
VOID INITIATION IN A CLASS OF COMPRESSIBLE ELASTIC MATERIALS 

NAZMIYE ERTAN ARNOLD 

Diploma Engineer, Istanbul Technical University 
(1968) 

SUBMITTED TO THE DEPARTMENT OF 
MECHANICAL ENGINEERING 

IN PARTIAL FOLFILLMENT OF THE REQUIREMENTS 
FOR THE DEGREE OF 

MASTER OF SCIENCE IN MECHANICAL ENGINEERING 

at the 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
liovember, 1986 

Nazmiye Ertan Arnold, 1986 

The author hereby grants to M.I.T. permission to reproduce and to 
distribute copies of this thesis document in whole or in part. 

Signature of Author .........,...,....,.......................... 
Department' of Mechanical Engineering 

November, 1986 

. . . . . . . .  Certified by . . . . . . . . . . . . . . . .  
J 

Professor Rohan Abeyaratne 
Thesis Supervisor 

Accepted by ..........*.;-...... 7 . . . . = . . . . . . . . . . . . - . . . . . . . . . . . .  
Professor A.A. Sonfn, Chairman 
Department Graduate Committee 

Department of Mechanical Engineering 

MASSACHUSEllS INSTITUTE 
OF TECHHOLMY 

MAR 0 9 1987 
Archives 



VOID INITIATION IN A CLASS OF COMPRESSIBLE ELASTIC MATERIALS 

NAZMIYE ERTAN ARNOLD 

Submitted to the Department of Mechanical Engineering 
on November 30, 1986 in partial fulfillment of the 
requirements for the Degree of Master of Science in 

Mechanical Engineering 

ABSTRACT 

This is a study of a bifurcation problem for a solid circular 
cylinder which is made of a particular class of homogeneous, isotropic, 
compressible elastic material. The surface of the cylinder is subjected 
to a purely radial stretch X (>I) and the cylinder is assumed to be in a 
state of plane strain. One solution to this problem, for all values of 
A ,  is that of a pure homogeneous stretching in which the cylinder 
expands radially. However, a second (singular) solution bifurcates from 
this homogeneous solution at a critical value of the stretch X (=Acr) at 
which the homogeneous solution becomes unstable. For X>Xcr, a circular 
cylindrical cavity forms at the axis of the cylinder. 

In this study we have two purposes. The first is to determine an 
explicit analytical solution to the bifurcation problem for a broad 
class of com~ressible elastic materials. The second is to examine the 
dependerce of various physical quantities (such as the critical stress 
at void initiation) on the constitutive parameters (such as the harden- 
in.g exponent). 
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CHAPTER 1 

INTRODUCTION 

When subjected to tensile loads, many materials develop internal 

voids. For example, this has been observed in metals by Tipper ( 1 9 4 9 ) ,  

and in elastomers by Yerzley (1939). Typically, under monotonically 

increasing applied load, the voids first appear, then grow, and eventu- 

ally coalesce to form cracks. 

In order to study this phenomenon in rubber, Gent and Lindley (1958) 

conducted experiments on internal rupture in rubber. Their test speci- 

mens consisted of vulcanized rubber cylinders which were bonded to plane 

metal end-pieces, and placed in tension. They observed internal voids 

appear and coalesce along the axis of the cylinder. In order to provide 

a theoretical explanation for this, they made the ad hoc assumption that 

voids form when the negative hydrostatic pressure component of the 

applied stress reaches a critical value. They then calculated the cri- 

tical value of the negative pressure at which a spherical cavity would 

grow to be unbounded, i.e. "burst", by using the theory of large elastic 

deformations. The value they found was in reasonable agreement with 

their experimental observations. 

Hill (1950) had previously carried out a similar analysis in which 

he studied the growth of a hole from zero inftial radius in an elas- 

tic-plastic material. McClintock (1968) developed a criterion for frac- 

ture in terms of the growth and coalescence of cylindrical holes under 

any prescribed history of applied principal components of stress and 



strain that do not rotate relative to the material. 

More recently, Ball (1982) carried out a bifurcation analysis of the 

equations of nonlinear elasticity. His approach was to minimize the 

energy functional. The crucial step in his analysis was to recognize 

that if a void is to nucleate, then there will be a certain singularity 

in the field quantities at the site of nucleation, and therefore the 

class of admissible functions admitted into the minimization must be 

broader that used classically. By permitting the deformation field to be 

less than classically smooth, he was able to generate certain singular 

solutions of the field equations. Ball (1982) interpreted these solu- 

tions in terms of internal rupture, in which a cavity forms in the 

interior of a solid body which contains no hole in the undeformed state. 

His analysis automaticallv predicts the critical load at which the hole 

appears, and also describes its subsequent growth; it does not require 

any additional ad hoc assumptions. 

In a subsequent study, Abeyaratne and Horgan (1986) showed that such 

an analysis is more relevant for describing the growth of a pre-existing 

void of infinitesimal initial size. 

Ball (1982)'s analysis consists of two parts. For incompressible 

elastic materials he carries out an extensive and complete analysis. In 

addition to proving the existence of these bifurcated solutions invol- 

ving voids, he goes on to determine them explicitly and to study their 

stability. However for compressible elastic materials he only proves an 



existence theorem, and this too only for a limited sub-clcss of com- 

pressible elastic materials. Subsequently Podio-Guidugli, Caffarelli and 

Virga (1986), and Sivaloganathan (1986) took up this question, but they 

too confined themselves to estalishing results pertaining to existence 

for a slightly wider class of materials than Ball. 

