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Abstract

Consider the first order theory of the real numbers with the
predicates + (plus) and < (less than). Let S be the set of true
sentences. We first present an elimination of quantifiers decision

procedure for S, and then analyse it to show that it takes at most

cn
time 2 , ¢ a constant, to decide sentences of length n.

Looking more closely at this procedure, we arrive at a second
procedure by showing that a given sentence doesn't change in truth
value when each of the quantifiers is limited to range over an appro-
priately chosen finite set of rationals. This fact leads to a decision
procedure for S which takes space 2°". We also remark that our methods

lead to a decision procedure for Presburger arithmetic which operates

cn
. 2
in space 2 .

These upper bounds should be compared with the results of Fischer
and Rabin (Proceedings of A.M.S. Symp. on Complexity of Real Computation
Processes, to appear) that for some constant c, time s for real

cn

addition, and time 2 for Presburger arithmetic, is required to decide

some sentences of length n for infinitely many n.
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1. Introduction. In this paper we exhibit an efficient decision proce-

dure for the theory of the real numbers with + (plus) and < (less than).

Of course, as stated in a paper by Hodes [l], who also gives such a proce-
dure, the decidability of the theory in question is a consequence of Tarski's
theorem that the real numbers under +, * (times) and < is decidable; howewsr,
Tarski's procedure is far from efficient for the restricted theory we are
interested in. We propose to exhibit a procedure which, as it turns out,

is nearly optimal in computational efficiemey. Fischer [2] shows that there
is a constant ¢ > 0 such that any nondeterministic Turing machine which
decides real addition (even without order) requires for almost every n

time 2°7  to decide some sentences of length n. We exhibit a deterministic
procedure for addition on the ordered set of real numbers which uses space
2dn, d a constant, and time 22gn, g a constant, to decide sentences of length
n. Thus, there appears to be a gap of approximately one exponentizal

between the upper and lower time bounds. But since the upper bound is
deterministic and the lower bound is nondeterministic, this gap should be
viewed in the light of a long-standing, unproved conjecture of automata theory

which states that nondeterministic time t is equal in power to dsterministic

2
timia: 2




The procedure we give replaces unbounded quantifiers by quantifiers
ranging over a finite set of ratiomals; truth of the sentence in the
real numbers will thus be determined by checking finitely many instances
of a matrix. In order to prove the correctness of our procedure, we
first exhibit an elimination-of-quantifiers procedure with the important
feature that it does not require the sentence to be put in disjunctive
normal form at each elimination of quantifiers.

In section 2 we define the language under consideration. 1In section
3 we give our elimination-of-quantifiers procedure. Our method
utilizes an idea used by Cooper [3] in deciding integral addition. In
section 4 we show, via an analysis of section 3, that each quantifier
in a formula can be replaced by a suitably bounded quantifier, and then
show that the desired space bound can be achieved. In section 5 we

remark on further applications of our methods.

2. DNotation. We consider the following language:
Variables xo.xl,xlo,...
(with subscripts written

in binary)

Integral constants Oyl 1051, 555
(written in binary)

Propositional constants T,F

Unary symbol - (minus)

Binary symbols <, =, +, 7/ (less than, equal, plus, divided by)
and the usual logical symbols =, A, V, ¥, d, (,).

(negation, conjunction, disjunction, for all, there

exists, parentheses)



Terms are of the form

a,,b, signed
17 1
a integral constants,
(e b))y, integ
i=0

bi # 0, ¥y distinct variables. TIf t denote terms, then t. < t

> % i =t

and tl = t2 are atomic formulas. We will assume that to begin with, and
prior to each elimination of quantdfiers, all atomic formula are of
the form t > 0 or t = 8. We use the usual definitions of formula and

sentence.

