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Abstract 

We describe an efficient technique for breaking symmetry in parallel. The 
technique works especially well on rooted trees and on graphs with a small 
maximum degree. In particular, we can find a maximal independent set on 
a constant-degree graph in O(lg*n) time on an EREW PRAM using a linear 
number of processors. We show how to apply this technique to construct more 
efficient parallel algorithms for several problems, including coloring of planar 
graphs and ( .6. + 1 )-coloring of constant-degree graphs. We also prove lower 
bounds for two related problems. 

1 Introduction 

Some problems for which trivial sequential algorithms exist appear to be much 

harder to solve in a parallel framework. Therefore, new methods are needed for 

design of efficient parallel algorithms. A known example of a problem with a trivial 

sequential algorithm which is hard to solve in parallel, is the problem of finding a 

maximal independent set in a graph [18] . This problem was shown to be in the class 

NC by Karp and Wigderson [12]. A simple randomized algorithm for the problem 

is due to Luby [15]. Recently M. Goldberg and Spencer [9] gave a deterministic 

algorithm for the problem that runs in polylogarithmic time using a linear number 

of processors. 

The study of the maximal independent set problem shows the importance of 

techniques for breaking symmetry in parallel. T he symmetry-breaking comes up 

in many other parallel algorithms as well. In many cases, however, it is enough 

to be able to break symmetry in special kinds of graphs. The performance of the 

resulting algorithm improves if we can solve the special case of symmetry-breaking 

more efficiently. 

In this paper we present a technique for breaking symmetry. In particular, we 

give an O(lg*n) time algorithm to 3-color a rooted tree. This techniques can be 

viewed as a generalization of the deterministic coin-flipping technique of Cole and 

Vishkin [5]. To show the usefulness of our technique, we present the following 

algorithms. All of the presented algorithms use a linear number of processors. 
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• For graphs whose maximum degree is a constant~, we give an O(~ lg~ lg*n) 

algorithm for ( ~ + 1 )-coloring and for finding a maximal independent set on 

an EREW PRAM. 

• We give an algorithm to 7-color a planar graph. This algorithm, and the 

maximal independent set (for planar graphs) algorithm based on it , run in 

O(lg n lg*n ) time on a CRCW PRAM and in O(lg2 n) time on an EREW 

PRAM. We also give an O(lg3 n lg*n) CRCW algorithm to 5-color a planar 

graph. 

• We give a O(lg n lg*n) algorithm for finding a maximal matching in a planar 

graph on a CRCW PRAM. 

• For general graphs we give an 0(~2 lgn) algorithm for (~+1)-coloring and 

for finding a maximal independent set on EREW PRAM. 

The above stated results improve the running time and processor bounds for the 

respective problems. The fastest previously known algorithm for ( ~ + 1 )-coloring 

[15], in the case of constant-degree graphs, runs in O(lg n) time, and the determin

istic version of this algorithm requires n 3 processors. The 5-coloring algorithm for 

planar graphs, due to Boyar and Karloff, [4] runs in O(lg3 n) time, and the deter

ministic version of this algorithm requires n3 processors. The O(lg3 n) running time 

of the maximal matching algorithm due to Israeli and Shiloach [10] can be reduced 

to O(lg
2 n) in the restricted case of planar graphs, but our algorithm is faster. 

Although in t his paper we have limited ourselves to the application of our tech

niques for the design of of parallel algorithms for the PRAM model of computation, 

the same t echniques can be applied in a distributed model of computation [1,7]. 

Moreover, the O(lg*n) lower bound, given by Linial [14] for the maximal indepen

dent set problem on a chain in the distributed model, shows that our symmetry

breaking technique is optimal in this model. 

The fact that a rooted tree can be 3-colored in O(lg*n) time raises the question 

whether a rooted t ree can be 2-colored within the same time complexity. We answer 

this question by giving an S1(lg n / lglg n) lower bound for 2-coloring of a rooted tree. 
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We also present an n(lg n/ lglg n) lower bound for finding a maximal independent 

set in a general graph, thus answering the question posed by Luby [15]. 

Some of the results presented here were obtained independently by Shannon 

[16]. 

2 Definitions and Notation 

This sections describes the assumptions about the computational model, and intro

duces the notation used throughout the paper. In this paper we use n to denote 

the number of vertices and m to denote the number of edges in a graph. We use .6. 

to denote the maximum degree of the graph. 

