
Hybrid I/0 Automata*

Nancy Lynch 1

MIT Laboratory for Computer Science, Cambridge, MA 0213.9, USA

Roberto Segala 2

Dipartimento di Informatica, Universita di Verona, Strada Le Grazie 15, 37134
Verona, Italy

Frits Vaandrager 3

Nijmeegs Instituut voor Informatica en Informatiekunde, University of Nijmegen,
P.O. Box .9010, 6500 GL Nijmegen, The Netherlands

Abstract

Hybrid systems are systems that exhibit a combination of discrete and continu­
ous behavior. Typical hybrid systems include computer components, which operate
in discrete program steps, and real-world components, whose behavior over time
intervals evolves according to physical constraints. Important examples of hybrid
systems include automated transportation systems, robotics systems, process con­
trol systems, systems of embedded devices, and mobile computing systems. Such
systems can be very complex, and very difficult to describe and analyze.

This paper presents the Hybrid Input/Output Automaton (HIOA) modeling frame­
work, a basic mathematical framework to support description and analysis of hybrid
systems. An important feature of this model is its support for decomposing hybrid
system descriptions. In particular, the framework includes a notion of external be­
havior for a hybrid I/O automaton, which captures its discrete and continuous
interactions with its environment. The framework also defines what it means for
one HIOA to implement another, based on an inclusion relationship between their
external behavior sets, and defines a notion of simulation, which provides a suf­
ficient condition for demonstrating implementation relationships. The framework
also includes a composition operation for HIOAs, which respects the implementa­
tion relation and a notion of receptiveness, which implies that an HIOA does not
block the passage of time. The framework is intended to support analysis methods
from both computer science and control theory.

This work is a simplification of our earlier HIOA model. The main simplification
in the new model is a clearer separation between the mechanisms used to model dis­
crete and continuous interaction between components. In particular, the new model
removes the dual use of external variables for discrete and continuous interaction.

Preprint submitted to Elsevier Science 3 January 2003

1 Introduction

1.1 Overview

Recent years have seen a rapid growth of interest in hybrid systems-systems
that intermix discrete and continuous behavior [28,70,12,9,62,10,34,73,80,51,20].
Typical hybrid systems include computer components, which operate in dis­
crete program steps, and real-world components, whose behavior over time
intervals evolves according to physical constraints. Such systems are used in
many application domains, including automated transportation, avionics, au­
tomotive control, robotics, process control, embedded devices, consumer elec­
tronics, and mobile computing.

Hybrid systems can be very complex, and therefore very difficult to describe
and reason about. At the same time, because they involve real-world activity,
they often have stringent safety requirements. This combination of factors
leads to a need for rigorous mathematical models for describing hybrid systems
and their properties, and for practical analysis methods based on these models.

In this paper, we present a basic mathematical framework to support de­
scription and analysis of hybrid systems: the Hybrid Input/Output Automaton
modeling framework. A Hybrid I/O Automaton (HIOA) is a kind of nonde­
terministic, possibly infinite-state, state machine. The state of an HIOA is
divided into state variables, and it may also have additional input variables
and output variables. The state can change in two ways: instantaneously by
the occurrence of a discrete transition, or according to some trajectory when
time passes. Formally, a discrete transition is a triple consisting of a source

* An extended abstract of this paper appeared as [52].
Email addresses: lynch@theory. lcs .mit. edu (Nancy Lynch),

segala@sci. univr. it (Roberto Segala), fvaan@cs.kun.nl (Fri ts Vaandrager).
1 Supported by PATH 1784-18454LD; AFOSR F49620-00-1-0097, F49620-97-1-
0337, and SA2796PO 1-0000243658; NTT MIT9904-12; NSF ACI-9876931, CCR-
9909114, and CCR-9804665; multi-sponsored consortium project Oxygen; DARPA
F33615-01-C-1850.
2 Supported by MURST project TOSCA.
3 Supported by Esprit Project 26270, Verification of Hybrid Systems (VHS),
GBE/SION project 612-14-004, Stepwise Refinement of Hybrid Systems, and
PROGRESS project TES4199, Verification of Hard and Softly Timed Systems
(HaaST).