Now let S be the set of those sentences in the above language
which are true when the quantifiers range over the real numbers, with
integral constants interpreted in the obvious way, < interpreted as the
usual order on the real numbers, = as equality, +, - and / as ordinary
real addition, minus, and division. We propose to exhibit a decision
procedure for S(that is, an algorithmic procedure for deciding whether
an arbitrary sentence in our language is in S or mot) such that if B is
a sentence of length n, the algorithm determines in space 2dn, d a

constant, whether or not B € S.

3. Elimination of Quantifiers. We assume we have a formula

dxl B(Xl"'°’xn)’ where B(xl,...,xn)ls a quantifier-free formula
containing only the variables Koo X free, We will exhibit a quantifier-
free formula B'<X2""’X Ywhich is equivalent to Exl B(xl,...,xr) in

n 1

the theory S.




The procedure is as follows:
1

1. "Solve for xl' in each atomic formula. i.e. replace each atomic

formula involving %4 by an equivalent one of the form

& &P (1)

|
5 x4 )
X =V (3)

where t, u, v are terms not containing X Let C(xl,,._,xn) denote
the result of solving for 3] in each atomic formula of B(xl,...,xn)
containing Xqe Thus, B(xl,..,xn) will be replaced by an equivalent
formula C(xl,...,xn),C(xl,...,xn)a Boolean combination of atomic

formulas of forms (1), (2), and (3) involving x,, and atomic formulas

1’
not involving Xq-
24 We now make the following definitions:
Given C(xl,...,xn)to get C”m(C+m):
A

replace x, <t in C by T // F

u <}‘:1 F T

vo= Xl F F.

Clearly, for any real numbers r2,..3rn, and rya sufficiently smaill
real number, C(rl,...,rn)and C_m(rz,...,rn)are equivalent. A

similar statement can be made for C+m for =] sufficiently large.
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lLet U be the set of terms t, u, v in the atomic formulas of type
(L), (2) and (3) occurring in C(xl,...,xn). We now claim

T Gl s is equivalent
1 (1, ,xn) q ent to

Lo ¥ C+w \/ C((wtz)/2, X2,...,Xn).
Wz e U

Proof: Suppose we are given real numbers r2,...xn.

() Suppose C__V C v \/ C((wt+z)/2, r

.sT_)is true.
o *n
w,2 €U

2,..

I1f one of the disjuncts C((w+z)/2, rz...,rn)is true, so is
Hxl C(x1,r2...,rn). So suppose one of the first two disjuncts is
true, say C__. (The proof for c+m is similar). Then since we can

pick r, sufficiently small so C(rl,...,rn)is equivalent to C__,

1

Exl C(xl, rz,...;rn)is true.

(=) Suppose Hx, C(xl,r?...,rn) is true.

Let t "ﬁm be the distinct real numbers, in increasing order,

>
corresponding to the terms in U which are obtained by substituting
Lpseonl for Xyseo ok - Since Hxl C(xl,rz...,rn)ls true, there is

a real number Ty such that C(rl,...,rn) is true. Now, r, must

satisfy a specific order relation with respect to the numbers

tl""’tm' That is, exactly one of the following must hold:
(a) r, < t1
<
(b) tm ry
(e) £ F ti for some 1 £ i < m.
(d) ti - ry Z ti+1’f0r some 1 < i < m-1.




It is then clear that if r also satisfies the same specific order

relations w.r.t. tl"'"tm as r 8y i

1° 2...§rn)is true. But if (a)

holds, C_m must be true, if (b) holds C+m must be true, if (c¢) holds
C((ti+ti)/2, r2,..‘,rn)must hold, and in case (d) C((ti+ti+1)/2’ r2,...,rn)
must be true.

It should be noted that this procedure will work just as well for
rational addition with <. In fact, the procedure works for any divisible,
torsion-free, ordered abelian group. We need the divisibility to solve
for =

1} the torsion~-free requirement makes this solution for x, unique,

1
Thus, in particular, any two divisible, torsion-free, ordered abelian

groups are elementarily equivalent. We henceforth assume we are dealing

with the rationals.