On the other hand, Abeyaratne and Horgari (1986) determine explicitly 

the exact deformation and stress fields for such a problem; they also 

examine the stability issue. However, their analysis is restricted to a 

special compressible elastic material - -  the so-called Blatz-KO mate- 

rial. 

The purpose of the present study is two-fold. Firstly, we determine 

an explicit analytical solution to this bifurcation problem for a class 

of compressible elastic materials significantly more general than the 

Blatz-KO material. Secondly, we wish to examine the dependence of the 

various physical quantities (such as the critical stress at void ini- 

tiation) on the constitutive parameters (such as the hardening expo- 

nent). 

One of the most general constitutive models for compressible iso- 

tropic elastic materials is that given by Ogden (1972). Since the 

expression he gives is in the form of an infinite series, one can always 

take a large enough number of terms in order to model any set of avail- 

able data. Recently, Storakers (1986) showed that even with a few terms 

(one or two) it is possible to model, quite well, the behavior of 



compressible rubber-like materials. The constitutive law that we con- 

sider is a special case of an Ogden material. It has three arbitrary 

constitutive parameters, viz. the shear modulus p ,  hardening exponent n ,  

and Poisson's ratio Y .  For a special choice of these parameters, this 

constitutive model reduces to the Blatz-KO description. 

We study a bifurcation problem for a solid circular cylinder which 

is made of this homogeneous, isotropic, compressible elastic material. 

The surface of the cylinder is subjected to a purely radial stretch X 

(>I) and the cylinder is assumed to be in a state of plane strain. One 

solution to this problem, for all values of A ,  is that of a pure homo- 

geneous stretching in which the cylinder expands radially. However a 

second (singular) solution bifurcates from this homogeneous solution at 

a critical value of the stretch X (-Acr) at which the homogeneous 

solution becomes unstable. For X > A,,, a circular cylindrical cavity 

forms at the axis of the cylinder. 

In Chapter 2 we present some preliminaries from the nonlinear thecry 

of elasticity. In Chapter 3 we formulate the bifurcation problem by 

minimizing the appropriate energy functional and deriving the Euler- 

Lagrange equation and natural boundary condition. In Chapter 4 we 

describe the class of constitutive relations that we will be considering 

and study the response of this material in uni-axial tension, simple 

shear and isotropic extension. In Chapter 5 ,  the problem formulated i.n 

Chapter 3 is specialized to the class of materials discussed in Chapter 

4. This problem is then solved explicitly. In the first part of Chapter 



6 we examine t h e  s t a b i l i t y  o f  the s o l u t i o n  w i t h  t h e  c a v i t y ,  and then  i n  

t h e  latter p a r t  we examine how t h e  v a r i o u s  r e s u l t s  depend upon t h e  P o i s -  

son r a t i o  v ( t h e  " c o m p r e s s i b i l i t y " )  and t h e  m a t e r i a l  hardening  exponent .  



CHAPTER 2 

PRELIMINARIES ON FINITE ELASTICITY 

In this section we give a brief summary of the fundamental equations 

of finite elasticity. An extensive treatment of this subject can be 

found in the treatise by Truesdell and No11 (1965) or in the book by 

Ogden (1984). 

Let Ro be the domain in three-space occupied by the interior of 

a body in its undeformed configuration. A deformation of the body is 

then described by a sufficiently smooth and invertible transformation 

for all X in Wo, 
C 

which maps ¶to onto a domain 91. Tentatively, we assume that 

u E C* (Io) Here X is the position vector of a generic material point 
C C 

before deformation, x(X) is its position vector after defornation: X E 
u - C 

?lo, ~ ( X ) E  X .  u_ is the displacement vector-field associated with the 

deformation. Thus Xi and xi are the cartesian material and spatial 

coordinates, respectively. The deformation-gradient tensor - F is defined 

by 

F - y z -  [Bxi /aXjl - ; + Y E ,  J - det F > O  onRo, 
C C 

(2.2) 

where J is the Jacobian determinant of the mapping (2.1), and II I is the 

identity tensor. 



Since is non-singular, according to the polar decomposition 

theorem, there exists a unique proper orthogonal tensor field 5 and 

unique symmetric positive definite tensor fields U and 1 such that 
& 

R is a measure of the local rotation, while U and is related to the 
C C 

strain. In fact, the Lagrangian strain tensor E is given by 
C 

E = (1/2) (u2 - I). 
u e #- 

Let C and B stand for the right and left Cauchy-Green deformation 
L. C 

measures, respectively, so that 

Both C and B are positive definite symmetric tensors, which have the - c.L 

same fundamental scalar invariants Ii and possess common principal 

values Ai2, where Ai > 0 are the principal stretches of the deformation 

at hand. In particular, 

I1 - tr - AI2 + A22 + Aj2 , 

2 2 2 2 2 2 I~ - (1/2)[(tr CJ2 - tr(~~)] - 11 A2 + A2 A? + A3 A 1  , (2.6) 

2 2 2 13 - J~ - det  2 - A1 A2 3 . 



