
~1111 T /I_CS/Tll-21-30

Af\J IMPLEMENTATION SCHEME

FOR ARRAY OPERATIONS IN

STATIC DAT A FLOW COMPUTERS

Gao Guang-Rong

This blank page was inserted to presenie pagination.

An lmplrnwnlation Scheme for Array Operations

in Static Data Flow Computers

by

Gao Guang Rong

© 1982 by the Massachusetts lnstitl!le or Technology

May 1982

This research was supported by the National Science Fondation
under grant MCS-7915255

Massachusetts Institute of Technology
I ,aboratory of Computer Science

Cambridge, MJ\ 02139

- 2 -

An Implementation Scheme of Array Operations

in Static Data Flow Computers

by

Gao Guang Rong

This report was
submitted to the Department of Electrical Engineering and Computer Science

on 13 May 1982 in partial fulfiHment of the requirements for
the Degree of Master of Science

Abstract

The mapping of array operations in V AI. programs on a static data flow machine with array
memory is studied. The flow dependency graph is introduced as a model of array operations in VAL
programs. The balancing and optimization of the flow dependency graphs is presented. The class of
well-behaved VAL programs which can be modeled by flow dependency graphs is specified.
Schemes for pipelined mapping of forall and for·iter array operation constructs in well-behaved VAL
programs are formulated

Thesis Supervisor: Jack B. Dennis

Title: Professor of Electrical Engineering and Computer Science

key words: parallel processing, flow dependency graph,

pipelined computation, data flow architecture, functional programming.

VAL.

- 3 -

Acknowledgments

I am gratefully indebted to my thesis supervisor, Prof. Jack Dennis for the freedom of research

throughout this work and his guidance in the fonnulation and development of this thesis. Without

his encouragement and patience, this document would not be possible.

I wish also to thank Prof. Arvind for his interesting suggestions and discussions during this

research.

I am grateful for the very friendly working atmosphere and active academic environment of the

Computation Structure Group at MIT. I would Jike to thank Clement Leung, Dean Brock, Bill

Ackennan, Andy Boughton, Ken Todd, Kashev PingaJi and Willie Lim for their encouragement and

discussions. I also thank Nena Bauman for her critique on my draft of this thesis.

Finally, I am grateful to my friends, my parents and family who always provide me with

support, encouragement and love.

-4-

Table of Contents

1. Introduction .. 6

I.I. Programming Language VAL .. 7
1.2. A Static Data Flow Machine Architecture ... 8
1.3. Instruction cells ... 10
1.4. Pipelined mapping of array operations .. //
1.5. Structure of the thesis ... 15

2. The flow dependency graph and its application ... 16

2.1. Flow dependency graph for VAL programs ... /6
2.2. Balancing of flow dependency graph .. 19
2.3. Transformation of a balanced buffering graph of a FDG 26
2.4. Reducing the buffering of a balanced FOG ••• An algorithm 32
2.5. Well·structured FOG .. 38
2.6. Optimization of well-structured FOG ... 43

3. The Mapping Scheme for for·all and for·iter array Operation Constructs . 53

3.1. The strategy of mapping forall constructs ... 53
3.2. Well-behaved forall constructs ... 56
3.3. A mapping scheme for well-behaved forall constructs ; 6/
3.4. Implementation of FIFO on a static data Dow machine : 65
3.5. The problems in mapping of for·iter constructs .. 71
3.6. A New Scheme for Implementing For-iter Array Operations 73

4. Conclusions 82

4.1. Summary of the thesis ... 82
4. 2. Suggestions for furthur research .. 82

References .. 84

- 6 -

1. Introduction

As the use of computers expands in .scientific areas, the demand for greater levels of computing

power has risen rapidly. To meet this demand, enormous efforts have been put into two major areas :

the improvement of hardware technology for the increasing speed of computations; and the design of

appropriate machine architectures for parallel processing.

Although many advances have been made, the appetite for computing power has not been

satisfied. Scientists continuously find new applications which beyond the capacity of our most

powerful computers. The improvement of hardware technology has certain physical constraints.

Conventional multi-processor machine architectures also have some problems. Among others, a

serious problem is to devise a suitable scheme to program the data communication between parallel

processors. The sequential nature of conventional languages and machine architectures has proved to

be not quite successful as an adequate and practical approach.

Researchers have been searching for new machine architectures. Data flow concepts have been

proposed as one promising approach. Several data flow machine architectures have been designed

and studied. New high level programming languages have been designed as appropriate tools for

describing both algorithms and their mapping onto the processing and memory resource of data flow

computers.

Array manipulation often forms a major part of scientific computation. As a result, efficient

mapping of array operations in a high level language onto a suitable machine architecture is a crucial

consideration in language design and implementation.

This thesis is a study of the mapping of large scientific computations onto high performance

data flow computers. The study is based on the high level programming language VAL, intended for

expressing large scientific programs for data flow computation.

This chapter will proceed with a more detailed look at the programming language VAL (section

1.1), followed by a description of the static data flow machine architecture which is the form of

architecture assumed for this research (section 1.2). Section 1.3 presents the form of machine code

assumed for the proposed data flow machine. A general discussion of array operations in the context

of data flow architectures, is presented in section 1.4. Finally, section 1.5 will give a synopsis of the

remainder of the thesis.

- 7 -

I.I Programming Language VAL

The programming language VAL [l] is a high level language designed particularly for

expressing algorithms to run on computers that are capable of achieving parallel execution, especially

those machines based on data flow architecture. VAL is also a functional language which lacks the

concepts of storage, or rather, makes them hidden from the programmer. In VAL, variables are

treated differently from varibles in conventional languages. When a variable is declared in VAL, it is

assigned a value which it retains for its lifetime. This is called the single assignment rule.

The basic programming unit in VAL is the function. Both the input,; and the outputs to a

function should be explicitly declared. When a function is called, arguments are passed to it and a set

of one or more values are computed as the result It is interesting to note that a function is

guaranteed access to only those argument values, i.e., no global variables are needed. Furthermore, a

function will not change the argument values because VAL is side-effect free. The body of a function

consists of expressions. Usually, these expressions are built using the let-in, if-then-else, forall,

tagcase and for·iter constructs of VAL. These expressions are also side-effects free.

One important feature of VAL is that it provides implicit concurrency (operations that can be

executed independently are evident without the need for any explicit language notation). This allows

programmers to focus on the presentation of the algorithm, meanwhile the concurrency can be easily

identified by both compiler and reader. This is a very desirable feature, since, in a data flow

environment, execution speed depends heavily on a programmer's ability to write programs that

contain large amounts of concurrency. It is impractical to ask programmers to specify all concurrency

explicitly in the program.

The main target of the mapping of VAL programs is the data flow computer. The machine

level program in a data flow machine is a data flow graph. The nodes of the graph represent

operations; the directed arcs represent data paths. The execution of such a graph is based on the

firing rule. An operator is enabled as soon as all its input values are present The execution (firing) of

an operator will consume input values and put output values on each of its output arcs. Figure 1.1

shows a data flow graph representation of a VAL function which computes the sum of squares of two

values.

There are many interesting features in the VAL language. This thesis concentrates on the

implementation of array operations in VAL language. To be more specific, among the array

operations in a VAL programs. we are only interested in those which can be expressed by forall and

for-itcr constructs. A general model for a certain class of VAL programs containing such constructs is

introduced in Chapter 2. A detailed discussion of the mapping scheme forms the major portion of

- 8 -

MULT

0 11
-

A I -
--

ADD

o I 1
. -
~ ~

- X
~

MULT

o I 1

B I -
-~

Figure 1.1.

Chapter 3.

1.2 A Static Data Flow Machine Architecture

Figure 1.2 diagrams a static data flow machine with array memory. It is an extension of

Dcnnis-Misunas Form 1 Data Flow Machine [4) to include an array memory.

This machine architecture is static in the sense that the instructions of machine level programs

are loaded into specific memory locations in the machine before computation begins, and only one

instance of an instruction is active at a time. In a static architecture, resource allocation is decided

mostly during compile time in contrast to other proposed data flow architectures [17) where most of

resource management is done at run time.

The system consists of four parts : processing elements (PE), junction units (FU), a"ay

memories (AM), and routing networks (RN). The whole system is a packet communication

architecture [5), and there are two kinds of packets in the system : operation packets and result

packets.

Processing elements are used to hold the instructions of data flow programs. When the

operand values of an instruction have arrived, the instruction is enabled. The execution of an

enabled instruction will send an operation packet to one of the routing networks. If an enabled

instruction calls for a scalar arithmetic operation (a floating point addition or multiplication, for

example}, the corresponding operation packet is sent to a functional unit capable of performing that

operation. If it calls for an array memory operation for building array values or accessing elements

of arrays, the corresponding packet is sent to the array memory. Instruction execution in a functional

PE

PE

operation

packet

Memory

RN

- 9 -

FU

t-------i.-i AM

1-------i.-i AM

FU

result

packet

PE : processing element

AM : array memory

FU : functional unit
RN : routing network

Figure 1.2.

result

packet

unit or array memory unit yields result packets each of which consists of a data value and a

destination field that specifies the target instruction for the result packet. The result packets are sent

to the processing elements that hold the target instruction through the distribution routing network.

The use of packet routing networks in data flow computers is discussed in [6].

The array memory units are provided to hold arrays of data values and are accessible from any

of the processing elements. For the static architecture, we suggest a one-level memory organization

rather than an multi-level memory hierarchy.

In general, the array '1}emory is constructed by several memory modules. The total size of the

array memory depends on the application. To simplify the addressing mechanism, we assume that

- 10 -

the number of memory modules is an integer power of two. All memory modules arc identical

asynchronous packet memories. The use of FIFO buffers is important to the mapping schemes

developed in this thesis; their implementation is discussed in Chapter 3.

1.3 Instruction cells

Todd proposed a set of preliminary machine instructions for a static data flow machine which

is being designed at MIT. A list of the operation code for the elementary scalar operations can be

found in (16). We will use this instructions set and augment it with appropriate array memory

instructions.

An instruction cell consists of followingfields :

(1) opcode : operation code

(2) operand: the place to hold operands values

(3) destination : the addresses of target instructions where the result of applying the opcode to

the operands is to be sent

(4) control information

Each destination address is simply the address of an instruction to which the result is to be sent

For each destination address, there is a use field. One part of the use field specifies whether the

destination cell is to receive an acknowledge [16) or a result, and in the latter case, specifies to which

operand to sent the result Another part is used to provide for switching between alternate

destinations under control of a third (boolean) operand.

An instruction cell has another important field which contains the number of acknowledge

signals that the cell must receive before it can be enabled. When this number reaches zero, it assures

that all the destinations are ready to accept the result, so that the instruction can be fired again. This

number must be reset after the instruction is fired. An instruction also contains the information

necessary for resetting.

In addition to the scalar instructions, we also suggest two instructions for memory operations,

i.e., read and write as shown in Figure 1.3. The read instruction has only one operand. i.e., the

address of the memory location to be read. When executed, it will send a read instruction packet to

the corresponding array memory module through routing networks. The write instruction requires

two operands : the address of a memory location and the value to be written into that location. When

fired, it will send a write instruction packet to the corresponding array memory module where the

value part will be stored in the specified memory location.

Besides the read and write instructions, we also need some other machine instructions to assist

- 11 -

READ

address

WRITE

a ddress - ~ .
value -.

INDEX

index - ~ .
pointer

~

Figure 1.3.

implementation of array operations. For example, to check that the array index is within the

subscript bounds, we introduce the index instruction, also shown in Figure 1.3. It has two operands,

the first operand is the array index value (an integer), and the second is a pointer value points to the

starting address of a block of storage in array memory. When the index exceeds the array bound, the

undef value is returned as the result. The index instruction is usually used together with a read or

write instruction to assure that any address sent to an array memory module is within the intended

array bounds.

In this thesis several notations will be used to denote machine instructions as shown in Figure

1.4. The reader can find more detailed description of those notations in (16).

/.4 Pipelined mapping of array operations

Numerical computation usually involves operations on arrays of data. Problems such as those

found in weather forecasting, nuclear physics, thermodynamics, and seismology always seem to

exceed the capabilities of conventional architectures. Despite these demands, however, the kernel of

such problems is typically more structured than that of other applications. Mathematically, such

OPCODE

a I b

OPERAND 1

OPERAND2

(1) without gating power

a : acknowledgement needed

b : reset value

OPCODE

OPERAND 1

OPERAND2

(3) abbreviation for (1)

- 12 -

Figure 1.4.

OPCODE

a I b I c

OPERAND 1

OPERAND2

OPERAND3

(2) with gating power

a : acknowledgement needed

b : reset value for ture

c : reset value for false

OPCODE

OPERAND 1

OPERAND2

OPERAND3

(4) abbreviation for (2)

problems can usually be expressed in linear algebra with all elements of rows or columns of large

matrices manipulated in some identical fashion. A typical piece of a VAL program for such problems

is shown below.

- 13 -

B: array[array[rcal]) : =

forall iin[l,m+l],jin[l,n+l]

construct

if i = 0li = m + I Li = 0 Li = n + 1 then A[ij]

else0.25*(A[ij-1] + A[i,j+l]

+ A[i- lj] + A[i + lj])

endif

endall

In conventional computers the concept of array is explicitly related with a block of memory

locations, and the transformation of array values is done by making successive replacements of

element values in the array. In data flow computation, we take a different view, i.e., a computation

constructs an array value from other array values, scalar quantities and constants. Two

representations of array values are used in a static data flow machine. Array values may be hold by a

group of destination arcs at some moment or carried by one arc as a sequence of values at successive

moments. These two ways of representing array values illustrate the basic space/time trade-off in

structuring machine code for a static data flow architecture.

Computer architects have long resorted to a series of design techniques that are classified under

the general term of concurrent operation. Within this general category are two well recognized

techniques parallelism and pipelining. Parallelism emphasizes concurrency by replicating (often

exactly) a part or the whole computation structure (hardware, instruction cells, etc.) many times.

High performance is attained by having all structures execute simultaneously on different parts of

the problem to be solved. Pipelining, the main interest of this paper, takes the approach of splitting

the function to be performed into smaller pieces or stages. The data will flow through the stages of

the pipeline at a rate that is independent of the length of the pipeline and dependent only on the rate

at which new entries may be fed into the pipeline. In a data flow computer, the scheme of pipelining

is very naturally embedded in the machine architecture which will be explained later.

An array of values may be produced (or consumed) either in parallel or in pipelined fashion. In

this thesis, the strategy to implement array operation is pipelining. The author has been studying a

typical application program, i.e., the GISS weather code (8), which is of interest to NASA. A subset

of the code is translated into VAL. Array operations are used extensively in the program, but the

structure of the array computation is static, that is, all the arrays manipulated in the program are

fixed in size, and their dimensions are not changed during runtime. The substantial parts of the array

operations are readily expressed using VAL forall constructs. There are also array operations

expressed in for-iter constructs. We will study the pipelined mapping schemes in the later chapters.

