
LABORATORY FOR

COMPUTER SCIENCE

MIT /LCS/TM-320

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

Efficient Parallel Algorithms for
(~ + 1)-Coloring

and
Maximal Independent Set Problems

Andrew V. Goldberg

Serge A. Plotkin

January 1987

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Abstract

We describe an efficient technique for breaking symmetry in parallel. The
technique works especially well on rooted trees and on graphs with a small
maximum degree. In particular, we can find a maximal independent set on
a constant-degree graph in O(lg*n) time on an EREW PRAM using a linear
number of processors. We show how to apply this technique to construct more
efficient parallel algorithms for several problems, including coloring of planar
graphs and (.6. + 1)-coloring of constant-degree graphs. We also prove lower
bounds for two related problems.

1 Introduction

Some problems for which trivial sequential algorithms exist appear to be much

harder to solve in a parallel framework. Therefore, new methods are needed for

design of efficient parallel algorithms. A known example of a problem with a trivial

sequential algorithm which is hard to solve in parallel, is the problem of finding a

maximal independent set in a graph [18] . This problem was shown to be in the class

NC by Karp and Wigderson [12]. A simple randomized algorithm for the problem

is due to Luby [15]. Recently M. Goldberg and Spencer [9] gave a deterministic

algorithm for the problem that runs in polylogarithmic time using a linear number

of processors.

The study of the maximal independent set problem shows the importance of

techniques for breaking symmetry in parallel. T he symmetry-breaking comes up

in many other parallel algorithms as well. In many cases, however, it is enough

to be able to break symmetry in special kinds of graphs. The performance of the

resulting algorithm improves if we can solve the special case of symmetry-breaking

more efficiently.

In this paper we present a technique for breaking symmetry. In particular, we

give an O(lg*n) time algorithm to 3-color a rooted tree. This techniques can be

viewed as a generalization of the deterministic coin-flipping technique of Cole and

Vishkin [5]. To show the usefulness of our technique, we present the following

algorithms. All of the presented algorithms use a linear number of processors.

1

• For graphs whose maximum degree is a constant~, we give an O(~ lg~ lg*n)

algorithm for (~ + 1)-coloring and for finding a maximal independent set on

an EREW PRAM.

• We give an algorithm to 7-color a planar graph. This algorithm, and the

maximal independent set (for planar graphs) algorithm based on it , run in

O(lg n lg*n) time on a CRCW PRAM and in O(lg2 n) time on an EREW

PRAM. We also give an O(lg3 n lg*n) CRCW algorithm to 5-color a planar

graph.

• We give a O(lg n lg*n) algorithm for finding a maximal matching in a planar

graph on a CRCW PRAM.

• For general graphs we give an 0(~2 lgn) algorithm for (~+1)-coloring and

for finding a maximal independent set on EREW PRAM.

The above stated results improve the running time and processor bounds for the

respective problems. The fastest previously known algorithm for (~ + 1)-coloring

[15], in the case of constant-degree graphs, runs in O(lg n) time, and the determin

istic version of this algorithm requires n 3 processors. The 5-coloring algorithm for

planar graphs, due to Boyar and Karloff, [4] runs in O(lg3 n) time, and the deter

ministic version of this algorithm requires n3 processors. The O(lg3 n) running time

of the maximal matching algorithm due to Israeli and Shiloach [10] can be reduced

to O(lg
2 n) in the restricted case of planar graphs, but our algorithm is faster.

Although in t his paper we have limited ourselves to the application of our tech

niques for the design of of parallel algorithms for the PRAM model of computation,

the same t echniques can be applied in a distributed model of computation [1,7].

Moreover, the O(lg*n) lower bound, given by Linial [14] for the maximal indepen

dent set problem on a chain in the distributed model, shows that our symmetry

breaking technique is optimal in this model.

The fact that a rooted tree can be 3-colored in O(lg*n) time raises the question

whether a rooted t ree can be 2-colored within the same time complexity. We answer

this question by giving an S1(lg n / lglg n) lower bound for 2-coloring of a rooted tree.

2

We also present an n(lg n/ lglg n) lower bound for finding a maximal independent

set in a general graph, thus answering the question posed by Luby [15].

Some of the results presented here were obtained independently by Shannon

[16].

2 Definitions and Notation

This sections describes the assumptions about the computational model, and intro

duces the notation used throughout the paper. In this paper we use n to denote

the number of vertices and m to denote the number of edges in a graph. We use .6.

to denote the maximum degree of the graph.

