
LABORATORY FOR ~~ ~~lifi~~~EbJ5

COMPUTER SCIENCE iEJ tm. TECHNOLOGY
(formerly Project MAC)

MIT /LCS/TM-73

OPTIMAL ARRANGEMENT a=~ IN A HASH TABLE

RONALD L. RIVEST

JULY 1976

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT / LCS/ TM-73

OPTIMAL ARRANGEMENT OF KEYS

IN A HASH TABLE

Ronald L. Rivest

July 1976

CAMBRIDGE

MIT /LCS /TM- 7 3

OPTIMAL ARRANGEMENT OF KEYS IN A HASH TABLE

RONAID L. RIVEST

JULY 1976

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
IABORATORY FOR COMPUTER SCIENCE

(FORMERLY PROJECT MAC)

MASSACHUSETTS 02139

·k Optimal Arrangement of Keys in a Hash Table

Ronald L. Rivest
Dept. of Electrical Engineering and

Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

July 1976

Abstract

When open addressing is used to resolve collisions in a hash table, a

g i ven set of keys may be arranged in many ways; typically this depends on the

order in which the keys are inserted. We show that arrangements minimizing

either the average or worst-case number of probes required to retrieve any

key in the table can be found using an algorithm for the assignment problem.

The worst-case retrieval time can be reduced to O(log
2

(M)) with probability

1- E:(M), when storing M keys in a table of size M, where €(M) ➔ O as M ➔ co.

We also examine insertion algorithms to see how to apply these ideas for a

dynamically changing set of keys.

Keywords

hashing, collision resolution, searching, assignment problem, optimal
algorithms, data base organization.

CR categories: 3.74, 5.41

* This research was prepared with the support of the National Science Foundation
under research grant no. GJ-43534X, contract no. DCR74-12997, and research
grant no. MCS76-14294.

-2-

"Spread the table and contention will cease."

1. Introduction

Old English proverb
[8, #272. 6 J

We consider schemes to optimize the placement of keys in a hash table

when open addressing is used to resolve collisions. This section reviews the

basic definitions and algorithms; the following sections present the optimization

algorithms and analyze the number of probes requires to retrieve a key from an
optimized table.

Let "X = [K 1 , K2 , ... , ~ } be a set of N keys, and let an array Ti, for

1 ~i s M be a set of M memory locations (the hash table) which will be used to

store~. Each table position may hold either a single key or the special

symbol~- We assume N s M. When open addressing is used to resolve col
lisions a "hashing function"

h : U X (1 , 2 , ••• , M) ➔ (1 , 2 , ••• , M}

is used, mapping the set U of all possible keys (that is, k may be any N-subset

of U) and probe numbers into the set of memory locations. We assume for any

key Ke U that the sequence h(K,1),h(K,2), ••• ,h(K,M) is a permutation of

(1,2, ••• ,M}. To store the key K in the table the locations Th (K,l)' Th(K,
2
)••··

are successively examined until an empty location is found or until K is found already
present in the table. The following program makes this precise.

Insertion Algori thm

Input: a key K, a hash table T, a hash function h.
Output: None .

Procedure:
T is modified to contain K, unless K is already present.

j : = O;

~

until
~

j : = j + 1;
i : = h(K, j);
if T. = empty then T. := K

l. ,,...,.__,.._,. l.

Ti = K;

-3-

Note that T must contain at least one empty location if K is not already

in the table,if the loop is to terminate properly. The value of j at

termination , which is the number of probes required to insert K, is taken to

be the cost of inserting K.

A similar procedure searches for the presence of a key K in T (replace the

assignment statement "T. : = K" by "return (K not present)"). If the~
l.

loop terminates normally then T.
l.

contains the previously stored key K. The

value of j at termination is taken to be the cost of searching for K.

Knuth [4] studies hashing algorithms in detail, giving alternative methods

for handling "collisions" (the case when h(K., 1) = h(K., 1) for K. -I K.) and
l. J l. J

several open-addressing hash functions h. The reader who is unfamiliar with

hashing algorithms should find it profitable to consult his text.

