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ABSTRACT

Approximations and optimum means to apply the porous body approach to
rod bundle analysis were investigated. Based on computing time and
expected accuracy of the flow and pressure field predictions, the
staggered half-pin layout was selected as an optimum control volume
geometry. Three-dimensional distributed resistance models were cons-
tructed and incorporated into a porous body code, THERMIT, particularly
for the selected optimum control volume layout. Satisfactory THERMIT
predictions validated these models and verified that the staggered half-
pin layout was a successful choice.

Noa-radial heat conduction through heater rods fabricated with high
thermal conductivity, electrical insulator material (i.e., Boron
Nitride) was quantified utilizing a rod conduction model developed using
an approximate analytical method. The temperature field predicted by
ENERGY-IV code employing the rod conduction model exhibited that the
heat conduction through rods reduced the normalized maximum temperature
rise by 4% in blanket bundles and by 3% in fuel bundles under mixed
convection conditions.

Experiments were performed to investigate an enhanced energy mixing due
to turbulent thermal plumes in mixed convection conditions. Turbulent
heat flux induced by thermal plumes was measured at various flow and
power conditions utilizing a laser Doppler anemometer for velocity fluc-
tuation and a thermocouple for temperature fluctuation measurement.

Heat transfer againat power skew direction was observed at high Reynolds
and Grashof number ranges.
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CHAPTER 1

INTRODUCTION

Thermal-hydraulic behavior of rod bundles in mixed convection has
received considerable attention in recent years since it is important
for a better understanding of fluid flow and heat transfer under
off-normal reactor condition. Mixed convection or combined frze and
forced convection arises when coolant flow rate is low and significant
decay heat is generated. In this condition, the buoyancy effect
becomes important, and flow and heat transfer characteristics are
substantially different from those under forced convection.

In order to predict the flow and temperature fields in rod
bundles, the subchannel analysis method is commonly used. It has been
proven quite reliable by its application to various rod geometries and
operating conditions. However, because of its inherent assumption of
existence of a dominantly axial flow, it is doubtful that this method
can be applied to the cases of strong transverse flow such as would
exist under flow blockage or degraded core geometry which are
encountered in LMFBR safety analysis. A new approach, namely, the
porous body analysis method, was developed (T-1, S-1) to provide an
alternative for rod bundle analysis and for application to general
flow cases. The porous body approach is formulated based on
porosities of the control volume for which the conservation equations
are written. This allows an arbitrary geometric configuration for the

control volume since the geometric effect is taken into account
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through the surface and volume porosities. In addition, the approach
solves the transverse momentum equation as well as the axial momentum
equation rigorously.

The approximations involved in applying the porous body analysis
method to rod bundles, however, have not been well understood nor have
the constitutive correlations required for closure been properly
established. Therefore, the objective of this research is to
investigate the approximations and optimum means to apply the porous
body approach for rod bundle analysis and to provide relevant
constitutive correlations under both mixed and forced convection
conditions.

To achieve this goal, the following work has been performed and
is described in the Chapters indicated.

In Chapter 2 the governing equations for the porous body analysis
have been clearly derived. The pressure and the distributed
resistance terms in the momentum equation were carefully examined.

In Chapter 3 the practical limitations of the porous body
approach and the approximations introduced for numerical
implementation were identified and discussed. An optimum coantrol
volume for wire-wrapped rod bundle analysis was selected to minimize
inaccuracy due to the approximations.

In Chapter 4 the flow resistance was correlated utilizing a
distributed resistance model developed for the porous body control
volume. The velocity and pressure fields in a wire-wrapped rod bundle
predicted using a porous body analysis code, THERMIT(R-1),
incorporating the distributed resistance model, were compared against

available experimental data to validate the model.
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In Chapter 5 a computer code was developed to estimate the
non-radial heat conduction through heater rods which is an additional
energy transfer in simulated heater rod fabricated with high thermal
conductivity, electrical insulator material (i.e., Boron Nitride).

In Chapter 6 a non-radial rod conduction correlation was
proposed and calibrated utilizing the code developed.

