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This thesis 1s a colleectlion of results relating to
the automorphism tower of a group with trivial center.

The exposition 1s divided into four parts. The first
pert deals with the construction of the automorphism
tower of such a group. This tower is denoted by:

AO < Al < AE A e X

It 1s also proved in this section that the centralizer
of A1 in AJ is equal to 1 if J > i.

In the second part, the following general theorem
on normally persistent group rroperties is proved: A
group property is normally persistent 1f and only if it is
subnormally persistent, This theorem 1s then applieﬁ to
two special cases and the results are used in Part III.

Part III conteins a proof of the most important
theorem connected with the automorphism tower. This
theorem, due to H. Wielandt, asserts that the automor-
phism tower of a finite group with center 1 is of finite
height.

In Pert IV, the main theorem is illustrated by
meens of a few specific examples. The object of the inves-
tigation is to determine the stage at which the automor-
phism tower stops. The groups discussed are the symmetric
”roups 8, (n>3 n# 6), the alternating sroups

cnq certain groups of 2x2—matrices of order

p(u 1? p an odd prime.
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0. INTRODUCTICN

The objeet of this thesis l1s to present proofs of some
of the interesting properties of the automorphism tower of a
group with trivial center. The main theorem to be proved 1is
the following:

The sutomorphism tower of a finite group with trivial
center is of finite height.

The exposition 1s divided into four parts. In Part I,
we start with an arbitrary group with center 1 and show how
its automorphism tower is constructed. A property of the
centralizers of the groups in thls tower l1ls also proved. In
Part II, we prove a general result on normally persistent
group properties. This theorem states that a group properiy
is normally persistent if and only if it is subnormally
persistent. The specialization of this thecorem to two
partlcular cases is nececssary for the proof of the main
theorem. Part III is devoted to a proof of the main theorem
stated above. This theorem was originally proved Dby
Wielandt [4], but the proof given here follows the expos-
ition of Zassenhaus [5]. Some of the detalls have been
relegated to a series of lemmas. In Part IV, the notion of
e complete group 1s introduced and related to Wielandt's
theoren. Some examnples are then provided to show, in a few
gspecial cases, when the automorphism tower stops.

I would like to express my thanks to Professor Kenkichl

Iwagawa, whose many helpful suggestions were of great



essistance to me in writing this paper.

I. THE AUTOMORPHISM TOWER

Notetion: Suppose G 1s any group. We denote the groun of

automorphisms of G by A(G) or by AL(G). The group AR(G) 1is

£y

lefined inductively by AR(G) = A(A"1(@)) for n > 2, The
group of inner automorphisms of G wlll be denoted by I(G).
The symbols A™(G), I(G) may be abbreviated to AR, I if it
is clear that no confusion will result.

If X,Y ¢ G, we {denote the centrallizer of X in Y by
Z(X,¥), that is, Z(X,Y¥Y) is the set of all y € Y which
permute elementwise with X. The center of X, Z(X,X), will
be written simply as Z(X). The normalizer of X in Y will be
denoted by N(X,Y).

If X is a normel subgroup of G, we write X < @G.

Let G be any group, x & fixed element of G. Let o,

denote the imner automorphlsm of @ determined by x

-1 = ¢* ror 211 g € G.

5 .(g) = xgx
Since ﬁxy(g) = 6X6y(g], the mepping x ---> b, is 2
homomorphism of G onto I. The kernel of this mapping is
clearly Z(G) = Z, hence G/Z = I.

Chooge arbitrary elements a € A, 6, & 1. For any g € G
abxa“l(g) = a(xa~i(g)x"1) = a(x)ga(x);l = 6a(x)(5)' Hence

%

o . g 2 g
we have the useful rule: aaxa = ba(y)' This rule shows,

Ul



in perticular, that I < A,
For the remainder of this section, we make the assump-
tion that Z(G) = 1. Then G = I under the one-to-one

correspondence X <----> 0.

Theorem 1.1: (i) 2Z(I,A) =1 (11) z(A) = 1
(111) Any automorphism of I is induced by an inner auto-
morphiem of A.
Proof: (i) Suppose a € Z(I,A). Then &, = ab a~l = & ()
for all x € G. This implies x = a(x) grt al=n 1

(127 20T o Z(T, 8008 1,

(111) Let ¢ be any automorphism of I. Sirce G =

= =1
= & 6}{& .

I
—

there exliste a € A such that ¢(5X) = ba(x)
From now on, when Z(&) = 1 we will identify G with I
and write & < A. Since Z(A) = 1, we also have A < A,

Continuing in this fashion, we obtain the automorphism
(]

tower of G

e A mde & tek. S .

I

Putting G = AO, we see that we have proved that for all

1 > Oy BUAN Y =1, ZlEY) = n,

Theorem 1.2: (i) 1If Z(Ai,Aj) = 1l and Jj-1 = 1, then

o

n(at,ad) =AM, (1) zalad) =112 35 1.

