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ABSTRACT

on the Conjugate Locus of a Riemannian Manifold

NT

Nathan Moreira dos Santos

Submitted to the Department of Mathematics on
August 22, 1966, in partial fulfillment of the requirement
for the degree of Doctor of Philosophy. |

The conjugate locus of a Riemannian manifold splits
naturally into two subsets--the regular locus and the
Singular locus. The regular locus and those properties of
the exponential map that depend on it, have been studied by
J. H. C. Whitehead, S. B. Myers, L. J. Savage, F. W. Warner
and others. The study of the singular locus is started
in this work.

It 1s studied how the order of the conjugate points
are distributed near a singular point p , for some types
of intersection at p . In the case (the only one of which
examples are known) (*) where the conjugate locus near
0 consists of two submanifolds intersecting in general
position at p , the relations between the kernel of the
differential of the exponential map and the tangent spaces
to these submanifolds are described completely. This
extends to the singular locus results of J. H. C. Whitehead
and F. W. Warner for the regular locus. A characterization
Is given (in terms of the second differential of the expon-
ential map) of the tangent space to the conjugate variety
at a point p in the cases where p is regular and where
0D 1s as in (*) above. This 1s glven on the assumption
that M 1s a CC® manifold and relates to a result of
H. Whitney for analytic varieties.

It 1s proved a sequence of results that eliminate
the possibility of certain types of intersections at a
conjugate point. All these results are not restricted
to Riemannian manifolds, but hold for what F. W. Warner
called a regular exponential map.



To prove the above results, some new techniques are
developed ii: Differential Analysis. In particular, upper
bounds are given for the order of the singularities of a
C® map ¢ of manifolds, in a given direction. This is
given in terms of the dimension of certaln subspaces of
the null-space of the differential of ¢ .

Some problems and conjectures are
0 the conjugate locus of a Riemannian

stated in relation
manifold.

Thesis Supervisor: I. M. Singer
Title: Professor of Mathematics
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INTRODUCTION

The conjugate locus of a Riemannian manifold (i.e.

the set of singularities of its exponential map), as 3

differentiable variety, splits naturally into two subsets--~

che regular locus and the singular locus. The regular locus

and those properties of the exponential map that depend on

it have been studied by J. H. C. Whitehead in (5) ,

7. W. Warner in (4) and others.

In this work we start the study of the singular locus.

We study how the order of the conjugate points are distri-

buted near a singular point p , for some admissible types

of intersections at p . In the case (*) where the local

conjugate variety at p consists of two submanifolds inter-

secting in general position we describe completely the rela-

tions between thekernel of the differential of the expon-

ential map and the tangent spaces toc these submanifolds.

This extends to the singular locus results of

J. H. C. Whitehead and F. W. Warner for the regular locus.

Ne give a characterization (in terms of the second differ-

ential of the exponential map) of the tangent space to the

conjugate variety at a point p in the cases where p is

a regular conjugate point and when p 1s as in (*) above

This 1s given on the assumption that M 1s a ¢® manifold



and relates to a result of II. Whitney in (©

analytic varietles. We also prove a sequence of results

for

that eliminate the possibilitv of certain types of inter-

sectlons at a conjugate point.

These results are not restricted to Riemannian

structures, but hold for what F. W. Warner called in (4)

a regular exponential map. It was proved in (4) that the

exponential map for a Finsler space 1s a regular exponential

nap.

In Section 2 we prove a sequence of lemmas that give

upper bounds for the order of the singularities of a c”

map of manifolds, in a given direction. Our results on the

conjugate locus are proved in Sections 3 and 4.

I thank F. W. Warner for reading a preliminary version

of this work and for giving me some good suggestions.

thank D. Ebin for helping me to correct some mistakes.



31. Preliminaries

Ne are going to fix some notation and conventions

that will be used throughout this work. Manifolds will be

locally euclidean, second countable, Hausdorff spaces with

a (* differentiable structure. A submanifold N of ©

manifold M 1s ¢ manifold N together with a 1:1 immer-

sion of N into M . If m is a point of M the space

of k-th order tangent vectors at m willl be denoted by

me . (e.f. (1) for definitions c® higher order contact

2slements.), M_ , the spacer © first order tangent vectors

N111l be considered as &amp; manifold in the usual way. If

oe M (mE will denote the space of k-th order

tangent vectors at p . If f: MosN 1s a differentiable

nap of manifolds, the k-th order differential of ff will

pe denoted by a%a; we suppress k if k = 1 . The space

of k-th order differentials at m e€ M will be denoted

k k.. k k
°¥ "M_ , and 6 f: Ne (m) —-» "M_ will denote the dual map,

corresponding to a¥r . I” f+ Ms N 1s a differentiable

map and m € M is a singularity of f . we denote by N(m)

the null-space of df at nm

Ord(m) = k¥ will mean: order of m as a singularity

yf f equals k



2. On the singularities of differentiable maps

In this section we prove a sequence of lemmas that

rive upper bounds for the orders of the singularities:of

a C° map &amp;: M =» N , near a singularity, me M in a

siven direction Xx € My, . This is given in terms of the

higher order differentials of ¢&amp; at m . We give also a

relation between the order of a singularity m of a c”

map ¢: M - M and the order of m as a zero of the

Jacobian of this map.  KkM

We have a natural isomorphism RT ~ s¥(m ) where
m

sm) stands for the k-fold symetric tensor product

9 HoH

-

hia |

mn

i

k
vhere T M, denotes the k-fold cartesian product and

i1=1

ly is defined by

lr(“” = * eo 0 &gt; K-.4

arene Xy) = x, x, + M_

here x, e Mand Xy 1s any extenslon of x, to a



sector field in some neighborhood of m). It 1s easily

checked that ¢¥ 1s a well-defined, k-linear, symmetric

map and that ¥ , the induced map is an isomorphism.

