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Abstract 

Planar embedding with minimal area of graphs on an integer grid is an interesting problem in VLSI 
theory. Valiant [VJ gave an algorithm to construct a planar embedding for trees in linear area; he also proved 
th at. there are planar graphs that require quadratic area. 

We fill in a spectrum between Valiant's results by showing that an N-node planar graph has a planar 
embedding with area O(N F), where F is a bound on the path length from any node to the exterior face. In 
particular, an outerplanar graph can be embedded without crossovers in linear area .. This bound is tight, up 
to constant factors: for any N and F, there exist graphs requiring fl(N F) area for planar embedding. 

Also, finding a minimal embedding area is shown to be .NP-complete for forests, and hence for more 
general types of graphs. 
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1. Introduction 

VLSl design motivates the following class of problems: given a graph, map its vertices onto a plane and 

its edges onto paths in that plane between the corresponding mapped vertices. Normally there are some 

restrictions that the mappings must obey, such as a minimum distance between mapped vertices. The maps 

give a layout, and the problem is to find a layout with a small cost. The mapping restrictions and the cost 

function together specify a particular member of the class of layout problems. 

Embedding of graphs has been extensively studied during the last few years [L80, V, FP, BK, CS, R, 

RS, L81, L82]. In this paper we consider the layout problem wheI,1 the layouts are rectilinear embeddings 

without crossovers and the cost is the area of a box bounding tbe layout. To avoid complications, we assume 

that graphs are restricted to have vertices of degree 4 or less. 

In [V], Valiant looked at the layout problem for rectilinear embeddings (both with and without cross

overs), using the bounding box area cost. He proved that a tree of vertices with maximum degree 4 can be 

laid out without crossovers in an area that is linear in the number of edges (or vertices). He also showed how 

to get a such an embedding for any planar graph using quadratic area, and proved that there are planar 

graphs requiring quadratic area. 

Definition: A planar graph has width F if there is a planar embedding of the graph such that every node 

of the graph is linked to t he external face of the embedding by a path of at most F vertices. 

We shall show that any N-node planar graph of width F can be laid out in O(N F) area. Special cases 

of this include linear area embeddings for trees and outerplanar graphs, and quadratic area embeddings for 

graphs of width O(N). Furthermore, the area bound is tight up a to constant factor. This fills in a spectrum 

between Valiant's results. The graph in Fig. 1.1 has N nodes and width F, and each component requires 

rl(F2
) for a planar embedding (see [V]), so the entire graph requires r!(N F) area. 

~ N/4Fs"bgcaphs ~ 

4F nodes 4F nodes 

Figure 1.1 Graph needing rl(N F) area 

We shall also show that finding an optimal embedding for a forest is NP-complete. 
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Figure 2.1 (a) good separation (b) bad separation 

2. A Planar Graph Separator 

The layout method is basically that used by Valiant [V] and Leiserson [L80] to get embeddings with 

crossovers allowed: the graph is split into two by removing edges, each subpart is recursively laid out, and 

then the subproblem layouts ar·e "married" by embedding the edges that were removed. 

The key to methods like these are separator theorems, which guarantee that one can always split 

up a graph as needed without having to remove too many edges. Lipton and Tarj an [LT] investigated 

planar graph separators, and showed that any planar graph of N nodes can be split into approximately 

equal-sized parts by removing 0( ../Fi) edges. However, sometimes these separations are unsuitable for a 

divide-and-conquer layout strategy. The edges removed by their method divides the graph either as shown 

in Fig. 2. l (a) or Fig. 2.l(b), and only the former can be used in our layout method. The following theorem 

helps to characterize when the "good" separations occur. 

Theorem 1. A planar graph with N > 2 vertices of degre e at most 4 and width F can be separated into 

two subgraphs by removing O(F) edges, such that each subgraph has at least ½ of the vertices. Given a planar 

drawing of the graph, the separation can be made as shown in Fig. 2.1(a) rather than Fig. 2.1{b} (assuming 

the given drawing actually has width F or less). 

Proof: If necessary, add dummy edges to the graph until the given drawing has a simple cycle as the outer 

face, and there are only triangles as interior faces. This can always be done, keeping the graph planar and 

without increasing the width. Call this graph G. 

Define the distance of a vertex in G to be the number of nodes in the shortest path from the vertex to 

the outer face. Let a separating path in G be a simple path from a vertex on the outer face to another one, 

such that the distances of the vertices on the path go like 1, 2, . . . , k - 1, k, k, k - I, ... , 2, 1 or 1, 2, ... , 
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Figure 2.2 Cases for Separator Theorem 

k-1, k, k -1, ... , 2, 1. We will find a separating path with k S F such that no more than two thirds of G's 

vertices are on either side of it (where "side" refers to one of the two regions that the path divides the plane 

into if line are drawn from the path ends to infinity). Then G can be separated as required in the theorem 

statement by removing at most 4 x 2k edges from the vertices in the separating path. The vertices on the 

path itself can be divided between the two sides so that neither side ends up with more than two thirds of G. 

