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ABSTRACT 

Each progranuning language that handles data structures 
has its own set of rules for working with them. Notions 
such as assignment and construction of structured values 
appear in a huge number of different and complicated ver
sions. This thesis presents a methodology which provides a 
common basis for describing ways in which progranuning lan
guages deal with data structures and references to them. 
Specific concern is paid to issues of sharing. 

The methodology presented here consists of two parts. 
The base language model, a formal semantic model introduced 
by Dennis, is used to give the work here a precise founda
tion. A series of 11 mini-languages" are defined to,make it 
simpler and mo;-e oonvenient;to •xpz,eu.and describe the 
semantics for a variety of const,ructs found in contemporary 
programming languages. 
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Chapter 1 

INTRODUCTION 

Students of computer science are confronted at a very 

early stage with a great variety of general-purpose pro-
--, 

gramming languages. Descriptions of these languages place 

heavy emphasis on common features such as assignment, pro-

cedures, conditionals, input/output and block structure. 

Aside from variations in notation, there are numerous rules, 

exceptions and special cases which make fof differences be

tween comparable constructs in different ian~ages. For ex

ample, the body of a DO-loop in FORTRAN.must be executed at 

FORTRAN PL/1 
.. .. ,.,,. -- ,•,·'. . :, ,:, 

N = 1 N = l; 
00 50 I = 2,N DO I = 2 TO N; 

. . 
.. . • 

[body] [body] 
.,-.·•' . . 

. . 
50 CONTINUE ENDt ... 

-
h9~Y executed on.oe boiJy nt>t · exe~-ed · 

Fig. 1.1-1. Looping feature in two languages 



least once, while in PL/1 it is to be skipped if the index· 

is out of range {-figure 1.1-1). Such differences can be 

studied by examini~g the semantics of didffere~t ~~gratllD\ltllg 

languages. The semantics of a progrUDing language is the 1 

study of the meaning of its constructs, or in other words 
;. ;, ,,.,.~- r .··: ·, ...... 

the effect of executing programs.in the language. The par-

ticular concern of this thesis is the notion of data struc-

in progrmmning l,anguages. 

~~~,_.~:';"!:c
1
~~r ~~~,• ,~f;,•.P~li~J.t~!' .~~hw~iP:h ,:he ~•e qf 

•:truc,t:ure~ :~~~er!~ ~~°. .· ~fJifUl and -~l?;-~~nit~~c~~.,cJX.:Ob~~~.~ , 

solving. Some ·!au1~~• ".,.~,~•, •r~ ~1.-~i:P,lJJ-t~~, ~r~;~ 
. -~ . : t'.'' ' t' • ~-' • ' ', • . • • ' ~ , •. 

ficial intelligence, computer graphics, and simulation stu

dies;' ;:';;finira1·rY..:~•j,eu:ing, a data atru~~~ -¥ ~' ~ggregate 

data ,ooject" coiit·airiing· ·other 'data objects ~. · cC>q)Onents. 
, , I 

Typiaal ina.~•~• ·:0~ ~ta·· structura11c :i:ndudti: arrays, sequen-

ces, vector•, tup.].es and lie ts. We will not dwell on the 
' 

char~teri■tica paculiar to each of theae different vari-

I 

ents., 

Typically t a progi-amming language provi.dea two basic 



-7-

operations for handling data structures: component objects 

of a data structure can be individually accessed and manip

ulated, and data structures can be constructed from desig

nated objects as components. These operations interact with 

the assignment operation of a programming language in per

forming several other tasks, such as assigning structured 

values to identifiers, or updating components of a struc

ture. There is a great ~imilarity in appearance among con

structs for performing such tasks ,ip various programming 

languages. on the surface, from a c~al,,e~Mli:nat,ion of 

language descriptions, distinctions between analogous con

structs in different languages appear to bEr_mostly notation

al. But we shall see important semantic distinctions, par

ticularly in the area of data being shared between different 

structures. 

Since each programming language has its own set of 

rules for dealing with data structures and sharing, it is 
• . . 'J ,. ' 

desirable to seek a ~igorous method for describing what 

happens. Our goal, then, is to gain a ~ore precise under

standing of the semantics of data structures. This will 

provide a unified and coherent viewpoint: for describing the 

different approaches to data structures aa they are found in 
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programming languages. we will gay specific attention to 

the difficult and-important issue of properties of sharing. 

These is.sues depend u'ltimately on the concepts of cells 

(which model computer memory locations_) and re£erences to 

cells. References are also C0111B0nly known aa :eginters. We 
, ,. . .. ·:; ~.. ' .. : " ' ' ·.,' ', 

will first discua11 gener.al questions of prog~i-ng language 

semantics, and.then move towards a more specific _treatment 

of data structures and re-ferences. 

A prograllldng language provi~ a notation in which the 

programmer can JIPdel computational procea•••-~d the infor

mation on which they ·operate. Programaing language seaan

tics deals with the relationship between programs and the 

objects they represent. A formal •11!1!.!t:ics for a programm

ing language is a precise description of ·•uc:b·~·relation-

11 ship. 
~ 

There'haar been much study o~ formal ~~tics of p;o-
\ graaning 1aft9U~gea: '. w~gner (W~ ":¥2aJ ··cli•ili~:falies three 

. . . 
classes of fo:nnal.. ·:semantic models: 

r ., ,i, 

( 1) Ab•tract seaantic ·mode-ls. In tbia_approach, the 

objects being modeled are treated a'! matbema_tical entities 
:; .;1 r' f. - · •., •' · ' ... -,..;;.~ 

independ•nt of any particular reprea~tation. Models of 
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this class aim towards ·.· providing a formal mathematical de-

scription of the computational notions being studied. One 

well-known example of this approach to semantics has been 

the use of the lambda,calculus as~ semantic model for pro

gramming languages. The lambda eal-eultts/:·,m'ich:::is described 

in [Der 74, Morr 68, Weg 68f, is basically ~>m~themati~al 

formalism for the definition: . and applic::at:toi( f,'f. functions. 

It is ideally suited for· 'aescril:>ing so'-calied applicative· 

features of progra.mmin«J languages, such as ·e~aluation of.ex-

press ions, use of procedures, aiid blo~k str~~tur.in~. Landin 

demonstrated its usefulness in these areas '[~an 64] and pre

sented a scheme for extending the ;Lambda ~alcttlu~ f~rmalism 

to mbdel the langUage ALGOL 60 [Lan 65). More recently, 

different exte·nsions of the lambda cal~ius have been de-' c

vised for describing data types [J:teyn 73 J. 

A second major example of the abstract approach to se

mantics is found in the work of Scott [Scot 70, Scot 71J. 

Scott makes use of the matHematica:i:::.~heoey o·f. {;.ttices 
. \ 

[San 73 J to construct sets which are th~ d~ali.nj .· 6f :f~nc.:. 

tions that represent the behavforof programi. The Scott 

formalism has been used r:ecintly to de!J~trbA the !'semantics' 

of ALGOL 60 [Mos 74J. 
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We can briefly summarize abstract semantic _,dels by saying 
• f ~ 

that th-.y characterize the action of programs as functions 1 

over various domains~. 

I ' 

Ma4•l•- of tbi• ,c~•s use 
• S "'}: • ,• - • a • ~ < • ' ~ ,. -" 

state .of a c~t-~:r:: •y:•t• •~ v~i'?'Jf. IJQ.i.n~• ,d1.u:.,ing Jtbe ~

ec:ution of prograa,a on it •. ~• ,e,~tit;Za -at,.;••t~am .is 
, r • • 

of tbe ayat• before execution) ~ oq1:'..P,Jt ::.'114~1:ion■ (-~ · 
j ' ', '• . ' ,: . ' . '··' ·"' . '. .. 

. ' 

atate a:,ter ~~ in;ogram ia _rµn) • ~¥1 ~~ t~, aemantj.pa, 

mor•_ fr~.et1y called. the ,i;3:2!9!~~ .• roapl\:n •• de~ 
, ~ ... ~. ~ ',•, - . . . ~ . .. " 

been mo~ ~~t' work on it. Axi~!:ic, aa~_t.J.~• 1•-~-; -

uaefu.l, in pr,ovin'g' correctneas of,..Pr,~,;.-.~ -t~••:,M~iebJ,.ng 

that the effect of executing a program fulfills mathematical 
. : . ,, .... ,., . 

conditions the program is_ supposed t~ satisfy. 
l ,; .._, , ~ 

(~) QS,U:ft•RDl+.!l!Rs?e½•· /~~~:~cb ,tQ:,-.•-~tJ.ca 

con~rn•· ,itae:J_f_ apec:t.tically l'i~ ~14ng ~b,~ c;hang,t.ng 

state• of 11·eomputei- ayatemperfQl;'.1111~9 ~tation, .. Sudh·a 
J, ,f ' • • • . ' 

. { 

task i• u.._l,ly: ac:1<=9111Rl:i:•hed by. ~•, of ,a .1,t!~t•;":-tranai tJ.On 

ayatem, in which a atate·of the model r~ .. @t.a ~ i8f-or ... 

mat.ion in tbe computer ayata at a 9iva time. The effect 



-11-

of a program on its input data is reflected in the sequence 

of transitions of the model. It is important to observe 

that given a state-transition system c~rresponding to some 
{ ·~-. 

program, the sequence of s.tates that model!t' the execution of 

this program defines the, action of an interpreter for the 

program. For this reason, the approach to formal semantics 

using operational models is called interpretive semantics. 

We can describe the way in which an interpretive seman

tic model gives the semantics for a program written in some 

source language. A translator transforms the program into 

an equivalent program in· another language which we call an 

abstract language. Prograins in an abst1:'act langµage are. 

acted upon by an interpreter: this action results in a 

sequence of state transitions of the model. The semantics 

of the original source-language program is given by such a 

sequence of transitions.· One reason we make use of trans

lators is that source programs are usually represented as 

character strings rather than as data objects suitable for 

processing by the interpreter. 

Although the use of, interpreter, t .. Q illlpl.ement pro

gramming languages was (and still is) commoq.place, M,cCarthy. 

[Mee 62] was the first to use an ,inter,preter to. define a 
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langqage· (LISP). The semantics of LISP is given formally oy 

an interpreter written in LISP. Landin [Lan 64, Lan 66b] 

uses an interp'reter called the SBCD machine to define the 

lam'bd~ caleulua, even though the:lambda calculus is a mathe

matical formalism with a rigorous definition of its own. A 

more recent.dia-cusaion of definitional interpreters is found 

in fltetn 72 } • 

Of the•e three approaches to forinal semantic• of pro

gramming language~ the interpretive approach is best suited 

for our goal• 0£ under9tanding the aemantica of data struc

tures and re'!e,:ettcea. In order to properly explain the se

mantics of a program that handles dat• atructures, we will 

need to know bc,w the data stru<:!turea are foned, their com

position. the relationships between the atructur-es and their 

components, sharing properties, and other items of infor

mation. Th• best way to get a handle on this kind of infor-

-matio» ~s to con11'ider the state of the system at various 

moments during the ,xe9ution of the prog~. The interpret,

i-ve approach is the only one which lenda itself· d~rectly to 

working with· .•t•t•• of t}\e system. - Both. of the· other 

ai,praachi!a a:t-11 bettet- suited for proving asttert:fons about 

progr• llria'alttabli&Jting their corNctrieii11: but 'theae 
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issues are outside our main concern here. A treatment of 

data structures from the viewpoint of axiomatic semantics 

may be found in [Lav 74 J • We will wor:J( to~ards d~v~_loping 

an interpretive model to be used as a semantic found,at:ion 

for dealing with the important issues of data structures and 

references. 

The most prominent interpretive model for semantics is 

the VOL model. VOL, the Vienna Def-inition Language, is a 

metalanguage for writing interpreters of programming lan

guages. VOL interpreters have been written for languages 

such as ALGOL 60 [Lau 68], PL/1 [Walk 69, Luc 69], BASIC, and 

POP-8 machine language [Lee 72].· An elementary introduction 

to VDL may be found in fWeg 72b J • Just as. LISP works with 

lists, VDL 'WOrks with tree-like data objects (which we call 

labeled trees). The basic operation of the VOL model is as 

follows: for each source language whose semantics we wish 

to describe, we define a translator and an interpreter. The 

translator transforms a source la~guage program into an ab

stract program, which is• a forinof labeled tree suitable for 

manipulation by the interpreter· (for each source· language 

the corresponding abstract language will be some Set of 

labeled trees~ the structure of an abstract program varies 
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from language to language). The interpreter, which consists 

of VDL code, aceepts a labeled tree as inpu~ and interpre,ts 
",i(. 

the effect of the program on its input data. For different 

·languages, different interpreters are defined. 

The fact that VDL uses treelike data objects r~~

its desirability as a semantic model for our work on data 

'atructures. We will be studying data structures .. in which 

components may be shared between different ob~ects; VDL's 
~ :! 1: 

labeled trees do not directly admit •"Maring of any kind. 

Thus in order to model in VDL structure• such as we will 
-~,, (! f .. - . 

study, it would be necessary to go through tbe inconvenienc.e 
;F; 1_ . . ' 

. ~ • I ,-,, -.• , : •• 

at simuiattng the memory of a comput~r. Since the study of 
~- ; .;:· _ _,'' 

' . 1·,.·•. .. ' ; /; : 
·• 1 . -~ ,). 

sharin<J. is furtdamental to our work, it is desirable to work 
~ ~- . .-

- . , /,· C, ·• . • 

·witb objectts in .. :whidh sharing is represented directly. 
! ·- .... . 

We 

therefore pref$r for· our goals· a semantic model that 

manipulates data objects of a more general nature.than VDL's . ' 
; 

labeled trees. 

Iri JOenn 71] , I:>,nn~s outlines, ap.· i~!YWr~v~t ¥,tnan,1::A.~- _ 
.. ~F • -~• •• "' •' • "> • 

ipulated by this mqd,+ are .~~~~ente .. o~. ~.,1,F,ep~f!lci, Sfyh• 4114 · 
• • •• q '' ' 

can directly model sh•ri.ng. A$ wt~b ~,, folf e,c:h 4ilflCJ1i1Me .. ' i~~;- -"." , . , - . , . r. ', ... . . 1 ; • 

. , 
whose semantics we wish to describe, we must apecify a 

\ 
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translator which transforms prog,:1111\S 'in the language into 

data objects suitable fol". ponaumption by the model~ These 

objects are cal.led pr99!49r,1 !tns:tuppa:·inthe·baae langttage 

model. Procedure atructures, like. VDI, 1 a. a~r~, ,prbqral'nS, 

are acted upon by the interpre'ter.· to Foduee ·state' tran-

that the composition of a pi,ocedure·;str,:jcWre gerierated by 

the translator from some source.progra·4<:Mf8 not depend on 

the language in which the p~~am was, wri..tten., Ae a result, 

there is no need to define a se~arate int•r_preter fo_r: .each 
' <. . . ! ~". ',- ..., ... 

programming language. 

terpreter for the base langua9- 1110d_el. wh.j.c.J,t · ~<;Cf.!pts ~pit-

Thus we see that the tran~l~t?rs fc,r
1
, ~be. p,,•~ .:lap.~a~~ ~~-'l 

translate programs from th~ir ~,sl)ee_t~ve .fOl.lrc::~. J.angllag~&J ., 
' ~ . ; . ' ,. 

into a single, co111non language. 

base language. 

in the base language, which consists ot ., -•~c.ft ot i.n:"" 
:\· . . . . " .,· .,. .. · ,.,_ .. 

structions. The individual base language in11.tJ;Vet;i,ons .spec"'!' 
' ' . . . ... . . ' ' 

ify the fundamental state transitions of the mo4el. 

In order to achieve the lan9Uage~i~ll4epc• -Of.· ,the 

interpreter in the base languag~ lll()~el, ~. ,·~•~~~,,;: .. JJ"I~ 
• 



-16-

do more WQr:k.bhan their VDL eounter~ts. A VDL translator 

simply cc:>nverts a pJrogram from obat:a<:ter •tring- 1:0 labeled 

tr", wnilce a .,~aaalat.or ~CJr the. _.. language· model must 

pi,i=foxm .. fu"t;i~ similar , to th<?ai of a· cc»ripi'ler. 'l'hus, 

once .. we s~ify ,th,, eamantios. of• t:M base 'langUage, i.e. 

th, i.D,t.tui;p~eter i.tl 1.he base language '.MG,del, the semantics of 

a ~art,i~l-:•r p::-~ng .lanCJQ-a9• i1Fdet•rntined by its 

Th.e b•se lUguage 100dei is extr$ne.ly well suited f6r · 

our work. · ""11• pr.:unit:.tve inatructiona off th• base 'lan~•ge 

ar.e particularly convenient for manipula~ing structured ob

jects and 4ealing'wit:h sharing. We can vi-ew the,.base lan-

i ' 

gUage att<tlle-ma.eh.i.ne l~guage for a ~ter with heap-

atructured 111e1110ry· and symbolic address.apace. In· this re

specrt, 'prot:i:ama in the base language will be similar to con

vettti-Gn.al asa4!mbly '.lanquage programs. This similarity is a 

source of fttrth•r 9onvenience in ufJing tbe · base language as. 

Amerasingbe [Amer 72] de$cribed the translation of a 

bloc"k-sttucitu:eed lattguage BLKSTRUC into the base language. 

:tn;:.LK8!1tUe; prooec!ures are II first-class Objects"" [Stra; 67] 
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which can be used in contexts as general as objects o~ other 

types. BLKSTRUC's treatment of procedures is :mqre general 

than ALGOL 60 1 s. The action of a translator for a language 

with non-local goto's is described in [Amer 73). Trans

lators for the languages SNOBOL4 and Simula 67 are discussed 

in [Ora 73] and [Cou 73). :,,These. works show the use of the 

base language model in describing the semantics of various 

powerful programming languages. We will be using a version 

of the base language model as the semantic foundation for 

our study of data structures. 

1. 3 • Plan for the Thesis. 

we outline here the topics.covered in the rest of this 

thesis. chapter 2 describes the base language model as we 

will be using it. The action of the interpreter is given by 

describing the effect of the instructions of the base 

language. The approach in Chapter 2 is informal; a more 

rigorous treatment is found in the Appendix. once the be

havior of the base language interpreter is known,-we have a 

handle on the semantics of the progranuning~language con

structs that interest us. All that wi11 then need to be 

done to supply a formal semantic definition is simply to 
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·describe the action of a translator which ,P,roduces. base lan-

In the remainder of this thesis we will be using the 

base language model aa a semantic foundation for describing 
' ' 

the different ways various progrUll\ing languages deal with 
. : : 

data structures. We want to make clear distinctions between 

comparable constructs in different languages. Although the 

semantics of data structuring constructs can _be precisely 

expressed by using the base langua.ge model_, 1;,here is a cer-

tain respect in which the model is leas than ideal as a de

scriptive veh:Lele. Data structu~:M :they are .found in 

programming languages are tied up with the notions of var

iables and values. we would like to snake use of these 

notions in talking about the semantics of data s.tructures. 

But the descriptive level ,of the baae language is only 

equipped for talking about primitive transformations on the 
,.••; 

obj.eats which Cotllprise the interpreter states. In this 

sense the base language is too "low-level" for describing 

data etructuree in a manner suitable for our purposes •.. 

To pl:'ovide a Qetter descriptive mechwsm,,we will 

follow the approach taken by Ledgard [L~cl l;l} tn: defining a 

eerie• of "mini-languages." Mini•langu.ages provide de-
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scriptive levels appropriate to our needs, y~t .. at. the same 
, ' . ~- .: ' . ' : 

time avoid the syntactic and semantic comp;t.exity of fl:lll-
:'. . . . '! ., .• ' 

scale programming languages. The Pr!mary adv:~n$:ctge .of, 1:hf' 
. ,··1 -. . ·.: •'· ' · .. 

mini-language approacll is that we can iso).at~. the copc.1ept.s 
., < ·; ;1 .; ' . . . •., ' . , 

we wish to describe by elimi~ating all t\l, con~~p,tu~lly ~~-
;· • '·- .• . -' •. .- ! ' ' : ._·. -;~ ., : ., . . i '\- ' •-. 

traneous notions that are needed in a full-size langu~ge. 
. . f ~- _- ' . ' :1. ' ,< • • - • • •• : ! ~ I 

Accordingly, in 'a mini-langu~1e f~r , de~c;ribirrg .· d.~ta .~~~\1S1~ 

tu res, there are no procedures, c:fondi tj.9n~l. e~r~,Jioris, + 
" ,., ,j ,. .., ,· ' 

loops, goto's or operators. Mini-languag~s. 'f". !19~ ~,n~,,to 

be viable languages for actua_l _ ~~ogt~iPc,r -~tef;. aJ;-e . 1\1~~ . 
, ' • • ~. .. . , • -· , • • • ' I • 

for descriptive purposes only. The_ayJ_lt~ -~~ ~•~~ti9~ Qf 
-. j • ' -;_< • ' ' • } • • '~- "',, ~ ', • ~ • • ,.l 

a mini-language are simple enough to be readily understood 

on art informal basis; the semantics can then be formalized 

by specifying translation into the base language. In this 

manner, the semantics of data-structuring constructs in full

scale programming languages can be given by describing how 

to express these notions in a suitable mini-language. 

Chapter 3 presents mini-languages for describing the 

notipns related to assignment, data structures, pointers and 

sharing. These mini-languages are then used to describe the 

data structuring semantics of several full-soale programming 

languages. 
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In Cb•pter 4, we treat the additional notion of static 

typechecking, which has a direct.bearing on the semantics of 

data· attucturea in many important programming 'ianguages. 

This notion ot static typechecid.1u1 df~~~i-•' f;cim Ledgard' s in 
. ··., 

tb,at it de•l• with structured types, whare tedgard [Led 71J 

deals wi tb functional type• and t~ types oi' arguments. ·and 
re~urned valuH.. A• in Chapter 3, we treat the data struc

turing, f'a~tliti•• of three tu11..:.ais• languages: in 

tl'l•u 1aaguilge• the concept of static typecbecking is di -
. .. >:-, j_ 

rectly tied in with the semantics c,f data structures (ape-

cit1cal1f u•ignMnt). 

Chapter S presents a summary of what we cover in this 

thesis and auggea·ta ext.4!!naiona for . fu,:ther study. 



Chapter 2 

THE·BASE LANGUA(;E ~DEI, 

2.1~ overview of the Model 

We have chosen as the semantic toun~t.ion fc;>r our w,9.~k 

a version of the base language n:>d,1 set fprward in. JD~, ?,l] 

and [Amer 72]. Th.a b~se langU'age,JllQ~el.~u,r• arQ~nd. a. 

base language interpr•ter ~ wbi~ is. •••~n.tif.l~y •· AJ,t.ate

transi tion system that we'eha.J.l u•e to e,q,ro•• the meanin9 

of computations. 

an entire computer sy1;1tem •. We repr~,~~1:-;Jh c~~~t:i.onJ>-y ~ 

sequence of interpreter states. A state of the intefffete~ 

will be a certain kind of mathe•~Fical object embodying the . . . 

information contained in the computer system at a partic

ular point in time. We shall define a base language called BL 

each of whose programs consists of a sequence of instructions. 

Each instruction specifiel a functional.transformation be-

tween interpreter states. The langua99 BL is adapted from 

the rudimentary language described by Dennis in [Denn 71},. 

We represent interpreter states by ~~:hema,t~cal._?b

jects known as BL-graphs. Suppos• we are given a set ELEM 



of elementary objects and a set SEL of ~electors. (For our 

purposes, ELEM consists ·t:,f iritegeri ,- r~~i numbers and 

strings r SEL consists of integers ~d strings.) Then a 

BL-graph is a variant form of directed graph7 it consists of 

nodes and ..!££!.. Ea:cb arc conhects two ~odei in ·a specified 

dire'Ct'ion-and·ia l11beled~ith a aecleotor. We may associate an 

elemenl!ary-' t,bjeet with each· node frotn Wl\ic=1f no arcs lead 

out. Th•re lt\tlilt ttltto be a. d:f.stl.nguili.1'~ -'11ubaef of the 

nodes (called the :toot l'loclea) ftblll which' ea6h node of - ' 
: . ' • . . : .,.. f_ ;. :_ - . : ' .. ' 

t'he grapn· can be reached·a1ong_som.e d.tre~ted pafh of arcs. 

we givei a .foru.i'mathematic•l definition 'of BL ... graphs in •'the 

A BL-graph wieb ·a single root node is called a BL-abject • 
• ' • < ' } •" 

We identify a SL-object by its root node. Specifically, 

for any node a in a BL-graph G, w~ associate ~ith a the sub

graph of G whose nodes and arcs are accessible from a. This 

subgraph is a BL-graph with a as its root node: we call it 

the object 2! a. 

If there is a directed path from one node of a BL-graph 

to another node, then the second node is called a descendant 

of the first node. All nodes in a a~-graph are des.cendants 

of some root node. A node from which no arcs emerge. is 



called a~~. An elementary object. attached to a le~f 

node is called the value of that node. If there is an_a:i:c 

from a node a to another node~, then f3 i~ called a com--· 
12onent of a, and the object of f3 is called a cOJ11p9nent. of 

the object of a. components are named by the selectors on 

the arcs leading into them. If an-. object is a compon.ent of 

two distinct objects, it is said to be sh•red bet1'een them. 

Nodes· in a BL-object are denoted by }l!tbftws. A ~hname

for a node is a sequence of selectors J,.ab~ling a directed 

path to that node trom the root node.' 
• • • ·j 

If 'tne object of a 

node is shared, then the node will have .. dis1:i.r~t. pa'thn~s .; 
• .;_. • ;or;;t '_; 

The property of sharing is .of major s)i.gnifican~~- we wifi 

have much to say about it. 

We will be making heavy use of pictorial representa

tions of BL-objects. An elementary object is drawn as an 

encircled value (figllre 2.1-1). 

For a general BL-object, the 

nodes are drawn as heavy dots. 

The root node is at the top. 

Arcs emerging from a node are 

------------
Pig. 2. :t-.:J. •. Sam9le 
. .. aJ_ementary obj~ts. 

drawn downwards from a horizontal l.ine att.aohed .to the node. 

Selectors are written across the arcs that they label. If a 
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selector is- a string, we do .!12.t enclose it in quotes. Elem

entary objects' •ttached to root node,;:hang downwards from 

the~ •. Thus' our pictorial conventions for BL-objects differ 
. ' 

, . . . , ..... .: ! . '··, : ', J . ~ ' : 

slightly :from those used in [Denn 71] • 

Sample BL-o~j~~~s ,~r~ _,P~ctur~~ '"i,n .-'.!t:'if'l~,•. _2 .1-2 a,n,d. 
_·,_ ..,,_--:~~;~]:'_._.' ;..' ·-~~.; ' ··~.'~t' ··-·· . -~' -.. ~-

2. l-3. The object in figure 2 .1-2 q~a tor!,, (:Otq~nen.~s., 
i f, , , _,.;,y •, .> _i : )~:),.1.i .... ~ '.'i ,:::, ,·; • ,. ', . ,:; I 'i. ....... _. ~• .. • ., ... , .,• 

I k.·. · l .,. ct 
ent i~ •,~;~,~ ,:. r,rqe -~-coin_ponen:t 

A-, .. ;,L, has two ~~~~' both of <, • 

···tc· .. ~y· •,, ' ··-,,;, r which ar~0 _;1.e,4f1 po4.f_-. .•. _The l~f 
";··)~-~r '. .. ,); ,.)·' ... o.• '. •.,,• .. ~ ~ • . 

,._c,,...," , ' 
., . •, 

• 1: , ·f' ~ . v • ' ' ~ ~, ' :-: • , 

Fig. 2.1-2. A sample 
BL-object 

k. c. The ~•-(lf n,9,~e with value 
" ... ...., .,__., • • 1.. •. ~ 

'hi' ia abared between nodes k 
"-<~ 

.- : 
~~ r -,. ,, ,~ "' 

1 • .:. , ···. 

and a and bas path-
. t.) 

., 

na.mes .:k. u and a.6. In 

. figure 2. l-.3 ~ the ob-

ji!o,t with valu.e . l. 6 is 

shared .between the ob

jects•-~ .ands and 
.' . /•, .--;.()"'t·.:- ~: i ;·. 

has pathnames s.b.5 
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between the object of the root node and ~he opject c.y. 

Since the node c is a descendant of itJelf, it bas in fin- ... 
~ . ,, . ' . . 

itely many pathnames c, c.y.2, c.y.2.y~~, c:.y.2.y.i.y.?, and 

so on. The path joining tl,lis no~e to it$elf. ;s a 4,i,;:es;rt,td 

cycle. 

A °Qc!lsic difference between out,BL-graphs. and the graphs 

of [Denn 71] is that Dennis does not alJ.&w directeq cycles 

in his objects. Cycles . . se4Ull to impair the mana.qement of 

storage and the handling.of paralleliam in computation. 

However, cycles occur in many of. the.st:J;\lcturea we shall be 

mode;J.ing. Moreove;J:", they are difftmalt· .,tQ. 4eteQ't and re-

cycles). we •shall t.here£ore not rule,.out cycles here. 

we follow [Denn 71] in giving the structure of a BL

object which represents a state of the interpreter. An 

interpreter state is a BL-object having t8u:~e · components as 

follows: 

(l) The univ@rse-component models Sy'stem-resident in

formation, both data and procedur••· Gen&rarly speakin•g, 

this information is independen.t ef ,which computations are· 

currently active or how far various compu~ations have pro

gressed. 
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(2) The local-structure-component of an interpreter 

state has as components a series of ac
1

tivation records for 

the various procedttre'a being interpreted in· the system •. 

Thes•<oaponents are eall~a local at;yct:gtf&: there is one 

local structure for each activation of each base language 

i 'ts aotivauion, primarily identifi•r• aiUI' ithei·r assodiat.ed 

1 
preter .sta.te ~ords ~• progress of·,~---tia~tdns-l,y mode1-

i,Ag thG:i.r chaaging'.environmenta. 

sites, fil1 t!it\0,S-t:xr, whd.:ca j.Jadicat:e for -each 'cu~tent ct,mpu

tation -~~ next inatruotion to be ~-d-, ,~ «ppropritte 

environment ( local structure) for the ,:c~~,WA, and other 

information. 

we ~hall not go into the deuaile betre of r.presenting 

the universe- and control- componerits of interpreter s,tates. 

The interested.,;Neder can c&nsult · the ~· fOr that kind 

information. we.will be, dea,ling al~ ee1tte!"#ely 'with 

loaal strueturn.in the rdlllind•r of· t.hia t?bapter. In the 

next see;;ti.on. we descril>e the action, , of a-number of 

primitive BL instructions. 
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2.2. Base Languag, Instruction~ 

We introduce'the,primitive iri1rtruo'.tijotl$' of BL, W'hicb ·: 

deline state transitiohe- &f. the ihter'prete:F fri dur? modei/:. _,. 

Each 'BL ;i.nstruction executed by ·t:tie i-,tt~4ier ;:bel.on9s).::to :. 

activation of the p;roc~~ .•. -~ ca,l,l,2 -tiut.c~~l.,~x-uot.ure 

corresponding to t~,;fi; activ,:~1:4911 the current local structure 

A 

ation code and· · tap - ., to· th:ree 

operation, 00de i• underl.ined. Mf.)st.~~ the o~r~~- of~ 
; ~ ... - ' 

I 
:. ' .. ' -· - ' - ~ 

th~ various ;i.nstructi'c,nana,re -ael.ector41i, Which are fr~quen"t:,lf 
"" · <7- ~ (' :,_ . • -~- > 4 ~ :r ~ :...... ~ \ · ' · 

c.l.s. We reserve·the letters •K, y, and z for selector 

names used -in thi1t _,fashi:on .. · 

we shall give informal descriptions of the effects of 
-· ;_·,_ ' t ! :- ·' 

BL inst~ctions, acQompanied by sam,ple "bctfore" and "after" 

diagrams of the c.i.s. A more forlQal definition of these 

Each instruction,_is _ae_si~;~ .~? t':1:.io,en:, ~1'ir-f~fi.~:,<,,::,: 

function in changing the c. l. s. This is; p•.~-1~, _the 2:r,f~q, ~ 
-~ ;~;:,)., ··:~,';, td,:.;.,·.:' ~·l,_, -.-" •, •. : ~.A,,.,, . .,ii-,, 
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role (OX', lllOre simply, the r~,le)d bhe instruct.ion, and dei

pend• op ~tain; ~n~ti,qna lleing •.U:l.J.le4 (6,.-g •. ·the pres

ence or abfUNJ.C?,~- at CIJlecific ~~ :Ln ·- -tille c .1. a .J • Thef 

' 
e f_f:ec::t 9~ ·Wl. ina:t.~~Qn wben . &\klh, -~ ~~ (lo not ho.ld is 

'l'-he m:,e: i-rnatt-ueti-on t• use&" to·'.create a new com

ponilnt i:h tbll' 6 .1 .. s. ·Provided 

Fig.;2.2 ... 1. role of 
i14!1lil,., : ,¢; 

· ~- l'i~•:l'Ole: of• the in•trilc: ... 

tion,, -· X --~- to·. -·acid( O?'U9'.i 

(ftgw:&i2 .. ~l). •'J!le new,x.

~,~;w4.U,: » an --.ty-lea•f;, 

_ iP'I. •~cOIIJM)D;IIO~.- .·t:ben -• the -in-

s truotion ortt~ x has a subeid-tMW --- -dfeot • .of ,changing t:he 

arc with .._leetpr x from the root node to point to a newly, 
~ . ' .. , ~ ~.· ': . ' ,'· . . . ·, ' . 

al1Q.cate4 node. Fo;r this subeffe~t th• former .x:-ce>mpqnent ... 
;; ' t~~1':-:: .~._ '.' :. •·•,,,,,;_r· > l,;, 

no(ie will remain· a• po.rt of the c.l .. s. only if it waa shared 

·Figure• 2 .• 2 .. 2 throu9h i.2-4 illus-_ . ... ~:. . 

t.t:ate s.ube,;ffecu of tii. instru~tion. sm,te x and its in

terp,J,-y wl.tlt the shari-ng prope,rt.y.. Portz.ion.a of a diagram 

enctoff4• in 4o~ted line• are no lfkl9er ,put of the ~ .1. s. 
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and can be thought of as garbage-collected. ,, '-', ,,, 

Fig. 2.2-2. A subeffect 
of create x 

Fig. 2.2-4. A s1'lbeffect j 
of create x 

-·- ~ .• -- --- -·- - ~-- ~ - ' ••. - ·-----~--- ' 

' .. ,. , 
I f 

\..J ). . ~ l,u 

\~ X 
C. d. 

·~ 

,,\ 
~0, 

-...✓ 

Fig. 2. 2 .. 6. Role of 
clear X 

Fig. 2.2-3. A subeffect 
of cfreat'e ·x. 

l ! I 
. ). •• i . 't. . ,; .. 

' . . .o►• 

. P'lg. ~~2 .... 5. Ro~e of 
· qlea~.)[ 

"'lt-

~ !' ,, .. . · .. ·, h 
.~ .. 'j -::, ·-· 

+ ~ 

·<h. ® 
C 

t1:g. 2 ~'2~7. A subeffect 
of ·clear x 

•'• ~- , a 1 , , 
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The clear instruction is used to make a node empty: 

clear x detachee .whatever hang-a downward from· the node x1 

leaving x witli an $mpt::y vlllue. The old vijlue of xis lost, 

ev,en if it was shaied with some other "ru;)de. Figures 2 ;2-s 

•d 2.2-6 illuat..,te the role of qlQZ' x. If there is no 

.x-c:ioinponent in theA::.1.s.,, cl99r x· · aet:e-·li-ke· create x 

and generate, on.. (fig. 2.2-7). 

The delete instruction removes area from the e.l.s. 

The are frottt tbe root node to the node • is r8100ved · by .. the 

.. ,. t I I t I' 
, ~ 1 = ~ ~ 

··~ 

.&1 
, .. -

·.~ 
~\ ' . ' .. 
,7 

i 

Pig"' 2.2-a. Role of rig... ·2. 2-9. c Role of 
delet:$ X . e ·x .i-

with selector m from the node xis removed.by the two-

· operand form delete x,m (figs. 2.2-10 and i.2-11). 1f 

: an ,ire to l;>e removed does not exist, then ~ su'.ba.ffect . of· 

:the. 4ela£! inatruct:i.on i• that no ac~i<>n · be' taken. 
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---··. _ __..,.... ___ . ' ··----~--·..__...._ ___ _ 
Fig. 2.2-10. Role of 
delete x,rn. 

Fi9. 2. 2-11. Role of 
delete·x,rn 

The const instruction is used to attach elementary ob

jects to nodes. If v is any elementary object, then 

£~ V , X causes the value v to be attached to the node x. 

The old value of x, if any, is lost. Figure 2.2-12 illus-

trates the role of tne in~truction con•t 5,x (where xis 

a leaf node) , and figure 2. 2-13 shows ii: subef feet of the 

same instruotio.n ( for the case when x ls not a leaf node) . 

, , 
' ! 

.. 1 ' 1 
., 1 I I 

·-,, ~ ~ .· ~ X !;j X ,; .. ~ 

~~h ~1 
rl-, 

.~ 

<b 
b 

. . ~ -1€)'. 
t i. I 3 

.. ...,_,, I 

Fig. 2.2-12. Role Of . Fit;. 2.2-13. •s,ubeffect of 
const s,x 09!!8 t_ .5 I ;JC 
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Arithmetic instructions such aa ~ •Mtr-~ mu:t and 

.2!x a:re used to ~ipulate elementary val~~,~:.· Por example,! 

., 

I :' I ,.. ~ I 

~---.. l 1:: ~- 'l ,:~ '" "~tt~ '•~~ 1 ,.•. 
. . . ·, 

: 3 

Fig. 2.2-14. Role ot-· 
adcS x,y;m 

the iristruat:l.bn fdd i;x, ¥~ z 
adds ~ values at~ache.g to _ 

nodea ~\~ y ana~~l.ac~: the 1 sum 

in noJe z (figure·2;2...:.14). It 

is an error -to attttmpt to-ex

ecute an aritbmetic i?_1atruction 

if one of the first two operand nodes fails to exist.or con-
". ) ";. '- .;- ·'· s 

tains- an improper value ( not a leaf nod• or empty or wron_g- -
... ' . ;;; ,.~. f') . ·_ ., ·-.. ) 

type of elementary object) • we leave ,tbe ef-fect _of tu~h an 
~ J . ,,_ ~ -l . 

attempt undefined. 

The ._!!nls. ~~;_;-µc:;tipn _is -~ .to., :,i,n~a;u~. sha:ring -be

tween nodes. The instrµction lig K rl'hY· r ~-- the node 

y to become then-component of x (so that y will be shared 

t , , 
l ~. 

't•·'1 ! 1 • l$ 1 • t 

' ' ~. ' l • I " 
; 

'1' ~ ~ !:I -.:· ~ 
---

)(, ~ i 
--• ~ tfn ),1., ·&> 

,, 

'~ 
' 

6- - j, t "" t 1'\ 

t 4 • d) t ~ ~ 
f 

~ ? • , 

,,. 

Fig. 2.2-15. Role of' Fig. 2.2-16. :Ri;>1e of 
Ji&Di x...n,y I ti·nk ---x f'l'r ;·y ,. 



between the node x and tbe root node). Tb~~, tscr1~~! ~,- c1.dd

ing an arc with selector n from node x to node y. _ Figqrt,_s 
.· . '~..... ~½:·' .. ':: ,. ',. 

2. 2-15 and 2. 2-16 illustrate the role of the in•\:~,q~i,on, ·~ ..... , . . . . 

link x,n,y. 

node with some elementary value, then the sub4!!ffect of t)l~. 
:;f , '.. 10.s-.J .. ·,., ... ·f:_,~' / -~ '\~~'': /. ·., ·'. ):; . 

same instruction causes the old value of x to be los_t_ ( f.i:gs. 
:}\' ;_ ., -:::,, ·: ' \ 

2.2-17 and 2.2-18). The nodes for x and y must be present 
··\ ,'.'..:.·-:,:-;\~ <!ci~+ ·.:.1J '"\f::·r· '. .. " ~; ·.,=~t,f<"--'(!ft}f)f~• ... ~.,r 

,. 
or else the inttruction is illegal • 

. Fig. 2. 2-:i 7. Subeff•~.tl 
,of n . lipi:' -i,n;y , 

node x has an n-component, 

makes then-component of x 

then the in•_t!':"1c.,,ti.c:>n -ssr'11':'~ _, ~-~--P, Y 
,'!:·:t:)·((<J1,_' < ...... -~·,{ :~1rt.J -•-~:~' ',-~,.,.; ·-·~ ... ,,.,,-,.,J,.},.,_ 

the y-c01DPOn•nt of tJ:lle _rOQt noge 
.·:·: .. ; .. , .. ":;:t-~;;~~(.,t'.l{] •.-i..~r~.1 .. ··· ~--e;,~: ~:~·-..c:~,:, .sf! 

( so that it can now be "addressed•• by fu.:r:ther BL .ina~ruc- ,~~ 
. - - , I . f!(L : '..' ,_:"; . .. , ~_;.('; 'L. ,,,,:·; . 

tions). In this manner a BL procedure inay gain •~~••• .. to 
.-": :t ,~': ··,i ~ ~·r -9 ('1 f! £,. ::-r;_ t -... / ·v r~,,.-,.,, .~ .'. ··.~· ~-- _ '·.: f' ~- :~'f .:. 

arbitrary nodes of a c.1.s. If x has no n-c~nent, then 
r"'"}{ ~~£11!1 ,.~ .. ,f_.~'.:-:~,-·-. :. ·•)'!!!°,, 



the instruction select x,n,y generates one first, then, 

· makes it the y-component of the root node. This is the 
. .. ' 

principal way to construct BL-objects, i.e. by using the 

select inst:r:-uction to add on components. These two roles of 

the select instruction are depicted in figures 2.2-19 and 

2.2-20, respectively. The root node may or may not have a 

y-component prior to the execution of select x,n,y. If it 

does, then the value is lost unless it was shared. 

Fig. 2.2-19. lst .rqle of 
Sfflegt x,n,y 

Pig •.. 2.2-2:0i .. 2nd role of 
t.tA1srt x.,..n, Y 

The aPplY; instruction provides for the activation of BL 

procec::ltlr•s. L•t the p-comwnent of the c.l.s. represent the 

BL code ·for some procedure (i •. e. be a procedure structure). 

'l'ben the instruction apply p,x activates this procedure 

in the following manner: First, a new, empty local struc

ture is created. The x-com.ponent of the c.l.s. is then made 
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the $par-component (parameter li;nk,ag;e~: for. t~~ new ,.loc;e\l 

structure (we refer to the BL-obje9t x -s a11.arpent_st5:uc-
.. _ : ~ ~- , , , ~ ·"' _ • • • • , i'j. •• .!lf ·k .. It ., , • ? . , , ,. 

ity. This means that the newly-creat4'd lo,qal &ft~~~t1.p~:~. ,b,e-

comes the c.l.s. and the old site of a.ct.iv~ty is made dor.-
-· , . ' .· ,' . . :' .. \ ·. ' . - . , ' . ~ - :, ,; 

the procedure p until it is told to return. 

The return instruction provide• fo~ te™ru,tion of the 
,,' a .. , ·,, :\ : : • • · r: · ·. 

execution of a BL proced1.1r~ ~u~d J9r r•tq~n, t.~L tll0: F~l~i.ng 

procedure. Upon execution of a retuJ;n inatruptig~, th.a 
,. ~' . . '• 

c. 1. s. is deleted. All its components vanist,.. The paremeter 
.,. ' . 

. '· ~t _,, \., 

linkage, since it shares with the argwnent structure of 

the invoking procedure's local •tructure, remains. control 
". 

is returned to the dormant site of activity for the invoking 

·procedure, and its· local stru~_; becotnes 'the'; hew' c .1. s. 

The invoking procedure resumes': from where it l$ft off~ 

In order to invoke a procedure, it must be represented 
' -. ' .•' ,-.' ,;,;- .. : 

as a component of the c.l.s. The J!2Ve instruction makes 
I 

data in the ttrliverse availabU'.'~ .. invo~Atibt1°alf ·a· BL pro

cedure. We will not have OC!!Ca~l'oti th"Jil•e thii Instruction 

here: further details are found in.€he Appendix~ 

,•, • r~,•,' "~.!,;••1• ~ <. ;.~: l ./ 

The instructionil of a BL procedure are labeled with 



-36-

natural numbers: execution ofa BL procedur, consists of the 

successive execution of its instructions in sequence accord

ing to the numbers labeling them. The remaining BL instruc

tions provide fof changes in the control s~quen~e. Each of 

them has as one of its operands a label J, which must be a 

natural number litbeling some instruction o·f the procedure 

currently being executed. 

. ~ . 

The instruction goto t transfers control to the 

instruction irr the current ·procedure whose label is the nat

ural numbe:r /,. 

it'he instruction elem? x,t tests whether the x-com-

ponent in the o.l.s. is a leaf node (e~ementary object). If 

.!!2.:E,, control passes to instruction number 1,. 

The instruction cbeoka whether the x-
' 

component of the c.l.s. is an empty ieaf ngoe (i.e. no com-· 

ponents and no elementary value}. If~ empty, control 
'~ 

transfers to instruction number J,. 

The instruction ponem;etv;? x.,J, perforllS the eaaie 

test as the correspon<Ung emetY? ,i.nsti;µction., but control 

passes tot if the x-component is empty. 

The instruction loots at the x- and y-
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components of the c.l.s. Both must be leaf nodes, or else 

the effect of this instruction is undefined. These nodes 

are checked to see if they have the same elementary value. 

If the test fails (i.e. their values are not equal), then 
. . ___. . 

control passes to J,. 

The instruction tbe.x-

component object of the c.1.s. has all m~ootnpQnent. If not, 

control passes tot-

The instruction same? x,y,t checks whether· the x-
• I 

and y-components of the c.l.s. share the same node. 

i.e. thEty are distinct nodes, control passes to J,. 

If not, -

In all the above conditional instructions, if the 

c.l.s. fails to have a component indicated by some operand, 

then the effect is undefined. 

other conditional instructions analogous to the above 
.. I 

ones can be defined (e.g. testing whether one elementary 

value is less than another) • We. will have· no need here for 

such additional instructions. 

Finally, we discuss one rore instructlon ·tbet will be 

needed. Given a BL object, we will want to be able to 
.. . 

access each of its components, without knowing J:>e:£orepand 
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the names of the selectors. The getc instruction serves 

this purpose. Successive executions of the same instruction 

getc x,i,L extract successive components of the x-compon

ent of the c.l.s. by causing the i-component of the c.l.s. 

to assume as its successive values the selectors on the arcs 

leading from the node x. No component will be extracted 

more than once, and control passes tot when no more com

ponents of x remain to be accessed. 

2.3. Programming Conventions for BL 

In this section we introduce a few programming conven

tions which will make BL procedures easier to write and un

derstand. We can view BL as the JNtchine language for a 

hypothetical computer. Our conventions are then similar to 

the progranuning features provided by a macro-assembler. 

Although individual instructions in a BL procedure are 

eg? x,y,no 

const 'yes', ans 

goto skip 

no: canst 'no', ans 

skip: .... 
Fig. 2.3-1. Use of 

symbolic labels in BL 

labeled by natural numbers, 

we shall use symbolic labels. 

For example, suppose that x 

and y denote leaf nodes in 

the c.l.s. Then the BL code 

of figure 2.3-1 places the 



-39-

string value ":yes" in tlle .node ,an~ :i::e:,t~ VJ~lµ.a,1, of x and y 

are equal, "no" if they aren't. 

The nodes add.reseed by operand•:· in tlle, BI. inst,pictions 

must be direct components of th•.J;'qo:t.npqe 0£,the c.l.s, 

With the seJ.ect ipstruc.tion, we c~ aq~ ~es ftl:rtber. 

fig. 2.3-2. 

d~ AA the <:. 1.,,.;, 
_,•)..,., , '"K • 

pos~ we wish to q~~• .tlle v~ue .. 3 ip. 

figure 2 .3~2. J.nto, tlle value 4,., Thi,s is 
• - I ~ ' ' • • a • '-' ,' ' , • > • • • ' 'f ' •::: 

or~~' 1;P, ac~as .~be proper node, we 

,~ .. 

times.. In t;he, ~ cod◄ bhat.<4>erfprms 
,•. •. ,, ; .. .' """'' 

~ .("·_\ ,. .· 

our task ( £?,~• 2. 3-+,:t~,,/ tbe festrved 

~elec~~r $tez+p acts as a temp-
,.... __________ ___ 

select x,b,$temp 

select $temp,d,$temp 

se lec.t $ teitlp, ~, $ temp 

const 4,$temp 

"dotted pathname" con,vention 

to 're'f'er to" appropriate. nodes, 

we ;can, a.bbr;•vi;i,.te this BL dode 
"~ .. ,· .' ~ 

Fig. 2.3-3. BL code 
to··. accees · a node· as ;the si'!'lgle ~•truction 

coqet 4rx.~.e'... Thi:• oan be 

viewed as a mact"o-instruc.tion wboae . .expansion .g.ivu the re-
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thls ··cc,nventiGn a ·extending "1iddt-tNa«bili~11 to arbitrary• 

nodes in the c.l.a. 

•· ~11 maJr.e freq\ierit ·1.lfte o'f a ~ubtttitution cap

abi:l:i'ty, w'iri.dtr· 1•: '-pl'ovided" by a 11
•• cerwetltion.. If z is· a 

1etrt· 1'!dde 'cont!.aitti119 some e1emeritary vdb-e, . tlien * z denot&s 

2.3-2~ •~ ctenotd tbe value 6. 'l'he:'ebbr~iatlon· COQ!t *z,y 

specififl ·,the ·- tnmsitfon aa th• in•tt1.ur.ii91!,. OC?P•t 6,y 
,., 

whett· t:'twf e'..1~•·· ia in- ·-~i•: ••tae. ·,fil the :.e. l.s. · o.f: f~~Jte 

loop: 

out: 

2 • 3;..4, the 1•t nOde 'tfi th v~lUe . :2 can 

val1,1e 2 i~•lf\,'d~ _he tdapi;g by .IUlY. of 

t:h·• forms * (x.a), * (x.*z), * (*y~a), 

or · * (•y. * z) ) A• ~ . ~~~-;'~, •~UlJ>~•, the 
. . '. ".,_ .. ,., . 

sittc· x, i,'out · 

. ·99i)pt-- O·,x~••i ' 

all dte·· ~•itt• o! :the ql:,-.. . 

je~ a •: -... ·· -Not.e ·that the 

le•f node-. ,J_ ,ieoe~. iaa •u~
ceaai ve val~ea the names of 

. . . . 
Fig~ 2.3-5. 
·~ ' ,; . the: ••i•cto~• :ftoin x. · Thus 

tb•i-.4c,t:tlt{ pAtlm._ X ~ w i ~eferi' .· t,:j> ,~ a~e~J;ve COi\-
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ponent nodes of x. 

We now define several macros for BL to denote commonly 

performed functions. The .. setl macro ( a.et qp l.o.cal 
~~~., ~ :- - \ : ' 

