DEMONSTRATION SOFTWARE FOR AN EXPERIMENTAL VIDEO WORKSTATION

by

WILBERT L. BLAKE, JR.

Submitted to the Department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements

for the Degree of
Bachelor of Science in Electrical Engineering
at the
Massachusetts Institute of Technology

May 1986

© M.I.T.

Signature of Author _
Department of Electrical Engineering and Computer Science
May 9, 1986

Certified by e e e ,
/o : ﬁoriénna Davenport
Thesis Supervisor

Accepted by

T David Alder
Chairman, Department Committee

Archives

TABLE OF CONTENTS

.....-..I..ACKNOWLEDGEMENTS'.....‘..........."...-...'....‘PAGE

....O..'...ABSTRACT.I...........I....l.........'.....'......PAGE

PART I...GLOSSARY.ceceeccecescacacscssscacccsascscooassscssesPAGE

PART II...INTRODUCTION TO EVWe.eeeacoeenccenccoscsccseaasaseesPAGE

PART III...SYSTEM BACKGROUND.eccsccoscecssccsscscocnsasassess PAGE

PART 1IV...SPECIFICATION OF SOFTWARE FUNCTION.eseecocecessessPAGE

PART V...CODE DESCRIPTION cccececcccacecaccecaseccccccassesPAGE

PART VI...OBSERVATIONS: IMPROVEMENT, EXPANSION, UTILITY....PAGE

PART VII...ONE INTERFACE APPLICATIONc.:cccoeccesvcocssocsscsss PAGE

cesessssse APPENDIX 1I:,.DIAGRAMS AND CODE LISTINGS.«cesceesPAGE

..l.'.IIIOQAPPENDIX II:I'CONTROL.C....'.....'..l.........‘.‘PAGE

ii

10

14

16

17

ACKNOWLEDGEMENT:

Several individuals contributed zreatly to my programming and editing

efforts, and I must mention them to partially express my appreciatiom. These

individuals are: my thesis supervisor, Gloriamuna Davenport; EVW system

hardware designer and NAB project supervisor Keishi Kandori; EVW software

coordinator Russ Sasnett; EVW control software designer Reza Jalili; Unix

hackers/consultants Charles Coleman and Cecil MacCannon. Glorianna and Keishi

provided the opportunity to contribute to a very interesting project, and the

experience has proved rewarding. Everyone mentioned patiently answered the

most trivial questions about Unix and C, EVW, and video in general. Finally, I

acknowledge Shelly Johnson, who prepared this document far better than I

conceived 1it.

I dedicate this to my family, Ila, Eleece; aud Paul.

Wil Blake
May 16, 1986

ABSTRACT:

M.I.T. Film/Video desired a computer controlled, Society of Motion Picture
and Television Engineers (S.M.P.T.E.) standard compatible video editing and
viewing environment for its movie laboratory. Such an environment would serve as
a video workstation, providing means in the lab for computer driven manipulation
of video information. Computers in the experimental workstation should readily
connect to the computational resources in the M.I.T. Media Laboratory, as well as
offer challenges to programmers in the M.I.T. community. An "open" system, then,
supporting a variety of video and computational devices, would enable system

expansion while bLest utilizing financial resources.

Various user interfaces to video information could receive attention in an
experimental system. A hardware grant from the -Asaca/Shibosoku Corporation
promised an interesting‘user interface: 32 simultaneously displayed frames of
video'Otganized into four columns each holding eight frames; one to four columns
gets input from one (of four total) video sources. This "multiview" mode
contains a graphic audio signal display alongside the columns of frames. This

multiview/audio graphic capability invites comparison to film image manipulation,

a comparison that the experimental workstation will explore further.

Having outlined research goals and acquired initial hardware for an
"experimental video workstation," focus became demonstration of its capabilities
at the National Association of Broadcasters (N.A.B.) Convention in Dallas this
past April. At the NAB convention exhibit, the experimental workstation would
receive evaluation from the commercial broadcast community in the presence of the

latest post production video systems.

ii

GLOSSARY

Here are brief explanations for terms that occur frequently in this document.

Term Meaning
NAB National Association of Broadcasters, a major governing body whose

members include both radio and television broadcast companies

and broadcast equipment manufacturers. The annual NAB convention
holds technical discussions concerning broadcast engineering issues
in addition to a huge exhibit for manufacturers' latest hardware.
An "Experimental Video Workstation" was part of the Asaca/Shibosoku

Corporation exhibit at the 1986 NAB convention, held April 13-16 in

Dallas.

CMX Video editing system configuration where edit commands originate

KEYBOARD ‘

. from a computer keyboard that follow key assignments used by the
CXM corporation in its computer editing systems. Control software
for an "Experimental Video Workstation" emulates the CMX keyboard
assignments of editing functioms to keys.

SMPTE Society of Motion Picture and Television Engineers. Organization
which establishes technical standards for film and video motion
pictures.

timecode

SMPTE standardized format for referencing videotape. Each frame
on the tape holds a unique reference designation as hours: minutes:
seconds: frame. For example, "00:00:00:01" names the first frame on

a videotape. Timecode's adoption in videotape production because it

Term Meaning

grants highly accurate, repeatable access to individual frames

regardless of the editing system components.

EDL Edit Decision List. A table of timecdde vaiues representing
transitions between video input sources. An edl serves as a

"script" for a multisource editing session.

EVW System Notation:

Shorthand Component Name Model
Video devices

‘L.DP1, LDP2 laserdisk players 1, 2 Sony LDP1COO
MV video multiviewer Asaca AEV300
SW video switcher Asaca ASW300
RVTR record vtr Sony BVU820

Control Devices (Computers)

DECPRO Digital Equipment "DECPRO 350" computer

BOBCAT Hewlett-Packard HP98710 "BOBCAT" computer

INTRODUCTION TO ZVV:

An "Experimental Video Workstation," EVW, is a project in the Film/Video
section of the MIT Media Laboratory; Glorianna Davenport, Lecturer amd Project
Coordinator in the Film/Video section coordinates the project omngoing etfort.
EVW is a computer-based post production system for editing and accessing video
information. Its design criteria specified an open, modular system utilizing
traditional post production hardware components, meeting broadcasts data
standards, and allowing interconnection to MIT's Media Laboratory computer
system. In addition, EVW's design goals include flexible hardware
configurability, which can generate new approaches to video segment access aad
movie creation. Asaca/Shibosoku Corporation included EVW as part of its exhibit
at the National Association of Broadcasters convention April 13-16th in Dallas,
Texas. Keishi Kandori, engineer with the Ashai Broadcasting Company and
research associate at MIT Film/Video, designed the EVW hardware configuration
and directed the NAB exhibit demonstration efforts. Five other individuals
contributed software to the NAB demonstration of EVW. Demonstration software
includes: edit decision list (EDL) database formulation and manipulation,
developed by Andria Wong, MIT '86; EDL edit execution, developed by John
Barbour, MIT '86; human interface (soft key and icon driven menus) and video
segment database software, developed by Russ Sasmett, MIT M.S.V.S. '86 and
current Research Affiliate at MIT Film/Video. Software described in this thesis
depicts the features provided in the multiview edit system function of EVW.

Reza Jalili, MIT '89, wrote the hardware control routines, which emulate the CiX
keyboard command function. Both EVW system control computers operate licensed
UNIX environment, Venix II on the decpro and HP-vX on the bobcat, thereby
facilitating the network connection to the MIT Media Laboratory computer system.
All EVW software is in the "C" programming language because of its

straightforward interaction with UNIX operating systems.

SYSTEM BACKGROUND:

Diagram 1 depicts the editing system control block diagram. Control
routines for the video components reside on the decpro. Video devices are:
Laserdisk players 1 and 2 (LDPl and LDP2), a record videotape deck (rvtr), a
multiviewer, and a video switcher. A dual screen monitor serves as output
picture display. CMX keyboard commands either local or from the bobcat cause
the decpro to send the corresponding instructions to the appropriate video
device. Diagram 2 shows the EVW system video signal block diagram. LDPl and
LDP2 are the video input scurces, rvtr is the final recorded edit destinmation.
All three have inputs to both the switcher and the multiviewer. CMX keystrokes
govern selection among the video sources (diagram 3). Switcher output is the
final video signal for recording by the edit destination, rvtr. Asaca's ASW300
video switcher performs effect switching from one of input device to another.

