
Indolent Closure Creation

Technical Memo
MIT-LCS-TM-580

June 24, 1998

Volker Strumpen
strumpen@supertech.lcs.mit.edu

This manuscript contains extended notes of a talk entitled “Indolent Closure Creation,”
held by the author at the Yale Multithreaded Programming Workshop

in New Haven, June 8–9, 1998.

This manuscript describes research pursued at the Laboratory for Computer Science of the
Massachusetts Institute of Technology as part of the Cilk Project. Funding for this work
has been provided in part by DARPA Grant N00014-94-1-0985.

tt MASSACHUSETTS
LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Indolent Closure Creation

Volker Strumpen�

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139
strumpen@supertech.lcs.mit.edu

June 24, 1998

Abstract

A closureis a representation of a thread in memory, ready to be executed. The goal of this work is to
createportableclosures that can be transferred across binary incompatible architectures. Consequently,
indolent closures are software-implemented, and rely on a copy mechanism which allows for potential
data representation conversion on-the-fly. Indolent closure creation optimizes the current implementation
of the algorithmic multithreaded language Cilk. Rather than generating parallelism eagerly by pushing
closures on a ready deque whenever a parallel spawn occurs, indolent closures are created only if the
ready deque is empty and a steal request occurs. Indolent closure creation is based on therelease-and-
resume transformation, developed for the portable checkpoint compilerporch. Experimental results
on various architectures show that indolent closure creation reduces the cost of a parallel spawn to be
competitive with the cost of a sequential function call.

Keywords: Cilk, Indolent Closure Creation, Lazy Threads, Multithreading, Porch, Portable Check-
points, Work-First Principle.

1 Introduction

The success of an abstraction depends on the efficiency of its implementation. Multithreading is a powerful
abstraction for parallel systems. This memo proposes an optimization for a key issue in implementing
portable multithreaded languages efficiently: How to minimize the overhead of generating parallelism.

The question whether an abstraction can be implemented efficiently has been subject to flamy appeals
in the past. In 1977, Steele [17, p. 16] advocated theprocedure call: “Procedure calls are demonstrably
not inherently as inefficient as computing folklore would lead us to believe. There are implementations of
higher-level programming languages in which procedure calls are almost as cheap as GOTO statements.”
Today, procedure optimizations such as function inlining, leaf-routine optimization and tail-recursion elim-
ination are ubiquitous in modern compilers, and structured programming has prevailed. When garbage
collection became popular, the well-established stack abstraction has been questioned by Appel in an article
[2] entitled “Garbage Collection Can Be Fater Than Stack Allocation.” In response, Miller and Rozas [10]
claimed that “Garbage Collection is Fast, But a Stack is Faster.”

�This manuscript is an extended version of a talk entitled “Indolent Closure Creation”, which I gave at the Yale Multithreaded
Programming Workshop in New Haven, June 8–9, 1998.

1

Implementing multithreading in an efficient manner has lead to a variety of proposed multithreaded
architectures [1, 6, 16, 19]. Efficient software implementations have been proposed for commodity archi-
tectures that introduce a compromise between stack and heap allocation techniques. For example, Lazy
Threads [8] are based onstacklets, and the Illinois Concert system [9] employs ahybrid stack-heap exe-
cution mechanism. The multithreaded Cilk language [7] exhibits a striking balance between versatility of
threads, portability, and efficiency. Cilk’s implementation is based on thecactus stacksemantics proposed
by Moses in 1970 [12]. As operating systems and compilers are turning into commodity components, it is
desirable to implement multithreading in a portable manner, that is independent of processor architecture,
operating system and compiler. In this memo I propose a portable software-implementation of threads with
a parallel spawn that is almost as efficient as a function call.

Throughout this manuscript the termclosurerefers to the representation of a thread in memory, ready
to be executed. The termactivation framedenotes the private memory area of a function on the runtime
stack, which holds local variables and parameters among other data. The termsactivation recordor stack
frame are often used synonymously for activation frame. A closure stores slightly more information than
an activation frame, which enables threads to resume execution from a closure independent of the parent
thread or spawned children, and to migrate closures across processors. A comprehensive discussion of the
information necessary to be stored in a closure can be found in [8].

Two design goals guided the work presented in this memo:

1. We are interested in two types ofportability:

(a) The code for manipulating activation frames on the runtime stack should be independent of
a particular architecture, operating system, and compiler to enable simple installation of the
multithreaded language.

(b) The representation of closures should be machine independent to allow for transferring closures
across binary incompatible architectures.

2. We want to minimize thecost of closure creation, such that it permits efficient execution of fine-
grained threads. Typically, automatically parallelizing compilers can only coalesce fine-grained threads
efficiently. Such fine-grained threads must be created with minimal overhead at runtime in order to
execute efficiently.

Portability excludes implementations that modify a compiler in order to provide a customized stack
layout, and customized manipulation of the stack pointer and frame pointer, as done for Lazy Threads [8].
Instead, indolent closures rely on source-to-source compilation to enable machine independence. We deploy
theporch compiler technology for portable checkpointing [18] to that end.

In general, coarse-grained threads do not require a very fast creation mechanism, because the execution
time of coarse-grained threads will amortize the cost of thread creation. Indolent closure creation has been
investigated in the context of the Cilk multithreaded language. We require a multithreaded computation to be
structured into fine-grained threads, because we do not want to sacrifice the guarantees of Cilk’s randomized
work-stealing scheduler. Under this constraint, indolent closure creation should not affect the performance
of a multithreaded computation. Indolent closure creation minimizes the cost of generating parallelism by
reducing the cost of aspawn operation almost to the cost of a sequential function call.

The remainder of this memo is organized as follows. Section 2 discusses the implementation of a parallel
spawn in Cilk and the work-first principle. Section 3 describes the portable checkpoint compilerporch. In
particular, one of the source-to-source transformation ofporch, the release-and-resume transformation,
renders the stack environment portable. This technique is the basis of indolent closure creation, which is
introduced in Section 4. The experimental results presented in Section 5 show that the cost of a parallel

2

spawn can be reduced almost to the cost of a sequential function call. Related work is sketched in Section 6,
and conclusions for future work are drawn in Section 7.