2

state, an action (for synchronization with other automata), and a target state.
Trajectories are functions that describe the evolution of the state variables,
along with the input and output variables, over intervals of time. Trajectories
may be continuous or discontinuous functions.

HIOAs are intended to be used to model all components of hybrid systems,
including physical components, controllers, sensors, actuators, computer soft­
ware, communication services, and humans that interact with the rest of the
system. The framework is very general: for example, we do not require that
trajectories be expressible using systems of equations of a particular form,
and we do not require that discrete transitions be expressible using a partic­
ular logical language. Particular kinds of systems of equations and particular
logical languages can be used to define special cases of the general model.

The most important feature of the hybrid I/0 automaton framework is its sup­
port for decomposing hybrid system description and analysis; this is important
because many hybrid systems are too complex to understand all at once. A
key to this decomposition is that the framework includes a rigorously-defined
notion of external behavior for hybrid I/0 automata, which captures their
discrete and continuous interactions with their environment. The external be­
havior of each HIOA is defined by a simple mathematical object called a trace.
The framework also includes notions of abstraction and parallel composition.

For abstraction, the framework includes notions of implementation and simu­
lation, which can be used to view hybrid systems at multiple levels of abstrac­
tion, starting from a high-level version that describes required properties, and
ending with a low-level version that describes a detailed design or implementa­
tion. In particular, the HIOA framework defines what it means for one HIOA,
A, to implement another HIOA, B, namely, any trace that can be exhibited
by A is also allowed by B. In this case, A might be more deterministic than B,
in terms of either discrete transitions or trajectories. For instance, B might be
allowed to perform an output action at an arbitrary time before noon, whereas
A produces the same output sometime between 10 and 11Ar,.1. Or B might
allow an output variable y to evolve with Ii E [O, 2], whereas A might ensure
that Ii = l.

The notion of a simulation relation from A to B provides a sufficient condition
for demonstrating that A implements B. A simulation relation is defined to
satisfy three conditions, one relating start states, one relating discrete transi­
tions, and one relating trajectories of A and B.

For parallel composition, the framework provides a composition operation, by
which HIOAs modeling individual hybrid system components can be combined
to produce a model for a larger hybrid system. The model for the composed
system can describe interactions among the components, including joint par-

ticipation in discrete transitions and trajectories. Composition requires certain
"compatibility" conditions, namely, that each output variable and output ac­
tion be controlled by at most one automaton, and that internal variables and
actions of one automaton cannot be shared by any other automaton. The
composition operation respects the implementation relation, for example, if
A1 implements A2 then the composition of A1 and B implements the compo­
sition of A2 and B. Composition also satisfies projection results saying that
a trace of a composition of HIOAs projects to give traces of the individual
HIOAs, and pasting results saying that compatible behaviors of components
are "pastable" to give behaviors of the composition. Such results are essential
if the models are to be used for compositional design and verification of sys­
tems. In addition, the framework includes hiding operations for output actions
and variables, which respect the implementation relationship.

An interesting complication that arises in the hybrid setting is the possibil­
ity that a state machine could "prevent time from passing", for example, by
blocking it entirely, or by scheduling infinitely many discrete actions to happen
in a finite amount of time-so-called Zeno behavior. The HIOA framework in­
cludes a notion of receptiveness, which says that an HIOA does not contribute
to producing Zeno behavior, and which (under suitable compatibility condi­
tions) is preserved by composition. \Ye also give simple sufficient conditions
for these compatibility conditions to hold.

The generality of the HIOA framework means that a large collection of analy­
sis methods, derived from both discrete and continuous analysis methods, can
be applied to systems modeled as HIOAs. For example, inductive methods
for proving invariant assertions and simulation relationships (see, e.g, [58,72]),
which are commonly used in computer science for reasoning about discrete sys­
tems, can be extended to the hybrid setting and expressed by theorems about
HIOAs. Other discrete analysis methods that should be extendible include
proving progress using well-founded sets (see, e.g., [26]), assume-guarantee
compositional reasoning (e.g., [36,16]), and deducing properties within tem­
poral logic and other logical formalisms. All of these methods could be sup­
ported by interactive theorem proving software. Automatic methods based on
state-space searching and based on decision procedures for automata on infi­
nite paths (see, e.g., [16]), should also be extendible; however, these methods
will apply only to special cases of the general model.