2. Optimal Arrangements

The arrangement of the keys 'k. in the hash table depends on the order

in which they were inserted. For example, let Ube the set of natural numbers

and let h(K,j) be the jth decimal digit of K. Inserting the set

'}(= [1423, 1234, 3412, 2341}

into an empty table in that order results in the arrangement a:

location: 1 2 3 4

contents: 1423 1234 3412 2341

whereas inserting them inthe order 1234, 2341, 1423, 3412 results in~':

location: 1 2 3 4

contents: 1234 2341 3412 1423

-4-

Let a: '){ ➔ {1,2, ••• ,M} be called an arrangement; a(K.) = j means that
l.

T = K .• Of couse a must be one-to-one. Let A(?(,M) denote the set of all
j l.

arrangements of 'X. in T1, ••• , TM.

Let p(K,a) denote the number of probes required to retrieve a key K

under arrangement a; the average

avg(a) 1
= N I: p (K, a)

kE:

and worst-case

we (a) = max{p (K,a) I K € ?(}

number of probes to retrieve any key in Tare then definable. We have

avg(a) = 7/4, wc(a) 3, avg(a') = 5/4, and wc(a') = 2 in the above examples.

Hashing is often used to store a dynamically changing set of keys. We

f irst study in this section the simpler problem of optimally arranging a

given set 'K of keys in a hash table; in section 4 we consider the

problem of maintaining optimality as 'J<. changes.

Define an arrangement Q' € A('it,M) to be valid if all the positions

h(K,1), h(K,2), ••• , h(K,p(K,a)-1) are non-empty for every key K in1<. An arrange

ment is valid iff every key Kin Xis retrievable using the search algorithm of

section 1. Similarly define an arrangement to be feasible if it is the result

of inserting the keys in 'k into an empty table sequentially in some order;

necessarily every feasible arrangement is valid.

Valid arrangements which are not feasible are possible; consider the following

arrangement using the hash function h from our previous example:

location: 1 2 3 4

contents: empty empty 4321 3412

The number of feasible arrangements depends on X and h. It is no larger than N!

(the number of ways to enter the keys), but may be as low as 1 if no collisions

occur. Similarly the number of valid arrangements can vary between 1 and N!.

For example, only one valid arrangement exists if no collisions occur and

h(K.,1) I h(K.,2) for all K.,K. in')(__ The upper bound of N! on the number of
l. J l. J

-5-

valid arrangements is obtained by induction on N, using the fact that p(K,a) < N

for any valid arrangement and all keys Ke?<. We may store~ in any of

N positions h(~, i) for 1 s: is: N; if we then delete ~ from 'X and h(~, i) from the probe

sequence h(K.,l), ••• ,h(K.,M) for every j < N we see that every valid arrangement
J J

of '! induces a valid arrangement of X-(~) in locations

fj I 1 s: j ~M and j-:/- h(~,i)) using the modified probe sequences.

We define an arrangement a(,C,M) to be optimal if either avg (o-) or wc(<j-)

is minimal over all arrangements in A(tM); the terms average-optimal and

worst-case-optimal will distinguish these cases.

Proposition 1. A feasible optimal arrangement always exists.

Proof. If an arrangement a is not feasible, then there exist a set

[K. , K . , ••. ,K. } of keys, none of which can be entered first since they 1 0 1.1 1r- l

form a "blocking cycle": there is a set of integers t. for Os: j s: r-1 such
J

that h(K. , p(K. ,O')) = h(K. , t(·+l) d r) and t. < p(K. ,a) for
l. . l. . i (. +l) d J mo J l. . J J J mor J

0 ~ j s: r-1. But clearly p(K. ,a) can be reduced by setting a(K.) to
l.. l..

J J

h(K. ,t.) for Os: j ~ r-1. Since avg(a) strictly decreases,a feasible optimal l.. J
J

arrangement can always be found after a finite number of blocking cycles have

been removed in this fashion.

