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Abstract

Many approaches to programming emphasize the use of interfaces. The
basic idea is to decompose programs into modules and to specify how each
module's interface behaves. This makes it easier to reason about programs
because one can rely on a module's speci�cation rather than examining its
implementation, which is more complicated.

Although programmers bene�t from speci�cations when reasoning about
programs, existing compilers do not. In this thesis, I discuss how
to incorporate speci�cations into a programming language to improve
performance. I use speci�cations in two ways: (1) to allow programmers
to de�ne new optimizations that make general interfaces more e�cient to
use, and (2) to enhance conventional optimizations. The speci�cations can
be written incrementally, so programmers can choose to write only the parts
of speci�cations needed to improve performance.

I demonstrate my approach using Speckle, a statically typed, imperative
programming language that incorporates speci�cations. Users de�ne
optimizations in Speckle by providing multiple implementations for a single
procedure. One implementation must be general enough to work in any
context. The other implementations are more e�cient but require an addi-
tional precondition speci�ed by the user. The compiler uses speci�cations
to prove that particular calls to the procedure can use the specialized
implementations.

The prototype Speckle compiler (PSC) incorporates primitive, auto-
mated theorem-proving technology to optimize programs. In addition to
user-de�ned optimizations, PSC identi�es opportunities to perform three
kinds of conventional optimizations: eliminating common subexpressions,
moving code out of loops, and eliminating dead code.

Because speci�cations are simpler than code, PSC detects optimizations
that most compilers cannot, such as hoisting procedure calls out of loops.
Also, because speci�cations contain information not found in code, PSC
detects optimizations that are impossible without speci�cations.

Keywords: Formal Speci�cations, Program Optimization, Compilers, Par-
tial Speci�cations, Speckle, Larch, Programming Languages, Speci�cation
Languages, Theorem-Provers, CLU.
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Chapter 1

Introduction

Many approaches to programming emphasize the use of module interfaces (or
abstractions) [37, 45]. The basic idea is to achieve a separation of concerns.
The client of an interface looks at its speci�cation and writes code that uses
the interface. He need not concern himself with how the speci�ed behavior
is achieved. The implementor's job is to provide an implementation that
satis�es the speci�cation.

Programming with interfaces o�ers many advantages. The principal
advantage is modularity. The separation of concerns embodied by a
speci�cation allows the client and the implementor each to design, construct,
test, and change his code without having to examine the other's code. Such
independence is vital in software systems of any appreciable size. A second
advantage is simplicity. The implementation of an interface is usually more
complicated than the speci�cation, so the speci�cation allows clients to
reason about the interface at a simpler level. A third advantage is reuse.
Once an interface is speci�ed and implemented for one system, the interface
can be re-used in other systems, thereby reducing the cost of developing
software.

Programming with interfaces also presents some challenges. When
designing interfaces, a software engineer often faces the dilemma of whether
to make an interface general or to specialize the interface to the task at hand
[32]. For example, consider the interface of a procedure to insert an element
into a set. For e�ciency, the interface of insert might require that the
element not already be in the set|if sets are represented as unsorted lists
without duplicates, this would avoid having the implementation examine
each element. For generality, however, the interface for insert should have
no precondition so that insert can be called from any context.

This thesis addresses the problem of how to make programming with
simple and general interfaces more e�cient. The approach is to make
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speci�cations available to the compiler by incorporating them into the
programming language.

1.1 Speci�cations Can Improve Performance

Speci�cations have been advocated primarily for two reasons:

1. Speci�cations make it easier to understand code. A speci�cation only
needs to describe the result of a computation rather than how the
result is computed. Thus, a speci�cation is usually more compact
and easier to understand than an implementation, which might use
complicated data structures and invariants to improve e�ciency. This
makes it easier to understand code that uses the implementation.

2. Speci�cations make it easier to change programs. As the contract
between the implementor of an interface and its clients, a speci�cation
describes the required behavior of an interface. Without a speci�ca-
tion, it is impossible to distinguish the parts of an implementation's
behavior that are required from those that can be changed. Thus,
speci�cations make it easier to alter programs in ways that preserve
correctness.

Normally, speci�cations directly bene�t people who construct, test, port,
and maintain a program, but the speci�cations are ignored by the compiler.
However, speci�cations are useful at compile time for essentially the same
reasons that they are useful to programmers.

In this thesis, I discuss how to incorporate speci�cations into a
programming language to improve performance. I use speci�cations in two
ways: (1) to allow programmers to de�ne new optimizations that make
general interfaces more e�cient to use, and (2) to enhance conventional
optimizations.

Similar bene�ts in performance might be obtained without speci�cations,
e.g., by writing pragmas or transformation rules. However, the cost of
writing speci�cations is amortized over other uses, such as documenting
interfaces. Thus, the e�ort a programmer spends writing speci�cations
to improve performance also improves modularity, makes it easier to
understand code, and encourages reuse.

14



1.1.1 De�ning New Optimizations

Speci�cations can be used to let programmers de�ne new optimizations to be
performed by the compiler. In this thesis, I consider one kind of programmer-
de�ned optimization: a specialized procedure implementation (SPI).

From the client's perspective, calling a procedure with an SPI is like
calling any other procedure. From the implementor's perspective, SPIs
allow a single procedure interface to have multiple implementations. One
implementation|the general implementation|can be used anywhere. The
other implementations|the SPIs|are usually faster than the general one
but can be used only when certain conditions are met. The programmer
de�nes these conditions formally using the speci�cation language, and the
compiler substitutes an SPI for the general implementation when it can
prove, using speci�cations, that the conditions are met at a particular call
site.

SPIs reduce the conict between generality and e�ciency. The client sees
only a single, general interface while the compiler substitutes a more e�cient
SPI in contexts where the full generality is unnecessary. For the insert

example described earlier, the programmer can provide clients with the
e�ciency of both implementations and the convenience of a single, general
interface.

Without SPIs, a programmer might choose to write a separate interface
for each procedure implementation. Using SPIs has two advantages. First,
because SPIs are not directly accessible to the caller, they eliminate the
possibility of a client calling an SPI whose precondition is not satis�ed.
Second, because they conceal information that might otherwise be visible to
clients, SPIs improve modularity. When an SPI is added to or removed from
a procedure, the client code only needs to be recompiled. It does not need
to be edited.

1.1.2 Enhancing Conventional Optimizations

Speci�cations can also be used to enhance conventional optimizations.
In this thesis, I examine common subexpression elimination, hoisting
expressions out of loops, and dead code elimination.

Most conventional compilers restrict common subexpression elimination
and code hoisting to expressions that don't contain procedure calls. The
reason is that it is di�cult to determine when it is safe to eliminate or
hoist a procedure call, which may modify or allocate data structures. With
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speci�cations, however, it is easy to determine whether a procedure call can
be eliminated or whether it performs visible side e�ects or allocates data.

Speci�cations also enhance common subexpression elimination when a
procedure is called between two common expressions. Without speci�ca-
tions, the compiler must perform interprocedural analysis to determine if
the call changes the value of the expression. This information is more readily
available in the procedure's speci�cation.

1.2 Speckle

Speckle is a combined programming language and formal speci�cation
language that I designed to enhance the e�ciency of programs that make
use of interfaces. The programming language portion is mostly a subset of
CLU [36], and the speci�cation language portion is based on Larch [21, 22].

CLU has several features that make it an appropriate starting point for
Speckle. CLU supports both procedural and data abstraction, which are the
primary ways to simplify reasoning about programs. CLU has static typing,
so there is no need to optimize away runtime type checks. CLU has side
e�ects and pointers,1 so the compiler must handle aliasing.

I chose Larch because of the tools available for checking and reasoning
about Larch speci�cations [16] and because there were already techniques
for specifying CLU programs using Larch [52].

I implemented a prototype Speckle compiler that incorporates parts
of a general-purpose theorem-prover, LP [16], to identify opportunities to
perform optimizations. The compiler recognizes three kinds of conventional
optimizations: common subexpression elimination,2 moving code out of
loops, and dead code elimination. It also identi�es opportunities to use
SPIs.

1.2.1 Design Goals

Several key ideas drove the design of Speckle. The �rst idea is that the
compiler should use the information supplied in speci�cations to perform
more optimizations. It is the user's responsibility to make sure that the
speci�cations are correct; if they are incorrect, the compiler may perform
unsafe optimizations.

1
In CLU, pointers are implicit, as in LISP, rather than explicit, as in C. Pointer

arithmetic is not allowed.

2
The expressions need not be in the same basic block.
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remove duplicates = proc (a:int array)

1 j: int := a.low

2 s: int set := int set$create()

3 for i:int in int array$indexes(a) do

4 if not int set$member(s,a[i])

5 then int set$insert(s,a[i])

6 a[j] := a[i]

7 j := j + 1

8 end

9 end

10 int array$trim(a, a.low, j - a.low)

end remove duplicates

Figure 1.1: Procedure remove duplicates

The second idea is that speci�cations and assertions should be optional.
The speci�cation language should allow partial speci�cations, i.e., ones
that are either entirely missing or only partially written. Furthermore,
the compiler should make use of any relevant information in partial
speci�cations. It is not acceptable for the compiler to ignore speci�cations
until all parts of the program are speci�ed in full, because this may never
happen.

The third idea is that programmers should be able to de�ne new
optimizations to be performed by the compiler. Speckle currently supports
only one kind of user-de�ned optimization|SPIs.

1.2.2 Example: remove duplicates

Fig. 1.1 is an example that illustrates some of the methods and ideas
of this work. Procedure remove duplicates uses two user-de�ned data
types: int set, a type for integer sets, and int array, a type for integer
arrays that can grow and shrink dynamically. As in CLU, the syntactic
expressions a.low, a[i], and a[j] := : : : are shorthands for calls to the
procedures int array$get low, int array$fetch, and int array$store.
int array$trim takes an array, a starting index, and an element count and
discards all elements outside the index range start: : :start+count-1.
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Using formal speci�cations and SPIs, the compiler identi�es the following
optimizations automatically:

1. The expressions a[i] on lines 5 and 6 can be replaced by the value
computed for a[i] on line 4.

This optimization relies on the speci�cations of member and Insert to
show that a is unchanged since the call to fetch on line 4.

2. An SPI of insert can be used to avoid checking whether a[i] is
in s. (The int set implementation maintains the invariant that no
duplicates occur in the representation of an int set.)

This optimization relies on the semantics of if and the speci�cation
of member to determine a[i] 62 s. It also relies on the speci�cation
of fetch to show that s is unchanged between the calls to member and
insert.

3. An SPI of fetch can be used to avoid the bounds checks for a[i] on
line 4.

4. An SPI of store can be used to avoid the bounds checks for a[j] on
line 6.

5. The two expressions a.low on line 10 can be replaced by the value
computed for a.low on line 1.

Optimizations 3-5 require proof-by-cases, proof-by-induction, and the
speci�cations of the procedures inside the loop to determine that the bounds
of the array are invariant over the loop.

To get theses optimizations, the author of remove duplicates did not
have to write any speci�cations. Instead, the compiler used the speci�cations
of the procedures and data types used in remove duplicates.

On the surface, many of the array optimizations seem similar to those
in [20]. However, there is a signi�cant di�erence. In [20], the compiler relies
on the semantics of arrays as de�ned by the programming language. The
technique does not work for optimizations of user-de�ned data types, e.g.,
sets. Here, the compiler relies on the speci�cations of procedures and data
types to perform optimizations, so the technique works for any data type.
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1.3 Assumptions

This thesis rests primarily on two assumptions. The �rst is that future
compilers will have su�cient computing resources to use theorem-proving
technology during compilation. While the prototype compiler is not a
practical one, I believe that both improvements in compilation techniques
that exploit speci�cations and advances in computing power will indeed
make theorem-proving a practical component of future compilers.

The second assumption is that it is practical to rely on unveri�ed
speci�cations to optimize code. The validity of this assumption rests on the
development of techniques for detecting and locating errors in speci�cations.

1.4 Overview

In Chapter 2, I de�ne the Speckle program state, the central notion that
establishes the Speckle model of computation. Then, I describe how to
specify data types, procedures, and iterators in Larch/Speckle using program
states.

In Chapter 3, I formalize the notion of a program and give proof rules
for reasoning about programs using the speci�cations of Chapter 2.

In Chapter 4, I describe how speci�cations enhance three conventional
optimizations: common subexpression elimination, moving code out of
loops, and dead code elimination. I give formal proof obligations for each of
these optimizations and show how to discharge the proof obligations using
the proof rules of Chapter 3. Many of the improvements rely on improved
side e�ect analysis that would also bene�t other optimizations.

In Chapter 5, I present specialized procedures and describe how they
reduce the conict between e�ciency and generality. Then, I discuss the
need to propagate the proof obligations of specialized procedures up the call
stack to preserve modularity.

In Chapter 6, I describe the prototype Speckle compiler (PSC). PSC
incorporates primitive automated theorem-proving technology to detect
optimizations. The technology is a combination of term rewriting and
automated proofs by cases and induction.

In Chapter 7, I extend Larch/Speckle to support partial speci�cations,
and I describe the strategy used by PSC to deduce some of the missing
portions of partial speci�cations.

In Chapter 8, I report on a case study using PSC on pieces of a large
program.
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Chapter 9 contains a summary and conclusion.
Related work is discussed throughout the thesis. To my knowledge,

only Hisgen has previously examined the idea of letting programmers de�ne
optimizations in an imperative language [25]. Other closely related works
are discussed in Chapters 4 and 5.
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Chapter 2

Larch/Speckle

This chapter describes most of the Larch/Speckle speci�cation language|
it omits only the features for partial speci�cations, which are described in
Chapter 7.

Section 2.1 provides some essential background about Larch speci�ca-
tions, and Section 2.2 provides some essentials about the Speckle program-
ming language. The remainder describes the semantics of Larch/Speckle
using examples and discusses related work on speci�cation languages.

2.1 Larch

Larch is a family of speci�cation languages designed for specifying programs
written in one of a number of di�erent programming languages. Larch uses a
two-tiered approach. The shared tier, which is common to all programming
languages, consists of the Larch Shared Language (LSL). LSL is used to
de�ne useful functions in a fragment of multisorted �rst-order predicate
logic. The glue between a programming language and LSL is the interface

tier, which provides an interface language for each programming language,
e.g., Larch/CLU [52], Larch/C [22], Larch/C++ [34], etc.

Each interface language formalizes the notion of a program state and
provides a syntax and semantics for specifying procedure interfaces and data
abstractions.

� A procedure speci�cation is a predicate on pre- and post-states. The
predicate, which is de�ned using LSL functions, speci�es the post-
states that are possible when the procedure is called from a given
pre-state.

� A data abstraction is a module that implements an abstract type,
e.g., set, using some concrete type, e.g., hash table. The interface
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for a data abstraction speci�es an LSL sort for modeling values of
the abstract type in a program state. Thus, program states are more
abstract than if they were de�ned using only the sorts corresponding
to primitive types.

2.1.1 The Larch Shared Language

The semantics of LSL is de�ned precisely in [23]. This section is just an
informal synopsis of LSL features that are relevant to Speckle.

LSL speci�cations are written in units called traits. Fig. 2.1 is an example
of a trait for sets. A trait begins with a name followed by sort parameters,
if any. In Fig. 2.1, sort S is used for sets, and sort E is used for elements.

The includes section lists other traits whose sort and function de�ni-
tions may be used by the trait. In Fig. 2.1, the Integer trait is included to
provide the sort Int and the functions +, �, 0, and 1.

The introduces section lists the names and signatures of functions used
by the trait. These functions may use either in�x notation, like 2 , or
pre�x notation, like insert. Mix�x notation, e.g., [ ], is also allowed.

The asserts section lists axioms that hold about the various functions.
The axioms may use the builtin Boolean functions, e.g., :;_; and ^. The
symbols == and = are equivalent, except that == has lower precedence.

Typically, most of a trait's assertions are given as equations, but two
other forms are common. A generated by clause de�nes an induction
schema by listing functions that are su�cient to construct all values of a
sort. In Fig. 2.1, the generated by clause asserts that all values of sort S
can be constructed using only fg and insert.

A partitioned by clause lists functions that are su�cient for distin-
guishing unequal values of a sort. In Fig. 2.1, the partitioned by clause
asserts that two sets are equal if and only if they contain the same elements.

The implies section lists formulas that should follow from the axioms
using the normal inference rules of predicate logic. Implications are a
source of redundant information that can be used to detect inconsistencies
and omissions in speci�cations [15]. In Speckle, implications are used as
additional information for proving that an optimization is safe.

The semantics of LSL de�nes a theory|an in�nite set of formulas|for
a trait. The theory of a trait is the consequence closure of its axioms and
inference rules, which include the normal inference rules of predicate logic.

Typically, the theories of traits used in speci�cations are undecidable|
there is no way to tell if an arbitrary formula is in a theory. However,
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Set (E, S): trait

includes Integer

introduces

{ }: ! S

insert: E, S ! S

__2__: E, S ! Bool

__[__,

__\__: S, S ! S

size: S ! Int

asserts

8 s,s1,s2: S, e,e1,e2: E

: (e 2 { });

e1 2 insert(e2, s) == e1 = e2 _ e1 2 s;

e 2 (s1 [ s2) == e 2 s1 _ e 2 s2;

e 2 (s1 \ s2) == e 2 s1 ^ e 2 s2;

size({}) == 0;

size(insert(e, s)) == size(s) + (if e 2 s then 0 else 1);

S generated by { }, insert

S partitioned by 2

implies

8 e: E, s: S

e 2 s == insert(e, s) = s;

size(s) � 0;

Figure 2.1: A Set Trait

theorem-proving techniques can be used to show that some formulas are
in the theory of a trait. Also, there is no guarantee that the theory of a
trait is consistent. Speckle requires, but cannot check, that all traits used
in speci�cations are consistent.

2.2 Key Aspects of Speckle as a Programming Language

The programming language portion of Speckle is mostly a subset of CLU [36].
It has the following features of CLU:
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� Static Typing. Type checking is done at compile time, so runtime type
checks are not needed.

� Side E�ects. Programs may modify data structures.

� Data Abstraction. Users may de�ne new data types. The implemen-
tations of such a type can encapsulate the representation of the type.

� Garbage Collection. There is no explicit mechanism to deallocate
memory, so dangling references cannot occur.

� Pointers. Data values may contain pointers into the garbage-collected
store, and pointers can be used to create cyclic data structures.
However, pointer arithmetic is not allowed.

� Procedures. Procedures may have any number of arguments and any
number of results. All arguments and results, which may be pointers,
are passed by value.

� Iterators. Iterators are a restricted form of coroutines that can be
implemented on a single stack.

� Exceptions. Routines may terminate either normally or by signalling
an exception. If a routine signals an exception that is not handled by
the caller, a fatal runtime error occurs. Exceptions may return any
number of results.

� No Global Variable Names. There is no global scope for variable
identi�ers.

� Syntactic Shorthands. Syntactic shorthands are provided to abbreviate
calls to certain procedures. For example, \a[i]:= e" denotes a call
to store operation of the type of a. When not followed by \:=",
\a[i]" denotes a call to the fetch operation. Similarly, \x.fld := v"
denotes a call to the set fld operation of the type of x, and \x.fld"
denotes a call to the get fld operation.

As a simpli�cation, I omitted some features of CLU|polymorphism,
procedures as data, the type any, and own variables.

CLU's primitive data types are divided into two categories: immutable
and mutable. An instance of an immutable type cannot be modi�ed during
the the execution of a program, whereas an instance of a mutable type
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int = immutable type

based on Int

int_queue = mutable type

based on IntQueue

Figure 2.2: Data Type Speci�cations

can be modi�ed. For example, integers and sequences of real numbers are
immutable types, while arrays of integers and arrays of reals are mutable.
Unlike CLU, Speckle provides a formal way to specify whether a user-de�ned
type is mutable or immutable.1

A value of a mutable type is a pointer to a value in the garbage-collected
store. Thus, pointers appear implicitly wherever a mutable type is used.
This model is similar to LISP, which has implicit pointers, as opposed to C,
where pointers are explicit.

2.3 Specifying Interfaces in Larch/Speckle

Larch/Speckle speci�cations consists of three basic parts: data type
speci�cations, program states, and procedural speci�cations. Program
states are de�ned in part by data type speci�cations, which describe
the values manipulated by programs. Procedural speci�cations, i.e.,
speci�cations of procedures and iterators, are written as predicates on
program states.