Likewise, key methods used in control theory for reasoning about continuous
systems, such as stability analysis using Lyapunov functions (e.g., [79]) and
robust control techniques (e.g., [23]), should be extendible to hybrid systems
using HIOAs.

4

1.2 Evolution of the HIOA Framework:

The HIOA framework has evolved from two earlier input/output automaton
models: the basic I/O automaton model of Lynch and Tuttle [55,56] and the
timed I/O automaton model of Lynch, Vaandrager et al. [60,74]. Basic I/O
automata consist essentially of states, start states, and discrete transitions.
They have been used fairly extensively to describe and analyze asynchronous
distributed algorithms-see, for example, [48].

Timed I/O automata add explicit time-passage steps, which allow time to pass
in discrete jumps. In the simplest cases, time-passage steps involve just the
passage of time, with no other changes to the state. However, in general, they
are allowed to change the state in more elaborate ways, including changing
variables that represent physical quantities. Timed I/O automata have been
used mainly to describe timing-based distributed algorithms and communi­
cation protocols (e.g., [78,45,75,76,19,77,25]). Timed I/O automata have also
been used in a few cases to model simple hybrid system "challenge problems",
including the Generalized Railroad Crossing problem [30,31]. In these exam­
ples, the time-passage steps include changes to physical quantities such as
train position and water level.

An early version of the HIOA modeling framework appeared in [53,54]. It
augmented timed I/O automata by adding input and output variables and
explicit trajectories; the trajectories describe the evolution of the state and
external variables over intervals of time, rather than just their cumulative
changes. This version of the HIOA framework was used to describe and analyze
many hybrid systems examples, including automated transportation systems
[61,49,83,81,82,50,42,44], intelligent vehicle highway systems [22,47], aircraft
control systems [46,43], automotive control systems [24], and consumer elec­
tronics systems [11].

\Ye summarize the results of these modeling efforts briefly. In these exam­
ples, HIOAs were used to model system components of many different kinds,
including real-world components, computer programs, communication chan­
nels, sensors, actuators, and humans (for example, pilots interacting with air­
craft control systems). Individual component automata were generally highly
nondeterministic, and often allowed for bounded uncertainty in the values of
quantities represented in the state. Component states often included timing in­
formation, for example, the current time and deadlines for the performance of
certain actions. Composition was used to combine the component HIOAs into
models of the complete systems. Levels of abstraction were used to describe
several kinds of relationships between HIOAs, for example: the relationship
between a detailed view of a system and a more abstract view; the relation­
ship between a description of a system in terms of higher derivatives (e.g.,

5

acceleration) and a description in terms of lower derivatives (e.g., velocity or
position); and the relationship between a version of a system that includes
periodic sampling and correction and a version in which adjustment is contin­
uous, but within an envelope of uncertainty.

The examples were analyzed using a variety of methods including invariant as­
sertions, simulation relations, compositional reasoning, differential equations
and integration. r,.1any of the invariants and simulation relations involved tim­
ing data and data representing real-world quantities. Invariants and simulation
relations were proved using inductive arguments on the length of executions, as
is usual in the purely discrete setting. However, unlike in the discrete setting,
the proofs in the hybrid setting included two different kinds of inductive steps:
for discrete steps and trajectories. Arguments about discrete steps involved the
sort of algebraic deduction that is typical in the discrete setting, whereas argu­
ments about trajectories involved manipulation of differential equations and
integrals. For example, a technique involving "positive invariant sets", derived
from control theory, was used in [15] for showing that certain properties of the
state are preserved during trajectories.