2 Cilk and the Work-First Principle

The idea of indolent closures has been motivated by the work-first principle that underlies the implementa-
tion of the Cilk language. Cilk extends the C programming language [7] into an algorithmic multithreaded
language. In Cilk, parallelism is exposed explicitly by means of thespawn andsync keywords. If the
spawn keyword precedes the call of a procedure, the calling parent can continue execution in parallel with
the called child. If a Cilk program is executed on one processor, the semantics of the parallelspawn is
equivalent to that of a conventional function call. A statement containing thesync keyword acts like a lo-
cal barrier to synchronize the parent with its spawned children. Cilk’s randomized work-stealing scheduler
[4] schedules the parent and its spawned children across the processors of a parallel machine in a provably
efficient manner. An idling processor becomes athief that picks avictim processor at random and attempts
to steal work.

A Cilk computation is characterized by itswork and itscritical-path length. Figure 1 shows the repre-
sentation of a Cilk computation as a directed acyclic graph (DAG). WorkT1 is the total execution time of the
sequential execution of a computation, in the exampleT1 = 10. The critical-path lengthT1 is the execution
time of a computation on an infinite number of processors. The computation in Figure 1 has a critical-path
lengthT1 = 6.

1
3 4

5

6

2

7

8 9 10

Figure 1: DAG representation of a Cilk computation. The critical path consists of the shaded nodes.

The parallel execution timeTP of a Cilk computation onP processors is bound byTP � T1=P and
TP � T1. The former lower bound holds, because at mostP units of work can be executed in a single
step of the computation. The latter lower bound is imposed by the structure of the computation, which
requires at least the number of steps dictated by the critical path length. Blumofe and Leiserson [4] have
shown that Cilk’s randomized work-stealing scheduler executes a Cilk computation in expected timeTP =
T1=P +O(T1).

The work-first principle is based on the analysis of the expected parallel execution time, as described
in [7]. An upper bound onTP is given by thecritical-path overhead, which is defined as the smallest
constantc1 such thatTP � T1=P + c1T1. Furthermore, with the definitions ofparallelismP = T1=T1
and parallel slacknessP=P , the parallel slackness assumptionP=P � c1 states that the number of
processorsP used to execute a multithreaded Cilk computation is much smaller than the parallelismP .
Under the parallel slackness assumption Cilk computations achieve linear speedup, because the parallel
slackness assumption implies thatTP � T1=P .

Any implementation of a program in Cilk incurs overhead compared to its sequential implementation
in C, the so-calledC elision, because parallelism requires creation and synchronization of threads. If the

3

0

sequential execution time of a C program isTS and the execution time of the corresponding Cilk program
on one processor isT1, thework overheadcan be defined asc1 = T1=TS . If parallel slackness is assumed,
TP � c1TS=P . This approximation suggests the following formulation of the work-first principle:

Work-First Principle: Minimize the scheduling overhead borne by the work of a computa-
tion. Specifically, move overheads out of the work and onto the critical path. Formally,
minimizec1, even at the expense of a largerc1.

Any implementation of the Cilk language should in particular reduce the cost of spawning threads to a
minimum, because thespawn operation contributes exponentially to the work of a computation but only
linearily to the critical path. The current implementation of Cilk-5 is based on the work-first principle. The
doubly-recursive implementation of a Fibonacci-number computation, shown in Figure 2, is used through-
out this manuscript to illustrate the issues involved in optimizing closure creation and in particular the
implementation of Cilk’sspawn operation.

1 cilk int fib(int n)
2 {
3 if (n < 2)
4 return n;
5 else {
6 int x, y;
7 x = spawn fib(n-1);
8 y = spawn fib(n-2);
9 sync;

10 return x+y;
11 }
12 }

Figure 2: Cilk implementation offib .

The key insight underlying Cilk’s randomized work-stealing scheduler [4] is that the number of steals
O(PT1) is substantially smaller than the number ofspawn operations. This relatively small number of
steals stems from the following observation: If the work stolen from avictim processor is close to the root
of the DAG of a computation, thethief processor is likely to obtain a relatively large piece of work, which
will keep the thief busy for a relatively large amount of time. Cilk can be implemented efficiently, because
virtually all overheads due to parallelism can be amortized by shifting them into the implementation of the
relatively few steal operations.

This strategic decision is a perfect match for stack-based runtime models that are exploited in imperative
languages such a C. Figure 3 illustrates the work-stealing idea for the Fibonacci computation. Two proces-
sors are shown, a victim and a thief. Each processor owns a privateruntime stack, which is conventionally
used to provide storage for the activation frames of each function called during execution. According to the
runtime model of imperative languages, functions are executed in depth-first order, that is the execution of
a function is started as soon as it is called. As a consequence, a new activation frame is pushed onto the
runtime stack when a function is called, and popped from the runtime stack upon return. A Cilk computation
executes parallel spawns like ordinary function calls unless a steal occurs.

The victim processor in Figure 3 is assumed to have executed a sequence of recursive function calls
fib(n-1) (line 7 in Figure 2) until it reaches the base casefib(1) . Consequently, the runtime stack
is populated with activation frames, starting withfib(n) at the bottom, and ending withfib(1) at the
top. The Cilk language preserves the C semantics of function calls whenever aspawn is executed. There
is a difference, however. Before actually calling the spawned procedure, a closure is pushed onto theready

4

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

runtime
stack

runtime
stack

����
����
����

����
����
����

fib(n)

growth
stack

Victim Thief
steal

...

fib(n-2)

fib(n-1)

...

......

fib(n-2)

fib(n)

fast clone

slow clone

fib(1)

fib(1)

ready

ready

deque

deque

Figure 3: Stack handling in Cilk.

deque[7]. Figure 3 shows the ready deque of the victim, which holds closures for all activation frames
corresponding to procedure invocations fromfib(n) to fib(2) . The base casefib(1) does not spawn
further invocations. Closures are drawn next to their activation frames. Among other data, they contain the
live state of the activation frames and the program counter of the statement following the associatedspawn .