- 14 -

To sec how pipelined execution is realized on a data flow machine, a simple example of data

flow machine code is shown in Figure 1.5, which corresponds to the following expression :

X : real : = ((A + B)*(C + D) - 2*E*F)

It is observed that successive sets of values can be fed into the inputs and be computed by the

graph. In a static data flow machine, an instruction cell must not fire again until all results sent out by

the previous firing have been consumed. A data flow graph having the above property is called safe

and the data/acknowledgment pair is proposed to ensure safety of the execution (14).

The major interest of this thesis is the pipelined mapping of VAL array operations on a static

data flow machine. To achieve maximum throughput of a pipeline, we need to solve several basic

problems (From now on, we will use maximum pipelining or full pipelining to describe a pipeline

with maximum throughput, although no definition is presented until section 2.2.1). First, not all data

flow graphs can achieve maximum pipelining. Second, for those that can be fully pipelined the graph

often requires some transformation. Third, we always want to do the most efficient transformation to

A

B

C

D

E

F

2

~

~

~

. -

-.
~

ADD
O I 1 -

MULT
o I 1 . -

~

ADD

o I 1 - SUB

0 11 X
~ ~

MULT MULT

0 11 0 11
-

,---,.

X = (A + B)*(C + D) · 2*E*F

Figure 1.5.

- 15 -

achieve the maximum pipelining. In the rest of this thesis, we will study these problems in detail and

give appropriate solutions whenever possible.

1.5 Structure of the thesis

Having cstabiished a basic background, we proceed to study the main topic of the thesis.

In Chapter 2, we will study the global structure of a class of VAL programs in terms of array

operations. A model of such VAL program is developed. TI1e balancing and transfonnation schemes

to achieve maximum pipelining for the suggested graph model are formulated. In chapter 3,

mapping schemes for VAL forall and for·iter array operation constructs are studied and developed.

Different implementations of FIFO buffers, which are very important for these mapping schemes,

arc discussed. Then, the class of VAL program which can be modeled and handled by the techniques

developed in this thesis is specified. Conclusions are presented in Chapter 4 along with suggestions

for further research.

- 16 -

2. The flow dependency graph and its application

In this chapter we will develop a model for studying array operations in a class of VAL

programs. We know that the global structure of a VAL program is a set of function modules. The

only means for a function module to communicate with other parts of a program is the defined inputs

and the returned value which must be explicitly declared in the function header. In tl1is thesis we

focus our attention on intra-function rather than inter-function flow analysis, since the results derived

may be extended to the latter case. Furthermore, we are only interested in array construction

operations which are expressible using forall and for-iter constmcts. The forall construct in VAL is

provided for the situation that all clements of the array being created can be computed concurrently.

The for·itcr constmct is designed to correspond to tail recursive function definitions. It can be used

to express the situation where data dependency exists between successive elements of the array being

created.

In section 2.1 we will introd~ce the concept of flow dependency graph to study the global

structure of VAL programs. Under certain assumptions, the flow dependency graph is a very good

mathematical representation of the global computation structure of a class of VAL programs. This

class of VAL programs will be characterized in section 2.2. We will show that to achieve high

throughput, buffers should be introduced to balance the flow dependency graph. An algorithm for

balancing an acyclic flow dependency graph is presented in section 2.3. The issue of optimum

balancing for such a graph is also studied. However, we have not found a good general algorithm for

optimizing an arbitrary acyclic graph. What we do is first define some transformation rules necessary

for reducing the amount of buffering in a flow dependency graph. Based on those rules, an algorithm

is given which can decrease the amount of buffering considerably, yet no guarantee is given that the

result is optimum. Then, in section 2.5 and 2.6, we concentrate on a special class of graph, namely

well-structured graphs, and show that a good algorithm does exist for their optimization. Some

theoretical results about the complexity of these algorithms are formulated.

The schemes ·introduced in tllis chapter are only a first step towards a general solution for the

balancing and optimization of the pipelined data flow programs. However, the author hopes this

work can reveal some important information about the key problems and can serve as a hint for more

satisfactory solutions.

2.1 Flow dependency graph for VAL programs

A flow dependency graph is a presentation of the structure of a VAL program. We first state its

definition :

Definition. A.flow dependency graph (FOO) is a directed graph G = (V,E), where:

- 17 -

(1) V is a set of nodes corresponding to VAL program components which can process (i.e.

produce or consume) array values,

(2) Eis the set of dependency arcs (edges) which express the data dependency between pairs of

nodes.

note : all nodes in the graph are value producers or consumers or both. In this thesis we assume

they correspond to fondl and for·itcr constructs.

We also need further terminologies to describe the graph, most of which are similar to those

used in graph theory (9).

An edge (u, v) is called an input (or incident) edge of node v and an output (or adjacent) edge of

node u. If (u. v) is an input edge of node v, then nodes u, v are called the initial node and tenninal

node of (u, v) respectively. The input degree of a node is the the number of its input edges, and the

output degree is that of its output edges. A node is multi-input (or multi-output}, if its input degree

(or output degree) is greater than one. The set of input edges of a node is called its incident edge list

and the set of adjacent edges of a node is its adjacent edge list. A path is a sequence of edges (e1,

e2""'ek) such that the terminal node of ei is the initial node of ei+i· We call the initial node of e1 the

start node of the path and the terminal node of ek the end node of the path. Also, node u is reachable

from v if there is a path from v to u.

'Ibe dependency relation between these nodes of an FDG is defined as follows.

Definition Let A, B be two nodes of a FOO. Node A is dependent on B if Bis referenced in A.

The corresponding arc in the graph will be denoted by a directed edge from A to B.

It is important to clearly characterize those VAL programs that can be effectively modeled by a

FOO. This class of VAL program has following feature:

(1) All arrays in the program are static, le. array bounds are compile-time computable

constants.

(2) All array construction operations in the program are expressible by forall and for-iter
constructs.

(3) For all array constructions represented by forall and for·iter constructs, good schemes exist
for mapping them into fully pipelined data flow machine codes.

A VAL program which satisfies above criteria is called a well-behaved program.

Note that in above formulation we are sloppy in using the word "good scheme" for mapping of

pipelined data flow graph. It is the author's intention not to go into details of the internal structure of

nodes in a FOO at this time. Using the abstraction of nodes, we can study the global structure of a

VAL program more easily. In Chapter 3 we will define a class of forall and for·iter array operation

constructs which can be efficiently mapped into pipelined data flow graphs. We also will develop

general schemes for such mappings. Consequently, we will present a more fonnal definition of

- 18 -

well-behaved VAL programs at the end of Chapter 3.

From above definition, the FOG for a VAL program has two types of nodes :

(1) forall node (will be called F-nodc). It corresponds the forall construct which constructs an

array.

(2) For-iter node (will be called L-node). It corresponds to a for iteration loop which constructs

an array.

Since F-nodes and L-nodes will produce arrays, we often use the names of those arrays to name

the nodes. For example, a F-node produces an array A will be named node A or simply A.

We should point out that our notion of well-behaved VAL programs is applicable to many

programs in numeric computation. The kernels of such problems are typically more structured than

those of other applications. Following is an example of a well-behaved VAL program. Figure 2.1

shows the corresponding FOG.

Function (A : arrayfreal] return array[real])

let

B: array[real] : = forall I in (1, IM]

construct 5 * A[I] + 4

cndall;

C : array[real] : = forall I in (1, IM]
construct exp(A[I], 2) - 7

C

Figure 2.1.

- 19 -

cndall;

D: array[rcal]: = forall I in [1, IM]

construct

endall;

if I = 1 then B(I]

clscB[I] + B[l-1]

cndif

E : array[rcal] : = forall I in (1, IM)

construct l/2*exp(B[I],3)

cndall;
F : array(real] : = forall I in (1, IM]

construct C(J)*D(l)*E(I]

endall;
in F

endfun

A few remarks are in order about the difference between the "flow dependency graph"

developed in this paper and the "data flow graph" used in many publications (21(3). Both concepts

arc introduced for pre-execution data flow analysis and aimed at optimizing the mapping of higher

languages to their machine level representation to improve the efficiency of program execution. But

the two approaches are different. The data flow graph is mainly used to analyze the conventional high

level languages (Fortran, ALGOL, etc.), and it is based on the control graph (13] which is like the

flowchart scheme, and is not directly related to the actual data flow in . the program. Our concepts

are based on the functional type of language, where program execution is the evaluation of

mathematical expressions. So nodes in the flow dependency graph are nothing but mathematical

value producers or consumers, and the dependency arcs represent the abstraction of real data path. I

strongly believe that for functional languages, the FDG is a more straightforward and adequate

model for the representation of the computation structure. In particular, if the target of the

translation is a data flow machine, the FDG model will become extremely powerful because it is just

the "higher level" data flow program for the machine. We will show that the proper reduction and

transformation of the flow dependency graph of a VAL program will directly help to produce

efficient machine code.

2.2 Balancing of flow dependency graph

In this section we study the issue of flow balancing for a FDG and present an algorithm for

balancing an acyclic FOO.

A key parameter in determining the performance of a pipeline is the latency, or minimum

number of time units needed for separating two successive values of the. same input of a pipeline.

Another measure is the initiation rate of.a pipeline, which is the number of values which can be fed

- 20-

into the input of the pipeline in one time unit. The goal of balancing a FOG is to increase

throughput by modifying the graph to allow for maximum pipelining. Let us consider the

consequence of presenting the input of the graph with sequences of array elements. We hope that the

processing of a second value can begin before the output of the previous value appears, with the best

situation being that consecutive array values can pipeline through the graph with the highest

initiation rate.

Before proceed to formulate the FOG balancing problem, we should define the criteria of a

pipelined graph more carefully. As stated above, we are interested in mapping well-behaved VAL

programs on to a static data flow machine, or more precisely, the Dcnnis·Misunas machine [4). An

arc of a data flow graph in such a machine is a data/acknowledge (d/a) pair. It has been shown that a

graph with such arcs guarantees determinate (safe) and deadlock free (live) operation [14). We

assume that the arcs in our FDG model are also such d/a pairs.

Now we are ready to define the time scale used to specify the performance of the pipeline

corresponding a FOO. We assume the reader is familiar with the notion of firing of a node in a data

flow machine. Note that the nodes in a FOG which corresponds to a well-behaved VAL program

are defined as those that can be mapped into fully pipelined machine level program for a static data

flow machine. As pointed out before, this is a software pipeline with each stage being not a hardware

circuit unit but an instruction (operator) of a data flow machine. In general the data flow graph

operates asynchronously, however we can analyze it by assuming somewhat synchronous behavior.

One important assumption is that during a given unit of time all enabled operators will fire and

produce a result In the context of Dennnis·Misunus architecture, the repeated firings of any

particular operator should progress as follows : an operator which fires at time one should receive

acknowledges from its successive operators during time two, reenabling it to fire during time three.

We will call the above time delay the execution time of the operator. In a real data flow machine,

different operators in a pipeline will have different execution times. The distribution of execution

times is implementation dependent. We will not study these details , but simply assume that the

delay time in the pipeline is the maximum execution time of any of its operators. This is taken as one

basic time unit. Under such assumption, the execution time of any operators in the pipeline can be

regarded as a constant (one basic time unit). A graph is maximum pipelined (fully pipelined) if the

delay between an operator's firing and receiving acknowledge signals is one basic time unit On the

other hand, if a graph is limited pipelined, the delay between an operator's firing and receiving

acknowledge signals may be several basic time units.

The FOO for a real VAL program may be very complex. The stages making up a node in the

graph may have different execution times. 'lbe number of stages in each node is also different All

these factors make the balancing of a FOG not a trivial task. However, we will show that for some

important classes of FDGs good balancing algorithms exist and are useful in compiler design. As a

conclusion, we summarize the basic assumptions about FDG's for which we will develop balancing

algorithms in the following sections. These assumptions are :

- 21 -

(1) It corresponds to a well-behaved VAL program

(2) It is acyclic. All its arcs are data/acknowledgment pairs and the nodes obey the firing rules

as defined in [14).

(3) The execution time of any stage is a constant, called a basic time unit

A few remarks are necessary for these restrictions. First, to study the balancing of a

well-behaved FOG, it is enough to know the number of stages in each node. In a static architecture,

when a mapping scheme for a particular node is chosen, its stage number is fixed and is known to the

compiler. We will call it the execution delay of the node. Second, no good algorithm is known which

can balance a general FOG with cycles. Third, we may think of the arcs in a FDG as the

data/acknowledgment pairs in the Dcnnis-Misunas machine, which is very important for the safety of

the program. However, we arc not interested in the implementation details of the arcs. Instead , we

simply assume such data/acknowledgment arcs are used so the graphs are always safe. Finally, these

do not include all the assumptions, we will introduce more while developing the algorithms.

It should be stressed that the assumptions presented in this section will be used throughout the

rest of the thesis.

2.2.l Formulation of the balancing problem

Consider a simple FOG as in Figure 2.2, which consists of nodes /, A, B and C. Suppose the

number of stages of nodes /, A and B are 3, 4 and 6 respectively. Since all arcs are

data/acknowledgment pairs, the graph is safe in the sense that no arc can have more than one data

token on it. The interesting and problematic issue arises when presenting the graph with a sequence

of array elements. There are two paths from I to C (see figure), le. path 1 and path 2. Observe that it

takes 10 stages before an input value arrives at node C through path 2. Node C can not be fired until

all of its inputs are available. As a result, the second set of values can not be fed into the pipeline in

10 time units, because only one value may exist within path 1. So the minimum latency of the graph

is greater than 10 stages and the maximum rate is less than 1/10. While the safety avoids the internal

conflict of the pipeline, it also imposes severe restrictions on the degree of concurrency. To eliminate

this undesirable behavior so that successive values of an array may pipeline through the graph with

path 1

input
path2 output

A B

Figure 2.2.

- 22-

maximum throughput, we introduce some buffering in certain arcs such that they can hold an

appropriate number of value tokens. For the above example, if we introduce in path 1 a buffer E of

10 stages delay, the "length" of path l and path 2 will be balanced. Thus, the latency of the graph

will be decreased to one, and full pipelining could be achieved. The resulting graph is shown in

Figure 2.3, where buffers are represented by boxes.

Now we are ready to give a formal description of the balancing problem. Our discussion will

be restricted to the one-in-one-out acyclic FDG (i.e. the FOO has only one input node and one

output node). The extension to an arbitrary FDG is addressed in the last chapter. We first introduce

the concepts of a weighted FOO.