structure) is used to set up new components in the ,~.J,--~· ~. 
, ' -' , .. . ? , I ; 

; 

figure 2.3-7 gives an example of its effect~ 

-
.setl (xl, .•• ,xn) 

> . 

create xl 
' 

~~ "' . . . 
create xn 

:Fig. 2.3-6. Bxpan'- Fig. 2.3-7. Effect of 
sion of .setl macro .s~_tl ,(~,:Y:), 

' . ' ,:.,. ·' ' -,.: . ' . ~ 

The remaining macros. ;we will use deal with linkage be-,, 

tween BL procedures. We first define a proc9dure closure to 

be a BL-object with two components. · 'l"he $~e~.-.q.,mponent : 

contains BL text of a pr,;,cedure, apd the $env~component don

tains refeJ:"ences. to the global variabltijif naJne4 ~n the pro-
, ~ ~ ,.- , .. '? ~ !;> ' ' .,_ ' 

cedure. (Note: :that "$ 0 • i,i a legal c:~acte:r;., iii ai,.) 

The .call macro expands into BL code to ln~oke a pro

cedUre. In the ·aefini tion in figure. ?, .. ~1~, the _node p ,~fJt 

be a procedure closure, ~d al, . • • , an are selectors 
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leading to the argumenta, 0 Which -y be ubi,:rary BL-objects. 

· cr•ilt•f $arg' -· 
- ~,,, $Utg,.$gl;r,b,p~$~ 

link 

.]i11*·· 
- _!ll)lX 

.~~:i;CJ,_!l~~ 

p,$arg. 

Pig •. 2:.3-8~ ~ion of 
the .. call macro 

r, · i ··• ·.... ,/'.· 

Figure 2.3-9 gives an ex-

IUltple of the invocation of 

a procedure p hiving a 

aingle global reference w1 

the prooedure pis called 

~-· U9\118•~• ,x~-1U'ld-·y;., 
~ . . ' 

: [ '/, ,_ . ~ ~ .: :..:· _; . { 

~,~~olcl-♦.-1'.-a. u ·i•-ttte 
i . 