At the point of execution where the victim executesfib(1) , the thief may execute a steal operation.
The steal affects the closure at the bottom of the victim’s ready deque, which is circled in Figure 3. After
stealing the closure corresponding tofib(n) , the thief calls procedurefib and loads all live variables
from the closure into its activation frame on the runtime stack.1 Subsequently, the thief resumes execution
at the statementfollowing the spawn operation which saved the closure. In the example of Figure 3, the
runtime stack contains the state of the computation when executing the firstspawn operation in line 7 of
Figure 2 recursively. Thus, the thief will resume execution offib(n) in line 8 of Figure 2, that is it spawns
fib(n-2) .

Note that stealing always affects the bottom closure of the ready deque in Cilk. Because the largest
amount of work to be executed is generally represented by this closure, Cilk’s work-stealing scheme incurs
relatively few steals. Also, loading the contents of a closure into the corresponding activation frame on
the runtime stack occurs only during the first procedure invocation of the thief after a steal. This fact has
motivated a compilation scheme for Cilk, where two clones are generated for each Cilk procedure, afast
clone and aslow clone. The fast clone is executed in the common case. It contains the code to push a
closure onto the ready deque whenever aspawn operation is encountered. The slow clone, in contrast, is
only executed on the thief processor after a successful steal. It is instrumented with code to load a closure
into its corresponding runtime activation-frame.

According to the work-first principle, the fast clone should be implemented such that the overhead for
managing parallelism is minimized. Nevertheless, the fast clone still suffers from a substantial performance
penalty, although the current Cilk-5 implementation is based on the work-first principle. The reason is that
closures are pushed onto the ready deque before everyspawn operation. Thiseagerprovision of parallelism
is the subject of the optimization described in this paper.

The fast Cilk-clone offib is shown in Figure 4. It is generated from the Cilk source of the Fibonacci
program shown in Figure 2. Code inserted by the compiler is shown in grey. The firstspawn operation

1Loading live variables is only necessary if disjoint address spaces are spanned. If shared memory is available, loading the live
variables reduces to indirecting the accesses to variables.

5

D
D

1 int fib(int n)
2 {
3 fib frame *f;
4 f = alloc(sizeof(*f));
5 f->sig = fib sig;
6 if (n < 2) {
7 free(f, sizeof(*f));
8 return n;
9 }

10 else {
11 int x, y;
12 f->entry = 1;
13 f->n = n;
14 *T = f;
15 push();
16 x = fib(n-1);
17 if (pop(x) == FAILURE)
18 return 0;
19 y = spawn fib(n-2); /* not transformed */
20 /* sync is nop */;
21 free(f, sizeof(*f));
22 return x+y;
23 }
24 }

Figure 4: Fast clone of the Cilk version offib . Compiler-generated code is shown in grey.

(line 7 in Figure 2) is translated into lines 12–18. The code generated by the transformation of the second
spawn operation (line 8 in Figure 2, line 19 in Figure 4) is omitted in Figure 4. The compiler-inserted
code implements the management of Cilk closures. Whenever the fast clone is invoked, a new closure
(fib frame) is allocated (lines 3–5), and deallocated upon return (line 7 and line 21). During eachspawn
operation, the closure is updated by saving the portable representation of the program counter (line 12),
saving the local live variables (line 13), and pushing the closure onto the ready deque (lines 14 and 15).
Lines 17–18 contain the check whether the parent of the returning thread has been stolen.

This section described the eager provision of parallelism in Cilk. The commonly executed fast clone
of a Cilk procedure creates closures on the ready deque upon visiting a parallel spawn. These closures
are available for stealing. Indolent closure creation is an optimization of this process, which generates
parallelism in a truly lazy fashion. Before introducing indolent closure creation, I describe the portable
checkpoint compilerporch. The method for providing a portable stack environment employed byporch is
the basic implementation technique underlying indolent closure creation.

3 Porch and Stack Environment Portability

The porch compiler [15, 18] is a source-to-source compiler that translates C programs into semantically
equivalent C programs additionally capable of saving and recovering from portable checkpoints.Portable
checkpointscapture the state of a computation in a machine-independent format, calledUniversal Check-
point Format—UCF. The code for saving and recovering as well as converting the state to and fromUCF
is generated automatically byporch.

Theporch compiler technology solves three key technical problems to render checkpoints portable.

Stack environment portability: The stack environment is deeply embedded in a system, formed by hard-

6

ware support, operating system and programming language design. The key design decision to imple-
mentporch as a source-to-source compiler has been due to the necessity to avoid coping with system-
specific state such as program counter or stack layout. It is not clear whether this low-level system
state could be converted across binary incompatible machines. Instead,porch generates machine-
independent source code to save and recover from checkpoints. At the C language level, variables
can be accessed by their name without worrying about low-level details such as register allocation or
stack layout done by the native compiler.

Data representation conversion: Two issues of data representations are of concern: bit-level representa-
tions and data layout. Basic data types are stored in different formats at the bit level. The most
prominant formats arelittle endianandbig endian. Furthermore, (memory) system designs require
different alignments of basic data types. These determine the layout of complex data types such as
structures. Consequently, all basic data types and the layout of complex data types are translated into
a machine-independent format. Theporch compiler generates code to facilitate the corresponding
conversions automatically.

Pointer portability: Pointers are rendered portable by translating them into machine-independent offsets
within the portable checkpoint. Since the target address of a pointer is not known in general at
compile-time,porch is supported by its runtime system to perform the pointer translation during
checkpointing and recovery.

To enable code generation,potential checkpoint locationsare identified in a C program by inserting
a call to the library functioncheckpoint() . For these potential checkpoint locations,porch generates
code to save and recover the computation’s state from portable checkpoints.

In the following, we explain our technique for checkpointing and recovering the runtime stack in a
portable manner. Source-to-source compilation enables portability. The key idea is to access all stack-
allocated variables by theirnameswhen saving and recovering from checkpoints. Register allocation and
stack layout are not an issue at the source-code level, whereporch operates.

Accessing variables by means of their names requires entering their lexical scope. To checkpoint the
local variables of functions on the runtime stack, we start with the currently active function on top of the
stack, save its local variables, and recursively visit its caller function until the bottom of the stack is reached.
During recovery, the process is reversed. A function frame is pushed onto the stack, and its local variables
are loaded from the checkpoint. Then, the callee of the original call sequence is pushed onto the stack until
the runtime stack is rebuilt.