Now let ¢é: M&gt;L be a CC map. The k-order differ-

ential of ¢ at m

Ki.XK17h: Mo k
= Lg (m)

induces a linear map

k
M ohET FTgk-1  0)

and using the above isomorphism we have

1. n)
“Tp 1)K sm) - K b xb,- _b(m)

Ne now define, associated with each direction = ¢ My two

subspaces N, (x) , 1=1.2 , of the null-space N(m) of

ib at m . by:

) ]J) =Ai(m) |eN£[Ax) =N, (X

ind

N .
oO\-- Ce [Ae NX) [PSX HX HA -

+

Let k,(..) be the dimension of N,(x) . 1=1.2 Thus

(xk,dan)(xN,) CC’ D Ao



Let «v: (a,b) -» WM

such that (1) =m and %,(1) = X , where v,(1) stands

be any Cc

for the tangent vector to vy at (1) . Let o = 6 o ¥

and thus o is a C_ curve such that o(1) = §(m) and

0, (1) = ap(x) . Let uy(t),...,u,(t) (4 = dim L) be

¢® vector fields along o¢ which span Lo(t) for all ¢t

vector field A(t)Given A e£ N(m) we extend it to a C°

along © and we let Y(t) = ab(a(t)) . Thus:

£
v(t) = &gt;

2
v (tu, (7)

vhere yy are oo functions of LJ and Y(1) = &amp;

Define

, &amp;

y(1) ==
+

v (Du, (3)

and it is easy to see that since Y(1) = 0, Y(1) does not

depend upon the choice of the particular basis

{uy (t); 1&lt;1&lt; L} . Now we let X and A denote any

extensions of fv, (t) and A(t) to ¢® vector fields in

some neighborhood of M . Then (XA)(m) 1s an element of

2
and

-

 A) (m) + M_ as element of
vy

Moreover

L#
-

nN 10t depend upon the choice of the e—tenslons

 &gt;» and A and



be(X # A) = qc b (( XA ) (m)) + db (M)

v(1) + adm) (1

2 _ _ ad oo
In fact: d“$(Xa)(m)f = X (A(fe ¢)) = gpl _ (¥(£)F) = ¥(1)f

for all C© functions f at ¢(m) . Now we remark that

If Ae N, (X) then we can find an extension A(*' of ?

along Vv such that d°&amp;(XA) = 0 . In fact *~+

any extension of A and let db (A,(t)) = Z4(t) . Thus

Aq be

12h (xa) (m) = ¥,(1) adm)

Thus we can find z e M_ such that ab(z) = Y, (2) :

Z(t) be any extension of Z along &lt;v Take

Let

A(t) = A5(t) + (1-t)Z(t)

Now if A e N,(X) and A(t) is the above c-tenslon, then

13 ((X°8) (m)) = Y(1 2, (1)1 Ju,y, (1

This follows because Y(1) = ¥Y(1) = 0

7,(1) = y,(1) =0. 1¢

{ and thus

([]

2

3136(x°8)(m)f = X°(A(Fo _ 4d | v(t)fm o ( $)) 7s ( ) )

For all © function f at &amp;(m). Moreover VY(1) does

not depend upon the choice of the basis { u, (t); 1 ~ nN |



Lemma 2.1. Let

N,(X) , meM. Let fv: (a,b) »M, a&lt;1l

.. be any c” map and

b

oe cr smooth curve such that (1) =m, v,(1) = X and

A({' b- any non-vanishing CC vector field along vY such

that A(1) = A. Let Y(t) = db(A(t)) be the corresponding

c® vector field along o©0 = ¢ o Y . Then there exists

~

, + 0 such that for 1 - =

Y(t) = £(t)e(t) , where c(i) 1-

7anishing ¢® vector field along

tion and f£'(1) # 0 if f£(1) = ©

non=-

oc, f(t) a ¢ func-

Proof. The proof is exactly the same as in (%) for

lemma 2.3. Let uy (t) y.

along © spanning Lo (t) for all ¢

2 be smooth vector fields

vi) -
y

yy (£)m, (2), where Vv. are
nN

~~
\J

functions of t . If A(3) &amp; N(m)

since X £ N; (2) we have bo # ££ + C and from (I)

ve see that Y(i) &lt; O . Thus there exists e &gt; O such

that Y(t) # 0 for 1 - ¢

are zero. It is easy to see that

we have Y{(1) = C and

1 vy.(1)1 + &amp; and not al 5

Zz
Z v(t) is « non-negative ~ function whose
=

zeros are all of second order. Thus by lemma

this function has a €© square root f(t) .

2.2 of (4) ,

Moreover f(1)

is an isolated zero of f(t) . of order one.



Define

1nd

4 v(t)
(6) = $8) = 5 rer wt) s

(IIT)
| L yy(1) .

=(1) = 2 TL uy ( )

Thus e(%) +

that e 1s (

non-vanishing vector field along ¢ and

“.1llows from the fact that if th is a

zero of Y , then on a nelghborhood of ty

si - + \ av” 7! 3iz - 5v,(t) = (t - t5)k,(4 (t - tole(t
k, (t) and g(t) are “nections, k, (tg) = ys (ts)

where

and g(t.) = £'(t,)

Lemma 2.2. Let $: M=&gt;L be a ¢ map, r be a

singularity of order k for ¢ and fv: (a,b) -

2 &lt;1 &lt; Db be any smooth curve such that v(?) =m and

Y« (1) = X . Then there exists € &gt; 0 such that

order y(t) &lt; k, (X) &lt; k for all tt #

— f- + 2 wpe.