Given a graph G = (V, E), we say that a subset of nodes IE Vis independent if

no two nodes in I are adjacent. A coloring of a graph G is an assignment C : V --+ N

of positive integers (colors) to nodes of the graph. A coloring is valid if no two

adjacent nodes have the same color. The ith bit in the color of a node v is denoted

by Cv(i). A subset of edges M E E is a matching if any two distinct edges in M

have no nodes in common.

The following problems are discussed in the paper:

• The vertex-coloring (VC) problem: find a valid coloring of a given graph that

uses at most .6. + 1 colors.

• The maximal independent set (MIS) problem: find a maximal independent

set of vertices in a given graph.

• The maximal matching (MM) problem: find a maximal matching in a given

graph.

We make a distinction between unrooted and rooted trees. In a rooted tree, each

nonroot node knows which of its neighbors is its parent.

3

The following notation is used:

lgx
lg(l) X

lg(i) X

lg*x

log2 x

lgx
- lglg(i- l) X

min{il lg(i) x::::; 2}

We assume a PRAM model of computation where each processor is capable

of executing simple word and bit operations. The word width is assumed to be

O(lg n). The word operations we use include bit-wise boolean operations, integer

comparisons, and unary-to-binary conversion. In addition, we assume that each

processor has a unique identification number O(lg n) bits wide, which we denote by

PE-ID. We use exclusive-read, exclusive-write (EREW) PRAM, concurrent-read,

exclusive-write (CREW) PRAM, and concurrent-read, concurrent-write (CRCW)

PRAM as appropriate. All lower bounds are proven for a CRCW PRAM with a

polynomial number of processors.

3 Coloring Rooted Trees

This section describes an O(lg*n) time algorithm for 3-coloring rooted trees. First

we describe an O(lg*n) time algorithm for 6-coloring rooted trees. Then we show

how to transform a 6-coloring of a rooted tree into 3-coloring in constant time.

The procedure 6-Color-Rooted-Tree is shown in Figure 1. This procedure accepts

a rooted tree T = (V, E) and 6-colors it in time O(lg*n). Starting from the valid

coloring given by the processor !D's, the procedure iteratively reduces the number

of bits in the color descriptions by recoloring each non-root node v wit h the color

obtained by concatenating the index of a bit in which C v differs from Cfather(v) and

the value of this bit. The root r appends C r [O] to 0.

Theorem 1 The algorithm 6-Color-Rooted-Tree produces a valid 6-coloring of a

tree in O(lg*n) time on a CREW PRAM using O(n) processors.

4

PROCEDURE 6-Color-Rooted-Tree
L - [lgnl
for all v EV in parallel do Cv - PE-ID(v) ;;; initial coloring
while L > [lgL + ll for all v EV in parallel do

if v is the root
then do

iv - 0
bv - Cv(O)
end

else do
iv - min{i I Cv(i) 'f' Cfather(v)(i)}
bv - Cv(iv)
end

Cv - bviv
end

Figure 1: The Coloring Algorithm for Rooted Trees

Proof: First we prove by induction that the coloring computed by the algorithm is

valid, and then we prove the upper bound on the execution time.

Assume that the coloring C is valid at the beginning of an iteration, and show

that the coloring at the end of the iteration is also valid. Let v and w be two

adjacent nodes; without loss of generality assume that v is the father of w . By the

algorithm, w chooses some index i such that Cv(i) -/=- Cw(i) and v chooses some

index j such t hat Cv(j) -/=- Cfather(v)(j) . The new color of w is (i, Cw(i)) and the

new color of v is (j, Cv(j)). If i -/=- j, the new colors are different and we are done.

On the other hand, if i = j , then Cv(i) -/=- Cw(i) and again the colors are different.

Hence, the validity of the coloring is preserved.

Now we show that the algorithm terminates after O(lg*n) iterations. Let Lk

denote the number of bits in the representation of colors after k iterations. For

k = l we have

L1 [lgLl + 1
< 2flgLl

5

if flgLl ~ 1.

Assume for some k we have Lk-l ::; 2 flg(k-l) Ll and pg(k) Ll ~ 2. Then

Lk flg Lk-1 l + 1
< flg(2 lg(k-l) L)l + 1
< 2pg(k) Ll

Therefore, as long as flg(k) Ll ~ 2,

Hence, the number of bits in the representation of colors Lk decreases until, after

O(lg*n) iterations, fllk) Ll becomes 1 and Lk reaches the value of 3 (the solution of

L = flg Ll + 1) . Another iteration of the algorithm produces a 6-coloring: 3 possible

values of the index iv and 2 possible values of the bit bv. The algorithm terminates

at this point.