The question is, how can the control flow be redirected during checkpointing to enable access to local
variables by their names. The only portable mechanism to visit stack frames, available on every general
purpose processor architecture, is the standard function call and return. This mechanism is henceforth used
to instrument functions in order to provide for extraordinary returns, calledreleases, and extraordinary
calls, calledresumes. A stack frame is released by remembering theresume-pointand returning (standard
function return) to the caller. A stack frame is resumed by calling the function (standard function call),
and jumping to the resume-point without executing any of the function’s original statements. Two code
constructs implement the release and resume functionalities, a “jump table” and “call wrappers.”

Definition 1 A jump tableimplements acomputed goto. It consists of a switch ofgotostatements, one of
which is selected by the resume-point identifier.

Definition 2 A function call wrapperconsists of two parts, theprologueand theepilogue. The prologue
consists of an assignment to a local state variablecallid , which identifies the resume-point, and a subse-
quent label. The epilogue contains a conditional return statement.

7

Jump table and call wrappers constitute the “release-and-resume instrumentation”.

Transformation 1 (Release-and-Resume Instrumentation) Every function on a call path to a potential
checkpoint location is subject to the following code transformation:

1. Introduce a new local variable (callid) to store the resume-point.

2. Insert a jump table before the first instruction of the function with entries corresponding to each
of those function calls within this function that lead to a potential checkpoint location, including
potential checkpoint locations.

3. Insert call wrappers around all those function calls within the function that lead to a potential check-
point location, including potential checkpoint locations.

We illustrate the release-and-resume instrumentation by means of an example. Functionfoo below
calls functionbar and contains a potential checkpoint location, specified by a call to library function
checkpoint . Functionbar is assumed to contain another potential checkpoint location.

void foo(void)
{

:
bar();

:
checkpoint(); /* potential checkpoint location */

:
}

Figure 5 contains a simplified version of the release-and-resume instrumentation, which emphasizes the
control flow redirection. The jump table is inserted before the first statement offoo . Both function calls
bar() andcheckpoint() are instrumented with a call wrapper.

void foo(void)
{

unsigned long callid;

if (restoring) { /* jump table */
switch(callid) {

case(0): goto L_call0;
case(1): goto L_call1;

}
}

:
callid = 0; /* prologue */

L_call0: /* resume-point 0 */
bar(); /* call 0 */
if (checkpointing) /* epilogue */

return;
:

callid = 1; /* prologue */
L_call1: /* resume-point 1 */

checkpoint(); /* call 1 */
if (checkpointing) /* epilogue */

return;
:

}

Figure 5: Simplified illustration of the release-and-resume instrumentation, consisting of ajump tableat the
function entry andcall wrappersaround function calls.

8

The following execution scenario illustrates the control-flow redirection: Duringnormal execution, flags
checkpointing andrestoring are false. Upon enteringfoo , the jump table is skipped. Assume that
normal execution arrives at the prologue ofcheckpoint , when a checkpointing signal is received. In the
prologuecallid is set to 1, which identifies the resume-point. Then,checkpoint is called. Within
checkpoint , flagcheckpointing is lit as a consequence of having received the checkpointing signal.
Upon return fromcheckpoint , the epilogue conditional is true, which causes a release of the stack frame
of foo by returning to the caller. The release of stack frames continues until the library supplied main
function at the bottom of the runtime stack is reached. There, flagcheckpointing is reset and flag
restoring is lit. Then, the stack is restored by resuming the same function call sequence that has been
active when calling functioncheckpoint . When resuming functionfoo , resume-point identifier 1 is
loaded into variablecallid , enabling the jump table to redirect control to the prologue ofcheckpoint .
Functioncheckpoint resets flagrestoring and returns. Now, back to normal execution, the epilogue
conditional is false, and the statement following the epilogue conditional is executed.

In the previous discussion, we omitted how resume-point identifier 1 is assigned tocallid when
function foo is resumed. During checkpointing, all local variables are saved before the releasing return
statement in the epilogue. Similarily, restoring local variables is integrated with the jump table. As all other
local variables,callid is saved and restored. The instrumentation of save and restore code consists of
push and pop operations on ashadow stack, whereby local variables are accessed by name. A description
of the save and restore code generation can be found in [15]. Note that recovery involves no more than
resuming the functions on the runtime stack.

Several code transformations are required prior to the release-and-resume instrumentation that are not
elaborated here. Among the obvious transformations are moving initializers beneath the jump table, moving
function calls on a call path to a potential checkpoint location out of expressions, introduce dummy return
values for the releasing return, and moving declarations in nested blocks to the top level to unify the name
space of local variables. Furthermore, optional live-variable analysis may be performed to identify those
local variables for which checkpointing and recovery code must be generated.

This section briefly described the portable checkpoint compilerporch, and the method for providing
a portable stack environment in detail. Applying this method to implement closure creation in Cilk when
spawning a thread of control minimizes the overhead of thespawn operation. The resulting implementation
of indolent closure creation is introduced next.

4 Indolent Closure Creation

This section describes how indolent closure creation can be integrated with Cilk. Furthermore, an obvious
optimization of indolent closure creation is introduced that I callsedative closure creation. Indolent closure
creation carries the work-first principle to an extreme. Rather than creating closures eagerly whenever a
spawn operation is encountered, indolent closures are createdon demand.

Indolent Closure Creation: Create closures only if an unsuccessful steal attempt occurs. Clo-
sures are then created by unrolling the runtime stack and pushing closures onto the ready
deque analogous to saving the state of the runtime stack on the shadow stack inporch.

The key idea of indolent closure creation is to delay the creation of closures to the occurance of an
unsuccessful steal attempt. A steal attempt is unsuccessful if the ready deque of the victim is empty. When
the victim detects an unsuccessful steal attempt, it unrolls its runtime stack, potentially creating several
closures. Subsequent steal attempts are therefore likely to be successful. Indolent closure creation reduces
the overhead of closure creation from the number of spawn operations to the number of unsuccessful steals,

9

following the philosophy of the work-first principle. Furthermore, I believe that the number of unsuccessful
steals experienced by a thief is increased only by a constant factor, if the work of a thread is limited by
an upper bound. In this case, the properties of randomized work-stealing continue to hold under indolent
closure creation.