Proof. Let Cc, (X) be any complementary subspace for

N, (X) in N(p) , i.e. N(p) = N, (X) D c, (X) . Choose a

basis { A; ; 1 &lt;1&lt;d} for M_ such that {A, ; 1&lt; 1

be a basis for N(p) , {8 311 &lt;1i&lt; k, (X)} basis for

N,(X) and {85 (X) +1 ig kl be a basis for C,(X)

1



Now let

hasis {

and extend “ to

_d} for Mos in such

a way that the A,(t) be smooth vector fields Let

Wagar

v(t) = ad(a(t)) , kq(X) +1 &lt;2&lt;d. Using lemma 2.1,

Ne have:

rhe) = £(t)es(t) , K(X) +2

are non-vanishing ¢® vector fields along oo . £,(t) are

C® functions of t , f, ~~ 0, £,(1)

©(X) +1&lt;1&lt;k and fi(.); O for k-

Thus we can find &amp; &gt; O such that £,(t) &gt; 0

and 1 -e&lt;t&lt;l +e, k(X)+1&lt;: -
A

Now using (III) (c.f. proof of lemma 2.1) we see that

bo(x # As (1)) i Sh + db(M_) where c, -

&lt;;(X) +1 &lt;1&lt;k. Because bo |x # C;(X) 1s an isomor-

phism we see that { e(1) ; k,(X) +1 &lt;1 &lt;d} is linearly

Independent. Thus we may assume that { e, (t) 3 ky (X) +1¢

is linearly independent for 1 - e &lt; t &lt;1 + ¢ Now since

F(t) £0 for kK, (X) +1&lt;1&lt;ad. t
ve see that the order of (v(t)) &lt; kq (X) for t -

- &lt;&lt; t &lt;1+¢

Remark 2.1. Under the assumptions of lemma 2.2

if dim M=dimL=d,N,(X)=0andX£ N(p),thenwe

can find coordinate systems x,,... 3X3 and Yqs...,¥3 ON



nelghborhoods U and V

such that ¢(U) C V and

of m and ¢(m) respectively

Wiser (1(8))) = £58) 53= (o(v)

For 1 "where fy are C° functions of t and

P(t) #0 forall te vu) and dq - -

For 1

° (1)

and

Proof. Same a. in (4) fcr lemma 2.5.

Lemma 2.3. Under the assumptions

Ae Ny (X) = Ny(X)

of lemma 2.1 if

Then Y(t) = f£(t)ef(t) for 1 - ¢ eg where e(t)

1s a non-vanishing ¢© vector field along o , f(t) 3

C® function and t = 1 1s a second order zero of f

F(1) = £'(1) = 0 and f£"(1) #£ 0

| .e

Proof. Let A(t) be the ertension given immediately

vefore lemma 2.1. Thus

J . 1
(1) = = y (Du, (1) = Y(1) = °

§- 1
ug (1) = \ J

Now since I” ' No(I' using (IT) we get Y(1) - wiJ This

2
z(t) - © v2 (t) is a non-nrgative °F function having a

:

zero of order four at Hence g(t) = (£-1)*h(t)



For .

&gt; and ( {

where . function of

(1) + 0. Thus g(t) .. 0 if t =

and Y(t) £ 0 for the same values ci

Ne define a non-vanishing © vector field e(t) along

for 1 - =

1nd

4 l + &amp; as follows:

_ Y(tJOE if f-
is

ry |

(IV

(1) = I

where f is a CC square root of g

C® we note that y(t) = (t-1)%k, (+) and

f(t) = (£-1)°n(t) where k, and h are

(1) = y{(1) , and h(1) = £"(1) £4 ©

To see that e f

o® functions,

Lemma 2.4. Under the assumptions of lemma 2.2 there

&gt;Xists € &gt; 0 such that

order v(t) &lt; ks(X) € k(X) &lt; k for all

{ &lt; 1 -. = iY

°roof. Let { A; :

such that

| da} be a basis for M_

(Ay 51 _ 1sk(X)} 1s.~vasis for N,(X)

A L$ k(X)} 1s &amp; basis for N, (X)

A,and { ie  ~. &lt; xl be a basis for N(p)



Now by lemmas 2.2 and 2.3 we have an extension

[ A;(¢) 51&lt;1&lt;d} of the above basis along

that if Y(t) = d$(A,(t)) then:

v.(t) = £,(t)ey(t) , ko(X) - 2
=

vv such

where f, are ¢” functions such that f,(1) # 0 for

&lt; +1 &lt;1&lt;d and t =1 1s the only zero of fy on the

interval 1 -e&lt;t &lt;1 +e for ky(X)+1&lt;1x

Moreover { e,(1) ; k,(X) +1 &lt;1&lt;d} 1s linearly indepen-

dent. Now let C,(X) be the subspace spanned by

(A, 5 K(X) +1 &lt;1 &lt; Kk (X)} . Thus

b3|x # X # C5(X) is an isomorphism and

P(X # X # A e3 (1)
. o; + aZh(ME) for

&lt;, (X) +1 _. 1&lt;k(X) where C. ¢# C
(Iv)).

(this follows from

Thus {ey(1) ; kp(X) +1 &lt;2 «d} 1s linearly independent

and thus we may assume it is linearly independent for

t &lt;1 + ¢ . From this and (*) it follows that

order v(t) &lt; ky(X) &lt; k (7) &lt; k Foye

"1 +e. ££ £1

Now we consider C° maps bb: MM . Let m be a point

of M . Then to any pair of coordinate systems

and ¥-s.++.5Y4 On neighborhoods U of m and

FyseeesXy
7 of é{m)



ve assoclate a CC function J: U -+ R s the Jacobian of

b with respect to these coordinate systems. Let m be

a singularity of order k and X ¢ My be a direction such

that N; (X) =0 and X £ N(m) . Let &lt;v be any smooth

curve v: (a,b) » M, a &lt;1&lt;b with (1) =m .