Proof: (1) Al+1 c Aj, so it 1s clear that AT*L ¢ N(Ai,Aj).

On the other hand, suppose that x e N(Ai,Aj). The mapping

W el (n & A*) is an eutomorphism of A*. Hence there



exists v € A*l such that u¥X = u¥ for all u e Al. This
implies that 7y 1x e z(at,Ad) = 1. Therefore x = y e a1,
(ii) We proceed by induction on j-i. The truth of
the assertion (i1) for the cases J-1 = 0,1 has already
been esteblished. Assume (ii) is true for J-i =k >1

and now suppose that J-i = k+l > 2. Note that (i) together

with the induction hypothesis implies N(al,ad™t) = ai+l

N(Ai"'l,A'j) = Ai+2_

Suppose that a e Z(Ai,Aj). Then we have
(altlye - we(al)?, (a9 1)®) = n(al,ad"t) = A, Hence
o e W(AM1,4d) = aA1*2, Choose any x e A'*Y, y € A1, Then
y(xa) = ax(a~lya)x~la-l = y8%X = (y¥)& = y*. Therefore
x1x2 ¢ z(al, A1) - 1. Hence x = x® for 211 x e Altd,

that 1s, a e Z{ai+l a3+2y _ 1,

The only property of G which we needed in order to
construet the automorphism tower was Z(G) = 1. We now
assume that G 1s finite. With only this simple additional
assumption, we are able to obtain the following remarkable
result:

The automorphilsm tower of G is of finite height,
that 1s, there exists N such that AP = A for all n > N.

Chapter 111 is devoted to a proof of this theorem. But
first we derive some preliminary results, which are quite

interesting in themselves.



II. NORMAL AND SUBNORMAL PERSISTENCE

Notation: Suppose & 1s any group. If G possesses & certain
property Q, then we call G & Q-group.

Suppose X,Y ¢ G. The set obtained from X by conjugating
its elements by the elements of Y is denoted by C(X,Y),
hat is, C(X,Y) is the set of all elements of the form
% = yxy~i, wvhere x € X, y € Y. The subgroup of G generated

by X will be denoted by [X].

A subgroup G of a group H is said to be a subnormal

subgroup of H if there exists a finlte normal chain from
Gk By €8y < Jiu. <Gy = H (%)

We denote the least possible length of such a chain by
m(G,H). If @ is subnormal in H, we write G << H. Trivially,
G < H implies G << H.

If (#*) holds and h € H, then we have:
Gh < G? € wemss < G? < Hh = H

It follows that if G << H and K is a conjugate subgroup

of G, then K << H and mn(K,H) = mn(G,H).

Let Q be a property of groups. @ is called normally

persistent (resp. subnormelly persistent) if and only if

Q satisfies the following twc conditions:



(1) Any group isomorphic to a Q-group is a Q-group
(2) In a given group, the subgroup generated by a non-

empty set of normel (resp. subnormal) Q-subgroups

|—te

s a
Q-group.

We will abbreviate the phrase normally persistent

(resp. subnormelly persistent) by NP (resp. SP).

Lemme 2.1: Let S be a non-enpty set of subnormel Q-subgroups
of a group G, where Q is a NP group property. Suppose that
mn(X,3) < n for all X € 8. Then 8' = [u,_X] is a Q- group.
Proof: The proof is by induction on n. If n = O
for all X € S. Hence B' is a Q-group, becasuse X 1s. 1If
n=1, esch X < G. 8' is a Q-
Q is NP. Now suppose n > 1 and assume that the theorem is
true whensver the function values of m are at most n-1 as
X ranges over the given set of subgroups.
Concider some X &€ 8. There exists a normal cheln
= XO <Xy < .00 < X, = G of length n, possibly with
repetitions, For any g € 5':
X‘;:é.<X[£<....<)ﬁl—xnl-
%% = X, nence each X% ig itself a Q-group. The set of all
x° (g e 8') is therefore a set of subnormal Q-subgroups of
X end m(X5, ) < n-1 for all g e S8'. By induction:

n-1

X' = X867 = [C(X,S )] is a Q-group. X' < 8'. Then

[USES'
X'] and Q being NP imply S8' 1s a Q-group.

8' = luyg



Theorem 2.23 A group property Q is NP 1f and only if 1t is

SP.
Proof: Trivially, if Q is SP, then it 1s certainly NP. To

prove the converse, suppose Q is NP, T 1ls a non-empty set

of subnormal Q-subgroups of & group G, T' [uXETX]. We
have to show that T' is a Q-group.