The principal strains Ei of the Lagrangian strain tensor are related 

to the principal stretches X i  by 

Let r(x) be the Cauchy stress tensor field (true stress field) " L 

accompanying the deformation. Equilibrium, i n  the absence of body 

forces, demands that 

The component rij of the Cauchy stress tensor represents the force per 

unit current area in the jth direction, acting on a surface currently 

normal to the ith direction. Next, let o ( X )  be the Piola stress tensor 
CI L. 

field (nominal stress field) corresponding to 7 ,  whence 
L. 

where f-' is the inverse of 1. The component o i j  of nominal stress 

represents the force per unit original area in the j th direction, acting 

on a surface which originally was normal to the ith direction. Then 

(2.8) and (2.1) allow the equilibrium equations to be written in the 

equivalent form 



div u - 0 or aoij/aXj - 0 on Ro, 
4 

but 5 is, in general, not symmetric. By ( 2 . 8 ) ,  (2.9) we have 

U F ~  - F U ~ .  
L" C C  

Consider an arbitrary surface So in the undeformed region ?'lo which 

is mapped onto a surface S in the deformed region R by means of (2.1). 

The Cauchy traction 5 is gi- en by 

and the Piola traction s is given by - 

where 5 and N denote unit normal vectors on S and So, respectively. - 

We suppose now that the body under consideration is elastic and pos- 

sesses an elastic potential W, which represents the strain-energy per 

unit undeformed volume. If the material is in addition homogeneous, W is 

a function of position on Ro exclusively via the components of the 

deformation-gradient tensor: 



The constitutive law may be written in terms of the nominal stress 

tensor as 

In view of ( 2 . 9 ) ,  it follows that alternatively, the constitutive law 

can be written in terms of the Cauchy stress tensor as 

The dependence of W upon F is restricted by the principle of material 
CI 

frame indifference according to which, the elastic energy is unaffected 

by a rigid body motion. Therefore, W must satisfy 

for all proper orthogonal tensors Q and all ron-singular tensors x. This 
C 

implies that 

where E is the Lagrangian strain tensor. Thus W is completely determined 

by g. If the solid is isotropic, the strain-energy density W depends 

merely on the invariants of E, or equivalently 5 ,  whence in this - 
instance 



when Ii and X i  were described in (2.6). 

From (2.14), (2.5), ( 2 . 6 ) ,  and (2.17) one finds that for an iso- 

tropic, elastic material the constitutive law for the Piola stress is 

C7 = J F (a1 1 + a2 C + 03 C-l) , 
d CI u C- L. 

where 

On the other hand, the second of (2.9), (2.18) and (2.19) yield the cor- 

responding constitutive law for the Cauchy stress, 

Next we consider a pure homoneneous deformation oC the form 

xi = XiXi (no sum), (2.21) 

in which the Xi are positive constants. According to (2.2) and (2.5) 

the Xi are the principal stretches of such a deformation. From (2.21) 

together with (2.2) and (2.5)-(2.7), (2.17)-(2.20) one confirms that the 



stress components associated with such a deformation are 

ui i  = aw/axi (no sum) , u i j  - u j i  = 0 ,  (2.22) 

Even though, we considered a pure homogeneous deformation, equation 

(2.23) is valid for any deformation with rii and Xi being the principal 

stresses and stretches respectively. 

If, for some i and j, we have X i  > Xj, then on physical grounds one 

would expect that rii > ~ j j  (no sum). The Baker-Ericksen inequalities, 

(Baker and Ericksen (1954)), which require 

( T i  - j - > 0 if xi + Aj (no sum) 

for all pure homogeneous deformations, is a mathematical statement. of 

this requirement. 

Now suppose that the domain R occupied by the undeformed body is a 

sight cylinder with generators parallel to xg-axis. Let Do be the open 

region of the (X1,X2)-plane occupied by the interior of the cross- 

section of this cylinder. Suppose further that the deformation (2.1) is 

a plane deformation so that 



For a pure homogene.ous plane deformation, the principal stretch A3 - 1, 
then we have 

and 

r a  = raa = (X,/X1X2) aw/ax, (no sum). (2.27) 

In the bifurcation problem to be considered, the undeformed 

body is a solid cylinder and thus Do is simply-connected. Assume the 

boundary of Do is subjected to the prescribed displacement 

where the parameter X(>l) is prescribed and denotes the applied stretch. 

The aualysis of this problem necessarily involves a deformation which is 

not one to one, and so in order to investigate this, the preceding regu- 

larity condition must be relaxed. Thus we allow for the possibility 

that the mapping (2.1) is one-to-on= everywhere on Do except at a single 

point Xo. In this event, Xo is assumed to map onto a closed regular 

curve C ,  while the simply-connected domain Do then maps onto a doubly- 

connected domain D, with C denoting its inner boundary. Thus, in this 

situation, equation (2.2) is required to hold merely on the domain Do 

with Xo deleted, while equation (2.8) holds on the doubly-connected 



domain D. The variational formulation in the next chapter shows that 

the inner boundary C must necessarily be traction-free, and so 

where n denotes the unit outward normal vector on C, and 7 is the limit- 
C C 

ing value of the Cauchy stress (presumed to exist) as a point on C is 

approached from within D. 



