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ABSTRACT

On the Conjugate Locus of a Riemannian Manifold
by

Nathan Moreira dos Santos

Submitted to the Department of Mathematics on
August 22, 1966, in partial fulfillment of the requirement
for the degree of Doctor of Philosophy.

The conjugate locus of a Riemannian manifold splits
naturally into two subsets--the regular locus and the
singular locus. The regular locus and those properties of
the exponential map that depend on 1t, have been studied by
J. H. C. Whitehead, S. B. Myers, L. J. Savage, F. W. Warner

and others. The study of the singular locus is started
in this work.

It 1s studied how the order of the conjugate points
are distributed near a singular point p , for some types
of intersection at  p . 1In the case (the only one of which
examples are known) (*) where the conjugate locus near
P consists of two submanifolds intersecting in general
position at p , the relations between the kernel of the
differential of the exponential map and the tangent spaces
to these submanifolds are described completely. This
extends to the singular locus results of J. H. C. Whitehead
and F. W. Warner for the regular locus. A characterization
is given (in terms of the second differential of the expon-
ential map) of the tangent space to the conjugate variety
at a point p 1in the cases where p is regular and where
P 1s as In (*) above. This 1s given on the assumption
that M 1s a - C® manifold and relates to a result of
H. Whitney for analytic varieties.

It is proved a sequence of results that eliminate
the possibility of certain types of intersections at a
conjugate point. All these results are not restricted
to Riemannian manifolds, but hodd for what F. W. Warner
called a regular exponential map.
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To prove the above results, some new techniques are
developed in Differential Analysis. In particular, upper
bounds are given for the order of the singularities of a

map ¢ of manifolds, in a given direction. This is
given in terms of the dimension of certain subspaces of
the null-space of the differential of

Some problems and conjectures are stated in relation
to the conjugate locus of a Riemannian manifold.

Thesis Supervisor: I. M. Singer
Title: Professor of Mathematics
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INTRODUCTION

The conjugate locus of a Riemannian manifold (i.e.
the set of singularities of 1ts exponential map), as a
differentiable varlety, splits naturally into two subsets--
the regular locus and thé singular locus. The regular locus
and those properties of the exponential map that depend on
it have been studled by J. H. C. Whitehead in (5) ,
F. W. Warner in (4) and others.

In this work we start the study of the singular locus.
We study how the order of the conjugate polints are distri-
buted near a singular point p , for some admissible types
of intersections at p . In the case (*) where the local
conjugate variety at p consists of two submanifolds inter-
secting in general position we desecribe completely the rela-
tions between thekkernel of the differential of the expon-
ential map and the tangent spaces to these submanifolds.
This extends to the singular locus results of
J. H. C. Whitehead and F. W. Warner for the regular locus.
We give a characterization (in terms of the second differ-
ential of the exponential map) of the tangent space to the
conjugate variety at a point p 1in the cases where p 18
a regular conjugate point and when p is as in (*) above.

This is given on the assumption that M 1is a c® manifold



and relates to a result of H. Whitney in (7) for
analytic varietlies. We also prove a sequence of results
that eliminate the possibility of certain types of inter-
sectlons at a conjugate point.

These results are not restricted to Riemannian
structures, but hold for what F. W. Warner called in (4)

a regular exponential map. It was proved in (%) that the
exponential map for a Finsler space 1s a regular exponential
map.

In Section 2 we prove a sequence of lemmas that give
upper bounds for the order of the singularities of a c®
map of manifolds, in a given direction. Our results on the
conjugate locus are proved in Sections 3 and 4.

I thank F. W. Warner for reading a preliminary version

of this work and for giving me some good suggestions. I

thank D. Ebin for helping me to correct some mistakes.



§1. Preliminaries.

We are going to fix some notation and conventions
that will be used throughout this work. Manifolds will be
locally euclidean, second countable, Hausdorff spaces with
a ¢® differentiable structure. A submanifold N of a
manifold M 1is a manifold N together with a 1:1 immer-
sionof N into M. If m 1s a point of M the space
of k-th order tangent vectors at m will be denoted by
M: . (e.f. (1) for definitions of higher order contact
elements. ), Mm , the space of first order tangent vectors
will be considered as a manifold in the usual way. If
PeM , (Mm)g will denote the space of k-th order
tangent vectors at p . If f: M5 N 1s a differentiable
map of manifolds, the k-th order differential of f will
be denoted by d?d; we suppress k 1f k =1 . The space
of k=th order differentials at m € M will be denoted

k

K. . Kk
by "M, and 67f: ka(m)-a M, will denote the dual map,

corresponding to dkf . If f: M5 N 1s a differentiable
map and m € M 1is a singularity of f , we denote by N(m) ,
the null-space of df at m .

Ord(m) = k will mean: order of m as a singularity

of f equals k.
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§2. On the singularities of differentiable maps.

In this section we prove a sequence of lemmas that
give upper bounds for the orders of the singularitiescof
a C° map $: M - N, near a singularity, me M 1in a
given direction x € Mm . This 1s given in terms of the
higher order differentials of ¢ at m . We give also a
relation between the order of a singularity m of a c”
map é: M - M and the order of m as a zero of the
Jacobian of this map. Mk

We have a natural isomorphism EE%T o Sk(Mm) where

Sk(Mm) stands for the k-fold symetric tensor product

Mo H#Heo o H M . To see thlis we consider the diagram

L_nr? M £ > 85(m)

0

k
where T Mm denotes the k-fold cartesian product and
i=1

¥ 1s defined by

-~ ¥ . @ ¥ k-l
w(xl"--"xk) g= xl Xk S Mm

(here x; e M) and Ei is any extension of x, to a C

- |



vector field in some neighborhood of m). It is easily
checked that ¢ 1is a well-defined, k-linear, symmetric

map and that ¥ , the induced map is an isomorphism.