Y.(1) = X . We claim that t =1 1s a zero of order k

of Jo v¥. To see this let XyseeesXqy and ¥q,....74

oe the coordinate systems given by remark 2.1. Thus

1 i

d(5 0 = Ep(r(8)rat)=01
i+ at

*

and

2)oa? o Y) =f.1(2 ). £,(1)f 1 ¢ 1 ) ofall ) -. 0

Now we show that this does not depend upon the choice of

che coordinate systems. In fact, with respect to the

above coordinate systems, we have:

d d .
1b (5) = 2 443 3¥5 whe re

c

No (244): U -&gt; gd

ls a smooth map. Now if (Tue, sug and (V'yVyseeesVa

is another pair of coordinate systems at m and é(m)

Ne have:

13

0) _ 5 al
W(x) = 22

C
ov, whe= Ma v

c 0 d
map. Thus 3x = &gt; Cs 3 Su

(ay. J! = Ra

where



(Coy) "yr 8% 1s a smooth map. Similarly
23 0 d 0

= 3 d and D = (d_,): VNV' SR 1s a C
9 . sJ ov sJ

map. Now A = (De d)A'C™? (*)

and if J =det A, J' = det A' and r = det(D o ¢) (det c)~t

ve hgve J =f « J' and

l-r1 1 d 14 1 fq
—=(J) = = (J) ——= - (71) §
att peo IT gti T gil

Definition 2.1. We say that ¢ dil

on a manifold M 1s transverse to a C. map é: M = N

5 vector field .

If N.(X) =0 forall me M

This roughly speaking, means that

the singular variety of b . We now prove the existence of

2, useful coordinate system.

Lemma 2.5. If me M 1s a singularity of order k

of a C¢° map ¢: M »L,then there exists a coordinate

system (Uaxysenesxyq) at m such that ene (q) .
d-k+1i

~ k¥ spans N(q) for all q &amp; U, with ord (q)

Proof. We first note that dé: M_ - Lj (m) 2nd

5b: Li(m) = M, have both the same rank d - k (here

d = dim M. £4 = dim L). Now let (Vs¥yseeesvy) be any

coordinate system at ¢(m) . We note that since rank (6)

k , Wwe may assume that 5b(dy,) = dy. o H)



are linearly independent at m , for ?

Thus by (3) page I-18 we can find smooth functions

Xg-x+1 » 1 £1 &lt;k such that (U;xy,...,xy) 1s a

coordinate system at m with ¢(U) CV and Xy = Vy 0

for 1 &lt;1&lt;d-k. We claim =2— (a) € N(q) for
d-k+1

&lt;d-%k if ord (q) = k .

blr (a) i (In fact: d a))y, = q)
xg -k+1 J Xg-k+i

for 1¢ ° "G&amp;G - k and all &gt;=U NOs L
3 1 ord (q) = «

1 € U we have

° ¢1rgoper
d-k

© ds, 4 J
~ tu

zw

"Or some real numbers A, and thus

or 1

2 Vs.1 (az (a))¥g1er4
wd4+Ir

0

Corctlarr 2,1. Under the assumptions of lemma 2.5

If XX e N(m) then we can extend X to a smooth vector

fleld X on some neighborhood U of m in such a way that

X, € N(a) for all a e€ U with ord(q) = k

’roof. Using the coordinate system zfven by lemma 2.5
Jr

4 — &lt; d —

if X = Ri (m) then take X =
d

 8% 3x; BR



3 =tt On the conjugate locus of a Riemannian Manifold.

In this section we prove our results on the conjugate

locus. These results are not restricted to Riemannian

structures but hold for what F. W. Warner called in (4)

a regular exponential map. It was proved in (4) that the

exponential map for a Riemannian manifold, and more gener-

71ly for a Finsler space 1s a regular exponential map.

let M be a d-dimensional manifold and m a fixed

point in M. Let e: M, »M be a CC map and if p 1s

3 point in My, we let N(p) denote the null-space of de

at p and r, the tangent space at p to the ray through

Definition 3.1. A map e: Mn —» 1M 1s called a regular

exponential map if it satisfies the following:

(R1) e is C° on M_ except possibly at the origin

where it 1s at least Cl , and de(r.(t)) #£ 0 for all

vhere r 1s any ray and 1r,(t) its tangent vector at

r(t)

‘R2) The radial vector field T is everywhere transverse

t.e. Ny(T.,) = 0 forall » .M , Dp0ee

'R3) For each non zero point ©» in M there exists a



convex nelghborhcod U of p such that the number of

singularities of e (counted with multiplicities) on r 3 4

For each ray r which intersects U , 1s constant and

2quals the order of p as a singularity of e

The set of singularities of = regul~r exponential map

e: M —»M 1g called the coniuent

denoted by C(m) . The conjurate locus splits naturally

e and 1t is

Into two subsets, the regular locus denoted by ct (m) and

the singular locus, denoted bv C°(m) . (See (4) for

jefinitions of these loci.)

Ne need the following

“ton 3.2. The intersection number or branching

order of ¢ point p in M, s 1s that posttive integer

#(p) such that there exists some convex neighborhood U

of p having the following property: for all convex neigh-

borhcod V of p, VCU and for each ray r sg 2

has at most #(p) distinct conjugate points and there

exists some ray r such that r N V has exactly #(p)

conjugate points.

Thus if #(r n °°

ooints on rr N V . we have

sup #(r nN V)
#(p) = inf

r
V convex

De VCU



We remark that if

then property (r.3) of the regular exponential map

Implies #(p) &lt; k .

1~ © conjugate polnt of order

One natural and important thing in the study of the

conjugate locus is to know how the order of the conjugate

points are distributed near a conjugate point p . In the

case where p is a regular conjugate point, property (R.3)

of a regular exponential map says that all points near p

have the same order. It was proved by F. W. Warner ((4).