. ~ocal •tructlure of. "the·- in-
: . ~ -. ,' 

t 1 

tolc.ing ~r!!i~ ~be 

< • 0, .. ,,,, ,is -,, • 

~~~£~\l~,! __ g:« .ilie.,..called . .pi-o~re ••- -!ihe-J\•ft:~r"··-piatttri 

shows both the old c.l.s. and the new c.1.s. when cQntrol is 
'<',.,,. ~;.!:·--; ,. ; i ~ . ... .. ~ :·•· . .;-:r _. ~- r: r. . s:·~10 ,.,.,. :, ; -,' '. 

'···~-. ,. ' ' 

paaaed to the procedure p. 

_) c'.l,..,. - 'l' - - -•-'.';; c 1-•-
- -,:; ~ - ,,,,-.1:l ' . 

• ,. ~ ..,. ~ • ?" .. :t ,f J ~ < 1 ~ 

~Wt 
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The .getp macro (get .e,arameters) serves to bind the 

formal pa~ameters of a procedure -h;,tbe actual arguments: 

with whi·ch tt was invdkl!ld. 
,. 

makes th, global vari~es 

T~e . ge;g ,!fer~.~( ge:~ globa~s) 

nYM!MI,, in{i p·~@ ;ic¢essib)le 
- ._.} t~- ·-.:: ' " ~;:'f ·; ; .,-. : .; ' 

in its body. These.two~s •e def~rfed•ip figures 

2.3-10 and 2.3-11. 

---. .. 
. get_J;> (xl, ••• ,xn) 

select ~pai·, 1, x1' 
., ' ~ ~( : . . . 

select $par,n,xn 

Fig. 2.3-10. Expansion 
of the .getp macro 

~e ., .. ~"- . ·: "'1 ,. ... ,_ 

select $par.$glob,xn,xn 

Fig. 2.3-11. Expansion 
of the .getg macro 

The first actions a procedure normally performs when 

given control are the retrieval of parameters c;Uld global 

variables (using the .getp and .getg macros respective

ly). Figure 2.3-12 is a "continuation" of figure 2.3-9, 

showing both c.l.s.•s after the invoked procedure p executes 

the two macros .getp (u,v) and .getg (w). 

With the BL programming conventions that have been de

fined here, we are now ready to use BL as the language of 

our semantic model. 
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Fig. 2.3-12. State of the two c.l.s. • a .~r pro.c,ecwr:• 
p -eeute• tb*', mae~ .•qetp (u,v) ani!.' '~'C]etg (w)' . 



-45-

Chapter 3 

STRUCTURES, POINTERS AND SHARING 

3.1. Mini-Languages 

In this chapter we present·a series of ~ini-languages 

which treat the issues of structures, pointers and sharin9. 

The progression of mini-languages is hierarchical in that it 

starts from a few basic concepts and proc~eds outward by 
. 

extension. Mini-Language 0 is the "kernel" language, iso.:.. 
,' "' ,;_ 

lating the notions of variables, values ~nd assignment. . . . 

These basic concepts form the core for our domain of dis

course. Mini-Language 1 is a direct extension of Mini

Language 0, adding to it structured values and the notions 

of construction of structured objects and selection of com

ponents from structures. Mini-Language 2 extends Mini

Language 1 by including pointers and the t.wo operations of 

building and following pointers. Finally, Mini-Language 3 

treats the idea of sharing of componente.' ~t.¥e~ objects. 

By revising the concept of structured value found in Mini

Language 1, the notions relating to pointers are subsumed in 

Mini-Language 3 by notions relating to sharing. 

Each mini-language is treated in a separate section of 
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this chapter. In each section, we first di~cuss in general 

terms the concepts addressed by the mini-language under con

sider·ation. New terminology is introd~~,. . iM)d .we .descrtbe 

the relation to previous and/or succeeding mini-langUages. 

we then supply a BNF-style syntax together ,nth a descrip

tion of tbe syntacitic classes and What they represent. The 

eemantics of the mini-language is •tated informally, a la 
. . 

ALGOL 60~ We then formalize the ..-ntica by giving samples 

of rule• for t~anslation from the lnini-language into the 

ba•e lan9Ua9e BL. 
l ,. • ,i, '\ ~ 

Each seqtion i• conclud-.d by ·a "movie" 

illustrating the interpretation of the 11.t program produced 

by the translator from a &aill)le program in the mini-language. 

The final section of this chapter applies these mini

ianguagee to the task of describing the data structuring 

semantics of 11 :-eal-world" programming languages. The lan

gUages PAL, QUEST and SNOSOL4 are uaed aa examples. 

Mini-Language 0 (ML-0) is the foundation upon which we 

build our mini-language setup. In introducing the concepts: 

of value, location and assignment, MI,,-0 serves as a k$rnel 

,or our ••tot mini-languages. The noti~~s of structures, 
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pointers and sharing wili emer~e as ext~~~ions to ML•O i~ 

succeeding mini-languages. 

Al.l our mini-l~gu~~s, st4rting witb -~,-o, :.Qpera~e 

within the conceptual ,world, of ya~u•&:,fl~Or" in loca'.t:tons , 

which we call cells. The relationship betwe$n a cell ~nd 
. . .., ,. ... _ ·:: 

the value stored in it is called the contents •apping. A 

cell with no value stored in it is said to be empty and has 
, ... ; __ 1 

no contents. We are concerned here with the fundamental op-

eration of assignment, which is used to change.the contents 

mapping. In fact, the· entire p;trpose. in,, erect.ting ML-0 was 

to isolate the conc9pt .of assignment by placing it in as 
; 

minimal and austere a set of EJurroundings as po_ssible. This 
, ;· '. '. "" --- : ..... ;'.' ' ' . '._ . , .. ~ , .,_ 

noti.on of assi~nt will r~~- ,~geq in -~- -z;~i:ng 

mini-languages of this chapt:Ett/ ·. 'l'li• assignment statetnents 

of these languages will be 11 consistent11 extensions of what 

we define in this section. 

Another important cont:ept we deal with· here·· is t'he 

notion of bihdtng. Each ;iden~!ffet" ·irf mf Mir~O'progr2iin is 

associated with a unique and di'stinbt c.itfl. -, T'hfift asadct'a,;_, 

tion is :called the bitiding 0£ ~: 'icfeirl:{ff4if,i} . Tb~'Value of 

an· identifier will be the contents- of ;the' ~11 to wbic'h it 

is bound.· (An -identifi-ei:- bound'tb an empty ·c:e:tl ha.s· r16 
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value.) Unlike the contents mapping, the binding relation 
: .. 5 S ! .~ , . · ~ 

remains invariant throughout the exeoution of an ML-0 pro-

grd.· ·Thia' iri~aitiance: ia a·, pro!JttrtY1 n6t ortly of ML,;.O, but 

of'.0al1.1,t'he lti.fflt.1111\tui~•· in· thla:·t'tieet•~ 

We give a BNP-style syntax for ML-0. Informal use is • 
t . . 

ma.de of the ellipeia ( •• .•• ") to indioat:.~ r!t>9ti tion •. Two 
., . 

constants; and (identifier} denotes alphanumeric strin~s 
; ➔,., ~: ,_,,, • ' • ·" :~· ' 

starting with a letter. 
,. 

: : = (program} 

(asiti~meiit)''·. :" :~ 
(assignment} r 

·a 
;_ ~ >" 

(destination} 

(~iriW~iO\i) <·~--!~'} 
(desfi~ation) 

(generator) 

: := -. (id~if,iep} j • 

::== (integer) 
.-~: .·• ·:-

Description 

• •• : {assignment) 
. 4 .. , ·- , . 

I ~' C;!: __ :; ', ,· 

+- (expression) 
·· y- - ✓ ~~ra&):t') 

1o ~44lir•t:and aasigruJaept, we .. ~ c~~ •~t;ac:t,ic 

elas$e& re~atin$J,• to valu~. -~~tl~ ~l~: A .4~~or} is- a 

p;i:ece of ~pg-ram t~t ~~ting ~- c:V&4)Wll_.- i Allr ~UM'· . .-in, :ML~O 

at'$ ~nt•g~•r •~~ mini-J.~~ :wKJll.JM At}ler t~• 

of V~l:l~• _U "8).;J.., A <de1tj.nat;J.Qn)• ~a,,f. piNe.,o:f p~ant, · 

text .refe!':t.tnt ,to a cell; (deatil).a~- ,Mt,J,U,--0 ~ •imply 
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(identifier)s, i.e. variable names. The reserved word nil 

will be used to signify empty cells. An (expression) is a 

piece of program text which "yields" a value. The semantic 

description below discusses ·evaluation.of (expression)s in 

ML-0. 

An ML-0 (program) is simply a_se~enge of {a$signment)s, 

each of which consists of a (destination)· and an (expression). 

The basic.meaning of an (assignment)' is to caus~ the value 

yielded by the (expression) to be stored i~to the .. ~ell re

ferred to by the (destination). 

Semantics of ML-0 (informal} 

The notions we have just introduced will now be made 

more precise. We give the semantics aasociated with each 

significant syntactic class of ML-0 (now as a description in 

English, later more formally via translation into BL). 

( 1) t2ro9:ram~s: The execution of an ML-0 (program) 
..-' 

consists of two steps. First bind each (i<Jentifier) oc-

curring in the (pro_gram) to a distinct, empty cell. Then 

execute· all of the (assignment)s-sequentially, left to 

right. This rule giving semanti~s of·. (prograrn)s. will remain 

intact for all the subsequent mini-languages in this.chapter. 
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(2) (aasignmept).s: The execution of an (assignment) 

consists of three steps 

(i) Identify the cell referred to by the 
(cWatinaticm) '.can,~,tlle~:~i.~.__. ,INJde, of 1::he 
(aaaigmnent) (see rule (3) below). 

(ii) Obtain the value yielded by the (expression}' 
on the right-hand •ide (aee ~le (4) below) • 

. ( iii) Make tbe 'value f'rom c,atep (ii) . th~ new contents 
of tl,e cell fr°'1 step (i). -· ' 

Thus the e:ffect of exe®ting an <•••ignment) is a chan;9'e in .· '. ' . _,· ' . 

the contents •p~ing. This rule, like rul• c;), will govern 

the semantics of the remaini~g mi_ni-la:n9U&gea. 
, : - • ' -. - ~ • ,:- ·; + 

in ML-0 is always some {identifier), and refers to the cell 

bound to this (identifier). Thia binding is determined at 
·, 

the beginning of program execution1 u .- have already said, 

it remains conatant throughout execution. 

(4) (expression)s: There are three varieties of 

" 

(expression} in ML-0. We describe their aemantics in rules 

(5), (6) and (7) below. 

( 5) qil: The ~P4!cial symbo~ j\il,_indic•tea .the 3:bsence 

of a value. Any ti• we are directed to store in, some celi 

the v_alue yielded by an (expresai(?n)_ ,lhich is n;~, this 

means to make the cell empty. All of our mini-languages 
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treat nil in precisely this manner. 

(6) (dest;i.n§tio.n}s as .{e,spression:)'s.: When a 

(destination) occurs as an inston<rle,~£ap (expression) (in 

ML-0, this means on the r.ight~nd·•ide of an (assignment}), 

it yields the value contained int~ cell to which it refers 

(see rule (3) above). If this cell is empty:., tbe 

(expression) is treated like nil (see rule. (5) above).· 'fhis 

semantic rule (known elsewhere as "dere£erenci.ng'""l will~ 

verbatim for all our mini-languages. 

(7) (generator}&: A (generator) in MI.;~O is an 

(integer), which is the decimal representation of some 

J 
integer value. It is this value which is yielded by the 

{generator). 

The above seven rules constitute our informal descrip

tion of the semantics of ML-0. 

BL Representation 

The semantic rules we just gave ar~ ~a bit long-wi11.ded 

and imprecise. A rigorous description of the semantics of 
·-f-(i:--' :· i:'~ ·": . ·- ';' ·'":,' - . , ' 

ML-0 can be obtained by 11 translating11 ~hese rules into BL 

instruction sequences. Before doing thi_, we dis9uss 9Uf 

basic conventions for representinc, mini-1,-nguagJ programs.in 
: : .,_ f . ,, ~· 
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the base language model. -To each s,rovraa in ona·o£- our 

cells used by the program. ararepnaantie8bynodes in the 

local stru,ctur&. - ·Por • each iclenttel.a <>enrtting in the pro

gram, there is a cbrreSIJO!ldtngly namifM!. cJOnipOt,snt of t.be 

local structure wbll-ch- gi1rea i ta•; -binding-. · In · other words, 

,i,.ode of tba: lbaal · structure. ·'l'tW,--eoat81ttif:6f t:'his cell is 

the object of its node. 'llwa tlle-ar.--trauslat.!lort of any 

to bind_ the ident:i,.f~ers of the 1»x:~9.r,-. ,o» ,~-o.mplef· tb• _ 

proi,_ogue for>~ ML..;.o (1)~9.9,.rll\\} wh.Q•~ 1(!~~ifi;~f}~. a.re x, y 

and z will be the BL macro-instruction .aetl (x,y ,z) ,, w.bich 

expands into the sequence cryte x; cr1ate yr creafe z, 
,, , . , , . ;•·, ':'' ,., I 

'- creating nodes for the cells bound to theae <identifier)•· 
'·ti,,• :.; ,·' + > 

Integer values are .represented in the base language model l>Y 

element~ objects of type integer. 

A-a £Or the translation· ruiea themaelv.;~ we give sample 

ML-0 statements·. (( a:aaignlllent)a). and the BL code they are 

translatecl into. 'Each example ia illuat:rated by one or two 

11 befo:re and. •fter" pictures •bowing th_; chang~ the statement 

makes. in the" local° atruc·ture. Al though our examples are 
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meant to be indicative rather than exha~stive, they should 
~ : J ' 

be more than sufficient to give the reader a complete pic

ture of the rules for translatiO!). fr.om M,L-0 into BL. 

There are essentially thre~ k~s of.(assignmept)s 

in ML-0: 

Cl) (identifier) t- nil 

e.g. x +- nil is t»an,lated 

into the BL code 

clear x (fig. 3.2 ... 1). 

(2) (identifier)+- (integer) 

Ficj~::. ·:a.2-1. Effect of 
the, .~-P < as.sigmne1Jt) 

X +-- n11 .. ~ 

e.g.· y t- 2 is tr'anslated into i;he .~~-"~d~ 

const 2,y (figs. 3.2-2 and 3.2-3). 

' 
~ ~· ,,, 

I I I 
~ ~ : ~ 'll. ~ • © • ' @ 

. ' f,· 
. ' 

"' , 
I I i 

i1 =~ t.t . 

Fig. 3.2-2. Effect of Piq. J.2-3. Effect of 
y ... 2 in: ~:-q ,, N:.•+:•· 2.;.I,:· .i3--~ ML-0. 

(3) (identifier) t- (identifier) 

e.g. y +- x is translated into the BL code 

.call assignO, (x,y). This code invokes a BL pr<:>cedure named 
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-assignO, which performs the operation specified by the ML-0 
-~ ~ 1 t. 

{assignment). The definition of the procedure assignO is 

shown in .figure j.,2-4, and two exaDtP1 ... of the ML-0 

(aseigmllaftt) y .. ·x ·'.d'e pi~red··.ttt ;ffturi• 3'~'2~-s. 

assignO: .g~tp (u,v) 

em~y~ '11, mov 

cle•r v 

·fflOV: conat· *u,.v 

Figure 3.2-4. 
Definition of the BL 
procedure a•~O:., 

' 

3. 2-s. Effect of 
.i.n JU,,-0 .· 

The three translation rulaa here give us a precise formul~ 
..., .. " ·. ,, 

ation:for the aeNntics of ML-0 ~n terll8 of tlle ••~tics;of 
i ~ 

the base ·language raodei. 

ML-0 Movie 

(program) together with its BL translation. our exam.pie i$ 

accompanied by a sequence of picture• forming a 11 movie11 to 
.f• ; 

illustrate the changing state of the local structure as the 

pr~gram :ls ~teipreted, statement by statement. 



ML-0 -
X .. 3: 

y ... x: 

Z +- 47 

y .. .ill 

-ss-

. aetl (x,y ,~-) 

const 3,x 

. call · as•.:igno·;· Ci; y) 

.Q41~ , ... ,4~Qli:(;c,~) 

const. 4,z 

clear y 

I !, 

... 

Mini-Language l (ML-1) adds tbe ru>tion of data struc~ 

ture• to the' foundat:!oif·pro;tir4MF-bf~MI, .... 6:'-·' ie ~ 1iav~ said 

before, a atruct:ure iw· a aa1:at:10Sfic::t:-'ftlcffi- conafits of .:tridiv-



-56-

idually accessible component objects. There are two funda~ 

mental operations relating direct1y to this concept of 

structures: (1) construction of a structured object whose 

components will be. obje.cts ,.,,ith ,given,.values, and .(~.) selec-
- ' : ' • ,I, , • - ~"~ 

tion of component objects ·,from a stNC'ture. ML-1 provides 

for these operations while retainingtntact the concepts and 

mechanisms of ML-0. In particular, the notions of cells, 

valµ~_s_, ccmtonts, binding and .. aaaigrunent ;-Hte•-e,caetly··as 
; ~ :; 

·before. 

' '.~ ', ;., 

. ":I_n •ddit.ion· to the integf!_t:'va~ues fQund in ML-0, .ML .. l 

~, .. ~·.. ''. ~ . 

provi~•, a new class of structtutea.,!. A atructur«f/'.vilue qon .. 
- ~~ - . ,~ 

sists of a sequence of compc:tment values/ ('Which may be int-

.. eg~rs or .•ti;:\laturesJ. .To .. store .aw•y a ataNetcus . ..i-valve, -we 
. '::':"" 

,:-o. hold the values :of iis components. This r;qui.;.ement is a 

departure 'frO)n ML-0, Th ·wbicb.· 1111 ·aells i'1 use are b®nd t~ 

.... identi:fters. componel'lt ·cells must· now be handled by some 

kind of free-storage nian~,.•~t- ~egbni~,c'.~ i .q!ll-.:, allo~ 
__ , --· •. -~ • ·: .. - .:-,_ .---~ ~,,..,.._.,., .. ~ .' .¥,, • ... .... , ,. ··"·····~ ... . ' 

cator. 

o~ vice verea). There are no restrictions on what values 
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may be stored in which cells. There is a need, however, to 

detect references to nonexis~ent cq~ponepts ot a structure. 

Such error-ch~cking will have to l:>e performed RY the defin-

ing interpreter. 

Syntax of ML-1 

There is a new primitive·syntactic class here, namely 

(selector), which denotes alphanumericstringe together with 

integers. 

(program) 

(assignment) 

(expression) 

(destination) 

(selection). 

(generator) 

(construction) 

(field) 

Description 

::= <assignment> ; ••• ; <asslgrifuent> 

::=(destination)~ (exp+~•~ion) 
'._' ' , '• " . 

: := (destination) I (generator) @. 

::= {identifiEit) f {selection) 
.. -.. -
: : = 

::= 

(selector) 2! .. (exp~•!a,i<;:>11) 
,, : •. ' ',} ' -

(integer) I (construction) 

[ (field) ; ~ ~. 1 .{fie1d) ] 

( selectot') : · < expreesion) 

Structures in ML-1 are sequences of component values. 

Each component in a structure has associated with it a 

(selector). The selection operation gives individual access 

to the components of a structure by using the (selector)s to 

indicate the appropriate components •. ,~Thus; \for ;exampl~, the 

(selection) a ,2! x refers to the coaponent of the struc

ture .x having the ( aeleator) nam.ttd, "a" • 



The notion of <des·tination) ,J:a extended in ML-1 to in

clude selec!tions of component objec·t• from structures. In 

particular, (selection)s may appear on both sides of· 

(assignment)s. This allows ·for selective uRd•t1ng ctf QOJn

PPnents of a structur~. A {sel.-ct:.;i.on) oc;:curs as an instance 
, ,, ; , '' 

of a {~~•tination) an(} refera t9 ~.- cc;>np:>n•11t .. _cell for a 

structure. In this way, ML-1 preserve• the ML-0 a111sc:>ciation 

between. ( d~stipation )s and cells •. 

. . . . • ,. ' _·.._.i.:r< - . . 
Also as in ML-0, distinct {deatination)s refer to dis-

tinct cells. There is no s}laring
1
~f data. 

All va1u•~ ih ML-1 a~e created by instances. of 

(generator)s. A (construction) ie a ape~;J.al ~ind of 

{generator) prcwidad by ML .. l'for· blt;i1clin9structured values. 

In a (construction), we simply supply (expreasion}s yield

ing values for the components with the associated (selectors). 

Each component name/value pair is called a (field). Thus 

the two kinds of {generator)s, namely {integer)s and 

(construction)s, produce the two kinda of values in ML-1. 

Semantics o.f HL-l 1 ,ainfoppaJal, 

As witbML-0, in•order to lend preciai-on to the notions 

we have introduced, we gi"e-an irt:fOnla.l d.-cription of the 



I I 
I 
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semantics associated with each significant syntactic class 

of ML-1. 

(1) {program)s: The semantic rule for an ML-1 {program) 

is identical to rule (1) in the previous section for ML-0 

(program)s. 

(2) (assicanment)s: ML-1 (assignntent)s work by the same 

principles as in ML-0, but the.re is. a new factor here. S~p

po~e the value yielded by the {~Xp}:'ession) on the right-hand 

side of an (assignment) is some structure. Then new cells 

must be allocated to store the component values of this 

structure. The component cells are said to be spbordina.te 

to the cell for the structure'they belong to (i.e. to the 

cell referred to by the (destination) on the left-hand side 

of the (assignment)). Moreover, if a cell containing a 

structured value is assigned some new value, then the com

ponent cells subordinate to this cell are detached and left 

for the cell allocator to garbage-collect. Structured val

ues are copied on assignment, component by component (and 

recursively for structure-valued components). 

(3) (destination)s: There are two kinds of 

(destination)s in ML-1. (identifier)s are handled exactly 
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as in rule ( 3) for ML-0. We now discuss ( se_lection) s. 

(4) (selection)s: A (selection) consists of a 

(selector) and an (expression). The value yielded by the 

(expression) (see rule (5) below) is determined. This 

value must be a structure, or the effect of the 

(selection) is undefined. Furthermore, this structure must 

have some component with the given (selector). Finally, 

this component must be stored in some component cell (which 

was allocated when the structured value was constructed). 

Then this component cell is the 

by the (selection). 

cell referred to 

(5) (expression)s: With respect to the three kinds of 

(expression)s in ML-1, the occurrence of the indicator nil 

or of a (destination) is treated exactly as in ML-0. As for 

(generator)s, the only aspect we need to explain here is the 

semantic rule for (construction)s. 

(6) (construction)s: A (construction) consists of a 

sequence of (field)s, each with a (selector) and an 

(expression). Each (field) represents a component with the 

indicated (selector) and with value yielded by the 

(expression). The rule for interpretation of a (field) 
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. consists of three steps --

(i) Evaluate its (expression) • 
... ,••.,.--~.\-.·.'T,,•'·~·rt•r.-........ , ;-::irf-•i; ~f\'-'-i f""-i:: .f,)"-;dn•~1,:3,j i;l.·".tJ·"' :'!~:··• > 

( ~i > All6c'ate'"a 'new' 'celi and· ,;tore' -the' value from 

. :::: fi~,- ~eif~,~J~fu~~t;; ~~~s r~·;i; if 

(iii) Associabl. .thel;rilw}¥ a~ bo~1:'''~1 
(and the value it now co~tains) with the 
( sele~~tf_F}~.-9./ ~~ :r~~'fi , - rM :: .. ' , 

Th,e.· semantic rule for .• ~.- {cpq.•tr~•t·M\; ~''~~~e,t,,,.~~ 

(ff~~a1_s·_ ~e,quentiallY,!~}et,t ~ 1~, .~~ s~;,,~,,~b<W~,rt'.'.( 

Tli!,i'"';-_eJ!~J.~s in a seri~fr ~. ~. W\ltl'-1'. #f-~1 :U\!:~

poner;i!-. 7ell~ ;ap_~:: aE~•s"}»J.e :py, .~~~~1 ,~fF. 'et~~3 - ~f;er 

k.?ow J t, , a .. _ ,t;\J$~¥rf, . tEWrey,. ~fo'Wt;lf~i 49B~r,J_P,,~C~ 

on (construction)s: the (selector)s of its {fi~~}~,.~; .. ,be 

distinct, or else such a (construction) is illegal and has 
'.5,1~. .• i'r.1::1;";~·::>.:'.~"i t".t'\ ~- ... ,,.~'!:·i i· c, .. ,,...,tM. rr~, ..._''kl ";.?,:,} 

undefined effect. 

of the structure and lead into ,QQel\ l:'t)~f!!~\~9 t~e corr

e~ponding component cells~ "i'~~ -~~l•".r'lftl!!'8~l,rfM<ly "MP 

is the, _eqv;~_oA~eqt ,. ( l~~l ~t;r;;qc~'Y;X'cY; -~~s,a rMV.~-~• ._. 

pro~i:;lllll~ which ,is,,.a s~;:u,cf;~,P v~,,~~~"l~-~qMa;;}~:~ 
'. •• •, j ••~ • • ~ • • • r .'..,_. .. ,.~.,, .. , .. -,,, .-_--.c .... ..,.,.,. . .,, 
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\ 

the variables used in the program. Another example is the 

structure generated by the (const~uction) 

f a: 1: b: [ c: 2 1 d t nil ] ] , . whose BL rep

resen ta,tion is piqitured in fig. 3. 3""1'1. 

A valid ML-1 (destination) corres

l)Onds to a node addressable by a oom-

pound pathname. For instance, if the 

structured value o'f figure 3.3~1 iB 

Fig. 3 .• 3-1. 
· BL-obj'ect for 

a structure 

assigned·to the· {identifier) Jc, thf!n the cell referred toby 

the ( destination·} c ·of b o·f x will be represented by the 

· node x.b.c. 

As with ML-0, a ML-1 (program) Whose (identifier)s are 

xl, .•• , xn has in its BL translation the prologue 

• setl (xl, ••• , xn) • We now treat translation of various ML--1 

(aasignment)s into BL, illustra,tinf genera! tratialation 

technique• that can be readily applied to any Ml-1 ·· state

m,ent. The following oases are repreaentative: 

{ 1) ( identifier) +- !!.!.! 

and (2) (identifier)+- (integer) 

ar(! bOth bandled·exactly as in ML-0 by the respective BL 

i:,rlmitivea 'Qlgr, and 'conpt. Note that the action of these 

t,L instructions disconnects any subordinate component cells 
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that need to be detached. 

(3) (identifier) t- (identifier) 

e.g. y t- x. This kind of ML-1 (alJ!Si~nt) poses a problem 

in translation when the source (expression) x hJt.s a struc-

tured value. In that case, the structured value for x.must 

be copied component by component ·fnto y, creating new cells 

as required to hold new componen~s of y. This kind of 

actionis·illustrated 

Fig. 3.3-2. Sample effect of 
the ML-1 (assignment} y ... x 
when X has structur'ed'. value. 

in figure 3.2-2. We 

shall translate the 

(aasign.inent) y ... x 

as a call on a BL pro-
• • .y :· • 

cedure named assign!, 

so the BL code for the 

etatenaent y ~ x will 

be .call ~ssignl,(x,y). The code for the BL procedure 

assignl is shown in figure 3.3-3. ·If x.isempt_v-.,r h~s-an 

integer value, then usignl works like tne·aasignO procedure 

which translates the corresponding .ML.Q (aa-signment). If x 

has a structured value, then for Meh:~ponent of- x, we 

generate a corresponding component for y· .(&1-loca.ting a new 

cell) and call assign! recursively to give thiscompon~t\t 
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of y the proper value. Here, the parameter.u corresponds 

assignl: .getp (u,:v) 

clear V 

none!li?~Jl? u,out 

elem? u,atruc 
I 

const *u,v 

return 
~true: .getg (assignl) 

loop: getc u,i,out 

.call assignl, (u ... *i,v.*.i.) 

goto 

out: retu.rn 

Figure 3.3-3~ 
BL procedure 

::: 

loop 

Definition of the 
assignl. 

to x, and the parameter v corres·~ to y. 

(4) (identi'fier} +- (selection} 

e.g. y ~ b of x. 

The pitfall here is that we 

must check to verify that•x 

indeed has a b•component. 

The foll.owing BL C<i>c1le t•kes 

care of thas test: 

h!!l, x,b,error 

.call assignl,(x.b,y) 

,iq. 3.,. 3-4 ... 
y..,b.2f.x 

' t , 

Effe.ct of 
in ML-1. 
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The label "error" refers to some unspecified place we branch 

to if x has nob-component. 

(5) (selection) ~ (identifier) 

e.g._ c of a of y ~ x 

has? y,a,error 

has? y.a,c,error 

. call assignl, (x,y.a.c) 

is translated into the BL code 

(figure 3.3-5) • 

(6) (identifier)~ (construction) 

e.g. y ~ [ a:3; b:nil; c:x ] translates into 

clear y 

const 3,y.a 

clear y.b 

• call assignl, (x,y.c) (figure 3.3-6) • 

! ! 
1 ( 

~ ~ J, )-. ';I = 
& r½ ~ l~ b 

~ . ~· .1-, c. a 
c. d 

4ch ©© 

• • I • 1 I I 
)( 'i = ~ )I ~ n cb Ar ' b I I 

o o.. b 

~ ~ • ~ ®. 

Fig. 3.3-5. Effect of Fig. 3.3-6. Effect 

I 
c;. • .-L-, 

a !, 
~ G) 

of 
c of a of y ~ x y ~ [ a: 3; b:nil; c:x ] 

There is a subtle pitfall in these translations. Spec

ial care must be taken in translating (assignment)s in which 

the left-hand side and the right-hand side both refer to 



-66-

cells in the same structure. Suppose, for example, that y 

has the structured value depicted in figure 3.3-7. Trans

lating the (assignment} b of y ~ y into the BL code 

haei? y, b~ error . 1 
.call assignl, (y,y.b) 

will not yield the correct re-

sults of figure 3.3-8. Instead, there would be a nontermin-

ating sequence of recursive calls of the procedure assignl 

(figure 3.3-9). We must therefore translate the 

Fig. 3.3-8 

(assignment} b.2.f y ~ y into 

M!1, y,b,error 

.call assignl,(y,$temp) 

.call assignl, ($temp,y~b) 

I ' 

Fig. 3.3-9 

With this trans:lation, tbe recursion terminates because we 

ar~ :not updaUnc,r the structure.:. $t.el\f1?.d'1t'ing · the process of 

reour,sively going through its OOl'RpOrients. 

For other cases of "overlapping" assignment, we adopt 
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similar translatioqs. For example, we translate the 
' ' ~. 

(assignment) y .. [ a:l: b:y] into the BL code 

.call assign!, (y,$temp) 

clear y 

const l,y.a 

.call assignl, ($temp,y.b): 

and we translate y ~ L c:a of y J intx> 

has? y ,a.error. 

clear $temp 

~ $temp,q.,y.a 

clear y 

.call assign!, ($temp ... q,·y .c) • 

Note that in ML-1, the translator can detect any 

occurrences of thes~ 11 <:>verlapping" assignments and make the 

according adjustments. 

ML-1 Moyie 
I 

As in the previous section, we conc4Qde with~- ~V~~ 
• ,., • , A ... ..- ~ 0' , .... , ~ .. ~ ' • • • 

. 
of a sample ML-1 (program) ana·!ts t,:-a.nsla~ion into BL • 

X ~ 4: 

y ~ [ a:2; b:x1 c:nil ]: 

.Ii&: 

.aetl (x,y) 
.• 

Cfnet 4fx 

ciear y 

cqnat i,y.a 

.call asaignl, (x,y.b) 

clear y.c 
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X +- cl .Q.I y; 

a £! y ... 3; 

X +- y; 

y .. [ l~a of x; 
2 : [ r: ni 1; s : 4 ] J ; 

s .Q.I 2 2.! y .. a of x; 

• 

' • t ! 
t I I 
k ':I ). y 

• • (:i) ~ 

X +- 4 

.l!!! 

!1!..11. y,a,er:ror 

.call assignl, (y.a,x) 

has? y, a,error 

contt 3,y.a 

. call a.ssignl, (y, x) 

clear y 

has? x,a,error -
.call aaudgnl, (x.a, y. l) 

clear y.2 

clet,r y .. 2~r 

const 4,y.2.s 

l!a!Z.· y,2,error 

.h!J!l, .y.~,s,,error. 

bas? x,a,error 

.caifissignl, (x.a,y.2.s) 

has.? .xrc,error 

• call assignl, (x, $temp) 

• call assign!, ($temp, x. c) 

! l . I 
.)c ';I 

,t • 1 I 

~ I., C. 

~t • 
y +- [ a:2;b:x; 

· c:nil l -



, 
I 
).. 'j 

& ± i I ' Q. 6 (, 

~G) • 
X +- a of y 

y +- [l:a of x; 
2: [r:ni!,; 

s: 4] ] 
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' I I 

)c. 'j 

~ + I i 
c ... I, 

cb ct 
a of y ... 3 --

ct 

s of 2 of y 
+- a of x 

3.4. Mini-Language 2 -- Pointers 

I 

C • 
X +- y 

C Of X +- X 

Mini-Language 2 (ML-2) extends the concepts we have de

veloped and treats the notion of pointers (references). A 

pointer is a means by which one can' indirectly access a cell 

and its contents. As with structures, there are two basic 

operations inherent in the concept of pointers: (1) crea-

tion of a pointer value which refers to a given cell, and 

(2) accessing the cell a pointer "points" to. We wish to 
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provtct•· tor theae ope:tatiorul, wnile JX-••~ing the concepts 

and mecbWl:i.sma that have already be~ d.,,.loped in this 

chapter .. 

with ML-1. calla can accommodate aucceNive values of diff

erent claasea. we will not, howe,rer, allow indirect refer-, . 
ence• t'hrough 1value11 which are not ;pointeJta. -

one reapact in :w'hicli ti.e not:io~ of pointer d.i;f tema ,from 

-tnatiort mut cha ce\l i:t r•~!'~• to .. Prev~-~ ~o,ncepta of 

value had' .notliing to do with cet:J.•. . we ahala; aee, some of 

the dif.ticult:Les caused by this extenaion. 

In this ttection, we treat ML.:.,2 as an extension of ML-1. 

J{owever, it. is not necessary to include structures in order 

tiO 'b1111dla,, die• _.. nott6n · -.r ~ta-.~ o.-. cov1a:- a-ltei:na

t.i.velg ou'- •~nctllna ftrom.,ML-,2 · ed flew' lt · a• ·• direet' 

The .. bt>«ed• po-rtion of the ML-2 syntax is that part of 

ML-2 tltat deal-• with structured val.u~ .· and the basic oper

at·ions on tbem. 
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(program) 

(assignment) 

(expression) 

(destination) 

(indirect) 

(selection) 

(generator) 

(pointer) 

(construction), 

(field) 

Description 

. -.. -

.. -.. -
: : = 

: : = 
.. -.. -
.. -.. -
.. -.. -
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(assignment) : ••. : (assignment) 

(destination).,. (expres!rion) 

(destinat~Qn) I (gen(;!r~tqr) I nil 

(identifier). I . ( in9:ire~t) I ( se].J:}Ction) 

.Y.il (expression) 
,, ' 

(selector) 2! (expression) 
--

(integer) I (pointer) I (construction) 

: := ptr (destination) 

. . - r (field) ·,; •. '(fie1d) J .. - . . . I 

: : = (selector) =. {~~~ig11}· 

There are two new syntactic classes in ML-2. A 

(pointer), consisting of the symbol ;etr and a (destination), 

specifies the creation of a pointer value which will refer 

to the same cell as the (destination). The only way to 

build pointer values in ML-2 is by means ot·(pointer)s: we 

therefore classify the. (point.er} syntact!ieally ·as 'art ln-

s tance of a ( gener~ tor) • An (indirect} ,<oonsis€in,g of t'he 

symbol val and a (pointer-valued) (expre1ution}, · :is ML-2' s 

way of ac.cessing the ··.cell r•ferr:ed tto by fa pointer value. 

-l , 

We have already seen all the other ML-2 syntax classes. 



Semantias of ML-2 .. ,in.fof!Ull , 

Ail we need to give here are inforllU!!,l semantic rules 
