
MIT/LCS/TR-140

NAMING AND PROTECTION IN EXTENDIBLE

OPERATING SYSTEMS

David D. Redell

This blank page was inserted to presenie pagination.

MA.C TR-140

NAMING AND PROTECTION IN EXTENDIBLE

OPEBATING SYSTEMS

Dav id D. Rede 11

This report reproduces a thesis submitted to the
University of California, Berkeley, 01.\ September
23, 1974 in partial satisf4ction of the require­
ments for the degree of Doctor of Philo,ophy in
Computer Science

Publication of this report was sponsored by the.Com­
puter Systems Research Divi1ion of Project -.c, an
M.I.T. Interdepartmental Laboratory and wa1 supported
in part by the Air Force Information Syttems Technology
Applications Office (ISTAO) and by the A4vanced Research
Project Agency (ARPA) of the J>epartmen.t of Defense under
ARPA order No. 2641 which was monitor•d by ISTAO under
contract No. Fl9628-74-C-0198; and in part by Honeywell
Information Systems Inc.

CAMBR!DGE

MA.SSACHUSETTS INSTITUTE "OF TECHNOLOGY

PROJECT K\C

MA.SSACHUSETTS 02139

This empty page was substih,ted for a
blank page in the original document.

i

NAMING AND PROTECTION IN EXTENDIBLE OPEMTING SYSTEMS

Oavid Day Redell

The propert:f,.es of cap~bUity-:-b••~4 e~tendible operating systems

a'X'e describ~d., ~.IUi v~ri~us aspects. of such systt!111s are discussed,

with emphasis on the conflict between Jree .dis.t,:-Un1t:f,.on 9J access

privileges and u..ter revocation o,t thoe':_ J)l:'_ivilege~. The discussion

cu~lllinates in a set of goals for a new ~.apability scheme.

A, new design is then proposed! which prp;v~~~s:, b.oth tY;pe exten­

sion and revocation through tpe d~finition of generaltzed sealing
' , •'c .• •, ', - : ', ,/

of capabi~itif;!s. The. itnplementaUon of this design is ~is,cussed
" ' ~ ' • s • ,- ' •

in sufficient detail to demonstra~e that it ;would be wor~ble and
f, :-. ':r:·

acceptably economical.

The utility of the proposed e~~if~t)" m_e,cp.anism h demon­

strated l>y describipg two facilit~es_ illlple,nentable in terms of it.

These are: (a) revocable. p•r~te~s for calls between IQlltually

suspicious subsystems, and (b) directories providing a civilized

medium for the storage and distribution of revocable capabilities.

ii

Acsgw-~~•
First, I would like to thank ay elleaia a&td.aor, Professor

R.S. Fabry, for providittl tut akillful bltad -,of an.couragement

and constructive critici• wb'i:c1i-~~uum' :pibll' llehrt.'ce. I am

also inclabCed .t:o -the other 11811iibere of.,.,~.- Profe1aor

James u:.· Morris and Profeeaor *rt'.1.11 ~et-._;;'fdi' TU1111g ·.a

comaenting ·l>ll earlier verstoua •t fli:tw t~.

It is a pleasure to thank the otkan -who rad· 8114 ~~ted

on earlie-r drafts, includi.ng ·11t. J_. C-ray, lat, .. But1et' Laapson,

Gene Mcl>antel, Dr. Bernard Pe"&ttO, t>r. ~ :'Sturgis, and espe­

cially Padl McJ'oues. Eariier converaa'tlou -. .t;~-''Bruc:e·tinduy alSD

underlie mach of the wo.1:k descrilrea him.

R.uth Suzuki due~·• the cre41t for ·tlle --~•11 fut and

accurate itJP-1.na of the :rmal. 4raft of :rua dwit~¼w.
Moat '.f>t all, I thaftk. my '4fe ~', ·----~y :tor·ber

pa:tince 11111 underuanctirag, bot fbi. ·c,,1.q tla routh -araft a• wll.

Contents

Abstract • • • • •

Acknowledgments . . . , . . ,
Chapter 1: Introduction.

1.1 Overvin
1. 2 Protection • . .
1.3 Framework for Discussion ••

1.4 The Computer Utility

. . . .
- -.

1.5 Extendibility

1.6 Thesis Plan
Chapter 2: A Typical Capability System

2.1 A Typical Capability System

2.2 Implementation of Capabilities in TCS

2.3 Revocation of Access Privileges

2.4 Indirection Through Link Segmenta

2.5 Type Extension ••••

.
. . . .

. . .
2.6 Hierarchies of Objects and Types.

2.7 Type Extension Using Sealed Capabilities •

2.8 Goals for a New Capability System

Chapter 3: A New Capability System

3.1 A Ne~ Capability System

3.2 Design Considerations for Revocation.

3.3 Interactions with Type Extension.

3.4 Generalized Sealing
3.5 Examples of Generalized Sealing . . .

i

ii

1

1

2

4

6

8

9

11

11

21

38

54

61

71

77

82

83

83

83

96

97

106

3.6 Implementation of Generalized Sealing in NCS 113

3.7 Some Implementation Details

3.8 Possible Elaborations on the Design

I' __ a__g_t:'_

130

134

Chapter 4: Two Facilities Using the New Capability System 137

4.1 Possible Facilities Using Generalized Sealing 137

4.2 Revocable Parameters 138

4.J Directories . .

Chapter 5: Summary and Conclusions

5.1 Summary

5.2 An Area for Further Research

5.3 The Future of Protection

References

143

154

154

154

157

158

1.1 Overvie11

1

Chapter 1

I5!tro4P:ction

Computet·s have been with us now for just over a quarter of a

century.· Although tbeir.tiltimate· potential iq>act on society is

still hard to predict, it seems sate to say tn'af they will iank

with such transf 0?'$1ng inventions' as the prilit'ing pt'ess and 'tele­

vision in their ef feet not only on the' way ·we"''-llve, but also on

the way we think. Already their rot~ has 1:11:lffted from 'that of

simply high speed calculating toois to a mb1ti• ltindament.al 'function

as the natutai repository for an increa1iing -~unt· of' s'ciciety' s

body of information. The near future shoti'.td'seit'the development

of computer utilities bringing relia61e and 'econoaic.'al computer

access to the getteral public' in the' fona of 'iie·rvtc~s of unpre­

cedented scope and power [Fr 74].

These ne11 roles of computers raise mariy serious ~ocial ques­

tions which are far frosnbeing answered [Rci 74, DF 65,·HEW 73].

Moreo"lfer, even if these questions are· satisf'actorily answered, the

resulting policies will require an 'approptiat·e. technological frame­

work within which they can be expressed and enforced [Po 74, Pe 74] ..

Thus, such social and legal issues as privacy, secrecy, confiden­

tiality, and accountability generate a technological problem which

could be called the "total system security problem.''

The main subject of this thesis is protecticin. Protection is

that . aspect of the total system securi:ty 'problem. which deals with

the control of access by programs runn:in'g within i-computer' system

2

to informatiort stored within the ayat• {l,a 71. Jo 73]. It is thus

concerned with pre\rention of unclesieed acceaNa, wetber accidental.

or malicious. Protection is 1nt~tely 1nvo1~ :vi.th the !!!!1:ng

mechanisms us•d by programs to specify wtii,C4 .1.til\lll8. p.(information
. ' ' ",. •',. , ..

t_hey ~ish to llCf-ess. , ~ will die~• ,v~t• ~• T!fhi~ p_rovtde

both naming and prot,ec~~ in a .at~• ~~•..-.t,cl. ~hanua [IMi 66,

Fa 74). We a1:8q em:phaai&e the ni,t,~ o,f; ,(~~,.AA-~ib,Jatabl,e

access P.rivil~~• in t~e sense tll&t,,aBY ,.~~. o~ a pd,"f'ilege

may pass it '?I\. as he •~ea fit [La 6~J... -~ t~; -~~1 und, -~ recog­

nize the ial>9t~c~ qf allowing lat.el:~~~~~••~ p~~vileges.
, ' ! , . , , " 1 • , I • ... , • j _~, . ,, '• • /. , ~., •:: ~ , i . · · •• • ,. ' . ,

The "'in ruul.~; ,o~. tbe _the~ia ,~•>t.he~ ~~~~-~~; :-• 11e:f ag, and

prot,ction ~~~ a,1.1~ b~t~. ,Jfl!I cl_~ of. ,r~vileges

.nd_ subae.'P1lt. i;e~c;•~~-.in an. :~~:11 .,-1.: , • 1.,

Ano~ .d'9ita~li~ . ch,U•~teriati,c;. ~-- ~-• -~ protection

mechani ... ta exttpdibility (La 6~, ~ .. 7~111,,. ~, ~rty allows

the COJ\8tn,c:.t1~ of the ••~~ ~- ·--~ ,,o~ :•~~ ,ot uatraction"

IDi 681>). t1mlt ,¥lc;r-.sin~ te,l.14bU!J:y"~ ~lJ~•: ~r--,,r~ten

elttensi,ona ~o aq~t th,tt sy"-tea w:l,t:'1.~- ~_,,.l~'"'• itlAJr,,~ifonn

w~y. the •~;t~~i,.,l~t? ~f , tJ;ie ,Ji~ ~1,~~; will, be_ ~•cussed

in,a"- deui1. r , ~ , . ,

· 1. 2 ProSf!c,.U·!!e .

n. pro~41<:tioa __ probl• is ~~- -.,a ~\1 ~;- ,P\. ~al system

sec:ud~,l Pli~~:l~:-,. ~,_i~_~U.•~~~~'~ -~~;po~, \t
is itapor~t _to ~J-1'1.t ~he •<:~, of ,~Jle ,&l~.,~~f~A11i,,,,-.~~iah­
ing several other closely related probleu, iaclwU.ag:

a)

b)

c)

.¥ardware reli,ib~l,ity.
,.,_ ,··-'""' .

User authentication

3

. All of ~h~ aboye probl~ e.~i~it .tw,o pitb.t~ qq.~q,~tv.q.ate pt'operties:

_ , t) ~Y d9 _not ~~ of C0111f1,,t•;'aol~f:.ii~•~.,bu~,.,~iy of solu­

ions qµant;tat1.vely c.~~blre ;n. .t.f~ :;0~ co11t.,,,,ffective

_prevention of,t~11,bie (e.,a. l!~h ~trat~~,C9't, long

mean-t:f.DJ.e-between-;failur~,, e~c-). :· .

2}. . The t,11,ue of a a9lutiO.ll: ~Q,~J .~ qf tqe1ll .~Q. under-

11in~ tt,.e e;ll~ire px;otec~~ aye,~-..

On the other hand, if we hypothesize a sitwr.tt~.~:¥h~cll problems

(a) through (d) have been completely solved, we can consider the

protection problem as occurring in a self-contained artificial

unive,:se I free of such real-wo-c+q iM~ti;~~,~--• ~":~c,lul which can

be pi~lted '"1d ~ir~utta ~~h can~~ out. JIAitbip, ~• idealized
' .. 1 '_ ,- , • ~' ~ \ ,, - . ~ . • . ~ •

f raDIE!llf(?,!i'k"'f, ,the p~otec.ti.on l»~ob~-'9!! •~ ::,9~ cpwlete aolutions

in uaan1.).iaport-.nt situati41;1,8 [La.)4l- ~ i.Ji .. Jl9,t t:p say, of

course, ~ha~ a.)..l •oluti~ const~o..ted. J,i{i~~~,f~r"JtW:.h .a. f raaework
. . . ~ - '·

are aut~t;l~a,l.lY. C9"P,lete.]for: ~~-,,}s~. o~, ·04P- ,prot~c;t 4ata by

requiri~J a.c~ess1'11, p.l'.'pgt"~ tt> p~v~.• P4tJSWQr#,i .PD- key authorizing

the 1,cc•ss JLa 69]., 1'i.te~.pas«il11,0~, lite ~~JYl,l.passwords,

are.vulner4lJ,le t<> gue1:4sing, $\cl ,ue ~~- nc>t -=;~t~ soiµtion.

Cm t~e. o~Jiet= }la,nd,. PQ.e can ~pl .. ~ M.1t.erna,J., ~~~which.a.re

. µnf orgeabJ~, pp~;ing l~~~. wtµ,.ch are.:~-~'~. ,thQ4i pfQvid:lng

a c0111Plete splµt:f.P:'1 to the probJ.ea. -~ •1,.~H-~ pf _t:pis lies

not primariJ-y :I.~. the r~u¢tipQ.. of ;heq~o).l~~li~y:.o;f,f~~lure (from

4

negligible to zero) but in the conceptual shift'1n how one views

the mechanism (with absolute confidence, rather than quantitative

optimism).

It can be argued that the above viet,po:h'lt is unrealistic,.

since problellS (a) through (d) do not·adait of caplet• solut:Lons

ae h}'1'oth6sized. The point, howeftr;. iii that chis factorization

of the total security problem allows one to take a very rigorous

approach to the situation in which malicious intent manifests

itself in the behavior of high speed internal computations. This

i~ precisely the situation 1n which our illtuitions are least likely

to prove reliable in allsessing the ·quantitative adequacy of incom­

plete solutions.

1.3 Frame.work for Discussion

Por ou-r purposes, we can regard the functioo. of the operating

system as being the trawtformation·of tht! basic hardware resources

of the com,puter into a universe of abstract resources or objects,•

and a set of Ol!!t'ations for 188ttipulatilfg those objects. This_point

of vi-ew 18 often referred to as the ob:J:ict-ol'·tan'ted approach, and

the coll~tion of operations as the abatracl: macb1ne~ 1 :£ach object

has an atttit>ute called its !m!_, which detendties . the set of

operations which can meaningfully be applied to thil' objec·t. Various

types of objects are provided, most notably procefsae,. Processes

are the active entities in the system, capturing the ifttuitive <

notion of a •t1ocus of control" or "execucion' point.•• J)rocessea

can attempt to access other objects in the system J,y ~rforming

5

various operations on theJJl, .and it is these accEMJ.~~s vh:f.ch are
r • ._ ~ ~ •• ':. . _, • J'. . ~ - ·.:._ :· _'\ :r:: .- · , · . . 1i • .: "". • • \ • ._ • ,\ __

checked and allowed or disall~•~ . ~)' the p~Q;J~.t~on -,chanism.s of
c • ,s" : I ' • ', • ~ j ., ~ - . ., ,,t,, ,, . •

the system. At any given time~ a P,ro.ce~s. ,~s ~ ¥,~, c,f privileaes,
' .: . . .• •• , ' . •. '~ ·' . ·t • .. . • ·~' .. ~ ,.),_c,_, t •. •· •'. .

specifyi~g w,ich opera,ti~n~ it •Y p,e,rfo1111 ·f¥1 •i'?h. ~J,jec.ts. 'l'bis
: \ ' • : . i • t- 't ."-:• :- ; ~- ,: . . • ' " ': .. ' / : ~ '.. . .;,' ·:,{., .J •.J -~ <-' '\~· ; .

set of privile&':~
5
,is. called ~he~~ .,~n, 'f.~~'~J~e: prq~e~s is

executing. The privileges available to·a process can change as a

result of either:

a) addition or removal of prin-~~~~,i11.Ua d.PIU;in, of
l; ·, •"'• .' ",:' ::_',•-~;'·· •• .. •

execution, or

b) switching to a differen~, !;Jomain, ~(e~f.1:ltJo!:'•.
, ~ .• ', ~ ~,J/f t 'k >i: ;r •• ,•~ ,• ~ ., t •,• ,.1,

Thus, domtlins. ~hems~lves have ,_an in~T-f•~ft!xf~t•.f~~.,.8::nfl are
l ; ,. . • ~ •• • '

obj.acts ~. their. 0~ ~i,~ht. '(The_,.;~•~>r~r t~in1;H~f1iJ:point of
L· 1 • ' •··· • ~ ' ' - . :,. ' ~ • ,. . . ,

process. It will often be c'?nveni~nt, ~e1:.,L t~ r~(,r to the
;";~:-:~·;_ - ; ·-=-. . ~- :~1,~<n··L\;", •~"~ '"1!~)'"1.t·- ,(-. •; - .. - ...

actions of. a_,Pr?cess executi9f ~11 a dQ11&tll, 419, !?e~~,,- ~,;fgrmed by
• ·_, • ' ~;- ·' ~ ' ~ • ' ', - , ' , ~' •• ,. • "" ., # - • ' '

the domain ~~aelf, and we will ~,~!',ia ~~~ve~ch,i:-a?f~r!-zat;ion·

when ~here is no flanger of ambiguity.
-~ ',, ·,· , • ,, , .-,. . , •. ,> '• i-.r>.

schemes found in existins systema [La 71]. ije are.interested in
1; ·- ; . ., · , ; : ~ - . • <:L:,H) "l -_, ':. ' ' - - : , ' " :·, : .·· ,+~-

a p•rticulai:- class of euch scheaee Jn, wt,.1.ch a d~in i;:on~::1,sts of
,·,: <f ,[. . ;.:·,,.~i---~t;.i~ ··,·: ·</•:., '':•$;'.f ft".',<1., ..

a set of capabiU.ties [DVB 6~, La 6~ ~ Fa . 741. .A. t;apa:l>il.itY serves
., .•. , t~~~"•,¢, •'' ;_:•:. ~)(.:, ,\ '' '<.;_ ~,;_;::r~;.! ·• , ' " ,<;

1>°.~h as the ~ of an ol>je~t .. ~~-.a~,., set 1of ~tf:'f,~i\e~~;~. to access

that object. Thus, in a capability sxstt?ll? ,,.~~in i_s able to
.• - , ~'":/.. J ,, . ·!°:-) j' . · ; . , . , . 1 :: ·-. ,.,;,J ,, ·. ··', . , , . ,

name only those objects to which it b,as ac$:ess .vi" its. capabilities.
• '. \ ~ I• : >~._: • t('f:~::' ;,-::. ~~, :.::~, .: '.> ',,, i•; '; •• ••' > '•:

Those C:apabilities .a,i;-e, ~t.ored in. ,t~~ 1118J,'!O~ ~-£ .~e 40¥-1n, which
. ' • ~, ; ' ' ',. . l , , ; ' ' •·• .>' I -' .- >-· •• ; ,, ii.. •. ,.,., /.

we will assume co~is,ts of a nuta1?er ~~;,.!l~ff!!¥!~~ [~e ~.,. BCD 72],

6

each of which comprises a variable len&th a-tray of addressable,

items. A d0111ai:n may copy its ~pabilitiea·al\d distribute them as

it se,s fit,.although it may not, of course, aake arbitrary a>di­

fications to them. Thus, capabilities are ltb data "sealed in a
;) ~

box," a characterization which we will purtiue ill aoae detail later.

1.4 The Computer Utility

The aechaniw discussed in this tbeaia would be useful in

any computer system. The context vhiclt muiad~es their importance,

h0t.1ever, is that of th6 computer utility. The .notion of a computer

utility has 1:1eceived ·considerable atteation 1:11 :the litetrature [CV 65,

Sa 66, Sc 72, Fr 74] and seems likely. to.play an i11c~easiugly

important role in the future. :t~. ~ a utility, a large user

C0111D1UDity abate~ an appropriately.larae Woru.tion sttn"age and

proces.sing facility in ·.Ch the same 118Qner that the users of elec­

trical a.ad telephone utilities share the corresponding power geinera­

tion and coawnication facilities. S~ fh~•J.ca1 sharing (i.e.i,
. '

sharing of physical resources) provided the o'l'iginal motive :for,

developing •lti-user c011putet systeme. That 11.0tive was the desire

to lower the cost of hardware '.resources through·. •cono11ies of scale
j . . ' ' •·',,·

·and statistical saocthing of 1,oac:t fluetuatioaa~· Tliis is gradually
i ' -.".·, : ' ". ~ ...

beiq rendered leas i.Jlportant by the contiaual a«tlne ·in hardware
• ,. ·.. i .• ,

costs. A llll<:h more fuad~tajl t10tive reaaw, ~r, aich is
I

in itself more than adequate justifieatiou for building a COlllPUter

utility. This is the desire fbr flexible loaical sbari~g (slulring

of information) between users, so that they .. Y b'4ld u.pon each

7

other's work (Sa 66, De 68] • . ,' .

Since the user coanunit~. of a c~q~~l ~~.1i1J~F-l'tcf9Hf~~-~• of the

public at large, the logical sharing within. that cOllllllWlity takes

on more the character of transactions in a-marketplace than of

informal friendly cooperation [Fr 74].

a) Sharing is o~ten fi~c,ially ~tiv,t~,!
' _· ' - ~ • • :. J - , • - _. ,, ., : • •• ' ' ~ .. ,: .:

b) _ The p~rt~':~, iny,?lved,, ~:r_ 11ft .tf~liff~ll, 9t:~~r. _

Point (a) i.Japlie~ .th~t __ sharing,,_ ?fc~en r!!,,!•~:~t• ~'1-li o-r:. tental of

the shar.ed objecu.

tection and acco.untins •~h,m.1811l of ,t_he. comp,-t_far0 util,ity. rnts is
. ' - . • -· . '. 1 t : ' ' '' -•- ' . : ,· '_, . •, ~ ·. '· , ,

particularly true in the case of subletting, in_wJlich access.to a
' ,. ,. - '-.- - ; ,''..,.·;·· > L-,...:,>t gd-:.r, ~ .. ·. .;, ~ ·l ·., ?t~r-

rented object pa,sse,a thrf~Sh _ ~•,,f~f., M,nd~,. ~.f}f,1.'f, 1:r,~c~.i,p' ~~e end
~- ';_ . ~' .. - ~'-"• _, ., .

user. P~~~ (b?, wbic~ is in: pa.cf,~ ,_,i-~".11-fJ,f .. J•,) ,_ f~fl~f.f_S the

fa~-~ .. that the st~dard attf,~~e '?f t,1)~ r~,r~f•fi 1fiv9,~yed_ i~, '- trans­

action iJi ~Y market place ~s ';1St.1al!Y SQ1!1e ~gr•~ 9.t '8Ut~l suspi-
·• • ~ ~ • ". ; •• ' ' • '·' ,' ~ ·, j • , • I, _,_) •.,_ ;,

cion. ~t,nce pr?i?m,as ~l:l- tb~ ~Y!~"'"·''~~, a, t~11 r,J~p.'.t,,pf ,-.sers

on the outs~<te_~ the progl'SJ!IS t~,1!ee -~•~;' ~P;~!f ~l¥'.!l suspi­

cion. ~re detailed_ dis<:U!!Jffi_ol) at:1d ~J.tt.s, of. 11U$Uf!, S~J:licion
· ·. ," . , l .__ ,_,: ~, ·' , :' . : ./4 lJ, . .:.,,I...:, ' -' • . 'L·~ · '"

can be found in Lampson [La 69) and Scproed•r [Sc 72)~
• •

1
• .' • · -.: • :.~-f t)Jl2· ~-~ -~ ~:;,'..;\,,:·:L,'i-1:~ i.r•.

One UJ>8Ct ~-f tlle ~tual -'!u~p4:~0J?,,. rr~N·•'I., ,lfhf~P. c~ ~,' awk-
. ., ' : • - , . . ,, r;; ,,. ,,. . • • ,, •. ,... . • ..

ward to handle i~. the fact that t~«\des,r~~: ?t~~l?~~i~~ between two

users may c~g•_.~tb ~~- _ Jo~...,t.-e¼••.1ffl,: ~m-r .~Yt,.Jo1n or

leave a COIDP,~l,, or ~,_renter /may b!! 1,~, ~-f•Y,~1. ~~ bill. Thus,

i~ is imp~rt111;1t t~t the pr:f.vil&ff~ of f_ -~~en ~~:r;.,a,r pr~~i-am to
, , '. ' _. • •· ; a , ,; - .• , - . , '· •• - c • v -. • q tJ ,l. , _ o -- , ,

~ec~~s a ,&+v~ .ob~~~~ ~~ able t~_~,c~ge __ wj.~~Jt,~.' _ }~',~~<r(4r!, it

;t.s vey;y des:t,.i:abl~
2
,t~t tb,se acuu,,~•n~~"~f ~~ivil,'-•~!, p~ ~, pain­

lt•sw as poi,is ible. We wU~ fi~dr~s~n~hil!I --:i,,~,-::~,, s~· lep.gth,

8

particularly in the case of iaC't'eaaiag auspieiaa where previously

granted privilepa are to be r~)ted.

1.5 E:xteqdlbility

The conattuction of a larae operating IIY•tea is a formidable

task. As tbe richn•u of the user envi~t provided ia incraased.

so also is the ai&e ud cGllpleitity of tlieayatn which provid•s it.

In fact, unleae controlled by a euitab1e cleaipMthodoloay, the

c0111Plexity of a large operating •1•t• 11ay pm1ucle its aver being

completely l.lebuggecl. One of the iao1t pntd.siq auch 111ethodolog:l'e•

is that bf 19!!::ly. in which the •yat:..aa is CObtRCted as~ ba!f­

level* and a Mriea of esteiud.ou. Bach layer estencla th• envirou­

tnent in whieh it rua.a, tbua preaenc:lna a d.clt.er envirorMNltt for

higher layers. The key anuaption in auh a ay1t• ia that tto layer

has embeddad in it any knowledge of the fuactioniq ~f hiaher

~ayers. Tlda, collbined with the oktoua·,r~autiOI\ of ptotectinl

l0Wer layenfrom itlllrfereace by hJ.aher laye1'e, 'yields a structure

in Which cbanau to and aalfunctiona of" h.~tur layers c:aanot affect

the .cottect f1111ct:ioid.ng of lowe1.' 1&,-ra tn any w.,:'~
. .

The contructiO'it of a layered ayat• CM be -.iewd it& two way■•

Fl'Oll a top-itown ·point of view,· the.t:Mlt :la OU ~l ann,riataly
. . ' . . I f

dividing the ddired set of functions into.a of·ta:,ara.
, . .

From a bottom-up point of view. the tall is te craadfon •• pre-

existing 11}'8ta into a more cOlitplet• n-nrotaant 1>y"ac1difla waeful

new featul'ea. the latter point of·vtew·i•••t •pprppriate in the

*sODllltimea called the "keftlel" {Wu 74} or "~leuau')~, 170].

9

case of user-written extensions, although t<?, '\,~,-fJ~ e~~~nt 11 the

e~t distincU,o~" between flY,St~~' lt~P~~~ -~~~, ~e~,,~~~p-ams becomes

~~or~~n~, fn a, ,~re:r~d de;s~.

Give11 the object-oriented p.oint of yiew discussed ,hove, the
, :~ ' ·'. ·. ; .. ! \fI.,/ -t:~ ; i ,: ~,•~" . . ,,.; ·;:r,-,·; ':' ,:;· · 'J'l~':";':

appropriate way t~ view extE:~iou,s is ;1/5_ ~~f.ining ne~_;\type~. pf
,. : . '•• J '] , : ' '.,: !. J :;.i -~- ! , . ' ; ,. ·-' . ,:. . . :: . . : ,:;

This obj~CfS and provi~ing t~ 8:P,Pr~-r.r~,.:~ :P1>':f~f}~9.f•, . ._on, t~•lpt·

inmediately raises the q11~s~~~~ J~~; ~w, ,suf~ ,~~~0,~'.t~ ~re,~F~1 and

how access to them is controlled. It is llllSt desirable for the base­

level naming and protection mechanisu to provide these functions

for all higher level objects in the system. We will describe

various~ extension featµres which allow this.

1.6 Thesis Plan

Since the mechanisms described in this thesis represent fur­

ther developments of ideas found in several •xisting or proposed

computer systems, it is appropriate to sunaarize those ideas.

Therefore, Chapter 2 begins by desc~ibing a hypothetical system

exeaplifyidg the relevant features of those systems, and goes on

to discuss the use of those features in various situations, placing

special e111phasis on revocation of privileges and on type extension.

The chapter concludes with a list of goals der~ved from these

discussions.

The central portion of the thesis is Chapter 3, which proposes

a new system design satisfying the goals derived in Chapter 2, and

discusses the implementation of that d~sign in some detail. Some

possibilities for further elaboration of the design are also

10

discussed briefly.

Chapter 4 examines the use of the mechanisms of Chapter 3 in

providing two facilities helpful in common situations: revocable

parameters for mutually suspicious subsystem calls, and directories,

for storage and distribution of capabilities.

Finally, Chapter 5 summarizes the results of the thesis and

briefly evaluates their significance.

11

Chapt~ 2

A. 'IyPical C~i!tf :Slft:e~ -

2.1 A Typical Capability s1stem

The central goal of this theais is the detailed sp~cification

of a proposed behavior for capabilities, and the description of an

~fficient implementatiQn of capabilities exhibiting such behavior.

The main aspects of· capability behavior to be examined are the

distribution and revocation of privileges, and type extension. To

bring the issues into focus, we sketch a hypothetical system called

''TCS" (for "Typical Capability System") to serve a~~ context for

discussion and as a starting point from which various improvements

can be explored. This typical system as described below is not

identical to any existing or proposed system b\lt contains features
; ~ _;

found in many previous systems. including CAl.~TSS [La 69, St 73),
; ~-/

MagnUJD [Fa 68), Plessy 250 [En 12,-·co 72], HYDRA [Jo 73~ Wu 74],

Project SUE [Gr 71], BCC 500 [La 69), and Multics [BCD 72, CV 65,

Sa 741.

In the definition of TCS, two conflicting considerations

influenc~ the level of detail at which-the various features should

be described. On the one hand, it is important that the definition
. ,..., , .

be specific enough to make subsequent discussions clear and unam-
;, .--, .::: ·1 ~:.

biguous. On the other hand, the inclusion of extraneous detail

would not only cloud the issue, but might also falsely appear to

restrict the class of systems to which our subsequent improvements

are applicable .•
- -

For these, reasons, the defi~it~PJ\,that. fqllows -~_ends to pin

12

down only those details wh~cl\ are relevant to the later discussion.

In. other cuea1
-. NYe1-1 alaraat:t.- ..., be ■ketche4, or the fine

points may be glossed over.entirely~ aot wfficiently

interesting.

In defining Tes. a logical place to Main i• with the capa-
. '

bilities theuelvea. At, stated pr~owsly, a capoility serves

both as the name of an object and aa a packa .. of privilages,allow­

ing the object to be acc•ned iu various•~• It is ala.» desirable

to dtatinpiah between objects of differmt.tn,ea; in TCS this

distinction is carried in .the capability, ratllrer.~han in the object
. ' . · .. _, "'. '..f J'' ·,: .

itself,£~ reasons which will becoae clear dut'iag the discussion
.·. -~ . ' .

o·f type extena~on. Thus, a capability f« a nject contains:
. ' ' ' ' ,- ' ' ' ~- •. , . -,- ' '

a) the unique identifier or "ID" of the object~

b) the .!J!!, o.f the ob_ject,
!

c) a aet of privilyes to access the ~ject.

Bach .._in in TCS has its ownael!R~ !:!!4resa •E•~•· (As
'! ~, I ~- ~ ' ' - , , : '

pointed out by Jabry [Fa 74}, freely copyaba capabilittes elimi­

nate the need for c0111DUnicatin1 domains to share a COIIIIOn address
"

space.) The capabilities possessed by a a~ven domain are stored
·,:•

~thin the sapents of its addr•.•• apace. At the: same ti:IJle, those

cspabilitiea- aene as the skeleton which defi- and at:ructurea
: ., ' ' ,,,' . ' .,.

that addreaa space. (It is worth empbaa-iziag. tut -. address. space
,- . t' f.'

defined by rre.ly copyable capabilities te~ to be· a ach 110re

fluid st-ructure thau a 1n0re conventiollal aadt;eaa a,•e defined by
,'' ·,,· ..

system da~a structures.) Associated with eack dolla~ is a single
. ' . l

* -The object ID baa sOMti.Ma been referred to aa the "utd.que name"
or "11obal ,, <ff ···t.Nt ot.jeet. we- Wialt ·1:0·~~,·,th& •'tel'llinoloay ·
to emphaaize the fact that it ia the cajNlbility it-.lf which
should be tho\lsht of aa tbe glObal of tM object.

iuq>licit segment,

13

* which serv~a as t;he "root11 of, .. :J.~• address space.

A capability for the ilJlplicit. s•gaeut is. 1>.•f~ o;, _t,he defini~ion of

the d,qmain. All <>the; a,~~nte ~'?r objatcts of,ot~~X".~;zyeJ) are

addressed via capabili~ies in this iaaplicit '--e3"nt. .There is no

fundamental reason, however, to restrict cap4bilit:l.es tQ appear
. . - ,, >; - . , . ' _,

only in this implicit. sep.ent; in fact, it ,will be. assvmed here
.. ' . -:, '~ ~ .. -,. .

that capa~ilities and "norJDal" da.ta. ~an .be freely :lQ.termixed in .. ,' . ' . · ... ' ' . '

any segD1ent. (Ways of im.ple•nting this withqut .compt:<>Dljlsi.ng the

integrity of the ca,pabilities will be dis~u,sJ~d litter.)