It performs cuts, dissolves, and a 64 different wipes between input sources.
Dissolves (fades) have seven possible durations. Asaca's AEV300 multiviewer has
a "multiview" mode that digitizes 32 video frames in real time and displays them

in a four column by eight frames per column format (see diagram 4), Active

multiviewer columns continually display the input video signal frame by frame,
as frames scroll up or down the active columns according to the current
direction (forward or reverse) of the video input source. Frozen columns
display their last sample. Columns are individually activated or frozem, so
that each column may represent an eight frame sequence from one of the four
possible input sources; all or any combination of columns may show a sequence
from one source (see diagram 5). After freezing a column, individual frames in
the column become accessible for movement, insertion elsewhere, deletion or
temporary removal. This capability for access to "frozen" frames makes possible
an edit "preview" done in the multiview mode before actually performing the

edit,

SPECIFICATION OF SOFTWARE FUNCTIONS:

System designer Keishi Kandori outlined the specifications for the
multiview edit demonstraticn software as one component in the complete NAB
demonstration of the EVW. A newly introduced computer, the Hewlett Packarid
98710 "Bobcat", would activate the device control software via a serial link to
the decpro. Two software routines, one running on the bobcat, ome on the
decpro, would combine to perform the demonstration. Software for the multiview
edit demonstration would reside primarily on the bobcat, activating decpro
based device control routines. A routine on the bobcat would tramsmit CMX
format command sequences to the decpro over the serial limk. Acting as a
preliminary command interpreter, the decpro routinme will pass the commands as
arguments to the device control software, or perform special functioms for

initializing the system's video components.

CODE DESCRIPTIONS:

Demonstration of the multiviewer edit system proceeds with the execution of
a CMX command character sequence. ''Submain.c'", the decpro's routine, intercepts
command characters transmitted from the bobcat and then utilizes the appropriate
device control routine for execution of the command. Calls to "submain.c"
follow as: submain (filename) char * filename. Refer to listing 1 for the
subsequent description of "submain.c". In the code listing, explanations follow
declarations of key variables. All the video devices undergo4 initialization
with the call to "setup", a routine included among the control software done by
Reza Jalili. After initialization, the argument filenmame passed to ''submain.c”
becomes the source file for CMX commands. For testing a particular command
sequence, the argument filename accesses a local (to the decpro) file containing
the sequence that will be tested. Otherwise, the argument fileﬁame is
"/dev{coml", the 9600 baud serial link to the bobcat, making the link the
command source. Having determined the input command source, "submain.c" gets
characters one at a time from the source and stores them in the global array
"cmdlist". "Getachar", another control routine, gets characters from "cmdlist",
then the "switch" statement performs special commands where the case requires.
Subsequently, the appropriate characters go to "control'", which executes the
device specific instructions. Here the "while" loop statement begins its next
iteration, getting another character until either the command list exhausts
itself or a "q" command character indicates the end of a command sequence.

Character reception done by the decpro routine "submain.c" requires a

source of CMX command characters. 'Submain.c" expects that its formal parameter

serves as the command source. This parameter names a file, which can contains a

" to execute sequentially. Because Unix/C

list of commands for '"submain.c
handles input and output, i/o with files, the argument passed to submain can

also specify an i/o port, such as the serial line "/dev/coml". Access to both

local files and i/o ports as command sources provides flexibility in the
formulation, manipulation, and recall of editing command sequences. An editor
using EVW could perform an edit sequence manually, before committing the
sequence to a local file, and finally moving the command sequence to a remote
computer; "Submain.c" and Unix handle the interpretation of a command uniformly
regardless of the nature of its source file.

Functionally, the demonstration software running on the bobcat should
perform sequential CMX command character transmission to the decpro via the
serial input/output link uniting both computers. "Demo.c", the bobcat's
demonstration routine, requires an argument file that contains the sequence of
CMX commands that will perform the demonstration. File manipulation eas2 in
Unix and C lends itself to this approach. "Demo.c" can transmit a CMX command.
sequence from any recognizable demonstration file passed as an argument.
Listing 3 shows an example demonstration file. '"Demo.c" will use values from
the demonstration file to initialize an array of structures, each structure
representing information for transmission of one CMX command character. Every
line in the demonstration file corresponds to the values for one structure,
structures being named "events". Entries within a demonstration file line
individually contain the values for individual members (elements) of an event
structure. 'Demo.c" transfers information from the demonstration file into its
array of of event structures on a line by line basis. One line in the
demonstrtion file has four entries, three of which receive assignment to an
event structure. The first entry in the file acts solely as visual aid for
making demonstration files. It is a number that identifies the line; line
numbers need not have consecutive order, but should increase with progress

through the file.

After the first entry, fields within a line of a demonstration file contain
information used in CMX command transmission. An actual command character
comprises the second entry in the line. '"Demo.c" will assign that character to
the "command" element of an event structure, and at some point transmit the
character to the decpro. An optional character string makes up the third entry
in demonstration file line; "demo.c" assigns the string to the "options" element
of the current event structure. Some CMX commands require additional
information for their execution. For example, cueing to a laserdisk frame
requires specification of the frame. Necessary command informationm, such as a
frame number, goes into the optional entry within a line. "Demo.c" transmits
the optional information to the decpro after sending the CMX command character.
A string of format "XX:YY" comprises the final entry in a line of a
demonstration file. The format represents a time of day expressed in minutes
and seconds, and can easily expand to hours. Assigned by "demo.c" to the "time"
member of an event structure, this string indicates when to send the current
command character and provides explicit timing for character transmission. That
is, one version of "demo.c" compares the real time in minutes and seconds with
the time member of the current event structure; at the indicated time, "demo.c”
transmits the associated CMX character and then waits for the time to tramsmit
the next command.

Refer to Listing 4a for the following description of "demo.c". The
structure "event" represents run-time information for transmission of one CMX
command. "Event-table', an array of event structures, represents run time
information for transmission of a CMX command sequence. Execution begins with
the call to "init.c'", which loads the static demonstration file values into the

event-table. "Init.c" reads the demonstration file line by line into a buffer,

where '"sscanf" formats the line entry values and assigns them into an event
structure. Some diagnostic printouts monitor the event structure values, before
the array offset, "table'", and the current number of events, "total", receive
increments. Once the demonstration file ends, execution returns to "demo.c'.

"Demo. cll

then progresses through the array of event structures, sequentially
transmitting the command element to the serial line "/dev/tty00". Input/Output
in Unix and C accesses i/o ports as files, allowing the library formatted file
print routine, "fprintf," to perform transmission of the CMX command characters
over the serial line. A call to "ioctl"” initialized '"/dev/tty00", (the serial
line) to the hardware specifications indicated in the structure "sgtty-fdbuff'.
For this EVW configuration, those specifications set the baud rate to 9600.
After sending the CMX command, "demo.c'" uses a "switch'" statement to determine
whether the command requires optional information, and if so, that optional
striné also goes to the serial line. In the version of Listing 5, "demo.c"
pauses for a time between command transmissions. Listing 5's version of
"demo.c" uses the system clock (and some format conversion with "sscanf") to

transmit the command at the time expressed in the present event's '"time"

member.

RESULTS, OBSERVATIONS:

Multiview edit demonstration sof tware performed consistently at the NAB
exhibit, there meeting its most emphatic design requirement. One part of the
EVW research project, the NAB demonstration software '"simulated" possible
editing application rather tham actually meet application requirements.
Observations in this section arrive from the projection of the simulated editing
function to an operational editing application. Time comnstraints on the
multiviewer edit software operation precluded substantial efforts for code
improvement, so this section offers improvements focused on an editing
application. Development of the complete NAB demonstration sof tware package
placed similar constraints on all software contributors; ome such constraint
discussed in this section may be avoided im future EVW project efforts.
Finally, comment$ from NAB observers of EVW deserve attention because they
suggest goals for the e;entual implementation and use of multiview edit systems.