The implementation of indolent closure creation combines the following key techniques from Cilk-5 and
porch:

1. We introducepotential unroll locationswhich correspond topotential checkpoint locationsin porch.
Closures can only be generated upon visiting a potential unroll location during execution.

As in porch, potential unroll locations must be specified in a program to allow for live variable
analysis and code generation at compile time. For indolent closure creation, potential unroll locations
are generated by the transformation of thespawn operation. They can occur either before or after the
spawned procedure call. The generated code for unrolling the runtime stack is guarded by a check as
to whether an unsuccessful steal attempt occured.

2. We employcloning of proceduresduring source-to-source compilation to minimize the scheduling
overhead in the fast clone according to the work-first principle.

Cloning can be viewed as an optimization of therelease-and-resume transformationof porch. In
short, the fast clone needs to contain the save code only, that is the function call wrappers according
to Definition 2. The slow clone would be used to rebuild the runtime stack, and must therefore contain
the jump table (Definition 1) as well.

3. Theshadow stackused byporch to save all live variables of the runtime stack corresponds to the
ready dequein Cilk.

From Cilk’s point of view, the ready deque can be maintained as a (cactus) stack. The slow clone of
porch can set up the linkage across the closures on the (shadow) stack.

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

growth
stack

runtime
stack

runtime
stack

32

4

1

����
����
����

����
����
����

fib(n)

fib(n-1)

...

fib(n’)

...

fib(n)

...
...

fib(n’)

fib(n’-1)

restoresave

fast clone

slow clone

fib(1)

shadow stack /
ready deque
filled

ready deque
shadow stack /

fib(n-1)

unsuccessful steal
attempt

Figure 6: Indolent closure creation by the victim.

Figure 6 shows the process of indolent closure creation on the victim processor after a steal request
occured. Note that Figure 6 shows the runtime stack and shadow stack of the victim only. In contrast to

10

0

D
D

Figure 3, the thief is not shown, because its behavior does not deviate from the description in Section 2. We
assume that the Fibonacci computation has proceeded to executefib(n’) , when a steal (1) is attempted
by the thief. Upon detection of the steal request, the victim saves its runtime stack (2) by releasing all
functions on the runtime stack and pushing the live variables of each activation frame onto the shadow stack
(ready deque), accessing them by their name. Note that copying the live variables could be accompanied by
an optional data representation conversion to facilitate transferring the closures across binary incompatible
machines [18]. When all activation frames are released, the runtime stack of the victim is empty. It is
rebuilt during the subsequent restore phase (3). The slow clone is executed to copy the live variables from
the shadow stack back into the corresponding runtime-stack activation frames. After the stack is rebuilt,
execution of the Fibonacci computation resumes with the fast clone offib(n’-1) . The ready deque
is now filled with a number of closures available for stealing (4). Consequently, several subsequent steal
attempts will succeed with high probablity.

The fast clone offib , instrumented for indolent closure creation, is shown in Figure 7. It is instrumented
with a local variableentry , which is the portable program counter, analogous to variablecallid in
Figure 5. Only the firstspawn is transformed into a prologue (lines 8–13), the function call itself (line 14),
and an epilogue (lines 15–19).

1 int fib(int n)
2 {
3 int x, y;
4 int entry;
5 if (n < 2)
6 return n;
7 else {
8 if (StealAttempted) { /* prologue */
9 cfmode = SAVE;

10 entry = -1;
11 save(n,entry);
12 return 0;
13 }
14 x = fib(n-1);
15 if (cfmode == SAVE) { /* epilogue */
16 entry = 1;
17 save(n,entry);
18 return 0;
19 }
20 y = spawn fib(n-2); /* not transformed */
21 /* sync is nop */;
22 return x+y;
23 }
24 }

Figure 7: Fast clone of theindolentversion offib . Compiler-generated code is shown in grey.

The prologue checks a global flagStealAttempted to determine whether an unsuccessful steal
attempt occured. If so, another global control-flow flagcfmode is set to modeSAVE(line 9). For processors
that provide global registers to hold the control-flow flag, this assignment will be inexpensive. The program
counterentry is assigned (line 10) to mark the resume-point during the restore phase. Then, the live
variablesn andentry are pushed onto the shadow stack (line 11), and functionfib is released (line 12),
having initiated the save phase.

The epilogue is almost the same asporch’s epilogue. To save the assigment of the resume-point in the
prologue, cf. Figure 5, it is moved into the guarded code of the epilogue (line 16). This optimization does

11

not change the semantics of the release-and-resume instrumentation.
Note that during normal execution only the twoif -conditions of the prologue and the epilogue must be

computed. Since the branch-prediction logic of most modern processors predict these conditions correctly,
the overhead of these computations should be substantially lower than the additional work done by the fast
clone of Cilk, shown in Figure 4.

Optimization: Sedative Closure Creation

The experienced programmer may have noticed that the separation of the prologue and the epilogue in
Figure 7 might be superfluous. In order to reduce the overhead of the call wrappers even further, the prologue
and epilogue may be merged in order to compute only a singleif -condition rather than two. In fact, it is
possible to move the prologue code into the epilogue. The epilogue must remain, because it is instrumental
for the save phase when the spawned child is released.

The rearranged code of the fast clone in Figure 7 is shown in Figure 8. I call the resulting scheme of
closure creationsedative closure creationfor the reason discussed in the following section. The semantics
of the global control-flow flagcfmode is extended to include the stateSTEALATTEMPTED, indicating that
an unsuccessful steal has been attempted. In the indolent version,StealAttempted is a separate flag. As
a result, for every spawn no more than the evaluation of the epilogue condition is required to check whether
the computation is proceeding normally, or not.