Proposition 1 suggests an algorithm for finding optimal arrangements:

enumerating all feasible arrangements. However, better methods exist.

Proposition 2. Optimal arrangements can be found by using an algorithm for

the assignment problem.

Proof: The assignment problem [6] can be stated as follows.

Let N and M be given, with N ~ M, and let fa .. I 1 ~ i ~ N, 1 ~ j ~ M) be
l.J

a matrix of nonnegative real numbers. The classic example specifies for each

of M men and N jobs, the "inefficiency" a .. of man j in job i. The objective
l.J

is to find an assignment i ➔ a(i) of jobs to men such that the sum

~a. c·) L<;;is'.N 1. 'ct 1.

-6-

is minimized, subject to the constraint that no man is assigned to more than

one job.

We can apply this directly to the problem of finding average-optimal

arrangements by letting a .. be the integer such that h(K.,a ..) = j),
1J 1 1J

denoting the cost of assigning K. to T .• The average number of
1 J

probes required to retrieve a key in the optimized table is then just the

total 11inefficiency" divided by N. We observe that if the various keys

have associated retrieval probabilities, then the arrangement minimizes

the expected retrieval cost can be found in the same manner; we need only

multiply each a .. by the probability that K. will be retrieved.
1J 1

Similarly, we can minimize the worst-case cost by choosing
t

a .. to
1J

be N, where tis the integer such that h(K.,t) = j .
1

Since the key with

highest cost determines the order of the total cost, minimizing the total

cost here minimizes the worst-case cost.

In fact, it is not too difficult to find among those solutions with

minimum worst-case cost, an arrangement with minimal average cost. (An

arrangement which has minimum worst-case cost and also minimum average cost

does not always exist; consider the keys 1234,1243,2341, and 3412 under the

hashing ftmction of our previous examples. The worst-case optimum is wc(ct) = 2,

but any arrangement which achieves the minimum average cost of 3/2 must have

a worst-case cost of 3.) To find such an arrangement it suffices to solve

the assignment problem with

a •.
l.J

where tis the solution of h(K.,t)
1

= n + Nt+2-N a..)CJ

1J

j. Similarly, by using

the average-optimal arrangement which has the smallest worst-case retrieval

time can be found. n

-7-

Having observed that our problem can be formulated as an instance of

the assignment problem, it is of interest to know how quickly a solution

can be determined. The general N by M assignment problem can be solved in

time O(NM
2

) [6]; the space required is O(N-1-M) if the matrix entries a ..
l.J

can be computed in constant time from K.,h, and j. When all the matrix
l.

entries are small integers (as when we are finding the average-optimal ar-

rangement), it may be possible to improve this time bound somewhat, but the

author was unable to find a more efficient procedure.

Worst-case optimal arrangements can be determined in time O(BM(M,N)•log
2

(N)),

where BM(M,N) is the time required to solve an M by N bipartite matching

problem. The procedure, pointed out to the author by J. Vuillemin, is to use

binary search on the worst-case cost: is it possible to test if the optimal

worst-case cost is less than or equal to a given value w by solving the

corresponding maximal matching problem. The graph used has N vertices x.,
2 5 1.

M vertices y., and an edge (x.,y.) iff a .. ~ w. Since B(M,M) = O(M •), we
J l. J l.J

obtain an O(M205log(M)) algorithm for the case N = M.

3. Efficiency of the Worst-case Optimal Arrangements

In this section we prove that even if the hash table is full (N = M), we

can expect the worst-case optimal arrangement to have a worst-case cost of

O(log(M))with a probability approaching one very rapidly as M ➔ oo. While a

worst-case cost of O(log(M)) can obviously not be guaranteed (since there is

a finite chance that all keys have the same probe sequence, for example), the

odds are overwhelming that with a random hash functbn and a random set of keys,

there is some arrangement of those keys yielding a worst-case cost of O(log(M)) .

This compares favorably with the standard techniques which also require

O(log2 (N)) time to retrieve a key, especially in situations where the set of

keys is static (since updating an optimized hash table can be expensive) .