00

Now let ¢: ML be a C map. The k-order differ-
ential of ¢ at m,

k k k
d 4): Mm - L¢(m)

induces a linear map

K k
bE: ", Tb(m)
m' eI Ty (< T)

and using the above isomorphism we have

L
K, ok $(m)
b : ST(M ) -
m m dk-l¢(Mk_i)
We now define, assoclated with each direction x ¢ Mm two
subspaces Ni(x) , 1=1,2 , of the null-space N(m) of
d¢ at m, by:

Ny (X) = [A e N(m) |$2(X # A) = 0]

and

Il

Ny(X) = [A e N (X)[$3(X # X # ) = 0] .

Let ki(x) be the dimension of Ni(x) , 1=1,2 . Thus

Ny(x) € Ny(x) and k,(x) < k, (x)



Let v: (4a,b) M, a<1l<b be any C  curve in M
such that v(1) =m and v,(1) = X , where ¥,(1) stands
for the tangent vector to <y at (1) . Let o =¢ o ¥

and thus o 1s a C° curve such that o(1)

¢(m) and
0,(1) = d(x) . Let ul(t),...,ug(t) (£ = dim L) be
¢® wector fields along o which span L py for all t
Given A & N(m) we extend it to a C° vector fileld A(t)
along < and we let Y(t) = ddé(A(t)) . Thus:

£

where y, are ¢*® functions of t and ¥(1) = O .
Define

Y(1) =

i vy (D)uy (1)

M=

) !

and it is easy to see that since ¥(1) = 0, ¥(1) does not
depend upon the choice of the particular basis

{lﬁﬁt); 1¢41¢< B} . Now we let X and A denote any
extensions of w;(t) and A(t) to C° vector fields in

some neighborhood of M . Then (XA)(m) 1is an element of

Mg and
ME
X # A= (Xa8)(m) + M as element of ﬁﬂ . Moreover
m

X # A does not depend upon the choice of the extensions

X and A and



B2(x # A) = a®h((xa)(m)) + ab(m,)

¥(1) + ad(M) (1)

2 " @ Ao
In fact: d$(XA)(m)f = X _(A(f e b)) = dt|t=1(Y(t)f) = v(1)r
for all C© functions f at ¢(m) . Now we remark that
It ke Nl(X) then we can find an extension A(t) of A

along 7Y such that d°$(XA) = O . In fact, let A. be

0

any extension of A and let d$(AO(t)) = Z~(t) . Thus

!
aPh(xag) (m) = ¥o(1) e ab(m,) .

Thus we can find z & M such that dd(z) = ?0(1) . Let

Z(t) be any extension of Z along Y . Take
A(t) = Ay(t) + (1-t)z(t)

Now if A ¢ Nl(X) and A(t) 1s the above extension, then

=

a3$((x°8) (m)) = ¥(2) - 2, vi)e, () (11)

This follows because Y(1) = ¥(1) = 0 (and thus

I

v,(1) =y;(1) =0, 1<1<4%) and

a3p(x2n) (m)f = XE(A(s

-]
B
i
njn
—~
e
~
o
o
=
e

for all ¢ function f at ¢(m) . Moreover ¥(1) does
not depend upon the choice of the basis { ui(t); ek € ﬂ} .



Lemma 2.1. Let ¢: ML be any C° map and

AeM - Nl(X) s me¥M . Let v (a,b) M, a<1c<hb
be any smooth curve such that (1) =m, v,(1) =X and
A(t) be any non-vanishing C° vector field along ¥ such

that A(1) = A . Let Y(t) = db(A(t)) be the corresponding

c® vector field along o = $ o ¥ . Then there exists
€ >0 such that for 1 - e < t <1 + ¢

Y(t) = £(t)e(s) , where e(t) 41s a non-
vanishing ¢~ vector field along o , f(t) a C° fune-
tion and f'(1) £ 0 if f(1) = 0 .

Proof. The proof 1s exactly the same as in (4) for
lemma 2.3. Let ui(t) 51 <1< 4% Dbe smooth vector fields

along o© spanning Ld(t) for 81} <t .  Thus

o0

)
Y(t) = = yi(t)yi(t) ; where y, are C
i=1

functions of t . If A(1) € N(m) we have Y(1) = 0 and
since X £ Ny(X) we have ¢i(x # A) £ 0 and from (I)
we see that Y(1) # O . Thus there exists e > 0 such
that Y(t) #0 for 1 -e <t <1+ ¢ and not all yi(l)
are gero. It is easy to see that
' n
> yi(t) is a non-negative C  fuhction whose

g
zeros are all of second order. Thus by lemma 2.2 of (4) ,
this function has a C* square root f(t) . Moreover (1)

is an isolated zero of f(t) , of order one.



Define
b v,.(t)
LU 2 : |
e(t) = #71% 2 T u, (t) O A A
and (111)
4 y,(1)
it o f%(l) it

Thus e(t) is a non-vanishing vector field along o© and

00

that e 41is ¢ follows from the fact that if ¢t is a

0

zero of Y , then on a neighborhood of tO P
yi(t) = (t - to)ki(t) and f(t) = (¢t - to)g(t) , where
ki(t) and g(t) are C° functions, ki(to) = yi(to) 8

and g(to) - f'(to) £08

Lemma 2.2. Let ¢: M>1L bea ¢ map, m be a

singularity of order k for ¢ and v: (a,b) -» M,
a <1< Db be any smooth curve such that (1) = m and
Y«(1) = X . Then there exists e > O such that

order vy(t) < kl(X) <k forall t #£1,;

l -~-e<<t<1 + ¢ .

Proof. Let Cl(X) be any complementary subspace for
Nl(x) in N(p) , i.e. N(p) = Nl(XJ (o) Cl(X) . Choose a

basis {A; ; 1 <1<d} for M such that {4, ; 1 <1< k}

be a basis for N(p) , {8, 31<1¢ kl(X)} basis for

N, (X) and {815 (X)) +1¢1¢ k} be a basis for C,(X) .