., 

correaponding to tbe two• new· synt·act.ic classes. All the 

ponding rules for ML-0 or ML-1. 

(destination) and y.iel.ds a ~,tauerr:viaJue-whi4h·re£ers to· the 

same cell aa tha~ • tdnta.rration'} ~ 

(2) < indi,rect)f: An ( in·direct) contains an. (e?<:~essJ.on). 

The value yielded by the ( expre.••ion) is determined. If it 

isn't a pointer, the {in4'1:ect) bu undefined value. other

wise the (indirect) specifies the call referred to by this 

pointer value. 

symbolic. The: most ~raightfc:rward: a.ppraablf'.to this problem 

is to view a cell's pathname (i.e. sequence.o.f selectors 

from the root node of the current local structure) as its 
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address. A pointer value would then be represented in the 

base language model by an elementary string value encoding 

the pathname of the cell pointed to. Under such a scheme, 

after executing the ML-2 instructions 

x ~ 3; y ~ ptr x; z ~ y; w ~ val y 

the environment would appear as in figure 

3.4-1. After the further instructions 

z ~ x; val y ~ ptr z 

are executed, the environment would then 

appear as in figure 3.4-2. Under such a 

scheme, translation into BL would not be 

difficult. However, this approach breaks 

down in the presence of structures. For 

Fig. 3.4-1 

Fig. 3.4-2 

example, execution of the sequence of ML-2 instructions 

x ~ [ a:2 ]; y ~ ptr a of x 

would result in y having as value the 

pathname "x.a" (figure 3.4-3). If we 

then execute the (assignment) x ~ 3, 

x would no longer have an a-component; 

the cell containing the value 2 would 

, 

Fig. 3 .4-3 

therefore no longer have the pathname x.a and would hence 

be inaccessible through y. In other words, under this 



-74-

' scheme there is no way to provide for retention of cells 

referred to by pointers. The main conceptual weakness of 

this scheme is that the address of a cell depends on a par

. _tic;:.ulaJ; path of access to it. Such a dependence is to be · \ 

avoided. 

A second way to refer to a cell is by directly linking 

to it, that is, sharing it. It is imperative that the 

pointer have a separate cell for itself as well as the eel~, 

it points to. Otherwise, after executing the ML-2 instruc-

tions x ~ 3: y.., ptr x we would h~ve a 

s±tuat.toi:r as pictured in figure 3. 4-4 in 

which tb4!f (assignment) y t■ 2 would err

oneously affect x (we want to access x 

through y only by use of the (indirect) 

!!!!, y) • TO. insure separate cells, we will make a pointer . 

value an: inf3tance of a structure, where the cell pointed to 

wi11 be .the sole component cell. Thus 

the result of executing the instructions 

x .., [ a: 2 ] ; y .., ptr a of x 

will be as in figure 3.4-5, and after the 

further ins.truction x +- 3, we see that 

the cell containing the value 2 is proper-

Fig. 3.4-5 
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ly retained (figure 3.4-6). Note that we 

have adopted the reserved name "$val" as 

the selector for the single component of 
' 

an ML-2 pointer value under our repre

sentation scheme (to avoid clashes with 

the (selector)s of ML-2 structu~es). 

, 
)< 

~ 
0) 

' 
Fig. 

~ J 
~ • ,-+-, 

$11o.t. 

@ 
3.4-6 

Now that we have settled on a ~L representation for 

pointer values, translation of ML"".2 'into BL is straightfor

ward. We only need consider four new cases of (assignment)s: 

(1) (identifier)+- (pointer) 

e.g. y +- ptr x is translated into tbe BL code 

clear y 

link y, $val, x 

(2) (identifier)+- (identifier) 

e.g. y +- x is translat~d into the invocation 

.call assign2,(x,y), where the d,Jlfind.tion,of the BL pro

cedure assign2 is shown in figure 3~4-7. The difference 

between assign! and assign2 is t'hat assig11,2 has additional 
' 

code to handle assignment of pointer v_alues, preventing us 

from attempting to copy the contents of a cell referred to 

by some pointer. An e:x:ample of the a§Jsi,gn;ing of a pointer 

value is depicted in figure 3.4-8. 



assign2: .getp 

clrzW•· 

comp: 

struc: 

loop: 

elem? 

etinst 

retHR 

h!!1. 
.l!ink -

.. i:et:4FP: 

.getg 

3.!S.g 

.call 

iioto 

out: i•turn 

Figure 3.4-7. 
BL procedure 
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(u,v) 

u,comp 

•u~v 

u,$val,atruc 

v,.$val/u.$val 

(11asi~~) 

u,.i,out 

&119.ign2, fu. •. -.:i ,·v:•i) 

l:1op~, .. 
'!c.',' • '~•• 

Definitien of the 
aasign2 . 

. F;.i.1:J:•· 3-1"'~•·sB~,~

. the ML-2 (aa.aignment) 
·. ; .Yr j,or. & ·. w1-a. lt' halr.,a· 

pointer value. 

( 3} {idaft.bifi:'tr~ .. ( indirect) 

e.g. Z· ..,_ ~ y is translatec!'. into the BL code 



has? y,$val,error 

.call assign2, (y.$val,z) 
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(4) (indirect}+- (expression} 

e.g. .Yil X +- 3 is translated into the aL code 

h!!1. x,$val,errQr 

const 3,x.$val 

. "'• . ~ 

Using these translation schemes, it is easy to produce 

BL code cor:re&J?C?Dding to,,ny ML-2 (program}. However, the 

presence of 118v$t'Iapping!i.?assignments can no longer a.bray&. 

be detected by tbe_trarislatpr. For example, in the state 
Xv-;- ,., '""'.· ,, ~ •. ,, ;:....... ~ii-

b of y +- val x to resul.t. £n the state shown in figure 

3.4-10. The BL code 
I • 

has? y, b, erro:r; "{;' 

has? x,$val,erx:or 

• call assign2, (x~$v.ct-l., 
$temp) 

.call assign2, ($temp, 
y.b) 

works properly. In 

other wards, tlle trans- t 

'•· 
lator tlllU&t P!O~uce BL code to 1'arfo~ extr, copying whenevEtr 

l 
there is a pc:,s$ibili1ty of·mrert·ap~··:·1bi• 1•··r1ttajor source·iof 

= ·, f.~ .l 'i, :: , ; -~· ,' • ' • 

. . , . •.... i ••·•··--·--·--··· .... •· - . 

inefficiency, since ov:~rJ•]~:_m:-1y ·an infrequ.nt event. 



y .., ptr b 2.£. X; 
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.setl (x,y,z) 

diear X 

clear x.b 

has? x,b,error 
~f(.':,f~·:,: ! 

cI•ar y 

l!nk y;$Yll1,ix.b 

v14~ y r S: l••i-· ;.y,..•••l~,urer 
con•t S,y.$val 

t . ..,,,,: < ;., ' ... ' 

z +- [ c:y: d:va1 y: e:12tr z ) : bu? .. y,$vai,e:rrer 

· .call·:'aasfgnl'{{y .;$va!,$t~) 

CJll!li-.-~ 
.call aesign2, (y,z.c) 

'• .· .• 

.call aaaign2,($temp,z.d) 

l,iM z.e, $va1~·z 

h!!l. x,b#ftrel!' 

csm•t ·6,x;.l, 

• cal.l •••ign2, ( z, x) 

prologue X ... [ 
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3. 5. Mini~Language. 3 -- Shari:qg 

a t- [ · eiyJ<:4:t1ll 'Y~; 
e: :etr zJ · 

So far in this chapter, we have proc.:,ressed .. ~hrough 

three mini-languages in developing our semantic model for 

data structures and pointers. Althqugh ML-2 h~ndles all of 
·. i • 

these concepts, there are some respects in which the design 

we so carefully built up becomes cumbersome and inelegant. 

In this section we shall.look at some o:f the weaknesses of 

ML-2 and s~e how they reflect'a conceptual shortcoming in 
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our design. The mini-language ML-3 is devised to remedy 

these deficiencies. By revising the notion of structures, 

ML-3 becomes not only more powerful and efficient than ML-2, 

but conceptually simpler as well. In fact, the entire ap

paratus of pointers that was developed in the previous sec

tion is subsumed within the re-definition of structured 

value. 

The main difficulty with ML-2 emerges when we consider 

the way pointer values are represented in the base language 

model. This is admittedly a rather strange way to examine 

the merits of a language, namely in terms of a representa

tion decision with respect to a particular semantic model. 

But the base language model is special in that it was spe

cifically designed for the purpose of describing the con

cepts of sharing which we are studying. So it is perfectly 

valid to use insights provided by this model to aid in de

signing mini-languages which deal with data structures and 

sharing. 

In the last section, we chose to represent a pointer 

value in the base language model as a one-component struc

ture whose component cell is precisely the cell pointed to. 

In other words, pointer values are instances of structures 
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whose components share with other data objects. It is this 

much more general concept of shared data objects that con

cerns us in this section. The only kind of sharing provided 

in ML-2 is the pointer, which is a structure having exactly 
• r 

one component cell, shared with some object. In the course of 

trying to model aspects of real-world programming languages 
. . 

in ML-2, this limitation becomes a stumbling block. For 

example, the notion of -tuple in languages like BASEL is that 
I, 

of a vector of addresses, i.e: a ·st~ucture with an arbitrary: 

number of components sharing with·6ther objects. In ML-2, 

this can be modeled only as a ;-structure whose components 

are pointers. These components, when represented in the 

base language model, take up an extra level of 1ndtreetion, 

which becomes a bit _clumsy. 

To give a better treatment to this generalized notion 

of sharing, we revise our concept of structure. In ML-2, as 
.-.,' 

in ML-1, the notion of structured values as being composed 

of components with (~elector}s ~-'v;aluea does nptc;i;i.l".etly 

utilize the concept of cells. Cells are part of only 

pointer values. What we've done in ML-2 is represent, 

pointers like structures but UJI~ a di~fe~ent set;of rules to 

manipulate them. This conceptual distinction puts the two 
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notions -- structured values and pointer values almost at 

odds with each other in ML-2. we include cells in our re

vised concept of structured values in ML-3; aa a result of 

this, the need for a separate class of pointer values van

ishes. 

A structured value in ML-1 and in ML-2 was a collection 

of components, each consisting of a yalue and an associated 

(selector). In ML-3, we define a component of a structure 

to now be a (selector)-cell pair, rather than a (selector)--..---

value pair. The value of a structured qbject is still the 

set of its components. 

(program) 

(assignment) 

{expr) 

(destination) 

(selection) 

{ gener a.ter) 

(constructiQn) 

(f:i.eld) 

{cell expr} 

(mociifiG:ation) 

: := (assignment) ; ••• ; · (assignment) 

::=(destination).., (expr) 

::= (destination) I (generator) 
I ( modt£ica t.M>Jl) -i nil 

: : = (identifier) f ( •~lection) 

::= (selector) .2! (expr) 

: :• (integer) ( const:ruetion} 

::= l (field} ; . . . . ( fi♦J.d) ] , 

: : = (selector) . (cell expr) . 
: : = share (destination} I (expr) 

::= (eenstructiort) (expr) 
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Description 

The syntactic classes of ML-3 are identical to those of 

ML-1, with two additions. Firs~, there are now two kinds of 
✓--- • •• ' ~ 

expressions in ML..,;3: an (expr) yields a value, ·and a 

(cell expr) yields a cell. The only occurrence of 

(cell expr)s is within the (field)s of a (construction) 

(where there used to be (expr)s in ML-1 and ML-2). The 

rul,~s for evaluating both kinds of ex,pressions are given 
. ' ~ 

belo\i. The second addition is a new kind of (expr), namely 

the (modification) which yields structured o~jects built 

from ct.her structures. All other syntactic classes are 
. . : : ~. , 

exactly as ~hey were in ML-1. 

The semantic rules for (program}s, (as11&igttment)s, 

(de~tination)s, (identi,fier)s ancl {seltt<::t~0,n)~ ~~,et identical 

to the rules given for )q..~l. 'Dhe .~i.ning: e1e!J\$nt,s -~~.rent 

some discussion. 

( 1) { expr) s : The ocqurrenoe . of . .,ni,l or of. a 

(destination) as an (expr) is..han4il,ed jus~;as inMirO and 

ML-1. (generator}s are ~ither (in"t:Ag:er)A~ wh...ich are handled 

as before, or ( constt"uction )s, whiJ::p. ~ .4~s_cr.i.bed .i:n 



-84-

rule (2) below. (modification)s are discussed in rule (6) 

below. 

(2) (construction)s: The semantics of (constructions) 

and (field)s follows directly from the new ML-3 notion of 

structures. A (construction) denotes the value of a struc

ture which is generated on the spot. A (construction) con

sists of a series of (field)s, each with a (selector) and a 

(cell expr). Each (field) represents a component consisting 

of this (selector) and the cell yielded by the (cell expr) 

(see rule (3) below). Finally, the structured value yielded 

by the (construction) is the set of components given by its 

(field)s. We make one restriction on (construction)s: the 

(selector)s of its (field)s must be distinct, or else the 

(construction) is invalid and has undefined effect. 

(3) (cell expr)s: The two kinds of (cell expr) are 

discussed in rules (4) and (5) below. 

(4) shared (destination)s: A (cell expr) of the form 

share (destination) yields the cell referred to by the 

(destination). This is the basic source of sharing in ML-3; 

shared (destination)s are used to build structures having 

components whose cells are already in use. It is this 

facility which subsumes the ML-2 notion of pointers. 
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(5) (expr)s as (cell expr)s: The cell yielded by an 

(expr) occurring as a (cell expr) is a newly-allocated cell 

distinct from all cells in use and containing the value 

yielded by the (expr). Evaluation of a (cell expr) of form 

(expr) is the only way to allocate new cells in ML-3. 

(6) (modification)s: A (modification) consists of a 

(construction) and an (expr). The value of the (expr) 

(which we call the modificand) must be a structure or the 

indicator nil, or else the effect of the (modification) is 

undefined. The value yielded by the (modification) will be 

a newly-generated structure whose components are obtained as 

follows: 

(i) Each component of the modificand whose 
(selector) belongs to no (field) of the 
(construction) will be a component of the 
new structure. 

(ii) For each (field) of the (construction) there 
will be in the new structure a component with 
the same (selector) and as its cell the cell 
yielded by the (cell expr) of the (field). 

Alternatively, we can view each (field) of the (construction) 

as either replacing or appending a component to the modifi

cand depending on whether or not its (selector) belongs to 

some component of the modificand. Note that evaluation of a 

(modification) may cause allocation of new cells, but it 
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.c ;-:~ ~.,1(f f)r.?:· fJ Isl\( [ .r ~:1·•) ,::JrfT c- ~ I ':t9.,_ x ~:} - ~Is:~)_) ~5 ~~1 CL::~~-.:?- \ _ ,( ,~: ' 
does not in any way affect the contanta of existing cells. . ~ . \ 

1 ··, .. ,. ,:., .. ·j1"··,t·.1'ti:"'-vl'w9n .s, 2) ':;c; •. ~, lls::>) 6 z.s p1LL'.1:i:r.r::,•::io •~:;q:i,~,,. 
~L !• I .•.J , .. , ~- ~- ., . ._. .. - ) " j._ • - .I.. 

Strictly spe~ing, (modification)• are redundant in ~-3. _ 
T • .., r r · r ... ,-·,··,· - ~ j ,~~ ;'· s _j :--::: _:- t.; 

<jtJj~S\7 •:..:,dj f)[L.C.f!.i6:'.1f1()!".) 1.){1J~ :;~;52~1 :·"fJ ,~:~ ... .i ,·· .. :.: j~_.,,r:, .!i~,·-... -

If, for example, the {identifier) x baa a structured value 
,-. ··..i ,. r i<c,,· t_',- ·.-.·_;1,·, .'~!,"", .• \,·r•·ib•,·J.r,,.::.\,.u:_:.·_~· • {,r"::fC~.:-~-~~-, :;.;~1-~ -~~-,,:1 ~<·;:~[\! 

; n J: ·:> ': ·.1 {; <, ·;i • ... ~ }'~ ~) .1,,, ..L .:.1 .. J , ~ - .. -" -'- - ..... -- -- - _. -· -

with two components whose {selector}• are a and b, then the 
.. E----,~~:;•J .;1/ 2l.lsr:./ ~!/:3n sis:)olit. ():~ ~-{£1.,J ...,,f.r10 !::'fl:J -~·,.~· ,·,,··:1

··~', 

{modification) (b:31 c:sbare y} x will yield the same value 

atf" tlJe '{t·,~kit-m~Y' ~ WlifK~rJ~ a :a8\f ci,,1 )§?.J( "W:°~1
) y] • 

·:g~y9\ ce:;rf:::; :JO •3uJr-,v 91{T 
BL ReprittQtation 

;: ;; ,· ~iL;~fff 1~(~;\ a0~I~(~t_f;,~~:t X8;tff lfr ~;cj ~t:S J ~ire:9P~F 

:~~~i~<?~o;~~J:~~t~rn~h:ii~o~~•;:,~Pf11~s~~t ~ttl~~r 

~:~r~o~~-~~~9 ~!~J~~~o~~~;e:~~f(J~~½ff,tgf~f1scr~~IJ,~n 6 

straightforward. simple and clean. 

,= C· / L, 1 :J j :7 . 
into l~hr!, ::- -, :rnsrro~1r!;.Y> 

'. ( 3_) ,.~,+~8,1'.'~i:f f :r~("~f/~; _J i,~~~~t~!~~f..)f: : .-1' - . !'f .L, :-J, 

e.g. y ;'. ~f i_~of;.~r:f•t,~?;- i:r:~ ... ,~Cttrf·t(,-.,i~,~rJ~,Y~c',~ 
;h~ B~r,f~~~f!~!"e:r!:111,'!;1;:,· is P.~tff'r~-J•J~ ctrfN4' :~1'.?,Tdt1•:,c:~nc• ,, 

code . ia, ~~ _ ~~-~ ~!s,rfof O t~~.i f~~~~~u:t: rrf~i,?fJ .tf!e.i· ~.ti'LAA~f 
integer va,l:u•• o.f the -source ( identifier) x, except for the 
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the presence of the same? x,y,out test which makes sure 

the (assignment) is nontrivial (otherwise the clear in

struction would destroy the value we want to kee~). If x 

has a structured value, then y will get the same structured 
I , • ? 1 ' ·~ ;. 

value. This means, by the new·d~finition of 'structured 

value, that the components of·y will now share with the com

ponents of x (figure 3.5-2). In executing any (assignment), 

assign3: .getp (u, V) 

same?' u,v,out 

clear V 

none!!!}2ty? u,out 

elem? u, struc 

const *u,v 

return. 

struc: getc u,i,out 

~-
v!*i,u.*i 

got·o struc 

out: retum 

Fig. 3.5-1. '·l)efinitiob 
of the BL procedure 
assign3 

Fig.·• '31. 5;..2-~ ' Effect of 
the ML-3 (assignment} 
y-.... x -~n X-has a: 
structured value 

the coAt.ents of exactly 

.2,!!!. cell will be. copied. 

Compone,Qt ceJ,.ls cire now . '' ,, ' 

shared~ not copied. Note 

that this is a vast gain in efficiency for ML-3 over ML-1 

and ML-2. The "meaning" of the (assignment) y .- x, then, 

differs between ML-1 and ML-3. For example, after executing 
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( ,,, ;,, 

the inatructions x +- [ a: J.; b:4 ] ; y ... x: a .Qty+- 5, 

then the expreasion a .2! x will yield the value 3.in ML-1 
-' -... :~::...:};; ~) J _f ; r.:: < :i" ·/./ ... ;. L ; : 

(and·ML--2)°, but will evaluate to Sin ML-l. 

e.g. 

has? x,b,error 
'· "l' {~' ~ -, . •, 

·- ,. \, .. -., . - , 

.call assign3, (x.b,y) 

{S) (selection) .. (identifier) 

, -~ /· ; ,_ ~ rn,• ; r -~ 
e.g. .Y +- :t~-P~~: d:.l:> •21 x; e:tAlare z J is~-t'.~~1slated into: 

~- .. 
bas? x·;b,error 

.call assign3, (x.b, 
'i~:NIP') 

clear y 

.call 

• ca'.l: 1 

linJs. 

assign3, (x,y.c) 

zlattitjtl3;'i$t•iijf; · :·· .. 
.,f~d) 

. ,.··1 

y,e,z 
Fig.. 3~·s-3';·· 1n!fect 01:· · 
y +- [c:x; d:b of x; e:share z] -,in ML•J .:i:,· · 

Note ~~at ~➔V,~~1~~~~~1,i~ a~s,~gn~~~\s ... P?•e .. ~i ~;~~~,~ ~t .fl+ 

for stat811NMlta of types (4) and (5). This is due to the 
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fact that component cells of a structure are no longer. 

copied on ass..:i,.gnment. However, we do need the use of temp

oraries in (assigrunent}s involving (construction)s, for 

instance, to take care of the case when y shares with 

b 21 x before executing the (assignment) in example (6) 

above. 

Finally, we note that pointers in ML•~·bave been sub

sumed in ML-3. In place of the ML-2 ptr (destination) 

we can write the ML-3 (construction) [val:share {destination)], 

and wherever ML-2 usee .• ~ (expr), ML-3 substitutes 

val of (expr'). 

ML-3 Movie 

ML-3 ~ 

X ... r C: 3: d =. ni 1 1 : 

z ... [ a:4: b: [ q:c of:x: 
r: nil ) ] : 

• setl (pc, y; z) 

clear x 

J:,x.c 
' 

x.d 
1!!t!l. ll,-c,error 

.call ••i~3,(x.c,$temp) 

clear· z 

const 4,z.a 

clear z.b 

.call assign3, ($temp,z.b.q) 

_clea;: z.b.r 
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ML-3 11!!. 

y +- [ p:share x ]; clear y 

link y,p,x 

p of y +- y; ~ y,p,error 

.call assign3, (y,y.p) 

y +- b £± z; has? z,b,error 

.call assign3, ( z. b, y) 

x +- [ b:5 ] z; .call assign3, ( z, x) 

const 5,x.b 

z +- [ c:share q of y] z; ~ y,q,error 

~ z,c,y.q 

y +- [ a:b 2£ z; c:share z] x; has? z,b.error 

.call assign3, (z.b,$temp) 

.call assign3, (x, y) 

.call assign3, ($temp,y.a) 

~ y,c,z 

tt ·• I ! 1 I I j 4 X ~ X ~ t 
~ • • 

prologue 

~ci 
• 

t • 
X +- fc:3; 

d:nil] 

1 

z +- [a:4; 
b: [q: c Q.I x; 

r:nil]] 

"' 



y ... [p: share x] 

' X ':t l 

n ,-i, r½ 
"" 
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I 1 I 

=t I ' ., ' 
,. 

'X i. 
~ L ~ }. I ': Q.:b tt .. t'· " 

z +- [c :.@!r.e 
q .2.t y]z 

3.6. Discussion and Examples 

---
I , ,, 

\ I 
)(. ~ ~ 

r1:i .r,l, 
C..tt\,;(l.e C, 0. ~ 

,~.)., 

r ~; fad>~. z: 
c:share z]x 

In this c:hapter we have built up.a,bierarchy of mini• 

languct.ges. culminating in ML-3~. we·now relat.e't'b:ls develop

ment to the main issues that.were:r2:1i.aed in Obapter 1. A· 

major concern with respect to a given "real•wotld" program

ming language is the effect of its asaignment operation on 

an environment containing structured data 'Objects. we know 
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. ' ' 

wil). ruulit in the i.dentUi•:t:-X?h~ing th• valu~ a•sb¢'ia.ted 
" 

' ,,.. 
with-'the expr•ssion •• -Wat is unc•rtain ia ~• effect'.-.:bf 

,i;- I ( 

sueh an asaignment upon the sharin9:relation•tps among the 
. ~- ·~ - ·.~,.. ' ~-~ ... ,._ ' . 

properties ~an in general induce differences in the effect· 

_o£ sul:taeque~t ,assi~ta. 

We -~il -ve an •~~,e •d&l)ted frqJia [Bur 68:J • The on,,ly 
l 

· "'.a~tti a!:rudfate• in ti'be ·•h:~~ .i'tri.11' ~ Li.~'11~ lists 
, . . --~· ... - l --;. ~'---- . . ·- ~ ~. ; 

wi t!n'· two compc,nents se1ected by tha reapeictiv•, selectors 
i- "'. 

: " -

1-anguaqes: · List-Algol:, '\ilffic:li ao.mtilnea JU.GC>l, 60 assignment 

with atructures essentially equivalent to LISP liats, and_ 

I SWIM ( 11,!f you §_ee What .l Mean") , which ia based on the aalJle 

functional lambda-calculus notions aa LISP. In both lan-
' 

-heao i.a t.b•.:·f•Jt•~ "•r'JUINllt ana 11111o .. u.t.1.:ta1 :t.he seeend• at-qu

rnea.t: the -.c,funeftions · 11m ... and 1:ail . .;•e&ect ~·tba-- oompoJ\enets from 

a liat"' !lttretallte·,ewcr.~prc;.graM aNqa'IIOwri :.tw 1191/ftt• 3 .... 1~ 

assignment to x." Thi• explanation 9ivea little insight 
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into why there should be such a difference in the first 

place. The obvious diat.ination. betwe~ th~ . two .:programs-

_ .. -------
Program.A: Liet:.-Algol .. Pre>~f al8.. ~: !SWIM 

' 
•• ,, f ,, ., '. .. ., 

l begin lif!t x,y7 print 11,t x=undef and y=undef; - ' 2 X ·- CONS ( 1, .!U:.!) ; let"X = COil!, { l·; ni·l) ; .- - " 
3 y := CONS (2,x) 7 let y = cons ( 2 r?C) . , -. . -~::..¾ . 
4 HEAD (x) -~= 3; / ~x = coija {3,'ta¼l·.(x)); .. , '. . ,,r.f ·. •" 

5 priqt(HBAz:>{TAIL(Y))) i . r~,IN~ bt.d (li!! ( t) } ·: 
; -

,i ' 
~ 

. -F-ig. 3.6-1. Two sample pro9_;a~ with 
. "~, ~ 

dif~x:~nt effects. 
. ~~ 

lies in line 4. ISWIM, bein~i'i .f\lnc.tJonal appllca.tive .. lanl

guage, has no direct counterpart to the X.ta·t.-Algol component 

update statement HEAD(x) := 3. But this is.not the root of 

the semantic difference between the two programs. Burstall 

neglects to say that even if we change line 4 in Program A 

to x := CONS(3,TAIL(x)), Program A will still print 3. 

The source of the trouble lies in a subtle difference 

between the cons function•. in the two l~ngu.ag_~•. we can 
I 

pinpoint the distinction by translating_)gth-p~gJ:"1Wl~ into 

ML-3. Line 2 it;1 °Qpth programs C8Jl be ✓ tran,1aied into 
:·~1 . { ·'' ' . 

X .. [ head:11 tail:!l!! ] , with the reaul.~~,.9 environment· as 

in figure 3. 6-2. Line 3 in Program A, i8f,,~tvalent to tbe 
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in Program B is equivalent to y. +- [ bead: 21 tail: x ] • The 

.. respectiv:e :reaJ1u .,u., ahown in ti9'd'• 3.-6.:-3. aftd: .3. 6-4. 

Pig.' :L6-2. 
State after 

Fig. ·:r.6;..3·. 
A:fter line 3, 

P2':tp9.1. A,, . , •· 1, 

' I I 
' . . )t ·. . ,'f . ' 
,· ~' ,i ,+ .l . 
•, had. +i:J . .. .. , 

.• '!.;· .,·;••· .. ··• •.• ,-1.., 
I · · · t 

. " .,, ,• . 

'1~; . .-......... ' 

Fig. j ~ 6·-4·. 
After line 3, 
1 Pro,rara. B • 

Finally, tbe ;ev,ise,g line 4 for Progr~ A, which reads 
~ '"::)' 

x :..• CONS(J,TAIL(x)), is equivalent to the ML-3 statement 

x +- ( head:3; tail:§l\a,re tail of x }, while line 4 of Pro-

gram B ia equivalent to x +- f bead: 3: tail:~ail of x ] • 
• ./ , C ~ 

The respective results are shown in figures 3.6-5 and 3.6-6. 

Ft.g -. ... 3 .6'""'5.., · - a,,,-1' .. -new ··•. 
line 4~ PlS'ograli A. 

)c 

hi!"1

+J., I 
·'. r·~,·.; , . . . . 

I . 
,·. ·J ~ 3 2. r• 

P1g. 3.·&-6.: A~·. 
lin• 4, Program B. 
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we can see that the ML-3 expression head of tail .Q! y 

yields 3 in figure 3.6-5 and 1 in figure 3.6-6. 

The difference between the two cqns functions in Bur

stall's two languages should now be clear. If an argument 

to £Qn!. is a constant or n.ll, both langua9ea specify allo

cation of a new cell to contain the argument value. But if 

an argument is some identifier, the Lisp-Algol CONS yields 

for the corresponding component the argument's location, 

while the I$W:ot .$Sil!. yields the a~9'1llle'1t'S.YM\I@~ This 

property of the I$Wl~ cons (unct;i<»n ia :~~ .. lic::itly· .e,tated 

in Landin's descriptions of,-,I$WJ:M,,i~n'.:;,~,- l.,Q,,6.$, Lan 66a]. 

In fact, the only, place £;:om ,which ~hill _pr.()pe~ could pe 

readily ascertai,ned was :i._n .Bur.atA+.+' a. •~~r,.,t ~t,. PrQg:,ram 

B prints the value l. .The ML""4·.~ into wbi«:p we ... t..i.ans ... 

lated the statement~ of th~ two pr.Q9X'PI.S- w._.: ~~Jnined only 

from the stated reftults of -tllOSft: pp:>gz;cNW. .What;.. is to be 

concluded . from this is not that Lap,din was •~PPY o.r vague 

in his language desi.gn and defi.i,.it;.j.pn, · l>ut %'&tl\er that the 

language definition methods whic}l u.-e .,ao,"4dely:u•efJ. ~• it 

extrem~ly di.fficult to ~tract·,~ .of t1"\;:l)~,Qp61:ti.es of 

signifi9ant practical ilnportance.· In o~·~ds. a lan-: 

guage which features data struct.\\te,a wt1).. b,e "~.tt~ under~ 
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stood and better specified if it defines these facilities in 

some manner which makes clear the specific sharing relation

ships among locations. 

In the remainder of this section we shall use our mini

languages to talk about the data structuring facilities ana 

mechanisms of several additional programming languages. 

The language PAL [Ev 70] supports only one kind of data 

structure: the tu·ple. A tuple is a structure whose selec

tors are consecutive integers starting with 1. As with 

ML-3, the cell in which a component of a tuple is stored is 

considered an integral part of the value of the tuple. The 

PAL expression 4,5,6 specifies the construction of a tuple 

whose component~ have the respective values 4,5, and 6; as 

such, it is eqUivalent to the M.L-3 (construction) 

[ 1:4; 2:5: 3:6 ]. Selection in PAL is expressed by juxta~ 

position; if the tuple value 4,5,6 is assigned to the var

iable x, then the PAL expression x 2 evaluates to 5 (it 

selects the second component). This expression corresponds 

to the ML-3 (selection) 2 of x. The correspondences we 

have established are summarized in figure 3.6-7. 
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The concepts of value of a tuple in PAL and value of a 

structure in ML-3 are very close, and we might expect simi-
; :•. 1 

lar assignments to behave similarly. This is indeed the 

case, as figure 3.6-8 confirms. 

PAL 

-3 

Fig. 3. 6-7.. Constr~on,., 
and selec~ion,.lri 11.Ati. 

; C, • :- • .:3 ~' •. • .. 

·' 

X+-[1:7:2:8): 
y t- X 

6-8. Value of , 
le in PAL 

• o- •• , ~-' .~t,,...._ ' 
PAL has a semant:.ic,.µle t.b~t.c~m~~nts of a tuple 

share with the items in-•t.'ha· 1~~ .... ~ion that constructs 

it; an example of this rule is shown ~n-.. ~!~~~- 3.E>-9. This 

sharing -can be blocked u~in~.r the PAL Unfbare operator (fl$ II) • 

. ·-~·· ! ~ . , 
Figure 3.6-10 gives ane.>eamP+e of this. 

Fig~ 3 .6-9. Sharing in 
PAL tuple construction. 

p 

-3 
[1:5:2:6]; 
[l:x12:7] 
;:-;,,· 

''t'fg} ·1:1&-~l'.oi. P/Jiioel<:ihg ·of 
sharing in PAL. 

,,. _.,.__ •• ~ - _. • , >t r, .. 
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we discuss one more feature of PAL: the aug function. 

If tis an n-tuple (i.e. tuple with selectors 1,2, •.. ,n) and 

e is any expression, then the PAL expression t aug e 

denotes an (n+l)-tuple whose first n components share with 

the components oft, and whose (n+l)-st component shares 

withe. Examples are shown in figures 3.6.11 and 3.6.12. 

' ' I X := nil aug 3r 1 PAL 
X 'J y := nil aug X tcr IML-3 
1 i X .. [l:3] nil; 
d) y +- r1:share x] nll ---
Pig. 3.6-11. Example of the 
use of the PAL function aug 

I 
, 

I 1 
X := (7,8) ,9; I PAL I 

)l , 
~ z := 5,6; 

~ ~ y : == X aug z .--, r 

IML-3 M) 
lli,-L, 
3 J> 4 X +- [l: [l:7;2:8] ;2:9]; 

J,&; z .. fl:5;2:6]; 
y .. [3: share y] X 

-.,.,,... -,------·=•-><•-

Fig. 3.6-12. Another example of aug in PAL 

The above features illustrate nearly all of PAL's data 

structuring capabilities, and they are easily expressed in ML-3. 

Even though the data-structure facilities of PAL bear a 

strong resemblance to ML-3, we have given a demonstration of 



1·,·-' "'-'•""•'.- .. ,., .. ~ ,-

1 

( 

a full-scale, real-world programming lanc,3ucic,1e w~?#iie _d,ta • 
. . ~ - , . ' . ' ' 

structuring mechanisms have been successfully treated within 
~1. • \ ' ·:, 'j:' . . 1', ' ' • • 

our model. we 4isauas two more lanc;1U~ges,. 

The language QtlES'l' {Penn 73] provides'd~ti·structures 

called lists that appear very much like PAL's tuples (see 

figure 3.6-13),. aowev,.r, the defrinitiQ of aee;.tgnment in 

• X ... 3,4t QUEST I • 
). j y ... x(2t' 

,i..,<SJ·- ~ '--' 
3,41 X := PA1' 

I '1 

4 ~ y :~ .. X 2: 

X ... [l:312:4]t ML-3 
y+- 2 of X -

Fig. 3. 6-13. ·•tis ts in QUEST. 
--- ------· 

" 
,;_..,, .·•. 

ML-1 treats structures. Componttnt;. valu-.,, a,re copied -on . 

assignment rather than shared. Figure 3.9~14 pre•ents an 

example. Note that componentwise copying is coded in ML-3 

Fi. 3.6-14. Co ing of components in Q'.(J'EST assignment 



I 
I 

-100-

by repeated. component updates, reflecting a lack of effi-
~ ·• . , ~ 

ciency. · QUEST assignments, unlike their counterparts in PAL, 

cannot be directly tran.~lated into Mi'..:j without knowing run

time values (i.e. exactly what component• a structured'-~-al\ile 

possesses at any .';liven tune, so ,t.h9V:,~ b$ ind.ividually up-

dated). 

Like ML-2 ,- QUBS'l' habales :abari1\g0 1mtirely' by means of 

appreeialrbF di~!erenoe be-' 

pointers and those in ML-2. 

Translation': itatto ML-3 woulll 

be trivially easy. 

I t~ ·. :i -.~ . ~ : ;~f" f~:'2ST 
.. --- ~-· i!' ... , ' -

··~,.~. ,;': !k~~~-2 
z ... m Y 

,...-..._......._ ............ ,;.. __ _ 

l'.i.CJ.11 ~.,§-1$... References 
in QUBS'l'. 

For the inte~ested reader, the paper on QUEST [Fenn 7J] 

specifies a wa.y to express general ML-3~ike- structures in -
! 

QUES~ usin9 lists atid references.. OUISt fun~tions . .£2!1!, £!£ 

and a.di: a:r:e.definedl:, and it is claiJlt!c}-tha~ tl'V!y.siJpulate 

their LIS:P _caun1terparts. The simql.•t;ion tequit-es an extra 

level of ittd;itec~ion throughout, •· ma-j&r ldtef-fieienc:y (fig_; 

3.6-16). Thus we see that using our mini-langua9es, we have 
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not only able to illustrate the data structuring semantics 

of QUEST, but we have also perceived a shortcoming in the 

design of QUEST: lik~J1L~i, QUEST. 'fa1ls,.t0' r~ognize the 
•''l ,<' '~.. _.,' .. 

fundamental significance qf the concei?t of .sha;ing. 

UEST 

Fig~ 3.6-16. QUEST simulation of LISP cons 

SNOBOL4 

In the· la~guage SNOBOL4 Jq~is 71], one, .j;inds data 