Given a graph G = (V, E), we say that a subset of nodes IE Vis independent if 

no two nodes in I are adjacent. A coloring of a graph G is an assignment C : V --+ N 

of positive integers (colors) to nodes of the graph. A coloring is valid if no two 

adjacent nodes have the same color. The ith bit in the color of a node v is denoted 

by Cv( i). A subset of edges M E E is a matching if any two distinct edges in M 

have no nodes in common. 

The following problems are discussed in the paper: 

• The vertex-coloring (VC) problem: find a valid coloring of a given graph that 

uses at most .6. + 1 colors. 

• The maximal independent set (MIS) problem: find a maximal independent 

set of vertices in a given graph. 

• The maximal matching (MM) problem: find a maximal matching in a given 

graph. 

We make a distinction between unrooted and rooted trees. In a rooted tree, each 

nonroot node knows which of its neighbors is its parent. 
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The following notation is used: 

lgx 
lg(l) X 

lg(i) X 

lg*x 

log2 x 

lgx 
- lglg(i- l) X 

min{il lg(i) x::::; 2} 

We assume a PRAM model of computation where each processor is capable 

of executing simple word and bit operations. The word width is assumed to be 

O(lg n ). The word operations we use include bit-wise boolean operations, integer 

comparisons, and unary-to-binary conversion. In addition, we assume that each 

processor has a unique identification number O(lg n) bits wide, which we denote by 

PE-ID. We use exclusive-read, exclusive-write (EREW) PRAM, concurrent-read, 

exclusive-write (CREW) PRAM, and concurrent-read, concurrent-write (CRCW) 

PRAM as appropriate. All lower bounds are proven for a CRCW PRAM with a 

polynomial number of processors. 

3 Coloring Rooted Trees 

This section describes an O(lg*n) time algorithm for 3-coloring rooted trees. First 

we describe an O(lg*n) time algorithm for 6-coloring rooted trees. Then we show 

how to transform a 6-coloring of a rooted tree into 3-coloring in constant time. 

The procedure 6-Color-Rooted-Tree is shown in Figure 1. This procedure accepts 

a rooted tree T = (V, E) and 6-colors it in time O(lg*n ). Starting from the valid 

coloring given by the processor !D's, the procedure iteratively reduces the number 

of bits in the color descriptions by recoloring each non-root node v wit h the color 

obtained by concatenating the index of a bit in which C v differs from Cfather(v ) and 

the value of this bit. The root r appends C r [O] to 0. 

Theorem 1 The algorithm 6-Color-Rooted-Tree produces a valid 6-coloring of a 

tree in O(lg*n) time on a CREW PRAM using O(n ) processors. 
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PROCEDURE 6-Color-Rooted-Tree 
L - [lgnl 
for all v EV in parallel do Cv - PE-ID(v) ;;; initial coloring 
while L > [lgL + ll for all v EV in parallel do 

if v is the root 
then do 

iv - 0 
bv - Cv(O) 
end 

else do 
iv - min{i I Cv(i) 'f' Cfather(v)(i)} 
bv - Cv(iv) 
end 

Cv - bviv 
end 

Figure 1: The Coloring Algorithm for Rooted Trees 

Proof: First we prove by induction that the coloring computed by the algorithm is 

valid, and then we prove the upper bound on the execution time. 

Assume that the coloring C is valid at the beginning of an iteration, and show 

that the coloring at the end of the iteration is also valid. Let v and w be two 

adjacent nodes; without loss of generality assume that v is the father of w . By the 

algorithm, w chooses some index i such that Cv( i) -/=- Cw( i) and v chooses some 

index j such t hat Cv(j) -/=- Cfather(v)(j) . The new color of w is (i, Cw(i)) and the 

new color of v is (j, Cv(j)). If i -/=- j, the new colors are different and we are done. 

On the other hand, if i = j , then Cv( i) -/=- Cw( i) and again the colors are different. 

Hence, the validity of the coloring is preserved. 

Now we show that the algorithm terminates after O(lg*n) iterations. Let Lk 

denote the number of bits in the representation of colors after k iterations. For 

k = l we have 

L1 [lgLl + 1 
< 2flgLl 

5 



if flgLl ~ 1. 