Both routines in the multiview editor demonstration software use datafiles
containing a CMX command character sequence. By design, any Unix editor may
create or modify these data files, but the files have to follow a rigid format
in order for the correct execution of editing commands. Optimizing these file
formats for portability and usage ease becomes the key to enhancing the
multiview edit demonstration software. First, examine a decpro command file,
accessed by '"submain.c'", shown in Listing 2. A decpro command file literally
consists of a sequence of CMX command characters that "submain.c" will; L1.)
store in a device control buffer and 2.) execute in order. Spaces, which
correspond to the CMX "allstop" command, cannot separate the characters inm a
decpro command file without execution of "allstop'". File readability dictates
that spaces separate command characters in a sequence. A command file
"interpretation" routine could allow intracharacter spacing without causing an

"allstop'" instruction. For this interpretation, "allstop" occurs only with a

10

predetermined number of spaces, otherwise spaces just parse command characters.
This interpretation routine, incorporated into '"submain.c", would provide a
better format for command character files on the decpro.

"Demo.c'", the bobcat situated multiview edit demonstration routine, also
requires a formatted file to supply CMX command characters that will travel to
the decpro. This format appears in Listing 3, and it gives a reasomable
indication of an ordered command sequence. Tabular listing provided in this
format improves the readability of a CMX command sequence; extension of the same
or a similar format to decpro command files promises standardizatiom and
portability for command sequence format. Unix' file manipulation and C's format
conversion rontines suggest adoption of standard representation for command
character files. Then the (computer dependent) local CMX command file
irterpretation routines could convert the file information for either command
execution (on the decpro) or command transmission (on the bobcat). In this
method, the same editing command sequence can execute locally, or travel to a
remote edit comtroller.

Multiview editor demonstration software and (all device accessing
demonstration software) utilized the existing control software (written by Reza
Jalili) in order to manipulate EVW's video components. Code revisions obviously
took place during the harried softwared development stages; revisions in the
control software generally required changes in the muliview edit demonstration
software. Fox example, control software header file changes meant modificatiomns
and recompilation of ''submain.c", the decpro demonstration routine.
Occasionally, control software revisions became evident only after failure
occurred in previously operational demomstration software. A ''make" revision
managing utility would have greatlynalle;iated confusion over necessary improve-

ments to the control software.

11

At NAB, demonstrations viewers responded positively to the multiview
editor. Most comments praised the multiview mode's resemblance to film, with
each eight frame column analogous to an eight frame strip of film.

Functionally, however, the film similarity has limitatiomns concerning editing,
yet it offers advantages useful for video information access. Unlike individual
frame availability in film, the multiview mode canmnot locate actual video input
frames. Frames in the multiview display are not actual video input frames, but
are processed rgb signal representations of input video frames. Multiview mode
frame manipulations, such as scene insertions and deletions, affect the frozen
display rather than the source video input signal. In fact, freezing a
multiview mode column removes its display from the video input source. Editing
operations affect the video input sources, best shown in the normal, full screen
mode.. Frozen frames in the multiview mode cannot receive normal size display,
because normal mode display only shows the currently selected input source.

Rather than a device for edit execution, the multiview editor presents
itself as a visual tool for recalling desired video information from multiple
sources. Single frames from the multiview mode may act as symbols for the video
segments from which the frames originated. Up to 24 frozen (of 32 total
multiview frames)can represent one segment from any of the input sources. One
of the four columns remains active for displaying the current input segment.

For example, "edlview.c", demonstrates this capability. Running on the decpro,
this routine uses edl file information to cue video sources (ldpl, ldp2, and
rvtr) to both edl line inpoints, with the subsequent eight frames shown in
active display colummn 4 (see diagram 6). Then shots from both inpoints travel
to a storage "bin" in frozen display column 1. Subsequent "bin" frames will
scroll previous frames into frozen columns 1l and 2, until all 16 bin locations

contain edl inpoint frames. Applications like "edlview.c" uses the multiview

12

editor as an interface to video information because visible multiview images
convey more about a video segment than an edl entry or a timecode value, Of
course, the multiview frames reduced sized limits the detailed information
gathered from the image.

Presence of the audio graphic alongside the multiview "strips" (columns)
constitutes another similarity to film, where the audioc resides next to the
picture image on the filmstrip. Sound edits can benefit from the audio graphic.
Changes in the graphic display can mark inpoints and outpoints for edit decision
lists or actual edits.. Time constraints prohibited any exploration of audio
edits assisted by the multiview editor, but it remains a goal for future EVW
projects. Another drawback for audio edits concerned the laserdisk players,
which mute their audio output at low playback speed, thereby removing the
audior graphic from the multiview display.

Liabilites in the multiview editor center on inaccurate multiview frame
representation at low laserdisk player and record vtr playback speeds. At these
"jogging" speeds, the multiviewer's display update functions do not accurately
regenerate display of its input video signal. The multiviewer updates its
display at a fixed rate for all input device playback speeds; lower playback
speeds cause the multiviewer to update the same input frame so often that it
"sees" the single frame as if it were a sequence of identical frames (comprising
a still shot). As a result, the active multiview columns display falsely
identical frames even though the input video signal contained slowly advancing
individual frames. Multiviewer weakness at low input playback speeds will allow
correction, because the multiviewer instruction set includes adjustment of its
output display refresh rate. EVW device- control software will eventually
include the MV refresh rate adjustment to correct erroneous multiview display at

low playback speeds.

13

PART VII: ONE INTERFACE APPLICATION:

One application developed on the decpro demonstrates the multiview editor
user interface. '"Edlview.c" accepts an edl file as its argument and, using
information from one edl line, proceeds to: 1.) cue one source to the source
inpoint timecode location, inserting the first frame into a frozenm "bin" display
column, and 2) cue the record source to the record input location, inserting its
first frame into the bin. Frame insertion happens such that previously inserted
display frames scroll from column 1 to column 2 during subsequent insert
operations. This allows for up to 16 inpoints/frames appearing in the storage
bin at once. Consult Listing 6 for the preceeding description of "edlview.c'".
After successfully opening the argument edl file, "setup'" initialized all the
video devices. '"Submain.c", previously described in part 5, executes the
"freeze 2" file of CMX command characters, freezing the two leftmost multiview
mode display columns for use as the shot storage bin. A "for" loop limits the
total display loop to eight iterations, correspondingly limiting the edl file
length to eight lines or events. Inside the "for" loop, a "while" loop repeats
execution until the edl file either ends or provides an unrecognizeable line.
"Sacanf" formats the current edl file line, assigning values into the device and
inpoint variables while suppressing unused edl line information. Named for the
associated edl line "device" field, the device variable tells which input device
acts as the current source. Inpoint variables, source and record, contain
timecode character strings from the edl line "source inpoint" and "record
inpoint" fields. Another "sscanf" call converts the time codes into seven digit
integers which "convert" translates into frame numbers suitable for laserdisk
player search (cue) instructiomns. '"Control ("s")" or "control ("d")" selects
the specified device, ldpl or ldp2, for reception of the CMX cue commands.
"Control ("n")" and “control ("n")" cue the selected laser disk player and

record vtr to the source inpoint frame and record input frame locations;

14

"submain ("insert")" inserts the first frame from the inpoint segments into the
frame storage bin, scrolling the previously stored bin frames. The edl line
input/ variable assignment, inpoint cueing, and shot storage execution loop
continues until the edl line length maximum occurs, or until the edl file
exhausts itself. Once the execution loop terminates, "control ("Esc-q")"

reinvokes multiview mode for display of the storage bin.