In general, the formal HIOA framework proved to be adequate for these exam­
ples. However, it was not ideal, because it introduced some complications that
proved to be distracting. The main source of complication seemed to be the
fact that the model has two mechanisms for modeling discrete communication:
shared actions and shared variables. Also, it uses the same mechanism-shared
variables-to model both discrete and continuous interaction between compo­
nents. This intertwining of mechanisms led to some technicalities, for example,
each automaton had to include a special environment action e, which is asso­
ciated with discrete changes to input variables. To simplify matters, we were
led to develop the new version of the HIOA model presented in this paper. The
new version has a clearer separation between the mechanisms used to model
discrete and continuous activity, and has only one mechanism for discrete
communication: shared actions.

In the literature on discrete state machine models, both shared actions and
shared variables are popular mechanisms for modeling interactions between
system components. The shared action approach is used, for example, in the
extensive research literature on process algebras (e.g., [35,66,67]), and in the
work on I/0 automata (e.g., [55,49]). The shared variable approach is used,
for example, in the temporal logic and model-checking communities (e.g.,
[64,40,7]). The expressive power of shared action and shared variable commu­
nication is similar, and translations between special cases of these two types
of models have been developed [39,18]. Choosing between these two forms of
communication seems to be generally a matter of custom and convenience.
One advantage of the shared-action approach is that it leads to simple math­
ematical notions of external behavior of state machines, based on sequences

6

of actions (which are usually called "traces").

The new HIOA framework presented in this paper uses (only) shared actions
for discrete communication, and uses shared variables for continuous commu­
nication. Discrete events are not allowed to make changes to shared variables,
and the special environment action e is eliminated. Because the new model
maintains a clearer separation between mechanisms for describing discrete and
continuous activity, it is simpler overall-in its definitions, result statements,
and proofs-than the earlier HIOA model of [53,54].

Another simplification in the new framework appears in the definitions and
results involving receptiveness. In the original HIOA model of [53,54], and in
other work that dealt with receptiveness [21,1,74] for discrete systems, recep­
tiveness was defined in terms of two-player games between the system and its
environment. In such a game, the goal of the system is to construct an infinite,
non-Zeno execution, and the goal of the environment is to prevent this from
happening. The simplification in this material in the new model is a result of
our modeling of the game itself as an HIOA.

1. 8 Other Related Wark

Besides the models already discussed above, other precursors to the new HIOA
model include the phase transition system models of [63,3,38] and Branicky's
hybrid control systems [13,14]. Phase transition systems are similar to HIOAs
in their combined treatment of discrete and continuous activity, for example,
they have notions similar to our trajectories and hybrid sequences. However,
work on phase transition system models does not address system decomposi­
tion issues such as external behavior, implementation relationships, and com­
position, which are emphasized in our paper. Branicky's hybrid control systems
are also similar to ours in their modeling of discrete and continuous activity.
This work has a control theory flavor, focusing on standard configurations in­
cluding plant, controller, sensor and actuator, and focusing on stability results.
Again, system decomposition issues are not addressed.

System decomposition issues, including levels of abstraction, compositionality,
and receptiveness have been addressed by Alur and Henzinger [8] in their work
on hybrid reactive modules. A major difference between this work and ours is
that reactive modules communicate via shared variables and not via shared ac­
tions. Another difference is that hybrid reactive modules include an additional
layer of structure tailored to modeling synchronous systems-structure that
is not present in the HIOA model. In [8], a definition of receptiveness based
on two-player games, similar to the definition in [53,54], is proposed, and is
shown to be preserved by parallel composition. However, in [8], no circular

7

dependencies ("feedback loops") are allowed among the continuous variables
of different components, a restriction that greatly simplifies the analysis.

In [6,33], compositional trace-based semantics are presented for Statecharts­
like languages that support hierarchical design of hybrid systems. These lan­
guages, called Charon and r,.rasaccio, respectively, allow one to describe hierar­
chical state machines that communicate with their environment using shared
variables. Communication via shared actions is not supported. Besides parallel
composition and variable hiding, the languages also contain other operations
required for the construction of hierarchical state machines, such as variable
renaming and serial composition. The trace semantics presented in [6,33] for
Charon and Masaccio is more concrete than the one that we present here:
discrete events that do not change the observable part of the state are not
eliminated from traces. As a consequence, a system that just lets time pass
and performs a discrete "tick" step once every time unit is not an implemen­
tation of the same system without any discrete steps. The two systems are
equivalent according to the trace semantics of this paper. \Ye believe that our
semantics are more intuitively appealing; the price we pay is that the proofs of
our compositionality results are more complicated. [33] also contains some in­
teresting proof rules for assume-guarantee reasoning. In [6,33], Zeno behavior
and the issue of receptiveness are not considered.