Assume for some k we have Lk-l ::; 2 flg(k-l) Ll and pg(k) Ll ~ 2. Then 

Lk flg Lk-1 l + 1 
< flg(2 lg(k-l) L )l + 1 
< 2pg(k) Ll 

Therefore, as long as flg(k) Ll ~ 2, 

Hence, the number of bits in the representation of colors Lk decreases until, after 

O(lg*n) iterations, fllk) Ll becomes 1 and Lk reaches the value of 3 (the solution of 

L = flg Ll + 1 ) . Another iteration of the algorithm produces a 6-coloring: 3 possible 

values of the index iv and 2 possible values of the bit bv. The algorithm terminates 

at this point. 

We use concurrent-read capability to broadcast the newly computed color Cv to 

all the sons of v; no concurrent-write capabilities are required. For constant-degree 

trees the concurrent-read capability is not needed either. I 

As we have shown, a rooted tree can be 6-colored quickly. A natural question 

to ask at this point is whether one can use less colors and still stay within the same 

complexity bounds. The following theorem answers this question. 

Theorem 2 A rooted tree can be 3-colored in O(lg*n) CREW PRAM time using 

0( n) processors. 

Proof: The algorithm 3-Color-Rooted-Tree presented in Figure 2 starts bY: using the 

previously described algorithm to 6-color the tree and then recolors it in 3 colors in 

constant time. 

The algorithm recolors the nodes colored with bad colors 3, 4, and 5, into good 

colors 0, 1, 2 as follows. First, each node is recolored in the color of its father, so 

that any two nodes with the same father have the same color. The root, which 
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has no father, recolors itself with a color different from its current color. Next, 

the algorithm removes the color from every node that has a bad color and has a 

neighbor with a good color. These nodes become uncolored. Every node v that still 

has a color C.v is recolored in the color Cv mod 3; this gets rid of the remaining bad 

colors. Note that this coloring has the nice property that for any node v, all of the 

sons of v that are colored, must be colored identically. 

The resulting coloring is valid, but not all nodes are colored. By the construction, 

every uncolored node has at least one colored neighbor. Therefore, if there are 

two nodes v and w, such that v = father( w) and both nodes are uncolored, then 

father( v) is colored and sons( w) are colored too. The algorithm colors v with a 

color different from Csons(v) and from Cfather(v)· Such a color always exists because 

there are 3 different colors to choose from and all the colored sons of v are colored 
with the same color. Finally, the algorithm colors w with a color different from both 

Cv and Csons(w)· Every step of the 3-Color-Rooted-Tree algorithm can be executed 

in constant time except for the first one, in which we color the tree with 6 colors. 

Hence, the total running time of the algorithm is O(lg*n ). I 

Any tree can be 2-colored. In fact, it is easy to 2-color a tree in polylogarithmic 

time. For example, one can use treefix operations (13) to compute the distance from 

each node to the root, and color even level nodes with one color and odd level nodes 

with the other color. It is harder to find a 2-coloring of a rooted tree in parallel, 

however, than it is to find a 3-coloring of a rooted tree. In section 7 we show a lower 

bound of r2(lgn/lglgn) on 2-coloring of a directed list by a CRCW PRAM with a 

polynomial number of processors, which implies the same lower bound for rooted 

trees. 

4 Coloring Constant-Degree Graphs 

The method for coloring rooted trees described in the previous section is a gener

alization of the deterministic coin-flipping technique described in [5]. The method 

can be generalized even further [8] to color constant-degree graphs in a constant 
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PROCEDURE 3-Color-Rooted-Tree 
C +- 6-Color-Rooted-Tree (V, E) 
for all v E V, v =/ root in parallel do 

Cv +- Cfather(v ) 
end 
Groot +- min{ {O, 1, 2} - { Csons(root)} } 

Vi +- { V I Cv ::; 2} 
V2+-V-V1 
V' +- {v Iv E Vi and 3(v,w) E E,w E Vi};;; bad-colored nodes with good-colored neighbors 
for all v E V - V' in parallel do 

Cv +- Cvmod3 
end 
for all v E V' in parallel do 

Cv +- uncolored 
end 
for all v E V' in parallel do 

if father( v) ff_ V' 
then do 

Cv f- min{ {O, 1, 2}- {Csons(v)} - {Cjather(v )}} 

V' +- V' - v 
end 

end 
for all v E V' in parallel do 

Cv f- min{ {0,1,2} - {Csons(v)}-{Cjather(v)}} 
end 

Figure 2: The 3-coloring Algorithm for Rooted Trees 
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number of colors. In the generalized algorithm, a current color of a node is replaced 

by a new color obtained by looking at each neighbor, appending the index of a bit 

in which the current color of the node is different from the neighbor's color to the 

value of the bit in the node color, and concatenating the resulting strings. This 

algorithm runs in O(lg*n) time, but the number of colors, although constant, is 

exponential in the degree of the graph. 