]
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Now let o = ¢ o ¥ and extend { A, ; 1 <1< d} toa

g 7
basis { Ai(t) ; 1£31<4] for Mv(t) along <Y 1in such
a way that the Ai(t) be smooth vector filelds. Let

Yi(t) B d&(Ai(t)) , k(X)) +1<1<d. Using lemma 2.1,

we have:

vH(t) = £ (t)ey(t) , ky(X) +1 <1< d where e(t)
are non;vanishing ¢® vector fields along o , fi(t) are
¢ functions of t , f,(1) =0, f£;(1) #0 for
kl(x)+1_<_1gk and fi(l);éo for k+1<1<ad
Thus we can find & > O such that fi(t) £.0 30t AT

and 1 -e<t<14+¢e, kl(X)+1ii_<_d.
Now using (III) (c.f. proof of lemma 2.1) we see that

&i(x # A1(1)) = S%ﬁll + d&(Mm) where cj # 0

k) (X) +1 <1< k. Because éilx # € (X) 1s an isomor-

phism we see that { e (1) ; k;(X) +1 <1< d} is linearly
independent. Thus we may assume that { ei(t) (X)) +1<1¢ d}
1s linearly independent for 1 - ¢ < £t < 1 + &€ . Now since
fi(t);éo for k(X) +1<1<ad, t#1, 1-e<t<l+e
we see that the order of ('Y(t))f_kl(x) for t #£1,
l-e<t<l+e 8

Remark 2.1. Under the assumptions of lemma 2.2

ifdimM=dim L = 4 , Nl(X) =0 and X £ N(p) , then we

can find coordinate systems KysoosXy and Vys-+-52Yg On
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nelghborhoods U and V of m and ¢(m) respectively
such that ¢(U) € Vv and

Wz (Ve)) = £y(6) 5-35 (o(5))

for 1 < J <4, where fJ are C° functions of t and
£,(t) #0 forall te y1(U) and da-k+1< j<d and
for 1< j<k, t=1 1s the only zero of fJ and
e B

j(1)

Proof. Same as in (4) for lemma 2.5.

Lemma 2.3. Under the assumptions of lemma 2.1 if

A e Nl(x) - Ny(X) .

Then Y(t) = f(t)eft) for 1 - e < t <1+ e where e(t)
1s a non-vanishing C© vector field along o , f(t) a
C® function and t =1 1s a second order zero of f i.e.

£(1) =£'(1) =0 and £"(1) £ 0 .

Proof. Let A(t) Dbe the extension given immediately
before lemma 2.1. Thus

! ! il g
Y1) = 2 oy (w ) - ¥Q) = 2 oy (1)) -0

Now since X £ N,(X) wusing (II) we get ¥(1) £ 0 . Thus

L

g(t) = = yi(t) is a non-negative C© function having a
=i

zero of order four at t =1 . Hence g(t) = (t-l)uh(t)
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for 1 -e<t<1+¢€, where h 1s a ¢® function of

t and h(l) = g(u)(l) 0. Thus g(t) £ 0 1f t £ 1,
l-e<t<1+¢e and Y(t) # 0 for the same values of t .
We define a non-vanishing ¢~ vector field e(t) along o©

for 1 -e<t<1+ e as follows:

Y(t

e(t) = ;% if, Lt £ S

and (Iv)
e(1l) = %L%%T

where f is a C° square rocot of g . To see that e 1s

C® we note that yi(t) = (t—l)zki(t) and
f£(t) = (t-l)zh(t) where k, and h are ¢® functions,
k,(1) = y4(1) , and h(1) = £"(1) #0 8

Lemma 2.4. Under the assumptions of lemma 2.2 there

exists € > 0 such that

order v(t) < ko(X) < kl(X) < k for all t #1,
1l -e<t<1l+¢. |

Proof. Let {A; ; 1 < 1<d} be abasis for M
sueh that

{45091 < 2.4 ke(X)} is a basis for N,(X)

{A51¢14

|

lcl(X)} is a basis for N, (X)

and { A; ; 1 <1<k} be abasis for N(p) .
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Now by lemmas 2.2 and 2.3 we have an extension
{A;(8) 31 <1< d} of the above basis along 7y such
that if Y, (t) = d&(Ai(t)) then:

Y, (t) = £y(t)ey(E) , k,(X) +1<1%4d (*)

where fi are c”

k+1<1<d and t =1 1s the only zero of f, on the

functions such that fi(l) £ 0 for

interval 1 -e<t <Ll +¢e for ky(X) +1<1<k.
Moreover { ei(l) 3 kl(X) +1<1<d} is linearly indepen-
dent. Now let CE(X) be the subspace spanned by

{8y 5 K fX) =2 ¢ 214 kl(X)} . Thus

¢3|X # X # CE(X) is an isomorphism and

ba(X # X # by) = 3—%{2 + a®p(F)  rfor

kE(X) +1<1¢ kl(X) where C, # 0 (this follows from
(Iv)).

Thus {e;(1) ; kp(X) +1 <1 <d} is linearly independent
and thus we may assume it 1s linearly independent for

l-e<t<1+¢e. From this and (*) it follows that
order v(t) < kg(X) % kl(X) <k for

1l -e<t<l+e, t#£1 &

Now we consider C~ maps é: M->M. Let m be a point
of M ., Then to any pair of coordinate systems Xys 000Xy

and Vis++2s¥3 OD neighborhoods U of m and V of &(m)
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we associate a C° function J: U =R s the Jacobian of

$ with respect to these coordinate systems. Let m be

a singularity of order k and X € Mm be a directlion such
that Nl(X) =0 and X £ N(m) . Let <Y be any smooth
curve vY: (a,b)_-;M’, a<l1<b with (1) =m,