1.4 Paper Organization

The rest of this paper is organized as follows. Section 2 contains mathemati­
cal preliminaries. Next, Section 3 defines notions that are useful for describing
the behavior of hybrid systems, most importantly, trajectories and hybrid
sequences. Section 4 defines Hybrid Automata (HAs), which contain all of
the structure of HIOAs except for the classification of external actions and
variables as inputs or outputs. It also defines external behavior for HAs and
implementation and simulation relationships between HAs. Section 5 presents
composition and hiding operations for HAs. Section 6 defines Hybrid I/0 Au­
tomata (HIOAs) by adding an input/output classification to HAs, and extends
the theory of HAs to HIOAs. It also introduces a "strong compatibility" con­
dition that ensures that HIOAs are composable, and describes situations in
which strong compatibility is guaranteed to hold. Section 7 presents the the­
ory of receptiveness, including a main theorem stating that receptiveness is
preserved by composition (assuming strong com pati bili ty). Finally, Section 8
presents some conclusions. Examples derived from earlier work on hybrid sys­
tem modeling are included throughout. Appendix A lists some notational con­
ventions used in the paper.

8

2 Mathematical Preliminaries

In this section, we give basic mathematical definitions that will be used as a
foundation for our definitions of hybrid automata and hybrid I/O automata.
These definitions involve functions, sequences, partial orders, and time. The
automata definitions appear later, in Sections 4 and 6. Since most of the
definitions here are reasonably standard, we encourage the reader to skip ahead
to Section 3 and return to this section as needed.

2.1 Functions

If f is a function, then we denote the domain and range off by dam(!) and
range(!), respectively. If also S is a set, then we write f IS for the restriction of
f to S, that is, the function g with dom(g) = dam(!) nS such that g(c) = f(c)
for each c E dom(g).

\Ye say that two functions f and g are compatible if f I dam (g) = g I dam(!). If
f and g are compatible functions then we write f U g for the unique function h
with dom(h) = dom(f)Udom(g) satisfying the condition: for each c E dom(h),
if c E dam(!) then h(c) = f(c) and if c E dom(g) then h(c) = g(c). l\fore
generally, if F is a set of pairwise compatible functions then we write U F
for the unique function h with dom(h) = U{ dam(!) I f E F} satisfying the
condition: for each f E F and c E dam(!), h(c) = f(c).

If f is a function whose range is a set of functions and Sis a set, then we write
f -J,. S for the function g with dom(g) = dam(!) such that g(c) = f(c) IS for
each c E dam (g). The restriction operation -J,. is extended to sets of functions
by pointwise extension. Also, if f is a function whose range is a set of functions,
all of which have a particular element d in their domain, then we write f -J,. d
for the function g with dom(g) = dam(!) such that g(c) = f(c)(d) for each
c E dom(g).

\Ye say that two functions f and g whose ranges are sets of functions are point­
wise compatible if for each c E dom(f)ndom(g), f(c) and g(c) are compatible.
If f and g have the same domain and are pointwise compatible, then we denote
by f lJ g the function h with dom(h) = dam(!) such that h(c) = f(c) U g(c)
for each c E dom(h).

g

2.2 Sequences

Let S be any set. A sequence over S is a function from a downward closed
subset of the natural numbers to S. Thus, the domain of a sequence is either
the set of all natural numbers, or is of the form {O, ... , k }, for some natural
number k. In the first case we say that the sequence is infinite, and in the
second case finite. The sets of finite and infinite sequences over S are denoted
by S* and sw, respectively. Concatenation of a finite sequence with a finite or
infinite sequence is denoted by juxtaposition. \Ye use ,\ to denote the empty
sequence, that is, the sequence with the empty domain. The sequence contain­
ing one element c E S is abbreviated as c. \Ye say that a sequence a is a prefix
of a sequence p, denoted by a :::; p, if a = p I dom(a). Thus, a :::; p if either
a = p, or a is finite and p = aa' for some sequence a'. If a is a nonempty
sequence then head (a) denotes the first element of a and tail (a) denotes a
with its first element removed. r,.1oreover, if a is finite, then last(a) denotes
the last element of a and init(a) denotes a with its last element removed.