Th. 3.2) that C'(m) 1s an open dense subset of C(m) ,

having a structure of (d-1)-dimensional submanifold of

MN. such that the inclusion 1: C'(m) » Mm 1s a submanifold

vith the relative topology. Moreover N(p) € cf(m)p if bv

1s a regular conjugate point of order I

In the case where M 1s an analytic Riemannian manifold

and e: Mo -»M 1ts exponential, were proved before by

J. H. Whitehead in (5) . (With the restriction that

then N(p) &lt; ¢F(m)p)

Those results.

In this section we use the techniaues developed in §2

to prove some results in the case where p 1s a singular

conjugate point. We solve completely the problem in the

case where the local conjugate variety is a union of two

(d-1)-dimensional submanifolds rt and 12 intersecting

in general position at a point p . This is the kind of

Singular point that is found in product of two Riemannian



manifolds. We also prove a sequence of results that

eliminate the possibility of certain types of intersections

at a conjugate point bp

ilven a point p in Mo we have as 1n {2, the linear

nad

St 7# -&gt;) anep
(M, )m p "ee M

m P

and it restricts to (Mp) # N(p) as

3 M

Ie (,), # N(p) =ath

For each vector A in N:\ a J we

b th), ~ TE

associate the linear map

jefined by $,(X) = eZ(x #

If L, is any linear subspace of (Mp), such that

L, # N(p) is contained in the kernel of e , then for

cach A ¢ N(p) we have the linear map ¢, induced by ¢,

( (Mn)p wR“sy de Mn D

Lemma 3.1. With the above notation, we have:

b= 0e&gt; nr =o0



2) T° CU. € (Mp)
+

fv.eesN Where n =. ~ dim L,
n

then { ¥,,....7, } linearly independent =&gt; Nn N, (X, )

vhere X. = X, + L.,

3) dim(L, N N(p)) * ¥ =n +

£ = order of p as a conjugate point.

 nN a where

roof. 1 T f
3 =D then 1t 1s trivial to see that

Assume that ¢, Thus

+ bylr,) = eS(r, # A)

and using property (R.2) &lt;¢°

Ne see that A = 0

A regular exponential map

&gt;

i-

then

Fellows from 2) In fact if vector in

and { oo 1 &lt; iv n} 1¢. 7" 1lnearly independent

and thus by 1) .Ww
f

3) Assume dim(L, Nn N(p)) ©" -r and let

complementary subspace for LN N(p) in

dim C &gt; n . Let { ¥X,...,X} be a basis for

{ A, n} 1s linearly independent in —
a

be any

Thus

Thus

n

 we have N N.(X,) = 0 . But since k
11

i=1

we have L_ N N(p) # 0 .
*

b, (X,) = 0 for 1

n -t

Now if A ¢ Ly, Nn N(p) we get

n and then by 1) . A



contradicting the fact that IL, N N(p) #0 #

Ne assume from now on that M and e are
.

Theorem 3.1. Let p be a conjugate point of order

« and #(p) = 2 and suppose that the conjugate locus

near p consists of two (d-1)-dimensional connected sub-

manifolds 11 and 1.2 intersecting in general position

at p. (Thus L = 1} n 12 is a (d-2)-dimensional sub-

nanifold;) Then there exists a convex neighborhood U of

© such that:

3) oF (gq) = ord (») =" for all ¢ &amp; .

b) ord (q) = ky (ky constant) for all q e€ (Lt -L) .

and for each fixed i = 1,2 . Moreover ky +k, = k

c) If k&gt;3 then dim(L, NN(p)) 2k -1 and Ly D N(p)

for some 1, 1&lt; 1% 2. Moreover if

dim(L_n N(p)) = k = 1 then k, =1 for some

1 ©

1) II nN(p) #0 for 4 =1." 1

Proof. a) It follows from the proof of Th. 3.1 of

(4) and the property (R.3) of the regular exponential

map that there exists some convex neighborhood U of  Tr

such that a) holds.

0) and ec). We first show eo(I, # N(p’

In fact, if X_. e L. and A_ e N(p) , let A denote the



smooth extension of A, given by Cor. 2.1. Now using (I;

$2 and since d%e ((x8) (p))f = x, (A(f o €)) = 0 we see that

22 (X # A) = 0

Now we note that since by assumption #(p) = 2 we have

kK &gt; 2 and for k = 2 the theorem is an immediate conse=

quence of a) and the property (R.2} cf e . Thus we

may assume k &gt; 3 and then by lemma 3.1 3) , since

iim L, = 4d - 2 we get

Ne divide the

? case.  Cc

™
J dim(L ™ ’

' *
—

proof into tt  oO Cases

nu

- N(p) € L

- i _

Choose Xi Lo Ly for 1 =1,2

and thus { X,,X,} 1s linearly
1 2m)

independent in eid . By lemma
p

3.1 part 2) we see that

N, (X,) nN; (X,) =O

Now using lemma £.2, we

¥ 4 (%4) &gt; max [ord (q)] for 1 = 1,2
qe (ti-1) nu

and by property (R.3) « &gt; Ne see that

-
i= %,-k

cet

11)

(111)



But (1) - (111) implies k, + k~ = k and ord(q) = ky

for all qe (1 = 1.) NU and for each 1 = 1,2

In this case 1% *3 posslble to

i
choose X4 g Ls - Ly 3 X4 not

in N(p) ; for some 1 , say 1

and X, € N(p) - L, . Thus

{ X55} 1s linearly independent in

(v,)
nif and hence by lemma

n

part 2) we see that Ny(X;) Nn N.(X,) = 0

Now since 2eplLy, # N(p) - 0 . we see that N,(X,) DL_ nN
and thus k, = k. (¥) be ’ or

SAR)(7 (v)