Start out with any outer-face edge as the separating path. Assume, in general, that we have a situation 

with A vertices on one side of the path, B vertices on the other, and N - A - B vertices on the path itself. 

If AS }N and BS }N then we are done, so assume that B > JN. 

The cases that arise are shown in Fig. 2.2 (where vertex distances are shown after colons). Figures 2.2(i) 

and 2.2(ii) are degenerate cases that are handled by using the right b--c path instead of the left one. The 

process continues with the new path. 

In Fig. 2.2(iii), vertex f is not the same as b or d. By the definition of distance of a vertex, there is an 

exit path, g- · · · -h, with vertices of distances J·, J. - 1, ... , l or j, j + 1, ... , m - 1, m, m - 1, ... , 1 where 

j S k + 2 and m S F. This exit path may coincide wholely or in part with d- • • • - e or b- • • • - a, but it never 

need cross over them because it can merge with the rest of whichever path it touches. Also, the path should 

not go back through f; this can always be avoided in a triangulated graph. 

Most of the B vertices that were on the right side of the original separating path are now divided into 

pieces of sizes C and D. Assuming D ~ C, the new separating path is a- .. • - b-c-f - g- .. · - h. Clearly, this 
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Figure 3.1 Marrying two embeddings 

new path is of the required form. If D ::=; J N then we are done, otherwise repeat the process. The vertices 

f and g are part of the B vertices that were on one side of the the old separating path, so we must have 

D < B. This means that progress has been rriade towards the stopping condition, since we have decreased 

the number of vertices on the big side of the path, a process that cannot go on forever. Note that the 

new separating path may have a bigger maximum distance, but this is irrelevant as far as progress towards 

stopping is concerned. 

The situation of Fig. 2.2(iv), where the path has two vertices of maximum distance in the middle, is 

handled just like case (iii). If D ~ C, the new separating path a-· · · -b--f- · · · -g is of the required form. 

Progress towards the stopping condition has been made, because we will have lost vertex c at the very least. 

The above _operations can be repeated until a separating path has been found with no more than j N 

vertices on either side, proving the theorem. I 

3. Planar Embedding Algorithm 

The layout method used in [V] and [L80] for embedding with crossovers allowed almost works for planar 

embeddings. The difference is in the marrying step. 

In order for the layout method to work recursively, it has to be able to embed a graph so that it 

is topologically equivalent to a given planar drawing. Suppose G is separated into G 1 and G2 using the 

separator theorem of the previous section, and then the subparts are embedded, respecting topology. Then 

the removed edges can be drawn in the plane without crossovers, because they are attached to vertices that 

are still on the outer faces of G 1 and G2, in the same order. For example, see Fig. 3.1, where the separating 

edges arc shown dotted. 
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To turn such a drawing into a grid embedding, insert a new grid line for every dotted straight line 

segment. For the diagonal lines making the connections, at most two new horizontal and two new vertical 

grid lines may be needed. (The existing edges may have to be shifted so they make their final approach from 

a different direction.) Let K be the number of "kinks", i.e., horizontal and vertical grid lines that need to be 

added to connect any exterior face vertex of a given embedding to somewhere completely outside. It is easy 

to sec that K increases only by 0(1) at each marrying step, because the added edges needn't wrap around 

the layout more than once. Thus, if i is the maximum of the number of marrying stages involved in laying 

out G 1 and G2, then they can be married by added 0( iF) horizontal and vertical grid lines to embed the 

0(F) separating edges. 

Theorem 2. Any planar graph G with N vertices of degree at most 4, and width at most F, has a planar 

embedding in a grid of areaA(N) = 0(FN). 

Proof: Other than the separation and marrying methods, the layout algorithm is the same as the one in 

[VJ. It has to be able to produce au embedding in an H X W grid, as long as ½ ~ H /W ~ 3, and HW is 

sufficiently large. Suppose by induction th~t A(N) is sufficient area for an N -vertex graph. Also, suppose 

that K(N) is a bound on the number of kinks. 

