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ABSTRACT

Dataflow architectures offer the ability to trade program-level parallelism in order to overcome
machine-level latencies in accessing memory and in communicating with other processors.
Dataflow further offers a uniform synchronization paradigm, representing one end of a spectrum
wherein the unit of scheduling is a single instruction. At the opposite extreme are the von
Neumann architectures which schedule on a task, or process, basis. As a basis for scalable,
general purpose multiprocessors, traditional von Neumann architectures are unsuitable due to
their inability to tolerate latency and to provide means for fine-grained synchronization.

This thesis examines the spectrum by proposing a new architecture which is a hybrid of dataflow
and von Neumann organizaiions. The analysis attempts to discover those features of the dataflow
architecture, lacking in a von Neumarn machine, which are essential for tolerating latency and
synchronization costs. These features are captured in the concept of a parallel machine language
which can be grafted on top of an otherwise iraditional von Neumann base. In such an architec-
ture, the units of scheduling, called scheduling quanta, are bound at compile time rather than at
instruction set design time. The parallel machine language supports this notion via a large
synchronization name space.

It is shown that the combination of dataflow-style explicit synchronization and von Neumann-
style implicit synchronization in the same instruction set results in an architectural synergism.
Using an instruction set which is strictly less powerful than that of the MIT Tagged-Token
Dataflow Architecture (TTDA), the hybrid architecture can exploit the same kinds of parallelism
as the TTDA. Given that a compiler can generate scheduling quanta of two or three instructions,
the hybrid architecture will execute approximately the same number of instructions as the TTDA.
Larger quanta can result in the hybrid actually executing fewer instructions than the TTDA,
demonstrating the power of passing state implicitly between program-counter sequenced instruc-
tions.
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latency, multiprocessor, name space, parallel machine language, process state, split transaction,
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Chapter One

Introduction

It has become apparent that the lessons learned in 40 years of designing von Neumann uniproces-
sors do not necessarily carry over to multiprocessors. Compiler technology coupled with simple
pipeline design is now used effectively [36, 48, 49, 51] to cover bounded memory latency in
uniprocessors. Unfortunately, the situation is qualitatively different for multiprocessors, where
large and often unpredictable latencies in memory and communications systems cannot be
tolerated by using similar techniques. This is attributable at the architectural level to poor support
for inexpensive dynamic synchronization [8]. Specifically, latency cost is incurred on a per-
instruction basis, but synchronization on a per-instruction basis is impractical. A scalable,
general purpose multiprocessor architecture must address these issues. Traditional compile time
sequencing is too weak a paradigm for general purpose machines (cf, ELI-512 [29], the ESL
Polycyclic processor [50]), and traditional run time sequencing mechanisms are not sufficiently
flexible (cf., The IBM 360 Model 91 [1, 56], the Cray-1 [51]).

Dataflow architectures offer such synchronization at a per-instruction level as the normal modus
operandi. Each instance of an instruction can be though of as an independent task with specific
dependence requirements which must be satisfied prior to initiation. A dataflow machine
provides the mechanism to detect efficiently the satisfaction of these requiremenis and to process
all such enabled tasks. Given the means to express a computation as a graph of such inter-
dependent tasks, one has a natural means for executing, at any instant of time, all and only those
instructions for which the synchronization constraints have been satisfied. To the extent that the
number of such candidate instructions exceeds by some suitable amount the instantaneous
capacity of the machine to process them, latencies inherent in the physical machine can be hid-
den, or masked. Heretofore, seeking these benefits has implied a significant departure from the
von Neumann camp of architectures, leaving a very substantial and important body of knowledge
behind.

This thesis offers a framework for understanding the tradeoffs between these two points in the
space of computer architectures. The overall goal of this study is to discover the critical hardware
structures which must be present in any scalable, general-purpose parallel computer to effectively
tolerate latency and synchronization costs. This investigation is based on demonstrating that von
Neumann instruction sequencing simplicity and dataflow sequencing generality are but the ex-
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trema of a continuum. To explore this continuum, a new architecture is developed as a synthesis
of the best features of von Neumann and dataflow ideas. Evaluation of this architecture is based
on characterizing the differences in various architectural figures of merit (e.g., number of instruc-
tions executed, instruction complexity) between the new machine and the well-studied MIT
Tagged Token Dataflow Architecture (TTDA) [10, 18).

Analyses of von Neumann and Dataflow Architecture

Chapter 2 examines the strengths and weaknesses of both the von Neumann and dataflow regimes
as bases for a parallel computer. In von Neumann architecture, it is shown that the desire to scale
a general-purpose machine from the level of tens to hundreds of processors implies the need for
changes in the basic processor architecture. The desire to switch from a single processor to a
connection of many introduces unavoidable latencies. The requirement to similarly decompose a
single problem into communicating parts implies the need for efficient, fine-grained
synchronization. 1t is shown that von Neumann machines have only a limited ability to deal with
the former, and little or no ability to handle the latter.

In a dataflow machine, synchronization is not only available at the lowest hardware levels, it is
unavoidable. The key sequencing mechanism in a dataflow machine is based on the matching of
names from a large space. Activities, or instances of instructions, are uniquely named. Data for a
given instruction are tagged with the activity name. Hardware provides the means for bringing
identically-tagged data together and for scheduling the denoted instructions. It is shown that such
matching is not strictly necessary in all cases. Moreover, it is shown that in these cases the
inability to eliminate such synchronization results in lost locality.

Synthesis of a Hybrid

Chapter 3 presents a new architecture which is developed by taking the essential features of a
dataflow machine and integrating them into a von Neumann machine. The notion of a parallel
machine language is presented which captures the following key features:

* The instruction set is designed in such a way that instruction execution time is always
independent of unbounded latencies.

 Synchronization events are named. Names are drawn from a large space, and names
can be manipulated as first-class hardware data types.

® Both explicit and implicit synchronization can be expressed - programs are
represenied as partial orders of sequential threads.

Two execution models are presented. The first, an idealized model, captures the notion of execut-
ing computations expressed in the parallel machine language, but with few other constraints. The
number of processors is assumed to be unbounded, and the communication latency is assumed to
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be zero. This model provides the means for studying the effects that architectural assumptions
have on the behavior of a given program, e.g., the best-case parallelism which can be uncovered.
The second model is more realistic. By presenting the high-level design of a realizable processor
capable of handling partially-ordered computations, a set of constraints is developed and applied
on top of the idealized model. This provides a vehicle for studying the architecture’s response to
a variety of applications, and a means for evaluating the efficiency of various implementation
devices such as operand caches.

Code Generation

Chapter 4 considers the issues of compiling code for a hybrid architecture. In the von Neumann
world, compilation is complicated by numerous instances of static resource allocation. Doing a
good job of this, however, can result in excelle; t locality i.e., efficient use of high-bandwidth
storage and a solidly packed pipeline. In the dataflow world, many of these problems cum oppor-
tunities evaporate in the face of implicit management of token storage and the near-zero cost of
naming synchronization events. In the hybrid paradigm, compile-time tradeoffs between these
two are possible. This significantly complicates the task of generating "optimal" code.

A simple approach is presented for choosing between these two domains. Dependences between
instructions are classed as either static or dynamic, the difference being that a dynamic depen-
dence is sensitive to unbounded latency. Instructions are partitioned into chunks called
Scheduling Quanta (SQ). All instructions in a given SQ depend, transitively, on the same set of
dynamic arcs. Having partiiioned a computation thus, von Neumann style sequencing is used
within an SQ, and dataflow sequencing is used between them. By this means, latency can be
masked by excess parallelism as in a dataflow machine.

Analysis of the Hybrid Approach

Chapter 5 presents results of emulation experiments run on the idealized and realistic models,
using SQ partitioned code derived from Id program graphs. A comparison is made between the
hybrid machine and the MIT Tagged-Token Dataflow Architecture (TTDA). In general, it takes
two hybrid instructions to equal the computational power of a TTDA instruction. However, it is
shown by experimental resuit that, given the same program graph, the hybrid machine and the
TTDA execute approximately the same number of instructions. By this observation it is posited
that the full power of TTDA instructions is not used in general, and that a large fraction of this
unused power is attributable to unnecessary synchronization generality in the TTDA.

Convergent Efforts

12



Chapter 6 reviews other related efforts which seek to reconcile, or at least understand, the dif-
ferences between von Neumann and dataflow architectures. Directions for future research are
sketched.
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Chapter Two

The Importance of Processoer Architecture

Current-day multiprocessors represent the general belief that processor architecture is of little
importance in designing parallel machines. In this Chapter, the fallacy of this assumption will be
demonstrated on the basis of two issues: latency and synchronization. The argument is based on
the following observations:

1. Physical parallelism implies latency for both processor-to-memory and processor-
to-processor communications.

2. Latency scales up with the number of processors.

3. Traditional processors employing simple von Neumann style instruction scheduling
will idle when executing any instruction which incurs this latency.

4. Attempting to go beyond this limit implies the need for efficient, hardware-level
synchronization means.

5. Based or the cost of using such hardware, only certain types of parallelism can be
exploited efficiently.

Section 2.1 defines the class of machines which are of interest in this study. In Section 2.2, the
shortcomings of von Neumann architecture are explored in more detail. A framework is
developed for defining the issues of latency and synchronization. The traditional methods used to
reduce the effect of memory latency in von Neumann computers are examined, and their limita-
tions are discussed. A similar discussion of synchronization methods is presented. Section 2.3
looks critically at dataflow architecture and attempts to articulate its strengths and weaknesses.
Section 2.4 seeks to compare the two architectures and the types of parallelism which can be
exploited. On the negative side, this comparison hignlights the inflexibility of the von Neumann
approach and shows the inefficiency of the dataflow approach. From a positivist’s view, the
example focuses attention on the attributes of each existing architecture which one would like to
combine into a new architecture.

2.1 Scope

The present discussion pertains specifically to scalable, general purpose parallel computers.
"Parallel Computer" denotes a collection of computing resources, specifically, some number of
identical, asynchronously operating processors, some number of identical memory units, and

14



some means for intercommunication, assembled for the purpose of cooperating on the sclution of
problems. Such problems are decomposed into communicating parts which are mapped onto the
processors. "General purpose” means simply that such computers can exploit parallelism, when
present, in any program, without appealing to some specific attribute unique to some specific
problem domain. “Scalability" implies that, given sufficient program parallelism, adding
hardware resources will result in higher performance without requiring program alteration.

The scaling range is assumed to be from a single processor up to a thousand processors!.
Parallelism significantly beyond this limit demands yet another change in viewpoint for both
machines and languages.

In the remainder of this thesis, the terms parallel computer and multiprocessor will be used
interchangeably.

2.2 von Neumann Architectures

In this section, it is argued that latency and synchronization are fundamental issues which must be
faced by all architects of scalable, general purpose parallel computers. Various mechanisms have
been invented to deal with uniprocessor latency and synchronization issues - these are analyzed
and are shown to be ineffective in a parallel computer.

2.2.1 Latency and Synchronization

A parallel computer is, by definition, a collection of computing resources. Because the proces-
sors and memories in the collection occupy physical space, there will necessarily be limitations
on the time to communicate between them. The organization of a parallel computer, therefore,
gives rise to communication latency. Similarly, by definition, general purpose parallel computers
are to cooperate. Therefore, problems must be logically decomposed into communicating frag-
ments, implying the need for synchronization. These issues are examined in depth in the follow-
ing sections.

2.2.1.1 Latency: The First Fundamental Issue
Any multiprocessor organization can be thought of as an interconnection of the following three
types of modules (see Figure 2-1):

1. Processing elements (PE): Modules which perform arithmetic and logical opera-
tions on daia. Each processing element has a single communication port through
which all data values are received. Processing elements interact with other process-

1By Bell's metric [11], this is an architectural dynamic range of 30 dB.
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Figure 2-1: Structural Model of a Multiprocessor

ing elements by sending messages, issuing interrupts or sending and receiving
synchronizing signals through shared memory. PE’s interact with memory ele-
ments by issuing LOAD and STORE instructons modified as necessary with
atomicity constraints. Processing elements are characterized by the rate at which
they can process instructions.

2. Memory elements (M): Modules which store data. Each memory element has a
single communication port. Memory elements respond to requests issued by the
processing elements by retuming data through the communication port, and are
characterized by their total capacity and the rate at which they respond to these
requests2.

3. Communication elements (C): Modules which transport data. Each nontrivial
communication element has at least three communication ports. Communication
elements neither originate nor receive synchronizing signals, instructions, or data;
rather, they retransmit such information when received on one of the communica-
tion ports to one or more of the other communication ports. Communication ele-
ments are characterized by the rate of transmission, the time taken per transmission,
and the constraints imposed by one transmission on others, e.g., blocking. The
maximum amount of data that may be conveyed on a communication port per unit
time is fixed.

Latency is the time which elapses between making a request and receiving the associated
response. The above model implies that a PE in a multiprocessor system faces larger latency in
memory references than a uniprocessor does because of the transit time in the communication
network between PE’s and the memories. This argument is quite independent of notions of
locality and network topology. Given a physical parallel computer, any computation running on

2In many traditional designs, the "memory" subsystem can be simply modeled by one of these M elements.
Interleaved memory subsystems are modeled as a collection of M’s and C’s. Memory subsystems which incorporate
processing capability can be modeled with PE's, M’s, and C’s.
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it is constrained to occupy nonzero volume, and any communication within that volume is subject
to speed-of-light limits.

In a von Neumann processor, memory latency determines the time to execute memory reference
instructions. Said another way, von Neumann instruction sets are traditionally designed with
instructions whose execution time is latency dependent. When this latency cannot be hidden by
some means, a tangible performance penalty is incurred.

2.2.1.2 Synchronization: The Second Fundamental Issue

For the sake of the discussion, call the basic units of computation into which programs are
decomposed for parallel execution computational tasks or simply tasks. A general model of
parallel programming must assume that tasks are created dyramically during a computation and
die after having produced and consumed data. Tasks are made up of a static component,
representing program text, and an invocation-specific component representing the state of the
computation. Tasks are mapped onto processors and operate in mutual asynchrony.

Synchronization is the time-coordination of the activities within a computation. In a von
Neumann machine, instruction execution is implicitly synchronized by the dispatching circuitry,
using a program countier for sequential instruction initiation. In a parallel computer, a qualita-
tively different kind of synchronization is required between tasks due to their assumed mutual
asynchrony. Historically, much effort has been devoted both to developing high-level program-
ming primitives (which are inevitably tied to the metaphors of the language) and to designing
efficient implementations which rely minimally on specific hardware synchronization features,
thus assuring their generality.

One may choose to view the space of high-level primitives a number of ways, but the essential
activities involve creation of parallel work, coordination of parallel work, and prevention of
parallel work. The following three metaphors illustrate these activities:

1. Fork / Join Parallelism (creation): A task is created as a result of a Jork operation,
and can run concurrently with the creating task until encountering a join operation.
The join enforces synchronization and ultimately results in the termination of the
forked task.

2. Producer-Consumer Parallelism (coordination): Given two extant tasks, one task
produces a data structure that is consumed by the other. If producer and consumer
tasks are executed in parallel, synchronization is needed to avoid the
read-before-write race.

3. Mutual Exclusion (prevention): Extant tasks share some serially reusable resource,
and means must be provided to guarantee that only one task at a time may have
access to it. Because the behavior depends on the time-ordering of requests, non-
determinism is implied.
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Figure 2-2: Operational Model of a Multiprocessor

Synchronization involves two or more participants and a common meeting ground. The meeting
ground has a specific name known to the participants. The meeting ground minimally encodes a
single bit of information, and is commonly called an event which either has occurred or not.
Operationally, a synchronization operation involves testing to see if an event has happened. If it
has, the computation may proceed normally. If it has not, some alternative action must occur to
prevent the normal computation from proceeding. This may take the form of an enforced busy-
waiting for the event which inevitably wastes computing resource. Alternatively, the task making
the synchronization test can be put aside to have the test tried again at a later time. Such putting
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aside is called contex: switching in which the task’s private state is evacuated from the processing
resource and, optionally, another task’s state is inszalled. Often, the terms rolling out and rolling
in are used to describe this process.

Extant tasks may be viewed as being in one of the following states at any given time:
ready-to-execute, executing, or suspended, with state transitions happening at synchronization,
scheduling, and context switching points, respectively (see Figure 2-2). Synchronization opera-
tions incur two kinds of cost: testing and evacuation. Every synchronization test takes some
amount of time. If the test has to be repeated, the cost is, of course, cumulative. Further, in a
model which evacuates tasks upon failure of a synchronization test, time will be lost to perform-
ing the context switch.

There are several subtle issues in accounting for synchronization costs. Because events are
named, synchronization cost should also include the instructions that generate, match and reuse
the names. It may not be easy to identify the instructions executed for this purpose.
Nevertheless, such instructions represent overhead because they would not be present if the
program were written to execute on a single sequential processor.

Another subtie issue has to do with the accounting for intra-task synchronization. Because most
high performance computers overlap the execution of instructions belonging to one task, tech-
niques used for synchronization of instructions within the task, e.g., because of pipeline delays at
a branch point, are often quite different from techniques for inter-task synchronization. In these
cases, busy-waiting in the form of pipeline interlock or the execution of compiled-in NOP instruc-
tions is usually safer and cheaper than context switching. This is usually done under the assump-
tion that the idle time will be strictly less than the time to switch tasks. These lost cycles are as
much a synchronization cost as are those associated with context switching.

More subtle yet is the cost which arises when the synchronization name space is small (as it
usually is in schemes employing registers or interrupt levels as the meeting places).
Synchronization name space implies a coupling of two, necessarily efficient mechanisms: the
ability to name a meeting place and the ability to enforce synchronizing behavior (e.g., context
switching) in testing for an event. In this sense, registers with reservation bits plus an instruction
dispatcher which tests the bits represents a synchronization name space. Traditional semaphores
in main memory do not. While the name of the meeting place, an address, can be generated
cheaply, the enforcing of synchronizing behavior is expensive. The issue of a small synchroniza-
tion name space is that names themselves are serially reusable resources which must be managed.
Often this management is done at compile time, and the cost takes the elusive form of a restricted
number of simultaneously pending synchronization events.
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In summary, synchronization incurs cost, but the total cost is a function of the efficiency of the
mechanism and th:e¢ degree to which synchronization is used. Unfortunately, in models where the
cost is much more than the cost of, say, an arithmetic instruction, these two factors (efficiency
and degree of use) are seldom independent. The efficiency function may be highly nonlinear
(e.g-, the cost of generating and using another synchronization name may be zero until some
hardware-specific limit is reached - the cost then becomes infinite). This may result in some
reduction in use of the mechanism. In so doing, another cost has been incurred: loss of paral-
lelism.

2.2.2 Processor Architectures to Tolerate Latency

In this section, the changes in von Neumann architectures that have directly reduced the effect of
memory latency on performance are described. All of these seek to uncouple memory referance
performance from processor performance either by migrating "essential" data to reside within the
processor proper (registers, data caches) and/or by hiding memory latency behind an otherwise
occupied processor (instruction prefetching, instruction caches, pipelining, LOAD/STORE
organization).

Consider the model that either all memory modules in a multiprocessor form one global address
space out of which any processor can read any word, or a model in which processors communi-
cate directly with one another via messages, the memories being strictly local to processors.
Either model demonstrates that latency means much more than simply "delay," to wit:

o Latency is Variable: The time to fetch an operand / communicate a value in a
message may not be constant because some memories / processors may be "closer"
than others in the physical organization of the machine.

* Latency Cannot be Bounded: No useful bound on the worst case time to fetch /
send a value may be possible at machine design time because of the scalability as-
sumption.

¢ Chacs Arises out of Order: If a processor were to issue several (pipelined) requests
to different remote memory modules / processors in a given order, the responses
could arrive in a different order.

Before tackling these very hard problems, the traditional solutions for uniprocessors are examined
in some detail. These sclutions share the interesting property that solving latency probiems in-
variably introduces synchronization problems.

2.2.2.1 Increasing the Precessor State

In the earliest computers, such as EDSAC, the processor state consisted solely of an accumuiator,
a quotient register, and a program counter. Memories were relatively slow compared to the
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processors, and thus, the time to fetch an instruction and its operands completely dominated the
instruction cycle time; arithmetic performance was incidental.

By investing in some additional high-speed storage, e.g., multiple accumulators, a new game was
possible: a computation could be organized to load these accumulators from memory, to perform
some computation using only the accumulators, and to store the final results. The increase in
processor state meant that, at least for the accumulator-only instructions, instruction execution
time could be made independent of the long-latency memory. However, the enlarged processor
state still did not help reduce the time lost during memory references and, consequently, did not
contribute to an overall reduction in cycle time. Perhaps the most significant effect of increased
state was the introduction of index registers which eliminated the need for self-modifying code,
bringing an attendant reduction in the total number of instructions executed.

2.2.2.2 Instruction Pre-fetching

The time lost to instruction fetching can be totally hidden, and the cycle time thereby improved, if
fetching is done during the execution phase of the previous instruction (pre-fetching). If instruc-
tions and data are kept in separate memories, it is similarly possible to overlap some amount of
operand fetching as well (The IBM STRETCH [13] and Univac LARC [25] represent two of the
earliest attempts at implementing this idea).

Instruction pre-fetching works well only when the execution of instruction i does not have any
effect on either the choice of instructions to fetch (as in the case of BRANCBH) or the content of the
fetched instruction (self-modifying code) for instructions i+1, i+2, s i+k. The latter case is
usually handled by simply outlawing it. However, effective overlapped execution in the presence
of BRANCH instructions has remained a problem. Techniques such as pre-fetching both BRANCH
targets have shown little performance/cost benefits. However, the microprogramming trick of
delayed BRANCH instructions has been incorporated, with success, in LOAD/STORE architectures.
The idea is to delay the effect of a BRANCH by one instruction. Thus, the instruction at i+1
following a BRANCH instruction at { is always executed regardless of which way the BRANCH at i
goes. One can always follow a BRANCH instruction with a NOP instruction to get the old effect.
However, experience has shown that seventy percent of the time a useful instruction can be put in
that position.

Operand pre-fetching is subject to similar dependence constraints from previously issued instruc-
tions. In sequential code, it is quite common that an operand for instruction i is the result of
instruction i~1. It is necessary to synchronize these two instructions so as to guarantee that
instruction i gets the correct value. One method, called bypassing, is to force the operand
prefetch hardware to ignore the value it would have normally fetched and to substitute the value
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to be produced by instruction i—1 when this kind of dependence is detected. A variant on this
scheme is to delay the fetching of operands for instruction i until instruction i~1 has stored its
result. This technique is referred to as interlocking. The attendant delay, or idle time, is com-
monly called a bubble.

Because overlap is not applicable to all cases of all instructions, an architect must pay the price of
increased complexity in terms of synchronization hardware to detect and deal with the special
cases, or he must forego these optimizations.

2.2.2.3 Instruction Buffers, Operand Caches and Pipelined Execution

The time to fetch instructions can be further reduced by providing a fast instruction buffer, further
increasing the processor state. In machines such as the CDC 6600 [55] and the Cray-1 [51], the
instruction buffer is automatically loaded with  instructions in the neighborhood of a referenced
instruction whenever the referenced instruction is found to be missing. Similarly, operand fetch-
ing can be optimized by providing operand caches which prefetch and store data values which are
in the neighborhood of a referenced datum. Both of these techniques rely on locality: because of
sequential instruction interpretation, given the execution of instruction i, the next instruction to be
executed will be, with very high probability, i+1. Transitivity further implies the need for i+2,
i+3, and so on. The probability density function of likely successor instructions, given i, is
strongly centered about i as opposed to being uniformly distributed. Therefore, there is economic
value in pre-fetching program text in the neighborhood of a referenced instruction from a slow
storage (main memory) into a higher speed buffer in the processor. If many such instructions can
be pre-fetched with a single memory reference, the total number of references can be reduced,
and the memory access time will become more a function of buffer speed. If the PDF of instruc-
tions can be used to infer a similar PDF for the associated operands, operand caches can magnify
the main memory’s apparent speed for data as well. This class of locality, called spatial locality,
relates characteristics of one fetch operation with the characteristics of other fetch instructions. In
subsequent chapters, the kindred concept of temporal locality will be exploited. This relates
characteristics of one store operation with the characteristics of other fetch instructions (i.e,thata
value, once produced, will likely be consumed shortly thereafter).

As each stage of instruction processing is optimized, the natural generalization is to organize the
processor as a pipeline, dividing the total instruction execution task into a number of
equivalently-sized subtasks, e.g., fetching the instruction from the instruction cache in the first
stage, decoding it in the second stage, fetching the operands from the operand cache in the third
stage, and so on. The hope is to be able to dispatch instructions with a periodicity (called the
pipeline step or beat) equal to the time taken by the slowest pipeline stage, rather than the time
taken by the sum of the stages.
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Figure 2-3: Variable Operand Fetch Time

Designing a well-balanced pipeline requires that the time taken by various pipeline stages be
more or less equal, and that the "things", i.e., instructions, entering the pipe be independent of
each other. Obviously, instructions of a program cannot be totally independent except in some
special trivial cases. Instructions in a pipe are usually related in one of two ways: Instruction n
produces data needed by instruction n+k, or only the complete execution of instruction n deter-
mines the next instruction to be executed (the aforementioned BRANCE problem).

Limitations on hardware resources can also cause instructions to interfere with one another.
Consider the case when both instructions n and n+1 require an adder, but there is only one of
these in the machine. Obviously, one of the instructions must be deferred until the other is
complete. A pipelined machine must be able to prevent a new instruction from entering the
pipeline temporarily when there is a possibility of interference with the instructions already in the
pipe. Detecting and quickly resolving these hazards is very difficult with ordinary instruction
sets, e.g., IBM System/370, DEC VAX, or Motorola 680x0, due to their complexity.

A major complication in pipelining complex instructions occurs when the stage time is not
strictly bounded, e.g., when memory / communication latency is involved. Even more
troublesome is the possibility that responses to such long-latency operations may arrive out-of-
order, necessitating some form of synchronization (refer to Figure 2-3).
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2.2.2.4 Load/Store Architectures

A variety of instruction sets, pioneered in the 1960s [55], divide instructions into two disjoint
classes. In one class are instructions which move data unchanged between memory and high
speed registers. In the other class are instructions which operate on data in the registers.
Instructions of the second class cannot access the memory. This rigid distinction simplifies
instruction scheduling. For each instruction, it is trivial to see if a memory reference will be
necessary or not. Moreover, the memory system and the ALU may be viewed as parallel, non-
interacting pipelines. An instruction dispatches exactly one unit of work to either one pipe or the
other, but never both.

Such architectures have come to be known as LOAD/STORE architectures, and include the
machines built by Reduced Instruction Set Computer (RISC) enthusiasts (the IBM 801 [49],
Berkeley RISC [48], and Stanford MIPS [36] are prime examples). The design of the instruction
pipeline is based on the principle that if an instruction gets past some fixed pipe stage, it should
be able to run to completion without incurring any previously unanticipated hazards.

LOAD/STORE architectures are much better at tolerating latencies in memory accesses than are
. other von Neumann architectures. In order to explain this point, consider a simplified model
which detects and avoids hazards in a LOAD/STORE architecture similar to the Cray-1. Assume
there is a bit associated with every register to indicate that the contents of the register are under-
going a change. The bit corresponding to register R is set the moment an instruction is dispatched
which will update R. Following this, instructions are allowed to enter the pipeline only if they
don’t need to reference or modify register R or other registers reserved in a similar way (a kind of
interlocking). Whenever a value is stored in R, the reservation on R is removed. if an instruction
is waiting on R, it is allowed to proceed.

This simple scheme works under the assumptions that registers whose values are needed by an
instruction are read before the next instruction is dispatched, and that the ALU or the multiple
functional units within the ALU are pipelined to accept inputs as fast as the decode stage can
supply them, subject to the other kinds of resource and control flow dependences discussed
above.

The benefit is that, to the extent memory fetches can be issued far in advance of the need for the
data, the latency incurred in the fetches can be masked behind the execution of other, independent
instructions. Herein is the hook: the compiler must be able to discover opportunities for fine-
grained parallelism in order to separate the memory references from the instructions which use
the fetched data. Said another way, the extent to which this technique can be used to mask
latency cost depends critically upon the compiler’s ability to uncover instruction level paral-
lelism.



An equally necessary requirement is the synchronization support provided by the machine: reser-
vation bits on processor registers. Assuming that the compiler can detect opportunities for in-
struction level parallelism, the following problems remain:
e Each fetch requires a target register. Therefore, the degree of parallelism which can
be exploited, and the latency which can be tolerated, is bounded by the number of

registers. Viewed more abstractly, registers are synchronization names, and the
small size of the register set artificially constricts the synchronization name space.

e The instruction set lacks the means for expressing this parallelism - the instruction
dispatcher must intuit it dynamically, and must be prepared to deal with bad intui-
tion. Specifically, the instruction dispatcher may very quickly find its hands full of
instructions which are not quite ready to execute in the search for those which are.

Some LOAD/STORE architectures have eliminated the need for reservation bits on registers by
making the compiler responsible for scheduling instructions, such that the result is guaranteed to
be available. The compiler can perform hazard resolution only if the time for each operation e.g.,
ADD, LOAD, is known; it inserts NOP instructions wherever necessary. Because the instruction
execution times are an intimate part of the object code, any change to the machine’s structure
(scaling, redesign) will at the very least require changes to the compiler and regeneration of the
code. This is obviously contrary to the definition of scalable, general-purpose parallel computers.

Current LOAD/STORE architectures assume that memory references either take a fixed amount of
time (one cycle in most RISC machines) or that they take a variable but predictable amounti of
time (as in the Cray-1). In RISC machines, this time is derived on the basis of a cache hit. If the
operand is found to be missing from the cache, the pipeline stops. Equivalently, one can think of
this as a situation where a clock cycle is stretched to the time required. This solution works
because, in most of these machines, there can be either one or a very small number of memory
references in progress at any given time.

2.2.3 Synchronization Methods for Multiprocessing

As discussed above, solving latency problems requires some sort of synchronization mechanism.
This section examines the synchronization problem from a different perspective: having decom-
posed a program into communicating parts, explicit time-coordination is required which is quite
independent of latency concemns.

To form the basis for a multiprocessor, a von Neumann engine must support inter-task
synchronization in some form, but at what cost and with what granularity? Consider that the cost
of any synchronization mechanism will almost certainly dictate the granularity of the tasks lest
the machine spend all of its time synchronizing. Once the granularity is determined, so is the
exploitable parallelism.
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2.2.3.1 Global Scheduling on Synchronous machines

For a given problem on a totally synchronous multiprocessor, it is possible to envision a master
plan which specifies operations for every cycle on every processor. An analogy can be made
between programming such a multiprocessor and coding a horizontally microprogrammed
machine. Recent advances in compiling [28] have made such code generation feasible and have
encouraged researchers to propose and build several different synchronous multiprocessors
[29,50]. These machines are generally referred to as very long instruction word (VLIW)
machines because each instruction actually contains multiple smaller instructions (one per func-
tional unit or processing element). The strategy is based on maximizing the use of resources and
resolving potential run-time conflicts in the use of resources at compile time. Memory references
and control transfers are "anticipated" as in RISC architectures, but here, multiple concurrent
threads of computation are being scheduled instead of only one. Given the possibility of decod-
ing and initiating many instructions in parallel, such architectures are highly appealing when one
realizes that the fastest machines available now still essentially decode and dispaich instructions
one at a time. '

This technique is effective in its currently realized context, i.e., FORTRAN-based computations
on a small number (less than several dozen) of processors. Compiling for parallelism beyond this
level, however, becomes intractable. It is unclear how problems which rely on dynamic storage
allocation or require nondeterministic and real-time constraints will play out on such architec-
tures. It is clear, however, that this technique can and should be combined with other approaches
which address dynamic synchronization.

2.2.3.2 Interrupts and Low-level Context Switching

Almost all von Neumann machines are capable of accepting and handling interrupts. Not surpris-
ingly, multiprocessors based on such machines permit the use of inter-processor interrupts as a
means for signalling events (i.e., triggering inter-task synchronization). However, interrupts are
rather expensive because, in general, the processor state needs to be saved. The state-saving may
be forced by the hardware as a direct consequence of allowing the interrupt to occur, or it may
occur explicitly, i.e., under the control of the programmer, via a single very complex instruction
or a suite of less complex ones. Independent of how the state-saving happens, the important thing
to note is that each interrupt will generate a significant amount of traffic across the processor -
memory interface.