2.3.1 Data Type Speci�cations

The speci�cation of a data type, T, indicates whether T is mutable and
speci�es an LSL sort, S, whose values are used to model instances of type
T. S is called the value sort of T.

Fig. 2.2 gives part of two data type speci�cations. Type int is
immutable. The based on clause speci�es that sort Int is the value sort of
type int. Type int queue is mutable, and its value sort is IntQueue.

An instance of a mutable type has both a value and an identity. The
value may change during a program's execution, but the identity does not.

1
In CLU, the compiler must assume that a user-de�ned type is mutable.
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To model identities, a location sort is implicitly de�ned for each mutable
type. A location sort provides an in�nite supply of unique identi�ers that
get assigned to instances of a mutable type as they are allocated. The
identi�ers are called locations because they are used as the addresses of
data in program states.

In the example above, sort int queueLoc is implicitly de�ned as the
location sort for int queue. This sort can be used in LSL speci�cations
that de�ne other value sorts. For example, consider a data type for sets of
int queues:

int_queue_set = immutable type

based on QueueSet

The value sort QueueSet would be de�ned in LSL using int queueLoc for
the elements of QueueSets, e.g., by instantiating the Set trait of Fig. 2.1
with int queueLoc for E and QueueSet for S.

A term of a value sort may contain locations of mutable data. For
example, QueueSet terms contain locations of sort int queueLoc. Similarly,
a value of an array with a mutable element type contains the location of each
element. In contrast, a value of an array of immutable integers contains no
locations.

Implementations of data types must not \expose the representation."
The representation is exposed if code outside the implementation of the
type can access the representation directly, i.e., without calling operations
of the type.

2.3.2 Program States

A Speckle program state consists of an environment and a store:

Prog State = Env X Store

Env = Ident ! ( LSLValue + Loc )
Store = Loc ! LSLValue

The domains LSLValue and Loc are determined by speci�cations of data
types used in a program. LSLValue is the disjoint sum of the value sorts of
the types, and Loc is the disjoint sum of the location sorts of the mutable
types.

The environment maps identi�ers to their values, and the store maps
locations of mutable data to their values. An identi�er is the name of a
program variable, e.g., `x' or `sum'. If the type of an identi�er is immutable,
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the environment maps the identi�er to an LSLValue. If the type of an
identi�er is mutable, the environment maps the identi�er to a location. The
environment of program state � is written as �Env, and the store is written
as �Str.

Program states have several properties that follow from the features
of the programming language. Because Speckle is statically typed, each
program state � is well-typed. If identi�er `x' is declared to have immutable
type IT, the sort of �Env(`x') is the value sort of IT. Similarly, if `x' is
declared to have mutable type MT, the sort of �Env(`x') is MTLoc, and the
sort of �Str(�Env(`x')) is the value sort of MT.

There may be several aliases for a given location l. For example, the
environment may map any number of identi�ers to l. (Each identi�er would
have the same type as l.) Also, an LSLValue in range(�Str) or range(�Env)

may contain l.

Because LSLValues may contain locations, data may be cyclic and may
contain multiple levels of indirection. However, memory is reclaimed only
by garbage collection, so a program state never has dangling references. I.e.,
the set of locations contained by values in range(�Env) and range(�Str) is a
subset of domain(�Str).

A program can alter its state in two ways. One way is to assign a new
value to an identi�er. This changes only the environment. Furthermore, it
changes only the binding of the assigned identi�er, i.e., assigning to identi�er
`x' never a�ects the binding of identi�er `y'.

The other way to alter the program state is to call a procedure that
modi�es locations in the store. A procedure call modi�es a location l if
�Str

pre(l) 6= �Str

post(l), where �pre and �post are the program states before and
after the call. Because of the scope rules, a procedure call never changes the
environment except for identi�ers that are assigned result values.

2.3.3 Procedure Speci�cations

The speci�cation of a procedure, Prc, is a set of predicates. The precondi-
tion, Prc.Pre, must hold whenever Prc is called. Otherwise, the behavior
of the procedure is unde�ned. The normal postcondition, Prc.Post[norm],
holds if the Prc returns normally. If Prc signals exception sig, the
postcondition Prc.Post[sig] holds. The guard condition Prc.Guard[sig]
speci�es when a procedure is allowed to signal exception sig. The guard
condition for the normal return, Prc.Guard[norm], is the conjunction of the
negation of the guards for the exceptional returns.
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Predicate De�nition

Prc.Pre(�Str

pre, Args) requires

Prc.Post[norm](�Str

pre, �
Str

post, Args, Resnorm) ensures ^ modifies

Prc.Post[sig](�Str

pre, �
Str

post, Args, Ressig) ensuringsig ^ modifies

Prc.Guard[norm](�Str

pre, Args)
V

sig : (whensig)

Prc.Guard[sig](�Str

pre, Args) whensig

Figure 2.3: Procedure Speci�cation Predicates

Syntactically, the predicates are decomposed into a number of clauses.
The requires clause de�nes the precondition. The postconditions are
de�ned by the modifies, ensures, and ensuring clauses. The guard
conditions are de�ned by the when clauses. Fig. 2.3 summarizes the
association between the predicates and the syntactic clauses. Args denotes
a list of LSL variables|one per formal argument of Prc. The sort of each
variable is determined by the formal argument's type. For immutable
types, the corresponding value sort is used, and for mutable types, the
corresponding location sort is used. Similarly, Res is used for the results
of Prc.

Fig. 2.4 lists several example speci�cations that rely on the data type
speci�cations of Fig. 2.2. The precondition for dequeue is vacuous, i.e.,
true. The precondition for head is that the queue is not empty. The
syntax q ^ denotes the IntQueue obtained by dereferencing q in the pre-
state. Similarly, q' denotes the value obtained by dereferencing q in the
post-state. The superscripts ^ and ' can be applied to any term denoting
a location.

The modifies clause speci�es the set of locations that a procedure is
allowed to modify. Thus, it restricts the side e�ects that a procedure is
allowed to perform, whether the procedure returns normally or signals an
exception. For example, dequeuemay modify only the int queueLoc q, and
head and create may not modify any locations.

Larch/Speckle automatically de�nes the sort LocSet to model sets of
locations. LocSets are heterogeneous because they may contain locations of
more than one mutable data type. In a modifies clause, one can write a
list of terms to specify the set of locations, S, that a procedure may modify.
Each term must be either a location or a LocSet, and S is simply the union
of the locations and the LocSets. Semantically, the modifies clause adds
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dequeue = proc (q: int_queue) returns (i: int)

requires --

modifies q

ensures q' = deq(q^) ^ i = head(q^)

except

signals empty when IsEmpty(q^) ensuring q' = q^

head = proc (q: int_queue) returns (i: int)

requires : IsEmpty(q^)

modifies --

ensures i = head(q^)

create = proc () returns (q: int_queue)

requires --

modifies --

ensures q' = empty ^ New(q)

Figure 2.4: Sample Procedure Speci�cations

the conjunct

8 l : Loc 2 domain(�Str

pre) [ l =2 S =) �Str

post(l) = �Str

pre(l) ]

to a postcondition. This conjunct is abbreviated as the predicate
OnlyModi�es(pre; post; S). In addition, every postcondition has the con-
junct

domain(�Str

pre) � domain(�Str

post)

This guarantees that the post-store contains every location in the pre-store.
The ensures clause speci�es the postcondition for a normal return. For

the procedure head, the postcondition speci�es that the return value is equal
to the head of the queue. This assertion is an equation, not an assignment|
the same assertion can be written as head(q ^) = i.

For each exception that a procedure may signal, a when clause speci�es
a guard that must hold for the exception to be signalled, and an optional
ensuring clause speci�es a postcondition. The ensures clause does not
apply when a procedure signals an exception.

A procedure may list any number of exceptions, and the guards for
the exceptions need not be mutually exclusive. If one or more guards are
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satis�ed, the procedure must signal one of the corresponding exceptions.
The choice may or may not be implemented non-deterministically.

To specify allocation, the ensures and ensuring clauses may use the
special function New. For example, in Fig. 2.4, the speci�cation of procedure
create states that the return value is a newly allocated location, i.e., that
the location is unaliased to all locations in the pre state. In the common
case, New has a single argument denoting a location. The meaning of New(x)
is the assertion

x =2 domain(�Str

pre) ^ x 2 domain(�Str

post)

The �rst conjunct su�ces to show that x is unequal to all previously existing
locations. The second conjunct would be needed to prove that x is not a
dangling reference in the post-state.

In general, New may have any number of arguments, each of which is
either a location or a LocSet. Each location is treated as a singleton LocSet.
The meaning of New(ls1; ls2; : : : ; lsn) is that each lsi contains new locations:^

i=1:::n

lsi \ domain(�Str

pre) = fg ^ lsi � domain(�Str

post)

and that each pair of LocSets in the assertion is disjoint:^
i;j=1:::n

i 6= j =) lsi \ lsj = fg

Thus, New(x,y) implies x 6= y, but New(x) ^ New(y) does not.
As a convenience when specifying LocSets, Larch/Speckle provides the

special functions reach ^ and reach0. Both functions map LocSets to
LocSets. reach ^(s) denotes the set of locations reachable from s in the
pre-store, and reach0(s) denotes the set of locations reachable from s in
the post-store.

The de�nitions of reach ^ and reach0 require some way to determine
which locations are contained by an LSLValue in the range of a program
state's store. Therefore, to fully de�ne reach ^ and reach0, each type's
value sort must provide a function, contents, that maps a term of the
value sort to the set of locations contained in the term. Unfortunately, the
contents functions cannot be inferred mechanically and therefore must be
supplied by speci�ers.

Fig. 2.5 is an example of a speci�cation for contents for mappings.
Suppose a program uses a data type that maps strings to mutable
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Map_Contents: trait

includes String, Map(String, int_queueLoc, SIQ_Map),

LocSortFunctions(int_queueLoc)

introduces

contents: SIQ_Map ! LocSet

asserts

8 siq: SIQ_Map, s: String, iql: int_queueLoc

contents(empty_map) == {}; % the empty LocSet

contents(bind(siq, s, iql)) == {iql} [ contents(siq);

Figure 2.5: Specifying contents

int queues. The sort SIQ Map is the value sort for the mapping type. The
trait in Fig. 2.5 speci�es that the contents of a SIQ Map value is the range
of the mapping.

As a shorthand, speci�ers may abbreviate reach ^(contents(v)), where
v is a term of some value sort, as reach ^(v). The same shorthand applies
for reach0.

2.3.4 Iterator Speci�cations

Iterators are a restricted form of coroutine that can be used to iterate over
collections of values, e.g., sets, mappings, and trees. An iterator can only
be invoked by a for statement, which de�nes a loop.

An iterator is �rst called when the execution of a for statement begins.
Subsequently, it is resumed each time control reaches the end of the body
of the for statement. Each time an iterator is called or resumed, it may
either yield results, return, or signal an exception. If it yields, another
iteration begins. If it returns, control is transferred to the statement after
the for. If it signals an exception, control is transferred to the handler for
the exception.2

Iterators are speci�ed much like procedures, but with some additional
constructs. Fig. 2.6 contains a iterator speci�cation and Fig. 2.7 contains
a procedure that uses the iterator to construct the inverse of a mapping.
The requires clause of the speci�cation speci�es a precondition that must

2
If there is no handler for the exception, a fatal runtime error occurs.
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map$elements = iter (m: map) yields (d: dom, r: ran)

requires --

modifies --

ensures d 2 domain(m@) ^ r = image(m@, d) ^ d =2 d prev

returns when seq2set(d prev) = domain(m@)

Figure 2.6: An Iterator Speci�cation

invert = proc (m: map) returns (i: inv_map)

requires --

modifies --

ensures i' = inverse(m^) & New(i)

except signals many_to_one when : invertible(m^)

i: inv_map := inv_map$create()

for d: dom, r: ran in map$elements(m) do

if inv_map$defined(i, r) then signal many_to_one end

inv_map$define(i, r, d)

end

return(i)

end invert

Figure 2.7: Calling an Iterator

hold each time the iterator is called or resumed. The modifies clause
speci�es the set of locations the iterator is allowed to modify. The ensures
clause speci�es the postcondition that applies each time the iterator yields.
The returns when clause speci�es the guard that determines whether the
iterator yields or returns. It may be followed by an ensuring clause that
speci�es a postcondition that holds when the iterator returns.

Iterator speci�cations may refer to values from previous points in a loop.
The syntax m@ denotes the value obtained by dereferencing the location m

in the program state in which the iterator was �rst called. Thus, m@ and
m ^ are synonymous the �rst time the iterator is called, but may di�er when
the iterator is resumed. The su�x @ may be applied to any term denoting
a location.
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Another way to refer to values at previous points in a loop is with the
syntax T prev, where T is some term. T prev denotes the sequence of the
values T had each time the iterator previously yielded. On the �rst iteration,
T prev is an empty sequence. Typically, the prev su�x is applied to yielded
values. For example, in Fig. 2.6, d prev denotes the sequence of dom values
that were previously yielded. The assertion d =2 d prev speci�es that no
domain element is yielded more than once.

Finally, iterator speci�cations may use the special term n iter to denote
the number of times the iterator has yielded to the loop body. This is
useful in specifying iterators such as int$from to, which yields a subrange
of integers in ascending order.

2.4 Related Work

Larch/Speckle has many features in common with other interface languages,
e.g., Larch/CLU [52], Larch/C [22], and Larch/C++ [34], as well as features
in common with generic interface languages [8, 24, 35, 53]. Larch/Speckle
is unique in that, as explained in Chapter 7, Larch/Speckle supports partial
speci�cations.

Because Speckle is based on CLU, Larch/Speckle is most like Larch/CLU.
One di�erence is the formalization of New, which in Larch/CLU is a separate
clause that identi�es all locations that were allocated by a procedure. In
Larch/Speckle, a speci�cation need not identify locations that were allocated
to be used as temporaries. Another di�erence is in the speci�cations of
iterators. Instead of the shorthands @, prev, and n iter, Larch/CLU
provides facilities to introduce names for speci�cation variables, to specify
their initial values, and to specify how the values are updated on each
iteration.

Larch/Speckle's program states are similar to those in Euclid [31] and
FX [38]. In each language, the program store is partitioned into disjoint
pieces. In Euclid, the store is composed of disjoint \collections" of data. In
FX, the store is composed of disjoint \regions" of data. In Larch/Speckle,
the store can be viewed as the union of disjoint mappings|one for each
mutable data type. Euclid and FX are more general than Larch/Speckle
because they allow programs to use multiple collections or regions of data
of a single type.

I chose to use Larch because it came with both a theorem-prover
for reasoning about Larch speci�cations (LP [16]) and techniques for
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specifying CLU programs using Larch [52]. However, there are many generic
speci�cation languages other than Larch that could also be used as the basis
for program optimization.

Perhaps the language most similar to Larch is VDM [27, 28]. Both
VDM and Larch are designed to facilitate reasoning about speci�cations in
checking designs and to support reasoning about programs. Like LSL, VDM
is not tied to a particular programming language. VDM speci�cations are
predicates on abstract program states, whose de�nition presumably depends
on the programming language used. For the purpose of optimization, one
drawback is that VDM has nothing akin to an interface language, so one
would �rst have to connect the semantics of a programming language to
VDM in a way that allows mechanical analysis. Such analysis might use
VDM's generic proof rules for generic programming language constructs like
if and while.

The Z speci�cation language [48] is one of a class of languages designed
for reasoning about speci�cations that are independent of any programming
language. To make such speci�cations useful to a compiler, one would �rst
have to develop an interface language that relates the semantics of Z to that
of the programming language.

Another approach in developing speci�cation languages is to design them
for particular programming languages. German [18] uses a language tailored
for Pascal, and McHugh [41] uses one tailored for Gypsy, a derivative of
Pascal. Neither of these languages supports data abstraction as well as CLU.
Since data abstraction is a primary way that speci�cations simplify reasoning
about programs, these programming languages seemed less attractive than
CLU. Luckham and others designed ANNA [40], a language for annotating
Ada programs. Although Ada supports data abstraction, CLU is more
attractive because it is simpler than Ada, which has both stack and heap
allocation.
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Chapter 3

Programs and Proof Rules

This chapter describes the formalization of programs and the proof rules
that will be used to discharge the proof obligations for performing various
optimizations.

3.1 Limitations and Assumptions

My purpose for formalizing programs and writing proof rules is to provide
a framework for a compiler to prove that optimizations are safe. The
formalization is not intended to prove properties such as whether a program
terminates, as in [47], or whether it references uninitialized variables.

The formalization of the program state relies on interfaces of data types
and LSL traits. I assume that no data types have exposed representations,
i.e., that reading or modifying a location of one type has no e�ect on
locations of other types.

The proof rules rely on a procedure's speci�cation to de�ne the e�ects
of calling the procedure. Thus, the soundness and completeness of the proof
rules depends on the accuracy and completeness of the speci�cations.

Finally, I assume that the program does not call any procedure whose
precondition is not satis�ed|this is evident because the proof rules rely
on the postconditions without checking preconditions. Although the proof
rules could be used to verify that the preconditions are satis�ed, this has
been extensively studied by others, e.g. [19, 26, 39], and is not a part of my
research.

3.2 Programs as Annotated Control Flow Graphs

Hoare rules are a standard way of de�ning proof rules for programs in terms
of their structure [26]. However, in a language with exceptions, it is awkward
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to use Hoare rules for the same reason that it is awkward to give Hoare rules
for statements like break and continue. Therefore, I use Floyd's approach
[13] and de�ne proof rules for Speckle programs that have been converted
into control ow graphs (FGs). These rules represent a (partial) semantics
for Speckle.

A program is an implementation of a procedure. It has a unique
entering edge labeled enter, one or more exiting edges, and zero or more
internal edges. Each exiting edge corresponds either to a normal return
or to signaling an exception. There are six kinds of nodes: assignment,
branch, procedure call, iterator call, merge, and loop. Because Speckle is
a structured programming language, all FGs are reducible.

Associated with each FG edge e is a program state symbol, �e, and a
theory, Te. Te is induced from the FG using the proof rules. In Te, �e
denotes an arbitrary member of the set of program states that can occur
at edge e. Recall that a theory is an in�nite set of formulas. The formulas
in Te constrain the possible values for �e. To prove that some predicate P

holds at the program point denoted by an edge e, one must prove that the
formula P(�e) is in Te.

The formulas in the theory of an edge, e, also contain the program state
symbols for any edge, d, that dominates e.1 This is useful for de�ning the
program state at edge e in terms of the program states of edges that were
traversed to reach e. For example, suppose e is an edge exiting the node
x:= x+1, and d is the edge entering the node. In Te, �e is de�ned in terms
of �d using formulas such as �Env

e (`x') = �Env

d (`x')+1.

Te may contain more formulas constraining �d than Td contains. For
example, suppose d enters the branch node branch b and e is the exiting
edge for when b is true. Te contains the formula �Env

d (`b') = true, but Td
does not (unless the branch is always taken).

In Te, �e is analogous to the \collecting state" of edge e in the framework
of abstract interpretation [1, 11]. The collecting state of an edge denotes
the set of program states that can occur at the edge. Here, Te corresponds
to the characteristic predicate for the set of program states, and �e is the
predicate's formal variable.

1
Edge i dominates edge j if every path from the entering edge to j must pass through

i. Every edge dominates itself. Edge i strictly dominates edge j if i dominates j and i 6= j.
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3.2.1 Soundness and Completeness

To ensure soundness, the proof rules must not over-constrain the program
states de�ned by the theories: every formula constraining �e in Te must be
true of every program state that could arise at edge e at runtime. Thus, it
is conservative to omit a formula from a theory.

Soundness does not require that each edge's theory be consistent. A
theory is inconsistent when it contains the formula true = false, which,
together with the normal inference rules of predicate logic, can be used
to prove that the theory contains all formulas. If Te is inconsistent, no
program state can satisfy all the formulas constraining �e because some
of these formulas will contradict one another. If edge e is unreachable at
runtime, however, it is sound for Te to be inconsistent since �e represents
the empty set of program states.

To ensure completeness, the proof rules must not under-constrain the
program states de�ned by the theories: the formulas constraining �e in Te
must admit only those program states that can arise at edge e at runtime.