1 int fib(int n)
2 {
3 int x, y;
4 int entry;
5 if (n < 2)
6 return n;
7 else {
8 x = fib(n-1);
9 if (cfmode != NORMAL EXECUTION) { /* epilogue */

10 if (cfmode == SAVE) {
11 entry = 1;
12 save(n,entry);
13 }
14 else if (cfmode == STEALATTEMPTED) {
15 cfmode = SAVE;
16 entry = -1;
17 save(x,n,entry);
18 }
19 return 0;
20 }
21 y = spawn fib(n-2); /* not transformed */
22 /* sync is nop */;
23 return x+y;
24 }
25 }

Figure 8: Fast clone of thesedativeversion offib . Compiler-generated code is shown in grey.

The epilogue of the sedative version occupies lines 9–20 of Figure 8. No prologue is generated in this
version of the code. Line 9 of Figure 8 contains the check of the control-flow flag. The guarded epilogue
is entered only if the computation does not proceed normally, in which case two modes of execution are
distinguished. Either the save phase isinitiated (cfmode == STEALATTEMPTED), or the computation

12

-

is already engaged in executing the save phase (cfmode == SAVE). The actions in each of the cases are
the same than in the indolent version.

Comparison of Indolent and Sedative Closure Creation

The sedative optimization of indolent closure creation implies a subtle difference concerning the provision
of parallelism. The potential unroll location of the indolent version resides in the prologue of thespawn .
In the sedative version it is embedded in the epilogue. It is not clear at the time of this writing, how this
difference affects the performance of the randomized work-stealing scheduler.

Whereas the indolent version visits potential unroll locationsbeforecalling a spawned procedure, the
sedative version visits potential unroll locationsafter spawning a procedure. Thus, the sedative version
executes the spawned procedure before it may generate parallelism by creating closures. This may lead
to starvation of the thiefs. On the other hand, if a spawned procedure is fine-grained, the sedative version
prevents costly steal operations, because it is likely to unroll the runtime stack and generate closures only
when the runtime stack is loaded with a larger number of activation frames. Hence the namesedative closure
creation. This optimization is likely to prevent unnecessary transfers of closures, and avoid parallelism to
be become counterproductive, if a steal operation were more expensive than executing a thread locally.

Sedative

Indolent

2

1

0

4

1

2

1

0

3

Figure 9: Comparison of indolent and sedative strategies forfib(4) . Checks for unsuccessful steal at-
tempts are marked for both strategies.

Figure 9 illustrates the difference between the indolent and sedative versions by means of the DAG of
Fibonacci computationfib(4) . In this DAG, spawn edges point towards the bottom of the page, and nodes
with in-degree> 1 are sync nodes. Those egdes of the DAG, where potential unroll locactions reside, are
checked dark-grey for indolent closure creation and light-grey for sedative closure creation. The checks
can be interpreted as follows. Node 4 (short forfib(4)), for example, spawns node 3. Before starting
execution of node 3, a check for an unsuccessful steal attempt is performed in the indolent version; hence
the spawn edge between nodes 4 and 3 is attributed with a dark-grey check. After returning from node 3 and
before spawning node 2, a check would be performed in the sedative version. The edge between node 4 and

13

✓
✓

the subsequent spawn-node is therefore marked with a light-grey check.

Implications on Scheduling

The existance of potential unroll locations discretizes the runtime of a computation into an irregular one-
dimensional grid. Grid points correspond to potential unroll locations, as do potential checkpoint locations
in porch. Only when a potential unroll location is visited can closures be generated. In order to avoid
starvation of the thiefs, the distance between grid points must be appropriately small. The distribution of the
grid points on the time axis is different for the indolent version and the sedative version of a multithreaded
computation.

As an example, consider the execution of the indolent version of the Fibonacci computation in Figure 9.
We assume that the DAG represents a computation where all numbered nodes correspond to some substantial
amount of work, and the computation is executed by a node that becomes a victim of steal attempts. The
computation of the victim proceeds from node 4 downwards via nodes 3 and 2 to node 1. The execution
time of each of these nodes determines the distance of the grid nodes where a check for a steal attempt is
performed. Obviously, all thiefs starve until the victim visits a potential unroll location and performs the
check. For the sedative version, the first check is performed only after node 1 at the very bottom of the DAG
returns to parent node 2. Thus, the distance of the first grid point from the start of the computation would be
the sum of the execution times of nodes 4, 3, 2, and 1 in the sedative version.

Starvation is minimized, if the execution times of the individual nodes is small. For this reason, indolent
closure creation as well as its optimized sedative version is limited to fine-grained multithreaded compu-
tations. Although not done yet, I assume that the introduction of an upper bound on the execution time
of the nodes will increase the critical-path length by a constant factor, due to starving thiefs. Under this
condition, the performance guarantees of the work-stealing scheduler should be effectively unchanged, and
the performance of a Cilk computation should be unaffected. The theoretical aspects of scheduling as well
as experimental validation are subject to future work.

DAG-Consistent Shared Memory

When implementing Cilk with DAG-consistent shared memory [3], for example on a symmetric multi-
processor (SMP), the question arises whether indolent closure creation can be implemented without restrict-
ing the full range of language features supported by Cilk. In particular, pointers passed by reference appear
to be problematic. They do not pose a problem, however, as briefly discussed in the following.

Cilk-5 operates on a shared address space. In particular, the cactus stack of closures is shared among
processors. In order to resume execution of a stolen frame, a thief does not copy the live variables from the
closure into the activation frame. Instead, the slow clone of a Cilk procedure contains redirections of all
references and variable accesses to their corresponding address in the shared closure. If the slow clone of
the indolent version uses the same implementation for sharing of values via the closure, handling pointers is
even simpler than inporch.

Pointers passed by reference are handled almost as inporch [18, Section 5] when unrolling and restoring
the runtime stack. During the save and restore phases, pointers are transformed into offsets within the
shadow stack. On a shared memory machine, the offset would not be an integer, but the pointer to its
target’s shadow address. Compared toporch’s pointer resolution algorithm, the computation of the offset
can be avoided. If a slow clone passes a pointer to the fast clone of a child, it will pass the pointer to an
address in the shared closure, rather than to the private copy on its runtime stack. A thief executes the slow
clone after a successful steal attempt. It accesses a stolen closure just as the victim did during the restore
phase. Thus, restarting a stolen computation on a thief involves no more than the restore phase of indolent
closure creation.

