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New sources of CP violation, beyond the known sources in the standard model (SM) via the CKM matrix, are
required to explain the baryon asymmetry of the universe. Measurement of P,T violating moments, such as the
electric dipole moment (EDM) or the magnetic quadrupole moment (MQM), of sub-atomic particles like the neutron
or the electron as well as of atoms, serves as powerful tools with which to probe sources of CP violation. Besides the
EDM and MQM of sub-atomic constituents of the nucleus, various other CP violating hadronic interactions, like long
range πNN interactions, contribute to the generation of nuclear EDM and MQM. In addition to nuclear EDM and
MQM, CP violating semi-leponic interactions between the electrons and nuclei also contributes to atomic EDM and
MQM.
While nuclear EDM is Schi� screened by the electron cloud of the atom [1], nuclear MQM is not. The residual of

the improper screening of the nucleus is usually referred to as the Schi� moment. Such improper screening can lead to
large atomic EDMs 1, and arise from: (i) relativistic electrons, as is the case with paramagnetic atoms with unpaired
valence electron, such as 85Rb [2], 133Cs [3], 205Tl [4], (ii) the nucleus having quadrupole and octupole deformations,
as is the case with diamagnetic atom of 225Ra [5], or if (iii) there exists dominant CP violating interactions between
the constituents of the atom, as is the case with the diamagnetic atoms of 129Xe [6] and 199Hg [7]. The combination of
CP violating nuclear moments are usually referred to as the nuclear Schi� moment. Measurement of atomic EDM [8]
and MQM [9], using molecular systems, has gained traction in recent days, due to the enhancement of the sensitivity
to atomic EDM in such system coming from very large e�ective intra-molecular electric �elds. The motivation to use
molecular systems is further bolstered by the ability to employ various powerful atomic physics techniques such as
spin squeezing [10].
Quadrupole and octupole deformation of nuclei can signi�cantly enhance the atomic EDM by many orders of

magnitude compared to that with a spherical nucleus [13]. Nuclear quadrupole and octupole deformation has been
well characterized in theory by various models for all isotopes, like eg. in Refs. [12�14]. Using the theoretical
deformation parameters, the isotopes of 221,223,225Rn, 221,223,225,227Fr, 221,223,225Ra, 223,225,226,227,231Ac, 227,229Th,
and 226,229Pa were identi�ed as ideal systems, in which to attempt a nuclear Schi� moment measurement in [15]. In
addition to these, the isotopes of 153Eu, 161Dy, 167,173Yb, 169,177,179Hf, 177,181Ta, 223Rn, 221,223Fr, 223Ra, 225,227Ac,
229Th, 229Pa, and 231,233,235U were also identi�ed as ideal systems, in which to attempt a nuclear MQM measurement
in [9, 16].
Nuclear deformation parameters of {β2, β3} can be accessed through the measurement of E2 and E3 transitions

via nuclear spectroscopy [17], respectively, as well as through atomic-spectroscopy [18]. Particularly, to access the
octupole deformation, E3 transition energies are necessary. The nuclear level diagram of the states [E(Jπ)] for the
above isotopes, from which they E2 transition to their respective ground state, are well characterized. However, the
states from which they E3 transition to their respective ground state are not available for the isotopes of 221,223,225Rn,
221Ra, 226Ac, and 226Pa. Since it is hard to populate the states involved in a E3 transition, atomic-spectroscopy of
these isotopes to ascertain their nuclear octupole deformation parameter, β3, looks particularly attractive.
On the other hand, it is also vital to establish non-degeneracy of the parity doublet in the ground state for their

nuclear EDM or MQM to be CP-violating. The energy di�erence between the ground state parity doublet has not yet
been measured for the isotopes of 173Yb, 177Hf, 181Ta, 223,225Rn, 226Ac, and 231U. This is due to the states which are a
parity conjugate of the ground states not yet being characterized. Given that the lifetime of the relevant state [which
are a parity conjugate of the ground state] are of the order ∼ 10 ns, atomic-spectroscopy is not a viable technique
here. In these cases, we may have to rely on further precision nuclear γ-spectroscopy or infer the energies of the
relevant states from {β, α}-decay or e−-capture.
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