The proof is modelled very closely after a similar result of Erda's and

Renyi [2], who show that a random n by n matrix of O's and l's containing N(n)

ones has a permanent of one with probability approaching one as n ➔ oo if

lim(N(n)-nlog(n))/n = oo.

n~

-8-

Let ~(M,N,w) denote the set of all zero-one matrices with M columns,

N rows, and exactly w ones per row. Obviously l~(M,N,w) I = (:)N. We say

a matrix (m .. } € '.D}(M,N ,w) contains N independent ones iff there exists a
l. J

function a: (l, ••• ,N} ➔ (l, ••• , M} such that a(i) I a(j) for i I j and

m. (·) = 1 for 1 s i s N. Let P(M,N,w) denote the probability that a matrix 1,0' l.

in l'fll(M,N,w) contains N independent ones.

We wish to identify P(M,N,w) with the probability that a random set of

N keys can be arranged in a hash table of size M so that the worst- case

retrieval cost is at most w. This model will be accurate if every set of

w locations is equally likely to be the set of w locations first probed for

a random key k. Each matrix in ril(M,N,w) then corresponds in a natural

fashion to the characteristic matrix describing, for a random set of N keys,

which locations are usable if the worst-case cost is constrained to be at

most w. The existence of N independent ones corresponds to the existence of

an arrangement with worst-case cost of at most w; and by Proposition 1 the

existence of a feasible, valid arrangement with worst-case cost of at most
w is thereby implied.

We have P(M,N,w) ~ P(M,M,w) for 1 s N s M since the first N rows of a

matrix in ~(M,M,w) which contains M independent ones must contain N independent
ones. We therefore proceed to show the following.

Prooosition 3. lim P(M,M,4log(M)) = 1
?-1 ➔ ::c

Proof: By the well-known theorems of Frobenius (3) and Konig [5] , 1 - P(M, M,w)

is equal to the probability that a matrix in ~ (M,M,w) has k rows (or columns)

and N-k-1 colunms (or rows) that contain all the ones, for some k,
o ~ k s M -1.

Let Qk(M,N,w) denote the probability that a matrix in 111l(M,N,w) has k rows

(or columns) and N-k-1 colunms (or rows) containing all the ones, and k is
the least such number for O ~ k ~ M/2 . Then

LM/2J
l - P(M,N,w) ~ : Qk (M , N,w) .

le 0

-9-

Case 1: k rows and M-k-1 colunms contain all the ones, for some k ~ M/2 .

Those matrices in 'Jll(M, M,w) having a minimal number k of rows and M- k-1

colunms containing all the ones can be displayed as in Fi gure 1, after an

appropriate permutation of the rows and colunms. Each row of submatrix B

must contain two ones under our assumption that k is minimal (if not, we could

M columns

M rows [

- __,.________
A B

C 0

k

M- k

M-k-1 k+l

Figure 1.

include the column, and exclude the row, of the one in matrix B which is in

a row of B containing no other ones). The fraction fk(M, M,w) of matrices

of this type is less than:

t) (k:l) (M-:-f-k {{:) - r-: -1) - (k+l) (M:~il)(

(WM

whose logarithm is bounded above by

[(2k+l) - w(M-k)] log(M)

+ w(M-k)log(M-k-1)

- klog (k) - (k+l) log(k+l)

~ (2k+l) log (M) - w(k+i)/2

Thus if w ~ 41og(M) , Qk(M,M,w) ➔ 0 as M ➔ ~ .

Case 2: k colunms and M-k-1 rows contain all the ones, for some k ~ M/2.

See Figure 2.

