and currents. We have
combined the ideas and tools of parameter estimation theory with the properties of
the induction machine system to come up with an estimatjon algorithm for the desired
quantities. The contribution of this research work is the methodology used io derive

the estimator, and the foundation lajd for practical implementation.

In Chapter 2, we derive, based on the two-time-scale property of the induction
machine, two linear regression models that relate the machine parameters and speed
to the stator voltages and currents, and their derivatives. It is shown how, by using
so-called state variable filters, the problems associated with the determination of the

derivative terms of the stator voltages and currents are avoided.

In Chapter 3 the problem of estimating the machine parameters and rotor speed was
reformulated as the problem of estimating the parameters of the two linear regressor

models developed in Chapter 2. We saw how output error methods from estimation
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theory are well suited to approach the estimation of the parameters of the regressor
models (2.4) and (2.5). The algorithm selected was based on the least squares approach.
To take into account time variations of parameters we included into the cost functional
the forgetting factors. The equations for the recursive least squares algorithm were
presented. Exploiting the time scale separation between the rates of change associated
with the speed and machine parameters, we devised an estimator with two stages, one
in charge of the speed estimation, the other in charge of the parameter estimation. The
speed estimation stage estimates the rotor speed at a very fast rate, based on the most
recent parameter estimates. The estimates of the machine parameters are updated at
a slower rate. This time separation allow the design of the two estimators to be carried

out almost independently.

The performance of the proposed estimator is studied in Chapter 4 with numerical
simulations. In general, the estimator shows good tracking performance during speed
transients, as desired. The performance in the presence of noisy measurements was
studied. It is pointed out that because of the way that noise enters into the regression
models, the performance of the estimator based on the LS approach might be neriously
affected at higher noise levels, leading to biases (and eventually breakdown of the

algorithm).

In Chapter 5, we described the experimental set-up designed during the course
of this research to do off-line experimentation. The results of initial experiments were
presented. Even though they were not nearly as good as desired, they give us confidence
in the possibilities for the algorithm to work and pointed out necessary improvements on
the hardware system. The difficulties encountered, and possible solutions for successful
off-line experimentation have been described. Further results involving more on the

experimental work will appear in [52].

Appendix A discusses how the participation factors can be used ‘o analyze the

dynamic structure of the induction machine model. We analyzed the structure of
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the linearized machine model at different operating points. From this analysis and
by looking at the eigenvalue structure of the system, we identified certain dynamic
patterns. The nonlinear reduced order models then are derived by neglecting the fast
dynamics of the system. Simulation results of the reduced order nonlinear mod«ls are
shown and the results presented agree very well with the results from the linearized

model analysis.

6.2 Suggestions for Further Work

Certainly there are many issues related to the estimator design that need to be refined,
specially for real time implementation of this algorithm. In general the RLSE suffers
from the fact that it requires a lot of computational power to be implemented in real
time. The two-stage estimator tries to approach this problem by reducing the frequency
of the parameter updates. Another computational simplification that can be done is
to use the common assumption that machine inductances do not change frequently so
the parameter estimator of the two-stage estimator will need only to estimate the rotor
and stator resistances. The separation approach presented in this thesis might be of

interest for further research in the area of system identification.

After formulating the speed and parameter estimation problem as the estimation
of the parameters of a linear regression model using output error methods, we can
allow curselves as designers to use methods other than the RLSE presented in this
thesis. These methods might be simpler from the computational point of view, but will
represent iradeoffs between the estimator tracking capabilities, noise immunity and

other performance indicators.

Hardware implementation of the estimator is the next step after the off-line ex-
perimentation is finished. There are many things to be considered in this part of the
research. First, we have to decide whether the least squares estimator or a simplified

algorithm is going to be used. If the RLSE is used, then we have to consider ways
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to implement the algorithm equations in a way that is suited for real time operation.
The reader is referred to Chapter 6 of [37] for further discussion. Another issue is the
hardware to be used: special purpose DSP processors like the TMS32020 family from
Texas Instrumeits seem to be ideal for use in the experimental work. They have very
fast computational power and the programming tools are well developed and available
at LEES. The first step in real-time implementation will appear in a Bachelor’s Thesis

byC Louis Roehrs [44], where an implementation of the speed-only estimator using the

TMS32020 is presented.