We use concurrent-read capability to broadcast the newly computed color Cv to

all the sons of v; no concurrent-write capabilities are required. For constant-degree

trees the concurrent-read capability is not needed either. I

As we have shown, a rooted tree can be 6-colored quickly. A natural question

to ask at this point is whether one can use less colors and still stay within the same

complexity bounds. The following theorem answers this question.

Theorem 2 A rooted tree can be 3-colored in O(lg*n) CREW PRAM time using

0(n) processors.

Proof: The algorithm 3-Color-Rooted-Tree presented in Figure 2 starts bY: using the

previously described algorithm to 6-color the tree and then recolors it in 3 colors in

constant time.

The algorithm recolors the nodes colored with bad colors 3, 4, and 5, into good

colors 0, 1, 2 as follows. First, each node is recolored in the color of its father, so

that any two nodes with the same father have the same color. The root, which

6

has no father, recolors itself with a color different from its current color. Next,

the algorithm removes the color from every node that has a bad color and has a

neighbor with a good color. These nodes become uncolored. Every node v that still

has a color C.v is recolored in the color Cv mod 3; this gets rid of the remaining bad

colors. Note that this coloring has the nice property that for any node v, all of the

sons of v that are colored, must be colored identically.

The resulting coloring is valid, but not all nodes are colored. By the construction,

every uncolored node has at least one colored neighbor. Therefore, if there are

two nodes v and w, such that v = father(w) and both nodes are uncolored, then

father(v) is colored and sons(w) are colored too. The algorithm colors v with a

color different from Csons(v) and from Cfather(v)· Such a color always exists because

there are 3 different colors to choose from and all the colored sons of v are colored
with the same color. Finally, the algorithm colors w with a color different from both

Cv and Csons(w)· Every step of the 3-Color-Rooted-Tree algorithm can be executed

in constant time except for the first one, in which we color the tree with 6 colors.

Hence, the total running time of the algorithm is O(lg*n). I

Any tree can be 2-colored. In fact, it is easy to 2-color a tree in polylogarithmic

time. For example, one can use treefix operations (13) to compute the distance from

each node to the root, and color even level nodes with one color and odd level nodes

with the other color. It is harder to find a 2-coloring of a rooted tree in parallel,

however, than it is to find a 3-coloring of a rooted tree. In section 7 we show a lower

bound of r2(lgn/lglgn) on 2-coloring of a directed list by a CRCW PRAM with a

polynomial number of processors, which implies the same lower bound for rooted

trees.

4 Coloring Constant-Degree Graphs

The method for coloring rooted trees described in the previous section is a gener

alization of the deterministic coin-flipping technique described in [5]. The method

can be generalized even further [8] to color constant-degree graphs in a constant

7

PROCEDURE 3-Color-Rooted-Tree
C +- 6-Color-Rooted-Tree (V, E)
for all v E V, v =/ root in parallel do

Cv +- Cfather(v)
end
Groot +- min{ {O, 1, 2} - { Csons(root)} }

Vi +- { V I Cv ::; 2}
V2+-V-V1
V' +- {v Iv E Vi and 3(v,w) E E,w E Vi};;; bad-colored nodes with good-colored neighbors
for all v E V - V' in parallel do

Cv +- Cvmod3
end
for all v E V' in parallel do

Cv +- uncolored
end
for all v E V' in parallel do

if father(v) ff_ V'
then do

Cv f- min{ {O, 1, 2}- {Csons(v)} - {Cjather(v)}}

V' +- V' - v
end

end
for all v E V' in parallel do

Cv f- min{ {0,1,2} - {Csons(v)}-{Cjather(v)}}
end

Figure 2: The 3-coloring Algorithm for Rooted Trees

8

number of colors. In the generalized algorithm, a current color of a node is replaced

by a new color obtained by looking at each neighbor, appending the index of a bit

in which the current color of the node is different from the neighbor's color to the

value of the bit in the node color, and concatenating the resulting strings. This

algorithm runs in O(lg*n) time, but the number of colors, although constant, is

exponential in the degree of the graph.

In this section we show how to use the procedure 3-Color-Rooted- Tree described

in the previous section to color a constant-degree graph with (~ + 1) colors, where

~ is the maximum degree of the graph.

First , we describe how to find in constant time a forest in a given graph such that

each node with nonzero degree in the graph has nonzero degree in the forest. The

removal of the edges of the forest decreases the maximum degree of the remaining

graph (unless the maximum degree of the graph is zero). We shall use this property

later use to decompose the edges into~ sets, each set inducing a forest on the nodes

of the graph. The procedure Find-Forest (see Figure 3) constructs such a forest.