15

APPENDIX I: DIAGRAMS AND CODE LISTINGS
DIAGRAMS
1. EVW SYSTEM CONTROL
2. EVw VIDEO SIGNALS
3. VIDEO INPUT SELECTION
4. MULTIVIEW MODE
5. "FROZEN" vs. "ACTIVE" MULTIVIEW MODE COLUMNS

6. EDLVIEW.C’ s MULTIVIEW FRAME MOVEMENTS

LISTINGS
1. SUBMAIN.C and UTIL.C
2. A DECPRO COMMAND FILE
3. A BOBCAT COMMAND FILE
4. DEMO.C
5. DEMO.C , time comparison version

6. EDLVIEW.C

control

<55Mx2

)

RGB RGB
Display Display
Sf.'un Screg
hp-bus
hp-bobcat
I YS'232 N °\500 &N‘x Tape stremer)
LaserDisk-1 DEC Pro-350
‘ ANA AN
rs-232 rs-232
LaserDisk-2 ASAKA sSw
0 AES-300
rs-232 15-232
[R-VTR] - ASAKA
¥ AEC-300
rs-422 rs-232
L———'—) ASAKA ™V

AEV-300

RGB

Display

MONL10

Video.,Audio,&-Svnd

S Cclor-Bar
Sync o ek '
Gen. et !
MJ f
SynC)
v v i
R-VTR (Laser Disk | | Laser Disk
vl 2 :
. \ |
| .
ch-1 ch-2 ch-3 ch;4 ch-./5 sync
r-vtr ldp-1 ldp-2.black color
: ' -bar
ASW-300 ’
out-A out-B
f _ N
//"’ e]
/3 / A-vtr B-vtr C-vtr D-vtr sync
wHh R-vtr ldp-1 dp-2 SW-A
Aaid 0. ' R,G.B RGB
sync Monitor

AEV-300 Audio

_*< Audio monitor >

D\wﬁrc\m L Video Input Seure Conncctions

T tom | [roer
]
4
N “aua .
A Q a g < 0
Sw MV
vy ovi
l

Diogran Lt Multiviewer Display

% ////// ‘sorf\‘@“ Full Screen Dusploy
ain '

Columns, \

MU view Mode, 32 Digitiied Frames

HEERS

Frumes \eove displa
XN

sk e n
/
IR
" \ e ‘ '
- Frames enter disploy stfeen
T \
|~]
CQ\J(’\(\S land 4 are active d o :) e ey ey o
D__Ach‘vc Celumna
Columns Landd ose froren
’ L eons Gan
2
1
Frame Scrol\ Cotn foe
‘Input Souxe Fromes reroing An adkive alunng
D\txgro.ng N A.L“th ard Frorea (lumag
N ewily \noested . Kok £
Shots Go e e ——s " o Soure. or Record \np@let frome #\
1

Column 15 acXive,

)
/
=

Colvens | and L are the frozen

Frame stocoge bin,

T

Seurte of Record npoints 9o from),

Active frame BV do /
frozen frame A\ Serodl “Path for storage binframes

D\Oﬂmﬂ(a - Bdlutews .o and fhe v\t view Mmodg

submain(tsubmain.c)

LISTING 1: "SUBMAIN.C"

#define SCOPE

#include <stdio.h>
#include <fentlLh>
#include <gened.h>
#include <funcs.h>

#include "/usr/reza/global.h"
10

long tcno;

submain(file)} char *file; submain
{ int result; /* Result of control routine operation */

int time = 400; /* Argument for sleep call */
20
int offset; /* Offset into input command string. Only CMX commands [/
are passed to control routines. */

char temp(9}; /* location for cueing timecodes */

offset = 0; /* Until a special command is received. " Ctl—E" /[
and "Ctl-G" are the special commands */

bufptr = cmdlist; 30
endbuffer = &(cmdlistf MAXCMDLIST]);
if((result = open(file, 0)) < 0){ printf("Bad command file: %s\n", file);

control("~B"); return(-1);

if ((result = read(result,cmdlist, MAXCMDLIST)) < 0 } return(-1);
edl = TRUE;
close(result);

while(result != 66)
40
{ offset = 0;
endbuffer = &(cmdlist{MAXCMDLIST});
edl = TRUE;
printf("\nEnter command: ");
databuf{0] = getachar();

switch(*databuf)

case 5: checkscreen(); offset = 1; break; 50
/* Set mv to normal //
sceen, no timecode displays */

16:41 May 16 1986 Page 1 of tsubmarn.c

submain(tsubmain.c)
case 7: printf("\nframe: "); scanf("%71d" , &tcno);

convert{outframe); checkframe(); offset = 1; break;

/* Get destination [/
timecode value; when value is reached stop device motion

case 'n’ : printf("\nlocation: ");

[$]4]
break;

case N’ : printf("\nlocation: ");
break;

case 27: databuf|l] = getachar(); break;
default: break;

if ((result = control(databuf + offset)) < 0)

/* "Control" ezecutes /
action named by the given CMX command. It returns —1 for errors.See Appendiz */

70
printf("command execution error.\n");

printf("got q\n"); rtnkbd(); return(0); /** Quit **/

80

16:41 May 16 1986 Page 2 of tsubmain.c

#define SCOPE extern

#include <funcs.h>
#include <gened.h>
#include <string.h>
#include <sgtty.h>
#include <fentl.h>
#tinclude "/usr/reza/global.h"

convert(decpro/util.c)

10
checkscreen() /* Setup normal screen, timecodes off. */ checkscreen
{ extern struct DEVTABLE devtablef};
dispstat(MV1);
if ((devtable(MV1].status & BIT_5) == BIT_5)
control("~[q"});
/* Normal screen display
for mv */
if ((devtable[MV1].status & BIT 6) != BIT 6) 20
control(*~ [s");
/* No timecode- super—
smposstion */
if ((devtable{MV1].status & BIT_2) != BIT_2) .
control("~ [t"); /* No timecode for [
' multiscreen cursor */
}
checkframe() checkframe
{ extern TBYTE inframe]}; 30
extern long tcno;
extern TBYTE outframef];
extern TBYTE curdevice;
while(stremp(outframe, inframe)) /* If current frame is not dest—
ination frame... */
getframe(curdevice, inframe); /* update current frame (as device
motion continues) */
control("V"); J** still device **/
40
convert(ptr) TBYTE *ptr; /* John Barbour’s handy timecode to framenumber/ convert
conversion utility.*/
{ extern int debug;
extern long tcno;
long x;
long frame;
50

tcno —= (long) 1000000;
x = tecno / (long) 10000;
tcno = tcno — ((long) 10000 * x);

19:11 May 7 1986

Page 1 of decprofutil.c

LISTING 2: A decpro command file.

This file was the end credit sequence at NAB. It cues the NAB disks to each

(tblock6)

group member's credit, and moves a picture of that member to colummn 1 or 2 of

the multiview display mode. It also

on the display.

The general command sequence to do this goes:
s n timecode “[q “[q 4 K 4

's’ or ' d’ commands

selects a laser disk player.

*n’ or ' N’ cue to the immediately following timecode locatiom.

* “|q’ exits mutiview mode to show a full screen view of the group member.
' “|q’ a second time retuns to multiview mode.

' 4’ freezes column 4 so that one frame may be copied.

vrites their name alongside their picture

10

' K' copies a shot of the group member into multiview display column 1 or 2.

' 4’ reactivates column 4 as the-active diaplay column for the next cue.

This command sequence sort of repeats. until everyone gets credit, and then the-

write - command sequence writes. everyonme’ s names on the monitor screen.