If Xe T, put X' = [u x8] = [C(X,T')]. Then

geT’

X' <« 7" and T' X']. Take S to be the set of all X&

= Luger
(g € T'). m(XB,G) is a finite constant for all g e T'. The
conditione of Lemma 2.1 are satisfied and so X' is a

Q-group. Hence T' is a Q-group, since Q is NP.

is seid to be a p-group if the order of
every element of G is a power of the prime p. If G is
finite, this is equivelent to saying that the order of &
is a power of p. The property of being a p-group is NP,

)

A group G is sald to be semi-simple 1f it may be

decomposed into a direct product of non-abelian simple

being a semi-simple group is NP.

i g

groups. The property of

From Theorem 2.2 znd the above remarks, we have:

-

Theorem 2.3: Any non-empty set of subnormal p-subgroups

£ o

(resp. subnormal semi-simple subgroups) of e group generate
2 p-subgroup (resp. semi-simple subgroup). In particular,
the normal subgroup generated by all the conjugates of a
subnormal p-subgroup (resp. subnormal semi-simple subgroup)

s a p-subgroup (resp. semi-simple subgroup) .

1_4.

10
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III. WIELANDT'S THEOREM

Notation: Suppose G and H are groups. The direct product of
G and H will be denoted by G + H. If H c G, we will denote
the index of H in G by G:H. If x,y € G, we will write

(ol = et

y’l. If G and H are both subgroups of some
larger group, then (G,H) will denote the subgroup generated

by all elements of the form (g,h), where g € G, h € H.

Lemme 3.l: Suppose G # 1 is a finite group, N a minimal
normal subgroup of G. Then N 1s a direct product of isomor-
phic simple groups.

Proof: If N is simple, there is nothing to prove. If N is
not simple, let Hl be a minimal normal subgroup of N. Let
Hy, Hpy oee 5 Hy (m > 1) be the subgroups conjugate to Hy
in G. Each H;y < N and H, = I—Ij for all 1i,]j. [Hl, sue g Aol
is normal in @& and 1s contained in N, hence [Hl’ waw Ly Hel

is equal to N. Choose the smallest number of these Hi which
generate N. Suppose that these are Hy, ... , Hy (n > 1),
renumbering if necessary. Clearly Hy n [Hy, ... , Hy 7] =1
for each i, 1 < 1 € n, because of the minimal nature of the
H;. Hence N = Hl - H2 + «.. + H . Furthermore, Hi is simple.
For if it 1s not, there exists K, < H; such thet K, £ L1y Heu

Then Ki < N, contradicting the minimal property of H..

Lemma 3.2: Suppose A, B are subnormal in a finite group G,



A is semi-simple, H = [A,B]. Then B < H.
Proof: Let A' = [C(A,H)]), Then A' < H 2nd Theorem 2.3
shows that A' is semi-simple. B << H (Zassenheus [5]).
Consider a normel chzin of minimal length s from B to H:

n = BO < B1 < sess < Bs i 5
Clearly B _ 1 n A' < A'., We now use the fact that in any
seml-simple group, any normel subgroup has one and only one
complementary normal subgroup. There exists Al < A' such
that A' = Ay + (BD_:L nA'). If h e H, we obtain
A' = A8 4 (B,_y n A'). Hence A7 = A, or A) < H. Tow
X € Al n By g implies that x € Al n (Bs-l nA') = 1. Also
A' = [Al, B,_1 N A']l ¢ [Al, 35_1] and clearly we also have
B c [Ay, B,_;]. Therefore H = [A', B] c [4;, B__;]. It
follows that H = Ay + Bs—l' If s > 1, the same argument
shows that there exists a subgroup A2 such that

g1 = 8, +# B__,. Thus H= Ay + A, + B, 5. S0 B

< H
S_

S=2

_—ir

and. B = BO < B1 < ves = B < B =H 1s a normal chailn

s=-2 s
from B to H of length s-1, a contradiction. Hence s < 1,

that is, B < H.

Lenme 3.3: Let x,y be elements of a group &, (x,y) = z,

Ln=1
pX

> 5e Then (G, yll= zXz

L -

Proof: It is easy to check the following general commutator
identity: (ab,e) = (b,¢)%(a,c). Our lemma is trivially true
for n = 1, Assume thet it is true for some n > 1l. Then
(71, 7) = (xP%,7) = (x,y)% (=B,7) = XX % nence

it is true for n+l. This comnpletes the proof.



Lemme. 3.4: Suppose G is a group, H < G, G:H = n. Then
X2 € H for all x e G.
Proofs The order of G/H is n. Therefore for any x € &

(xH)® = x"H = H. This implies x" e H.

Lemma 3.5: Suppose P is a Sylow p-subgroup of G, N <G.

Then (i) NAP 1is a Sylow p-subgroup of N  (ii) PN/XN is

a Sylow p-subgroup of G/N.
Proof: It is clear that a subgroup H of G 1s a Sylow
~subgroup of ¢ if and only if H:l 1s a power of p and

P
GsH is relatively prime to p.