-10-

(
~~~-

M rows A C M-k-1 

\ B 0 k+l 
\ 

k M-k 

Figure 2. 

The fraction gk(M,M,w) of matrices of this type is less than 

whose logarithm is bounded above by 

(2k+l)log(M) - w(k+l)log(w) 

so that gk(M,M,w) ➔ 0 with M if w 

gk(M,M,w), we are finished with the proof. ri 

A similar analysis might yield the expected value of the average 

retrieval cost in an average-optimal arrangement, but this seems much more 

difficult. It would be necessary to consider, for each set of keys, the 

ways of placing cN ones among N rows of an N by M matrix in a fashion 

consistent with the hash function, and then to determine if there exists 

a placement containing N independent ones. 

4. Insertion Algorithms 

We now turn our attention to the problem of maintaining the optimality 

of an arrangement as new keys are inserted into a table. 

We first examine an insertion algorithm due to Brent [1], and demonstrate 

that it does not maintain optimality. Of course, Brent only intended his 

algorithm to be a good heuristic, a means of inserting each new key in such a 

fashion that the increase in average retrieval cost is kept reasonably low. 

Brent's algorithm works as follows. Let K denote the new key being 

inserted, and suppose positions h(K,l), ••• ,h(K,s) are already occupied with 

keys K1 ,K2 , •.• ,Ks, and that Th(K,s+l) is empty. Let ri denote t he 

number of probes required to retrieve K., so that h(K.,r.) = h(K,i). 
i i i 



-11-

Furthermore, lets. denote min(j 
l. Th(K .. ) =empty} , the number of probes 

l.,J 

required to retrieve K. if we move it to position h(K s) Then 
l. i' i . 

(i+(s.-r.))/(N+l) is the increase in the average retrieval cost caused by 
l. l. 

moving K. to position h(K.,s.) and storing Kin position h(K i) Brent 
l. l. l. ' • 

chooses between storing Kin position h(K,s+l) and moving that K which 

minimizes i+(si-ri ) by comparing (s+l) to min( i+s . -r. }. 
. l. l. 
l. 

In fact, the following example demonstrates that no algorithm which 

only moves keys forwards in their probe sequence (that is, moves K from 

h(K,i) to h(K,i') for i' > i) can always arrive at the optimal arrangement. 

Consider the fol lowing arrangement (using the hash function of our previous 

examples) which is both average and worst-case optimal: 

location: 1 2 3 4 5 6 7 

contents: 1273456 1234567 3456712 4567123 5671234 6712345 empty 

If the key 2345671 is now inserted, the only way to maintain optimality is to 

move 1273456 to location 7, move 1234567 (backwards) to position 1, and then 

store 2345671 in position 2. 

Since Brent's algorithm is the only published algorithm which moves 

previously inserted keys when inserting a new key, we see that no existing 

insertion algorithm can maintain optimality for arbitrary hash functions. It is 

interesting to note, however, that for certain open-addressing collision

resolution schemes the usual insertion algorithm maintains average-optimality. 

He say that a hash function h exhibits primary clus t ering if h(K.,j) = h(K.,j') 
l. l. 

implies that h (K.,j+l) = h(K.,,j'+i) for O ~ £ ~ M - min(j,j') for any 
l. l. 

K. ' K . I. 
l l 

Linear probing (h(K,i) = h(K,l) + (i-1),mod M) is perhaps the best-

known example of a collision resolution scheme exhibiting primary clustering, 

and all primary clustering schemes are in fact isomorphic to linear probing in 

a natural manner . 

Proposition 4. If h exhibits primary clustering, then the usual insertion 

algorithm maintains average-optimality. 



-12-

Proof: This theorem is due to W.W. Peterson [7]; the proof is also given in 

Knuth [4, p.531 ) . Knuth also remarks that if the keys have associated retrieval 

probabilities, then the average-optimal arrangement can be achieved by using 

the standard insertion routine to insert the keys one by one into the table, 

in order o f decreasing request probabilities. □ 

In spite of the fact that for linear probing the usual insertion algorithm 