2. 8 Partial Orders

\Ye recall some basic definitions and results regarding partial orders (posets),
and in particular, complete partial orders (cpos) from [29,32]. A partial order
(poset) is a set S together with a binary relation ~ that is reflexive, antisym­
metric, and transitive. In the sequel, we usually denote posets by the set S
without explicit mention to the binary relation ~-

A subset P <:;;;; S is bounded (above) if there is a c E S such that d ~ c for each
d E P; in this case, c is an upper bound for P. A least upper bound (lub) for
a subset P <:;;;; S is an upper bound c for P such that c ~ e for every upper
bound e for P. If P has a lub, then it is necessarily unique, and we denote it
by LJ P. A subset P <:;;;; S is directed if every finite subset Q of P has an upper
bound in P. A poset Sis complete, and hence is a complete partial order (cpo)
if every directed subset P of S has a lub in S.

\Ye say that P' <:;;;; S dominates P <:;;;; S, denoted by P ~ P', if for every c E P
there is some c' E P' such that c ~ c'. \Ye use the following two simple lemmas,
adapted from [32] [Lemmas 3.1.1 and 3.1.2].

Lemma 2.1 If P, P' are directed subsets of a cpo S and P ~ P' then LJ P ~
LJP'.

Lemma 2.2 Let P = { ci.i I i E J, j E J} be a doubly indexed subset of a cpo
S. Let Pi denote the set { ci.i I j E J} for each i E J. Suppose

10

(1) P is directed,
(2) each Pi is directed with lub ci, and
(8) the set { ci I i E I} is directed.

Then UP= LJ{ci Ii EI}.

A finite or infinite sequence of elements, c0 , c1 , c2 , ... , of a poset S is called a
chain if Ci ~ ci+l for each non-final index i. \Ye define the limit of the chain,
limi--+oo Ci, to be the lub of the set { c0 , c1 , c2 , ... } if S contains such a bound;
otherwise, the limit is undefined. Since a chain is a special case of a directed
set, each chain of a cpo has a limit.

A function f : S ----+ S' between posets S and S' is monotone if f (c) ~ f (d)
whenever c ~ d. If f is monotone and Pis a directed set, then the set f (P) =
{f(c) I c E P} is directed as well. If f is monotone and f(LJ P) = LJ f(P) for
every directed set P, then f is said to be continuous.

An element c of a cpo S is compact if, for every directed set P such that
c ~ LJ P, there is some d E P such that c ~ d. \Ye define K(S) to be the set
of compact elements of S. A cpo S is algebraic if every c E S is the lub of the
set { d E K(S) I d ~ c}. A simple example of an algebraic cpo is the set of
finite or infinite sequences over some given domain, equipped with the prefix
ordering. Here the compact elements are the finite sequences.

2.4 Time

Throughout this paper, we fix a time axis T, which is a subgroup of (R, +),
the real numbers with addition. \Ye assume that every infinite, monotone,
bounded sequence of elements of T has a limit in T. The reader may find it
convenient to think of T as the set R of real numbers, but the set Z of integers
and the singleton set {O} are also examples of allowed time axes. \Ye define
T:2: 0 ~ { t E T I t 2 O}.

An interval J is a nonempty, convex subset of T. \Ye denote intervals as usual:
[t1 , t 2] = { t E T I t 1 :::; t :::; t2}, etc. An interval is left-closed (right-closed)
if it has a minimum (resp., maximum) element, and left-open (right-open)
otherwise. An interval is closed if it is both left-closed and right-closed, and
open if it is both left-open and right-open. \Ye write min(J) and max(J) for
the minimum and maximum elements, respectively, of an interval J (if they
exist), and inf(J) and sup(J) for the infimum and supremum, respectively, of
Jin TU{-00,00}. For K <:;;;; T and t ET, we define K +t ~ {t' +t It' EK}.
Similarly, for a function f with domain K, we define f + t to be the function
with domain I{+ t satisfying, for each t' E K + t, (f + t) (t') = f (t' - t).