Here is the complete- command file:

**Esn1213000°c"{qlv

dN1213429""[q"c"[q2v

sn1213929""[q"c"[q3v

dN1214514""[q"¢" [qavK411274
sn1215604""[q"c"|q4vK4113"4
dN1220600""[q"c"[q4vK4114"4
sn1221602""[q"c"[qdvK4115"4
dN1222529""[q"c"[q4vK411674
sn1223608""(q" c"[q4vK4117"4
dN1224604""[q"c"[q4vK4124"4
sn1225602""[q"c"[q4vK412574
dN 1230602 "[q"c"{q4vK4126"4
sn1231604""[q"c"[q4vK4127"4
~[i117[j21°(j22°(j23°(j18" |28
WMIT FILM/VIDEO

44
W<RICKY

6,12
W<GLORIANNA
10,12

W<KEISHI

14,12

W<RUSS

18,12
W<ANDRIA
22,12

W<REZA

26,12

W<JOHN

14,27

_16:40 May 16 1986

20

30

40

50

Page 1 of thlocké

W< WIL

18,27

WKARL

22,27

W<MARK

26,27°"°
*(q1234sc"G1295414q

16:40 May 16 1986

(tblocke6)

G0

Page 2 of tblock6

LISTING 3: a bob
Note that "/11//"

h-i'-li-li-ﬂi—ll-l'-li-l [+ <]
QQO\AWNHQ‘O \ldﬁtﬂhwmm

18
19
20

q
n

n
c
v
d
[P
n
n
c
v
s
b
v
x
z
v

X

/1117

/1117
24528

00001
1111/
i
1177

1111/
24559

34000

/1111
/1117
/1111
11/
111/
111/
111/
/111
111/

00:00
00:05
00:10
00:20
00:25
00:35
00:37
00:40
00:45
00:50
00:55
01:05
01:10
01:15
01:20
01:30
01:40
01:50
02:00

/1/]/ o02:10

16:40 May 16 1986

cat command file,
is just a place holder, not data.

(t demofile)

10

Page 1 of tdemofile

init (tdemo.c)

LISTING 4: "DEMD.C", Version 1.

/* needs an argument file to initialize correctly ! */

#include <stdio.h>

#include <time.h>

#include <strings.h> 10
#include <sgtty.h>

#include <sys/ioctl.h>

#define MAXEVENTS 60
#define LENGTH 30 /* event file line magimum nro. of characters */
#define FIRST © /* Indez of first event in the array event_table */

20

struct event{

char cmd(2];
char time(8);
char options{12];

I

30

init(file,table) /* Gets CMX command characters from argument file and puts them into ¥Bdttable */

char *file ; 40
struct event *table;

{ FILE *fp, *fopen() ;
int 1, j, k ;
extern int total ;
char buff LENGTH];

if ((fp = fopen(file, "r")) == NULL)
{ printf(" can’t open %s \n", file) ;
exit(-1) ;) 50

printf("reading %s...\n" file) ;

12:44 May 16 1986 Page 1 of tdemo.c

'init—main(tdemo.c)

while (fgets(buff, LENGTH, fp) == buff) /* Read one line from command fie */

sscanf(buff,"%s %s %s %d", &table—>cmd, &table—>options,&table—>time,); /* Load values into the cver

60

printf("cmd: %s time: %s "table—>cmd, table—>time); /* Diagnostic printouts i

printf("options:%s "
printf("no: %d\n",);
table++; total++;

}

, table—>options);

/* Nexzt cvent structure, increment running count of event structur:

printf("last event was no.%d\n", (——table)—>); /* More dianostics */
printf("%d events read\n", total) ;

fclose(fp) ;
}

int total = 0;

main(argc,argv)
int argc ; char *argv|] ;

{ long clock ;
int current;
int row, fd;
FILE *fp;
char *tstring, stime|5], key ;
char *loc;

struct event event tablel MAXEVENTS};

struct sgttyb fdbuff;

if({ fd = open("/dev/tty00", 2)) < 0) fprintf(stderr,"open error\n");

ioctl(fd, TIOCGETP, &fdbuff);

fdbuff.sg ispeed = B9600;
fdbuff.sg_ospeed = B9600;
fdbuff.sg flags |= 0;

joctl(fd, TIOCSETP, &fdbuff);

fp = fdopen(fd, "v");

init(argv(1], event table);

70
/* Total number of command cheracters in the sequence */
main
80
20
100

if (fp = fopen("/dev/tty00", "r") == NULL) {printf{ "open error, tty0O\n");

exit(—1);

}

for{current = 0; current < total — 1; current++) /*Send command characters at thesr time”/

12:44 May 16 1986

Page 2 of tdemo.c

main(tdemo.c)

fprintf(stderr, "cmd: %s\n", event_table|current|.cmd);

forintf(fp, "%s\n", event table|current|.cmd); /* Transmit the command */ 110

switch(event table[current].cmd(0]) /* Some CMX commands have options */

case
case
case
case
case
case
case
case
case

7:
b
v
'K*

20:
T
'E’ :

n

lNl :

default:

}

fclose(fp);
close(fd);

12:44 May 16 1986

120
fprintf(stderr, "cptions: %s\n", event_table[current{.options);
fprintf(fp,"%s\n" event table{current|.options); */ break; /* Transmit the options, when
break;
130
140

Page 3 of tdemo.c

LISTING 6: "EDLVIEY.C"

#include <stdio.h>
long tcno;
main ()
{ FILE *fp;
short device;
short i ;
char source_in(9);
char- record _in[9];

extern char- inframe(};

extern char outframe(;

’

/* edl fle pointer */
/* device = 1 for ldp1, 2 for ldp2 */
/* keeps count of edl line number */
/* Source inpotnt timecode string */
/* Record " L " */

/*® Global device control variable used to ezecute
CMX "Cue to inframe" command */

/* Same as above, for outframe */

main(tedlview.c)

main
10

20

if ((fp = fopen("my.edl", "r*)) == NULL) /* Open argument cdl file. */

{printf("open eror\n");

return(—1);

if (setup()) {printf("ERROR IN INITIALIZATION\n"}); exit(—1);}

allstop(};
submain("black1i");

/* Instialize devices et al. */

for (i =0;i < 8;i++) /* Edl files accessed line by line. Each

edl line access increments the loop
indez, 1, for a mazimum 8 ilerations, since
the storage bin holds 16 frames. */

40

while(fscanf(fp, "%3d %3d %*s %*s %*s 0 %ls : %28 : %Zs : %28 %*s" ,
&eventno, &device, source_in, souce_in, source in + 1, source_in + 3,
source_in + 5) == 6)

/* Perform the multiview mode storage while the edl file
provides valid information i.c. until end of file or edl data error */

12:45 May 16 1986

50

Page 1 of tedlview.c

main(tedlview.c)

fscanf(fp, " %28 : %28 : %2s : %28 %*s", record_in, record_in + 2,
record_in + 4, record_in + 6);

printf("points: 1 %s 2 %s device: %d\n", source_in, record_in + 1, device);
60
sscanf(source_in, "%71d", &tcno);
convert(inframe);
sscanf(record_in + 1, "%71d", &tcno);
convert(outframe);
submain("black"); /* Black out all columns in multiscreen */
if (device == 2) submain("1dp2"); /* Which Ildp is source ? */
else submain("1dp1"); 70
subma.in("qinfrane");'
submain("column 3"); /* Cue up:ldp to. source_sn. Display:
. 8 source_tn- frames in- column_$ */
submain("insert"); [* Insert first.frame of sourcein at scene 11 */
control("a"); - [* Select-rotr- */-
submain("qoutframe");
submain("column 3"); /* Cue up rvtr to recordin */ 80
submain("insert"); /* Insert first frame of recordin at scene 11 */
submain("reset");
/* Reestablish loop starting condstions */
} [*)} while */
} [*} for ¥/
if (i = 0) printf(*%s was not quite recognizeable.\n", argv|1});
/* No iterations means something wrong in edl file */ 20

control(*~{g"); /* Multiview mode to see bin display */

12:45 May 16 1986 Page 2 of tedlview.c

APPENDIX II

Documentaion for "control.c," prepared by Reza Jalili '89.