The procedure has two steps. In the first step each node compares the ID's of

its neighbors with its own ID. A node that does not have the maximum processor

ID among its neighbors chooses an edge that connects it to the neighbor with the

largest processor ID. The graph induced by the chosen edges is a forest (the graph

has no cycles) and the nodes with the highest processor IDs among their neighbors

- local maximums - are roots of the forest. In the second step each root with no

sons chooses an edge that connects it to one of its neighbors. The roots are local

maximums and are therefore independent. Hence, no new cycles are introduced into

the graph induced by the chosen edges.

The algorithm Color-Constant-Degree-Graph that colors constant-degree graph

with (~+1) colors is presented in Figure 4. The algorithm consists of two phases.

In the first phase we iteratively call the Find-Forest procedure, each time removing

the edges of the constructed forest. This phase continues until no edges remain, At

which point we color all the nodes with one color.

In the second phase we iteratively return the edges of the forests into the graph,

g

PROCEDURE Find-Forest(V,E)
E'-0
R .- 0
for all v E V in parallel do ;;; construct the forest - the first step

if PE-ID(v) is not a local maximum
then do

ev .- (v,w) s.t. (v,w) EE and PE-ID(w) = max{PE-ID(u)J(v,u) EE}
E' .- E' U ev

end
else do

end
end

R.-Ruv

for all v E R in parallel do ;;; get rid of zero-depth trees - the second step
if ~(v,w) EE' and 3(v,w') EE

end

then do
E' .- E' U (v, w')

end

return (E') ;;; the edges of the forest

Figure 3: The Spanning Forest Algorithm

10

PRO CED URE Color-Constant-Degree-Graph
E' +- E
i +- 0
while E' f; 0 do ;;; the first phase

Ei +- Find-Forest(V, E')
E' +- E' - Ei
i+-i+l

end
for all v E V in parallel do ;;; initial coloring

C(v) +- 1
end
for i +- i - 1 to O do ;;; the second phase

C' +- 3-Color-Rooted-Tree (V, Ei)

end

E' +- E' + Ei
for k +- 1 to 3 do

end

for j +- 1 to ~ + 1 do
V' +- V

end

for all v E V' in parallel do
ifC(v) = j and C'(v) = k

then do

end

C(v) +- max{{l,2, . .. ~+1}- {C(w) I (v,w) EE'}}
V' +- V' - V

end

Figure 4: The Recoloring Algorithm for Constant Degree Graphs

11

each time recoloring the nodes to maintain a consistent coloring. At the beginning

of each iteration of this phase, the edges of the current forest (E') are added, making

the existing (.6. + 1)-coloring inconsistent. This forest is colored with 3 colors using

the 3-Color-Rooted-Tree procedure. Now, each node has two colors - one from the

coloring at the previous iteration and one from the coloring of the forest. The

pairs of colors form a valid 3(.6. + 1)-coloring of the graph. The iteration finishes by

enumerating the color classes, recoloring each node of the current color with a color

from {O, ... , .6.} that is different from the colors of its neighbors (note that we can

recolor all the nodes of the same color in parallel because they are independent).

Theorem 3 The algorithm Color-Constant-Degree-Graph runs in O(.6. lg .6.(.6. +

lg*n)) time and colors the graph with (.6. + 1) colors.

Proof: At each iteration all edges of the spanning forest are removed. From the

above discussion it follows that each node that still has neighbors in the beginning

of an iteration, has at least one edge removed during that iteration, and therefore

its degree decreases. Hence, the first phase of the algorithm terminates in at most

.6. iterations.

The second phase terminates in at most .6. iterations as well. Each iteration

consists of two stages. First, the current forest is colored using procedure 3-Color

Rooted-Tree, which takes, by theorem 2, O(lg .6. lg*n) time on an EREW PRAM

(the lg.6. factor appears because we do not use the concurrent-read capability).

Now we iterate over all the colors. Since in this section we assume that .6. is a

constant, each iteration can be done in O(lg .6.) time using word operations. Hence,

one iteration of the second phase takes O(lg .6. lg*n + .6. lg .6.) time, leading to an

overall O(.6. lg .6.(.6. + lg*n)) running time on an EREW PRAM. I

Having a (.6.+1)-coloring of a graph enables us to find an MIS in this graph. The

following theorem states this fact formally. (We refer to the algorithm described in

the proof as Constant-Degree-MIS in the subsequent sections.)