But lemma 2.2 says

+

cy = ¥,(X;) &gt; max[ord (q')
qe (L'-L) n 11

- (vi)

Now from (iv) - (vi) LN rade Fa J.r~y ohne_ 0»

ro - Ic I) k-

Thus o—-~/~\ 7 Ce. wed C £ (tt -

aim that rt DO N(;

) and each

for some .

otherwise we can choose VY, D N(p) - LkL

and 2 for some 1 = 1.2 and thus by lemma 3.1

part 2) we get that

\n N,(Y,)V4 (X,) A \Ly =J te » 2 (vii)



Then as in (v) above we see that

N, (Yy) 2 L, nN(p) ,

and thus ky (¥;) &gt; k - 3 (viii)

ind

ky (X4) &gt; max[ord (q)] ~ ©
iqe (L--L) NU

 1x

Cor

Now from (vii) and (ix) we see that ky =.

t = 1.2 , contradicting property (R.3) of e . Statement

1) is just the fact that each submanifold Ll has

ro0-dimension 1 §&amp;

Corollary 3.1. Under the assumptions cof Theorem 3.2

f k, &gt;2 for 1 =1,2 then d &gt; k + 2

Proof. From part c¢) of the above theorem we see

that since k, &gt; 2 , then N(p) C L, and thus d &gt; k +

Since L has co-dimension 2 in Mo

&gt;

Corollary 3.2. Under the assumptions cf Theorem 3.2

N(p) = 1: #0 for 1=1,2, then k = 2 and thusi

£ = k. » -

Proof. By part c)

since N(p) - Ll £0 for 1

oy property (R.3) of e we have k = k,

¢{ the above theorem we see that

1,2 , then k = 2 and thus



Corollary 3.3. Let Dp ¢ M, be &amp; conjugate point cof

order k and #(p) = 2 and suppose that the conjugate

variety near p consists of three (d-1)-dimensional sub-

manifolds IL of M_, 1 &lt; 3 intersecting at p in

Zeneral position, i.c

1) Each two submanifolds L* and LY are I. general

3&lt;¢&lt;3. (mus tt-1tn1position for 1 #£# J . 1 &lt; |

ls a (d-2)-dimensional submanifold of M_, for

2) T ‘dana 1° are in general position fr~ ¢”

|

lg

1 J.sV3.8 1.3. 1 #3. (Thus L

(d-3)-dimensional submanifold of M_

Then:

a) For eacli ordered triple (i,j,k) of distinct integers,

© 7 all points in Pou rik) have theJ

et

same order k.

5) For each palr (1,J) of distinct integers,

311 points in 11d - I, have the same order k-

4
» A.l pcints in TT have the same order

J &lt;3,



Since dim L -

1s connected for each 1 =1,2,3 . Now each point in

= - (rtd U pik 1s a regular conjugate point and any two

points p, and p, in wt - (1.1 u Li can be joined

oy an arc vy that will meet at most a (finite) number of

Proof. &amp;) we see that L* -

singular conjugate points of the type described 1n Theorem

3.2. Thus we can cover &lt;Y by a finite number of convex

nelghborhoods given by property (R.2) of «¢

Theorem 3.2 we see that ord(p,) = ord(r

3) follows from a) and property (T°

2) f.llows from property (R.3) of

Using

Ne now show bv examples that if Lk is a singular

conjugate point of order two then we can have the three

~ases:

3) L, N N(p' O

0) dim (L_ Nn N(p)) =1

2) dim (L_ n N(p)) = 2

To see this we note first that if M and N are Riemannian

manifolds, me M, ne N and el: M, -&gt; M eZ: N., - N

are the respective exponential maps then if cd and ce

are the respective (first) conjugate locus of el and e°

chen the conjugate locus of the exponential map



20 (MXN) pn) M

* the product manifold with the product

metric and we use the natural iso, (M X N) (man) = My @ N,,
 oO

Ndr Ne
+ T (M_

0
~~ fe
\

and the singular locus is given by

[ (7 ) M oe Cc’ )  RA

have only regular conjugate points.

This is well-known and can be found in (8) .

if both C' and C°

Now take I”

solid. The (1st) conjugate locus of E° is an ellipse

E and the null spaces of the differentlal of el are only

ry
a "

tangent to this ellipse at the ends of its major and minor

axes since the null space in the Riemannlan case is always

orthogonal to the rays in the tangent space.

not at the end of one of the

principal axes of E . Thus N(p) n E, = 0 and

N ~ N h N Nn = 0(p,q) p @ N, and thus N(p,q) 0 Ly oy
in (**\) above).

1) To see a) take p = ¢

&gt;) To see b) take 1 as in 1) above and gq at the

end of a principal axis.



™ gee c¢) take as I ) above

We n~1" - 3ifferentiable variety V a "smooth cone at

P

be

* V is the image under a diffeomorphism

nb - M
m 2 $(0 ) = Pp 0f the a1gebra i Cc »ariety C given

f *3 ret

vhere CP = 2 xg - x3 - We have the following:

Proposition 3.1. L~~
“

~ ““mgular conjugate

ooint, such that #(p) = ¢ assume that the local con-

jugate variety at p 1s a smooth cone. Then all points

im V - »p have the same order 2 if k is the order of

Proof. Let X RS , dé(X) = r,(1) where r is the

ray through op in M_ (i.e. r(t) = tp) . We note that

X 1s not tangent to any smooth arc in C since rr,(1)

is not tangent to any smooth arc in V (to see this use

property (R.2) of e and lemma 2.2).

Let P be any 2-plane through O in re

£ € P_ . Then PN C consists of two ¢® curves inter-

Secting in general position at O . Let vt

vi(1) = p be their images under &amp; . Then

{vi() 3 1=1,2% is linearly independent so

(a,b) =» M_



J—

~ (0) = ME(1) + bys(1)

vhere ? and 1 are real numbers different from zero.