Y, (1) = X . We claim that t =1 1s a zero of order k

of J e v¥. To see this let Xys00 09Xy and Vys+-2Yg

be the coordinate systems given by remark 2.1. Thus

di(.Jr ) = di(f (t)---fd(t)) =0 if 1< k
g * Pt ;
and (V)
Kk , ,
o | R L YR SO R

Now we show that this does not depend upon the cholce of
the coordinate systems. In fact, with respect to the
above coordinate systems, we have:

d a2

oy _ - .
d¢(5§5) = ? a4 e where A = (aij)' U - R
is a smooth map. Now if (U‘,ul,...,ud) and (V',vl,...,vd)
1s another pair of coordinate systems at m and $(m) ¥

we have:

: d a°

d$(5%3) = i 24 4 3;; where A' = (aij): U' 4R

o & 0
isa C map. Thus 3;3 = 2 Csj Eﬁ; where
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2
¢ = (Cy,)t UN T Ry 1s a smooth map. Similarly
2
g ) . . ' d %
By—J—gdSJ'a‘v—s' and D—(dSJ).VﬂV - R s a C
map. Now A = (D e $)Arc™t (*)

and 1f J =det A, J'=4det A' and f = det(D o $)(det c)t

we hgve J =f « J' and

i-r
i : d
L= 2 ) —= - L@
dt =0 T dt dt

Definition 2.1. We say that a C¢© vector field X

on a manifold M i1s transverse to a C° map ¢: M o N

if Ny(X) =0 for all me M.

This roughly speaking, means that X 1s never tangent to
the singular variety of ¢ . We now prove the existence of

a useful coordinate system.

Lemma 2.5. If me M 1is a singularity of order k

of a €° map ¢: M - L , then there exists a coordinate

system (U,xl,...,xd) at m such that 3559;—1- (qa) ,
-k+

1 <1<k spans N(q) for all q € U, with ord (q) = k .
Proof. We first note that dé: M_ = Ly(y) 2nd

5b: Ly(m) = My have both the same rank d - k (here

d=dim M, £ = dim L). Now let (V,yl,...,yz) be any

coordinate system at ¢(m) . We note that since rank (6$) =

d - k , we may assume that 5¢(dyi) = d(yi o ¢)
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are linearly independent at m , for 1< 1<d - k.
Thus by (3) page I-18 we can find smooth functions
Xq_x4i ¢ 1 £ 1<k such that (U;xl,...,xd) is a

coordinate system at m with ¢(U) €V and Xy =50 ¢

for 1<1<d-k. We claim 5——§~—— (a) € N(q) for

Xa-k+1
1<1<d-%k if ord (q) = k .
‘ ox
o)
In fact: db(gz——— (a))y; = 54— (a) = 0
Xkt J Xkl

for 1< j<d-k and all q e U . Now if ord (q) = k ,

q € U we have
d(yd-k'i-"! ¥ é) = 2 7\1-. d(yr e &) at q
for some real numbers A and thus
ab (x> (0))¥g ey = ©
d=-k+1

for 1< j<Lb-d+k 1

Corollary 2.1. Under the assumptions of lemma 2.5

if X e N(m) then we can extend X to a smooth vector

fleld X on some neighborhood U of m in such a way that

xq e N(q) for all q € U with ord(q) = k .

Proof. Usling the coordinate system given by lemma 2.5

k
d d
ay EEZ (m) then take X = 151 ay 3}; ]

~

5 & Xm = ’

™

2 4
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§3. On the conjugate locus of a Riemannian Manifold.

In this section we prove our results on the conjugate
locus. These results are not restricted to Riemannian
structures but hold for what F. W. Warner called in (4)

a regular exponential map. It was proved in (4) that the
exponential map for a Riemannian manifold, and more gener-

ally for a Finsler space is a regular exponential map.

Let M be a d-dimensional manifold and m a fixed
point in M . Let e: Mm >M bea map and if p 1s
a point in Mm we let N(p) denote the null-space of de
at p and r the tangent space at p to the ray through

p
P .

Definition 3.1. A map e: Mm - M 1s called a regular

exponential map if it satisfies the following:

e

(Rl) e is C on M, except possibly at the origin
where it is at least C' , and de(r,(t)) # O for all t ,

where r 1s any ray and r*(t) its tangent vector at

=(t) .

(R2) The radial vector field T i1s everywhere transverse

to e, i.e. Nl(Tp) =0 forall peM ,p #£0 .

(R3) For each non zero point p in M. there exists a
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convex neighborhood U of p such that the number of
singularities of e (counted with multiplicities) on r N U 3
for each ray r which intersects U , 1s constant and

equals the order of p as a singularity of e .

The set of singularities of a regular exponential map

e Mm - M 1s called the conjugate locus of e and 1t is

denoted by C(m) . The conjugate locus splits naturally

into two subsets, the regular locus, denoted by ¢'(m) and

the singular locus, denocted by C®(m) . (See (%) for

definitions of these loci.)

We need the following

Definition 3.2. The intersection number or branching

order of a point p in Mm » 1s that positive integer
#(p) such that there exists some convex neighborhood U
of p having the following property: for all convex neigh-
borhood V of p, VCU and foreachray r, r NV
has at most #(p) distinct conjugate points and there
exists some ray r such that r N V has exactly #(p)
conjugate points.

Thus if #(r N V) denotes the number of conjugate

points on r N V , we have

Hp) = ins sup #(r n V)

V convex
peVCTU
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We remark that if p 1s a conjugate point of order k ,
then property (r.3) of the regular exponential map
implies #(p) < k .

One natural and important thing in the study of the
conjugate locus .is to know how the order of the conjugate
points are distributed near a conjugate point p . In the
case where p is a regular conjugate point, property (R.3)
of a regular exponentlial map says that all points near p
have the same order. It was proved by F. W. Warner ((4),
Th. 3.2) that CT(m) 1s an open dense subset of C(m) ,
having a structure of (d-1)-dimensional submanifold of
Mm such that the inelusion 1: Cr(m) - Mmn 1s a submanifold
with the relative topology. Moreover N(p) € ¢ (m)p if p
1s a regular conjugate point of order k > 2 . Those results,
in the case where M 1s an analytic Riemannian manifold
and e: Mm - M 1ts exponential, were proved before by
J. H. C. Whitehead in (5) . (With the restriction that

if k>3 then N(p) € c¥(m)p) .