Outsicle the cont_e~t of any particular adch'ess spac:e, we can

define the absolute !d?re~s of an ;t.~eaa ,(f,'lpabilH:Y or dat~) to be

a pa;lr <C,d>, whe,:e c is a ca~,¥il~ .(.f,~r a s•~~t) and d

is a displ4ceaent .C,iord, byte, or bi.t ~~). ~t. (C.d) denote
'. ,_. ·., ..

the contents of address <C,d>. ~. if c1 is ~·, f..-Pflbility for

some doui~' s. ~licit ~,gment _, a r8:u;M .. ~dre~s w J.s,t1ed by

that doma,~ corresfonds. to th«! ab~\~~ ,addf~ffl. <C1 ,w? (i.e.,

word w of the illq;,~ic~t .se~t). S,~~,l,:, the st&P,da~d notion

of the two pa;rt ad.dres~ . s lw Qf we>r~ w,· in 11epe~t . s i~ equi-

in the address space, addres.-es involving the\l ca:n t>ec:om.e more com-
! . - . i ' ~ , • - _, •• • •

pf;Lcated, _ 11uc~ as •lw1 1w2 ;;, <J(c1,r-,>••i:l;~-2~ . ,Ci,J,,ert l>otb. <CI's>

and <(c1,,s).,~1> _ JllUst contai~. se~t ~•p~i~Jtie11) ~ Tb.is. EJuggests

the provisioQ of 41r~ct har4ware iapl...,.tat.ion pf t4••e aul.ti-
.,,, • • ,' • ' '. ·_,_ - > •• :· ' • ' • •• - • , • • '

;Level addr~1Jses. ~/or .. ,P,fO&r-.~~• ~,41.ff-J r•J11ter~. fo hold
* . .

'thi11 is ,:1,-1 lar tp th~. ~tics d,e-,cr~Pfr~~'', -.~! .J~Q? 7:Zl . or the
CAir-TSS~1ifdftin1°C~fist [S't 73].· tn 't:lii'lfAGIOll l)a'68l and'
Plessy 250 [En 72] uchines, it is effectively impl~t,d.in hard­
ware in the form of several capapility registers. Lampson· [La 74]
refers to the implicit segment aa the "acceas point" of the domain.

14

·intermediA.te capabilitiJs · during the evaluation ctf aucli addnaaes.

Lack:tq these futures, a dNaift •·uuid 'ditectly utili~e •;only

capabilities in it• iaplicft M...-Ut: all other capabilities would
'

have to be co}tiW into tile implicit ·ae...-t '1,jfore uae. ·various

foru of aalti~l'nel addreestng l\av'e ~ ·.~ in · dieting

&)'St_. [Ba 72,St 73, lfe 72, Wu.f4].

Figure 2.1-1 depicts two doma!rw D
1

. aad' D2 , whose implicit

se&ments are S1 and s2 rea~cti'ftly. 'the. udreas apace of »1

includes ae,-.te S1' s3, s4 and s5 • The a4dr••• sp&c• of »2

includes s2, s1 , s5 , s6 , and s7• 'liote'tui' 61 and s5 are

sured by both dOllliB1118, and ·tut the 'a~n ·.~ of D
2

uy in

tact tncluc1e (indirettly) the eat:lre --•• QaCe of D1, depend­

ing upon the I privileges in D2 1 • cap.ility 'foi- ' si.
As·IMbltioned in Chapter 1, cloMiu Cali be 'c~ractetized as

either active or passive objects. ,, In its paulft role as a collec­

tion of prirlleps, a dolndn itt·ourt~i~l c:ap6illty system 11

Ueutfcal to 1.ta iilplicit ••IMllt; frOli :tlda point of via, the

di&tinction httreen a domd.ll and a se1111111t·1e atilply a 41.1estion of

eaphasis. On the other hai'ld.' in lt:a actt• rot.', aa an ex.rciser

of privilegn, ;a d011&in 1a lure to requite adclitionai information

in its repruentation. · r•1at1na to control et~t'urea, e'rror handling,

eut:ry point• 8ll4 so oa, which we' wlll caf:[·1ta:l'•bl~crlptor.

While tbe exact 4etail1 of thia extra 1hf~tida·."1t'ao\ felevant

to the. curreiit ducusaion, it will aoaetitlea be uae:ru1 to dl~tin-. .. - . ' ,_ . ., ' ·- - " ' .. . ~- . • ... -.-

gu~sh ?Hltween the d~:l.¥1 in tbia Wa-~;: !'~•n ~: ~~·. ial>li~it, . . . - . .

15

s s s
6

Figure 2.1-1: An example of two domains

16

The active characterization'of doaaina is aoaevhat imprecise, .
since, strictly speaking, nothing is ever doae by a domain but

always by a process executing in or aaaociu..a with the douin.

This raises the issue of the exact relat~p between dollains and

* processes. Since protection and acheml;liq_are essentially inde-

perulen-t futac.tions, it is tempting to deft,aa~~ and proceaaes

independently, and to allow procease, (ac: leut potciutially) com­

plete· frJedoa to choose their dc-.ia of~- This iaplies

that

a) A given process aay execute la.var:toua,Aeaaina at

b) A gi'v•n domain may have zero;, one, or ••,-ral proceaeea

eac•tiag in ~:t at: _any 11-... u..
In such a sc.hellla, two types of c...,,..:tcat'loa ~hlmuu are required.

One is intmroceaa coaaun~caqion, 1'hicll al.loN{tvo P41'allel pro-
. " ;

ceases., in the same or 4iffer•t doaa:l.aa, ito a,11Clnvuf.ze their

execution aad exchanae MiJsages. The other 1a 1A-ter4omain

cOllllUJlie&t#:9!, which occurs at tbe pod.at-'-~,._ when a process

crossea from one domain into another. 'lh:ls i-8 generally viewed as

being much Un a procedure call/return sequence. including the

passing of parameters, and is t.hua referred to aa a.domain-call.

This 'rill be discuased in 1110re ,atail lat•r.

In actual systems, one or both of two •i:llplifyiug rest-r1ctions

is often imposed. The first restriction ia to force a pven procesa

to al"8ys execute in the same d0111ain. Thia •li■ina~ tM rather

complex machinery needed for domain-calla, and force■ all

* .. Ca1led "environ■ent binding" by Jones [Jo 73).

'

17 .

inter-domain communication to be cast as inter~process colUlllunication.

While this is cle•rly · a sitapllfielitlon''of the 'base..:.1evel system,

tn praeti~e it ·often forces higher ·lev«f software to essentially

·SUllllate''d<>Nin-calls ·using· multt'ftfe 1)r'oc$f,l•es, ortly one of which

iB active a•t any givesl' t·t-me.: This is tio'i 6tllt '.fuetf:lcfent, but can

·aleo- be surpii&injly cl-umsy, consider:tn-g ·tbat;~arallel processes

seem to be such a powerful construct. Indeed, the(\.tn'used potential

· pa'ralleliem seems to c;auee much of the t1Ulllliines1' .' ·

The otheti 1'est'ti1:tton wb.i-ch is' 'often applie'a is to allov only

one process at a tiliii, to execute tn·'a given.doiilli.n. 'This can be

done dynamically, treating the doma-ib as a "erlt:tcal se<!tion ,"' but

ia•1110re •f.ten doite statically, by ••ociating 'uch,doaaainwith a

single process, and ·allow.lug only that':prWceu' to'. ·•xecute in it.

One reason for ma.king this restriction is the previously mentioned

correspondence between do•ins and address spaces. As pointed out

by, Lampeon · {La 69] .this tends to reault· in·adclhsa'?¢onflicts between

multiple processes executing in the same 'domain. Ot11i way to avoid

these conflicts is to eq~ip each process with special base registers,

or a pushdown stack for wo'rldng storage, but what such mechanisms

really provide ts simply ·the ability' for tach of ···tbe processes

e~ecuting in a glvn domain to see the -ctoriahi. •OllleWhat differently,

in a rather styli•zecl wayc. · · A :-'IDOre straightfo~rd and flexible

,approach is to ,actually provide a 'diif tereu·f "~op,ytt of ·the domain

for each process, and to use the standard sfieririg 1Nchanisms to

avoid redundatti!" storage of the identictil·compohents of these domains,

18

. * (e.g. p1,1re procedu:ces, Ullcla4Raiq c:a,uiu.,1-," et4.),. &a 0...«:b a

scheme• each proCfl~a h&a a prl-.u •t Qt •--:t,na • w .aQlll8 .wmg

_tha using the. daaaa~-~ •qhaqi-, .. ,, ~~• ·••• .. 'ldJ:.1 ·• ••uaed
in sub-.q\18llt.; die.cu.a•~ of ~. •U•M 1&M.• ·• _,, ...-ti.al

to the pro~ .. · f~iQainl of tbe ~ •••4iil~ _ _._e4 a

prQpoaed lat~!" . j

also to Mlli~• the c:apabJJ.1.ty ~-l.fi .:La. ~lJ

conatrained · way•~ :J.ncludin&:.

a). <:Qgty: tba ~ilit1 ., IMl •,-» c:iep,-s -.:.-,. time.

here 4-.ot~ by. a aillple ·•1.P■P•

b) ~¥!1
1
prtvil•lff= the,.pi;ivilepa iA iJae, capob'\li.ty

llllq· be redlacect.. laer-. d••~-' by,_

recluca(C .P) . •
·..tbm;e P :ta a _..k 1acl1c••ina. Jlae, a.at••'-'· of c •' •

pre.viou.a pd.,v.ilqes aic;k ••· • 1",.,qtdaad ..

Ins~ ayataa, t~t. lll tbe.ae twc>.Dlle%'4t~,,.._:--.CGllbaecl;

hue~ tbay are preNIWld HPK&ttll.y tR ._. --~ft t..,_tien

to an .. illeroved scaeae -

* . . .
We will aaauae that a domain is created.by aa..,1:1:ctt: creat:e­
domain op•ratton. ud. reuina in exiateDCe uatil ueti\Oyed (St 73) ..
A -,re complicated approach provides tile aucaal:tc -,'L'e&Cion of a
domain wh.aaever a call is directed to a glolMa1 doaallD-pscatotype
object [Wu 74}.

I'

19

p•ssing of capabilities between doma~~~ via shared se'188nts., In

one sense, this is a very powerful featµre, sj.pce it allow~ any
'..: .. ,-,· ',:. ·, .) ·, '.

possessor of a privilege to pass it on without requiring any sort

of approval by the·c:,r1g:l.nal dqmor of'tfiat privilege (except in the

special case in which the donor is empowered to disallow all such
, ,·. r ., 1,,. ":,,,•, .;e · ';~

~haring; e.g. 1n the case of a "c011tined;, subsyst• [La 731). In
•,•\ f,:'. ,: ; e - • '•• •

another sense, however, this feature is very weak, since it pro-
• -~ I ~ \: : \

vide~ only·. a r~Iad.vely costly, ~luuy .,and unstructured method of

inter-douin' c011111Unication. This weakness would be particularly

evident.in the case of mistrust oetween domains (e.g. "mutually

suspic:lous'" subsyat·•s) •· Ba°th of these ~onsider~tiC:.ns suggest that
• . . , ' • • :-_ '.; , :· '. ' ,. ' . .·t ·;~;"' \ •·1

the domain-call mechanism should provide for the passing of capa-
.. ·_;_-·,,

bilities, as well as data, as paraaeters. The latter consideration

suggests. the utiH.ty of 'such a featur;, wh':J.le the· former shows
,·

,. . . ~ ., •"'j ,: :. '-~ i j. -J~ ". '

that the ability to keep a domain from giving away its privileges

is already eliminated by freely copyable capabilities and is not

further compromised by allowing the passing.of ~pabilities as

parameters.

We asswae that TCS allows the passing of capability parameters

and implements this by copying the indicated ~apabilities from the

calling domain (or caller) to 'the ~l~ed d•in (or callee) at the
a • < '.~j C •1 ~ ·u 1 -~ •

time of the call, and copying baek any result capabilities at the

time of the return. A domain-call thus tilkea,the form

where the Pi are parameters (data or capabilities) and CG is

20

a .I!!! capability for the callee, allowing actii,•U.on at a particular
.1; ' '

entry point. Slailarly, a douin-return takes the form

where the R
1

are the results and the return gate is implicitly

the site of the origiaal call.. We leaft Wlapeeified here such

details as static vs. dynamic allocation of ..-,ce!for cai,ability

paraaeters in the receiver's acldreo apace, aut~tic type checking

of capability paTaaeters, and so on.

In addition to making unwanted acc.eBN• to ob,Ucts. domains
~ . ' '

can 111sbebave by making unreaaouble demlll'lCle o~ ~he reaourcu of the

system [La 71]. Some mechani• aut be i>rov:tded to prevent them

from interfering with each other in this r. Since the details

of accounting and resource .allocation are be~ t~~ scope of this

thesis, we will siaply assume that . each domi~ 1.s f~ded by an
. • ! ·:'·if , .. , ,· ,:4 :·

accourtt, which limits its resource c .. oaswaption.
' .J:

One particularly tricky proble111 which occurs in capability

sys teas is the "lost object problea," which u.:f.aes .. when all capa­

bilities for a given object are ~rt.aatl.y diaclarded, DIii.king
.~ ~ . ,

explicit destrU(!tion of the object impossible, -.cl' t~ sp_ac~ occu-
.. . . : . ' .. .' : -~ . ': ,, ; '. ,, . ··-· / . '._.

pied thus unrecoverable. Given our attitude .uout at;:couating, this
' ' .. ' '

is reaily an opportunity for self-inflicted ha~,. r~~ber than 1118/li­

cioue sabotage. Nevertheless, recovery from such situations must

be possible, hence •everal. pos&~b:1.e aol.utions to the lost object.

probla will be discussed at appropriate points.

21

2.2

In this section we discuss, in a fair .->unt of detail, cer-
• - · , · : b,.:.~- ,15.J :'.?:. ·_,

tain as~cts of the impl~ntation of a s7stea like TCS. Thx-ee
· , · · · · ;; 1 ·: -;~j r·,,: '

considerations influence the choice of.the ,-rticular mechanisms
•:•,; •r .,I ;\• :,~fj~)tjf~,:•~:f •'J ~ .. :,:if

described in this section. P'or one thinJ, va~ious systems ~imilar
.,. •~• •

0000
;.-,;~, ; } •,. • ,:• ..-, l 3,,J;, i,:

to TCS have been constructed, •!1'1 thef!:.~~~¥;1t•!~o~9:.! although
, • • • ,".': .,. .,. -,- t ._ .•• . • ~ ...1-.. ... r~ ..

varying in Nny ways, have shown some ~oaaon features whose advan-
•·:· : •. : . ~ : i: .·;:>.i ~_(,;, · JI . I~:'.: tr:.::. ··;, ~~--~ ~

tages have become generally accepted. In addition, certain facilities
< .- " .-. •• " ' ,t .. ,. ' (:~ .';,I·. ~ ·, (: -•~- • -~• -~ f\ :."'

not included in any ext.ting capability system ar~ 'Widely regarded
· .. . : -· -' -~ ; ·-·~,j {J.C; ') i] :·\ ;· !'. ,. J1~:-JJ F ,. /: ; ,_::- ;·_-·

as desirable, hence their impleaentation uiplicatiop,s at'e of interest •
.. ,· ·, •'., : :• •t,: 'i if

Finally, discussio~ of iap181Q8ntatiou of TCS is intended to set
· . _; . ' . ~ ... _ · ~-,·'."ii-1~ st.,;:: I ·.i:..j"_t.L, r}~ ;:~.t:-··~_;·. L

the stage.for the cor~~spo~dinJ.di~~~~a~on ~~ ~ft•~-\~~n~erning

the implementatio~ .. of a ~re so!~ir~~c•~~. f'~~fl.if! !~~~~.·:
The most obvious necessity in iapleaentiug a capab.~lity system

- c< , ' ··; "'>-:' ':. .. : !:':_';t-: ;_), .-:.,-:.._j .. ,,

is some mechanism to protect the r'1)resentations of the capabilities
•• ;1- r, _! J.~.,i; '·_:;~·~ ~ ,, ,·, ,·: :·.: ~. , .. ., > :· ..

themselves from unauthorized alteration. The proper functioning
,:;:·t ~r n .,~- .

of the entire sys,tem is based u~on t~ integrity of capabilities,
~ •, (: • .L'. -~· .·,.·' ,J'}i·.::;f; .: ~ ! . ., ,

hence this •~hanism should be aiaple, to Nxia:be not only its
.t :·;·. ,,,~ . ;"'_r~.f j } {.,, . ' .

reliability,

confidence.

but also its understand,bility, ~d thus inspire user
. ·I- -~.\· .,J ,.it, .. ,.-i ' :::.:•_; ·! :.£-'; , .,· ~-- . '..,

Two mechanisms have.been proposed, which we will call
- ' '. . .::L,4_;·. tr;~;- -~ . {'ft~ , \ ,;

"partitioned aemory" and 1•tayed .-ot:y."
. •' ;;; . f,: tf_:~ ~~i-, .

All capability systems which have actually been constructed
· . ·; -~: .···· .-~~:tf~,f :~!1 \(t,t <. ; ,.,- ,!·:;ti,

have used ~•rtitioned memory. As its name suggeats, this
:,l.it ~.~·> b~;~-::;·/PJ f.: ,:. :.f:;r;_JJ ·. ·i~:,;

scheme

involves partitioning the sepenta in the syatea into two
: •, ,._ •. ,• a • 1 J.;,;!,:, J.? . .:. "l.f 'f F.,; ,•1 .•~· > ·•·.

classes:

capability segments which contain only capabilities, and data seg-
,. {. ·:·~"~-_r~,l t~ . .-. .t:_-:·~, --~··,•;J --~·i.t:.}:···-.·f

ments, which never contain capabilities. One obviou~ advantage

·of this mechanism is that the cost of distinguishing between

22

capabilities and data is distribut•d ovet an enfire sepaent, reduc­

ing the overhaac:l per item, but the main advantage of partitioned

memory is more subtle; it involves the avo14aftce of certain address­

ing camplications which arise in t:he tagecl ~ry approach, as we

shall see shortiy. The aain disadvantage of partitioned memory is
., '

that the artificial division of a uaar'• lll890ry into t,ro parts is

inconvenient. It is often quite natural fo~ inforu.tion structures

(e.g. entries in a table) to contain both data and capabilities .
. '' , '

While such intendxing can be aiaulated uaina a pair of aepents,

this is a fairly clwuy procedure. For this and other reasons,

discussed in detail by Fabry [Fa 74], we reject,partitioned memory,

as indicated by our specification of TCS as allowina free inter­

mixture of capabilities and data in any aepiant.

The taaged mea,ry approach allowaauch iatera:i.xture by attach­

ing one or more extra "tag0 bits to each infot11ation item in each

segment. Th.e term "itea" is used here to denote the basic address­

ible unit of MIDOry {word, byte. etc.) •.. Th~· .. taa bits are UlllllOdi­

fiable by any aoftware except the most central routine of the base­

level syatea. la.ch item's tag indicates its status as 'data' or

'capability. ' An item a.tst be tagged as a capal>ility to be used

as one. All item so tagged can be generated ~y by copying another

such item, or by the base-level capability-:creatton routine. On

;,

the other hand, a tagaed capability can be erased by overwriting

it, either With data or with another.capability. (the system could

require that capabilities always be expiicitly eTased bef.ore t~ir

storage is reused. We reject this as too inconvenient for the user,

23

~ OQJ.y- prc,d~ticm c;.OIQ)Ut4U,~~ W'"nHII~ ~o/: ~re

t~ "-rlf~Ugl;lf ~00 :(~.~:\-L,~·1~, c}"fc,~,J•rj~ .. :It\~ ij~\l~qcted

~~• in ,,"h~~ ~cl,\Jiuee .~rt, •~d!~J~~,•• ,?fi~J; , ~MD. AAP~~~lities.

· .. ~ 41ff~1:~c.e41,:,,b-.fMe-,~ ,tl,i~ tw~t4lO,JJCPl.:9~'}S4!11\JH,,btir,;~ .~Bft,Pt for

. one; dess;J;i,ftf:f,. ~re~~~n-,t4•fab~'i·s..q!•1' t~-- CJP!Silftt•,- A

lt~ro~~--d,•sc;ip,oi. ~ 48;r~it~ l.tJu, ¥fj4l,aMni,.,p\~~i'1le capa-

biU~tf,.,•Y•~,ha.:~•-~~cnir,d,!!J,M!itM;of.,.lQp bj;~,1:f9~1e~~q:capa-

·. bility.. .~ ~~; of:•~h~tb~l~,~lpf·•'-~!•~!,~ ft ~ff~! ;·

Whil~ ,tb~ acl11~1~•; of ~HQ; IPRil::hf1f• ... ~•,s ,iew;i-,s•in-
'.,)' ., ~-

~a •ecep~~e, · "•t•J ~F~ ~ff, hM~ ~,ffMrJfR!i8!f~~•~t is

~lle r~•ctiplJ.,:9f t" (Jiz,, ~b~P••r4fff8~lf .f~•tMb~JJ-d•e~IT ·

,Wllil~ ;~~ w!~J;), it. 9t a~, +f.Hi>J.,_;~!',,6Rr b~fJ'8~•t1cqmaon

•. t~ ~be . ~:a, ~,)Jy~e, ~!, b~ :' Cr~ff!~), A-,,, ~•llJ.}Ye llfB~'~' a

~v•n:aj: !~~~ -.a.,l...,,lf~reM,"'""'.,''r'~~'.q~iJo~,. ~!1~ ulti-

..._, J•d~~~~»- tf>\~i~. "A4,:-~p;~i~"f•,;-·{ 1f-1!f~~J9l~f, a

larger unit of information ,(~J,, ~,.f?&lflW1~ .. ;~~ rt-''f••1n>-,~~ by

.... a. ~t:Lgu.c;,us .-.-w~a.,Qf :~""1-8.fl.;J'~f~Y. ~~; •«%.lf•~fl of its

. f~•t:.it,- R~: it;f l•~-~~ ~ ~if#t,~~_d-Jep~,,

tbtl~p, :~!I a ve(tY :f~~J., ~µ~, ~ •.. ~- f1I!! /1:~~s ·

). Two.ff',~.-~~,~- t~,J:~~:~,-~; ~ility

itil a ~~~.9£~.•!'119~¥•~ 4t~~~V•:t,:;~fl\1f~,-~vious

iDc.ua~tn -~ of ~~qg ~i W·~-~~tf!R H f:~1 items

· 1~ -.llAlr;. The. ,~1\#" ~: ~ ~:IJJr~ ,lftt~~,~lffi'~ of

* .: ·!:~~~ee::1!t':~~~"ttH~:~~~~•=~:t'§C~~:sf:~~~ing
·. ·,:J;,IUM ~:q,!~ .. ~~1·W ,..!"W,,~1-:U "::: f,C ~-••• , .:r ''F; ''

V.

24

a:ildres•!>ft• the' 'Mdd'ia of a t!'a;a&ifft:,.

If·• ••BUM that each :I.tea baa a cMe· Ht· ftl, we ne faced

with die ~tic>ll of 'wftfc!h ot t1N k_. iW • .,...1-,. should have

tl\e:tr t.aAa ott (f;. e. , lit to 'capaltl:ity •J • · lf .dJr ·df ·, tfie:tt tap

are an, tliete ta no eot'l"Mlt1dt way'fd .., . .,._.,tto;&i~i•h

Betfta. 'Val:1&1 ~--iifty· dil1r ... ~ . ..,. --·wfltdl'jdild'S' •• tb.e'

iddd1e of a ea,-tJ11:lty. ~ !«ur·'ea• eoda i.u t• the recog­

nition of Iha t•at fn 11-. of_. ce;alflSty, topt1-f 'rith the

fittt fff itflflll of an iiiilikttately foll~&' ca,Rility, •• con--'

stitud.itg a vali4 capdtl:fty • · th1• -.t~ty · ••t h avoided.

· Otle •ay of doiatt tftis• i'a tcP-ttil'!l on .tt 'tk U11 ·of tlie first item

in ~h c,q,atH.lltY,, anl1 ~4uire ·t1at ttlt"flrat· filad",onl:, clie first)

item 1o'Cat-1 it a ca,aiU.ty addnint k • t...-~ flita liille• the

othet !UM ·fii· a da,aitU.ty iitiliaUJtp!AaM.e ftei{aata,; holfever,

iifttl l•aw.-tt. o,-n to altftilttoa'ual•••Vftf lttON -,.ration

acana the tqa ef th• ~~ l'1iallllet .t· ~iiag · iteai and

ttlfftl9 ·tha uf'f to tttnft lava11.~1mt ot any -...:1111:y wtdeh con­

ta:16.& th ittitb) t»et11i flaltified.

tt is tleat, theft, that a a&b:w,s ,0111ttt11 :f.ttto ttre ll!tddl4!

of ;a capability IIU8t be 41tt1.11WU1.""- '-da fnill • 'ftlid eapability

addreaa aM ftoll m ddnn of at..,.. clda. !ht•- ---•ts the

deeil tot 't1Ht 'tag b-itll -ou each item, oae -tnftcatiltl Wretur the ,

i te'lb. is pa"tt of • capabU.1:ty at 811, and ·t.1uf '0~ -~•1 whe­

ttier ft 1* the first 1tn of • · clrp'al;J.ltty. lbce tile ~ tag

is ftahn&rf billy 1met1 the first' one 1-8 -ott. • tt: coUW -l "nolen'.'

frft till! bits ·of 'the itea only_., ~ (a:11:hatt• 'this obviously
. ' , : .. - -~ ·, :~ . .

doesn' t wodt on a bit-addreasable 1lell0ry, l!ff.'bdt' 'flle. :ti:tla 'W.tuld then

25

have no bits left at all!).

The other proble111, the high co~t ?£ ta11,gin.~., ~~Jl :1,telll8,

exerts a strong pressure to incr~•4! J~e,.s1,, of t~~• ".At"~nts

in favor of liH•ll _iteu generally qit~ ,th~ J~-~ t~t, ,,fo; a given
' - I f . •. '". . '1<, •• ~ • • '

total bit capacity, address size ap.-ow,s only,.log41"ith1Jaj.Gally with
• \· ' • • ' ; , • ' 0 ; ., • ,, ~ \ •• - , ': •

decreasing item size.

linearly, reaching a maximum in the bit-44,cl~!l!~"able es~~ o_f two
• : • ;" ~ : :. • ,,: \•~• • • ') ; L

tag bits per information bit, whic:;~ is cl~I'.l.Y o,ut .of ,the, q\lf!stion.
. ~ . . ; ' ·'· ' ~ , , ~ . '. . .

One alternative tagging scheme wl:lich we _reject .ali()Ws small
. : -' .. '.:-' , .,,,_; • - ·. ;- r --· . _,

items but imposes the resti;-iction that ~pa,~}.~~~~8 ,C~ only be
",.: . . ' . .,,, ' .. .

capability. In such a scheme, IIINIC>ry, is it--addressabie for not'lll&l
t . • ; ; . . : ~ • < ; :' •• • ~}: /;

np.ned "capa~ility frames.11

the software and sacrifice DIJUlY of Jhe adv~11ta~'.:~ ,of item­

addressability.

A much more sophisticated sc~~ which.~18<> involves the

notion of a ckpability frame, attempts to explott the fact that

the assignment of tag bits to each i_t~. i.s. a re~~tively ineffi-
- , ~ "'" . : . -·. ·. "/ .·

cient encoding of the set of pos.ai~f~ ~t~/CA1p4.bility configura-
. ,• '" - ' <-.

tions in a given reg_ion 9f uaemory. Even if ~Jt>,abp.iti_e, c,n begin
- , _, -~:...:. ,..-,.. ,;. ,. ' '

at any addresli, trua numbe:r of: dift~~~t ,arta.,~~~~•~J~ .~"'~ven

c4ipability fraue is not lara• ~ At
1ll0Sf: ot).11!' ~~b~li't:y_ ~•n begin

' ,. : . ''.. : . ",,.-, -, '

in a fraae, and can be preceded by oue or more data items and/or

the trailing items of a capab11it1 vl\Jch belfll in~~• preyious
, • ,, · • 1 , • ~ t , l -;,., t 1.~ 't •. - ~

f rne. Bj associating with each . f~iilt : the "~~~*~i' ·. ~i~pl.a~~nt of

the capability, if attt, beginttit1g irt1 the.traM,'it i~ ;ossible to

26

simulate two bit tagging of each item. This is a somewhat compli­

cated approach, but may eventually prove to be the key to bit­

addressable tagged 1118Dlories, since it'aiiows the cost of tagging,

like tl'\at of addressing, to grow only.1ogarltbmically with decreas­

ing item siu. This scheme also bas the rather intriguing property

that reducing the size of • capabiU.ties cto'es not .always increase the

efficiency of memory utili~ation. 1or a atven pattern of usage,

there is an optilaum size for capabilities, such that deviation in

either direction increases the total overhead for capability

storage.*. No existing systea uses such a scheiae, although it has

been tentatively investigated.by Gray [GI: 73].

We. t1"1& conclude that our ·iaiplementation of TCS should use one

of three t•gge4 memory schemes:

a) Items should be ai.le bits, and the scheme just described

should be used to simulate two b1t tagging.

b) Iteaa sho\Ud be a substantial fraction of the s1%e of a

capability, allowing a two bit t:aa ~r it~ at a reasonable

cost.

c) Items should be large enough· to hold an entire capability,

allc,wing a simple one bit tag per itetia.
*. . ,. ;:: . '." .'.J.: ' · .. ·. '.
Assmte, for eqaple. a bit addressable -.i>ry in.which t~ ave.rage
opjec~ is JI bltf. loo.,.~'~ '8~·fMrfo)t1 ._, .'9~Pi~Jtfps.
'l'ben tbe·9ftrhitad.for capabillty etor-• is tile fraction of 118110ry
t~en up by.~w. plue.t;e,frac,t~.hq,J,.lfiy ~;~ .. µt,~~., them­
selves. ·.u a·£•ction of the size c of capabi11U.e-., this is

1.ots·'C . ' i kc
P(c) • c + log c + 'N+.kc

For iaatance. if N ~ 105 bits and· 'k' • io, · the storage of 64 bit
capab~fi~ie.s. ~•1viree i,g~ l~♦ o~ ~~:,;y, ~A-tJ.,,.;r,fuct~~ ,o 32
bits or expansion to 128 tiits increaaee the overhead to about 17%,
and 16 bit or 256 l>it CA{>~b1,J.f~i••,,~»4t• -~t, i~~ ..

-- : -

27

To simplify subsequent discussions, we adopt a~ternative (c),

although it would probably not be feasible for TCS as described,

since capabilities are so large. In Chapter 3, however, we will
'

describe a scheme in which capabilities fit into more reasonable

sized tagged items.

The second major implementation aspect to be discussed is the
•' ,,d.· :: .

mechanism for mapping the IDs found in capabtlities into physical

addresses of objects. The most obvious solution would be to simply

use the physical address as the ID, but that would imply updating
' . . ,_f: .

all the capabilities for an object whenever it was 1110ved or deleted.

This is impractical due to the proliferation allowed by free copy­

ability, especially in a system allowing int~rmixing of capabilities

and data in sepents.

Most capability systems h4ve solved this problem by localiz-
•· , (~--~ v: . :

ing changeable information about objec.ts in a aystea data structure

aud forcing all access to the object via capabilities to go ~ndi­

rectly through this structure, which has been referred to by such
r

terms as "Master Object Table" [St 73], "System Capability Table"

[En 72), and "Global Symbol Table" [Wu 74]. Here, we will refer

to it as simply "the map."

There is a one-to-one correspondence between objects and

entries in the map. An object and its map entry are created and
, ... '

destroyed together. Since the capabilities for an object are not

updated when it is destroyed, it is not satisfa~tory t~ use the
'/ ~..,. ~

location of an object's entry in the up }IS its ID, since that
< ., , .;"<

would prevent re-use of map space freed by object destruction. In,

fact, the ID of a destroyed object must clearly never be re-used,

28

since capabilities for the old object could then be used to access

the new one. This suggests that ms should be quite long, so that

the space of IDs can never be exhausted, even if objects are created

and destroyed at the maximum possible rate for the entire life of

the system. The alternative of occasionally stopping the system

and compacting the space of IDs ia plauaible, but less attractive.

Any generator of a sequence of unique lOllg integers can be the

source of IDs. A counter of the total number of objects created,

or a real-time clock of sufficient leuath aad reao1ution are the

common examples. In either case, prnision 11ast 1:>e made for

restarting the syste11 after a failure without any possibility of
.

repeating a previously used ID.

As a first approximation, we can consider t:lie-., translating
. .

such IDs into physical addresses as being iapleaaente:cl as a large

hash table in primary memory, keye~ on IDs. figure 2.2-1 shows

the representation of capabilities and aap entries. (The field

labeled "address•·• is assumed to contain any extra info-rmation

necessary to distinguish between priury and secondary storage

addresses. The details are not relevant here.) Each exercise of

a capability involves:

i> checking the appropriateness of the action, given the

type and privileges in the capability (and signalling

an error otherwise),

2) hashing into the map to verify the existence of the map

entryw and hence the correspondin9 object {and signalling

an error otherwise),

29

type

capability: privileges

object ID

object ID
map entry:

address

Figure 2.2-1: Format of capabilities
and map entries in TCS

30

3) checking the address in the ma,p entry for the presence

of the object in primary meaory (and signalling_an excep­

tion otherwise),

4) using the address to perform the access to the object.

These steps are simple enouah to be 1-pleaent.ed in hardware or

firmware, and would be used heavily enouah to justify such imple­

mentation.

As discribed so far, the mecJianism doea not deal adequately

with the two extreme cases of objects which are accessed very fre­

quently, and those which are accessed Vfll'Y infrequently. Objects

in the former class, such as segments containi,~a executing programs,

are so heavi;~ used that hashing into tb.e up in primary •aory is

unlikely to be efficient enough. 1'.hus, it is necessary to hold

the most acti,_.. map •t.rietJ in s,-cial hardvare.