11

3 Describing Hybrid Behavior

In this section, we give basic definitions that are useful for describing discrete
and continuous behavior of a system or system component, including discrete
and continuous changes to the system's state, and discrete and continuous
flow of information into and out of the system. The key notions are static and
dynamic types for variables, trajectories, and hybrid sequences.

8.1 Static and Dynamic Types

\Ye assume a universal set V of variables. A variable represents either a location
within the state of a system or a location where information flows from one
system component to another. For each variable v, we assume both a (static)
type, which gives the set of values it may take on, and a dynamic type, which
gives the set of trajectories it may follow. Formally, for each variable v we
assume the following:

• type(v), the (static) type of v. This is a nonempty set of values.
• dtype (v), the dynamic type of v. This is a set of functions from left-closed

intervals of T to type(v) that satisfies the following properties:
(1) (Closure under time shift)

For each J E dtype(v) and t E T, J + t E dtype(v).
(2) (Closure under subinterval)

For each J E dtype (v) and each left-closed interval J <:;;;; dam(!), J I J E

dtype(v).
(3) (Closure under pasting)

Let Jo, Ji, h, ... be a sequence of functions in dtype(v) such that, for each
index i such that Ji is not the final function in the sequence, dom(fi)
is right-closed and max(dom(fi)) = min(dom(JH1)). Then the function J
defined by J(t) ~ fi(t), where i is the smallest index such that t E dom(fi),
is in dtype (v).

The pasting-closure property is useful for modeling "discontinuities" in the
evolution of variables caused by discrete transitions. Dynamic types provide a
convenient way of describing restrictions on system behavior over time inter­
vals, for example, restrictions on the behavior of system input variables.

Example 3.1 (Discrete variables) Let v be any variable and let C be
the set of constant functions from a left-closed interval to type (v). Then C is
closed under time shift and subinterval. If the dynamic type of v is obtained
by closing C under the pasting operation, then v is called a discrete variable.
This is essentially the same as the definition of a discrete variable in [63]. ■

12

Example 3.2 (Standard real-valued function classes) If we take T = R
and type(v) = R, then other examples of dynamic types can be obtained by
taking the pasting closure of standard function classes from real analysis, such
as the set of continuous functions, the set of differentiable functions, the set
of functions that are differentiable k times (for any k), the set of smooth
functions, the set of integrable functions, the set of LP functions (for any p),
the set of measurable locally essentially bounded functions [79] , or the set of
all functions. ■

Standard function classes are closed under time shift and subinterval, but not
under pasting. A natural way of defining a dynamic type is as the pasting
closure of a class of functions that is closed under time shift and subinterval.
In such a case, it follows that the new class is closed under all three operations.

0 4

Fig. 1. Example of a function in a dynamic type based on continuous functions.

Example 3.3 (Pasting closure of the continuous functions) Figure 1
shows an example of an element f in a dynamic type based on (more pre­
cisely, equal to the pasting closure of) a subclass of the continuous functions.
Function f is defined on the interval [O , 4) and is obtained by pasting together
four pieces. At the boundary points between these pieces, f takes the value
specified by the leftmost piece, which makes f continuous from the left. Note
that f is undefined at time 4. ■

In practice, most interesting dynamic types are pasting closures of subclasses
of the continuous functions. Note that functions in such dynamic types are
continuous from the left. Elsewhere in the literature on hybrid systems (e.g.,
[37]) , functions that are continuous from the right are considered. To some ex­
tent , the choice of how to define function values at discontinuities is arbitrary.
An advantage of our choice is a nice correspondence between concatenation
and prefix ordering of trajectories and hybrid sequences (see Lemmas 3.5 and

13

3.7).

In this paper, we will occasionally be slightly sloppy and say that the dynamic
type of a variable v is the function class F, even though Fin not closed under
the three required operations. In such a case, we mean that the dynamic type
of v is the function class that results from closing Funder the three operations.