[t follows from property (R.2) of e that

(VE) Nong (vE(1)) = 0

Since V - p has two connected components exach'

consisting of regular points with the same order and since

cach curve vr has points in both components, using prop-

arty (R.3) of e and lemma 2.2, we see that

N (21) @ Np (¥S(1)) = N(p)

ind if ky = ky (V/(1)) then k =k, =

boints in V - p - have the same order, 3

and thus all

To prove the next theorem we need

Lemma 3.2. With the assumptions :¢° lemma _.l1 suppose

that dim py = 4 £2 and let VY (M,) 5 such that

N.(X,) #0 for 1-2 "~~ I: ¥, =X, +1 are pair-1'V73 i i
| oo (Mp)p
vise linearly independent T , then the subspaces

n

N.(X,) are independent for i =1,2,3

root TT, surfices to show thaw

No (5) Nn (Ng(X)) + Ny(X,)) =
~

!
1



T'o show this we note first, that since by assumption Xy

are pairwise linear by independent, then

a = MX + AXs + Xx, for some reals

Ms As # 0 and % e L, (Recall dim L, = ¢ -

Now let A ¢ N, (X53) n (Np (X41) + N; (X5)) . Thus A =

A, e N,(X4) 1=1,2, and hence

2 2 2
J) = eg (Xq # A) = Me (X) # By) + Asef

IN

Thus to show (*' i” suffices to show thr*

(eo(x) #8) e
Ars As 4 0 . To see this note that since dim L, =d - 2

using property (R.2) of e we have: r,(1) = HXy + BX

for some reals W,, uy, # 0 (here r(t) = tp 1s the ray

through p in Mo). Now if C, . 1 = 1,2 are any real

numbers, we have:

2(ry (1) # (CpA] + Cphyp)) -
2 2

lL, Coe (X, # A,) + L,Crel(X, # Bh

This implies, by property (R.2) of e . that

C18 + CoA, = O and since by lemma 3.1 we know that

N,(X;) nN, (X,) = 0, we get C, = Cy = 0 I

Theorem 3.2. The local conjugate variety at a point

o in M cannot look like the pictures



where: 1) each IL* is a (d-1)-dimensional submanifold

of M_ (submanifolds with boundary at the intersection,

sxcept IY for pictures a) and Db) ).

2) IL} and 1) intersect in general position

/
LS i. ;

———_
3,3

[Pa 3 submanifold and caim.
ln.

Proof. 1 case, dim

at Pp for

de f*-st prove that a) and cc)

in both cases using proverty (R.7) of e and lemma 2.2,

ve see that there exists xX. € Ly - Ly such that

Np(Xy) = N(p) for some 1 =1,2,3, say 1 =1 .

3ince all points in IL have order equal to the order of

") then as in the proof of theorem 3.1, we see that

2 .

2 (I, # N(o
»

Thus by lemma 3.1, if Xs £ Ls - L, then N,(X;) NN, (X,) =



vhich with N; (X41) = N(p) implies N; (X5) = 0 and

lemma 2.2 says 1,2 - I. has no conjugate points, contra-

diction.

To prove that b) cannot exist we take Xy € LJ * Is,

1,2,3 and then by lemma 3.2 we see that the subspaces

vo (X40) are independent for 1 = 1,2.3 .

Ehe order of the pieces are as follows:

Now assume that

ord (I - 1) =k, for 1 =2

2 has points of order kK, and r.

Jsing property (R.?) of e and lemma 2.2 we see that

 (M4) &gt; ky for 1:7 7, k(x

and k, + k  Ir -

_ ky.

zrd(p)

7
r

| 1
»

(11)

‘see plcture b)

Since N, (%4) are independent for 1 = 1,2," we have

&lt; (X,) + k(X,) + k(X3) &lt; k and thus by (1) we see that

L + k, + ki,
J’
~

Ir (111)

Now (11) and (iii) implies k, = O which as before

cives a contradiction.

2 2 case, dim L _ u

Since dim L &lt; 4 = 13

(only for pictures b) and

and bv assumption 11 and 1.2

S
 py

2 3L”-NLY -Lintersect in general position at p , then £0



But if PI Lc NL -1 the local conjugate variety at

7 looks like

"

2

(1) contradicts property (R.3) of e and (Il) says

1 1s a regular conjugate point and thus 12 and LJ are

not in general position at q , contradicting the assumption

chat 12 and 1S are in general position at p BR

Proposition 3.2. Let ©p € M, be a conjugate point

of order k and #(p) = 3 . Suppose that the local con-

jugate variety at p consists of three (d-1)-dimensional

submanifolds 11 ]
- 1.2.3 , of Mo and that

. &gt; .

3, a1” 17 intersece’;, in general position at D for

[ 1s &amp; (d-2)-dimensional submanifold of M_

Then asl pnints in 1,1 - I, have the same order Kk, for

-1.2,3 and k. -~ w  Ww



Proof.
~ 1 _

Choose xy £ Ls Ly for
= 1,2,3 . Since all points

in I. have the same order k

as in the proof of Theorem 3.1

we can show es(1, # N(p)) =0

Now by lemma 3.2 the subspaces

N, (X;° are independent for

I = 1 2,3 1)

Let the orders or the pleces be as follows:

r+ - I, has two pleces of orders kK, and

Kg on for 1 =1,2,3

Ne have to show k, 2 ks 5 for Lo=1,2,3

Lemma 2.2 implies

 (X,)&gt;k1) 2 Ky» Kya

On the other hand (i) , (ii) and property (R.3) of

(11)

oy

JV

£, (X5) + k, (X,) + ky (ay (141)

3ut (11) and (iii) implies

L ky,» for 1=1,2,31

Ne remark that if p Mo is a regular conjugate point

and if LL is the local conjugate submanifold at © then



as 1n the proof of Theorem 3.1, we see that

eo (L, # N(p)) = 0. Then by lemma 3.1, we get N(p) C L,
if ord(p) - =

This is a result of F. {. Warner and Ju. H. C. Whitehead

cited at the beginning of this section.



v4 Tangent Vectors to the Conjugate Varlety

In this section we give a characterization of the

tangent vectors to the conjugate variety at a point p ¢

in the cases where p 1s a regular conjugate point or

vhen p 1s a singular conjugate point as in Theorem 3.1.