After all the work of tuning up the estimator, there are still issues related to the
implementation of an adaptive controller using the proposed estimator. These are not
discussed here but have to be considered in further research. Specifically, robustness

and stability of such controllers are key issues.

We expect the basis laid in this thesis to lead in the next one or two years to a

successful, robust, real time speed and parameter estimation scheme.



Appendix A

Reduced Order Modeling of

Induction Machines

A.1 Introduction

Reduced order modeling of electrical machinery is usually based on experience and
cmpirical knowledge, rather than on systematically deduced features of the¢ unreduced
model. In the power systemus literature, different linear and nonlinear reduced order
models for large machines have been presented. A good discussion of these models for
synchronous and induction machines is presented in [30]. The analysis and validation
of these models is done by comparisen of simulations of the full order model and the
reduced order model for the nonlinear case, and of eigenvalues in the linear case. More
analytical work is needed however, to understand the validity of these models. For
example, we shall see later that reduced order models for small machines might be
quite different from those that are appropiate for large machines. In [30], the same
reduced order model is used for large and small induction machines. It is noted there
that the accuracy of the model increases with the rating, but no further work is done to
understand this difference. A different approach to reduced order modeling of electrical

machinery can be found in [15,47,46,54)
In this Appendix, we illustrate the use of participation factors to study the dynamic
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structure of the machine model, by application to the induction machine model. Issues
related to how this dynamic structure changes with machine rating and operating
conditions are addressed. The implications for reduced order modeling are pointed

out.

A.2 Linearized Model of the Induction Machine

The nonlinearities involved in the induction machine model make it difficult to under-
stand how the electrical and mechanical subsystems interact. To study the machine
dynamic structure a lineari.ed model of the machine is used. It turns out that the
linearized model for operation at constant noniinal speed is linear and time invariant,
which makes possible the use of the participation factors introduced in [43] ic study

the dynamic structure of the linearized model.

Let us assume that the machine is in steady state, running at constant speed @,. The
linearized model around steady state operation in the synchronous rotating reference
frame with fixed input voltage waveforms and constant load torque is given by the

following set of equations:

ixe Apg Apm XE
- (A1)
dXp Apme Aumm XM

dt

Agg = - (R-i- [ w:)J (we _'.)u-,'_)J ])

AEM=[3 g]x

where

1 M? T 0 J
AME—E———LSLR_Mz/\ I_J 0]
B
AMM=—E
IE=:\ XM=GJ,.
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where the subscripts E and M stand for “electrical” and “mechanicai”, and X and @,

refer to small perturbations around steady state values X and @, respectively.

A.3 Reduced-Order Modeling
A.3.1 A Natural Decomposition

A natural way to decompose the machine model is into its two physical subsystems
[54], the mechanical and the electrical subsystem. This is already suggested by the
partitioning in (A.1). To get some qualitative insight into the interactions between the
electrical and mechanical subsystems, let us take a closer look at equation (A.1). The

matrix
A= Age Agpny |
Ave Amm |

reduces to the matrix

. [Age 0 ]
WA "

when the steady state value of the machine flux X is zero. Increasing the machine flux
makes the off-diagonal blocks of A increase from zero to Agy and A g, which causes
the eigenvalues to move from those of Apg and Amm to those of A. This suggests
that, if the coupling between the eigenstructures of Agg and App that is induced
by Agym and Ayg is small relative to the separation between these eigenstructures,
then the eigenstructure of A will consist of two relatively separated parts, one centered
around the eigenstructure of Agg, the other around that of Aypy. This suggests a
possible method to study the coupling between the electrical and mechnanical subsys-
tems, by computing the eigenvalues of the linearized model and comparing them with

the eigenvalues of Agg and A

To illustrate this, let us take a look at the eigenvalue structures of ‘he linearized
model at no-load steady state operation for a 3 hp and a 500 hp induction machine. The

parameters of these machines (taken from [30]) are given in Table A.1. The eigenvalues
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Maeachine rating Parameters
hp Vm & | R 1L.L.| R M

3 220 367.42 | 0.435 | 0.0713 | 0.816 | 0.0693
500 2300 376.79 | 0.262 | 0.1465 | 0.187 | 0.1433

Table A.1: Parameters and operating voltage, speed and frequency for the induction
machine examples.