In our itnplementation of TCS, this hardware takes the form of

a speci4l associative aemory, each eleaent of which can hold one

map entry. The association is on IDs. On each access, the ID in

the capability is first presented to the associative memory. If

a matching entry is found, no reference to the map in primary memory

is made. Otherwise, the standard map reference is dc;>ne, and the

result replaces the least active (e.g. least recently used) entry

in the associative memory, as well as being uaed to perform the

accesa. The effectiveness of similar hardware has been clearly

demonstrated in existing systems [Sc 71).

Whenever an entry in the primary-memory copy of the map is

u~dated or deleted, any corresponding entry must be invalidated

in the associative memory. This can be done by selectively

31

clearing the matching entry (if any) or by totally flushing the aaso-

clS:t!~~ memory. . The c~st cit rei~1~· t~~,~~J1~~ ,.;~~ci~~ive 1M1a0ry

' • ' _ C: e • l:' ('• ~ " , r'' ,

requlred tb' 'do aelect:lve
~J 'th~' mathod 'al' ch~l.te.

-·~{~;£;,-~ :;sL! .. , ~:.d.J \ ,,_, ·_:_ :o<r H.l _: ~i(f.\ 1 :· 1 .:.:-.~ (,/

Note that total fluhing of the associative

... TY i's n~~~ lo11c~!11 ~~~.~ak,y:,., ·~~'° c~1 t~ ~u~~:tWt-j co~t~xt:-

indeiiend~nt' names a,/'issoclati~~i' p;;::·i''s1~1.r ~~=~'tnvolv-
int -~~~1at:Ion ·oh\ ~onfei'i:'~~~/~Jj' r~~iie i:~t~·l1~bing

· ~'ch t1- "the~ '~iitext · td~1i~ ,'',;!~.;~-:.', ·' ~t-~~: ~; is!'~t~bed. Of

ho~~se, the' ~ipifican~~~ of' ti:i'.r i~'~'ti~~i;{' .~~~~l ~;~~ the

' 1 \-~ ;: ~ ,t '~, \j•'' :•,.-'; ..11.~-;,,--,,~~J,, ,.~, l~•-~~_:/{H) :jJ ·L•;.-·~:.;!i[·.it.-·-··V'.;,.~ .. ~
Orie apparent alternative to a special aiteociative ilemoey would

'be• the;'~t:ov-1~1~-' ~f'' a·•'a~ne~~i; ~~rp:~' aa,~c~ti~q~iy'~,:i•,•cache"
.(~ ·, i . 1 -·~ .L:,,.-~ •. • .~ -. , , .• . ,:> .. : ; ·. 'J- , ; _,_- t,: 3 ";.· "',P .\:) "(~L~ -~ ::> <.n~-:,., ~H.L!

1
'l't)\; u_:.::- :,. ,··1~,,; •

holding the 1'1C>st active· iteas·in priliary 111811.0ry, regardleas of how

l:hey -~~ b~iiil' ~d~ Such.••'~~~ ~il\acurally,; t~nci ~-~ capture

: t~ ~st activ~ ntries .ht titct~p/~d tfiuj't*edf"'~p,~he,~iudard

.· machinirf, f 0~ 'ilcc~••lilg ',rla i~ ~p'1· iii);~i;..~:;~,~~ey:;·; ; I~;; ~pi te

··t,~' iti' ~;p~aliiig aiipliclt/~ ·\~~''feJ~ct :;ibi:)i~ f~r ;eve~al
reasons.

fcfr' non~p it~ (e~ g. instriicti~: '~t;·) i~\.~itbly to' be as

fast, as ·'we ~an ilff~rd to -~ spe~iatha;~;~r:•1~f ~~i,tJres only

other ·:d~ta , al~~ sac:lf ice~ . ~f ~pori~ity "i; ~ce~~~ the two in
:·· ~; ~.Ji~,'~- -1.;; ;'~::-l __ .,-3·'- . ·; 21-~J';,~_J-:;~:1 ·,;.;;::B~~t vJ; -

· parallel. In addition, ·che Cache, by tt'ana.~y speeding up
it~ ~:. ·-: ;;•;~: 1;·,~ .. _:}.r .i.:-:~·1(::f '1: ... \d.:G ~c-.~1s·:·),r!.:~•,. (.f

primary memory, in no way bypasaea the baahiagneceasary to locate
, ' _, ... -11 .. ·,,.\li ,, ,p;..,q·-,.·j:f ,,., ... ,,. :i

a map entry. This means that' entire"'itcdllieion 'cti~i.iai' from the

32

the cache, and would have to be _scanned en each accees, thus further

degrading performance as compared With that oft~ special purpose
, - ; , • , ,1 ,: ·; , • ,J, • ; <· '--.::., .. , ':) ' J

associative llllliory. A 110re gener•l way of •ta_~ial all of these
" ;' ' ., =.~ . ' < : -•' •·~· ; ',, ! ~-- • ,- "• ' ; :_

objectiona ;is to say that the ea~!Je •~l:y ~ ~he ~ry_ faster;

the relative over~ for accesains Jll!IIIP ~t.•1.4i~ _1.il,l'Y,, ia. thus
, .·> ·.· · , , ~~- < -. ·• ·~, ·1 .·r~i~::l!•·: · , ·:: .. :'/ •.· ·:· • :..

purposes, is not optiaal for cap,turina active up•ntriea.
-· ' '. ·-. - • • • • ·1- ' , _(. : ' .~ ••

Another alternative which~• Mell aclofted :j.n at)fle .-ysteas
. . . . ,_. .. : ,..., . : . · .· • .- • . t.> ,-_ r: :.~ :· · . -!·

progrBIIMble capability register~.~• ~,prcwf.,df!ci_, into which an
• • ~ : .,_ :•. I, ' ,, ' ••~• t;_:,v.:. : <. ,.; •'-"- ,; f '..;'J;-,1 ~{.:\:> :' .. •~Y•

executin1 1rograa can load capal,i:lit1ee ~fne, ~- [fa §? t . ~ 72 J •
. ., ·, ; '.··,·· t; (~~·~-: : t ~ .. ; ~·:~·<.:4~_-:: ;" .. · ,/>,:,_ ·("·?,, -~- ·, ;,

Moreover. the aa! entry t::o!r~~~•. ~!, ~ ~f,}~.,~,~~Mf~Y ia

itself active, suaae:ating that apace be ~-i• the _r~gister
.· ' ,> , '., .· :•'. ·. !":. ~.. "' '_ ,.-· .:-··: ti ~;' :.. . .. ·- ~ \., - :-- : .;

necessary to aut~tically reloacl_~Y.'1!1:J...•-c:~"~ld;I.A' copJe~ of
- ,, ' >: .. ,:. ·./·:·'• ,~f.:, . .' -.y~•-:>' -,:.

a map ~ntry which- is u~~ed, 1'hich acfd•,a ceruia aaounc of com-
: . ~· ·. ·:· ,· ~ -- ... -: .. {;-:: :·•~·..,. _-.;_:_~ !J:~-; .:: :.,'.·{·}.

plication to the 11echania11. Ale~, the adf:ition.of progra't!l[l)tfbl~
• ' ',f, .;r-·r . ,'. , , ; ; . ' :!'..,~!,- ,' ! ·~ •-,.:-,_;---r:-, '· \ ~'',

capability registers, whether naart ot" llOt.u~roclucea t~ ,tandard
:· (. :" -;~ __ .. · : : ,'.,; : }>:·.:.. >"1·~;~~::!:> .~:~1-· ·-\;: , .. ("-'·· '

probl•• of re~ister all'!cat!~•.-,V-/~ut~~~"1~es, ~ so
- • , ,. , • ' ' '•.. ".- •' .- - • - • ; > • ,.. - • • ' < -~

on, as well as the nov~l re,ui~~at ~.~t a c~+~asj~~' ~xp~i-

citlf erase nagist4!rts contain111f ~tli~t.•f ~t be:tn,_ta•eed as
' ~ ,., ' fl. : :, _; :. " (t : ' : ,, . , !, •• <; ,_ ' ,, ' ' ,.,.. . -··

parameters. Other _consider~~fo~• in,~~~ o~ ~~b;:t,tty,~egis­

ters are discusaed b:y """~. (~)2l.

We adopt for our impleaentatiqn of TC$ the as_sociative meJl!IOry
• , . -, .-;·.. ·. r ·:tu '.~ . · rtSF ,~ ·:. ,~~"":.. ~-: -' .., tfft:

approach rather than smart capability reai•ters. altho\llh the

33

preference is not a strong one. We assume that the overhead of

fetching the capabilities themselves from pri•ry me110ry is suffi­

.ciently reduced by transparent mechanisms such as a program-counter

holding the current proced.u,re,ca~il~ty,·0r111&rdware implementation

of all or part of the executi6g·--;;•·•licit segment.
·,, • -•, ~-·~ei. ~ .. , •. '.~'-~r.,.•"!JS/

The success of theassociativefllSIIOry approach is completely
t1

dependent upon the observed ••-••~ fer -..1y • small number of
: t

objects to be heavily accessfd dulit.fatty ttven small interval of
\

time (i.e. t fraction of a se~ondr:·-rci,-;---~~-raer time scale (i.e. t

<

minutes), the same kind of b•ba•torlt'r'tltftJtrved in the sense that
l

during a given coarse time i~tervill moat ot the objects in the
• l

system will not be accessed at all.t Thia sugeets that the map
t

. I .
entries for such objects be kept in,'98condary meac,ry, and be brought

.,-'•,,~c ..

... . iD.t,Q.. tbe.~JMaa ... u.ai..4- prinl¥Y ~ry,_oa.!Y when .needed [Fa 74].
,· ''. .-· . ,...-~~"' iii . ""'l~~~#,,..,_ ... ;.K'r,..,[•c',,-.•'t-\o,$•···,•·1-, ,_, •• ,, · • .,-,·-,o: .• ~..,..,:"

bperience -~th a sild'.'~;··~;h., 1
(t1le "~tive Sepent Table't [BCD 721)

"". ·=·-~-. ' "'""""'·" • '"}:."'· -~· . ,r ••• ..,,.' •..• , -· --~,, .. ~,,. ~. ·J"!. :' - "'"'·- 'a r"'""" ,,-' ~

in Mult:µ::s shows that this approa<:1l.:"'fcan be quite successful ,n

saving a'. large amount 'O'f •p'fiiiiarf---!rf"w:i.tliovt'Tnciurring a ~igni-
... L.~. . j

f~~t ~pe&d- ~,alty~ .
'(. '. ,. ,·., .! .,.

._.,.,.-.#

Another aspect ~!, .'.f~§' ~.~.,,.to.,..N..ailscus•ed ifi para-

meter passing during domain calls. l'his is included mainly -.a
-4 t

background foi:- a sore elaborate .;,.;·= ~-..ill Cbapta~" ..I,
' ,•, . ~

hence it omits details not rereviiitto 'iliac' di&CWl&ion. Fig~re

2.2-2 •h~L~lM! ¥,9"'~,:l,f,1~ p~ the ~l;l ~u ,~-.=ruction. First,

the return gate must be retained, allowing re-entry into the caller

at the site of the call. This is saved in a puahdown stack Qf such

34

c.all(CG.Pl.P2,, ••• ,.tt1 J.
p

mu

I + 1

P + get_parameter(I.Caller)
put_paraaeter(I,Callee..P)

35

gates which is associated with the process.* Then the parameters

are copied from the caller's address space into that of the callee.

We assume the existence of two sub-operatiODa internal to the baae­

level system:

P + get_yar-ter (I,D)

pu.t..:J)&Eallll@ter (I,D,P)

These operations serve to .fetch and store the 1th parameter P

at the appropriate location in the address space of domain D •
... ,~.,,;,.,,,_~

The actual layout of the parametfjrs in the address space need-not

concern us here. ~ ~JI~-~~!!; ~• the number of parameters,

and Git, the return gate. are autoaatically •vailable to each base­

level operation. (MQa.t..ope~ finish by ~tu.a through GR;

the exceptions are '4.P,!&_~~:C,!,l_t'-'4 daain-ratum.) To simplify

the discussion, we have omitted description of the copying of

results 'trom::thf:l C4"4~ ·-ba~ ,~ :~ ca!l.ii·-~n the return is done,

since this is virtually identical to the handling. of the parameters

during the call. Thus, Figure 2.2-3 shows only the retrieval of

the return gate from the stack necessary to re•uae execution of

the caller.

In conclucling OQr dieeuasion of TCS' 1-pleaentation, we

briefly conaider two possible ways to attack the lost object pro­

blem, neither of which we regard u satisfactory. One approach

is to maintain with each object a reference c<>UDt of existing

* A variant of the call operation, referr4'CI to as a "jU11p..-call" is
obtained by Glai.ttittg the saving of the r•t~ gate. This causes
the call" to return not to the current caller, but to the pre­
vious caller. This is occasionally useful, as we .•hall see in
Chapter 4. ·

36

return()

ENTER

G ~ pop ()

EXIT thru G

Figure 2.2-3: TCS domain-return operation
(without results)

37

capabilities, and to delete an object when it becomes lost, as well

as when it is explicitly deleted.*• There~·are ;t· least three draw­

backs to'this.approach:

0

a} The destruction of capabili.ti~s'(e.g: through overwriting

or ~egment dei~f:ion) '~ .. ~ ~ det:'•ct~ I and -~he r~ference

counts maintained.

b) Lost self-referential structures are not deleted properly.

c) An object may be lost t~'the ~;:-Jho funds it, even
. . . ' -.; . ·'. : ~ " :~- ii. ; < ;,_ ,··. ,. ' __ , ·) _,;:

though capabilities exist elsewhere.

We therefore reject. the ref~renc~··fount apprtach. (For ·a contrary

. view, Se~ Wulf,. etaL [Ciu 741).

Another approacli is to all~ ... un-l~aing'' Ji'1c,;t ·objects by

aliow:lng a :.suitabl:t'authorbed J~ili~ (~:-i:;•,~r'.mich ·owil• 'the

funding account) to reqi.st apont~~--~~i~fiori of fuiiy privi­

leged capabi1iti~s for. funded, ~bject•· tdt'lif: Thi• is. rather

inelegant ;~ ··req'1ires fair1y compli~~ted\iat~:.t;~~tures· which

may·o~ ·may not'be.othenrlae neceeaary.
Other approaches to a base-level soiution to 'the' lost object

proble111 can be envisi~ned" (e.g. gl~~ garbaae co:if~~tio~)
1

but we

choose instead to postpone the solut:loriL~til -~'higher l~vel of the

system.

beCOJlle lost' and the users depend upon the directorj -syst.em, as

* We us.- 'thi&t eJlpU.cit delet.idA iii d.ellf~~lal4ei aitlce other-
wise, the uaeT who funds the· ob:tect 1IIIY 1'e unable to- r,eclai• the
spaee ··eceupi.-1 IJy. ·:k. '-,;

38

2.3 Revocation of Access Privileges

In the context of TCS, we now explore various approaches to the

distribution of capabilitie~ and the revocation of access privileges.

As an example, we use the simple situetion in which domain A
, r' " '

wishes to grant to.domain B a set of pr~vilegea to access object
. ., '~ ~ l ·-. -

x.

The first approach which suggests itself ts t~e simple copying
. ,.,

from A to B of a capability for ,x c~tainina the desired

privileges, as shown in Figure ~-3-1. ,;tu.a. ie clearly the intended

use of copyable capabilities, and is quit, eatisfa~tor}' provided
. ' .. ," .

that the amount of trust A has in If,

however, A subsequently dec~d~s that SOllil different •~t of privi-
. . ": ; ;-. ,,-: . . ' ' , . ,-• { ·,:. '

leges is more.. &fpropriate for B, a aecond c4pability for X 111Ust
'~ :.

be passed as a rep,la~eaent. Thi, •Y be quit• tnconveni~nt for B,

who 111ay have made various copies of the oriaina,1 .. r.;apabili~y, some
. ., ' . c:•-p, . ,:!§:" .. , -;_c•

of which may have been pa~•ed on to othet: d~in~~ Mo~e~v~r,

unless the privileges in the new, capabilit)'. ar~ ~ su,pe,rset of those
~ . '' •' ..

in the original, A aust pessimisticallt aaeuae that B will
'l ~ i ·' ',c: ,. f'. , , ' · /,

retain both capabilities 1 and thus po•••~• the, ,piion of the privi-
-' ·' '..: •,; ,, . ~ , '. , '

, leges in the two. In other words, privil'89• :once •ranted can never

be revoked.

This sit11ple example shows that the typi_c~l capabi]J,ty mechanism,

while useful, does not adequately cope with the difficult situation

of changing levels of trust, particularly when trust decreases 4nd

_ revocation gf grivi,l.eges if;I desired.. Befor.• ,pr4!PQS19g eay

••
We will generally omit the phrase "the,peraen llhctcwns .a,,eaaain"
and simply inpute feelings of "trust" and "suap:lcion" to the
domains themselves.

39

Note:

= object name

- - ___. capability propagation

X

Figure 2.3-1: Passing a capability

40

fundamental changes to the behavior of capaMlities, however, it

seems appropriate to expl~re the -ntt:ous·a-pproaches which have

been proposed· for solving the revo~tici'n."problem without making

any major modifications to the underlying capability mechanism.

Caretakers: A standard "escape hatch" in 110st protection

systd'tl is the ability to interpose •a ~.'oretaih.'' domain between ~- -

an object and the domai.nsvhieh, acc'8• it. The catetaker can

implement any access control p'I'otocol 119,t . .plM>"t~ed by the system •

. This situation ts ahown in Figm:e 2.3-2, in which A has created

a ea,retaker domain C, and given to) 4 C!,J...,tlity to call C,

rather than a capability to access X directly. Two ,roblems

are immediately evident. :;0ne is simply the :l.neff iciency of

calling C each time B a4cesses X. For exaaple X may be a seg-
'

ment, in which case the extra domain-ca,11 is liltely to cost much

more than the segment acc4ss itself. The other problem is that

B now receives a capability ol type 'domain' rather than one

indicating the type of X. Unle•s the syste1D provides facilities

for allowing domains t& "18a8flu•~ade" as objects, this will change

the interface seeJl by B whan ac.cesaing X. For example, to

store into a segment, B must execute either a store-operation

or a domaia-call-operation, depending on whether qr not a care­

taker has been interposed.

More generally, one can object that the caretaker mechanism

is not, in itself, a solution to the problem, but merely a frallle­

work within which a solution can be implemented. We have said

nothing so far about the basis upon which the caretaker C decides

to allow or refuse a given access request. In the simplest case,

41

A B

call-only

. A caretaker Figure 2.3-2· domain

42

A specifies .a single set of privileges and gives a corresponding

capability to C, who exercises it each time B (or any other

domain having a copy of B's capability) attea,ts an·access. When­

ever A's levE!l of .. trust in B deHeaa~·,·· a weaker .~apability can

be given to C. On the other haa4, ii At ·-Wishes :t:o cont er inde-
. !' •

...... ~, ,.(1,1'."''.
; ~ ,

pendently T~l~ privileges to ac•-- ·X"' -~··-.,•ioua domains

by authorizing them ~11 to call C,, · '~n·'·f; · given that it can

distingui-ah reliably between its ,tariou• c;alU~•. iinds itself in
: . "

the position of a procetts ia ~aou'a.•'~'•••--• system" [La 71];
• '••c •. ,. ~.,,.a· {

that is, C must es,entially r.-{Ay-1t the jyatem's protection
~ ,f ./

machinery. This cab be avoid~ ~y clifilli"' multiple caretakers
;

for X, e•ch alloWC,.ng an ittdepen4eqt •,t of privileges, as shotm

in Figure 2.3-3.

really making any

,. f

Since the :caretake"5 in this situation are not
~-- ; 1 •

;',.,-,,-+--' ,,;~-

decisions., but ,,~ aerely usi111. their privileges

whenever requested, one wou]Jd hoJe that the overhead of an actual

domaip. call might be avoide._f. '.~ ... -~ill return to this point later.

Co«.tte>l: Most ~ern protectidp 9¥8t-. pro-vide soae mechanism

to capture the notion 6f one domain,baina aul>ordinate to, or under

the control of, another domain. flu.a ta soaeti.Ma repre•ented by

a static clomati\-lit.arar~hy·fSt 13). iut ft,wt.11 treat coatrol as

being a privilege which, when contained in a capability for a

domain, authorizes the possessor of the eapability to control that

domain. (The distinction is aot very iltportaat fd~ the discussion

which follows.) In our typical system, D1Ch of the power of con­

trol can be aranted by giving one doaain a suitably privileged,

capability for another domain's implicit sepent, as was suggested
/

in Figure 2.1-1, although complete control would require a

43

_,,,,.,,,,,.---------......... -...
/

I /
I I

('
\ \ . . A

,1C'\ ,, ; '
•••

1,,, ... ~-· .
. ,_...___ - ·-

• '· ·,

Figure 2.3-3: Multiple caretakers

44

capability of type 'domain' allowing access to the controlled

domain's domain-descriptor.

This facility for one domain to control another is applicable

to a subset of our problem of c1'anging degrees of trust; domaitl A can

attelllpt to enforce any reduction :Iiµ its degree of trust of B by retain­

ing control over B, althouah this requires that B .have total

and unconditional trust :in A. 1'he latter coD4::1..tiaJl ~learly limits

the class of situations in which control of B. by A 1s appro­

priate.

!11en when the contr~ ·facility is ""U.~le; t\ere ar, still
'; ~· ~ ,, . ~

problems ,with its usa. It wolll.4 4.ppeff cfia&,,. A, : haVil,)C given •

capability for ,,X to col.l,trolled .domain B, col.l14, later search

the entire address apace of B,. reducing the 'privileges in all

copies of the capability to match its reV,1wed intentions. The

success of this search, however, can be compromised if B is

allowed to execute concurrently, making the capabilities in ques­

tion "moving targets." 'l'hus, concurrent execution by B (or any

other domain able to manipulate B's address apace) must be pre­

vented, either illplici:tly by placement in the same process with

A, or explicitly by being "stoppedf' by A, using its control

privilege.

Even if. A manages to successfully weaken the capabilities

in B's address space, there remain, the posail>ility that copies

may have escaped to other domains which are not under ,A's control.

To prevent this, A must carefully limit B's comaunication with

other domains via shared segments, domain-call parameters, and so

on. In short, B must be "confined," which, as noted by Lampson

45

[La 73] can be both very rest:dctive for B, ~d very d:f,Uicult
. . i - ' · '. : , ~•l"f; .,,_ ...,l L l .t ' '.· .•. ,

for A. In the latter ~egard, bowev•t,_it iEJ wort:,h nc;>,ting that
• ' • '. • •: ' l. > .'; • • ±.:r ••.1,.) ,.,~ • '

the problem of "covert channels" does not exist. for ca:R~bilities,
. . :~' , . , :. · ,,: , : -·t• ,,C· :"-' · : · :-- :· · . .io .I _:

transmission of t~e capabili,ty itself.
. . ✓-(· '..' ". / ·-::1

to deal with the above probleu u.aes a "copy-flagll cont~iAed in
. ' : ~ "

each capability. Ori~inally,_ the flag is on. _to allow copying, but
; · l ; . r . ~ ~t ' l ; :.c ::;,- . : • ~ ,i'

once it is turned off, it can nev_er be tu':'~. back on, ,~~d all

copying of the capability is disallowed. ThUtil, A _- _F,an J>l,ace a
i' ' . ' 3 , ·• - , ' ,~ · '·l {.

non-copyable capability for X -~'1 ~-•~ addr~.,s !ir.ace, _and
1
later

. i. . . ,.· . ' ➔ - '•

revoke any desired privileges frOlll that _c•p•~ili~y,_ con~idpnt that
/" ._ f • - - • ' '. ! ·-. '. !""':",~t :1-n '.'· -.r -:~• r;; : .. _ '

no other copies exist. This is even more of a restriction on B
.! • ~ • I' • • } :·; {~ J -

than confinement, however, since free copyability is oµe of the
, _ · -·•; ... , .. _ ~.~~- ~ '. :'j<'~"•· J f ,,h:';- _ o: ·.

fundamental properties of capabilities. If one ~ssumes t~t the
· · · -~, ,, · . ?1 :: .. ·• _. -. "'~- :i :"" r~ 1-.' ·•.·

ing, then non-copyable capabilities can.pot even be passed as para-
,. :,,_:, ": .. , -~~-~-•,. :~,-,'·\;\'~\~-~--·"', t :"··

meters, uaaking them virt~ally useles,. The sc~eme c~n b~ salvaged
. . . ! ; . ~ '. ""," : . t' f •.. > •

by introducing !'indire~t capabilities" whi~h
0

point to the non-
• - ._~ :. ' "'. ' : ',. ,,, - i . •

copyable capability a-p,d are themselves COP,yabie, but, as we will
.! I ~ ' ,; '• ; ~ ~-~ ::-,'"!J ·•_ • ;r·~ <'•::'}f~.i'' ~ ,•,

see later, such a_n indi_x-ection f~tµre .. i~ p9wer!ul, er~'!~h to com-
1 ., , , , r ,,·, · •. ·• , • : , · ~ , ,I .,, ·-' ·· • - .•

pletely eliminate the need for A _ to. ~ontJc;,l._ .. B in the first
'. ;-·. ,· ·:; ; ~..,,' !

place.

Ownership:_ The idea of one user or do,-in '_'~inJ" a shared

object has apfea~ed in many systems,, ~~r ~u~~ ~~~f~ses,as account­

ing and resource allocation. as w~ll.as for protectj.on! In the
. - . _; · '.·, ·. ; ! ' · .· l f ~ · · _.-~ .. ;· J · .• , · ,_

46

retaining ultimate control over the object, in the sense that any

other domain's c:apability for the object' should be subject to revo­

cation by the owner. Ownership, like control,- could be defined

as a static relationship betwe6n each object and its owning domain,
I .. , . . ,

but again, we assume inatead that 'ownership' is simply a privilege

which confers 'owner' status on any poeaea801' of~·capability con­

taining it.

As described thus far, 0Wnel."ahip avoids the problems which

limit the applicability of the. control scheme.· In particular, it

is usable in the case of mutual suspicion, aiace it makes no assump­

tions abou.t the relationships bebreen dcaains~ However, several

issues have been ·left unresolved'.
\

If the owner of an object wishes to revoke a given set of

privileges froaa all outstanding capabilities for the object then

the desireo'aetion is clear, if somewhat impractical. The base

level system 111Ust suspend alt' other activ.:fit; '~nd search the address

space of every domain in the systea, performing the appropriate
. -',.

reduction on each capability for the object 1.'n question. It is

worth not:Lng that one cue of ~uch 1J11.i:form revocation has a much

more reasonable interpretation; if ai{' p~i~i~14i11J are to be

revoked f.roa all capabilities for the ~bject, the owner can simply

make a copy· of the object and destroy the or'igtnal. An even more

efficient aechaniaa to produce the same ef f.eet can be provided in

the conte~t of the impl-ntation in aaction 2'~ 2 1>1· sinqily allow­

ing the ownet of an object to chanp its m'; t~re6jr in~alidat:ting

all outstanding capabilities [CC 69). (Of courN. the' operation

must return to the owner a new capability coa~i"I the new ID.)

47

If the owner of an object wishes to revoke individual privi­

leges, a global sea~ehfo{s implied, as indicated above. If, how-
.J',, ·-.\.__

ever, the.R~r !f!L,b~• to i-evoke 'these privilege, frOUl some but
-~.,,. - }.

not all of the cp.pab:IJ'.it•~~·!for ttfe object, even more fundamental
~ : {

problems arise. ·-'the cenqral que!etion is how the owner should
,, , ..

_ 13pe~_~tY, ~-~~ set of ·c&NP~!~t1,·on ·wic~_.tl!•L~evocation is to take

effect. In t~ context Qf TCS, the ,.6n; obvio-~s'l-Pssibility is
i ;' .,
I -'

the .. J.P.e,«:J.ficati~n of a s~t of domJns i~.Jhic.b.. the \evocation
' . .. l, ' ~

., ·"·"· ; ' . ~·· -"~', •""""~#~, ; ,.

should occur, eith'e-r by ~isti.M··f~ set ~·o·r·~oi listtng the comple-
1 • ; \ , _f

l . J /- \ , .!

aentary set 91 domains yiji~h should-.-in uu.aff,ited. The pro--,.: ""-,,. _,.,

\/' ~.,..-··
ble~ is that in a system~roviding freely copyable capabilities,

the owner of an object i~ unlikely to have complete knowledge of

the -pr~pagation of capab~lities for that 6bpaiet''ihroU8l_lout the
. •. ; ~r . '~

system, ilpd is therefore ~ot in a positiqi to provide ei~er type
. . ~ ; ~

•. _., ••... , ·. 1 ' .

of doma:lft .. lie-t.. Figure 2. 3-4 depi~.&.Dia. s1 tjat'f;ijiCJn wh~h A
.... i . --·· : ~, ,, . . ,v , f

has givei capabilitiee far 0W11ed object t to B and c,: Sub-
'

seg,\Ml'Qtiy, B and C "4;ve passed copies ~f'~!l:'.~~abilities

to D and E, respectiiely. If A nc,w decide• to revoke a~

privileges from B' t:L£ll...2{1Pi!.!.ty, the revocation should clearly
, \

effect D's capabi~ity, but not\ C's or E's. A domain list pro­

vided by A to cot\trol the revpoaticm would specify either revo-
... , ___ •-v··,..

cation from B, allowing D to escape, or exeaption of C,

incorrectly alfecting" - E •.

There are other relatively simple situations in which no

correct domain list can be prepared, regardless of A's global

knowledge of the distribution of capabilities among domains.

Figure 2.3-5 depicts such a ait114tion, in which domain D has

48

,' .

.. · \. .--~ .

-----........B / / ~ / "," C

' ·, ' . '

I ·_ \
' .. ~ '

E

Figure 2.3-4: Ownership,

49

A

/
/

X

/
/

I

I

I
/

Figure 2.3-5: Multiple sources of capabilities

50

received capabilities for X from both B and C. Ideally, revo­

cation of B's pri~ileges shoul4 affect the capability which D

received from B, but not the one received fro• c. Such distinc­

tions clearly cap.not be •x.presse~'1.n a domain list, and require

of A a completely unreasonable aaount of knowledge of the inter­

nal structure of other domains.

Yet another fundamental probl• involves the authorization

of revocation by domains ,other ttuia-the _original oW'ier. In

Figure 2.3-4, for exaaple, B stands in much the ~ame relationship

to D as A does to B, hence it woul.4.se• reasonable to allow

B to revoke the privileges it granted to D. Since ownership is

a normal privilege, A could authorize this by st•_ply including

'ownership' among B's privileges, but th141,clearly givttcs B too

much power (e.g. the ability to interfer~ _with ~ "•ad JO;• Simi­

larly, in Figure 2. 3-5, B should be authorized._l:.o revok~ the

privileges of the capability it has passed'~o D, but,.llot the one

D has received from C.

Thus, the privilege of ownership, while sufficient to author­

ize the total revocation of all capabilities for an object, is.

insufficient to deal with more .. neral situations.

11\direction: Most of the)#obleas with revocation in capa­

bility systems seem to be caused by the propagation of capabilities

throughout the system. This ,11.u~t& that m-.tu A in our exam­

ple should never give to B a capability for X whose privileges

it may subsequently wish to revoke, but should retain the capability

and give B a "pointer" to it. The success of this approach is

very sensitive to the exact nature of the "pointer."

51

From domain A's point of view, tQe 8"9,t obvioue kind of
I '. .' , ' ,'. ' •..,

pointer to the capability is simply its add1:'°e,, ~Il . A's aodress
' ' . ···" -

space, but this address by its,lf is aeaningt~ss to B. To use
_. ,, 'i {~' :

the address, B needs to specify that it s~~~ld 1:>e interpreted
' .••; "..;;,

relative to A's address space,~ action which cl~arl.y requires
. . ·, ,.._,

authorization in the form of a capab~lity fqr .~ (or for A's
',,v/ , ,· ,;

implicit segment) allonng capabilities ,in A's.address space to
. . ' .. ~-

be exercised, but not fetched or storeq.: Givin~. such .a capability

to B clearly compromises A, howeve.r., s,ipce B may use it no~

only in conjunction with the pointer provided by A1 but also

with any other pointer B may inveQt. Mort1over, this scheme

also causes problems for B, . since inst_.aad
1

, ~f a . s.~11gle c1apability

for X, a capability for A and a ~ointerl:~~•t ~.!lsed. Thus,

B effectively receives the absolut~ address <C1A:..J:s> wtiere Ax
is the -.ulti-level address of ~ in. A'a a~~i:e~,t sp~ce. These

. • , . .., ' . • ,, . ,. l •. - .

problems can be reduced somewhat by ihe obv~o~ expedient of always
. - ·, ,. ·• \ ',' .

passing the simple absolute adch'eaa ~f,d> ; ol f.s c~p•bility

for X, thus limiting A's vulnerability t9. a single segment, and
... • ~ • ' ., ', •,• • : • •• ,< '.: • • - - ,

guaranteeing that the pointer which B muai handle will always
: ~ . ,' . '

be a simple displacement. Moreover, if this si~le ~b9:olute address

can itself somehow be squeezed into a single capabili~y. both
~ • - : ~: i. ~

problems have been solved, since oni, the ~ngle ~'slot". in A's
• \ ,, . ~ t . ;. .

addres• space which contains _ti\, cap,_bUity, ~Q~ ~ . is uslilble by
• - :, '!, . \ ' -if ' ,- • • .' '. ..~

B, who need only keep track or t~ slot .c•!fbi,~ity, rather than

a capability and a pointer. Of coJ.1:r,se, c~r~. ~t ,till b.e taken
,, . '> ~' . ~ , . . '. ' ;

to allow B to ignore the dtfference between a slot f&pab~lity . . , :. ·. . -::· ~ . .. ' .·.f:~·, / \'

and a capability for the des:l,f_ed· object.