In this section we show how to use the procedure 3-Color-Rooted- Tree described 

in the previous section to color a constant-degree graph with ( ~ + 1) colors, where 

~ is the maximum degree of the graph. 

First , we describe how to find in constant time a forest in a given graph such that 

each node with nonzero degree in the graph has nonzero degree in the forest. The 

removal of the edges of the forest decreases the maximum degree of the remaining 

graph ( unless the maximum degree of the graph is zero). We shall use this property 

later use to decompose the edges into~ sets, each set inducing a forest on the nodes 

of the graph. The procedure Find-Forest (see Figure 3) constructs such a forest. 

The procedure has two steps. In the first step each node compares the ID's of 

its neighbors with its own ID. A node that does not have the maximum processor 

ID among its neighbors chooses an edge that connects it to the neighbor with the 

largest processor ID. The graph induced by the chosen edges is a forest (the graph 

has no cycles) and the nodes with the highest processor IDs among their neighbors 

- local maximums - are roots of the forest. In the second step each root with no 

sons chooses an edge that connects it to one of its neighbors. The roots are local 

maximums and are therefore independent. Hence, no new cycles are introduced into 

the graph induced by the chosen edges. 

The algorithm Color-Constant-Degree-Graph that colors constant-degree graph 

with (~+1) colors is presented in Figure 4. The algorithm consists of two phases. 

In the first phase we iteratively call the Find-Forest procedure, each time removing 

the edges of the constructed forest. This phase continues until no edges remain, At 

which point we color all the nodes with one color. 

In the second phase we iteratively return the edges of the forests into the graph, 
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PROCEDURE Find-Forest(V,E) 
E' ....-0 
R .- 0 
for all v E V in parallel do ;;; construct the forest - the first step 

if PE-ID( v) is not a local maximum 
then do 

ev .- (v,w) s.t. (v,w) EE and PE-ID(w) = max{PE-ID(u)J(v,u) EE} 
E' .- E' U ev 

end 
else do 

end 
end 

R.-Ruv 

for all v E R in parallel do ;;; get rid of zero-depth trees - the second step 
if ~(v,w) EE' and 3(v,w') EE 

end 

then do 
E' .- E' U ( v, w') 

end 

return (E') ;;; the edges of the forest 

Figure 3: The Spanning Forest Algorithm 
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PRO CED URE Color-Constant-Degree-Graph 
E' +- E 
i +- 0 
while E' f; 0 do ;;; the first phase 

Ei +- Find-Forest(V, E') 
E' +- E' - Ei 
i+-i+l 

end 
for all v E V in parallel do ;;; initial coloring 

C(v) +- 1 
end 
for i +- i - 1 to O do ;;; the second phase 

C' +- 3-Color-Rooted-Tree (V, Ei) 

end 

E' +- E' + Ei 
for k +- 1 to 3 do 

end 

for j +- 1 to ~ + 1 do 
V' +- V 

end 

for all v E V' in parallel do 
ifC(v) = j and C'(v) = k 

then do 

end 

C(v) +- max{{l,2, . .. ~+1}- {C(w) I (v,w) EE'}} 
V' +- V' - V 

end 

Figure 4: The Recoloring Algorithm for Constant Degree Graphs 
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each time recoloring the nodes to maintain a consistent coloring. At the beginning 

of each iteration of this phase, the edges of the current forest (E') are added, making 

the existing (.6. + 1)-coloring inconsistent. This forest is colored with 3 colors using 

the 3-Color-Rooted-Tree procedure. Now, each node has two colors - one from the 

coloring at the previous iteration and one from the coloring of the forest. The 

pairs of colors form a valid 3( .6. + 1 )-coloring of the graph. The iteration finishes by 

enumerating the color classes, recoloring each node of the current color with a color 

from {O, ... , .6.} that is different from the colors of its neighbors (note that we can 

recolor all the nodes of the same color in parallel because they are independent). 