Machine H1,2 3,4 s
3 -86.62+315.71j | -228.44+71.04j | -4.38
500 -14.83+17.26j | -41.56+373.88j | -29.09

Table A.2: Eigenvalues of the 3 hp and 500 hp machines.

of the lineaiized model and those of Agg and Ay are given in Tables A.2 and A.3
respectively. For the 3 hp machine the eigenvalues of the linearized model fall into two
groups: one close to the eigenvalues of Agg and another close to those of Apps. This is
what is expected from the natural decomposition discussed above. However, for the 500
hp machine this is not the case. We shall see later that this “natural” decomposition

is not justified for large machines.

Machine AEE AMM
3 -86.341316.09; | -0.1124
-230.86+70.49j
500 -41.49+373.87j | -0.0136
-29.44+3.43;

Table A.3: Eigenvalues of Agpg and Ajpgp for the 3 hp and the 500 hp machines.

96



State Participation Factors
Variable f1.2 U3 s
Asy 0.5722 | -0.0722 0
As2 0.5732 | -0.0732 | 0.0001
AR1 -0.0730 | 0.5834 | -0.0207
AR2 -0.0715 | 0.5712 | 0.0005
w, -0.0009 | -0.0092 | 1.0200

Table A.4: Participation Factors for the 3 hp Machine.

A.3.2 Participation Factors

To get quantitative insight into the coupling between the electrical and mechanical
subsystems, the participation factors are used. The participation factors [43] give a

measure of the relative contribution of each state variable to each eigenvalue.

To introduce the participation factors, let us consider the :-th modc of the system

with eigenvalue g, of multiplicity one, and associated left and right eigenvectors w; and
v; respectively. Let us choose w; and v; such that wl'v; = 1. Recall that wlv; = 0 for
t # j. The participation factor (p:) of the kth state variable in the ith niode is give:

by

=2

Pki = WhiVki (A.4)
where wy; and vi; are the kth entries of the left and right eigenvectors. The term vy,
will reflect the activity of the kth state variable when the ith mode is excited, while

wy,; will weight the contribution of this activity to the mode. Note that p;, is invariant

under changes of units on the state variables. Also, the pi; sum to 1 over k and over .

The participation factors for the 3 hp machine are shown in Table A.4. Note the
interesting pattern in this example. Based on the participation factors, we are able to

discern clear dynamic patterns , i.e. associations of state variables with eigenvalues.
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Submatrix | Eigenvalues
As 1110.3£377.0;
Ap -209.949.58j

Table A.5: Eigenvalues of the finer partition in the 3 hp machine

There are three groups: the “stator eigenvalues” 2, the “rotor eigenvalues” ps4,
and a “rotor speed” eigenvalue us. This suggests why the overall eigenvalues are well
approximated by those of Apg and Apum. In fact, the eigenvalues of Agp themselves
be can well approximated by those of its “stator subsystem” and “rotor subsystem”,

in accordance with the results in Table A.4. This is shown in Table A.5

A.3.3 Small Versus Large Machines

At this point we have seen the utility of the participation factors in studying the
dynamic structure of the linearized machine model using ar example of a 3 hp induction
machine. In this section we will use them to study the differences in dynamic patterns

between the 3 hp and the 500 hp induction machines.

Looking at the eigenvalues for the 500 hp machine in Table A.2 we can see an
eigenvalue pattern different from the 3 hp machine. The fast eigenvalues of the system
(i.e. with the larger real part) are the complex conjugate pair p34 and the real eigen-
value ps. The (slowly decaying or) slow eigenvalues correspond to the other complex
conjugate pair u, ;. However, the eigenvalues are not well approximated by eigenvalues

of A g and the eigenvalue of Arpy.