NP:P, G:N are prime to p, PiNnP, NnP:l are powers

of p. Then NP:N = P:NnP is a power of p. Also since

(NP:P) (PiNnP) = NP:NnP = (NP:N)(N:NAP), we have that

Lemma 3.6: Let G be & p-group, N < G, N # 1. Then

N n 2(@) £ 1.

Proof: Since N < G, N is a union of complete conjugate
classes of G. Let N n Z(G):1 = k. This means that N con-
tains exactly k& conjugete clesses which consiet of only on
element. The number of elements in each of the other con-
jugate classes contained in N 1s divislble by p. Since

N:1l is also divisible by p, p divides k, Hence k& > 1. This

provesg the lemma.

L%
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Theorem 3.7: Suppose G, H are finite groups, & << H, and

Z(G,H) = 1. Then there exlsts a constant M, depending only
on G, such that H:l < M.
Proof: If G = 1, it follows that H = 1, hence we may take
M = 1. Suppose that G # 1. Consider a minimal normal sub-
group of G. By Lemma 3.1, this subgroup is either a Py=-group
for some prime pq or seml-simple, Depending on which case
occurs, let Vl be either the maximal normal pl—subgroup of G
or the maximal normal seml-simple subgroup of G. If Vl £ G,
we repeat this constiruction in the group G/Vl, thus obtain-
ing Vo/V; < @/V;. Continuing in this way, we eventually
obtaein a finite normal chailng

3l = VG o Vl < V2 e & Vr =,
vhere V, <G and vi+l/vi is elther a p, q-group or
semi-gimple.

Define H, = {C(Vi,H)], H, < H, hence we have a normel

chain:

L HC < Hl
Clearly H, ./H, = [c(V, ,H;/H;,H/H,)]. Notice that
Vy41Hs/Hy S V1+1/V1+1°H1 = (V1+1/Vi)/(vi+lnﬂi/vi). Hence

if vi+1/vi 1s a p, q-group (resp. semi-simple), so is

< H2 L el Hr il

L T a £ / L -
vi+1qi/{1’ nd therefore Hi+1’Hi is a Dy,

gemi-gimple), by Theorenm 2, 3.

group (resp.

We will now show by induction on i that Hi nG=1V,,
For 1 = O, this statement reduces to 1 n G = 1. Suppose
that H; nG =V, (1<wr). V; <H ,nG. Then since

Hy 1nG/V; = Hi+lnG/HinG, we deduce that if Hi+l/Hi is a



Dy q-Broup (resp. semi-simple), then so is Hi+lnG/Vi.
But Vi+1 G Hi+1 n G, By the maximal property of Vi+1,
we have V, 5 = Hi+1 n G. This completes the induction.

-

Now the followlng problem faces us. We want to show
the exlstence of subgroups X(i+l) of ¢ (L =0, ... , r-1)

which depend only on G and which also satisfy:

: *
(X(141),H,y 1) € HV, o (%)
Z(X(1+1),H, 1) c H, (%),
It vi+l/vi is semi-simple, the problem is easily

solved, For then hi+1

that GHi/Hi << H/H;. By Lemma 3.2, we obtaln that

/Hi s semi~-simple and also we know

GHi/Hi < [&Hi/Hi,Hi+l/Hi] = GHi+1/Hi, that 1s, GH; < GHy ;.
This easily implies that (G,Hi+l) c H, . n GHy. Since

I iy = c =2 " o -

He g 0 u&i = Hi(a n Hi+l) = ﬁivi+1' we have the result

(¢,H, . .) ¢ H,V Furthermore, we have:
L

i+1°

A ) c 2(G,H) = 1 cE

ju g
g i
Hence in this case we may take X(i+l1) = G.

If, however, V1+1/Vi is a py q-group, we must work a
little harder. Let U, , Dbe the intersection of 21l normel
subgroups of G vhosgse index in G is a power of Pygp1e Then
T e .| s
Ji+l < G and J.Ui+1 is a power of Pyi1e It is kmown

that if the exponent of G/U divides p?+l, then U, ,

i+l
is the subgroup generated by all p?+l—powers of elements of
G. We will show that Ui+1 has the properties we require of
X(1i+1).

Since & << H, there exists a normal chain:
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Let G(1,J) = Hy(Gy n H, .) = HyGy n Hy 4. By the
Zassenhaus Lemme, G(1,0) < G(1,1) < ... < G(1,8) = Hy qe
Let G'(1,3) Dbe the set of all x € & such that
(x,Hy, ) € G(1,3).