Ne use here some notation and definitions of (° \

Definition 4.1. A cone

the f "lowing properties:

is a subset C of = with

1) AY  ¢ forall X eC AY; . &amp; li (here R denotes

he real numbers).

2 C 1s 2 closed set in R

Glven &amp; point p ¢ gd ye g82y that a subset Co of

&gt;a 1s &amp;. cone at r 2

p+CC,,=*% [

vhere CC 1g . cone in T

Def*»"+ion L 2, Let e- M,- -

entlal mar an? nn» be a point in Mo ,

bo regular expon-

The conjugate cone

at Do 2 te subset Co of Mo, glen by

~N
2 L

- . a2 _

£ (Mp) ; e (X # A) = 0 for some A . N. CASO]



[+ 15 easy to see from the linearity and continuity of

he symmetric tensor product that Ch 1s actually a cone

at DD .

Ne note that C.. . S

noe Ny
p: O

’ (My) given by

3

subspace

3, &gt; ; e2(X #£ (M) 5 eX#Ay

Nnere

oo

Sa 1s the linear

We denote by Ip the intersection

Ls r Sh

and by 1i(p) the dimension of

oroperty (R.2) of e that

I,  It follows from

1(p) "dim S. A
A (4 1"

Theorem 4.1

map ar? nn ¢ ML . Then

Le" &gt;
pL— a .. be a regular exponential

R - 1 iftm). = ¢c, = Ig
«

3 . regular eonjugate point.

2
1 2 _

C,=L UL, I =1L
on
ia

2 a
1 2 , Singular conjugate

point as in Theorem 3.1 (here we use the notation of

Theorem 3.1).

Proof. 1 Since cf(m) 1s « (d-1)-dimensional sub-

manifold of M_ (c.f. (4) , Theorem 3.1), using inequality



(4.1) , 1t suffices to show that

my CS, for sll

To show this we note that given A ¢ H,

extension of A given by Corollary 2.1, we have

1s the

= (xX # A) = 0 for all Xe (iI,

This follows exactly 1n the same way as in the proof of

Theorem 3.1, and we recall only that since p 1s by assump-

tion a regular conjugate point, then all conjugate points

near Pp have order equal to the order of rc

&gt;) We first note that lemma ~ 2 implies I: u Le cc,
n

and from the proof of Theorem 3.1 we have e (L. # Ny

L.e., L, CI,

To show that Cj C Ly u Le we shew that '° ~

not in Ly u LS then X 1s not in C_ . To see this take
1 1 _

X not in Ly , and x. E Ly - L, , for 1 =1,2 . Now

from Theorem 3.1 we have

ond by lemma

N, (%,) @ N, (X,) = N_

a

I, *)
“x} (17, (X,) @ N, (X,)) =

|

[ %%|



But (*) and (**) implies N, (7) = 0.

in C., ’

re ©. not

To see that I, C Ly i: suffices to note that Theorem 3.1

implies that if Y e I L_ , then k,(Y) =k, &lt; k and

thus Y 4s not in .



5 Some Problems on the Conjugate Locus.

ve need some definitions and notations.

We recall that a submanifold of M_ 1s a pair (L,$)

vhere L 1s a manifold, 6: L, &gt;M is a 1:1 smooth

map and dé is °°

Definition 5.1. We say that two submanifold (Lt, &amp;

- 1.2 of M_ have a contact of order c (c being a

vbositive integer) at a point p = M_ if the following is

crue:

bL( P ,) = P Ps € rt for - —-

2) atl (wh) = aT ((LA)]) for

If the submanifolds (LL, have contact of all

orders at p , we say that they have an infinite contact

“here.

We say that a family { 8,1} of subsets of M_ is

locally finite 17 each point p ¢ Mn has a neighborhood

T intersecting onlv a firite number of subsets S.

Definition 5.2. A subset S of M 1s said to be

veakly stratified 1f it has the following properties:



1

folds

locallv finite disjoint union of ¢® submani-

4, S=UL; . (The L; are called the strata

Sf

2) The boundary JL, = L, - L; (here Ly stands for the

closure of Ly) of a stratum is a union of lower dimen-

sional strata.

Definition 5.3. A subset S of My, 1s said to be

strongly stratified if it 1s a locally finite disjoint

anion of closed submanifolds.

Now we point out some problems on the conjugate locus

Of a Riemannian manifold.

Main Conjecture: the conjugate locus is, like the analytic

varieties, a weakly stratified subset of M . Moreover,

311 the points in a same stratum have the same order.

\ stronger conjecture is: The conjugate locus is a strongly

stratified subset of M

Tn relation with these conjectures a more specific

oroblem is to know whether or not there exists a smooth

one as stated in Proposition 3.1. Of course a smooth

cone 1s a weakly stratified subset, but not a strongly one.



Je now state some more specific problems.

1) Is it possible near a conjugate point p ¢ M, for the

conjugate locus to have two (d-1)-dimensional submanifolds

having an infinite order of contact? Obviously, this is

not possible for an analytic variety.

2) It would be very interecting to have examples of

1ifferent types of intersections at a conjugate point.

Tn particular, is there an example of a conjugate

point p ¢ M, near which the conjugate locus is a union

of two (d-1)-dimensional submanifolds, not in general

boslition at
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