52

Even ignoring the problem of squeezing so much information

into a single capability, there a~e still restrictions on the use

of indir~ction through capability slots. The problem is that such

slots can never be reused. 1'or exaa,1~, suppose that A passes

to B a capability for the slot containing one of A's own capa­

bilities for X, as shotm in Figure 2.3"""6. If A later decides

to revoke all of B's privileges to ace••• -X by erasing the capa­

bility fr011 the slot, B still retain• its slot capability. There­

fore. A must be very careful never to place another capability

in that slot.

One way of attacking the non-reuaability problem ia to squeeze

still more information into the slot capability, naaely the ID of

X, and to check on each acces-a that this ID matches the one in

the slot. This eases the restriction aoaewh&t: a slot may be

used any number of tiaes, but only once for any t1ven object. Com­

plete reuaability of slots requires the illcltision of a ''slot ID"

in both the s·lot capability and the capabil.lty :ln the slot, to be

compared on. each access. This essentially Uk>unta to re-invention

of the unique It> mechanisa of the base-level system, and is likely
'" . ~, l '.. , , .

to be very cumbersome, for both user and implementor.

Th.e t\Oti-reusability of slots in the indirection sch• is not

really a fatal flaw. It simply fore•·• the mechanism to be used

in a rather stylized way. i'or exaaple, doaain 'A, rather than

giving B a ca~bility for some location h.its·Olft data struc­

tures containing a capability for X, aus-t eopy the capability_

for X to soae spot which will ne~er be used for 411ything except

indirection via B's slot capability. ActwUly, A would

53

X

Figure 2.3-6: Indirection through a "slot"

54

undoubtedly have made an extra copy for B's use in any case, so

that subsequent revocation of B's privileges would not interfere

with A's own accessing of X. Thus, the only real burden on A

is the caref"1 allocation of slots sot•" they will never be

reused. 'One approach would be to set 01:&J one' .sepent of A Is
l

a4dresa space and ~l~cate slo~ .,friJt ~~tia~ly. A much more

attractive, if rather more expe~ive• ••• is the creation of a

tiny new segme~t to hold each slot. Thia ~'only takes advantage
, , J•"

of the base-level allocation machinery, .·but also :iapliea that the

displace•nt which we squeezed into the slot capability is always

zero, and hen~e may be omitted.

Privilege revocation by indirec~io• through such "link" seg­

ments is actually a fairly attracJive·sctu.e·, '-~ich w pursue in

some detail in the next section. It i• concep,ually related to
? . ,.

both the caretaker and control schelaea--clt1"m199ed above. If one

thinks of the link segments as domains, in the pauive sense, then

indirection through such a link domain is web like calling a

simple caretaltet' which merely exercises its ci•-pability on demand.

(Note, however, that the cost of an actual deaain-call has been

avoided.) On the other hand• from the point of view of its

creator, this passive caretaker is a "ry well-behaved controlled

domain, since there is no possibility of iu capability being

copied or moved.

2.4 Indirection Through Link. Sepnts

Since indirection thro~gh link aepenta created especially

55

The

discu~sion is Jtil,l in te~ of ,'.t~.~~ .,.tn ,the; _'"1~,-,. t;~t we attempt

to minimize modi~~~a,ti~f1S fO ;~~ b4fffl;-l~V:~f SY.fit"" ~~,5~9struct
;

t:h~. revp~,Jion, machin4!:ry, "on ~op1 .o~::.~t~t 1:~n:~~~.~ ~thou$,b we

will _+ate~ ,a1:gue t~at ~ f9ttrly 4fm8,l,~~,r~vo<:•t1o~ f4<;.~;,~)~! should

:f.nstea.d ~e included in t;he b•IM!.-::~~v~lJl,Y.;&t•.~ ,it ,~ !-'Jleful,, to
'·" ' ' . ~· ff¥,. ~ ,:,. t":'; " ,'.} • • • •. ~" ' ~ -• •

As mentioned during the discussion of ownership, it is

desirable tor any poSS$SSO:r of 'ti.· ~ab'ilit1 1to ;be able to distri­

bute copies of it while retaining the power to revoke the privi-
,

leges thus conferred. Thus, if access privileges pass through the

hands of several distributors, the corresponding link segments
..: "~- __ , ~:. -~ ,- ,,}: ', 1.J.l(~ :-:~f;;:] .. J - [J1)~1. ! .J

form a chain. Capabilities acceasing"vla' t'iia.t-ehain are subject
',·!

to revocation by any of the distributors. Any possessor of such

a capability may extend the chain by creating a link segment and

storing the capability in it. R.eta,ining a powerful capability for

the link segment allows later reduction of the privileges in the
/.i -~ :_,r•:-::.J~ -:.~:;c:/

capability stored there. If and when all privileges are to be

revoked, the link segment can be destroyed •
.' , ~ 1 ~ o::., .,J.:._: a ~3.I•\,I, { r_ i'

Thus far, we have made no change• at all to the TCS base-

level capability mechanism, but neither.have we provided any way

for the indirection chains to be used to access the target object.

This will require a fairly simple aodification of the base-level

system, but before describing that modification, it is instructive

to observe precisely what goes wrong in attempting to do without it.
'., -··; '.,.. '> ~ ,'.1.1•. ::.. {J :~ - , ___ .,, .. ,,

In terms of our standard exaaple of A giving B privileges

56

to access X, we find that A, in Figure 2.4-1, having created

link segment 5i. and stored its capabtlit:y ex for x- there.

must now give to B a capability CL·· for SL. Clearly, B's

capability <=i. must not allow B to taper ~th the cap«.bility

in SL, but only to use it as a ~omponent:' of ·a tiUlti:..level

address for X. (For uaaple, if X is a aepent, lS's address

for its 5th word, given that CL is located at locatioq. 3 of B's

implicit segment s1, is

There are four interdependent prohleaa with this attempt to

implement link sepaents on an unmodified capability aystem:

1) llon-tranaparency: A doaain acc•aeina an object lll\lSt

know how aany links are preaeat in the ,cu.in leacling

from its capability to the obj.ect U.e. how .-y O's

to insert in its multi-level addrea.s, a• u "3 j-O I 5"

above).

2) Ambiguity: A link in the chain is indistinguishable

3)

from a target object which happens to be a se...,ent con­

taining a capability in location O.

Subvertability: This is really 1-Plied by probleu (1)
'.

and (2); if the accessing dOllatn accident<11lly or aali­

ciously specifies a muJ,.ti-level addre•s _which is too

' short, it can obtain a copy of a capability stored in

the chain, thus circumventing subsequent revocation.

4) Loss of selective adjustlllellt in l2!J chains: Only the

last link in the chain contains a capability whose

57

X

i
5
J_---

Figures 2.4-1: Example of indirection
through a "link" segment

58

privileges apply to the target object. Each earlier

link contains a capability whose privileges apply to the

next link in the chain. The only revocation allowed by

aue;b. a link is total rnoca,t;Loa lll,, breaking the chain.
~,,.

All of .theae difficulties a~ avaicled-b,y a ~imple IIOdifica­

tton to·uaebaae-le1'el system, ,;hich tlffT~es anew operation
' . t ·•t ~ '

on capabilities, and changes the,:l>eba~i1:~r o• the base-level system

slightly when a cC?apability is enco~ered to J1lllich this operation
''--'4,

has been applied.

The new operati~ allow,:• c.apal>ility of type 'aepaent' to
" ~

be converted into a capability of type •indirect• in which all pri­

vileaes are 'on. • (As we shall see later, thi.s is juat a specific -,

instance of a more g~ral ~i• ueful for type estenaion.)

The intention is that euch ·_~,u.rect eapabiliti1UI fOT link aea,aents

should be handed out to doaams which are heing given revocable

privileges. For example, -m·Figure 2.4-1, the c.apability CL

which A gives to B ~t be of t~ 'tnc.t~rect, ' although A's
, ., ;! ,.

own capability fot" SL is of type 1'S4tplent. '

Whenever an operation which eXpects a CalP&bility for SOile

object encounters inst«.a4 a capability of type 'inc;lirect,' the

indirect capability is followed; that is, it ia ieplaced by.a copy

of the capability in (location O of) the sepant to which it points,

with any privileges deleted which did not aJ.ao occur in the ori­

ginal indirect capability. This step is iteJ>ated, •s necessary,

until the resultant capability is not of type 'inc:IMect,' at which

point the operation proceeds as usual.

Thus, each time an object is accessed via a c1'ain of link

59

segments, that chain is autOIMltically followed to the target object
l' : ~: .~.,;t ~•:.: :, ::!;.:~. :~_·.;!~ •: ~:,J~ '"();.1l;_i"} ;"_;;:,.,J[t_-;

un8Dlbiguously indicated by the first llOn-indirect capability
• •• ",,0 .t:.} :-.:"r..,1:1:·~.,JL,., ·:"'~: :' ~li1.:- i

encountered. The resultant capability is exercised, but is not
, ft:· , .;•>.~t; >,,.:} ·.·.:~"':·~;,., .. 7.; ·--t~J. '~t.,! !'101Jt,:J_t·1·J;~l.O: .

otherwise available to the ac~eseing do11ain 1 hence the chain cannot
... :· -.!~. -: · •-; __ ,, ::_7 -::i.il ._ .. -·;::i-:p.-;·.-~ :_t_j•1:. i·L.1.t.t c;_d:: .

be circumvented. The privileps conferred are the intersection of
t, _ ' ; • ;1;_ 't" .,. -c '· •/~-,..· :-,~ "'1 1 f~P.,(,_;~ ,.z~ ;.,.- 1 , ,. l't

those found during the entire scan of the chain, .thus allowing
:_.,},t!·~• J!., .,.,:~ ~t•':.~~~-:_, ·, ~r?<-.,B ;~d.::.,·).i: ('~ q_ .. , \.~- :?·r··

independent revocation by each inte'E'IMdiary doitau controlling
-~•~t{)~, •:_--(~t . ti :/•':•':!) .. •~-~;,··:~. ·;., .r. .,,~;'~'.·L~hn.t -t!lsf:t :d;iHodj!/)

a link in the chain. ln other words, problems .Cl) t;.hrough (4)
. ,;, _;),. ~, ?:; .. ,\'..),. :~-: ·; :.LuJ"~ :· ~, ~~, j_s{i_; n~;.::~1~.1 .. r ~r~·:! }~r: 1!s1('•;,~

above have been avoided.

It is important to note that an indirect capability is
;_. < .:i.. L_ " •. ~~ '~)P1 ~ .. ;-;.,, t • .:,j < / ft~ r~ i : i. 1

~ : j J # ' ~"

followed only when it is used to access its ,target obj_ect; follow-
. ' i :~:}Jf;·._" •-1 '\ i:t.f ·C ... ; .. ": ' rt..: V ._-_; ;~•~J :::;•S ·)J:<:'i}d .:5-:f·: ... t..ti1.1 SHU~~ ~:1,.\L~! ;·t

1

ing is n~t perf onaed when the ca~bility itee,1.f . is JDan_ip~lated
. , . ~~ _ ". '.."? •.· :·~r·p·:4i~~ .. J r;i: .. !·, •:. f.F"'• ·1·E •. i.~: .- _ !·: €'-.q t. •""

7
J bu~~,!<·,.-,,:.· •.1,i

(e.g. by the copy or reduce oper~tions). ..
HJi,): : _,, .1~·,t.! .. !,:c:-::_; --::-_r.:-r·-, 1:.~ !,--~· :.5':J_!.'9d 1 1.,"'•'l.

The indirection f.-ture being deacri~ is fund,amentally
... ·~~- u --,::;:f~~ ·: : -.:~1-~~lft<-~.; . .-·h_·,:,n; E.t ·1t ·._L

different, not only in design, but in intention, fr~ the multi-
.·~·--<~ 't. ~•::\~· ·.~~ •U~l.Uj:._•~)·i•' ·i-~-.i::,r ·-s .. 1.;~;:L~ ,~.,S-f;1 1! '.:

level addressing feature of TCS. In some systems, such addressing

has also been referred to aa "capability ind~rection.11 A.system
-; , , ..:. , ; v ~: "J !_·. J .:--~ . • ~ J ,"L·;:~ .i>-J r: .. f. ·· 1·,;··1l ,;1,::·-:_r~ ·, 4./:_r~c ·1 1 i 1 1

in which both of these features were desired woµld requi~e two
:,1:. , . ·~ .~•i_:,: :;·:)._t-c·• uri~-~~ ··::~:-q r~,J "")"lfJb-:·;'J':' ,.2-,·1- ,_t .:.

separate mechanis11ls.

Distribution of revocable capabilities using this scheme
· •""l.i.J:.<~-. 1;•ci ~¼<°' ,S:) 'tUA'iK~P ";;·": ~- ~1;:,n~·?(U7t

involves five steps:

1. Creation of a link sepe~t.
,. t :2•··. J ;,:.'l!. •;.).~ l t,.,_; 'I'}.'; { [/<t ·~r- _J>·-'rdo ij,jj: - ,t:i

2. Conversion of a capability for that segment into an
·1-:4.; L"~~·;_ .: · ;L.:, . .t.i·;-.i !:,.\,"i "'J - :;,Ut° ?., ~ (,_,tr{':' .

indirect capability.
~ ,) -~~\J,'l_; -, ?""'..AJ_\\,~ , ~-- i :~,_,dJ-~~ . l!::,>t_:_.fr.:~:<.~:: .~!'.:~ c-·-t·

3. Copying of the distributor's own powerful capability
<·.~- ,;,.'>_ ~- . ->·1.~ I.;-:.!'::;') "'if):_:Jf;.:-: :ri 1 J2l" rr"';:: .f ~~<•,'-~' ,--i .. -.

for the object into the link.
'"'t ,_:'. ~, _. . ~ l'

60

4. Reduction of the priv-ile1es of the capability in the
..

link to an appropr:tate level.
'~' {'

5. Distribution to the t-eeeiving doma::ln(a) of copies of
·-

the indirect capability produced la step 2.
, : : 'Y , "~ ·, ,

Any later reducti-0n in level of trust can be mforced by re◄xecut-

ing atep 4. -.,ecifyina socae reduced set of privileges.

Although this indirktien scheme does a t-eaaonable job of

capturing the notion that a distributor of a capability should
- '; ';,e '))\°: r~ ,i .ri:.

retain the l)OWer to revoke the privileges it c•f•rs, it gives

one the f•eling that the desired •cbu1• i8
1

bei.:,_8 "sililUlated,"
' • • '.' ·~ ,f ~ ,;_: <,.; :. '_u

in the senee that the basic action ~f d1•tri1Mat4.Wl8 a eapability

rather than being an atclWlic operatiotl. Tbta hu two consequences:
~ ::~! \ ··'· .' ~. ;~~· ---:

a) It is inconvenient for the uMr.

b) It may allow other aequttncea of operations to produce

a non-meaningful state.

The former prc>blea can be easily dealt with by pto'\fiding a simple

library proeedure t<> perfora the aetioae r-.uired fOr·capability

distribution. The latter p'roblea, however, ta not so easily dis-
,. l

posed of. Suppose, for euaple, that by accident or daaign. a
' ;::, ~(;

domain. in J)erfonu.iig step 3 oJ the proc-..un. atorea not the
") _(

appropriat~ object capability, but the incliract capability created
. .

, t. (.i,."_ ~ :;;: ·r, , ,.,.:

in step 2. This 1s just one way ill whicb circular indi~ection
. . ' \ "[: ;.;,.

chains can be created. Such chains, when followed, will cause an

endless loop in the base-level ayttea. Of course, one could deal
r

with such a situation by placing an arbitrary limit on the length

of an indirection chain to be followed before it i~ abudoned and

61

an error is signalled, but this is rather_ ad poc and inelegant.
1,.:- • >• C •

An atomic operation producing only well fotaed chains would be
I .

much more attractive.

Another problem with this scheme is its relati~e inefficiency.
7;•: 1 ; ... --: :-: '

For one thing, it would generate large numbers of small segments.
~·, _i _ • ~" .t, ,Ii; ". j \,.. I ' ~

This could be extremely costly in terms of both space and time,
'

especially in a system using block-OTiented rotating magnetic
>) d ' ., ~: !°"d .t .:~ B ;: !.) ; i : : . ; ·~,:

storage and a corresponding paged primary M1110ry. For another

thing, the scheme requires the following of a chain of links each

time an indirect capability is exercised. This overhead could

prove probioitive, particularly in the case of indirect access to
, ' .j \.;. 1., .; . ",J:_!';J!

segments. Moreover, any mechanin atteiaptiag to capture a compu-
.i !,::.-do- ·:,:..::i:1" ·.,,~J~e.~ .. ,: .. ~1·_~;·-,~

tation's set of recently used chains -.nd retain them in fast hard­

ware would be complicated by the fact that every store_ instruction
.:. nyr: .: <~-~- .:· -~ ~ , ·

would have to be regarded as poteatially invali4ating this "look-
•• {_ • • ·::~ ·.i, ., -~ = •. Jl .t;·:... .- : _, ~· -,, ·:

back" information by overwriting a link in some chain.
. . ~-. ;_l ·1 t lJ.oi:·1

By comparison, if equivalent revocation features were built
-... , .·:.~... . ~=-···: ::, •·} ~ t';'.~9.i: 1.: r?:·.~.;~-

into the base-level system, they would probe.Jtly be easier to use,
• '-' d : t :_ J.~'.!~•'·i ·•i~ f ;: :- r ~

harder to misuse, and more amenable to op~iaiaation. This approach
, ·f, ; ,:~ ··~ · '~~ _t. . . t V(:,ri ?.::tci--:: h -~· ' ..

is explored in detail in Chapter l.

r-r •"·, .. •VJ ·~-~-- :;,_

2.5 Type Extension

The definition of a large cOIIJ)lex sy•t• u-a sequence of

"layers" has been found to be a valuable technique, aiding all
· .. :r . j ;.':n.~,~:. .~J,:-' .lo-~~.;•~ · ~

stages of design, implementation, testing, and documentation
' -, .~: '.; i) ': i' 'j .2~,] : · ."' .; i. ,, :: . ,' ·

[Di 68b, Pa 72, La 69]. In an object-oriented 8'•t!:8• this implies
• f,-df L ,·;rr;:;)•1 ::.:,.sr•.c} :.. ',

62

that not all of the various types of objects provided will be imple­

mented, or even known about, by the base-level system. On the

other hand, it would be most inconvenient if the naming and pro-

tection machinery provided by the base-level system (i.e. capabil-

ities) had to be teinV'ented by each new J,.ayer of the system; this

would not only raise serious probleM for the impletDentation, but

would also force the users to interface with several parallel

mechanisms for storing privileges, passing privileges to other

domains, and so on. It is therefore very desirable for the base-

level capability 111achinery to provide capabilities for objects

of which the base-level system has no knowle4ge.

The various base-level facilities involving capabilities can
' '

be divided into two categories. In the first category are the

facilities involving upabilitiea theaaelvea: their creation,

integrity while stored, copying, erasure, and so on. In the second

are the facilities,for manipulating baae-level objects named by

capabilities: fetching from a segaent or calling a domain, for

example. It is the facilities in the first category which can and
;

should be provided for higher-level objects unknown to the base-

level system.

As indicated in section 2.1, a capability provided by TCS con­

tains the~ of its corresponding object. The division of the

set of all objects into types is a well known and intuitive idea

(although. as pointed out by Mon-is [Mo 72), the difference between

the type of an object and the privileges allowing accesa to it is

somewhat indistinct)., The set of objects provided by the base-level

system falls into some small fixed number of types. The questiQn

63

is: wha_t. type of capability is us,~4, to ,~~ a higqer-level

(nex,~end1:1d") o~~ect? Various answers ~av4! ,?,~','i'i pr,opo,ed, four of

which we will explore.

AJ>proach .1: . ~presentation. c~p~;~¼J~it,,· , ,~Y., ~~'{e~" layer of

the system _runs in an environme-q.t. prq~;dec;t ,by t~e _ lower_ layers,
• ·, ., '\ - • • ~ • ;.J - ,· • ' - • -

hence any object it defines mu.st ~e repre61_en,te~ :ln terms of lower
•- ' < I '• ',j. ~ •1',/ . ~ ' ,' ' ' "

level objects. We wil,.l ,assume t~~- .~he rep1=e9,ent91t,1:°n c,f eac\l

ext,ended _objei;:t is a sin,sle lower ,_;4!vel ob~,~c~,• -~~r~e that single

o,bj ect can . be a segmen_t con~ainiqg _capa,bi,lit:1,e~ for_ any other ob-
- ' . _".'. ,-·.·: 1·- ,' '

jects which are tiecess•ry. Thus the mo~t o.bvi~us_ ~ndidate for

the_ capability _for ~ ~tended object is ... !Jlll>~Y -~ c9:p,_bil~ty for

_the rep_resenting object._ A postt,.•sor ...:of_ .t~~ ~p,,,ility could

call the layer impl~n~in~ that ~t•~•~-,-~Yl>e ~o ,;:~quest some

operation, and_ pass _the capabi,ity .tq 4_d~c,,~, ~~~ .. ~tended object

to which the operation _should 1>e ,•PPl~- . Hav,i-p.~ J>~,n P.a,ssed this

capability, the d~~n _ ilnplemeiiti~.g ~h~~<';X~~:~f op~r,ation would

~utoQl&tically have access to th,_ repres~t,~t~n.of the object.
. ' ! . • T ': '. i, _'r; ~, J ' r , ,

The~• are at least three problems with thi• approach. The .. · . :; -. ' . ·._' '• ,: ; .- ...

first and most important concerns the selec;~ion of ,an appropriate
• ' • ' • • ~ J • • I ,;_, ,

se~ of privi,leges fo appear in the c~p~~~ilit!•, _. The dif.ficulty is

. that the do•in ~l~ntill& t~~ ~t8l\ded ohjeFt ,;eq~ires •u~sen-
,. , • • ' ' } • • ' ' l ~ '· •' '. •

tially complete power to JIIAnipulate t~e ~epr~~ent~tion, while
• - • '0 ,d; • -~ .

wishing to deny s~cb power to the u~:1-1\1. (\o~~,_(s~ in_ <o::r;der to

prevent tampering with the rep~~~t•.~,~on. :; lf the_ s~ '7apability

is used by .both, this is clearly not possib:lJi'-• Hence, the imple­

•nting. domain, 1'4ving _ut>C?n requ~1Jt1: creat,ed t}\~ ,repi:-,sentation
, . ,• . , • ~ 1 , , ,. A, a ' • , , '

of a new a,xtended object, and. thus_ ~taip.ed a J:~l~~, privi,leged

64

capability for · that rep'r~sentation, ••t: apprdpriately weaken that

capability bfifore teturtting it:''to 'the ca!Ii~a user doma'in. However,

in order to guarantee its own future accen to ·tlie representation,

the "lmtileaenting domain 11lU8t do ~ of &o· tbiup. 1lither it must

save a copy of 'the original full:, privil.~ged· capability ;for later

use, or it must make arrangeaents illowing it t
5
~' cfun.,,-er'i. the weaker

capability back into tbe fullj pr:fv:tlegel"o~ ... 1t lat:er receives

it as a parmaeter to some operation on'the ext-4'~ object.

The first method obliges the iap1einent1ng d•in fo'maintain

a global table containing privilegN"'cap•b'i!it'i~'li for •ail''existing

extendild objects which its layer has creat~ ~ 0

and to. locate the

correapcmding entry whene-ver it receives a ~. 1.184ir'"capability.

This method is reasonable, if soaewhaf"c1\wy . . ·

The second method 'requites SOile. faC:ll.ity.silrllar to Jones'

·1tamplicatibn° [Jo 7l], allowing.the '~1emeuting domain to add

sp~cified privileges.to capabilit'i~s of .~he type of the represent­

ing object. Cle,rly, the power to.aaplify'~a~b!lities of a aiven

type is a 'Very dangerous power, aJc.1 aust be tighfiy controlled,

~ince it can completely subvert fh~' · Iater-uae'r 'pro'ftlct:lon of

objects of that type if misused. lfti{le ';tllii '1.~
0"an in~lete sub­

version of the objects in question, in . 1:lG! ~i; tbjt' tney still

follow the semantic rules which define the'ir type, it must be

regarded as a failure of the cor~e~in;g la.yer, since· the correct

functioning of a layer inc1udes the ptotecticni ~f ;its ·uae'ris from

each other. Thus, the authorizatioli of uaplicatioh "must be t~e

responsibility of the layer implemrmting1he'fyp .. w!i~se capabilities

are being amplified. One of the 11&in criteria o'f. l.ayet,ing, however,

65

is that a given layer should have no knowledge of higher layers.

\
Thus, it is not possible for a layer to dfstinguish betw~en "legi-

timate" higher layers which need amplification, and untr~stworthy
' ' . . ' ·5 ,.

domains which would use amplif icatio1;1 to. gain undesir.ed access to

other domains' objects. We thus co~~+~~ that privileg~ amplifi­

cation by itself is insufficient to solve the problem of assigning

appropriate privileges to the usin,.and imp~ementing domains of
·,,-i· . . < • '

an extended object, given that the same type of capability is used
·,i,/ . j '; i . ,._" - .-, • •

by both domains. (In conju~.ction with anothe.r.cong>le•ntary

mechanism ("constituent rights" [Jo 73]) .•· ho'lfever, amplification

can P.rovide a very powerful type e,xtenaio,n ~acqity which is equi­

valent to one which we will describe later.)

The second problelll with the repreaentat~e>n-capabili.ty approach

involves the control of access to the .extendeif object, as opposed

to its representation. Privileges are neede4, in each capability

to specify which of the ope;ations on the extended type afe author­

rized to possessors of that capability. Thts certainly c•nnot be

done by assigning new --•nings to the exi.s~ing .Pri,vileg~s, since
, : . ,- ' '! ~ .. ~ .\ :- - 'i . ~ ,' ,, . ; , :

granting the use of some operatiop on the.extended obJ,ct would
' . !. ;.- ~ _., ; :(- ..

then imply granting some unrelatf,ld access to the representation.

Hence, multiple sets of privileg,a •re needed. Qn the one band,
J'.

this tends tb uke capabilities unclesirably l~rge. On the other

hand, the number of sets of privileges prov;lded places a fixed
< • •• !> t" ~-~ .'' t !,,i '.,,i ' ,-,

upper bound on the number of times a base level type can be extended.
r r, '• ,·' .i _i J

This situation is especially frust~~ting s~ce in IIQSt capabilities,

only one of the sets of privileges.will be ~on-eapty.

The third problem with the repreisentation-capability approach
' ' ::. c, ,;.! ', ..> ••

66

is the difficulty of determining·, given some capabilityt the type

of the corresponding object. This i~ · ca~ by the· ''unofficial"

status of extended type·~· in this ·approach. A given base-level

object ~y have been extended one or more ti.Ms, but the type

fields of all capabilities for it still. coata~·its base-level

type. The only indication that the ·capability :ta of a given

extended type is the presence of a 'Mtcb.1.ng fully privileged capa­

bility in the previously mentioned tal)le
1

ka)lt ·by the domain imple­

menting that extended type. Thus, one is not able to aak of a

given capability "what is its type?" but onl;· .. 18 it o't type T?"

for some list of types T. ntis is a ~lwa'ay and cos~ly substitute.

Approach 2: Domain cap~bilities. This approach is, in some
' ' . : '~~ ' !

sense, a variant of the previous approach, in. which the represen-

tation of each extended object i~ 'a doltain· A using dOllllin has

only one privilege in its capability for this representation d*in!
'.'i .·: ·,: t}_.,

the privilege of calling it. To perfora an extended operation,

the user performs such ·a cali t indicating only the operation to be

ptarformed; the object to which the operation applies is implicit

in the identity of the called domain. Actu~ly, this approach

falls outside the framework of our discussion, •ince it requires
\"'; .

independent domains callable by any process (a~ least 1t' extended
' ~ ' •,~;

objects are to be shared). It deserves mention, holff;lver, since

it has ~een used in at least two systeu [En 72, P'a 68), and

because it attacks the three probleu.of the representation-
·,

capability approach, with somewhat mixikl results.

The first problem, that ~f easily allowing only the imple­

plementing domain full access to the object's r~~resentation, is

67

bypassed, since each object has, in effect, its own copy of that

domain, which can retain a privileged capability for the rest of
!

·.' ::.-~~ -

the representation in some convenient location in its address

space.

The second problem, that of controlling access to the extended

object, is solved by embedding in the domain information about the

operations it is willing to perform. Thus, privileges for extended
' . .

objects are represented and controlled differently for base-level
' . 'j' y

and extended objects; whenever a less privileged capability for

an extended object is desired, a copy of the domain can be made,

which is then ordered never to perform the operations being denied
~·~ ?.) > "· ,., ,,

to receivers of the less privileged capabilities. This is not as

expensive a solution as it might appear, for two reasons. First,

the various copies of the domain representing a given extended
- .

object can retain in their implicit segments the infonaation spe-

cifying the operations they are willing 'to perform, and can thus

'.
share all the other identical coaponents of their address spaces.

;

Second, the capabilities for a given object exhibit a strong ten-

dency to fall into a small number of subsets, each containing capa­

bilities with identical privileges (a tendency which we shall

eXJ)loit later). Thus, the number of copies of the domain repre­

senting a given object tends to be much smaller than the number

of capabilities for the object.

The third problem, that of determining the type of a given

object, is handled in an interesting if s0118What clumsy way.

Clearly, examination of the capability will always indicate the
-.''

type to be 'domain.' One can establish a uniform convention,

68

however, for associating some arbitrarily chosen unique capability

with each extended type, and storing a copy of that capability in
•.

some standardized location in each ~oaain (e.g. location O of its

implicit segment) representing an objec•t of that type. If users

are allowed to examine that location, they can then relia_bly deter­

mine the type of each extended obj•ct. The Min objection to thia
. .· [

scheme is that base-level types and. utended types are represented

differently, which disallows any uniform type-checking •chaniea.
•• ':.: • < " \

There are some other probleaa peculiar to the doaain-capability
~ .:

scheme. Two difficulties arise froa the fact that the domains

implementing the extended type are uaociated with the objects of

that type, rather than with the accusing procases. One reason
I .",··.•

for wanting to associate a domain with each proceaa as the "repre­

sentative" of a given layer ia that the tocal storage of the doaain

provides a natural repository for inforaatioa deacribing the status

of that process from the point of view of that layer. This "own"

storage is not provided by a acheM which aaeoctates doalains with
. I; .

extended objects instead of procesaes [ll'a ~4], $me systems have.
,.- .

made heavy use of such own storage (e.g. ~-TSS, Multics); it is
'

not clear to ~at. extent this is intrinsically necessary •
• , .~, 'l.

Another minor difficulty with the doaai.1:l-capability approach

is its implicit assumption that all operatioaa on extended objects
; ~

are monadic. While this is u.ndoubt~l.y the ••t COIIIIOn case,

examples abound of useful operationa which apply to two or more
\

objects (11file-to-file copy"). to soae large implicitly defined

set of objects ("close all open £ilea") or even to ,no object at

all ("create a file"). Forcing such operations into tu 'IIIOld of a

69

call on a particular object is not on~y artif~ci•l for the user.
} t

but can be somewhat inconv_enient for t~e -,~l~nt9~~
' , . -~ i-' ' . '., '• ~ ' ., . ' '

Approach 3: Sealed-data caJ?M!A;itie!J ~ . :r11~~ .~.PP;t~.a~h is moti-
. - ~ - ·'· 74.h{f..., . ,.,- ... _ ~ ,J.. .

vated by the following observation about the use of ~epresentation
•_ • "• • ~/ ~ :: ,} :: ~; •: ~1 '. ',: ., '"': • " j C

capabilities in Approach 1: If the u~ing ~ol!lllins are not allowed-
j f ~: . '; : ·:.:- ~ ' :

direct access to the representation of. an e.xten~ed o~ject, and if
• O! ",e.lV'.l- '• ~~< ~~: "":,~\:, •

the implementing domain always rep_lacts the_ user_' s weak capability
.\; •• ·- ~ • ,\ - • ,:~: _: > ;· ',: ~ •

with the corresponding strong one saved in its own t~ble, then the
. ·:"" :~.. ; ~ ~ . ' ·: -~ .· . . .:, ' :

sentation. This suggest(;! the posa_H>ility pf, ChaPJJPJ the type
I • ..:.. ' ; I·_;..;., j ! , ' } - . ,; ;J. . ~ ' ·- ·- ,. ~ ,l '~ <"

field in the user's capa!>ility -~o: c~~~tn, lli>~- t~~ tpe of the

representation, but some new valu~ associated with tbe type of the
;~·:.~ tf>]?-:~·•, . '

...

extended_ object. There are two dist:f.nct fdv~ntfgef_tQ th."t-~ change.
,~.,_ .,.,..• < ,c >i''.'-,,.,,•,:1 t: f{'f. ,:..~ ... -~. J,J. i, .•·~,· I , •

·On the one bud, it provides_an e,sily vis:f.~;e !!,~ unforieable
• < .: ' - ' 4' ~ ·)_ ~ ' • ·' i . ' - ' ~ '-" s : •• '(:

(given mechanisms to be described shqrtly) indication of the type
,· - : ~_, . t·.-;,,;: :': i.:. ;,.) :~ l: , ;1- , • < ; -: : ,.. ., -,

of the extended object. On the ot~r.hand, it render~ t:he capa-
. J)'.'"·'- ', : ~ - . ,' . ,-_. • - .. ~ Ji. ';. l . '.'!''!; ,

bility useless for directly acces11ing,;he rtprese,tlt~tion, thus elim-
, :__,· .:-, ;~-~_. ,_i,· , {o:<.'. ,;'. , ·1.~'

inating the

such access,

need for a separate set of pri~P·!l!i;!tJo control
. -, •• .. ,: • ,)_' .J ;, '· ~;: ,::; ;i:b .~ "f;) - .

as was required in the reprfseqtation~capability
, ,. -~ ~ ., Sj ,,- l_ • ft.~-.!.~ ~fi t],i_.. _'.- . , , .'

approach.