Definition A weighted FDG G' = { V.E. W} corresponding to a FDG G = { V.E1 is a weighted

directed graph where Wis a function from E to the set of non-negative real numbers.

One sensible way to convert a FDG to a weighted FOO is to assign weights to each of the

output (adjacent) edges of a node such that the weight assigned to an edge equals to the stages of the

corresponding node. For example, the weight assigned to arc (i,J), i.e. ¾{_i,J) equals the number of the

stages of node i. In Figure 2.4 we present the weighted FDG for the graph in Figure 2.2.

We also define the cost of any path to be the sum of the weights on all edges in the path. As a

result, the cost of a path from node i to node j is the time needed for a data token to travel along the

corresponding path from i to j.

Definition Let G be a FOO with input node z and let p be an arbitrary multi-input node of G.

If the cost for any two different paths from z top are equal, then G is called a balanced FOO.
Otherwise G is unbalanced.

It is easy to see that the latency of a balanced FOO equals one, that is maximum pipelining can

input

A

path 1

E
path 2

Figure 2.3.

output

B

- 23 -

path 1

3

path2

3 4 6

A B

.Figure 2.4.

be achieved, thus we have the following theorem.

Theorem 2.1 A balanced FOG can achieve the maximum pipelining.

Unfortunately, most FOGs of user programs are unbalanced. To transform one into a balanced

graph, appropriate buffers must be introduced. The procedure to modify an unbalanced FOG into a

balanced one by introducing buffering is called balancing of the FOO. A FOG is optimally balanced

if the balancing procedure introduces the least amount of buffering.

In the rest of the chapter we will discuss the following questions :

(1) Is it always possible to balance an arbitrary acyclic FOG? If so, what is the algorithm?

(2) Is it possible to reduce the buffering necessary for balancing of a FOO ? What is the

transformation needed ?

(3) ls it possible to define a special class of graph such that a good optimization algorithm exists

? If it is, what is the algorithm ?

(4) What is the complexity of the algorithms?

Unless explicitly stated, our further discussion is concentrated on the kind of FOO which

satisfies all assumptions introduced so far. We will show that polynomial time algorithms exist for

such problems, and the results are summarized in theorem 2.2 to 2.6.

2.2.2 An algorithm/or balancing of FDGs

In this subsection we will answer the first question, that is we will give an algorithm which can

be used to balance any acyclic FOG. From the definition of a balanced FOO we can note that the

key of balancing a graph is to make different paths from the input to any particular multi-input node

have equal costs. The most convenient places to introduce buffering are the arcs which are input

edges of those multi-input nodes.

- 24 -

Intuitively we can travel the FDG starting from the input node and examine the cost of the

paths to each multi-input node by following a depth-first search strategy. lbe cost for the paths from

the input to all nearest multi-input nodes are recorded. Then a comparison is made and the

maximum cost of the paths for each those nodes are found. Then we can compute and add

appropriate amount of buffering for all other paths to balance the parts of the graph which have been

traveled and proceed to walk toward the further multi-input nodes. Eventually, the whole FOG will

be balanced.

The balancing algorithm we will present can be applied to any acyclic weighted directed FOG.

Let G = { V,E. W'} be a weighted FDG. Let M be the set of all multi-input nodes in G. Starting

from the input node, we walk though the graph according the following : an edge (v,u) is processed

and placed in a set T if node u has not been previously visited when we arc at node v considering

edge (v, u). A stack is maintained which will remember the cost of a path from the input node to the

most recently visited node. The push and pop operations of the stack are defined as usual, and

top(stack) is the top element of the graph. We assume for each node v E M, a cost list C is

maintained which can record the cost of paths from the input node to v. For example, C(u, v) is the

cost of the path from the input node to v where the last edge on the path is (u, v). We use B to denote

the buffers for balancing the FOG, i. e. B(u, v) denotes the buffer on edge (u, v).

An algorithm for balancing a FOG is given below.

Algorithm 2.1 Balancing of a directed FOO

input : A FOG G = (V. E. W) represented by the adjacency list L[v]. An incidence list /[v] is also

maintained for each node v, where v E V.

Output : A balanced FOG G' = (V. E: W) with buffers added to the incident edges of multi-input

nodes.

Method The recursive procedure SEARCH(v) adds edge (v.u) to Tifnode u is first reached during

the search by an edge from v. We assume top(stack) and elements of C and B are

initialized to 0. The entire algorithm is as follows :

1. T+-0;

2. let z be the input node

3. do SEARCH(z)

4. construct a FOO G' = (V.E. W), where

w'(v,u) = w(v,u) + B(v,u)

end

The following is the recursive procedure SEARCH(v) which does a depth-first search of the

FOO starting from v, locates the buffers for balancing and computes the amount of buffering

needed
SEARCH(v)

begin

- 25 -

5. for each u E l,[v] do

6. if (v,u) (/:. Tthcn

begin

7. add (v,u) to T

8. push (top(s) + »{v,u))

9. ifuEMthcn

10. C(v.u) = top(s)

11. if for all (x,u) E /[u], C(x,u)

are defined then

12. let R = max{ C(x,u) I (x,u) E J(u]}

13. for all (x,u) E /[u] do

begin

14. B(x,u) = R - C(x,u)

15. top(s) +- R
16. goto line 19

end

17.

18.
else

goto line 20

endif

endif

19. SEARCH(u)

20 pop

end
21. endif

endfor
22. end

It is easy to show that G' is a balanced FOO.

Proof of Algorithm 2.1 First. we claim that the algorithm will terminate. A call to SEARCH (v)

will test all possible output edges of a node in its adjacency list (line 5,6). When an edge is not yet

included in T, it will be put in T(line 7). Then a test is made to see if the node is a multi-input node.

If it is, a check is done to see whether the cost of all of the paths from v to this node has been

computed. If it is not a multi-input node or if it is a multi-input node with all path costs computed, a

recursive call to search the terminal node is executed (line 19). Otherwise, the algorithm will

continue to test the rest of the edges in the adjacency list of v, if any exist. Since the graph is finite,

eventually all edges wi11 be included in T and the algorithm will terminate.

We claim that G' is balanced because the costs of each of the paths from input node z to a

particular multi-input node are the same. This is true since the algorithm checks the cost from z to

each of its nearest multi-input nodes and introduces the right_ amount of buffers at their incident

- 26 -

edges (line 12 - 14). Then the algorithm proceeds to balance the path from those nodes to still further

multi-input nodes etc. This leads to the following theorem :

Theorem 2.2 If a FDG is a directed acyclic graph, then it can be balanced using Algorithm 2.1.

Now let us study the complexity of Algorithm 2.1. Assume the number of nodes of a FDG is n.

lbe time spent in SEARCH(v}, exclusive of recursive calls to itself, is proportional to the number of

vertices adjacent to v. Since G is acyclic and (v, u) is put in T the first time SEARCH(v) is called,

there is only one call for each v. Thus the time spent in SEARCH is O(e) where e is the number of

edges in the graph. We know that if an acyclic directed graph has n nodes and e edges, then e <
n(_n- I)/2. Hence we have the following result,

Theorem 2.3 Algorithm 2.1 requires O(n2) steps to balance a FDG with n nodes.

Before closing this subsection, we introduce a concept which is useful in the subsequent

discussions. In general, we have :

Definition Let G = (V.E. W) be a weighted FDG and GI = (V.E. WI) be a weighted graph,

where the weight WI corresponds to the buffering introduced on E. Then GI is called a buffering

graph ofG. Furthermore, a FOO G' = (V.£, W) can be composed from G and GI such that

w{u, v) = M(u, v) + wl(u, v)

IfG' is a balanced FOO, then GI is a balanced buffering graph forG.

When drawing a buffering graph, we usually leave the edges with O buffering unlabeled.

A balanced buffering graph can be easily constructed from the result of Algorithm 2.1, in which

all the buffers are attached to the input edges of some multi-input nodes. In general, we say a

buffering graph is normalized, if all its buffers are located on the input edges of some multi-input

nodes.

Figure 2.5 shows the result of applying Algorithm 2.1 to a FOO. We will proceed to discuss the

transformation of balanced buffering graph for a FOG in next section.

2.3 Transformation of a balanced buffering graph of a FOG

As stated in the introduction to this chapter, the way to balance a FOG is not unique. There

may be several balanced buffering graphs for a FOG. For example, Figure 2.6 shows a different

balanced buffering graph for the FOO G in Figure 2.5. We can see from the example that two

balanced buffering graphs for the same FOG can be very different both in the position and in the

amount of buffering introduced. So we need the following definition.

Definition Two buffering graphs are equivalent with respect to a FOO G if both are balanced

- 27 -

G

G : a weighted FOG

G' : a balanced buffering graph for G which is the result

of applying algorithm 2.1 to G

total amount of buffering is 98

Figure 2.5.

buffering graphs for G.

G'

It is possible to transform a balanced buffering graph for a FOO by adjusting the position and

amount of its buffering. If the result of the transformation is an equivalent buffering graph for the

same FOO • the transformation is an equivalent transformation. It is easy to prove the following two

lemmas for equivalent transformations of a FOO.

Lemma 2.1. If in a transformation of a buffering graph, the only changes are :

(1) Combine two or more buffers on the same chain together to form a new buffer which

has the same stages as the sum of those buffers.

(2) move a buffer along a chain

(3) a combination of (1) and (2)

then the transformation.is an equivalent transformation.

- 28 -

Another balanced buffering graph for G in Figure 2.5

The total amount of buffering needed is 45

Figure 2.6.

Note: A chain of a FDG is a directed path such that the incoming and outgoing degree for all nodes

on the path is equal to one, except for the start and end nodes of the path. Furthermore, a chain is a
pretty chain if the only buffer on the chain is located on the start edge (i.e. the edge adjacent to the

start node).

Figure 2.7 sh6ws an example of applying lemma 2.1.

Consider the case where vis a node in a buffering graph which has two adjacent arcs (v,u1),

(v,u2). The buffers associated with them are b1 and b2, with h1 < b2. We may transform the FOO by

replacing the two buffers by two new buffers c1 and c2~ where

cl= bl

c2 =h2 - °I
The result of applying the above transformation is shown in Figure 2.8.

We can easily extend this transformation to t:l}e case where a node has multiple outputs. Let v

be a node with n output edges (v,u1), (v,u2), ... , (v,u
0
). The buffering associated with each edge is b1,

G1

G2

G3

G1 ,G2 and G3 are all equavalent, G2 and G3 are results of

applying lemma 2.1 to G1

Figure 2.7.

G1

c = b
1 1

V

G2

u 2

C = b- b
2 2

G2 is the result of applying lemma 2.2 to G1

Figure 2.8.

by .. ,bn, where

bl S b2 ~ ... ~ bn

For comenience, we use following notation :

cl= bl

c2 = b2 - bl

en = bn - bn-1

u2

then we can do a transformation as shown in Figure 2.9. For simplicity, we will call this a serializing

tramformation. Sometimes we need tn add some switch node to the buffering graph as shown in

V

- 31 -

G1

I
s1 s2

C1= b 1 C = b- b
2 2

Sn 0 -c-~t----b---b-➔►H 1-------►----

n n n-1 u n

G2

G2 is the result of applying lemma 2.1 to G1

Figure 2.9.

- 32 -

Figure 2.9 (node sl' sr>· The resulting buffering graph is equivalent to the original one if we think

of the switch node as one which has no effect when counting the cost of a path passing it. Now we

have the following lemma.

Lemma 2.2 A serializing transfonnation is an equivalent transfonnation.

The proof of this lemma is obvious and is omitted

If we define the number of buffers by counting the edges on which buffers arc introduced, then
it is easy to see that, in general, the number of buffers may not be changed by applying a serializing

transfonnation. However, the total amount of buffering is considerably reduced. In fact, the total

amount of buffering reduced equals (b1 + b2 + ... + bn_/ Applying the rule to an extreme case

where b1 = b2 = ... = bn = b, we end up with only one buffer where the amount of buffering equals

b as shown in Figure 2.10. Both the number of the buffers and the total amount of buffering are
decreased by a factor of n.

Finally we can transfonn a buffering graph by repeatedly using lemma 2.1 and lemma 2.2; the

result is still an equivalent transformation. This observation leads to the following result

Lemma 2.3 If a transfonnation is perfonned by using only the transformations defined in

lemma 2.1 and lemma 2.2, then it is an equivalent transformation.

The above concepts and techniques for transfonnation are very useful in achieving optimal
balancing of a FOO which will be discussed in the rest of the chapter.

2.4 Reducing the buffering of a balanced FDG •·• An algorithm

In this section, we will study how to use the tools developed in last section to reduce the
buffering of a balanced buffering graph. An algorithm is given which can reduce the buffering

needed to balance a FDG, but it is, in general, not an optimal balancing algorithm. An example will

be given which illustrates that the optimum balancing of a FOO, even though the graph is acyclic, is
intrinsically difficult.

In section 2.2 we have introduced an algorithm which can derive a balanced graph for a FOO.

However, the amount of buffering introduced is, in general, much more than actually needed.

Referring back to Figure 2.5, we note that the result graph can easily be transformed into the FOO in

Figure 2.11, which uses less than 1/3 of total buffering. The way to implement the transformation is

applying lemma 2.1 and lemma 2.2 to the balanced buffering graph. The result graph is balanced

since the transformation is equivalent However, it uses much less buffering than before both in the

number of different buffers and the size of each buffer needed.

From the mechanism of the two lemmas, we know that applying the transformation of lemma

Un

G1

G2

G2 is the result of applying lemma 2.1 to G 1

Figure 2.10.

- 34-

G : the result of applying algorithm 2.2 to the buffering

graph in Figure 2.5

the total amount of buffering is reduced to 28

Figure 2.11.

2.1 can only cut the number of buffers needed, but the total amount of buffering is not changed. The

serializing transformation defined in lemma 2.2 can decrease the total amount of buffering. In order

to apply lemma 2.2 to a multi-output node, we often have to first adjust the position of some buffers

by applying the transformation of lemma 2.1 until chains that start with this node become pretty

chains. Note that after applying lemma 2.2, the graph is changed and the new graph can be processed

again. So we should apply lemma 2.1 and lemma 2.2 to the graph repeatedly and properly to reduce

effectively the buffering needed. Now we will present a simple algorithm which can achieve this

goal.

Algorithm 2.2 An algorithm for reducing the buffering of a balanced FOO

- 35 -

input: A balanced and normalized buffering graph 01 = {V,f:B}, which is derived by applying

algorithm 2.1 to a FOGO = (V.E: HI).

output: A buffering graph G' = (V.E.B), which is equivalent to 01 with respect to 0. The

buffering is reduced to a minimum under the restriction that no buffering can be

propagated back across a multi-output node which is also a multi-input node.

Method Alternately applying the transformation defined by lemma 2.1 and lemma 2.2 until no

more application can be made, without moving buffering across a multi-input node.