Now supprose x e€ G'(1,3), h e Hy 7. By definition of
a¢'(i,3), (x,h) e a(i,3). Put (x,h) = w and consider
(P, w) = Pwx~ty=1 = wy=l  (n > 1). Clearly (x%,w) €
Hy, ;. Since i1, 11 < HyG4, We mey put W = ab, where
e eHy, be GJ. Ten (xB,w) = xPa(bx Pb~1)a-l., We know that
x € Gc Gy <@, hence (x%,w) = (xPa)(ca~l), where
c € Gy q. (xP,w) e G,_qHy, hence (x2,w) € HyGy_q 0 Hyq
- a(i,j-1). It follows that w, w* € G(1i,)) and are
congruent modulo G(i,3-1) < G(i,J)). Now by Lemma 3.3,
(¥, h) = wXB=l %y Theprefore (x2,h) e G(1,3) and is
congruent to w? modulo G(i,J)-1). This shows that if
x € G'(1,3), then so is x® (n > 1). Now by Lemma 3.4,
(XG(i’j)‘G(i’j'l),h) & Bly, J=11, that g, xG(i’j)‘G(i’j'l)
€ G'(1,3-1). Now since G(i,J):6(1,3-2) 1is the product of
G(1,35):6(1,3-1) and G(i,3-1):6(1,3-2), we have that
XG(i,j):G(i,j-E) e G'(1,3-2). Continuing in this manner,
we obtain XG(i,j):G(i,O) e G'(1,0). Notice that H, ;:H; =

(Hypqt

&(1,3))(a(1,3):a(1,0))(6(1,0) :H;). This implies that
xHi+1¢H1 ¢ g'(1,0) for all x e G'(i,j). Since this holds
for any J 14181 ¢ gr(3,0) for 211 x e G'(1,s) = G.
Hy qtHy 1s a power of Dj.q1. Since Uy, ; is generated by all
the p?+1—powers of G for large n, we deduce that Uj,.q c

G'(1,0). Therefore (Usy1s, Hiuy) c G(1,0) = Hy(G n Hy 4)



Ay

= HyVi,3, 80 (¥) holds with X(i+l) = Uy 4.

For convenience, put W = Z(Ui+l’Hi+1) =
~ 5 G X X
u(Ui+1,H) nHy 4. If x €@ then WX = Z(U ,,H) n HY 4

= 2(Uy,,H) n Hy ; = W. Therefore W < W&. Let P be a Sylow
pi+l—subgroup of G. P 1s conteined in some Sylow Pis1-
subgroup P' of WG. Clearly Z(P') n W c z(U, ,H) n Z(P,H)

= 2(U,; 1P,H). By Lemma 3.5 (11), U; ,1B/U;s 1 1s a Sylow
pi+1—subgroup of G/Ui+l’ & Py q-Broup. Therefore, we heve

U 1P = G. Hence Z(P') n W c Z(G,H) = 1. Now W < WG implies
that W n P' < P'. We deduce that W n P' = 1, for if it

were greater than 1, we would have P' n W n Z(P') =

WoZ(P') #1 by Lemma 3.6, = contradiction. Since W < WG,

P' a Sylow p,, - -subgroup of WG, it follows from Lemme 3.5 (1)
i+l

that W n P' is a Sylow Py,q-Subgroup of W. But W n B o B

Hence py 4 does not divide Wil = Z(Ui

1 Z(U

+1,H) N Hi+1' Hence

p; .1 does not divide Z(Ui+l,H)nq H) nH

i+ isd 1+1° M
(2(Uy 1, H)nHy 3 JH, sH, o But  (2(U, ., H)nH,y q)H, sH, divides

Hi+l:Hi’ & power of p.

141° It follows that we have

(2(Uy,1,H)0H, o )H,:H, = 1, hence Z(U, ,,H)nH, ;=
2(Uy 15Hy 1) c Hy. Thus we see that (¥*) holds with
X(i+1) = U

1+1°

We will now use these subgroups X(i+l) to obtain the

bound on Hi:l. Because of the properfy (#) , each x e Hi

+1
determines = function ¢x: X(i+l) ---> Hivi+1 glven by
@X(z) = (z,x) for all z e X(i+l). There are at most
(H1V1+1=1)X(i+l)=1 such functions. But clearly ¢, = ¢y if

and only if y~lx e Z(X(i+l),Hi+l), that is, if and only if
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x and y lie in the same left coset of Z(X(i+l),Hi+1).

-

The number of distinet {'s is therefore equal to
Hi+l:Z(X(i+l),Hi+1). Hence:

) ) ! Ly X(1+1) 51
H,, ;22(X(141),H, 9) < (H,V, q31) ;

141°
From (#%) i Z(X(i+1),Hi+1) c Hy ¢ Hy_,, therefore
Hy,1%Hy = Hi+1=Z(X(i+1),Hi+1) < (HiVi+1:l)x(i+1)=1. Hence

Hy,1%Hy < (Hivi+1;Hi)X(i+l):1(Hi=1)x(i+l):1. Now use the

followings H,Vy q3Hy = Vi+1=Hi°Vi+l < V,,1:Vy, which

easlly follows from V, c HynVy ; €V This yields the

i+l”
estimete: Hy qtH; < (vi+1:vi)x(i+1)=1(Hi:1)x(1+1}‘1.
Since H, 431 = (Hi+1=Hi)(Hi=l)’ we obtain:

My 1 & (Vg 0V ) X(1#1) s1(g, p1) X (842052 + 1
Since V, = @, we have G c H. Z(HP,H) & Zig, Y = 1y
Every h € H gives rise to an inner automorphism of H which
induces an automorphism of H,. Since Z(HT,H) = 1, eech
of these automorphisme of Il is distinet from the others.
Therefore (H:l) < A(Hr):l < (Hr:l)!