Theorem 3 The algorithm Color-Constant-Degree-Graph runs in O(.6. lg .6.(.6. + 

lg*n)) time and colors the graph with ( .6. + 1) colors. 

Proof: At each iteration all edges of the spanning forest are removed. From the 

above discussion it follows that each node that still has neighbors in the beginning 

of an iteration, has at least one edge removed during that iteration, and therefore 

its degree decreases. Hence, the first phase of the algorithm terminates in at most 

.6. iterations. 

The second phase terminates in at most .6. iterations as well. Each iteration 

consists of two stages. First, the current forest is colored using procedure 3-Color

Rooted-Tree, which takes, by theorem 2, O(lg .6. lg*n) time on an EREW PRAM 

(the lg.6. factor appears because we do not use the concurrent-read capability). 

Now we iterate over all the colors. Since in this section we assume that .6. is a 

constant, each iteration can be done in O(lg .6.) time using word operations. Hence, 

one iteration of the second phase takes O(lg .6. lg*n + .6. lg .6.) time, leading to an 

overall O(.6. lg .6.(.6. + lg*n)) running time on an EREW PRAM. I 

Having a (.6.+1)-coloring of a graph enables us to find an MIS in this graph. The 

following theorem states this fact formally. (We refer to the algorithm described in 

the proof as Constant-Degree-MIS in the subsequent sections.) 
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Theorem 4 An MIS in constant-degree graphs can be found in O(lg*n) time on an 

EREW PRAM using O(n) processors. 

Proof: After coloring the graph in a constant number of colors using the procedure 

Color- Constant-Degree-Graph, one can find an MIS by iterating over the colors, 

taking all the remaining nodes of the current color, adding them to the independent 

set, and removing them and all their neighbors from the graph. By theorem 3, the 

coloring of a constant-degree graph takes O(lg*n) time on an EREW PRAM. The 

selection of all nodes with a specific color and the removal of all neighbors of the 

selected nodes takes constant time. I 

The proofs of theorems 3 and 4 also imply that the algorithms Color- Constant

Degree-Graph and Constant-Degree-MIS have a polylogarithmic running times for 

graphs with polylogarithmic maximum degrees. However, in this case the assump

tion that the word size is greater then 6.. is unreasonable, so the running time of 

the algorithms becomes 0( 6..( 6.. 2 + lg 6.. lg*n) ). In section 6 we present an algorithm 

with better performance for 6.. = w(lg n ). 

The above algorithms can be implemented in the distributed model of com

putation [1 ,71, where processors have fixed connections determined by the input 

graph. The algorithms in the distributed model achieve the same O(lg*n) bound 

as in the EREW PRAM model. Linial has recently shown [14] that S1(lg*n) time 

is required in t he distributed model to find a maximal independent set on a chain. 

Our algorithms are therefore optimal (to within a constant factor) in the distributed 

model. 

5 Algorithms for Planar Graphs 

Any planar graph can be 4-colored. However, linear time sequential algorithms are 

known only for 5-coloring planar graphs. In this section we describe a simple and 

efficient parallel algorithm that 7-colors a planar graph, and show how to construct 

a more complicated parallel algorithm to 5-color a planar graph. 
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PROCEDURE 7-Color-Planar-Graph 
V'-V 
V1, V2, . .. Vign - 0 
i - 0 
while V' -::/ f/J for all v E V' do in parallel;;; first stage 

if Degree( v) :=:; 6 
then do 

¼-¼+v 
V' - V' - V 

end 

i - i + 1 
end 
for i f- i - 1 to O do ;;; second stage 

end 

while ¼ -::/ f/J do 
Ei - {(v,w) I v,w E ¼; (v,w) EE} 
I - Constant-Degree-MIS(¼, Ei) 
for all v E I do in parallel 

Cv f- max{{l ... 7}- {Cw I w E V';(v,w) EE}} 
end 

V' - V' + I 
¼-¼ - I 

end 

Figure 5: The 7-Coloring Algorithm For Planar Graphs 
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First we describe an algorithm for 7-coloring of planar graphs. The algorithm, 

called 7-Color-Planar-Graph, is shown in F igure 5. The algorithm consists of two 

stages. In the first stage, we iteratively partition the vertices of the graph into 

layers. At each iteration we create a new layer consisting of all nodes of the graph 

with degree 6 or less and delete these nodes from the graph. 