maintains average-optimality, other hashing schemes are to be preferred, since 

the expected retrieval cost in the average-optimal scheme f or a primary

clustering hashing function generally exceeds the expected cost for other 

schemes, even if average-optimality is not maintained. 

We now turn our attention to the task of finding an insertion algorithm 

that will maintain the optimality of an arrangement. In essence, we need an 

algorithm to solve the assignment problem "incrementally". 

One approach is to observe that if N/M is small enough (how small this is 

we shall determine), then the number of keys already in the table which we 

need to consider moving might be reasonably small. Brent considers moving 

only those keys on the probe sequence of the new key K; if we also consider 

moving all of the keys on their probe sequences, and so on, we can determine 

the maximum set g of keys that might need to be moved. Similarly we let ✓-

denote the set of locations that g might occupy in the optimized table; it 

suf fices then to solve the assignment problem for placing g into J , rather 

thanl u {K} into T. 

Define, for a given arrangement a, the functions: 

-.(K) = min{ j I h(K, j) = empty} 

c:- (K) = { K. I a(K.) = h(K, j) for some j < rr(K)} 
1. 1. 

~ (K) {i I h(K, j) = i for some j ~ TT(K) } • 

Then 

S (K) = [ K} U [3(Ki) I Ki E cr(K)} 

,/ (K) T(K) U []"(K.) I K. E cr(K)} 
l. l. 

define by means of their minimal solutions the sets 3 and .'7. of keys and 

pos i tions r e levant t o the insertion of K into an arrangement a . 



- 13-

Let P = N/M denote the "loading factor" of the existing arrangement a. 

In order to estimate the expected size g(K), we assume that the hashing 

function is uniform in the sense that every permutation of [ l, ••• ,M} is 

equally likely to be a probe sequence of some key K. We can then use the 

approximation 
i-1 Prob(n(K) = i) = (1-~) P . 

Lets. denote the probability that jg(K)j 
1. 

00 • 

S(z) = ..,. 1. , s .z 
i=l 1. 

i, and let 

denote the corresponding generating function. We shall develop an equation 

for S(z) which depends on the generating function: 
00 i 

P(z) =;, p.z 
i=l 1. 

(where p. is the probability that, for a key K' already stored in T, 
1. 

ct(K') = h(K',i)). However, determining P(z) for optimized hash tables remains 

an open problem, so we shall approximate S(z) after we develop the correct 

defining equation. 

Let C(z ) 
c:, i 
',' C .z 

i=l 1. 

be the generating function with coefficients c. equal to 
1. 

the probability t hat the "contribution" of a key K' on the probe sequence of 

the new key~ to S(K) is i keys. Therefore 
ex, 

S(z) 
i i 6 (1-P)P [C(z )] •z 

i=O 

since there is a probability of (1- ~)~i that n(K) = i+l (that is, there 

are i keys on the probe sequence for the new key K). The final z is for the 

key K itself. 

Similarly we can define 
00 00 

i-1 i i 
C(z) = [ >'p . (C(z)) ]·(..,. (1- ~H (C(z )) ]•z 

i=l 1. i =O 

(or equivalently , 

(1 - ~C(z)) · (C(z)) 2 = (1-~)P(C(z))z ). 



-14-

The first term accumulates the contributions of those keys K" on the probe 

sequences of a key K' on the probe sequence for K, such that K" occurs before 

K' in the probe sequence for K'. The second term adjusts for those keys K" 

occurring after K' in the probe sequence for K'. Finally, the third term z 

is for the key K' itself. 

The expected size of &(K) is S'(l); and 

8 I (z) 

so that 

s I (1) 

= L /o-@)z \ 
dz \(l-f3C(z))) 

= ( 1-@C ( z) )( 1- @) + ( 1-@) z 13C ' ( z) 

(l-f3C(z))
2 

= 1 + @CI (1) 
( l- f3) 

(1- 13C( z))2C(z)C'(z) - f3C'(z)(C(z))
2 = (l-f3)[P'(z)C'(z)z + P(C(z ))J 

so we obtain 

C'(l) = (l-f3)/(2-3l3-(l-l3)P'(l)) 

and thus 

S'(l) = l+f3/(2-3f3-(l-13)P'(l)). 

Unfortunately, P(z) is unknown. We observe, however, that S'(l) can 

be expected to remain finite as long as 

P'(l) ~ (2-3f3)/(l-f3). 

Since P'(l) is the expected number of probes required to retrieve a key 