14

The preceding section described the source-to-source translations which enable indolent creation of
closures on demand. We discussed an optimization of indolent closure creation, sedative closure creation,
that delays creation of closures even further than indolent closure creation to the point during execution
where it is more likely that parallism does not become counterproductive, and a larger number of closures
is prepared when unrolling the stack. The following section provides experimental evidence for the validity
of the proposed implementation techniques.

5 Experimental Results

This section presents preliminary results of hand-coded versions of the fast clone of the Fibonacci program.
Neither stealing nor the execution of the slow clone are included. Instead, only sequential execution time
and, thus, the overhead when executing the fast clone—the common case—is measured. Both versions with
indolent closure creation and with sedative closure creation have been compiled with several compilers and
have been run on various processor architectures. The execution times reported are the minimum times of
at least four repeated measurements.

Indolent Fibonacci Computation

Table 1 presents serial execution times for two versions offib(36) , the sequential execution timeTS of
the plain C program, and execution timeT1 of the indolent version offib on one processor. The overhead of
the indolent version is shown with respect to the C version. Also included are the corresponding overheads
of the Cilk-5 implementation on one processor from [7, Figure 7]. For the Pentium, the measurement of the
Cilk overhead has been performed on a 200 MHz processor, whereas those of the fast clone of the indolent
version were run on a 120 MHz processor.

Machine/Compiler TS T1 Overhead Cilk-5
[s] [s] [%] Overhead [%]

gcc -O2 1.3 2.7 111
Alpha gcc -O3 1.3 2.7 111 520
477 MHz cc -O 1.4 2.7 94

cc -O5 1.3 2.8 113
MIPS gcc -O2 7.2 8.8 23
195 MHz gcc -O3 7.2 8.8 22 120
Pentium gcc -O2 4.8 7.6 59 (200 MHz)
120 MHz gcc -O3 4.8 7.6 59 330
PowerPC gcc -O2 5.7 7.8 35
166 MHz gcc -O3 5.9 7.8 33
UltraSparc-I gcc -O2 6.5 8.3 28
143 MHz gcc -O3 5.9 9.4 60

gcc -O2 5.3 7.3 39
UltraSparc-I gcc -O3 5.0 6.5 31 230
167 MHz cc -O 4.1 6.0 46

cc -xO5 4.3 7.4 71

Table 1: Execution times and overheads of the fast clone of theindolentversion offib(36) for various
machine and compiler combinations.

15

The overheads of the indolent version are below 113%. Thus, a parallelspawn operation is roughly
at most a factor of two slower than a sequential function call. For all processors except the Alpha, the
overhead is even below70%. The differences caused by the choice of the compiler and the optimization
levels are significant only for the UltraSparc. It is noteworthy that on the 143 MHz UltaSparc, switching the
optimization level of gcc from O2 to O3 causes the plain C version to become faster, whereas the fast clone
becomes slower.

Sedative Fibonacci Computation

Table 2 presents serial execution timesT1 of the sedative version offib(36) on one processor. The
sequential execution timesTS of the plain C program are not always the same as in Table 1 due to the
variance of the measurements. The overhead of the sedative version is shown with respect to the C version.
The overheads of the indolent version, shown in Table 1, are included as well to simplify comparison.

Machine/Compiler TS T1 Indolent Sedative
[s] [s] Threads [%] Threads [%]

gcc -O2 1.3 2.0 111 57
Alpha gcc -O3 1.3 2.0 111 57
477 MHz cc -O 1.4 2.1 94 53

cc -O5 1.3 1.9 113 48
MIPS gcc -O2 7.7 7.5 63 -3.6
195 MHz gcc -O3 7.7 7.4 63 -4.2
Pentium gcc -O2 4.8 5.9 59 24
120 MHz gcc -O3 4.8 5.9 59 24
PowerPC gcc -O2 5.7 6.3 35 10
166 MHz gcc -O3 5.9 6.3 33 6.2
UltraSparc-I gcc -O2 5.9 8.9 28 52
143 MHz gcc -O3 5.7 7.3 60 29

gcc -O2 5.1 7.8 39 53
UltraSparc-I gcc -O3 4.7 6.3 31 33
167 MHz cc -O 4.7 6.9 46 45

cc -xO5 4.7 6.4 71 37

Table 2: Execution times and overheads of the fast clone of thesedativeversion offib(36) for various
machine and compiler combinations.

The overhead of a parallel spawn in the sedative version is below60% in all experiments. The expected
reduction of the overhead of the sedative version with respect to the indolent version is a factor of two,
because the sedative version executes one conditional branch, and the indolent version two. This is roughly
the case for all architectures except the MIPS and the UltraSparc processors. For the latter, the effect of the
sedative optimization is hardly recognizable. On the MIPS processor, the parallel spawn is even faster than
the sequential function call.

6 Related Work

The implementation of Cilk-5 [7] has been motivating the work on indolent closure creation. Currently,
I view indolent closure creation as an optimization for implementations of Cilk. It would be interesting

16

I I I

to investigate whether indolent closure creation could be applied to parallel functional languages such as
Mul-T [11], Id [13], or the parallel Haskell dialect pH [14]. A variety of approaches to low-overhead
implementations of multithreaded languages have been studied on commodity computers. I discuss only a
subset of them and refer the reader to the papers cited therein. Both papers [8] and [9] discuss a large body
of related work.

Lazy Threads [8] extend the work on the Threaded Abstract Machine (TAM) [5], a compilation target
for parallel nonstrict functional languages. Lazy Threads are based on compiler support which implements
customized memory management of activation frames with so-calledstacklets. This customization enables
a more general handling of frames in the context of non-strict languages than required by the semantics of a
sequential call. The paper [8] introduces a classification of different closure representations that allows the
compiler to select the appropriate representation for particular instantiations. The Fibonacci computation is
used in [5, 8] to illustrate the proposed mechanisms.

The Illinois Concert system [9] employs a customized compiler to reduce the cost of thread management
by means of ahybrid stack-heap execution mechanism. Similar to Cilk, the compiler generates two clones
for each thread body, one of which executes off a stack-allocated activation frame, and the other from a
heap-allocated context. A thread executes optimistically on its caller’s stack, and is converted lazily into a
heap-allocated thread only when necessary, for example when being blocked in a communication primitive.
The compiler is used to determine whether a parallel call can be replaced by a sequential function call. This
is the case, if the compiler can ascertain that a thread will not block.