In the previous discussion, it was suggested that larger processor state is helpful in reducing
latency cost. Observe, however, that the use of interrupts for inter-task synchronization would
bid instead for small, easily-switched processor state. Thus, reducing the cost of synchronization
by making interrupts cheap would generally entail increasing the cost of memory latency.
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Uniprocessors such as the Xerox Alto [60] and the Symbolics 3600 [45] have used the technique
of microcode-level context switching to allow sharing of the CPU resource by the I/O device
adapters. This is accomplished by duplicating programmer-visible registers, in other words, the
processor state. In one microinstruction, the processor can be switched to a new task without
causing any state-saving memory references. This dramatically reduces the cost of processing
certain types of events that cause frequent interrupts. Few machines have used the idea of keep-
ing multiple fask contexts in a multiprocessor setting (one important exception is the HEP, to be
discussed in Section 6.3.1) although it should reduce synchronization cost over processors which
can hold only a single context.

The limitations of this approach are obvious. High performance processors may have a small
programmer-visible state (number of registers) but a much larger implicit state (caches). Low-
level task switching does not necessarily take care of the overhead of flushing caches. Further,
one can only have a small number of independent contexts without completely overshadowing
the cost of the ALU hardware.

2.2.3.3 Semaphores

A commonly supported feature for synchronization is an atomic operation to test and set the
value of a memory Iocation. A processor can signal another processor by writing into a location
which the other processor keeps reading to sense a change. Even though, theoretically, it is
possible to perform such synchronization with ordinary read and write memory operations, the
task is much simpler wih an atomic TEST-AND-SET instruction. TEST-AND-SET is powerful
enough to implement all types of synchronization paradigms meniioned earlier. However, the
synchronization cost of using such an instruction can be very high because TEST-AND-SET
normally implies busy waiting. This results in lost ALU cycles and extra memory references.
Implementations of TEST-AND-SET which permit non-busy waiting imply context switching
with the attendant expense.

It is possible to improve upon the multiprocessor behavior of TEST-AND~-SET by generalizing it
to the atomic FETCH-AND-OP as suggested by the NYU Ultracomputer group [26]. The in-
struction requires an address and a value, and works as follows: suppose two processors, i and j,
simultaneously execute FETCHE~AND-ADD instructions with arguments (A,v;) and (A,vj) respec-
tively. After one instruction cycle, the contents of A will become (A)+vi+vj. Processors i and j
will receive, respectively, either (A) and (A)+vi, or (A)+vj and (A) as results. Indeterminacy is a
direct consequence of the race to update memory cell A.

3However, solutions such as multicontext caches and multicontext address translation buffers have been used to
advantage in reducing this task switching overhead, (c.f, the STO stack mechanism in the IBM 370/168).
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Different implementations realize different kinds of savings as a result of using
FETCH-AND-OP. The NYU proposal calls for a combining packet communication network
which connects n processors to an n-port memory. If two packets collide, say
FETCH-AND-ADD(A,v;) and FETCH-AND -ADD(A,vj), the switch extracts the values v; and 2
forms a new packet (FETCB-AND-ADD(A,vi+vj)), forwards it to the memory, and stores the
value of v; temporarily. When the memory returns the old value of location A, the switch returns
two values ((A) and (A)+v).

This has the effect of reducing the total number of network packets in transit and of limiting the
number of fetch requests converging on a given memory address. Some synchronization situa-
tions which would have taken O (n) time can be done in O(logn) time. It should be noted,
however, that one memory reference may involve as many as log, n additions, and implies sub-
stantial hardware complexity.

In the Cedar project [44], combining happens in the memory controiler. This results in a similar
limitation of fetches against an address, but does nothing to reduce network packets.
Implementation in sofiware by interpretation is a logically possible third alternative, but realizes
little, if any benefit.

In none of these schemes is the issue of processor idle time due to latency addressed. In the worst
case, the complexity of hardware support for combining may actually increase the latency to the
point of overshadowing the benefits of combining.

2.2.3.4 Cache Coherence Mechanisms

While highly successful for reducing memory latency in uniprocessors, caches in a multiproces-
sor setting introduce a serious synchronization problem called cache coherence. Censier and
Feautrier [17] define the problem as follows:

A memory scheme is coherent if the value returned on a LOAD instruction is always the value
given by the latest STORE instruction with the same address.

It is easy to see that this may be difficult to achieve in a multiprocessor.

Consider a two-processor system tightly coupled through a single main memory. Each processor
has its own cache to which it has exclusive access. Suppose further that two tasks are running,
one on each processor, and it is known that the tasks are designed to communicate through one or
more shared memory cells. In the absence of caches, this scheme can be made to work. If, on the
other hand, it happens that the shared address is present in both caches, the individual processors
can read from and write to the address and never see any changes caused by the other processor.
Using a store-through design instead of a store-in design does not solve the problem either. What
is logically required is a mechanism which, upon the occurrence of a STORE to location X, in-



validates copies of location x in caches of other processors, and guarantees that subsequent LOADs
will get the most recent (cached) value. This can incur significant overhead in terms of decreased
memory bandwidth.

Solutions to the cache coherence problem center around reducing the cost of detecting the pos-
sibility of incoherence, typically by using a logical directory of cached data. Each entry in the
directory reflects the state of the associated cache line, e.g., private, read-only, shared, etc. The
directory is updated as necessary when lines change state, and can be used to detect the pos-
sibility of incoherence. For example, when an attempt is made to write to a shared line, the
directory detects the need to inform others to purge their copies. Obviously, a centralized im-
plementation of the directory does not scale. The directory may be distributed, and in some cases
the state information can be stored economically as a few extra bits on each cache line. The
problem now becomes one of keeping the distributed directory coherent. Many opportunities
exist to reduce the amount of coherence-maintaining communication based on the state infor-
mation (e.g., writing to a cache line marked as private requires no communication), but some
nontrivial communication will aiways be required4, and the amount of communication will likely
not diminish as a machine is scaled. The machine’s performance will ultimately be limited by the
rate at which directories can process this coherence-maintaining traffic from their peers. Many
other schemes have been proposed for handling caches in small-degree multiprocessors such as
making caches partially visible to the programmer, allowing explicit state annotation and explicit
flushing of lines.

It is worth noting that, while not obvious, a direct trade-off often exists between decreasing the
parallelism and increasing the cachable or non-shared data. It is further noteworthy that latency
and synchronization are inextricably intertwined here: to reduce latency, caches are introduced.
This results in a synchronization problem (coherence). Solutions to the synchronization problem
such as implicit and explicit purging of cache lines will result in poorer cache hit rates and
increased average latency.

2.2.4 Analysis and Summary

The von Neumann model, by virtue of its simplicity, offers some tremendous advantages.
Consider, for example, that given the static structure of a compiled program and nothing more
than the value of the program counter during execution, a tremendous amount of information can
be deduced, e.g., the satisfaction or lack thereof of data dependences, the termination of predeces-
sor instructions, the non-initiation of successor instructions, and so on. Consider also that a

“One exception is the case of embarrassingly parallel applications which decompose into non-communicating tasks.

29



sequential thread of computation, occupying a pipeline, has, by definition, exclusive access to the
entire state of the underlying machinery. This implies that the cost of communicating data values
between instructions can be made extraordinarily low, and that the compiler has tremendous
leverage in managing the machine state per its own criteria of optimality. Do these facts in any
way imply that von Neumann machines should be the basis for scalable, general purpose parallel
computing?

Advocates of non-von Neumann architectures (including the author) have argued that the notion
of sequential instruction execution is the antithesis of parallel processing. This criticism is ac-
tually slightly off the mark. Rather, a von Neumann machine in a multiprocessor configuration
does poorly because it fails to provide efficient synchronization support at a level low enough to
permit its liberal and free use. Why is this so?

The participants in any one synchronization event require a common ground, a meeting place, for
the synchronization to happen. This may take the form of a semaphore [19], a register [51], a
buffer tag [56], an interrupt level, or any of a number of similar devices. In all cases, one can
simply think of the common ground as being the name of the resource used (e.g., register number,
tag value, etc.). The participants also require a mechanism to trigger synchronization action.

When viewed in this way, it should be clear that the number of simultaneously pending
synchronization events is bounded by the size of this name space as well as by the cost of each
synchronization operation. More often than not, this name space is tied to a physical resource
(e.g., registers) and is therefore quite small, thereby limiting support for low level dynamic
synchronization. For most existing von Neumann machines, synchronization mechanisms are
inherentiy larger grain (e.g., interrupts) or involve busy waiting (e.g., the HEPS [41, 53]).
Therefore, the cost of each event is quite high. Such mechanisms are unsuitable for controlling
latency cost. Moreover, since task suspension and resumption typically involve expensive con-
text switching, exploitation of parallelism by decomposing a program into many small, com-
municating tasks may not actually realize a speed-up.

It is important to observe that these arguments together favor the alteration of the basic von
Neumann mechanism, and not its total abandonment. For situations where instruction sequencing
and data dependence constraints can be worked out at compile time, there is still reason to believe
that a von Neumann style sequential (deterministic time order) interpreter provides better control
over the machine’s behavior than does a dynamic scheduling mechanism and, arguably, better

5The HEP also exhibited several synchronization namespace problems: the register space was 0o small (2K), there
was a limit of one outstanding memory request per process, and there was a very serious limit of 64 user process status
words per processor.
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cost-performance. It is only in those situations where sequencing cannot be so optimized at
compile time, e.g., for long latency operations, that dynamic scheduling and low-level
synchronization are called for. One must also keep in mind that, despite any desire to
revolutionize computer architecture, von Neumann machines will continue to be the best under-
stood base upon which to build for many years.

2.3 Dataflow Architectures

Dataflow architectures [3, 24, 31, 37] represent a radical alternative to von Neumann architec-
tures because they use dataflow graphs as their machine language [5, 23]. Dataflow graphs, as
opposed to conventional machine languages, specify only a partial order on the execution of
instructions and thus provide opportunities for parallel and pipelined execution at the level of
individual instructions. For example, the dataflow graph for the expression

(axb)+(cxd)

only specifies that both multiplications be executed before the addition. The multiplications can
be executed in any order, even in parallel. The advantage of this flexibility becomes apparent
when considering that the order in which a,b,c and d become available may not be known at
compile time. For example, computations for operands ¢ and b may take longer than computa-
tions for ¢ and 4.

The instruction execution mechanism of a dataflow processor is fundamentally different from that
of a von Neumann processor. Consider the MIT Tagged-Token architecture, as depicted in
Figure 2-4. Rather than using a program counter to determine the next instruction to be executed
and then fetching operands accordingly, a dataflow machine provides a low-level synchronization
mechanism in the form of a Waiting-Matching store which dispatches only those instructions for
which data are already available. This mechanism relies on tagging each datum with the address
of the instruction to which it belongs and the context in which the instruction is to be executed.
One can think of the instruction address as replacing the program counter, and the context iden-
tifier as replacing the traditional frame base register. It is the machine’s job to match up data with
identical tags and then to execute the denoted instruction. In so doing, a new datum will be
produced, with a new tag indicating the successor instruction(s). Thus, each instruction
represents a synchronization operation. Note that the number of synchronization names is limited
by the size of the tag, which is intentionally large. Note also that the processor pipeline is
non-blocking: given that the operands for an instruction are available, the corresponding instruc-
tion can be executed without further synchronization.

In addition to the waiting-matching section which is used primarily for dynamic scheduling of
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instructions, the MIT Tagged-Token machine provides a second synchronization mechanism
called /-Structure Storage. Each word of I-structure storage has two bits associated with it to
indicate whether the word is empty, full or has pending read requests. This greatly facilitates
overlapped execution of a producer of a data structure with the consumer of that data structure.
There are three instructions at the graph level to manipulate I-structure storage. These are
ALLOCATE: to allocate an array of n empty words of storage, I-FETCH: to fetch the contents of the
i word of an array, and I-STORE: to store a value in a specified word. Generally, software
concems dictate that a word be wriiten into only once before it is deallocated.

The dataflow processor treats all I-structure operations as split transactions. For example, when
the I-FETCH instruction is executed, a packet containing the tag of the destination instruction of
the I-FETCH is forwarded to the proper address, possibly in a distant I-structure storage module.
The actual memory operation may require waiting if the datum is not present, and thus the result
may be returned many instruction times later. The key is that the instruction pipeline need not be
suspended during this time. Rather, processing of other instructions may continue immediately
after initiation of the operation. Matching of memory responses with waiting instructions is done
via tags in the waiting-matching section.

One advantage of tagging each datum is that data from different contexts can be mixed freely in
the instruction execution pipeline. Thus, instruction-level parallelism of dataflow graphs can
effectively absorb the communication latency and minimize the losses due to synchronization
waits.

In summary, the MIT Tagged Token Dataflow Architecture (TTDA), and other dataflow architec-
tures like it [31, 37], provide well-integrated synchronization at a very basic level. By using an
encoded dataflow graph for program representation, machine instructions become self-
sequencing. One str...gth of the TTDA is that each datum carries its own context identifying
information. By this mechanism, program parallelism can be easily traded for latency because
there is no additional cost above and beyond this basic mechanism for switching contexts on a
per-instruction basis.

However, it is clear that not all of the distinguishing characteristics of the TTDA contribute
towards efficient toleration of latency and synchronization costs. One very sound criticism is that
intra-procedure communication is unnecessarily general. Intuitively, it should not be necessary to
create and match tokens for scheduling every instruction within the body of a procedure - some
scheduling can certainly be done by the compiler, for example, in the evaluation of an arithmetic
expression. In a dataflow machine, however, data driven scheduling is de rigueur.

The notion of a nonblocking, context-interleaving pipeline is a two-edged sword. It provides the

33



Ve
Iteration 1+ /

Iteration 2 #° /
Iteration 3 #° /
Iteration 4 #*

..-..ngp

Figure 2-5: Dependences and Parallelism in WaveFront

ultimate flexibility in context switching, but implies that the notion of locality must be recon-
sidered. Intuitively, given a dataflow pipeline of depth n, the working set size for instruction and
operand caches must be on the order of n times the working set size for the threads of computa-
tion which coexist in the pipe. This also implies that the time to execute the instructions in a
graph’s critical path is » times the critical path length. One is left to wonder if it might not be
possible, even desirable, to optimize this by performing the necessary synchronization explicitly,
and relying on more traditional (read: well-understood) mechanisms for instruction sequencing in
the remainder of the cases. The uncertainties in this argument are the fraction of time wherein
synchronization is necessary, and the complexity of the mechanisms required.

2.4 Comparison of von Neumann and Dataflow Approaches

Given this discussion of von Neumann and dataflow architectures, it is illustrative to consider an
example program and to examine the kinds of parallelism which can be exploited under the two
models.

Presented below is a simple program called WaveFront. It takes as input an initialization vector
of length n. The program allocates a matrix of dimension nxn, fills in the first row and first
column from corresponding elements of the initialization vector, then proceeds to compute the
remaining elements as follows: each empty element’s value is the average of three near-neighbor
values - the north, west, and northwest. The example is written in Id.
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def wavefront edge vector =
{1,u = 1d _bounds edge_vactor;
m = matrix ((1,u),(1,u));
m[l,1] = edge vector([l];
{for i from 1+1 to u do
m[l,i] = edge vector[i];
m[i, 1] = edge_vector[i]:;}:
{for i from 1l+1 to u do
{for j from 1+1 to u do
m[i, j] = (m[i-1,3] + m[4, j-1] + m[i-1,3-1]) / 3;}}

m};

After having filled in the first row and fizst column, the computation proceeds as shown in Figure
2-5, with all unfilled cells along any one diagonal being candidates for parallel execution. The
available parallelism in an ideal situation as a function of time can be plotted as a parallelism
profileS (Figure 2-6).

The small blips around #=15 represent initialization of the first row and first column of the array.
The bulk of the execution time belongs to the doubly-nested loop which performs the wavefront

SParallelism profiles are derived by compiling a program into a dataflow graph of elementary instructions (ADD,
I-FETCH, etc.) which preserves only the essential data dependences. The compiled graph is interpreted, with each
instruction in the graph taking unit time. Intercommunication latencies are assumed to be zero. At any time step, all
and only those instructions which are logically enabled are executed. The profile plots the number of such instructions
as a function of time.
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Figure 2-7: Available Instruction Parallelism in 15x15 MultiWave

computation proper. As expected, the parallelism rises essentially linearly until the computation
diagonal reaches the middle of the array (corresponding to the linear increase in number of ele-
ments computed on the wave front). After this point, a corresponding linear decline is seen.

The parallelism exposed here takes a2 number of forms. While it is beyond the scope and intent of
this work to discuss the linguistic underpinnings which make the exposure of parallelism pos-
sible, it is useful and instructive to examine the types of parallelism which combine to give the
results here: .
* At the most basic level, the expression in the loop body has a certain amount of
parallelism built into it. Given the loop variables i and j, three elements can be
fetched from the two-dimensional array m in parallel. Such parallelism is difficult to

exploit across processors, but as is discussed later in this thesis, this class of paral-
lelism is essential for keeping the pipeline full in the presence of long latencies.



* At a higher level, multiple instances of the inner loop are active simultaneously. In
the compilation scheme used here, procedures are represented as sets of codeblocks.
A codeblock may have no more than one loop and, consequently, inner loops are
represented as separate codeblocks. Nonstrictness is preserved across an inter-
codeblock interface, so invocation and partial coiaputation are entirely possible
despite the temporal absence of one or more arguments.

e Higher yet, multiple iterations of the outer loop are concurrently active. It is the
outer iteration which spawns multiple inner loop instances.

The dataflow machine which supports I-Structure storage can easily exploit all three forms of
parallelism. The dynamic result is that each diagonal is the producer of data consumed by the
next diagonal. Moreover, a dataflow machine can exploit additional producer / consumer overlap
between muitiple, dependent instances of the same program. Consider the MultiWave program
below:

def multiwave edge vector n =
{m = wavefront edge_vector;
in
{for i from 1 to n do
next m = wave m;
finally m}};

Here, the function Wave is similar to WaveFront above, except that the input is the matrix
produced by WaveFront instead of an initialization vector, and that the loop body is changed

thus:

m[i,j] = (m[i-1,3] + m[4,35-1] +
m[i~-1,j-1] + previous matrix[i,3j]) / 4;}}

That is, a dependence has been added: mfi,j] now also depends upon its previous value. The
parallelism profile is shown in Figure 2-7a. When it is realized that a dataflow machine can
exploit this parallelism as well, the result is quite remarkable. The peak (and average) paral-
lelisms have simply doubled, and the critical path time has increased a mere 12.4% (cf., Figure
2-6).

Needless to say, a traditional von Neumann machine would be able to exploit virtually none of
this paralielism without significant effort. First of all, the program would have to be expressed
differently. In the Id approach, it is quite correct to think the program is giving a definition for
the value of each cell, and that the time-ordering of instructions necessary to compute that value
is dynamically determined by the dataflow hardware. It is therefore transparent to the program-
mer.

The point that von Neumann architecture offers a very different paradigm is clearly made if one
considers transliterating the Id code to FORTRAN. There, the program becomes a specification
of how to compute instead of what to compute. Simply iterating over rows and columns,
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FORTRAN semantics would in fact hide the opportunity for inner loop parallelism because there
is a data dependence between inner loop iterations (consider the first invocation of the inner loop
with i=/ and j=I..u. Loop interchange won’t help in this situation. The program would have to be
re-coded to literally express computing the diagonals, with each inner loop instance running along
one diagonal. Aside from the aesthetics of doing this, it is hard to argue that such transformations
could be done automatically.

Given that the program can be re-coded by some means [4], the question of what kinds of paral-
lelism are exploitable remains. It is conceivable that a compiler could exploit some amount of
expression-level parallelism through instruction reordering with the objective of partially masking
latency cost. It is also conceivable that inter-iteration parallelism in the inner loop (one iteration
corresponding to the computation of one element in a diagonal) could be exploited, say, by the
use of vector instructions.

It is difficult to imagine an efficient way, however, of exploiting the outer loop parallelism
depicted in Figure 2-7a without further re-coding because of the required fine-grained
synchronization. At best, the compiler would have to enforce barrier synchronization at the end
of each outer loop iteration before letting the next iteration begin. The effect of such a barrier can
be simulated by introducing an inter-iteration dependence on the availability of the lower-right
element in the matrix. The not-too-surprising result for two iterations is shown in Figure 2-7b.
Given n iterations over an mxm array, the best-case running time is proportional to mxn. Under
the dataflow model (Figure 2-7a), however, the best-case running time is proportional to m+n.
The cost of not having fine-grained synchronization support is clear, yet from the criticism of
dataflow architectures, the cost of one such type of fine-grained synchronization is also clear.

2.5 Summary

Processor architecture plays a critically important role in the making of 2z multiprocessor.
Dataflow architectures embody something which is sufficient for tolerating low-level latencies
while simultaneously providing fine-grained synchronization support to programs decomposed
for multiprocessing. While von Neumann machines are clearly superior in the execution of long
sequential threads, the inability to provide cheap, fine-grained synchronization has left doubts as
to whether von Neumann architecture can reasonably be a basis for building multiprocessors.

The obvious question is can a new architecture be synthesized out of the best features of dataflow
and von Neumann architectures which adequately addresses the shortfalls of both? Arvind has
suggested that an architecture formed on the principles of split transaction I-Structure memory
references in a von Neumann framework, coupled with data driven rescheduling of suspended
instructions would be interesting. Such a machine has the potential of tolerating memory latency
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and of supporting fine-grained synchronization and yet, in the strict sense, is neither a von
Neumann machine nor a dataflow machine. In the next chapter, the question of synthesis is
explored.

39



Chapter Three

A Dataflow / von Neumann Hybrid

3.1 Synthesis

In the previous Chapter, it was concluded that satisfactory solutions to the problems raised for
von Neumann architectures can only be had by altering the architecture of the processor itself. It
was further observed that dataflow architectures do address these problems satisfactorily. Based
on observations of the near-miss behavior of certain von Neumann multiprocessors (e.g., the
Denelcor HEP [41, 53)), it is reasonable to speculate that dataflow and von Neumann machines
actually represent two points on a continuum of architectures. The goal of the present study is to
develop a new machine model which differs minimally from the von Neumann model, yet em-
bodies the same latency and synchronization characteristics which make dataflow architectures
amenable to parallel processing.

Starting with the observation that the costs associated with dataflow instruction sequencing in
many instances are excessive, others have suggested that dataflow ideas should be used only at
the inter-procedural level [43] thereby avoiding dataflow inefficiencies while seemingly retaining
certain advantages. This view is almost correct, but ignores the importance of the fundamental
issues. Restricting architectures to this "macro cataflow" concept would amount to giving up
what is possibly a dataflow machine’s biggest feature - the ability to context switch efficiently at
a low level to cover memory latency.

Given this, one is led to ask the following question: what mechanisms at the hardware level are
essential for tolerating latency and synchronization costs? Based on various studies of parallel
machines [2, 14, 22, 41] and on the observations presented thus far, the following conclusions are
drawn;

o In general, on a machine capable of supporting multiple simultaneous threads of
computation, executing programs expressed as a total ordering of instructions will
incur more latency cost than will executing a logically equivalent partial ordering of
the same instructions. In fact, for any lenient programming language [59], express-
ing programs as a partial ordering is a necessary condition for avoiding deadlock. It
is assumed, therefore, that the machine language of any scalable, general purpose
parallel computer must be able to express partial ordering.

¢ In any multiprocessor architecture, certain operations will take an unbounded amount
of time to complete (e.g., those involving communication). Such operations can be



either atomic, single phase operations or split transaction, multiphase operations’.
Multiphase processing will always minimize latency cost over single phase process-
ing because the potential exists for covering processor idle time. Based on the fre-
quency of the occurrence of such long latency operations [2] in all but the most
trivial parallel computations, efficient multiphase operation requires specific
hardware mechanisms {7, 22].

The proposed architecture embodies these beliefs and reconciles the criticisms of von Neumann
and dataflow architectures. Such an architecture is characterized by its machine language which
can be viewed as a superset of both von Neumann and dataflow machine languages. In the
sequel, the term parallel machine language (PML) will be used to describe this superset. A
proper PML must have the following characteristics:
e The execution time for any given instruction must be independent of latency.
Traditional latency-sensitive operations, e.g., LOADs from memory, are re-phrased as

split transactions which separately initiate an operation and later explicitly
synchronize on the availability of the result.

* Each explicit synchronization event must be named. Names must be drawn from a
large name space and it must be possible to manipulate the names as first-class
hardware data types.

¢ Means for expressing both implicit (i.e., program counter based) and explicit
(named) synchronization must be provided.

The remainder of this chapter is devoted to the definition of a PML (Section 3.2) and to the
definition of a concrete architecture which executes it efficiently (Section 3.3).

3.2 Compilation Target Model

In this section, the notion of a parallel machine language is introduced as the basis for any
reasonable general-purpose programming model. Such a language provides a metaphor for paral-
lel threads of activity which must encompass means for naming parallel threads and means for
time-coordinating, or synchronizing the threads. A key idea is that the thread size should not be
bound by the parallel machine language but rather that the machine language should support
threads of arbitrary size in a completely general way.

While the focus of this work is not on languages and compilers for general purpose parallel
computers, it is convenient to make use of extant languages and tools for the purpose of assisting
in the development and characterization of the architecture. To that end, Id and its compiler have
been used in this study. This choice has brought with it certain complications (discussed later),

7A mudtiphase operation is one which can be divided into parts which separately initiate the operation and later
synchronize prior to using the result.
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but provides a flexible vehicle for generating dataflow graphs from a high level language.
Because of their generality, dataflow graphs are assumed as the preferred starting point in
generating PML code. The approach will be to consider how dataflow graphs can be re-
represented so as to express implicit and explicit synchronization.

3.2.1 A Suitable Program Representation

Sequential execution of parts of a dataflow graph is a clear departure from the dataflow model.
While a dataflow graph expresses a partial ordering of instructions, the idea of sequential inter-
pretation implies some additional mode of representation. It becomes desirable to map a dataflow
graph into a partial ordering of threads or totally ordered clusters of instructions where such
clustering can be shown to improve execution efficiency by some measure.

Definition 3-1: An instruction cluster is a nonempty set of instructions.

Definition 3-2: A partition of a dataflow graph is a mapping of each instruction in the
graph to exactly one cluster.

Providing an architectural notion of clustering is a step beyond both dataflow and von Neumann
architectures. In the dataflow paradigm, each instruction is its own cluster. In the von Neumann
case, at least with conventional languages, the entire compiled program is the clusterS.

It is reasonable to hypothesize that the clustering methodology should not be bound by the ar-
chitecture as it is in both the dataflow and von Neumann cases. Rather, clustering should be left
as a degree of freedom for the compiler, and the architecture should provide explicit support for
this®. That is, an architecture should not be judged on its stated clustering methodology but rather
on its support for a variety of methods (sequential, fine-grained parallel, coarse-grained parallel,
etc.). Such an architecture must, therefore, simultaneously support efficient sequential threads of
execution and multiple execution contexts with minimal costs for naming and synchronizing. In
the dataflow execution model, each instruction has a static identity (instruction number within a
given compiled procedure) and, when the procedure is invoked, a set of dynamic identities (based
on invocation instance). In the hybrid model, a similar distinction is made.
Definition 3-3: A scheduling quantum (SQ) is a compiler-identified instruction cluster

in which a total ordering is imposed on the instructions. Each SQ belongs to exactly
one compiled procedure. The first instruction in an SQ is said to name the SQ.

8Compiling dataflow graphs derived from functional languages for a von Neurnann machine will force the issue in
that clusters will in many cases have to be much smaller than the entire program. This will imply some sort of
interpretive mechanism to schedule the clusters with the attendant overhead.

9As described by Traub [59], such a mechanism may well serve other purposes and is justifiable as a means for
supporting the class of lenient programming languages.
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Definition 3-4: A continuation is a dynamic (run-time) object which denotes an in-
stance of an SQ, that is, its instruction text plus its instance-specific state.

The term thread has been used loosely, and its definition can now be made slightly more precise.
In a static context, the term refers to an SQ. Dynamically, the term refers to a continuation.

3.2.2 Suppert for Synchronization

Synchronization in the von Neumann architecture is both a very old and a relatively new notion.
In the strictest sense, synchronization has always been necessary for correct operation - operands
must always be created before they are consumed. . However, under sequential execution seman-
tics, synchronization is implicit in instruction ordering. Having concluded that programs should
be expressed as SQ’s invalidates this assumption, and explicit means must be provided. In
general it is not possible to impose a total ordering on a set of SQ’s (this in essence is von
Neumann instruction sequencing, and with lenient programming languages such as Id may lead to
deadlock). SQ sequencing can only be determined at run time.

Architectural support for synchronization and scheduling of SQ’s depends on a number of issues,
but the most basic is that of strictness. Within any arbitrary cluster of instructions, it is possible
(likely) that the total input requirement for the SQ will exceed that of the first instruction. The
architecture may provide strict scheduling where all SQ inputs must be present prior to invoking
the SQ, or nonstrict scheduling where invocation is based solely on the requirements of the
instruction to be executed next. The former case is explored by Buehrer and Ekanadham [15]. It
seems likely that, given a set of synciironization requirements and the need to express these
succinctly, support for strict scheduling will result in a larger number of smaller SQ’s than will
nonstrict scheduling. This conjecture follows from the observation that it is not possible to trans-
form a nonstrict partition into a strict one simply by moving all synchronizations to the beginning
of a thread without introducing the possibility of deadlock. It will be necessary to split the larger,
nonstrict threads into separate smaller ones at the intermediate synchronization points. Moreover,
given a nonstrict scheduling mechanism, the compiler can choose to partition so as to mimic the
behavior of strict scheduling. For the sake of this study, then, the more general nonstrict schedul-
ing policy is assumed. It is further assumed that synchronization overhead, whatever the
mechanism, is efficient to the extreme of not being a first-order concem in code generation.
Moreover, it is assumed that a large, global synchronization namespace is available, and that the
cost of allocating names from this space is also negligible!0.

The instruction firing rules under this scheduling discipline must guarantee that instructions do

10 later chapters, these assumptions will be tested.
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not execute until the required inputs are present. In a dataflow machine, this simply means that
appropriate tckens (operands) must arrive on all input arcs in order for an instruction to fire, and
the detection of arrival is a run-time action taken by the hardware. In a machine which supports
clusters of instructions, the constraint of operand arrival must still be satisfied. However, the
hardware behaves somewhat differently than a dataflow machine, and seeks to distinguish
operands on the basis of their origin, for only some of them require synchronization at run time.
Having partitioned a graph into a set of nontrivial SQ’s!1, it is possible to distinguish different
type of arcs as follows:

Definition 3-5: A static unsynchronized arc is any explicit arc between two instructions
in the same SQ.

For such arcs, the sequencing constraint can be satisfied via proper instruction ordering within the
SQ. That is, sequential execution within the SQ captures the ordering constraint of the arc, and
no run time synchronization is necessary.

Definition 3-6: A static synchronized arc is any explicit arc between two instructions
in different SQ’s.

For such arcs, the sequencing constraint can only be satisfied, in general, by some dynamic
mechanism in that SQ executions are not totally ordered. There are interesting special cases of
arcs crossing SQ boundaries which do not require run time synchronization; these will be dis-
cussed in Section 5.2.2.

While not expressed explicitly in a dataflow program graph, there is an implicit dynamic arc
between every I-STORE instruction and I-FETCH instruction which refer to the same structure and
element. The arc is properly drawn from the output of the I-STORE to the input of the I-FETCH
only in the sense that the output of the I-FETCH appears, at the graph level, io be strict in this
"input.” However, the desired behavior of I-FETCH, as discussed below, is that the fetch operation
itself should not depend upon the state of the slot (e.8., Empty) from which a value is being
fetched. I-FETCH should merely initiate the fetching, and some kind of synchronization
mechanism must guarantee that instructions to receive the result of the fetch do not execute until
the value is indeed available. Hence, the arc from the I-STORE is gated by the execution of the
I-FETCH, as depicted in Figure 3-1.

Every instruction which exhibits this kind of implicit, synchronizing behavior will be treated
specially:
Definition 3-7: A FETCH-like output of an instruction is one which gates a dynamic arc

connecting an I-STORE with the sink instruction which receive its value. An instruction
itself is FETCR-like if at least one of its outputs is FETCH-like.

11 trivial SQ contains no instructions or has no input/output dependence relationships with other SQs.
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Figure 3-1: Gating Effect of FETCH-like Instructions

As shall become clear below, a FETCH-like output is an abstraction of a synchronized, long-
latency operation. The actual dynamic arc begins at the I-STORE, and terminates at the virtual
gate. A static arc connects the virtual gate to each sink instruction. There is, clearly, a one-to-one
correspondence between these arcs and the actual arcs in the graph which connect I-FETCH in-
structions to the sinks. These arcs have particular significance:

Definition 3-8: A dynamic synchronized arc is any arc which connects a FETCH-like
output to a sink instruction.

The problem of managing synchronized arcs is analogous to the problem of coordinating
producers and consumers at a higher level by the use of I-structure storage [34]. The idea is to
associate state bits with each slot in such a storage which indicate written or unwritten status.
When written, read operations perform as in a normal memory. When unwritten, read operations
are deferred, operationally, the read request itself is stored in the offending slot to wait for a write
request to come along. When this happens, the deferred read request is satisfied by forwarding
the newly arrived value. Significant time may elapse between arrival of the read request and
arrival of the write request. This is of no consequence to the I-structure storage unit per se. In
the event that multiple read requests must be deferred, a list is created and associated with the
slot. This causes practical, but not conceptual, problems. Engineering solutions depend on the
statistics of list length which is related to a number of factors.