Because the proof rules rely on the speci�cations of called procedures
instead of their implementations, it is sometimes impossible to prove
conjectures that are true for a particular implementation of a speci�cation.
Thus, the proof rules are in some sense incomplete. The reason is
that speci�cations typically abstract away implementation details that are
irrelevant to clients, so a speci�cation often admits more post-states than
an implementation will actually generate.

However, the cost of such incompleteness is outweighed by the fact
that the speci�cations simplify reasoning about the program states, which
allows the compiler to detect more optimizations. In practice, I found that
the details abstracted away by speci�cations were usually irrelevant to the
optimizations considered in this thesis.

I will not prove the soundness or the completeness, modulo abstraction
by speci�cation, of the proof rules. Such a proof would require a formal
semantics for Speckle and an abstraction function from concrete program
states to Larch/Speckle program states.

3.3 Proof Rules for Flow Graphs

To de�ne the theories for each edge in a FG, I use structural induction on
ow graphs. First, I de�ne the theory of the entry edge. Next, for each way
one or more nodes can be appended to a ow graph, I give a proof rule that
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de�nes the theories of the new exiting edges in terms of the theories of the
old exiting edges.

The relation 2 is used to de�ne the theories at each edge: F 2 Te means
that formula F is in theory Te. Also, the notation for the hypothesis of a
proof rule is extended to include the template of a subgraph appearing in
the program.

As a convenience, there are two additional proof rules. The �rst is that
every edge's theory is closed under the usual inferences rules of predicate
logic:

F 2 ConsequenceClosure(Te)

F 2 Te

(Closure)

The second proof rule is that the theory of an edge j is an extension of
the theories of each edge i that dominates j:

F 2 Ti
Edge i dominates edge j

F 2 Tj

(Extension)

This rule propagates the formulas de�ning �i in Ti to Tj, so it allows Tj to
de�ne �j in terms of �i.

A related invariant that follows from the proof rules is that a theory Tj
can contain formulas constraining �i only if i dominates j.

3.3.1 Entry Edge

The theory Tenter of the entering edge comes from the speci�cations of
procedures and data types used in the FG. Tenter is the consequence closure
of the union of:

1. the theories of all LSL speci�cations used by the program;

2. the theory of the program state and procedure predicates de�ned by
Larch/Speckle; and
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3. the precondition speci�ed by the user, if any, for entering the FG.

The precondition comes from the requires clause of the procedure
implemented by the program.

The extension proof rule ensures that every edge's theory is an extension of
Tenter, so Tenter contains formulas that are true globally.

3.3.2 Assignment Nodes

An assignment node has exactly one entering and one exiting edge. The
left and right sides of the assignment must each consist of a single identi�er.
The proof rule for an assignment is:

x := y

post

pre

�Str

post = �Str

pre 2 Tpost

�Env

post(`x') = �Env

pre (`y') 2 Tpost

OnlyAssigns(�Env

pre ; �
Env

post; `x') 2 Tpost

The �rst consequent states that the store is unchanged|this formalizes
the fact that assignment never a�ects the store. The second consequent
states that the value of x after the assignment is equal to the value of y
before the assignment. The third consequent states that the values of all
Idents other than x are not a�ected by the assignment. The meaning of
OnlyAssigns(�Env

pre , �
Env

post, `x') is

8var : Ident[var 6= `x'=) �Env

post(var) = �Env

pre (var)]

This captures the fact that identi�ers are never aliased in Speckle. The
OnlyAssigns predicate is analogous to the OnlyModi�es predicate of
Section 2.3.3. The di�erence is that the former constrains the environment,
while the latter constrains the store.
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3.3.3 Branch Nodes

Branch nodes are used to represent if statements. The branch condition
must be an identi�er. The proof rule for branch nodes is:

branch b

noyes

pre

�Env

pre (`b') = true 2 Tyes

�yes = �pre 2 Tyes

�Env

pre (`b') = false 2 Tno

�no = �pre 2 Tno

The �rst and third consequents capture the control-dependent information
of whether the branch test was true or false. These contradictory formulas
would create an inconsistency if they were in the same theory. It is for this
reason that I use a theory per edge rather than one theory for entire ow
graph.

The symbol �pre has di�erent di�erent meanings in the theories Tpre,
Tyes, and Tno. In Tpre, �pre denotes an arbitrary program state at edge pre.
In Tyes, �pre denotes an arbitrary program state at edge pre that causes the
branch to be taken. Similarly, in Tno, �pre denotes an arbitrary program
state at edge pre that causes the branch to be not taken.

3.3.4 Procedure Call Nodes

A procedure call node has exactly one entering edge, but it may have several
exiting edges because a procedure may terminate either normally or by
signalling an exception. Either form of termination may return results.

The proof rule for a call to a procedure Prc that may signal exceptions
e1 : : :eN is:
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pre

norm e1

[Res    ; Res  ; ...; Res  ]:= Prc(Args)norm     e1           eN

eN

For status = norm, e1, : : : , eN

Prc:Post[status](�Str

pre; �
Str

status;Args;Resstatus) 2 Tstatus

Prc:Guard[status](�Str

pre;Args) 2 Tstatus

OnlyAssigns(�Env

pre ; �
Env

status; Resstatus) 2 Tstatus

Args denotes the arguments to Prc, if any. Only the value of an identi�er
can be passed as argument, so temporary identi�ers are introduced for more
complex expressions. Resstatus denotes the results, if any, of Prc when it
terminates with status status. (See Section 2.3.3 on p. 27 for a de�nition of
Prc's predicates.)

Example: Calling a Procedure

The following is a speci�cation of procedure to compute the square root of
a real number:

sqrt = proc (r1: real) returns (r2: real)

requires --

modifies --

ensures square(r2) ' r1

except

signals imaginary (c: complex)

when r1 < 0 ensuring square(c.imag) ' -r1 ^ c.real = 0
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Here is a ow graph with only a call to the procedure sqrt:

pre

norm imaginary

[x; z] := sqrt(y)

This ow graph corresponds to the Speckle code fragment:

x := sqrt(y)

except when imaginary(z: complex): ...

where x and y are type real and z is type complex.

The proof rule for procedure calls implies that the several formulas are
in Tnorm. (Recall that the postcondition is the conjunction of the modifies
and ensures clauses.)

8 l : Loc 2 domain(�Str

pre) [ �Str

norm(l) = �Str

pre(l) ] (modifies)

square(�Env

norm(`x')) ' �Env

pre (`y') (ensures)

:(�Env

pre (`y') < 0) (negation of when guard)

OnlyAssigns(�Env

pre ; �
Env

norm; `x')

Similarly, the proof rule implies that the following formulas are in
Timaginary:

8 l : Loc 2 domain(�Str

pre) [ �Str

imaginary(l) = �Str

pre(l) ] (modifies)

square(�Env

imaginary(`z'):imag) ' � �Env

pre (`y')
^ �Env

imaginary(`z'):real = 0 (ensuring)

�Env

pre (`y') < 0 (when guard)

OnlyAssigns(�Env

pre ; �
Env

norm; `z')

42

l l 



3.3.5 Merge Nodes

A merge node has two or more entering edges but only one exiting edge.
Merge nodes are used to join ows of control that separated because of
branching or calls to procedures that signal exceptions. A merge node may
not be used to create a loop, i.e., the entering edges must not be backward
edges.2 Loop nodes will be used to merge backward edges.

The proof rule for merge nodes is:

21

Merge

out

F[�1/�out] 2 T1

F[�2/�out] 2 T2

F 2 Tout

The notation F [�=�i] denotes F with � substituted for �i and with bound
variables renamed to avoid capture.

The rule for merge nodes is merely an instance of proof-by-cases. To
prove that a formula, F , is true about the program state exiting a merge
node, one must prove that the formula is true of each program state that
enters the merge node.

3.3.6 Loop Nodes

A loop node has two entering edges, orig and back, and a single exiting edge,
entry. The edge orig is the header of the loop, entry is the �rst edge of the
body, and back is the backward edge that comes from the end of the body.
The body itself is a control ow graph and typically has an edge that exits
the loop.

The proof rule for loop nodes is:

2
A backward edge is one whose target node dominates its source node.
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entry

orig

Loop

back

body

F[�orig=�entry] 2 Torig

F =) F[�back=�entry] 2 Tback

F 2 Tentry

This rule is merely an instance of proof-by-induction. To prove that a
formula, F , is true about the program state at the entry edge, one must
prove that F is true of the program state at the header of the loop and that
the body of the loop preserves the truth value of F .

3.3.7 Iterator Call Nodes

Calls to iterators are basically the same as calls to procedures. One minor
di�erence is that the normal form of termination for an iterator is to yield
results. The returns when guard is treated just like an exception that has
no result values. Another minor di�erence is that iterator speci�cations may
use the su�x @ to refer to the program store that existed at the loop header,
i.e., when the iterator was �rst called. This is handled by making �Str

orig an
argument of the precondition, the postcondition, and the guard conditions.

For each iterator call node, I add a speci�cation variable to count the
number of iterations. The variable is initialized to 0 by an assignment above
the header edge, and the variable is incremented after the iterator call node.
The value of the variable is given as an argument to iterator preconditions
and postconditions that refer to n iter.

Similarly, for each term t su�xed by prev in the iterator's interface, I
introduce a speci�cation variable. The variable is initialized to the empty
sequence by an assignment above the header, and, after the iterator call
node, the variable is updated by appending the value of t to the end of the
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sequence. The value of the variable is given as an argument to the iterator
preconditions and postconditions that refer to t prev.

Example: Calling an Iterator

The following code iterates over the bindings in a mapping to construct the
domain and the range.

dom: int_set := int_set$create()

ran: str_set := str_set$create()

for d: int, r: string in bindings(m) do

int_set$insert(dom, d)

str_set$insert(ran, r)

end

The speci�cation for the iterator bindings is:

bindings = iter (m: int_string_map)

yields (i: int, s: string)

requires --

modifies --

ensures image(m@, i) = s ^ i =2 i prev

returns when size(m) = n_iter

Note that this speci�cation refers to both n iter and i prev.
The ow graph for the code is shown in Fig. 3.1.

3.4 Summary and Related Work

The proof rules for programs are a form of Hoare rules [26] for programs
that are formalized as ow graphs, as in [13], rather than parse trees.
The proof rules rely on data type speci�cations to de�ne the program
state (see Chapter 2), and on procedure speci�cations to describe the
e�ect of procedure calls. This simpli�es reasoning about programs because
the program states are more abstract (because of data abstraction) and
because the e�ect of a procedure call does not have to be approximated by
interprocedural analysis.

For each edge in a ow graph, the proof rules de�ne an LSL theory
that constrains the possible values of program states that can arise at the
edge. The set of possible program state values corresponds to the \collecting
state" in the literature on abstract interpretation [1, 11]. However, the

45

-



proof rules are more powerful than the data ow framework used in abstract
interpretation.
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iprev := []

dom := int_set$create()

s1

ran := str_set$create()

s2

n_iter1 := 0

s3

s4

n_iter1 := n_iter1 + 1

iprev := append(iprev, i)

int_set$insert(dom, d)

str_set$insert(ran, r)

s6

s7

s8

s9

s5

s0

s10

s11

Loop

[d,r;] := bindings(m)

Figure 3.1: A Flow Graph with a Call to an Iterator
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Chapter 4

Enhancing Conventional Optimizations

In this chapter, I describe how to exploit speci�cations to enhance three
kinds of conventional optimizations|common subexpression elimination,
hoisting expressions out of loops, and dead code elimination. For each kind
of optimization, I give formal proof obligations that are su�cient to preserve
the correctness of the original program, and I give some examples of how
to discharge the proof obligations using the speci�cations and proof rules
of chapters 2 and 3. In Chapter 6, I present a strategy for mechanically
discharging the proof obligations.

Speci�cations permit optimizations that are impossible by analyzing
only code because they abstract away irrelevant implementation details.
Furthermore, because speci�cations are simpler than code, they facilitate
optimizations that are di�cult to perform by analyzing only code.

4.1 Common Subexpression Elimination

Common subexpression elimination is a conventional optimization for
reusing results that were previously computed. For example, in the code

x := a[i]
...

y := a[i]

the second occurrence of a[i] can be eliminated provided that the value of
a[i] is unchanged.1 The compiler may replace a[i] by x or, if x is assigned
between the occurrences of a[i], by a temporary variable introduced by the
compiler.

1
If the two occurrences of a[i] lie in di�erent basic blocks, this optimization is

sometimes called global common subexpression elimination [2].
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While common subexpressions are often syntactically identical, as in the
example above, they may be syntactically di�erent, as in the code fragment

x := a+b

y := b

z := y+a

Here, y+a can be replaced by x if, as is the case in Speckle, assignment to
one identi�er cannot change the value of another.

Although compilers are good at eliminating expressions that use only
primitive operations like + and [ ], they are less e�ective at eliminat-
ing procedure calls. The problem is that while the semantics of primitive
operations are simple and known to the compiler writer, the semantics of
calling an arbitrary procedure must typically be determined by examining
the procedure's implementation, which may require interprocedural analysis
of the whole program.

As discussed in Chapter 1, a key idea in Speckle is to use speci�cations
to de�ne the semantics of procedure calls. In fact, for the purpose of
source-level optimization, even primitive operations like + and [ ]

are treated as calls to procedures whose speci�cations are supplied as part
of the language. Thus, Speckle has only three kinds of expressions: literals,
identi�ers, and results of procedure calls.

4.1.1 Proof Obligations

In Speckle, common subexpression elimination constitutes replacing a call
to a procedure:

pre

norm e1

[Res    ; Res  ; ...; Res  ]:= Prc(Args)norm     e1           eN

eN

by an assignment:
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pre

status

Res      := Subsstatus

where, according to the speci�cation of Prc and the values Args, status is
a legal termination status for the call, and where Subs are available values
that satisfy the postcondition of Prc when it terminates with status.

A value is available at edge e if it is bound to an identi�er at an edge
d that dominates e. If the identi�er to which the value is bound might be
assigned a di�erent value between edges i and j, the compiler must introduce
a temporary to save the value. When attempting to eliminate a call, the
compiler can try to substitute any available value of the proper type. The
available values include any value that was computed at nodes that dominate
the call.

To prove that it is legal for the call to Prc to terminate with status
status, the compiler must prove

Prc:Guard[status](�Str

pre;Args) 2 Tpre

To prove that the substitute values satisfy the postcondition and that the
call need not modify or allocate any locations in the store, the compiler must
prove

Prc:Post[status](�Str

pre; �
Str

pre;Args; Subs) 2 Tpre

Note that �Str

pre is passed as both the pre- and post-store to the postcondition
since an assignment has no e�ect on the store.

The proof obligations above are su�cient to preserve the correctness
of the original program under the assumption that the caller is relying
on only the speci�cation of Prc, not its implementation. The proof
obligations demonstrate that Prc's speci�cation permits an implementation
to terminate the call with status status, with results Subs, and without
modifying or allocating locations in the store. Thus, it is safe to replace the
call by the assignment, to transfer control to edge status, and to delete all
other outgoing edges.
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can_link_ends = proc (pa, pb: polymer) returns (b: bool)

return(

monomer$can_link(pa.left, pb.left) cor

monomer$can_link(pa.left, pb.right) cor

monomer$can_link(pa.right, pb.left) cor

monomer$can_link(pa.right, pb.right)

)

except when not_linear: return(false) end

Figure 4.1: Procedure can link ends

can_link_ends = proc (pa, pb: polymer) returns (b: bool)

begin

al,bl,ar,br: monomer

al := pa.left

bl := pb.left

if monomer$can_link(al, bl) then return(true) end

br := pb.right

if monomer$can_link(al, br) then return(true) end

ar := pa.right

if monomer$can_link(ar, bl) then return(true) end

return(monomer$can_link(ar, br))

end except when not_linear: return(false) end

Figure 4.2: Hand-optimized Version of can link ends

4.1.2 Example: can link ends

Fig. 4.1 is an example that illustrates the idea of eliminating procedure
calls. Procedure can link ends manipulates polymers and monomers. A
monomer is a chemical compound used as a building block to make polymers.
Here, a polymer is either linear, meaning a sequence of monomers, or cyclic,
meaning a ring of monomers. The procedure can link ends takes two
polymers and returns a boolean to indicate whether the two polymers could
be joined to form one linear polymer by linking together monomers from
an end of each polymer. If either polymer is cyclic, can link ends returns
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monomer = immutable type

based on Monomer

can_link = proc (m1, m2: monomer) returns(b: bool)

requires --

modifies --

ensures b = (m1 ? m2)

...

polymer = mutable type spec

based on Polymer

get_left = proc (p: polymer) returns (m: monomer)

requires --

modifies --

ensures m = p^.left

except signals not_linear when : is_linear(p^)

get_right = proc (p: polymer) returns (m: monomer)

requires --

modifies --

ensures m = p^.right

except signals not_linear when : is_linear(p^)

bond_right = proc (p: polymer, m: monomer)

requires --

modifies p

ensures p' = (p^ ` m)

except

signals not_linear when : is_linear(p^) ensuring p' = p^

signals bad_bond when : (p^.right ? m) ensuring p' = p^

...

Figure 4.3: Monomer and Polymer Interfaces
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Monomer: trait

includes Int, Commutative(?, Monomer, Bool)

Monomer enumeration of EG, % ethylene glycol

TTA, % teraphthalic acid

AA, % adipic acid

HMD % hexamethyldiamine

introduces % The bonding relation:

__ ? __: Monomer, % m1 ? m2 ==

Monomer ! Bool % "m1 will bond with m2"

asserts forall m: Monomer

: (m ? m);

EG ? TTA; EG ? AA ; : ( EG ? HMD);

: (TTA ? AA); TTA ? HMD ;

AA ? HMD ;

Polymer: trait

includes Monomer, Cycle(Monomer, MonomerSeq, MonomerCycle)

% MonomerSeqs are non-empty sequences

Polymer union of linear: MonomerSeq, cyclic: MonomerCycle

introduces

__ .left,

__ .right: Polymer ! Monomer

is_linear: Polymer ! Bool

__ ` __: Polymer, Monomer ! Polymer % adds a monomer

lin2cyc: Polymer ! Polymer

__ ? __: Monomer, Polymer ! Bool % bonding predicates

__ ? __: Polymer, Polymer ! Bool

asserts

forall p,p1,p2: Polymer, m,m1,m2: Monomer, ms: MonomerSeq

p1 ? p2 == is_linear(p1)

^ (p1.head ? p2 _ p1.tail ? p2);

m ? p == is_linear(p) ^ (m ? p.head _ m ? p.tail);

linear(ms).left == first(ms);

linear(ms).right == last(ms);

is_linear(p) == tag(p) = linear;

linear(ms) ` m == linear(ms ` m);

lin2cyc(linear(ms)) == cyclic(seq2cycle(ms));

Figure 4.4: Monomer and Polymer Traits
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[T2;] := get_left(pb)

[T3] := can_link(T1,T2)

branch T3

[T4;] := get_left(pa)

s1

s2

s3

s4

s0

[T1;] := get_left(pa)

s5

not_linear

not_linear

not_linear

yes

no

Figure 4.5: Part of FG for can link ends

false since cyclic polymers have no bonding sites available. Fig. 4.2 is a less
legible version of can link ends where redundant procedure calls have been
eliminated by hand.

The procedure can link ends calls the procedures monomer$can link,
polymer$get left, and polymer$get right, whose speci�cations appear
in Fig. 4.3.2 The pertinent traits for these interfaces are in Fig. 4.4. The
operator cor is short-circuit or.

From the interfaces in Fig. 4.3, it is clear that half of the calls to get left

and get right are redundant. Both procedures may be called twice per
polymer even though the second call returns the same result as the �rst call
since the polymers are never modi�ed.

I will explain how to eliminate the second call to get left(pa); similar
analysis can eliminate the other redundant calls. Fig. 4.5 shows the FG

for can link ends from the entry edge to the second call to get left.
Temporary identi�er names have been introduced systematically so that
the arguments to procedures are either literals or identi�ers.

2
Recall that the syntax pa.left is a syntactic shorthand for polymer$get left(pa).
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The goal is to replace

[T4;] := get_left(pa)

s4

s5

not_linear

by

T4 := T1

s4

s5

The �rst obligation is to prove that the call will return normally:

get left.Guard[norm](�Str

4 ; �Env

4 (`pa')) 2 T4

Given the speci�cation of get left, this is equivalent to

is linear(�Str

4 (�Env

4 (`pa'))) 2 T4

Simple analysis can prove the lemma

�Str

4 (�Env

4 (`pa')) = �Str

0 (�Env

0 (`pa')) 2 T4

This lemma follows from the fact that pa is never the target of an assignment
and from the modifies clauses of the procedures called between edges 0 and
5. This lemma can be used to simplify the goal to:

is linear(�Str

0 (�Env

0 (`pa'))) 2 T4

This formula is in T1 because it is the guard for the normal return of the
�rst call to get left. Because edge 1 dominates edge 5, the extension proof
rule propagates this formula to T4, so the goal is discharged.