In Chapter 7 the validation of the correlation was presented and
the relative importance maps were described. The temperature field
predicted by ENERGY-IV code (C-1) employing the rod conduction model
was compared with experimental data. The relative importance of the
energy transfer mechanisms, i.e., turbulent mixing including wire
sweeping, convective energy transfer by flow redistribution, fluid
conduction and rod conduction was investigated and the regions where
each parameter was dominant or significant were identified.

In Chapter 8 experimental investigation of the energy mixing due
to turbulent thermal plumes has been carried out. The turublent
thermal plumes were believed to enhance the energy transfer in low
flow, high power condition. Turbulent heat flux induced by thermal
plumes was obtained utilizing a laser Doppler anemometer for velocity
measurement and a thermocouple for temperature measurement.

Finally, conclusions and recommended future work were presented

in Chapter 9.



CHAPTER 2

MATHEMATICAL FORMULATION OF THE POROUS BODY APPROACH

2.1 Introduction

Thiree methods are widely used for rod bundle thermal-hydraulic
analysis. They are the subchannel, porous body and distributed
parameter methods. The first two methods are categorized as lumped
parameter methods. The lumped parameter method ignores the details
within a control volume chosen by discretizing the whole system volume
into a number of small volumes. It employs a lumped velocity and
temperature to represent average values within a control volume. The
scale of the control volume should be small relative to the size of
the system considered but still large relative to the size of local
phenomena present. The constitutive correlations are modeled
applicable to the geometry of the selected control volume. The
distributed parameter method uses a much smaller mesh size compared to
the typical lumped channel control volume in order to calculate the
detailed velocity and temperature distributions within a rod bundle.
This requires that the constitutive models should be constructed to
describe the local physical phenomena and the rod surface should be
considered as an internal velocity boundary condition in rod bundle
analysis. Thus, the distributed parameter method generally requires
large core memory storage and computing time.

In this chapter, a mathematical formulation of the porous body

approach, also called the porous media approach, is extensively
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examined. First, the concept and origin of the porous body approach
are described and the terminology used in the formulation of the
governing equations is defined. Then, the governing equations and
finite difference formulations in the porous body approach are
presented. Finally, the pressure term, one of the key parameters in
the momentum equations, is thoroughly investigated.

2.2 Porous Media Concept and Definition of Porosity

Flow through porous media has been studied for a century. This
topic is encountered in many branches of engineering and science,
e.g., ground water hydrology and petroleum production. Recently, the
porous media concept has been applied in the field of the rod bundle
analysis. While the classical porous media method mainly deals with
the diffusive flow through a porous medium dominated by the friction
forces, the rod bundle application of this approach is oriented to the
convective flow through a rather open medium.

The simple physical description of a porous medium is that of a
"solid with holes." According to Bear (B-1), a porous medium is
defined as a material which has the following characteristics: (a) a
porous medium should be a portion of space occupied by heterogenous or
multiphase matter, (b) the solid phase should be distributed
throughout the domain of the porous medium, and (c) at least some of
the pores comprising the void space should be interconnected. The rod
bundle array of most heat exchangers and reactor fuel assemblies has
these characteristics and thus, can be treated as a porous medium.

The most important concept of the porous body approach is the
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porosity concept. Consider a stationary, nondeformable finite system
composed of a fluid and distributed solid. A schematic representation of the
system is drawn in Figure 2.l. The total volume is V enclosed by a closed
surface A. The fluid portion of the total volume is Vg. Af is a portion
of A through which the fluid may flow, and Agg is the total fluid-solid
interface within the volume V.

The volume porosity, Yy is defined as the ratio of the fluid volume
Vg to the total volume V. Thus,

14

f
YV = V— (201)
Yy can also be written as,
Y, =3 [, UHav (2.2)

where ; is the position vector and the indicator functionm, I(;), is defined

as

1, if the end point of ; is in fluid.
>
r

>
I(r) = { is in solid.