CHAPTER 3 

F O ~ L A T I O N  OF THE EIFURCATION PROBLEM 

Consider a homogeneous, isotropic, compressible, elastic material 

whose mechanical response is characterized by its elastic potential 

W(X1,X2), in plane strain, and Xi, X2 are the principal stretches of the 

deformation. A solid circular cylinder of such a material, with unde- 

formed radius A and its cross-section 

is subjected to a purely radial stretch X ( > l )  at its surface R - A .  The 

resulting deformation is a mapping which cakes the point (Xl,X2) - (R 
cos 8 ,  R sin 8 )  to the point (xl,x2) - (r cos 9,  r sin 8). We assume 

that the deformetion is axisymmetric so that 

9 - 8  and r )  , O < R < A .  ( 3 . 1 )  

In order to avoid interpenetration, (2.2) (see also remarks about 

(2.28)) requires that 

rl(R) > 0 for Ci < R < A ,  

and 

r(O+) r 0 . 

Observe that if r(O+) > 0 then the deformation (2.1) is not one-to-one 



at the origin; a cavity of radius r(O+) exists in the deformed state. 

The prescribed boundary condition requires that 

r(A) - XA. ( 3 . 4 )  

Usdally, it is required that the deformation r(R) is twice conti- 

nuously differentiable on [O,A]. For present purposes however, it is 

essential that one allow for the possibility that r(R) may be singular 

at the origin. Accordingly, we merely require that 

so that rW(R) need not exist at R - 0. Finally, l e t a  denote the set of 

all kinematically admissible deformations, i.e. the set of all functions 

r(R) which satisfy (3.2)-(3.5). 

The principal stretches associated with the deformation (3.1) are 

and the corresponding Cauchy stresses (2.27) are 

rr - (11~2) w a l l  , r e  - (1/~1) aWIaA2 (3.7) 

The total stored energy functional associated with any kinematically 



admissible deformation p(R) E is given by 

A 

and one seeks a function r(R) in which minimizes E. When the classi- 

cal methods of the calculus of variations are followed (see Appendix I), 

they lead to the Euler-Lagrange equation associated with (3.8) as well 

as a natural boundary condition at R - 0+ : these are 

d/d~ (R aw/axl; - aw/ax2 - o , OCR<A, 

and 

r(O+) rr(r(O+) ) - 0 

respectively. In view of (3.3), the natural boundary condition (3.10) 

holds if and only if either, 

Note that when (3.12) holds, the deformed configuration involves a 

cylindrical, traction-free void of radius r(O+) centered at the origin. 

The boundary value problem to be solved consists of the nonlinear 

ordinary differential equation (3.9) subject to the boundary conditions 



(3.4) and (3.10). The applied stretch X (>I) is given, and the solution 

r(R) is to possess the degree of smoothness described previously. 

It may be verified that one solution to this problem, for all values 

of X(>l), is 

We refer to this as the "fundamental solution " :  it corresponds to a 

homogeneous deformation in which the cylinder expands radially. Note 

that (3.13) satisfies the boundary conditon (3.10) by virtue of having 

r(O+) - 0. 

For certain materials, and for certain ranges of values of A ,  there 

exists, in addition a second solution r(R;X) shtisfying the boundary 

condition (3.10) by virtue of having r(O+;X) > 0 and r,(r(O+;X) ) - 0 
and so corresponds to a configuration of the body involving a cylindri- 

cal void at the origin. In general, it is not possible to determine 

this solution analytically, though Ball (1982), Podio-Guidugli et a1 

(1986), Sivaloganathan (1986) have established the existence of such 

solutions in the case of certain compressible materials. Our purpose 

here is to determine these solutions r(R;X) explicitly, and in closed 

form, for a certain class of compressible materials, and to study their 

properties. 



CHAPTER 4 

A PARTICULAR CLASS OF ELASTIC MATERIALS 

Various forms of constitutive equations for compressible rubberlike 

materials have been proposed in the literature, and new forms are still 

being investigated. For example, using a combination of theoretical 

arguments and experimental results, Blatz and KO (1962) suggested a 

strain energy function of the form 

where p,v,f are constants and 

We note that when v - 1/2 and the material is incompressible so that 
I3 - 1, (4.1) formally reduces to the Mooney-Ri.vlin form, (Mooney 
(1940)). In case of a certain specific polyurethane rubber, Blatz and KO 

chose f - 0 ,  v - 1/4 based on their experiments. In this case ( 4 . 1 )  

reduces to 

In term of principal stretches (2.6). in view of (4.2). equation (4.3) 

becomes 



A material characterized by (4.4) is commonly referred to as a "Blatz-KO 

material". A detailed discussion of this material may t e  found in the 

paper by Knowles and Sternberg (1975). 

Another well-known example, is that proposed by Ogden (1972). Gen- 

eralizing his earlier approach for incompressible materials, he proposed 

in which the compressibility is accounted for by the additive function F 

of XlX2X3. In view of the presence of the material parameters an, pn 

function F(*), it is possible to fit the form (4.5) to experimental 

results by taking a sufficiently large number of terms. 

The mechanical properties of two porous rubbers of different corn- 

pressibility have been investigated experimentally by Storakers (1986). 

Storakers employed the constitutive equation proposed by Hill (1982) 

which is a special form of the Ogden-model. He evaluated the constitu- 

tive parameters such that his experimental data could be represented by 

this constitutive equation. 

We propose to study a particular form of the strain energy 

density for a compressible homogeneous and isotropic, elastic material, 

which is special case of the Ogden-model. but a generalization of the 

Blatz-KO form: 



where 

a - n/[(2+n)(l-2u)], = 4[~(2+n)-l]/[n(2+n)(1-2~)] = (2/n)(a-1) (4.7) 

and p ,  Y, n(>O) are material constants. By linearization of (4.6), 

it can be shown that p is the shear modulus and v is the Poisson's ratio 

of this material under infinitesimal deformations; n is the hardening 

exponent of the material.. Note that for n = 2, Y = 1/4, (4.6) reduces to 

(4.4). 