7 Conclusions

I propose an implementation for generating parallelism in multithreaded languages that minimizes the cost
of a parallel spawn to be comparable to the cost of a sequential function call. Key to reducing the cost of
a parallel spawn is the indolent creation of closures—representations of threads, ready to be executed—on
demand, that is only when an unsuccessful steal attempt occurs. Sedative closure creation is an optimization
of indolent closure creation where potential closure creation is delayed until after a spawned procedure has
been executed.

Open questions involve the theory for scheduling of threads created indolently or sedatively. I believe
that the introduction of an upper bound on thread granularity can be used to show that starvation of thiefs
can be bound, and the associated increase of the critical-path length be limited within a constant factor.
An upper bound on thread granularity implies that, in practice, indolent closure creation would preserve
the properties of randomized work-stealing for fine-grained multithreaded computations. I believe that this
limitation is reasonable, because it seems to be more likely that, eventually, efficient compilers can be built
that coalesce fine-grained threads automatically rather than coarse-grained threads.

The experimental results presented in this memo demonstrate that a parallel spawn can be as cheap as
a sequential function call on modern processors. It is not clear, however, which implications indolent clo-
sure creation has on the performance of a fine-grained multithreaded Cilk computation per-se. Without a
complete implementation, it is hard to predict whether fine-grained multithreading can be implemented effi-
ciently and portably on parallel architectures. In particular, heterogeneous environments with their inherent
problems concerning performance predictability continue to pose numerous chances and challenges.

Acknowledgements

My sincere gratitude to Charles Leiserson for preserving my freedom of thought over the last two years
in a truly creative manner. I am delighted to thank Matteo Frigo for helpful discussions about the current

17

implementation of Cilk and his constructive ideas when I flushed my ideas on indolent closure creation.
Thanks also to Harald Prokop for his suggestions on an early draft of this memo.

References

[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith. The Tera Com-
puter System. In4th ACM International Conference on Supercomputing, pages 1–6, Amsterdam, The
Netherlands, June 1990.

[2] Andrew W. Appel. Garbage Collection Can Be Faster than Stack Allocation.Information Processing
Letters, 25(4):275–279, June 1987.

[3] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H. Randall.
Dag-Consistent Distributed Shared Memory. In10th International Parallel Processing Symposium,
pages 132–141, Honolulu, Hawaii, April 1996.

[4] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computations by Work Steal-
ing. In 35th Annual Symposium on Foundations of Computer Science, pages 356–368, Santa Fe, New
Mexico, November 1994.

[5] David E. Culler, Seth C. Goldstein, Klaus E. Schauser, and Thorsten von Eicken. TAM—A Compiler
Controlled Threaded Abstract Machine.Journal of Parallel and Distributed Computing, 18(3):347–
370, July 1993.

[6] Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L. Stamm, and Dean M. Tullsen.
Simultaneous Multithreading: A Platform for Next-Generation Processors.IEEE Micro, pages 12–19,
September/October 1997.

[7] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation of the Cilk-5 Mul-
tithreaded Language. InConference on Programming Language Design and Implementation, pages
212–223, Montreal, Canada, June 1998. ACM SIGPLAN.

[8] Seth C. Goldstein, Klaus E. Schauser, and David E. Culler. Lazy Threads: Impementing a Fast Parallel
Call. Journal of Parallel and Distributed Computing, 37(1):5–20, August 1996.

[9] Vijay Karamacheti, John Plevyak, and Andrew A. Chien. Runtime Mechanisms for Efficient Dynamic
Multithreading.Journal of Parallel and Distributed Computing, 37(1):21–40, August 1996.

[10] James S. Miller and Guillermo J. Rozas. Garbage Collection is Fast, But a Stack is Faster. MIT
Artificial Intelligence Laboratory, AI memo 1462, March 1994.

[11] Eric Mohr, David A. Kranz, and Jr. Robert H. Halstead. Lazy Task Creation: A Technique for Increas-
ing the Granularity of Parallel Programs.IEEE Transactions on Parallel and Distributed Systems,
2(3):264–280, July 1991.

[12] Joel Moses. The Funtion of FUNCTION in LISP, or Why the FUNARG Problem Should be Called
the Environment Problem. MIT Artificial Intelligence Laboratory, AI memo 199, June 1970.

[13] Rishiyur S. Nikhil. A Multithreaded Implementation of Id using P-RISC Graphs. In U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors,Languages and Compilers for Parallel Computing,
LNCS 768, pages 390–405, Portland, Oregon, August 1993. Springer Verlag.

18

[14] Rishiyur S. Nikhil, Arvind, James Hicks, Shail Aditya, Lennart Augustsson, Jan-Willem Maessen, and
Yuli Zhou. pH Language Reference Manual. MIT Computation Structures Group, CSG memo 369,
January 1995.

[15] Balkrishna Ramkumar and Volker Strumpen. Portable Checkpointing for Heterogeneous Architec-
tures. InDigest of Papers—27th International Symposium on Fault-Tolerant Computing, pages 58–67,
Seattle, Washington, June 1997. IEEE Computer Society.

[16] Gurindar S. Sohi, Scott E. Breach, and T.N. Vijaykumar. Multiscalar Processors. In22nd International
Symposium on Computer Architecture, pages 414–425, Santa Margherita Ligure, Italy, 1995.

[17] Guy L. Steele, Jr. Debunking the “Expensive Procedure Call” Myth or, Procedure Call Implementa-
tions Considered Harmful or, Lambda: The Ultimate GOTO. MIT Artificial Intelligence Laboratory,
AI memo 443, October 1977.

[18] Volker Strumpen. Compiler Technology for Portable Checkpoints. submitted for publication
(http://theory.lcs. mit.edu/˜strumpen/porch.ps.gz), 1998.

[19] J.-Y. Tsai and P.-C. Yew. The Superthreaded Architecture: Thread Pipelining with Run-Time Data
Dependence Checking and Control Speculation. InInternational Conference on Parallel Architectures
and Compilation Techniques, October 1996.

19