G is separated into G 1 and G2 by removing 0(F) edges, with IC 1 I = xlGI, ½ ~ x ~ t, Then an 

(H - cF K(N)) x (W - cF K(N)) grid is divided in two by a cut parallel to the shorter side in the ratio 

x: (1- x). By a theorem in [V], the aspect ratios of the two pieces will be in the range [½,}]. If G 1 and G2 

can be laid out in these pieces, then the embedding can be completed as described above, inserting at most 

cF K(N) horizontal and vertical grid lines, for some constant c. So the theorem is true if (assuming H ~ W) 

(H - cFK(N))(xW - xcFK(N)) ~ A(xN), Vx, 

Using HW ~ A(N) and (H + W)/ J A(N) ~ 4/ ./3, this will be true if 

4 
x(A(N) - v'3 J A(N) cF K(N)) ~ A(xN), Vx, 

After log2; 3 N / F separation steps the graph pieces are no larger than F, so if we stop the recursion at 

that point we have K(N) = O(logN /F). It is easi ly verified by substitution that 

( ) 
1. , N 

AN = o:N F - (3N 2 Y• log -
F 

satisfies the recurrence, for some o: and (3 independent of N and F. In the base case, with N = F, an 0(N2
) 

embedding (sec [V]) can be used. One has to be careful to get an embedding that preserves the topology of 

a given planar drawing, but it is easy to see how to do this. I 
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Figure 4.1 Frame. Tree for n = 2, B = 5 

4. NP-Completeness of Optimal Forest Embedding 

Given a forest and an integer A, the forest layout problem is to find whether or not there is a planar 

rectilinear embedding with area less than or equal to A. In this section we will show that the forest layout 

problem is NP-complete. This will be done by transforming the 3-partition problem to it. 

hi the 3-partition problem there is a set of integers x 1 , ... , XJm such that 

3m 

}:x;=mB 
i=l 

and B/4 < x; < B / 2 for 1 ~ i ~ 3m. The question is whether the set can be pa~tit ioned into m disjoint 

sets such that each set sums to B. This problem is known to be strongly .NP-complete [GJ]. 

Consider the tree in Fig. 4.l(a). Call it the frame tree. There are vertices at every grid point except for 

m = 2n holes of size B. (The case for m odd will be considered later; it is just a trivial modification.) 

Lemma 3. The only embeddings of the frame tree with a bounding box area of(4n+ 3) x (2B + 3) or less and 

leaving mB free grid point/3 are either exactly like that shown in Fig. ,{..1(a) {po81Jibly after point relabelling}, 

or modification/3 of that diagram where /Jome of the top8 of the vertical 8pine/3 are changed as in Fig. 4.l{b} and 

it/3 variou/3 reflection/3. 

Proof: The tree has (4n + 3) X (2B + 3) - mB vertices, so the embedding is required to use every grid point 

for a vertex or else leave it free. This means that no edge of the tree can be stretched to a path of 2 units, 

for that would take up a grid point in the middle that is not used for embedding a graph vertex. 

Any layout using only 1-unit edges must have all of the degree-4 vertices of a vertical spine one on top 

of the other, as in the diagram. For otherwise there would have to be two degree-4 vertices at opposite 

corners of a 1-unit square, which is impossible (one of the other corners would have to be shared between 

two vertices). 
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Therefore, the only possible changes to the given diagram, other than point renaming, are ones at the 

degree-2 vertices, such as in Fig. 4.l(b ). I 

Notice that if the frame tree is embedded using an allowed folding near the top of a spine, this cuts a 

hole into two pieces of sizes 2 and B - 2. There cannot be more than one fold into a bole. From now on, 

use to term "hole" to mean either a B-point vertical slot or one of these 2 + (B - 2)-point aggregates. 

Theorem 4. The forest layout problem is NP-complete. 

Proof: Given an instance of the 3-partition problem, construct the frame tree and add 3m other pieces, 

unconnected to that tree: for each x; there is a piece consisting of x; vertices joined into a line by x; - 1 

edges. If m is odd, use the frame graph for the next higher even number and fill in one of the vertical holes. 

Now we claim that the 3-partition problem instance has a solution iIT there is an embedding of this 

forest with a bounding box area of (4n+ 3) x (2B + 3). For, by the lemma, inhere is such an embedding then 

it must be as shown in Fig. 4.1( a) with the extra pieces filling up the holes. Since all the grid points are t-0 

be used, this gives a solution to the 3-partition problem, because the size restrictions on the x's imply that 

t here must be exactly three pieces in each hole. Conversely, given a solution to the 3-partition problem, a 

suitable embedding can be found by filling the holes in the frame tree with the pieces corresponding to the 

partitioned sets. 

This is not a polynomial reduction, since the frame tree has a number of vertices of the order of the 

numbers involved in the 3-partition problem, rather than the number of bits required to represent those 

numbers. This does not matter, however, since the 3-partition problem is strongly NP-complete. The layout 

problem is in NP because one can simply guess a mapping of all the vertices to grid points and then verify 

that the edges can all be put along the connecting lines. Therefore, the forest layout problem is NP-complete. 

I 
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