The second proof obligation is to show that the value of T1 at edge 1
satis�es the postcondition of the call:

get left.Post[norm](�Str

4 ; �Str

4 ; �Env

4 (`pa'); �Env

1 (`T1')) 2 T4
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Given the speci�cation of get left, this is equivalent to two subgoals. The
�rst, from the modifies clause, is

domain(�Str

4 ) � domain(�Str

4 )
V
8 l 2 domain(�Str

pre) [ �Str

4 (l) = �Str

4 (l) ] 2 T4

which is trivially true. The second, from the ensures clause, is

�Env

1 (`T1') = �Str

4 (�Env

4 (`pa')) 2 T4

Using the lemma from before, the right side of the equation can be replaced
to yield

�Env

1 (`T1') = �Str

0 (�Env

0 (`pa')) 2 T4

This formula is in T1 because it is part of the postcondition of the �rst
call to get left. Because edge 1 dominates edge 5, the extension proof
rule propagates this formula to T4, so the goal is discharged. Thus, the
optimization is safe.

4.1.3 Syntactically Distinct Expressions

In the previous example, each call that was eliminated was syntactically
identical to a previous call. In general, this is not necessary.

For example, in the code

bond_right(p, monomer_bag$choose(ms))

monomer_bag$delete(ms,p.right)

p.right can be replaced by the result of choose. The pertinent interfaces
are those of get right and bond right, which adds a monomer to the right
end of a polymer. When bond right returns normally, p must be linear,
so p.right must return normally. Furthermore, the second argument to
bond right becomes the right end of p, so it can replace p.right.

4.1.4 Optimizations Impossible without Speci�cations

The proof obligations for common subexpression elimination allows opti-
mizations that would be considered unsound by ordinary code analysis. For
example, consider the code

i1 := intset$least(s)

i2 := intset$choose(s)
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The speci�cations in Fig. 4.6 allow the compiler to replace choose by i1.
The key here is that the speci�cation of choose is non-deterministic|more
than one value can satisfy the postcondition. Furthermore, the speci�cation
does make any guarantees about \randomness." The optimization is sound
because the caller can only rely on the speci�cation of choose, which might
always return the least element.

Unless choose is in fact implemented as least, the optimization
appears unsound without the speci�cations because it might alter the result
computed by the program.

Although it is interesting that speci�cations enable optimizations that
are otherwise impossible, it is unclear how often such optimizations can be
applied in practice.

4.2 Hoisting Expressions out of Loops

Hoisting expressions out of loops is a conventional optimization related to
common subexpression elimination. The basic idea is to move loop-invariant
expressions out of loops. For example, in the code

while b do

x := a[i]
... % Code that doesn't modify a or assign a or i.

end

a[i] need only be computed once, rather than once per iteration. Thus,
the code can be replaced by

first := true

while b do

if first then

save := a[i]

first := false

end

x := save
... % Code that doesn't modify a or assign a or i.

end

where first and save are new identi�ers generated by the compiler. In
some cases, the compiler may be able to dispense with first and compute
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intset = mutable type

based on IntSet

least = proc (s: intset) returns (i: int)

requires --

modifies --

ensures i = smallest(s^)

except signals empty when s^ = { }

choose = proc (s: intset) returns (i: int)

requires --

modifies --

ensures i 2 s^

except signals empty when s^ = { }

Figure 4.6: Interface for least and choose

a[i] before the while, but in general, this may be unsound (suppose, for
example, b implies inbounds(a,i)) or ine�cient (suppose b is false).

As described above, common subexpression elimination su�ces to
handle the case where available values computed before a loop can be
used to eliminate a procedure call inside a loop. For example, common
subexpression elimination can eliminate the second occurrence of a[i] in
the code

x := a[i]

while true do

y := a[i]
... % Code that doesn't modify a or assign a or i.

end

To handle the general case, the compiler needs a way to determine when
the results of a procedure called in the �rst iteration can be used to eliminate
calls to the procedure on all subsequent iterations. In my formulation, there
is no way to distinguish values computed on the �rst iteration from values
computed on arbitrary iterations: di�erent points in a computation are
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distinguished by the di�erent edges, but an edge in the body of a loop3 does
not distinguish one iteration from another.

One work-around is to hoist a copy of the entire loop body, i.e., to unroll
the �rst iteration. This distinguishes the �rst iteration from all subsequent
ones, so common subexpression elimination can reuse results from the �rst
iteration to eliminates calls in subsequent ones. After the optimizations
have been identi�ed, the hoisted loop body can be un-hoisted prior to code
generation.

This strategy is able to hoist even an expression whose value might
change on each iteration. For example, for the code

while true do

e: elem := set$choose(s)
...% Code that doesn't delete e from s or assign e or s.

end

the strategy would determine that the result of set$choose on the �rst
iteration could be reused to replace the calls to set$choose on subsequent
iterations|even when set$choose might return a di�erent value on each
iteration.

4.3 Dead Code Elimination

Dead code elimination is an optimization that removes parts of the
program that are never executed. The principal bene�t of dead code
elimination is that it makes the code smaller, but it can have the secondary
bene�t of improving the performance of an instruction cache by reducing
fragmentation.

Initially, I did not set out to perform dead code elimination, but in
the course of building PSC (see Chapter 6), I discovered that dead code
elimination came for free.

4.3.1 Proof Obligation

Recall that an edge is unreachable at run time if its theory is inconsistent.
Thus, to eliminate an edge from the FG, the compiler must prove that Te is
inconsistent, i.e.,

true = false 2 Te
3
Edge e is in the body of a loop if e dominates the back edge of the loop and if the

entry edge of the body dominates e.
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If a theory Ti is inconsistent, the extension proof rule will propagate the
inconsistency to the theory of each edge j dominated by i. This is sound
because if i is unreachable and j could only be reached by going through i,
j is unreachable.

Once all edges entering a node are eliminated, the node can be eliminated
since it is unreachable via ordinary graph traversal starting from the entry
edge.

4.3.2 Example: can link

In the code

if can_link(m, m)

then : : :

end

the then arm of the if statement is dead code. (Such code might
arise through the use of macros.) The interface of can link (Fig. 4.3,
p. 53) speci�es that the return value is equal to the result obtained by
applying the ? relation, which denotes whether two monomers can bond
together. Because ? is irreexive (see the Monomer trait, Fig. 4.4, p. 54),
can link(m, m) is always false.

The ow graph for the code above is

branch T1

s1

s2

s0

[T1] := can_link(m, m)

yes

no

s3

The proof obligation is

true = false 2 T2

The ensures clause of can link asserts

�Env

1 (`T1') = (�Env

0 (`m') ? �Env

0 (`m')) 2 T1

The extension proof rule propagates this assertion as

�Env

1 (`T1') = (�Env

0 (`m') ? �Env

0 (`m')) 2 T2
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Because the rule for branch nodes asserts �Env

1 (`T1') = true 2 T2, this
simpli�es to

true = (�Env

0 (`m') ? �Env

0 (`m')) 2 T2

Finally, using the Monomer trait axiom 8m [m?m == false], this simpli�es
to

true = false 2 T2

4.4 Improving Side E�ect Analysis

Side e�ect analysis plays a key role in many optimizations. To eliminate
common subexpressions, a compiler must prove that the code between the
common expressions does not alter their value. To hoist an expression from
a loop, a compiler must prove that the body does not alter the expression's
value. Speci�cations enhance side e�ect analysis in several ways.

4.4.1 Benevolent Side E�ects

Speci�cations can conceal what Hoare calls benevolent side e�ects from
clients. These side e�ects are benevolent because they are invisible to clients
but they improve performance.

For example, Fig. 4.7 is an implementation of polymer$get left that
performs a benevolent side e�ect. Here, polymers are represented using trees
whose leaves are non-empty arrays of monomers.4 The implementation of
get left caches its result in the left �eld of the representation, but this
side e�ect is invisible to clients of polymer.

Speci�cations also conceal temporary side e�ects. An implementation
may modify some data, perform some computation, and then restore the
data to its original state. From the client's perspective, the data is
unchanged.

4.4.2 Immutable Types

Immutable types can obviate the need to perform side e�ect analysis. For
example, consider the code

b1 := monomer$can_link(m1, m2)
...

b2 := monomer$can_link(m1, m2)

4
This representation allows e�cient implementations for the operations to reverse a

polymer or to link two linear polymers together.

62



polymer = mutable type

rep = record[root: tree, % Tree of arrays of monomers

cyclic: bool, % Is the polymer cyclic?

left, % Leftmost monomer, if known

right: mono_q] % Rightmost monomer, if known

tree = oneof[leaf: leaf,

pair: pair]

leaf = record[reverse: bool, % Interpret data as if reversed

data: am] % R.I.: Non-empty

pair = record[left,

right: tree]

am = array[monomer]

mono_q = oneof[known: monomer,

none: null ]

get_left = proc (p: rep) returns (monomer)

except signals cyclic

if p.cyclic then signal cyclic end

return(mono_q$value_known(p.left))

except when wrong_tag: end

root: tree := p.root

while true do

tagcase root

tag leaf (l: leaf):

ans: monomer

if l.reverse

then ans := am$top(l.data)

else ans := am$bottom(l.data)

end

p.left := mono_q$make_known(ans)

return(ans)

tag pair (pr: pair):

root := pr.left

end

end

end get_left

Figure 4.7: A Benevolent Side E�ect in get left
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The interface of can link speci�es that its return value only depends on
the monomers passed in as arguments (see Fig. 4.3, p. 53): In particular,
the result of can link does not depend on the store of the program state
since neither ^ nor ' appear in the interface. Thus, side e�ects to the store
are irrelevant. Instead, it is su�cient to check that the identi�ers m1 and
m2 are not assigned, which is easy given Speckle's scoping rules and lack of
call-by-reference.

The reason that can link ignores the store is that monomers are
immutable and do not contain locations. If monomers were mutable,
can link would be speci�ed using m1 ^ and m2 ^.

4.4.3 Abstract Data Types

Data abstraction, which is embodied in data type speci�cations, simpli�es
reasoning about side e�ects because it reduces the possibilities for aliasing.
Each data type must ensure that outside its implementation, locations of
the type are never aliased to locations of other types. This makes it easier
to perform optimizations.

For example, consider the code

a: array[monomer] := : : :

p: polymer := : : :

a[1] := p.left

m := p.left

If this code is outside the implementation of polymer, it is easy to prove
that it is safe to eliminate the second call to get left: the result depends
only on the value stored in polymerLoc p, and the only location modi�ed
by the code is that of a, which is not a polymerLoc. Thus, it is safe to
eliminate the second occurrence of p.left, even if polymers are represented
using arrays of monomers, e.g., as in Fig. 4.7.

4.4.4 Assertions about Allocation

To prove that two locations of the same type are distinct, the compiler can
rely on allocation assertions made with New. For example, in the code

p: polymer := : : :

if monomer$can_link(p.left, p.right) then

p2: polymer := copy(p)

polymer$change_cycle(p2)

return(p2, p.left, p.right)

end except when not_linear: end
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copy = proc (p: polymer) returns (p2: polymer)

requires --

modifies --

ensures p2' = p1^ ^ New(p2)

change_cycle = proc (p: polymer)

requires --

modifies p

ensures p' = lin2cyc(p^)

except signals not_linear when : is_linear(p^)

Figure 4.8: Interfaces for copy and change cycle

the occurrences of p.left and p.right in the return statement can be
eliminated|even though the polymer p2 is modi�ed between the common
subexpressions.

The key interfaces appear in Fig. 4.8. The interface for copy speci�es
that p is not modi�ed. Furthermore, the assertion New(p2) implies that p2
is not an alias for p. Since change cycle modi�es only p2, p is not modi�ed,
so the values of p.left and p.right are unchanged.

4.5 Related Work

4.5.1 Conventional Techniques

Conventional optimization techniques, e.g. [9, 12, 42, 46, 50], all use some
form of symbolic evaluation based on the semantics of the programming
language. For example, value numbering [9], one of the earliest techniques,
can eliminate primitive expressions such as sums and products. It relies on
the semantics of addition (e.g., that + is commutative) to recognize when
lexically distinct expressions like a+b and b+a are equal, and it relies on
the semantics of assignment to determine how an assignment statement can
alter the values of identi�ers that appear in expressions.

The work described here is an extension of the conventional techniques.
The key di�erence is to use symbolic evaluation based on the semantics
of the programming language and the semantics of speci�cations, i.e., to
combine the two. The speci�cations allow several generalizations:
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1. Expressions are generalized to include procedure calls.

I.e., procedure calls can be eliminated or hoisted from loops.

2. \Common" expressions need not be equal.

A procedure call can be eliminated whenever an available value satis�es
the procedure's speci�cation. For procedures with non-deterministic
speci�cations, the available value may be di�erent from the value the
procedure would return.

3. Hoisted expressions need not be constant.

A procedure call can be hoisted out of a loop if the result from the
�rst iteration satis�es the procedure's speci�cation for all iterations.

4.5.2 Alias Analysis

Alias analysis is a crucial component of any optimizer because aliasing
increases the likelihood that a side e�ect will foil an optimization. Much
work on alias analysis has been restricted to languages that do not
allow pointers [3, 10] or that restrict pointers to at most one level of
indirection [43]. Some exceptions are [7, 29, 33], which use interprocedural
analysis.

The alias analysis techniques in [7, 29, 33] annotate each edge in a FG

with a summary graph approximating the data structures at that point in
the program. Because the size of the summary graphs must be bounded
at compile-time even though the program's data structures are unbounded
at run-time, a single node in the summary graph must sometimes be used
to represent distinct data structures. This approximation can foil some
optimizations.

A similar problem arises for Speckle. Each theory Te describes the state
of the data structures at edge e. Te is a full description of the program
state, not an approximation. However, the theorem-prover needed to detect
optimizations will sometimes fail to discharge the proof obligation for a legal
optimization. Thus, legal optimizations may still be missed.

4.5.3 Pragmas

Previous work on program optimization has used pragmas to enhance
common subexpression elimination and code motion. Programmers write
pragmas|hints for the compiler|to identify procedures that might be
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eliminated or hoisted out of loops. With the Gnu C Compiler, users can
declare that a procedure is \const" [49]. The pragma \const" asserts
that a procedure is referentially transparent, i.e., that given equal actual
values, the procedure returns the same results and has no side e�ects. For
example, sine and cosine are typically \const" procedures. The PL/I

pragma \reducible" is similar to \const."

When the Gnu C Compiler detects that a \const" procedure is called
more than once with the same arguments, the compiler eliminates the second
call. The compiler can also hoist calls to \const" procedures out of loops
when the actuals are loop-invariant.

Pragmas like \const" have two limitations. First, the pragmas do not
describe the relation between a procedure's arguments and results|the
pragmas only state that a relation exists. Thus, the pragmas can only
eliminate common subexpressions when the same procedure is called more
than once with the same actual values. Speckle speci�cations, on the other
hand, do describe the relation between the actuals and the results (including
the pre- and post-states), and this information can be used to detect a
larger class of common subexpressions, e.g., the polymer$bond right /
polymer$get right example in Section 4.1.3 on p. 57.

The second limitation is that pragmas like \const" only work for
referentially transparent procedures. This precludes procedures that
dereference pointers to compute their results|a side e�ect can change the
target of a pointer without changing the pointer itself, so dereferencing a
pointer is not referentially transparent. Thus, pragmas like \const" cannot
eliminate calls to procedures like polymer$get left, which dereferences a
polymerLoc.

4.5.4 FX

The FX language incorporates speci�cations of side e�ects to enhance
optimizations like common subexpression elimination and code motion [38].
FX divides the program store into disjoint regions somewhat like collections
in Euclid [31]. This is similar to the way Speckle divides Loc, the domain
of the program store, into disjoint subdomains|one per data type. In FX,
however, there is no association between types and regions. A region may
contain values of multiple types.

For each region accessible to a procedure, the procedure's speci�cation
states whether the procedure may read, modify, or allocate locations in the
region. This information allows an FX compiler to eliminate successive calls
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to a procedure p by checking several conditions:

1. that each call has the same actual values,

2. that the regions read by p are not modi�ed by the code between the
successive calls, and

3. that p does not visibly modify or allocation locations.

Unlike the pragmas of the previous section, FX speci�cations can be used
to eliminate calls to procedures that are not referentially transparent. The
key di�erence is that FX speci�cations can refer to any region accessed by
a procedure, not just the regions containing the actual values. However,
FX shares the other limitation of pragmas: FX does not describe the
relation between the actuals, results, and pre- and post-states of a procedure.
This means that FX can be used to eliminate only successive calls to the
same procedure. FX is insu�cient to handle cases like the bond right /
get right example in Section 4.1.3 on p. 57.

The FX compiler checks that an implementation satis�es its FX speci�ca-
tion. However, the compiler does not use speci�cations to conceal benevolent
side e�ects or temporary side e�ects.

4.6 Summary

Because speci�cations are simpler than code, they enable optimizations that
are di�cult to perform by analyzing only code. Speci�cations allow the
compiler to eliminate calls to procedures that dereference pointers, and they
make it easier to exploit relationships between procedures, such as the fact
that a call to get right returns the value passed in to bond right.

Because speci�cations contain information not found in code, they per-
mit optimizations that are impossible by analyzing only code: speci�cations
make it possible to eliminate procedure calls that perform benevolent side
e�ects, and speci�cations make it possible to substitute di�erent values for
the results of procedures with non-deterministic speci�cations.

Speci�cations also provide supplementary information that bounds the
side e�ects of a procedure call, as well as information about control
dependencies that can be used to detect unreachable nodes in the ow graph.
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Chapter 5

Specialized Procedure Implementations

In this chapter, I present specialized procedure implementations (SPIs), the
only kind of programmer-de�ned optimization supported in Speckle. SPIs
are designed to reduce the conict between generality and e�ciency. The
basic idea is to provide multiple implementations for a single procedure
interface.

First, I explain how generality conicts with e�ciency when designing
interfaces. Next, I describe how to alleviate these conicts with SPIs. Then,
I describe the obligation for proving that an SPI can be used in place of the
general implementation. Finally, I discuss related work.

5.1 Motivation

When designing interfaces, a software engineer often faces the dilemma of
whether to make an interface general or to specialize the interface to the task
at hand [32]. Consider the interface for the data type table in Fig. 5.1. (This
example is taken from the AC-Unify case-study discussed in Chapter 8.) A
table is a mapping from keys to values. The procedure store1 takes a
table, a key, and a value and adds (or replaces) the binding for the key. The
procedure lookup returns the value bound to a key in a table or signals
missing if the key is unbound.

The interface of store1 is more general than that of store2 (Fig. 5.2)
which requires that the key is not already de�ned in the table. However,
the implementation of store2 can be more e�cient than that of store1.
For example, suppose a table is represented as an unsorted list of key/value
pairs with the invariant that no key appears twice. To preserve the invariant,
store1 will have to search the list to see if a binding exists for k, but this
search is unnecessary for store2.

In some contexts, the generality of store1 is unnecessary. Consider the
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table = mutable type

based on Table

store1 = proc (t: table, k: key, v: value)

requires --

modifies t

ensures t' = bind(t^, k, v)

lookup = proc (t: table, k: key) returns (v: value)

requires --

modifies --

ensures v = image(t^, k)

except

signals misssing when : defined(t^, k)

Figure 5.1: A Table Interface

store2 = proc (t: table, k: key, v: value)

requires : defined(t^, k)

modifies t

ensures t' = bind(t^, k, v)

Figure 5.2: An Alternative Interface for table$store

v: value := table$lookup(t, k)

except when missing:

v := value$create()

table$store(t, k, v)

end

Figure 5.3: Calling table$store
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substitution = mutable type

based on Substitution

extend1 = proc (s: substitution, v: variable, t: term)

requires --

modifies s

ensures s' = bind(s^, v, t)

except signals cyclic_definition

when v 2 vars(apply(unbind(s, v), t))

ensuring s' = s^

extend2 = proc (s: substitution, v: variable, t: term)

requires v =2 vars(apply(unbind(s, v), t))

modifies s

ensures s' = bind(s^, v, t)

Figure 5.4: Two Interfaces for substitution$extend

code fragment in Fig. 5.3, which is taken from the source code of LP [16], a
theorem-prover. Because the call to lookup signals missing only when k is
not de�ned in t, and because the call to value$create() modi�es nothing,
k cannot be de�ned in t when store is called.