This idea can be applied to the problem of synchronizing SQ invocations as follows: with each
invocation of a procedure is associated a frame of slots. A slot is provided for the output of each
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Figure 3-2: Stages in the Life of a Continuation

instruction in the procedurel? Each slot has I-struciure-store-like behavior in that the slot has
status bits indicating its emptiness or fullness. Fetching from an empty slot causes the associated
continuation to enter the suspended state. A subsequent STORE operation into the slot causes the
suspended continuation to enter the enabled state. Like I-structure storage, values may be fetched
repeatedly. Fetching does not, in general, reset the status bits.

Continuaticns can be thought of as being in one of the following states (Figure 3-2):
{ Uninitiated , Enabled , Active , Suspended, Terminated }

Upon initiation, a continuation becomes Enabled. Enabled continuations compete for processor
resources, and eventually become Active when scheduled. When an Active continuation en-
counters a synchronization blockage, its state changes to Suspended. Upon satisfaction of the
synchronization blockage it again becomes Enabled. A continuation may be suspended a number
of times between initiation and termination. One can think of a continuation as behaving like a
more traditional zask in a demand paged system which, upon encountering a missing memory
page, becomes suspended until the page is made available.

3.2.3 Latency

With this powerful hardware-level synchronization technique, it is straightforward to devise a
method of tolerating long latencies. Dynamic synchronized arcs represent the instances of
latencies which cannot be bounded at compile time, and always occur at the outputs of instruc-
tions which initiate long latency operations. Within the von Neumann paradigm, it is most com-
monly the case that such long latencies are imbedded in instructions and directly result in proces-
sor idle time (Figure 3-3). In order to prevent long latencies from causing the processor to idle,
the following is assumed:

12While not considered here, re-use of slots within an invocation is possible. The problem is similar to that of
re-using registers with the exception that reference patterns are often not statically determined.
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Figure 3-3: Unbounded Execution Time Modeled as a Hidden Dynamic Arc

Proposition 3-9: Dynamic synchronized arcs must never occur within a non-
preemptible unit of execution, and may only exist between such units of execution.

In a von Neumann machine, this condition is violated because instructions are in general
non-preemptible!3 and may contain dynamic synchronized arcs, e.g., LOAD.

Thus, the proposition can be narrowed to say that dynamic synchronized arcs must never occur
inside an instruction. That is, instruction execution time must never be a function of the long
latency. This is most easily guaranteed by splitting all instructions with imbedded dynamic arcs
into two parts which separately initiate and then synchronize. In the case of LOADing a value
from a remote memory unit, one instruction would simply initiate the FETCH without waiting for
the value to arrive. It would then be the responsibility of any instructions which use the
FETCHed value to synchronize, or check for its presence, before proceeding. Such instructions
are commonly called split transactions.

In the context of the present discussion, it is useful to view these arcs as hinge-points between

13There are certainly exceptions to this rule. The IBM System/370 architecture [39] recognizes that system integrity
is a function of bounded /O interrupt response time and, iherefore, instructions which may run for a long time, eg.,
Move Long (MVCL), are specified as being segmentable at well-defined intermediate points in their execution. The
time between such segment boundaries is typically much longer, e.g., 256 memory cycles, than what is being
considered here.
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units of execution (SQ’s). Specifically, it is logical to push the unbounded latencies so that they
occur between rather than within SQ’s. The intuition is that while SQ A may initiate a number of
long-latency operations, in order to mask the effect of latency, the consumers of the long-latency
results must be asynchronous to A. This notion will be refined in Chapter 4. In this way, the
proposition may be phrased that dynamic synchronized arcs must never occur inside an SQ.
The partitioning of a graph must in some way be based on the dynamic synchronized arcs within
it.

It is therefore assumed that all long latency instructions will be split transactions. In this model,
the initiating instruction causes enough information to be sent, say, to the memory subsystem so
that the result can be sent back and stored into an appropriate frame slot. Any attempt to use the
value prior to its arrival in this slot will result in suspension as described above. Note that the
remote storage unit itself need not be an I-structure store for this mechanism to work properly.

3.2.4 Overview of the Model

The compilation model proposed herein is intended to be representative of a variety of von
Neumann machines, to which one might add mechanisms for dealing with SQs. The machine
executes a three-address instruction set, with operands fetched from frame slots and/or a set of
registers. Scalar results are stored into frame slots and/or registers. Registers are not part of the
private state of the invocation but rather are shared across invocations. This is significant in that
the architecture assumes no automatic save/restore facility and, therefore, registers cannot be used
to hold computation state across potential suspensions.

3.2.4.1 Hardware Types

While specifics of hardware datatypes and number systems are somewhat orthogonal to the ar-
chitectural issues of interest in this thesis, it is difficult to make convincing arguments about
performance and efficiency without taking some stand on many of these. For this reason, the
following assumptions are made. Whiie it was expedient in the implementation of arithmetic to
assume that types are explicitly represented at the hardware levell4, this issue is unimportant for
the points to be made and can be ignored. That is, while each instruction’s operand types are
explicitly defined, the architecture under study takes no stand on the issue of hardware typing.

The following hardware types are defined. Each is a word-sized object which can fit into a
register or local memory slot:

1410 the results presented herein, the only form of autocoercion actually used is for numbers (integer and
floating-point number) and is defined more precisely in [6).



Integers (INT):
Floating Point Number (FP):
Boolean (BOOL):

Codeblock (CB):
I-Structure Descriptor (ISD):

I-Structure Address (ISA):
Instruction Address (INSTR):
Closure Descriptor (CD):

Frame Descriptor (FD):
lteration Descriptor (ID):

Continuation Descriptor (CD):

Two’s complement encoding.

Encoding of a signed number expressed as a mantissa and a
signed exponent. The representation is not significant for this
investigation.

Encoding of boolean TRUE and FALSE. Again, the actual
representation is of little significance.

A pointer to a codeblock in program memory.

A pointer to an I-Structure in global I-Structure storage which
also encodes the bounds of the structure.

A pointer to an element in global I-Structure storage.
A pointer to an instruction in a loaded codeblock.

An encoding of a codeblock pointer, an integer arity, an integer
number of arguments as yet unspecified, and the I-Structure ad-
dress of the argument list.

A pointer to a frame in frame storage.

A tuple of a program counter, two boolean flags and three index
offsets used to implement the k-bounded loop schema, described
in detail in section 4.3.5. Format is

<PCFLAGSPCN>

where P, C, and N are the index offsets denoting areas in the
frame for the previous, current, and next iterations respectively.

A tuple containing a pointer to the next instruction to be ex-
ecuted (program counter), a pointer to a frame base, and three
index registers. The format is strongly similar to that of an itera-
tion descriptor:

<PCFBRPCN>

The Arithmetic pseudo-type (ARITH) is used notationally to indicate an INT, FP, or BOOL as
will be clear from the context. The Any pseudo-type (ANY) is used notationally to indicate any
hardware type. These meta-types are not meaningful at the hardware level.

3.2.4.2 Name Spaces

Code is to be compiled, named, and loaded on a per-codeblock basis. No limit is assumed on the
size of a codeblock, nor is a limit assumed on the size of program, I-Structure, or frame
memories. The register namespace is, however, assumed to be finite and small.
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3.2.4.3 Instruction Set

The instruction set is simple and regular in structure, with addressing modes and instruction
functions being largely orthogonal.

3.2.4.3.1 Addressing Modes
The basic addressing modes are

* Immediate: a literal value small enough to be encoded directly in the instruction.

° Register: The registers are a small, fixed size array of words which provide no
synchronization capability, nor are their values guaranteed to persist across potential
suspensions13,

¢ Frame Direct: The Frame is an array of words (slots) whose size is determined at
compile time for each procedure. A procedure may only access its own frame slots.
Each slot has several presence bits associated with it. The frame holds the state of an
invocation. Frame Direct addressing specifies an offset from the frame base to select
aslot. The Frame addressing mode has two important sub-modes:

* Suspensive: FETCHing with this mode causes the presence bits to be checked
and, if no value is present, the current continuation is suspended as described
above.

* Nonsticky: Successful execution of an instruction which has performed a
FETCH in nonsticky mode will cause the presence bits to be reset, i.e., to
indicate the slot is now empty.

¢ Frame Indexed: This mode is identical to Frame Direct mode save that the slot is
addressed by adding the specified slot number to the frame base plus one of the three
index offsets in the continuation. Suspensive and Nonsticky submodes are available
here as well.

Unless otherwise noted, input operand addressing may use immediate, register, frame direct, or
frame indexed modes. Output operand addressing may use register, frame direct, or frame in-
dexed modes.

3.2.4.3.2 Instructions

The instruction set being used as the compilation target is intentionally unspectacular with the
possible exception of the iteration, forking, and closure support instructions which will be

15Intuition leads one to believe that such a scheme results in degraded performance in the form of additional memory
references for loading and unloading registers. As shall become clear in a later section, this is an oversimplification
because frame svorage can be cached easily without a coherence problem.



Instruction Set

Instruction Syntax Operand Types Comments
ROT DEST, SRC, etc. ARITH=>ARITH monadic arith/logical
ADD DEST,SRC.0, 8SRC.1, etc. | ARITHXARITH=>ARITH | dyadic arith/logicalirelational
MOVE DEST, SRC ANY=>ANY intra-invocation data movement
MOVR DIMDX, SRC.0,SRC.1 FDXANYXINT=J inter-invocation data movement
LOAD ¥FDEST, SRC.0, SRC.1 ISDXINT=>ANY indexed I-Fetch to a frame slot only
STOR DEST,SRC.0,SRC.1 ISAXANY=BOOL unindexed I-Store with signal
IXCC DEST, SRC INT=FD compute new frame base from current
IXSA DEST,SRC.0,SRC.1 ISDXINT=ISA compute struciure element address
IXID DEST,SRC.0,SRC.1 IDXINT=ID compute iteration descriptor
STPR SRC INT=Q0 set previous iteration offset in AC
STCR SRC INT=Q set current iteration offset in AC
STNX SRC INT=D set next iteration offset in AC
STIM DEST,SRC.0,SRC.1 IDXBOOL=ID set/reset IMPT;; conditionally queue
STPC DEST,SRC.0,SRC.1 IDXINSTR=ID set PC and CNTL; conditionally queue
RST1 SRC ANY=Q reset frame presence bits
RST2 SRC.0,SRC.1 ANYXANY=SQD reset frame presence bits
TST1 DEST, SRC ANY=BOOL test frame presence bits with signal
TST2 DEST,SRC.0,SRC.1 ANYXANY=BOOL test frame presence bits with signal
TSTL SRC.0,SRC.1 IDXINT=J test loop termination
BR TARGET INSTR=J unconditional branch
BRF SRC, TARGET BOOLXINSTR=D branch iff FALSE
BRT SRC, TARGET BOOLXINSTR=(J branch iff TRUE
BRNZ SRC, TARGET INTXINSTR=J branch iff #0
BRZ SRC, TARGET INTXINSTR=D branch iff =0
CNTN TARGET INSTR=D Jork a new continuation
CNTT SRC, TARGET ANYXINSTR=D Jork a new continuation, test slot
MKIC* DEST, SRC INT=3ISD allocate a CONS cell of given kind
MKIS® DEST, SRC.0, SRC.1 INTXINT=ISD allocate an I-Structure wibounds
MKIV¥ DEST, SRC.0, SRC.1 INTXINT=ISD allocate a vector wiupper bound and kind
GETC* DEST, SRC CB=>FD allocate an invocation context
RETC* DEST, SRC FD=BOOL deallocate an invocation context
CARR® DEST, SRC CD=3INT closure’s number of arguments remaining
CARI® DEST, SRC CD=3INT closure's arity
CCBN® DEST, SRC CD=CB closure’s codeblock identifier
CCHN® DEST, SRC CD=>ISD closure’s argument chain pointer
CNCD® DEST, SRC.0, SRC.1 CDXISD=>CD build a new closure
CRDY® DEST, SRC CD=BOOL test a closure for application

described and justified below1. The instruction set has the following notable characteristics:

® Each insiruction produces, at most, a single explicit result. Instruction outputs

represent registers or frame slots within a given execution context.

"outputs” are viewed as side effects.

16Given the goal of making cogent comparisons to the TTDA, two instruction set design issues were taken as
constraints. First, the TTDA claims that closures can be represented as objects no bigger than a floating point number.
Consequently, closure manipulating instructions are of the same complexity as ADD. Second, resource management
instructions represent calls to a manager, the instructions of which are not counted. Hence, manager ops (marked with
a superscript M) and closure ops (marked with a superscript C) are implemented and counted as single instructions.
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e Each instruction is simple enough to be executed in a single cycle, modulo the costs
of operand references which are discussed in detail in Section 3.3. There are no
long-latency instructions.

There are primitive instructions for the usual set of arithmetic and logical operations plus the
usual complement of relationals. The MOVE opcode encodes all intra-invocation data movement.
The MOVR (MOVe Remote) opcode is used for procedure linkage, and is the only way one
procedure can store into another’s frame. There is no sanctioned way for ore procedure to
directly read from another’s framel”.

Data can be moved between the global I-Structure memory and slots/registers only via the LOAD
and STOR instructions. LOAD takes a structure base address (ISD) and an offset (INT), adds them
to produce a structure element address, and forwards this along with the target frame slot address
to the appropriate remote memory unit, again, without waiting for the result. The name of the
instruction implies that the result must be retumned to the frame (as opposed to a register). The
reason should be clear - the fetched value will return asynchronously, therefore, all consumers
must be able to synchronize. Since registers are both volatile and non-synchronizing, they are
unsuitable as targets for a fetch-like operation.

STOR performs no indexing (three-address instruction format limit). The structure element ad-
dress (ISA) and the value are forwarded to the memory. A signal value is produced. This is
useful for termination detection as discussed in Sections 4.2.4 and 4.3.5.

Indexing for STORs is done explicitly by the IXSA (IndeX Structure Address) instruction. The
IXCC (IndeX Current Context) instruction derives new frame base addresses from the context’s
frame base address, allowing the construction of sub-frame blocks, e.g., for procedure linkage.
IXID (IndeX Iteration Descriptor) takes an iteration descriptor and adds a given amount to all
three of its index offsets.

Index offsets in the active continuation (AC) are explicitly set by the STPR (SeT PRevious
iteration), STCR (SeT CuRrent iteration), and STNX (SeT NeXt iteration) instructions. Iterations
are conditionally enabled by use of the STPC (SeT Program Counter) and STIM (SeT IMport
flag) instructions which set flags in the iteration descriptor which, when all true, allow the cor-
responding iteration to begin. The TSTL (TeST Loop termination) instruction tests for termina-
tion of an iteration by examining the flags in an iteration descriptor.

The explicit TSTN (TeST 1 or 2 slots) and RSTN (ReSeT 1 or 2 slots) instructions are not

"This has an important implication for the way frame storage can be implemented, in particular, it avoids the
coherence problem should it become desirable to cache frame data.
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necessary in that their functions can be synthesized from other instructions. For example, TST1
is the same as MOVEing a value, using the suspensive sub-addressing mode, to another slot.
RST1 is the same as nonsuspensively MOVEing the contents of a slot, using the nonsticky sub-
addressing mode, to a scratch register. However, for the sake of instrumentation, separate in-
struction codes are used in this study.

The branch-like opcodes do the obvious things, causing the PC in the continuation to be replaced
(conditionally or unconditionally, as appropriate). The CNTN (CoNTiNue) opcode creates (forks)
a new continuation. The corresponding join operation is implemented implicitly through frame
slot synchronization. CNTT (CoNTinue and Test) is functionally identical to CNTN (it is not a
conditional fork), but is used as part of an important optimization discussed in Section 4.3.7.

Allocation of processor and memory resources is viewed as the responsibility of the architecture.
However, the compilation target only includes the instructions used to call some processor-local
facility to request these services. Such instructions are MKIS (MaKe I-Structure, the general case
of a linearly addressed, 1-dimensional array of slots with arbitrary lower and upper bounds - the
instruction retumns the base address of the structure), MKIV (MaKe I-Vector, the less general case
of a I-Structure whose lower bound is always 0), MKIC (MaKe I-Cons, the less general case of an
I-Vector whose upper bound is always 1), GETC (GET Context, which allocates an invocation
context somewhere in the machine for a given codeblock and returns the base address of the
frame), and RETC (RETum Context, which allows a context’s resources to be recycled).

The closure management instructions manipulate closures which are represented as word-sized
objects. Such closures are discussed in [57]; the instructions here mimic the functions of the
instructions described there. Given such a representation, manipulation of closures in a single
machine cycle is indeed plausible.

3.2.4.4 Architectural State

The primitive instructions which allocate and deallocate invocation contexts do so at the level of
codeblocks; an instance of an invoked codeblock is called an invocation context or simply an
invocation. A codzblock is a collection of SQ’s, and may differ from a user procedure depending
on the compilation strategy used!8. The state visible to an executing codeblock (more precisely,

18As presented in the Compiler chapter, a user procedure is translated into a set of codeblocks by lambda-lifting
[40] internal procedure definitions to top-level and replacing all instances of calls to such procedures with partially-
applied closures. Such lifted procedures are compiled separately. The remaining procedure is examined for iterations
and all but the first, outermost iteration is removed from the procedure. The remaining code is compiled into a single
codeblock. The extracted iterations are further broken down into codeblocks (one iteration per codeblock). Hence, a
single user procedure containing internal definitions and multiple, nested loops will be compiled into a number of
separate codeblocks. This strategy is not the only one possible, but the rationale for splitting user procedures along
these lines does make certain architectural problems, such as allocating dynamic storage and constant areas for loops
considerably easier. The interested reader is directed to [57].
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to the continuations of its SQ’s) includes the siots in the invocation’s frame, the general purpose
registers, the I-Structure storage, and the descriptor for the current continuation itself. The
continuation’s descriptor is the root of the accessible state. It points to the next available instruc-
tion and to the frame. The frame is entirely local to the invocation. The registers, as described,
are shared and cannot be relied upon across instructions which may potentially cause suspension.

3.3 Execution Models

In this section, idealized and realistic execution models are presented. At the coarsest level, both
the idealized and the realistic machines share a number of common characteristics. In overall
structure (Figure 3-4, yet another incamation of the general model of Figure 2-1) they both follow
the dance hall paradigm of a number of identical processors on one side of a routing network,
with a number of memory modules on the other side of the network. A processor may send a
message either to a memory module or to another processor.

It is assumed that the memory units are actually I-Structure Storage units (per [34]); their struc-
ture will not be reiterated here. It is sufficient to assume that the storage units collectively
implement a single global address space, and that each accepts requests to load, store, or allocate
in a pipelined fashion. Further, the service latencies (independent of communication latencies)
for allocating or storing are assumed to be bounded. The service latency for loading from an
I-Structure is unbounded in that it implies synchronization.
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The network’s internal structure is of little concemn here, save that the transit latency through the
network is some reasonably slowly-growing function of the number of inputs (e.g., log(n)), that
messages can be accepted in a pipelined fashion, and that the acceptance/delivery rate speed-
matches both the processor and the structure memory. It is not essential for the sake of this study
that the network preserve orderings of messages; however, other higher and lower level concerns
may deem it essential.

instructions may make operand references to a processor’s registers or to slots in the processor’s
large, local data memory. Slots may be read and written imperatively or via the checking of
synchronization bits associated with each word. The local memory’s behavior is as discussed
previously. Local memory is referenced relative to a frame base address in the current continua-
tion.

Each processor also has a small array of registers (eight to sixteen). Registers may be used freely
between instructions which make suspensive references to the frame, but since no register saving
takes place when a suspension occurs, register contents cannot be considered valid across poten-
tially suspensive instructions.

3.3.1 The Ideal Processor

The idealized hybrid architecture can be thought of as a von Neumann machine augmented with a
synchronizing local memory, and means for manipulating continuations as first class hardware
types (Figure 3-5, an embodiment of the concepts in Figure 2-2). This machine has the following
attributes:
¢ Each codeblock invocation is assigned its own local memory unit which is only used
for that invocation’s frame storage. Connected to each such local memory are

processors - one for each continuation created by the invocation. Each processor
may operate on a single continuation if it is active, or it may sit idle.

e Instructions are executed exactly when they are enabled. Each instruction takes unit
execution time and, within any given continuation, instruction i which follows in-
struction i-/ must necessarily execute at some time ¢, such that

t2t,  +1
At any given time ¢, then, as many instructions will execute as there are processors
holding active continuations.

* An instruction may access zero, one, or two operands, either in registers or in the
local memory (frame slots) without incurring a time penalty. Processors sharing a
local memory can access the memory without conflict. Processors may not access
any of the other local memories in the machine.

* Performing a synchronizing operand fetch from an empty slot in the local memory
causes the affected continuation to be removed from its processor and to be stored in
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the empty slot. Multiple synchronizing reads against the same slot cause additional
continuations to be stored in the same slot. Upon writing a value to a slot containing
continuations, the continuations are extracted and returned to their processors.

The idealized model provides a means for studying the effects that architectural and compiler-
induced assumptions have on program execution, without imposing further, hardware-specific
constraints. In the next Chapter, experimental results will be presented showing the behavior of a
number of programs under the idealized model. These results will provide an interesting com-
parison to similar results from the TTDA. Also, they will provide a backdrop for studying the
behavior of the same programs when executed on a realistic machine model which is discussed
next.

3.3.2 The Realistic Processor

The idealized processor represents, in some sense, the best that any hybrid machine can hope to
do given the compilation constraints. In this section, the intractable aspects of the idealized
machine are explored in some depth, and architectural directions are identified which will result
in a realistic machine whose behavior can mimic that of the idealized machine in key ways. The
basis of this discussion is a concrete instance of a processor (Figure 3-6). In order to translate its
physical characteristics into constraints, its behavior will be described on a per-pipeline stage
basis.

3.3.2.1 Unrealizability
At the most basic level, the idealized model is unrealizable because

* The number of processors is necessarily finite, and each processor has its own local
memory. In general, the local memory of each processor must hold the invocation
frames of more than one codeblock instance. Moreover, of all the invocations which
are mapped onto a given processor, at most one instruction from the set of all those
which are logically enabled may execute at any given time.

® Access to the local memory is subject to hard engineering constraints. Unlike the
idealized model which permits multiple accesses from multiple continuations. at any
given time, it will be difficult to provide access to more than a handful of local
addresses during a pipeline beat.

* Using local slots to hold suspended continuations is constrained by the size of the
slot: at most a single continuation can be stored into a slot. Hence, queueing of
multiple suspeasions requires some additional mechanism.

Moreover, the model of unit instrection execution time is subject to countless engineering con-
cems. It is this issue which has made pipelining such a popular implementation technique. By
this method, the rate of dispatching instructions can be uncoupled from ihe total execution time of
any given instruction. The difficulty in pipelining a processor arises when there are inter-
dependences between instructions in the pipe.
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Figure 3-6: Abstract Realistic Processor

The model presented in the following sections is claimed to be realizable. Instructions are dis-
patched into a rather shallow pipeline. Inter-dependence between instructions is managed with
the aid of low-level context switching, made possible by the expression of programs as partial
orderings of totally ordered chunks (SQ’s). This section briefly examines the hazards of trying to
use a pipelined organization to mimic the behavior of the idealized machine.

At each time step, the ideal model will execute all and only those instructions which are enabled.
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Figure 3-7: The Realistic Processor

This implies a means for identifying the set of enabled continuations and the corresponding set of
enabled instructions. The former problem is easy to deal with in a pipelined machine - continua-
tions are always sorted by their state, specifically, enabled continuations reside exclusively in
their own queue or set of queues. The latter problem is also relatively easy to deal with in a
pipelined machine. The PC in each enabled continuation denotes the instruction to be executed
next. Given sufficient instruction memory bandwidth, all such instructions can logically be
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fetched in parallel. The hard problem is to know which of these instructions are actually ex-
ecutable.

In a dataflow machine, the construction of the set of enabled instructions is done automatically by
the waiting-matching hardware. In the hybrid machine, the approach is different - an instruction
can be attempted, and if the synchronization constraints are not met, the instruction is aborted.
Efficient means are available for preventing busy-waiting (viz., storage of such suspended con-
tinuations in the frame slot which caused the synchronization fault), but in a non-ideal setting, the
cost of the faulted instruction cannot be ignored. Moreover, in a real pipeline, several instruction
dispatch cycles may pass between the time that a potentially suspensive instruction is initiated
until it can be determined that the instruction will actually suspend. Careless dispatching of
logical successor instructions behind a potentially suspensive one can result in the flushing of not
one, but many instructions, depending on the pipe depth. The result on performance may be
disastrous.

Given this, consider a method for approximating ideal behavior: means are provided for pre-
fetching a subset of the enabled instructions. At each time step, the instruction dispatcher may
examine the pre-fetched instructions and choose between them to optimize the behavior of the
pipeline. How does the dispatcher make such a decision?

Instructions are to be dispatched so as to keep the pipeline full of useful work. Non-useful work
includes execution of NOPs (i.e., pipeline bubbles) and instructions which suspend. Optimal
dispatching of instructions is impossible without foreknowledge of which instructions in the set
will suspend. However, simple decoding of instructions allows the dispatcher to at least know if
the instruction cannot suspend (e.g., those which only reference registers or which make non-
suspensive references to frame memory) or if it might possibly suspend. The strategy presented
below builds on this observation, attempting to dispatch instructions from a single SQ instance
until an mstmcuon is encountered which might possibly suspend. Dispatching from that SQ
instance is defened long enough to obviate the purging of multiple instructions on the occasion of
a fault. During this interval, inter-SQ parallelism is exploited by dispatching instructions from
another SQ instance. The number of such pre-fetched instructions is directly related to the num-
ber of stages between the dispatching stage and the fault-detecting stage.

3.3.2.2 Pipeline Overview

The pipeline is synchronous, with registers serving as inter-stage interfaces. In the Figures,
registers are depicted as short rectangular boxes with a heavy top-bar (symbolizing an element
with state). Stage boundaries are further emphasized with dashed lines. At every pipe beat, each
stage stores its current outputs into the appropriate interface registers (see Figures 3-6 and 3-7.
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3.3.2.2.1 Continuation Queues

The first pipeline stage is quite simple (Figure 3-8). Continuations are fetched on demand from
the second pipeline stage and are loaded into registers at the interface. The enabled continuation
queue holds those continuations which are in the enabled state, while the suspended continuation
queue holds continuations which are waiting on slots which already contain a suspended con-
tinuation. Continuations are fetched from the enabled queue when it is nonempty. Only when the
enabled queue is drained is work fetched from the suspended queue.

ICach
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Figure 3-9: Stage 2 - Instruction Fetch / Dispatch

3.3.2.2.2 Instruction Fetch / Dispatch

The instruction dispatching logic (Figure 3-9) for the realistic machine is inherently simple.
Using two candidate continuations, two such enabled instructions can be considered and the
"better” one dispatched at each time step. At any given time, one of the continuations will be
called active, the other passive. During each pipe beat, the PC’s in each continuation are ex-
tracted and are dereferenced through separate instruction caches in order to produce two can-
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didate instructions!®. The instructions are analyzed according to the following rule2":
Algorithm 3-10:

IF the active continuation causes a CACHE MISS,
THEN Réefill the active cache.
IF the passive continuation causes a CACHE MISS,
THEN Refill the passive cache.
Restart { Pipeline Bubble }.
ELSE Dispatch the passive instruction®!,
IF the passive instruction is a TERMINATE
THEN Signal that the interface register should be refilled.
ELSE IF the passive instruction is neither SUSPENSIVE nor a BRANCH
THEN Exchange the sense of active and passive.
ELSE Dispatch the active instruction.
IF the active instruction is a TERMINATE
THEN Signal that the interface register should be refilled.
Exchange the sense of active and passive.
ELSE IF the active instruction is either SUSPENSIVE or a BRANCH?2
THEN Exchange the sense of active and passive.

Dispatching means that the interface registers to the third pipeline stage are to be loaded with the
selected instruction and its corresponding continuation (Figure 3-7). The continuation so loaded
contains the PC pointing to the selected instruction, not its successor. This PC must be carried
forward in the event that the instruction suspends.

By this method, instructions are dispatched from the active continuation until termination, dis-
patching of a suspensive instruction, cache miss, or branching. In the case of branching, having
another continuation on "hot standby" is a generalization of the delayed branch paradigm in that
low-level parallelism is used to mask the effects of instruction fetch latency. The difference here,
of course, is that the method is dynamic. The compiler need not know precisely how long an
instruction prefetch might take. Moreover, unlike the delayed branch technique, a broader range
of candidate instructions may be used to fill in the gap between a branch and the next sequential

19Implementing this function with two caches is simpler than a single, dual-ported cache, but the performance is
likely inferior. Because any continuation may be assigned to either interface register as it goes through cycles of
suspension and resumption, contents of both caches would tend toward the same contents. By combining the storage,
duplicate entries could be avoided and cache misses could be reduced.

20t is assumed that TERMINATE instructions are not separately encoded but rather that the SQ termination
condition is indicated as an opcode modifier for every instruction.

21This algorithm relies on there being two banks of registers, active and passive, corresponding to the active and
passive continuations. This level of sophistication is not strictly necessary. In fact, the realistic emulator used to
evaluate this architecture does not interleave continuations in this way. The performance penalty is program
dependent, and the option to interleave at this level is left as an engineering decision. The effects on locality are not
well understood.

Znterleaving on BRANCH instructions forces the compiler to treai them as potentially suspensive.
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instruction, such as instructions from disparate sections of the program or even other branch
instructions23,

For straight-line, non-suspensive code, instructions will dispatch sequentially, with von Neumann
like locality. For code with interspersed unconditional branches, two separate continuations will
tend to swap the processor between them - one will compute while the other resolves a branch.
Assuming that cache resolution takes about the same amount of time as branch resolution, this
behavior will also be observed in the presence of cache faults. Only when synchronization faults
occur will this behavior change. Thus, known-short latencies are masked by parallelism without
significantly degrading operand locality, and other latencies are masked by parallelism with the
cost in terms of lost locality being, to first order, proportional to the time spent waiting for
synchronization.
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Figure 3-10: Stage 3 - Operand Fetch

3.3.2.2.3 Operand Fetching

The operand fetching stage (Figure 3-10) takes a continuation and an instruction, decodes the
addressing modes, and fetches the operands (Opnd.0 and Opnd.1 in the Figure). Each instruction

2This kind of parallelism and synchronization can also be used to mask the instruction fetch latency of conditional
branches, but the mechanism is necessarily more complex. One approach is to dedicate additional instruction memory
bandwidth to parallel exploration of conditional branch targets as in the IBM 370/168 and its descendants. Another,
less expensive technique is to refine the notion of suspension. In general, suspension due to a dynamic dependence
across SQ’s may take unbounded time to resolve. The situation in the case of of the conditional branch is very
different. The dependence upon the conditional test will always be resolved within a pipe beat or two of successful
operand fetch. For this reason, it is worth considering removing the continuation from the active register upon
dispatching a conditional branch. If the boolean operand is not available, a normal suspension will occur. If the
operand is available, the continuation can be reinserted in the enabled queue (LIFO, perhaps) or into a new queue
which has higher priority than the enabled queue, once the correct PC has been determined. Giving preferred status to
this continuation assures that the presence of conditional branches does not adversely affect locality.
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has three fields for operand specification named Dest, Source.0, and Source.l. Within each
operand specifier is an addressing mode field and a value field. Section 3.2.4 describes the
addressing modes. These modes select from among the different possible inputs to an operand
register:

* Immediate: The value is found in the corresponding opcr.sud specifier, i.e., an im-
mediate for Opnd.0 would be found in the value field of Source.0.

* Register: The value is found in the register file at the offset given in the operand
specifier.

e Frame Direct: The value is found in the local memory at the offset given by adding
the continuation’s FBR to the offset given in the operand specifier.

e Frame Indirect: The value is found in the local memory at the offset given by
adding the continuation’s FBR and index register (P, C, or N in the Figure) to the
offset given in the operand specifier.

Computation of the destination address is also done at this stage. The result, which specifies
either a register or a local memory slot, is stored into the Dest L/A (destination literal/address)
interface register. This may involve either passing the Dest field directly from the instruction (in
the case of a register or literal) or modifying it by adding the FBR and possibly an index
register?4,

If either source specifier indicates a synchronizing reference, the corresponding presence bits are
tested. If a synchronization failure occurs (i.e., a required frame slot is empty), an abort is
signalled by transforming the instruction into a command to suspend. Subsequent processing will
ignore the operand registers and will cause the continuation to be stored into the faulting frame
slot. The address of this slot is stored in the Dest L/A register in lieu of the actual destination
address.