12

Theorem 4 An MIS in constant-degree graphs can be found in O(lg*n) time on an

EREW PRAM using O(n) processors.

Proof: After coloring the graph in a constant number of colors using the procedure

Color- Constant-Degree-Graph, one can find an MIS by iterating over the colors,

taking all the remaining nodes of the current color, adding them to the independent

set, and removing them and all their neighbors from the graph. By theorem 3, the

coloring of a constant-degree graph takes O(lg*n) time on an EREW PRAM. The

selection of all nodes with a specific color and the removal of all neighbors of the

selected nodes takes constant time. I

The proofs of theorems 3 and 4 also imply that the algorithms Color- Constant

Degree-Graph and Constant-Degree-MIS have a polylogarithmic running times for

graphs with polylogarithmic maximum degrees. However, in this case the assump

tion that the word size is greater then 6.. is unreasonable, so the running time of

the algorithms becomes 0(6..(6.. 2 + lg 6.. lg*n)). In section 6 we present an algorithm

with better performance for 6.. = w(lg n).

The above algorithms can be implemented in the distributed model of com

putation [1 ,71, where processors have fixed connections determined by the input

graph. The algorithms in the distributed model achieve the same O(lg*n) bound

as in the EREW PRAM model. Linial has recently shown [14] that S1(lg*n) time

is required in t he distributed model to find a maximal independent set on a chain.

Our algorithms are therefore optimal (to within a constant factor) in the distributed

model.

5 Algorithms for Planar Graphs

Any planar graph can be 4-colored. However, linear time sequential algorithms are

known only for 5-coloring planar graphs. In this section we describe a simple and

efficient parallel algorithm that 7-colors a planar graph, and show how to construct

a more complicated parallel algorithm to 5-color a planar graph.

13

PROCEDURE 7-Color-Planar-Graph
V'-V
V1, V2, . .. Vign - 0
i - 0
while V' -::/ f/J for all v E V' do in parallel;;; first stage

if Degree(v) :=:; 6
then do

¼-¼+v
V' - V' - V

end

i - i + 1
end
for i f- i - 1 to O do ;;; second stage

end

while ¼ -::/ f/J do
Ei - {(v,w) I v,w E ¼; (v,w) EE}
I - Constant-Degree-MIS(¼, Ei)
for all v E I do in parallel

Cv f- max{{l ... 7}- {Cw I w E V';(v,w) EE}}
end

V' - V' + I
¼-¼ - I

end

Figure 5: The 7-Coloring Algorithm For Planar Graphs

14

First we describe an algorithm for 7-coloring of planar graphs. The algorithm,

called 7-Color-Planar-Graph, is shown in F igure 5. The algorithm consists of two

stages. In the first stage, we iteratively partition the vertices of the graph into

layers. At each iteration we create a new layer consisting of all nodes of the graph

with degree 6 or less and delete these nodes from the graph.

The second stage returns the layers to the graph in the order opposite to the

order in which the layers are removed. After a layer is returned, it is 7-colored in

the way consistent with the coloring of the layers which have been returned and

colored in the previous iterations. Note that all the nodes of the returned layer have

a degree of at most 6 in the current graph.

The layer is colored by iteratively applying the Constant-Degree-MIS procedure

to find an MIS in the subgraph induced by the uncolored nodes of the layer, and

coloring each of the selected nodes in a color different from its colored neighbors.

Since the uncolored nodes have a degree of at most 6 in the current graph, we never

need more than 7 colors.

Theorem 5 The algorithm 7-Color-Planar-Graph runs in O(lg n lg*n) time on a

CRCW PRAM and in O(lg2 n) time on an EREW PRAM.

Proof: In a planar graph, at least a constant fraction (1/7th) of nodes have a de

gree less or equal to 6, and therefore the first stage of the 7-Color-Planar-Graph

algorithm terminates in at most O(lg n) steps. At each step we have to identify

the nodes that have degree less than 7 in the remaining graph. This takes constant

time on a CRCW PRAM (assuming that if two or more processors simultaneously

write into some location, one of them will succeed) and O(lg n) time on an EREW

PRAM.

In the second stage all the uncolored nodes are of degree less or equal to 6

and therefore, by theorem 4, the procedure Constant-Degree-MIS finds , in O(lg*n)

time, an MIS in the graph induced by these nodes. By the definition of the maximal

independent set , when the algorithm colors the MIS, at least one uncolored neighbor

of each uncolored node becomes colored. Therefore the second part of the second

15

stage terminates in at most 7 iterations.