CONTROL

Control is the interface program between the keyboard and the various
routines that drive the various devices. The following is detailed information
about the structure of the program. Refer to the header files listed below for
information about pre-defined values, structures, and types:

<stdio.h>
<fcntl.h>
<sgtty.h>
<gened.h>
<funcs.h>

Three other header files hold defines for indexes into device command tables:
"/usr/reza/ldpcmds.h"
"/usr/reza/mvemds.h"
*/usr/reza/aswcmds.h"

The program, control(), defines several global variables that are used by
functions in funcs.c. The following is a list of these global variables:

1) STRUCTURE struct DEVTABLE devtable [MAXDEVICES]
2) TBYTE cmdtbl [MAXDEVICES] [128] [4]
3) TBYTE command[10],expect[10]

4) TBYTE stdexp(] = {0,0x10,1}

5) TBYTE TBYTE ssresult[15];

6) LDPFLAG ldpiflag = O;

7) LDPFLAG ldp2flag = O;

8) MVFLAG mvilag;

9) ASWFLAG aswflag = O;

10) TBYTE curdevice;

11) TBYTE devices[MAXDEVICES];

12) int kbd;

13) TBYTE inframe[5],outframe[5];
14) EDITIFLAG ef1;

15) EDIT2FLAG ef2;

The array of DEVTABLEs, called devtable, is used to store information about
each device that is opened. Refer to the header file funcs.h for information
on the structure itself.

cmdtbl[] is an array that holds strings of commands for each of the opened
devices. The array is allowed a maximum length of 128 4 byte strings.
Information about the structure of the table can be found in loadtbl() in
funcs.c.

The two global arrays, command[] and expect[] are used
to send and receive strings of bytes. The array stdexp[] holds the standard
expected reply from a multiviewer. The reply is common enough to justify the
array.

The array ssresult[] is filled in by sndstring() and holds the bytes
sent by a device. Only the first 15 bytes are kept. Only 15 bytes are
read.

A description of the flags can be found in funcs.h.

curdevice holds the value of the current playing device. That is, it
holds the value of the device that will be sent any commands such as play,
rec, forward, rewind,etc. The value of curdevice is one of the values
defined in funcs.h for the various devices(LDP1, LDP2, MVi,...)

devices[] is an arrav that links the devices’ values to the channels to
which they are connected on the switcher. A device’s value is it's
offset into the devtable[] array. For example, if laser disc player 1 is
connected to channel 3 of the switcher, and it’s information is in
the structure devtable{1], then devices[1] = 3; more generally
devices{LDP1] = BVTR.

inframe and outframe hold the frame numbers sent by the playing device.

efl and ef2 are the general flags about the system as a whole.
see funcs.h.

The program begins by opening the keyboard at 9600 baud and with the
CBREAK flag turned on. This flag lets charcaters be read without waiting
for a <CR>:

Next, the laser disc player is opened at the correct baud rate and parity
settings:
The multiviewer is opened at 9600 baud and with no parity:
With all the devices open, the devtable array is filled:
devtable [LDP1] .fd = 1dp;
devtable [MV1].fd = mv;

devtable [SWTIR] .fd = mv; /* for now, share same line */
devtable [LDP1] .status = O; /* nothing for now */
devtable [MV1] .status = O; /* nothing for now */
devtable [SWTR] .status = O; /* nothing for now */

devtable [LDP1] .table = O;
devtable [MV1].table = 1;
devtable [SWTR] .table = 2;

The command tables are loaded in to the correct arrays:
loadtbl("mvcmds" ,&cmdtbl[devtable [MV1].table] [0] [0]):
loadtbl("1dpcmds",&cmdtbl [devtable [LDP1] .table] [0]1[0]);
loadtbl ("swtrcmds” , &cmdtbl [devtable [SWTR] . table] [0] [0]):

The program then simply loops, getting keys, testing them against set
values, and calling the appropriate functions in fucns.c. Refer to
the irdividual function headers in funcs.c for information about functions.

Control is the interface program between the keyboard and the various
devices. Devices include laser disc players, the Multi Viewer machine,
VTRs, switchers, and any other video equipment. Currently, the program can
access two laser disc players (LDP1 and LDP2), one Multi Viewer (MV),
and one switcher (ASW). Of course, the program could handle more, but it has
been "configured" to run those three devices for now.

Before running the program, turn on the Multi Viewer, both 600 baud LDP
(the one on top) and 4800 baud LDP, and the ASACA switcher.
Turn on the Toshiba monitor and set it to Video 1 for the small screen,
and RGB2 on the large screen.

The set-up of the keyboard has been modeled after that of The Grass Valley
Group’s Super Edit Keyboard. Function keys are used for many effects. On
keyboards without these function keys, a two-key sequence of an escape <ESC>
character and a regular character (e.g. <ESC>q) will result in an identical
action.

The keys implemented so far are the following: (in no order!)

KEY ACTION

'c’ Put LDP in forward play mode.

A Stop LDP.

'y Put LDP in still mode. (does not work)

'B’ Put LDP in reverse slow motion mode.

'b!’ Put LDP in forward slow motion mode.

& Put LDP in forward fast scan mode. (does not work)
'x? Put LDP in fast forward mode. (does not work)

A Put LDP in reverse slow moction mode.

control-b

IP)
YA,
1S’
’D,

or
or
or
or

ESC-

?

z)

14!

lt)
IA)
|B’
)c'
)D’
)P’
,Q’

Put LDP in fast reverse mode.

Reset LDP.

Clear LDP error flags.

Have switcher cut from A to B and vice-versa.
Tell MV to switch to no VIR.

Tell MV to switch to VIR A.

Tell MV to switch to VTR B.

Reset the time to 00:00:00:01. (does not work)
Get current frame number from LDP. (does not work)
Pause

Close all devices and exit from program.
Toggle between normal and multi-frame screen.
Toggle LDP motor on and off. (does not work)
Toggle super-imposing of time code on and off.
Toggle the use of time code on and off.

Move the cursor up.

Move the cursor down.

Move the cursor left.

Move the cursor right.

Toggle indexing of LDP on and off. (does not work)
Toggle between LDP segment and frame mode.

(control.c)

/* R. Jalili 4~10-86 */

/* FILM/VIDEO MEDIA LAB */
#define SCOPE extern

#include <stdio.h>

#include <fcntl.h>

#include <gened.h> 10
#include <funcs.h>

#include "include/ldpcmds.h”

#include "include/mvcmds.h®

#include "include/rvtrcmds.h"”

#include "include/aswcmds.h"

#include "global.h"

extern TBYTE *sndstring();
void quitall(); 2

[*+2e#2222t OONTROL EQUIPMENT
*

* Call: result = control(string holding command TBYTE *);
.- i
* Fynction: Calls the appropriate routine for the given command.
* A command string is only one character. IF the character
* is ESC (27), then the nezt character is used.
* ESC—r 1s a command, wherer the first byte 1s 27 and the
* second byte 1s 18. This is to allow escape combinations. 30
*
* Returns: 0 if ok, —1 if not. 66 if qust is recesved and connections
* are closed.
*
*/
int
FUNCTION control(s)
TBYTE *s;
{ int key,key2,c,result;
40
result = 0;
key = s{0};
if (key == 27) key2 = s[1];
if (curdevice == RVTRI1)
switch (key) /* RVTR commands */
{case 'C"° : result = rvshtl(curdevice,—~PLAYSPD);
result += setmvdir(MV1, REVERSE);
ACTIVITY{curdevice, BIT_14 | BIT_15, BIT_ 13 | BIT_ 12)
/* speed flag = norm */ ACTIVITY(curdevice,0,BIT_ 1 | BIT 2 | BIT 3);
break; 50

case 'c’ : CALLSS(curdevice, RVPLAY) /*macrocail sndstring()*/
result += setmvdir(MV1, FORWARD);
ACTIVITY (curdevice, BIT 12 | BIT 15| BIT_14, BIT_13)