A special case of source addressing occurs when the destination address of the immediately
preceding instruction is the same as one of the source addresses in the current instruction (the
case of a sequential dependence). In this case, synchronization testing and operand fetching may
be ignored, and the previous instruction’s result may be used directly as an input operand. This
commonly-used technique is called pipeline bypassing, and obviates pipe bubbles which would
otherwise occur while fetching a recently-computed result which has not yet been stored away.

2Having a "literal” as a destination means only that the destination field contains a literal value to be used in further
computing the destination target for the instruction. An important application of this option cccurs in the MOVR
instruction, described below.
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Figure 3-11: Stage 4 - Computation

3.3.2.2.4 Computation

The computation section of the pipeline (Figure 3-11) seems anticlimactic when compared to the
previous pipeline stages. In this section, a new result is computed and/or a network request (e.g.,
to initiate a LOAD, STOR, or MOVR) is formulated. In parallel, the destination address is copied to
the corresponding interface register. The ALU and Form Request units are conditioned on the
Opcode which may indicate a suspension - if so, the value loaded into the Result register is the
continuation. The destination address will have been set to denote the slot causing the
synchronization fault. All inbound network traffic is queued (FIFO) in this stage and presented to
the local memory via an interface register.

|
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Figure 3-12: Stage 5 - Result Store

3.3.2.2.5 Storing of Results

As the last phase of instruction execution, the result is stored (Figure 3-12). The Dest A
(destination address) register indicates the target as local memory or the register array, and
specifies the offset. The value to be stored is found in the Result register. Stores to the register
array are straightforward, while stores to the local memory require checking and updating of
presence bits:
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Figure 3-13: Flow of Data for Normal Instructions

Algorithm 3-11:

IF presence bits indicate the slot currently holds a waiting continuation
THEN IF a continuation is being written

THEN Send the new continuation to the Suspended queue (point "D").
ELSE Extract the stored Continuation
Send it to the Enabled queue (point "C")
Write the value.
Set the presence bits to Written.
ELSE IF a continuation is being written
THEN Write the continuation.
Set the presence bits to Waiting.
ELSE Write the value.

Set the presence bits to Written.

Network responses are stored in the frame just as are non-continuations. They extract a waiting
continuation and queue it, if there is one, and they set the presence bits to Written.

3.3.2.3 Sequencing and Interlock

This section presents the temporal behavior of the pipeline. First, several instruction examples

are given to show how various resources are used. Then, several resource contention problems
are investigated, and solutions are proposed.
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Figure 3-14: Flow of Data for the MOVR Instruction

3.3.2.3.1 Instruction Examples

The majority of instructions (e.g., arithmetic, logical, closure) execute by the paradigm of per-
forming synchronized or unsynchronized operand fetch, computing a new value, and storing of
that value. Selection of the next instruction to be executed depends on the success of operand
fetching, as described above, but the normal case will choose the next sequential instruction. The
flow of data for this class of instructions is shown in Figure 3-13. In this case, operands may
reside in the frame or in registers. Literal operands are also permitted but the data path is not
shown in the Figure (see Figure 3-7 for details). Presence bits are tested for any synchronizing
reference to the frame, and synchronization failure causes the instruction to be aborted as
described above. These instructions produce no network messages.

MOVR, the sole instruction for moving a datum from one execution context directly to another, is
shown in Figure 3-14. Operand Src.0 will be the frame descriptor of the destination frame, and
the Dest field will contain an immediate index into that frame. Operand Src.1 will be the datum
to send. Hence, only the frame descriptor and the datum may cause a synchronization event. The
main ALU adds the immediate index to the frame descriptor, and the Form Request unit takes this
result and the datum, and forms a network request packet. Although not shown in the Figure, it is
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Figure 3-15: Flow of Data for the LOAD Instruction

possible for MOVR to suspend just as a normal instruction would. In this case, the continuation
would be stored as shown in Figure 3-13. MOVR initiates a split transaction and does not block
the pipeline awaiting the remote store. It is possible to optimize this in the case that the destina-
tion frame resides on the same processor - the result can be stored as in a MOVE instruction.

LOAD takes an ISD and an index, computes an ISA by adding the index to the base address in the
ISD, computes the frame address into which the result is to be stored, and forms a network
request made up of the ISA and the FD. The flow is shown in Figure 3-15. Like MOVR, LOAD
initiates a split transaction operation. Unlike MOVR, the result can only return to the processor on
which initiation took place. That is, at some future time a network response will arrive carrying
the requested datum, and bearing the FD computed by the MOVR.

STOR takes an ISA and a datum, constructs a network request to store the datum at the indicated
address, and generates a signal®>.

zsl.;ogica.lly. this operation produces no local result. The signal is necessitated for termination detection as in the
TTDA, but subject to the optimizations discussed in Section 4.3.5, i.e.,, that the signal need only be tested across SQ
boundaries. There are many other instructions in the instruction set which logically produce no local result but which
do not generate a signal. Signal generation is only necessary to preserve the connectedness of the program graph - in
the case of these other instructions, they are consistently used in such a way that the connectedness is guaranteed by
other means. STOR implements the second half of the I-STORE program graph instruction and necessarily must generate
asignal. See Section 4.3.5.
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Figure 3-16: Flow of Data for the STOR Instruction

As mentioned previously, the TSTN instructions are simply special codings of instructions which
synchronize on one or two operands and which simply produce a dummy result (such coding is
used for instrumentation purposes only). RSTN is similar in that is a special coding of a non-
sticky MOVE to a null destination. These instructions reset the presence bits for one or two frame
slots. The data flow is straightforward and is shown in Figure 3-17. Neither a local result nor a
network request is produced.

The BRXX instruction executions fall into the following categories:

* Synchronization Failure: The predicate argument is read with synchronization en-
abled and the value is not present. This results in a standard suspension as per the
normal case. The unmodified continuation is stored into the predicate slot.

e False Predicate: The predicate argument is read and the resulting test computes
FALSE. The PC is incremented in the main ALU, and the continuation is re-queued.

* True Predicate: The predicate argument is read and the resulting test computes
TRUE The instruction-specified target, interpreted as a relative offset, is added to the
PC in the main ALU and the resulting continuation is re-queued. This case is shown
in Figure 3-18.

The CNTX opcodes are similar. CNTN fabricates a copy of the existing continuation in the main
ALU by adding the relative target to the current PC, and then queueing it as an enabled continua-
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Figure 3-17: Flow of Data for the RSTN Instruction

tion, (without suspending the current continuation). CNTT provides a slight variant in that it tests
the given slot in conjunction with building a new continuation. If the slot has not been written to,
the new continuation is stored directly into it. Otherwise, the new continuation is queued. The
intention is to avoid wasting cycles scheduling a continuation which will predictably suspend.

To support multiple, concurrent iterations, each continuation contains three index registers (P, C,
and N, for previous iteration, current iteration, and next iteration, respectively) which may be
used via the frame indexed operand addressing mode. Each iteration has an area of the frame set
aside for it (the format is shown in Section 4.3.4), and the first slot is reserved for an iteration
descriptor whose structure is identical to that of a continuation, save the replacement of the frame
base register in the continuation with a set of boolean flags. These flags indicate the necessary
iteration enabling conditions described in Section 4.3.5, specifically, that the i-/% iteration’s
predicate has computed a TRUE predicate (CNTL; ;) and that the i-K+15t iteration has ended
(IMPT; . ;). These iteration descriptors are precomputed and loaded into slots zero of each itera-
tion subframe, and are used in the construction of continuations when iterations become enabled.

The STNX, STCR, and STPR instructions are monadic and have the side effect of inserting the
next, current, and previcus iteration indices, respectively, into the current continuation. The
IXID instruction behaves as a normal, dyadic instruction, and has the effect of incrementing all
three indices in an iteration descriptor by the same amount26. TSTL is dyadic and is used to
detect termination of the iteration clean-up code as a necessary precondition to exiting the LOOP.

STPC and STIM are slightly more complex. STPC sets the PC field of the iteration descriptor
and also asserts the CNTL; condition, i.e., it sets the flag. STIM sets or resets IMPT;. In addition,

261t is a straightforward matter to logically partition a wide ALU/adder into several smaller ALUs/adders by
appropriate gating in the carry lookahead logic, thereby permitting IXID to execute three additions in a single cycle.

70



--— [PCIFBRIPICIN] — -—-- |§§codg Destl Source.0] Source.l] —=-—~w— - m———e— e e e

dder,
Src.0
Presence Local .
Bits Mem Regn:ten
IT |

C

i
--— [BC[EBRIPICIN] — = =—=~—=—~—=— Opnd.0] l?@'m —-—-- [Result] —-—-—-—-

—

Lk

Cntl ALU

Figure 3-18: Flow of Data for the BRXX Instruction

both of these instructions check the flags to see if the corresponding iteration has become en-
abled. If so, a continuation is fabricated by substituting the current FBR from the current con-
tinuation into the iteration descriptor, thus creating a new continuation. This continuation is
queued, and the iteraiion descriptor with both flags reset is stored. If instead the iteration is not
yet enabled, the iteration descriptor is simply stored; no continuation is fabricated. The flow is
shown in Figure 3-19.

The MKIC, MKIS, MKIV, GETC, RETC instructions provide linkage to local managers (they may
be though of as supervisor calls). The opcode implicitly specifies a code entry point at some
fixed address in program memory, and the instruction denotes the arguments to be passed and the
destination target. No state-saving takes place, and it is a matter of choice as to whether these
instructions are always considered to be suspensive (independent of addressing modes). It is
believable that certain managers could be written as nonsuspensive routines and, therefore, that
the manager-calling instruction could be treated as such. In the general case, however, the
manager-calling instruction is an abstraction of an arbitrary code sequence undemeath. It is safe
for the compiler to view manager calls as suspensive (meaning that the compiler does not rely on
the contents of registers across the call).

Because manager calls represent an implicit break in the flow of control, the instruction dis-
patcher will have to forestall the dispatching of other instructions from the same continuation by
treating a manager call as branch-like.
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Figure 3-19: Flow of Data for the STPC Instruction

With this understanding of the basic operation of each instruction, attention now tums to the
effects of instruction sequences, e.g., network loading, pipeline balance, and resource overcom-
mitment.

3.3.2.3.2 Network Traffic Load

There is an important asymmetry between the ALU’s path to the local memory and the network’s
path. Given ongoing contention between these two paths for the iocal memory, it is possible to
consider suspending the ALU path (and thereby holding up the entire pipe) in order to resolve the
conflict. Choosing instead to suspend the network path admits the possibility of deadlock. This
does not mean, however, that a given network response must take absolute priority over all in-
struction results in competing for access to the local memory. Rather, the last pipe stage is free to
hold the store for a network response in abeyance until the execution of an instruction which
produces no local result subject to the constraint that the network response queue does not over-
fill. At the system level,
* The number of network responses is equal to the sum of LOAD and non-local MOVR
instructions.

* The number of time-slots for handling network responses is the sum of instructions
producing no local result, specifically, LOAD, RSTN, BRXX, CNTX, and non-local
MOVR.

72



Dest/Net Data

Dest/Net Address
3
Src.0 ™ s Cache Cache Cache Cache F] Cache Cache
Dir Dir t x Dir ta

Src.1

Local
| Mem

l l 1

Opnd.0 Opnd.1 C

Figure 3-20: Local Memory Subsystem with Cache

It is a matter for further analysis to determine the relationship between the necessary queue size
as a function of the statistics of RSTN, BRXX, and CNTX instructions. The difficult issue will, of
course, be locally significant variations from average numbers, causing response queues to fill.
In order to guarantee that a processor can always accept network responses, queue filling should
be a sufficient condition for pipeline suspension to allow responses to be stored.

3.3.2.3.3 Overcommitment of the Local Memory

Despite the machine’s appearance as a simple five-stage pipeline, in reality the third and fifth
stages share key resources, viz., the register file, the presence bits, and the frame store. In any one
pipe beat, two operands will be fetched for the current instruction, one result will be stored for a
preceding instruction and, if that result is destined for a frame slot containing a continuation, the
continuation must be fetched. Building a small register file which supports two reads and one
write in a pipe beat is entirely reasonable. Presence bits are harder to handle both because there
are more of them (a few bits per local memory slot) and because of the need for three reads
instead of two. The hardest problem, however, is implementing three reads and one write for the
local memory.

One approach, used in the IBM 43xx and in other machines, is to observe that the address for the
write operation is available at the very beginning of each pipe beat, while the read addresses must
be computed and will therefore not be available until later in the cycle. There is, therefore, an
opportunity to reduce the number of simultaneous accesses by performing one access (either
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reading a stored continuation or writing a new value) prior to performing the operand fetches.
With a memory whose cycle time is half a pipe beat, the requirement can be relaxed to two reads
and one write instead of three and one. Building a two-read, one-write memory then requires
simply duplicating the memory with the appropriate cycle time constraints.

This is both wasteful and impractical for large memories. Another tack is simply to suspend
pipeline operations until all local memory operations can be resolved. Thus, if the memory runs
at the rate of one access (read or write) per minimum pipe beat, three references will cause the
introduction of two additional bubble cycles downstream in the pipe. This technique can be
practical, however, when instruction statistics indicate an average of less than one frame access
per instruction (e.g., register-intensive sequential threads). An extreme instance of this is to
impose constraints on the compiler which explicitly limit the number of local memory references
as a function of time.

A better solution is to exploit the locality that the machine works so hard to preserve. By intro-
ducing a tri-ported, store-through operand cache in parallel with the local memory, it is possible
in principle to significantly reduce the number of read requests which the local memory must
satisfy to the point where it only handles writes (one per beat). Such a cache subsystem is
depicted in Figure 3-20.

Possibly the best approach would be to use a pipelined local memory subsystem [38] whose pipe
beat is significantly faster than that of the processor. This approach is not investigated here.
Another technique not studied is to not store continuations in frame slots at all but rather to use
the Suspended queue to contain all suspended continuations. This has the advantage of reducing
the absolute worst-case requirements on the frame to two reads and one write per cycle. The
potentially deleterious effects on locality and exposed parallelism of this technique are not well
understood.

3.3.2.4 Exploiting Parallelism

It is worth reviewing how all this mechanism allows the exploitation of the various forms of
parallelism outlined in Section 2.4.

* Expression-level paralielism is best used for masking latency by keeping the pipeline
full, as in a von Neumann machine. The sequential dispatching of instructions from
a given instance of a given SQ allows exactly this behavior. Fast context switching
between SQ instances (continuation exchange at the instruction dispatch stage) fur-
ther allows low-level parallelism to be used in masking latency. The manner of
using registers between suspensive instructions allows high-speed, multiport access
to data while keeping the cost of context switching very low.

o Inner-loop parallelism is supported by representing each loop as a codeblock and
providing efficient means for sending data between codeblocks. The mechanisms
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here are the GETC/RETC instructions for allocating and deallocating contexts, the
MOVR instruction for argument / result transfer, and the fine-grained synchronization
on frame slots which can be used to support nonstrict invocations (at the same level
is procedure call paralielism - the same mechanisms can be used).

* Outer-loop inter-iteration parallelism is supported by representing the storage for an
iteration explicitly, and allowing multiple storage areas to be named and addressed.
The mechanisms provided include the continuation-specific index registers, iteration
descriptors, and instructions for manipulating them (setting, testing, and condition-
ally scheduling).

3.3.2.5 Modeling Latency

For the purposes of performing the emulation study presented in the next chapter, some assump-
tions must be made regarding latencies. In fact, transit latency is left as a degree of freedom and,
in the experiments, latency will be varied to measure the latency-tolerating effectiveness of the
model. It will be assumed throughout, however, that instruction service latency (the pipe beat) is
unity, and that the I-Structure storage processor is similarly pipelined.

3.3.2.6 Handling Finite Resources

Questions of how this architecture manages its finite resources are beyond the scope of the
present work. It is claimed that solutions applicable to machines such as the TTDA are equally
applicable here because of the following relevant architectural similarities:

* Demand for context-specific storage is not only bounded, but is known a priori.
Each codeblock carries with it a record of the number of frame slots necessary for
invocation (the actual value is a function of K, the invocation-time parameter which
controls loop unfolding). It is a purely local decision to determine if a given proces-
sor has sufficient space to invoke a given codeblock with a given value of K.

* Register requirements are likewise bounded at compile time.

e Invocation requests are processor-nonspecific. The response to a GETC is a frame
descriptor which identifies both the frame base address and the processor in which
the frame resides. Thus, if a local manager cannot satisfy a GETC request based on
local information, the request can be handled by any other processor in the machine.
The question of how best to to make such decisions is an open problem for this
machine, the TTDA, Monsoon [47], and other similar machines.

* The queue overflow problem, related to the codeblock invocation problem, is
analogous to the same problem on machines like the TTDA and Monsoon. One
minor difference is that those machines queue continuations for single instructions,
while the hybrid machine queues continuations for SQ’s. That is, because
expression-level parallelism is represented by properly-ordered sequential code in the
hybrid model, there will necessarily be fewer extant continuations at any given time
during program execution than in a machine supporting single-instruction paral-
lelism. This has some engineering, but little theoretical, significance.

¢ As in the TTDA and Monsoon, and unlike machines such as MASA [30, 33, 54,
there is no notion of migrating or transporting a "task" and its state to another proces-
sor after invocation.
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3.4 Summary

Latency and synchronization have been shown to be fundamental issues in the development of
scalable, general purpose multiprocessors, and the issues seem related in fairly incestuous ways.
Basic changes to traditional architecture are necessary for dealing with them. One such change is
that the execution time for any given instruction must be independent of latency (giving rise to
split transactions). A second change is that synchronization mandates hardware support: each
synchronization event requires a unique name. The name space is necessarily large, and name
management must be efficient. To this end, a compiler should generate code which calls for
synchronization when and only when it is necessary. A natural approach is to extend instruction
sets to express the concepts of both implicit and explicit synchronization. Such an instruction set,
which captures the notions of bounded instruction execution time, a large synchronization name
space, and means of trading off between explicit and implicit synchronization is called a parallel
machine language (PML).

A compilation target has been defined which satisfies these requirements. The instruction set is
not unlike that of a von Neumann machine but has been explicitly augmented with synchroniza-
tion bits on each local memory slot, addressing modes to support synchronization, instructions for
dynamic resource allocation, and an execution model which admits concurrent execution of
declared sequential threads. Ideal and realistic execution models have been developed. Basic
engineering concems regarding realizability have also been addressed. It has been claimed that
this architecture is capable of exploiting the same types of parallelism as a dataflow machine,
albeit in somewhat different ways. If true, this architecture is demonstrably superior to a von
Neumann machine for the purpose of building a scalable, general-purpose parallel processor.
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Chapter Four
Compiling for the Hybrid Architecture

This chapter considers the task of transforming dataflow program grapis into partitioned graphs,
and thence into PML. Section 4.1 examines dataflow program graphs as the input language for
the code generator. Section 4.2 discusses the issues involved in generating partitioned code from
program graphs. Section 4.3 presents the design for a working code generator which addresses
these issues.

4.1 Dataflow Program Graphs

Dataflow program graphs [57] are a powerful and elegant intermediate representation for
programs. They are largely architecture independent, and have a precise semantics. In this
section, the structure of dataflow program graphs [57] is reviewed through the use of an example.
Dataflow program graphs form the basis for the compiler work presented here; an understanding
of their overall structure and the semantics of the instructions contained therein is essential.

4.1.1 Expressions

This section examines the instruciions that make up this program fragment’s graph, the types of
data which traverse the arcs of the graph, and the presumed execution rule. Recall that the code

for WaveFront’s doubly nested loop looks like this:

{for i from 1+1 to u do
{for j from 1+1 to u do
m[i, j] = (m[i-1,3] + m[i,j-1] + m[i-1,3-1]) / 3;}}

Figure 4-1 shows the program graph as generated by the Id compiler. Given the value of j, three
elements are fetched from the matrix, they are arithmetically averaged, and the result is stored
into the matrix. The matrix is represented as a column-vector of I-Structure descriptors for the
rows. Feiching the ij™ element, then, requires first fetching the i I-Structure descriptor from the
column-vector and then fetching the jth element. Because of the addressing pattern implicit in the
expression, the graph for the body of the inner loop requires the I-Structure descriptor of both the
it and i~1% rows. Furthermore, because these descriptors are invariant across iterations, their
fetching from the column vector has been lifted out of the loop.

In execution, data values are represented as logical entities called fokens which appear to flow
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Figure 4-1: Program Graph for WaveFront’s Inner Loop Body
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across the arcs from one instruction’s output to another’s input. Instructions may be executed
when and only when their firing rule is satisfied. The firing rule is a predicate on the presence or
absence of tokens at the instruction’s inputs. A token is said to be present on a given input of a
given instruction if and only if a token has been placed on the corresponding arc. Firing, or
executing, an instruction consumes tokens on input arcs and produces side effects and/or tokens
which are placed on output arcs.

Consider first the inputs to this graph. The most obvious is the integer value of J» the inner loop
index. Implicit in the semantics of the LOOP-CONSTANT instructions are other execution-context
specific inputs.

l LOOP-CONSTANT Instructions: Within the basic blocks of a LOOP in-
L:g; . struction (below), these retrieve a particular loop constant value upon
OM. receipt of a trigger. They produce no side effects.

|

In the case of the graph shown here, first loop constant (LOOP.0) will be the I-Structure descrip-
tor for the i—1%! row of matrix M. The second loop constant (LOOP.1) will be the I-Structure
descriptor for the i row. These descriptors are "produced" when the trigger, i.e., the loop index,
becomes available.

In addition, literal input values are also explicitly represented in the program graph.

.l LITERAL Instructions: These produce literal constant tokens when a
(-17;9;'"3) trigger arrives. They produce no side effects.
Output

|

Thus, loop constant and literal inputs to a graph are not represented as tokens until an appropriate
constant instruction generates them. In the case of the WaveFront graph, then, no computation
will take place until the token carrying the value of j arrives.
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Arithmetic and logical operations are represented in the graph by monadic and dyadic instruc-
tions, as appropriate.

MONADIC/DYADIC Instructions: These include the usual spectrum of

Iw:fwl arithmetic and logical operations. These instructions fire only when
Output all input tokens are present, produce an output token, and have no

side effects. A number of special monadic instructions extract fields
(codeblock name, argument chain) from closures and have no side
effects.

In the example graph, it is now easy to see how the indices for the three I-Structure references are
expressed: addressing of the i and i—1% rows is done by selecting the appropriate I-Structure
descriptor. In this case, since the descriptors were loop invariants, this means simply using the
right loop constant. Addressing of the particular element in the row is done via the I-FETCH
instruction and the appropriately-calculated index.

l L I-FETCH Instructions: Given a token carrying an I-Structure descriptor
s::::Tzd; and a token carrying a slot offset, these instructions fire and produce a
Output token which is the value of the given slot of the given structure.
TUPLE-FETCH instructions are similar, except that the offset is coded

l as a parameter of the instruction itself. HD and TL instructions are

also similar, except that the offset is implicit in the opcode.

Thus, the three I-FETCH instructions will fetch, respectively, elements i~1,j, iy—1, and i-14~1.
These values are averaged, and the result is stored in element i,j.

I-STORE Instructions: Given a token carrying an I-Structure descrip-
L i l tor, a token carrying a slot offset, and a token carrying a value, these

Structere Inder  Valne instructions fire, write the value into the given slot of the given I-
I-STORE Structure (a side-effect), and produce a signal token. TUPLE-STORE
Signal instructions are similar, except that the offset is coded as a parameter
l of the instruction itself. STORE-HD instructions and STORE-TL in-
structions are also similar, except that the offset is implicit in the op-

code.
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Figure 4-2: Program Graph for WaveFront’s Inner Loop
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The soie explicit output of this expression is the signal emanating from this I-STORE instruction.

4.1.2 Loops

This expression is compiled into the textual context of a LOOP instruction (Figure 4-2). LOOP is
an abstract representation of an instruction schema which Traub [57] refers to as an encapsulator:
in addition to its exterior surface, it has interior surfaces which enclose other program graph
instructions. Sets of instructions so enclosed by a given input/output surface pair are called basic

blocks.
l L l L LN ] l
LOOP Looplnpt.0 ... n-1  LoopConstant.0 ... m-1
PredicateInpwt.( ... n-1

|

PredicateOutput.0 ... -1 Predicate
Bodylnput.0 ... n-1

BodyOutput.0 ... n-1

LoopOutput.0 ... n-1

LooP Encapsulators: These encapsulate a
Predicate basic block and a Body basic
block, and hide the details of loop invocation,
loop constant management, bounding, and
recycling of per-iteration resources. Upon
arrival of the loop constant tokens and any
loop input tokens, the predicate is evaluated,
producing a boolean token. If TRUE, the loop
body is executed, producing a new set of
loop variables which are recirculated to the
predicate associated with the next iteration.
If FALSE, the loop variables are routed to the
output of the LOOP encapsulator.

In the Figure, the predicate consists of a relational instruction which compares the loop index j
with the loop limit (available as the third loop constant, LOOP.2). The body consists of the
entire graph of Figure 4-1, instructions to increment the loop index, and a signal-tree instruction

which tests for termination of the iteration.
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Figure 4-3: Program Graph for WaveFront’s Inner Codeblock

SIGNAL-TREE Instructions: These produce a signal token when tokens
have appeared on all inputs. They produce no side effects.

Oulput

|

4.1.3 Codeblocks

As described previously, the compilation of a procedure will result in the creation of one or more
codeblocks subject to the constraint of one loop per codeblock. Hence, in a nesting, inner loops
such as this one are always contained in a separate codeblock. See Figure 4-3. The codeblock
invocation and parameter passing mechanisms are represented abstractly by the FASTCALL-DEF
encapsulator. Codeblocks for a procedure’s top level are encapsulated in the related DEF encap-
sulator.
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DEF Encapsulators: These enclose the bodies nf codeblocks,
and hide the details of parameter passing and argument
chain unpacking. They are implicitly triggered by invoca-
tion of the codeblock by an appropriate APPLY-like instruc-
tion. DEF encapsulators have no inputs or outputs on the
exterior surface, and enclose only a single basic block called
the Body. Outputs which feed the body are the codeblock’s
arguments and a trigger. Inputs are the codeblock’s result
and a termination signal. FASTCALL-DEF encapsulators are
similar except that they perform no argument chain unpack-

DEF Arngument0 ... n-1 Thw;l

ing and may have multiple result inputs.

Although not shown in the example graph, codeblocks are invoked with the APPLY and
FASTCALL-APPLY instructions, as appropriate.

APPLY Instructions: These accept a closure token and an argument
token. If, given the argument, the arity of the codeblock denoied by
the closure is satisfied, the codeblock is applied to the arguments col-
lected in the argument chain along with the argument on the input
token. If the arity is not satisfied, a new closure is created which is a
1 l copy of the input closure save that the argument chain has been ex-
tended with the new argument. DIRECT-APPLY instructions accept a
codeblock descriptor and a set of arguments. The codeblock is ap-
plied to the arguments. APPLY-UNSATISFIED instructions behave like
APPLY instructions with the exception that it is assumed the arity will
not be satisfied by the argument. In all cases, codeblock application
is strict in the closure or codeblock descriptor but nonstrict in the
arguments. Also, such codeblock application will return at most a
single result. FASTCALL-APPLY instructions are nearly identical to
DIRECT-APPLY instructions save that they may return multiple results.

The DEF- and APPLY-like instructions presume the following skeletal procedure linkage
mechanism. Codeblocks may represent top level procedures, e.g., user procedures or lambda-
lifted internal definitions, or they may represent inner loops. The procedure linkage conventions
are different for the two cases.

Top-level procedures are represented at the program graph level by a DEF encapsulator enclosing
the procedure body. The implied protocol between an APPLY instruction and the corresponding
DEF involves
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1. Notifying a resource manager to set up a suitable execution environment for an
instance of the invoked procedure (APPLY).

2. Forwarding of the argument chain and the last argument, when available, to the
invoked procedure (APPLY).

3. Return of the result (if there is one) to the invoker (DEF).
4. Retum of a termination signal to the invoker (DEF).

5. Notifying a resource manager to deallocate the execution environment (APPLY).

The DEF is responsible for unpacking the argument chain (an I-Structure) then feeding these
values, when available, plus a trigger to the body. The same DEF is also responsible for fielding
invocations where the argument values are sent directly from the invoker, bypassing chain con-
struction and unpacking (this is the DIRECT-APPLY variation on procedure invocation).

Internal loop codeblocks are represented at the program graph level by a FASTCALL-DEF encap-
sulator enclosing the codeblock body. The implied protocol between a FASTCALL-APPLY instruc-
tion and the corresponding FASTCALL-DEF involves

1. Notifying a resource manager to set up a suitable execution environment for an
instance of the invoked codeblock (FASTCALL-APPLY).

2.Forwarding of the arguments, when available, to the invoked codeblock
(FASTCALL-APPLY).

3. Return of the results to the invoker (FASTCALL-DEF).

4. Return of a termination signal to the invoker (FASTCALL-DEF).

5.Notifying a resource manager to deallocate the execution environment
(FASTCALL-APPLY).

The major difference is that there is never an argument chain. Arguments are always sent as in
DIRECT-APPLY. Further, there may be multiple results.

4.1.4 Miscellaneous

On occasion, it is necessary for the compiler to represent explicit copying of a value. In other
situations, it is necessary to control the visibility of a value until some condition has been
satisfied (gating). Both of these operations are handled by the IDENTITY instruction.
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J IDENTITY Instructions: These produce an output token which is a

IDE::ITY copy of the first input token. In practice, Identity instructions may
Output have additional trigger inputs which are necessary for firing but
which otherwise take no part in the production of the output token.

l They produce no side effects.

The general case of conditional execution is expressed by the IF encapsulator:

l l \L IF Encapsulators: These encapsulate a Then

IF Vnput0mt - Prodictel 1osic block and an Eise basic block. Upon ar-
Thenlnput.0 ... n-1 Eiselnput.0 ... n-1

rival of a boolean token at the predicate input,

subsequent data tokens arriving at IF inputs are

routed appropriately to either the Then or Else

blocks. Outputs from the Then or Else blocks

are passed to IF outputs.

Finally, the explicit allocation of I-Structure storage is represented by the MAKE-I-STRUCTURE
instruction.

86



a lower bound and a token indicating an upper bound, these have a

l l MAKE-I-STRUCTURE Instructions: Upon arrival of a token indicating
Lower Upper
MAK

side effect of allocating an I-Structure of the indicated size out of the

I_STRUC%URE available I-Structure storage, and producing a token which carries an
Output appropriate I-Structure descriptor. The MAKE-TUPLE instructions are

l similar, but the lower bound is assumed to be zero. Likewise are the
MAKE-CONS insiructions, but both lower and upper bounds are as-

sumed (0 and 1) and produce a descriptor upon receipt of a trigger.
ARRAY instructions allocate and produce a token describing a multi-
dimensional array of I-Structure elements given a set of lower and
upper bound tokens as input. MAKE-STRING instructions are similar
to MAKE-TUPLE instructions, but they not only allocate a structure,
they also store the characters of the given string into the structure.
The CLOSURE-NCDR instruction is functionally related, in that it ex-
tends a closure’s argument chain by allocating a Cons structure and
then building a new closure using the extended chain.

4.1.5 Data Types

Tokens in dataflow program graphs may represent scalar values or pointers to I-Structures.
Scalars may be integers, floating point numbers, booleans, or symbols (e.g., codeblock names).
I-Structure descriptors (reference to a Cons, Tuple, String, Vector, Structure, or Array) and
Closure descriptors are both pointers. Excepting certain special monadic and dyadic instructions
not described above, this set of data types is closed under the operations defined by the program
graph instruction set.

4.2 Strategic Issues for Partitioning

The remainder of the compiler for the TTDA consists of macroexpansion of the encapsulators,
transliteration of low-level program graph instructions to actual machine instructions, peephole
optimization, and assembly. For the hybrid machine, however, the program graph must first be
partitioned into SQ’s. This section investigates the issues of doing so.

4.2.1 Possible Constraints

Starting with a dataflow program graph, partitioning may be done in a number of ways. Issues of
concem include

¢ Maximization of exploitable parallelism: Poor partitioning can obscure inter-
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procedural and inter-iteration parallelism. The desire to aggregate instructions does
not imply any interest in restricting or limiting useful parallelism - in fact, those
cases where instructions may be grouped into SQ’s are quite often places where
parallelism is exploited in instruction ordering to mask latency.

® Maximization of run length: Longer SQ’s will ultimately lead to longer intervals
between context switches (run length). Coupled with proper runtime support for
suspension and resumption, this can lead to increased locality. Run lengths which
are long compared to the pipeline depth have a positive effect on shortening critical
path time and increasing locality. Short run lengths (frequent instruction aborts due
to suspension of a frame reference) tend to bubble the pipeline.

* Minimization of explicit synchronization: Each arc which crosses SQ boundaries
will require dynamic synchronization. Since synchronization operations are pure
overhead?’, it is desirable to minimize them.