Fr01D the implementing domain'• vietfPQint, tbe cre•tion of a

new extended object using this aJ>proach c.ovJ.4 _lie_ do~. by:.
',. -:,_ ~: : ,~- '--~ :.,, .·.· - ·-•·;.>.:·,..;i~i-:~,_ Jf,_::,-~ ·~~: i . .:-,.·:i"

1)

2) saving a fully privU,ege4 c;ap,4bilJty. (or, _th,a re,p,~~senta-
. , ; _: · .• -~' / ,• "~ ~ ·~ ·.,:'· l 1lt":5.J:: ·.,' .. t·. ~- ::,., , t ·: .. · •~'··

tion in a hash table keyed Qn IDs
,, ,: , ' >!.A~ -~:,- ;_J _t :ij·~

3) constructing a new capabil~ty con~filining tqe,.e~tended
· . · ~ ::' .,,: :; :. . /.· , .. · , tr. .:~ •. '. '

type, fufl privileies, ~d t~l\'t !P. of t.~ re;p,:-e.~entation,

70

and returning it to the caller.

When called to perform some operation, the illpl-.enttng domain can

examine the passed capability:

1) checking the type to verify th~t the object ie one that

it implements

2) checking the p~ivileges to verify that the requeeted opera­

tion is authorized

3) locating the rapreaeutatio~'capability,in its table and
,,

performing the operation on the r.epreeentatio~

Clearly, the creation of capabilities for extended objects

must be carefully controlled, aince:a~fora.t ~ability could deceive

not only the users, but a1so the iapleaend.ng ci~i~·. The creation

of capabilities of a given type c~ itself be authorized by a capa-
·'

bility. When this capability and an arbitrary datum are presented

to an appropriate new base-level operation, a new capability is

returned "1th the authorized type, all privilege• 'on,' ~d the

datW11 as its unique ID. (As augaeated above, this aiaht be the ID

of the represe'1tation, but could be ·any value desired by the imple­

menting domain.)' :Section 2.6 Will discuaa how S\l~h authorizationa

to create ruw capabiliti•a can theuelve• be cr.ated and diatri­

buted.

The sealed-data approach as described is a quite acceptable

type extens:ion aechanism~. and has in £«ct
0

been used in at least
. - - ~ ,.

one actual system [St 73]. It places each higher layer in much

the same position as the base-level system; a capability is res,rded

as holding an ID sealed in a tamperproof ·box, which gua~antees

that the name presented by a user is in fact a valid name given

7l

him by that layer. Furthermore, it allows th:f..~ ~;pout: forcing

re-invention of the s~aling mec~is~.ia. eac;~ 'Q.elf l•yer .. It does,
, ~ ·, ,., t I

howeve~, require.that e4ch new layer iapl~t it• Ollfll_table for

converting an ID into e. capcibil:f..ty for,t~ r,.pr•~•RtatioR of the

correspondins object; this is a Pfrtial dqpii~at~qu of the function

of the base-:-level "map" of section 2.2. lt u desirabl,.e to avoid

re-invention of the map, as well as of~ ¢<1l~b~]4ties ~hemselves,

an advalltage ,possessed by our fourth .r,,pp.ro~c~;to type ~tension.

Approach 4: Sealed capabilities. The need for each layer to

maintain a table mapping 4'Jtte~4ed __ object -C'U>4bilitJ.ea into repre­

sentatio.n capabilities can be elimil)a,tecl if . ~-)•Y,t,tem. s.imply
'.' . . . ~ ' ' ' ...

allows . each extended _C&l)il.bili~Y- tD cqg,ts ~htl COJ;':,:-esponding repre­

sentation capability. The extant\e4 c:apabiµ.~tiP-US becQIUs a

tSJQJ>erpro~f box holdiq anotber ~abil.ity!. pn the, _$P,rface, this

makes it appear ine,rit'-".J>le for ~biUti,a,1 .tcv1rpw l.4i,rger and

larger as objects a~e ~tended raput,uily~-~ .,prpb~ already dis­

cussed in connection with our first !8,RPro~ to -tYP~: e~tension.

A carefully d~if ip.ed _aplement~tJ:oq., how.eve~..,, -C~b~oid this

phenomenon, allo~ing unlimited ex~.-i,on ~~h ~ixed si~e capabil­

ities, as~ shall see U\:s,ctiQU 2.7, :wbi~ 4,iac-usses the sealed­

capabil.ity appro11ch 4 J11ore ~et,a:11, Fit's;, ~V,ft'., ~- dtgress

briefly tc;> e,¥•1111:1e ~,9JM, 1p0:i-e ,~~All, CJuetl~iomt ~out ;fP,4il extension.

2. 6 Hierar<;l;ti!s- o,fi_ OgJ~ts and l'YJP!S.

In a ~ou-extenclible systeia, only ,a .s-.lt, .fiud au,itl)•r of

predefined. types are il"OVid~, ™"1CJ, typ,s, ~ ~,1 ¥18,11,~:J,fi,ed by

72

small integers. In an extendibl~·syitem, a much larger set of

· types is needed. Two conflictiftg corltid•rations influence the

choice of the size of this set.
1

0n thii one hand, it is desirable

to minimize the size of type identifi•rs, tince these appear in

capabilities, where compactness is a gteat vittue. On the other

hand, it 1s desirable to uximize th~ total lU.1111b6t of types

available, to insure that the sttpply Will nffer be ezhausted,

especially since type identifiers, like olSject tns•, can never be

reused.

!mphasizing the first c011sfderatiort results in a system in

which the number of types, whf.le web l•t'Pr·ttian the number which

would ever be le&fU.mately used, iiiJ lftrtl' f•irly modes~ (e.g. thou-

1J'ende or ndll.ions of types) [St 73]. Ttiia J:ia~s open the possibility

of' a malicious program using up all a\tc'S:labt:e·'t:ypes wi'tbin a few

minutes of determined computing. ~• in such a system must .,

therefore be viewed as a finite rt!souica. and must be allocated

as such~ This is possib1e, but: ~t inconvenient.

Bmphauri~ing the provision of an i~ulftible supply of types

results in a system design· in which thEf 'ap"ilc:e of type identifiers,

like the spa:c~ of object IDs, ia'effect·t•ily in'ftnlte (i.e. too

large to be' exh4usted during the 11fet1.ta of the system) . By

c0111bining theee t1fO 11\fin.ite nae·· ipi~,.-ll/tM ·utl>li system {Wu 74,

Jo 73] provides an elegant conceptual framework in which types are

theniselves objects. This is illustrated in Figure 2.6-1, which

depicts- the set of all o-jects aa f4-nliaa •:..t-hMe-;;;.i-evel tree. For

purposes of this figtJre, only two attrtbutes of aa·ch object at-e

of'interest. One is ita ll>. the other 18 its type, which.is

73

An object:

Figure 2.6-1: Three-level object hiera~chy

74

simply the ID of some other object.* ln-1,sting that the other

object so identified be of type 'typ~, ·, ~ providing a special
f

root-object with ID 'type' (which is"'~o of typ~ 'type') forces

all objects (except the root) to occupy either the second or third

level of the tree. The second ley-el COl'lt&ins the types. while

the third level contain, the nOl'l-type objects.

Creation of objects in ~uch a scheme can be described concep­

tually as a single operation:'

llhere ~the new object will be a type ff,. _c~8 ~is a capability

nma1ng t- root object" and a,,normal object ~f. Ct e is a capabil-
- . ' ,,1P

ity .~QI a second lev•l object. If -,~type :...,. a third level

obj,ect. aa error is ~led. In practiC,.·o('·:course, such a

unified base~level create_object opera~on ca11pot replace the
_,

specific _@ject-creat~.operations ,,ba:L!~he varic:;a . .extended types,
--., •" . 1,r• '~-~"t. l",

sinctt only the ~rtespoa4ing t.•:r~r hae,,,bot~,t¥ aU12hort~Y and the
• K ,~' ,, •,•-.,

kn.-wi~ ~ei ~o areate_and $.liitt•U•ae ti.e ·~artcnus.,COBlC)onents
,<t . . -. __ ;. -... ' ',,

of the repuaentation oi • 'given t~ . .of eztende~·,•je(:t.

The practical disadvantage of the v~evpoint just described
\J . • _,. •· '" '

is the large size of type IDs. Neverthe:leea, w adopt the HYDRA

view of types as being objects._ In Chapter 3, we describe a scheme

which manages to adopt this point of vi•w, and yet provides an

extremely compact representation for capabilities.

There is a second kind of hierarchy among the types in an

* Unique IDs, which are simply long integera, IU'e shown as symbols
in Figure 2.6-l for clarity.

75

extendible system, which has been described by Morris [Mo 72].

This second hierarchy involves only the types, rather than all

the objects, and attempts to characterize the layered nature of

the system. Figure 2.6-2 illustrates a siaple example, in which

segments are assumed to be predefined, and various plausible

extended types are shown, each indicating the type of its imple­

mentation. This usumes that all\objects of a given extended type

have the same type of represen~~ion, which does not seem unreasonable.

One can find exanaples, however, ~f situations in which differing
·~.

characteristics.,of objects of the s-.e extended type might make

different t_,rpes of re~1;esentationa desir~~. .. In Figure 2. 6-2,

' for example, one Jlight wish to af .. ,loag,.~t• composed of

a.collection of text fi~e•, which, accord.tq_.~9. . .out conv•ntions, . ' .. {

would be repreaented by a segment eont.ainin& ~ever al text file

capabilities. As another 'example, one aipt iwi,sh tto represent a

customer list as a sorted~file or as a _U11lill"l11t •. _depending on

the frequency of insertiona and· d¥etiQas; ..,_«ed. .J:n the aenei-al

case then, the types fora not a s:lmple,trei,. biff a directed graph

withoutcycles. The latter property expresses the partial order

induced on types by the layered structure of the system. Note that

for any given extended object, t~l'e ia only one representing

object, hence for a given representing object, the eJS:tended objects

it represents can form at most a tree. (Of course, in any realistic

situation, this tree is only a linear chain.)

I
I

I

I

I

76

/
/

/
/

/

/
/

/

Figure 2.6-2: A type tree

77

2.7 Type Extension Using Sealed Ca2!;bilitie9

We now return to the last of our four approaches to the naming

of exten4ed objects, that uaing "•aled capabilities." As in the

sealed-data appfO&C::h, the •o.ufacture of extenclec:l capabilities

..,..t be carefully controlled to prevent fo,;1•n• Given the view

.that type• are objects, the appropriate authc;,rization to manufac­

ture~ capability of a given type is a capability of that type.

A layer can obtain a new type T by executing

CT+ create_type ()

as illustrated i,11. J'ipre 2. 7~1. · C . will haff t,pe T, all privi-
- . :.....~~-,,, ... ,,. .;,.,., .. ,,.-,, ·-•~.-,.'.-..,,, ··~ ... ,\, ·' ·. ,"'•

lepta on, and a new, uniqp Il) .. ,'P4Ml by t.\e •Y•·t•~
' .

<;

C + unseal (C
8

.,CT}

Note that CT must be presented to authoriae W1Se4ling, thus pre-

venting any random possessor of C from obtaining the capability
8

C which 111 s..i.84 iuaicte.

'

The implementation of capability aealing aa just described

requires a fair 8IIOUl\t of machinery, such u that to be described

in Chapter 3. However, a slightly restricted veraion of capability

sealing cq be added to TCS in a surprisingly ■i111>le way. In the

de•cription below, we asa\dle that a lay•r wiahes to illpl-.nt

78

C

type

privileges

ID
type (T)

privileges (all)

ID (new)

Figure 2.7-1: Sealing a capabiiity

extended objects of _type

The creation'of type

~
X

T¥;_; whose: representations are of type

T is perforaed by the operation:
X

.,'\J:. ·i ;_:~.; ;-

Note that the type of the repre-.ntation (T) must be specified. r .
•. <~tJ e'~·~·.1; }·.,{~ ~·.·:.\1?:-n ~"'♦(f'f.: : .. :),j.._.~:,-

This is one of the restrictiona neces .. ry for the implementation
,::•·; i.,:·~-: ,1.":JJ;;.:.{ - ~..r

described below, and forces the eet of types to form a tree, as

T • r

, . ;• - " . .I' .:;'.,;;c ·.1}:

discussed in the previous section. Also, a set of privileges (P)
••,' . ·ti;s ·: •. ,.;q'\{J ;,~•.J:,n,:.;;:•, ·,' r

must be specified, whose !lignificance will be explained below •
. · • J • ;'. o • :· •• , ~;Ji.:-...:

The reslllc;ing C8P;4bility for t1:"·:~ ;t~•- (1-x) :s~ll~s t~~
1
crea-

tion of new capabilities of type T, coatbning r~resentation
.X .

·'capabilities, of typ~
; ;;:.f_;•\

T sealed inside. r
.;.~,,~. ~:• , .. :.:.i __ ;·,f'~-::ii: •..

The creftion of an extended. ot>Ject ·· 1a.vo1vea the creation of
. • . ' . J •' . ' L ~' ':·. ~nt.;

its repreaen'tation (which
1

reaul1:• in a capal,illty ~Cr). followed
• •.•' : - 1 ,·,. _d.c ~·" 1~.1'~f~~i(' u.J .•·',.··, ,J .. r

by the creat'ion of a c•pability Cz . for the atended object, using
. .. ·. '. ;;,.i~J q~L

the operation:

ex.+ . .._i (Cr'CT r)., ', ",~
X

•. Jhis pr94~•,a J•eale4. ca~l.t.~,,. ax.

the: ~ iB i.be ,r:eq.u.~~ _:t;hat: ,, c?'

l,eges in P:t • . (~,~~e, .. :tlu ~ •. c,p •· ~oBHJ.ing is

g~n.er-1.ly p~•*ed by tmt, ~--~ of.,~llaLr~on,.; 11hich

produces a fully privileged ~.L'iqr.'i ~).i . _,:· : , .

Later, whenever the _ilapleaenting doaain r•ceivea as a para­

meter a capability C of the new type, it can recover the sealed
.X

capability C using the operation: r

80

Note that the recovered capability Cl' has exactly the privile1es

P, which cannot be 1reater than tile ·privileaea in the capability r

originally sealed. Thus, the layer which apl-.nta the repre-
~ ; ~' , ,,"

aenting type need not trust the la,-t :t.it,1-entiag the extension,
·;'' .,. {· _; . .: ;;-, :~·:;._ :"'i~.'. ·: ,'. _;'"

since the latter can only recover privilegee1 which. it bad previously •
. _. ".:. ~ \~ i ~ ' '.:

The scheae just described can be_ilrplellented by rep-resentin3

the extended type u ehOVD in Figure 2. 7-2. The i.Japl-tation
' ., , t { . ', ,;:

from Tr to ·Tx and tumia,,:on ~1_,~4'.~~ ~~ Pl:~~ ex'
while uneealillg simply changes it back aad Nta t!M privileges to

·• ·,:- ,_ "> '" . } ~'

P, thus recreating C apin.. llote tta.t C will thus coutain
l' . _, J . . , ' .. J1 · , "' 1:, · ' /:. :~. ; ,' ;'~ ':- ·,: ,:,i .

the ea• object ID aa did C, rather than a. aev· ID provided.by · . . . r . . : ,:. t,:, •,,,,

the system.. In practice this 1a not a aa~ioua _problem.
· :. ·: · · , .-· " · -r, • ~ r ·" .,_ - ~- ~· · · ·

This implementation clearly allova a pven ~j~t to be extenaed · ··
. --~.:{');:,:-.,_~.·,::·)

one or 110re tiaea, and still be reprueo.tecl.., a a.tandard-sized

capability. 'Va:riati.ons. on ·IMIB 'a~ whi¢h ~encl on short type

IJ)s are deecribed by Sturgis [St 73] ancl L:lndaay [Li 73]. Another

relateo .11CUM11N< j,9. die "eoutt'~,,•1---1-~"d~*d by

Jbnes· (.Jo ;7..3 }~ "11htch is1 e8Nti't:Ud.l¥' -~ tio ''tlN!thg a- segment

contaitlme . ..,_.4 upabtl~ ., '--~ · ~ ~l. ·b8ft'ttilt •·lr: ac~•

which •tMtnat• thll; -.--.c:t~ clHt:rSb# 1~ ·,ea:~ arbi­

trary sealing of,. c:apabril;it&a~

81

T r

Figure 2.7-2: Representation of a type

82

2.8 Goal.a f« a Nev Capabilitt !%!~•

Thia cbapter bu att..,ted to aet tu •--- for the proposed

capability aacbani• of Chapter 3 by abtddllg • typical capability

ayatea, exploriag the probl ... of revecation ad type ateaaioa in

the contest of that ayat.•, aad. clucu••aa ...toua l'~l_vely lltno.r

aoclificati4tul to aueh a ayat• at~\ to •i,,.. those prot,1-..

In diauc.aatng the• aoclificatiou aepar-.ly;, wea:t!\iq ltoth their

atrenatha ad their ,,.!IJme••••• a nu.bet" of tleatt-a\tl.e properties

have bean nottd. fteM are·,r:t.at.t -·ia1_.·.t aM an adophd a. the

ac,ala to be Jalltt by the de~ p~;.,....-~ Cllaftet' 3.
' • c.,-_, ,,,. --•-,:CJ

'Go!!!.

1) Ravocatton ahoulcl take effect tattzftat'ialy.

2) It akould be poutbla t• nr.ake diia -~ prl\tile ...

in a capability inupelld•t.ly.

3) It ahoul.d be pouible to ae1eo~1.Ml:, ·revou the prtvi­

legu of a aubaet of the ca,al,ill:d.aa fdt'. • object, and

thia aoulcl require ao 1.1.oNl lmwt of capui.lity

propagation.

4) Any diatril>utor of a capability (1. ••· ilOt just the "oner"

of ta object) aboul.cl be able to · it'a prini..a-.

5) The waera of capal>ilitiea ooulcl . ._. __. to cU.atiquish

betlfftn revocab~• and ..-nvocald.e ~IIW..1:iti•••

6) The coat o,f re:vocallility llllDu,W. not • eaceaai,,..

7) The 11Mbani ... of revocation ad .. en- ..._iou abould

interact couectly.

s'

83

Chapter 3

A New Cal)!bilit7 S1stem

3.1 A New Capability System

The goal of.tliis.ebapter is the description of a new capa­

bility system (callef·llBS'·~,.,~.nrWlich, Mets all of the goals
.. - ·-~"'""-~-""t _,.J '

listed at the end of Chapter 2. Thia requires a fai,rly substan-

tial departure from the tcs system of CbapteJ' 2. After discussing
/

two abstractions of the ''li~!t sepent" echeae of Chapter 2, we

adopt the family tree a,.odel to fescribe the revocation behavior

of capabilities. 1he · mechanisut' of generalised sealing is then

proposed, to provide both revocation and type extension, and the
,,, ·t·: - - ~ '.:" ;- ' .• ~. . . ~

practicality of implementing tile achtille i8 ~rgu.ed in some detail.

3.2 Desie Couideration• for llevocation

In the design of the RCS capability sch_. presented in this
~-.--,.-.,,-,,----..:,,
l
,t, ~~·'"-•,

cliapur, we wish to retain as 11111Yff'~ible of the advantages

of the ·1oct1~ctlon scheme of Chaptar 2, ,~J_. cv~~~~·.:4ts pro•
"•. _,,_.,.,, !ic

blel)S. 'rhere are at·least two approachesjwbich can be taken in
'

attemptillg to capture the essence of the ~direction scheme in a
. .

base-level C4?nstruct, as depicted i1r-Hgate S;·~la. On the one

hand, as in Ftaure 3~2-lb, one caa {repff, 0
4

~~ being merely

a part of ~h.~,d11&pping from Cb to ... ~,oiJag&;~.,.k Cr as being

a special revoker capability which allc,wa that mapping to be broken.

On t}Mi! other hand, as in Figure 3.2-lc, one can regard both C
a

and Cb as being capabilities for the object, with Cb being

somehow dependent on C in the sense that revoking C a a

84

object

(a) Indirection scheme

object

(b) Revoker-capability approach

Figure 3.2-1

object

(c) Dependent-capability
approach

85

automatically revokes Cb as well.

Taking the former point of view results in a scheme•in which

the mapping from a capability to an object is itself viewed as

being essentially like an object, since one can have a capability

for it and·thus be authorized to manipulate it. To allow indivi­

dual privileges to be revoked independently, one must define the
'>,,,~···;

upping·aa c-ontaining, Of at least 11.aiting, the. privileges of the

capab-ili-t:y~- ···'the establishing of one's future power to revoke a

capability should be an f.t.~c op~r•_ticm,· u ~scussed in Section

2.4. For exaaple~ the situation in Figure 3.2-lb can be produced

by executing

Subsequently, the:possea.e1q~ of 1 Cr can revoke the privileges in

Cb by executing

In its effect on Cb, this is equivalent to the TCS operation

The difference lies in the fact that, unlike reduction, revocation

also takes effect in any and all copies of <;, which may exist.

' The interaction of revocation with copying is clarified in

Figure 3.2-2, which shows the situation resulting from executing

C
r

86

object

Figure 3.2-2: Interactions of copying
and revoker capabilities

C
X

C
y

C
z

C + C
y z

87

C -+- revoker (GY.),
T.

C + C
X y

This kind of interaction causes subsequent revocation of C
y

to

affect C but not C, which is clearly the desired behavior.
X Z

More complicated'slluatlone include "s\lbletting, 11 as shown in

Figure 3.2-3, in which both the priginal owner (holding C)
0

and

an intermediate dist.riwt,H1 (holding Cd) retain the pm,er of

revc;,cation over tbe user (holding Cu)• and "bill cc:,llecting,"

as shown in Figure 3.2-4, in which the ability to revoke the access

of the user (holding C) is delegated to a "collection agency"
u

domain, with the owner (holding C) retaining the option of later
0

disabling the collection agency if the contract with the user is

renegotiated. Note that the latter example takes advantage of the

fact that Tevocability, b,ing authcn:-Jz~c:J by a capability, is itself

thus revocable.

The revoker-capability ~r9ii-9h j.i,ist;described has a good

deal to rec011111end it, and,has in fact been explored in some detail

in a system design project at Stanford Research Institute [Neu 74].

However, we pursue ~ere the dep-.dent-capability approach instead.

Investigation of the two approacles reveals the following advantages

of this choice:

a) It avoids the introduction of special capabilities

authorizing revocation, thus simplifying matters some­

what (although a certain amount of complication is

unavoidable, as we shall see shortly).

88

• C

. cb u

[1 Cd •

I C .. •CC> 0

object

Figure 3.2-3: Subletting using revoker capabilities

i] C
u

Cb

~ ~ ~ .J~ C
0 u

object

Figure 3.2-4: Bill-collecting using revoker capabilities

89

b) It. avoids treating the cap-J>i;ity~to~object mapping as a

mallipu1able object, which npit1~~ly redµ~J!~Jmple-
, • ~ V ' . . - ', • •· • •

. c)

mentation costs, but s.acrfJices tlt• _ftJ;>Jlity tp Jntke

rev9ca)>ility itself revpc~ble.
' . ~ . : - . -· . ,

It can be cast in tel'ID$ of a mechan.ism (t<> be described
• ~ • • • - > • •• ' • • ';

in Section J.4) which upj.f~.es t~, notipns of revocation
•'· _, J? '. .,' • ·. .•

and t~e extens:f,.on.

It must be. adm:ltted tllat tlHt choti::, t• ~ot. e~t:lrely cl.ear-cut; in

partjcular, the opposite conclusion might be.~eached in a context
t • , - ., , '_ '. , , 1 -· ,c • •

in which revocable.. revoc~bil,~ty !•• consi~tfrt. ~o~tan7.

One lD()tivation fof the not:1,.on .of ~•petld•1:1;t, capabi~:iti.~s is

the observation that a weakened copy of apaft:lc:ularcapability
·, . . , ; _., ;- ·.'..'r .: ,,1

following sequences of actions:
·,

a) The . pi:ivileg'18 in \:he original. C!1l.f~~ilf ~Y are reduced

to th~ des,ired set, -~d then a copy . is p4ssed to the

rece:lv_~g doa,.ai1L

b.) A copy is pass~d ~9 the rec:fiV:in,8 ~omaf~, &Jld then the

extra privile,es are r!vo:k.ed fr'?~,the o,r:f.g~nal •

. ~ essence of sequen~e (b) is that the 1p:-1lt~n1. d~in "has
.

se9ond thoughts" a,nd ,q.ahes tt,~ ~ad:8'!f~~~e (a) instead. This

suggests defin:tn&,, the revoke oper,~if:>n. ~l ,ap~f ~~~s,~n~, the

reduce operation to be commutative with c;:opyig.g, in the.se~se that
• . ,_ • ~ : •"' ~' ,,,,", '+!

revoke (C P1 • C · + C' a' , b a

and

C + C • revoke (C ,P)
b a' 1 a

90

produce the same net effect. Of course, re~ocation cannot be

expected to undo anf intervenint exercls~ of'. the affected capa­

bilities hence this comutativity applies only to the state of the

protection str~ctures, rather than to the st4t:e.of the objects

being protected. Nevertheless, it is an attr•ctive way of describ­

ing the effect of revocation.

Exactly how the revoke operation 1Dall&8•~ to find all outstand-
' . ,. -, ' ,.·:,.,-!_ '

ing copies of the capability being revoked is, of·course, the ceu-

tral implementation question concerning this'scheme. ·At this

level of discussion, however, we simply imagine·· that a•. global

search is done to locate and revoke the appropri~fe capabilities.

Given"that we require coaautativlty of copying and fevocation

there are several' possible schemes, corrhpoi:lding'to different

assignments of dependency among the v~rii>us cap.bilities ·. existing

for a given object.· Clearly;· the coatautai:lvltf requirement con­

strains the choice to assigmaents· in which the dependency set of ..
any given capability includes all. either -~pabilities which have

been derived frOll it through one or aore levels of copying. We

examine three schemes, corresponding to'thtee such assignments.

Sch•e 1: The simplest scheme considers ali capabilities

for a given object to be interdependent. so1 tk~t:' revoltingpriv:L-,

leges from any of the capabilities aff ects·1 ihim all. This approach

is clearly unsatisfactory in general, 'for two reasons:

a) All capabilities for a given object are forced to contain

the same set of privileges.

b) Any domain posses~ing a privilege can revoke it from

all other domains.

91

Nevertheless, this approach has one virtue which makes it worth

mentioning: it is possible to copy a ca~bility and have the copy

retain the revocation powers of the original. This is desirable,

for example, when a domain simply wishes to move a capability

within its address space.

Scheme 2: A JQOre appeali,;lg scheme con.aiders the capabilities

for a given object as forming 'a "family tree" generated by the

copy operation aa followe:

a)

b)

The initial capability (p~ycu •t.. object creation time)

. oceupies the root no4e of ;·tllt(tree·.,
\, ;, .

,/
Whenever aft e:Kisti-ng capabi1't,.ty .i&:·<!opied, the copy occu- ,

pies a new son node of the/node cont~ining the capability

being copied.

A typica-1 faaily tree is shown in PiFe J. 2.:..~~· ·· sy· defining a

capability to be dependent on •-t:h of its ancestors in the family

' tree, we maintain at all U.m~1- •-ha-.c~ndition that no capability

can have any privilege not p~sseseM by all of its ancestors.
,,, "''"' ...

Thus, revocation affects entire ~ees of the family tree.

This tree-structured dependency solves the two problems

encountered with version 1 above~ since.it allows different

capabilities to contain different sets of privileges, and strictly

circumscribes the effect of revoking privileges from any given

capability. Thus domain A may pass capabilities to domains B

and C, such that

a) B and C have different privileges from each other,

and from A,

b) A may revoke the privileges of· B and C independently,

92

Figure 3.2-5: A typical family tree of capabilities

and c)

93

B and C may not interfere with each other, nor with

A, by revoking the privileges.

Unfortunately, by treating copying in this way, Scheme 2 sacrifices

the one advantage of Scheme 1: the ability to produce a copy with

identical revocation powers. A capability cannot be moved by copy­

ing it and discarding the origiql, since the copy, being a son

of the original would i,~~ tije •. ~ower of revocation over other

such sons, and would therefore~ an inadequate .replacement for

the original.

The prol>.lem U caused by twct,.J;Gafl,k~~ng notions of what
.,:

copyingfis f.or • ~"!sting that~·w~·"dffntren) operations are needed.

Sch!e@ . ..3: . Jy combining th~ ~~ions_ ,9" Scheme 1 and Scheae 2,
.. ,., ' '•"'-.~·' I ~

we define a "reduced family tree" of capabi}«.,tie~ generated by a
~ "n.-

pair of copy operat~-:

'
Cb + (::

8
"'{as in Sch~ J.l ,., ..

Cb+ son {Ca) {aa in Scheme 2) •

The reduced family tree is generiltecf u· follows:

a) The initial capability occupies the root node.

b) The copy operation produces a new capability o~cupying

the sa.e node as the capability being copied.

c) the son operation produces a new capability occupying

a new son node of the node containing the capability

being copied.

A reduced version of the family tree in Figure 3.2-5 is shown in

Figure 3.2-6. As in Scheme 2, revocation affects entire subtrees.

Thus, while Scheme 1 proposed a set of capabilities, and

94

Figure 3.2-6: A reduced family tree
corresponding to Figure 3.2-5

· 95

Scheme 2 proposed a!!:!!. of capabilities, Scheme 3 proposes a tree

of !!!:!; of capabilit0les •. This i• iriteftded to capture the observed

tendency of the capabilities for a ·given object: to fall naturally

iftto aubaets, cootatni:ngequival-..t' ca,abflit-. ''(ail mentiorted' in

ChapteT, 2). In thl• schelie, the c.,.t.lltt•• 1:rrl·eacb fallitly' tree

node, al.ways conta$1\ ·the auie 1>ri1ltl._ft','' ♦b1i& ·any· c~ge:';to'''one

of: them •ffects th811l all.' Q,a ttle Ot!IIM'•..,._·; -e--~llt'tes iii-1

dicf£1ft"ent nodes o.f the f.anlly tre• can°-con~il cfiffet'erff privileges,

and interact accor4inato-the rules &f4..,.eniant'.r'eVt>cation. This

contraeta widl a8"9tem like Tes• in whtch any'two'capabilities

may contain different privileges, and reducing the privi1~gee in

one never affects the other.

One valid complaint about this scheme is that it forces an

early decision as to which CQU111Uu _.:wlf,':·•yqtua.lly wish to

re@ke.. : fhe, reeoaaende4 policy· would."'be to· UM a r«vocable capa­

btlity whenever there•• any,doa'bt cneeratfttatbhe h"uatvartbi'nese

of a receiving 4oaain. I1Mleed, thte ·1s 'i'he ·;5usd.f:teatfon for our

reatriction -that capabil'ities with tire saile ~t'ion status may

not diMei- ,in their pri'Vileges~ lt ··NelUJ itttui,tt:•ely··rea1tonable

that any level of trust less than complete truaf;uy be subject to

change, especially since inc-,lete '1:'ftlet is of ten based on incom­

plete koowl•dge. TINa 1· the ... TeNi1i:aft1ou wldeh pr~ ··one to

pau:a :capability wtrl'l reatricted ~rivtlelff~ld' prompt·one to

. malre t-t capability T8VO'Cable. :,, . ,,, .

We WiSh to adopt the reduced f•11Y t-ree n the, 110del of ·

revocation behavior in NCS. The iaplelllllint11t~on· :awcribed 1.n

·s.cuon 3• •. 6 produce■ euctly this' behavior, ln ·adcH.tion t<Y a

96

seale4:upab:Llity type~tena.ion ~--•'·••i ltl,. • itlrp!1■1nution.

t~ae two mechap:I•• not 0'1~ t•~ ~1• but;.. a1-o tHaplay

-· str1.killg audlal:.Uy~ ~1~ the4s, ~!:4~~ defini­

tiona,.: We t~~ ff:~, ia• ~ l.~, a"illOret ~•

JH('MQ~ ., ~ ,...._,, t,baa. botbr,, ', .lt;, ~ , •. r 11 I lat w·, that
, . ·, . ',·- ~ ·: . •· . . .

thia.~JJ:l•.t· ~•GOM•!ll p~~---Uoaal:,pr.ivi•

le .. revoeact• f-.wrea •. ~. fuac.U..- .,.._ ..,,. :tat•~ng

detJci-iptJ.ve.. devtca• ~fytaa:, tw. n■•--•· ..U-.at ctlllllittutoC•.

We will coaU,•••· to wae,.ihe f•ly .. tr•,.....,4U...:aa;;w-ll,. where

apprqprt.ate.