from an optimized table, it is bounded above by the expected number of probes 

required to retrieve a key from a table organized with any open-addressing 

hashing method. For uniform probing (all probes sequences equally likely) 
we have [4 J 

P'(l) ';; f3- 11og(l/(1-13)) 

approximately. Substituting this into the final equation for S'( l ) yields 

Figure 3; we see that the size of the relevant assignment problem is reasonably 
small (say ~ 10 keys) as long as 

f3 ~ .4 



-15-

roughly. The function S'(l) has a pole~= .41466541; for loading densities 

less than this we can expect the number of relevant keys to be finite. In 

practice we should expect to be able to handle even higher loading densities 

without much trouble, since our formulas for S,C, and P explicitly ignore 

the probability of overlapping probe sequences. Furthermore, replacing P(z) 

by its correct definition (rather than the one for uniform probing) should 

yield a definite improvement. 

5. Discussion and Conclusions 

In this paper we have shown how to arrange a set of keys in a hash table 

so as to minimize the expected (or worst-case) number of probes required to 

retrieve a key. Our analysis demonstrates that the worst-case cost can be 

reduced to O(log2(M)) in almost all cases. (In practice it should be possible 

to achieve O(log2 (M)) in all cases with very little work, since a set of keys 

which has an optimized cost that is too large can, by choosing another hash 

function randomly, be expected to yield an O(log2 (M)) cost.) 

Our analysis assumes that uniform hashing is used, however; an open problem 

is to confirm this result for the more connnon techniques such as double 

hashing. Another open problem is to calculate the expected retrieval cost in 

an optimized table, using (say) uniform hashing. 

We have also examined briefly a technique for inserting a new key into an 

optimized table so as to maintain optimality of the arrangement. Our result 

here is that as long as the loading factor is less than .41 (approximately), 

we can usually insert a new key and maintain optimality by solving a small 

( ~ 10 element ) assignment problem. For tables of higher density one must 

apparently solve an assignment problem which involves most of the keys 

previously stored. (By saving the primal and dual variables of the previous 

solution, one can significantly speed up the solution of the new problem, but 

the extra storage required might better be used to store the keys themselves, 

thereby reducing the overall density.) 

The techniques described here should be most useful when the hash table 

is relatively static, with the number of retrievals considerably exceeding the 

number of insertions. Large data bases are often of exactly this nature, and 

frequently utilize hashing techniques. 



5 -4 

4 

3 

SI (1) 

2 

1 

0 .1 

-16-

.2 

f3 

Figure 3. 

.3 .4 

.41466541 
' It' 

.5 



-17-

Acknowledgement 

I would like to thank Professor Donald Knuth for suggesting directions in 

which to extend a previous draft of this paper. 

References 

(1) Brent, R. P. Reducing the retrieval time of scatter storage techniques. 
CACM 16 (Feb. 1973), 105-109. 

[2) Erdos, Po and A. Renyi. On random matrices. Magyar Tud. Akad. Mat. Kutato 
Int. Kozl • .§_ (1964), 455-461. (Reprinted in Paul Erdos: The Art of 
Counting (edited by Joel Spencer), MIT Press (1973), 625-631. 

[3] Frobenius, G. Uber zerlegbare Determinaten. Sitzungsberichte der Berliner 
Akademie (1917), 274-277. 

[4] Knuth, D.E. Sorting and Searching, The Art of Computer Prograrmning (vol. 3). 
Addison-Wesley. 

[SJ Konig, D. Graphok es matrixok. Matematikai es Fizikai Lapok 38 (1931), 116-119. 

[6 ] Kuhn, H.W. The Hungarian method for the a.ssignment problem. Naval Research 
Logistics Quarterly~ (1955), 83-97. 

(7 ] Peterson, W.W. IBM Research and Development 1 (1957), 130-146. 

[8) Tripp, R. I nternational Thesaurus of Quotations. Thomas Y. Cromwell, Co. 
(New York 1970). 