* Deadlock avoidance: Non-sequentiality and lenience imply that instruction execu-
tion order cannot be made independent of program inputs or, said another way, in-
struction execution order cannot be determined a priori. It is necessary to understand
where this dynamic ordering behavior will manifest itself in the generated code.
Such dynamic ordering must be viewed as a constraint on partitioning since two
instructions whose execution order is dynamically determined cannot be statically
scheduled in a single SQ.

¢ Maximization of machine utilization: Given a set of costs for instruction execution,
context switching, synchronization, and operand access, partitions can be compared
on the basis of how well they "keep the pipeline full". This metric is fairly machine
specific and is in that sense less general than those previously described but no less
important.

4.2.2 Scope

It is not the focus of this work to develop optimal partitioning techniques, but rather, to develop
an architecture which can adapt to a spectrum of partitioning strategies per the requirements of
the programming language. To that end, this study focuses on development of a safe (deadlock-
avoiding) partitioning algorithm for Id program graphs. This choice is based on three important
facts:

1. Availability of Tools: At the most pragmatic level, the Id compiler is highly acces-
sible, and provides an excellent vehicle for constructing a prototype hybrid code
generator.

2. Availability of Data: Id applications have been well-studied on the MIT Tagged-
Token Dataflow architecture. By using these same applications, meaningful ar-
chitectural comparisons can be made.

27Coming from a von Neumann uniprocessor mind set where explicit synchronization is virtually unheard of except
in situations which require multitasking, it is natural to view synchronization in this way. Coming from the dataflow
world where synchronization is unavoidabie in every instruction execution and where there is no opportunity to
“optimize it out", it is also reasonable to view explicit synchronization instructions as overhead. In a later section, these
perspectives are reconciled with the view that explicit synchronization instructions are both necessary and, in some
sense, beneficial.



3. Difficulty of Partitioning Safely: Because Id is a lenient language, it does not
admit simple, sequential interpretation [S9]. In that sense, efficient support for a
lenient language will be harder io provide (read: will depend more on efficient
dynamic synchronization) than will support for non-lenient languages.

Traub [59] investigates partitioning rules which are provably both safe and efficient. 1t is his goal
to develop the means for maximizing sequential thread size given these constraints. For the
purposes of developing the present architecture, the latter constraint has been relaxed, thereby
putting the burden back on the architecture of handling even very small threads efficiently.

4.2.3 Examples
A c
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Figure 4-4: Partitioning which Leads to a Static Cycle

Safe partitioning involves the analysis of both the static structure of a dataflow program graph
and the dynamic behavior of the graph. This dichotomy leads to two distinct kinds of partitioning
problems. Consider first the program graph fragment in Figure 4-4. In this example, an acyclic
graph is partitioned into two SQ’s, each to be executed sequentially. If the pariitioned graph is
viewed in the abstract with SQ’s as the graph nodes, it is curious that the trivial, acyclic graph
now has a cycle init. This results when additional control arcs are inserted. Because this kind of
cycle is a function of the graph’s static structure, it is called a static cycle.

A very different kind of problem is illustrated with the following Id program fragment:

{ a = vector (0,2):;
a[0] = 0;

a[l] = a[i] + 1;
a[2] = a[j] - 2;

in a[l1l] - a[2]}
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Figure 4-5: Program Graph Fragment

and its associated graph?® in Figure 4-S. I-FETCH instructions are assumed to follow split trans-
action semantics with a non-busy waiting deferred read mechanism [35). Such a graph would
terminate under a dataflow instruction execution rule. However, without exercising some care,
partitioning this graph into SQ’s can lead to deadlock. Putting all of these instructions into a
single partition won’t work, nor will a partitioning such as that shown in Figure 4-6. Such
partitionings result in code which may never terminate, despite the absence of static cycles.

The problem, of course, is that the actual instruction execution order in the dataflow case depends
on the indices used in the structure operations, where no such dependence is allowed in the
partitioned case. Figure 4-7 shows two instruction execution orderings which must be possible in
any correctly compiled version of this program. These orderings demonstrate the dynamic depen-
dences between I-STOREs and I-FETCHes. If these dependences were fixed, and if it were possible
to determine them at compile time, SQ partitioning to avoid deadlock would be straightforward.
Since this is not the case, the problem is one of developing a safe partitioning strategy which is
insensitive to the arrangement of dynamic arcs. One approach is to make each partition exactly
one instruction long, i.e., the dataflow method. This, of course, is at odds with the desire to
exploit static scheduling.

2The descriptor for vector A is depicted as a constant to simplify the drawings. This is done without loss of
generality.
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Figure 4-6: Partitioning which Leads to a Dynamic Cycle

4.2.4 Latency-Directed Partitioning

Extant partitioning algorithms [12, 27] can be classified as depth-first or breadth-first. Depth-
first algorithms [12] partition by choosing a path from an input to an output of a graph and
making it into an SQ, removing the corresponding in‘tructions from the graph in the process. The
algorithm is repeated until no instructions remain unpartitioned. Such partitionings tend to be the
best at minimizing critical path time and rely heavily on pipeline bypassing since, by definition,
instruction n depends directly on instruction n~1. Breadth-first algorithms [27] tend to aggregate
instructions which have similar input dependences but only weak mutual dependences.

It is interesting to observe the relationship between the problem of partitioning a program graph
and the dynamic "partitioning” of a program which occurs in a multiprogramming environment.
Aside from the discretionary kind of context switching which occurs to guarantee faimess among
competing tasks, context switching is most often invoked when the running program attempts to
synchronize with a long-latency parallel activity, e.g., reading from a disk. Note that it is not in
general the initiation of a long latency operation which causes the context switch. It is the
attempt to waste time by waiting for the satisfaction of a synchronization constraint. Elaborate
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Figure 4-7: Input Dependent Execution Order

mechanisms are designed into such operating systems to allow the waiting task to be put aside
and then re-awakened when the event being waited on happens. For such a system to work, the
time to switch contexts must be significantly shorter than the time which would, on average, be
wasted in waiting,

It is possible to identify the arcs in a dataflow program graph which represent long latency opera-
tions and the attendant required synchronizations. It is natural to pursue this analogy and to
perform SQ partitioning such that no useful work will be postponed simply because a part of the
program is waitirg for the result of such a long latency operation.

A necessary condition for this kind of analysis is that all such arcs are manifest in the graph, and
that none are implicit in the intemal behavior of an instruction. Reviewing the program graph
instruction set shows that this condition is violated in several instances:

® APPLY and FASTCALL-APPLY hide the procedure linkage arcs, in particular, the ar-
gument and argument chain arcs which must be synchronized at the called
codeblock, and the result and signal arcs which must be synchronized at the caller.

* DEF hides the argument chain unpacking (I-Structure references).

The obvious source of long-latency operations is the I-FETCH instruction which always implies
synchronization prior to use of the fetched value. Less obvious are the HD, TL, and TUPLE-FETCH
instructions which are (implicitly) I-FETCH instructions. Such outputs of such instructions are
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called FETCH-like2®. See Section 3.2.2.

Handling of the DEF case is straightforward - all DEFs are explicitly translated into a simpler form
consisting of a set of HD and TL instructions to unpack the argument chain, plus the body.
enclosed by a FASTCALL-DEF. By this technique, the imbedded FETCH-like instructions are made
explicit, and the long-latency arcs are likewise represented explicitly.

A similar approach can be taken for APPLY instructions. The remaining issue is the handling of
the "invisible" dynamic arcs which link the invoker and the invoked codeblock across the
FASTCALL-APPLY interface. With DEFs rewritten as FASTCALL-DEFs, and APPLYs rewritten as
FASTCALL-APPLYS, the synchronizing end of the invoker-to-invoked arcs (arguments and trigger)
are simply the output arcs of the FASTCALL-DEF (Figure 4-11). Similarly, the synchronizing end
of the invoked-to-invoker arcs (results and termination signal) are the output arcs of the
FASTCALL-APPLY. It is necessary then to consider both FASTCALL-DEF and FASTCALL-APPLY as
FETCH-like.

An additional problem arises from the semantics of APPLY-like instructions. Upon receipt of the
results and the termination signal, these instructions are responsible for deallocating the invoked
context’s resources. Because this is part of the instruction and because it depends on long-latency
arcs, it violates the principle of imbedded arcs. For this reason, all instances of FASTCALL-APPLY
(including those which were originally APPLY instructions) are rewritten into component parts
which initiate the invocation and separately deallocate it. Doing this introduces two new
program graph instructions: FASTCALL-APPLY-INITIATE which initiates the procedure invoca-
tion, and SYNCHRONIZING-RETURN-CONTEXT which frees the invoked context’s resources.
Rewriting is discussed in detail in Seciion 4.3.2.

4.2.5 Summary

In summary, the decision has been made io base partitioning on the location of long-latency arcs
in the graph rather than to pursue otherwise unguided depth-first or breadth-first partitioning
strategies. To make any such scheme work, all long-laiency arcs must be directly visible at the
program graph level, and none may be "buried" in the opezational semantics of a program graph

2nstructions which invoke a manager, e.g., MAKE-I-STRUCTURE, are potentially long-latency depending upon their
implementation which is not implicit in program graph semantics. One can conceive that such instructions package up
a manager request and ship it off in the same way that an I-FETCH packs and ships its fetch request. In such cases,
synchronization would be implied anywhere the instruction’s output was used. An equally viable implementation is
that the manager will always be resident on the same processor as the executing instruction. In this case, such system
calls can be viewed as inline macro expansion, in which case there is no busy waiting. Another perspective is that such
instructions consume multiple pipeline cycles, and consume all of the processor resource (preductively) in the process.
This is the view taken here, therefore, such instructions are not classifi=d as FETCH-like.
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instruction. By rewriting certain program graph instructions into simpler forms, this constraint
can be met. It remains to describe an algorithm which can use this information to safely partition
program graphs.

4.3 Code Generator

With an understanding of the new target model and the existing program graph structure, it is
possible to describe a method of generating code for the hybrid architecture from programs
originally written in Id [9]. This section presents the details of the process. A number of inter-
esting problems arise which are characteristic of code generation for parallel machine languages.
Solutions to these problems are presented.

4.3.1 Overall Goal and Method

Compiling Id code to the target model is done with extensions to the Id Compiler, Version II [57].
Its modular organization and well defined inter-module interfaces made addition of a new code
generator possible with only minor effort. This section discusses the design of the code generator
for the target compilation model presented in the previous chapter.

A goal of the code generator was to allow existing Id programs to be used as benchmarks for the
new architecture. One constraint was not to modify the compiler itself, but rather to use selected
modules, intact, to which are added new modules. The overall architecture of the existing Id
compiler is described in [57]. Each major phase of the compiler is a separate module with a
well-defined input/output interface (e.g., annotated parse tree, annotated dataflow program graph,
dataflow machine graph). The modifications consisted of a set of new code generation phases,
the first of which maintained the annotated dataflow program graph interface. The resulting
compiler (collection of phases) has the structure shown in Figure 4-8. Boldface phase names
represent those which were added to the existing compiler.

Rather than simply discuss each new phase in turn, it is more illuminating to understand the
issues in compiling dataflow program graphs into SQ’s for the given compilation model. In the
following sections these issues are raised, and suitable solutions are given. Where appropriate,
references are made to the phases which actually perform the work.

4.3.2 Simplifications

Program graph instructions and encapsulators [57; define a rewrite language which can be shown
equivalent to Id. In the Id Compiler, program graphs are transliterated to machine graphs through
a process of simultaneous macroinstruction expansion and context-free substitution of machine
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Figure 4-8: Structure of the Id-to-Hybrid Compiler

graph instructions for program graph instructiors. The program graph abstraction is useful in that
it admits powerful manipulations with relative ease where parse trees would be cumbersome and
machine graphs would be too microscopically detailed.

The code generator for the hybrid machine preserves the program graph interface. Input to the
code generator is a well-formed (acyclic compositions of the basic schemata), well-connected
(output arcs, called signals, have been added from instructions which otherwise produce no out-
put, e.g., I-STORE; and input arcs, called triggers, have been added to instructions which otherwise
receive no inputs, e.g., constants) graph.

Code generation begins with macroexpansion of certain program graph instructions and encap-
sulators into lower-level program graph equivalents. Examples necessitated by instruction
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Figure 4-9: Rewriting MAKE-TUPLE 4

semantics for partitioning have already been discussed. The primary purpose in performing fur-
ther rewrites at the program graph level is to simplify later stages of the code generator by
restricting the input language, i.e., reducing the size of the set of possible program graph instruc-
tions. It is particularly important to perform this transformation prior to assigning frame slots - as
they exist following signal and trigger addition, program graphs do noi have the property of a
one-to-one correspondence between instruction outputs and frame slots. Many required frame
slots are "hidden" inside complex program graph instructions. More troublesome, however, is the
realization that the number of such hidden slots is a function of the program graph instruction
encoding. Hence, this module transforms program graphs into program graphs with a one-to-one
correspondence between outputs and slots.

This macroexpansion is done by context free substitution of a subgraph for a single, complex
instruction. Some analysis is performed on instructions to build a proper subgraph. The expan-
sion is recursively applied to the subgraphs until the resulting program graph contains only those
instructions in the restricted set. In each case, the new subgraph has the same number of inputs
and outputs as the old instruction.

4.3.2.1 Structure Handling Instructions

Program graph instructions for creating strings, tuples, and conses are rewritten into a simpler
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Figure 4-10: Rewriting TUPLE-FETCH.2

form which uses a parameterized MAKE-I-STRUCTURE instruction3? and, as needed, literal con-
stant instructions to represent the I-structure kind and the bounds. This rewriting takes advantage
of the ability to imbed small literal constants as arguments to any instruction. After this transfor-
mation, only one program graph instruction is required to allocate I-structures of any kind. In
Figure 4-9, a four-clement tuple creation instruction is rewritten into a MAKE-I-VECTOR instruc-
tion with an implicit lower bound of zero. The upper bound of three is specified by a literal
instruction. The kind of vector is encoded as an integer3!.

In a similar fashion, instructions to read or write the elements from strings, tuples, and conses are
rewritten to a form using only I-FETCH and I-STORE, plus literal constants as necessary. Figure
4-10 shows TUPLE-FETCH.2 rewritten as an I-FETCH and a literal offset. In both this case and in
the previous example, triggers for the literal instructions were derived from inputs to the original
program graph instruction.

Array creation instructions are expanded in a manner similar to that for the TTDA. Specifically,
one dimensional array creation instances are expanded into MAKE-I-STRUCTURE instructions,
while higher dimensioned array creations are expanded into calls to library routines.

30The operation to allocate an area of the I-Structure storage space can be implemented with a single opcode.
However, because of the three-address format of the abstract machine and the desire to collect more fine-grained
statistics on storage allocation paiterns, three opcodes are used. In this example, MAKE-I-VECTOR is an instance of the
generic I-Structure creation operation with an implicit lower bound of zero.

31For the MAKE-I-VECTOR instructions, the possibilities are tuple and string.
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Figure 4-11: Rewriting DEF (per [57])

4.3.2.2 DEF

All DEF encapsulators (outermost encapsulator of any procedure codeblock) are rewritten to
parameterized FASTCALL-DEFs. DEF abstracts both the mechanism of passing arguments between
contexts and the mechanism of conditionally unpacking argument chains sent from APPLYS.
Rewriting separates these two abstractions. The argument chain unpacking is explicitly
represented by a set of HD and TL instructions which take apart the list of arguments. Conditional
execution of these unpacking instructions is a ccnsequence of the method of triggering SQ’s. The
gist of the method relies on

e Suspension of the argument chain continuation, which contains the first HD and TL
instructions. Both of these require the argument chain. If no chain is sent, as in the
DIRECT-APPLY case, these instructions will not execute.

e Initiation of continuations for the remainder of the unpacking as part of the argument
chain continuation.

Figure 4-11 shows the complete transformation. The FASTCALL-DEF is parameterized with the
number of non-trigger arguments (n) of the original DEF encapsulator.
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Figure 4-12: Rewriting APPLY (per [57])

4.3.2.3 APPLY, DIRECT-APPLY, and APPLY-UNSATISFIED

APPLY instructions are rewritten into IF encapsulators which test the closure arguments for readi-
ness, i.e., that all arguments are present, and conditionally invoke the procedure via
FASTCALL-APPLY if ready (Figure 4-12. If the closure is not yet ready, the existing argument
chain is extended by one CLOSURE-CONS cell, the head of which contains the argument and the
tail of which contains a pointer to the old argument chain. A new closure containing a pointer to
the new chain is created, and the counter of arguments remaining is decremented.

DIRECT-APPLY is rewritten, essentially, into the true-branch of an APPLY save that all arguments
are connected to the FASTCALL-APPLY rather than just one. APPLY-UNSATISFIED is rewritten into
the false branch of an APPLY.
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Figure 4-13: Rewriting FASTCALL-APPLY

4.3.2.4 FASTCALL-APPLY

All instances of FASTCALL-APPLY, including those created by rewriting APPLY and
DIRECT-APPLY, are rewritten into a form which exposes the imbedded dynamic arcs. Essentially,
this is consistent with the split-transaction nature of I-FETCH: one instructiion initiates the fetch
while others synchronize prior to using the result. In the case of FASTCALL-APPLY, on¢ instruc-
tion initiates the invocation, and a second instruction (SYNCHRONIZING-RETURN-CONTEXT)
synchronizes on the return signai and then deallocates the invocation’s resources. The translation
is depicted in Figure 4-13.

4.3.3 Partitioning Constraints

In this section, the notion of safely partitioning a program graph is developed. It is again as-
sumed that the input graphs are well-formed and weli-connected. Since there is the potential of
introducing deadlock as a result of partitioning a program graph, the major goal of this section is
to develop a set of partitioning constraints which will demonstrably avoid the introduction of
deadlock.

Partitioning a graph into SQ’s, wherein the instructions are totally ordered, may imply the ad-
dition of arcs into the graph to effect sequentialization. The first section defines the issues which
arise from the introduction of additional arcs intc an otherwise acyclic graph. The second section
presents the Method of Dependence Sets, a simple algorithm for partitioning dataflow program
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graphs, which only introduces arcs in a highly restricted fashion. The third section examines the
algorithm’s behavior and shows that, despite the introduction of arcs, deadlock-inducing cycles
are not created.

4.3.3.1 Adding Arcs

In order to guarantee liveness of the partitioned graph, it is essential no cycle be introduced into
the partitioned graph which cannot be resolved. Recall that the partitioned graph contains only
SQ nodes, each representing some nonempty subset of the nodes in the unpartitioned graph.
Moreover, the instructions in each such subset are totally ordered. This sequentialization can
interact with existing dependences in the graph, leading to a static cycle. Depending upon the
interpretation model for sequentialized SQ’s, deadlock may resuit.

Definition 4-1: An unresolvable static cycle is a directed cycle of SQ’s in a partitioned
.dataflow graph for which no schedule of SQ executions can terminate.

Given that instructions within an SQ are to be interpreted sequentiaily, it is clear that arbitrary
partitioning of an acyclic graph into SQ’s can result in unresolvable static cycles, a sufficient
condition for deadlock. This is reasonably obvious - the partial order represented by a program
graph captures all and oniy the necessary inter-instruction dependences. Imposing further con-
straints, viz., sequential execution, on a graph is tantamount to adding additional dependence arcs.
Doing so in a haphazard fashion can clearly introduce a cycle where there was none.

An example of how partitioning can give rise to a static cycle was shown in Figure 4-4. In order
to avoid deadlock, it is necessary either io prohibit such cycles or to devise methods for resolving
them. Sarkar and Hennessy [52] choose the former tack and impose a convexity constraint on the
partitioning - static cycles can therefore never arise. As an alternative to their technique, it is
possible to use an SQ interpretation model which allows such cycles to be resolved. One can
imagine a partitioning in which the ability to resolve a cycle only means that the order of instruc-
tions in an SQ must follow the topological ordering of the program graph and that there must be a
notion of SQ suspension and resumption based on the absence and presence, respectively, of data
on inter-SQ arcs. One possible mechanism which allows this behavior and which is efficient was
addressed in Section 3.3.

Unfortunately, in order to avoid partitioning-induced deadlock, it is not sufficient to simply
resolve all static cycles. I-Structure storage has introduced the notion of dynamic arcs between
producer and consumer. Since these arcs are input-dependent, they are not expticitly expressed in
the graph and are therefore not amenable to static analysis. They impose no less of a constraint,
however. Consider an unpartitioned graph, augmented with all potential arcs from producers to
consumers through I-Structure slots. This graph would form the basis for a kind of static
analysis; partitioning would be constrained by the ability to resolve any cycles so introduced.
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Definition 4-2: An unresolvable dynamic cycle is a directed cycle of SQ’s in a par-
titioned dataflow program graph, augmented with the input-specific dynamic arcs, for
which no schedule of SQ executions can terminate.

The algorithm presented in the next section allows the partitioning of program graphs without the
introduction of either static or dynamic cycles.

4.3.3.2 The Method of Dependence Sets

The Method of Dependence Sets (MDS) is a simple algorithm for safely partitioning program
graphs. It seeks to avoid the problems of static and dynamic cycles by uniquely naming each
FETCH-like output, and then grouping together all and only those instructions which depend
directly or indirectly upon the same set of names. The following definitions are in order:

Definition 4-3: The input dependence set for an instruction (written ISD(¥)) in a well-
connected graph is the union of the output dependence sets of all instructions from
which it receives input. The input dependence set of the root instruction is &. The
input dependence set for instructions with no inputs is likewise defined as &.

Definition 4-4: The output dependence set for a given output of a given instruction
(written ODS(i,0)) is either the instruction’s input dependence set if the output is not
FETCBE-like, or the union of the instruction’s input dependence set with a singleton set
made up of an identifier which uniquely names the given output if it is.

Note that it is a FETCH-like instruction’s output, and not the insiruction itself, with which is
associated a change of dependence set.

Now, assume a well-connected dataflow program graph G=(V,E,R), where

o Vis the set of program graph instructions and encapsulators.
e E: {(iy)lije V and j depends directly on i} (the set of static dependence arcs)
® Re V and R is the root instruction.
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Figure 4-14: Properly Partitioned Graph

Algorithm 4-5: METHOD OF DEPENDENCE SETS(G)

For each output o of R, compute ODS(R,0). Traverse graph G from R per topological
ordering32, selecting an insiruction or encapsulator ie V to expand. For each such
instruction,

e Calculate IDS().

e Assign the generated machine instructions, in order, to an SQ corresponding to
IDS(i). SQ's are selected such that for any two program graph instructions
ijeV

IDS@)=IDS(j)=>SQH)=SQ()

The SQ denoted by IDS(R)=D is defined as the distinguished SQ.
e For each output o of instruction i, calculate ODS(i,0).

Per the characterization of dynamic arcs in the last Chapter, FETCH-like outputs represent long-
latency operations. Viewed another way, it is the virtual gate (c.f., Figure 3-1) which must be
pushed to the boundary of the unit of schedulability. This is done by forcing all sink instructions
fed by the gate into a new SQ. These sink instructions execute only when the I-FETCH and
I-STORE upon which they depend have completed.

Applying the definitions to the graph in Figure 4-5 and using o, p, and y for unique names results

32Such an ordering is specified in Algorithm 4-11, p. 115.
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in the following assignments of input dependence sets to instructions (assume that vector A and
the indices i,j are derived from the root with dependence set &):
Instruction Dependence set

I-STORE(() 1}
I-FETCH(i) 1]
1-FETCH(j) 1}
I-FETCH(1) %}
I-FETCH(2) 1%}

+1
STORE(1)

{a}
{a}
2 {g}
STORE(2) {B)

{7}

Since each distinct combination of dynamic arcs denotes a single SQ, dynamic scheduling can
change to match the dynamic dependences. The correctly partitioned graph is shown in Figure
4-14. The determination of synchronization points is also straightforward: each dependence (arc)
which crosses SQ boundaries must be explicitly synchronized by the consumer, or sink, SQ.
Consumers in the same SQ as the instruction producing a value need not perform synchroniza-
tion. It is implicit in the static scheduling of instructions within the SQ (these are exactly the
static synchronized and static unsynchronized arcs of Section 3.2.2).

4.3.3.3 Properties of MDS

The Method of Dependence Sets collects together into SQ’s all and only those instructions with
identical dynamic dependence requirements. That is, every instruction in an SQ depends directly
or indirectly on the same set of FETCE-like outputs and I-STOREs. Each resulting SQ is a set of
subgraphs. Disjoint subgraphs in an SQ have neither a static dependence nor a dynamic depen-
dence between them. The former is obvious - otherwise, they would not be disjoint. The latter is
less obvious, but follows immediately from the definitions. A dynamic dependence would imply
FETCE-like instruction outputs feeding sink instructions, which would necessarily have forced
the sink instructions to appear in a different SQ.

This simple assertion has a powerful effect on the manner in which SQ instructions can be se-
quentialized. For an SQ which contains but a single subgraph, the ordering must adhere to the
subgraph’s topological constraints. For an SQ with more than one subgraph, the instructions
from any one subgraph must be topologically ordered, but there is no cross-subgraph constraint.
Consequently, in an SQ containing subgraphs A and B, instructions from B may follow ail the
instructions of A, or conversely. Alternatively, instructions from A and B may be interleaved.
The point is that, because there cannot be a dynamic dependence between them, introduction of
sequentializing arcs cannot interfere with essential dynamic instruction ordering.
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Can cycles, either static or dynamic, ever arise among the SQ’s partitioned by MDS? The follow-

ing two theorems address this question directly.

Thecrem 4-6: Partitioning an acyclic program graph by the Method of Dependence
Sets results in a program graph which is free of static cycles.

In order to prove this, it is necessary first to establish a few other facts, specifically, (1)
that where there is a dependence between two SQs, there is a proper subset relationship
between their dependence sets and (2) that transitivity of this relation holds.

Lemma 4-7: Inter-Instruction Dependence: For all instructions ije V, if
(i) € E then IDS(j)2IDS(i).

Proof: Follows directly from Definition 4-3.

O

Lemma 4-8: Cross-SQ Dependence: For all instructions ije V, if (ij)e E
and SQ@) #SC()) then IDS(j) D IDS().

Proof: (by contradiction)

From Lemma 4-7, IDS()2IDS(i). Assume that IDS()=IDS(i). But
from Algorithm 4-5, it then follows that SQ()=SQ().

O

Lemma 4-9: Dependence Transitivity: For all instructions ij.kle V, if
(if)eE, (kDeE, SQ{M=SQk), and SQ@)#SQ(N#SQO(), then

IDS())> IDS().
Proof:
IDS(j) o IDS(i) [1] Lemma 4-8
IDS()oIDS(k) [2] Lemma 4-8
IDS()=IDS(k) [3] Algorithm 4-5
IDS(H> IDS()) [4]by2and 3
IDS() > IDS(i) [5] transitivity, 4 and 1
O

The theorem can now be preved rather simply.
Proof: (by contradiction)

Consider a cycle of dependence arcs among a set of distinct SQs A,B,...
Then, by Lemma 4-9 it follows immediately that IDS(A) D IDS(A).

O
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Theorem 4-10: Partitioning an acyclic program graph by the Method of Dependence
Sets results in a program graph which is free of dynamic cycles.

Theorem 4-6 states that the partitioning of an acyclic graph by MDS is itself acyclic.
Augmenting this graph with all possible input-specific dynamic arcs raises the pos-
sibility of cycles containing one or more dynamic arcs. It follows from the definitions
that a dynamic cycle cannot occur within a single SQ (as discussed above). It remains
to show that no cross-SQ cycles exist.
Proof: (by contradiction)
Assume a cycle among two or more SQ’s wherein one or more of the cycle-
forming arcs is dynamic. Because a dynamic arc is involved, there must be
an I-STORE instruction { in the cycle. Consider this I-STORE instruction and
the SQ in which it resides. By the assumption and Algorithm 4-5, this SQ
must depend on the dynamic arc. But, again by Algorithm 4-5, all instruc-
tions in the SQ, including i, depend on the dynamic arc. This is true inde-
pendent of any sequentializing arcs which may or may not be added to the
SQ. Here is a situation of a dependence which violates I-structure semantics.
Hence, either there is an error in the original program, or the assumed cycle
cannot exist.

O

4.3.3.4 Summary

In this section, a partitioning algorithm has been introduced which groups together all and only
those instructions with identical dynamic arc dependences. It has been shown that the extra arcs
introduced by the algorithm do not interfere with essential instruction orderings, that static cycles
are not created, and that dynamic cycles are not possible.

4.3.4 Operan:d Storage Allocation

This section examines the mapping of arcs in the program graph into proper dynamic storage.
Such storage is invocation specific and, by analogy with von Neumann machines, a frame, or
array of directly indexed slots is the model.

The problems of allocating invocation-specific operand storage can be divided into two
categories: those which can be reduced to analogous ones in a von Neumann environment and
those which are unique to parallel processing. For the sake of completeness, both are presented
here. The latter category has received considerably more attention in this study, however. To
that end, a number of known storage conservation techniques which apply to the former category
were simply not implemented in the prototype compiler in order that more time could be given to
the latter category. It was therefore deemed sufficient to allocate one slot in the frame for each
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Figure 4-15: Procedure Frame

instruction output in the program graph33 with the following exceptions:

e Merged arcs, e.g., the outputs of the then and else blocks of an IF encapsulator,
cause instruction outputs to be mapped o the same frame slot.

e Loop variables are mapped statically to frame slots, but the slots are re-used in a
carefully controlled fashion across iterations. This important optimization is
described in Section 4.3.5.

33Frame slots are assumed to be inaccessible outside of the given execution context. Moreover, the values held in
frame slots have a lifetime which is generally much less than the lifetime of the frame. It is possible and highly
desirable to fold the compiled codeblock such that slots can be re-used. This problem is equivalent to register
assignment for traditional architectures with the added constraint of multiple continuations per codeblock. This
introduces nondeterminism into the matter of deciding when a slot will no longer be referenced; in the case that the
producer of a value and all of its consumers are not within the same SQ, dynamic methods (or loosely bounded static
methods) are necessary. In that the compilation scheme proposed here does not partition a codeblock into SQs until
after frame slot assignment, such folding is not possible.
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Figure 4-16: Inner Loop Frame

4.3.4.1 The Frame

Codeblocks are classified as procedure or inner loop as described in Chapter 4.1. Their frames
differ in the way arguments and constants are handled. The remainder of the frame structure is
identical.

Slots are reserved in both kinds of frames as follows: the first slot contains a frame descriptor
which points to the return area in the caller’s own frame. This frame descriptor, therefore, must
denote a globally unique frame address. The second slot contains the argument chain I-structure
descriptor unless any of the following is true, in which case the slot will be empty:

s It is an inner loop codeblock, in which case arguments are sent directly and no chain
is used.

e It is a procedure codeblock but the arity is zero or one, in which case a chain is
unnecessary.

e It is a procedure codeblock but is being invoked by DIRECT-APPLY, in which case the
arguments are sent directly as in the inner loop case.

The third slot is reserved for the invocation-time value of K, the bound on the degree of loop
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unfolding. The major difference between procedure and inner loop codeblocks shows up in the
argument/constant area.

Procedure Codeblocks (Figure 4-15): A procedure codeblock may or may not include an outer
LOOP, but in any event, it includes at most one. This LOOP may require a constant area to hold
loop invariant values. Such constants are computed after procedure invocation but prior to execu-
tion of the loop. Therefore, constants are distinct from procedure arguments and are stored
separately in the frame. Loop constants are assigned ordinal indices in the program graph, and
these indices are mapped to offsets in the constant area of the frame. Arguments are handied by
mapping the last to a fixed offset (3) in the frame, with the second-to-last occupying offset 4, and
so on. Arguments are thus mapped in reverse order, from last to first, in the frame. The reason
for this is slightly subtle.

The procedure linkage constraints imposed by the closure-based application scheme dictate that
the APPLY instruction which detects that the arity is satisfied will forward the last argument (as
supplied to the APPLY) and the argument chain descriptor (part of the closure) to the invoked
procedure. Since the arity of the called procedure is not known, in general, at the time the caller
is compiled, the means of sending the last argument must be independent of arity. Hence, it is the
last argument, rather than the first, which appears at a fixed address in the frame. Note that this
limitation does not affect the implementation of DIRECT-APPLY since it is specifically in this case
that the called procedure’s arity is known.

Inner Loop Codeblocks (Figure 4-16): An inner loop codeblock always includes a LOOP encap-
sulator. The loop constants are handled differently than in the case of a procedure codeblock.
Here, the arguments to the codeblock include the loop constants. Therefore, there is no explicit
constant area separate from the argument area, and the overhead of storing constants is subsumed
by the passing of arguments to the codeblock.
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Figure 4-18: Iteration Subframe

Following the arguments and constants, slots are used as necessary to store arc values for the
remainder of the codeblock. This area is largely unstructured, and slots are individually al-
located. The exception to this rule is the case of codeblock invocation. Since procedure
codeblocks in general return a result and a signal, and inner loop codeblocks retumn multiple
results and a signal, a decision must be made. The caller can send multiple slot pointers to the
called codeblock, one for each thing to be returned, or the caller can reserve a contiguous block of
slots and send only a single pointer with the understanding of how multiple pointers should be
derived from it. The latter scheme is by far more economical. Such contiguous blocks of slots
are procedure call subframes, and their format is depicted in Figure 4-17.