3.3 Iat•r~~iottl,•Wifi Ixn•IMIH'ff-,, ...

I~ ~be chat.pa of 110s_,,.winr~ ~, .. ._ 11tc1-ca,nility

appr~la .~ t.ne •teaa'-• N ... si1"4 ill Olliapas ,2.;;, TM 1Jdaor
' • ' ,:➔:•,. ' '

wil~,~ el.1-i11•e;ecl •.. ~ ~~. :la not.,• •~•••Nlftewnz. Wuc.

ta.· c.wc:.ial, ~•i, 18,, .the proper ::¥1....,.tia x,f ,c,,.....uaeton

One aapeet of aucb . Rl'Ope~ ~41CMell .· ~ . all'-.~ 'beu ,aen­

tioned.: , i.t .--. b. .p,;1-.IW. t~,-,_..._ .-••• to,~ceaM1d,41tjec~s,

' as we.11.u to 1,.,...-..kv•~.oh;i#tc.te. ·~ ..,ah:;~oa,aust

be handled thrc>uah the noraal ba-~"'«°...._,,~•••• ·~t,

for:. e,,:eap,;t.e •. &IJ.l lMMl4 ~ -.J.ici~l:,, AOCU1 •• ~-·-Wl iapl.e­

menta ,the. ~~t. ta.at,~-. 1-. bei.1'&,~ ,._,,:CIQf.-ea b\ir-

den ia. plaacl :OP the ueer of thai ~ ~., :ak.Jio"8lt ~ain
·, '

mild constrai.nca are placed on the 111pleaent1111 layer, a we shall

97

see in Section 3.5.

Another interaction which.must be handled properly is ~he

revocation of capabilities for objects which are re.presentations
, ~_;, - . ,·:;.: !'~:•.-: !·, :·~· ~r-.. -,- ,

of extended objects. Since such capabilities c_an be. sealed inside
• , ·: •. /'. J ! _'i ~ (••. i j , I ~ •

the extended. object capabilities _(to any deJ>.th) ,. the revoke opera­
-':t ·t· ·)J-.:,. ~- ~ -

tion, during its hypothetical global search, muat be a_ble to look
C .- ·J '":•~:rf. .t (, .

inside the extended object capabilities and

privileges from any eligible representation

rnove t\'1-, appropriate
I.•,, .' •:,.·,'

capabilities it finds
i ·,,.

there. This requirement rules out such imple,men~ati9ns as that
I !, <_'j_-.-. •~ ~--•~ -;:~l({ f,'l. \,i:i • >, •

described for TCS in Section 2. 7, in which a sealed repreaentat.ion
• 'i I'. '"'.; , ', •_, -~ _; ' • ?,"• ••

capability has no explicit existence,. but can be reconstructed on
.· , :: •r ::?·· ·: .f ·;_ ·:-r-i~

the

its

basis of certain assumptions, the key assuaption being that
• • • f-'t < ''~-~ ' • .'; .:,'.") •• '" ·, ' '

priv~leges remain constant,:~ich_,c•~ b~ fa~~e_.,i~,a system

providing revocation.

layer implmnenting an

The important point here is n9t that a
.:, ·- . :.t: .. - _.-.. ,:. -:' t-f- ', ..,_,._ t ' ·~ .,

extended type would ~rully be in the posi-
. · ~, ._ : ; \ ·· ::_• - "l _; ·~(·:•, f,,:;j /·_ ., .

tion of having its. representation (;ap&bi:l,ities revoked, bu_t that
: ,- ; ,..: •• _-,,<';_.--~:,. •, .••~••,,r ' 1' -zr: ~-;1_~,f,; ,••, r I

it must not be possible for the fraely available. type-extension
. ' , ·; .) '! ; ; : ; •,;-tJ ., . ..

mechanism to be misused to "hide" capabiU.ties from the revocation
~ ~. ~ : ; r

mechanism.

3.4 Generalized Sealing

In discuasinJ capabilities, we have sometimes re.;erred to
, ... , 01 f f. 'd,,

them as being information "seal~ in a box." This characteriza-
'.. ~~'-;_i ::r:· :' - ;. ,,. i i. i :_: r·

tion has been used by Lampson [La 69), }1orris [Mo 73] and others,
,,. . . _:. ~-; i • .r. ; /· ~-~ l.: · · J ,

and suggests the obvious generalization of repeated ,ealing, i.e.
' -i ,• <"f \',_ 1 ·

boxes within boxes. We have already see~ one situation in which
' ' _, ~ ~ -

98

such a construct was useful: the sealed capability approach to

type extension. In this section, '-11! propose a auch more general
. .

capability sealing mechanism for NCS which not only allows type

extension without the restrictions imposed in Section 2.7, but

also provides for revocation which follows the reduced family tree

discipline of Section 3.2.

The act of sealing information in• box can have two conse-

quences:

· a) Reading of the ,information is prevented. ·

b) Modification of the· infortl4ltion is prevented.

Morris [Mo 73) has referred to sealing as being transparent if

only restriction (b) holds, and opaque if both restrictions (a)
,J :

and (b) hold. We wish to generalize this distinction to allow

partially opaque sealing of capabilities. This is accCJIDPlished

by using boxes which are partly opaque and partly transparent.

The opaque parts of a bo~ have information on them; they cover

and override the corresponding parts of the capability sealed

inside. The transparent parts of a box allow the corresponding

parts of the capability 1ealed inside to show through, and to thus

remain in effect. It is not surprisiQg that thill selective "fil­

tering" action can be used to capture the notion of privilege

revocation, as we shall see.

The ability to seal things in boxes is carefully controlled,

as is the ability to unseal boxes and thus gain acce•s to their
·,_ ',

contents. Various kinds of boxes are available; the sealing and/or

unsealing of a given kind of box is itself authorized by an appro­

priately privileged capability for a type. In this scheme, a type

99

is simply a template for making boxes. As we will shall see, such

templates, when used in a particular way, s•nerate a HYDRA-style

3-level object hierarchy, but this is not an explicit part of our

definition of types. The association of boxes with types should

not be taken as meaning that boxes ar9 themselves objects, which

they are not. A box is •rely the "skin" of a capability, and has

no independent existence of its awp.

The format of boxes is shown in Figure 3.4-1. A type is just

a template for making boxes, and a capability is. just a box con­

taining soaaething, hence this can also be used as the format of

types aiid ~apabiiitiea.. 0ne··c;~ ~iti1~· ~f- the"'Fielda as being
• , •• , '½ , '""'~-- ·~' •''"";·

writt~n as "trit strings" where each digit tabts its values from
' \ _..,. , ·"·' _____,._. ·'·-~1

The fi,elds are all faailia,: from previous dis-
' ·t,, • '•·" .,_.. ;o,·A• < .,_..,.., .. _,.._ ·" -~

cussions, with the excep1:ion·of-the "cap•bilitJ-ID" field. This
•o••S-• H• ••~•,'<C~•'>-~S•-,.•~» ~~;.>,::•

field,.i~&Qt,i.fiu the capability, .- - to distinguish it

(and all copies of it} froaa other similar capabilities, even if

their type, privil•gefl ~ ~j~ct~rfields are 'the same. This is

important, for example, during th• hypothetical search which per­

forms revocation of privileges.

In spite of the •~arming size of these capabilities, we c9n­

tinue to assU1119 that eacll addr~••able location'- in J18110t'Y is capable

of containing one. At the same ti•, we will take the apparently

paradoxical view that each of the four fields in a capability is

the full size of a data item which could be stored in the sQe

location as the entire capability. This kind of behavior should

come as no surprise in a system which allows capabilities to be

nested to any depth without increasing in s~ae.

"

100

capability-ID

type

privileges

object-ID

Figure 3.4-1: Format of boxes,
types, and capabilities

~

101

The seal and unseal operations are fairly si~ple. Executing

creates capability c
5

by sealing Ci in a bqx specified by the
""'} '

template contain~d in type . T., as •.1i1thorized £by the privilege of --·· ~' .,-.. ' .

•~U.ng in CT'·' The box . producicf is~·-~)Nl'tbatim copy of the tem­

plate in type T, with the exception that the capability-ID and

object-ID fielda9 if opaque, -11,baveithe eame new unique ID

written: on them. Executing

r~erses the ,roc~ss by r~mov_:l.ng ~ne J>r_ ,~t~. :~•• from c8 until

it suc~ds ·Jg. ,r~:lps a, boJ wf;lJ~ft UR• fiilLJ• opaque. The
f ' ' ' ' t ~ ~

value of it.a type field aust.aaech-~ of. ~-J template in type T;

otherwise, an ,error is ~ignalled ~d .. ~9 "'aiue is returned. The
:;

capability CT must contain the privilege of unsealing.

Given the above •chanisa~ various kinds of templates can be

defined, of which we will use three.

The aimp~est kind ~f template~• shown in Figure 3.4-2. It

is ~ompletely tuuparent •. ao.4 .. &i4et.a.t,a . ..boxe.e !we will call

"lockers," aince .. their ouly_.fuac,tJ.cm .is . .ta .. ~ea.t their possessors

f~om aodifyia9 gjae,ir eonteata iil eny w.y•.r"·,·-1& 1articular, lockers

are used to-coattol revocat'ion ,- -··will -be -~ussed in the next
!~ . . ·, ---·~ '·- ~ - ·_,",

ae.p.~191,'l•,. A type co~ta.1n1ug thia-.teapla(e is provided by the system,

and a capability for the type, allowiug sealing but not unsealing,

is publicly available.

102

....
'r-t: I

..

' ...

...

' J

I
I '.

I ,.

I
,.

;

Figure 3.4-2 t A "locker'' .

capability-ID

Figure 3.4-3: A "revoker"

capal>,il!~Y'."'lU

typ~
''

privileges

object-ID

"· \,.

Figure 3.4-4: An "extender"

.. ..
·~~

.,

..
"'-

.....

..
I~

...
;, .;~--

103

A slightly more compl!cated .. t,uplate ~ s~ in. Figµre 3. 4-3.

It is transparent except for u. :OP4'1Pfl. ~~i~ity-~Jl,(ield, and

generates boxes we will cal,l "r.e.v<>bJ;s." . (~=1!)..frppi the defini­

. tion of _t:he seal op.-=r~tj.on th4t ~h p.e,., ~okt,~ wU;t .ca:hus. have

its own n~ capability-ID.} As will .be •~,in.J:he ~Xct section, ", j ' .,,, . , . - .

sealing a capability in a revo~~,PQX is eqpJ,vJ~nt to generating

a new son-node in the reduced family,, tr~e •. ,, ~ ty.pe containing this

te1aplate is also publicly. a.va:U~, f,o-,:. fl~;ll;lg.,. put. !)Ot unsealing.

The third kind of te111P.l.ap.te u, s~ l41. ,f~re 3~/t-4. It is

completely opaque. The value qfthe tne fl,ald~,just the ID

. of the t}'l>e ~o,:ita:l.ning the te•l'9-t.e• ~~s: 3eP,#r•~ed: by such tem­

p:tatee we will call "e¥tend.ers. ',' .~t•~~ qpxes. proy~4• a sealed­

capabili~y typ,.e:ir;tension facili~Y u,,des.,;r~HI hll C~ptei;.2 • .
Seve;~l types cc.>n~afnina sucp ~•,e~~e•. •re,.e~~,!i4•d py the system,

an~ an operation 1' prov1~'4 _foi::,,err ... tl.li1r1"'i~i a~h ~ype",.~n dema.nd.

These types a1;e QOt u.de pµ~licly a~efaibl-.

There may be other k1',ds .of ~-,pl•tes ;wliiAA tirQw.q .prove
✓• ' • • - - ~ _; •• • , • ,, ... • •

interesting or useful, but ;,WJ, will. not .. l)µra~ ,.~if h"'°e. Instead,

we turn to the relationship b•~~•~ .~~ -,~~ •c~iarn and the'

other operations of the base-level ayatq.
, -

NJ mention•d ptevio~ly, the ~~"':'+•v~ p,pe,ratiqn.,. tak,ing capa­

bilitiee as arguments e,an ,be dt,viq..• iv.to ,t::~, POUR••' Moat of

them simply "loo~ 4t 11 the capabil,itJ..,~a 411, ,th.4,.µ.uaes ot objects
' · •.. ' •'' . _, - • ' • ,f \ ,.· ·, - . • -

which are theff ac_tual argvments. , A.£"', ;O~; ~ q~ 4,;lre.ctly con­

cerned with the capabilities thQl&elves •. 1'114 ~reatae~ of capa-
• • - _, :-, . - , !\ ,. ;··

bilities by the former operation~ is qui~. s.,iu;,µa: .~hey always

rely on the external .app~ftr&n~J! _qi, .a cap4R-U~1 .-:. r•~dless of its

104

internal structure of nested boxeg. ro-r the Litter operations,

the si.tuatiott is more complex.

Itr addition to the seal arid unsaal operations described above,

there att foul:' kfitds of t,aae--1eve1 opend.Obll ·wt:cn manipulate

capabtliti,es theuelves:

a) creation of, base-level objects

b) copying of capabilities

c) erasing · (OV"erwrit'ing) of capabilities

d) revocation of privileges

Each of these is now deactib'ed in IJome detalt .

Ci"eat:ioi.t of ba'lie-level' objecta 111· 11Wo1ved ltith the capability

aechaniaa in two ways. On the Ontl ban4,. each new o&j ect ; llUSt be

named.by an initial capability "1\i~'U;to be'tetutned as the

value of tie ·creatton ·o,.ratiori. ·?he.: f4btiad.6n ·of tliia capability

·eaa 'beat btLdescri~ed. as the aea1lia :of '1\ eilpty cixtencur· box,

using a type owned by the 'base~1Wel •,-eM a.·a template. Thus,

ba11e-level cttijeet creat:ttoti depends on 1eal11\g. :-

On the·othet hand, aealing·~ll!nds on 'the'pt-evious creation

of types, wht-ch are b'ase.;..18'1'el'. obj•ct•·: Typea' coi'reapondina to

the various base level objects (si!'paettis, doiaaia~: ')etc.) are

created at ·ay•telll ·tn1rialita:tioii time~ ·· it l•ut the "root" type

' (ID • 'type''')' aust be creued "ou't 'at thin ii't /' and in fact, all

base-level types are pre•umably created tb:ts·way '.(Jitliot,ip concep­

tually~ one can thilik 'ot the ·'bitt-'lavef· .Yit♦11·ua1ng· 'ita own

create_typ• · ·operation, wtitch would in tun. us~t the eeal operation

apecifying · the ·root type as a · t•fate, .

· ~g 'of capabilities is. conc-,tually· simple in diia scheme.

105

The entire capability, including any n\Dllber of nested boxes, is

reproduced exactly, so that the new capability ia indistinguishable

from the original. Thus, executing

results in two identical capabilities.~
• . !,

The overwritin$ of a capability_ with da~a,<>r with another

capability is also simple. The pve_rwr:ltten capability is destroyed,
l .; J • -. • · ~. : : • ' ~ , • ·' , :

with no particular si<le-effects except for the obvious possibility
' ,/ • • C ~ • • '. • "' ~- '< ;: ••

that so111.e previously allowable actions are now forbidden.
' ,_- -· .• '

The most complicated operation in this scheme is revocation,

which is perforaied by executing

revoke (C,P)

which revokes _from C (and all copies of C) any p~ivileges
- ,\ .

which are zero in mask P. The outermost box of C is r~quired
. ' ; _:.ii. ' -.. ,,,,

to be a revoker.

reduce operation,

Note t:hat the r,woke operation, like the TCS
,' . t'.·'.1 . ;: -.: ' '·.: (_ :: ;

is portrayed .as .. 1110difying an. existing .capability,
' ' • -~ '. ._· \ ' ' • ~ '::_.. ,. ;.'•j ··: i .-

rather than producing a new one (cf. seal, unseal). Generalizing

the discµssions of Sections 3.2 and 3.3, we will hypothesize that

the underlying capability 1114chinery ~rfo1'1"8 a global search any­

time an existing capability is IIQditied ~nd ieflects the changes
•• ' • ... ', •>, <.

in all copies of the capabil:l,.ty, even those wh~ch .are :sealed in

nested boxes.* (These copies ar~ easily recognized by their
_ t, ~ ·. . ,:·· ::- :--' ;, .. :: ',.: ._ 7 !' -· ·- " : , .. 2 -

In the design beiqg described, ~his hypothetical ,search is exploit­
ed only by revocad.oti. Sect:ic,¢ 'j~:w Wifl sufvey 'aoiiie-polisible ela­
borations on the design, two. of which WO',\ld al:s,~ ~•p~nd on this
search. -At risk of repetition~ Ve -agafn 1K':t1ft 'OUt ''that this global
search is only a descriptl\re device, and is not actually implemented
as such.

106

capability-ID fields.) The particular modification performed by

the revoke operator is the writini of an opaque O at each posi­

tion in the privilege field of C which corresponds to a O in

the mask P. This is only donet howevert if the outermost box of

C is a revoker; the revoke operation refuaes to write on any

other kind of box, and signals an error if this is attempted.

Operations must also be provided for'. test'ing the tag of a

memory location to see whether it contains a capability, and if it

does, for displaying the various . f ie1ds of the capability •. These

operations are straightforward and require no detailed discussion.

3.5 Examples of Generaliz5d S~ing

This section outlines some intended. uses of the NCS sealing

mechanism just described; and reviews the goals listed at the end

of Chapter 2, to assure that they have a11 been met. The descrip­

tion of directories and other specific facilities which can be

implemented using NCS capability sealing is postponed until

Chapter 4.

There is 1110re than one reasonable way to use the NCS sealing

mechanism for revocation, depending upon the exact situation (i.e.

the number of domains involved and the:i.r relationships to each

other). In the example situations below, it is aai~d that

domain A possesses a.capab:i.'lity ~d wish•• to p_.s it:'to one or

more domains B. In choos'ing ~ 11111,tho<l of do.in&' tbis, A controls

the possibility of later revocatiqn. of. the ,iarious capabilities

passed.

107

To illustrate the various situations, the sealed capabilities

are shown as arranged in corresponding reducecJ family trees. Recall

that sealing a capabilit:r in a revoker box corrttspouds to generating .
a new son node in t;fte , tree. ,

f

The simplest ~~q,t,~ipp, I.a .. one in which A completely trusts

B, and simply paa_ses a copy (C
8

) of its mm.· eapability (CA), as

sh<>Nn ~.J!':l.gur;• ,J~S,..,.J.:., -~ ~ wo.r.~1' •~ of this is in

''system calla,'' in which A regards d~in calls on B as being

operations of its "extended machine.'' As will be seen in Section 3. 6,

the passing of such ~;;.;.sea'"IW.. c-.pability par81118tera rep"J:esents

a considerable sav~g.,, Th~es't,:••ry significant, since,experience
\

·\. . . '. '

suggests that a greaf·~ of dmuin caUa executed are in
1 '

fact system calla [SS
0
}Ul · there are also logical reuona for

,;' ... ~·f('·;:;,-~.:::.:/'•.l', ::::i A . ,
passing non-sealed iCajiala:l:H tt.• ''pit certain kinds of ayatea calls,

,, ~; · ";.:r~·c.:,i,',':,i j
nqely those which ~·•'pd'!':•~/,xtended •cbani,.. for capability

-., . ~.,,~' . '

storage and/or tranaaisaion, euch u directories or •ssage

channels.

If A does not have complete trust in B. then before pass-

ing CA to B, A slloUllt ""1 it in a revoker box.
. ··~·::. ..

By keeping

one copy (CR) of tl:fe 8\'il•cl~'fa),ility, and paeaing another (c8)
. ' .. ~ . ,.__,., ,; .,,

"•"" ,.:

to B, A retaiua tbe.~(f.l' .6'£ later revokiag JJ'• privileges.

This situation is 11~~,.~ 1":i,gu.re 3.S•2.
p ,, •;~"· ~- .,-:;..;.;,J:' ' .. :-,;;,~,:',·t',,~ ·-:~ •. ~,

If A wisbe'~ tor,u4,,,i:jvt')ca'bi, capabilities to the several

domains B
1

,:s
2

,· ••• ,B ,t:;:·l.temaJ1ve W01Jld be the creation of . n r .
:,, d: .. ,.,ec•," :'. , J,.I

CR as above by ~.;nf."' .. fa:: ,,;~ _,,,-re:901ter, folJowed by the passing

of n copies of CR (denoted c1). to the domains B1 , as
1

shown, .in F·j;gpl'• ·.l.S~l .. , ~te ·Ii-~,_~. ftl¥9:n.tt~tion

108

• ..

Figure 3.5-2: Passing a revocable capability

,,.

F·igure 3. 5.,.3: P,ass-ing fli.mll taneoll&'ly •Nvocabll& capabtli ties

109

which would arise if A passed CB to B1 , and B1 , completely
1

trusting B • • •B 2 n' in turn passed copies to them.) There are two

limitations to this use of the mechanism. One is the non-selectivity

of A's power of revocation; revoking privileges from any of the

domains B. requires revoking from all of them. The other limita-
1

tion is the lack of isolation between the domains Bi; any of

them is capable of revoking the privileges of all of them, which

may be inappropriate.

Both of these limitations can be avoided by simply handling

each of the domains Bi separately as in Figure 3.5-4. This

allows selective revocation from each of the Bi' and isolates

them from each other in case they are mutually suspicious. For

example, the various Bi may be the renters of a program owned

by A, in which case both of these considerations are important.

On the other hand, there are situations in which A does

not need to revoke the privileges of the various Bi selectively,

but does wish to isolate them from each other. For example, a

professor may wish to grant access to a grading program to all of

the students in his class. He certainly wishes to prevent the

students from revokirig this privilege from each other, but may

well have no desire to revoke their privileges independently,

especially since this is somewhat costly and requires that A

retain and use n different capabilities CR. In this situation,
i

A can produce a single CR by sealing CA in a revoker box, and

can then distribute the capabilities CB produced by in turn
i

sealing CR in a locker box, as shown in Figure 3.5-5. This not

only eases simultaneous revocation, but is significantly cheaper,

110

Figure 3. 5-4: .. P.,4aJP.111 J~•ncl•~•tlJ,
revocable· ''capalitlit:.lea . . -

L, .. I'

" ..

·. ~hf .·.J · ."t

. le

- Fiaure 3-. 5-5: Puaina iaolat-1
~1_1.•~lY: r~~fl ~H~.M:••

111

given the impleaentation to be described~

From this discussion, it should be clear that goals 2, 3, 4

and 5 of Section 2.8'are satisfied by the proposed design. Goal 6,

that of''reasol'laltl~ ¢0.t, will be treated in the neit section,

-iihtch propoaeil;an implementation for sealed capabilities and dis­

cusses its efficiency. This l~a'hf' otil:y ~f"f~ 'tliat of: lmaediate

revocation, .ud goal 7, that of proper inf•i•~t'f'l,n'·between revo­

cation and type extension. Bet-.u."'them~,J~.itflo ~oal~ "generate
.. , .. ; ~ " - ",, , .,. f· • . .

one fairly subtle problem, which milit be •J41it:1Uieed Mfore all the

goals can be considered satisfied."·

If':ts:cieu that:trevocation as defined takes effect illaediately

in the seUH tllat the privileges of the appropriate capabilities
. . '

are ilmned1atsl1 lloclified. This is only sipUicant, however, to

the extent that the correapondtna 110,ilflltt'.6u'• 01\1th,. o'bje~t' in ques­

tion are immec.Uately pt"ohibited~ wti!.~h-1.n 1tdfi/~•d-~als on; the

checking of the privileges by the <>pel'at:l&ni.'/~tcan 1-gine·the

following kind of sce114rio, in which revocation ia effectively
' -" • •• :::.s C

delayed. Suppose that domain A in proceaa PA passes to dOIUin

B in process PB a capability to access X, which is an extended

object implemente4 by layer L. Suppose that layer L is repre­

sented by domain LA in PA and by domain LB in PB. Assuming

that we can say nothinl about tbe relative eaecution speeds of PA

and PB [Di 68] the sequence shown in Figul'e 3.5-6 is one possible

outcome, and produces an effective delay in revocation which is

visible to A. Strictly speaking, the problem here is caused by

the occurrence of step Al between steps B2 and Bl, which should be

executed together as a "critical section." Synchronization between

Al. A revokes B's privilege

to modify X

A2. A calls LA to examine X

AJ. LA returns to A the

original state of X

A4. A calls LA to examine X

AS. LA returns to A the

modified state of X

112

Bl. B calls LB to modify X

B2. LB verifies that Bis

authorized to modify X

BJ. LB performs the previously

checked modification of X

and returns to B

Figure 3.5-6

113

the base-level system and higher layers is fraught with difficulties,
I { ;·· •· l

however, hence the following alternative ••ems preferable: when a

layer is about to access the repr\e~ntatiOQ. of ~~object,. it must
0 ' T tr:;'. -*• ,- < ::.._;: f:(,r~ ' :: ,:.:. ~ \••• :•

first 1ock all parts of the representatiOll to be touched and then
'-'\ '•• . ' I "a •; ;·; - J.

check to ·see that the requested operation :I.a authorized. In many

cases, this 'ibter locking::~C>ulct'be n~e~~~y an,;,,41:,; the major

c~ge due' to' ievocat;lon is.,t~e'''~v~"'g: ~t·privilege_ checking lniJide

°'f the crltica1: section. (In', ~~~ti~~l~r this·ui.~"that pre-check­

ing' of· privileges as an integral part.
0

of the d~in call machi~ry
.. ,, • ; :; '·£, ~•,.

[St 73, Wu 74] ·is not very useful in a system in which privileges

are revocable.)

. ;1n. the context of 1':l.pre ... 3 ._s'.:.:6', j~h ch;eki~g w~uld . delay
~- " -., ,) ... ~ -.; _:. ;, .4-~~~ ~~ _-j~-,~ > .; . '.:i;..r~~.{;1 1 ·

step Al ·untif after step B3. The crucial point ta that this

rendets the situation~·lrutistiti~i~~bl~•c'it#. one· i~,~ich step B3

occurred itetore .Al. Thus, alfb~~ an a~~~ ~y oc~u~. slightly

after perm:l'ssic:,n' to pe'rform it"'~. bMn -~~ked;;Ji'th~~e is no way

for 'a· pr6pfitly written (i.~J~,;;th.tng -1.nd~p;~t) pr~gram. to detect

this occuirehce.'

\ _:, (· ... ·.-/,. 1;..~J,.,:· ... f-{ ::,,_~t--"':"_.:., ---.. ~.-~?; .lo :·, .:: ... ~.1 ...

li in previous· diacuesiona~ we begill by describing the repre-

sentati~na· of' capabilities t~i~es .;. 'l {aggei memo~(\ocation
'. . -.. , . · ,. :. .,, . ~ D , ·: ':_,..t ,,, ~i t-~f;,: ·t '; ,..E:iJi'.'· ·:;:,;>{;,. ~ '..: :_:· '·f-, :

holding a: capability appears to the u11er to contain a rather large

amount oi:' inforiaation,i•b~t, i~af~~it~y· 1f c~~~~iu a· short ~

114

of the capability, consisting of a "loc~r bit"* and the ID of the
' . ..

capability as shown in Figure 3.6-1. The other fields are stored
' '• ~ ; > "'. > • , •c •

elsewhere, and the ID is sufficient to lo~te them, allowing recon­

struction of the complete lona fora of th•,~•p~bility.
. ,,- .. ·•' . . . ·-

The moat important advantage ot .. th,ia M)proach is that it
; .. •. : !,)1 ~ 1- ./•\,:.,: ' ,: : :,, ·, \. '

allows the changeable information<•~•· rev~ble privileges} in
' ::: • ' ., :- t ~. "'1 ~; ._,,_ ' .. ,·. ' f

all copies of a capability to.be cen.tr~~-~ th~ updated
... , ·, .- ,.,, •), . '- ' .

Without a global search. Th.~~ is crucia}- to. ~he., practicJlity of

the scheme, and will be diacuaaed in 110re de~ail shortly.
, -:- ·r . ', .t:'• ~t : _, ·• •- . - .

This approach also allows the •ffectiye ,~o~tl• of -.ii entire
'· ' ..

capability in a single practical-1Pi~ecl ,!9rd __ of .J•- t11.gged memory.
•· ·.: • .. • • : , < <' ~- ·_; • ..::: . -.. "·., J - •' •

For example, on the terribly peaaimistic aaauaptiou.that a new
: • '. . • ·• _ ;, ' : : • ."' ,. ~ i· • _l '; ; ,! " 1.{

unique D> is genetated every_lO aiQroaecoode, ;~ u~~'ot 48 bit
. •;,. (' .. ,•· . ''C •.) '

words wuld allow the s.yat~.to l"\ll¼..,cont~o~1-J(Qf
1
&,l?o\lt a cen-

• .. ~ ' . - . ,; . '. .. / 4 ~ ~ ... ~· .. , ; ' -· •

tury trithout exhausting it.a ,_upply of ~•• .. qsin,a., ~-space
" , , .,.: '., ;,,-~ ;'. '; 1-: __ , , .i '·f · " _ _:.,,_,~-,' " ✓: , ; ,.. '

compaction approach and a •~t aore .r~4ut.i.c).evel q.f peui-
• • ' ' '. , • ,;' ,; J • '. f • 1 .; 1 •1•· ,, ; 1~~..: • '..,•, •

mism woul~ probably allow the use of 32 bi~.,_ ~
1
,;~

1
~

1
wi~hq.u.,t requiring

an objectionable frequency of system abutdOlmS to perfora the

compactions (i.e. once every few weeks or a:,nths, .at worst).

An attractive way to stiu:e ,..-,~ .bo:q_~ .~~-_cqnatitu~e the
. ·' . . ,. .. • ,. ,.. ,-· ' .. ,- -~, ';' ·,-.

actual substance of the capabilit,~a,, ~~!d, l, .. ~n !I- ,global hash
!. l.t ·' -': J,. ~ . ,, - ·-· ., • " \;, .,· ... \.-, ., ~ ' -

table Cotltaining 8111All fix~•_ ,ized enti:i~~ ~ ~r~ op unique IDs.

'nle map, as ~eecribed in Section 2~_~,~ 1a j~
1
t.~uchla Je~~~ture,

which sug,eete impl~ting. each }~,'rx. ~ •: ;~P, ~tft· .. _Jh;a, approach

yields an integrated structure for the ,:ecOQe.truc:ti.oJl ~- inter-
•• ,--, . .. ' ·' ' ' r,·,; ... ; ,, ' ; .

pretation of oeated capabilities froa their short. fonaa. The

* Thia ia not t:be same as the tag bit on the calpal:►,tlity,,, and will
be discuaaed below.

capability
(short form)

115

capability-ID

capability-ID

type

privileges

contents

Figure 3.6-1: Format of (short-form)
capabilities and map entries

locker bit

l
I I

ll6

increase in size and complexity of the map machinery, while non­

negligible, is not excessive.

The format of a map entry is shown in Figure 3.6-1. The

capability-ID, type and privileges fields of the corresponding

box are represented directly, while the object-ID field is replaced
(

by a new "contents" field which serves to locate the contents of

the box. Map entries for various particular kinds of boxes are

shown in Figure 3.6-2.

Base level capabilities, while conceptually the same as other

extenders, are represented in a special form. The contents field

contains the physical address of the object, hence these map

entries correspond to the map entries in a system like TCS. The

privilege field would always contain all l's since revocation

does not operate on extender boxes, hence its value can be implicit;

the space in the map entry is used to .record the size of the base­

level object instead.

Normal (i.e. user created) extender boxes are represented

similarly, but their contents are capabilities, rather than physical

addresses, and they make no use of their privilege fields.

Revoker boxes represent their transparent type and privilege

fields as all l's. In the case of the type field, this value is

a constant which is specially recognized by the capability recon­

struction machinery. In the case of the privilege field, it is

used as a mask, hence any O's written in it are effectively opaque,

as required for revocation.

Note that no map entry format is described for locker boxes.

Locker boxes are so simple that they may be implemented in a much

Initial capability
fo,r base-level

object
(special &xtender)

Extender
(normal extender)

Revoker

117

T

I

T

C

I

p

Figure 3~6~2: Map entriei ··.
representing various kinds of boxes

Cap

. Type

,Cont

Cap

·. 'type

Priv

Cont

Cap

Type

Priv

Cont

118

cheaper way. As shown tn Figure 3.6-1, 4 sing~e locker-bit in the

short form capability, rather than a ~e>aplete map entry, serves to

indicate the presence of one or more Jocq~.lM;Jxea. · (Since they

are tran11>4rent and . ~<>n~remo,y!tbl,e ~ ~tipa -"W1t•u:v.•i.ve lock.er

b011tes are iridistittguishable from a siagle one.}
•• < ' "• , ' C ,,;;. < -,•<c•• ,_,.,,,..

Given the described repreaentations of the various kinds of

boxes, the seal and unseal operationa aay be impleaented as shoWtt

in Figul:"es 3.6-3 ap.d 3.6-4• re,.P«u:tively. The se41l ~peration

creates a new up~eiitry r•presentina tile iiew box and stores in its

~ conteuta fie.ld the ~ility baiag Nllaled. SUling in a locker
" ~ l ' i

bok £a. uuJ.ecl speeJ.al.1¥ by siapl.-, t~g on the locker bit in

th• aealed capability. flte tmaeat·a,eratiou simply returns the

contents of the appropriate extender box. (Recall that revokers

and lockers can never be unsealed.) Figure 3.6-5 81.mlll8.t'i.ses the

varioue low-1.eYel .,facilities -.t in ·t:lle deacription of these and

otller opft'llt1oms. These are aa8Uli8'4 ~., be cleat from previous ,

dhcuo:tou, wtth·the exception of caJ,!abiU.ty t'econatruction

("bcap~d· llsloctative iaemory 1'ook'4> (''Cap fiud'' and "Cont_find")

which will '6e deacrlbecf shortly.