Fig. 5.4 contains another example of the conict between gener-
ality and e�ciency. The �gure contains two possible interfaces for
substitution$extend, which adds or replaces a binding for a variable in
a substitution. Here, a substitution is a data type that maps logical
variables to logical terms, and a desired invariant is that no values of type
substitution contain cyclic de�nitions, e.g., that no substitution maps x
to y and y to x. The interface of extend1, which preserves the invariant,
is more robust than that of extend2, which relies on the client to preserve
the invariant. However, because extend1 must always check whether the
invariant is preserved, it will be substantially slower than extend2 in
contexts where the invariant is guaranteed to be true.

With conventional programming languages, there are three solutions to
the table$store dilemma. One is to sacri�ce e�ciency and choose only
the general interface. Another is to sacri�ce generality and choose only the
e�cient interface. A third is to provide both interfaces.
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Providing both interfaces has several problems. First, it creates more
work for clients, who will have to decide which interface to call. If a
client makes the wrong choice, either performance or correctness will be
compromised. Second, as the program evolves, the distinction between the
two interfaces may become irrelevant. In the case of table$store, the
representation may be changed to a sorted list, in which case store2 is no
faster than store1. Finally, a minor problem is that in a language like CLU
that allows one store-like operation per type to be written as t[k]:= v,
only one of the interfaces can use this syntax.

Instead of providing both interfaces, it is better to provide one interface
with multiple implementations and to have the compiler choose the
appropriate implementation for the caller. In Speckle, this is accomplished
using SPIs.

5.2 Syntax and Semantics

From the client's perspective, calling a procedure with an SPI is like
calling any other procedure. From the implementor's perspective, SPIs
allow a single procedure interface to have multiple implementations. One
implementation|the general implementation|can be used anywhere. The
other implementations|the SPIs|are usually more e�cient than the
general one but can be used only when certain conditions are met.
The programmer de�nes these conditions formally using the speci�cation
language. The compiler substitutes an SPI for the general implementation
when it can prove, using speci�cations, that the conditions are met at a
particular call site. The general implementation must exist because a caller
may rely on the full generality of the interface and because the compiler
may fail to prove that an SPI su�ces.

Fig. 5.5 is an implementation of table$store that uses an SPI. The
general implementation calls the procedure find pair to search for a pair
whose key is k. If no such pair is found, a new pair is added to the list.
Otherwise, the val �eld of the pair is updated.

The special when construct delimits the beginning of an SPI. Here,
the additional precondition is :defined(t ^, k), which the compiler must
discharge at call sites of store in order to use the specialized code instead
of the general code.

In general, there can be many SPIs for a procedure, as is the case in
Fig. 5.6. The procedure array$fetch, which fetches an element from an
array that can grow or shrink dynamically, uses SPIs to avoid bounds checks.
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table = mutable type

rep = list[pair]

pair = record[key: key, val: value]

store = proc(t: rep, k: key, v: value)

%

% General implementation

%

find_pair(t, k).val := v

except when not_found:

rep$addh(t, pair${key: k, val: v})

end

%

% Specialized implemenetation

%

special when : defined(t^, k)

rep$addh(t, pair${key: k, val: v})

end store

Figure 5.5: An SPI for table$store

Here, each additional precondition is named, and the name is used by a
macro facility. The code is equivalent to the lengthier version in Fig. 5.7.

5.2.1 Compilation Issues

To optimize a caller of a procedure with SPIs, the compiler must know the
additional preconditions, or guards, of the SPIs, e.g., the compiler must
know that table$store has one SPI whose guard is :defined(t ^, k).
This means that full separate compilation is no longer possible: the compiler
must know secrets about the implementation of a called procedure. However,
the secret information is very stable|changes to the guards are likely to be
infrequent.

The simplest way to compile a procedure with SPIs is to output an
ordinary procedure for each SPI, e.g., store1 and store2 for Fig. 5.5. This
strategy probably leads to the most e�cient code.
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array = mutable type

based on Array

array_rep = record[

low: int, % low bound

size: int, % size

elems: bounded_array[elem]] % elements

array$fetch = proc (a: array, i: int) returns (e: elem)

special when LOW_OK: low(a^) � i

when HIGH_OK: i � high(a^)

ar: array_rep := down(a)

ind: int := i - ar.low

#if : LOW_OK

if ind < 0 then signal bounds end
#endif
#if : HIGH_OK

if ind > ar.size then signal bounds end
#endif

return(ar.elems[ind])

Figure 5.6: SPIs in array$fetch, Version 1

5.3 Proof Obligation

The proof obligation for substituting an SPI for the general implementation
is the guard, SW Guard, supplied by the user in the special when clause.
This guard must be instantiated with the actual values passed to the
procedure. For the procedure call:

pre

norm e1

[Res    ; Res  ; ...; Res  ]:= Prc(Args)norm     e1           eN

eN

the proof obligation is SW Guard(�Str

pre; Args) 2 Tpre
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array = mutable type

based on Array

array_rep = record[

low: int, % low bound

size: int, % size

elems: bounded_array[elem]] % elements

array$fetch = proc (a: array, i: int) returns (e: elem)

ar: array_rep := down(a)

ind: int := i - ar.low

if ind < 0 cor ind > ar.size then signal bounds end

return(ar.elems[ind])

special when low(a^) � i ^ i � high(a^)

ar: array_rep := down(a)

ind: int := i - ar.low

return(ar.elems[ind])

special when low(a^) � i

ar: array_rep := down(a)

ind: int := i - ar.low

if ind > ar.size then signal bounds end

return(ar.elems[ind])

special when i � high(a^)

ar: array_rep := down(a)

ind: int := i - ar.low

if ind < 0 then signal bounds end

return(ar.elems[ind])

Figure 5.7: SPIs in array$fetch, Version 2
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5.3.1 Example: Calling table$store

The ow graph for the code in Fig. 5.3 is:

s0

[v;] := table$lookup(t, k)

[v] := value$create()

table$store(t, k, v)

s2

s3

s4

missings1

To call the SPI of store in Fig. 5.5, the proof obligation is:

:de�ned(�Str

3 (�Env

3 (`t')), �Env

3 (`k')) 2 T3

By simple analysis, this goal follows from the exception guard of lookup,
which asserts:

:de�ned(�Str

0 (�Env

0 (`t')), �Env

0 (`k')) 2 T2

The analysis requires using the modifies assertions of lookup and
value$create and the extension proof rule from p. 38.

5.4 Propagating Proof Obligations

One problem with SPIs is that the immediate caller of a procedure with
SPIs may not contain enough contextual information to discharge the guard
condition of an SPI. In these situations, the compiler must propagate the
guard condition to the caller's caller.

Fig. 5.8, which contains part of an implementation of a data type for
directed graphs, illustrates the problem. The LSL trait for graphs appears
in Fig. 5.9. In the implementation, graphs are represented as tables, whose
interface appeared in Fig. 5.1, with the types key and value renamed to node
and node set. The table representing a graph maps each node to a node set
containing the node's successors.
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node = immutable type
...

node_set = immutable type

based on NodeSet

create = proc () returns (ns: node_set)

requires --

modifies --

ensures ns' = { } ^ New(ns)
...

graph = mutable type

based on Graph

rep = table % with key = node, value = node_set

insert_node = proc (g: rep, n: node)

requires --

modifies g

ensures g' = add_node(delete_edges(g^, n), n)

%%%%%%%%% Code %%%%%%%%%

succs: node_set := node_set$create()

table$store(g, n, succs)

end insert_node
...

Figure 5.8: Part of a Graph Data Type

In Fig. 5.8, insert node calls the procedure table$store (see Fig. 5.5),
but there is not enough contextual information to prove the guard of
table$store's SPI, i.e., to prove :defined(g, n). Nevertheless, the
guard is satis�ed when insert node is called from a context where :(n
2 g.nodes). Fig. 5.10 contains such an example: at the call site
insert node(g2, n), the condition :(n 2 g2.nodes) holds because the
interface of graph$nodes ensures that it yields no duplicate nodes (interface
not shown).
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Graph: trait

includes Set(Node, NodeSet), Set(Edge, EdgeSet)

Graph tuple of nodes: NodeSet, edges: EdgeSet

Edge tuple of source: Node, dest: Node

introduces

add_node: Graph, Node ! Graph

add_edge: Graph, Node, Node ! Graph

delete_edges: Graph, Node ! Graph

remove_edges: EdgeSet, Node ! EdgeSet

reverse: Graph ! Graph

asserts

8 g: Graph, n,n1,n2: Node, es: EdgeSet

add_node(g, n) == [insert(n, g.nodes), g.edges];

add_edge(g, n1, n2) ==

[g.nodes, insert([n1, n2], g.edges)];

delete_edges(g, n) ==

[g.nodes, remove_edges(g.edges, n)];

remove_edges({}, n) == { };

remove_edges(insert([n1, n2], es), n) ==

if n = n1 then remove_edges(es, n)

else insert([n1, n2], remove_edges(es, n));

reverse(g).nodes = g.nodes;

[n1, n2] 2 reverse(g).edges == [n2, n1] 2 g.edges;

implies

converts add_node, add_edge, delete_edges, remove_edges,

reverse

Figure 5.9: Graph Trait

One would like to allow the optimization, but the question is how. A
possibility would be to write an SPI for insert node, but this has two
problems. First, the implementor of insert node is a client of table$store,
so he is not supposed to rely on the existence of an SPI in table$store.
Second, Speckle doesn't provide a way for him to call the SPI directly, even
if he wanted to.

Instead, the compiler should create the SPI for insert node, because the
compiler does have access to the SPI of table$store. The problem is that
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reverse_graph = proc (g1: graph) returns (g2: graph)

requires --

modifies --

ensures g2' = reverse(g1^) ^ New(g2)

g2: graph := graph$create()

for n: node in graph$nodes(g1) do

graph$insert_node(g2, n)

end

for n: node in graph$nodes(g1) do

for succ: node in graph$successors(g1, n) do

graph$insert_edge(g2, succ, n)

end

end

end reverse_graph

Figure 5.10: Procedure reverse graph

the compiler must be able to translate the guard condition :defined(g,
n) at the call site of table$store to the guard :(n 2 g.nodes) at the
entry point of insert node. Part of the problem is easy to solve: given
the speci�cation of node set$create, it is straightforward to propagate
:defined(g, n) backwards to the entry point of insert node. The di�cult
part is to translate this guard, which is in terms of tables, into the desired
guard, which is in terms of graphs.

My solution is to have implementors of data types write stylized
abstraction functions. Because the guards of SPIs will generally be expressed
using observer functions, the de�nition of the abstraction function should
translate observers of representation values into observers of abstract values.

Fig. 5.11 contains a trait de�ning the abstraction function for the
graph example. It de�nes defined and image, which are observers
of tables, in terms of .nodes and .edges, which are observers of
graphs. For the example, only the �rst equation is needed to translate
the condition :defined(g, n) to :(n 2 AF(g).nodes). To simplify this
to :(n 2 g.nodes), the compiler must use some mechanism to recognize
that AF(g), where g is a table, is equal to g, the graph in insert node's
interface.
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GraphAbsFunc: trait

includes Graph, Table

introduces

AF: Table ! Graph

asserts

8 t: Table, n,n1,n2: Node

defined(t, n) == n 2 AF(t).nodes;

n2 2 image(t, n1) == [n1, n2] 2 AF(t).edges;

Figure 5.11: Abstraction Function for Graph

5.5 Related Work

5.5.1 Transformation Rules

Speckle is not the �rst language that allows users to de�ne optimizations.
In [25], Hisgen presents an unimplemented design of a strategy based on
transformation rules rather than speci�cations. The source language is a
derivative of ADA.

To de�ne an optimization, an implementor describes transformations to
be performed by the compiler. For example, the implementor of table
might provide a transformation rule to replace two calls to lookup, each
with the same arguments, by a single call; this rule is analogous to common
subexpression elimination for calls to lookup.

Transformations may have preconditions expressed using applications
of side-e�ect free functions, which play a role analogous to that of LSL
functions. Thus, the transformation language is su�ciently powerful to
express any optimization de�ned by an SPI. In fact, the transformation
language is more expressive than Speckle. For example, one can write a rule
to replace the pattern

s3 := concat(s1, s2)

print(s3)

by

print(s1)

print(s2)
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One problem of the transformation rule strategy is that it lacks
modularity. To apply a transformation rule, the compiler must reorder the
program so as to match the pattern of the rule. For the pattern above,
the compiler may have to commute a call to print with other calls so that
the calls to concat and print are consecutive. Likewise, the compiler must
make common subexpressions consecutive before it can eliminate one of
them.

The problem is that to commute one procedure call with another,
the compiler must in general rely on \commutative" transformation rules
supplied by the user. To maximize the compiler's ability to perform
transformations, the user must consider all pairs of procedures. In contrast,
Speckle uses modifies clauses|one per procedure|to determine whether
a procedure call interferes with an optimization.

5.5.2 Eliminating Runtime Checks

A common use of SPIs is to eliminate runtime checks. Many have focussed
on eliminating such checks for operations that are primitive to the source
language, e.g., array bounds checking, nil checks in pointer dereferences,
overow, assignments from supertypes to subtypes, etc. SPIs are more
general because they can be used to eliminate runtime checks that are not
primitive to the source language.

In [47], Sites describes a technique for proving that programs written in
a language like Algol 60 terminate without runtime errors. This requires
proving properties su�cient to eliminate runtime checks in array references,
numeric operations, assignments from supertypes to subtypes, etc. The
language does not have pointers, so the problem of aliasing is simpler than
in Speckle. Sites simulates his technique manually on several examples.

In [18], German develops a tool for verifying the absence of runtime
errors, such as arithmetic overow and invalid array indices. Users write
formal speci�cations for procedures (entry and exit assertions) and decorate
their code with su�ciently strong assertions so that the veri�er can discharge
all of the assertions plus the absence of runtime errors. German's work
focuses on de�ning Pascal formally and expressing assertions su�cient to
preclude a runtime error. He does not describe the strategies used to
discharge assertions. (My strategy is presented in Chapter 6.)

In [41], McHugh examines all of the static checks of Gypsy, a derivative
of Pascal. Gypsy is a programming environment for veri�ed software, so
programs typically contain entry, exit, and other assertions. McHugh's
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compiler generated optimization conjectures that, when discharged by the
UT Interactive Prover [6], resulted in the elimination of code supporting
exceptions|i.e., a broad category of runtime checks. McHugh does not
describe strategies used to prove the conjectures.

In [20], Gupta reduces the overhead of array bounds checks by
eliminating redundant checks that occur in code fragments such as
\a[i]:= a[i]+1" and by moving checks out of loops. The strategy used
relies on the programming language semantics of arrays and does not extend
to user-de�ned types.

Currently, Greg Nelson and David Detlefs are studying array bounds
checking, nil checks, and other runtime checks in Modula-3 [44].

5.6 Summary

SPIs are a form of user-de�ned optimization that allow one procedure
interface to have multiple implementations. Rather than compromising
generality for e�ciency, a programmer can use an SPI to have the compiler
substitute a specialized implementation for the general one in calling
contexts where the specialized implementation su�ces.
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Chapter 6

Prototype Speckle Compiler

There are two important issues to consider when designing a compiler that
uses speci�cations. The �rst is how to translate speci�cations written in
a declarative style into a logical system with an operational semantics.
This translation must be done carefully so that the logical system can
automatically discharge the proof obligations of many optimizations that
are safe. The second issue is that of compiler performance. Most of the
optimizations attempted by a compiler are unsafe, e.g., most procedure calls
cannot be replaced by an assignment. Therefore, the compiler cannot a�ord
to spend much time trying to prove any one conjecture.

To explore these issues and to test the ideas of the previous chapters,
I constructed a prototype Speckle compiler, PSC. The inference engine of
PSC is a stripped-down, automated version of the interactive theorem-
prover LP (version 2.2a) [16, 22]. LP is particularly well-suited for Speckle
because it was designed to work with LSL and because it fails quickly when
trying to prove a di�cult conjecture rather than attempting expensive proof
strategies. This is important because most conjectures PSC tries to prove
are false.

In this chapter, I describe PSC, what it does, and how it works. In
particular, I focus on how the formalization of Speckle programs is adapted
to exploit LP's capabilities and on how LP's capabilities are extended to
enhance reasoning about conditionals and loops.

6.1 What PSC Does

PSC implements most of the optimizations described in chapters 4 and 5.
However, instead of generating code, PSC outputs a list of successful and
unsuccessful attempts at performing optimizations. PSC does not attempt
to propagate the guards of SPIs up the call graph and does not attempt to
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hoist expressions unless they are loop constants.
Before running PSC, the user must convert the LSL speci�cations used

by a program into an LP logical system. This process could (and should)
be entirely mechanized. Currently, the user must run the LSL Checker
to translate LSL into LP's syntax. Then, the user must run LP to
convert automatically the declarative speci�cations into a logical system
with operational semantics.

Once the logical system is created from the LSL speci�cations, the user
runs PSC, which outputs a list of attempted optimizations and indicates
which succeeded and which failed. PSC takes the following actions:

1. Reads the logical system derived from LSL speci�cations.

2. Adds axioms for location sorts and LocSets as speci�ed in data type
interfaces, and translates procedure and iterator interface speci�ca-
tions into predicates on program states. (See Chapter 2.)

3. Translates the program (a procedure body) into a ow graph.

4. Uses the proof rules from Chapter 3 to generate a logical system for
each edge in the graph.

5. Uses the logical systems to try to discharge the proof obligations for
performing optimizations given in chapters 4 and 5.

The second and third steps are straightforward, so I will not discuss them
further. The fourth step|constructing a logical system for each edge|is
an expensive one. However, these logical systems are constructed once per
compilation and then used to try to discharge the proof obligations for each
attempted optimization.

The remainder of this chapter begins with a description of LP, its
logical systems, and its facilities for constructing logical systems from LSL

speci�cations. Next, I describe how PSC constructs logical systems for each
edge using LP. Then, I describe the strategy for performing automated
proof by cases and induction in PSC. The strategy is a simple one that
does not attempt to synthesize loop invariants. Finally, I explain how the
proof strategy and the logical systems are used to detect optimizations.

6.2 LP Logical Systems

LP (version 2.2a) is an interactive theorem-prover for a fragment of
multisorted, �rst-order, predicate logic. Like LSL, LP does not allow
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quanti�ers in terms. Instead, all variables are assumed to be universally
quanti�ed.1

In general, LP's logical systems contain �ve types of axioms: rewrite
rules, operator theories, deduction rules, induction rules, and equations.
However, PSC uses only the three types of axioms that are used automati-
cally: rewrite rules, operator theories, and deduction rules. Equations and
induction rules are not used because they require interaction from the user.

6.2.1 Rewrite Rules

Rewrite rules implement a proof method based on normalization. The basic
idea is to rewrite semantically equal terms to syntactically equal normal
forms and to rewrite conjectures to true.

A rewrite rule LHS! RHS consists of a pattern LHS and a replacement
RHS. A rule can be used to reduce a term T to a simpler term by matching
LHS to a subterm of T , applying the resulting substitution to RHS, and
replacing the matched subterm. A term is irreducible by a rewrite rule if
none of its subterms match the rule's pattern. The verbs \simplify" and
\rewrite" are synonyms for \reduce."

A set of rewrite rules can be combined to form a rewriting system. A term
is reducible by a rewriting system if it is reducible by any of the system's
rules. A normal form of a term is computed by repeatedly reducing a term
until it is irreducible. A term may have more than one normal form. A
rewriting system is terminating if no term is forever reducible by the system.

LP also supports conditional rewrite rules. A conditional rule is a rewrite
rule pre�xed by a guard that must be satis�ed before the basic rule can be
used to reduce a term. As before, the �rst step in reducing a term T by
G: LHS ! RHS is to obtain a substitution � by matching LHS to T . The
guard must then be discharged by reducing �(G) to true. Only then can
the original term be reduced.