Up to this point, all slots have been allocated statically. At compile time, the size of the frame so
far is always known. Further, the use of such slots will aiways adhere to the write-once, read-
many discipline.

Not surprisingly, loops confuse this order. From experience with the MIT Tagged-Token
Dataflow machine [10] the benefit of exploiting inter-iteration parallelism is enormous, so enor-
mous in fact that the resource requirements must be controlled [20]. These facts imply that there
must be a way to have multiple iterations active concurrently, and that the resources consumed by
such iterations must be reusable. The scheme used here is to map the frame storage requirements
of a loop iteration (loop variables and temporaries) to a virtual frame, called an iteration
subframe, and to allocate at codeblock invocation time enough frame storage for K instances of
the iteration subframe (Figure 4-18).
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The Ot slot in each subframe is reserved for an Iteration Descriptor, whose function is discussed
in section 4.3.5. The next n slots hold the »n loop variables, with the remainder of the frame for
loop temporaries. It is assumed that these subframes will be recycled modulo K, and the assump-
tions about write-once slots break down. These issues are addressed in section 4.3.5.

4.3.4.2 Assignment, Propagation, and Constraints

Frame Slot Mappings
Instruction Port Slot
or Name Mapping
Encapsulator
LITERAL Output none if immediate
assigned - shared otherwise
LOOP-CONSTANT Output assigned - loop constant area
I-FETCH Output assigned - argument area if argument
assigned otherwise
IF IfCutput assigned
ThenlInput propagated - IfTnput
ElseInput propagated - Iflnpw
ThenGCutput constrained - IfOutput
ElseOutput constrained - IfOutput
IfInput none
LOOP LoopOutput assigned
PredicateInput | assigned
BodyInput propagated - PredicateOutput
BodyOutput constrained - loop variable area
LoopInput constrained - loop variable area
PredicateOutput | none
FASTCALL-DEF Argument assigned - argument area
Trigger assigned - frame descriptor
FASTCALL-APPLY-INITIATE | Signal assigned - termination signal
Result assigned - result area
CTHERS Output assigned

After rewriting, the only remaining encapsulators are IF, FASTCALL-DEF, and LOOP.
Encapsulators have outputs on both the "exterior” surface and on surfaces which enclose the basic
blocks. Certain of these outputs are nontransparent, i.e., in the final expansion of the encap-
sulator, instructions will be generated which themselves produce the value associated with the
output. Other outputs are transparent - the value associated with the output will have been
created by an instruction other than the encapsulator itself and will appear elsewhere as an input
to the encapsulator. It is possible to statically classify every output of every encapsulator as
transparent or nontransparent, and for transparent outputs to identify the input or inputs from
which the value will come.
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Frame slots must be assigned to nomntransparent outputs and propagated to transparent ones.
Assignment implies that an output is marked as the originator of a value or set of values which
will occupy a specified frame slot. In the event that arcs are merged (as in the LOOP and IF
encapsulators), there will be two distinct instructions whose output arcs are mapped to the same
slot number. This presents no problem of semantics for the same reason that MERGES in the
TTDA present no problem - the one-in, one-out property is always preserved when the schema
(encapsulator) is viewed as a whole. In this case, the mapping to slot numbers is called
constrained. The table shows, for each type of instruction port, the kind of frame slot mapping
which applies.

4.3.4.3 Method

The method of mapping arcs to frame slot numbers in a codeblock is to traverse the graph from
the root, which is always a single FASTCALL-DEF, first assigning noniransparent frame slot num-
bers to the root’s outputs, then mapping body arcs to frame slots. The former process is
straightforward; for each argument output of the FASTCALL-DEF to which is connected a sink
instruction, assign the corresponding predefined frame slot number. If this FASTCALL-DEF was
the resuit of having rewritten a DEF, there will be two argument outputs, the argument chain (slot
1) and the last argument (slot 3). Otherwise, there will be n arguments, assigned to slots begin-
ning with slot 3. If the trigger output has a sink instruction, it is assigned slot O (the return frame
descriptor).

The latter process of mapping arcs in a basic block to frame slots is slightly more complex. First,
for each instruction in the basic block, nontransparent frame slot numbers are assigned. Then, for
each encapsulator, transparent frame slot numbers are propagated, constraints are applied, and
mappings of arcs within the encapsulator’s basic blocks are done recursively.

In the case of literals, several optimizations are preformed. First, because certain literals are
representable as immediate values, no frame slots need be assigned. A majority of literals are
covered by this case, ¢.g., small integers used to index conses and tuples. Second, it is unneces-
sary to reserve more than one frame slot for the same ron-immediate literal value; instead, an
association list is built during frame slot assignment to record the hardware type and value of
each non-immediate literal and its assigned frame slot. Multiple literal instructions calling out the
same value will use the same frame slot. Such frame slots are initialized during the prelude of the
codeblock, and references to these slots need never cause suspension.

LOOPs present a special problem in addition to the issue of merged arcs discussed above. Since
slots associated with circulating loop variables will be re-written from iteration to iteration, it
must be the case that
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e no rewriting of a slot is visible outside the LOOP (as would be the case of instruction
A feeding instruction B as well as a LOOP input). A similar problem exists for non-
immediate literals used as inputs.

e immediate literals used to initialize circulating variables are copied to frame slots
prior to LOOP entry (an immediate can’t be re-written).

¢ no body input slot may be rewritten until the existing value is no longer needed in the
current iteration.

e LOOP outputs are not accessible until the LOOP terminates. Using frame slots as the
sole means of synchronization could potentially lead to the interpretation of an inter-
mediate result as the final LOOP cutput.

Non-LOOP codeblocks are acyclic and, as a result, each arc will denote at most one value for each
invocation. Consequently, the corresponding frame slots are written at most once per invocation.
LOOPs present the possibility of re-writing slots during an invocation. Because of this, mapping
of arcs within a LOOP is handled specially. While all other codeblock arcs are mapped into a
single frame namespace, LOOP arcs are mapped to a separate namespace. When a codeblock is
invoked, space is allocated to hold a single copy of the non-LOOP slots, and additional space is
ailocated to hold K copies of the LOOP slots with the intent of allowing K consecutive iteration
bodies to run concurrently. The benefits of doing this are discussed [20] and are assumed to be a
necessary requirement of any successful parallel execution model.

Keeping changes local to the LOOP is easily handled by simple analysis of each LOOP input - if it
is not the sole sink, an IDENTITY instruction is inserted between the source and the LOOP input34,

4.3.4.4 Summary

This section has reviewed the problem of allocating dynamic storage for an invocation as an
extension to von Neumann methods. It has been shown that in order to exploit parallelism, e.g.,
across iterations, it is necessary to allocate significantly more storage than would be necessary in
a sequential von Neumann paradigm. Another manifestation, although not explored here, is the
difficulty (and additional storage space) of folding the program graph to permit re-use of slots
during execution in the manner of traditional register allocation techniques. The difficulty, again,
arises out of the multi-threaded (parallel) nature of the model.

34Note that it is net enough that the LOOP encapsulator is the only sink for each source - it is possible that a single
source feeds two distinct LOOP inputs. Unless these are explicitly separated by an IDENTITY instruction, the two LOOP
variables will be aliases.
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4.3.5 Machine Code Generation and Partitioning

After the program graph is re-written into a simpler form and frame slots have been assigned,
machine code can be genecrated. This process is done by simultaneously translating program
graph instructions into machine instructions and partitioning the generated instructions into SQ’s.
Both aciivities involve correctly reflecting the data dependences in the final codeblock module.
As shail become clear, the process is distinctly different than that in the TTDA. Static depen-
dences constrain code order within SQ’s; dynamic dependences constrain the partitioning of code
into SQ’s and the choice of synchronization points.

4.3.5.1 Representation of Scheduling Quanta

As the program graph is translated, it is partitioned according to the constraints in Section 4.3.3.
The internal representation of a scheduling quantum is shown in Figure 4-19. This abstraction is
responsible for being the repository of translated instructions in the SQ. More importantly, this
abstraction is used to enforce the constraints imposed by the architecture regarding register usage
(fixed number, values not preserved across suspensions). The abstraction also summarizes the
inputs to the SQ (these will always be frame slots - immediate literals are uninteresting, and
registers can never be SQ inputs) and the termination signal slots.

Within the compiler, virtually all register references are symbolic. Allocation and deallocation of
register numbers is automatic. The mapping of register names to register numbers is handled by
the SQ abstraction, and invalidation of names across potentially suspensive instructions is en-
forced.

4.3.5.2 Mechanism for Translating a Program Graph Instruction

Program graph translation proceeds in a straightforward manner. The algorithm is divided into a
driver, which understands graph structure but nothing of the semantics of the instructions to be
translated, and a set of expanders, one for each program graph instruction. Expanders know
nothing of graph structure and simply specify the translation of a program graph instruction to
machine code as a function of the program graph instruction’s properties, e.g., number of inputs
and outputs, instruction parameters, and opcode. The specification of an expander is mechani-
cally transformed (via a macro) into a function which performs the translation and then recur-
sively calls the driver on the instruction’s outputs. The driver selects program graph instructions
for expansion when and only when all of the instruction’s inputs have been expanded. This
simple technique produces code within SQ’s which is sequentialized according to the topological
ordering of the original program graph.
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Figure 4-19: Representation of a Scheduling Quantum

4.3.5.2.1 The Driver

The driver is expressed as a few very simple functions which traverse the program graph. The
Expand function invokes the appropriate expander for each program graph instruction; the ex-
pander in turn invokes ExpandOutputs as apgiopriate. This process treats encapsulators as in-

structions.

Algorithm 4-11: GENERATE(ProgramGraph)

e For each Instruction in ProgramGraph, mark it with an EnablingCount equal to
the number of arcs incident on its Exterior surface.

e Invoke EXPAND on the Root Instruction.

Algorithm 4-12: EXPAND(Instruction)
Unless Instruction is marked,

e Mark it
e Invoke its Expander
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Algorithm 4-13: EXPANDOUTPUTS(Instruction)

e For each Output on all surfaces of Instruction,
Invoke EXPANDSINK on Instruction and Output

e If Instruction is an encapsulator, note the subordinate SQ descriptors created in
expanding the instructions connected to the non-exterior ouiputs.

Algorithm 4-14: EXPANDSINK(Sourcelnstruction,SourceOutput)
For each SinkInstruction connected to SourceQutput of Sourcelnstruction,
When the arc to SinkInstruction is incident on its Exterior surface,

® Decrement its EnablingCount.

e When the resulting EnablingCount is zero, mark the arc and invoke
EXPAND on SinkInstruction.

4.3.5.2.2 The Expanders

The following operations are common to the expansion of each type of program graph instruc-
tion. They are added automatically to the specification of the semantics of each program graph
instruction, thereby hiding details of the representation of scheduling quanta and ihe vagaries of
- the synchronization mechanisms of the model.

o Selection of an SQ: Partitioning by the method of dependence sets requires, for each
program graph instruction, the computation of its input dependence set which
uniquely defines the scheduling quantum to which the expanded instructions belong.
At compile time, an association is maintained between dependence sets and schedul-
ing quanta. New quanta are allocated each time a computed dependence set fails to
map to an existing quantum. Scheduling quanta are static objects which must be
explicitly triggered at runtime; therefore, the creation of a new quantum implies the
need to install a trigger in an existing SQ.

¢ Computation of addressing modes: In translating a program graph instruction, ref-
erence is made to the input operands in the abstract - each input is an arc which
logically denotes a value held in some physical resource, e.g., in the frame, in a
register, or in the instruction itself as in the case of an immediate literal. Each arc
and the instruction which feeds it uniquely define the hardware resource represented.
The operand addressing information can therefore be computed by simple analysis of
the instructions which feed the one in question. See Figure 4-20.

The compiler records a history of registers as output operands. Because the driver
traverses the program graph according to topological ordering, it is possible to flag
invalid references to registers at compile time.

e Addition of Synchronization: By the method of dependence sets it is known where
synchronization will be required - for any input to any program graph instruction,
synchronization is necessary at operand fetch time if the input comes from another
scheduling quantum, directly (a static arc) or indirectly (a dynamic arc). The
compile-time representation of scheduling quanta makes this determination
straightforward.

o Test for Suspensiveness: Once synchronization tests have been applied, it is known
(again, at compile time) if an instruction cannot suspend. When an instruction can be
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Figure 4-20: Abstract vs. Concrete Translation

proved non-suspensive, no updating of the register allocation information in its SQ is
necessary. If, however, this cannot be proved, the instruction’s scheduling quantum
abstraction is updated to show that no subsequent instruction may make reference to
a value previously stored in any register.

4.3.5.3 Machine Code Generation

This section examines the (nearly) context-free expansion of program graph instructions into
machine instructions, with no concern for the issues of partitioning, operand addressing / register
allocation, synchronization, and so on as discussed above. The expansion is, however, a function
of opcode, number of inputs and outputs, and other local, instance specific information.

4.3.5.3.1 Signals and Triggers

Signals and triggers were introduced into program graphs to make them well-connected, i.e., to
guarantee that each instruction which should fire does fire (triggering), and that it is possible to
determine when every instruction in a block which should fire has fired (signalling). Triggering
and signalling are implicit under the von Neumann instruction execution model because there is
only one locus of control. In a dataflow machine, however, it is much less straightforward.
Certain instructions which themselves require no input, e.g., constant generators, must be ex-
plicitly initiated, hence the necd for triggers. Other instructions which produce no output but are
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only executed for effect, e.g., I-STORE, must be explicitly tested for completion, hence the need
for signals.

How do signals and triggers apply to the hybrid instruction execution model? Not surprisingly,
the von Neumann style of implicit signalling and triggering applies within an SQ, but the
dataflow model of explicit signals and triggers must be enforced between SQ’s. It would not do,
for instance, to construct an SQ which receives only constant inputs and not tc provide a means to
initiate this SQ. Similarly, it would be necessary to provide some mechanism to detect termina-
tion of an SQ which produces no arc-carried results.

A simple technique would be to explicitly represent signal and trigger arcs in the compiled hybrid
program. This, of course, is unnecessary and misses the opportunity for some good optimiza-
tions. Assume that the program graph is well connected. In what situations are signals and
triggers essential?

Triggers: Literal constant instructions are the prime motivator for triggers. But as described
previously, constants are handled by first eliminating all those which can be represented as im-
mediate values, and second by loading frame slots during the codeblock’s prelude with all other
literals. Moreover, the method of dependence sets will never create an SQ which only has literal
inputs. This follows by definition - an SQ depends directly on some set of dynamic arcs. It can
be argued, therefore, that explicit representation of trigger arcs across SQ boundaries because of
the need to trigger literal constants is unnecessary.

Note, however, that the mechanism of synchronization relies on an eager reading of a frame slot,
possibly resulting in suspension of the SQ which attempted the read. Hence, it is necessary to
initiate, or trigger, every SQ which will ultimately be expected to compute. This does not mean
that all SQ’s within a codeblock should be triggered at codeblock initiation. Rather, it means that
SQ’s should be triggered when and only when the program graph implies a triggering of any
instruction in the SQ.

Such triggering is most conveniently done when a new SQ is formed by virtue of a dynamic arc.
That is, the compilation of an instruction such as I-FETCH will include both the code to perform
the fetch and the (implicit) code to trigger the SQ which was generated to receive the result3536,

35The exception to this rule occurs in the SQ which reads the argument chain slot. There, the trigger is installed in
the distinguished SQ. This allows the codeblock to be properly triggered irrespective of the way it was invoked (APPLY
or DIRECT-APPLY).

36A pathological case arises, using this method, whereby SQ’s may be created which are completely empty or which
contain nothing other than triggers for other SQs. This case is handled by the SQ structural optimizer, discussed in a
later section.
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Figure 4-21: A SIGNAL-TREE Instruction and its Translation

TST1 Output,Input.n-1

Signals: Signals are synthetic outputs generated by instructions which would otherwise have
none, e.g., I-STORE. In the dataflow paradigm where each instruction is its own scheduling quan-
tum, the primary evidence of an instruction having fired and, hence, the proof that a codeblock
has terminated is the production of an output value. Signals are therefore necessary for proving
that instructions like I-STORE have fired. Signals are collected by SIGNAL-TREE instructions, and
summary signal information is preserved and propagated from the innermost levels of a
codeblock all the way to the signal input of the FASTCALL-DEF.

In the hybrid paradigm., signal generating instructions may be compiled within scheduling quanta
along wiih ot*zr instructions. For that reason, adding signal outputs to I-STORE instructions in
order to detect firing is not strictly necessary. The requirement is more appropriately to be able to
detect SQ termination and to be able to deduce firing. Moreover, explicit representation of signal
arcs as synchronizable frame slots is only necessary between SQ’s. Intra-SQ signalling can be
implicit in instruction order.

SIGNAL-TREE instructions, therefore, need not be compiled as a tree of instructions which serve to
test each individual signal. It is sufficient to generate code which merely tests for termination of
all the SQ’s whose instructions are connected to the SIGNAL-TREE. This can be done by arranging
the storing of a value into some frame slot as the last activity of an SQ and then testing that slot.
In many cases, this is an easily satisfied constraint on code order in the SQ which requires no
additional instructions and no additional slots. In the rare case that this is not possible, ¢.g., in an
SQ which must end with an instruction which does not unconditionally write to a known slot, an
extra instruction and slot can be used as a dummy signal. In any case, there is no need to test
signals which originate in the same SQ as the SIGNAL-TREE itself. The compiled signal tree tests
each such slot in turn, suspending execution until the signal is written.

If codeblock termination detection were the only need for signals (it is not), signal arcs and
SIGNAL-TREESs could be eliminated entirely, and a simple reference counting scheme could be
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implemented to detect termination of all codeblock continuations. If the other uses for signals
could be handled in a different way, this reference counting optimization could save instructions
and frame slots. This is a matter for additional study.

4.3.5.3.2 UNARY and BINARY Instructions

|l

Input.0 Inpui.l
Opcode <BiparyOp> Output, Input.O,Input.1
Output

|

Figure 4-22: A BINARY Instruction and its Translation

Unary and binary instructions (arithmetic, logicals, relationals) expand by a simple rule: generaie
a machine instruction with the same opcode as the program graph instruction, mapping input arcs
to input frame slots, registers, or literals, and the output arc to the output frame slot or register

(Figure 4-22).

4.3.5.3.3 I-FETCH and I-STORE

byl

Structure Indez  Value

I-STORE
Signal STOR Signal,Address,Value

|

IXSA Address,Structure, Index

Figure 4-23: An I-STORE Instruction and its Translation

Recall that during program graph rewriting, all references to arrays, strings, tuples, and conses
were simplified to I-FETCH and I-STORE. The translations of these to machine graph instructions
are similar but not symmetric. The reason is, quite simply, that an indexed I-FETCH fits neatly
into a three-address format while an indexed I-STORE does not. Hence, I-FETCHes are translated to
single LOAD instructions, while I-STOREs are translated into a two-instruction suite: Index
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Structure Address (IXSA) followed by STOR (Figure 4-23)37.

43534 TF

IF: BRF Predicate,ELSE:
< Expansion of THEN block >
BR END-IF:
ELSE: < Expansion of ELSE Block >
END-IF:

ThenOutpwt.0 ... m-1 FElseOutput.0 ... m-1
KOutput.0 ... m-1

Figure 4-24: An IF Encapsulator and its Translation

The IF encapsulator represents both an opportunity and an obstacie. The advantages of having the
entire IF and its enclosed instructions within a single SQ are significant, c¢.f., myriad SWITCH
instructions in the TTDA. The biggest obstacle is in the firing semantics of the IF. As defined by
the rewrite rules, IF is necessarily nonstrict. This is perfectly clear when IF is expanded to its
lowest !=vel form (SWITCHes and MERGES).

In order to reap the benefits of IF as an aggregate, it must be interpreted as a strict operation.
Traub has demonstrated plausible, if contorted, instances of IF which are inherently non-
sequential, i.e., the order of instruction execution both inside and outside the IF depends on
program input. Such non-sequential instances of IF can potentially be recognized by cycles
through the IF in the program graph. For the sake of the present work, it was decided to compile
IFs as if they were strict and to explicitly rewrite non-sequential IFs into their lower-level, i.e.,
SWITCH based, representations.

Strict IFs are easily translated. The predicate is evaluated and a conditional branch around the

37In general, such multi-instruction suites benefit by having intermediate results stored in registers instead of frame
slots. However, it is not always possible to do so when the suite may suspend at some point after the first instruction.
This concern can be resolved at compile time by using registers for intermediates when the compiler can prove that
such suspensions will not occur and frame slots otherwise. In the example, a register can be used for Address if and
only if the access to Value is provably nonsuspensive.
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recursively expanded THEN basic block is taken. At the end of the THEN code, an unconditional
branch is inserted to redirect the flow of control to the end of the ELSE block. See Figure 4-24.

4.3.5.3.5 LoopP

Several assumptions are made in defining the expansion of LOOP encapsulators. As in the case of
TF, the encapsulator is assumed to be strict in all of its arguments. Further, as in the TTDA, each
codeblock is assumed to contain at most one LOOP. LOOP instances are restricied to execute on a
single processor, unlike the TTDA which permits mapping of iterations across multiple proces-
sors. However, on that processor, K successive iterations may be active concurrently. In the
event that there is inter-iteration parallelism in the program, this provides an additional source of
work for hiding long-latency operations. In the frequent case of nested loops, K-unfolding of the
the outer loop will allow X initiations of the next-innermore loop which are candidates for initia-
tion on up to K processors, and so on. The argument also holds for loops which contain proce-
dure invocations in either their predicate or body>8.

Figure 4-25 gives the overall structure of LOOP translation. The wide arrows represent control
flow within the LOOP SQ while thin arrows denote data dependences. LOOPs are translated as a
sequence of instructions within a single SQ. This instruction sequence may fork subordinate
SQ’s within the predicate and body per the method of dependence sets, but the computation of
such SQ’s is constrained to complete prior to termination of a given iteration.
¢ Loop constants are stored in the frame’s constant area. For an inner loop, putting
constants into the consiant area is a side-effect of the codeblock invocation - the
constant area is part of the argument area (see Section 4.3.4). For an outer loop,
however, the arc-carried constants must be explicitly stored in the constant area. In

both cases, references to constants can be nonsuspensive because no predicate or
body instructions may execute until storage of constants is complete.

o ITERATION-DESCRIPTORS are initialized for each of the K iteration areas in the
frame. An iteration area is a block of linearly addressed frame slots as described in
Section 4.3.4. The first slot of each area holds the iteration descriptor (ID) for that
area (section 3.2.4). The procedure is described below.

¢ The first iteration is started (described below).
¢ The predicate is evaluated.

o A conditional branch is taken to the loop epilog code if the predicate is FALSE,
otherwise,

38Experience with the TTDA has demonstrated the importance of unravelling in exploiting the parallelism inherent
in a program. On the hybrid model, this argument is equally true. While a number of different translations are
possible, the chosen one demonstrates the hybrid model’s ability to permit parallel execution of successive iterations in
a general way. While the technique does not map iterations across processors, the fact that each instance of an inner
loop represents a separate invocation (potentially on a different processor) still permits a substantial multiplicative
effect on available parallelism. Other compilation techniques can be used to support loop spreading without changes to
the model. These are not investigated here but rather are identified as an opportunity for future work.
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e The next iteration is triggered.
e The body is evaluated.

e A barrier synchronization is performed on the termination of all subordinate SQ’s in
the predicate and body, if there are any. Note that the initiaticn of the next iteration
is independent of this barrier.

¢ Synchronizing slots are reset so that the iteration area can be reused.

o Termination of the iteration is signalled.

An iteration consists of the evaluation of the predicate and the subsequent evaluation of either the
body or the loop epilog. Starting a given iteration requires the coincidence of three separate
events:

1. Control Flow: The previous iteration has computed a TRUE predicate (call this
CNTL,), and

2. Recycling: The i-K™ iteration has terminated, thereby making the i mod K itera-
tion area available for re-use (call this RECYC; ), and

3. Importation: The i-K+/5! iteration has indicated that its loop variables have been
consumed, thereby permitting the slots in which they reside to be re-written (call
this IMPT‘-_ k+ 1).

This is depicted in Figure 4-26. It is straightforward to show that, of these conditions, the second
is a necessary consequence of the first and third.
Theorem 4-15: For any iteration i, the necessary and sufficient conditions for starting
iteration i (INVOKE,) are CNTL; ; and IMPT; g ;, or simply
Given: The invocation condition as stated above,

Assume: The recycling and importation conditions are logically separate. However, in
general, freeing the loop variable slots prior to iteration termination implies explicit
copying of the variables out of these slots. It is assumed that there is little, if any,
benefit in doing this and that it is reasonable to assume that both conditions are equiv-

alent, i.e.,

V i, RECYC; <> IMPT; (3]

Moreover, since predicate evaluation for a given iteration implies that the iteration must
have been invoked,

V i, CNTL; => INVOKE; [4]

Proof Idea: At the point of invocation INVOKE;, the condition RECYC; y can be
deduced. In the proof below, the universal quantifiers have been dropped but are im-
plicit.
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Proof: (<)

CNTL"_I AIMP’I‘,-_K”
CNTL,; 1 AIMPT,-_K+1 = NVOKE‘_I A IMP’I‘i_K_,_I

1 53

INVOKEi_I A MP'I}_K_,_I
lNVOKEi_I L —4 CNTLz_z A lMPTi~k A RECYCi—k-I
CNTL‘-_Z N IMPri_K/\ RFCYC'_K_I A IMPT.-K-FI

IMPT;

RECYC; ;

CNTL"_I N IMl’I‘i_K+1 N RECYC,_k

INVOKE;

Proof: (=)
INVOKE;

CNTL-_I A D/IPI‘l-_KH N RECYCi_k

3

CNTL-_I A IMP’I‘,-_K_'_I

(1

O

125

antecedent
by [4]
PAGPVQ)
by [2]
substitutivity
selection

by [3]

A antecedent
by [2]

antecedent

by [2]
selection

It is now easy to understand the function of the STPC and STIM machine ops. STPC (SeT
Program Counter) signals the CNTL; condition, meaning that the predicate has evaluated to TRUE
in iteration i. It is represented as a boolean flag in the iteration descriptor for iteration area i+
mod K. The STIM (SeT IMport flag) op signals IMPT;, meaning that iteration i has ended and that
no further access to the loop variables for that iteration will be made. It is represented as a
boolean flag in the descriptor for iteration i-1 mod K.

Termination of an iteration implies that all BodyOutput.n inputs to the LOOP have produced




results and that subordinate SQ’s triggered in the process have terminated. The former condition
is subsumed by the latter and that all predicate and/or body instructions in the LOOP’s SQ have
executed (a simple assertion to make based on the program counter). Thus, the only problem is to
detect SQ termination. For this, an iteration area slot is allocated per subordinate SQ (there may
be none), and each subordinate is amended to store into this slot upon termination. In the LOOP’s
SQ, then, it is only necessary to probe (suspensively) these slots with TSTN ops as appropriate.

Prior to issuing the STIM, signalling the end of the iteration, all slots in the iteration area which
are used for explicit synchronization (i.e., those which will be read suspensively) must be reset>.
The iteration area slots which must be reset are exactly the following:

e The loop variables. These synchronize production of values in iteration i and con-
sumption in iteration i+1.

¢ Inputs to subordinate SQ’s. These synchronize the action of threads of computation
which go on in parailel with the LOOP SQ.

® BodyOutput.n inputs to the LOOP which are dynamic arcs.

An interesting optimization results if loop variables are constrained in their fanout such that

¢ within the body of the current iteration they have no sinks (e.g., a nextified variable
used on the right hand side in a loop body).

¢ within the predicate of the next iteration they have but a single sink, or, within the
predicate they have no sink but within the body they have but a single sink.

Under these conditions, it is possible to use the nonsticky addressing mode on the single predicate
sink or the single body sink, as appropriate, to obviate the need for explicitly resetting the slot. A
tradeoff exists in that loop variables which do not satisfy the constraints can be transformed into
ones that do, but the cost of doing so (essentially introducing MOVE instructions as identities so as
to guarantee unity fanout) in some cases outweighs the benefit of eliminating explicit RSTNs.

For other slots requiring reset, unity fanout implies that the resetting can always be done by the
reader. Further, non-unity fanout within a single SQ can be similarly optimized by making the
last reader perform the nonsticky reference.

3n models such as Monsoon [47], slots are self-cleaning in that they are associated with instructions in a graph
which self-clean at the abstract interpreter level. Slots in the hybrid model are instead associated with instruction
outputs with unrestricted fanout, the readers of which may be in different SQ’s. In general, then, no reader of any slot
may be labeled a priori as the last reader, because the readers are at best partially ordered. In the body of a codeblock
(outside of any LOOP), slots are written at most once, and cleanup is implicit in the process of frame allocation and
deallocation. It is only within a LOOP that the issue of slot-resetting arises.
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4.3.5.3.6 FASTCALL-DEF

FASTCALL-DEF Argument.0..n1 Triger| < Expansion of Body block >
MOVR CallexrSubFrame.i,Result.O

MOVR Caller8ubFrame.2,Result.i
[ ]

NOVR CallerSubFrame.n,Result.n-1
NOVR CallerS8ubFrame.O,8ignal

Figure 4-27: A FASTCALL-DEF Encapsulator and its Translation

FASTCALL-DEF implements the invoked half of basic procedure linkage?0. It is responsible for
triggering the enclosed codeblock, retuning the codeblock results to the invoker, and finally
sending a termination signal. This is implemented in a straightforward fashion by expanding the
body of the FASTCALL-DEF and then generating suspensive Move Remote (MOVR) instructions for
each result. The procedure linkage protocol mandates the return of a signal - if the codeblock
generates one, it is retumed to the invoker via a suspensive MOVR. If no signal is generated, a
dummy signal is sent after the results have been sent. See Figure 4-27.

4.3.5.3.7 FASTCALL-APPLY-INITIATE

l L. oo l GETC InvokedContext,Codeblock
IXCC ResponseFrame,0
Codeblock Argument.0 ... n-1 MOVR InvokedContext.O,ResponseFrame
FASTCALL-APPLY-INITIATE MOVR InvokedContext.Arg0,Argument.0
Result.0 ... m-1 InvokedContest Signal .

L ]
l' ° 'l l l MOVR InvokedContext.Argn-1,Argument.n-1

Figure 4-28: A FASTCALL-APPLY-INITIATE Instruction and its Translation

FASTCALL-APPLY-INITIATE implements the invoker part of basic procedure linkage?l. It is
responsible for allocating a fresh context and sending the arguments to the new frame.

40Recall that DEF argument chain unpacking is, at this point, handled by program graph instructions which are
separate from the FASTCALL-DEF.

“1Recall that APPLY and DIRECT-APPLY have been re-written by this point into instances of FASTCALL-APPLY, which

subsequently get rewritten into instances of FASTCALL-APPLY-INITIATE and one other instruction which disposes of the
called context.
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The frame descriptor (FD) for Codeblock is allocated and stored in the InvokedContext frame slot.
A procedure call subframe for the retumed signal and the result(s) has aiready been allocated
during frame slot assignment, starting at the signal slot (see section 4.3.4). This slot number is
added to the current context (frame descriptor), yielding a new frame descriptor which points to
the procedure call subframe. This descriptor (stored in a register) is forwarded to the Ot slot of
the invoked frame (per section 4.3.4) by a MOVR instruction. The arguments are likewise for-
warded to the appropriate argument slots by MOVR instructions. See Figure 4-28.

4.3.5.4 Summary

This section has presented the issues which surround the transiation of program graphs into par-
titioned machine code, and a set of methods for handling them. Significant among the issues are
the dichotomy of synchronization methods, implicit and explicit, and the optimizations which are
made possible thereby.

It is clear that this dichotomy, if it is to be used to advantage, makes the task of code generation
significantly harder than in the TTDA case and, arguably, than in the von Neumann case. This is
because both paradigms (read: both sets of problems) are present in the hybrid model.

The techniques developed in this study demonstrate the benefit of keeping the issues of partition-
ing and operand addressing separate from the semantics of code generation. Here, both partition-
ing and operand addressing are done algorithmically, and the specification of these algorithms is
completely independent of the specification of program graph instruction translations. At a prag-
matic level, this made experimentation with the instruction set possible. At a higher level, it
demonstrates that the complexity of the hybrid model is entirely manageable within a traditional
compiler mind set.

4.3.6 Optimizer

Two types of SQ structural optimization are performed on the codeblock after all program graph
instructions have been translated.