Since the first stage takes O(lg n) time on a CRCW PRAM and O(lg2 n) time on

an EREW PRAM, and since each one of the O(lg n) iterations of the second stage is

dominated by a call to Constant-Degree-MIS, the total running time is O(lgnlg*n)

on a CRCW PRAM and O(lg2 n) on an EREW PRAM. I

Remark: If, at each stage, instead of removing from the graph all the nodes with

degree less than 6, we remove all the nodes with degree less or equal to the average

degree, the algorithm described above produces a correct result in polylogarithmic

time for any graph G such that the average degree of any node-induced subgraph

G' of G is poly logarithmic in the size of G'. This class contains many important

subclasses including graphs that are unions of a polylogarithmic number of planar

graphs (i.e. graphs with poly logarithmic thickness).

Our techniques together with the ideas presented in [4] can be used to construct

a deterministic O(log3 n lg*n) time algorithm for 5-coloring a planar graph.

The 5-coloring algorithm has two stages. The first stage of the algorithm par

titions the graph into layers such that vertices in any layer are independent and

have degree of at most 6 in the graph induced by the vertices· in its layer and the

higher numbered layers. The second stage of the algorithm adds layers one by one,

starting from the layer with the highest number, each time recoloring the graph

with 5 colors.

Before describing the second stage, we need the following definitions. Let G be a

partially colored graph and let c1 and c2 be two distinct colors. A color component

is a connected component of a subgraph of G induced by all vertices of color c1 and

c2. A color component flip is a recoloring of the color component that exchanges

colors c1 and c2. A color component flip does not affect the validity of coloring.

We can proceed with the description of the second stage of the algorithm. After a

layer is added to already colored graph, we first color all vertices that can be colored

without changing the existing coloring. This can be done in the same way as in

the 7-coloring algorithm. Now all 5 colors are represented among neighbors of each

16

uncolored vertex. Since the uncolored vertices have degree of at most 6, the results

of [4] imply that for every uncolored vertex v there are two colors c1 and c2 such that

v has exactly one neighbor w1 of color c1 and exactly one neighbor W2 of color c2,

Furthermore, the vertices w1 and w2 belong to different color components induced

by colors c1 and c2 . Flipping each one of these color component allows us to color v.

The problem is, however, that flipping both color components simultaneously does

not allow us to color v. We call such color components dependent.

Where as Boyar and Karloff use randomness to deal with this problem, we use

our symmetry-breaking techniques as follows. For each pair of distinct colors c1

and c2 , we construct color components induced by these colors. Then we construct

a dependency graph with vertices corresponding to the color components and edges

corresponding to the dependencies between the color components. Flipping a set of

color components that corresponds to an independent set in the dependency graph

does not cause conflicts. Suppose we can find an independent set in the dependency

graph such that flipping the corresponding set of color components allows us to color

a constant set of uncolored vertices. Then in O(log n) iterations will be able to color

all uncolored vertices.

We find such an independent set in the dependency graph as follows. Observe

that the dependency graph is planar, so we can 7-color this graph using the 7-

Color-Planar-Graph algorithm. Then, for each pair of distinct colors and for each

color class of the corresponding dependency graph, we compute the number of

uncolored vertices of the original graph which can be colored if the color components

corresponding to vertices in the color class are flipped. For each of the 10 possible

choices of colors c1 and c2 there are 7 color classes, so the total number of times

that we count t he number of vertices that can be colored if a color class is flipped

is 70. Since each uncolored vertex is counted at least once, there is a color class

such that flipping all color components in this class allows us to color at least 1/70

uncolored vertices.

Next we analyze to complexity of the algorithm. The outer loop of the algo

rithm that iterates over layers is executed O(log n) t imes, and the inner loop that

colors a constant fraction of uncolored vertices is executed O(log n) times as well.

17

Each iteration of the inner loop does 10 connected component computations, 70

enumeration and 10 calls to the 7-Color-Planar-Graph procedure. Since each con

nected component computation can be done in O(log n) time on CRCW PRAM

using Shiloach-Vishkin algorithm [17], the 7-Color-Planar-Graph procedure is the

bottleneck of the inner loop (recall that it runs in O(lognlg*n) time). The overall

running time of the algorithm is O(log3 n lg*n).

The above result is summarized in the following theorem.

Theorem 6 A planar graph can be 5-colored in O(lg3 n lg*n) time on a CRCW

PRAM using O(n) processors.

Using the techniques described in this paper it is easy to construct a fast algo

rithm for finding a maximal matching in planar graph.

Theorem 7 A maximal matching in planar graph can be found in O(lg n lg*n) time

on a CRCW PRAM.