vocation of the function DATA caµses ~e,lec:.,t;Q;>.j~nd c~nstruc

tor functions to be. defined. Por ~~~-!I• :the Jr.nvpca,~~on 

DATA('COMPLEX(R,I) ') defines the const~ctor function 

COMPLEX and the associated selector functions Rand I, 
-.. ~ · : .:' :;; rf Jr:, 

setting up the correspondence depicted in figure 3.6-17. 

Beyond this aspect, in which the■e·s.:>BOL •tructures behave 

exactly as do all the structures w~ h•ve seen in other 
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languages, the sharing relationship• need to be considered. 

. • ,; ~~~.\:. .~.:-.• }~.,. f~ .~ ~ .r ; . ' ~ ~ ·-t~ : ~~ .~ .. 

But seman~i-~·-~-~~~-- ~~-icl_lF~-~5!~.t~~~ '!¥~ •roperties 

are ~t i6 '-J~i~Jd"?l :rJJi'.4'i,.; 11Jj, ·i:n.t\...can· ·w aeeJ are a tew 
~ ~ ; ~ ; .~ -. "> • ! ~-·o/ \:,: ; --· ... - ! 

. . . ... - ' ,· . ·.. I 
exampl«ut.·: ' ~Alf.:~ifli~ fs\ffll: .i. 6a.t~ · exhi 11at.ien . ~·--.be exam-

;_,;':~ • .. J .:.: T J ~l ,:} ~ r{.:Lf j ,5.f ... : .. 1r: ,,_ C 1 ·"'·C 4, [" ,· •. ~ri 
ples is ·requira<t·to .. p!'O<ltice. a .e<m.il:s·t·iiit--ana unambiguous 

ML-3 representation for the data atructuring facilities of 

SNOBOL4. SOiie detective work ia needed here as well: each 

of thtf 't\lid';i,ijol~i,:'.'[G'ifs fi./rtjrit:Ji11 .pi?dJta-''ic;1iri1ifffLcient 

'in'fdrmati1,tr,:~' nfa1l~) ~u~i1agrc!tit,iidriiifb~ / i>Jl' :u.:11iJ' :both 
t:og~t'her /'~~olig1t>'q'ru~s·:~~i-fbe~'1J~ib~rid'lQ ~~ior./e 1p:,~'ai61~'. 

The translation into ML-3 may be straightforward, but a 
5·.l ~.:,~1t) r J~_)r-11:.r:t '1():J·.:>sJ:i~::-3 b~J£~ £.:>t.Jt~~·~~.f~ ·~~rfj ~)f'<is ~:":-·£ ~ .. ?i.,! 1

_;.~; 

number of other possible translations which would result in 
~:<i 1r;.--:, nJ:: tJs j ~ lJ:;I ~~t f; t,_ ~) n:!) ;'.) ;-:f CJq t! -~'1 ·.1 . .._ <);:... :Ji'j~ :1 q !..J F rr J ~J, ~~::, ~ 

different sharing properties were ruled out only after 
~ ~<1 r)·.J ::-:J1t"1,1 a ,J :,Jfl £)£.1 c: t} uer! j rf :--.... 1 f.fi •,,-/ d ~t ,. :i' :~-::1:q e £ a ~t rf j F·: r~ c1 

/ • ~ _ 

painstaking examination of the exU\plea in both books. 
,·;c:J .. .,, :u r1::;•::1~ f!VErf ew ?.9".frJj!Ju,:jB !:Hfj If£, ob as vi.·i :i:c,,:'::) 

surely a diaeuilaion of sharing in these bodks could have 
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shed much-needed light on the semantics of data structures 
•,, j '. 

in SNOBOL4. 

:F.ig .. 

co,mplet;epe•t· 

I 
.. 

'Ii 

. ·• 

In this ;ebai,tir, we def1b'.~ a ·•et!!~is:. ~f nil'.ifi_:l'~ngr&.,ge,s 

and :used ·them~ to ~l a.ta: 'atriic:~uri~~ulilct'ifti,i'\'lk ihr~e 

repr~aeritative 'pxiog:ramm!nc} Iahgu·agew/· in ii.f,bt~ahtt question 

to' ask is how cdmt,tifte·/ou(f·' ~•Iiiig:;:,'ii _")r{'xn oth'~r wordi: how 

thorou~hly have we -dbvered tii~/rJappr~ilbb11a' t.o Sat.a •ti-ii~lJtes 

found in these th:ree'' ianguag=@!{t7'·':7jl_r1 .~1¥it' ~t~~e·/ our t:reat-

of the n.ot:iOJ.18 of data, s.uuature11ou.:tllaoa.-,..:t11-u the,.way 
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data structures. The fact· that our mini-languages lack 

character strings and conditional expressions, for instance, 

does not reflect on tbeir ac»tl,P,le~ass for describinCJ data 

structures. 

In · PAL, there .are only · two notions. .. we have noit. covered 

which have: a,direct bearil)g on de.ta ;st.ructures. First, arb .... 

itrary ihteg.e»waJ.ued:, mqmeaaion:a: aan· b& used to select com

ponents from a·tuple. For example, the. selection x n re

fers to the component of the tuple x whose sel'80tor: is the: 

vaJ.ue,, <;>£ tne. variable n. Thi-., cannot be.,, t~_,.alated into our 

mini-languag_,, whic)'l allow onlY>SQ~t (Slll&c~or)s (the 

ML-3 (selection) n .2.1. x would, look for a cOnt.pPnent,with 

The sec:ond, uncoveJ;:"~ t•:tM+e :i.n PAL i.s the 
' . • . , ) • ' .' ' ~. l' . e. • ' , . , 

built-in function Order., which when ~m>lied to a tupJ.e 
: . - .- . . ' . . ' ' ' 

yieids the number of cotnponents in the.'\:uple" 

issues are w&ll understood•,: we don't raal:ly ~: t.c> treat 

them in our, .mnd.-·1angua.ges . Extendin9 tthw, mwi'...J.&nguages to 

handle, extn-a ne~ions. · like these would, oniy smrve,. to ruin the 

syntae'tic and semantic simplicity of the mini-language 
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approach. 

In QUEST, the only data-structuring features we did not 

treat are the use of expressions to select components from a 

list, and several built-in ~c,tiOl\e,: :t~t _e>perate 9n lists. 

the area of our main con9ern. 

With SNOB0L4, we com.plete.ly neg,.J.ected the area of 

arrays. · ·Although arrays, are ,highly; r~t to the issues 

we- are interested· in, they :present some diffi:cUlt problems 

for whose soluti,ons additional. medbani.sllls are' 'needed.,-, we· 

discuss some 0£ these problems' in Chapt,fer- ,5. 

The three languages covered. in this section are all 

"typeless" languages in the sense that there are no dee-
. - . 1 " ,· , ' 

larations associating identifiers w1.tbpart1cular data 

types. In the next chapter, we deal.with :"typed" languages 

and some new ·semantic· issues they introd.nce. 
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Chapter 4 

DA'l'A TYPES AND 'ft'PBCHBCI<:tNG 

rn this cltapt~r \tld .. will ·ad'd a new ·iac~itC tc>' the ·design 

of our previous mini-language•. · ~cstlit:!dt&:t t!lle ML:..3 ·· · 

( assigna\ent;} y +- >b which dirf!iea· t'ha,t Uh•)":Clffil:.ents of the 

cel-1 £or 1e be p:lac.ed inlUC> th••·aeli,·,~ y,.; , ,WV ibrans1-ted 

this (Urigr~) i.AU> an ~aG;f;tm Of tfta: ;Bb":p:ocaduree 
·,- '-

formed to check Whether the cell ~qr ,t;~
1
;~~r-~t; 9-ax;~ter 

(whic)'l corresponds to x) contains an integ:er 9~ a,_st~u.c:tµre. 
, I '.-•":. , ; ·.Jr $';,, .! '·. "'.' :_:,. • ; '- '.· :. ,' .,• 

The set ot_l:JL instruc~,ions _7hoaen to ,Pll1"~0~ ,the assign~nt 

operatfon ~pe~ds .?n the. result of ~~~' -~~~•i- . ln pr~c

tice, however, a prog;ammer will u•u•l~y ~9,!,',i~ ac;ivance 
, - • •• - f ;:;_~ -;.' ' ' , : .:"; ;,·; ' , 1 : ~: ., ' •. ,,' 

whether the identifier x will take on integer or structured 

values. 'l'his knowledge makee these runt.inle type tests in 

assignl superfluous. We would li)c.e some way of telling the 

translator not to make such testa where they are not needed. 

The technique of static tmch!cking achieves theE,le 

goals. It.a basic idea is to partition the set of values 
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into convenient subsets called types. The translator can be 

informed of the programmer's intentions of keeping values 
. ' 

only of a certain type in some given cell. With this know-

ledge, redundant runtime type tests can be eliminated. But 

it is still necessary to prevent type errors. For example, 

suppose we tell the translator that the variable x will take 

on only structured values. Each time we access the value of 

x, the BL code produced by the translator will fetch the 

components of x. If we somehow place.an integer value in 

the cell bound to x, then during execution the interpreter 

would attempt to extract components where th.ere are none, 

yielding undefined, probably erroneous results. To prevent 

such type errors from occurring, we would like to have the 

translator test each (assignment} to make sure it couldn't 
i 

specify the placing of a value of one type into a cell in-

tended to hold v.alues of amother type. Any (program} con

taining (assignment,}s which fail thie, .t_.t i• inval:id: the 

translator will notify the u~er. of sqoh,: A(l:,,,-.~11or i.n the s:ame 

way that it flags syntactically erroneo~s (pi:99r1¥t}s·. 

In testing (assignment}s ror va1:idity, it will be use .... 

ful for the translator to know for each (deatination}.the 

type of values intended to be stored in the'aJSociated cell. 
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This criterion can help us decide how to partition the.ML-3 

values into types. If we divide values into just two types, 

integers and S•tructures, then the above criterion is not al

ways satisfied. S\lppose the (identifier) xis specified as 

assuming orily structured values. Then·the values yielded by 

both of the (expression)s [ a:3t b:4] and 

[ a:3t b:[ c:5: d:6] ] can be stored in the cell bound to 

x, but we cannot say anything about the. type of the 

(destination) b gt·. x. In one case it has an. integer value: 

•in the other case, a structure. Thus finer type 

classifications are called for. we will want to ascertain 

from the type of a structured value what components it has 
' . ' ~ . .,, 

and the type of each component. Suc:h a type system is the 

basis for our next mini-language. 

Mini-tanguage4 (ML-4) adds thenotioris ol data types 

and s:trat:iic. t~edk.ing ·to the· concel)€S' *. aevti·toped irt th'e 

previous, <lJl&.:~~H:-. Specifi~lly, · ±t; · i!s· an e}ttenaion to ML-3, 

associating to every (expresa.ion} ~-:to . .,re~~ ce·ll a· par-

ticular data type. For our purposes, ~·C~4er data types 

as sets of values. The set, of inte;ger,• a,.aJl ~ ... 4data 

type. Further, the set of all structured v,alues witb a 
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given set of component (selector)s such that the type of the 

component associated to each apecific (Jt«~cuo~~- is, ·-given 

~lso is an ML-4 tY;Pe• With this collect~~-f ~ta types, 

if we associate a type to each (identifier) -mentioned in .. a 

(program), then we sha11 be ab~ to 4e:te7!1'intt _-,,the type asso

ciated with each cell referred to in the (proc,ram). More

over, for any particular data type, one·.oan "determine whether 

the value· yielded by, a given ··{ezj>ression) belongs- to this type. 

Syntax of ML-4 

The rules here govern the syntax of that part of ML-4 

which· is not found in ·i,.tt;..;3 (namely the t~ ays1:em) ·. we in

troduce the new primitive syntac'tici' ciaaiai (typena.me). to de

note the set d·f underlined alpbllnufaeric -ttirige, beginning 

with a letter. The distinguished (t.ypehantftY.i!!! has partic

ular significance, which will be aiacussea'below. 

(program) : : = (prelude) ; ( assignment:) ; • ~.; (assignment) 

(prelude) ; := (defn) ; ••• ; (def'1), ; (deel} ;: ••• ; (decl) , 

(defn) ::= (typename) = (struct~) 
a ;. • ::•;• < 

(structype) ::= [ (comp decl) ; ••• ; (comp decl) ] 

(comp decl) ::= (typename) (selector) 

(decl) : i= (t~me) (identifier) <t, ••• , _ lidentifier) 
' .. . 

The remaindex- of the ML-4 syntax ie.identical tQ--the syntax 

presented for·ML-3, with two exceptions. First, ML-4 has no 



··( modi f tcattion~11 {'Wbi>eh: w• s,imply -wen •ii 1WH• "~••ion tb' · :malte 

use of)·, · a• li.-c-.S; (0~rucit1iMftF a~ sJ:i;JJbt,ly · differ-

ent: 

{eonstwc1.:t:Lon.)1 : rr=· ftypeiiame} [ ('fkltf} ( field) ] 

( fiel_d) :,:= (ce:\,l exp~} ..... , 

the ( typename) of the (construction) • ) 

Description 

we need to. \'1~~rp~e:t ~~( J\• :~)ffi.~~t+,-rrF~s~,s .. A 

(program) in ~"."'-~ .i,s _e.sst?.~~;i.!111¥:,.a .(~~) ~, Ml,""3. pr~-
_, ' ; .. • .. , ', ;;. .: ' , "' ,. -~ ".-.. ,, ., . --:- . . .... 

cedeci by a (pre:t~sf~) •.. '1'1'~, {,re,~ll4-),. ¥i ·::~.A\.•~~ 0£ type 

definitipns, ( (de,~~j$.)_ ;9l).QWe<i l:ry a; ~M\,1~ of, ~ec:J.ar.ati(>11s 
• -: •.. '' s:',' • : :, ' •.•• '-! ·::. •,c • ' • ._., - \ ~ • ·-· • -· • • ', - • ~ •••••• ' •• 

assuine· values on!L!') o~: th•1 ·type'. gdven' "Y"'''the' {typehame-) • 

. Types in ML-4 are denoted by' ~r~: o? two syntactic 

classes as follows: 

(1) A·•{typename~ is .. ~lier tlie·'~l iilt (which de- · 
notes the type consisting of integer values) or the 
~ ASSMl.&1:.td: wlth'--~' t.yp,tiaMbt"'La ~e':fi\;) ~ • 

( 2) ... A ( structype,) -· d,f!l)9te.s>. a ~'l:~:Ct;9re4 .. ,~~- ( i; ... e •. a 
. tyt>e corisisting of structu-re~ v•luesl·.· The 

(select:or)s and types of th• aa•oeiated components 
of a value of suoh a type are •peeified by the 
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(comp decl)s (component declarations) in a 
(structype). 

Observe that if we 'know the type of a structured value, then 
I· 

we know the type of each of its components. There are two 

basic purposes for using (typename)s: first, to provide for 

multilevel structures (i.e. strucitutes with components which 

• ' '. .'_., ', ,:: , . ' ;., ; L , <; ,.;.-

are structures), and second, tc>' allow for recursion,:n type 

def~nitions. We discuss recur~ typee l•ter~ 

Semantj.c!: of ML-4 (infornu\l} 

ML-4. Elements of,;t~~ cl21,,~•~s; (~~~> JUld. ~~J~p~:y~e) 

define data types according to thr~._, ,~1.-.: _ 
' . , . ,. . ' ' 

(i) Th.e (t:~~~) !at denq~• t~vf!l-';1:Ul of all 
integer values. · 

(ii) Suppose s 1 , ••• ,sk are ( .. l~)•: ·~ 
t 1 , ••.• •¾ are ,syntactic items den~t1ng data 
type.•.: Thep ~be ( a true type.·~ . [ t 1 s 1.; . ~ i. , '1t sk 1 
dlnQte• tbe clus of all structurei with 
e~ctly k components widt' .. •,(•el•ctet-" s · 
s 1 , .... ,~k .. such that for each i = 1, •.. ,k ~be 
value. ,fl.%'' any) contain-Snin'-:-tJle,"c0ttpo1'ent eell: 
&~leeted by s·,, belongs to the type t .. 

• •· • ·-.. • .- ,.~ • 1.:t ,- :·.,""!.- .,,r.1'"• ,. _,,ii' 1 

(iii) ;tf. t · i_s t.be. (typename) of a"'~defn), then t 
·denotc,a 1,the,,:~ spec~.f~•~riBY'. ~h~/fftf\lrtf.P~) 
of that (de'frl) •· 11:n t~li case we. say that the 
(defn) defines the (type11,,-.},.,t~. ·.· 

,·_...., .r.,.• l ._- ' . ' 

These rules give the semantics for type ci•fi.J~it:ioJ:),t ,in ~-4 . 
.,. ' - ~ '.,. ... ·,. : ' , .~ , 
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Note that according to rule (ii), if xis a value belonging 

to a structured type t, then the types of all the compon

ent cells of x are determined. 

As examples, the objects of figure 4.2-1 belong to the 

type int. In the presence of the (defn)s 

.E.t = [ ~ p ] and ~ = [ int a; .E! b ] , 

the objects depicted in figure 4.2-2 

belong to the type t (which is the class 

of all two-component structures with 

Fig. 4.2-1. 
Objects of 
type in~ 

a-component of type int and with b-component a one-component 

structure whose p-component is of type int). Note partic

ularly that a cell constrained by our type mechanism to hold 

values of a given type can be empty. A value may belong to 

more than one type (par-

ticularly if it is a 

structure some of whose 

component cells are emp-

ty). But given any value 

v and any type t, one can 

always tell whether or 

not v belongs tot. 

Fig. 4.2-2. Six objects of 
type t = [int a; .E.!:, b] 
(where .E.!:. = [int p]). 

• 

A <typename) does not have to be defined textually be-
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fore it is used in a (prelude). For instance, the (defn) 

sequence tl = [t2 c]: t2 = [in~ d: int e] is perfectly 

legal. A nontrivial application is the definition of recur-

sive data types, which arise in ML-4 when a (typename) is 

used as part of the (struetype~ in its definition. con-

sider, for example, the (defn) r = fint a: r b]. - - -
defines a type named£. consisting of two-component struc

tures for which the· a-component cell can hold only integer 

values and the b"'component cell can,. •hold .. values only· of 

type£.· Although ,it sounds circulax-,.it is perfectly 0 well 

defined. Values of a recursively def.ined.type can have ·sub

structures. ne•ted to an. ar)>it:,:-ary deptlt, aiiel' M,,~bjects 

representing such values frequently .. aon,ain directed cycles. 

We make three restrictions on (defn}s in ML-4. First, 

the (selector)s occurring in a (structype) must be distinct. 

Second, a (typename) can be defined only once in a (program). 

Third, the (typename) ~ must not be redefined. Any 

(program) not obeying these r-.trictions .. Js syntactically 

invalid (i.e. is to be rejected by the translator). The 

meaning of an il'!,valid (program) is undefihed. 

(2) Declarations: As with (defn)s, the semantics for a 

(decl} does not specify any particular· actions to be per.:. 
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formed- at runtime. 
'. 

The- effect of a (~6Cl), is t7:o cauae ~he, 
• .\J,-·, 

t identifier)• in it to be aasoo.tated: with the type named' ,in 
:, · ·;·L~·'!',.. --"~s,;·· .. r~ .. ., 

the (decl \. · 

! 

( i<tentifi•r> occ;urr.~g in 90ale. t#~:,--·t.r,N>peat: •act-

: ~y cmce j,n~ -~1-- "<~~-) •ff. l~,l)a.. . 1',11.&, (~), ~rr-

. i~g ~n •~ ?-~'- ). ,'°'1~ .~ deflJMid eqc¢.y -~- in ~M. { 44lfn} s. 
•• i > 0 ( ..)... ... ' V J < •• • .. , ' 

0
' • ~ 

.• P,ma· bhlr .. atJoy;al_ •ant.ib: Ala! w-,,~,._- IMd' ( ct6ci'} a, it 

't••·~fHil41t: ·• abi:l;lbely' ~.HfM ~'1~].,., ( e.ip'rihion) 

--t iia •· ~tdsdl-H4•-dacl {pl!flfW .. t1·:,· ......... 'itt,t·r .. ai~'fol!wa: 

... 4-i·) ......,.. t:,ntt -(•pr:••tow-),;;, W·' a0 (~1•'. •·• :t 1;1
: it 

ill an: (identifier), tMft, tW• ( :bllMtitier) _ oecura in . ,.._dyc._..1.--,,.-,n..-· 1l•;s: ... ~·-e1t1'9thtJ~t,tj:;lt1lt!' •; · . 
(t~) of the (decl}'. Jt it ia· a (selection), •~ +, ~,~~•,-.,f,Jt, 1C:~•>~~:J~/(---•sion) .. 
fM-· type 'ill~ f.Ee ( ext,:r' .. a:fon), which cmt be determined
r'ebul'•i11e\-v w<l 1 t. " ~ ... ~ • .-. /~ ,..._._ .... .ilifA 

~- i''(itrii~5:;' ~7;,;Tt7h(~t-=)~~;::, 
i• q.tven 1- •the, 1t~) __ 4 .. ......_,,_,(~·-_A .. -1) ,..,..~e 
{11tthd~)·t'ha~~ti~b~ t~ g~--(~•l=or0

}. ·-

(ii.)'\ If ·,tahe'·,~apr.-...-) ~•·•:::!-'•'lff;.\'W.l}.t} ;tltere ·~e· two 
ca•••• ( integer) a are_ o-f ~ __ Ainl_ • _-._\ ~ _ ((:Q_-_n•t_ ru_c_ ,t_ ion) s 

1 ; aN df lite '-'blfllll :~- bf' t•llifiJH ... ti\iii> ~ :!:, ' ,. ; 1 . 

'l'hu• ,we ~. diftadmr1e1t ,ttr• &1111 ::_1(_.i•,:,Jof!.ia iJYntaot±citlly 

valid (pr~•~ -U..•£ype ·of._..,._ ~~-.foil~ •tb& t:~ is 1 

' given,~- i!~,~11!.~t.r C>nS (t~~),•.. ~l;~~1l;~{,in,- ,the 

pr•~~~ce ol the (p-rel~de), _. ~ 1111 ~.-~ -Y&YBl",i.1: , 
.;,,·-.. ,• J. ~. ~ ' ; '• ' ,, . ' 

ytvn • {.ii,t e., i4:U1. d J , xtYRf Jtt YJf.YRI- '1 the type corres-
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pondences shown in figure 4.2-3 are valid. 

(3) Assignments: the seman

tics of an ML-4 (assignment) spe

cifies the same runtime actions as 

its ML-3 counterpart; in addition, 

the translator is directed to per-
' ' 

form certain additional tests. An 

(assignment), as before, consists 

of a (destination) and an 

(expression). The ML-4 type sys-, 

___ ··-r._ Type __ , 

.. \ ~tll>ei 

a of x -
b of x 

,. c' ofy' ' 
,:Qf b QB; X,. 

3 

I int \ 
~ ! 
ytype 

1nt 

. int -
int -

~typf[3;4J ytype 

,~Xl?!rs: 
. X~Y.R8: (,6: ~l .1 ....... --
Fig. 4. 2-3. Types of 

; ~• ,(~e~~~). 

tern forces the cell referred to by. the ·(destination) to hold 
'' . . ' 

values only of a certain type. Thus the translator must ver-

ify that the value of this (expressiori:) matches this type. 

A (construction) in which the components fail to match 
'-~ . ' .- .: ' . . 

the types of the corresponding fields in the (defn) o~ its 

( typename) is an invalid (expression) and 
1
has __ qndefined ti,pe. 

For example, if we define .. .! ::;: [~,nt; a~ i,nt };)J, .. then the. 

(construction) 

component; 

because its b-component is of ty~e . ..! I'.~ther tpan_~ as re-
:.. r , ,. , • - ·: : . ~ . i • ~ ~ , . , 

quired. we also call a (construction) invalid if its 
. • -· -: ;: .• ·<, ; '. _ _.- '. 

(typenarne) is not defined in the (prelude). 
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ia invlllid if in any of it.a 
• -~ •<•-;, !~)tf j : ~:.f••:,~J{rt~••_.i ;~ ;•_ r r 

{·ati:eignaent)a the~ of the (expression) is un-
. ·f :·~.-:::1rr;_j·:t i~ r:: c-. s ·-, - ··~ ' ·• · · 

defined or f~iUI to matdh the type of the (destination}. 

ia given by p~i•ely one 
~ •., .. eJcr;;:.,. 

< typen..-~ J:~ · th8II -~• are ~fined to match if and 
"t !_ ~.J·:,..:~ ~->. ·: ;· .-, ,.: .. .i.: :: ..:..:~; ,. 1:· 

is• we •ball ;~• for the tranalat.or ineure that i•t can 
::~ -~-- <?' _;· P,;; ~(-~'. :~; , '::1<'.'>"~Y:.t :':~Cf z:~· . __ ; :·::. "::i' 

.. ·_,.:C.a1.lirilya dlie-~u 
1

~ther or· not a g~ven MI,""'4 {program} is 
L r: · :~{ , -~.f~ ::)t: ,-~ : ·; t.i 1. ¥l h :-:, .~: .3

• <'· •· 

valid. 1!1wre ··faF·~ need for runtime type teats, nor are 
: '-{. ' .:; ,,,_ . ·. .3 ,f•:r 

there any ruatime type errors. ~r, a runtime error 
.... ~~ 1 

,•· ·.,·,,~·., • ··i :::~:) .·:::.; ,;· ..... J :_..~::,·c~·::.:3.;)·::. '!:.f}:,:r _;~l-j~·· :--~,~P)~l ·,. · 

will ocd\lr if tlMlre ia an attempt to extract.components from 
. ,., ' ',- .• ~-;,t,·.i . .:. ·=··:·~-:; ;;;',:J./_:.;'? ',·; '..,·=' :~J-~:::··· . .,.,:·.;-:.~ ( "i~> ~-~L .. "l·,,., ~-: • .. ·.'~; 

an empty c:ell of a atruetured ~- Por instance, the ML-4 
·::···-. -; -,- :·.r,_-:~~:.: , ··::, .. __ .,.._, -<~ :-, ... ;t r:~;-J : , .... :_:_,._;_,_1 i'J"q .. , --, ...... 

(prog.rani) •l • U:.n.t, a1 a2 b] 1 s2 • [int cl: al x1 

~ ~; •1i11nill / ·~,c;)~itf{;'' ~,- X ... '4 . ,)',~ill. f~il 'o~ 'i~t~rpretation 

' . ,,.. ' ·-
' ,. _,_ :: ,_.; l .:~ .

0 
~ ·)~·- ::•·.!. _.·,, ·:·.,r_,.~~)•_,..·:. [1!': C:J ~:.,,.,.•. ::·•r,_ /'' 

ror a nonexistent c-co~ponent in the eapty cell for b ·.2t x) 
·' 

ev~n thougb 'tlie· :iype iot' t1ie' (deatiliaiLjn f ··c '.icif ,.g i ~ft"; ) ( i~'t) 

matches· tl-le "tyi>e: Jl-l11~· ·<•~reali1ortf :.,.: ··-- '-i1iu~ '~~ -~ fequ.f~e' 

runtime t~~s [Jo c~k 'tlie (11elef£1onf~ -'1n'·~-4. , 
3c;e'n~rally 

, ··-· -~ ,._ , •·-: ., .-- . : . ~ . . . :~ ., - . ,.. ,, > r·· , .. , ~·:1- • • • •. , 

speaking~ t..1tt:Lnc{ 'for empfy- ce1i.ti( ia . uauifiy , niucb 'easier 
than teJci'n9 C the. type of t.~ ::oont4'n''• 'o'I -. (;~~11 '.;}~'t rtinti~e. 

If w •trip off the (prelude} from a valid ML-4 
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(program}, then we will have in essence an ML-3 (program} in 

which each cell takes on values of only one type·. Moreover, 

the effect of executing this ML-4 (program} is identic~l to 

the effect of executing its ·ML-3 equivalent. 

1£.anslation into BL 

To give a precise formulation for; the s,mantics of 

With the previous mini~langu~ges, .it s~ffi~ed _tQ, ,show the BL 

code corresponding 1;.o various progi;am co!'fJtructs,.name..J.;y the 

different kinde of assignment statements. Tbis is no longer 
. t . ~ ' , . ~· ' ' . ,. .:~ 

sut,ficitmt in the case of ML-4,, since .1:1:l•,,,feaa.nt~c;-~ no"' con-
. ·, ' "··' .,. . '. ,, ' . 

tains ~ules for trpechec~ing by t;he tralls).~tQr. We must 

therefore also _c;l~scril:;>e the typechecki~g_;.ro~~ures pt=lr

formed by. the ML-4 transla,tor. 

In discussing how the tranala-tor pei'iforms typecmecking 

of ML-4 (program)• to determine t'heiir vali4'ity, we begin by 

describing tbe information ·supplied to the trarielatorby the 

(pre.J.ude) of a (·program},~ We' shall treat· tbe ·t!!'ans'lator as 

a BL procedure. As it procesHS. the-{prelu&.), the trans

lator builds two component objects in its' ,local: struoture1 

one component named $defns which represepts the type defin

itions, and one named $decl~ ·. which ~~;r;r4lB~ll~-~ to the 
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the declarat~ons. $defns .is a struct:wte wl)ich ~• o~e com-. : ., r. ,~;, ),;_ r .. , ,~- ,_,,.};.•; -· · , 

;pc;>nent for ead) (type,name? . ~ . i~ the: }.~~•lude} • , Eac~ 
• ,,; • • .- •· .,.., • .•• • , .• ,,. • ' •> .... , 

type associated with t'be {typenaae}. For each (typename) 
C '"" ~• • '• • 

defi.ned in a (defn}, the oorreapon:ding component of $defns 

has 'an _..n•" fJ'.iild'~if.li efie··i;:~it-'~of'2~41nii(i:n :a value 

'.: of''f.hat type, numl:Mit'e<1i'f!e1~~xgt~h\g:~ ;(-••I~tor~·- ·of'.the 
f 

components' -iii t:li~ Jiroper eraer::nitid ; . "',t~l« fielld giving the 

'typ~~ 6£ t'ie c~ti (fr/ ii1ei1t1VG£'-:1iib .. t.o 't'he prQper :· 

- e~rft;r:t,s ·tn ·· ffi·tnsf ;' ·· •·'tfte· irit~~Mt: of fdefns hails only a 

·~af...;c~we 'coi\t!ainilng '·t~e elf.~1file:'ily 1talue · • J:ii1£r :· · · $dee ls 

is cf sttucfulfii·:,,;f•tii one ·,6o~u"t·~8:t ,. ('i~ri'ti'.tier~ de

clarat lrr t'l'l'Er'·?~elud•Y. ·::rl. if"-t•. ~M:.)f~t:ftiir)'"x::fs: 

declared to 'have type t, then i!i,·•~e<of \$'d4!cils 

.·•·~~ •. :W!i-t:a'l:,~:~'5.,:0'f $49eo..1 •:l«l,.•Mll .. t♦.£ :figures 

4.2~-t ~.2~s .. -4: r4 .• 2~:-- <J,t.,v-er•J-.-.~iJ'*:l,..ii~t tthe 

00:~eµ.; R~ _. He•1- ~....-.--~ lD5r ,~-,..fbr.-.. ~.O•~~ . from 

the_{~),.,; .. ,~ ~,~&(tia, .... ,)i-,~ iil't~£t~ 4.,4;•5 

~ ~~~ '..~t' Dhe.__,_,..tt .,.$~• ~~ ... ;• dii:rected 

:<:v~bt1. ur tlA•. <taae,j: 

d~ ~e 01:SJ~ft have 1aett· ~•tru6ted flt -~ trans

lator,~ ail tlie t,rtorMation · :r~t'it~ f'dii: i;~~•att±rig i• 



-119-

available. Each type to be associated with some cell re-
_l:\ .' 't 

£erred to in the (program) is re~resented by a component 

node of $defns. Two types match iff they have the same 

Fig. 4.2.-4. 
(prelude) 
int x,y,z 

..----------------,-,····---··-

.Fig.,.. 4~'2-S. $~£NJ and· $decls 
structures for the (prelude) 
= [I. p; ~ 9'J; .£ .lC,y~}-·:i9t m 

{ type name) • To d~scribe how tb.a, .tranal~tor performs the 

' actual typechecking, all that needs to be shown is how to 

access the node for the type of any ML-4 (expression); once 
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we can do this, the typechecking is straightforward: an 

(assignment) has a' type error iff the nodes for the type~ 

of its (destination) and its (expression) are distinct. 

The type of an (ideritilier):>t ia giv.m by ~tiec:la.x. 

The translator.will mark a (prog2tam) inv&iJ.i'.d if any of its 

( identifier).• a• ,un~ecla.red.. I• f3 is the nQd$! ,,fQr tihe type 

of a (dttti.natioll) o, then the' type of the (select-ion) 

s of D is given 'by tbe node J.val.a. 'The transla:tor veri-:

lies _... pal:llt 6t·. i•te typecbeck¼n'q that valults o'f the cype of 

Ddo trideed have 11-coaaponen.ta. thus we can ••cer.tain the 

node for the type of any (destination) in an ML-4 (program). 

Figure 4.2-7 illu•tratett •eme •-._le ML-4 (as,ignment)s in-
., 

volving o,lly (destination)• and gi.vmr lit type~hecking code 

ML-4 code 

z ... a of x -

b of y .. 
c of a ,21 

·-·- . . 

Fig. 4.2-7. 

.. $decla.x.vaI;a,no 
• fd.~J• tr:J• $~~cq., .... ,. vat·• ,.no 

$d♦cls.y.val,b,no 
$decls.x.val,a,no 

'fdeel•~·k. vd ~ a:vii., CinO 
? $deels.y.v~l.b,.$ciecl4.x.val.a.va,l.c,nq 

· BxQll>l•• of-BL typecbecking~ 
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to determine their validity. A branch to the label "no" 

indicates that the (assignment) bas a type error. 

If an (expr ... ion)' ts '.~ ;~;~~teq49t), then t~··type:i_♦ 

given by the node- $de.fns~1nt.. '11Ui:.t~ of a (c~nstrii:ctiq>n) 

whose (typemuw) is t is given by ·'tba. node $defns. t, pro.,. 

vided the (dOnatruction) is valid. To check this, the types 

of the oomponeri1ia' in ,.tlie (~'9'.t~an} 1DU&t match the 

(typename)s in the (structype) that defines t; moreover, 

,there -must be·· tbe .,._ numbtt:o.~~~-~ents in both places. 

Thus the trarislator'' can a~a~- r,y·~"'@':// :~cb~me ~2tli~{rioa~' for 
. . ~ ..:;, . , - . ' , . .. ' 

' '.' •, ·, ... ,- . 

the type of any (generator). -As. ~ <••ult, we now see how 
- •' -· ..{ ' . 

-: - - I 'i > _ • ••• • • , • , .:• r • •; , ·· ., '' -? 

the translatc:>r i3icce.,ssee tlul ~..-::.~~ the types of arbitrary 
• C ••' • ,,' ~ ,. ··• ,., _.,. ' 

.,., , .... < 

ML-4·. (expression)s.: .• Figure 4 .. 2:8::-gin• SQ&ne examples of 

ML-4 ( assignment )s contatning, 'ar~~.aiy kinds of 

(expression)s; along with each {'aa~nt) we show BL code 
; ' 

,'. 

which tests its validity. Thie c~Utee our picture of 

how the translator per..iorms st•tic. ;~checking: the rnech-

anisrns shoul.d be clear ·.fJ10m ·tbe 

and 4.2-8. 

in figures 4.2-7 

The actual BL code generated by the.translator (i.e. 
,.- .~-l-.? ,· .. r~':: .. ,,..-

the BL code to be interpreted at runtime d~ring the execu-
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in the section on ML-3. There are two dif~renc:es reflect-

z .- .SJ2l -... ? $deci •• zL$4efns.t,no 
. Sli!D!\,~ :t. • .$--.111' 'Wtl1teer.l':1d, ·~we t: 

11111St have exactly 
,<·•·:-..tc=~- 'fi/ 

eq? $defns.!_ •. n,~tel8P,no 
·:f!tld&t. .~ 4fttl.,f.t~,·b<~ ··~ littt. 

· component 
'<if.' .·· '. -<~~~}, 

type..!:. */ i 
.? ·~ $~~!~~• ~I ~-&,.,M;C'., no ~ 

;,--~-if--• W, xJ 1f;1. $d~'!:,~-❖ •Ji.•-no 1 ' . ' .,;- %'," L ,,C. • C ," " C ' 

~ $da&a .• £.•·n"'$t.,ap, no 
· :!!fleet "$&rflitt'.,t~·1;~ . 

. -·· ~. ?. ·, _ !.~=-~ .. ~~.~~~~-t~,,~t~~l•.• w., no 1 
.• ~ if"-WI -~/'f', . - •' "' . . . .. ' .. - i 

-------···-·-·- --~~•~::-:;z?:l,;:,-,.,,. · :.*•:r·::•;~~"'·•~., ,•:l:~Et· ,..;;t,':'Z';:.:•:1:J· ~a..!:c:'~5:i:~:•~-.-·C..' ;:~~~ .. ~~P:::,,l::• s:.:·::,x:.:•~n=o:_4 
y .,. _!(l;[b o·f wl] same? ·$decls.y;$defn&.!_,no 

l 

J 
' 

r 
I 

, 4VJlt'I. =· · •·l .,ctf atr." '· -., .~ .. , -- · · · , · • ~"· ,f', •'1'Jili .... ,, ... ''• ,. ,..,. ,, ' " 

: eg,? $de£ns • .t,.a, $temp.no 
. ~ $~~"~ ' '' 
s ? $defns •!.. val • *$temp, $defns • _i, no 

· SP!!!~ l.,,1:$b111p1. ·, 
.!5££: $defns. ,t. n, $temp, no 
~ i;de.eilf~..;~,:laL.;so '•t . 
select. $defns. t, l.,$temp 

.· 91M!2- _.,.~~..U.,'1'.... ' :. : .. 
$dec¼s •. w. val. b, no 

Fig. 4. 2:.:a:-- -~re examples of BL _type_· __ db_e_c_k_i_n_g _______ j 

ing tbe sw:,i.teh of typec~ecking from runtim• to translate

time. Fix-at, occurrences of (sel~tion)s i;n ML-l yield run-
. . ' '. ' . .: ~- ' ' •, ...... ' . . .) . ..: ... " . : 

time type 1:e&t.a., •uc::b as the BL code JA!!l. x,b,.erto'r for 
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the ML-3 (selection) b £f x. In ML-4 this runtime tzye 

' test is replaced by the simpler and faster test 

nonempty? x,error, which makes sure tqere i~ no erroneous 

attempt to access component cells of· ari empw,~•-11. 
' 

The.second change is that the complicated procedure· 

assign3 with all its type tests is not needed·at. all. The 

BL, code genex-at~ fir9ffl. the (a~nsignmen_t) y t- x depends on 

the type of the .(~stination) y. If its·tYPe is_~, then 

by virtue of the translator's static typechecki~g we know 

that. x Cl:Ul houl onl.y iJlteger. ,vaJ.u9e. In tbiac· c~e the.C BL 

clear y 

none!!i!5Y? x,skip 

const *x,y 

skip: 

Fig. 4.2-9. BL code for 
theML-4 {aasignaaen~) 
y t- x when y is int 

tured type, then the trans-

· .. ·. (sE!lf.!ctot)•,, s 1 , . • • • sk 

are giv~m ):>y 

s 1 = *($decls.y.l) , ••• , sk • *{$decls~i-*l$decls.y.ri)). 

In this case the•BL code in figure 4.2~10-is generated. The 

translator can always ·tell which case applies by testing 

whether the pathnames -$dee ls. y 'arid $'defnei .;'fnl:. lead tGk·the 

same cell. The BL instruction same? $decls.y,$defn~.int.,go· 
h: ~, 

performs this test. A branch to the lal::,el "go" ,i.ndi~tes 
. . '. ~' ' ' .. f ~-



I c;:;n- -=---~~~ ... ·i::;'"~;: -,'A~ ..... .r~--t:t1;;-~-;:.,,.,,.:~t'" ·· ..... ~.: __ , -

I 

/" ,·.~, ··# "'< • _ _:; d:; .. trf · · ::::.,~,;.,1:._-; ,, 
· applies. Thus, by sub-

!
' '•••.··• ' ...... , u .. 

. i ' • . . . . ttfflzrt ~ 

·-
,., . 

~--- {!.·,,., .~1::;,rr(.~·LlHil)~"'. ;': -:: ";..! :~<.~-;:..; 
t.eet !or el\e by? 

. :-· .. - · :_ '111rict'Eh•·Bt -~dlf'of fig-., 

ya~ 1,p-,1-••· t,.....,._..~.,._;·.,._ 1•l•••·•~• ~ a.-:· 

---~~ .. ~•••••fdila,_-, ~,.,• ,•~· ~- ~-,1~.-~'.be 

. . . 0bo~ l . . 
Mo•t -,.~•tttf'.• t•tlla,_ .. 4RanftMs_~_,. 

. · ~ ,;, ;, , ~ ~ 1 -; .. . :; :·. "., ·, - -~. ,, 
have a ~, •Y••u•.t-U•.,,to thtt.~--◄r :1::lllr:lMDl at 

tbct~. ~qk,s, ... •t ......... ,rt.¥"/--- than 

.. J;\Ul'.tt~,~·--, •...• 1_: ...... ,~ . .-..-•·:W (,x:,_._} ... -... ,~._ 
fa,c;~~ ~,,:.~~~i:.•o4>,"""··•-•••'if-~9'.f.&"'!4 ,._ ,ca: -· •. 