4.3.6.1 Optimization 1: Null SQ Elimination

The first of these optimizations strips out degenerate SQ’s which are a consequence of the im-
plementation of the Method of Dependence Sets. Because abstract translation is specified
separately from the mechanism of allocating and installing triggers for SQ’s, it occasionally the
case that an SQ shell is eagerly created into which no machine instructions are actually generated.
Here, a distinction is made between instructions which trigger SQ’s and all others. The latter
instructions are called /ive instructions. A null SQ is defined as one with no live instructions. For
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each null SQ, the SQ and its trigger (which appears in some other SQ) can be removed. This will
remove both the truly empty SQ’s and those which merely contain triggers for other SQ’s. In the
latter case, the triggers are moved backwards toward the distinguished SQ until a non-null SQ is
found42. Suppose, for example, non-null SQ A triggers SQ B. B contains no instructions - only a
trigger to C. Therefore, B can be eliminated, as can be the trigger for B which appears in A. In its
place, tiie trigger for C is installed.

4.3.6.2 Optimization 2: Tail Call Elimination

For all the cases where SQ A ends with a trigger to SQ B, a new SQ is formed by appending B to
the end of A. It is easily shown that neither of these transformations corrupt the assertions
previously made about the introduction of cycles as a function of the partitioning.

4.3.7 Assembler

The final phase in the compilation is the Assembler, which translates the partitioned graph of
machine instructions into a format suitable for the emulator. At this stage, the partitioned
program graph looks like a set of instruction lists, one per SQ. The distinguished SQ is so
marked. The output file format consists of some codeblock property information (e.g., number of
base and iteration frame slots to be allocated upon invocation) followed by the contents of the
SQ’s, distinguished first*3

As SQ’s are written, triggers are transformed into Continue (CNTN) instructions. CNTN, when
executed, causes a new continuation to be formed and executed. By definition, all non-constant
arcs which are input to an SQ imply synchronization. Therefore, the most common situation is
that the first instruction of the SQ, when executed, makes a suspensive reference to one or more
frame slots. Consider the reference to the very first slot. If it is full, instruction execution
proceeds normally. If it is empty, the newly-created continuation will immediately suspend.

An important optimization of this relies on the fact that the CNTN instruction which creates the
continuation itself references no frame slots. A variant on this instruction, Continue Test (CNTT),
can test exactly cne frame slot for the presence or absence of a value. CNTT creates a continua-
tion, and tests this slot. When a value is present, the continuation is scheduled for execution just
as in the case of CNTN. If no value is present, the continuation is immediately put into the
suspended state, potentially saving an explicit suspension. For each trigger, the assembler is

“2This process is guaranteed to succeed because all triggers are traceable to the distinguished SQ, and the
distinguished SQ is always non-null.

43Qutput files are encoded in CIOBL, a system-independent format which is described in [58].
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responsible for determining which frame slot the denoted SQ will test first and for manufacturing
an appropriate CNTT instruction.

4.4 Summary

In this Chapter, the structure, instructions and manipulated data types of the dataflow program
graph have been reviewed. Dataflow program graphs are made up of both simple instructions and
encapsulators, the latter capturing notions of iteration, conditional execution, and procedure
linkage.

Also in this Chapter, the method of generating code under the new parallel machine language
model has been presented in detail. Key problems in performing the translation include keeping
the abstract translation of instructions separate from the issues of partitioning. The partitioning
method and its properties have been formally presented.
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Chapter Five

Analysis

This chapter presents experimental results from the first set of simulation studies of the hybrid
architecture along with a comparison to similar results from studies of the TTDA. Section 5.1
considers the tradeoff between the dataflow regime and the von Neumann regime given the no-
tion of explicit synchronization cost as motivated by the hybrid architecture. Section 5.2 con-
siders the behavior of a collection of benchmark programs as compiled for the hybrid architecture
and as executed by the idealized machine®®. The results reflect the characteristics of the
programs subject to the hybrid partitioning constraints. A comparison is made to the TTDA
which shows how the hybrid’s less powerful instructions can be used in place of TTDA instruc-
tions with little change in dynamic instruction counts. Also in this section, the costs and benefits
of dynamic loop unfolding are studied. Section 5.3 examines the behavior of the realistic model
using these same benchmark programs. The costs of aborted instructions (due to synchronization
tests which fail) and multi-ported access to the local memory are considered. Data cache effec-
tiveness is studied.

5.1 Making Synchronization Costly

YO0
LA [S%
Cd ’

\ S \
t ]

Oy !
Noo AN Nee

Figure 5-1: Sequence, Fork, and Join

A prime thrust of the hybrid architecture, as viewed from the dataflow perspective, is that
synchronization operations should be explicit rather than implicit. Said another way, the hybrid
architecture offers a change in point of view: synchronization should cost something, and means
should be provided for managing this cost. In this section, two simple example graphs are
analyzed to show the tradeoff between implicit and explicit synchronization. To the extent that

44The compiler used in this study was version 3.5, and the interpreter was at version 5.0.
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real costs can be assigned to this explicit synchronization under both the pure von Neumann and
hybrid models, the economics of moving from pure von Neumann, through hybrid, to dataflow
can be understood.

The analysis hinges on assessing the costs of the three forms of program graph instructions shown
in Figure 5-1. These program graph instructions will have specific machine instruction realiza-
tions which make the differences more apparent. Each is considered, in turn, under the dataflow
regime and the hybrid regime. For the sake of this analysis, it is assumed that the von Neumann
regime is a degenerate case of the hybrid regime with presumably higher costs for synchroniza-
tion due to lack of specific hardware support.

§.1.1 Sequential Execution

Under the dataflow model, execution of a sequential thread is conceptually straightforward. A
token is created as the result of having executed cne instruction, said token then enabling the
execution of the next sequential instruction. From the standpoint of graph semantics, it is neces-
sary that all information to be communicated from one instruction to the next be encoded on the
token. That is, instruction execution must be independent of any pervasive "state."
Operationally, because the stages in dataflow instruction execution (synchronization, instruction
fetch, computation, token formation) are essentially sequential, the time to execute any such
thread is proportional to the product of the pipeline depth and the thread length.

Under the hybrid and pure von Neumann models, execution of a sequential thread is notably
different. Once initiated, a thread occupies the pipeline until termination, however short or long a
time that may be. In an abstract sense, the execution of the thread is atomic in that intermediate
state changes in the processor are invisible outside the thread, or, more importantly, that state can
be communicated between instructions in the thread implicitly. Operationally, instructions can be
dispatched at successive pipe beats, and the time to execute the thread is the sum of the pipeline
depth and the thread length.

5.1.2 Forks

In the TTDA model and its derivatives, each invoked instruction can produce two (or more)
tokens destined for distinct successor instructions. That is, the fork operation is implicit in vir-
tually every instruction®>. There is no explicit cost for spawning a new thread of corr putation.
Therefore, forks at the dataflow program graph level are represented solely by the machine in-
struction producing the value.

45There are exceptions to this generalization which are beyond the scope of this discussion and which do not
substantially alter this analysis.
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Figure 5-2: Limiting Cases of Sequential and Parallel Graphs

In the hybrid paradigm, a new thread of computation must be explicitly started with the CNTN or
CNTT instructions. The implementation of the depicted fork operation, then, would take two
machine instructions - one to compute the value and another to perform the fork. Here, then, is
one clear cost of expressing parallelism: each parallel thread of activity must bear the cost of at
least one instruction to start it. In the pure von Neumann model, the cost will be substantially
higher because instruction sets lack the general notion of a fork.

5.1.3 Joins

In both the dataflow and hybrid regimes, synchronization of two threads of computation can be
done in a single instruction, although there are still subtle differences. In the dataflow model, the
synchronization name is the instruction itself, known to both threads. In the hybrid model, it is
the arc, and not the instruction, which is the basis for synchronization naming.

5.1.4 Analysis

Given these constraints, consider the following two examples (Figure 5-2). In the first, the
program graph to be executed is a simple linear sequence of instructions. In the second, a binary
tree of fork operations is followed by an inverted tree of join operations. These examples are
chosen not purely for their simplicity: the first is the limiting case of sequentiality, and the second
is the limiting case of parallelism given binary fan-out, a single graph input, and a single graph
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Figure 5-3: Cycle Counts as a Function of Degree of Sequentiality

output. In execution, it is interesting to count the number of pipeline beats required for execution
as a function of the number of instructions n. Assume unit time for each irstruction.

In the sequential case, a dataflow machine will clearly take Pn cycles. where P is the pipeline
depth of the machine. The hybrid and pure von Neumann machines wili ake only # cycles.

In the parallel case, for sufficiently large values of », the idle cycles in a dataflow machine at the
very beginning and very end of execution can be ignored. The dataflow machine, therefore, will
take n cycles to compute the graph. In the hybrid case, however, extra instructions will be
executed to fork the parallel computation. It is easy to show that the number of extra instructions
is exactly

1
3

This assumes unit execution time for fork instructions. Therefore, the total number of cycles in
the hybrid case is

4n—-1
3

It is possible to estimate the equivalent number for the pure von Neumann case by assuming a
non-unit cost T for each fork instruction, corresponding to the overhead of creating and managing
a software task. The cost is exactly

3n+Tn+2T-3
3

or, for T>»1,n31,
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The ensuing tradeoff between the three regimes, as a function of degree of parallelism (or sequen-
tiality, depending on one’s point of view), is depicted in Figure 5-3. While the exact shape of
the curves is not known, it is clear that the endpoint constraints must be met. Assuming these
functions are monotonic, it can be argued that above some level of paralielism, the pure dataflow
approach is better, but the degradation factor of compiling even the most highly parallel graph for
the hybrid machine results in only a modest increase in cycle count (33% by this simplistic
analysis)*’. However, below this level of parallelism, the hybrid modei has the potential of
executing fewer total cycles than either the dataflow or the pure von Neumann models.

It remains to be demonstrated that this crossover point does indeed occur for real programs. In
the next section, a number of benchmarks are presented which demonstrate an even more remark-
able characteristic - that the hybrid model is capable of executing fewer cycles than a datafiow
machine by actually executing fewer instructions, while still retaining the ability to exploit fine-
grained parailelism. This savings comes from the elimination of unnecessary forking, fan-out
IDENTITY, and signalling instructions which is attributable to program counter sequencing
within an SQ.

5.2 Idealized Model

This section examines static and dynamic characteristics of a number of small benchmark
programs using the hybrid code generator and an implementation of an idealized model inter-
preter. The purpose is to better understand the effects of partitioning dataflow graphs, and to
establish a baseline of performance for studies to be done on the realistic model. In the course of
these experiments, comparisons are made to the TTDA. These comparisons come from executing
exactly the same programs (same sources, actually) on the GITA interpreter. This provides some
insight as to where these applications sit on the sequential / parallel axis presented in the last
section. It is shown that, for a number of cases, it does indeed happen that the hybrid model
executes fewer instructions (and thereby fewer cycles) than the TTDA.

46The software cost of forking, 7, is assumed to be minimally on the order of tens of instructions, although it is more
probably in the thousands.

4TThe single input / single output constraint bears on this outcome. However, relaxing this to the point where each
instruction must be implemented in the hybrid case as an individual thread, the penalty over the dataflow model is only
a factor of two.
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5.2.1 Static Statistics

A number of example programs*8 have been chosen to characterize this architecture. This section
presents the static characteristics of a cross-section of these programs, chosen according to the
architectural features which they exercise. The table gives the total static instruction count, the
total number of SQ’s, length of shortest and longest SQ’s, and the mean SQ length.

Static Characteristics
Codeblock Instrs SQ’s Shortest Longest Mean
ABS 4 2 1 3 2.00
AND 6 3 1 4 2.00
ARRAY 7 3 1 4 233
+ 6 3 1 4 2.00
EXPRESSION 15 7 1 7 2.14
FIB 31 6 2 19 5.17
FOR_LOOCP 37 4 2 23 9.25
IF_EXPR 22 5 1 9 4.40
MM 94 11 1 29 8.55
MM-0 59 8 1 39 737
MM-0-0 47 7 1 29 6.71
MERGESORT 11 3 2 5 3.67
MERGESORT-DIVIDE-0-0 95 19 1 20 5.060
MERGESORT-MERGE-0-0 108 20 1 30 5.40
MERGESORT-SORT-0-0 89 16 1 27 5.56
ATAN 130 7 1 45 18.57
Ccos 50 2 12 38 25.00
LOG 41 2 10 31 20.50
SIN 49 2 12 37 2450
SQRT 63 2 9 54 31.50
MULTIWAVE 68 10 1 32 6.80
WAVEFRONT 67 11 1 15 6.09
WAVEFRONT-0 56 7 1 31 8.00
WAVEFRONT-0-0 53 7 1 34 757
WAVEFRONT-1 51 8 1 33 637

Procedures from the first group were taken from the Id Basic Library. The instruction count is
attributable primarily to the parameter paséing overhead. Recall that arguments to a procedure
are treated as dynamic synchronized arcs. Hence, the number of SQ’s will be bounded from
below by one (the distinguished SQ) plus the number of arguments. Hence, the monadic function
ABS is made up of two SQ’s, while the dyadic AND is made up of three. The number of
instructions is similarly bounded from below: there will be one instruction to trigger each SQ
other than the distinguished one, one instruction to return the termination signal, one instruction
for each result value, plus the body of the function. In the case of ABS, there is one result and
one instruction (ABS) in the body. Although AND has a single-instruction body, the counts

“43These programs were taken from the ID Library and were not created by the author. Most, if not all, of these are
attributable to R. S. Nikhil and K. R. Traub.
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reflect the addition of another SQ which conditionally unpacks the argument chain in the case
that DIRECT-APPLY linkage is not used. Statically, two additional insiruciions are added (one to
trigger the extra SQ, and one instruction in that SQ to read the first argument in the chain).
Dynamically, however, the situation is a bit different as discussed below. The dynamic instruc-
tion count depends on the method of invocation - if DIRECT-APPLY is used, the dynamic instruc-
tion count will be less than the static figure.

Procedures in the next group are slightly more complex. The simplest procedure is
EXPRESSION, which evaluates #*—4ac. Its longest SQ is the distinguished one which triggers
five other SQ’s, then synchronizes on the availability of the result, returns it, and then retumns a
signal. A more elaborate procedure is IF_EXPR, which compares two numbers and then returns
a tuple consisting of the larger number followed by the difference between the two numbers. At
the other end of the spectrum are recursive Fibonacci (FIB) and triply-nested loops in matrix
multiplication (MM). Because no codeblock may contain more than one loop, MM is split by the
compiler into three codeblocks - one for the main procedure and outermost loop, and one each for
the remaining two loops. The interface to these two subordinate codeblocks is via the FASTCALL
protocol. The next group represents the codeblocks for MERGESORT which operate on lists.
As in the case of the previous group, procedures which invoke subordinate codeblocks {ecither
nested loops or procedures) and/or involve the manipulation of structures (a dynamic arc per
reference) have a significant number of SQs and a correspondingly short mean SQ length.

The next group is the Id Transcendental Library. These procedures are interesting in that they
involve no loops but rather the evaluation of a Maclaurin series expansion as a large expression.
Because there are no subordinate codeblocks and no I-structures, there is a higher ratio of com-
putational instructions to dynamic arcs, resulting in fewer, longer SQs.

WaveFront and MultiWave are also included, and are discussed below.

5.2.2 Dynamic Characteristics
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Dynamic Characteristics, K=2
Critical Run
Codeblock Instrs Path Aborts % Abons Arith % Arith Length
ABS 1 4 4 1 25.00 1 25.00 13
AND ST $T 5 5 1 20.60 1 20.00 1.7
ARRAY $<0 10> 7 8 1 14.29 0 0 1.7
+12 5 5 1 20.00 1 20.00 1.7
EXPRESSION123 11 8 1 9.09 4 36.36 1.8
FIB 10 3,265 187 265 8.12 441 13.51 34
FOR_LOOP 1000 7,030 7,028 1 0.01 3,001 42.69 7.0
IF_EXPR 12 17 11 3 17.65 2 11.76 24
MM i0x10 23,569 21,924 2,432 10.32 4,352 18.46 37
MERGESORT <20..1> 16,053 2910 3,104 19.34 430 2.68 22
ATANO.11 110 70 5 455 22 20.00 10.0
COS 0.1 43 42 1 233 23 53.49 143
LOG 0.1 34 32 1 294 17 50.00 11.3
SINO0.1 42 41 1 238 21 50.00 14.0
SQRT 0.1 51 49 1 1.96 23 45.10 17.0
MULTIWAVE 15x15x2 12,769 5,694 538 421 2,787 21.83 54
WAVEFRONT 15x15 5,894 5,030 262 4.45 1,294 21.95 56

In this section, the example programs are analyzed using an idealized mode emulator for the
hybrid architecture. The emulator is described in more detail in Appendix A. As part of the
emulation, a number of statistics are gathered, and a subset of these are presented in the table.
They are

¢ Instruction Count: Each successfully-executed instruction is counted. Aborted in-
structions (those which do not complete due to a synchronization blockage) are not
counted.

e Critical Path: Given a notion of one instruction executing in unit time and a time
axis with zero corresponding to the initiation of the grocedure, this is the least time
after which the parallelism profile is identically zero*”.

e Aborts: Each aborted instruction is counted - if an instruction aborts more than once
(e.g., two synchronizing input operands), it is so counted. Aborts are also expressed
as a percentage of Instruction Count. While it has never happened in practice, it is
possible to have a value greater than 100% here.

e Arithmetic Instructions: Each successful ALU operation (arithmetic, logical,
relational) is counted - the value is also expressed as a percentage of the Instruction
Count.

¢ Run Length: A measure of the mean time between context switches (see Section
4.2.1).

49This definition is due to Arvind.
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5.2.2.1 Assumption

It is assumed that multiple suspended reads against a single frame slot are rare. This assumption
is bome out by the relatively low percentage of aborted instructions (each abort causes a suspen-
sion against a slot). Given a low percentage of total aborts, the probability of multiple, simul-
taneous suspensions against a single slot is correspondingly low. Hence, multiple suspensions are
"stored" in a single slot in the same way a single suspension is.

The statistics gathered establish a "best case" baseline for additional analysis in later sections. To
that end, X has been set to its minimum value of two. In a later section, the effect of K will be
analyzed in some depth.

§.2.2.2 Analysis

In the first group of benchmarks, the dynamic cost of procedure invocation is demonstrated. As
expected, the instruction count for monadic procedures matches the static instruction count (c.f,
the Static table), while procedures with more than one argument show fewer dynamic
instructions®. Arithmetic counts correspond to the "useful” instruction in the body. Abort per-
centages are artificially high only because the number of instructions is so low. Mean run length
is correspondingly short.

In the second group, FOR_LOOP shows a mean run length of 7.0. The loop itself is 7 instruc-
tions long, and because inter-iteration arcs are treated as dynamic, each inner loop instance is a
separate SQ invocation. Thus, a sequence break occurs between iterations. By contrast, the run
length in MM (matrix multiplication) is shorter because the inner loop body contains imbedded
dynamic arcs (two I-FETCH instructions for the elements being multiplied) and, consequently,
several short SQ’s instead of a single, longer one. MM will be revisited in Section 5.2.2 where
the cost of K-unfolding is studied.

As expected, the trigonometric procedures are very efficient: because there are no imbedded
procedure calls, inner loops, or structures, there are no internal dynamic arcs. Further, these
routines are all monadic (excepting ATAN). The resulting partitioning maps all instructions into
the same dependence set, and no dynamic synchronizations (save references to the argument) are

done3!,

50The interpreter uses the DIRECT-APPLY protocol for invocation at top level.

51Although possible, the existing code generator does not optimize the case of multiple references to a dynamic arc’s
slot within the same SQ; all references are coded as synchronizing. Dynamically, of course, only one suspensior: can
actually take place for a given SQ / operand pair. However, the instruction dispatcher will treat eack such reference as
potentially suspensive, admitting context swapping. Such an optimization is worthwhile and relatively straightforward
to imple:nent.
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5.2.2.3 The Cost of K-Unfolding

The ability to unfold successive iterations of a ioop has significant value in the dataflow environ-
ment for exposing parallelism. In the hybrid case, the motivation is similar, but given that no
mechanism is provided at the hardware level for spreading iterations of a single loop across
pmcessorssz, there is little benefit to unfolding inner loops in some cases. Moreover, the cost of
inner loop unfolding is noteworthy, particularly for simple inner loops where the loop body is on
the order of the size of the iteration set-up code.

Unlike the TTDA scheme, there is a clear cost in the hybrid model for loop unfolding in terms of
additional synchronization instructions and frame area, and this cost scales with K. Hence, for
any one program instance, there must be some optimum value of K which balances exposed
parallelism against execution of overhead instructions.

MM, Various Unfoldings
Critical Average

Loops K Instrs Path Parallelism
1 2 23,569 21,924 1.1
2 3 24,017 3,864 62
10 11 27,601 576 479
16 17 30,289 648 46.7
1 2 23,569 21,924 1.1
2 3 23,617 5,739 4.1
3 4 23,665 3,697 6.4
4 5 23,713 2,221 10.7
5 6 23,761 1,215 19.6
6 7 23,809 1,186 20.1
7 8 23,857 1,157 20.6
8 9 23,905 1,128 212
9 10 23,953 1,099 21.8
10 11 24,001 615 39.0
11 12 24,049 623 38.6
12 13 24,097 631 382
13 14 24,145 639 37.8
14 15 24,193 647 374
15 16 24,241 655 37.0
16 17 24,289 663 36.6

The first set of matrix multiplications (MM) was chosen specifically to show the effects of large
values of X on inner loop unfoldings. The table shows, as a function of the number of concurrent
iterations (Loops) and K (K=Loops+1), the instruction counts, the critical path, and the average
parallelism (instruction count divided by critical path) for a 10x10 example. In all cases, the run
length was comnstant at 3.7, and the number of arithmetic operations was 4,352.

As was expected, the cost of increasing K by 1 is on the order of 42, or 400: the difference in

521t is possible to do limited loop spreading by compiling specifically for it.
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Figure 5-4: Critical Path and Average Parallelism vs. K

instruction count between two runs whose K’s differ by one is 448 (higher-order effects account
for the remainder of the instructions, e.g., 4n overhead instructions for the n middle loops).
However, over the range where X is increasing toward », the change in K has a profound effect on
the critical path and the average parallelism. The optimal value for this case occurs with ten
concurrent iterations, or K=11. Beyond this point, the increasing time spent in overhead instruc-
tions for each inner loop instarnce causes an increase in critical path time. The run length also
increases, but only for pathological reasons - the loop initialization code is a tight, unsynchroniz-
ing loop dependent upon the value of K. As X increases, this loop dominates the computation,
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Figure 5-5: Available Parallelism under the Hybrid Model in WaveFront

and the mean run length tends toward the dynamic length of this loop>3.

The second set of matrix muliiplications shows an interesting effect. In this case, the outer and
middle loops were K-unfolded, but the inner loops were prohibited from unfolding (i.e., K=2).
Despite this, the average parallelism is on the same order, and the run length is unchanged.
Moreover, the incremental cost of unfolding has been dramatically reduced from 448 to 48.
Thus, the total number of instructions is a much weaker function of K. Deciding how and when
to unfold loops is a difficult problem which is explored by Culler in his dissertation [21].

The critical path and average parallelism values show some interesting discontinuities which are
better visualized with the aid of Figure 5-4. For n iterations, where K—1 are allowed to proceed
concurrently, there will necessarily be rff—ﬂ sequentialized sets of iterations. It is this non-

linearity which gives rise to the discontinuities.

Just as in a dynamic dataflow machine, the benefits of loop unfolding can be exploited in the
hybrid regime. The cosis can be managed at compile and/or load times in that the unfolding
mechanism is dynamic and is simply controlled by the invocation constant X. Costs are a weak
function of K, but the effect for nested loops is necessarily muitiplicative.

53Culler has pointed out an interesting optimization, not explored in this work, to spawn a separate SQ to perform
initialization of the iteration descriptors for each of the KX iteration areas. This would result in a nearly trivial increase
in instruction count, but would have a very noticeable effect of shortening the critical path time.
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Figure 5-6: Available Parallelism under the Hybrid Model in MultiWave

5.2.3 WaveFront Revisited

In motivating this architecture, three forms of parallelism were described using the WaveFront
example. An idealized parallelism profile was presenied for WaveFront and its companion
program MultiWave. It was argued that von Neumann machines were inherently incapable of
exploiting ail three forms, and that hardware changes were required to support the necessary
fine-grained synchronization. The hybrid model was developed in response to the challenge of
keeping the von Neumann machine’s ability to mask latency using expression level parallelism
and instruction reordering (a big improvement in locality over a dataflow machine) while simul-
taneously exploiting the other two kinds of parallelism.

15x1S WaveFront Dynamics
Critical Run Average
Codeblock Instrs Path Aborts % Abors Arith % Arith Length ] Parallelism
MultiWave, K=2 12,769 5,694 538 421 2,787 21.83 54 22
MultiWave, K=16 14,729 679 1,063 722 2,787 18.92 5.1 21.7
WaveFront, K=2 5,894 5,030 262 445 1,294 21.95 5.6 12
WaveFront, K=16 6,846 534 533 1.9 1,294 18.90 51 12.8

Figure 5-5 shows the parallelism profile which results from executing the WaveFront example
under the idealized hybrid model. The vertical axis represents the number of concurrently ex-
ecutable SQ’s as a function of time (c.f., Figure 2-6, p. 35). Figure 5-6 shows two iterations of
the MultiWave example, also under ideal assumptions (c.f., Figure 2-7a, p. 36). As is obvious
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from the figures, the hybrid model is capable of exploiting the parallelism inherent in this applica-
tion by virtue of the fine-grained synchronization mechanisms. Details of these experiments are
shown in the table. Full unfolding of outer and inner loops was performed for the K=16 cases.
The increase of average parallelism as X is scaled to its optimum value is not nearly so dramatic
as in the matrix muitiplication case simply because the algorithmic parallelism is O (n) vs. O ()
for matrix multplication.

5.2.4 Power of a Hybrid Instruction

Assuming all other things equal, e.g., the opcode set, hybrid instructions are strictly less powerful
than TTDA instructions (viz., forking). An interesting question, as alluded to earlier, is whether
the full generality of TTDA instructions is used frequently or infrequently. By using the identical
program graphs in generating code for both the TTDA and the hybrid machine, it has been pos-
sible to study this question in some detail.

Comparison of Hybrid and TTDA
Hybrid Critical TTDA Critical
Codeblock Instrs Path Instrs Path
ABS1 4 4 9 5
AND $T $T 5 5 9 5
ARRAY $<0 10> 7 8 11 6
+12 5 5 9 5
EXPRESSION 123 11 8 13 7
FIB 10 3,265 187 3,708 115
FOR_LOOP 1000 7,030 7,028 10,023 6,011
IF_EXPR 12 17 11 18 9
MM 10x10 23,569 21,924 20,118 11,228
MERGESORT <20..1> 16,053 2,910 17,549 1,280
ATANO.11 110 70 96 27
CO0Ss 0.1 43 42 35 24
LOG 0.1 34 32 30 20
SIN 0.1 42 41 33 22
SQRT 0.1 51 49 41 27
MULTIWAVE 15x15x2 12,769 5,694 9,584 2,701
WAVEFRONT 15x15 5,894 5,030 4,523 2,477

The Table shows dynamic instruction counts for the benchmark programs as executed on both the
hybrid machine and on the TTDA34 using the same source program for both35-56, The counts do

54The TTDA compiler used in this study was at level 3.22, and the GITA interpreter was at level 24.24.
55In neither case is the type of simulation model (idealized or not) relevant for instruction counts. Instruction counts
do not vary across these models.

56Sorue care is needed in interpreting TTDA critical path numbers in that the GITA interpreter counts instructions,

and instructions are not cycles in the strict sense. The hybrid interpreter also counts instruction, but the assumption of
instructions being cycles is more reasonably made.

144



not favor either architecture but rather show that, for a variety of program types, instruction
counts are comparable to first order. If hybrid instructions are less powerful, how can this be?

One part of the answer lies in the reduced number of overhead operators in the hybrid code
resulting from fewer independent threads. In the TTDA, termination detection is done via frees
of IDENTITY instructions. The leaves of these trees are the instructions which otherwise
produce no tokens, e.g., STORE operations. In the hybrid model, it is only necessary to test for
termination of the SQ in which such instructions reside. Hence, n STOREsS in one SQ imply only
one explicit synchronization operation instead of a binary tree of n—1 IDENTITY instructicns.

Another part of the answer is elimination of the need to perform explicit fan-out of FETCHed
values; the associated frame slots can simply be re-read. In the TTDA, however, FETCE opera-
tions can have only a single destination instruction. Multiple destinations imply the need for an
IDENTITY instruciion as the destination for the FETCH.

It is likely that the remainder is attributable to the fact that it does not in general take two hybrid
instructions to displace a single TTDA instruction. There are many instances of TTDA instruc-
tions in typical programs where the full generality and power of the instruction is not being used
in the sense that the hybrid partitioning strategy chooses to eliminate it rather than mimic it. In
the hybrid model, paralielism is retained in the machine code only when dictated by dynamic arc
constraints. According to this view, the remainder of the parallelism in TTDA code and it as-
sociated forking is superfluous.

In the next section, the effect of this reduced parallelism in terms of the hybrid machine’s ability
to tolerate latency is examined.

5.3 Realistic Model

In this section, the benchmark programs are used to characterize the realistic model. In particular,
critical path time is evaluated as a function of data cache parameters, the number of processors,
and communication latency. First, the matrix multiplication example is used to establish an
operating point for the data cache. Using this, the remaining benchmarks are run with no cache,
with the cache at the operating point, and with an infinite cache to demonstrate the robustness of
the operating point. Then, the number of processors is allowed to vary. Finally, latency is
introduced.

In the realistic emulator, codeblock invocations are assigned to a specific logical processor. At
most one instruction may be executed at any given time on any given processor. Moreover, a one
cycle time penalty is charged for each aborted instruction, and extra cycles are accrued for frame
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accesses above one per instruction in the absence of cache hits. Thus, an instruction making two
frame references where one operand is found in the cache will take unit time, while the same
instruction will take two time units when neither operand is found in the cache. Register accesses
are considered to be free. The minimum communication latency L is one instruction time. This
is charged against all packets formed by MOVR, LOAD, and STOR instructions.

I-Structures are handled by an idealized processor which services requests without imposing
queue penalties. However, communication latency L also applies to the results returned by LOAD
packets. Hence, in the best case, a LOAD will incur 2L units of latency in addition to the actual
service time charged by the I-Structure processor (a minimum of one additional instruction time).

5.3.1 Cache Operating Point

In the realistic interpreter, each processor has a single data cache. All operand fetches are
directed at the cache. Both successful fetches (hits) and unsuccessful fetches (misses) are
counted. Hit rate is computed as the ratio of hits to accesses. The cache is organized as S sets,
each with A associativity classes, and is referred to as an SxXA cache. The denoted cache line is a
single local memory word. The cache performs no prefetching, and ALU results are stored
through to the local memory. Hence, cache flushing is never necessary. Mapping of local
memory addresses into set addresses is done by simple hashing (exclusive-or folding) of the
address.
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Critical Path vs. Cache Parameters
Critical Hit Effective

Cache Path Rate Hit
None 5,980 0 0
Infinite 4,996 63.5 100.0
1x1 5,475 26.2 413
2x1 5,261 334 526
4x1 5,184 41.2 64.9
8x1 5,105 48.1 75.7
16x1 5,080 534 84.1
32x1 5,014 58.7 924
64x1 5,005 603 95.0
128x1 5,060 61.6 970
256x1 4,997 62.7 98.7
1x2 5,474 283 44.6
2x2 5,066 4277 67.2
4x2 5,057 51.1 80.5
8x2 5,022 56.6 89.1
16x2 5,007 60.1 94.6
32x2 4,998 619 975
64x2 4,996 62.5 98.4
128x2 4,996 63.0 99.2
1x4 5,061 435 68.5
2x4 5,046 53.7 84.6
4x4 5,013 579 91.2
8x4 5,000 61.6 97.0
16x4 4,998 62.1 97.8
32x4 4,996 63.2 99.5
64x4 4,996 63.4 99.8
1x8 5.034 56.5 89.0
2x8 5,005 58.6 923
4x8 4,999 619 97.5
8x8 4,999 62.1 97.8
16x8 4,996 63.4 99.8
32x8 4,996 634 99.8

The Table shows the effects of various cache organizations on the critical path time for a 5x5
matrix multiplication example, using a single processor, LIFO queueing, and K=2. For this ex-
ample, an infinite cache results in a hit rate of 63.5% and a critical path time of 4,996%7. The
idealized hit rate of less than 100% is understandable because all references to the cache are
counted, not just those from successful instructions. Readers of unwritten slots will, by defini-
tion, cause cache misses no matter how big the cache is. Hence, it is useful to factor out this
program-specific behavior by calculating an effective cache hit rate as the ratio of actual hit rate to
ideal hit rate. This is shown in the table.