0, if the end point of
The area porosity, YA’ is defined as the ratio of the free flow area Af to
the surface A (not necessarily closed) of interest.

Ae >

where Af is the portion of A that is occupied by the fluid. Some authors
use the term "surface permeability” instead of “surface porosity.” 1In this

work, the term “surface porosity” or “area porosity"” is used throughout.

2.3 Governing Equations
The general integral conservation equations have been derived in detail
in reference (T-1). The following are the resulting equations for a single

phase fluid. The schematic diagram of a general control volume, where the
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Solid Volume outside —_— A
the Control Volume

Solid Volume inside = s=ceaa Afs
the Control Volume

Figure 2.1 Control Volume Containing a Single-Phase Fluid and
Solids (Taken from Reference T-1)
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conservation equations are written is illustrated in Figure 2.1.

Conservation of Mass:

31<p>

Yy 5 * %'IA pv + n dA = 0 (2.4)
f
(1) (2)
Momentum Equation:
91, - 1 > > > i >
Yy 3 <PV + fAf pv(v = n) dA = vy, <p>g +
(3) (%) (5)
1 > = > 1 > = +
+7 yneT e da 4 G, (pR+T eR)dA (2.5
£ fs
(6) (7)
Energy Equation in terms of Internal Energy:
9 i 1 > > i >
Yy 3e <pu> + 5 fAfpu(v *n) dA = Yy l<pV V> +
(8) (9) (10)
1 > . —-1— +" L] > i " i
+7fAken rda- [, a n dA + v,7<q"'> + y, K
£ fs
(11) (12) (13) (14)

where,

<+

Ry By

~

~ll

(2.6)

fluid density

fluid velocity (u, v, w are the components of velocity 1in the
X, y and z directions respectively)

outward normal unit vector on the surface
gravitational accelcration
pressure

stress tensor
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u = internal energy of the fluid (total energy e = ﬁ+gz where
stagnation internal energy 4 =u+ (1/2)v2)

ke = effective fluid thermal conductivity including both

molecular and turbulent effects
T = fluid temperature
a" = heat flux at fluid-solid interface
q"' = heat generation rate

¢ = frictional dissipation energy per unit volume

and the brackets i<> designate the intrinsic local volume average of P

defined as,

gy = v dv (2.7)

1

7 v
The physical meaning of each of the terms composing the

conservation equations is explained as the folliowing:
(1) Rate of increase of fluid mass in volume V,
(2) Net mass efflux through the fluid surface Af,

(3) Rate of increase of linear momentum of the fluid mass in
volume V,

(4) Net momentum efflux through the fluid surface Af,

(5) The body force due to gravity acting on the fluid,

(6) The surface forces due to the fluid normal (pressure) and
shear stresses acting on the fluid,

(7) The form and the friction drag forces exerted on the fluid by
the éispersed solid within volume V,

(8) Rate of increase of internal energy of the fluid mass in

volume V,
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(9) DNet efflux of internal energy through the fluid surface Af,

(10) Rate of thermodynamic pressure work,

(11) Conduction heat flow through the fluid surface Af,

(12) Rate of heat released due to the dispersed solid within
volume Y,

(13) Heat generation rate within the fluid volume Vf,

(14) Frictional dissipation energy.

2.4 Finite Difference Formulation of the Governing Equations

The previous general integral forms of the conservation equations
are discretized to finite difference forms. The finite difference
equations are applied to a computational grid which should be determined
carefully to yield adequate average quantities. The detailed procedure
for determining an optimum computational grid is explained in Chapter
3. The grid provides the control volume unit in which the governing
equations are written. In general, lumped density, energy and pressure
are determined at the center of a control volume. The velocities
including momentum flux and energy flux are usually defined at the
control volume boundaries. Accordingly, the axial momentum control
volume is staggered in the axial direction with respect to the mass and
energy control volume, and the transverse momentum control volumes are
staggered in the transverse direction.