6.2.2 Operator Theories

Operator theories enhance term rewriting by generalizing matching [54].
Each function symbol has an operator theory. The three operator
theories handled by LP are: empty, commutative, and associative-

commutative.

1
These restrictions on the use of quanti�ers will be removed in the next release of LP.
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A function's operator theory determines how LP performs matching.
By default, a function f has the empty theory, so, for example, f(a,b)
does not match f(b,a). However, if f is commutative, f(a,b) does
match f(b,a). Furthermore, if f is associative-commutative, f(a,f(b,c))
matches f(f(a,b),c)), etc.

6.2.3 Deduction Rules

A deduction rule has the form

when [8x1; : : : ; xn <hypotheses>] yield <conclusions>

where <hypotheses> and <conclusions> are sequences of equations. Logi-
cally, a deduction rule is equivalent to an implication of the form

([8x1; : : : ; xn <hypotheses>]) =) (<conclusions>)

Because LP's terms cannot have nested quanti�ers, deduction rules cannot
be expressed as implications unless n is 0, i.e., the hypotheses can are
expressed without nested quanti�ers.

Operationally, a deduction rule adds the assertion �(<conclusions>)
when there is a substitution � that matches �(<hypotheses>) to axioms
in the logical system.

Because PSC is an unusual user of LP, PSC can discard all of the
deduction rules once the logical systems have been constructed, i.e., before
using the logical systems to prove optimization obligations. PSC can discard
the deduction rules because they are used only when facts are added to a
logical system, and PSC, unlike typical LP users, discards a conjecture once
it has been proved rather than adding the conjecture as an axiom.

6.2.4 Generating Logical Systems from LSL

LSL speci�cations can be translated into LP logical systems mechanically.
The LSL checker translates LSL syntax into LP commands, from which
LP constructs a logical system. The primary concern for PSC is whether
the logical system can automatically discharge conjectures that arise during
optimization. A logical system discharges a conjecture if the rewrite rules
normalize the conjecture to true.

One potential problem is that most LSL axioms are equations, which
PSC does not use. LP converts sets of equations into terminating sets
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of rewrite rules whenever possible. Occasionally, LP cannot convert an
equation because the resulting rewriting system would not be terminating.
PSC ignores such equations. In my experience, all equations were converted
to rewrite rules.

A more serious problem is that process of translating LSL speci�cations
is unable to generate some deduction rules that are needed for optimization.
Currently, LSL's partitioned by clauses are the only axioms that are
converted into deduction rules. However, there are many deduction rules
that cannot be expressed with partitioned by.

One way around the problem is to extend LSL with a syntax for deduction
rules. This is the approach I use in PSC. The disadvantage of this approach
is that the speci�er is forced to consider the operational semantics of
speci�cations that are supposed to be declarative. A better solution would
be to make LP infer the deduction rules from declarative speci�cations.
Unfortunately, such a solution is not currently available.2

Example: Table Trait

Fig. 6.1 is a trait for tables. When this trait is translated by the LSL Checker
and the output is given to LP, the result is the logical system in Fig. 6.2. LP
converts the partitioned by clause into a deduction rule and converts all
equations to rewrite rules. (The third assertion in the trait is a shorthand for
the equation :defined(empty, k) == true.) The generated by assertion
is ignored.

6.3 Constructing Logical Systems for a Program

PSC uses the formalization of programs described in chapters 2 and 3 to
model programs. Recall that a program consists of a single procedure body,
which calls other procedures that are optimized separately. The program is
translated into a ow graph, and each edge has a theory that describes the
program state at the edge.

For each edge e, PSC constructs a logical system, Re, to approximate
the theory Te. The purpose of Re is to discharge proof obligations of the
form F 2 Te by seeing if Re normalizes F to true.

Re may fail to reduce some formulas in Te to true, so the compiler may
miss some optimizations. However, the compiler does not perform unsound

2
Future versions of the LSL checker and LP are expected to alleviate this problem.
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Table: trait

introduces

empty: ! Table

bind: Table, Key, Value ! Table

image: Table, Key ! Value

defined: Table, Key ! Bool

asserts

Table partitioned by image, defined

Table generated by empty, bind

8 k,k1,k2: Key, v: Value, t: Table

image(bind(t, k1, v), k2) ==

if k1 = k2 then v else image(t, k2);

: defined(empty, k);

defined(bind(t, k1, v), k2) == k1 = k2 _ defined(t, k2);

Figure 6.1: Table Trait

when [8 k,k1: Key image(t1, k) == image(t2, k),

defined(t1, k1) == defined(t2, k1)]

yield t1 == t2

8 k,k1,k2: Key, v: Value, t: Table

image(bind(t, k1, v), k2) !

if k1 = k2 then v else image(t, k2);

defined(empty, k) ! false;

defined(bind(t, k1, v), k2) ! k1 = k2 _ defined(t, k2);

Figure 6.2: Logical System Generated for Table Trait

optimizations, i.e., Re is constructed using the proof rules from Chapter 3
so that it normalizes only formulas in Te to true.

This section begins with a description of the term proof strategy used in
PSC. Next, I revise the model of the program store slightly to make proofs
involving modifies clauses succeed more often. Subsequently, I explain how
PSC creates the logical system for each edge. Finally, I present a few minor
implementation issues.
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6.3.1 Proof Strategy

Typically, the proof obligations for various optimizations are terms that
contain program state symbols. Since the proof method is rewriting terms
to normal forms, it is useful to have a strategy for normalizing program state
symbols.

PSC constructs logical systems to support the proof strategy of rewriting
terms \towards the entering edge." This strategy is to rewrite a term, t, that
contains the program state symbol of an internal graph edge, e, to either:

1. a term that contains program state symbols of only edges that
dominate e, or

2. a term that doesn't contain any program state symbols.

(This case can be viewed as a special case of (1).)

LP uses a simpli�cation ordering to choose whether to convert an
equation a = b into a ! b or b ! a [17]. To encourage LP to rewrite
terms towards the entering edge, PSC imposes the dominates partial order
onto LP's simpli�cation ordering. If e1 dominates e2, PSC makes the term
�1 simpler than �2 in the simpli�cation ordering. The e�ect is that when
an ensures clause of the form x' = f(x ^) is instantiated and converted
into a rewrite rule, the rule is usually ordered as x' ! f(x ^) rather than
f(x ^) ! x'.

Likewise, the modifies clause must be converted into a rule that
simpli�es terms towards the entering edge. In Chapter 2, the semantics
of OnlyModi�es(pre; post; S) was de�ned as

8 l : Loc 2 domain(�Str

pre) [ l =2 S =) �Str

post(l) = �Str

pre(l) ]

where S is the set of modi�ed locations. Recall that l 2 domain(�Str

pre) is to
distinguish locations that were allocated by a procedure call from locations
that existed before the call.

One possibility is to order the de�nition of OnlyModi�es into a
conditional rewrite rule

(l 2 domain(�Str

pre) ^ l =2 S) : �Str

post(l)! �Str

pre(l)

Unfortunately, using this rules leads to two problems. One is that even
for the common case S = fg (i.e., modifies --), the guard is non-trivial
to discharge automatically. Discharging l 2 domain(�Str

pre) involves many
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facts, such as New assertions from speci�cations, axioms about reachability,
and program state invariants about the absence of dangling references.
The second problem is that later, when partial speci�cations are allowed,
the New assertions are likely to be omitted. Therefore, I use a slightly
di�erent formalization of the program state that simpli�es the guard of the
conditional rewrite rule.

6.3.2 An Alternate Model for the Program Store

Recal that in Chapter 2, the store is de�ned as a �nite mapping Loc !

LSLValue, and the semantics of allocation is to bind an unde�ned location l

to some value, v. In PSC, the store is de�ned as an in�nite mapping where
each possible LSLValue is the image of an unbounded number of locations.
The semantics of allocating a location to have initial value v is to select
a previously unreachable (i.e., inaccessible) location l that is bound to v

and make l reachable to the caller. Because the store is in�nite whereas a
program can allocate only a �nite number of locations, there is always an
unreachable location l for every possible initial value v.

When the store is modeled as an in�nite mapping, the de�nition of
OnlyModi�es(pre; post; S) simpli�es to

8 l : l =2 S =) �Str

post(l) = �Str

pre(l)

which can be ordered into the conditional rewrite rule3

l =2 S : �Str

post(l)! �Str

pre(l)

The meaning of New(x) must also be revised for in�nite program stores.
In Chapter 2, the meaning of New(x) was de�ned as

x =2 domain(�Str

pre) ^ x 2 domain(�Str

post)

With in�nite stores, the meaning of New(ls1; ls2; : : : ; lsn) is that each lsi
contains only previously unreachable locations:^

i=1:::n;var2�Env

pre

lsi \ reach ^(var) = fg

and, just as before, that each pair of distinct LocSets in the assertion is
disjoint. Recall that reach ^(x) is the set of locations reachable from x in
the pre-state (see p. 30).

3
For minor reasons discussed later, PSC axiomatizes the modifies clause in a slightly

di�erent form.
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6.3.3 The Entering Edge

Recall from Chapter 3 that the theory of the entering edge, Tenter, is an
extension of the theories of LSL speci�cations used by the program. These
speci�cations are converted into a logical system, which PSC uses as a
starting point for Renter.

Given this logical system as a starting point, PSC constructs Renter by
declaring and axiomatizing functions to look up the value of an identi�er in
the environment, to look up the value of a location in the store, to construct
and examine LocSets, etc. The precise axiomatization is determined by the
interface speci�cations of data types (see Chapter 2).

6.3.4 Edges Exiting Assignment, Branch, Procedure Call, and

Iterator Call Nodes

For each assignment, branch, procedure call, and iterator call node in the
graph, PSC constructs a logical system for each of the node's exiting edges
by copying the logical system of the node's entering edge and asserting the
conclusions of the proof rules in Chapter 3. If the conclusion of a proof rule
is F 2 Te, PSC adds the equation F == true to Re and then uses LP to
convert the equation into a rewrite rule.

Example

As a simple example, consider the code fragment

table$store1(t, k, v1)

v2 := table$lookup(t, k)

which uses the table data type speci�ed in Fig. 5.1 on p. 70. Fig. 6.3 contains
the ow graph for this code and two tables. The �rst table lists, for each
edge, the assertions for that edge's theory. The second table contains the
rewrite rules generated by LP. The tables are condensed|the assertions and
rewrite rules for edge e are not repeated for edges dominated by e, e.g., the
entries for s1 are not repeated for s2.

Note that the logical system for s3 is inconsistent. This means that edge
s3 is unreachable. The call lookup(t,k) will never signal missing because
k is de�ned in t by the call to store1.
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[v2] := table$lookup(t,k)

s1

s2

s0

table$store1(t,k,v1)

missing

s3

Edge Assertions

s0 See Fig. 6.1

�Str

1 (�Env

1 (`t')) = bind(�Str

0 (�Env

0 (`t')), �Env

0 (`k'), �Env

0 (`v1'))

s1 8 l : [l 6= �Env

0 (`t') ) �Str

1 (l) = �Str

0 (l)]

�Env

1 = �Env

0

�Env

2 (`v2') = image(�Str

1 (�Env

1 (`t')), �Env

1 (`k'))

s2 �Str

2 = �Str

1

defined(�Str

1 (�Env

1 (`t')), �Env

1 (`k'))

v 6= `v2' ) �Env

2 (v) = �Env

1 (v)

�Str

3 = �Str

1

s3 :defined(�Str

1 (�Env

1 (`t')), �Env

1 (`k'))

�Env

3 = �Env

1

Edge Rewrite Rules

s0 See Fig. 6.2

�Str

1 (�Env

1 (`t')) ! bind(�Str

0 (�Env

0 (`t')), �Env

0 (`k'), �Env

0 (`v1'))

s1 l 6= �Env

0 (`t') : �Str

1 (l) ! �Str

0 (l)

�Env

1 ! �Env

0

�Env

2 (`v2') ! �Env

0 (`v1'))

s2 �Str

2 ! �Str

1

(assertion reduces to an identity)

v 6= `v2' : �Env

2 (v) ! �Env

1 (v)

�Str

3 ! �Str

1

s3 (assertion reduces to an inconsistency)

�Env

3 !�Env

1

Figure 6.3: Flow Graph with Assertions and Rewrite Rules
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6.3.5 Edges Exiting Merge and Loop Nodes

Unlike the proof rules for other nodes, those for for merge and loop nodes
have hypotheses that involve theories of edges in the program. Thus, merge
and loop nodes must be handled di�erently.

Initially, PSC approximates the logical system of an edge e that exits
a merge or loop node by copying the logical system of the edge, d, that
immediately dominates e.4 Rd is a sound approximation for Te because,
by the extension proof rule, Td � Te. Actually, Rd is a weak initial
approximation for Te because Rd contains no information about �e. PSC

then extends Re by adding an axiom �Env

e (id) ! �Env

d (id) for each identi�er
id that is not assigned between d and e.

Despite the added axioms, Re contains very little information �e, so Re

is too weak to prove many facts about �e. Instead, proofs involving �e are
done by combining term rewriting with automated proof-by-cases and proof-
by-induction. This is explained in Section 6.4, but �rst I wish to point out
two minor ways in which the implementation of PSC, for historical reasons,
di�ers from what I have described.

6.3.6 Minor Implementation Issues

I began implementing PSC before LP had conditional rewrite rules. To
this day, PSC axiomatizes modifies clauses without conditional rules. To
simulate the conditional rule

l =2 S : �Str

post(l)! �Str

pre(l)

I use the rule

unreduced(post)[l] ! if l 2 S then post[l]

else unreduced(pre)[l]

where sig[l] is the translation of �Str

sig(l) into LP syntax, and where
unreduced is the identity function for program stores. Without unreduced,
the rule above could not be ordered from left to right. Note that the axiom
unreduced(s) = s must not be used; otherwise, LP would normalize away
all occurrences of unreduced and order the rewrite rule in the opposite
direction.

4
As de�ned in [2], d immediately dominates e if d 6= e and d dominates e and no other

dominator of e is dominated by d. Intuitively, d is the nearest branch point that can cause

control to bypass e.
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In Chapter 2, I de�ned the environment as a mapping from identi�ers
to values. In PSC, the environment is axiomatized as a collection of
functions, each of which maps a program state to the value of an identi�er.
OnlyAssigns(�Env

pre , �
Env

post, `x') is axiomatized as^
v 6=`x0

v(post) = v(pre)

6.4 Automating Proof-by-Cases and Proof-by-Induction

Using the logical systems constructed in Section 6.3, the strategy of rewriting
terms toward the entering edge works well for programs without merge or
loop nodes. However, if the program does contain such nodes, ordinary
rewriting is often insu�cient to simplify a term containing �e, where e is
an edge exiting a merge or loop node, to a term that doesn't contain �e.
Therefore, I combine term rewriting with a strategy that automates the
proof-by-cases rule for merge nodes and the proof-by-induction rule for loop
nodes. The key issue here is how to restrict the number of proof attempts
to reduce compile time while still allowing the proof attempts needed for
e�ective optimization.

6.4.1 Strategy

The automated proof strategy is a simple one. First, PSC uses term rewriting
to reduce a proof obligation F 2 Te to a normal form, F # Re. Let E be the
set of edges whose program state symbols appear in F # Re. If E is empty,
proof-by-cases and proof-by-induction are unnecessary.

Otherwise, the strategy is to select max, the edge dominated by all edges
in E. Intuitively, max is the edge furthest from the entry edge. max is well-
de�ned only when E is totally ordered by the dominates relation. This
de�nition su�ces because, in my formalization, a proof obligation F 2 Te
may contain program state symbols of only edges that dominate e (and thus
are totally ordered). Likewise, the edges of program state symbols in F # Re

all dominate e.
If max exits a merge node, PSC tries proof-by-cases on the merge node

to simplify F # Re to a term that does not contain �max. If max exits a loop
node, PSC tries proof-by-induction on the loop node to simplify F # Re to
a term that does not contain �max. Otherwise, the strategy fails.

To better support the goal of simplifying terms towards the entering
edge, the strategy is designed to simplify both Boolean and non-Boolean
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branch T2

s2

Merge

s6

[T2]:= bool$not(T1)

s1

yes

s5

intset$insert(s,e)

s4no s3

[T1]:= intset$member(s,e)

s0

s7

 x := y

Figure 6.4: A Flow Graph with a Merge Node

terms. For any term t, a \proof-by-cases" is to show that the theory of each
edge entering the merge node can be used to reduce t to the same identical
term, which is the simpli�ed form of t. Similarly, to simplify a term by
induction, one must prove that it is loop-constant, i.e., that it is equal to a
term that does not contain the program state symbols of edges in the loop.

6.4.2 Example: Case Proof

Fig. 6.4 contains the ow graph for the code

if : intset$member(s, e) then intset$insert(s, e) end

x := y

Suppose the goal is to simplify the term �Env

7 (`e') 2 �Str

7 (�Env

7 (`s')) using T7.
R7 will normalize this to �Env

6 (`e') 2 �Str

6 (�Env

6 (`s')). Since �6 exits a merge
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s0

[T2]:= i < T1

branch T2

store(a,i,0)

s2

s3

s4

s1

s6

s5

Loop

[T1]:= get_high(a)

s7

yes

no

bounds

Figure 6.5: A Flow Graph with a Loop Node

node, the strategy is to try proof-by-cases:

� The �rst case is to simplify �Env

3 (`e') 2 �Str

3 (�Env

3 (`s')) using T3. R3

normalizes this term to true.

� The second case is to simplify �Env

5 (`e') 2 �Str

5 (�Env

5 (`s')) using T5. R5

normalizes this term to true.

The case proof succeeds and the original term simpli�es to true.

6.4.3 Example: Induction Proof

Fig. 6.5 contains the ow graph for the code

while i < a.high do

a[i] := 0

end
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Suppose the goal is to simplify the term �Env

2 (`T1') using T2. R2 will
normalize this to high(�Str

1 (�Env

1 (`a'))). Since �1 exits a loop node, the
strategy is to try proof-by-induction to show that the term denotes a loop-
constant.

� The base step is to simplify high(�Str

0 (�Env

0 (`a'))) using T0. This term
is irreducible.

� The inductive step is to prove

high(�Str

6 (�Env

6 (`a'))) = high(�Str

1 (�Env

1 (`a')))

using T6. R6 normalizes this term to true. This relies on the axiom
high(store(a,i,e)) = high(a).

The induction proof succeeds, so �Env

2 (`T1') simpli�es to high(�Str

0 (�Env

0 (`a'))).

Note that in this example, the inductive step involves proving an equality.
If the original term were Boolean, the inductive step would be to prove an
implication.

6.4.4 Recursion

Proof-by-cases and proof-by-induction each introduce subgoals. To dis-
charge these subgoals, PSC recursively applies the strategy for combined
term rewriting and automated proof-by-cases and proof-by-induction. A key
issue is how to limit the number of proof attempts both to ensure termination
and to improve compiler performance.

Consider the ow graph in Fig. 6.6. Suppose that term rewriting reduces
a goal to a term containing �6. Since �6 exits a merge node, this triggers a
proof-by-cases on the lower merge node. Next, suppose that R4 normalizes
the subgoal for edge s4 to a term containing �3. In a naive implementation,
this will trigger a recursive proof-by-cases on the upper merge node. Later,
when the subgoal for s4 is discharged, the subgoal for s5 may repeat the
proof-by-cases on the upper merge node!

PSC avoids this problem by restricting the merge and loop nodes that
trigger recursive proof attempts. These nodes, called the active nodes, are
described by a pair of edges, top and bottom. A merge or loop node n is
active if top dominates n and n dominates bottom.

Initially, for a proof obligation F 2 Te, top is the entering edge and
bottom is e. There are three kinds of subgoals to consider:
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Merge

s3

s0

s2s1

Merge

s6

s5s4

Figure 6.6: Restricting Proof-by-Cases

1. For a subgoal of a proof-by-cases, top is the immediate dominator of
the merge node, and bottom is an edge entering the merge node.

This restricts the active nodes to one \arm" of the branching code.

2. For the base case of a proof-by-induction, top is unchanged and bottom
is the edge that immediately dominates the loop node.

This restricts the active nodes to nodes above the loop.

3. For the inductive case of a proof-by-induction, top is the edge exiting
the loop node, and bottom is the back edge.

This restricts the active nodes to nodes in the loop body.