Run length was uniformly 3.7 in these experiments.

57The difference between this value and the raw instruction count is attributable to nonzero latency which was not
masked by parallel activity and to instruction aborts.
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It is clear, at least with this simple example, that a fairly small, simple cache has a profound effect
on eliminating the multiple frame access penalty. In the next section, the robustness of the 64x4
cache is tested with the other benchmark programs. This organization and size will be used for
the remainder of the realistic mode experiments as the cache operating point.

5.3.2 Cache Robustness
Critical Path vs. Type of Cache
No Infinite Hit 64x4 Hit Effective
Codeblock Cache Cache Rate Cache Rate Hit
ABS1 7 6 12.5 6 12.5 100.0
AND ST ST 9 8 125 8 125 100.0
ARRAY $<0 10> 15 14 83 14 83 100.0
+12 9 8 125 8 125 100.0
EXPRESSION 123 18 15 312 15 31.2 100.0
FIB 10 4,501 4,059 55.0 4,059 544 98.9
FOR_LOOP 1000 9,037 7,033 999 7,033 999 100.0
IF_ EXPR12 25 21 583 21 58.3 100.0
MERGESORT <20..1> 23,252 20,858 48.6 20,956 45.6 93.8
ATANO.11 157 118 90.4 118 90.4 100.0
COS 0.1 61 45 90.9 45 90.9 100.0
LOG 0.1 52 36 80.8 36 80.8 100.0
SIN 0.1 59 44 90.3 4 90.3 100.0
SQRT 0.1 67 53 85.0 53 85.0 100.0
MULTIWAVE 15x15x2 17,739 13,861 703 13,870 70.0 99.6
WAVEFRONT 15x15 8,114 6,417 716 6,413 71.5 999
MULTIWAVE, K=16 20,137 15,773 703 15,784 69.1 983
WAVEFRONT, K=16 9,305 7355 714 7.359 70.4 98.6

The table shows the performance of the other benchmark programs given the assumptions of no
cache, an infinite cache, and a 64x4 cache. For the infinite and 64x4 cases, the actual hit rate is
shown. The effective hit rate for the 64x4 cache is also calculated. In all but the last two runs,
K=2. For most of the K=2 cases except Mergesort, the ratio of local memory space used to the
256 word capacity of the 64x4 cache was 1:1 or less. For the remaining three runs, the ratios
were 7:1 (Mergesort), 18:1 (MultiWave, K=16), and 15:1 (WaveFront, K=16). While higher
local memory to cache ratios would make the case more convincingly, the hit rates indicate that a
64x4 cache is quite effective in a variety of cases.

5.3.3 Parallelism
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Figure 5-7: Speedup for MM on the Realistic Model

Realistic Parallelism

Critical Average Hit

Processors Path Panallelism Rate
1 33,457 0.8 58.5
2 17,137 1.6 58.5
4 9,069 3.0 57.7
8 4,751 58 55.8
10 3919 7.0 559
16 2,616 10.6 56.0
32 1,734 159 58.7

Given a cache size of 64x4 on a single processor and LIFO queue discipline, the question of how
well the realistic machine can exploit parallelism remains. This section presents the results of
running a 10x10 matrix multiplication with the number of processors as the independent variable.
The example is necessarily small due to the performance limitations of the emulator. It is sig-
nificant only to note that parallelism can indeed be exploited, even on a small example.

The table shows critical path, average parallelism®, and aggregate cache hit rate. Figure 5-7
depicts the speedup (ratio of single-processor execution time to the execution time on n
processors). In all cases, the number of aborted instructions was less than 3,648 (13.2% of
successful instructions), and run length was consistently 3.7.

Recall that the optimal hit rate for the matrix multiplication benchmark on a single processor was

58A low value here reflects low parallelism, a significant number of aborted instructions, or both.
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Figare 5-8: 10x10 MM with Communication Latency = 1

found to be 63.5% by a previous experiment. Using this as a basis, the effective hit rates in this
experiment are approximately 90%.

5.3.4 Toleration of Latency
Effect of Latency
Critical Average Hit
Processors Path Parallelism Rate
32,L=10 1,899 14.5 59.6

No amount of "optimization" by packing instructions into larger chunks is worth much if it
negates the architecture’s ability to synchronize efficiently or to tolerate latency. It is reasonably
clear that the hybrid architecture provides the necessary synchronization support at a basic level
for the purposes of program decomposition. But what about the hybrid machine’s tolerance of
long latency operations?

The effect of physical partitioning, or distributing a program can be estimated by assigning a
higher than unit latency cost to each inter-codeblock communication. Specifically, each
codeblock-to-codeblock communication incurs communication latency L (ignoring locality),
STOR instructions incur latency cost L, and LOAD instructions incur latency cost 2L59.

59Recall that the latency is attributable to the time between instructions and not time within an instruction.
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Figure 5-9: 10x10 MM with Communication Latency = 10

Figure 5-8 shows the effect of unit latency on the 10x10 example, with K=11. In Figure 5-9, the
inter-processor latency has been increased to 10 pipe steps, yet the increase in critical path time is
only 9.52%. Two forms of parallelism have made this masking possible: first, multiple continua-
tions are available on any one processor due to K-unfolding of loops. Second, each continuation
contributes an average of half a run length’s number of instructions to the pool of executable
instructions at any given time.

5.4 Summary

This chapter has demonstrated the benefits of the hybrid architecture which argue for its super-
iority over von Neumann machines as the basis for a scalable, general-purpose parallel computer:

* Synchronization: Efficient synchronization mechanisms allow the exploitation of
the same kinds of parallelism as on a dataflow machine, yet implicit synchronization
is possible within a single thread. It has been shown that the architecture is capable
of iteration unfolding and inter-procedural parallelism wherein the synchronization is
not at all simple and straightforward, but rather requires a fine-grained approach.

e Latency Toleration: The same synchronization mechanisms allow parallelism to
mask latency.

The underlying theme of the hybrid architecture is that the cost of exploiting parallelism should
be manifest and should not be "masked" by the architecture as it is in the dataflow regime. This
belief manifests itseli in explicit fork instructions and in loop unfolding costs. Given that this
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architecture provides considerable leverage for reducing the critical path time of the body of a
given inner loop, some re-thinking of compilation strategies along the lines of unfolding outer
loops and mapping inner loops to a small number of properiy-ordered SQ’s is indicated.

It has been shown that, although the hybrid instruction set is less powerful than the TTDA in-
struction set, instruction counts are comparable, leading to the conclusion that the full
synchronization generality of the TTDA can indeed be compiled into some amount of program-
counter based synchronization.

Considerable work remains in evaluating and characterizing this architecture. While preliminary
studies have demonstrated that the hybrid architecture does indeed have better locality than a
TTDA-like machine and that even very small caches can be used effectively to relieve the local
memory bottleneck, additional study is required to make enginecering-level decisions about
pipeline balance, memory sizes, and so on.
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Chapter Six

Conclusion

This section reviews the work done to date in unifying the dataflow and von Neumann views of
architecture. The first section summarizes the conclusions of the present work. The second
section presents directions for future work. The last section analyzes related effosts by other
researchers in light of the present work.

6.1 Summary of the Present Work

As stated in the Introduction, the overall goal of this study is to discover the critical hardware
structures which must be present in any scalable, general-purpose parallel processor to effectively
tolerate latency and synchronization costs. The main conclusion is that any such machine must
execute a parallel machine language, having the following three characteristics:
» The execution time for any given instruction must be independent of latency.
Traditional latency-sensitive operations, e.g., LOADs from memory, must be re-

phrased as split transactions which separately initiate an operation and later explicitly
synchronize on the availability of the result.

e Each explicit synchronization event must be named. This implies efficient means for
creating and re-using names as well as an efficient mechanism for enforcing
synchronizing behavior based on the names. Names must be drawn from a large
name space, and it must be possible to manipulate them as first-class hardware data

types.

® Means for expressing both implicit and explicit synchronization must be provided.
Implicit, i.e., program counter based, synchronization provides the means for passing
state between instructions within an unbroken thread. Explicit synchronization is
necessary at the programming level in the exploitation of paralielism and at the
machine level in the masking of latency.

In that neither von Neumann nor dataflow machines exhibit all three of these characteristics, a
new architecture has been synthesized and analyzed. It has been demonstrated through emulation
experiments and analysis of the model that the new architecture, based on the principles of paral-
lel machine language, has the ability to exploit the same classes of parallelism as a dataflow
machine. Consequently, the hybrid architecture can control communication latency cost through
the exploitation of parallelism. Moreover, the cost of synchronization is low enough to allow its
free an unencumbered use in decomposing programs for parallel execution.
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From the standpoint of pure von Neumann architectures, the hybrid is evolutionary in the addition
of a synchronizing local memory, split transaction memory operations, and a large synchroniza-
tion name space. Synchronizing local memories and register sets are not new. Most noteworthy
of the previous machines in this regard is the HEP [41, 42]. As described below, however, the
scheme proposed in this thesis is more general than ihat of the HEP. Similarly, split transactions
in and of themselves are not new, but the hybrid architecture shows the importance of inexpen-
sive context switching as the primary means for making the most of split transactions.

The biggest departure from the traditional von Neumann architectural view is the introduction of
large name spaces for synchronization purposes in the hybrid. In particular, the number of low-
level synchronization names is limited only by the size of local memory. Further, the number of
processes is limited only by the number of meaningful continuations. In contrast, the HEP ar-
chitecture allows only 64 processes per processor to be named simultaneously. From a hardware
point of view, 64 processes is a sizable number. From the compiler’s point of view, however, the
number is far too small and implies that processes are a precious resource t0 be carefully
managed. In the hybrid, this artificial restriction is lifted, resulting in more generality. It can be
argued that any fixed number of hardware processes could be virtualized by an added layer of
interpretation, but the cost of such schemes in terms of lost time makes them unattractive. Large
synchronization name spaces add the flavor of dataflow machines to von Neumann machines.

From the standpoint of pure dataflow architectures, the hybrid is evolutionary in that it adds the
means for the compiler tc exercise some explicit control over the pipeline. Because a thread
holds the pipeline until it executes a potentially suspensive instruction, the entire machine state
can be brought to bear on the problem of efficiently communicating information between instruc-
tions. This class of compiler-directed pipeline control is absent in both the TTDA and in
Monsoon [47]. The hybrid further takes the stance that synchronization should be explicit as
should forking of parallel activity. This simplification of the instruction set demonstrably does
not drive the instruction count up in many cases because much of the forking and its attendant
synchronization is superfluous. Even so, in the limiting case, the hybrid machine can still emu-
late instruction level dataflow with an instruction count expansion factor of no more than two.
This leads to the observation that explicit synchronization instructions, used when necessary, may
in some sense be cheaper than paying the full cost of synchronization at each instruction. This is,
perhaps, the equivalent of the RISC argument applied to multiprocessing.

In [8], the question of the possibility of "modifying" a von Neumann processor to make it a
suitable building block for a parallel machine was raised. It was believed that the salient charac-
teristics of a dataflow machine which made it a suitable building block were split-phase memory
operations and the ability to context switch inexpensively. Given the addition of mechanisms like
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these, there was some lingering doubt as to what kind of synchronization efficiencies could be
achieved and how much of the von Neumann architecture would be left. As presented in this
thesis, engineering arguments regarding efficient implementation of PML’s and the persistence of
program counter based sequencing in the hybrid model have dispelled much of the doubt.

As yet unanswered is the question of the effectiveness of the hybrid architecture, or architectures
like it, for other parallel programming models (e.g., Halstead’s MultiLisp [32]); this is explored in
more detail in the next section. Of considerable practical interest is the possibility of targeting
FORTRAN compilers to the hybrid paradigm.

6.2 Future Work
Opportunities for continuation of the present work abound, and are only outlined here.

» Model: This work investigates an architecture suitable for exploiting parallelism in
single applications where all processors cooperate. Higher-level systems issues such
as virtualization of the processor space and memory address space have not been
considered for supporting multiprogramming and higher levels of tasking. It is
believed that the right approach is to generalize the SQ mechanism upward to sub-
sume higher-level tasks, but it is not clear how synchronization should be handled in
the presence of dynamic address translation and demand paged memory.

e Code Generation: A number of schemes for improving dynamic instruction counts
(e.g., RSTN elimination in LOOPs when all sinks are in a single SQ, TSTN elimina-
tion in SIGNAL-TREEs for multiple sources from a single SQ, etc.) have been outlined
but not implemented. It is reasonable that this work should be carried out by a
peephole optimizer which operates on the partitioned graph. Such an idea has been
considered but not developed in the present work. Also, techniques for register al-
location need to be explored in the context of multiple, asynchronous readers.
Optimizations such as the System/370 style BXLE instruction for decrementing, test-
ing, and branching on an iteration variable are implementable in a straightforward
way and need to be explored. Improvements to the LOOP implementation, e.g., the
overlapping of iteration area initialization with useful computation, have been out-
lined but not tested.

» Machine Structure: A number of optimizations remain unexplored, e.g., reference-
count slot resetting based on bounded fanout to make frames entirely self-cleaning,
hardware support for tagged data (e.g., trapping, autocoercion, etc.). The local
memory presence bits should be generalized along the lines of Monsoon [47] such
that each operand fetch or store can specify one of a fixed number of state-transition
functions. Such a mechanism can perform the existing functions, e.g., synchronizing
and nonsynchronizing reads, nonstickiness, etc., as well as more sophisticated func-
tions (e.g., subsuming the flag bits of the iteration descriptor). Various engineering
issues remain, especially in the area of implementing fast manager-call instructions
(e.g., MKIS, GETC).
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6.3 Related Work

This section explores related research efforts over the last 10 years or so. The common threads
that bind these projects together are an understanding, at some level, of the two fundamental
issues of latency and synchronization, and the beliefs that the von Neumann model is not suf-
ficient, while the dataflow model is not necessary.

6.3.1 The Deneicor HEP

It is truly remarkable that the hybrid architectures under investigation today, including the present
work, can trace so much of their low-level synchronization structure to Burton Smith’s HEP
architecture [41, 42]. The basic structure of the HEP processor is shown in Figure 6-1. The
processor’s data path is built as an eight step pipeline. In parallel with the data path is a control
loop which circulates process status words (PSW’s) of the processes whose threads are to be
interleaved for execution. The delay around the control loop varies with the queue size, but is
never shorter than eight pipe steps. This minimum value is intentional to aliow the PSW at the
head of the queue to initiate an instruction but not return again to the head of the queue until the
instruction has completed. If at least eight PSW’s, representing eight processes, can be kept in
the queue, the processor’s pipeline will remain full. This scheme is much like traditional pipelin-
ing of instructions, but with an important difference. The inter-instruction dependencies are
likely to be weaker here because adjacent instructions in the pipe are always from different
processes.

There are 2048 registers in each processor; each process has an index offset into the register
array. Inter-process, i.e., inter-thread, communication is possible via these registers by overlap-
ping register allocations. The HEP provides FULL/EMPTY/RESERVED bits on each register and -
FULL/EMPTY bits on each word in the data memory. An instruction encountering EMPTY or
RESERVED registers behaves like a NOP instruction; the program counter of the process, i.e.,
PSW, which initiated the instruction is not incremented. The process effectively busy-waits but
without blocking the processor. When a process issues a LOAD or STORE instruction, it is
removed from the control loop and is queued separately in the Scheduler Function Unit (SFU)
which also issues the memory request. Requests which are not satisfied because of improper
FULL/EMPTY status result in recirculation of the PSW within the SFU’s loop and also in reis-
suance of the request. The SFU matches up memory responses with queued PSW’s, updates
registers as necessary and reinserts the PSW’s in the control loop.

Thus, the HEP is capable up to a point of using parallelism in programs to hide memory and
communication latency. At the same time it provides efficient, low-level synchronization
mechanisms in the form of presence-bits in registers and main memory. However, the HEP
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Figure 6-1: The HEP Processor Architecture

approach does not go far enough because there is a limit of one outstanding memory request per
process, and the cost of synchronization through shared registers can be high because of the loss
of processor time due to busy-waiting. A serious impediment to software development on the
HEP was the limit of 64 PSW’s in each processor. Though only 8 PSW’s may be required to
keep the process pipeline full, a much larger number is needed to name all concurrent tasks of a

program.

In contrast, the present work recognizes the need for a synchronization name space whose size
should be thought of in terms of the entire address space of a conventional processor and not
simply in terms of an unusually large register set. Further, while the HEP was forced by its
pipeline architecture to interieave at least eight execution contexts in order to keep the pipeline
full, the present effort recognizes the deleterious effect this has on the "working set" size at the
level of, say, an operand cache. It is believed that in order to support a spectrum of programming
models from standard FORTRAN through the most highly parallelizable functional style, the
ability to efficiently execute long sequential threads cannot be traded away. Moreover, unless the
processor truly has nothing better to do, low-level busy waiting (e.g., in the main pipeline and in
the SFU pipeline) is wasteful of cycles. Nevertheless, an important place in the history of com-
puter architecture is rightly reserved for the HEP as ihe first machine which made a genuine
attempt to address the two fundamental issues.
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6.3.2 The MASA Architecture

Halstead at MIT and Fujita from NEC Corporation have jointly developed an architecture called
MASA which is multithreaded, and intended specifically for parallel symbolic computation

[30, 33]. MASA is a tagged architecture in order to support generic operations (with a fully
general software trap handling mechanism), parallel, generation-based, incremental garbage col-
lection, and efficient computation with futures [32]. From the machine’s perspective, a future is a
value cell which may either be unresolved or resolved. initially, a future has no value and hence
is unresolved. Subsequent computation can cause the future to mutate (resolve) into a cell which
has a value which it retains for the remainder of its lifetime. It is this latter use of tags and
associated mechanisms which is particularly novel. MASA provides a number of machine in-
structions which are nonstrict (e.g., copying, which if given a future as an operand only manipu-
late the reference to the value cell). These instructions are insensitive to whether the future is
resolved or not. For those instructions which are strict in any argument which is a future, execu-
tion must either fetch the cell’s value if it is resolved, or cause a suspension of the associated task
if it is not. The trick, of course, is to perform this so efficiently that the cost of using a future is

negligible.

MASA provides explicit hardware resources (called task frames) to hold the state of a small
number of tasks. This state consists of a small set of general purpose registers along with a
program counter, and the identifiers of the parent and one child task frame. Memory words have
a synchronizing bit (full/lempty), but registers are nonsynchronizing. At the beginning of every
instruction cycle, the processor may choose among the next instructions of all ready tasks,
however, dispatching sequential instructions from a given task incurs a delay equal to the pipeline
depth (in the case of the machine currently under study, this is four cycles). Instructions enable a
number of trap conditions, which cause dedicated hardware to check tag fields, arithmetic over-
flow, a synchronization bit, etc., and if an enabled trap condition is met, to NOP the instruction,
suspend the task, and invoke a software trap handler.

As compared to the hybrid architecture, the HEP-like instruction dispatching scheme of MASA
relies on parallelism in excess of the pipe depth at all times in order to avoid dispatching bubbles.
Halstead and Fujita recognize the importance of efficient operation in scalar mode, and have
outlined strategies which will improve on this dispatching restriction. The practicality of tech-
niques to further reduce this dispatch delay depend on the statistics of trap frequency. With
additional study, this will become clearer.

MASA can only name and efficiently switch between a very small number of tasks. The frame
saver does permit tasks to be rolled out and back in; however, the cost of doing so must be
considered, and higher level synchronization must be imposed to decide when / what to roll. In
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the hybrid architecture, tasks (continuations) are word-sized objects which can be freely created
and destroyed. Their number is not tied directly to a small physical resource®?. Again, only
execution statistics can demonstrate the significance, or insignificance, of this limit.

At first blush, it may appear that the restriction of one child per context imposes a rather rigid
restriction; however, it is possible to spawn, then detach, any number of children, relying on
full/empty bits or futures for synchronization. In the hybrid model, a given codeblock can
dynamically invoke any number of children, with all synchronization occurring through the
various frames. This is more strongly similar to the action of MASA’s notion of process creation,
which requires allocation of futures for the passing of results. Tasks in MASA are clearly more
than hybrid continuations in that they have private state, but they are less than codeblock invoca-
tions in that their private state is restricted to a small number of registers. There is, therefore, a
not-too-surprising tradeoff between the cost of allocating lots of futures for the privilege of treat-
ing all child invocations as processes and the potential benefit of additional parallelism. One
would clearly view the problem differently starting with an annotated MultiLisp program vs.
starting with a dataflow program graph.

MASA provides the means for dynamic redistribution of work: the state of a task is easily trans-
ported because it is relatively small. The hybrid machine must make decisions about workload
distribution at codeblock invocation time. It is not practical to consider picking up a hybrid
codeblock invocation and moving it because of its size®!. Moreover, all continuations for a
single codeblock invocation must reside on a single processor.

6.3.3 The UCI Process-Oriented Model Project

Bic at the University of California, Irvine, has been investigating methods of exploiting the ap-
parent inefficiencies in dataflow systems by systematically eliminating dynamic synchronization
operations [12]. His technique is based on translating graphs into sets of linear sequences of
instructions. To the extent that the sequences contain more than a single instruction, dynamic
synchronization is eliminated. His partitioning method is depth-first: Repeatedly apply this algo-
rithm until the graph is empty:

o Initialize a new (empty) partition.

e Select and remove an instruction from the graph, called inst, which has the property
that it receives no input from any instruction in the codeblock.

60This name space limitation is orthogonal to the large producer/consumer synchronization name space (futures as
words in a large memory) which is strongly similar to the I-Structure storage name space used in the hybrid
architecture.

SlInter-codeblock naming is not a problem, however, because all inter-codeblock interactions happen with fully
qualified names via the MOVR instruction.
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e Repeat while inst has an output used by some other instructior: in the codeblock:
* Add inst to the partition.
* Remove inst from the graph.

* Select one of inst’s outputs. Inst now becomes the instruction denoted by this
output.

® Add inst to the partition.
¢ Remove inst from the graph.

The execution paradigm is as follows: Program memory contains a suitable representation of
codeblocks as collections of partitions. Invocations are named according to U-Interpreter rules
[S] with the exception that the statement (instruction) number s is divided into s/, naming a
partition, and s2, naming an instruction within a partition. Rather than in the dataflow model
where triggering is based on exact matching of activity names, names are matched associatively
ignoring the s2 field. This is another way of saying that a partition is the unit of schedulability.

An associative waiting/matching store implements this mechanism, but much more is expected of
it than simply associative matching. Each entry uniquely denotes an instance of a partition,
contains a missing token count, and maintains a pointer to a list of tokens which have arrived for
the instance. As tokens arrive for a given instance and which specify s2=0 (i.e., they are headed
for the first instruction), the count is decremented. Until it reaches zero, tokens are accumulated
in the list. When it reaches zero, there are sufficient tokens to execute at least one instruction in
the partition. At this time, the actual instantiation of the partition takes place which involves
copying a blank template of the code from program memory to execution memory. In the
process, tokens in the list are merged with the code - values are stored into the appropriate
operand slots. A process control block is created and entered into an array of such control blocks
in the processor.

This model is interesting but may exhibit some implementation difficulties. From experience
with dataflow program graphs, one would expect the partitioning to result in a large number of
very small partitions. Moreover, experience with the TTDA has shown that, as a program’s
invocation tree is explored eagerly, the partially-computed state left behind as the wave of control
proceeds toward the leaves is enormous. These two fact lead to the belief that the size of the PCB
"register” array may have to be of a size which is comparable to execution memory in order to
avoid frequent deadlock. Moreover, copy operations (with merging) are implied for each and
every invocation. Assuming execution memory is not multiported, this will represent a tremen-
dous number of cycles in which no useful computing can take place. In contrast, the hybrid
model does not copy code and, to the extent that code can be generated to leave frames clean,
invocation is extremely inexpensive.
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It is not at all clear what implications the depth-first partitioning method will have on the operand
working set size and how this will compare to breadth-first techniques such as the method of
dependence sets. The author is most interested in seeing the analytic and/or experimental results
as they are produced. It is clear, however, that depth-first partitioning will rely heavily on
pipeline bypassing since, by definition, instruction » depends on the output of instruction n-1.

6.3.4 The IBM/ETH Project

Buehrer at ETH Zurich and Ekanadham at IBM Yorktown have developed a model for a hybrid
machine which is remarkably similar to the present work. Details have been published elsewhere
[15, 16, 27] and are only summarized here.

The authors assume a shared memory load/store multiprocessor of conventional origins aug-
mented with features as follows:

* Local Memory with Presence Bits: Each processor has a memory to which it alone
has access, and that each slot in said memory has state bits indicating full, empty, or
awaited.

e Send/Receive Instructions: The instruction set supports a notion of one processor
sending an instruction to either another processor or to a global memory unit.
Received message/instructions are executed asynchronously. LOAD messages are an
example - an address from which to load, and a tag are sent from the initiating
processor to the appropriate destination.

e Explicitly Split Read Transactions: The IREAD instruction, given a LOCAL-ADDR
and a GLOBAL-ADDR, resets the presence bit at LOCAL—-ADDR and builds a SEND
which will read GLOBAL-ADDR, retum it to LOCAL~ADDR, and awaken any
processes waiting on it.

o Tag-to-Process Mapper: Rather than having local processes busy-wait once a long-
latency operation has been started, process state can be evacuated from the processor,
and an identifier <LOCAL-ADDR,Process> can wait in an associative memory. The
completion of the long-latency operation will include searching the memory for iden-
tifiers with matching LOCAL-ADDRs. The processes so denoted will be extracted
and re-enabled for execution.

Based on these primitives, it is shown that I-Structure storage can be synthesized and, using
I-Structures, producer-consumer parallelism can be exploited.

Their proposal for partitioning a dataflow graph involves coloring all primary input nodes in the
graph with a single color, and each local-memory synchronizing read instruction (the target of a
dynamic arc) with a separate color. For the remaining nodes, color is inherited as follows:

o If all of its immediate predecessors of color ¢, the node inherits color c.
e Otherwise, the node is assigned a totally new color.
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Nodes with the same color form a sequential segment. In execution, all of these segments share
access to the execution state of the codeblock. It is a simple matter to prove that the method of
dependence sets will always produce the same number or fewer SQ’s than Buehrer and
Ekanadham (B+E) will; consider the common case of two instructions which each depend on the
same set of dynamic arcs. The method of dependence sets will create a single SQ containing
these instructions while B+E will create two, each containing a single instruction. This will tend
to drive down the mean run length when it is clearly desirable to drive it up.

In the hybrid model, reawakening of tasks is expedited by storing the continuation of the
suspended SQ into the empty frame slot. In the B+E model, associative matching is proposed
with the attendant reliance on the size and cost of such a memory. The have recognized,
however, the possibility of storing process identifiers directly into empty local slots when it can
be guaranteed that there will never be more than a single reader.

There are other, less significant differences in the approaches. In B+E, a LOAD tums into two
instructions, one to initiate and one to synchronize, while in the hybrid paradigm, the
synchronization is always folded forward into the instruction which will use the value. In B+E,
registers may be considered valid across suspensions, necessitating a means to save and restore
them. In the hybrid approach, the maintaining of state in registers across potential suspensions is
forbidden so as to eliminate the need for state saving. The issue here is much deeper than
whether a compiler can be organized to do this - it is clear that it can. The issue is one of
performance. The present work makes the statement that it is better to invest in operand cache
technology than in register save/restore technology. It has been demonstrated through the experi-
ments that this can be done, but it places a premium on reducing the working set size at the
operand level.

6.4 Closing Remarks

It is heartening to see the harmony in all of the above efforts. The author fully expects that
somewhere among all of these projects is the key to practical scalable, general-purpose parallel
computing. All of these new efforts owe much to the language-based studies of the dataflow
model pioneered by Arvind and Dennis over the last 20 years. But, just as importantly, these
efforts seek to reconcile the apparent benefits with the tremendous base of knowledge surround-
ing the von Neumann model, viz., instruction set design, compilation, and optimization.
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Appendix A

Emulator

An emulator for the proposed architecture was designed and implemented after the model of
GITA and ID-WORLD [46], although different in significant ways. While GITA was designed
as a graph interpreter implementing dataflow instruction sequencing, the new emulator was
designed as a sequential instruction stream interpreter. This permitted

e exploiting the inherent sequentiality of the underlying machine, yielding a significant
improvement in emulation speed, and

e expressing the emulation as an extension of the underlying machine. The emulation,
therefore, served as a touchstone by which to validate the assumpuons of minimal
change to von Neumann architecture.

A.1 Data Structures

The key emulator data structure is the continuation: a continuation is an object which denotes a
frame descriptor, an instruction number, an invocation context, and a state. Interpreter continua-
tions closely model architectural continuations. The other hardware types are also implemented
as LISP structures with the exception of INTs and FLOATs which are implemented as LISP
FIXNUMs and FLONUMs.

A.2 Organization of the Emulator
The emulation is controlled by three top-level functions:

o The MOVR Processor: Performs the remote store-in of values to frame slots for the
MOVR instruction. Emulates the behavior of the "NetResp" port to the local memory.

o The I-Structure Processor: Handles all requests to fetch from or store to elements in
the global I-Structure storage. Performs I-structure statistics gathering.

e The Continuation Processor: Handles sequential execution of instructions within an
SQ invocation including suspension. Performs top-level instrumentation and
timekeeping.

Of these, the CONTINUATION processor is the most significant. In order to describe its opera-
tion, a digression into the representation of codeblocks and machine instructions is necessary.

Each machine opcode logically represents a set of runtime behaviors. While the abstract behavior
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of, say, an ADD op is obvious, the concrete behavior of any given ADD, parameterized by the
addressing modes of the operands, is potentially very different from other ADDs. Each operand
fetch, for instance, can be one of

o A register fetch
¢ A nonsuspensive frame slot fetch
e A suspensive frame slot fetch

o An immediate constant

Therefore, the behavior of each opcode is described abstractly by a LISP macro, using sub-
ordinate macros which encapsulate the mechanisms of operand access, cache reference,
timekeeping, and so on. Constructing an executable instance of an instruction involves specify-
ing a set of parameters (e.g., the addressing modes for each operand), called the instruction
instance’s signature, then instantiating, expanding, and compiling the corresponding macro as a
LISP function. While complex, this approach has the advantage of avoiding a significant amount
of function-calling overhead. In fact, the mean number of function calls per hybrid instruction
emulated is, by instrumentation, on the order of 1.5.

As a codeblock is loaded into the emulator environment, functions are compiled for each unique
signature. Signatures and their corresponding compiled code are memoized. Compiled instruc-
tion instances are shared when signatures match. This makes codeblock loading rather slow at
first, but as the set of frequentiy-reused instruction instances is built up, loading speed increases
substantially.

As compared to the purely interpretive method of GITA, the hybrid emulator has realized a
speedup of a factor of three when running comparable experiments with comparable statistics-
gathering. This difference is primarily attributable to the savings in function-calling overhead.
Selective deleting of statistics when generating the compiled instructions has resulted in speed
improvements which range from a factor of 15 to a factor of 30 faster than GITA.

A.3 Statistics Gathering

As in GITA, the emulator provides tools for collecting various statistics, both for the idealized
model and for the realistic model, including

e Functions of emulated time: Based on the model (realistic or idealized), sets of
rules govern the advancement of emulated time. In the idealized model, each in-
struction executes in unit time, transit latencies are zero, and aborted instructions
(those which suspend) consume zero time. An unbounded number of instructions
may execute in a given time step. Time advances in the sense that the satisfaction of
all synchronization constraints for a given instruction (both static and dynamic) at the
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end of cycle ¢ will cause the instruction to execute at cycle z+7/. In the realistic
model, however, the number of processors is fixed, codeblock invocations are bound
to processors, transit latencies are nonzero, and aborted instructions consume time.
In either model, successful completion of any event will be recorded at the time it
occurs. Such events include

¢ ALU utilization (number of instructions executed at a given time).

e I-Structure Storage Utilization (numbers of fetches, stores, and allocations as a
function of time).

*Local Memory Utilization (number of allocations and deallocations, plus the
running sum of the excess of allocations over deallocations as a function of
time).

e Cache Utilization in realistic mode (numbers of hits and misses as function of
time).

e Histograms: Also based on the notion of emulated time, event frequency is
recorded:

¢ Dynamic Run Length Distribution.
¢ Cache Address Distribution.
¢ Store-to-Fetch Time Interval Distribution.

A.4 The User Interface and Debugger

The interpreter for the hybrid machine provides a top-level for loading and running codeblocks,
setting load-time and run-time parameters, collecting statistics, displaying program output and
statistical results, and debugging. The debugger is implemented at the level of the instruction set.
It is possible (and somewhat meaningful) to set breakpoints, to examine execution state, to per-
form tracing, and in general to treat the emulator as one would a pure von Neumann executor.
The difference, of course, is that the state of a running computation consists of a tree of invoca-
tions, rather than simply a stack.
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