A porous body approach can be used in any coordinate system.
However, in this paper, the finite difference equations are derived in
the Cartesian coordinate system because the derivation in this system is

easy to understand and yieids less complicated formulations.
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2.4.1 Mass Conservation Equation

The orthogonal control volume V (=AxAyAz) to which the integral
mass conservation equation is applied is drawn in Figure 2.2. The
velocity components in the x, y and z directions are u, v and w,

respectively. Applying Eq. (2.%4) to this control volume yields,

alep> 1
wise 0 evaa -] puda, + [ pvaa
Ag Ax Ag Ax A Ay ’
x+ = x= = y+ )
-/ ovda_ + | pwdA_ - | pwdA | = 0
A Y A Z A z
f Ay f Az £ AZ
y* =5 z+ =3 z= =
(2.8)
where Af‘ Ax denotes the free flow area normal to the x axis at x+ A%
x+ =
and Af AX denotes the analogous area at x—- A%« The correcsponding
x;- —

2
terms with the y and z subscripts are defined in a simllar way.

Now let us define the intrinsic local area average of Y as,

i"{\1’} = K’L' [ ¥da_ ; etc (2.9)
fx Afx

and introduce the following notation,

B2 g T )y eter (2.10)
2 2

Then Eqe (2.8) reduces to,

1 1 1 1z
3 <p> . A, (v eu) . B (Y Y{evh . A, (Y, {ewh) o
Yy at Ax Ay Az

(2.11)
This is the general finite difference form of the mass conservation

equation.
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Figure 2.2 Mass and Energy Control Volume in Cartesian

Coordinate System
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2.4.2 Energy Equation

The energy equation is also written for the same control volume
shown in Figure 2.2 in terms of the internal energy. By using the
definitions of Eqs. (2.9) and (2.10), application of Eq. (2.6) to the

control volume gives,

1
3t <ou> Ax(vAxix{puu}) B (v, euvh) A (YAziz{ouW})
+ + y Yy + ¥4
v Tt Bx Ay Az
ixg 8T iy T
=~y T<pvev> + Y {ke 3x}) y(YAy {ke () b
YV p Ax + By
iz oT
A (v, (k5D
z Az e dz i, ., i, ., i
+ iz + Yy (U<qii> + 7Kg + TKeR) (2.12)

where the heat release rate per urnit volume of the fluid at che
fluid-solid interface, sometimes called the distributed heat source (or
sink), 1s defined as,

i oy = _].'__ o} == 1_ -’".+
Q7> = 5 / qp AV = - 3 i q" *ndA (2.13)

rb
£V £ A

2.4.3 Momentum Equation

The momentum equation can be also applied to the same control
volume in a similar fashion. However, most thermal-hydraulic anzlysis
codes recently developed have employed the staggered mesh (or grid)
representation in numerical schemes for the momentum equation. As
mentioned earlier, in the staggered grid system, the density, energy (or
enthalpy) and pressure are calculated at the center of the mass and
energy control volume (M-E control volume) as usual, but the velocity
component is defined at the point that lies on the face of this control

volume. Thus, to calculate the velocity components, the momentum



control volume is staggered relative to the M-E control volume.

The reasons for introducing the staggered grid for the momentum
equation have been well explained by Patankar (P-1). The main reasons
are summarized as follows: by defining the velocity components at the
faces of the M-E control volume, we can eliminate the possibility that
wrong wavy velocity field solutions are obtained from the continuity
equation. In addition, the pressure difference between two adjacent
gric¢ points {whe.e the pressures are calculated) yields che driving
force for the velocity component located between these two grid points.
It should also be noted that the staggered mesh system leads to
complications in providing geometrical information and formulating
practical numerical schemes. However the advantages :lescribed above are
significant.

The staggered momentum control volume together with the M-E
control volume is presented in Figure 2.3. The quantities defined in
each control volume are also shown in the figure. The x, y and z
momentum control volumes are staggered with respect to the positive x, y
and z directions, respectively. Note that the boundary of the staggered
momentum control volume passes through the center of the M-E control
volume. |

Applying the x-component of the integral momentum equation
(Eq.(2.5)) to t