In this section we use the techniques developed in §2
to prove some results in the case where p 1is a singular
conjugate point. We solve completely the problem in the
case where the local conjugate variety is a union of two

1 2

(d-1)-dimensional submanifolds L and L intersecting

in general position at a point p . This is the kind of

singular point that 1s found in product of two Riemannian
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manifolds. We also prove a sequence of results that
eliminate the possibility of certaln types of intersections
at a conjugate point p .

Given a point p in Mm we have as in §2, the linear

map
2

M
e () # () -+ 2l

b

d 1t tricts to N as
an restr (Mm)p # N(p)

M
e2: () # N(p) - ag{ﬁ););

For each vector A in N(p) we assoclate the linear map

M
¢A: (Mm)p = a’g%‘(Mﬁ%'

P

defined by ¢A(X) = eg(x # A) .

If L, is any linear subspace of (1\»1m)p such that

Lp # N(p) 1s contained in the kernel of eg , then for
*
each A g N(p) we have the linear map ¢A induced by *A

2 (Mm) Mo
*A“TP"" e (M 2

p m°p

Lemma 3.1. With the above notation, we have:

1) <}>Z=o‘=)A=o
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2) If X, € (Mm)p > 1=1,...,n where n =d - dim L,

n
then § il — ,')En} linearly independent = N

N.(X,) =0
e e | ’

where Xi = Xi - Lp :

3) dim(Lp NN(p)) >k =-n+1 if k>n + 1 where

k = order of p as a conjugate point.

Proof. 1) If A = 0 then it 1s trivial to see that
*
¢A =0 .
*
Assume that éA = 0 . Thus

0 = by(r,) = ep(ry, # A)

and using property (R.2) of a regular exponential map
we see that A = 0 .,

2) Follows from 1). In fact if A 1is a vector in

n »

1N Nl(Xi) and { Xl g1g n} is linearly independent
then ¢, = O and thus by 1) , A =0,

3) Assume dim(Lp N N(p)) <k -n and let C be any

complementary subspace for Lp n N(p) in N(p) . Thus

dim C > n . Let { Xy,...,X,} be a basis for C . Thus

- My )
{ %5 1<1<n} 1s linearly independent in LE—-E
p

X
and by 2) we have N Nl(Xi) =0 . But since k> n + 1

1=1
we have Lp N N(p) # 0. Now if A g Ly N N(p) we get

$p(X;) =0 for 1<1<n and thenby 1) , A=0,



-22-

contradicting the fact that L, n N(p) #0 §

We assume from now on that M and e are C.

Theorem 3.1. Let p be a conjugate point of order

k and #(p) = 2 and suppose that the conjugate locus
near p consists of two (d-1)-dimensional connected sub-
manifolds L1 and L2 intersecting in general position
at p. (Thus L = ! n12 1s a (d-2)~-dimensional sub-
manifold)) Then there exists a convex neighborhood U of

P such that:

a) ord (q) =ord (p) =k forall qeL NU

b) ord (q) = ky (ki constant) for all q € (Li -L)NU
and for each fixed 1 = 1,2 . Moreover kl +~'.k2 =k .

¢) If k>3 then dim(L, N N(p)) > k - 1 and L; > N(p)

for some 1, 1< 1i%2. Moreover if

dim(Lp NN(p)) =k -1 then k; =1 for some 1 .

1

d) Lp

nMN(p) #0 for 1=1,2, k> 2,

Proof. a) It follows from the proof of Th. 3.1 of
(4) and the property (R.3) of the regular exponential
map that there exists some convex neighborhood U of p

such that a) holds.
b) and c¢). We first show eg(Lp # N(p)) =0 .

In faect, if X, e L, and A, e N(p) , let A denote the
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smooth extension of Ap given by Cor. 2.1. Now using (I) ,

§2 and since d2e((XA)(p))f = X, (A(£ o e))

0 we see that
eg(X #A) =0 .

Now we note that since by assumption #(p) = 2 we have

k >2 and for k = 2 the theorem is an immediate conses
quence of a) and the property (R.3) of e . Thus we
may assume k > 3 and then by lemma 3.1 3) , since

dim Lp =d - 2 we get

C = dim(Lp nN(p)) >k -1.

We divide the proof into two cases

12 case. ¢ =k 1l.e., N(p) C Lp "

L

1 i
L Choose X4 ¢ Lp - Lp for 1= 1,2
%, X and thus {il,'}fe(} j).s linearly
’ independent in —§%~B . By lemma
p
3.1 part 2) we see that
Nl(Xl) n Nl(x2) =0 (1)
Now using lemma 2.2, we get
ky = kl(Xi) max [ord (q)] for 1 =1,2 . (11)

>
q e (L*<-L) n U

and by property (R.3) of e we see that

k, +ky, > k (111)
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But (1) - (1ii) implies k, + k, =k and ord(q) = ky
for all q e (L1 - L) N U and for each i = 1,2 .
22 case, C =k =1 . In this case it 1s possible to
i 2 -
E | It choose Xi E Lp Lp % Xi not
A, P12 in N(p) j for some 1, say 1i =1

and X, € N(p) - L

p

Thus

{ ii,fa} is linearly independent in
()
__ifg and hence by lemma 2.2

P
part 2) we see that Nl(Xl) n Nl(Xz) =0

i

Now since egle # N(p)
and thus k, =k, (X5) > k - 1

But lemma 2.2 says

ky = ky(X;) > max[ord (q)] > O
qe (L'-L) NU

Now from (iv) - (vi) we get that

kl + ké = K and kl =0

(1v)

0 , we see that Nj(Xp) DL, n N(p)

(v)

(vi)

Thus ord(q) = k, for all q e (Li -L)NU &nd each 1,

1<1i<2. Nowwe claim that L; D N(p) for some
1 <1<2 ., For, obtherwise we can choose Y

7 |

P
part 2) we get that

Nl(Xi) n Nl(Yi)

0 4 44°¢¢

i,

i
o] - L
N(p) - L,
and Xi el =-L for some 1 = 1,2 and thus by lemma 3.1

(vii)
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Then as in (v) above we see that

N, (¥y) 2 L, N N(p) , 1 <12
and thus Kk (¥;) >k -1, 1<1<2 (viii)
and '

ky = kl(Xi) > max[ord (q)] > O (1x)

qge (11-1) nvU
for 1<1<2.