The second stage returns the layers to the graph in the order opposite to the 

order in which the layers are removed. After a layer is returned, it is 7-colored in 

the way consistent with the coloring of the layers which have been returned and 

colored in the previous iterations. Note that all the nodes of the returned layer have 

a degree of at most 6 in the current graph. 

The layer is colored by iteratively applying the Constant-Degree-MIS procedure 

to find an MIS in the subgraph induced by the uncolored nodes of the layer, and 

coloring each of the selected nodes in a color different from its colored neighbors. 

Since the uncolored nodes have a degree of at most 6 in the current graph, we never 

need more than 7 colors. 

Theorem 5 The algorithm 7-Color-Planar-Graph runs in O(lg n lg*n) time on a 

CRCW PRAM and in O(lg2 n) time on an EREW PRAM. 

Proof: In a planar graph, at least a constant fraction (1/7th) of nodes have a de

gree less or equal to 6, and therefore the first stage of the 7-Color-Planar-Graph 

algorithm terminates in at most O(lg n) steps. At each step we have to identify 

the nodes that have degree less than 7 in the remaining graph. This takes constant 

time on a CRCW PRAM ( assuming that if two or more processors simultaneously 

write into some location, one of them will succeed) and O(lg n) time on an EREW 

PRAM. 

In the second stage all the uncolored nodes are of degree less or equal to 6 

and therefore, by theorem 4, the procedure Constant-Degree-MIS finds , in O(lg*n) 

time, an MIS in the graph induced by these nodes. By the definition of the maximal 

independent set , when the algorithm colors the MIS, at least one uncolored neighbor 

of each uncolored node becomes colored. Therefore the second part of the second 
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stage terminates in at most 7 iterations. 

Since the first stage takes O(lg n) time on a CRCW PRAM and O(lg2 n) time on 

an EREW PRAM, and since each one of the O(lg n) iterations of the second stage is 

dominated by a call to Constant-Degree-MIS, the total running time is O(lgnlg*n) 

on a CRCW PRAM and O(lg2 n) on an EREW PRAM. I 

Remark: If, at each stage, instead of removing from the graph all the nodes with 

degree less than 6, we remove all the nodes with degree less or equal to the average 

degree, the algorithm described above produces a correct result in polylogarithmic 

time for any graph G such that the average degree of any node-induced subgraph 

G' of G is poly logarithmic in the size of G'. This class contains many important 

subclasses including graphs that are unions of a polylogarithmic number of planar 

graphs (i.e. graphs with poly logarithmic thickness). 

Our techniques together with the ideas presented in [4] can be used to construct 

a deterministic O(log3 n lg*n) time algorithm for 5-coloring a planar graph. 

The 5-coloring algorithm has two stages. The first stage of the algorithm par

titions the graph into layers such that vertices in any layer are independent and 

have degree of at most 6 in the graph induced by the vertices· in its layer and the 

higher numbered layers. The second stage of the algorithm adds layers one by one, 

starting from the layer with the highest number, each time recoloring the graph 

with 5 colors. 

Before describing the second stage, we need the following definitions. Let G be a 

partially colored graph and let c1 and c2 be two distinct colors. A color component 

is a connected component of a subgraph of G induced by all vertices of color c1 and 

c2. A color component flip is a recoloring of the color component that exchanges 

colors c1 and c2. A color component flip does not affect the validity of coloring. 

We can proceed with the description of the second stage of the algorithm. After a 

layer is added to already colored graph, we first color all vertices that can be colored 

without changing the existing coloring. This can be done in the same way as in 

the 7-coloring algorithm. Now all 5 colors are represented among neighbors of each 

16 



uncolored vertex. Since the uncolored vertices have degree of at most 6, the results 

of [4] imply that for every uncolored vertex v there are two colors c1 and c2 such that 

v has exactly one neighbor w1 of color c1 and exactly one neighbor W2 of color c2, 

Furthermore, the vertices w1 and w2 belong to different color components induced 

by colors c1 and c2 . Flipping each one of these color component allows us to color v. 

The problem is, however, that flipping both color components simultaneously does 

not allow us to color v. We call such color components dependent. 