4. Bounds on the Procedure. The purpose of this section is to show

the desired space bound can be attained. In order to do this, we want
to compute a space bound on the elimination of quantifiers procedure
given in section 3.

It should be noted that we are using as our moéel of computation the
deterministic, one tape Turing machine; space bounds, or the number of
tape squares used by the Turing machine, are given as a function of n,
the length of the sentence the machine is deciding. As is widely known,

this model is not restrictive for bounds as large as exponential since

it can gimulate a multitape or nondeterministic machine in space at most



the square of the space required by the more powerful model. [4]. Of

course we describe our procedure informally, leaving it to the reader

to convinee himself that straightforward implementation of our procedure

on a Turing machine would achieve the claimed bounds on time and space,
We now compute the amount of space it would take to eliminate

quantifiers in a formula E of length m, with s, the size of the largest

0
integral constant in E, £ the number of quantifiers in E. Our analysis
is similar to that given by Oppen [5] for Cooper's decision procedure
for Integral Addition. We first put E in premex normal form using the
standard algorithm but always choosing variables with the shortest
subscripts possible, obtaining E'. ©Note that E' is of length < m log m.
This is so because there are at most m occurrences of variables, and
thus any subscript of a variable in E will be increased in length by
a factor of at most log m. Note that the prenex normal form procedure
does not change the number of quantifiers or the size of constants,
and so E' has £ quantifiers and largest integral constant of size g
Now, let D be a formula. Let D' be the formula gotten by applying
the elimination-of-quantifiers procedure to &x D. Let n(n') denote
the length of D(D'). Let s(s') be the size of the largest integer
constant in D(D'). To compute n' from n, note that "solving for x"
involves dividing through in each atom by the coefficient of x; instead

of appearing once, each such coefficient can appear n times. Thus,

the length of the formula @x F gotten from #x D by solving for x, is at




most n2. The substitution procedure involves increasing the length to
at most n2(3(2n + 2)n2), because for each of the at most n2 pairs of
terms (w,z) we must write F((w+z)/2), and then collect terms. To collect
terms we have to add up 3 coefficients whose integers are each of
length < 2n + 1 to get a total whose integers are of lemgth < 3(2n + 1) + 2,
so that the size can go up by a factor of at most 3(2m + 2). We must
also write the formulas FL o F__ of length at most 2n. Thus,
Al = 2n +F n2(3(2n + 2)n2) <2 1On5 < n?.

We now compute s' in terms of s. Again, since "solving for x"
involves dividing through in each atom by the coefficient of x, which
is limited in numerator and denominator by s, the largest constant
becomes at most 32. The substitution procedure involves dividing by
2 and collecting like coefficients., Since in each atom gotten via the
substitution process there can be at most three occurrences of the
variable y(¥ # x) and -the three coefficients in question are limited in
numerator and denominator by size 232, their sum is limited in like
manner by 3(252)3. Thus s' < 2456 = 311 (if 8 2 2)s

Let D be the length of the largest formula D gotten from the
formula E' by elimination of quantifiers; let Sg be the size of the
larges* integral comstant similarly obtained. Since deciding E'

requires { eliminations of quantifiers,

2,
N, < (m log m)9 and

£
8ji g
So s (SO) 5 if 5, > 2,



and since it is not hard to see that the storage required for bookkeeping

is no longer than the size of the largest expansion, to decide E' takes
9/@ 78 em
at most space (m log m) . Therefore, we need at most 2¢ space, s

a constant independent of m, to decide formulas of length m. It should

also be noted that the time bound is of the same order; that is,
24t
2 , q a2 constant, time is at most needed to perform the elimination-

of-quantifiers procedure. We need especially the fact that the size

ot

of the largest constant grows no larger than Sy 4

p & constant

independent of m, £ and s in deciding formulas of length m with £

O!
guantifiers and largest integral constant of size < 4> if SO 2 25

Definition. A rational number r is limited by the positive integer k
iff r = a/b in lowest terms, and ]al £ iy ]b] < k. A quantifier Ex or
Vx is limited by the positive integer k, written ¥x £ k or Tx < k, if