Now from (vii) and (ix) we see that k; =1 for

i =1,2 , contradicting property (R.3) of e . Statement
d) 1is just the fact that each submanifold L has

co-dimension 1 B

Corollary 3.1l. Under the assumptions of Theorem 3.2

if k, 22 for 1 =1,2 then d 2> k + 2 .

Proof. From part c) of the above theorem we see
that since k, > 2 , then N(p) C L, and thus d > k + 2
since L has co-dimension 2 in Mm .

Corollary 3.2. Under the assumptions of Theorem 3.2

1f N(p) - L; £0 for 1=1,2, then k = 2 and thus

kl = Ik

2 = 1 .
Proof. By part c¢) of the above theorem we see that
since N(p) - L; #0 for 1 =1,2, then k = 2 and thus

by property (R.3) of e we have ky =ky = 1.
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Corollary 3.3. Let p € Mm be a conjugate point of

order k and #(p) = 3 and suppose that the conjugate
variety near p consists of three (d-1)-dimensional sub-
manifolds L' of M_, 1< 1< 3 intersecting at p in

general position; i.e.

o and LJ are in general

1) Each two submanifolds L
position for 1 £J, 1<1, 3<3. (mhus i -rlnyd

is a (d-2)-dimensional submanifold of M.« for % £ 4 5]

2) L 1J and L° are in general position for all

3
1<1, j,8<3, 8#1,3, 1#3. (thus L= n !
1=1

is a (d-3)-dimensional submanifold of M 5
Then:

a) For each ordered triple (1,j,k) of distinet integers,
1<1, j, k<3 all points in it - (LiJ U Lik) have the

same order ki ‘
b) For each pair (i,j) of distinct integers, 1< i, J < 3,
all points in L1J - I have the same order ki + kJ

¢) All points in L have the same order k .
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Proof. a) Since dim L =d - 3 we see that i

- L
is connected for each 1 = 1,2,3 . Now each point in
It - (LiJ U Lik) is a regular conjugate point and any two

points P, and p, in e (LiJ U Lik)

can be joined
by an arc ¥ that will meet at most a (finite) number of
singular conjugate points of the type described in Theorem
3.2. Thus we can cover Y by a finite number of convex
neighborhoods given by property (R.3) of e . Using

Theorem 3.2 we see that ord(pl) - ord(pg) = ky -
b) follows from a) and property (R.3) of e

¢) follows from property (R.3) of e B

We now show by examples that if k 1is a singular

conjugate point of order two then we can have the three

cases:

a) L, 0 N(p) = 0

]
e

b) dim (Lp n N(p))

]
no

¢c) dim (Lp n N(p))

To see this we note first that if M and N are Riemannian

manifolds, me M, neN and e': M M, e°: N N

are the respective exponential maps then if C1 and 02

1

are the respective (first) conjugate locus of e and e2

then the conjugate locus of the exponential map
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e: (MX N)( —> MXN

m,n)

(here M X N is the product manifold with the product

metric and we use the natural iso. (M X N)(m,n) z M @ Nn) "
is

(et W)L W1 B EF) (*)

and the singular locus 1s given by

L= (chxN) n (m xc®). (++)

2 2

if both C and C have only regular conjugate points.

This is well-known and can be found in (8)

Now take M = N = E2 the 2-dimensional Riemannian ellip-

soid. The (1st) conjugate locus of E2 is an ellipse

E and the null spaces of the differential of e1 are only
tangent to this ellipse at the ends of its major and minor

axes since the null space in the Riemannian case 1s always

orthogonal to the rays in the tangent space.

1) To see a) take p = q not at the end of one of the

principal axes of E . Thus N(p) n Ep = 0 and

N(p,q) = N, @ N, and thus N(p,q) n L

in (**) above).

(p,qf = 9\ e

2) To see b) take p as in 1) above and q at the

end of a principal axis.
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3) To see c) take p =q as in 2) above.

We call a differentiable variety V a "smooth cone at
P E Mm” if V 4is the image under a diffeomorphism

$: r4 M, $(0) = p of the algebraic variety C given

by
d
c=[qeR ; f£(q) = 0]
d"l 2 2
where f(x,,...,X5) = 2 X; - X5 . We have the following:
1 al = AT

Proposition 3.1. Let p be a singular conjugate

point, such that #(p) = 2 , and assume that the local con-
Jugate variety at p 1s a smooth cone. Then all points
k

in V- p have the same order > if k 1is the order of

P

Proof. Let X ¢ Rg , d¢(X) = r,(1) where r 1s the
ray through p in M (i.e. r(t) = tp) . We note that
X 1s not tangent to any smooth arc in C since r,(1)
is not tangent to any smooth arec in V (to see this use

property (R.2) of e and lemma 2.2).

Let P be any 2-plane through O in Rd such that

X e P0 . Then P N C consists of two C° curves inter-
secting in general position at O . Let 71: (a,b) M,
v'(1) = p be their images under & . Then

{W&(l) 31 =1,2%} is linearly independent so
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re(1) = Mu(1) + uvi(1)

where A and p are real numbers different from zero.