To visualize the interactions between the differcnt subsystems and how they differ
from the 3 hp machine, the participation factors were computed and are shown in
Table A.6. Based on the values of the participation factors, a different eigenvalue/state

variable association pattern can be made. The (fxsi) ccmplex conjugate pair pu34 are
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State Participation Factors
Variable b2 3.4 Its
As1 0.0001 | 0.5042 | -0.0082
As2 0.0043 | 0.5042 | 0.0001
AR1 0.5142 1 -0.0042 | -0.0199
AR2 0.0020 | -0.0042 | 1.0044
Wy 0.4881 | 0.0000 | 0.0236

Table A.6: Participation factors for the 500 hp machine

Submutrix Ag Ap
Eigenvalues | -41.394+377j | -14.78+17.01j
-29.53

Table A.7: Eigenvalues of the As and A g submatrices.

the “stator eigenvalues”. The real eigenvalue ps is associated with Aps. The (slow)

complex conjugate pair of eigenvalues p, ; are associated with Ap; and w,.

This difference between the eigenvalue/state variable association for the 3 hp ma-
chine and for the 500 hp machine leads us to a different subsystern decomposition of
the model of the 500 hp induction machine. The two subsystems are defined in the fol-
lowing way: the first (fast) subsystem groups the stator flux )\,, and the second (slow)
subsystem groups the rotor flux A, and the rotor speed w,. The system matrix in term

of this partition is given by

As Agp
A= 5
[Ans AR] (A-5)

where the subscripts S and R refer to the stator flux, and to the rotor speed and flux
respectively. The eigenvalues of the diagonal blocks are given in Table A.7. Comparing
this with the eigenvalues of the full order linearized model (Table A.2) we can see how
accurately this decomposition can predict the cigenvalues of the full order model. Once

again, a three-fold decomposition can also be made, based on the results in Table A.6,

99



Submatrix [ Eigenvalue
Apnn -14.78+17.02
Ap, -29.54

Table A.3: Eigenvalues of the finer partition for the 500 hp machine

with the eigenvalues of Ap well epproximated by those of its “Ap;, w, subsystem ”

and its “Ap; subsystem”. The eigenvalues for the finer decomposition are shown in

Table A.8.

A.3.4 Analysis at Different Operating Points

In the previous section we studied the coupling between and within the electrical and
mechanical subsystems in the induction machine by studying the local dynamics of
the machine model at no-load steady state operation. This analysis was useful to get
some insight about the system interactions and the way that participation factors can
be used to study the dynamic structure of the linearized machine model. With the
linearized mode! we studied the local dynamics of the machine model around a specific
operating point, but the obtained results should not be used to describe the global
structure of the nonlinear model. In this section we will show an approach to study

the global dynamic structure of the machine model using the participation factors.

Suppose the load torque is set to specific value, keeping nominal voltage and fre-
quency (60 Hz) constant, and the machine model is linearized around the resulting
steady state operation. By changing the load torque we vary the rotor speed from zero
to its no-load value. At each operating point the local dynamic structure is studied
using the participation factors. By studying how the participation factors clmngé at
each operating point we might expect to deduce some important characteristics of the

global structure of the machine model.
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The eigenvalue locus of the linearized machine model and of Aggp as the speed
chauges from zero to no-load speed for the 3 hp machine are shown in Figure A.1.
Note that for this example the eigenvalue of A s is independent of the speed. The
participation factors for the linearized model eigenvalues at different operating points
were computed and are presented as functions of speed in Figure A.2. From these plots
we can see that the structure of this machine remain unchanged, i.e. the fast modes of
the system are always associated with the electrical variables while the slow ones are

associated with the rotor speed.

For the 500 hp machine the eigenvalues loci as well as the participation factors are
plot in Figures A.3 to A.4. Note that at speeds below 300 rad/sec the linearized mode]
has a structure similar to the small machine. However, at higher speeds the structure
changes to the one described previously. These results show us a more complicated
dynamic structure for large machines. The interactions shown here cannot be seen

from the previous analysis at no-load steady state operation.