Initially, M contains all multi-input nodes. A set Sis maintained for all nodes to be tested

iflemma 2.2 can be applied. Sis also initialized to 0. The entire algorithm is as follows:

begin
1. for all v E M in 0 1 do

2. apply lemma 2.1 to each chain with end node v until
it becomes a pretty chain

3. mark the start edges of those chains that are "pretty"

4. S t- all start nodes of above pretty chains

5. for all uE Sdo
6. if u is a multi-output node

begin
7. apply lemma 2.2 to u

8. if it has input degree one than
begin

9. apply lemma 1 to the chain with end

node u until it becomes pretty

10. add start node of the chain to S

end
endif

end
endif

11. return the result buffering graph G'

end

Intuitively, it is easy to see that the above algorithm will reduce the buffering needed to balance

G, since the only reasonable way to cut the buffering needed is to apply lemma 2.2 to a multi-output

node. However, the effects of applying lemma 2.2 to a node depend on the situation of the chains

which have this node as their start nodes. Only if all such chains become pretty, can we succeed in

cutting the maximum amount of buffering for the node under consideration. Note that in the

algorithm we repeatedly apply lemma 2.1 and lemma 2.2 until they can not be applied anymore.

Under the restriction that no buffering can be propagated back across multi-input nodes (line 8) the

algorithm best reduces the buffering needed for balancing.

We may wonder whether it is reasonable to disallow movement of buffering across a

- 36 -

multi-input"node. At first glance, it is reasonable, since moving a buffer back through a multi-input

node, would increase the buffering needed by k times, where k is the input degree of the multi-input

node. However, this is not always true ! Consider a part of a normalized buffering graph shown in

Figure 2.12. Node p has three input edges and one output edge which has weight of IO. If we move

the buffer back through p, each of its input arcs would gain a buffer of 10, so a total of 20 stages more

buffering is introduced (see Figure 2.13). However, if we look at the problem more carefully, we note

that the buffer introduced on (ul'p) is useful for the serializing transfonnation of node ul' ur-un

This can reduce the buffering by a total of 100 stages. As a result we may save buffering up to 100 -

20 = 80 stages (see Figure 2.14).

In general, it is very difficult to predict the effect of propagating a buffer back through a

total buffering: 118

Figure 2.12.

- 37 -

total buffering: 138

Figure 2.13.

multi-input node, since the influence may be far reaching. It is also difficult to decide how much

buffering should be transferred. For example, if in Figure 2.12 the buffer on (p,z) has been changed

to 50. Then, it is obvious that we should move an amount of 10, not all 50, buffering back. We can

note that the above arguments are far from a mathematical reasoning. It does show, however, that

the result of applying Algorithm 2.2 is not guaranteed an optimal one. It also shows that

optimization of an arbitrary FOO, even if it is acyclic, remains a very hard problem. No good

algorithm is known for this purpose. Fortunately, for a particular class of acyclic graphs a good

optimization algorithm does exist. In this thesis I will introduce one algorithm for the optimal

balancing of a well-structured FOO (to be defined in next section) and study its complexity.

2.5 Well-structured FDG

- 38 -

total buffering : 38

Figure 2.14.

In this section we will study the optimization problem more closely and introduce some
important ideas; in particular, the class of well-structured FDG's will be defined.

Consider the structure of a balanced buffering graph G == (V,E,B). Assume Mis the set of all

multi-input nodes of G, and M is the set of all multi-output nodes. We note that all buffers
introduced using algorithm 2.1 are located on the input edges of nodes in M and the lemma 2.2 can
only be applied to nodes in M'. Obviously those nodes in Mand Mare the key nodes in an optimum
balancing procedure, so we should study them more closely to facilitate our subsequent discussion.

Definition Let u EM and v E M', u is directly reachable from v if u is reachable from v and

- 39 -

there exists at least one path p from v to u such that no node z E M is on the path p between v and u

(assume z =ta u and z =ta v). Path pis called a directed path from v to u.

Note:

(1) If u is directly reachable from v, we write v - u.

(2) the set of all nodes which arc directly reachable from vis denoted by DR(v).

For example in Figure 2.15, c, k, ul, u2 arc in DR(v}. However, node i is not included in

DR(v).

Sometimes we arc interested in the subgraph consisting only of the parts of the graph which are

covered exactly by the direct paths from v to u. Thus we have the following definition.

Definition Let u EM, VE Mand v- u. Let G' = (V',E) be a subgraph of G such that V'

and E' are the sets of all nodes and edges on some direct paths from v to u. 'Then G' is a directly

reachable section from v to u and is denoted by SDR(v,u). The union of SDR(v,u) for all u E DR(v)

is a directly reachable graph of v and is denoted by GDR(v).

The directly reachable section in above definition has interesting properties. If we delete node

u from SOR(v,u) and attach new nodes one for each of its input edges, the resulting graph is a tree.

This leads to the following lemma.

Lemma 2.4 Let u E M, v E M be two nodes of a buffering graph G = (V, E, B) and u E

DR(v). Let G' = (V'E'B) be SDR(v,u) and£" is the set of all input edges of u in SDR(v,u). We

construct a graph 01 = (Vl,El,Bl) from O' such that node u is deleted and for each (z,u) in E" a

new end node is added. Then G 1 is a directed tree with v as its root

proof Assume Gl is not a tree. Then there must be at least a node z E VI other than u such

that z is a multi-input node. However this is a contradiction to the assumption that O' = SDR(v).

In the following, 01 is named a directly reachable tree from v to u and is denoted by TDR{v.u).

In addition, v is named the root of the tree. Sometimes we also call v the root of the corresponding

dfrectly reachable section. For example, Figure 2.15 also shows the directly reachable sections

SDR(v, u/) and SDR{ v, u2), and Figure 2.16 shows their corresponding trees.

In graph theory, trees usually have very nice properties which make some algorithms more

straightforward. In an optimal balancing scheme, the same thing happens. As we will see, a good

algorithm exists for optimization of a balanced buffering graph which is a tree (see OJYrIMIZE~ 1 in

the next section). Since each directly reachable section in a FOO corresponds to a tree, it can be

optimized easily.

An interesting question is what is the relation between those directly reachable trees ?

- 40 -

G

V

SDR(v,ul) SDR(v,u2)

Figure 2.1S.

Intuitively we might conjecture that the optimal balancing of one such tree is independent of

that of others. If this is the case, the optimization for a balanced buffering graph can be performed

separately for each individual tree. As a result. the optimal balancing algorithm can be made much

simpler. Furthermore, the optimization can be done fully in parallel which will increase its efficiency
in a multiprocessing environment Unfortunately, this conjecture is not true for general cases.

However, a particular class of graphs does have the nice property that the optimization of its directly

reachable trees is independent of each other.

- 41 -

G

V

TDR(v,u1) TDR(v,u2)

Figure 2.16.

Definition Let Gl = SDR(v,u) be a directly reachable section of v with respect to u in G and

Gl = { Vl,El}. If for any path P that starts from v and ends with some node not in SDR(v.u), either

P n El = 0 or P I\ El is a direct path from v to u, then G 1 is called an independent directly

reachable section. Furthermore, the corresponding tree is also independent.

Figure 2.17 shows some independent sections in a FOO.

We can define a relation between those independent sections as follows.

- 42-

Definition Let 01 = SDR(v,u) and 02

included in 02 if O 1 is a subgraph of 02.

SDR(v',u) be two independent sections. 01 is

Now we can distinguish one particular class of independent sections, which we are interested in

the optimization problem.

Definition An independent section is maximum if the graph has no other independent section

which includes it

For simplicity, we will frequently use maximum independent section to denote maximum

independent directly reachable section as logn as no confusion is introduced.

Conceptually in an optimizing procedure, we can replace each maximum independent section

in a graph by an edge, i.e. replace SDR(v,u) by an edge (v,u), where SDR(v,u) is a maximum

G1 G2

SDR(v,u) in G1 is an independent section

SDR(v,u) in G2 is not independent because of edge (a,b)

Figure 2.17.

- 43 -

independent section. This can be done because the optimization of an independent section docs not

depend on the rest of the graph. Furthermore. we can simplify the effects of such a section on the

optimization of other parts of the graph by attaching an appropriate amount of buffering on the new

edge. This procedure is called m-reduction, since it reduces multiple input edges of multi-input

nodes, thus reducing the complexity of the result graph for further optimization. Jf the result graph

of a m-reduction still contains some independent sections, then the m-reduction can be recursively

applied to them. Now we can define a class of FOO for which we will present an algorithm for

optimization.

Definition If m-reduction can be applied to a FDG G and its successive result graphs until no

more multi-input nodes are left, then G is a well-structured FOO.

Figure 2.18 shows the examples of a well-structured graph and a graph which is not

well-structured. Figure 2.19 shows the results of successive application m-reduction on the

well-structured graph G in Figure 2.18, where, for simplicity, we omit the weights.

Obviously, the result of applying m-reduction to a well-structured graph is still a

well-structured graph.

In the following section we will prove that a well-structured FOO can be optimized by a

polynomial time algorithm.

2.6 Optimi1.ation of well-structured FOG

In this section we will present an algorithm for optimization of a well-structured FOO. But

before state the algorithm, we first prove some interesting results.

2.6. l Some interesting properties of well-structured FDG

Let u E M and v E M be two nodes in a balanced buffering graph G' for a well-structured

FOO G, where M and M' are the sets of multi-input and multi-output nodes respectively.

Furthennore, assume SDR(v,u) represents the maximum independent section of v. During an

optimization process, the only way SDR(v,u) can interact with rest of the graph is through v, u. That

is, during an optimization procedure, some buffers may be propagated in from u or some may be

propagated out through v (as a result of applying lemma 2.2). Obviously, this does not change the

balancing of SDR(v,u). By optimizing SDR(v,u) separately from other parts of the graph, one can

specify the maximum amount of buffering which can be propagated out through v. This is defined in

the following definition.

Definition Let SDR(v,u) be a maximum independent section in G' which is a balanced

buffering graph of a well-structured FOO G. Assu·me SOR(v,u) is optimized separately from other

parts of G'. The specific weight of SDR(v.u) is the maximum amount of buffering that can be

- 44-

G G'

G is a well-structured FOG

G' is not a well-structured FDG

Figure 2.18.

propagated out through v while keeping it optimum balanced, without any buffering being

propagated into the section through u.

Figure 2.20 shows the specific weight of a maximum independent section.

The specific weight of SOR(v,u) defined above does not depend on the optimization in other

parts of the graph. It is the maximum amount of buffering which can be contributed by the section

SOR(v,u) itself to the rest of the graph. Of course, during the optimum balancing process some

buffering may be propagated in through u. But this has no effects on the balancing of the section, as

soon as the section has already been balanced. It is easy to check that the same amount of buffering

can also be propagated out of v. This is because SOR(v,u) is independent and v is the only port. So

we can extend the m-reduction for a FOO to its balanced buffering graph as follows. Let G' be a

balanced buffering graph for a well-structured FOO G. We apply m-reduction to G'. In addition to

· 45 ·

a

b

n

G1 G2 G3

G1 ,G2 and G3 are the successive results of applying m-reduction

to Gin Figure2.18

Figure 2.19.

a

n

replacing each maximum independent section SDR(v,u) by an edge (v,u), we add a buffer on (v,u).

The amount of buffering equals to the specific weight of SDR(v,u) in G'. If such procedure is

applied to all maximum independent section in G', we say G' is m-reduced. 'lbe result graph

behaves the same in term of the optimization of the rest of the graph. So we have the following

lemma.

Lemma 2.5 Let G' be a balanced buffering graph of a well-structured graph G and let

SDR(v,u) be a maximum independent section from v to u. Then SDR(v,u) can be replaced by an

edge (v,u) with amount of buffering equal to the specific weight of SDR(u. v), without any influence

on the optimization ofother parts of the graph.

Obviously, we can reconstruct G' from the result graph of m-reduction simply by a reverse

substitution. Of course, we should somehow remember, in each step of the m-reduction, the parts of

the graph which have been m·reduced in order to perform the reconstruction later.

From lemma 2.5, we know that an m-reduction of one independent section in a buffering graph

for a well-structured FOO. does not influence the optimal balancing of other parts of the graph. So

we can optimize a well-structured graph (say G) in the following way. We first perform optimization

separately for each maxjmum independent section SOR(v,u) in G'(balanced buffering graph for G),

- 46 -

G1 G2

G1 shows an independent section SDR(v,u) of a FOG

G2 is the result of optimization of SDR(v,u)

the specific weight of SDR(v,u) is 5

Figure 2.20.

and get its specific weight. Then the m-reduction is applied to the graph. The reduced section of the

graph can be somehow remembered, and the information is useful in reconstructing the original

graph. After the whole buffering graph is m-reduced, we can apply a similar optimization and

m-reduction process to the new graph. Since G is well-structured, the optimization and m-reduction

processes can be carried out until there are no more multi-input nodes in the result graph. Finally,

we can reconstruct the optimized buffering graph for G easily from the result The algorithm for

optimization of a wen-structured FOO is presented in the next subsection.

2.6.2 An algorithm for optimization of a well-structured FDG

Now we can present the algorithm for optimum balancing of a well-structured FOO. Since we

are interested in introducing adequate buffering, the. algorithm is applied to a buffering graph instead

of the FOG itself.

- 47 -

Algorithm 2.3 Optimization of a well-structured FDG

Input A balanced and normalized buffering graph G' = (V:E:B) which is the result of applying

Algorithm 2.1 to a well-structured FOG G = (V, E. W).

Output A balanced buffering graph Gl = (Vl,El,Bl) for G which is optimized.

Method Through each iteration of the main loop, procedure OPTIMIZE is called to optimize all

maximum and independent sections in the graph separately. Then the m-reduction is

applied to the result graph. Procedure NORMALIZE is to normalize the result graph so

that it is ready to be fed as input to OPTIMIZE again. The repeated optimization and

m-reduction process will be continued until the graph contains no more multi-input

nodes. Then the optimized balanced buffering graph is constructed and returned as

output.

begin
1. G0 .-o·
2. OPTIMIZE (Go)

3. let R be the result graph ofline 2, apply m-reduction

on R and the result is R'

4. if the set of multi-input nodes in R' is empty then

goto 8

cndif
5. Normalize (R')

6. G0 .- the result ofline 5
7. goto 2

8. reconstruct the balanced buffering graph Gl for G

9. return 01 as result

Following is the procedure OPTIMIZE(G) which can perform optimization on all maximum

independent sections in G by optimizing their corresponding directly reachable trees separately. Let

M = {ul'u2 ... um} be the set of all multi-input nodes in G. Let <:J' = {T1, T2 ••• T5
} be the set of

directly reachable trees in G, where each tree corresponds to a maximum independent section in G.