Proof: First, the algorithm partitions the graph into layers, such that the nodes

in a layer are of degree less than 7 in the graph induced by the nodes of this

layer and the nodes in the higher-numbered layers. The algorithm proceeds by

iteratively returning a layer, finding a maximal matching in the obtained graph,

and removing the end-points of the edges in the matching. At the end of each

iteration the remaining nodes induce a graph of degree zero and therefore at the

beginning of each iteration the maximum degree of the induced graph is 6. Hence, a

maximal matching in this graph can be found in O(lg*n) t ime by finding a maximal

independent set in the line-graph, which also has a constant maximum degree. Each

iteration takes O(lg*n) time on a CRCW PRAM and the number of iterations is

O(lg n). This gives O(lg n lg*n) total running time. I

18

6 Coloring Polylogarithmic Degree Graphs

This section describes a coloring algorithm for graphs with maximum degree which

is poly logarithmic in the size of the graph. For 6. = w(lg n), this algorithm has

a better performance than the algorithm Color-Constant-Degree-Graph described

above.

The Poly-Log-Color algorithm is shown in Figure 6 and works as follows. First,

the graph is partitioned into two subgraphs with approximately equal number of

nodes, and the subgraphs are recursively colored in 6. + 1 colors. Then we iterate

through all the colors of one of the subgraphs, recoloring each node with a color

different from the colors of all of its neighbors.

Theorem 8 The algorithm Poly-Log-Color colors a graph with a maximum degree

of 6. with 6. + 1 colors in 0(6. 2 lg n) time.

Proof: Each time the graph is partitioned into two subgraphs with approximately

equal number of nodes and therefore the depth of recursion is 0(lg n). At each

recursion level we iterate through all the colors, each iteration dominated by the

time to find a color different from the colors of all the neighbors of a node, which

takes 0(6,.) time. Hence the total time is 0(6,. 2 lg n) on a EREW PRAM. I

After coloring the graph in 6.+1 colors we can construct an MIS of the graph in

0(6.2
) time. Hence, an MIS of a graph with a polylogarithmic maximum degree can

be found in 0(6,. 2 lg n) time on EREW PRAM using a linear number of processors.

7 Lowe r B ounds

In this section we prove two lower bounds for a CRCW PRAM with polynomial

number of processors:

• F inding a MIS in a general graph takes Q(lg n/ lglg n) time.

19

PROCEDURE Poly-Log-Color (V, E)
partition V into Vr,Vi such that Vr U ½ = V
Er+- {(v,w) I (v,w) EE; v,w E Vr}
E1 +- {(v ,w) I (v,w) EE; v,w E ½}
Cr +-Poly-Log-Color(Vr, Er)
C1 +-Poly-Log-Color(½, E1)
V' +-0

for all v E ½ in parallel do
if:l(v,w) EE such that v E ½,w E Vr and C1(v) = Cr(w)

then do
V' - V' u V

end
for j +- 1 to .6.+1 do

end

for all v E V' in parallel do
if C1(v) = j

end

then do

end

C1(v) +- max{{l,2,6.+1} - {C(w) I (v,w) EE'}}
V' - V' - V

Figure 6: The Coloring Algorithm for Polylogarithmic Maximum Degree Graphs

20

• 2-coloring a directed list takes n(lg n / lglg n) time.

The first lower bound complements the O(lg n) CRCW PRAM upper bound

for the MIS problem that is achieved by Luby's algorithm [15) . The second lower

bound complements Theorem 2 in this paper.

Theorem 9 The running time of any MIS algorithm on a CRCW PRAM with a

polynomial number of processors is n (lg n/ lglg n).

Proof: Given an instance of MAJORITY, we construct an instance of MIS in con

stant CRCW PRAM time. MAJORITY is harder that PARITY [6), which was

proven to take n(lgn/lglgn) on a CRCW PRAM in [2,3]. Therefore the lower

bound claimed in the theorem follows.

Let x 1, x2, . .. , Xn be an instance of MAJORITY. We construct a complete bi

partite graph G = (V, E) with nodes corresponding to 'O' bits of the input on one

side and nodes corresponding to ' 1' bits on the other side.

V {1, . . . ,n}
E - {(i,j) I Xi =I- Xj}

To construct this graph, assign a processor Pij for each pair 1 ::; i < j '.S n. Then,

each processor Pij writes 1 into location Mij if Xi =/- Xj and O otherwise.