~~~:,.,,,.., ._.,~~ ~r.,.r.-w.er.--.-: . 
. , ... ,..:. .... 
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treatment of data structures. The structures are called 

records, and the ALGOL W analog to an ML-4 structured type 

is called a record class. An ALGOL W record class declar

ation can be represented by an ML-4 (defn). Figure 4.3~1 

shows how the two languages define classes of structured 

objects: the ML-4 type with (typename) .2!.!!:, corresponds to 

the ALGOL W record class named pair. St~qt:u~ed objects are 

built in ALGOL w tprou.gh the use o-f record designators.,. 
) 

which are analogouf to ML-4 (construct::ion)s~ ExpJ:'.eS&ions in 

both.languages whi~h build structures from ~he "pair" class 

are also shown in figure 4.3~1. 

-· "~"',- ~ - . ...,, . ., ...-•. 

language type definition object construction 

ALGOL w £ecord pair (integer a,b) pa.ir ( 3, 4) 

ML-4 2air.~ [ int a1 ~,~sJ,.,, .;.,~ Dair [J:J4J -.--
Fig. 4.3-1. A parallel between ALGOL w and ML-4. . .. ,, 

There is a major difference between ALGOL Wand ML-4 

with respect to these elements. Aitbougb a record 'desig

nator builds a structured objeet•··1tr Aooo~.'W,' it does not 

yield as its v•lue the object it cOffd~~. ·tn fact, ·-· rec

ords are not even values in ALGOL w. ~._;reoord'class is· not 

a legitimate type in ALGOL W: rece>m9. are:aic::C6lYW'ed through 

values of reference types. For inetance,...tbe-ALGOLW record 
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designator pair(3,4) in figure 4.3-1 yields a value of type 

reference(pair). ML-4 will treat reference expressions in 

ALGOL W similarly to the way ML-3 treats pointers in ML-2. 

The correspondence is depicted in figure 4.3~2. Note that 

ALGOL w\ 
record pair (integer a, b) ; 
reference(pair) y,z; 
y := pair(3,4); z := y 

ML-4\ 
pair= [ !!!,t a; ~b ] ; 
refpair = [ pair ptr ] ; 
ref,12air. y, z; 
y +- ref;eair [ pair[3;4] 1 ; 
z ... y 

' I 

) e 
I 

~ 4, 
pl:r fb-

K 
o.. b 

@® 

in dealing with 

ALGOL W records, 

we need an extra 

level of indir-

ection (the "ptr" 

Fig. 4.3-2. Reference expressions 

component). This 

(at least with 

in ALGOL w. respect to our 

scheme of rep

resentation) is the same kind of inefficiency we encountered 

with ML-2. It is worse here, though, since ML-2 made use of 

the indirection only when sharing was needed. 

Components of a record can be accessed by selector fun

ctions in ALGOL W. Figure 4.3-3 

shows the correspondence between 

selections in ALGOL wand ML-4 

(z is of type reference(pair) 

in ALGOL W, refpair in ML-4). 

language selection 

ALGOL w a(z) -
ML-4 a of ptr of z 

Fig. 4.3-3. Selection. 
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Once these differences concerning the construction and 

selection operations have been taken into account, we find 
•' , . 

that assignment, sharing and typecbecking in ALGOL ware 

almost identical to the "obvious" ML-4 counterparts (e.g. 

replace":=" with".-"). In this respect, ALGOL w is similar 

to the language SNOBOL4 described in section 3.6. 