The procedure OPTIMIZE-l(n optimizes a directly reachable tree. Applying OPTIMIZE-I to

optimize all trees in <:J' will eventually achieve the goal.

10.

11.

12.

13.

OPTIMIZE(G)
begin

for all i from l to s do
OPTIMIZE-1(~)

reconstruct the buffering graph Gl = (Vl,El,B/) from

optimized trees in ~ by properly deleting all leaves in ~

return G 1 as the result

Note The "properly" in line 12 means delete all leaves of ~ and replace them by uj, where ~

corresponds TOR(v,u;) in G.

- 48 -

Following is the procedure OPTIM IZE-1(7) which perfonns the optimization of a tree T

which is the input of the procedure. We assume L to be the set of leaves of Twhere L = {11,12 ... /k}.

The weight of each edge (x.f.) is removed and assigned to the corresponding leaf/. for each i and
I I

denoted by JJ(i). In addition, the weight of the leaves arc sorted, and we have B(l1) < B(l2) < ... <
B(Jk). A list Bl is maintained for all multi-output nodes v E T(includcs root), which is initialized to 0

for all such v. At the beginning, all multi-output nodes are unmarked, except the root which is

marked "stop".

14.

15.

16.

17.

18.

19.

20.

21.

OPTIM IZE-1(7)

begin

i +-1

C +- B(_A)

start from /i and trace back until a node u

marked "stop" is reached

begin

end

let P be the set of all multi-output nodes on the path

from u to /i , except u and /i
for each z E P in descending order do
begin

mark z "stop"

Bl(z) +- C

end

put a buffer (C- Bl(u)) on the last edge of the

backward path.

22. i +- i + 1

23. ifi S kgoto 15

24. apply lemma 2 to all nodes marked "stop"

end

Finally, we present the procedure NORMALIZE(G). This procedure will normalize a

buffering graph G, Le. it will end up with an equivalent buffering graph of G such that for each

maximum independent section SDR(v,u) in G, all buffers are located on some input edges of node u.

Let 'J = {S1, Sr.Sq} be the set of all maximum independent sections in G. Let~ = {r1, 'r·'q} be

the set of roots of those sections in 'J. The procedure NORMALIZE-I normalizes a particular section

in 'J. Applying NORMALIZE-I to all sections in G will eventually achieve the normalization of G.

NORMALIZE (G)

begin
25. for i from 1 to q do
26. NORMALIZE-l('i)

27. return the result graph

- 49 -

ll1e following is procedure NORMAUZE- l(r), which normalizes a directly reachable section

SDR(r,u). An adjacency list Lis maintained for each node in SDR(v,u). As in Algorithm 2.1. a set D

is maintained to hold the edges which have been examined during the normalization process. The

stack used in the algorithm is also similar to that in algorithm 2.1.

NORMALIZE-I (r)

begin
28. for each z E L[,j do

29. if (r,z) ~ D then
begin

30.

31.

32.

33.

34.

35

36. end

end

endif
endfor

add (r,z) to D

push (top(stack) + B(r,z))

if z = u then
B(r,z) +- top(stack)

endif
NORMALIZE-I (z)

pop

2.6.3 The correctness of the algorithm and its complexity

The key in proving the algorithm is to show that OPTIMIZE(Go) (line 2) correctly implements

the optimization for all maximum independent sections in G0. By lemma 2.5, if this is proved. we

can conclude that Gl constructed in line 8 is an optimized balanced buffering graph for G. To show

OPTIMIZE is correct. it is enough to show that OPTIMIZE-l(Ti) (line 11) correctly performs the

optimization for ½· This is formulated in the following lemma.

Lemma 2.6 OPTIMIZE-I optimizes its input directly reachable tree.

To make the proof simpler we introduce some additional notations.

Definition Let u. v be two nodes in a direct tree where u. v are multi-output nodes or leaves. If

there exists a path from v to u, then v is called an ancestor of u; in addition if the path is a chain, then

vis called an immediate ancestor of u. Also, if node v is an ancestor for both node u1 and u2, we call v

a common ancestor node of u1 and u2.

Now let P denote the set of all multi-output n~es and leaves in a directly reachable tree. P can

be partitioned into disjoint subsets P0,Pr .. P m such that

(1) P0 = {rl ris the start node ofG}

- 50-

(2) if node v E Pi and v is an immediate ancestor of u, then u E Pi+ 1.

Furthermore, if v E P. and u E P. with;· > i, then the distance between v and u is J. - i and denoted by
I J -

Dist(v, u). In words, Pj is the set of multi-output nodes or leaves which have distance j from root r.

Before beginning to prove the lemma, let us first do some analysis. Consider the loop from line

15 to line 23 in OPTIMIZE-I. We note that after each iteration through the loop one buffer, which

corresponds to the weight of one leaf in T, is located on an output arc of some multi-output node u E

P. As a result, all buffering is put on some output arcs of multi-output nodes. In addition, it is easy

to sec for all multi-output nodes u, Bl(u) would be assigned some weight during the execution of the

procedure. We make the following claim :

Claim l After execution of main loop in OPTIMIZE-I, Bl(z) equals the minimum buffering

which can be introduced on the path from rto z.

Proof of claim I Let AN(z) denotes the set of all possible leaves which have z as its common

ancestor and lw E AN(z) be the leaf with minimum weight Node z will only be assigned weight

once in line 20. The algorithm guarantees that the weight assigned to z equals to B(/w). However,

this is exactly the minimum amount of buffering which can be introduced between root rand z. So

claim 1 holds.

Now we can proceed to make another claim.

Claim 2 All buffers introduced by OPTIMIZE-I are the minimum amount buffers which can
be introduced there.

Proof of claim 2 Let x E Pj+ 1 and let y E Pj be an immediate ancestor node of x. Then from
claim 1, Bl(x) and Bl(y) are respectively the minimum buffering which can be introduced on the

path from r to x and r to y. Let /w be the leaf with minimum weight in the set AN(x). Clearly we

have B(/w) = Bl(x). Now if B(/w) > Bl(y), then we are sure some buffers which are on a leaf in

AN(y) but not in AN(x) has already been propagated to or through y. But the algorithm guarantees

that, a buffer of Bl(y) - B(/w) will be put on the output edge, say e, which is the start edge on the path

from y to x. From claim 1, this is the minimum amount of buffering that can be introduced there.

On the other hand, if B(/w) = Bl(y), it means the leaf /w is the one in AN(y) which has minimum

weight According the algorithm, it would be propagated back through x and y. Hence, no buffer
can be put on the output edge e of y. This also satisfies claim 2. It is easy to see that the algorithm

will examine all nodes in P and add buffers on its output edges when necessary. Therefore claim 2

must hold.

Finally, applying lemma 2.2 will optimize the buffering on output edges of each multi-output

nodes. We note that applying lemma 2.2 to one such node has no influence on other nodes. That is

no buffering can be propagated out across the node, since one of the output ari:s must have zero

buffering. Thus we have proved lemma 2.6.

- 51 -

Now it is easy to sec that the procedure OPTIMIZE(G) will optimize all directly reachable trees

separately, since each tree in G will be optimized correctly by OPTIMIZE-1.

From lemma 2.5, applying m-reduction to the result of OPTIMIZE (line 3) will not affect the

optimization of each separate tree. The result of reduction will be normalized by calling procedure

NORMALIZE, which can make the graph ready for the next cycle of applying OPTIMIZE. If the

algorithm eventually terminates, the graph reconstructed in line 8 must be an optimized buffering

graph.

One last thing remaining to be proved is the termination of the algorithm. Obviously, line 3

takes finite time steps since the graph to be processed is finite. It is also easy to show NORMALIZE

(line 5 and line 25-36) takes finite time steps for the same reason. To prove OPTIMIZE(line 2) takes

a finite amount of time requires a few words. Since s (line 10) is finite, we need only to show

OPTIMIZE-I takes finite steps. To show this is true we note that k (line 23), the number of leaves in

the tree, is finite. Through each iteration of the main loop in OPTIMIZE-I (line 15 to 23) the weight

(Le. amount of buffering) of one leaf is propagated back until a node marked "stop" is met. This only

takes a finite amount of time since the longest distance it can travel is bounded by h, where h is the

height of the tree. Since his finite, we can deduce that the OPTIMIZE-I, and hence OPTIMIZE, will

tenninate in finite time.

Now we go back to see the main algorithm. Since each time a m-reduction is performed, the

total number of input-edges of all multi-input nodes in the graph is decreased by at least one. We

know that the graph is well-structured, so the m-reduction can be carried out until no more

multi-input nodes exist. Thus the test in line 4 will eventually go to line 8, and the algorithm will

terminate. So we have the following theorem.

Theorem 2.4 Algorithm 2.3 correctly implements the optimization of the buffering graph for a

well-structured FOO.

G.

To derive the time complexity of the whole algorithm let us first prove the following claim.

Claim 3 OPTIMIZE(G) takes O(n2) steps to optimize all maximum independent sections in

Proof of claim 3. In OPTIMIZE, procedure OPTIMIZE-I is called s times where s is the

number of maximum independent sections (and their corresponding trees) in G. As we can see, the

time spent on each iteration of the main loop in OPTIMIZE-I is proportional to the multi-output

nodes that it passes during the backward traveling. However this is the number of nodes which has

been marked during the iteration. We know that a node can only be marked once. Moreover, all

multi-output nodes would .be marked by some iteration of the main loop. Hence, the time spent for

the main loop is O(ni}, where ni is the number of nodes in ½· In line 24, lemma 2 is applied to all

nodes marked "stop". For a node with d output degrees, applying lemma 2 requires O(d) steps.

- 52 -

Hence line 24 requires a total of O(e.) steps, where e. is the number of edges in T.. Since T. is a tree,
I I 1 I

we have the important property : ei = ni - 1. Thus, one call to OPTIMIZE-l(Ti) costs O(ei) steps.

In the algorithm, OPTIMIZE would be called for each ½ in the G'. Since all those ½'s are

mutually independent, the time for execution of the whole procedure is O(e), where e is the total

number of edges in G. Expressed in n, the number of nodes in G. we have the result of claim 3.

Now we can analyze the whole algorithm. Clearly, line 3 in the main loop of the algorithm

takes at most O(n2) steps since the number of maximum independent sections is less than the number

of edges in the graph. Also it is easy to see that NORMALIZE in line 5 will use O(n2) steps. This is

because NORMALIZE-1 will use O(ei) steps to normalize a directly reachable tree Tf where eiis the

number of edges in the tree (note that each edge in the graph is computed only once).

As we mentioned before, through each iteration in the main loop, the total number of input

edges of all multi-input nodes in the graph will be decrease by at least one. Since the loop will

terminate .when there are no more multi-input nodes left, we conclude that the number of iterations

executed for the loop is at most O(n2). Consequently, we can deduce that the complexity of the

whole algorithm is O(n4). So we have the following theorem.

Theorem 2.5 Algorithm 2.3 for optimizing a buffering graph for a well structured FDG with n

nodes requires O(n4) steps.

By combining Theorem 2.4 and Theorem 2.5, we can derive the following theorem.

Theorem 2.6 There exists a polynomial time algorithm which can balance and optimize a

well-structured FOG.

- 53 -

3. The Mapping Scheme for for-all and for·iter array Operation Constructs

In chapter 2, we have introduced the FDG model, as a powerful tool for studying the mapping

of array operations on a static data flow machine. The analysis and results apply only to the class of

well-behaved VAL programs, for which we did not give a precise definition. Intuitively, in a

well-behaved VAL program, all array values are produced or consumed by forall or for·iter
constructs, and the internal structure of such constructs can be mapped into ful1y pipelined data flow

graphs. In general, however, the mapping of forall and for·itcr constructs into fully pipelined data

flow machine code is not always possible. Moreover, the mapping itself, if it is possible at all, is not a

trivial matter. In this chapter, we will define the class of forall and for·itcr constructs which can be

effectively mapped into fully pipelined data flow graphs. It is beyond the scope of this thesis to give

sound and complete definitions which cover all possible cases. The definitions we give are easily

understood and applicable to programs widely used in numerical computations. The mapping of

forall constructs is, under some restrictions, relatively simple. We will develop good schemes for such

mapping, including a discussion of implementing FIFO buffers on a static data flow machine. It is

more difficult to deal with the mapping of for·itcr constructs. The corresponding data flow graph, in

general, is not acyclic. We have not found an algorithm which can balance an arbitrary data flow

graph with cycles to a fuUy pipelined fashion. Fortunately, for an important class of for·iter which

are quite often used in numerical computation programs, we do have a good mapping scheme. This

is the class of for·iter constructs expressing certain recurrence relations which have associated

functions with certain composition properties. For such recurrence functions, we can construct an

elegant and efficient solution. We will show that it is particularly suitable for implementation on a

static data flow machine by taking advantage of software pipelining.

Finally, using the concepts and results developed in this chapter, we will present a more

rigorous definition of well-behaved VAL programs.

3. I The strategy of mapping forall constructs

One of the most important forms of concurrency available in VAL comes from the forall
expression. There are two types of array operations which can be expressed in terms of forall
constructs. One is the array construction operation, where the results of individual computation are

made components of an array which will be the value returned by the whole expression. Another

type is array reduction operations; an example is the adding of all elements of an array concurrently

to produce a single result value which is the sum. For our purpose, we are only interested in the first

type of forall construct which represents array construction operations.

Typically, a fora11 construct has three basic parts : range specification, environment expansion

and result accumulation. The range specification of a forall is a contiguous integer interval or a cross

product of contiguous intervals that defines the dimension and range of the array being constructed.

The body of the forall expression contains an environment expansion which will be executed for each

- 54 -

clement of the array constructed by the forall. The body also contains an accumulation part which is

located after the key word construct. The following is an example of a forall array operation

construct

B : array[array[real]] : =

forall i in (1, m + l], j in [l, n + l]
G : integer:= if A[i,j] = 0 then 1 else A[i,j] endif;

H : real : = 1/G + 2;

construct

if i = Oji = m + lLi = O Li = n + 1 then A[ij]

else G + H**2 + (A[ij-1] + A[i,j + 1)

+ A[i- lj] + A[i + lj])

endif
forall

This forall expression requires as input an array A and constructs a new array B. The

dimension and bounds of array B is specified by the first line of the expression which is the range

specification section. The environment expansion section defines two local variables G and H. This

section executes once for each array element in the range specified by identifiers i and j. The

expression following the key word construct is the accumulation section which is also evaluated once

for each array index. It docs not impose any extra sequencing constraints or any particular form of

run time concurrency. One thing worth mentioning is the index expressions i-1, i + 1, j-1, j + 1. In

typical numerical applications, many algorithms manipulate arrays of values with each of its indices

denoting a point in a physical area or space. The value of an array element represents some

parameter associated with the corresponding point. New values of an element are often determined

by the original values of its adjacent elements. As a result, indices such as i-1, i + 1, etc. are

extensively used in related VAL programs. In mapping of forall constructs, we should take this into

consideration and work out good solutions.