Define the numbers M, (i =0, 1, ... , r) by:

Mg = 1, UV

_ 5 % 1wd) el X(141)32 + 1 .
41 = V vy) ( x| !

1+1° L
i=0,1, ..., r-1. Furthermore, define I = Mr!.
A gimple induction argument shows that H,:1 < I
for each 1. In particular, Hr:l < M. Hence:
Hil < M0 = M.
We need only observe that all the V,'s and X(1)'s depend
only on G. Hence M depends only on G. This conpletes the

proof.
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Theorem 3.8 (Wielandt's Theorem): Suppose G is a finite

group such that Z(G) = 1. Then its automorphism tower is
of finlite height.

- = o = An < ..« be the asutomor-

Proof: Let G = AC < &
phism tower of G. G << A" and by Theorem 1.2 (1ii), we

have Z(G,A"™) = 1. Then there existe a constant M, which
depends only on G, such that AM™:1 < M. Hence the tower must

be of finlite height.
IV. COMPLETE GROUPS
A group G is said to be complete if 2Z(G) = 1 and
every automorphism of G is an inner automorphism,
Clearly if G 1s complete, then G = A. Hence 1its

automorphism tower collapses to only one term.

Theorem 4.1: Suppose G is a finite group with 2Z(G) = 1.

Then G can be imbedded subnormally in a finite complete
group which also has center 1.
Proof: Consider the automorphism tower of G

:AO<A1<A2<-|- £l

()

By Wielandt's Theorem, there exists an integer N such that
AV = AN+l _ pNe2 Clearly AN 15 2 complete group

with center 1, and G << .,

We wlll now consider some examples of finite groups



with center 1. Our object will be to determine at what
stage the automorphism tower stops. In other words, we
went to find the first complete group which occurs in the
tower,

Theorem 4.2: S the symmetrlic group of degree n, is

n,

complete when n > 3, n # 6.

Proof: We first note that n > 3 implies ZG8, 1 = 1
For suppose x € 5, and X £ (1), =say x(1) = 2. If
y = (23), then yxy”l(l) = yx(1) = y(2) = 3. Hence
yxy“l £ x, that is, =z & Z(Sn).

We now assume in addition that n # 6 and show that
every automorphism of Sn is an inner automorphism,

An element of 85, 1s of order 2 1f and only if its
decomposition into independent cycles has the following
form: (aja5)e...(any 18010 » 2 < 2k < n.

Let Ck denote the conjugate class of Sn which consists of
2ll the elenments of Sn vhich are products of k independent
transpositions. Denote the number of eleuents in Ck by
o(Ck).

Now coneglder any automorphism ¢ of Sn‘ Since any

automorphism preserves the order of an element and permutes

conjugate classes, ¢ maps C; onto Cp, for some k > 1. We
will now prove that k = 1.

If n= 3 we have 2 < 2k < 3, hence k = 1. So we
may essume that n > 4. Suppose that k > 2. We know that

o(¢q) = n(n-1)/2 , o(C,) = n(n-1)...(n-2k+1) /k'2%. Since

20



21

0(01) = o(Ck), we obtain after simplification:
(n-2)(n=-3)....(n-2k+l) = ki2¥-1, ()
If k=2, (#) becomes (n-2)(n-3) = 4, a contradiction,
gsince no intezer n satisfles this equation. If k = 3,
(#) becomes (n-2)(n-3)(n-4)(n-5) = 24, The only possible
solution of this equation for n >4 is n = 6, but our
hypothesis excludes thls case, Hence k # 3, Now since
n > 2k, (n-2)(n-3)...(n-2k+1) > (2k-2)! But a straight-
forward induction argument shows that (2k-2)! > tok-1
for k > 4. Therefore k > 4 would imply that
(n-2) (n-3)...(n-2%+1) > k!2k"1, a contradiction of (%#). We
conclude thet % = 1. In other words, ¢ maps every trans-
position onto a transposition.
We next prove the following statement: If a 1s one
of the permuted symbols, then the imazes under ¢ of all
trenspositions (ax) contain a common symbol a'.
Suppose $((ab)) = (p'o>"), ¢((ac)) = (c'c"), where
b',b",c',c" are all distinct. Then ¢((abe)) = §((ac)(ab))
(c;c")(b'b"), a contradiction, since an element of order
3 cannot be equal to an element of order 2, Therefore
(b'b") and (c'e") have a common symbol, say a'. Suppose,
then, that ¢((ab)) = (a'b'), ¢((ac)) = (a2'c'). This symbol
2' must appear in every {((ax)). For suppose that ¢((ad))
= (a'a"), where neither d' nor 4" is equal to a'.
From the above argument, it is clear that (d'd") =
d((ad)) = (b'c'). Then §((abde)) = ¢((ac)(ad)(ab)) =