The cr-.,tiou,~f. e•ch. n-,, ba-.,...level object. includes the

construction of the "root" map entry representing its initial

capability. This map-entry is self sufficient, in the Mnae that

it does not depend on any other map entry for its pt:oper interpre­

tation. On the other hand, a map entry representina a revolter or

extender box contains another capability; its one-word contents

field holds the short form of the capability, hence its interpre­

tation is dependent upon the other map entry holding the rest of

119

arna

naott

IIUlOR

,,,,,_ ' . -""~

Type (M)., ~~·{ • , 1
2

Priv (~ .. ~+J:~:",::__lz

Cout(M) + C

Cap(c
8

) .+ I
bt~~c:r··""t_._._. Locker(c) + 0

. . • \ s
f

• ., ,c.·Y'--•s,·s,.O ,~•

Figure 3.6-3: NCS •Seal operation

No

120

EUOlt

No

R.etu-rn -€ont(C)

&)CIT

Figure 3 .. 6-4: NC~ unseal operation

121

Fields in various data structures (see also corresponding figures)

Cap (x)

Type (x)

Priv (x)

Obj (x)

S:J.ze (x)

Cont (x)

uu1,u,·,.,,._.

New _;U> (.)

New map entry (I) - - , '

Map_entry (I)

Delete_map_entry (M)

• Q!l>!:bLlity recelUftrucul,en

· lteaap, (c:)

Associative memory

Cap_find (I)

Cont_find (x)

· . · 1 ,; r -! i- ·

capability-ID

type

privileg_es
' .. ~.

object-ID

size

contents

creates map entry with capability-ID• I
c,~_;)'" ;•,4•f;.~~11 ~~!{._~,

fhicis up entry with capability-ID• I
._ ,- ·~ ,~<"> ' . 1· :" ·.> < ~'. • :

deletes mp entry M

find entry with capability-ID• I
~,uwI ~tyl '· 1 , n• , ~

find entry with contents • x <••·· ·UUJ'.. ~)'i

Figure 3.6-5 L01li level facilities used by operations

122

·-
that cepability. Thus, reJNUJted ...i,~ of a baae-level object

!h. . ·•
results in the aeneratioa of a tre• of-, 81Kriea, wbich coabinea

the fuactiou of the type tree of Section 2.6- and the recluced

faaily tree of Section l.2. An __,ia of MCh a tree ia shown in

Fiaure 3.6-6, in which a-1: 1• tltlN u tbe repnaentation of
1;:. ~ 1- ' '

an exteadacl ohject of type 'directory,' for wich various capabilities

have been diatributed.

It is 1-portant to note tbat vbile tile ~-~~tion

geuw8tH ,._,t"8 ~tee•, tile • ■■al Jllj.t!Qiltielt do.a !!!!,. dis­

mantle tha. Por aaaple, in figure 3.6-6, if the layer iaple­

Mnting directot'iea ua•al• c3 to BtaiA c5 .. die Mp atructure
·., :~··;, .~· : ·'. '· . , (.r~· r{'TJ~"J.,~'ft- :J,,·;'.' i.••·;

r-ina 1111CN119M. The aecbai• for aletuia cd nreeclecl •P

entriee will be 4i•eu•aed later.

In order to reconatruct the laa fora of a capability, it. is

necessary to---•• the bnea •k► JDJIITN,•,·U,~'.~with the -•·- ·-... •~· ~ ~" ~-•,~-- ,.,,., _ .. .,." ... ,,_ .,, '

Given the particular kind■ of bona uecl 1a ~ adlmle, this simply

entails acaaaing down a chain of (IUO or aot''!l) l'..._re until a

non-revoku,•- ia:.,,...,'ltnd. Thia ncoaatruetion _procedure,
'~· ,,: ~.; ", J~ _; t,. r· i ., . , i'} .j ,,

shown in l~.,_7,_,- w, ratber aillttlar to tbe "'following" proce-

dure for illdirection chains of SectioD 2.4. In_odaa'I' figures, the
., ,

capability ncout~ttoa proce4ure la nfeffed to :1n the fora

C + lacap (c)

where c denotes the short fora and C .. tllie recoMtructed long

fona of the capability. In addition to the viatb14' loaa fora, the

recoaatructioD. process aleo recover• tlaa l'.!P!!!!•tttqa-r!iater

123

Capabilities:

long: y y s <5 (l

'dir' 'dir' 'dir' 'seg'
' q ... 12 p2 11 ••. 12
j a B ex

Objects:

Figure· 3 .. 6-6: A map entry tree

l + Cap(Coat
P+ PAPriv(H

124

C + aee.p(c)

D'1'l1t

+ Cap(c)
+ Typ•(K)
+P
+ cap(M)
+ h1v(K).
+·Coat(X)

Figur• 3.6-7: Capability reconstruction

125

/

from the capability to the object, which consists of the short form
I

representation capability in the case of e~tended objects, and

the address and size for base-level objects. Thus, the result of

the reconstruction process is a •eping, as shown in Figure 3.6-8.

The cost of the reconstruction process is relatively high,

since it involves scauining a chain of up entries, each of which\

must~~ located·by,haahng-tnto the Mp. The retention of the •most

aer:t"'d"''IUppurpr~11r ·ta1t· bn'dWte thus becomes even more important
<}'--J

· acrtva ·chai:ns ,amt··rto:s ap••·1' the scan. On the other hand, a
: 1 , _ - 4 i) '~ ,f

.. 'So%· incre49e 1n~ .. .,f'be .. size of' tbli associati.ftc118110ry entri:es allows
-, - . . ~

them to contain entire Mppings, .rather tluul single map entries •
. \ : , '·' L •.·.. ,. , : ,- .··._.: " .

On the average, this modification would probably not provide a very
• ,< :.~ • •J: ~. ' '.... ~ ··.-', ,i ... j t_J: ... ,· ::1 !:I • :

~-~;I.e., fR,rqr,lll!li!nt.,,¥l·. •PW !{•, fflMl..,,.~,wreconstruction

process entirely, rather than •rely accelerating it) and might
,9; · , •_:-··, f }

even •li.Jm~y i:educe t.he.etitci.i!,:l9.9J~rii~ utilization in the

associative memory (if the average chain length was less than 1.5

map entries). It is desirable, however, since it allows a fixed
.

amount of associative memory space to effectively contain a chain

of arbitrary length, thus preventing lo~g chain~ from severely

degrading perfot'118Uce by filling \IP the asaocit,tive memory. We

therefore specify the associative 1Dm10ry as containing the several

most recently used complete mappings. The exact number to be

retained would depend on several considerations, ranging from

available hardware components to expected uaage patterns. Two

factors which favor maximizing the nuaber are the relatively high

Capability

l.e'preaentation
...,el.acer

* Base-level objects only
. ~ ---

126

> •; •• ~. - _,.. ' •• ,_ • " ...,.. ' " ,..,. ',. •

ca,eltiU,ty-tD

** Mdress if base-level obJect
..,.___. ... , eapal>i~ftf (lflllm: ftdl}· ·u.r,. • object

Figut'e 3. 6-8 t A aappin&
(Mi tltored fn tlilrt If I ,,,,,,

127

cost of initial loading(• capability reconstruction) and the fact

that the retained mappings remain valid through domain-calls and
' ~ " ' ·, " ,_ "::o ,

process switching.

In the various figures, the associative memory facilities·are

represented in the form:

A + C.p ~fimt (X), ·

A + Cont _f tffll {I'.) •

Each of these finds an associative memory entry whose appropriate

field (capability-ID or contents) containa the value X. If no

such entry is present, the least recently ued entry is found.

The revoke operation is quite straightforward in terms of
, • f ! 1.Y ' . ' ;·

its effect on the map. Since all copies of a given revoker box

are represented by a single map entry, .. the_ masking of the privilege

field of that iaap entry automatically revokes the co~responding

privileges from all the copies, including those eealed inside
,

other capabilities. The only problea is that some of these latter , ,· j .~

capabilities may already have been reconstructed and saved in the
• }" ~ •; ' 1;.~i ; , ; ,!

associative memory, necessitating their reaoval.
~ ' . r I :.

Unfortunately, the names of all such capabilities cannot be
',

detei:mined from the name of the capability being revoked, except

by introducing a complicated and fragile backpoint~r structure

into the map-entry·treea. One way of dea1inJ 14~11 ~h~s problem is
i . < , :. : l~ ·,; .'. ' , .. ; . ' ·"1'.• ~ .- .. • '. • · ~ ' • • ,

,. to cOlllpletely flush the aaaociattff•~•,oa,~h ~ocation.
;,:: . ",:, .. :,

'l'llis will.• be aatisf actor, if th, fte.-acy of r~vocatfon' is rela-
.;~.- '. :_,:,t/ 'i .

tively low. If revocatt.otti. ta a •u.fficteiltlj l:r•qoant'_: occurrence,
• • . !,,,_"·,_,. ·,.,:'

ho•var,· this will. draadctll.ly 'redut:e t~•'·ist!lity:·~f the' associative
"-'f\,' J .,... \ •

128

memory by forcing heavy use of the expenaive reloading procedure.

A quite satisfactory compromise 1,etween total fluahiag of the•

associative meaory and selective reaoval of oaly the affected

'' capabilities is the removal of all ca,-biliti•• for the same ,

object. This is easily accom.pliahed ua1R1 tba "Cont_find" feature

of the associative aeaory, u shown in Figure 3.6-9. (Por aim.:..

plicity, we have aasuaed that O,. is not a valid value of the !Cap

or Cont fields of a mappina, and can therefore he used to disable

an associative memory entry.) Thia seai-aelacti.- removal will

sometimes force unnecessary reloading of ·ca,at,iliti.ea which were

' not affected by the revocation, l'>ut th1• will oal)' happett when a
' I ..; ,: c>··: • 't;' ' •

capability is revoked a1'1d another capuility for the aaae object
';,.ni,,~ .• J

which is not its descendant in the faaily trn •ppears in the

associative aaory.*

The storage of inactive map entries in Mcondary 118110ry 1~

DUch the Nile in NCS as in TCS. Bach ~Sup entry cotteapOAda to

a complete tree in NCS, but only the active pa.the in the complete

tree need be kept in primary Matty. It aeeas likely that known •
'Y-' • r

techniques for localizina list attucturea in MCOIMlary __,ry l

[Bo 67) could contribute significantly to abwdciag the ot"erhea4

incurred mu an inactive. path becoaes active Md _.t be brought

into primary ...,ry.
* . '

One poui.ble frequent exapl-e of this would 'be r~on of 81
cloaaia-,,cal~,,-.--.~,~ ••«.lti-.fna dlaieal.L· in.,..ton of
the caDN'a capabllity lllloUlcl uameceaa.rily r~ Jhe ·ea11er'~ own
c~iJ.j,ty, froa ti• ,a,1.0C1-f.W; ..., .. , ,'l'llu ...,.,,k.:M'Oidect us­
ing a modification sugested by Peter :a:1._, of ~'.X. T. • ill wh:teh
tb~ 9'ffiAg,pZ'91&..- "1, tjae, .. c,,paitUU~ . .,.._,.tnio¥aa.rauumsm
would include the length of the Chai• ecAIIMCI to woduce it. By
cCIGIJt-,r~a. tla:t.• ,r,,•~~ f~,; tile.~..-.,,_.,. •• z-..,,_..,...,,the
capability being removed from the aaaoctatiw ll>tlllllfr, one could
avoid removing trae-aaceatora of the ~...,_a c~lity.

C~p(A) • 0
Con'tfA} • 6

129

No

Priv(M) + Priv(M) AP

'
Fiaure 3 .:6..::9 t tics· re;~k~ op~~~tion'

130

3.7 Some Imple•ntat:lon Details

In describin8 an .iapleaent\ed system, it 1a often d••~rable ·

to omit or •iaplify certain details which, wile necessary in the

implementation, are of little mtrineic interqt, and tend to ;

obscure the aignificaa:at p'l."inciplu of tlMl claip. Unfortunately,

in argutrag the practicality of an unillpleaellted 1y•t- like NCS,

one is olJHged to address such 1uuu·. ·· · ft:ts··91tction i8 1nv6lved
;

with such details relatiile to the -iatenance t,f the ayatea data

structure we have called tu up. ~•~~~~Ji~ t~lves;

grOWinl 'b<rre4 With the arpa«ant• ·can tfldp dis l'le.•ardet'i of thU
,:,. •-' . '

section without aignifi~t lo•• of coatiauity.

The baaic probl• "1th the map .. 4-cribed tkus far is the

lack of any ~chania to keep it, .. fr,oa fillias up. Por eample,

by repeatedly ... u.., • lia-1,e ca,at>ility at the relatively modest

average rate of . once per udlliaecond, a uliet-. clouin could '

fill up al .Ulion word aap in a few aiUU.t••· In a system lilc,e

TCS in which ea,:h •P ent.ry co,:i:e.-ponds to a 41ffereat object,rone . ', ... ,,, ...

might be able to dep..t on tha M.tlitation of ot.hft· .reaource w,Age

for the ol>ject to li1d.t uaaa• of the JIIIP"i!•IIC•"~rce a1kl pr•-
. ,

vent ita al:tauation..,, Thi• :ta clearly IID~ t.M :~'in the new .

scheme, ia which creatioo..of map entriaa _.· OK lmfly any otlaer

re·aource uaege at all. ·

For this reason; it is necessary to treat aap en"i.e• a aa

allocatable resource and thus U.111~ the ..ouet: of aap •pace

available to each domain via its account. An account's reserve

of available •P space lllllSt be decr81111111ted each tiae a. daaain it

funds creates a map entry, and incremented wllen t~-, entry is

131

deleted. This requires that each map entry contain an extra field

specifying the account which fund, it since this Jaaf not be evident
.;r-+i".:} c.L ~ .. ~:; -.?\,-~ ." ... :£·1,~ \ -.--,: t

at the time at which it is deleted. Since unused map space resides
. , :, : ; ,_ ~, - .t.r ::-i :J _ : .l,r ?'; J: J ;"- .:- ,-, .. . ' :3 .. ~ r

on secondary storage, it is quite inexpensive, hence the allocation
. :: -.-., 'e if;

given to each account can be sufficiently 1enerous that no reasonable
··:"r"'.1-:-',.~~••-"""' 'J. ". ~ _, -.· ', .,.'.;<).i ':} _;:'._;~~-~,), __ l.,,._;,~ .. i-f} -~-J ~; '..,'[; j __ ~ ~:

program would ever exhaust it. The limit serves only to contain
T --.; _; :,,,i '\ .. G{> .:_ j _t -i··~F • ~-,~7, .;. _, f ,:~ :._

the damage done by pathological programs.

From the systea's point of view, the problea is now solved
;r,-:•i' .~: . :i r·~..;:- :.Ji,£-,;_ 0 :J·,:' ·t .' t~'· f..Lif-:~.Z.L~~ · ,,

since ~ch user can,.-~~, only _h~~~-~ ~~;~~•,.!~t, _us~ of map
' • , .. ' .-., :, .: ·., . ·- .· > ., •. ,,,J C., .}8,,:<.- ,,, ,,.,; " '

space. This is not really sufficieut however; the consequences of

such self-inflicted harm 1111.lSt not be too aevere. A given.account's
;~?,·<,.. ~.r,),,~a .!•.:: ;.~·J..r.::.· '.j:·:·:'$'·'••r ... l5,::f--L ~ \.'

allocation of map space can be cluttered by an undebugged program,
;.~:: ,,' ... ,! .. '.(+ .·_,;'h.,. ',/_r:;,c,:.:i .;·/.·,'J. '"-. ~;;.,:, .. ,~, - ;J!C'~ ~ ~: l ., '~iJ::: .) hJ.uo···•,\.

hence some mechdism ~st be provided for prev-1tion of and/or
(~ :r •:<;, i .-·.,t•: '. ,:;-~:=;; -d·. ·.:,·.::,,.. h} e~·~~<;·.,.Ilbt,, :-:,1'1'; -.;ttl .D .. : ·

recovery from such a sit~tiou. Pl!'eventioncannot reasonably be

expected of the base-level systea, since it cannot distinguish
.;..-,~--· .t'U~;·:; 1z:./\ 1:-:;£;i0, :-._., J.c :·1~11.1~i-~Jb ... ttk'--JL;,},.:~:::~ : .. ':

between legitimate and illegitiMte uee of up space, hence recovery

must be possible. We take the point of view, however, that this

recovery need not be particularly euy or graceful, since, as
;t:t·. ·.r:l ~~ ',•c,-t:9~··•:z ~-"'~ • ;··yftlc> L-~1i {{;h~t ::-.,,;_i_:1-f!\·~ ~\::,:

mentioned previously, most uae of the sealing •chanism is expected
··:,9 ' ,!,.;,).i'T:}~L.'.3 .ti:.:i.)f~ :::!::"..}:.,~·:~· {:.:, :~.2~~ -'

to be made via more civilized facilities rather than directly. The

impla.ntation of such facilitiee Will be dJ.~cuaaed in soaie detail
o,'_j ·'- ' ·:: ~-- t. ·1 ·1 t: ..._c;.; ... 9J:- - :J ~ . . · .t ..

in Chapter 4. At this point we are only concerued that such faci-
···-t~dr-,, h~t;<-~.:l(.;a.t.: :·Jf- ~ ;~ :.,.~-

lities use sealing in an orderly way.
•:,/} ~. _'.:;/.,., . '.: f Jd!}(!J, .. ' :;_ ... ,.Y,.,.s.;.-,~ .j ':.U.

What constitutes orderly use of the sealing •chanism? So
::. ~1 Lf·. -,~ ~ ::J r :.t:~""~,l .~ ,-~t ~'i·r..: i1'd.~ 1. :: r .. i; :·. ;-t":

far, no method has been described for r-.,vin3unneeded map entries,
f'J.c. · •it i. ,_:- :~ , ... ~.-r_:~rr1_~- -~~-: faJ4j·('tJ.> -h~:-: \: - ;~·t··

hence any use of seali11g will eveutually .fill up the map. The
a.o.t 1.:_:'.~ ::, •~-, \:·(:L:J:.:_:_~-:;·-~ \;:'.'; ~-)-_j-r;irJ.lJ.; __ i?_....,~;•_·1··:'

basic question is: when :ls a map entry no loqer needed? There
J(.' ~-- ; .. ,-tf ~-·,-"!·· . nf"~~u-t·-j:; .. ::L!.s,.#·:1 :~)di ·

'

132

are at least two circuutancee in which this ia true:

a) Its privilege field ia eapty.

b) lU contents fi•ld point• to a --«u■tent up entry

or object.

If either of these condition hold• 1 the, map eatry $a uaeleaa :and

may be deletacl. Condition (a) --•t• the revab operation, upoa

reducing the privileges in a Mp eatry, ahould check libether any

privil•ges remain, and if not, c:lelete the •try from the up. , Con­

dition (h) auaaeata that the capoility r~;ruction aechanism,

upon encouo.tering a aap entry tlho• coateats fW, c:oataina such
'.

a "dead•end" e4pability (which we will tall• "iaolatecl" entry)

should delete it froa the.-,. A.,. •~S'.7 __.. eoatetata field

contains Iha .-ldr••• of a b&ee level object 1a deleted when the

object is deleted, thus isol&t:iag aay-, eatriu ·pointiag to it~

In general. the deletion of a map •try can~ ou or IIOl'e

other.map entries to become iac:>.lated, and thu.llie elated the next

tiae they are exercised by the recoaaauctioa lftUN. In this'

way, ent:be i•olatecl_ subtrees can be paauall.y •Ua:haated. (fte
''·~-~>>

case. in whidt such entd.•• are never 81d>...-t.ty mamciJNMl will

be diacu.&alcl. shortly.)

Thua,., ill addition to its nontl cl........, activitiff
'

(clut1:oyille 1mn0Nl.t Qltjecta. etc.), a •ll~ •••:I.a should
. ' ~.. t: _t .L.:::~ fo;~ ,·: :..:i:}_ ·.

revollia any wen1ellled capabilities t.o cleaa • • •·
'·'

Maila:rly. the prebln of cleaaf.asup af\u • eaacut:i.on,of

' an uade~ c1eaain involves deletion of •-• 1dect ,ob,j•t• and: 11ap

entries, follOIMd by deation of bhe 6-• itNl.filt .._leas can

arise if thtt faulty domain has diaearcW aU ~~11:Uiea for~:,

133

such object or map entry, which is then lost. A feature solving

the lost object problem will be described in Chapter 4, but it

would be expensive and cumbersome if used for every map entry. We

therefore allow map entries to become lost and require that recov­

ery from this situation be possible. This requires the revocation

of all capabilities originally passed to the faulty domain, thus

isolating the subtrees of map entries produced by its execution.

The lost map entries in these trees will never be exercised, how­

ever, since by definition there are no capabilities for them.

For the reason just cited, some mechanisnt. must be provided to
'> J /. ,· ,, ')

exercise lost map entries. Moreover, even for 1118.P entries which

are isolated but not lost, it would be helpful if their ·elimina­

tion from the map was automatic,· since it may be some time before

they are exercised. This can be accomplished by adding to the
"

base-level system a relatively saple operation of the form:

' which simply exercises the. I-th map entry by reconstructing its

capability. A low-priority background process (sometimes called a

"daemon" or "phantom") can now be constructed which uses t~e new

operation to slowly sweep through the map eliminating isolated map

entries. The rate at which this is done is a tradeoff between

minimizing the extra load imposed on the map machinery and maxi­

mizing the rate at -which map space is recovered.. Given generous

allocations of map space to the various accounts, the rate could

probably be quite low. The exercise operation is not available

to the users, since they have no use for it, but it is not at all

134

dangerous, hence the background process need not be trusted by

the base level system.

3.8 Possible Elaborations on the Design

There are several directions in which NCS as described in

this chapter could be elaborated. We here digress bfiefly to dis­

cuss four examples, arranged in order of increasing difficulty

of adding them to the implementation described.

A simple feature which might well be included in an actual

system allows examination of the relationship of two capabilities,

to determine if one is a descendant of the other in the same map

tree. This would be useful:

a) To determine revocability of one capability by another.

b) To determine accountability for unauthorized distribu-

tion of a capability.

This checking could easily be provided by an operation which simply

scanned from the first capability's map entry to the root (base­

level object) entry of the tree, watching for the second capability's

map entry.

Another feature, which has been mentioned previously, would

be the definition of other useful kinds of boxes in which to seal

capabilities. For example, a box in which two or more capabilities

could be sealed would eliminate the need for a small segment to

act as the root of a compound representation of an extended object.

This is similar to the scheme used in the HYDRA system [Wu 74].

On the other hand, its implementation would require variable-sized

135

map entries, thus significantly complicating the implementation of

the map.

A third rather interesting possibility is based on the obser­

vation that the masking of privileges by the revoke operation is

not an intrinsically irreversible process. One could just as easily

provide an 11unrevoke 11 operation for restoring previously revoked

privileges. Note that in this context, the use of locker boxes

takes on a new significance, since it not only prevents inter-user

interference, but also prevents the possessor of a capability from

restoring privileges which have been revoked from it. The only

major implementation difficulty with this feature is the impossi­

bility of automatically deleting tQtally revoked entries from the

map, since they may later have their privileges restored. This

would require explicit deletions of map entries, making the appear­

ance of the mechanism more complex. In addition, the whole notion

of unrevoking privileges cannot be described cleanly in terms of

the family tree model. Nevertheless, this feature could be quite

useful, since it allows increased levels of trust between domains

without necessitating the inconvenient repetition of the capability

distribution procedure. The whole notion of temporary revocation

could be quite useful, for example, in the debugging of locking

protocols in a complex multi-process data-base system.

The fourth possibility is similar to the previous one in the

sense that it attempts to preserve an established pattern of dis­

tributed capabilities while changing the meaning of those capabil­

ities. In this case, the change is to allow switching of the con­

tents of an extender box. This would enable a layer implementing

136

an extended object to dynamically change the identity of its repre­

sentation. Of course, care must be taken to avoid the possibility

of circularities in the map; this can easily be done by using the

first extension mentioned above to detect the case in which the

new representation is a descendant of the extender which is being

modified and signal an error.

The extensions described in this section could be added to

NCS without excessive difficulty, but for the sake of clarity, the

remainder of this thesis will assume that only the mechanisms ori­

ginally described in Section 3.4 are provided. The facilities

described in Chapter 4 would require some modification if any or

all of the extensions were in fact included.

137

. Chapter 4

Two Facilities Using the Nev Caeabilit7 Szstem

4.1 Possible :Facilities Usin&·GeneralizedBeaitng

The purpose .-of tbia chapter .ilvtorb.ri.dly qplor,a· -cwo examples

of helpful f acilit:les which can: :be conatructed._ Ulldltg the.' HCS

generalized sealing mechantsa daecribed tp Chap~r 3'. One is an

iat.provaaent to the baae""'levd:,,d~,-call-...cauuy· pi,eyiUing

selective revocat:ion .of capabiliJ:y. par',...:tera~,paased. on a· call

when the corresponding return occurs. -.fl1e:~,i& -an extension

providing. a new t-ype of object cal beet a dftectcmy;: wht-dr: allows

ste>ra.ge aad diatr:11:mtion Qf capabili.t.'8s :ia, a .. SIIMH: wh:l:cll is of ten

nau.ch more convea_ient than that praw.ded, by :titae:).ba:aa•level. ■ystem.

Other uaeful .facilities ,eouW aho, bei:4.af~; ill a similar

f asbioll. iPlauaibla examples might inc1-l1wh

a) An interprocess coDmunication facility prOYilling extended

object• called ••---1 ~ • • c,pab]e~- of ti;ansmitting

mea.age• coataiaiag -eapaliliti&a:- u.1:1.d aly until the

next llleseaga u received.

b) A reetal- •diat1oa aerviee, ,,..,.ran.teeiag to· the lessor

that priv-il.eges. Nill j,e. dYoked :apoa:; contract. expiration,

. that u.-..

These and other pou.ibtlitiea W!lll ae".lefct: ~ored ·here. The

point is simply that the •steel, oap.QiiU,t,· . .,,,... , allows the

alao make · use --of · t1le revocatiaa · p~rti.u prO!ldd.ee.

138

4.2 Revocable Parameters

There ar.e certain event.a which conat.itute natural points at

which to diatribut.e and revo1- ~twa. '1'ha ll08t obvious

exapl.- •• dlll occurrence of• d-1:D-cali:apd-:t:'be subsequent

correspc,mdin& return. Aa diacuued-,by 8d:11uader ESc 72], ·the

temporary grait11-g of accesa to pn-aaet• objects ie a natural

and ueful feature of calla :betl,elil --.au.-, .uapid.t>u.a -4auins.

There are -Other situatiom. ~ • ·ta 1llld.cll 1-t ia •amMCe.11sary

or ewm inappropriate 1.0 reveu all caputli,typaraeters ·when a

return occurs. la particular• • ,~~Y aotrect. .cal.ba to trusted

can 1:'e&ult in aubetaat:i&l .aa"rillp. tie tla.,.,_. propose a 110re

general --•attf- 1n which the caller aaa .,._fy,. for each para-,

meter puaed. whetber it 1■ to be,,....._ the calW domain

It weu14 probably M-P098i.bl.e te,provUe tl'lis improved domain

call .. -a eiwta•ion ratlae1; tt .. -an· .tatep:al pan of the base­

level system. Thia would recpdre ai•-all dollldll-calla and returns

(or at 1..-t all tlloee wtu.ca ilwol...t:. ary . ..-..ocat,le capability

paraMtera) be route4 tllrough tht• ..-.uo, Illich would be both

cl1.1118y ancl eoatly. We taerefore .._.,.:I.lie ~oceltle parameters as

being included in the base-level daaain.-call •chan1.am.

In tbe previou diacuaaon of·· iaar~ JMINUlg in Chapter 2,

we fOWIA it. -..ceaaary to specify die decaU. of the eopying of

capabil:lU.es fr• the caller's ad4r ... •pace to the allee' s

addreaa apace. Ia dia-.aina the IIOllifU.tieml a8C4Muy-to pro­

vide revocable parameters. we continue in the same fashion,

139

describing the implementation of parameter passing in terms of the

get_parameter and put_parameter operations used in the discussion

of TCS in Section 2.2.

When a domain call occurs, the caller controls parameter
1

,

r~vocation by pa.1si.n& • Boolean.vector R ~ an extra parameter,

each element of which specifiT whether the corresponding parameter

shoul-e ·be revoked upon ·Teturn.: Tile call thus has the form:

Call (Co,? l ;p 2 , ••• ,P n ,ll)

where R.(i] coatro-ls the l!'ev0Cft;i,on of Pi.
•' ,..

Revocation·of parametets·i• ~plemented using the same push-

down •tack whiell'"e,aves the r$'fn gate used to reactivate the call-. , ,~~ ,- ' - . '

.ing domain whtn the- callee..-re.tjltns. Thus, instead of just a gate

capability, each domain-call cC>tresponds to a pack.et of information

as shown in Figure 4.2-1. The first item is NR' which is the

number of capability pUametH'.8 to. be revoked,na-1 tlte l,ast item

is the return gate. Between them are the NR capabilities which

will be revoked when the return occurs. Figure 4.2-2 depicts the

domain-call operation, and resenab~es Figure 2.2-2 which shows the

TCS version. The differences CODlprise the steps necessary to save

the extra information in the stack. Each revocable capability

parameter is sealed in a revoker box; one copy of the sealed capa­

bility C is passed to the callee, and another is retained in the

stack. The discipline followed is thus that of Figure 3.5-2; seal­

ing of the callee's parameter in a locker is not necessary, since

it is not received by any other domain. Figure 4.2-3 depicts the

domain-return operation, as compared with the TCS version in

Top of stack

lnforution for
one call

'--

140

7
r

141

call(CG,Pl,P2, •.. ,PN _1 ,R) ,_ _____ P

I + 1

R + ~etyarameter(NP,Caller)

put_parameter(I,Callee,P)

I+ l+l

NR + 0

Yes

pus, R
-~ CG+ get_paraaeter(O,Caller)

Yes

C + seal(P,C k) . revo er
.pu.t~ter(l,Callee,C)

push(C)
NR + NR+l

Figure 4.2-2: NCS domain-call operation

142

return()

ENTER

No

C +- pop ()
revoke(C,O)
N +- N -1

R R

G + pop()

Yes

Figure 4.2-3: NCS domain-return operation

143

Figure 2.2-3. The added steps use the information in the stack to

revoke the appropriate capabilities from the callee before retriev­

ing the return gate and returning control to the caller. Note that

the revocation is total, and thus releases aap entries in an orderly

way, as discussed in Section 3.7.

4.3 Directories

The notion of a directory, catalogue, or name-table mapping

symbolic object names intp sQme form of internal object pointer

has appeared in most operating systems. The idea of a large
'

collection of directories arranged in a tree-structured·hierarchy

originated mainly with the Multics system [Da 65], and has been

adopted in several other systems ance that time [St 73, Co 72,

Ri 74].

A directory consists of a variable nUDlber of entries, each

containi~g a different symbolic name and a pointer to an object

(plus other information to be diecussed shortly). The assumption

* that a unique directory entry is created with each object, com-

bined "1.th the fact that directories are themselves objects, induces

a tree-structured hierarchy on the set of all objects in existence

at any time. The internal nodes are the directories and the leaves

are the objects of other types. Concatenating the names of all

entries along the path,fr01a the root directory to a given object

yields the tree~ of that object which uniquely identifies it.

The global tree-structured view of the universe of objects

* Except the pre-defined "root" directory.

144

can be useful in several contexts, such as aystea backup and
,J t ".l', '•'

. recovery, accounting, and, as described below. in solving the '

"lost object problf!ll, 11 but it is often more cot&Venient in other

contexts to 110dify this view in two ways:

a) To allow the establishing of several directory entries

for the same object.

b) . To allow general .e!!!!. names which can be interpreted as
1

,._
. ' ,' J.

starting in any directory, rather tbau only the root-
L,

directory.

Both of these features can be added v.lthout disturbing the under­

lying tre..,..structure, u long as tht! extra ent~1•• ("U.nlts") in

(a) can be distinguished from the oriaiA&l entriea {''bru.ches")

when this is desired. This trea~t of links as being full­

fledged directory entries, contrasts v.lth the Multics approach

in. which linke are merely·a re-naaing clevice and have no pro­

tection significance. We choose this approach to facilitate sub­

letting of rented objects.

In addition to naming, the directory syatea is useful for

purpow of access control. Attaching an !!;C••• .M:!! . to each
. . .

directory entry aids in the orderly distribution of privileges

to access abated objects. Each entry in the access liat eo11tains

a pair

which allows any possessor of a key matching the lock to obtain

the corrqponding privileges. (Of courae, the specifi-ea.tion of

the access list, like the creation and deletion of entries,

145

represents an access to the directory itself, and must also be

controlled.) The simplest example of a lock would be a user name.

A more sophisticated version of this is the "principle identifier"

used in Multics [Sa 74), which is a kind of three-dimensional user

name with more complicated rules for matching locks with keys.

An even more flexible scheme will be described below. Note that

in all such schemes, a user may not invent his own key(s), but

may invent any locks he chooses and apply them to his objects, as

discussed by Lampson [La 69).