15:57 May 10 1986 Page 1 of control.c

/* speed flag =

case

/* speed flag =

case

/* speed flag =

case

case

case

case

/* speed flag =

case

case

/* speed flag =
case
case
case
case
case
case
case
case

case

norm */ ACTIVITY(curdevice,0,BIT 1 | BIT 2 | BIT3);
break;
A CALLSS(curdevice, RVSTOP) /* no ; ?/
ACTIVITY (curdevice, BIT 14|BIT_15|BIT_13|BIT_ 12, 0)
stop */ ACTIVITY(curdevice,BIT 1 | BIT 2 | BIT 3,0);
break;
v CALLSS(curdevice, RVSTOP);
ACTIVITY(curdevice, BIT_14|BIT_15|BIT_13|BIT _12,0)
stop */ ACTIVITY(curdevice,BIT_ 1 | BIT 2 | BIT 3,0);
break;
‘B’ : result = rvjog(curdevice,—1);
result += setmvdir(MV1, REVERSE);
ACTIVITY (curdevice, BIT 14, BIT 12|BIT_15|BIT_ 13)
break;
'b’ : result = rvjog(curdevice,1);
result += setmvdir(MV1, FORWARD);
ACTIVITY(curdevice, BIT 14 | BIT 12, BIT_ 13|BIT_ 15)
break;
°X* result = rvshtl{curdevice,1);
result += setmvdir(MV1, FORWARD);
ACTIVITY(curdevice, BIT 15 | BIT 12,BIT_ 13 | BIT_14)
break;
x’ CALLSS(curdevice,RVFF)
result += setmvdir(MV1," FORWARD);

ACTIVITY (curdevice, BIT_15 | BIT_12, BIT 13 | BIT_14)

norm */ ACTIVITY(curdevice,0,BIT_1 | BIT 2 | BIT.3);
break;
AR result = rvshtl(curdevice,—1);
result += setmvdir(MV1, REVERSE);
ACTIVITY(curdevice, BIT_ 15, BIT_ 12| BIT_13 | BIT_14)
break;
z' : CALLSS{curdevice, AVREW)
result += setmvdir(MV1, REVERSE);
ACTIVITY(curdevice, BIT 15,BIT 12| BIT_ 13 | BIT_ 14)
norm */ ACTIVITY(curdevice,0,BIT 1 | BIT 2 | BIT 3);

break;

'm’ : result = rvmark(curdevice,inframe);
break;

'Lt result = rvmark(curdevice,outframe};
break;

'n’ result = rvcue(curdevice,inframe);
break;

N result = rvcue(curdevice,outframe);
break;

S CALLSS(curdevice, RVPREROLL)
break;

i’ : result = rvsetin(curdevice);
break;

‘o’ : result = rvsetout(curdevice);
break; _

u’ result = rvvideo(curdevice);
break;

yo result = rvaudio{curdevice);

15:57 May 10 1986

(control.c)

60

70

80

100

Page 2 of control.c

case

case
case
case
case

ryr

27:

default:

(control.c)

break;
CALLSS(curdevice, RVEDITON);
break;
result = rvsetspeed(curdevice);break; 110
break;
break;
{switch (key2)
{case 'r’' : if (devtable[curdevice|.status
& BITO)
{CALLSS(curdevice, RVSBON)

}
else {CALLSS(curdevice, RVSBOFF)

}
if (result == 0) TOGGLE(120
devtable[curdevice|.status,BIT_0)
break;
}
break;
}
break;

}
if (curdevice != RVTR1)
switch (key)

{case

case

case

case

case

case

case

case

'ci .

lbl :

15:57 May 10 1986

/* LDP1 and LDP2 commands */
result = send(curdevice, RPLAY,1); 130
result += setmvdir(MV1, REVERSE);
ACTIVITY{curdevice, BIT 14 | BIT_15, BIT_ 13 | BIT_12)
break;
result = send(curdevice, FPLAY,1);
result += setmvdir(MV1, FORWARD);
ACTIVITY(curdevice, BIT_12 | BIT_15| BIT 14, BIT_ 13)
break;
result = send(curdevice,STOP,1);
ACTIVITY(curdevice, BIT_14|BIT_15|BIT_13|BIT_12, 0)
break; 140
result = send(curdevice, STILL,1);
ACTIVITY (curdevice, BIT_14|BIT_15|BIT_13|BIT _12,0)
break;
result = send{curdevice, RSLOW,1);
result += setmvdir(MV1, REVERSE);
ACTIVITY(curdevice, BIT_14, BIT_12|BIT_15|BIT 13)
break;
result = send(curdevice, FSLOW,1);
result += setmvdir(MV1, FORWARD);
ACTIVITY (curdevice, BIT_14 | BIT_12, BIT_13|BIT_15) 150
break;
result = send{curdevice, RSTEP,1);
result += sesmvdir(MV1, REVERSE);
ACTIVITY (curdevice, BIT_14, BIT 12|BIT_13|BIT_15)
break;
result = send(curdevice, FSTEP,1);
result += setmvdir(MV1, FORWARD);
ACTIVITY(curdevice, BIT_12|BIT 14, BIT_ 13|BIT_15)
break;

Page 3 of control.c

case

case

case

case

case

case

case
case
case
case
case

lx! .

lnl :
INO .

LI I

27:

default:

switch (key)

{case
case
case
case
case
case
case
case
case
case
case
case
case
case

Tkt
'?
‘&'
'E’
v
t(l :
"1
'2
'3
‘4’
i

lRl R

15:57 May 10 1986

result

result += setmvdir(MV1, FORWARD);
ACTIVITY (curdevice, BIT_15 | BIT_ 12,BIT 13 | BIT_14)

= send(curdevice, FSCAN,1);

breszk;
result = send(curdevice, FFAST,1);

result += setmvdir(MV1, FORWARD);
ACTIVITY(curdevice, BIT 15 | BIT_ 12, BIT 13 | BIT_ 14)

break;
= send(curdevice, RSCAN,1);

result

result += setmvdir(MV1, REVERSE};
ACTIVITY(curdevice, BIT 15, BIT_ 12| BIT 13 | BIT 14)

break;
= send(curdevice, RFAST,1);

result

result += setmvdir(MV1, REVERSE);
ACTIVITY(curdevice, BIT_15,BIT 12| BIT 13 | BIT_14)

break;

result = mark(curdevice,inframe);
break;

result = mark{curdevice,outframe);
break;

result = cue(curdevice,inframe);break;
result = cue(curdevice,outframe);break;
result = send{curdevice, CL,1);break;
result = send{curdevice, CE,1);break;

{switch (key2)

{cage 'r’

}

case

case °'Q’ :

break;

}

break;

break;

: result = mtrentl(curdevice);

P’ : result = indxctl{curdevice);break;
/* indz onfoff */

result = modefs(curdevice);break;

/* seg/frm mode */

/* other commands */

snore(10); break;

debug = !debug; break;

statprint();break;

result = allstop{);break;

result = setframe();break;

result = scnxchng(MV1); break;
result = scrnwrite(MV1,15);break;
result = chngcolor(MV1);break;
result = rollenti{MV1,1);break;
result = rollentli{MV1,2);break;
result = rollcntl(MV1,3);break;
result = rollentf{MV1,4);break;
result = charclear(MV1); break;
result = scnreplace(MV1,ROLL_1);
result += scnreplace(MV1,ROLL_2);
result += scnreplace(MV1,ROLL_3});

/* toggle tty output */

/¥ roll 1 %/

/* roll 2 %/
/¥ roll 8 %/

(control.c)

160

170

180

190

200

Page 4 of controi.c

(control.c)

/* R. Jalili 4—10-86 */

/* FILM/VIDEO MEDIA LAB */

#define SCOPE extern

#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>

<fentl.h>

<gened.h> 10
<funcs.h>

"include/ldpcmds.h"

"include/mvcmds.h"

"include/rvtrcmds.h"

"include/aswcmds.h"

"global.h"

extern TBYTE *sndstring();

void quitall(); 20

[**¥xxxxx3% CONTROL EQUIPMENT
R :

* Call: result = control(string holding command TBYTE *;);
. .
* Function: Calls the appropriate routine for the given command.
* A command string is only one character. IF the character
* is ESC (27), then the nezt character is used.
* ESC-r 1s a command, wherer the first byte s 27 and the
* second byte 1s 18. This is to allow escape combinations. 30
*
* Returns: 0 if ok, —1 if not. 66 if quit is recetved and connections
* are closed.
*
*/
int

FUNCTION control(s)
TBYTE *s;
{ int key,key2,c,result;