(2'c')(b'c'")(a'p') = (b'e'). But this 1s a contradiction,



since an element of order 4 cannot be equal to an element
of order 2. This proves the assertion.

)

Clearly, & 1s uniquely determined by a. The
function m defined on the permuted symbols by mw(a) = a'
is easily.seen to be an element of Sn' Note that

m(ab)mrd = (a'b') = ¢((ab)). Now 1f w is an arbitrery
élemeﬁt of Sn’ it follows that mwr1 = @(w), since w can

be expresgssed as a product of transpositions. This proves

he theorem,

Theorem 4.3: Let G be a2 group with Z(G) = 1, If G is a

characteristic subgroup of A, then A 1s a complete group.
Proof: By Theorem 1.1 (ii), Z(A) = 1, so we need only
show that every automorphism of A is an inner automorphism.
Let ¢ be any automorphism of A. ¢ is induced by an
inner automorphism of A2, that is, there exists =g € A2
such that P(x) = x® for 211 x € A. Since G is a character-
istic subgroup of A, ¢ Induces an automorphism of G. There
exists a e€ A such that $(y) = y* for all y e @. Hence
y8 = y® for all y e G, that is, a ls e Z(G,A%) = 1.

s =aedlA, § is an inner automorphism of A.

Theorem 4.4: Let G be a non-abelian simple group. Then
A 1s a complete group.

Proof: Z(G) < G, hence we must have either Z(G) = 1 or
Z(G) = G. Then since G 1s non-abelian, Z(G) = 1. By

Theorem 4.3, we need only show that G is a characteristic
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subgroup of A.

Let § be any automorphism of A, G < A implies that
$(a) < A. Hence G n §(G) < §(a). However $(G) 1s simple,
since ¢(G) = @. Hence G n ¢(G) 1is equal either to 1
or to §(G). If G n $(G) = 1, then it 1s easy to see that
¢ and $(G) commute elementwise. This implies that ¢(G) c
Z(G,A) = 1, a contradictlon, since a simple group ls by
definition Z 1. The only other possibility is that
G n d(G) = ¢(@), that 1s, ¢(G) c G. ¢ is a characteristic

subgroup of A,

Theorem 4,5: Let A, denote the alternating group of

degree n., Then A(An) is complete if n > 5.

Broof: Assuming n > 5, we will show that A, 1s a simple
group. It will follow that A, 1s non-abelian, because
Aj:l = n!/2, which is not a prime number. The proof will
then be complete, in view of Theorem 4.4.

(1) A, is generated by the 3-cycles.

Any 3-cycle (abe) = (ac)(ab) e A . On the other hand,
any permutation m € A, can be written as a product of an
even number of tfanspositions, hence as a product of pairs
of transpositions. From the equations: (ab)(ab) = 1,
(ab)(ac) = (acb), (ab)(ed) = (adc)(abe), it follows
that @ can be written as a product of 3-cycles. (1) ae
proved.

(2) If W < An and N contains a 3-cycle, then

N:An.
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Suppose (123) e N, (1jk) any 3-cycle. Since we
have at least two additional symbols at our disposal, we
can extend the mapping 1 «-=> 1, 2 ===> J, 3 --=> k to
a permutations

- L ]
W o=
L J E 2 ¥ sew Jds
We may essume that 1w e An’ for if it turns out to be an
odd permutation, we simply consider (xy)w instead. Then
since N < A : w(122)m~l = (1j¥) e N. So N contains

-a

all 3-cycles, therefore N = A by (1).

(3) A, 1s simple.
Suppose N < A, N # 1. Choose m e I such that
w# 1 and leaves fixed as many symbolé as any other per-
ﬁutation Z 1 in N. m must displace at least three symbols.
The claim 1s that m dlsplaces exactly three symbols. For
gupposge it displaced more than three, that is, suppose at
least four symbols appear in the cyecle decomposition of
w. Bither (i) w contains & cyecle of length > 3y 80
7= (123...)..., or else (ii) m consists only of
2-cycles, m= (12)(34)... . Note that if (1) holds,
must displéce at least two other symbols, say 4, 5, since
(123x) = (1x)(13)(12) ¢ A, .
Put w = (345), m = wrw—l, In (i), My = (1284, v 0) ous
and in (i1), m o= (12)(45) ..+ « In either case uey £ 1,
that 1s, mlm # 1. If & symbol x > 5 1s left fixed by

w, then it is also left fixed by my, hence by w™lmy. But

in (1), mimy(1) = v~3(2) = 1, end in (11), similarly,
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W“lﬁl(l) = 1, ﬂ"lwl(E) = 2. In either case, we Observe
fhat ﬁ‘lnl 1eavés fixed more symbols than w, contradicting
the cﬁoice of s |

Therefore w displaces exactly three sgymbols, that is,

m is a 3—cycle.-By (2), N = A,, hence A, 1is simple.