We consider now certain properties of the material model defined by 

(4.6). Consider a pure hoinogeneous deformation of the form (2.21). 

According to (4.6), (2.22), (2.23) and the last of (2.6), the normal 

component,s of J and o in such a deformation obey the stress-stretch 
I 

relations 

ri - J - ~  Aioi - (2p/n) [~-B(~/Z)J-(("/~)+~)-A-~ J-'1 (no sum), ( 4 . 8 )  
i 

where 

ri - oi " oii ("0 sum), (4.9) 

while the corresponding shear stresses vanish. In the undeformed state 

x - 5 ,  1 - I and thus 5 - 2 = I, 11 = I2 = 3, I = J - 1  A 1. 
II C C 



Consequently, W, r and vanish in the absence of deformations, as 
C 

should be the case. 

We examine the consequences of (4.8), as far as certain special pure 

homogeneous deformations are concerned. 

For uni-axial tension parallel to the xl-axis, r1 - 7, 72  - T~ = 0 ,  

and A1 - A, so that (4.8) gives 

The stress-stretch relation (4.10) is plotted in Figure 1 for fixed 

Poisson's ratio v and different values of the hardening exponent n while 

in Figure 2 it is plotted for different values of v at fixed n. For a 

certain value of stretch, stress increases with decreasing value of n 

and increasing value of Y .  

For the case of isotropic extension one has 

A1 - A2 - A3 - X and r1 - r2 - 7 3  - 7 

and from (4.8), we get 

r -(2p/n) (a - p(n/2)~-3(("/2) + 1) - ~-(n+3) I .  



The stress-stretch relation (4.11) is shown in Figure 3 for fixed Pois- 

son's ratio v and different values of the hardening exponent n and in 

Figure 4 for different values of v at fixed n. For a certain value of 

stretch A ,  stress increases with decreasing value of n and increasing 

value of v .  

Finally, we consider a homogeneous plane deformation corresponding 

to a state of simple shear, parallel to the plane Xg - 0. Thus let 

1 in which n is a constant, tan- n being the angle of shear. The 

2 invariants (2.6) are 11 - 3 + r2, I1 - 3 + n , 13 - 1. Substituting 

this invariants into (2.6), we obtain the following relations for the 

principal stretches 

The principal stretch A1 of this deformation is related tc, K, through 

1 = (1+(n2/2) + r[1+(n2/4) 11/2)1/2 ( 4 . 1 3 )  

With the aid of (2.20), (4.6), the response of the material in simple 

shear is found to obey 



r3i - ri3 = 0 and rll , 722 can be calculated. 

Note that for n - 2, (4.14) reduces to 712 - pn. Of course, no matter 

what the value of n is, for small n ,  it reduces to 712 - pn upon 
linearization. The shear stress-shear strain variation according to 

equation (4.14) is plotted in Figure 5, rI2/p vs. n for different values 

of the hardening exponent n. For a certain value of shear strain n ,  

shear stress increases with increasing hardening exponent n. 

It can be shown from (4.8), (4.9) that the Baker-Ericksen inequali- 

ties (2.24) are satisfied for all pure homogeneous deformations of the 

particular material under consideration (see Appendix 2 for details). 



CHAPTER 5 

SOLUTION 

Recall that we seek for a second solution r(R;X) of the boundary 

value problem consisting of the nonlinear differential equation (3.9), 

the prescribed boundary condition (3.4) and the natural boundary condi- 

tion (3.12). The diEferential equation (3.9) may be written in the form 

where A: - rf(R), A 2  = r(R)/R are the principal stretches. The order 

of this second-order differential equation may be reduced by introduc- 

ing a function t(R) defined by 

On using (5.2), we may reduce (5.1) to the following first order nonli- 

near differential equation for t(R): 

In the particular case of the elastic potential ( 4 . 6 ) ,  the right-hand- 

side of (5.3) may be expressed solely as a function of t, 



Rtt(R) - F(t(R)) 1 o a a  , 

where 

F(t) [pn(n+2)(1-t)t - 4(1 - t-(n+1))t(2+(n/2)) ] 

. [Bn(n+2) + 4(n+l) t-n/2] +(l- t) t, OCtCl. 

There are two -sses to consider. First of all, we observe that t(R) - 1 
on O a C A  is a solution of (5.4). Hence (5.2) shows that r(R) - cR, 
w s r e  c is a constant. In this way, one recovers the homogeneous solu- 

tion (3.13). Suppose then that t z 1. It can be shown that without 

loss of generality, t(R) may be assumed to be less than unity on C<R<A 

so that from (5.2) and (5.4) it follows that 

0 < t C 1 , dt/dR > 0 for O < R < A .  

The equation (5.4) may now be integrated to get an expression for the 

undeformed radius R; thus 

where A is the undeformed radius of the circular cylinder and tA-t(A) is 

the value of t corresponding to R - A. On the other hand (5.2) and 

(5.4) give 



Integration of (5.;; and using the boundary coxldition (3.4) yields a 

corresponding expression for the deformed radius r: 

Observe from ( 5 . 5 )  and (5.7) that the undeformed and deformed radial 

coordinates (R and r) vary monstonously with t. Therefore, equations 

(5.6) and (5.8) provide a parametric solution to the differential equa- 

tion (5.1). The range of the parameter t is 

0 5 t I t*, 

where tA (O<tA<l) is yet to be determined. 