instead of ranging over all ratiomals, the quantifier ranges over all

rationals limited by the positive integer k. Note that if r, and r,

are rational numbers limited by the positive integers Wis Wos respectively,

then T, + r, is limited by 2(w1'w2 g

Jemma. ¥ a constant ¢ > 0 such that for all £, i and WO’ Wl,.-
IR . Wj is a pesitive integer, Vg = 1, and Qx F(x, yl,...,yi) is

a formula with £ quantifiersﬁﬂmere Q is 7V or EL with largest integral constant

«»W, 1f for
i

85° 5 = 2 and Tpe.of, are any rational numbers limited by w

g mmpW o
e

1

respectively, then Qx F(x, r ""’ri) ig true iff

1

20(2+i) \ 5 -
Qx = s (wo-eewi) F(xl, rl,...,ri) is true,
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Proof. Consider F(x,yl,...,yi)with < £ quantifiers. By the results
of section 3, we can replace F(x,yl,...,yi)by an equivalent quantifier-
free formula B(x,y,__,yi), such that all rational constants appearing

. 4p*d
in B are limited by 55 » P a constant independent of / and F. Thus

it will be sufficient to show Qx B(X,r_,...,r, )true iff
i

1
- RCTI
Qx < 5, (wo---wi) B(x, rl,...,ri).

We can assume, without loss of generality, that Q is Z. Consider

4% B(X,r s...,r,). By the results of section 3, if such an x exists,
i

1

then it is either less than all such terms appearing in the above formula
after solving for x; or greater than all such terms; or equal to one;
or can be assumed to be the average of two of them. We therefore calculate

a limit for the terms appearing in Hx B(x,r r Yafter solving for x.
A i

1,0‘»‘,
I,
Consider any such term t. ¢t = % (aj/bj)(lfa)rj, where a is the
j=1
coefficient of x we divide by to solve for x. Thus t is limited by

pi+l i 2p,Q,+2:'L

2
) (wove-wi) < s,

21(s0

(wo-tswi). Thus (t+u)/2, t, u any
pi+21i 2
two such terms as above, is limited by 2(50 woq..wi) <
oPLH+2142 2 pl2i42

L, 2
s (WO..awi) . Thus we can limit x by SO (WO~°°Wi) + 1

0
2c(£+i) 2
= 54 (wo.a-wi) s C 2 constant, where the 1 must be added to handle

the cases where x is either less than or greater than all such terms.

5¢ (£41) 2
Thus dx B(X,r_,e«ss7.)is equivalent to Tx < s
1

1 0

(w0~vrwi) B(x,rl,...,ri).



EC

We can now state:

Theorem. Let ¢ be the constant of the previous lemma,

Qlyl"'Q’Yn F(ylb,,,,zbﬁe a sentenee in prengx nermal form with largest integral

; gk 2ch 2
0’ So = 2. Let Wi = 8, s Wpay = 8 (wl...wk) .

constants = s
Then, Qy Vy.-- ngz F(yl,...,3ﬁﬁs true iff Qq y{ S W ... Qﬂyﬂ < v, F(yl,...,yﬁ)

is true,

Proof. Immediate, from the previous lemma,

We now have:

Theorem. = 2 constant d > 0, and a decision procedure for rational
addition with <, such that to decide a sentence B of length n takes at

d
most 2°° space.

Proof. let B be a sentence of length n with largest integral constant
< 8g- Let B' be its equivalent prenex normal form of length at most
i I= - . - 5 "
n log n. Then, using the above theorem, B Q¥ - szz F(YP yz)
; o : -
is true iff Qly1 S Wy e ngz s, F(yl,...,yi) is true, w, defined as above.