In non-capability-based systems, directories are usually

implemented as base-level objects [Or 72, Ri 74), since their

access lists are generally used as the system's primary protection

facility. In a capability-based system, however, directories can

be implemented as a higher-level extension, providing symbolically

named "pigeon holes" for the storage and dissemination of capa­

bilities [Fa 68). This is an attractive organization, since it

removes from the base-level system all handling of symbolic names

and the corresponding variable-sized data structures. From the

point of view of the base-level system, the directory layer is

simply another user domain, although, of course, it must be regarded

as a trusted machine extension by normal user programs which store

their capabilities in directories. The desirability of providing

both directories and capabilities in the same system is convincingly

argued by Lampson [La 69).

The directory layer described below provides for storage of

any number of capabilities in each directory, one per entry.

Attached to each entry is an access list authorizing a domain to

146

obtain a sealed copy of the stored capabi1ity by executing

where CD is a capability for the directory (authorizing lookup
r." . ~'[

access), Name is a character striaa, ~ ,~. 1• a _gz_ capability.

The unique ID of the key capability 18 aatcbed aaa1,nst the locks
\ . :;

in the access list of the entry and the corrupoDding privileges

are returned in c. Subsequent.reduction of the privileges

authorized to holders of key CK ~11 r•~roactiv~ly reduce the

privileges in C, using the I.Ulde-rlying revocation mactiinery.

(Various conditions. such aa failure to f~an ~try with the

given name. or failure to find a lock ill tM ace••• list which

matches the key C~ cause erl,'ora to be •~~•d .. and no capaJ,ility

to be returned.) The use of freely diatri~table.capabilities as
' ; ~ :-,,,;

tbe keys authorizing directory looltupa allova the users to flexibly

and econoaically establish any group &UtboriaatiOI\ scheme desired
1, • ~ /. ,

by simply passing keys to each other. Reither the base-level

syste• nor the directory layer need take any explicit DQtice of
. ;, ·.• ~ ·,

such groups tLa 69, St 73]. More ccaplie•ted facilities auch as
{:. . ' '..

path name lookup [Da 65], multipl• directory aurcbirlg (Or 72, St 73]
,, , · 3~r'. . ;

and automatic lookup on first use of a •~lie •G81H (Da 68]

could be implanented in tel'11ls of this basic lookup priattive;
', ,., '. ar,; '. ' , ..

these will not be discussed here.

In such a directory system., there is no intrinsic distinction

• In term.a of base-level operatiOQ!I, this woul4·1,e written

C +: call (C~-,CD•--~C.:)

where Cc_ is a capability for a pte irtto the.directory layer
corrupoikl:ing to the lookup operation.

147

between the various directory entries conta~11ing capabilities for

a given object. For the reasons cited previously, however, it is

useful to distinguish one of the entries aa a branch and consider

the others to be links. In part-icular_, one can solve the lost

object problem. by guaranteeing that the branch exists for at least

as long as the -~ject~ This is -~Olll'1ished by creating the

object and the branch simultaneously, and having the directory

system, upon removin~ the branch from·
1

the directocy,. delete the

object (~fit still exists).

The tise ~£ 'branch~s to solve the lost object prob!.;; is rela-
·, . . ,; . • ,, • . , :; ·a l • ... , · ..

tively straightforward in the case of base-level objects and

directories. . By. performing the c~e~tion °~f·. ati. such objects through

calls on the directory layer which also creat~'~ ~irectory branch,

one can insure the e:u.stence,of a branch for qch new object.

When the branch is removed, the object can be destroyed by the

directory ·lay•, -e!thftr, 1n'temally· ;(ln tbcf-aase of· dl'rectories) or

by calling the appropr~ate operae:ton (le' 1:he cil84i of base-level

objects).

In the case of extended objects~ however, the situation is

more CQlllP]J.uted, for two reuai\a.:

a) l~ is ~Pl:O,PJ::f.llte --~~ ~~- d,:1.r~tory:i J+y;~ _tq pave

e!Ph~d~ in it an1,)a,10,rl..S~· ~., (e.~:-~"1-l~ on~ higher

layers.

b) New hip.er l,4?vel'. ex;~n~~4 typ,~ -Cal\, .1;>:e 4,t~e4 at any

time..

nie.e ~~!deratiD~. J~r imp~aillle .. ~:-,~~top; ,Q:tsuch objects
I .''

0
- • • • ,• ' ,: , , .-,. ,< :t - '..,. r, ,- a, ;' ' •,if ..i,. .,4

148

approach to their deletion when a branch ia removed.

When a higher layer creates an extended object X and wishes

to take advantage of the ~irectory syatea to keep X from becoming
I
I

lost, it can do so by executing

This creates an entry in the direct.ory incli~ted by c
0

• The

entry has naae Name and contaW CX, a capability fo:r the new

object. In addition, the entry bolds c0 , a capability for gate

G into the caller (i.e. the laye~ :iapleaeatiag the ob~ect). When

the branch ia later removed f roa the d1~t~ • the cU.rectory sys-
·,

tea guarantees to execute

The gate G should correapond t.o the·· del•t4.on .. PpHat-1oa for objects

of the extended type, lleace thia '8· ect\liYaleot 1:0 ..

Of course, it is the respon-sibil:f.ty af · the ·ia,er iapl.-Ui:ing X

to insuri tut this call does f.n fact ~lt in the ·deletion of X.

The directory layer' a only cont:eTD is tat tt 111bst be prepared for

anything which may happen between the tia lt perf!ras the call

* ' ·-• ' ~ated uae of the ab branch opedttvn specifyin& the saae
object X would cause the directory atructvre to 1fail to be a
tree. This a1ght be of eoncem to layer• at or ttbove the level
at which X was impleliented (although it certainly -.u14 cause no
1:roale tor · the ·directoty 'layerl!' · ti '·~ tilfpll!lldt!al the ob­
ject could protect itaelf from this ai~uation if, t- ulte branch
operat:im were moct:l·fied t-o require' U" utn' p4u:...-c:-,; c,_., - a
capability for the type of X, aa authori&ation to u1N a branch
for X.

149

and the time the callee returns. This could include various types

of errors, blocking of the process, and even further calls on the

directory layer. The straightforward way to handle this is simply

to have the directory layer complete its part of the branch removal

and then exit to the object deletion operation via a jump-call as

* described in Section· 2.2.

It might appear that the calling of the higher layer object

" d~letion operation by the directory layer violates the ordering

constraints of layered system construction. This is not really

the case, however, since this call do,s not represent any knowledge

of the higher layer embedd$d in the directory layer. Such "blind"

upward calls are quite similar to hardware "traps" or "exceptions."

The other directory layer operations of interest are:

make_link (~,llalle,Sc)

ra19ve_entry (~ 1-limle)

set_lock (Ci,.,N ... ,L,P)

CK+ create_key () ·

create_directory (CD,Naee)

delete_directory (~)

The make_,,.link operation establishes a new entry in directory D,

containing Sr and nued Name. The rea.ove_entry operation

removes a link or a branch. In the latter case, it performs

object destruction as described above. The set lock operation

establishes a new lock on the named entry in directory D. The

lock is L (i.e. it can be opened us:l.ng a key with capability-ID• L)

* We ignore the extra complications involved if object deletion is
allowed to fail.

150

and it confers the set of privilClpa P. The create_key ope1ra­

tion simpil.y returns a capability of type 'key' with a. uew unique

capability-ID. The create_direetory operation establishes a'new

empty directory as a s011 of directory' D (i.e. pointed to by a

new branch in D with naae Nam&). The clelete_directory opera­

tion deletes the directory D. This require• re110Val of all .
entries from D, including any branches for other directories

which muat thus be deleted, and so on. In other words, the entire

subtree rooted in D must be traversed alMl deleted. Thia coapli­

cation .is beat postponed until a higher level utility program,

hence the directory layer can simply retuee to delete a non­

empty directory.

The implementation of directories as described is relatively

straightforward. Each directory is rapraauted as a sepent, con­

taining antries fOftlatted as ill B:l:SUN 4.3-L The oriainal capa­

bility C and the entry name are preeent when the entry is first

created, alona with the deletioa-gate,capaMlity in the case of a

branch. S\'ibaequent use of the eet_lock operation proceeds 8.41

shown in Figure 4.l-2. Pirat,the look is added to the access list

if not already present, together with a capability to hold the

privileges corresponding to the lock. Thia capability is created

by sealing the original capability CX in a re,,oker box. Then

the privileges in the capability are revoked down to the desired

le"el. Note that in the case of applyina the set_lock operation

to an already existing lock, any 01.ltataading capab.ilities previously

obtained via that lock uaing the lookup operat:L-oa will altto have

their privileges revoked. Finally, if the l:!ID'oe&tien lfU total

~•,ic'?-,;,,,,..-: .. •,~~¾<s,,;,·•c,Cti!>•,·,;.¢,,,.,;;·,'•;·''"~;,;f"'S,lf,"i~,~;"1',(,J>•"'~• ,;'~$'."'.~~~-~~1Jfl! .. J,Ji\,l'l/!'Jil!)sf!IIJlll'.l~~!ll!••••~•~~~il!IIJt~-~••',"""
. . ,'' - ., ~-· ' ' · .. '·;, :\- . " . ', .

151

deletion gate capability* I

symbolic ll8D!,e Mame

access list

1"in branches,,Onl,Y

ftguTe 4;3~1:. A di_rect9n
1
entry

·•. ' '..,,"' ~

152

set_lock.(CD,Name,~,,P)

1'
, ENTER

~, r +' :tbde.x ot :
L i11 ,a~c,.,f lj.ii~

'

No

EXIT

bad

. IUOR

DROil

rtQIOV& <LI'Ct>

,froa acceaa liat

Figure 4.3-2: The set_loc~ operation

•

153

(i.e. P = O), the loc~ ie del~tod froa the access list. (Such

total revocation is ~lso performed o~ each lock in the access list
,., ·,,; ~! ·" :.• :,-;. ·.., ~~ ,.:- ~=-- ,:;; J

when the entire directory entry is removed. This is another exam-

' .
ple of orderly use of the underlying up •chin4i,f;.'1;u discussed

'"The lootrop 'o;i-rttiott;1, upcm ;tf,dd~g"~'~,:~iy,: searches

the access 11.a'f'for 'a '1:oc'k lliateftfirg tti•'1>fo'f&rr6:t't~} · tf-~·one is

totmei; ·,the cbirnpoddfng ::~~ifty?bi;wiW· in'•"a, loc~ · tiox and

retunaed'to·'elit1 'c•i1iier. ,. ·1fnuj;•:1t!W-'~-~ lot'-1:he ' ~.: .. Jock

', and L loolitp' < opeiatfons ·ta dltittfW6oo ':of eMl.wt'lities !fo'llwing

the ,cfi.icf-ft,tfne'iof figure' 3; 5•5 F q '' ' b · · • :; ·" " - · • ' ,-11 • ·, ' :

. ': ·the•· cidH_ley -''operatioa'1.8'';11Utt'e-Hai:tl'
0

·td i.-.ll#iearent. It

. would >'Ii~ ;nfcety capt::ured·lt.f thj ·if:aile ieal?!Air of :;ail 'empty extender

box.,
10

Lacti11g·;tfffs·•fac:llfty, 1tlut cftrectar1':f!.yft 6m simply seal

anf·tmiidy ~abilttj,, s±nc:!e 'o~y 1fhe<cbt'eriWl:''jpjWl'ai.tnce of the

new'"by capabil'ity'-is >j!jttff:t.edt;· ,,,-. ",; ?I,; , ' ; ! !

· · - T!ii .: dire~ l.«ye"r '.ftis't' 114'fiatttbed 111r ~flty ~h• be's-t exam-

. p le of '"'the 'ltilid' of •1uafful , exten'.ftoffil '1litdh 0''cft 'llJe ''e8ti~c ted using

the RC! 1test'ed ;c«pafnl'.fty ~tilnha/:·•,~tt';idrldea;wfttllil)' useful .
features for, :tbM,:u•«4ri"af i the ·iJ.);tii, ,jet-, ff• iltrii...-nta't'fon is

·. reMe~~ rei•tfvi1y t••!atJl'.• ·Sy-~& t'lpottii.1:W tbi '~«fljing; lase-

tevii · 1;ui11d,1ig' :-.I ,-nt•€d:cnf'faefi1etei~d; '1) c,-1,:uc'

.5.1 Sumaq,.

154

·chapter S

Suwg and Conciue~

This thesis has discussed integra.ted ~• -4 .,p_i;~t•,etion

. mectwuas f.or Cotlll)utu s,•t••, p~~ p~,.~ .aaaea ealled

. capabiliti .. which ho.th i.deQtify: aA obj.ec~ ·&04 ,:au~r,ize _~ceas

to .it. A major adv•taae of ~biti~~ 1a _dta t~i•_i,U.ty pro­

vided by their be.in.g freely copy.aole. A-corr~W,~advantage

in existing_~ability _aysc..-a bas lteell.t1'ie,4U:fi~ty of .revoking

previously distributed capabilttiea •. :J;l:Mt -.1.u ;J:'4~~~ .f_f this
. ,.,•,·'. - . " ,e, _..,_.,' '·· :" .. , .· -,- ..

theaia haa- be~ the dea1p of a c~U,t, •t;,ea p~.idina both

.free distribution and orderly revoc,.U.~. of ~,it:l~ieap •. Various ·~ . . ' - - ,,... . ' . .{... - . ~ ~ •",

capability sealing mechaniaa of C1a9ter _ ~,,-. fl~ tQ ,~t these

goals, providi,ag aelect~ve revoc.-.eioa,i~ ~~~i;1••~ as well as
~ . \ " ',

a fl~ibl.• -·~ \extueion facility~ . 4 ~1•~ .. ~~~tion of

tile deaip .__,, diacuesed in .suff ~:L••t •~1 .~ <~~t~ate its

prae:ti~it:.f.• Various ~•i~le •l•bo~µ~All J~ clefl~;were

also 4ia~. CRB.-tttr .4 d•~~i"- 1 ?',(> ~.-:~.;t,j,es '. QJ~J~I

revocable capabilitieJ to ~he aeed,e ,of -.~. in ,g-.c;j,fic; .. w4ys.
' -. •. , , .. , _,,,1-.- .. ,,, ,.,_, ,;, . "

S.2 An .u.ea for Further Research

In terms of the facilities provided, the naming and protec1;ion

mechaniau described in this thesia appear to be a sound basis .

upon which .to build a secure and flexible uaer environment. In

~~" . ..'/·c;~•,..{1,-.►t;.>~:•< :~';:::{t:· -.

155

particular, the provision of revoca\>.le cap4,bilities eliminates
- r -;· .: -· { J .! .'.-

one of the main objections'often made to ~pability-based designs

[Sc 72], thus making the propoeed design •RPli¢able in a wider
.,_,'(1.t ., '

class of situations. One could thus characterize the thrust of
~·~ · J -~. ; ·;. .

this thesis as an attack on the flexibi~~.~~ '.aspect of the pro-
• , - i- ,, . . •.

tection problem,

On the other hand, the the$ia does not make any direct attack

on another more general aspect of the prot~ction pr9ble111 which one

might call the C<?!J>rehensibilitl, of prote<:tion aechaili~ms. ·
' . ; '. ·1 ' '. '. -. - ~ . • ' .'I ' ·, ,, ';;c ~. - : .

Experience indicates that protection mechanisu which are confusing
;,;, s' . -~ ~ , ... ,, ~ ·:.~ ~-, .• ,: ~.··? -~, '..;; -•'\, ,_ . ,·: '

to users are likely to be misused, or even go unused [Sa 74, Sc 72).
': .. ' to:: 0 1:' ~ ·,,;:,;:·':, ' '·

Even the uset who correctly applies a confusinJ protection feature
' . ~, .

may feel no great con£ idence that it enforces ~,~s fn,~_~11tions.

There are at least three ways in which protection systems can be
, '<i ·i -~ ,. .. .

confusing:

a) They can be based on a disorderly set of ~eparate but
;;. . ._,n -.

interacting mechanisms.

b) The relevance of the mechanisms to specific situations
. ' t,

can be obscure.

c) The correspondence between global ~t~fe of the protection

machinery and the desires of the users can be difficult
. J- '·C

to asaess.

A £,ir amount of progress.has been_~~ 011 J?roblt!lll (a). The
'··. .{ ,; .·_; -:·, ,; ,, .

early proliferation of ad hoc p~otection mech~isms was a major
. -.. -. - . ., . ·' ..:

motivation for the original de-o-elopment of capabilities (DVH 66),
'. ··,,,; 'r

as well as later more.abstract treatMntS bf i,.aapson [La 71],

Jones [.Jo 73], and others. On the other ~,.strict minimization

156

of the set of primit,ives wii1 not neceaaartly ci~rify the deacrip-
~ . '. ' £~ . . • .. .· . - "> -' ' '

tion, especially since it may eucerbate p~l- (b). For exaaple,

our unification of privilege revocati~ and type exte~aion in a

single aechania, while itlt~reating in itself ,"
1

,;_, :or may not repre­

sent a net ., iticreue · in t~. comprebeaeibi11~y o~f the da~i&n.

Problelli (b) is caused by the gap - o"it-.;, quite broad.
. . .. i,·.d1 _; -"' : .• .:·:

between the concerns of the h181&n uaer■ and the aecbauams provided

by the protection system, 1n• c:~*- ~(..4i1~~;~hey ~t apress

those concerns. Of course, t:lr6 ua,t''~ aot deal ~n1y with the
' ~ t' ~ ,' ~; ; ' , •.. --. ;.,. . '~~ ,;;

protection primitives of the systea; varioua extensions, such as

'• < • \: ~;~,,· !~-.. '.-;,;. ···: /'-<;

hQWe'"r, in atteapting to capture the int:eracttoaa bet.len users
';,.-, '.')..,," J :::-~..::.: .,l.i-.~ ,Z..

seen. ·in the larger social context. Thia ia due in part to tlie

imprecision of many legal" and .~w pri.Ki.ples,1 ~e~it1n1 from

their implicit reliance on the re&8C>I\Ul~ jwt~t of the parties

involved, a characteristic aacuy'"~t~, ia,:~t -tera. Mlach

work remains to be done in mappi,1 ~h,prladples iato the pro-
• •• , < ' 1 . -' -.' . ~·: ~. ··;.'·z't'
tection priaitives of computer ay•t- [lo 74, Pe 74, Tu 74].

Problem (c) is perhalJs the 110t1tclifficult of the three.
" • .. ; --- ! .• ,. ;_, - • • .• ;_ •. "::. . . :·;, \

During our discussion of capability aec:ban~, we emp~ized
. ' , -. > {::: (··:r; [' , .,\ a... '{ ~; ~. ;·,,. > t ':;_ ,.,t :·,;-.

the desirability of allowing distribution aed revoc4tion of capa-

bilities without requiring glo-1 ~l of euch p_t'opaption oa

s the. part of ~ p~tti.cipanta
0

:'i:J'~t lloh,'fl~lidg. la SOMU.aea

C • \ -L· . '•, " .- :.~ ·: i. :~ ,,;_, _/:--;-: < ;_, ... _''({' ~ ~ :

desirable for its own sake, boWvet. NoNOV'er, ftea if the entire,

state of the protection machine~· is visible (1'1\l;h can itself

raise seri~ q\lesti.ons of privacy); the f\dl etpifi.eaaee of that

state cannot be assessed without knowledge of tbel.-veis of trust

157

and suspicion between the various possessors of access privileges.
\

This appears to be a very fundaaental problem, and it is not clear

what appro•ch (if any) will prove fTtiitful in dealing with it.

5.3 The Putureof Protectibn

Much work remains to be done in the area of protection. In

the long run, 'protection will contribute to the development of

generally available computer utilities in at l~ast three ways:

a)· By faeilitating the chwel.oplaent of extremely large soft­

ware systems, such ·as, soph1:s\:icated ser\Ti~e programs,

and the operating ay~•· .~.ltbe computer utility itself.

b) By protecting the investment• of users who develop large

·proprietary progralis atrd/~ data bases, thus providing a
' ' ? ,';_,,)

suitable 111&rketplace for such aervic~s.

c) By enforcing sod.a1·~1•·• the dissemination of

. stored . information ..

Given the diffi:dul:t}' and iaportance of the probleas to be solved
~ '" 'C 1-· ~ '":.H ::.:..

protection proidsea to be 81\'~tiltle ~ea of research for many

years to come.

[BCD 72]

[Bo 67]

[Bu 61)

[CC 69]

[CV 6S}

[Co 72]

[Da 65]

[Da 68)

[DF 65]

[DVH 66]

[De 65)

158

Heferences

Benaoussan, A., Cingeu, c.T. and Daley, R.C., l'The
~~I.GS y~.tual •~)'.: ;q~tll;,~ ~ign," Comuni­
cations of the Aaaociatiosi for · ·· tin Machine ,
Vol. 15, No. 5 May 1972, pp. 308-318.

Bobrow, D.G. and Murphy, D.L., "Structure of a LISP
aystem uaing two-le.vet atoraae," c~••tions of the
Association fs ~ffl,Jl!ellptq,. YoJ.,. 10, lo. 3
(March 196? j , PP :f~ ~ · · ... - · ·

Burroughs Corporation,· "The deacriptor -- a definition
of ti\e B.$000 io.fo~t~ ,,~~ ;11yJt.eia.'' Detroit,
Michigan (1961). · ·

Computer Center, University of C-alifornia, Berkeley,
c.i ... ;rss uer, -~. (1969),.

C<n-bato,. F.J.,.qd V~~J~.J .. A., "Introduction and
overview of the MULTICS ayatea. 0 AIXPS Confereace
f,:09951~-J.9§,\ lf.1,\ .J9481'8!1>!tet eoiilerenc•, Vol. 27,
pp. 1 5-1 6. .

Cosserat, D.C., "A. capability.oriented m.tltiproceesor
ay:s~. ;.or ~-1~t.1- ~.1.ipr~r.• •~, ICC Conference,
Washitlgton, D.C. (<>etober 1 72, 8 pp.

-: •.. J;.,,:,· ·.· '

Daley, R~c. and Neumann, P.G., "A general purpo8e
file, .~t• fo,r ... a,~l; ,.-cwaae l~, ?roceec:U.ng• AFIPS
196S. Pell Joint §o19!t•t 9e!!f•ence, Vol. 27, Pt. · I,
AFIPS Presa, :~,..;B,t,1,.,,..:.V• 21~-230.

I>aley, &.C. 8Ad ~1-.. .. J -"--'"Y• l'Vic,ttµU .-ory, processes,
and sharing in MULTICS," .CC•uncat!,gnf of the Aaaocia­
tiqA W 1r.'u.u •• c!bfM.MP.,1 ~ol. 11, lo. 5 . (May 1968),
pp. 306-31 . ,~

. ' ; ' ,,

David, E.E. and Fano, R.M., itSome thoughts about the
social implications of acceaaible computing,n AFIPS
Conference Procettdi:91!,l96S Pall Joint Co!tn!ter
Conference, Vol. 27, pp. U,-241.

Dennis, J.B. and VaQ. Horn, E.G., "Prograaaing semantics
for multiproaramed · cOlkpUtations,." · ('!o,au,ic.atiom of the
Association for C9?!tttf 9!h1-.g:, Veil. §, No. ,3
(March 1966), pp. 143-lS.

Dennis, J.B., "Segmentation and the deaign of 1"Ulti­
programed computer systema .'' Jourul of the yaocia­
tion for Coen>u.t,itlg !l!S,hil'len, Vol. 12, Ro. 4 (October
1965), pp. 589-602.

[De 68]

[Di 68}

[Di 68b]

[En 72)

[i'a 68)

[Fa 74)

(Pe 73}

[Fr 74)

[Gr 71]

[Gr 72]

(Gr 73]

(Ha 70}

[BEW 73)

159

Dennis, J.B., "Progra11111ing generality, parallelism, and
computer architecture," Proceedings IFIP 1968, North
Holland, Aaste'Cd.a111, pp. Cl-.7. ,;

Dijkstra, E.W., "Cooperating Sequential Processes,"
:la Progr,aain& :W!Pl!!I!• (~. ~uys, ed.) , Academic
Prus (l.968),. PP·• 43~112. ,;

Dijkstra, E.W., "The atr®tur~ of the~ multiprogranllling
a.ya tea," . . , . . . ,. ciatiOD f Ot

Mfj;hinett .. , , ... · .. · .. . 68 , pp. 341-:34 •

EnglaAd, D.M., "Architectura.L,.fe•turea ,et System 250,"
J11fotech State of the Art bP9i:t on Operating Systems
(1972), .12 pp.

Pabry, a.s., "Preli■i-ry.d~iption of a eupervisor
for a· machitie 0Jieqt'4 8:fl~,1,1qAlrPf P&bilities," ICR
Quarterly Report 18"(~t. 1~), ICR, University
of Chicago. -

Fabry, ll. S., "Ca.pci11t1:-ba•~: addressing.'' Communications
of .;l:be Assoc14",ioo ot i Machiner , Vol. 17,
No. 7 (July 197~), pp. · 03.;41 •

reuatal, ~.A.,. t'~ the adv..._!I• of tagged archi­
tecture," Im ~-.,ct&e!e-Jt:!!!!lPl:'ters, Vol. C-22,
No. 7 (July 1973), pp. 644-65.

l!'rankstoD, a.M., "Th4a comp~. ,utility as a. marketplace
for. c:oapute}:' servkea,," J.>roJ~,- MAC Report MAC-TR.-128
(1974).

Graham, G.S., "Protection structui:-es in oper~ting
systems," M.S. thesis, University of Toronto (1971).

Graham, G.S. and D91U11ns .. , P • .J .• , tlProtection .. principles
and practice," Pr99eedi91!:,@IPS 1972 Spring Joint
CO!J!'!ter Conference, Vol. 40. AP'IPS Presa, Montvale,
N .. J., pp. 411-429.

Gray, J.B., IBM San Jose Ja~rch Laboratory, private
communication.

Hansen, P.B., "The nucleus of a.multiprogr.-iiig system,"
co..pi9ti011S of tb•M•9!:Lt\f4on for C2!J>uting
Mach.1.!:!:!!X• Vol. 13,,: ~- 4 (Api:i1r 1970) , pp. 238-250.

U.S. D~partment of Health, Education, and Welfare,
••aecom, computers and .,:t. -~~ghte of eiti~ens," Report
of the Seeret4"y's Advisory· ao..n1ttee on Automated
Personal Dllta Systeu, Washington, D.C. (July 1973).

[HP 73)

[Jo 73)

{La 69)

{La 69b]

(La 711

[La 73)

[La 74]

[Li 73)

[Mo 72)

(Mo 73]

[Ne 72)

[leu 74}

[OT 72]

[Pa 72)

160

Hoare, C.A.R. ~ Pe'troH, 'I.It., ()per•till& Sf■te_.
Tecm:ii9,uea, Academic Pr•••• ._, York, It. Y. Ji73) .

, : : .1 .., , . ~ , : >· ; i- ·;. : • • ";: '"' ~-{ I

' ' '~ ' '

Jbnisri, A.X. • ''IY.oaa~ 11;l• ~-- syat81118,"
Ph.l>. thesia, Carbegft.,.lloli'Vilt'Nraity (1973).

L-,.on,· 8.W.,' "l>ynaat~ .~ a~tuiree, 0 ProcHd-
. ~-l.969~ b;tl~ •• 'ff. Col\fer•c•. Vol. 3S,

· et11. .,.tvala7 · '•:· • ..g. ·.

Lapa&b, B'.W.~ ·tth on~-·~ the CAL 'tianharing
•111t•.,. :Cmlpute't Cftter"/biif.Vft•tty of California,
Berkeley (1969). . '

Morris, J.H., "Authentication t~•: the
1
.Pr~er division

of h,frdwarllfsoftware res,-.11,ll.ity" (;1972)-,· uapubliabed.

·Morris, J. H. • ''Types •~ not Mta," AQI $11!PO•iua ·QR
P;rt11eipka of Prctr~ 'Mnila••• to.ton,· Ma••-:
(Oc't.-· 1973).~ • ') i:

tt.edhaa, R.M. ,· tiprotft~ -,.ie._ .and protection

1Jip. ·1~ntatto11a, ". ?no.Jr•· a,•i;Joint
~r''Oonf•~. .· ' -'' ' lit ' . ' ' ' ~} tvau, s~ J ••
PP• 571-578. · · · , .. , ·. · ·· .~ e: :.>

Neuarm, P·.G. et al, •'db ~''a.tlign of a ~ably
·..-. 0,-,atiltl qa~!!:...._.1 Pape. itIA Inter­
~lbul WOt'Wbiop on ~~ in Operatti\• Syat ... ,
Parts (Au,uet l:974). · ·

Orpn1ck, &.I~, The~<!Z'!tq: izt, Ex.fllination of
its ~tucwr•• ~ ~1t;1

tiiiiiirtd .. , •••• (19:72).
' ~ / C ' "'.~ • •

'~):•r·~,, ,:~•~/•·
• • ·.•• "--r

[Pe 74]

(Po 74]

[li 74)

[Ro 74)

['Sa 66)

{Sa 74]

'[Sc· 71]

[Sc 72]

[SS 72]

[St 73)

('l'u 741

[Wu 74)

161

Peuto, B.L., "Comparative study of real estate law
and protection systeme, '' Ph.I). thesis, University of
California, is.rkeley (1974).

Popek, G.J., "Protection structures," C9S"ter, Vol. 7,
No. 6 (June 1~74), pp. 22--33.

litchie, D.M. and Thompaon, K., "The WIX ttme ... sbaring
syet•," CQ111111nictU.o• of ~- Aaffli.-tion fo:r . G!!futi!g
Machinery, Vol. 17, lo. 7 (5vly ,197), pp. 365-375.

Rotenberg, Leo J. , ''Making coaaputera keep aecre ts , "
Pb.1>. -thesis, M.I.'t, (1974), ~c,ject Ma\C bport
MAC-'tl.-11S. · '

S.ltzer, J.B., "'tr,af:fic control in• DlUltiplexed
CQlllputer system, 0 P)l.D, thesis, M~l. T. (1966), Project
•-.C B.eport M/lC-Tl. ... 30. -·

Saltzer, J.H., "Protection and
aation sb4lring in MULTICS,"

aociatiOll for t ·
Ju y 1974 , pp •.

the control of infor ..
tiona of the

, Vol. 17 , o. 7

Sc~oeder, M.D, 1 "P•do1■ 1or.e of the G&--645 associative
--~ while ,MULTI.CS is :I.a otet'l.tion," P~oceeclial!
WorkShop on Sy•tea hd1;-s1,t t,duaticm, Caiiibridge,
Mus. (19715, pp. 221•2 . · ·

Schroeder, M. D. , '"Cooperatioa ofC mutually auapicioua­
subqate• in a coaputeT utillty~1' Pb~J. thesis, M.l.T.
(197,1), Project HA.C leport NAC-.,..104,

Sc::ib~, M.D. and Sa1taer, J.B., "A hardware •rchi•
tecture fOT ta.pl · ·· tt m~ca ...
ti0ll8 of the
Vol. 15, No. 3 .

Sturgis, H.E., "A poatllOrtea'for a t1-sMl'ing ayatea,"
Ph.D. thesis, Uq,iveraity of C41ifo~a, Berkeley (1973),
Xeroi,: Pile Tecbniul Report 74-t-1 ...

Turn, R., "Privaoy and aecurtiy in perac:m.u information
databank ayat-..," aa. a.port Jtr-1044-181 (1974),
land Corporation, Santa No11ica,, Calif.· ·

Wulf, w. et al, "HYDIA: the kerael of a a,iltiprocesaor
operating system," !:H !IKl4at9. ·. of the 9eocia£ion
for ~t!!,& ~~1-!'f, VOl. , llo. 6 ((tme lt74).
pp. '~34,. .· ' ' '

i

BIBLIOGRAPHIC DATA 11- Report No.
SHEET MAC TR- 140

J. Recipient's Accession No.

4. Title and Subtitle

Naming and Protection in Extendible Operating Systems

s. Report Date: Is sued
Nm,i:>mher 1974

6.

7. A uthor(s)
David D. Rede 11

8. Performing Organization Rept.
No. MAC TR- 140

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts 02139
l 1. Contract/Grant No.

12. Sponsoring Organization Name and Address

Office of Naval Research
Department of the Navy
Information Systems Program
Arlington, Va 22217

l 5. Supplementary Notes

16. Abstracts

2641
13, Type of Report & Period

Coverec : Interim
Scientific Report

14.

The properties of capability-based extendible operating systems are described,
and various aspects of such systems are discussed, with emphasis on the conflict
between free distribution of access privileges and later revocation of those privilegei
The discussion culminates in a set of goals for a new scheme. A new design is then
proposed, which provides both type extension and revocation through the definition of
generalized sealing of capabilities. The implementation of this design is discussed
in sufficient detail to demonstrate that it would be workable and acceptably economi­
cal. The utility of the proposed capability mechanism is demonstrated by describing
two facilities implementable in terms of it. These are: (a) revocable paramters for
calls between mutually suspicious subsystems, and (b) directories providing a
civilized dedium for the storage and distribution of revocable capabilities.

17. Key Words and Document Analysis. 17a. Descriptors

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group

18, Availability Statement

Ap!K'OVed foT Public Release;
Distribution Unlimited

FORM NTIS·35 IREV, 3·721

19, Security Class (This
Report)

-TTNC- I A '-<i;IE IEO
2U, Secunty Class (This

Page
UNCLASSIFIED

THIS FORM MAY BE REPRODUCED

21, No. of Pages

166
22. Price

USCOMM·DC 14952·P72