Now turning to the remaining boundary condition (3.12), first we 

write the principal stretch Xe, by using (5.6) and (5.8), as 

~e - r/R - x exp ( 1 [(I - < I /  F ( O I d €  I . 

Then, the principal stretch XR, using (5.2), is given by 

XR - t.le - t~ exp ( [(l-€)/ UO I de 1 



2 
Thus on utilizing (5.2) and J - tXe, from (4.8) we get an expression 
for the radial true stress rrr: 

Finally, in order to satisfy the traction-free boundary condition (3.12) 

on the cavity surface, we must have rrr + 0 as t 4 0 or, from (5.12), 

However, the asymptotic behavior of Xe as t+O may also be determined 

directly from (5.10). Equating the resulting expression to (5.13) yields 

lim t(l+n)/(2+n) A exp ( [ (I-O/F(O J ~ E I  - a-1/(*+"). P ( 5 . 1 4 )  
t + o  

t 

In order to evaluate (5.14) it is convenient to introduce the following 

function f: 

Then, the substitution of (5.15) into (5.14) gives 

1im t(1+n)/(2+n)~ exp ( [ (l+n) (2+n) -l(l/[)+f(() ] d( - CZ-~/(*+~). J t + O  
t (5.16) 



Integrating the first part of (5.16) leads to 

which in turn yields, 

Thus,- for a prescribed value of the applied stretch X > 1, (5.18) can 

Le solved for a number t~ in the range 0 <tA < 1, then (5.6),(5.8) with 

0 I t I tA is a solution to the boundary-value problem at hand. This 

solution involves an internal cavity. 

10 verify that (5.18) can indeed be solved for an appropriate value 

of tA, we simply observe that the auxiliary function G(t) defined by 

associated with the right hand side of (5.18), can be shown to be mono- 

tonously decreasing (see Appendix 3) and 



Therefore, (5.18) be solved, in fact, uniquely, for a root tA in the 

range 0 < tA < 1, provided that A > C(1), i.e. 

A ~ * +  exp ( - f(<) . J 
Thus whenever the orescribed streth A is ereater than Acr, 

existence of a bifurcated solution involvine a cavitv is guaranteed and 

this solution is eiven by (5.6),(5.8),(5.9),(5.18). 



CHAPTER 6 

DISCUSSION 

For all values of the applied stretch X>1, one solution to the 

problem at hand is r(R)-XB, which describes a uniform enlargement of the 

cylinder. For X>Xcr, we have in addition, a second solution r(R;X) 

describing a deformation involving an internal cavity. In this section 

we discuss the properties of this second bifurcated solution. However, 

before doing this, since for )...Acr we have two solutions, we first 

examine their relative stability. 

Since for values of X > Xcr we obtain two solutions, it is natural 

to compare their enernieg (at the same value of prescribed stretch). 

Let W(X1, 12) denote the plane strain elastic potential of a general 

isotropic compressible elastic solid. The cylinder is subjected to a 

radial deformation so the principal stretches are given by (3.6). Note 

that 

For our purposes, by using (6.1), we may write the equilibrium 

equation (3.9) in the equivalent form 



The equivalence of (6.2) and (3.9) may be verified by direct expansion. 

Equetion (6.2) is in fact a specialization to radial solutions of a gen- 

eral conservation law given by Green (1973). 

Integration of (6.2) over the interval r < R < A gives 

Here e is any number in the range 0 < c < A .  The lower limit of the 

term on the right hand side of (6.3) vanishes as c + 0+, and the 

left-hand-side becomes the total elastic energy of the cylinder, E. Thus 

we get 

where A-r(A)/A is the prescribed stretch at the outer boundary. Fcr the 

homogeneous solution we have rt(A) - A ,  while for the bifurcated solu- 

tion we have rl(A) - A t A .  Thus (6.4) gives 

and 



where Eh and Eb denote the  t o t a l  e l a s t i c  energies  assoc ia ted  with t h e  

homogeneous so lu t i on  and the  b i fu rca ted  so lu t i on ,  r e spec t i ve ly .  

The d i f f e r ence  between tliese energies  is  

which f o r  t he  p a r t i c u l a r  mate r ia l  (4 .6 )  a t  hand spec i a l i z e s  t o  

Since O<tA<l, it follows from a d e t a i l e d  bu t  s t ra igh t fo rward  ca l cu l a t i on  

(see  Appendix 4) t h a t  

Consequently, the  energy of the  b i fu r ca t ed  so lu t i on  (whenever i t  

e x i s t s )  is s t r i c t l y  l e s s  than t h a t  of the  homogeneous so lu t i on  corre-  

sponding t o  t he  same value  of A .  Thus, one does expect a cav i t y  t o  

appear when the  appl ied  s t r e t c h  X exceeds the  c r i t i c a l  value  A,,. 