40
result = 0;
key = s{0];
if (key == 27) key2 = s[1];
if (curdevice == RVTR1)
switch (key) /* RVTR commands */
{case ’C" : result = rvshtl(curdevice,~PLAYSPD);
result += setmvdir(MV1, REVERSE);
ACTIVITY (curdevice, BIT 14 | BIT_15, BIT 13 | BIT_12)
/* speed flag = norm */ ACTIVITY(curdevice,0,BIT 1 | BIT 2 | BIT3);
break; 50

case 'c’ : CALLSS(curdevice, RVPLAY) /*macrocall sndstring()*/
result += setmvdir(MV1, FORWARD);
ACTIVITY(curdevice, BIT 12 | BIT_15| BIT_14, BIT_13)

15:57 May 10 1986 Page 1 of control.c

(control.c)

/* R. Jalili §—10—86 */

/* FILMJ VIDEO MEDIA LAB */

#define SCOPE extern

#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>

<fentl.h>

<gened.h> 10
<funcs.h>

"include/ldpcmds.h"

"include/mvcmds.h"

"include/rvtrcmds.h"

"include/aswcmds.h"

"global.h"

extern TBYTE *sndstring();

void quitall(); 20

J**#¥*#xx2x CONTROL EQUIPMENT
*

* Call: result = control(string holding command TBYTE *;);
. .
* Function: Calls the appropriate routine for the given command.
* A commend string ts only one character. IF the character
* 1s ESC (27), then the nezt character is used.
* ESC—-r s a command, wherer the first byte 1s 27 and the
* second byte ts 18. This ts to allow escape combinations. 30
* Returns: 0 if ok, —1 if not. 66 if quit is recesved and connections
* are closed.
E 3
*/
int

FUNCTION control(s)
TBYTE *s;
{ int key,key2,c,result;

40
result = 0;
key = s[0];
if (key == 27) key2 = s|1};
if (curdevice == RVTR1)
switch (key) /* RVTR commands */
{case 'C* : result = rvshtl(curdevice,—PLAYSPD);
result += setmvdir(MV1, REVERSE);
ACTIVITY (curdevice, BIT 14 | BIT_ 15, BIT 13 | BIT_12)
/* speed flag = norm */ ACTIVITY(curdevice,0,BIT_1 | BIT 2 | BIT3);
break; 50

case 'c’ : CALLSS(curdevice, RVPLAY) /*macrocall sndstring()*/
result += setmvdir(MV1, FORWARD);
ACTIVITY(curdevice, BIT_12 | BIT_ 15| BIT_ 14, BIT_ 13)

15:57 May 10 1986 Page 1 of control.c

main(tedlview.c)

{
fscanf(fp, " %2s : %2s : %2s : %2s %*s", record_in, record_in + 2,
record_in + 4, record_in + 6);

printf{"points: 1 %s 2 ¥%s device: %d\n", source_in, record_in + 1, device);
60
sscanf(source_in, "%71d", &tcno);
convert(inframe);
sscanf(record_in + 1, "%71d", &tcno);
convert (outframe);
submain("black"); /* Black out all columns in multiscreen */
if (device == 2) submain("1dp2"); /* Whick ldp is source ? */
else submain("1dp1*); 70
submain("qinframe");
submain("column 3"); /* Cue up ldp to source_in. Display
8 source_in frames in column 8 */
submain("insert"); /* Insert first frame of source_sn at scene 11 */
control("a"); /¢ Select rvtr */
submain("qoutframe"); .
submain("column 3"); /* Cue up rvir to recordin */ 80
submain("insert"); /* Insert first frame of recordin at scene 11 */
submain("reset");
/* Reestablish loop starting conditions */
} /*)} while */
} [*} for %/
if (i = C) printf("%s was not quite recognizeable.\n", argv|1]);
/* No iterations means something wrong in edl file */ 20

control("~[q"); /* Multiview mode to see bin display */

12:45 May 16 1986 Page 2 of tedlview.c

main(tedlview.c)

{
fscanf(fp, " %2s : %2s : %2s : %2s %*s", record_in, record_in + 2,
record_in + 4, record_in + 6);

printf("points: 1 %s 2 %s device: %d\n", source_in, record_in + 1, device);
60
sscanf(source_in, "%71d", &tcno);
convert(inframe);
sscanf(record_in + 1, "%71d", &tcno);
convert(outframe};
submain("black"); /* Black out all columns in multiscreen */
if (device == 2) submain("1dp2"); /* Whick ldp is source ? */
else submain("1dp1"); 70
submain("qinframe");
submain("column 3"); /* Cue up ldp to source_in. Display
8 source_in frames in column 8 */
submain("insert"); /* Insert first frame of source_in at scene 11 */
control("a"); "~ [* Select rvir */
submain("qoutframe");
submain(*column _3"); /* Cue up rvtr to recordin */ 80
submain("insert"); /* Insert first frame of recordin at scene 11 */
submain("reset");
/* Reestablisk loop starting conditions */
} [* } while */
} [*} for ¥/
if (i = 0) printf("%s was not quite recognizeable.\n", argv(l]);
/* No tterations means something wrong in edl file */ %0

control("~[q"); /* Multiview mode to see bin display */

12:45 May 16 1986 Page 2 of tedlview.c

main(tedlview.c)

LISTING 6: "EDLVIEV.C"

#include <stdio.h>

long tcno;
main () main
10
{ FILE *fp; /* edl file pointer */
short device; /* device = 1 for ldpl, 2 for ldp2 */
short i ; /* keeps count of edl line number */
char source_in[S]; /* Source inpoint timecode string */
char record_in|9}; /* Record " " " */
20
extern char inframe|]; /* Global device control variable used to ezecute
CMX "Cue to inframe" command */
extern char outframe|]; /* Same as above, for outframe */
if ((fp = fopen("my.edl", "r")) == NULL) /* Open argument edl file. */
{printf("open eror\n");
return(—1); 30

if (setup()) {printf("ERROR IN INITIALIZATION\n"); exit(—1);}

/* Initialize devices et al. */
allstop();
submain("black1");

for (1 =0;1< 8;i++) /* Edl files accessed line by line. Each
edl line access increments the loop 40
indez, i, for a mazimum 8 iterations, since
the storage bin holds 16 frames. */

while(fscanf(fp, "%3d %3d %*s %*s %*s 0 %i1s : %2s : %28 : %2s %*s" ,
&eventno, &device, source_in, souce_in, source_in + 1, source_in + 3,
source in + 5) == 6)
50

/* Perform the maultiview mode storage while the edl file
provides valid information i.e. until end of file or edl data error */

12:45 May 16 1986 Page 1 of tedlview.c

main(tedlview.c)

LISTING 6: "EDLVIEV.C"

#include <stdio.h>

long tcno;

main ()

{ FILE *fp; /* edl file pointer */
short device; /¥ device = 1 for ldpl, 2 for ldp2 */
short i ; /* keeps count of edl line number */
char source_in[9}; /* Source inpoint timecode string */
char record_in[9}; /* Record " " " */
extern char inframe|]; /* Global device control varinble used to ezecute

CMX "Cue to inframe" command */

extern char outframe|); _/* Same as above, for outframe */

if ((fp = fopen("my.edl", "r")) == NULL) /* Open argument edl file. */
{printf("open eror\n");
return(—1);

}

if (setup()) {printf("ERROR IN INITIALIZATION\n"); exit(—1);}

/* Initialize devices et al. */
allstop();
submain("black1");

for (i =0;i< 8;it+) /* Edl files accessed line by line. Each
edl line access increments the loop
tndez, 1, for a mazimum 8 iterations, since
the storage bin holds 16 frames. */

main
10

20

30

40

while(fscanf(fp, "%3d %3d %*s %*s %*s 0 %ls : %28 : %28 : %2s Yxs" ,

&eventno, &device, source_in, souce_in, source_in + 1, source_in + 3,

sourcein + 5) ==

/* Perform the multiview mode storage while the edl file
provides valid information i.c. until end of file or edl data error */

12:45 May 16 1986

6)
50

Page 1 of tedlview.c