PL/1 was one of the earliest laaquages ·~ have compile

time typecheck;4\9 and to treat both date, stnotures· and · 

pointers. Most PL/1 construc1;s band.ling ~eae notic;ms look 
' . ~ . ' ' 

PL/11 
DECLARE 1 X_, 

2 I FIXED BIN, 
2 s, 

3 J FIXED BIN, 
3 K FIXED BIN; 

DECLARE Y LIKE Xr 
DECLARE Z LIKE X.S; 
X.I = 5: X.S.J = 6: 
Y = Xr 
Y.S.K = X.I: 
Z = Y.S: 

markec;ll,y di.fferent fr.oill the 
•' . . . ·--~-

const,.r_q~~l:J we have seen in 

---------·-. -- .. 
ML-41 
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.otber language•. Figure 4.3-4 oowa bow .»L/1 handles a 
-,'/ \ ; . .:,(f \:-~ .. ~:? ,;. 

sample .ett11Qture and 9.ivea -.rt ML-'4 41,p1.i:val-.t. · We make two 
.-J ,·. ·:: :' • ·' ··. . i'. ,_. 1-i i '; 'l' ' 

ob•ervatiofta. Fi.rat, all-~t eel.la.pf t:.he PL/1 atruc-
. '· 

~urea in tbi• ~l• a.re allocated-. the declarations 
q 

are interpreted. With ML-4, ~•t cells are ~llocated 
, .. • t ,J .f -~' · ,.: •· .·V ;.:_ ·' :, . F .. 

when the structur$d value .ia actually constructed. Second1 

' ,; . ~ ", ,-, . • -·:·· ,: ,')',<,: .· -v., . ' t' ·, ';, . i ~ ' 

UflliM ·ltmbl, ¼f; t.'lWire ci•'-:no ._r£n9 aotig PL/1 .atruc-. 

tui-e.· 1.UU:t·J:• l!H!~ce pointer,a . .MMl .. tbe .. at:tx:••3e Ml&. . , r ,. 
f 

'.!f 1' ·iat ·•:P.t/i <\/ai'ltili··:h~ to be ,a pe~, ?~'de-

cl•ring a structured variable rwitb tbe att~e MSBD (P) 

!fltrQduee• a v•t. c~cept'1a!'.ttiAllif:ii!.iiW'"-· ii'Aia variable no-
.-- . ~ . ,~:: ,,. ···r·~.:f_< . '.-~7-~,. . -:·-+~' :,_~~-·;-{! .1 .;.{~-./.;_·- . 

longer; ri~~ifNII_ .-."~t:li•·. wbe• •~1 -h~~ 10ay be 

_· atodclf --i~}~:.~;, :fJ~~ t'he ~ol• of~·: ~t~;~r~" :•:.!:.Ya •. 
~ ; - :'.. ·, ;:; .. ~ ·- . . ;'\. . ' ' 

Figure 4. J.i..S,:~~ · i"'•itt ot PL/1 6tc1arat ions~ ·in.,.dl ving 
'~ t, . -~ " : -:"'; ~ :- . ,, : (: - - . _;,._. .,. . -- ' • -~-- -·. - -.:. . > ' • 

• . :). •J'' ." ..... - ... ~ - ·~ .... ·-· ' • - '. < .,.. ;• .,. • ~ ..... --~-~- .. ·-

BASJ19 •~1:-~tM:~=-'" ,~, a CipX'~iaf ~.-4 <•r•lude) 
~ ~-- :· •~, . · .... '" :. ''lz· _._: ,.,:.:" • S' _:,._,.,, t "' ~ ~-~ . ._ ./'i 

and Ht··of.'~L\~~ii-•tA-one. r. r-· -~, 
·;· .• ,"' '•,. ( ·. ~ ,f ~~-~/ . ..~ \ ,. -

. , , . .'. . , . . <~h (i' : : ; . 
Altllo'Qh /:tlle JJ,,,ll ,~laratiou ·of ·figqre· 4J.3◄ •pacify 

- . . ' · ..... '. .·, .. --~ •. ~ . (;) :"':;-; .', i 

i111~4~~- ~•f ·.:•~-- '!(; ·hoe ~:·-i.. tmn! •11o-
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in figure 4.3-5 does no such thing. BASED structure values 

in PL/1 are constructed through the use of an ALLOCATE 

I 
t 
' 
i 

------- . 

PL/1 
DECLARE (P,H,T) POINTER; 
DECLARE 1 LIST BASED(P), 

2 BACK POINTER, 
2 FWD POINTER, 
2 NUM FIXED BIN; 

ML-4 
ptrlist = [list ptr]; 
list = -- [ptrlist back; 

ptrlist fwd; 
int num]; 

ptrlist p,h,t 

ALGOL W 
record list= 

( reference ( list) back; 
reference ( list) fwd; 
integ:er num) ; 

reference (list) p,h,t; 

Fig. 4.3-5. PL/1 BASED 
structures as types. 

statement. Under the dec

larations in figure 4.3-5, 

the PL/1 statement 

ALLOCATE LIST may be rep

resented in ML-4 by the 

(assignment) p ~ ptrlist[ 

Since LIST is declared to 

be BASED on the pointer P, 

the allocation causes the 

value of P to be set to 

point to the newly-built 

structure. The result of 

! 
I 

this allocation is shown in fig. 4.3-6. 
p 

J, 
pt-r .. 

bn\i(, 
,.I ., 
°h'Jd ;111~ • I, • 

Fig. 4.3-6. 
Value of p. 

-

BASED structures in PL/1 are ac

cessed through pointers. In our LIST 

example, a use of the name LIST refers to 

whatever the pointer Pis currently 

pointing to (which will be the most re-

cently constructed structure BASED on P, unless P has been 
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dne M\Hlt ti1Ht a gJtlff#ad reference. such-_ as T -> LIST (which 

ind-i,catd whatevar tbe' pointer '1' is curresi.t3¥ pointing to) . 

Figure 4.-3,•V 4t1lwa tbe connection· bet.ween, l>~/1-, ALGOL w and 

ML-4 in -acceaa:Lng \fieUla of structur.- (,it i,J ,assumed that 

the deola,rationa in fig. 4.3-5 are still in force). 

-----....... -

PL/1 ALGOL w m.:...4 

LlST p ptr of:p 

T ... > LIST t ptr Of t -
Ll:S'.r .. Nta p.num nu111_ 2L ptr of p 

C .' • '•• -,, 

T -> LIST.NUN. t.npm '' na.·.el,:pt;r-gf ~ 
' 

Fig. 4.3-7. Aace&sing fi.it!la. . ... -

The mean-Lng of assignment in PL/'1. i• siau:lar to ALGOL w 

except for ,its handling of structur-4 values (which ALGOL w 

does not cbo&•e-to haftdle). -ln t.lli•eaae, ai, • have &aid, 

PL/1 copiea r•tl)er than ,inou9e ~ring. All •bari:ng of data 

in PL/1 is done through poit1tei-s. 

i.naurea tMt • retw•ee value Gail ~ to reQOrd.s only 

f:l'om en• ,reccwd cl••1 if-el. art4.; ,._ -*~ ,r.•cord 

claasea, then any attempt to make a vaiue of·_ty-pe 
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reference(cl) point to a record from class c2 will be caught 

by the translator and marked as illegal. The type system 

for ML-4 imposes essentially the same restrictions. How

ever, a variable of type POINTER in PL/1 can be set to point 

to values of any type at any time (including nonstructured 

values). This causes difficulties of the same kind that 

static typechecking is supposed to eliminate. For example, 

in the PL/1 program segment of figure 4.3-8, the assignment 

P = Q is legal, even though P points to a struqture of type 

... -D-E_C_LA-RE--(P-,-Q-)-PO_I_NT_E_R_; __ __,I_P_L-,/-1""'\•M-L ___ 4 ...... ,----------·-·-·-, 

DECLARE 1 Ml BASED(P), 
2 J FIXED BIN, 
2 K FIXED BIN; 

DECLARE M2 FIXED BIN BASED(Q); 
ALLOCATE Ml; 
ALLOCATE M2 ; 
p = Q; 
Ml.K = 5; 

ml = [int . j ; int k ] ; 
pt~ml = [ml ptr]; 
ptrm2 = [int ptr]; 
ptrml p; ptrm2 q; 
p ... ptrml[ml[nil;nil]]; 
q +- ptrm2[nil]; 
p +- q; 
k of ptr of p ... 5 

Fig. 4.3-8. Lack of type restrictions on PL/1 pointers. 

Ml and Q points to the integer M2. The reference to Ml in 

the following line (Ml.K = 5) designates whatever P will be 

pointing to (which is the integer M2 since P has just been 

assigned the value of Q). Thus there will be (depending on 

the implementation) a runtime error or at least an erroneous 

result as an outcome of the attempt to update a component of 
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the integer value M2. The ML-4 translation,of this program, 

also shown in figure 4.3-8, is invalid since in the 

(assignment) p +- q the types fail to match (ptrml vs. 
', •' . 

ptrm2') . If in the PL/1 p:r;ogram we had declared M2 to be 

BASED ori P, then the correspondi~g ML-4 ,(program) would have 

two conflicting declarations' for p, which,would also render 

it invalid. Thus we see that the typechecki.ng system in 

PL/1 fails to catch a whole class of programs which might 

have runtime type er,rorEJ. 

ALGOL 68 

The treatment of data struct~•• -~ pointers in 

ALGOL 68 ia linked to ,an int'ricate syll'eetl' o! .' 1:}'Petll iUid type

checking. ALGOL 68 ia a difficult languaqe to ·1earn and 

understand~ the defining doc~i.-rt•tio,n (VWi;j. 69; VWij · 73.] 

presents an intimidating formalism to the uninitiate·d. 

~weve+, there are works (e.g. U,.i.ad 71] t wa.iah ore immense

ly helpful. 

Types in ALGOL &8 are called modes.· 1I'bct 11¥)dea of rele

vance to u• a%:e the mode int ·(integer val\t'ee) and the modes 

built front the mode-.aohstructors stnct and ref 'Catructuted 

and refer..enae values, respectively). we -&rso-rine a corres

pondence Which aasi911s ML-4 types to ALGOL i8 modes: 
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(1) To the ALGOL 68 mode int we assign the ML-4 
type int.· 

(2) If M1 , ••• •1:\ are modes._cmd. s 1 , •.• ,&k -a~ ~ags 
(the equivalent of (selector)s), then to the mode ~::u~: ;~~. ~~~- ~~j;cw~!~ ,:~e~;!!~t:~e ~~4~~~=~s 
correspon..p1q9 to the M:t'"'·, .· · · • . • · 

(3) If Mis a mode then to th~ mode ref M we assign 
the type ['l" ptrJ , where ·rit·· is the ~4" -type ·~rres
ponding to M. 

Mode-declarations in ALGOL 68 are just like type definitions 

in ML-4: for example the lllOde-declaration 

mode pair= struct(int a, int b) is eqllivalent to the ML-4 

(defn) pair = [im:, a; 1E.t b]. 

A declaration in ALGOL 68, besides associating an iden-
. . ( . 

tifier with a mode and imposing type restrictions on the 

rest of the program, has a two-fold runtime effect. Con

sider a declaration of form M X = E, for instance int x = 3, --
where Mis a mode, X an identifier, and E an exp~ession 

: ... ~. •' ,• 

yielding a value of mode M. This declaration first binds X 
_,,,, 

to a newly-allocated cell. Second, it places the mode M 

value yielded by E into this cell. What:. is"' p~-~uliar ~bout 

ALGOL 68 declarations is that this value can never be 

changed. It may, however, be a reference value·· (i.e .. the 

mode M is ref N for some other ~de N}; in this case it 

refers to (points to) a cell holding vaiu~s of mode N. This 
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latter cell (and not the former cell) can.~ \IP(iated by the 

assignment operation in 'ALGOL 68. : ;'Tl\118 ·1:he flleaning of 

assignment: in ·I\LOOL ~,fia ,dif~ ~ ~i~ :'i;n the other 
' . 

• · I 

languages we ha:ve discussed. ~ ~ ·en ·l.dentffier whose 

a constant. An identifier of mode ,w N in ALGOL 68 plays 

the same role as a variable of type Nin another programming 

language. 

The &pacific definition of ~L 68 psigruaent is as 
. . ' ' \ 

follows: let Ebe an expreaaion yielding a value of mode M 

(M can be arbitrary) and D an exp21eaai0ii'- of •de .£!! M. 

The value of Dis a reference to a cell which can hold val-
J., ',. __ •,·:1 

ues of mode M. Then D : = E is a valid aesignment and 

specifies that the mode-M value of Eis to be stored in the 

mode~M cell referx-ed to by ( the value of). D. 

A particular. kind of ALGOL 68 _ expre••.~on, known as a 

le:>cal 'Dt)~!'Atq5:, specifies allocation of a aev,o,ll when it 
' . . ' . '' ' ' '·. --

is evaluated. If M is a mode, th4Jn eval"ti~ of the local 

generato:-.loc M causes a new (:811 {whiqh can only hold val-
, ' ' ~ ' :,_' 

ues of mode M) to be allocated. loc M 
"~ 

is a reference to this new celV and,, t~•f<>re b~longs to the 

mode ref M. 
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To obtain a variable in ALGOL 68, which will take on 

values of a mode M, we must declare an identifier X of mode 

ref M so that assignment can change the mode-M values. 

This may be accomplished by means of an ALGOL 68 declaration 

of form M X, which is really an abbreviation for the dec

laration ref M x = 12£ M. consider, for example, the 

ALGOL 68 declaration int x (equivalent to the declaration 

ref int x = l~q int), whose effect is depicted in figure 

4.3-9. The identifier x, which·is declared hereto be of 

x = loc in:b1 --_ _.___~, --~-·~ ··- --·· 
'ML-41 

I
t refint = [.!J2i· ... ptr]; 

Eefipt x; . . , 
: x .. refint [nil] 

, Fig. 4. 3-9. '., Semantics 
ALGOL 68 declaration 

of the 
int x. --

·' 

' '' 

mode ref int, is ---
bound to the upper . 

cell; the lower cell 

is allocated (by 
. .. 

evaluating loc int 

in ALGOL 68, and by 

evaluating the 

(cell expr) nil in the (construction) reflnt[_!lilJ in 
.. 

ML-4); and the upper cell receives as (permanent) v~lue a 

pointer to the lower cell. Subsequent.execution of the 

ALGOL 68 assignment x := 3 would place the value 3 in the 

lower cell; therefore its ML-4 equivalent is the (assignment) 

ptr of x +- 3. The static typechecking rules for ALGOL 68 
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insure that any assignment attempting-, to pl~c~ a no~-integer 

value in the lower cell is detected and'indi~at;d-to'be' 

invalid. 

There is one aspect of the ALGOL 68 type system which 

is more lenient than the ML-4 system. Unlike PL/1, no type 

errors can arise from tbis loosening. consider the assign

ment y := x, where botb icSentifiers x and y have been de-
.. 

clared to be -of mode ref int. 'l'bia aaaignaent specifies the -......-

updating of the mode !ru:, cell pointed to by y. But the 

right-hand side, which I\USt ,-the!l supply ·• 1nte(J'e~ ~l~,~ is 
- '.. ~ ..•• ~,,.'i,, •• ~·:...-J·~·--··· ~ r . 

-~f mode ~ inr: according \:O )U.-4· J:U~~"'-ct~e :asa&i~ttt is 

to be rejected by the tranalatot as· invalid. However; -

ALGOL 68 re~izes that the ref i,nt va~~• C?f :~- points to an 
· · ', ~ - t· ~ , ·, " :. ·i.~· • ..'.. ~·r 

. . - ! . "' ' .L ••• { ~ ? .. :• ~~ 

quired integer value is follow- -tne-p,inter x. This process 

is called der,ifer9n9in<a-· In general, the procedure for ob ... 
,... . .. ·. ' ' - ..... +; • ◄• • •' ' ". • ~ • • 

taining a value of a desired mode·'from a value of some other 

mode is. known .as coercion or conve;aion. 

ALGOL 68 type system, if the left-hand aide of an assignment 

is of mode ref M, then the assignment is valid provided the 

right-hand aide ia of mode Mor can be coerced to yield a 

mode M va_lue. In our case, the procedure which translates 
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from ALGOL 68 into ML-4 must recognize that dereferencing is 

called for, mark the assignment y := x as legal and gen

erate ML-4 code which takes the coercion into account. Of 

the three assignments in the example shown in fig. 4.3-10, 

coercion takes place only in the second ,o.n:e· ·rwJler~ y is 

dereferenced) • · The y on the rigfit..;ha~d2iH·~ bere is trans-
;~ . ' 

... 

lated into the ML-4 (expression) ptr _£t Ye yielding a valid 

ML-4 (assignment). 

Note that the mode of 

xis _!n!, and the mode 

of y and z is ref int. 

The concept of 

structured values in 

ALGOL 68 is essen

tially the same con

cept when taken by 

itself as in ML-1 and 

ML-2 (as well as PL/1 

and QUEST). Sharing 

~---1~'. 
int:. x: :•· 3 .... , · _......,._ ,,-., 
int y, z 1:' - · , 

~. :=- -~1. 

~:!L.:!i 
refintt,.= 4.11\t ptr]; 1ni·-,r~--- ·· ···-•----~--. · •··•··- .. - , 
refint y,z: 
JC;_ -·~ 3J . . . . ... 
y +- re :fint.[ n1'1 J J 

z_ ... 1refin~ (Ri 1 J ; 
ptr '6£ifi!, x·; · 

J;>i;;~,. of ,z r. ptr 2£ y; ptr :~f- yr._, 4 .. - ---- ----~---- - . 

,J.g ~- 4' .. ;J~i;O,. An. example of 
coercion in ALGOL 68~ 

arises only through the use_ of _refE:r~,nce modes; assig~lll,f.!nt of 

structured values is done by compone~tw,i~~ copyi~g~ :F;i.gu:i:-e 
. , '.:-,. . . ,: 

4. 3-11 gives an example. The mode of z iia ~.;~ the .mode :of 
, ~ ~ ,: ,, 
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xis ill pair. The expression (5,6) in tl)e declaration 

for z is called a structure displ•~ and simpiy gives values 

for the components of z. 

.68\ 
\ .,·.···. 

' AMOL 

!QSI WLii = it£l¾SS ( int: .a ,.J;>) • !l., ~~ f ~-- ii iif I~ • .. -
°))air z :!I: rs·, 6) : · ·•. 

i. ). 
·r XJ A :'~-211. .. ·, 4. 

X : =· %{' 
IA. ~ ptr 

ML-4 I <b@' -~ 
.21.u: = I.w. a: i.n.,t bl 1 C\. b 
rtfi?!ir = [~ ptrli --;.·_: 

•-~ © a!!: z: rEt~r XI~\ s 
2: ... pair[5:6h -~ 

X ... refei;[~[ni,;l~niJ:J J: 
a -2.f. ptr of ~ ,_ .... a gt z: 

··• 

b g!· ptr 2! lC! ... b G£·z 
-----

Fig. 4.3-11. struatuite aasigmtlent ·. " .. 
;in· AtiGQL 68., 

~- .. ., .. 
··" , ~ 

The selection of components :from a etriictu;e in ALGOL 68 

is syntaetical'ly idet1tieal _to ML-4. In £ig~,-~t'3~'il, the sel

ection b .Qi z, which re:fer's to the b-colltporien·t'celtof z,· 

is of mode 1;.nt. There ·i.fl•· a major complication concerning 

selection in ALGOL 68. We can legally :form the ~election 

b of x, where xis of referenee.;..to-strueture mode. The mode 

of the selection b of x is ref ~, not :i;n~· even though 

tbe b-eomponent · cell for the structure pointed' 'to by x in 

figu:r:e 4. 3-ll is Of mode 1st. We say\ in tbia case that the 
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terminology, xis "endowed wit;b subnamea"). Thus, for ex-
,' - ' ·,:: ··~· ., . . '. ~ ' ' ; ' 

into the b-component cello~ the strµcture PQinted t~ by x. 
. - ~.· - ~ 

fails. ,:he ML-4 type :r;d!l}t;;, ~;f~P-.4.:~II ,tin;t.. ptr}. corres

pond$. to tlle mode· $!!{ ~- but ~; :-;;fi&:!" ,4~3:,.._l). th~pe 1.• no. 

cell of this t~ ~ uapej.a.t.e, ~:;:t;l\e>( ~~tii.Qn) t:t,.at. 

c_9rre~p,ppds tp ~"'~ ~.13;· ,~~~-~:n;i . lt;2!,~.- Tnus,. in 

translat.~;i.iig frOlil ~I.. i8 il)to"~,i~.: ••: q~:Y.,- '1'Q•t be. 
~. . '., ' . 

added to the picture (these cells will ho~d pointers to the 

individual components of the structure ;-eferred to by x) • 
. -;_~,,:,::\.~.-~.: _') :J :~_ ,_ 

The corrected translation mechanism is shown in fig. 4.3-12: 
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for each reference-to-structure identifier x we add to the 

local structure a res~rved identifier x$aub to hold the 

subnaines (distributed component pointers). By looking at 

the local structure pictured in £.ig. 4.3-12, we s•e that 

there are two waya to access component cells of the struc

ture pointed to by x: througb x (w!,:b (~iriat1on) 

b 2f ptr .21 x) as V'hen updating .tbt,. struatu~ itself :by 'eom

ponentwiae copying: or through x$aid> ··f1d_eh ('t!etttinati•c,n \ 

ptr .2f b ~ x$·sub) ae when expl'iei1:'ly aeleet::irlg trom x usi~g 

subnamea. NOte t~t our translation· ~d()~ti• ttr tbe stip

ulation.a set:· by the ML--4 'it.a-tie ~g ·•~tem. 

We give a final ALGOL 68 example, illustrating a re

cursive structured mode. The example ia shown in figure 

4.3-13. ~ is a structured mode, reeuraively defined, and 

a. and .• b are of mode rpf oo,s. Not• that the mode-:r.of the,. sel-

action n g! a is ref ref box. ~..----~ 

program. occurs in the last assignment, w};lara • .is deref.

erenced. A :recura:ive DlOie defj.nitiop.,(aMChs u 

mo<iit 1?!4991$ == strgctl&nt v,,_ ,l>adbox n) ~uld be :t::t'legal,; the 
. . 

"ref" inaic:le th• deti.niti,on o.f t.ba. 11104~.--,.♦• ·1\ilcesaery 
" ,_ . • ,~. . ,. 11 

since there ia no implicit nil in·Att,ot, 68•• modes as tber~ 

is with ML-4. 
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Thus we see that even with a language as complex as 

ALGOL 68, we can use ML-4 to make clear its approaches to 

the semantics of data structures. 

ALGOL 68 

mode box= struct(int v, 
ref box n); 

box a,b; 

I 
0. 

_j_ 
' I , 
pt,-

' i 

b$9lb 
J..., 
\I " 

ii 
v of a:= 8; 

n of a:= b; 

V r. ptr· -{)tr 

b := a; 

ML-4 f 
box = [i:g_"!:_ v; refbox n]; refbox = [box ptr]; 
subbox = [refint v; refrefbox n]; 
refint = [int ptr]; refrefbox = [refbox ptr]; 

refbox a,b; subbox a$sub,b$sub; 

, , . 

t· 

a+- refbox[box[nil;nil]]; b +- refbox[box[nil;nil]]; 
a$sub +- sub~[~i~share_v of ptr of a]_;_ -

refrefbox[share n of ptr of a]]; 
1 b$sub ~ subbox[refint[share v £f_ ptr of b]; 

refrefboxrshare n of ptr of b]]; 

ptr of v of a$sub ... 8; 
ptr of n of a$sub +- b; 4.3-13. Final 

i v of ptr of b ... V of ptr 
l n of ptr 

of J Fig. 
a; ALGOL 68 example. 

1_-__ of b ~ n of ptr of 
a - ------ --- -

Completeness 

In this chapter, we defined the mini-language ML-4 and 

used it to model data structuring facilities of the lan

guages ALGOL W, PL/1, and ALGOL 68. As in the last chapter, 
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we close with a few remarks on the complet~ss of our cov~ 

era9e of the approaches to data structures found in these 

three langUages. 

With ALGO.L w" as with SNOBOL4 in the previo\Ut chapter, 

\lie covend nearly all t~e data, ~~•~•tilt: ~ilitiew',t?lor

,·oughly, . ~ t'k th• exceiptif.m. of arrays. . We comment on, arrays 

For PL/1..and ALGOL 68, our treatment is far from com

plete. 
t -~ ,< .· ''.'.r '\ ~ ' ... ' .-J ,> .:: .·~. -:?- ' ~J ' ' 

complexity of these .. two 1an~~~•~~.· 'ft~~•.·~:nume~• 
. . ' .. ~ . . ' , ,. 

features dealing with data,· Jll't!r.\l~ .~ we hwe liat de

scribed'.;.. ·Ye1! we- o?an ·1:hat t~fit~-. -·Ch\\iftl· di.d de

scribe in PL/1 and ALOO'L 68 con•~•• tJr• 11 h11ax:t" of t:he·ir 

data structuring facilitiesJ thus 0tt:tdtt1reription of these 

to data structures in these l~a;;;JUJ\ we1.-1.· · 
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., 
5.1. What We Have Done 

There are a :targe number of l)z;ogrmwni.~~ ..,1ang,u~9es Yfhich 

work with datcl structures. Becau.se_ of the_ vi1u;iety ~f ap

proaches foun4 in these langua<JeS, many subtle bllt. illlpor~ant 
l 'I. , .. : . -,. .'. . ' . .' ~.:,,' J • 'l • ~: 

semantic dis;tinc"trions .c..rop, ;u~- With ~'!:t lc:U\9;.Uages.' .th~ 

semantics (~ncluding in ~a~,tic:ql·~f th.e ,S,~~pt~c~ Jar t?e 
,, "" ·' ,',,o?_ ~ ... ' • ._J . ' ' . ~ •' 8 • • 

data structur.i:n.g faci,li:tie~) a,;-e 4e,•c~i~bed ),p£oQRal_ly ,in 
l L' ' ' ' - ' ; . . •. - ,·. ·-;· . . ' • 

English. we consider such_ ~es9};'JJ:)tive .metA')49 in~9e~_~t~ 
. , . . . . ". -~ . :·.· r . _,; . . . . , . . .· .. 

for our goals, since in ~anY_ cases ~~,r/~}:. _t~ Inake, ~fi~a:r: 

some of the important semantic principles such as sharing. 

As we have seen, a misunderstanding of the interaction be-

tween,notions such as assignment and sharing can lead the 

programmer into erroneous conclusions about the effects of 

programs. 

we have ther~fore dev~t?~q JP., th,i.'3 .. ;}las~,, t;L m~t}19d

ology for describing tp_e semapt,i_<:f 9t <fa;.~ •~ructu~~s ln 
• ' • •• ' ' • - • • • - .: : "~' ;'. •• ·~ , • • - > 

programming languages. In order to precisely_ ci~S<;:ef.:i,,pe J,ne.ch-
p • •• • • ; ~} ,, _'. )". > . "'... -· 

anisms found in programming languages which handle data 

structures, we made use of the base langu~ge model, which is 



-144• 

an interpretive model for ''ftir.1nal semantics. The base lan

guage model is essen tiarly :a mll'tbeat'1'cal formalism for 

modeling the changing states ·of a ?~tin9 system on which 

various computations are performed. A mathematical treat

ment of the base language model ls found in 'the Appendix: 

otir approach emphasized the uae of the' oase language as a 

programming too! ■ i1ntlar t6'm4ny con,ient:Lon~l assembler lan

gu·ages. 'A tijor advantage ot 'tlte l,aj°j" ·iugua'cje m6del over 

other forma'l aeman·tic modei!• ia ""ai&t ±t. manipu'.lates data 

objedta of a ttul(iciently gane:rlil ~-~ure ~~t: ~e cian m~e 

direct u•e of its" data repreaenb.7t'io~~t ii\ our ~work wi tbout 

need for llpec£&:l enrioding meehanlams. ~-- .. 

The main portion of this theais was concerned with the 

presentation and use of a series of mini-languages. With 

these mini-languages, we isolated the relevant conceptual 

abstractions such as assignment, value, construction, selec ... 

tion, sharing and typecbecking. '1'he mini-languages provided 

a 111ligh-l:e~ -tt· ·ttea~i}»ti:ve · velfi~lli ,,t,:Ic!tr ·ma«. ·t t:· siltipler · and 

mo:te oob'Crenifrht to ·talk about aemaaiitic ii-auei ·relating. to. 

dlita a·thl;ffires : 

The basic structure of our methodology was to first · 

make clear the aemantica of our mini-languages by specifying 
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their translation into the base language. Once this was 

done, we no longer needed to think in terms of the primi

tive operations of the base language. We were then able to 

describe the semantics of data structuring features in some 

programming language by simply using the appropriate mini

language to describe how the relevant mechanisms worked. 