6 . 2  Resu l t s  

For X > Xcr  we have obtained a s t a b l e ,  b i f u r c a t e d  s o l u t i o n  involving 

an  i n t e r n a l  c y l i n d r i c a l  ho le .  This is given by ( 5 . 6 ) ,  ( 5 . 8 ) ,  ( 5 . 9 ) ,  

( 5 . 1 8 ) .  The r a d i u s  of t h e  c a v i t y  i n  the  deformed conf igura t ion ,  b-r(O+), 

i s  given by (5 .8 )  a s  

b/A - A exp ( - r ( < / F ( t ) ) d t l  I 

where tA is obta ined by so lv ing  ( 5 . 1 8 ) .  I t  may be confirmed from (6 .10)  

t h a t  b inc reases  wi th  decreas ing tA. Furthermore it  fol lows from (5 .18)  

and t h e  monotonous decreas ing charac te r  of G( t )  i n  (5 .19)  t h a t  tA 

decreases  wi th  inc reas ing  A .  Thus the  c a v i t y  rad ius  b inc reases  monoto- 

nously a s  the  p resc r ibed  s t r e t c h  X is  increased.  Note t h a t  a s  A+ a (and 

s o  from (5 .18) ,  a s  t~ -, 0) it follows from (6.10) t h a t  b 4 a. The 

v a r i a t i o n  of  t h e  c a v i t y  rad ius  with p resc r ibed  s t r e t c h  as descr ibed by 

( 5 . 1 8 ) ,  (6 .10)  i s  shown i n  Figures 6 and 7 ;  Figure 6 shows t h i s  f o r  

f i x e d  Poisson 's  r a t i o  and d i f f e r e n t  va lues  of the  hardening exponent, 

while Figure 7 d i s p l a y s  t h i s  f o r  d i f f e r e n t  va lues  of Poisson 's  r a t i o .  

We t u r n  nex t  t o  examine t h e  c r i t i c a l  value of s t r e t c h  X c r  a t  void 

i n i t i a t i o n .  This  i s  given by ( 5 . 2 1 ) .  Graphs of X c r  versus  the  hardening 

exponent n ,  and X c r  versus  Poisson 's  r a t i o  v a r e  drawn i n  Figures 8 and 

9 r e s p e c t i v e l y .  We note  t h a t  the  value of X c r  decreases with inc reas ing  

n ,  and a l s o  wi th  inc reas ing  Y .  Although X c r + l  when v+1/2, the  c r i t i c a l  

stress inc reases  a s  Y inc reases  ( a s  we w i l l  s ee  nex t )  s i n c e  the  mate r i a l  

tends t o  become incompressible i n  t h i s  l i m i t .  



We next consider the r ad ia l  s t r e s s  r r r  a t  the outer boundary. 

This s t r e s s ,  s r r r  a t  R - A ,  may be calculated from (5.12), (5 .10)  and 

(5.18) : 

The va r i a t ion  of the r ad ia l  s t r e s s  a t  the outer boundary boundary r with 

the prescribed s t r e t c h  X is p lo t ted  i n  Figures 10 and 11. F i r s t  r 

increases with increasing prescribed s t r e t c h  A, (during t h i s  stage the 

hole has not a s  ye t  developed,) then, a f t e r  the void i n i t i a t e s  a t  

A-Xcr, r decreases with increasing X (>Acr). 

The c r i t i c a l  value of r ad ia l  s t r e s s  scr ( r  fo r  X - A,,) decreases 

with increasing hardening exponent n ,  and a lso  with decreasing 

Poisson's r a t i o  v ;  t h i s  is shown i n  Figures 1 2  and 13 respectively.  
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APPENDIX 1 

This is a derivation of the equilibrium equation (3.9) and the natu- 

ral boundary condition (3.10). 

LetQ be the set of kinematically admissible functions defined in 

Chapter 3, and for any ~ E Q  , set 

then the energy functional to be minimized becomes 

(Al. 1) 

Suppose that r(R) is the minimizing function, and choose any continu- 

ously differentiable function q(R) which vanishes at R - A .  Then for any 

constant e the function p(R;t)- r(R) + e q(R) is admiseible and ( A 1 . 2 )  

leads to 

Since E(r(R)) 5 E(p(R)), it follows that E(c) takes on its minimum value 

when c - 0 .  But this is possible only If 

dE(c)/dc - 0 when c - 0. 



If we denote the integrand in (A1.3) by f, 

and notice that 

we obtain from (A1.3) the result 

A 

(Al. 6) 

by differentiating under the integral sign. Finally, when E + 0, the 

necessary condition (A1.4) takes the form 

wherc? the derivatives of f are now evaluated at the function r(R). Next, 

integrating the second term in (A1.8) by parts, we get 

The left-hand member of (A1.9) must vanish for all permissible varia- 

tions q ( R ) .  Thus it must vanish, in particular, for all variations which 



a r e  zero  a t  both ends. For a l l  such q ' s  the in tegra ted  term i s  zero.  

Therefore,  (A1.9) becomes 

Since q ( R )  is  a r b i t r a r y ,  we conclude t h a t  

a f / a r  - d/dR ( a f / a r f )  - 0 over ( 0 , ~ ) .  ( A l .  11) 

This gives  the  equili.brium equation ( 3 . 9 ) .  

I t  now follows t h a t  the  second term must i t s e l f  vanish f o r  a l l  per-  

miss ible  q ' s .  Since r(A) is spec i f i ed ,  q(A) vanishes.  But r(O+) i s  not  

preassigned,  the re fore  q(O+) is  completely a r b i t r a r y  and we conclude 

t h a t  i t s  c o e f f i c i e n t  must vanish,  y ie ld ing  the  na tu r a l  boundary condi- 

t i o n  



APPENDIX 2 

In this appendix we verify that the particular constitutive law 

(4.6) satisfies the Baker-Ericksen inequalities. According to these 

inequalities we must have 

for all pure homogeneous deformations. For the material ( 4 . 6 ) ,  this 

condition is equivalent to 

by (4.8). Since p>O, r30 and J>O it is seen that ( A 2 . 2 )  is equivalent to 

Since n>O, (A2 .3 )  holds. 