Theorem 4,6: Let G be the group of all 2x2-matrices of

the form
2 1] -
R(x,y) = , X #£ 0,
= |

with entries being elements of the field GF(p), p an
odd prime. G 1s a complete group.
Proof: Note the following rule of multiplication:

R(%9,51)R(%p,¥5) = R(xqX50 Xy #¥1) -

We first show Z(G) = 1. Suppose R(x,y) e Z(G).
R(x,x+y) = R(x,y)R(1,1) = R(1,1)R(x%,y) = R(x,y+1). Hence
x = 1. Also R(2x,y) = R(x,y)R(2,0) = R(2,0)R(x,y) =
R(2x,2y). Hence y = 2y, or ¥y = O. R(x,y) = R(1,0) = 1.
Note that we had to exclude the case p = 2 in order to
get R(2,0) e G.

Observe that G:1 = p(p-1). Hence the Sylow p-
subgroups of G are of order p. The number of these sub-
groups 1is congruent to 1 modulo p and also divides p-1l.
Therefore there is only one Sylow p-subgroup of G. Let us
denote this subgroup by P. Cbwviously, P 1s a characteristic
subgroup of G. It 1s easy to check that the p elements

R(1,y) form a subgroup of G, hence this subgroup must be P.
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llext we show that Z(P,G) = P. Since P is abelian,

P ¢ Z(P,G). On the other hand, suppose R(x,y) € Z(P,&).
Then R(x,y) commutes with R(1,1). As we have already seen,
this implies x = 1, that is, R(x,y) e P.

Let &, denote the inner automorphism of G determined
by x € G. Since P is a characteristic subgroup of G, &,
Induces an automorphism, ble, of P. Consider the homomor-
phism fg: @G ---> A(P) given by £(x) = 6XIP. The kernel of
T is cleerly Z(P,G) = P. Then f£(G) 2 G/P, hence we have

£(@)s1 = p-1. But A(P) = A(Z ) = Z, 1+ Hence the mapping

U~

1

f is onto. This shows (1) any automorphism of P is induced
by an inner automorphism of G, and (1i) 6K|P = 6y{P b by
and only if x and y lie in the same coset of P.
are both cyclic. Let a € P bhe g
generator of P and let b e€ G be such that bP zenerates
G/P. Note that b ¢ P. Clearly G = [a,b].

ow let ¢ be any automorphism of G. ¢ induces =n
eutoniorrchism of P. Hence there exists an elexent x € G
such that ¢]P = 6X|P. Then ¢1 = ¢6;1 is an automorphism of
G which leaves the elements of P fixed.

Now beb™t e P, so there exists an integer r such that

35 ]

bab~l = 2¥, Note that r £ 1, for if it were, we would have
b e Z(P,&) = P. The above relation between a and b gives us
¢1(b}a¢l(b)_1 = a¥., Therefore G, 1B = 6¢1(b)IP’ that is,

b and ¢1(b) lie in the same coset of P. There exists an
integer k such that ¢;(b) = pak.

Since r £Z 1, we can find an integer n such that
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n(l-r) = rk. Then ala=0r = aTX, Uging the fact that
bab~t = a¥, we have alba T+ = ba¥hrl, Hence
aPba™f = ba®, or o n(b) = ;(b). But we also have

o,nla) = aPaa™@ = & = ¢;(a). Thus ¢1 coincides with & p

on the generators of G. We conclude that ¢l = 6an. Hence

¢ = 6an6x = 6anx’ an inner automorphism of G. This completes

the proof.



[5]

BIBLIOGRAPHY

Burnside, W. , Theory of Groups of Finite Order,

New York, 1955 (Reprint of ond Edition, 1911)
Kurosh, A. G. , Theory of Groups, New York, 1955
(Translated from the Russian and edited by K. A.

Hirsch)

Ledermann, W. , Introduction to the Theory of

Finite Groups, New York, 1957 (3¢ Edition)

Wielandt, H. , Eine Verallzemeinerung der

inverisnten Unterzruppe, Math. Zeit., vol. 45

(1939), pp. 209-244

Zassenhaus, H. J. , The Theory of Groups, New York,

1958 (27< Eaition)