A.4 Reduced Order Models

In this section reduced order models of the fifth order nonlinear model of the induc-
tion machine are derived based on the information provided by the analysis using the
participation factors. The order reduction will follow an approach similar to singular
perturbation methods [7,28], i.e. the transients associated with the fast subsystem are
essumed to be infinitely fast so the fast state variables reaches a quasi-steady-state
condition instantaneously. The reduced order model is obtained by computing the
quasi-steady-state solution of the fast subsystem and substituting it back into the slow
variables. Note that the machine model presented in this note does not have an ex-
plicit perturbation parameter. Therefore, the singular perturbation method is followed

formally, without the mathematical rigor.
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Figure A.1: Eigenvalues locus for the 3 hp machine: (a) linearized model, (b) Agg
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The nonlinear fifth order model of the induction machine in the synchronous refer-

ence frame is described by the following set of equations:

d\ -1 J o 00 I
E:—-(RL +wc[0J])/\+w,[0J}/\+[0} (A.6)
dw, . B (Tem —TL)
E7 i (A7)
1 M [ 03
Tgm—ﬁm/\ [—J O]A (AS)
i—L-1) (A.9)

It is important to point out that all the variables in the synchronous reference frame

are dc quantities when a sinusoidal waveform with frequency w, is applied to the stator.

The analysis of the 3 hp machine using the participation factors shows that this
machine exhibits a well defined two-time-scale structure, where the fast subsystem is
related to the electrical variables (i.e. the machine fluxes) and the slow subsystem is
associated with the mechanical variable (i.e. the rotor speed). A first order model
of the 3 hp machine is obtained by substituting the quasi-steady-state solution for
the electrical variables into the mechanical equation (A.8). The first order model is

described by the following set of equations:

d rs B T'ema - T

= et ST (4.10)
_ 2 2

Toms (we — we ) MPR, V] (A.11)

[RaRr + we(we - w,,)a]z + [weLaRr + (we - wra)LrRalz
where the s in the subscript means that this model is derived by substituting the quasy-
steady-state solution of (A.6) into (A.7) and (A.8). Note that equation (A.11) is the

expression for the steady state electromagnetic torque as a function of rotor speed.

Simulation of the start-up transient of the induction machine for the first order

and the iull order models has been done using SIMNON. The results are shown in
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Figure A.5 and Figure A.6. Note that the first order reduced order model predicts

accurately the speed characteristic of the fuli order model.

Similery, a third order model for the 560 hp machine can be derived. This model

is described by the following set of equations:

-1

Y [R;L'I + w,J] [V, + R;MA“ (A.12)
d),, R.L, R"Mz

dt — —_ [ U—I + (UJ: —_ w,,)J] Ars + ASB (A'13)
dw,., _ B (T’cma - TL)

@ - TEUtYT m (A.14)

_ M T [

T.,.. = AT AT I, (A.15)

Note that this model corresponds to the common third order model used in transient
stability studies of power systems where the stator transients of the machine model in

the synchronous rotating frame are neglected [30].

Simulations using SIMNON were done for the starting transient of the 500 hp
machine using the full order and third order models of the machine. The results are

shown in Figures A.7 to A.8.

In the response of the full order model, two transients of different speeds can be
identified. This is a good example of the two-time-scale phenomena present in induction
machines. The fast transients only occur during the first two seconds until the electrical
variables reach the quasi-steady-state condition. After that point the transient of the

system is dominated by the slow transient of the rotor speed.

In Figure A.8 the responses of the rotor flux and the rotor speed of the third
order model are shown. In this response the fast oscillations corresponding to the fast
transients are not present. This is what we could expect since we made the transients

of the fast variables infinitely fast when we derived the model.
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A.5 Conclusion

In summary, we have seen how participation factors can help us to group the machine
state variables into sets of coupled variables. Due to the nonlinearities of the machine
model the dynamic structure of the system will change due to machine size and op-
erating conditions. However, the information provided by the participation factors at

different operating points can help us to deduce reduced order models of the machine.

Participation factors are powerful in the analysis of linear time invariant systems.

In this appendix we have seen that it is possible to use these tools to gain some insight

into nonlinear models as well.
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