Where as Boyar and Karloff use randomness to deal with this problem, we use 

our symmetry-breaking techniques as follows. For each pair of distinct colors c1 

and c2 , we construct color components induced by these colors. Then we construct 

a dependency graph with vertices corresponding to the color components and edges 

corresponding to the dependencies between the color components. Flipping a set of 

color components that corresponds to an independent set in the dependency graph 

does not cause conflicts. Suppose we can find an independent set in the dependency 

graph such that flipping the corresponding set of color components allows us to color 

a constant set of uncolored vertices. Then in O(log n) iterations will be able to color 

all uncolored vertices. 

We find such an independent set in the dependency graph as follows. Observe 

that the dependency graph is planar, so we can 7-color this graph using the 7-

Color-Planar-Graph algorithm. Then, for each pair of distinct colors and for each 

color class of the corresponding dependency graph, we compute the number of 

uncolored vertices of the original graph which can be colored if the color components 

corresponding to vertices in the color class are flipped. For each of the 10 possible 

choices of colors c1 and c2 there are 7 color classes, so the total number of times 

that we count t he number of vertices that can be colored if a color class is flipped 

is 70. Since each uncolored vertex is counted at least once, there is a color class 

such that flipping all color components in this class allows us to color at least 1/70 

uncolored vertices. 

Next we analyze to complexity of the algorithm. The outer loop of the algo

rithm that iterates over layers is executed O(log n) t imes, and the inner loop that 

colors a constant fraction of uncolored vertices is executed O(log n) times as well. 
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Each iteration of the inner loop does 10 connected component computations, 70 

enumeration and 10 calls to the 7-Color-Planar-Graph procedure. Since each con

nected component computation can be done in O(log n) time on CRCW PRAM 

using Shiloach-Vishkin algorithm [17], the 7-Color-Planar-Graph procedure is the 

bottleneck of the inner loop (recall that it runs in O(lognlg*n) time). The overall 

running time of the algorithm is O(log3 n lg*n ). 

The above result is summarized in the following theorem. 

Theorem 6 A planar graph can be 5-colored in O(lg3 n lg*n) time on a CRCW 

PRAM using O(n) processors. 

Using the techniques described in this paper it is easy to construct a fast algo

rithm for finding a maximal matching in planar graph. 

Theorem 7 A maximal matching in planar graph can be found in O(lg n lg*n) time 

on a CRCW PRAM. 

Proof: First, the algorithm partitions the graph into layers, such that the nodes 

in a layer are of degree less than 7 in the graph induced by the nodes of this 

layer and the nodes in the higher-numbered layers. The algorithm proceeds by 

iteratively returning a layer, finding a maximal matching in the obtained graph, 

and removing the end-points of the edges in the matching. At the end of each 

iteration the remaining nodes induce a graph of degree zero and therefore at the 

beginning of each iteration the maximum degree of the induced graph is 6. Hence, a 

maximal matching in this graph can be found in O(lg*n) t ime by finding a maximal 

independent set in the line-graph, which also has a constant maximum degree. Each 

iteration takes O(lg*n) time on a CRCW PRAM and the number of iterations is 

O(lg n ). This gives O(lg n lg*n) total running time. I 
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6 Coloring Polylogarithmic Degree Graphs 

This section describes a coloring algorithm for graphs with maximum degree which 

is poly logarithmic in the size of the graph. For 6. = w(lg n ), this algorithm has 

a better performance than the algorithm Color-Constant-Degree-Graph described 

above. 

The Poly-Log-Color algorithm is shown in Figure 6 and works as follows. First, 

the graph is partitioned into two subgraphs with approximately equal number of 

nodes, and the subgraphs are recursively colored in 6. + 1 colors. Then we iterate 

through all the colors of one of the subgraphs, recoloring each node with a color 

different from the colors of all of its neighbors. 

Theorem 8 The algorithm Poly-Log-Color colors a graph with a maximum degree 

of 6. with 6. + 1 colors in 0( 6. 2 lg n) time. 

Proof: Each time the graph is partitioned into two subgraphs with approximately 

equal number of nodes and therefore the depth of recursion is 0(lg n ). At each 

recursion level we iterate through all the colors, each iteration dominated by the 

time to find a color different from the colors of all the neighbors of a node, which 

takes 0( 6,.) time. Hence the total time is 0( 6,. 2 lg n) on a EREW PRAM. I 

After coloring the graph in 6.+1 colors we can construct an MIS of the graph in 

0(6.2
) time. Hence, an MIS of a graph with a polylogarithmic maximum degree can 

be found in 0( 6,. 2 lg n) time on EREW PRAM using a linear number of processors. 