3£-1

; _ e s o 3
We now wish to show W, = Wl . But it is easy to see Vil T wk
since w = W (W e ey w. )2 - [w (w ey )? ] W, 2 . W 2 = w 3
k+1 - "1Y1 0 k-l 'k 11T k-1 E  Ek k*
3k 2c£ 32-1
and thus W1 = Wy Thus w, = (so ) . This is the largest

bound we encounter in limiting the quantifiers of B'.




wl] Fe

We thus must evaluate the matrix of B', of length at most n log n,

cd 32-1 2c n

at rationals limited by (so ) = 2 5 =

a constant, since sO
v = n ; ;
is limited by 2~ and £ < n. But then the obvious checking procedure
in which integral constants are written in binary notation takes space
dn
at most 2, d a constant,
The upper bound on the decision procedure thus obtained should

be compared to the lower bound obtained by Fischer [2].

5. Applications. The idea of deciding truth in a particular theory,

as outlined above, can be applied to many other theories, thereby
obtaining procedures of considerable computational efficiency. That

is, given a particular theory, one gives an elimination-of-quantifiers
procedure, analyzes it to see how'large” constants can grow, and uses
this analysis and the elimination-of-quantifiers procedure in a manner
similar to that given above to limit quantifiers to range over finite
sets instead of an infinite domain. 1In particular, we can use the
quite efficient elimination-of-quantifiers procedure given by Cooper [3]

for deciding truth in the first order theory of the following language L:

Integral constants Oy ks 105 1ty 455
Unary symbol - (minus)
Binary symbols g =y Py I. (less than, equals,

plus, divides)
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and the usual variables and logical symbols, where terms are of the

k
form ~ a

. signed integral censtants, yi distinct wvariables;
=1

e
1717 ftl?

atomic formulas are of the form tl L # t2, t1 = t2 and n l tl’ n an

integral constant, tl’ t2 terms.

If we use the analysis of Cooper's procedure by Oppen [5] as stated
below, we can derive a further result on an upper bound on space for

deciding this theory. We first state:

Definition. An integer m is limited by the positive integer k if
1nl < k.

A quantifier Qx, where Q is V or &, in L is limited by the pesitive
k, written Qx < k, if instead of ranging over all integers, it ranges

over all integers limited by k.

Theorem. (Oppen): X a constant e > 0 such that if Cooper's elimination-
of-quantifiers procedure is applied to a sentence with integral constants

limited by the positive integer 850 Sg = 2, and £ quantifiers, the size

of any integral constant appearing at any point of the procedure is

e f
22

limited by 5y

We can now state:

Lemma. X a comstant f > 0 such that given ¥x F(x, yl,.,.,y_) with integral
8

constants limited by the positive integer s s, = 2 and f quantifiers,

0’ "0
and integers Dyseeally limited by the positive integer w, (w = 1 if 1 = 0)




Ty

2f(i+£)

then ¥x F(x,n ..a,ni)is true iff x < s (wei) F(x, nl,...,ni)

1? 0

Proof. Using the previous theorem, Cooper's procedure, and an analysis

similar to that given for real addition.

Theorem. ¥ a constant g > 0 such that if Q1 Xp eee QE x, B(xl,..“xz)
is in prenex normal form with integral constants limited by the positive

integer s, = 2, B quantifier-free, then lel S ngg B<X1"°"X2) is true

0
2g2+1 zg£+i 2g£+2

2 2

" 2
iff lel < g ...Qixi = 54 "'QEXE < 5 B(xl,...gg).

Proof. Apply the previous lemma.

It is then clear that:

Theorem. £ a constant h > 0, and a decision procedure for integral

addition with <, such that to decide a sentence of length n takes at

h*n
most 2 space.

This theorem should be compared to that obtained by Fischer and

Rabin [2]:

Theorem. (Fischer and Rabin): & a constant {4 > 0 such that any non-

deterministic Turing machine which decides integral addition (even
in

without order) requires for almost every n time 22 to decide some

sentences of length n.
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