APPENDIX 3 

In Chapter 5 we claimed that G ( t )  was a monotonously decreasing 

function of t for 0 I t 5 1, and also that G(0)-, G(1)>0. To show this 

we first recall equation (5.19) 

where f(f) is given by (5.15). From this, 

G(0) - lim G(E) 
€-rO 

Also, 

G(1) - a-1/(2+n) exp ( -  f ( < ) d ( )  > 0 . I 
Next, to show the monotonousness of G(t), we examine its derivative: 



I t  can be v e r i f i e d  t h a t  

Thus, i f  we can show t h a t  t - l  + f ( t )  > 0 f o r  O < t < l ,  then G1(t)<O f o r  

O<t<l. Now w e  look a t  t he  numerator N and the  denominator D of [ t - I  + 

f ( t ) ]  separa te ly .  From (5.15) and ( 5 . 4 ) ,  

where 7 - -n(2+n)p and the  maximum value o f  7 is 4 .  Replace 7 w i t h  rmax 

- 4;  we g e t  

By regrouping the  terms, we ge t  

Since n>O, we can see  from ( A 3 . 8 )  and (A3.7) t h a t  

N I 0 f o r  O<t<l . 

Now we examine t he  denominator D :  

By replacing 7 with 4 i n  (A3.10), we ge t  



D 5 4 t ( ~ + n ) [ - ( ~ + n )  + tl+" + ( l + n ) t  + ~ ( 1 - t ) t n / * ] .  

By regrouping (A3.11), we ge t  

Since n>O, we observe that M O  f o r  O<t<l. Therefore,  [ t - '  + f ( t )  ] = 

N/D > 0  f o r  O<t<l . Thus from (A3.4), 

G'(t) < O  f o r  O < t < l  . (A3.13) 



APPENDIX 4 

The inequality (6.9) of Chapter 6 will be verified here, i.e. we 

will show that Eb - Eh < 0 .  Equation (6.8) can be written as 

Eb - Eh - - K [L + M I ,  

where 

Clearly K is positive. We will show that L and M, or equivalently g(tA) 

and h(tA), are also positive. Recall that 0 < tA < 1. We observe that 

The derivatives of g(tA) and h(tA) are 

where we have used O<tA<l in establishing the inequalities here. Hence 

g and h are monotonously decreasing function of tA and so by (A4.5), 

g(tA) and h(tA) are positive. Since K, L and M are positive, it follows 

that Eb - Eh < 0 .  



Fig.  1 .  Stress-stretch curves i n  un iax ia l  tension f o r  d i f f e r e n t  

values of hardening exponent n ,  Poisson's r a t i o  v = 0.3 . 



Fig.  2 .  Stress-stretch curves i n  uniaxSa1 tension f o r  d i f f e r e n t  

values o f  Poisson's r a t i o  v,  hardening exponent n 2 . 



Fig.  3.  Stress-stretch curves i n  iso t rop ic  extensioii f o r  d i f f e r e n t  

values o f  hardening exponent n ,  Poisson's r a t i o  v = 0 .3  . 



Fig.  4. Stress-stretch curves i n  iso t rop ic  extension f o r  d i f f e r e n t  

values o f  Poisson's r a t i o  v,  hardening exponent n = 2 . 



Fig.  5 .  Stress-strain curves i n  simple shear f o r  d i f f e r e n t  values o f  

hardening exponent n  . 



Fig .  6. Var ia t ion  o f  the deformed c a v i t y  radius b wi th  prescribed 

s t re tch  X f o r  d i f f e r e n t  values of hardening exponent n, 

Poisson's r a t i o  v = 0.3 . 



Fig .  7 .  Variation o f  the  deformed c a v i t y  rad ius  b w i t h  prescr ibed 

s t r e t c h  X f o r  d i f f e r e n t  values o f  Poisson's r a t i o  v, 

hardening exponent n = 2 . 



Fig.  8. Va r i a t i on  o f  c r i t i c a l  s t r e t c h  A,, w i t h  t he  hardening 

exponent n, Poisson's r a t i o  v = 0.3 . 



Fig.  9. Var ia t ion  o f  c r i t i c a l  s t re tch  A,, w i th  the Poisson's r a t i o  v, 
hardening exponent n = 2 . 
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F i g .  10. Radial  s t r e s s  a t  o u t e r  boundary T vs. prescr ibed s t r e t c h  X 
f o r  d i f f e r e n t  values of hardening exponent n ,  Poisson's 

r a t i o  v = 0 . 3  . 
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F i g .  11 . Radial stress a t  outer  boundary T vs. prescribed s t re tch  X 
f o r  d i f f e r e n t  values o f  Poisson's r a t i o  v,  hardening 
exponent n = 2 . 



Fig.  12. Var ia t ion  o f  c r i t i c a l  stress r,, w i t h  the hardening 

exponent n, Poisson's r a t i o  v = 0.3 . 
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Fig.  13. Var ia t ion  o f  c r i t i c a l  stress rcr wi th  the Poisson's r a t i o  v,  

hardening exponent n  = 2 . 