To exploit the embedded parallelism, two basic schemes for mapping forall array constructs

onto the static data flow machine architecture exist. The first, known as the parallel scheme, generates

a copy of the program body for each array element as shown in Figure 3.1. In this scheme, many

copies of the forall body may execute concurrently. Of course, this scheme can be implemented only

if the range is known when the machine code is loaded into the PE's. The second scheme, the

pipeline scheme, generates the array elements by operating the body of the forall construct in a

pipelined fashion. The program could be compiled to treat the environment expansion section and

the accumulation section together as a pipeline, feeding the successive values of the array range

indices into the front of the pipeline as shown in Figure 3.2. A third scheme, which combines the

above two, is also possible. In this scheme the whole array is partitioned into several subsections. All
subsections can be executed in parallel and each individual subsection is executed in pipelined

fashion.

A[O]

A[1]

A[m]

A[m + 1]

---A[O]

A[m-1]

A[m+ 1] A[O]

• • •
A(m + 1)

A[m+ 1)

control

- 55 -

forall

body

r--
I

I

I

forall

body

Figure 3.1.

A[O]

pipelined

forall

A[2] body

Figure 3.2.

B[O) _._

8[1]

B[m)

B[m + 1]

B[m+ 1]
merge •

B[O]

• •►

- 56 -

In the following we will concentrate to the pipeline scheme which is the major interest of this

thesis.

3.2 Well-behaved forall constructs

In this section we will study the structure of VAL forall array operation constructs more

carefully in terms of the pipelined mapping. Based on the study, a class of forall constructs is defined

which can be mapped into fully pipelined machine code on a static data flow machine. Some
concepts and results presented in this section will be helpful in understanding of the concept of

well-behaved VAL programs introduced in chapter 2.

Not all VAL expressions can be mapped into fully pipelined data flow programs. For example,

we do not have, in general, good algorithms for transforming a data flow graph with cycles into a

fully pipelined one. As stated before, a forall construct is composed of several sections each of which

is a VAL expression or consists of VAL expressions. Therefore, in order to define the class of forall
constructs which can be mapped into fully pipelined machine codes, we should first study the similar

nature of more primitive VAL expressions. Now let us begin by introducing some new concepts.

Definition A primitive well-behaved VAL expression (will be denoted by PWE) is recursively

defined as follow :
(1) A constant is a PWE

(2) An identifier is a PWE

(3) If El and E2 are PWEs, then (El op E2) is a PWE, where op is an arithmetic or

relational operators of VAL.

(4) If A is an identifier that denotes a one-dimensional array, then A[I] is a PWE.

Furthermore, if E is a PWE, then A[J : E] is also a PWE. This can be extended to
multidimensional arrays.

(5) If E is a PWE, then f(E) is a PWE where f is a VAL reserved word for a system defined
function such as SIN, COS, etc.

(6) If El, E2, E3 are PWEs, then if El then E2 else E3 end is a PWE.
(7) Let E be a VAL let-in construct expressed as

Let

<env-expansion>

in

EO

endlet

If <env-expansion>, the environment expansion part, contains only PWEs and EO is also a PWE,

then E is a PWE.

(8) a tagcase expression is a PWE, if all its arms contain only PW.Es.

(9) Nothing else is a PWE

- 57 -

W c arc not interested in design and implementation of a parser for PWEs in VAL, therefore the

grammatical strictness and syntactical completeness of the above definition is not our major concern.

The importance of our notion of PWE is to put adequate restrictions on program structure so that a

good scheme can be developed to map the program into fully pipelined data flow graphs.

We claim that a PWE corresponds to a data flow graph with no cycles. The correctness of this

claim can be easily derived from the above definition. The PWEs constructed by (1) through (4) are

clearly cycle free, from the tree structure of such expressions. To show it holds for case (5), we need

to make the following assumption : all system defined functions can be mapped into acyclic data flow

graphs. Case (6) is also true, since the translation of a VAL if-then-else expression into acyclic data

flow graphs is straightforward. A simple if-then-else in VAL has the form :

if x = a then f(x) else g(x) endif

Figure 3.3 shows how to translate it into acyclic data flows, assuming that the body of functions f and

g can be mapped into such graphs. Cases (7) and (8) are also obvious if we notice the recursive

nature of the definition. As a result, we have the following lemma.

Lemma 3.1 A primitive well-behaved VAL expression can be mapped into a data flow graph

with no cycles.

The transformation of an acyclic data flow graph into a fully pipelined one has been studied in

<X(O). .. X[m)>

<T ... F ... TF>

B

path 1

path2

pipelined

body off

pipelined

body of g

path3

Figure 3.3.

MERG

0 1 <Y(O). .. Y(m]>

- 58 -

[14]. The basic approach and technique developed in chapter 2 for balancing a FDG can also be

applied to a machine level data flow graph. To show that a graph denoting a PWE can be balanced to

achieve full pipelining we should go back to its recursive definition. Again, the balancing of cases (1)

through (4) arc straightforward. For case (5) we also need an assumption that all system defined VAL

function can be mapped into fully pipelined data flow graphs.

A few remarks are needed to justify case (6). Let us examine a simple example just described.

A full pipelined data flow graph corresponding this expression is shown in Figure 3.4. lbe key to

understanding the balancing of such a graph is the function of the merge gate. Notice that the firing

rule for a merge gate is quite different from other operators. A merge gate, as shown in Figure 3.4

has three inputs : two data inputs 11, 12 and a control input C. If a true value is present on C and a

data value is also present on Il, the gate fires and the value.on Il is forwarded to the result arc, while

leaving the second operand on 12, if any, untouched. Conversely, if the control value is false, the

second operand value, if present. will be used and gated to the result arc. As we can see, for a merge

gate to fire, the control operand must be present. Furthermore, one of the data operands should be

present according the value of the control operand. Recall that the balancing algorithm requires that

different paths from the input to the output should have the same length. In the case of Figure 3.4,

this means we should balance the two data paths (path 1 and path 2) and control path (path 3). If the

two data paths have different lengths, the balancing algorithm should equalize all three paths by

adding appropriate buffers.

<X[O). .. X[m]>

<T ... F ... TF>

B

FIFO

path 1

path2

pipelined

body off

pipelined

body of g

FIFO

path3

Figure 3.4.

MERG

0 <Y[OJ ... Y[m]>

- 59 -

For cases (7) and (8), the balancing can be achieved because of the recursive nature of PWE's

definition. Consequently, we come up with following theorem which is very important in the rest of

this thesis.

Theorem 3.1 A primitive well-behaved VAL expression can be mapped into a fully pipelined

data flow graph.

Based on the above analysis and results, we can proceed to study the class of forall array

operation constrncts which can be mapped into fully pipelined data flow graphs. We first introduce

the following concept.

Definition A forall array construction expression is well-behaved, if its environment expansion

part and accumulation part contain only PWEs.

To facilitate the study of a well-behaved forall construct, we can restructure the expression. Let

us study the following example :

A: array[real]: =
forall i in (1, n]

xl : real : = gl(y 1,y2 ... ym);

x2: integer:= g2(yl,y2 ... ym);

xk : real : = gk(y 1,y2 ... ym)

construct
f(xl,x2 ... xn)

endall

Figure 3.5 illustrates the possible structure of the above expression. El and E2 are PWEs which

correspond to the environment expansion section and accumulation section respectively. The input

to the whole expression is y 1 through ym. they are fed in El and E2. The array index values <1,2 ... n>

are also produced and fed into El and E2. Eventually, array A is being produced as the result value.

Obviously, the above expression can be restructured as shown in Figure 3.6, where El and E2 are

combined into E3. Since El and E2 are PWEs, we conclude that E3 is also a PWE. From Theorem

3.1, E3 can be mapped into fully pipelined data flow graphs. Consequently, the whole forall

expression is fully pipelined. Note that in the above argument we assume that the range specification

part can produce a sequence of array index values in fully pipelined fashion. In addition, we assume

a scheme exists to construct the result array. We will discuss these issues through examples in the

next section.

Although the example we give is a forall expression which returns a one-dimensional array,

similar results can also be extended to forall expressions which produce multi-dimensional arrays.

Y1
-- X1

I ► I
:;.

I I
E1

I I

Ym I Xm I
-· ~ r

A~ A
E2

range
:;.

specification

Figure 3.5.

Y1
I

r

I
I
I
I E3 r A

Ym -,

range

-
Specification

r

Figure 3.6.

Hence, we have t11c following theorem.

Theorem 3.2 A well-behaved forall construct can be mapped into a fully pipelined data flow

graph.

~

- 61 -

Finally, we should point out that PWEs arc not the only expressions which can be mapped to

fully pipelined data flow graphs. Furthermore, well-behaved forall array operation constructs are

also not the only forall constructs which can be mapped to fully pipelined machine codes. However,

if an expression is known belong to the above category, we can deduce immediately that it can be

mapped to a fully pipelined data flow graph. This fact is very important for a compiler, since many

important decisions can be made earlier to improve the overall efficiency of the mapping scheme.

Another point is that our definition of PWE and well-behaved forall arc not invented only by

imagination. In fact, they are the abstractions of expressions and array construction operations

frequently found in real application programs. As in GISS codes, some important parts of the

· computation consisted entirely of such well-behaved expressions. ln the following sections we will

develop the schemes to actually implement the mapping.

3.3 A mapping scheme for well·behaYcd forall constructs

From Theorem 3.2, we know that a well-behaved forall expression can be mapped into a fully

pipelined data flow graph. Now the question is whether we can have a mapping scheme which

effectively implements such a mapping. In this section we will discuss both important and practical

issues in performing a real translation. An interesting approach for generating the desired sequence

of array indices is presented. The relation of the mapping of an individual forall array operation

expression to the structure of the overall VAL program is addressed. Since FIFO buffering is

extensively used to handle the interaction between array producers and consumers, a separate section

is devoted to discussing the implementation of FIFOs on a static data flow machine. There may be

many mapping schemes for a well-behaved forall construction which achieve the stated goal. We

hope that the one developed in this section can provide au efficient solution to the above problems.

3.3. l Generation of a"ay index values

We understand from previous sections that, in order to map a forall array operation construct

into pipelined cod<:, we need sequences of array index values, say <l, 2 ... n> for a one dimensional

array, to drive the body of the expression (E3 in Figure 3.6). One naive way to produce the sequence

is to generate an array of index values and store this array somewhere in the instruction memory or in

the array memory. These indices can then be produced in fully pipelined fashion very easily.

However, in many programs for numerical computation, various sequences of array indices are used,

and the efficient generation of those indices becomes very important. Let us study this problem

through examples.

First let us study a very simple well-behaved forall construct as follow :

B: array[real]: =
forall i in (1, m + 1)

construct

A

- 62 -

if i = Oli = m + 1 then A[i]

else 0.5*(A(i-l] + A[i + 1])

endif
cndall

We can map the above code to a fully pipelined data flow graph as shown in Figure 3.7. The

sequence of element values of array A, i.e. A[l], A[2] ... A[m + 1] is presented at the input and fed into

three T operators. Three sequences of boolean control values are generated and sent to the control

inputs of the T cells. The result values which come out from the T cells as follows:

T cell number control input result

#1 T ... TFF A[O], A[l], ... ,A[m-1)

#2 FFT ... T A[2],A[3], ... A[m + 1)

#3 TF ... FT A[O),A[m + 1)

These arc just the right sequences of values which the forall body should consume.

The final construction of the result array is done through the merge gate. The control unit also

provides a sequence of boolean values to the merge gate so that the array elements are produced in

the right order. To balance the graph several FIFOs are inserted as shown in the figure. The

implementation of FIFOs will be discussed later.

FIFO

FIFO

FT ... TF
FIFO

control

ADD
0 1

Figure 3.7.

MULT

0 1

MERG
0 1

X

- 63 -

Now we can proceed to deal with more sophisticated examples which involve

multi-dimensional arrays. Let us examine an interesting example which first appeared in section 1.4.

For convenience, we reproduce the program here :

B : array[array[real]] : =
forall i in [l, m + l], j in [l, n + l]
construct

if i = Oli = m + lLi = 0 Li = n + 1 then A[i,j]
else 0.25* (A[ij-1] + A[ij + 1]

+ A[i- lj] + A[i + lj])

endif
endall

Each element of the new array B[ij] is computed from the clements of array A in the four

adjacent positions except at the boundary. Figure 3.8 shows the machine code for the program which

computes row i of array B where 1 ~ i ~ m. Note that this code is similar to the code in Figure 3.7,

except that the three input arcs arc driven by different streams of values, le., row i-1, i and i + 1 of A.

Figure 3.9 illustrates the generation of different rows of array A in a pipelined fashion. As we

can see, the code structure of Figure 3.9 is much the same as that shown in Figure 3.7 and Figure 3.8.

The only difference is the amount of FIFO buffering needed to balance the graph, le. here long

FIFO buffers are required to delay rows of array elements.

It is easy to see that the above translation scheme will produce a fully pipelined data flow graph

if the body of the forall construct is a PWE, which is true for a well-behaved forall expression. We

can also apply the same approach to the case of multi-dimensional arrays, where much longer FIFO

buffers may be required.

3.3.2 The mapping of forall and the producer-consumer interaction

In Chapter 2 we have discussed the FOG model of the global structure of a VAL program and

have developed the methods of balancing the machine code for a well-behaved VAL program. For

the sake of simplicity, we assumed that each node in the FDG presents a forall or for-iter construct

which can be mapped to fully pipelined data flow graphs. In this chapter we present a scheme to

actually implement the mapping of a well-behaved forall array operation construct Now we will
exploit briefly the relation of the mapping of an individual forall and the overall program structure.

It is very important to realize that our primary goal is to achieve the maximum throughput of

the whole program. In a pipelined mapping scheme, any individual forall array operation construct

can be viewed as a producer, a consumer, or both. The efficient mapping of the interaction between

producers and consumers is crucial to the overall performance of the program. We should keep this

in mind when considering any mapping scheme for an individual forall construct .

rowi-1

of A

of A

rowi

of A

rowi

of A

rowi

of A

n------1

FIFO
(2)

FIFO
(2)

FIFO
(4)

FIFO
(2)

control

box

ADD

0 1

ADD

0 1

- 64 -

I-----::

ADD

0 1

FFT ... T

FT ... TF

T ... TFF

Figure 3.8.