In treating the data structuring semantics of several 

programming languages, we gave mini-language code into which 

constructs of these languages are translated. Determination 

of this mini-language code presents difficulties when the 

semantics of the source language is incompletely or ambigu

ously specified, reflecting the inadequacy of the descrip

tive methods in use. Of course, once we have obtained a 

consistent translation into the right mini-language, we have 

an unambiguous semantic specification of the relevant con

structs. 

Using the techniques we developed, we described the 

data structuring semantics of a number of representative 

programming languages. With the simpler languages, we were 

able to give a nearly complete treatment of the data struc

turing facilities. As to the more complex languages, we 

were able to cover most of the fundamental approaches to 
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data structures without getting caught up in the intricacies 

of features of I:'elatively little semantic relevance to the 

issues. we are concerned with. In the next section, we talk 
. . ., ' 

about some of the areas that were left uncovered. 

There are a number of eemantie· are-a&-~ that we have not· 

treated. In erder to cover these at-eu ~ we would need to . 

I 

In'· 

this section, we, give brief ..-ntion·t.o "twi.l!Rteh areas and 

what kinda of l\ew meehaniama are req11ired' to: .-t.reat them. 

The first uncovered area is unions.· with the type sys-
·• 

tern of ML-4, every cell is constrained to hold values of 

only one type. In many programming languages, this restric

tion is weakened somewhat by defining union types. If type 

tis the union of types tl and t2, then a cell of type t can 

hold values oC type tl as well•• val-.. .of type t2. For 

example, auppoee we declare z to be of type tin some lan

gua(!Je that admit• urtion t-yp4d, and suppoee,sf:liat the express

ions el and e2 yield values of ~·- tl aftC! 't2,. respective

ly. Then botl'l t.he assignmen'bs z :• el and z :• e2 would 

be legal. T'hi• capability is not witbin tbe. :reach ef the 

.--, 
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type mechanisms we developed for ML-4. Suppose we declare x 

to be of type tl. Then the assignment x := z can be exe

cuted witht>ut .type' error pfec:rl:1feify•~;~«11 t?he-1 vattuf of i is of 

type tl rather th~ri Of tYPE!' l2\ . ~Ltif 1dr8~ to ·add' ~b Our· · 

mini-languages· a capability to ~d2e··~tomi~ ,;some 'kitid' <if:·:. 

addit'ibnal runtiltle type:'tss't!ng"1nedfu1ri·id~st;•i,e:· intro~;·.;). 

duced into the ·design of tlie langtlag•L.J 

The second uncovered area is arrays. 
·. ",;:) 

The type system 

of ML-4 is simply not equipped to deal with arrays whose 

subscript bounds are flexible. The type of such an array 
- :_;;; '· ~~J;~,1('-,,:_~;,:ry',:7 J.. ._. ,'. ''i,.( 

would contain structures having differing numbers of com-
,. c::J 

ponents. A structured type in ML-4 require• a set of selec-

tors which is known to the translator and cannot change. 
i.; - ,I •" , t 1 J'.. \t j ,., ~ -

Even with unions, we are no better off. For. instance, the 

type consisting of all PAL tuples could not even be expreflsed 
._~ r ,l t. ~ '. . .f :> / .t ·, ~- ~-.. ; t1~ 

as a finite union of ML-4 types, since a tuple can have any 

one of an infinite number of selector sets ((1}, fl,2}, 

(1,2,3}, ..• , (1,2, •.. ,n}, ••• ). 

There are many other complicated issues concerning 

arrays, such as different ·a~_ray type concepts, · change-

ability of bounds, and assignments between fixed and flex

ible arrays. All of these issues introduce new complexity 
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into the language, requiring the development of more techniques. 

To sum up,, our methodo,logy J;9J:"· dcta.c:.r.ij:)in9 dat~. struc

tures. has special advantaijes fr.om each of its two portions. 

The use of the bas.e language model providas fo.r a pr.ecise, 

formal characterization .of the semantic rules of the lan

guages under study, while our mini-lao.guages, pr0v.ide the 

convenience of high-level descriptions of the actions being 

modeled. In order t.o describe any programming language 

feature, all. that needs to be done is construct an appro

priate mini-language which handles only the concepts direct

ly relating to that feature. The syntax and semantics of 

such a mini-language are naturally easy to work with and 

understand. By specifying translations from source lan

guages into the mini-language and from the mini-language 

into the base language, we gain a precise but conceptually 

clear characterization of the semantics of the features 

we wish to study. 
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Appendix. 
'_1,. 

A MORE FOIUUU, '?Ra'.l'MP'l' OF BL 

An i.nt.erpreteir •tr.ate allbodi.ea 'the iq.12_~~.ti<>? present 
t 

at a giey.en t:bte ·tn the D01111Nter ayatem we:.:aae modeling. In 

this section we describe in detail the structure of BL

grapha. ,repreaenting ·,t-nterpoete.r · ••t.•: :in•.~ · base language 

and [Amer 72] , l>Ut is essentially equival.M't.:". In the next 

we assume that tbe reader is familiar with the concept 

of process .as a locus of control. A process is ·represented 
, 

in an interpreter state by a BL-object which we call a~ 

of activity, or .§QA. The BL-graph for an interpreter state 

is esstmtially a collection of SOA'a. The root nodes of 

such a BL-graph are the root nodes of i ta SOA • s • Thu.a an 

interpreter state is represented 

by a BL-graph whose skeletal 

form is shown in .fig. A.1-1. 

We now describe the st.ruc

ture of the individual SOA's of 

Pig. A.l-1 .. Skeletal 
•triict.ue of BL-gr.aph 
for·intupr.ter state 
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an interpreter state. A SOA is a BL-object with four com

ponents: 

(1) The ~-component is a local structure, a BL-object 

representing the environment in which the SOA's computation 

takes place. (The name "ep" is an abbreviation for environ

ment pointer.) Components of a local structure represent 

variables and temporaries used by the computation. Nearly 

all the BL instructions executed as part of the computation 

affect its local structure. We allow for the possibility of 

different SOA's sharing the same local structure, but usu

ally the local structures of the different SOA's are dis

tinct. 

One distinguished SOA has as its ep-component a BL

object known as the univers~. The universe represents the 

system-resident information present in the computer when no 

computations are in progress. Generally speaking, this in

formation is independent of which computations are currently 

active or how far individual computations have progressed. 

This special SOA stands, so to speak, at the head of the 

system call chain, so that every process can trace its an

cestry back to it. Access to the data in the universe is 

passed from caller to callee, so whatever access a partic-
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ular SOA bas to the universe is determined by the call chain 

leading back to the one distinguished SOA. 

Two kinds of objects are found as components in the 

universe: ~ str;uctures and BIOC!4Wf e;;t;:yctures. Each 

kind of object can have objects of either kind as compo

nents. A data structure in the model can be any arbitrary 

BL-objectr a procedure structure is a special kind of BL

object representing a procedure expressed in the base lan

guage. A BL instruction is easily represented as a BL

object: for example, the instruction conet 3,x is depict-

ed in figure A.1-2. The components 

with selectors 1,2, .•• of a procedure 

structure are-simply representations of 

its instructions in order. A procedure 

structure may also have components 

which are procedure structures for nest

ed procedures. Figure A.1-3 illus-

r T 
0 l 

~ct> 
<Pig~ A.1 ... 2. A 

sample BL in
, l!ttrucH0n as 

a BL-object. 

trates a 1skeleton procedure structure for a procedure p 

with one procedure f nested inside. 

(2) The J:E.-component of a SOA gives the instruction 

currently being executed by the SOA's aomputation, as well 

as the procedure containing this instruction (t1ip 11 stands 
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for instruction pointer). The ip-component is a two

component structure, whose proc-component gives the current 

procedure structure from which 

instructions are being executed, 

and whose instr-component gives 

the number of the instruction 

currently being executed in 

this procedure (fig. A.1-4). 

Thus the instruction currently 

being executed within a. SOA ~ 

Fig. A.1-3. A sample 
l procedure structure. 

is given by the dotted pathname ip.proc.*(ip.inst), taken 

relative to the root node of s. 

(3) The ~-component of a 

SOA, which gives its status, is an 

elementary object with the value 1 

when the SOA is active (i.e. curr

ently processing instructions), 0 

if the SOA is dormant. 

(4) The ret-component of a 

Fig. A.1-4. ip- , 
I component of a SOAi 

SOA s shares with the SOA that invoked (created) s. When 

s executes a return instruction, the SOA given by the ret

component cr,f· ~ is activated: the current SOA is put to sleep. 
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With the structure of an interpreter •~ate given above, 

we can pr()(:eed to.the next section, which describes how the 

BL instru~tiona·tran•form interpreter atatee. 
. .·, ··:,· ' ' 

We give a formal mathematical definition of BL-graphs. 
C.::-.·-~. •:-• ... :'::- ·,,?'!'~ • ~ .. • '' ; • ,• ~" '~ 'e 

S.uppos• Jthe seta BLEll ( elementary objecu) , SBL (selectors) 

and lQJES .. (n4des) •~ given. For our purposes, ELEM •ball 

cona:t•t: ~,. ii.~•, . truth valu;; ~ · real -;• and •tring; 1 

Sil, •ba:11 .conaiat of integers and •trin9ai al14 .. IJODBS . eball · 
\">\' •·'\5 .J-~ .. :··:·_·~ ~-:~-°' ... , 

'be e,-:~i:t1:ary oountal:>ly infiaita· Mt. •~J..n9; are ta1ten 

. . ' ·t . ''., •"1' : .... , _-- "i'f···-- ·•·~ ·?" i "~. :-•. . ,. : 

ch~ctera toge.t'ber w~th some apact'.1··~~•rti. A 
. . . 

· 1!~-ilta1h~··~••• tlu'ee ••t• :1. a t~t.\1Q;t1, ··.:4 _;. cv;a,_·A,v) 

,;tf: ,,1·~· in u••> ''is, a finiee·:' ... t 1ot*lm:>Ef 
~ - ., -,.,/- ' /' J,; . . ~ ' '. \' 

8: ."'(~t- JI06I■) G :(1, . · · L 
.,,..__ .. ., ~ .. ··-· -.•, '.', 

.j·•.1~-► 

•:v :.::::,~~'-•> 
we int.arpret ·.(a.~lr~~);'E,A t6 -'•'~~ .. ~'.•~Ii~ arc 

with ae-116:J' a ·1u.t~'f:rCM1 -~. :ii 1mJ .. c~f ~-

<ct~ a): E; V· tc,' -- ' ~ , -. ia • lMf ~ ,.-..~ ... tat:, nlu~ 

& ·• A rm~ •iJ IIUIIC 11adaty ·Qii \$JI~ touz/: ~Uofta: 
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(1) If a EU, cr E SEL, then there is at most 2.£_~ ~EU 

for which (a,cr,~) EA. 

(2) If a EU, then there is at most~ 6 E ELEM for 

which (a,o) Ev. 

(3) pr
1

(A) n pr
1

(v) =¢,where pr
1 

is the first

component projection mapping. Equivalently, 

V a E u: ~ [ :[ 6 E ELEM: ( (a, 6 ) E V) 

& :[ ( cr , ~) E SEL x U: (a, cr , ~) E A] . 

* * ( 4) D (R) = u, where D is the reflexive transitive 

closure of the immediate-descendant mapping 

D: 2u ➔ ·u 
2 defined by 

D ( S) = ( ~ E U: 3: a E S, cr E SEL s. t. (a, cr, ~) E A} • 

Property (1) insures unique selection. i.e. that the selec

tors on the arcs emerging from a node are distinct. Prop

erty (2) asserts that no node may have more than one elem

entary value. Property (3) says that no node may have both 

components and an elementary value, i.e. that elementary 

values can be attached only to leaf nodes. Property (4) 

states that every node of a BL-graph is accessible along 

some directed path of arcs starting with a root node. 

We now give a formalism for defining transformations on 

BL-graphs. The formalism is based on [Denn 74); it makes 

use of a set ID of identifiers and a mapping 

v: ID U ELEM U NODES ➔ ELEM U ~ODES which assigns values 
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to identifiers and .acts as the, ~.t,i,t;y ~ion,1-on elem-

and upc!at:es 'the ·valmd:.ion ·iltappd.ng v ··itriso · a flew ·mapping v' • 
,;~~,~ ,.;~,. 

The notation ..;[a/x] means Xy. (ysx ➔ a, &me.➔ v(y)), i.e. a 
I , 

mapping e<Ni~lf!Ult t.o v ,~pt that ;it. ups x into a. 

functions are def.ined for arbitra,;y QL-~~phs: 
. . ... •. ' : 

[defibeti provided ·o. e·11, & tE :m:Ji!k; 
lltlere a = "'(a), 6 • v (d) J 

V;" =' V U { ta. ,·g') ·Y, 11-•· ·= --tr; ·R' ~ l1(; ~' ,;J ii; vi = v. 

r>a-letdleh\i'a;ttf: · 'ftiff¼ned provict.a ti ',E"'1J ;~:.:,6:,:E "!tEM and 
(a,6) E .v, .where a = v(a), 6 = v(d)] 

•. . ~ :::;; ·: -J -~" ·- .. 

v• = v - ((a,6)}, U' = u, R' = R, A'= A, v' = v-

AddAre(a,s,b): [defined provided a.,f:,\ E U, cr E SEL, 
"'1~e .\l ., ••N (Al, a, ,;=•.i'M·~),, ~,,= "jh) 1 

A'= AU ((a,c,~)], U 1 = U, R' = R, V' = V, v' = v• 
.. ;·· • ... 

. De1eteArc (a,•, b) : [ defined provided a, f3 E U, o E $EL and· 
(a,'c,,l!}-'·4' A,:~.,~ ·~'-0'(:a.)5/ a· =· vfs·), 

t3 = v (b)] 

A ' = A ... f ( a , c , t:3) } , U' ~ u, R ' ·~ R, V • ~ v ,~. v 1 = " • 

~!. le:t~la} : . fcie:t,i:nea pro,tldect. a . E tJ', 'W!Mr• '-ct = " ( a) ] 

.Ai ·= A n i~tu - .. ~)) ·,< :$&, ·X U) ,,, JJ', '~;-~ l},,,\C: R, . 

VI = v, V' = ". 
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Prune: 

* u • = o ( R > , R • = R n u • , A • = A n < u • x SBL · )( tr , , 

v • , = v n: <u • x ~> , ..., , = , 'Ii'.'.. 

Has comp (a, sf: [defined prov-i.ded }~ E U, a E SEL, 
where a= v(a), c = v(s)] 

il '.Ki3 E u: (a , q, f3) E. A. .. tben true eJ.ae ,. :C'~~~e. 
• <. • ~ • , 'It,. ... , . ':,". , 

Come (a, s) ➔ Ji: . ·t'defi.ne.4, provide4 Cl' f [.-~.h, ti 1E SEl,;:·and 
~u·co•i{a,s), = ~rqe ,l.,,ep ij3 EU: (a,o,13) EA, 
wb:,r~·:0'.'.;= v Ca>",'\;·,= v fs>l. ' 

let j3 Eu l!:9.£!l that (a,cr,13) EA: 

\!
1 = vH3/b], U' .=. U, R' = R, A' = A, V\ • V. 

ItasEl~Ctl: [deft.gec1 provided a E u, wher• ,a; ~-·"';(a)] 

if :116 E~_ELEM: (a·,&) EV then t~~l•::fll:lse. 
: ~ f \ -P• ,,.· " ';;·, ·;.: :. .. '. . ' ; 

Elem(a) ➔ d: [defined provided a E U and BaaEfmn(a) = true· 
i.e. :il6 E ELEMi:1 (a/~) r;e i'V::,; ~ a = " ( a) ] 

-
let 6 E ELEM such that. (;cx,,.g,J, ·Ee ·V:1-1 ·c r -- . 

')
1 = 'J[6/d], U' = u, R' == a,., •. ,a;,; V:' =v., 

NewNode ➔ a: 

let a E NODES - U: 

"'=~(a/al, U' =U U [a.},)l'_=)l,:1\' =fa.·~.v• =,V. 

MalteR09t (a) : [defined .iarqvided p E .u .- R,. ~here.,~.= v (aJ l 
'· • . : .. ! ~ ;-, L : •. -' 1- ,; •• _ .\. '"_}.: -~ _,. ,,. ; - .: • • -

R' =RU (a}, U' = u, A'= A, v• = v, v' = v. 

I 
RemoveRoot(a}; [defined provided a ER~ U, where a= ~(a)] 

U' = lJ - fa}, R' = R';_ (al, A' :;,_1'·K;'f/~;''=-CV, ....,.r := \J• 

transformations: 
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NewNode ➔ b: 

AddArc(a,s,b}. 

[n.b. the ,•.•~n-o~,n ·. il}~icc1tes cqm
poaiCion of"ti:'B•fOrlllations, with 
a~~i.:c~t~<,n 1,J~ l~ 1or~,~ 1!1?,ownl 

. . (._ '' ·- \ ·"-·· ,.,., . ~ . " ' ' . .' .: :. :.: .-· .. . 

DeleteColt!P(a,al: 

if HattCosal)(a,·•> 

tJleg {Comp.(ih•} ➔ b1 

DeleteKrc(a,a,b): 
; ' 

Prune}. 

MakeEmpty(a,s} ➔ b: 

il Ha.OQlllp( a, a), . 

tmak••·b denote an empty 
l4!t~.~ "~• wlµ.,c~. is _tQ.e 

· ·· •~eni: of''t'b.e node 
~ tocaapfa.,aJ ·➔ ·bt · 

il .~,.El.~ ('b) 
1•r•','; ••'•'::,.:-·.• •,j< f,) 

A;iM (.Blem~~). -+ d t .. i ~· , 

Deletd1.cOa,,cQ·}-:., 

!l!• . fDeleteC0111pa (b): 

Prune} } 

else Newcomp{a,s) ➔ b. 

'cleOted "llyl ·.al, 

we now have the machinery to describe the action df the BL 

will be.some SOA, then to execute the next instruction 
._ 

(given by the ip-c~ent ,of the SO~ wit,Jl r~ll1'flC~ t;o the 
' • '· ~ ., ~ ' < • • 

current local structure (given by the ep-c::omr;,onent of this 

SOAl • Figure 'A }2-l illtistrates tlie'' ~ltelftal atiucture of a 

sample SOA. In the procedure we will give to-~fine the 

action of the interpreter, special name• are ualh te des-
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ignate nodes in the current SOA. Theee names appear as 

labels for the nodes in fig. A.2-1. 

Fig •. A.2-1. Structure .of a SOA 
d',irtlfg ·i'tt'tftpril:atB;1 [; 

Before giving a procedure which apecifi~a,.the ~c~ion:of 

the BL interpreter, we define several auxiliary transforma-

PicM,ctiveRoot ➔ Root:· 
'. ," .fj'•.e ;{? .' ?i!, ,A13~-

let a E R ~!f~h t~t it3 E U: (a, 'st~t• :·~~- E A & ci;,i) E V: 

v' = v[a/root], U' = 0, R' = R, A'= A, V' = v. 

su,:c. ➔ .nfltt: 

" • = v ht+ l/ nests.},. V-' = · th a' = R, A' = A, v ' = v, 

where x = v (k) • · 



i 

GetNextinstr: 

Oelet.eElem(inum,k); 

AddElem(inum.next). 
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Jump{i) ➔. next; [de.fin.ed. for i, E {0,l,2, ••• } i:: ELEM, 
w'.bere z. = v (i) l 

v' = v [ r,/next] , u' = u, R' • R, A' == ~., v' = v. 

Empty(a): [defined far a.Eu, where a= v(a)] 

il Ha9Elem( a) 

then false -----.,, -

el&! if. ia E SEL, t3 E U: (a.,c, f,) E A 

thf!n. fal.ae 

else. true. 

The action o.f the BL int~ret•.:r if. •.-<::i~i•~ by the repe

titive application of the transformation given by the follow

ing procedure: 

PickActiveRoot ➔ root: 

comp(root,.,ep•)· ➔ clsr 

comp(root,'ip') ➔ ip; 

comp(ip, 1 proc') ➔ proced: 

comp ( ip ,. • inst' ) ➔ inum: 

Elem(inum) ➔ k: 

comp(proc:ed,.k) ➔ inst: 

Succ-+- next; 

ExecuteBLinstruction(inst); 

GetNextinstr. 

/* pick an active root node 

/* aceea• tbe ·e .. l. •. via ep 

*/ 

*I 

/* acceaa procedure structure*/ 

/* number of c:ur'i-ent instr. */ 

/* fetch current instructic:>n */ 

I* aet for n:•1t:··j.nstruction *I 
I* execute t'he ins-tructiOA *I 
I* reset ip for new instr. *I 



1-=~,--.,, ...... 
I 
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Finally, we define the operation of all the BL instruc

tions by giving the transformation_ ExecuteaLin$truction. 

ExecuteBLinstruction{inst): 

Comp(inst,O) ➔ operation; 

case operation of -- - /* choose the action.that matehes the 
operation code of the instruction */ 

'create': 

Comp(inst,l) ➔ x; 

oeletecornp(cls,x); 

NeWComp(cls,x) ➔ a. 

'clear': 

comp(inst,1) ➔ x; 

MakeErnpty(cls,x) ➔ a. 

'delete': 

Comp(inst,l) ➔ x; 

if ~Hascomp(inst,2) 

~ oeletecomp(cls,x) 

else [Comp(inst,2) ➔ m; 

if Hascomp(cls,x) 

'const': 
, 

~ fCornp(cls,x) ➔ a; 

Deletecornp(a,rn)} ). 

Comp(inst,1) ➔ v; 

cornp(inst,2) ➔ x; 

MakeErnpty(cls,x) ➔ a; 

AddElem(a,v). 

'add': 

cornp(inst,1) ➔ x; 

cornp(inst,2) ➔ y; 

/* create x 

/-It_. Q!l;~t;f X 

/* delet-e x, ai 

/*· const v,x 

*I 

*I 

*I 
*I 

*/ 



• 
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com.p(inst,3) .. z1 

COmp(cl■ ,x) .. ~: Comp(cls,y) : .. ln 

Elem(a) . .,.. d1 Blem(b) · ➔ e1 

MakeEmpty(cls,z)-+ c: 

kldll1'9111(a., -v(cl)+"'(e)}. 

/~ add x,y., z *I 

/• other arithmetic in.atructJ.ona are similar */ 

1 link•: 

Comp(inst,l)-+ x: 
Comp(inst,2) -+ n1 

Comp(i,,Mt . .,3) -+ y: 

comp(cla,x) -+ a1 COm.p(cls,y) ..... 'b1 

if HuBla(a) 

theJ! fBlem(a) -+ d: DeleteBl .. (•,d)) 

elae DeleteComp(a,n}1 

AdArc ('.a., n·, b) • 

comp(inst,l) ➔ x: 

comp(inst,2) ➔ n: 

COmp(inat,3) ~ y: 

comp(cla,x) .. ,a1 

g -Baacomp(a,n) 

t)lg {it HaaElem ( a) 

then (Elem(a) ➔ d: 

OeleteElem(a,d))1 

Newcomp(a,n) .. b} 

else COIDp(a,n)-+ b. 

'apply': 

COlllp(imtt,1) ➔ p1 

/* select x,n,y */ 
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comp(inst,2) ➔ x; /* apply p,x */ 

Comp{cls,p) ➔ proc; comp(cls,x) ➔ arg; 

comp(proc,'$text') ➔ t; 

NeWNode ➔ newsoa; 

Newcomp(newsoa,'ep') ➔ newels; 

AddArc (newels, '$par', arg); 

Newcomp(newsoa, 'ip') ➔ newip; 

AddArc(newip,'proc',t); 

NeWComp(newip, 'inst') ➔ newinum; 

AddElem(newinum,1); 

Newcomp(newsoa,'stat') ➔ newstat; 

AddElem(newstat,1); 

AddArc(newsoa,'ret',root); 

MakeRoot(newsoa); 

comp(root, 'stat'} ➔ stat; 

oeleteElem{stat, 1); AddElem(stat,0). 

'return': 

Comp(root,'ret') ➔ oldsoa; 

Comp(oldsoa, •stat') ➔ oldstat; 

DeleteElem(oldstat,O); AddElem(oldstat,1); 

RemoveRoot(root); Prune. 

'move•; 

Comp(inst,l) ➔ f; 

comp(inst,2) ➔ x; 

comp(proced,f) ➔ a; 

DeleteComp(cls,x); AddArc(cls,x,a). 

'goto': 

Comp(inst,1) ➔ t: 
Jump(t) ➔ next. 

*/ 

*/ 



'elem?•: 

Comp(inst,1) ➔ .x: 

comp(insu;2) ➔ t: 

comp(cla,x) -+ a: 
ll -,HaaElem ( a) 

lhln Jump(.t) ➔ next. 

•empty?': 

comp(inat,1) ➔ x: 
comp(inat,2) ➔ t: 

COmp{cls,x)-+ a: 

i.f. -,Empty ( a) 

:sbE Juap ( t) ➔ next. 
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I non,mpty? I f ,,.·,;• ·; • 

Comp(in•t, 1) -+ X7 

Comp(inat,2) ➔ L: 

comp(cla,x) ➔ a: 

ll Empty<•> 
then JuJDp(.t) .. next. 

'eq?•: 

comp(inst,1) ➔ x: 
comp(inat,2) -+ y: 

comp(inat,3) ➔ t: 

$lem(x) ➔ 41 Elem(y) -+ e1 

it v (d) t' v (e) 

thep Jwap(t) ... JlUt. 

'hU?': 

Cofll)(.--at:.,.l) .. Xf 

COmp(tnat,2) ➔ m: 

*/ 

*I 

\ 

t 
*I 



Comp(inst,3) ➔ t: 

if -,Hascomp ( x, ml 

then Jump(t) ➔ nex~~ 

'same?': 

Comp(inst,l) ➔ x: 

comp(inst,2) ➔ y: 

COUJF ( .i.ns.t, ~) .-. .th, 

li V (X) 'F V (y) 

then Jump ft·) ➔ next. 
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/* has? x,m,t - */ 

. r 

/* other comparison instructions are similar */ 
··}e:fi!\/-~: ·~;_ .. '.'!_·~,\"1n-L} 

• getc': 

Comp(inst,1) ➔ x: 

Comp(:Lt\a~,2) ➔ .. ii 

comp(inst,3) ➔ t: 

Comp(cls,x) ➔ a: MakeEmpty(cls,i) ➔ b: 
\ _,_ ·:,, "''., t 'l·'.- ~-t :~ .7t,:(;.1:- ;$ ·:; :.~·~,tij S' v:, _..:t?'" .. 

if HasUnmarkedCompa(a) 

. *I 

~_;:~mnarlMd~f~f ·➔ 'W'fi· L ,r1 f:-,.· ....• 

Mark(a,s): 

· !A~dE1emc'b, •.> 1 
else f UmnaJ:11:CompsOf'fa} p ---

. J~J,,.L) ➔- n~t} • 

endcase 

This completes the definition of the tran•formation 

ExecuteBLinstruction. The~ instruction, however, 

requires some special additional mechaniame, which we now 

show. 
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HasUni!!rkedconws (a): [defined provided a E ·u,, .where a = v (a)] 

if :ire E SEL: (a,a ,t,) E A for 891!1 ,t,, E ,U 

~ CJ i MARKSET(a) 

then true else false. 

GetUnm.arkedC9!P(a) ➔ s: [defined provided a Eu and 
HasUnmarkedCOmpa(a) .i·t:rue, where 
a= v(a)] 

.!!.ta E SEL be as in the HaSUJ'UD&x;ke4Coap-.predioate: 

v 1 = v[a/a]. 

Mark(a,s): [defined provided a EU and a ESE!,, where 
a• v(a), a= v(s)] 

MARKSET(a) ~ MARKSET(a) Ufa}. 

UnmarkC05aof{a): [defined provided a e·u, where a• v(a)] 

~'( ti¼' . .. - • 

We observe that each node a Eu has a set MARKSET{a) asso

ciated with it. All such.maa:k~·apa_ini~1-i1y empty. 

There is one final remark to be made. . Al though our 

definitions of the BL instructiOJ\8 QQntain .any -composite 

transformations, the interpreter f• to regard the effect of 

a BL instruction as an indivisible unit. 