In the worst case, the number of case and inductive proof attempts is
exponential in the nesting of loops. For example, in Fig. 6.7, the base case
for the inner loop can trigger an induction over the outer loop, and the
inductive step for the outer loop can trigger a second induction over the
inner loop. (This process terminates because the second inner induction
cannot trigger a second outer induction.) At worst, there may be 2n proof
attempts for a merge or loop node nested in n outer loops.
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s3

s2

Loop

s4

body

s1

s0

Loop

s6

s5

s7

Figure 6.7: Nested Loops

Fortunately, loops are rarely nested deeply (more than three levels) in
a single procedure [30]. However, if ow graphs were created by inlining
procedures, the nesting depth would be greater, so more restrictions on
recursive calls would be necessary.

6.5 Detecting Optimizations

Once the logical systems have been constructed for each edge, they can be
used to detect the optimizations discussed in chapters 4 and 5. To discharge
a proof obligation F 2 Te, PSC uses term rewriting and automated proof-
by-cases and proof-by-induction to try to simplify F to true. Only a few
issues remain.
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6.5.1 Common Subexpression Elimination

To eliminate a procedure call, PSC must �rst �nd available values to
substitute for the results. Recall from Chapter 4 that a value is available
at edge e if it is bound to an identi�er at an edge d that dominates e.
To eliminate a call at edge, PSC tries to discharge the proof obligations
using each the available values of the proper type, one by one, until either
a substitute is found or all available values have been tried.

There are a few points worth noting. First, the results of every procedure
call are bound to identi�ers because either the programmer stores the results
himself or else the compiler introduces temporary identi�ers. Thus, the
values available at a call site include any value that was computed at nodes
that dominate the call site. Second, Speckle encourages the use of many
types. Because a substitute value must have the same type as the result,
PSC needs to attempt proofs for only a fraction of the set of available values.
Third, to avoid a combinatorial increase in proof attempts, PSC does not
attempts to eliminate procedure calls that return multiple results

To reduce the compile time spent attempting common subexpression
elimination, I use a simple trick. PSC tries to eliminate only calls to
procedures whose speci�cations

� assert modifies --

Note that this does not prevent the procedure from performing
invisible side e�ects.

� do not assert New in the ensures clause

These constraints �lter out many procedure calls that could never be safely
eliminated.

6.5.2 Hoisting Expressions Out of Loops

PSC does not implement the full loop optimization described in Chapter 4.
There, I described a strategy that could hoist an expression whose value
might change on each iteration, e.g., a call to a procedure whose speci�cation
is non-deterministic.

PSC can hoist only expressions whose values are constant across all
iterations of a loop. A result of a procedure call is constant across all
iterations of a loop if the result simpli�es to a term that either

� does not contain program state symbols, or
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� contains only program state symbols of edges that dominate the loop
node.

This condition is su�cient, but not necessary. Checking the condition is
straightforward|PSC simpli�es the result to a normal form, n, and checks
whether n contains program states symbols that dominate the loop. For
soundness, PSC also checks that the call always returns normally by proving
the guard for the normal return.

6.5.3 Dead Code Elimination

Recall that an edge is unreachable if its theory is inconsistent. LP may,
in the course of constructing a logical system, detect that the axioms are
inconsistent. PSC relies on this feature to identify edges with inconsistent
theories. Thus, dead code is detected for \free" in the process of performing
the other optimizations.

6.5.4 Order of Optimizations

In conventional optimizing compilers, the order in which optimizations are
performed can have a signi�cant impact on the quality of code produced. For
example, once dead code is eliminated from a program's FG, the compiler
may detect more common subexpressions because there is less code between
common expressions. To obtain such synergy, the compiler must reconstruct
the FG and related data structures as optimizations are performed.

Because it is expensive to construct the logical systems for each FG

edge, it is impractical for PSC to update the FG and its logical systems
as optimizations are detected. Instead, PSC uses the same FG and logical
systems to detect all optimizations. Such a strategy relies on the fact that
none of PSC's optimizations conict, i.e., performing one optimization never
a�ects the safety of another optimization.

First, dead code is detected as the logical systems are being constructed.
Next, PSC eliminates procedure calls. If a call can't be eliminated, PSC tries
to discharge the guards for SPIs, if any. Finally, PSC checks to see if the call
can be hoisted.

6.6 Summary

PSC relies primarily on conditional term rewriting, the code for which was
taken from LP. The basic proof strategy is to simplify terms containing a
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program state symbol �e either to a term containing �enter, the program
state symbol for the entering edge, or to a term containing no program state
symbols. The proof rules for most kinds of nodes (assignment, branch,
procedure call, and iterator call) are converted into rewrite rules that
perform the simpli�cation, while the proof rules for merge and loop nodes
are implemented by a strategy for performing automated proof-by-cases and
proof-by-induction.
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Chapter 7

Supporting Partial Speci�cations

Current practice of software engineering in industry makes little use of formal
speci�cations because the perceived cost of writing them outweighs their
perceived bene�ts. Thus far, I have explained how speci�cations o�er a
new bene�t|improving performance. In this chapter, I explain how to
obtain this bene�t without having to write full formal speci�cations of every
procedure.

The basic idea is to let users write speci�cations of procedures incremen-
tally. In the extreme case, a speci�cation can be omitted entirely. In other
cases, part of the speci�cation is written and part of it is omitted. The part
of the speci�cation that is written is called a partial speci�cation.

In this chapter, I describe how to write partial speci�cations in Speckle
and how such speci�cations a�ect optimization. One of the key problems in
supporting partial speci�cations is estimating the modifies clause when it
is omitted. To this end, I extend data type speci�cations to make it possible
to estimate which locations are reachable by a procedure when one has only
the types of the formals. Finally, I report on the use of partial speci�cations
in the case study of AC-Unify.

7.1 Writing Partial Speci�cations

Speckle allows each clause of a procedure or iterator speci�cation to be
written incrementally. Each requires, modifies, ensures, when, or
ensuring clause may contain ?, which indicates that the clause has not
been fully written yet.

The symbol ? can appear only at the end of a clause. In a modifies

clause, a comma is used to delimit ? from the comma-separated list of
locations and LocSets. In all other clauses, ^ is used as the delimiter. Only
one ? per clause is allowed.
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polymer$get_right = proc (p: polymer) returns (m: monomer)

modifies --

except signals not_linear

sort = proc (a: int_array) % deduces modifies a

requires --

modifies a

ensures ascending_order(a') ^ ?

except signals empty when ? ensuring ?

reverse_linked_list = proc (c: cons_cell)

returns (c2: cons_cell)

requires ?

modifies c, ?

ensures c'.cdr = nil ^ ?

Figure 7.1: Examples of Partial Speci�cations

In a Boolean clause, the meaning of Q ^ ? is that if the speci�cation
were fully written, the clause would be a condition that implies Q. The
meaning of modifies x,? is that a procedure may modify x and possibly
other locations.

As a special case, a clause may be omitted. For the modifies clause, this
is equivalent to a clause with a ?. For a Boolean clause, this is equivalent
to true ^ ?. If all of the clauses are omitted, the \speci�cation" is nothing
more than the procedure's header.

Fig. 7.1 contains several examples of partial speci�cations. The
speci�cation of get right states only that the procedure performs no
visible side e�ects and may signal the exception not linear. The partial
speci�cation omits the precondition (if any), the postcondition, the guard
for the exception, and the postcondition for the exception.

The speci�cation of sort states that when it returns, a is in ascending
order. However, the intended speci�cation has a stronger postcondition|a'

must be a permutation a ^. The missing condition is denoted by ^ ? in the
ensures clause. In this example, the speci�er wrote when ? ensuring ?

to alert the reader to the missing clauses, which could have been omitted
without changing the meaning of the speci�cation.

The speci�cation of reverse linked list also uses ? to draw attention
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to places where information is missing. Both the requires and modifies

clauses could be omitted without changing the meaning of the speci�cation.
There are two reasons for writing partial speci�cations in Larch/Speckle.

One is that the speci�er, for what ever reason, might not wish to write
the full speci�cation. For example, for the sort speci�cation, the speci�er
might be unwilling to write an LSL predicate de�ning when one array is a
permutation of another.

The other reason is that the interface may use data types that were
supplied by others without the LSL functions needed to express the full
speci�cation. For example, the author of the cons cell data type may
not have de�ned an LSL function to denote whether a linked list is acyclic,
i.e., whether nil is eventually reached by following the chain of cdr's of a
cons cell. Without a way to express whether a list is acyclic, the speci�er
of reverse linked list cannot write its precondition.

7.2 Optimizing Programs with Partial Speci�cations

To optimize programs with partial speci�cations, I make a minor extension
to the semantics of speci�cations given in chapters 2 and 3. Recall that the
proof rules refer to the clauses of the speci�cation of a procedure, P, using
the auxiliary predicates P.Pre, P.Post[status], and P.Guard[status], where
status is either norm or an exception name. For example,

P:Post[norm] = \ensures clause" ^ \modi�es clause"

To support partial speci�cations, these de�nitions are weakened by
replacing \=" with \)" when an auxiliary predicate refers to a clause that
is either omitted or uses ?. For example, if P's modifies clause is omitted,
the de�nition above is replaced by the weaker assertion:

P:Post[norm] =) \ensures clause"

The translation of a Boolean clause Q ^ ? is Q. The translation of an
omitted clause is true. The translation of a modifies clause that uses ? is
true.

Fig. 7.2 contains a partial speci�cation of the procedure get left from
the polymer data type, and Fig. 7.3 contains the assertions that constrain
the auxiliary predicates for get left. Guard[norm] is not de�ned because
it depends on the exception guard Guard[not linear], which is unde�ned.
Post[not linear] is partially de�ned, and Post[norm] is fully de�ned.
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polymer = mutable type

based on Polymer

get_left = proc (p: polymer) returns (m: monomer)

modifies --

ensures m = p^.left

except signals not_linear when ?

Figure 7.2: A Partial Speci�cation of polymer$get left

8 pre; post : Store; p : Polymer; m : Monomer

Pre(pre,p) ) true

Post[norm](pre,post,p,m) =

0
B@ OnlyModi�es(pre; post; fg)

^

m = pre(p):left

1
CA

Guard[norm](pre,p) ) true

Post[not linear](pre,post,p) ) OnlyModi�es(pre, post, fg)
Guard[not linear](pre,p) ) true

Figure 7.3: Auxiliary Predicates for polymer$get left

7.2.1 Using Partial Speci�cations to Justify Optimizations

Using partial speci�cations is no di�erent from using ordinary speci�cations
to prove that an optimization is sound. The only di�erence is that a partial
speci�cation provides less information than might otherwise be available.

Fig. 7.4 contains revised speci�cations for the intset least and choose

procedures from Chapter 4. The speci�cation of choose is unchanged. The
speci�cation of least is partial because it does not specify that the return
value must be the smallest member of the set.

These speci�cations are still su�cient to replace the call to choose by
i1 in the example

i1 := intset$least(s)

i2 := intset$choose(s)

There are two proof obligations. The �rst is to prove that choose will
return normally; this proof is trivial because choose and least have the
same exception guard. The second is to prove that i1 satis�es the normal
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intset = mutable type

based on IntSet

least = proc (s: intset) returns (i: int)

requires --

modifies --

ensures i 2 s^ ^ ?

except signals empty when s^ = { }

choose = proc (s: intset) returns (i: int)

requires --

modifies --

ensures i 2 s^

except signals empty when s^ = { }

max = proc (s: intset) returns (i: int)

requires --

modifies --

ensures i 2 s^ ^ ?

except signals empty when s^ = { }

Figure 7.4: Partial Speci�cations of intset Procedures

postcondition of choose. This is also trivial because the postcondition of
least implies the normal postcondition of choose.

If the order of the statements is reversed to form the code

i1 := intset$choose(s)

i2 := intset$least(s)

it is not possible to replace least by i1 because the normal postcondition
of choose does not imply the normal postcondition of least.

The proof rules are also su�cient to eliminate or hoist calls to procedures
that have partial speci�cations. For example, the speci�cation of get left

in Fig. 7.2 su�ces to eliminate the second call in the example

m1 := p.left

m2 := p.left

The ow graph for this code is
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[m2]:= get_left(p)

s1

s3

s0

[m1] := get_left(p)

not_linear

s4

not_linear

s2

One proof obligation is to show that the value of m1 at edge 1 satis�es
the postcondition of the call:

get left.Post[norm](�Str

1 ; �Str

1 ; �Env

1 (`p'); �Env

1 (`m1')) 2 T1

With the assertions in Fig. 7.3, this is equivalent to

OnlyModi�es(�Str

1 , �Str

1 , fg)
V
�Env

1 (`m1') = �Str

1 (�Env

1 (`p')).left 2 T1

The �rst conjunct is trivially true, and the second follows from the condition
asserted by the proof rule for the �rst call to get left.

The other obligation is to prove that the call will return normally:

get left.Guard[norm](�Str

1 ; �Env

1 (`p')) 2 T1

which is precisely the condition asserted by the proof rule for the �rst call
to get left.

Because the guard condition is not fully de�ned, the second proof would
fail if any location is modi�ed or allocated between the two calls to get left.
This is not a problem|if a user wants to facilitate the compiler's ability to
eliminate or hoist calls to a procedure, he should give a full speci�cation of
that procedure.

7.2.2 Soundness of Proof Obligations

The proof obligations for performing the optimizations described in chap-
ters 4 and 5 are sound even with the extensions for partial speci�cations.
The reasons are that

1. Partial speci�cations only weaken the theory of an edge because they
are translated into auxiliary predicates whose axiomatization is weaker
than the axiomatization for the full speci�cation. This means that
partial speci�cations lead to theories containing fewer formulas.
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2. The proof obligations have not been weakened.

The second point is obvious for eliminating dead code and for using SPIs
because the proof obligations for these optimizations do not depend upon
the auxiliary speci�cations.

The proof obligations for common subexpression elimination or for
hoisting expressions out of loops, on the other hand, do depend on the
auxiliary predicates. However, this is not a problem. The meaning of the
auxiliary predicates has not changed: their axiomatization is consistent with
that for fully speci�ed procedures. Only the axiomatization of the auxiliary
predicates is weaker.

For example, consider the code

i1 := max(s)

i2 := least(s)

The partial speci�cations of least and max in Fig. 7.4 do not allow the
compiler to replace the call to least by the result of max, even though the
speci�cations are identical. The reason is that there is no way to discharge
least.Post[norm] because it is not fully de�ned.

7.3 Bounding Reachability

The biggest problem of supporting partial speci�cations is what to do when
a modifies clause is omitted. Frequently, the safety of an optimization
depends upon the modifies clause of a procedure call be between two
relevant sections of code. Without the modifies clause to bound side e�ects,
the optimization cannot be proved to be safe.

The compiler must have a way to deduce a conservative estimate for the
modifies clause when it is omitted. Otherwise, partial speci�cations will
provide little bene�t: a user who invests the time to specify the procedures
in one module will �nd that most of the optimizations that should work
don't|because the compiler lacks the modifies clause of a procedure from
another module. For example, some modules might have no speci�cations
for any of their procedures.

In Speckle, the strategy I use is to bound the modifies clause of a
procedure from its arguments. The strategy is based on two observations:

1. A procedure can modify only locations that are reachable from its
arguments. (Recall that Speckle has no global variable names.)
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values.
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inFig.7.5isspeci�edinSpeckle.

Inthepicture,theusefulinformationisthearrowsthatareabsent.For

110

t -
( ) -



node = mutable type

contains edge

edge = mutable type

contains node, lp_system

edge_set = mutable type

contains edge

lp_system = mutable type

contains --

node_seq = immutable type

contains node

edge_info = immutable type

contains lp_system

term = immutable type

contains --

variable = immutable type

contains --

operator = immutable type

contains --

Figure 7.6: Speci�cations of Reachability

example, the graph in Fig. 7.5 can be used to deduce that a procedure with
only arguments of types edge info and term can modify only locations of
type lp system. The justi�cation is that only lp system is reachable from
edge info or term.

The information in contains clauses cannot always be deduced from
code. Suppose, for example, that the implementation of node uses edge set

to represent the set of edges that enter a merge node. Because the
representation of a node is concealed within the implementation of node,
the values of type node never contain locations of type edge set. Thus,
there is no arrow from node to edge set in Fig. 7.5|even though edge set

is reachable from the representation of node. It is sound to omit the arrow
from node to edge set because the implementation of node encapsulates any
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edge sets in the representation, i.e., clients can never access the edge sets
directly.

7.3.1 Approximating Omitted modifies Clauses

To approximate omitted modifies clauses, I extend the formalization of
Larch/Speckle. For each location sort TLoc, I introduce AllLocs[T], a
constant of sort LocSet that is axiomatized to denote the set of all locations
of type T.

To approximate the modifies clause of a procedure whose signature is

P = proc (a1: T1, a2: T2, : : : an: Tn) : : :

I construct a LocSet L that is a superset of the locations that P may modify.
The deduced modifies clause is OnlyModi�es(pre, post, L), where L is

L =
[

i=1:::n

Reach1(Ti) [

(
faig if Ti is mutable
fg if Ti is immutable

The de�nition of Reach1 is

Reach1(T ) =
[

T!+T 0

AllLocs[T 0]

T !+ T 0 means T 0 is reachable from T in one or more steps in the
reachability graph.

For example, the deduced modi�es clause for

assert = proc (l: lp_system, t: term) : : :

would be OnlyModi�es(pre, post, flg), which is equivalent to modifies l.
Note that the modifies clause does not include AllLocs[lp system].

The deduced modi�es clause for

foo = proc (e: edge) : : :

would be OnlyModi�es(pre, post, feg [ AllLocs[node] [ AllLocs[edge] [
AllLocs[lp system]).
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7.4 Related Work

The idea of writing formally only part of a procedure's speci�cation is
hardly new. For example, in [25], a procedure header may contain
a formal postcondition, but the full postcondition need not be written
formally. ANNA [40] provides a similar mechanism for both pre- and
postconditions. Speckle di�ers in that it distinguishes partial speci�cations
from full speci�cations. This distinction is used to prevent the compiler from
performing unsound optimizations.

The idea of writing speci�cations incrementally has also been studied for
algebraic speci�cations. In [4, 5], Bidoit distinguishes between \achieved"
and \draft" speci�cations|a draft speci�cation is analogous to a partial
speci�cation. His focus is on how to combine the theories of achieved
and draft speci�cations in a modular fashion. The speci�cation language
is independent of any programming language.

The SETL compiler uses types to reason about reachability [14]. The
compiler relies on de�nitions of containment and reachability for primitive
types to identify when the source of a copy operation would always become
garbage, obviating the need for the copy. SETL does not support data
abstraction explicitly, so there is no use for contains clauses.

In Speckle, contains clauses could be used to perform storage optimiza-
tions, such as copy elimination or freeing an object when it becomes garbage.
However, these optimizations might require the more precise speci�cations
of reachability of Chapter 2 to work well in practice.

Other Larch interface languages also allow requires and modifies

clauses to be omitted for terseness. However, the semantics of an
omitted clause is very di�erent: an omitted requires clause is equiv-
alent to requires --, and an omitted modifies clause is equivalent to
modifies --.

7.5 Summary

Speckle allows users to write interface speci�cations incrementally. A
speci�cation can be omitted entirely, or it can be written in part. Each
speci�cation clause that is not written fully is agged as partial, either
explicitly by the use of ?, or implicitly by the absence of the clause. The
distinction between partial clauses and regular clauses is used to prevent
optimizations that are unsound.

The primary problem in supporting partial speci�cations is how to
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estimate the modifies clause when it has been omitted. The approach
in Speckle is to compute a coarse upper bound for the set of locations
accessible to a procedure from the types of its formal arguments. To allow
this approximation, each data type uses contains assertions to specify the
mutable types that may be directly accessible from a value of the type.
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Chapter 8

Experience

My experience with PSC falls into two categories: hand-constructed
examples used to test PSC during development, and later, a case study
on small pieces of a large program. This chapter contains some general
observations of PSC and a report on the case study.

8.1 Observations

At a high level, the job of PSC is to take code and speci�cations and use
them to discharge proof obligations for optimizations. On the surface, this
task seems no easier than the problem of program veri�cation. Fortunately,
however, the proofs required to justify optimizations are often quite simple.