A maximal matching in a complete bipartite graph is also a maximum one. By

constructing a maximal independent set in the line-graph G' of G, one can find a

maximal matching in G. To construct the graph G' assign a processor P ijk for each

distinct i,j, k '.Sn. Each Pijk writes 1 into location M(i,j),(j,k) if M ij = M j k = 1 and

0 otherwise.

The MAJORITY equals to 1 if and only if there is an unmatched node i E G

such that X i = 1, which can be checked on a CRCW PRAM in constant time. I

Theorem 10 The time to 2-color a directed list on a CRCW PRAM with a poly

nomial number of processors is n(lg n/ lglg n).

21

Proof: We show a constant time reduction from PARITY to the 2-coloring of a

directed list. First , we show how to construct, in constant time, a directed list with

elements corresponding to all the input bits Xi with value of 1. Let x1, x2, . . . , Xn

be an instance of PARITY. Associate a processor Pi with each input cell Mi that

initially holds the value of Xi- Associate a set of processors Pjk with each index

i, 1 ::; k ::; j < i. In one step, each processor Pjk reads the value of Mk and, if it

equals to 1, writes 1 into Mf, effectively computing the OR-function on the input

values Xi- j, Xi- j+i, . .. , Xi- l · Assign a processor Pj to each Mf. Each processor Pj

reads Mf and M/+1 and writes j into Mf if and only if Mf -/:- M/+1
. It can be seen

that for all O::; i::; n, Mf holds max{j I j < i,xj = 1}.

We have constructed a directed list with elements corresponding to all the input

bits Xi with value of 1. Assume this list is 2-colored. Then PARITY equals to 1 if

and only if both ends of the list are colored in the same color, which can be checked

in constant time. I

8 Acknowledgments

We would like to thank Charles Leiserson and David Shmoys for fruitful and stim

ulating discussions, and for their valuable comments on a draft of this paper.

References

[1] B. Awerbuch. Complexity of network syncronization. Journal of the Associa

tion for Computing Machinery, 32(4):804- 823, October 1985.

[2] P. Beame. Lower Bounds in Parallel Machine Computation. PhD thesis, Uni

versity of Toronto, 1986.

[3] P. Bea.me and J. Hastad. P ersonal communication. 1986.

[4] J . Boyar and H. Karloff. Coloring planar graphs in parallel. 1986. Unpublished

Manuscript.

22

[5] R. Cole and U. Vishkin. Deterministic coin tossing and accelerating cascades:

micro and macro techniques for designing parallel algorithms. In Proc . 18th

A CM Simp. on Theory of Computing, pages 206-219, 1986.

[6] M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial time

hierarchy. In Proc. 22nd IEEE Conj on Foundations of Computer Science,

pages 260-270, 1981.

[7] R. G. Gallager, P. A. Humblet , and P. M Spira. A distributed algorithm for

minimum-weight spanning trees. A CM Transactions on Programming Lan

guages and Systems, 5(1):66-77, January 1983.

[8] A. Goldberg and S. Plotkin. Parallel (~ + 1) coloring of constant-degree graphs.

Information Processing Letters, 1986. Accepted for publication.

[9] M . Goldberg and T. Spencer. A new parallel algorithm for the maximal inde

pendent set problem. 1986. Submitted for publication.

[10] A. Israeli and Y. Shiloach. An improved parallel algorithm for maximal match

ing. Information Processing Letters, 22:57- 60, January 1986.

[11] H.J. Karloff. Fast Parallel Algorithms for Graph-Theoretic Problems: Match

ing, Coloring, Partitioning. PhD thesis, University of California, Berkeley,

1985.

[12] R. M . Karp and A. Wigderson. A fast parallel algorithm for the maximal

independent set problem. In Proc. 16th A CM Simp. on Theory of Computing,

pages 266-272, 1984.

[13] C. Leiserson and B. Maggs. Communication-efficient parallel graph algorithms.

In Proc. of International Conference on Parallel Processing, pages 861- 868,

1986.

[14] N. Linial. Personal communication. 1986.

[15] M . Luby. A simple parallel algorithm for the maximal independent set problem.

In Proc. 17th ACM Simp. on Theory of Computing, pages 1-10, 1985.

[16] G. Shannon. Reduction techniques for designing linear-processor parallel algo

rithms on sparse graphs. 1986. In prepapation.

[17] Y. Shiloach and U. Vishkin. An O(log n) parallel connectivity algorithm. Jour

nal of Algorithms, 3:57-67, 1982.

23

[18] L. G. Valiant. Parallel computation. In Proc. 7th IBM Simp. on Mathemetical

Foundations of Computer Science, 1982.

24