It follows from property (R.2) of e that
N(Yl )) n N (¥5(1)) = 0

Since V - p has two connected components exach!
consisting of regular points with the same order and since
each curve 71 - has points in both components, using prop-

erty (R.3) of e and temma 2.2, we see that

N (% (1) @ N (¥F(1)) = N(p)

and if k, = kl(wi(l)) then k, = k, = % and thus all
points in V - p - have the same order, % [ |

To prove the next theorem we need

Lemma 3.2. With the assumptions of lemma 3.1 suppose

that dim Lp =d--2 and let X, e (M:m)p such that

Nl(xi) . 0y for 1= X;2,%., . .1f fi = Xy + L, are pair-

p
wise linearly independent in Sf%#E. , then the subspaces
P

Nl(Xi) are independent for 1 = 1,2,3 .

Proof. It suffices to show that

Nl(x3) n (Nl(xl) + Nl(XE)) =0 . (*)
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To show this we note first, that since by assumption 21

are pairwise linear by independent, then

X3 = Alxl -+ AEXE - Xo for some reals

Ms M, #0 and X eL (Recall dimIL_=d = 2 .)

p e p

Now let A ¢ Nl(XB) n (Nl(Xl) + Nl(XE)) . Thus A=A, + A

1
A e Ny (X ) i =1,2, and hence

0= e2(X3 #8) = Ne (x # Ay) + hee (X, # 8)) .

Thus to show (*) it suffices to show that
2 LR
{ep(X1 # AE) s ep(X2 # Al)}- is linearly independent if

Ay, As # 0 . To see this note that since dim Ly = d - 2

using property (R.2) of e we have: r,(1) = By Xy + X,

for some reals p , p, # 0 .(here r(t) = tp 1is the ray
through p in Mm). Now if C; , 1 =1,2 are any real

numbers, we have:

e2(ry (1) # (C1A, + Cphy)) =

2
“1029p(X1 # AQ) + uzclep(x # A ) =0,

This implies, by property (R.2) of e , that
clAl + Co,A;, = O and since by lemma 3.1 we know that

Nl(Xl) 1( 2) =0, weget C =C,=0 E

Theorem 3.2. The local conjugate variety at a point

p in Mm cannot look like the pictures

2

2 3
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% : :
) L GEN. LBy .
k k,
o o f . ¥
0
it k
4 fg . L3 LI

where: 1) each LY 1s a (d-1)-dimensional submanifold

of M (submanifolds with boundary at the intersection,

except L' for pilctures a) and b) ).

i

23 v and LJ intersect in general position at p for

Miis ] s 8 Sk

I L = 11 1s a submenifold and dim L < d - 2 .

5 &

I DW

2|

Proof. 12 case. dimL =4 - 2 .

We first prove that a) and c¢) cannot happen. In fact,

in both cases using property (R.3) of e and lemma 2.2,

we see that there exists Xi £ Li - L such that

P p
Nl(Xi) = N(p) for some 1 =1,2,3, say 1 =1 . Now

since all points in L have order equal to the order of

P , then as in the proof of theorem 3.1, we see that

ea(Ly # N(p)) = 0 .

Thus by lemma 3.1, if X, ¢ L§

- L, then N (X)) n N, (X,) =0
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which with N, (X;) = N(p) implies N;(X;) = O and
lemma 2.2 says L2 - L. has no conjugate points, contra-

dletlon.

|
ist-Lp,

i=1,2,3 and then by lemma 3.2 we see that the subspaces

To prove that b) cannot exist we take X

Nl(xi) are independent for 1 = 1,2,3 . Now assume that
the order of the pleces are as follows:

1

ord (L” = L) =k; for 1=2,3.

i i

L has points of order kl and k4 .

Using property (R.3) of e and lemma 2.2 we see that
kl(Xi) Z ki for 1 =2,3, kl(xl) _>_ kl’ kll. (i)

and k, +ky =k, k = ord(p) . (11)
(see picture b) ).

Since Nl(Xi) are independent for 1 = 1,2,3 we have
kl(Xl) + kl(Xe) + kl(X3) < k and thus by (1) we see that

k) +ky + kg <k (111)

Now (ii) and (iii) implies ky = 0 which as before
gives a contradiction.

22 case. dim L < d - 3 (only for pictures b) and c) .

Since dim L < d - 3 and by assumption 1! ana 1

intersect in general position at p , then L2 n L3 -L#£8.
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But if q € L2 n L3 - I, the local conjugate variety at

q looks like

(1) (11)

M

12 !
b o

(1) contradicts property (R.3) of e and (1Il) says

2 and L3 are

qQ 18 a regular conjugate point and thus L
not in general position at q , contradicting the assumption

that L2 and 12 are in general position at p R

Proposition 3.2. Let p ¢ Mm be a conjugate point

of order k and #(p) = 3 . Suppose that the local con-
Jugate variety at p consists of three (d-1)-dimensional

submanifolds L' , 1 -1,2,3, of M_ and that

a) Li and LJ intersect in general position at p for
-5 BINIEE 3y Ak
3
b) L =n Lé is a (d-2)-dimensional submanifold of Moo
i=1

i

Then all points in L~ - L have the same order ki for

i=1,2,3 and k1 + k2 + k3 = Kk .
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i
1 £ Lp Lp for

1=1,2,3 . Since all pointe

Choose X

in L have the same order k ,

as in the proof of Theorem 3.1

we can show eg(Lp # N(p)) = 0.
Now by lemma 3.2 the subspaces

Nl(Xi) are independent for

1= 1,89 . (1)

Let the orders of the pieces be as follows:

i

L - L has two pileces of orders ki and

Kk for 1 =1,2,3

1+3

We have to show ki s ki+3 for '1I = 1,28;3 .