One common proof obligation is to show that a predicate that is true
at one point in a program is still true at a later point. PSC is usually
able to discharge such obligations. For example, consider the statement
a[i]:= f(a[i]), where a is a dynamic array. Because the fetch procedure
checks that i is in bounds, the store procedure need not repeat the check
unless f can change the bounds of the array. Here, the predicate needed
to use the SPI of store is identical to the predicate asserted by the fact
that fetch did not signal an exception. The main task of PSC is to use the
modifies clause of f to show that the predicate is not a�ected.

The same kind of proof works to eliminate common subexpressions
or hoist expressions from loops. Recall the can link ends example from
Chapter 4, p. 52, where the goal is to eliminate a call to polymer$get left.
Here, the compiler needs to prove that both the postcondition and the guard
condition asserted when the �rst call to polymer$get left returns normally
are still true when the second call is made. Once again, the proofs are easy,
given the modifies clauses.

Another common proof obligation is to show that a predicate that is true
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at one point in a program implies another predicate at a later point. This
kind of obligation is bit more challenging, because PSC must use information
that relates the predicates to one another. For example, a statement
t:= table$create() might establish t = empty. At a later point, a call
table$store(t,k,v) might be optimized to use an SPI if :defined(t,k).
Here, in addition to showing that t is still empty, PSC relies on the LSL

assertion :defined(empty,k), which makes the proof easy.
In the previous example, the necessary LSL assertion was an axiom of

tables, i.e., an assertion that is unlikely to be missing from the trait. How-
ever, proofs may also rely on assertions in the implies section of a trait, i.e.,
assertions that are intended to provide redundant information. For example,
in the substitution example from Chapter 5, p. 71, the precondition for
the faster implementation of extend is v =2 vars(apply(unbind(s,v),t)).
(Recall that this precondition is used to preserve the invariant that sub-
stitutions have no cyclic de�nitions.) To discharge this precondition in
a context where vars(t)=fg, PSC could use the lemma vars(tm)=fg )

vars(apply(sub,tm))=fg if it is asserted in the implies section of a trait.

Because there is no guarantee that LSL traits will contain the lemmas
needed to detect optimizations, the author of an SPImay wish to add lemmas
that are likely to be useful, such as the one above. One of the problems I
encountered, however, is that an implication is essentially useless unless LP
can convert the implication into a conditional rewrite rule. E.g., in the
previous example, the rewrite rule

(vars(tm) = fg)) (vars(apply(sub;tm)) = fg)! true

cannot simplify the goal

v =2 vars(apply(unbind(s;v);t))

However, the conditional rewrite rule

vars(tm) = fg : vars(apply(sub; tm))! fg

will simplify the goal to v =2 fg in a context where vars(t)=fg.
Unfortunately, some implications cannot be converted into condi-

tional rewrite rules because they would make the rewriting system non-
terminating. For example, the implication

x < y ) ((y < x) = false)
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cannot be converted into a conditional rewrite rule because x<y is no simpler
than y<x. In this case, the user can explicitly write the implication as a
deduction rule. However, many implications cannot be written as deduction
rules because they would trigger in�nite loops. For example, the implication
x<y ) x<y+1, if written as the deduction-rule when x<y yield x<y+1,
would trigger an in�nite loop in the presence of an assertion such as 0<1.

Generally, the proofs least likely to succeed are those requiring induction,
because it is di�cult to obtain suitable loop invariants. One exception is the
case when the goal is to prove that a value is constant during the execution of
a loop. For example, in the remove duplicates procedure from Chapter 1,
p. 17, one of the optimizations is to show that a.low, the low bound of the
dynamic array a, has the same value before and after the loop|this makes
it possible to replace the occurrences of a.low after the loop by the value
of a.low computed before the loop. Using induction, case analysis, and the
LSL axiom that storing an element into an array does not change its size,
PSC proves that the optimization is legal. Here, the proof succeeds because
the value of a.low is constant over the loop.

8.2 Case Study: AC-Unify

To test the ideas in this thesis and to test PSC, I did a case study of AC-
Unify, a program that uni�es terms containing associative and commutative
operators. I chose AC-Unify for several reasons. First, AC-Unify is not a toy.
It is roughly 8,000 lines of commented source code, and the VAX executable
is roughly 100 kilobytes. Second, AC-Unify is a well-structured program
that makes good use of data abstraction. The program has 33 user-de�ned
types and roughly 300 procedures. Finally, AC-Unify is written in CLU, so
translating the code to Speckle did not introduce signi�cant changes.

The purpose of the case study was to see what kind of performance
improvements might be possible using the ideas in this thesis. Because of
the program's size, I focussed on the critical portions of the code rather than
translating all of it. The method I used was:

1. Pro�le the program to identify frequently executed routines.

2. Identify sections where SPIs, common subexpression elimination, or
hoisting expressions might improve performance.

3. Translate the relevant sections into Speckle, adding both SPIs and
speci�cations deduced from the comments and code.
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4. Run the translated code through PSC.

5. Manually perform the source optimizations identi�ed in the previous
step on the original CLU code.

6. Recompile and measure the di�erence in execution time.

For the SPIs, I simulated my strategy for propagating the guard condition
of an SPI through a level of data abstraction (see Section 5.4).

I wrote three SPIs|one for each of three procedures. Of these
procedures, one had a guard condition propagated to a caller, so there were
e�ectively four SPIs in total. The four SPIs were called from a total of 14
places in the code. Of the 14 call sites, eight could be optimized and six
could not. PSC detected all of the optimizations.

Together, the eight specializations improved performance by 14%. Once
I had identi�ed the frequently-executed sections of code, it took me roughly
a week to write the necessary speci�cations and invariants. It took PSC

roughly �ve and a half minutes running on a 25 Mhz MIPS R3000 to process
the 74 lines of code surrounding the eight call sites.

I deliberately wrote the weakest partial speci�cations needed to detect
the optimizations. Partial speci�cation worked well: speci�cations were
necessary for only nine of the roughly 300 procedures in AC-Unify. In total,
I wrote 67 lines of Larch/Speckle and 137 lines of traits|a small fraction
of the 8,000 lines of source code and comments. Using the information in
contains clauses, PSC deduced six modifies clauses that were essential for
three of the optimizations.

Although I didn't �nd any places where eliminating a common subex-
pression or hoisting an expression would have improved performance no-
ticeably, I did �nd several places where these optimizations could have been
performed. I conjecture that these optimizations, when applied to the whole
program, could lead to a noticeable improvement.

The next two sections describe the SPIs and the optimized call sites.

8.2.1 Specialized Procedures Implementations

Fig. 8.1 contains the signatures of the CLU procedures for which I wrote SPIs.
(The []'s in type expressions are used to delimit CLU's type parameters.)
The guard conditions of the SPIs are given as comments. The SPI of each
procedure avoids executing code to check each guard condition. For set and
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set$insert = proc (s: set[elem], e: elem)

% special when : (e 2 s^)

mapping$insert = proc (m: mapping[dom,ran], d: dom, r: ran)

signals (exists)

% special when : defined(m^, d)

assignment$create = proc (env: sequence[var])

returns (assignment[var,val])

signals (empty, duplicates)

% special when NoDuplicates(env)

Figure 8.1: SPI of AC-Unify

substitution$store = proc (s: substitution,

v: variable,

t: term)

signals (exists)

% special when : defined(s^, v)

Figure 8.2: Propagated SPI

mapping, the savings is linear in the size of s or m. For assignment, the
savings is quadratic in the size of env.

Fig. 8.2 contains the signature of a procedure that was specialized
by propagating the SPI of mapping$insert. The type substitution is
represented as mapping[variable,term], and substitution$store is the
equivalent of mapping$insert. (AC-Unify makes substitution a separate
data type to maintain invariants about substitutions that are not enforced
by mapping.)

8.2.2 Optimized Call Sites

First Call to set$insert

Fig. 8.3 on p. 124 contains the CLU code where a call to set$insert was
optimized. Irrelevant code is denoted by ellipses. The goal is to prove
:(d 2 m:domain). This goal follows directly from
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� the precondition of insert pair: requires :defined(d,m)

� a representation invariant maintained by mapping

The invariant is that the domain �eld of the representation is equal to
the domain of the mapping.

To make the representation invariant available to PSC, I included it in the
precondition of insert pair.

Second Call to set$insert

Fig. 8.4 on p. 125 contains the CLU code where a second call to set$insert
was optimized. The goal is to prove :(pt:values[i] 2 result). The proof
depends on

� the representation invariant NoDuplicates(pt.values) maintained
by partition tree

This invariant is encoded as a precondition of value in the Speckle
version of the code.

� the fact that t seq is immutable

This fact is true for the Speckle version of the code, in which the type
parameter t is instantiated by an immutable type.

Because both rep and t seq are immutable, NoDuplicates(pt.values)
is trivially preserved by any code that does not assign to pt. There is
no assignment to pt in the implementation of value.

� the ensures clause of t set$create, which establishes that result is
initially empty

� the modifies -- clauses of t seq$indexes, sequence[bool]$fetch,
and t seq$fetch

� the ensures clause of t seq$fetch

� the speci�cation of t seq$indexes, which ensures that i is within the
bounds of pt.values

� the ensures clause of t set$insert

� LSL axioms for sets
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� the three lemmas

8 sq: Sequence, i,j: Int, s: Set

(NoDuplicates(sq)

^ (s � seq2set(prefix(sq, i-1)))

^ InBounds(sq, i))

) : (sq[i] 2 s);

(InBounds(sq, i) ^ i � j)

) (sq[i] 2 seq2set(prefix(sq, j)));

(s � seq2set(prefix(sq, i)))

) (s � seq2set(prefix(s, i+1)));

where prefix(sq, i) is the subsequence of sq from index 1 to i, and
seq2set(sq) converts a Sequence to a Set.

PSC uses proof-by-induction and proof-by-cases to discharge the goal.
In addition to specializing set$insert, PSC detects that no bounds

checks are needed for pt.values[i] and that pt.values can be hoisted
out of the loop in Fig. 8.4. However, these optimizations do not improve
performance signi�cantly.

Call to mapping$insert

Fig. 8.5 on p. 125 contains the CLU code where a call to mapping$insert

was optimized. The goal is to prove :defined(v, compose). The proof of
this goal depends on

� the ensures clause of predict

The procedure predict ensures that it returns a new, empty mapping.
The integer argument is merely a hint as to how many domain elements
are likely to be de�ned.

� the ensures clause of elements

The iterator elements ensures that all no variable is yielded twice.

� the modifies -- clause of elements

� the ensures clause of insert

The procedure insert ensures that the only possible addition to the
domain of compose is the variable v.
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� the modifies clause of apply

From the contains -- clauses of types mapping and term, PSC

deduces that apply cannot modify compose. At most, apply may
modify s1, and s1 and compose are distinct.

� the lemma

8 s,s1: VariableSet, v: Variable

when v 2 s == false

yield (s1 � s) ) : (v 2 s1);

� the LSL axioms for mappings

PSC discharges the proof obligation by induction on the loop.

Calls to assignment$create

Fig. 8.6 on p. 126 contains the CLU code where two calls to assignment$create
were optimized. For the purpose of the optimization, the two call sites
are essentially identical. The only di�erences are that assigns and
assign total use di�erent instantiations of assignment, and they elided
code also changes.

The goal is to prove NoDuplicates(vs). This goal follows from

� a representation invariant of solution

The invariant is that the vars �eld of the representation does not con-
tain duplicates. This invariant establishes NoDuplicates(s.vars).

� the ensures clause of var vec$v2seq

The type var vec is closely related to the type var seq. The only
di�erence is that a var vec has a unique identi�er, which a var seq

does not. The procedure v2seq ensures that the var seq it returns is
the equal to the sequence contained in vs. Thus, NoDuplicates(vs)
= NoDuplicates(s.vars).

Calls to substitution$store

Fig. 8.7 on p. 127 contains the CLU code where three calls to substitution$store
were optimized. For the �rst call site, the goal is to prove:defined(sigma,v2)
The proof of this goal relies on
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� the ensures clause of substitution$new

The procedure substitution$new ensures that it returns an empty
substitution.

� the LSL axioms for substitutions (mappings), which specify that
nothing is de�ned in the empty substitution.

� the deduced modifies -- clause of term$similar

PSC deduces this modifies clause from the speci�cation of immutable
type term, which asserts contains --.

The proofs for the second and third call sites also rely on

� the deduced modifies -- clause of term$get vars

PSC deduces the modifies clause from the speci�cation of term.

(In the general unify, the calls to term$get vars are written as
t2.vars and t1.vars, which exploit CLU's shorthands.)

� the deduced modifies clause of var set$exists

Since the speci�cation of mutable type var set asserts contains --,
PSC deduces that var set$exists can at most modify its argument,
a var set.

8.3 Summary

In a case study on small pieces of a large program, PSC detected
optimizations that lead to an 14% improvement in performance. None
of the eight optimizations would have been performed using conventional
techniques, including interprocedural analysis. Each optimization depended
on the representation invariant of a data type or on properties of data values
speci�ed in LSL axioms. Also, some optimizations depended on deduced
modifies clauses.
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mapping = cluster [dom, ran: type] : : :

rep = record[domain: dom_set, % domain of mapping
...

]

dom_set = set[dom]

...

% Requires: "d" is not defined in "m"

insert_pair = proc (m: rep, d: dom, r: ran)

dom_set$insert(m.domain, d) % optimized call
...

end insert_pair

Figure 8.3: First Optimized Call Site of set$insert
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partition_tree = cluster [t: type] : : :

rep = struct[values: t_seq, % contains no duplicates
...

]

t_seq = sequence[t]

t_set = set[t]
...

value = proc (pt: rep) returns (t_set)

mask: sequence[bool] := : : :

result: t_set := t_set$create()

for i: int in t_seq$indexes(pt.values) do

if mask[i] then

t_set$insert(result, pt.values[i]) % optimized call

end

end

return(result)

end value

Figure 8.4: Second Optimized Call Site of set$insert

substitution = cluster : : :

rep = mapping[variable, term]
...

mul = proc (s1, s2: rep) returns (rep)

compose: rep := rep$predict(rep$size(s1))

for v: variable, t: term in rep$elements(s2) do

rep$insert(compose, v, apply(s1, t)) % optimized call

end
...

end mul

Figure 8.5: Optimized Call Site of mapping$insert
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solution = cluster [vartype: type] : : :

rep = record[vars: var_vec, % vars contains no duplicates
...

]

var_vec = vector[vartype]

var_seq = sequence[var]

var_int_assn = assignment[vartype, int]

vis_assn = assignment[vartype, int_seq]
...

assigns = proc (s: rep) returns (vis_assn)

vs: var_seq := var_vec$v2seq(s.vars)

a: vis_assn := vis_assn$create(vs) % optimized call
...

end assigns

assign_total = proc (s: rep) returns (var_int_assn)

vs: var_seq := var_vec$v2seq(s.vars)

a: var_int_assn := var_int_assn$create(vs) % optimized call
...

end assign_total

Figure 8.6: Optimized Call Sites of assignment$create
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general_unify = iter (t1,t2:term, ur:unif_registry, gs:gen_sym)

yields (substitution) signals (not_unifiable)

sigma: substitution := substitution$new()

if term$similar(t1, t2) then

yield (sigma) return

end

tagcase t1

tag var (v1: variable):

tagcase t2

tag var (v2: variable):

sigma[v2] := t1 % optimized call

yield (sigma)

tag nonvar (nv2: nonvar):

if var_set$exists(t2.vars, v1)

then signal not_unifiable

end

sigma[v1] := t2 % optimized call

yield (sigma)

end

tag nonvar (nv1: nonvar):

tagcase t2

tag var (v2: variable):

if var_set$exists(t1.vars, v2)

then signal not_unifiable

end

sigma[v2] := t1 % optimized call

yield (sigma)

tag nonvar (nv2: nonvar):
...

end

end

end general_unify

Figure 8.7: Optimized Call Sites of substitution$store
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Chapter 9

Summary and Conclusion

Speci�cations have been advocated because they make it easier for people
to reason about programs. The primary conclusion of this thesis is that
speci�cations can make programs run faster because they make it easier for
compilers to reason about programs.

The key ideas leading to this conclusion are:

� Enhancement of Conventional Optimizations. In most conven-
tional compilers, optimizations like common subexpression elimination
and code motion are restricted to expressions that don't contain
procedure calls. In this thesis, I used speci�cations to generalize such
optimizations to handle procedure calls as well. This eliminated one
of the disparities between operations that happen to be primitive to
a source language from operations that are de�ned by the user. I also
used speci�cations to improve side e�ect analysis, which is needed to
detect many kinds of optimizations.

The primary advantage of using speci�cations is that speci�cations
are simpler than code. For example, code analysis is impractical for
deducing the axioms of a data type or for distinguishing between visible
and invisible (benevolent) side e�ects.

Another advantage is that speci�cations contain information not
found in code, such as the fact that an implementation need not be
deterministic. However, while this information enables optimizations
that are impossible without speci�cations, it is unclear how often such
optimizations would apply in practice.

� Specialized Procedure Implementations. SPIs allow the pro-
grammer to hide several related procedures behind a single interface.
This reduces the burden on clients, who would otherwise have had to
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choose which version of the procedure to call, because the compiler
chooses the appropriate version. SPIs also improve modularity, since
the programmer can add or remove a specialized implementation and
let the compiler worry about updating client code.

User-de�ned optimizations like SPIs were previously studied in [25].
Because the approach there was based on transformation rules rather
than speci�cations, it lacked modularity. Furthermore, this thesis
appears to be novel in that it addresses the problem of propagating
optimizations across levels of data abstraction.

� Partial Speci�cations. Partial speci�cations allow users to write
speci�cations incrementally. This makes it easier to use speci�cations
to improve performance because not all of the speci�cations have
to be written|some speci�cations can be omitted altogether, while
others are written in part or in full. It also allows users to
focus on common library routines, where the investment of writing
speci�cations is amortized over many callers. Although writing
partial speci�cations has been proposed before, this work is novel
in distinguishing partial speci�cations from other speci�cations to
prevent unsound optimizations.

To make partial speci�cations work well, the compiler must be
able to estimate modifies clauses when they are omitted. This
thesis presented a way of computing estimates from speci�cations of
reachability. Code analysis would be another possibility.

To evaluate the potential utility of these ideas, I designed a programming
language that incorporated them and built PSC, a prototype implemen-
tation. PSC, which identi�ed but did not apply optimizations, was then
used on several small programs and one large one. These experiments
demonstrated that several issues need to be addressed before these ideas
can be put to practical use.

The �rst is compiler running time: PSC is too slow. There are several
ways in which attempts to prove the soundness of optimizations can be
sped up. First, the functions and axioms used to model program states
could be implemented in a more e�cient way than by relying on general-
purpose inference mechanisms. Second, the strategies for proofs by cases
and induction could cache previous proof attempts to avoid repeating proofs.
Finally, the compiler could improve sharing of common data between the
logical systems of the di�erent edges.
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A di�erent way tomake PSC faster would be to focus its attention on only
the potentially most useful optimizations. For example, one could integrate
the optimizer with pro�ling tools.

Because the compiler relies on speci�cations, bugs in speci�cations can
lead to unsafe optimizations. Therefore, a pragmatic issue is how to identify
bugs in speci�cations.

One way to locate bugs is to verify that the speci�cations and code
are consistent, but there are other possibilities. A speci�cation checker
could perform sanity checks on speci�cations. For example, an interface
cannot modify an immutable value. Another possibility is for the user
to supply code to check the pre-condition of a specialization and for the
debugger to insert this code wherever the optimizer has \proved" that the
pre-condition is satis�ed. The compiler might list the optimizations and/or
the proof obligations that it discharges so that the user could check the list
for suspicious ones. Finally, the user could direct the compiler to ignore
suspect speci�cations and see if a problem disappears.

A �nal issue is that of \tuning" speci�cations to enhance the compiler's
ability to �nd opportunities for optimization. PSC is particularly sensitive to
the way speci�cations are formulated. Attention should be devoted to char-
acterizing the impact of di�erent formalizations of the same speci�cation,
so that useful advice can be given to speci�ers.

Despite the above concerns, I remain optimistic about the utility
of the ideas contained in this thesis. The experiments with PSC were
encouraging, demonstrating that signi�cant performance improvements
could be obtained. In the AC-Unify case-study, just four SPIs improved
performance by 14%. Furthermore, these experiments made it clear that
partial speci�cations can be used productively. They allow one to obtain
performance enhancements that are large relative to the e�ort required of
the programmer. In time, speci�cations will greatly reduce the need for
programmers to compromise code readability, safety, and modularity when
tuning programs for performance.
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