MULT

0 1

0.25

MAG

0 1 rowi

of B

FT ... TF

The analysis of the FOO for a VAL program needs the information about the execution delay

of its individual nodes. The structure of a forall node and its mapping scheme will help to decide this

parameter. Based on this information, the FOO model can be processed and balanced, and the

appropriate amount of buffering will be assigned to each arc which is a producer-consumer

interaction link. Hence, the input and output in the data flow graphs for a forall construct are, in

general, connected to the FIFO buffers. The implementation of these buffers should be considered

as parts of the mapping of the forall constructs. In fact, the efficient implementation of the buffers

will have significant impact on the performance of the forall mapping and on the. throughput of the

whole program. In the next section, we wi11 discuss different ways of constructing FIFO buffers on a

static data flow machine.

A

FIFO
(4m +8)

FIFO
(2m+4)

FIFO
(2m +4)

control

generator

- 65 -

rowi-1

rowi

t------,c4

-----c5
------ce

Figure 3.9.

rowi + 1

n

3.4 Implementation of FIFO on a static data flow machine

c5

F2<n+2)

,m<n + 2)

m(n+2)
T

MRG

0 1

8

As indicated in previous sections, FIFO buffers play a very important role in the pipelined

mapping schemes for VAL array operations. They are extensively used as buffering both between

array producer and consumer arcs of a FOO and inside the data flow graph of an individual node.

The building of a FIFO on a data flow machine is very different from that on a conventional

machine. In this section, we will present two different ways of constructing a FIFO buffer on a static

data flow machine. Both schemes have their own advantages and can be applied to different

situations.

3.4. l FIFO buffering in processing units

In a static data flow machine architecture, one way to implement FIFO buffering is in the

processing elements. A FIFO buffer can be built by cascading identity instructions as shown in

Figure 3.10. A sequence of data values arrives at one end, pipelines through the identity instructions

and finally comes out from the other end of the buffer. In a Dennis-Misunus machine, the delay of

the FIFO is one half of the number of the identity instructions in the buffer~ Each processing

element has its own instruction memory which is loaded with data flow machine codes before

- 66 -

►

Figure 3.10.

execution. The identity instructions used to implement the FIFO also reside in the instruction

memory. In fact, we are using instruction memory as local buffers for the pipeline. Moreover, the

buffering is simulated by software (instructions), so the amount of buffering can be flexible. The

only requirement is to be able to decide the length of the FIFO buffering at compile time. This does

not impose further restrictions on a well-behaved VAL program which is to be mapped on a static

data flow machine.

This scheme of building FIFOs has the following advantages. First, the structure of a FIFO is

quite simple and is easy to implement. Second, a FIFO can be put into the same processing element

as the part of the machine codes where it is being used, thus eliminating the overhead of sending

instruction packets across the processing units. This is very desirable in terms of speed and efficiency,

since the traffic of result and acknowledge packets in the routing networks is very busy. The major

deficiency of this scheme is that the number of instruction cells used increases linearly with the length

of the buffer. When the FIFO is long, the number of identity instructions used would be very big

and this scheme is not a good choice. As a result, this implementation is only suitable for the case

where the FIFO is comparatively short. For example, the FIFOs in Figure 3.7 can be constructed

using this scheme.

3.4.2 FIFO in a"ay memory

Another approach to implement a FIFO buffer is to use the array memory. Assume a FIFO

buffer is needed between producer A and consumer B, where A and B each correspond to a two

dimensional F-node in a FOO. Some free storage block (or blocks} in array memory should be

allocated for the buffer of the array data values produced by A and subsequently consumed by B. In

the following discussion we will use B-block to name the storage blocks in array memory which acts

as buffers associated with some producers and consumers.

One important question is how to implement a FIFO buffer using B-blocks. There are several .

- 67 -

possible ways to answer this question.

Assume, in the above case, the size of the array processed by A and B is m by n. In the

conventional view of arrays and merriory, a block of storage of size mxn must be allocated for the

array produced by A. From our point of view, however, this is certainly not a reasonable approach.

The amount of storage allocated for the buffers between A and B is decided by the entire structure of

the program and the mapping scheme chosen for implementation of the pipelined machine program.

It is very unlikely that the delay buffering introduced by this scheme will equal exactly the size of the

array. As a result, the conventional scheme will have poor performance. It is often more flexible if

we can make the B-blocks much smaller than the size of array being buffered to facilitate the

memory management and make efficient use of storage space.

We propose a second way to implement FIFO buffer using B-blocks, that is we partition the

whole array into small pieces and make one B-block of the same size as one piece. Then the whole

buffer can be constructed from several B-blocks. For the two-dimensional example described earlier,

a possible way is to partition the whole array into m rows. Now we can choose the size of each

B·block equal to the size of one row, in this case, n. Another way to partition the array is to make the

size of each B-block equal to the size of a column. There are also other possible ways to partition the

array and choose the size of a B·block.

For the present we assume that the buffering needed may be provided by several B·blocks. In
fact, if the buffering needed is not an integer multiple of the size of the B·block, we may implement

the extra buffering by identity instructions in PE's, while still keeping the major part of the buffer, to

be implemented in the array memory, equal to an integer multiple of the B·block size.

Figures 3.11, 3.12 and 3.13 present three schemes of constructing the buffer using B·blocks. All

schemes use a FIFO queue, i. e. Ql, to hold the pointers to the storage for B·blocks. They are

different in the way of interaction with free storage pointer pools.

In the first scheme (Figure 3.11), which will be called the static scheme, a second FIFO queue

Q2 is used which has the same size as Ql. Initially Q2 holds several pointers to the free storage for

B-blocks allocated as the buffering storage, and Ql is empty. The number of initial pointers in Q2 is

decided by the size of the buffer to be constructed. As the producer produces values for elements of

a row, it gets a pointer from Q2 and stores them at increasing address in the corresponding B-block.

When the last element of the row has been written, it puts the pointer into Ql to be processed by the

consumer and begins to process the values of the next row using a new pointer 'from Q2. The

consumer will process a stream of pointer values from Ql and read the values for successive rows of

the array out of the corresponding B·blocks. The pointers will then be sent back to Q2 to be reused.

After the whole process is finished, Q2 will hold the pointers, as it did before execution.

The static scheme is suitable to the case when all the run time storage usage of array memory

- 68 -

Producer J 01 I - Consumer .. I I
..

II>

I 02 L
I r

Figure3.11.

can be decided before the actual execution of the programs. That is, the program has a "nice"

structure, such that it is possible for a smart compiler to analyze the program and derive exact

information of run time storage usage for the array memory.

The static scheme has two important features. First, all free storage allocation for the array

buffers is completed at compile time. Second, the run time memory management is done

automatically by the object program itself. The B-blocks allocated to implement a FIFO buffer for a

producer-consumer pair can be reused again by the same pair. That is, after processing one set of

inputs (arrays), Q2 is automatically initialized and ready to process the next set of inputs. No specific

machine instructions or system software is needed for runtime storage managements. This not only

simplifies the machine architecture but also increases the runtime execution efficiency.

The main disadvantage of this scheme is that a B-block, once allocated to a producer-consumer

pair during compile time, can not be reused by other parts of the programs, even if it is no longer

needed by the original pair. Because of the asynchronous nature of data flow computation, we can

not assure that all code blocks are busy at the same time. As a result, the static scheme may waste a

considerable amount of memory space in some cases.

The second scheme (Figure 3.12), which will be called semi-static is different from the static

scheme in the following aspects. First, the input B-block pointers to the producer come from a

control box, namely box 1 in the diagram, which allows the initial allocated pointers to come from a

free storage pool through some runtime mechanism. Furthermore, the pointers, after being

processed by the consumer, are sent to the input of another control box (box 2) where they will be

routed to one of its two ports under control. If the whole process is not finished, the pointers will be

sent to Q2 waiting to be reused by A. Otherwise the pointer will be deliver to the release mechanism

where they will be returned to free storage pool.

- 69 -

Producer I
01

I ~ Consumer -1 I -

~

,

box 1 box2

·~
I

02
,_

I I~

create release

~

,

Free storage pool

Figure 3.12.

In the semi-static scheme parts of the storage allocation are done at run time. For an array
memory, the runtime memory management is simply free storage manipulation in the array memory
address space without considering the interlevel transfer of information as in a machine with
memory hierarchy.

There are two ways to implement the memory managements. First, we can extend our
instruction set to include new instructions which correspond to the create and release operators in the
scheme. The machine architecture should also be augmented by an array memory controller which
can handle these new instruction packets and perform the memory management algorithms. A
second, perhaps more attractive way is to implement the create and release operators as special

functions. Firing of the two operators are equivalent to function calls. The system software will
include these functions and handle the memory management.

The advantage of the semi-static scheme over the static scheme is that it allows simple runtime
manipulation of free storage. When a FIFO buffer is needed at runtime, some B-blocks are allocated
to it and may be reused in the corresponding producing/consuming process. When the FIFO buffer

~

- 70 -

is idle, the 8-blocks arc returned to free storage pool through a release mechanism, and may be used

by other parts of the programs. Also, this scheme for runtime free storage management is very simple

compared to other known schemes, even without using reference counts. Once again, this is because

the memory management is closely 'related to the program structure and the runtime storage

allocation becomes straightforward.

The third scheme (Figure 3.13), which will be called the dynamic scheme, is quite different. It

docs not have the second FIFO queue as in the previous schemes. After being processed by the

consumer, the pointers for the B-blocks will be directly returned to the free storage pool.

Although the dynamic scheme supports more powerful mechanisms to manipulate the free

storage, its overhead associated with both machine architecture and system software is also high. For

the static data flow machine, the static and semi-static schemes arc more attractive. For many VAL

application programs, we can make the compiler smart enough to analyze the storage usage of FIFO

buffers and the storage allocation of B-blocks can be performed efficiently at compile time. We can

note that no recursion is allowed in the present version of VAL programs. For nested or multiple

function calls in such programs, we can expand each function call by substituting in the code of the

function body at the calling site. Remember that the assumption for the static data flow machine is

that all machine level programs should be loaded into the instruction memory before execution.

Under such restrictions, the static scheme and semi-static scheme have enough power to accomplish

the necessary memory management. As an example, most of the array FIFO buffering in GISS code

can be implemented by the static scheme with high performance. We also point out that no

fragmentation problem will occur in any of the above schemes, since the B-blocks are fixed in size

and would be taken from the corresponding storage pools.

Producer J 01 I ;;. Consumer . I I

•

free storage pool

FigureJ.13.

- 71-

As discussed at the beginning of this section, the inefficiency of some memory management

schemes for conventional machines is due to the lack of adequate analysis of memory usage in term

of program structure. Furthermore, the concepts of arrays in the conventional language also prevent

necessary information from being conveyed to facilitate such analysis. On the contrary, the memory

management schemes introduced above are closely related to the underlying program structure itself.

Our view of array memory is nothing but temporary buffer for array values. The functionality of the

VAL language and the target static data flow machine architecture make it possible for the compiler

to do the necessary analysis of program structure and get all important information on runtime

storage usage of buffers associated with each code block. Just as in the case of hotel management, if

the room distribution is done not only based on the knowledge of the number of rooms used by a

whole team of customers but also on detailed information about the behavior and schedule of each

individual customer and the relationship of those-customers, then clearly the room distribution plan

can be made more clever. This is a good example for understanding why our schemes above are

more efficient than the conventional ones.

Before leaving this section, we should point out that other schemes of implementing FIFOs are

also possible. For example, the conventional ring buffer scheme can be used either in array memory

or in the PE's. Our purpose in this section is only to show that FIFOs can be efficiently implemented

in a static data flow machine.

3.5 The problems in mapping of for·iter constructs

In this section, we study the mapping of VAL for·iter array operation constructs into fully

pipelined data flow graphs. We will explore the difficulties with which one is confronted when trying

to develop a fully pipelined mapping scheme for them. The solution to such problems will be

discussed in the following section.

The for·iter is another major construct in VAL which construct arrays. It can be used to express

the way to construct an array by permitting sequential looping. In a for·iter expression, values can be

transmitted from one pass through the loop to the next. This transmission is performed by defining

loop parameters and then binding new values to them just prior the beginning of the next pass. VAL

does not allow the use of global variables, and inside a loop objects can only be bound to the

identifiers defined locally to the loop.

The following is an example of a for·itcr loop which constructs an array 8.

B : array [real] : =
for I : integer:= I;

A : array[rcal]: = array_cmpty[rcal]
do if I ~ N then iter A[I : if I = I then 0

else f{A[i· l])
endif]

cndif
cndfor

- 72 -

cnditcr

A for·itcr construct consists of two parts : loop initialization and loop body. In the loop

initialization part, which is located between for and do, all loop parameters are declared and assigned

initial values. In each execution of a for-iter expression, this portion is evaluated only once. Between

the do and cndfor is the body of the for-itcr expression, which is repeatedly evaluated for each loop

index, producing a sequence of array elements. It is the itcr clause in the body. that causes

reevaluation of the whole loop body.

As in the case of forall expression, we are only interested in some subset of for-itcr constructs

which can be mapped into fully pipelined data flow graphs. A first restriction of such subset is given

by following definition.

Definition A for-iter construct is simple, if both its initialization part and body consists of

primitive well-behaved VAL expressions.

Obviously, the example described above is a simple for-iter array operation construct

Several researchers have studied the translation of for-itcr array operation constructs into

pipelined data flow graphs. A scheme of mapping for·iter constructs is proposed by Montz [14) and

elaborated by Todd [16). If the for-itcr expression under consideration produces an array, then the

above scheme can generate the array values in a pipelined fashion. Figure 3.14 illustrates the data

flow graphs for a for-iter array construction expression translated using Montz's scheme.

A feature of a data flow graph corresponding to a for-iter construct is that it contains cycles.

Due to the existence of cycles, the graph produced by Montz's scheme, in general, is not fully

pipelined. Let us consider the behavior of the code in Figure 3.14 more carefully. Assume the body

of function f is mapped into fully pipelined data flow graphs, and the execution time off is df stages.

The feed-back link between the input and the output off prevents the whole graph from being fully

pipelined. This is because the value of A[I] depends on the value of A[I-1). As a result. the

calculation of A[J] can not start until the computation of A[I-1] is finished and the value of A[I-1] is

available at the input off. Since the time of calculation off is df, the initialization rate of the pipeline

can not be higher than 1/df, which is not optimum when df > 1. If df » 1, the throughput of the

pipeline will be seriously degraded. Furthennore, the throughput of the program depends on the
length of the "pipe", which is very undesirable.·

Stoy [15) suggested another approach for mapping for-iter constructs which provides a way of

handling different activations of the same for-iter construct concurrently. But it does not address the

problem of full pipelining.

- 73 -

A
~ loop 8

body
--

➔
loop -

initialization ~

_.

data feed back

n -~ ~

t control feedback

Figure 3.14.

The difficulty we meet here is that the balancing algorithm developed in this thesis so far and in

[14] does not apply to the case where the graph is not acyclic. To further classify the problems which

can be handled and to develop a scheme for them, we need to study them in a more formal context.