Lemma 2.2 1mplies

Kk, (%)

On the other hand (i) , (ii) and property (R.3) of e

v

ky 5 Ky 1C1¢ 3. (11)

say
kl(Xl) + I, (X,) + kl(X3) =k . (111)

But (ii) and (i1ii) d1implies

ky =k, 5 for 1=1,2,31

We remark that if p € Mm is a regular conjugate polnt

and 1f L 1is the local conjugate submanifold at p then
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as in the proof of Theorem 3.1, we see that
eg(Lp # N(p)) = 0 . Then by lemma 3.1, we get N(p) C Lp
if ord(p) > 2 .

This is a result of F. W. Warner and J. H. C. Whitehead

clted at the beginning of this section.
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§4. Tangent Vectors to the Conjugate Varilety

In this section we give a characterization of the
tangent vectors to the conjugate variety at a point p ¢ Mm .
In the cases where p 1s a regular conjugate point or
when p 1s a singular conjugate point as in Theorem 3.1.

We use here some notation and definitions of (7)

Definition 4.1. A cone 1s a subset C of Rd with

the following properties:

1) A X e C forall X e C and A e R (here R denotes

the real numbers).

2) C 1s a closed set in Rd .

Given a point p € Rd we say that a subset Cp of

Rd 1s a cone at p 1f

Cp =p+C=[p+X, X e C]

where C 1s a cone in Rd 3

Definition 4.2. ILet e: M, »M be a regular expon-

ential map and p be a point in Mm . The con ate cone

at p , is the subset Cp of Mm given by

Cp=[Xe(Mm)p;e§(X#A)=0 for some A e N , A#0] .
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It 1s easy to see from the linearity and continuity of

the symmetric tensor product that C is actually a cone

p
at p .
We note that C_. = U S where S is the linear
p A A

A e N

p

A#£0O0

subspace of (M _)_ given by

m°p

Sy = [X & (Mm)p ; eg(X # A) = 0]

We denote by Ij the intersectlon

o ) S
p A
A g Np
and by 1i(p) the dimension of Ip . It follows from
property (R.2) of e that
1(p) < dim S, < d - 1 (4%.1)

Theorem 4.1. Let e: Mm'* M be a regular exponential

map and p € Mm . Then
m)., = ¢ =73 1f p 1s a regular esnjugate:point.

2y ¢ =L Lg s Ip = Lp if p 1s a singular conjugate

point as in Theorem 3.1 (here we use the notation of

Theorem 3.1).

Proof. 1) Since CR(m) is a (d-1)-dimensional sub-

manifold of M_ (e.f. (4) , Theorem 3.1), using inequality
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(4.1) , 1t suffices to show that

D A for all A ¢ Np »

To show this we note that given A ¢ Np s 1If A 1is the

extension of A given by Corollary 2.1, we have
2
ep(X #A) =0 for all X € (Mm)p :

This follows exactly in the same way as in the proof of
Theorem 3.1, and we recall only that since p 1s by assump-
tion a regular conjugate point, then all conjugate points

near p have order equal to the order of p .

2) We first note that lemma 2.2 implies Lé u Lg c ¢,

and from the proof of Theorem 3.1 we have eg(Lp # Np) = QO ,
& -
365, Lp Ip

To show that Cp (= Lé U Lg we show that if X 1is
i | 2

not in Lp U Lp then X 18 not in Cp . To see this take
X not in Lé , and X, e L; for 1 =1,2 . Now

from Theorem 3.1 we have

_Lp,

Ny (X)) @ Ny(Xp) = N, (*)

and by lemma 3.2

N (X) n (N (X)) @ Ny(X,)) =0 (**)
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But (*) and (**) implies Nl(X) =0, 1.e., X not

i -
n Cp

To see that Ip = Lp it suffices to note that Theorem 3.1
implies that if Y ¢ L; - L, , then ki (¥) =k

1 < k and

thus Y 4s not in Ip ]
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§5. Some Problems on the Conjugate Locus.

We need some definitions and notations.

We recall that a submanifold of M_ 1is a pair (L,$)
where I 1s a manifold, ¢: Ly »M is a 1:1 smooth
map and dé is 1:1

Definition 5.1. We say that two submanifold (L1,¢1) s

i=1,2 of M, have a contact of order c_ (¢ being a
positive integer) at a point p ¢ Mm 1f the following is

true:

i

1) bi(pi) =p, Py el” for 1=1,2.

2) dr¢1((L1);) : dr¢2((L2);) for 1<r<c

If the submanifolds (L1,$1) have contact of all

orders at p , we say that they have an infinite contact

there.

We say that a family-{si} of subsets of M 1is

locally finite i1f each point p € Mm has a neighborhood

U 1ntersecting only a finite number of subsets Si ‘

Definition 5.2. A subset S of Mm is said to be

weakly stratified if it has the following properties:
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1) S 4s a locally finite disjoint union of C* submani-
folds of M_, S=UL, . (The L, are called the strata

1
of S .)

2) The boundary OL; = fi - L, (here Ei stands for the
closure of Li) of a stratum 1s a union of lower dimen-

sional strata.

Definition 5.3. A subset S of Mm is said to be

strongly stratified if it is a locally finite disjoint

union of closed submanifolds.

Now we point out some problems on the conjugate locus

of a Riemannian manifold.

Main Conjecture: the conjugate locus is, like the analytic

varieties, a weakly stratified subset of Mm . Moreover,

all the points in a same stratum have the same order.

A stronger conjecture is: The conjugate locus 1s a strongly

stratified subset of Mm -

In relation with these conjectures a more specific
problem 1s to know whether or not there exists a smooth
cone as stated in Proposition 3.1. Of course a smooth

cone 1s a weakly stratified subset, but not a strongly one.
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We now state some more specific problems.

1) 1Is it possible near a conjugate point p € M, for the
conjugate locus to have two (d-1)-dimensional submanifolds
having an infinite order of contact? Obviously, this is

not possible for an analytic varlety.

2) It would be very interesting to have examples of

different types of intersections at a conjugate point.

In particular, is there an example of a conjugate
point p € Mm near which the conjugate locus is a union
of two (d-l1)=-dimensional submanifolds, not in general

position at p ?
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