7 Lowe r B ounds 

In this section we prove two lower bounds for a CRCW PRAM with polynomial 

number of processors: 

• F inding a MIS in a general graph takes Q(lg n/ lglg n) time. 
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PROCEDURE Poly-Log-Color (V, E) 
partition V into Vr,Vi such that Vr U ½ = V 
Er+- {(v,w) I (v,w) EE; v,w E Vr} 
E1 +- {(v ,w) I (v,w) EE; v,w E ½} 
Cr +-Poly-Log-Color(Vr, Er) 
C1 +-Poly-Log-Color(½, E1) 
V' +-0 

for all v E ½ in parallel do 
if:l(v,w) EE such that v E ½,w E Vr and C1(v) = Cr(w) 

then do 
V' - V' u V 

end 
for j +- 1 to .6.+1 do 

end 

for all v E V' in parallel do 
if C1(v) = j 

end 

then do 

end 

C1(v) +- max{{l,2, ... .6.+1} - {C(w) I (v,w) EE'}} 
V' - V' - V 

Figure 6: The Coloring Algorithm for Polylogarithmic Maximum Degree Graphs 
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• 2-coloring a directed list takes n(lg n / lglg n) time. 

The first lower bound complements the O(lg n) CRCW PRAM upper bound 

for the MIS problem that is achieved by Luby's algorithm [15) . The second lower 

bound complements Theorem 2 in this paper. 

Theorem 9 The running time of any MIS algorithm on a CRCW PRAM with a 

polynomial number of processors is n (lg n/ lglg n ). 

Proof: Given an instance of MAJORITY, we construct an instance of MIS in con

stant CRCW PRAM time. MAJORITY is harder that PARITY [6), which was 

proven to take n(lgn/lglgn) on a CRCW PRAM in [2,3]. Therefore the lower 

bound claimed in the theorem follows. 

Let x 1, x2, . .. , Xn be an instance of MAJORITY. We construct a complete bi

partite graph G = (V, E) with nodes corresponding to 'O' bits of the input on one 

side and nodes corresponding to ' 1' bits on the other side. 

V {1, . . . ,n} 
E - {(i,j) I Xi =I- Xj} 

To construct this graph, assign a processor Pij for each pair 1 ::; i < j '.S n. Then, 

each processor Pij writes 1 into location Mij if Xi =/- Xj and O otherwise. 

A maximal matching in a complete bipartite graph is also a maximum one. By 

constructing a maximal independent set in the line-graph G' of G, one can find a 

maximal matching in G. To construct the graph G' assign a processor P ijk for each 

distinct i,j, k '.Sn. Each Pijk writes 1 into location M(i,j),(j,k) if M ij = M j k = 1 and 

0 otherwise. 

The MAJORITY equals to 1 if and only if there is an unmatched node i E G 

such that X i = 1, which can be checked on a CRCW PRAM in constant time. I 

Theorem 10 The time to 2-color a directed list on a CRCW PRAM with a poly

nomial number of processors is n(lg n/ lglg n ). 
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Proof: We show a constant time reduction from PARITY to the 2-coloring of a 

directed list. First , we show how to construct, in constant time, a directed list with 

elements corresponding to all the input bits Xi with value of 1. Let x1, x2, . . . , Xn 

be an instance of PARITY. Associate a processor Pi with each input cell Mi that 

initially holds the value of Xi- Associate a set of processors Pjk with each index 

i, 1 ::; k ::; j < i. In one step, each processor Pjk reads the value of Mk and, if it 

equals to 1, writes 1 into Mf, effectively computing the OR-function on the input 

values Xi- j, Xi- j+i, . .. , Xi- l · Assign a processor Pj to each Mf. Each processor Pj 

reads Mf and M/+1 and writes j into Mf if and only if Mf -/:- M/+1
. It can be seen 

that for all O::; i::; n, Mf holds max{j I j < i,xj = 1}. 

We have constructed a directed list with elements corresponding to all the input 

bits Xi with value of 1. Assume this list is 2-colored. Then PARITY equals to 1 if 

and only if both ends of the list are colored in the same color, which can be checked 

in constant time. I 
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