This is the topic of next section.

3.6 A New Scheme for Implementing For-iter Array Operations

The most common problems involving for-iter array operations arc recurrences, which accepts

as input a sequence of values a1, ai"an, and produce as output another sequence of value x1,x['Xn,

where for some m>O, each xi is a function of ai and xi-J through xi·m· That is :

X; = f(a;,X;.J"·X;-m> (3.1)

Mathematically, we have the following definition.

Definition : The function fin (3.1) is called a recu"ence junction, and a; is called parameter

vector. Also we call the recurrence expressed by (3.1) mth order recurrence. If m = 1, it is named first

order recu"ence.

An example of a first order recurrence relation is shown below :

X; = Af-i-1 + B;

= ap)xi-l + ap)
= f(ai' X;.J) (3.2)

--

- 74-

where the parameter vector a; is the ordered pair (A;,Bi), and the function f is an add and a multiply.

The parameter vector of this example has length 2. In general, different recurrence relation may have

different parameter vector lengths. However, for any particular problem a parameter vector ai must

have constant length for all i. Note we chose to use a boldface letter to denote the parameter vector a,
and a(i) will denote its /h element for it. Similar notation will be used through the rest of this

section.

A pipeline to solve this problem would ideally accept each new input a; and feed it into the

pipeline as soon as it is available. Unfortunately, a direct translation scheme, in general, can not

achieve this result.

Many authors have studied this problem, yet no general scheme is known that works for an
arbitrary recurrence relation. However, for a certain class of recurrence relations, a good solution has

been proposed [10)(11). Most previous work in this field is concentrated on the implementation of

the proposed solution on a conventional machine architecture. However, our emphasis is in applying

this approach to the mapping of for-iter array operation constructs on a static data flow machine. We

will show the advantages of applying it to a data flow machine as compared to a conventional

machine.

In the proposed approach, the basic recurrence equation for computing xi from xi-/•·•xi-m is
backed up on itself by substituting appropriate copies of the original equation (3.1) for one or more

of the xi-/•·•xi-m terms:

xi = f{ai' xi-J•·•xi-m>

= f(ai, ff.a;-/• x;-i-··x;-m-J), x;-i-·•xi-m>

= f(ai' f(_ai· 1, xi-]-•·x;.m-J),

f{ai-2' xi·J-··x;.m-2>···f{a;.m• xi-m-J···x;.2m>)

This procedure removes the dependence of xi on xi-/ completely, thus easing the pipelining

problem. Further backup can remove the dependence on xi-2' x;_3 In general, use of backup will

cause the number of instruction cells to increase substantially. For example, even a single backup for

elimination of xi-/ will double the number of instruction cells and this will also double the length of

the pipeline.

Fortunately, for many common problems found in real applications, the recurrence function f

can be transformed to avoid the above problem. Let us first introduce the concept of companion

function.

Definition : If f is a first order recurrence function, and has the property that there exists some

function g such that for all parameter vectors a, b, and all x of the proper domain, the following holds

f{a,f(b,x)) = f(g(a,b),x) (3.3)

- 75 -

then the function g is termed a companion function for f.

In fact, any first order recurrence with a companion function can be backed up as follow :

xi = f(ar f(ai-1• xi-2))

= f(g(ai,ai-J), xi-2)

= f(g(g(a i ,a i-1),a i-2),x i-3)

= f(g(g(... g(a r ai_ J>. .. a i-df + 1», (x-df))

= f(ci, xi-d/ (3.4)

where ci is computed from the a's using only the g function.

To expand the pipeline computing f into a complete system requires adding an additional

pipeline that computes c i from ai. The output of this new pipeline will then feed into the f block

directly. This pipelined wil1 be named the companion pipeline in the rest of this thesis. Figure 3.15

shows this implementation scheme. If we construct the new pipeline properly, it is possible to keep

the whole pipeline running at maximum throughput.

Now let us consider the example program in (3.2) which is a first order recurrence relation, and

show how to apply the above scheme to it. Now the function f has a execution delay of 2 (df=2).

We can transform it as follows:

x- =A-x- 1 +B-t l 1- l

= ap)xi-l + ap)

ai ,
companion

pipeline

C. X 1-df
I J ,

f

xi
~

Figure 3.15.

- 76 -

= ap)[ai_/1)xi_2 + ai_i2)] + a1(2)

= ap)a;.i(l)x1_2 + (ap)a1_/2) + a1(2))

We can see that the function f of(3.2) has companion function g, where

g(a, b) = (a(l)b(l), a(l)b(2) + a(2))

As a result, f can be expressed as :

Xi = f(a i' X1_ /)

= f(ai, f(ai-/' X;-2»
= f(g(a i• a;-1), x;-1)

Figure 3.16 shows the fully pipelined data flow graph for f.

Figure 3.17 illustrates another example, which corresponds to (3.4) with df = 4. Now we have :

X1 = f(Ci'X[4) (3.5)

a .(1)
I

a.(2)
I

C.(1)
I

f

X.
I

Figure 3.16.

- 77 -

g

g

g

c.
I

f

x.
I

Figure 3.17.

where

ci = g(g(g(a;, ai-J), ai-2), a;.3)
Note also that the execution delay of g is dg.

dg

If the function g is associative, we can have a tree-like arrangement as in Figure 3.18. Here (3.4)

is rewritten as :

ci = g(g(a;, ai_1}, g(ai-2' a;_3))
This is similar to the so-called log-sum reduction used for many years in parallel computers [12].

Fortunately, it can be proved that the companion function g is indeed associative.

Furthermore, if a recurrence function f has a companion function g as defined in 3.3 then any xi can

- 78 -

a.
I

g g

g

C.
I

f

X
i

Figure 3.18.

be expressed in terms ofxj where O ~ j < i and

xi = f(a(i, i-j), x/

x.

Note that a(i, i-j) can be expressed by g as in (3.4). The above result can be proved easily from

the definition of the companion function.

Therefore, if the number of stages in f is df, we can construct a pipeline consisting of log2df

levels of g arranged as in Figure 3.19, which is a fully pipelined program.

Note that companion function concept is not limited simply to first order recurrences. For mth

order recurrence, there exists a similar result [13], which will not give in detail here.

In [11) we can find a list of recurrence problems that are known to have companion functions.

In our experience, quite a few recurrence problems found in real applications fall in this class. In
particular, all linear recurre·nce relations have their companion functions. A short proof can be found

along the same line as our analysis for (3.2). A VAL compiler should be able to detect those

- 79 -

g

g

J
[2n-1 I

1 J I

f

'
Figure 3.19.

- 80 -

recurrences and direct the graph generator to construct appropriate data flow graphs.

As we can see from the above analysis, one important factor in applying the new scheme is the

introduction of the companion pipeline. Since many different recurrence relations may be used in

various computations, the exact form of the companion pipelines needed for a particular problem is

difficult, if not impossible, to predict. The previous work in this area has been to concentrate on its

implementation in the context of a conventional machine. There the pipeline is mainly implemented

in hardware, usually as the pipelined arithmetic and logic unit, with some additional hardware

support. The introduction of a companion function is not flexible in such a context. On the contrary,

the pipeline in the architecture of a data flow machine is software implemented. As a result, it is very
easy to design a piece of data flow program which acts as a particular companion pipeline. This can

be performed at compile time, based on an analysis of program structure. Hence, it is relatively easy

to apply the new scheme on a data flow machine.

There are some trade off considerations in using this strategy. First, there are many recurrence

functions for which no companion function is known. Furthermore, the overhead of backing up of
companion functions will grow considerably when the df is big. The complexity of a compiler to

analyze the code is also a factor which should be considered. Nonetheless, the author believes, the
new scheme is a good start for further study of the mapping of the VAL for-iter array operation

construct into fully pipelined data flow graphs.

Finally, let us return to the problem of classifying VAL for·iter constructs which have good
mapping schemes.

Definition A for·iter expression is well-behaved, provided (1) it is simple, (2) the recurrence

function it denotes has a companion function, (3) the VAL expression which computes the
companion function is primitive well-behaved.

Consequently, from the results presented in this section, we have the following theorem :

Theorem 3.3 A well-behaved for·iter array operation construct can be mapped into a fully

pipelined data flow graph.

Now we are ready to review the notion of well-behaved VAL programs. Using the concepts

introduced in this chapter and the related results, we can define the notion of well-behaved VAL

program more precisely.

Definition A well-behaved VAL program is a VAL program which has the following properties

(1) All arrays in the program are static, le. array bounds are compile-time computable

constants.

(2) All array construction operations in the program are expressible by forall and for·iter

- 81 -

cun~tructs \\ hich ;ire 1•.,·ll-hehaYc<l.

From theorem 3.2 and 3.3. \IC knm, that a 1H:ll-hclla\·ed V1\L program can be mapped on a

static data flow machine in ;i full) pipelined Lishion. i\s a result, we h,l\e the follov,ing theorem:

Theorem 3.4 1\ ¼cll-hcha\ed Vi\! program can be 1rnppc<l into fully pipelined data flow

graph<;.

- 82 -

4. Conclusions

4.1 Summary of the thesis

The aim of this thesis has been to study the problem of mapping array operations in the high

level language VAL on a static data flow machine. The main interest is producing pipelined data

flow machine codes which can run with maximum throughput. Since data driven instruction

execution is radically different from its conventional counterpart, new models and schemes for its

translation should be investigated and developed.

The main contributions and accomplishments of this thesis are :

(1) The specification of a class of VAL program, i.e. well-behaved VAL programs, for which

both a good model and efficient schemes exist to map the array operations into fully

pipelined machine codes on a static data flow architecture.
(2) 'The development of flow dependency graph model (FOO model) for the class of

well-behaved VAL programs. A polynomial time algorithm is presented for balancing a

general acyclic FOO to achieve maximum pipelining. The issue of reducing the buffering

in a balanced FDG is addressed. An algorithm for reducing the buffering based on
equivalent transformation of balanced FOO is formulated. Although no general algorithm

is known for optimization of a balanced FOO, a class of FOO (well-structured FOO) is
defined for which a polynomial time algorithm exists for its optimization.

(3) The establishment of mapping schemes for well-behaved foraU and for·itcr array operation

constructs. In particular, a new scheme for mapping for·iter constructs to achieve maximum

pipelining is proposed. This is based on the concepts of companion function for a

recurrence function. The construction of FIFO buffer on a static data flow machine is also

discussed which is crucial for efficient implementation of above mapping schemes.

4.2 Suggestions for furthur research

For further research, I suggest following areas.

The first is the extension of the FOO model presented in chapter two. This may include the
generalization of the balancing algorithm to multi-input and multi-output FOO and the extension of

the model to inter-function data flow analysis. Another interesting topic would be the existence of

polynomial time optimization algorithms for a general FOO model. My present conjecture is that

this belongs to the NP-complete problems.

The second area would be the further improvement of companion function schemes for

mapping for-iter array operations. The useful class of recurrence functions found in most application

programs which have companion functions shol!ld be investigated and classified. A practical

algorithm for a VAL _compiler to recognize such classes of functions and to produce the efficient

- 83 -

codes should be devised.

The third interesting area would be the design of practical usable algorithms for a VAL

compiler to implement the analysis of a well-behaved VAL program based on the FOO model. The

abstract algorithms developed in chapter two should be revised or improved to be implemented in a

real VAL compiler.

Finally, it would be a very challenging task to implement the array mapping schemes developed

in this thesis on a static data flow machine. Only after we have successfully implemented the

mapping of a practical application program on a real data flow machine, can we be in a good position

to assess the theoretical model, to evaluate the scheme and the technique, to suggest further

extensions and improvements for them.

- 84 -

References

[l] Ackerman, W. B. and J. B. Dennis. "VAL-A Value-Oriented Algorithmic Language
Preliminary Reference Manual." Technical Report 218, Laboratory for Computer Science,
MIT, Cambridge, MA, 13 June 1979.

[2] Allen, F. E. "Program Optimization" Annual Review of Automatic Programming, 5, 239-307,
1969.

[3] Cocke, J. and Schwartz, J. T. "Programming Languages and lbeir Compilers." Courant
Institute of Mathematical Science, New York, N.Y., 1970.

[4] Dennis, J. B. and D. P. Misunas. "A Preliminary Architecture for a Basic Data-Flow
Processor." The Second Annual Symposium on Computer Architecture Conference Proceedings,
January 1975, pp. 126-132. Also Computation Structures Group Memo 102, Laboratory for
Computer Science, MIT, Cambridge, MA, August 1974.

[5] Dennis, J. B. "Packet Communication Architecture" Computation Structure Group Memo
130, Laboratory for Computer Science, MIT, Cambridge, MA, Aug. 1975.

[6] Dennis, J. B., Boughton, G. A., and Leung, C. K. C. " Building Blocks for Data Flow
Prototypes" Proceedings of the 7th Annual Symposium on Computer Architecture", May,
1980, pp. 1-8.

[7] Dennis, J. B., C. K. Leung, and D. P. Misunas. "A Highly Parallel Processor Using a Data
Flow Machine Language." Computation Structures Group Memo 134-2, Laboratory for
Computer Science, MIT, Cambridge, MA, January 1977 (revised June 1980).

[8] Dennis, J. B., Gao, G. R., and Todd, K. "A Data Flow Supercomputer" Computation
Structure Group Memo 213, Laboratory for Computer Science, MIT, Cambridge, MA, Jan
1982.

[9) Harary, F. "Graph Theory", Addison-Wesley, Reading, Mass. 1969.

[10) Kogge, P. M. "A parallel Algorithm for Efficient Solution of a General Class of Recurrence
Equations." IEEE Trans. Comput., Vol. c-22, no. 8, Aug.1973.

[11) Kogge, P. M. "Parallel Solutions of Recurrence Problems" IBM J. Res. Develop., Vol. 18, no.
2, March 1974.

[12) Kuck, D. R "ILLIAC IV Software and Application Programming" IEEE Trans. Comput, Vol.
c-17, no. 8, Aug. 1968.

[13) Matthew, S. H. "Flow Analysis of Computer Programs" Elsevier. North-Holland Inc., 1977.

[14) Montz, L.B. ''Safety and Optimization Transformations for Data Flow Programs." Technical
Report 240, Laboratory for Computer Science, MIT, Cambridge, MA, January 1980.

- 85 -

[15] Stoy. J. F. "Functions in the Form l I)at:J F!ov \fachinc.·· L:npublished communication.

[16] Todd, K. W. "i\n Interpreter for Instruction Cells." Unpublished communication, January
1981.

[17] Weng, K. S. "An Ah:,tract Implementation For a Generalized Data Flow Language"
Technical Report 228. Laboratory for Compmcr Science, MIT, Cambridge, MA. February
1980.