8. 2 Trajectories

In this subsection, we define the notion of a trajectory, define operations on
trajectories, and prove simple properties of trajectories and their operations.
A trajectory is used to model the evolution of a collection of variables over an
interval of time.

8. 2.1 Basic Definitions

Let V C V be a set of variables. A valuation v for V is a function that
associates with each variable v E V a value in type(v). \Ye write val(V) for
the set of valuations for V. Let J be a left-closed interval of T with left endpoint
equal to 0. Then a J-trajectory for Vis a function T: J---+ val(V), such that
for each v E V, T -.J,. v E dtype (v). A trajectory for V is a J- trajectory for V,
for any J. \Ye write trajs(V) for the set of all trajectories for V.

A trajectory for V with domain [O, O] is called a point trajectory for V. If vis
a valuation for V then fJ(v) denotes the point trajectory for V that maps Oto
v. \Ye say that a J-trajectory is finite if J is a finite interval, closed if J is a
(finite) closed interval, open if J is a right-open interval, and full if J = T:2'. 0

.

If T is a trajectory then T. ltime, the limit time of T, is the sup rem um of dam (T).
Also, we define T.jval, the first valuation of T, to be T(O), and if T is closed,
we define T.lval, the last valuation of T, to be T(T.ltime). For Ta trajectory
and t E T:2:0

, we define

T ~ t ~ T 1[0, t],
T<Jt~Ti[O,t),

T ~ t ~ (T 1[t, 00)) - t.

Note that, since dynamic types are closed under time shift and subintervals,
the result of applying the above operations is always a trajectory, except when
the result is a function with an empty domain. By convention, we also write

6. 6.
T ~ oo = T and T <J oo = T.

14

8. 2. 2 Prefix Ordering

Trajectory T is a prefix of trajectory T1
, denoted by T :::; T1

, if T can be obtained
by restricting T1 to a subset of its domain. Formally, if T and T1 are trajectories
for V, then T :::; T1 iff T = T1 I dom(T). Alternatively, T :::; T1 iff there exists
a t E T:2: 0 U { oo} such that T = T1 :SJ t or T = T1 <J t. If T :::; T1 then clearly
dom(T) <:;;;; dom(T'). If Tis a set of trajectories for V, then pref(T) denotes
the prefix closure of T, defined by:

pref (T) ~ {TE trajs(V) I =lT' ET : T :::; T1
}.

\Ye say that Tis prefix closed if T = pref (T).

The following lemma gives a simple domain-theoretic characterization of the
set of trajectories over a given set V of variables:

Lemma 3.4 Let V be a set of variables. The set trajs (V) of trajectories for V,
together with the prefix ordering :::;, is an algebraic cpo. Its compact elements
are the closed trajectories.

Proof: It is trivial to check that (trajs (V), :::;) is a partial order. In order to
prove that it is a cpo, assume that Tis a directed subset of trajs(V). \Ye prove
that T has a least upper bound. It is routine to check that a set of trajectories
is directed iff it is totally ordered by prefix. So T is totally ordered. Using
this, it follows that the trajectories in T are pairwise compatible functions.
Therefore, function UT is defined.

\Ye now prove that UT is a trajectory for V. If UT E T then this is imme­
diate. Otherwise, let t E T U { oo} be the supremum of the limit times of all
trajectories in T. There exists an infinite ascending chain t0 , t 1 , t 2 , ... of limit
times of trajectories in T such that t = limi--+oo ti and all the ti's are different.
For each i, let Ti be a trajectory in T with ti = Ti.ltime. Next define, for each
. ' <J t Th 1 . h . . ' ' ' 1 d 'l, Ti = Ti+l _ i· en, :iy construct10n, t e traJectones To, T1 , T2 , ... are c ose
and pairwise compatible, and Ui T[= UT. Let Tl', T{', T&', ... be the sequence
of functions defined by

if i > 0.

By construction, the T["s are closed, pairwise compatible, and ui T[' = ui T[.
Using the assumption that dynamic types are closed under pasting, it follows
that ui T[' (and hence u T) is a trajectory.

Now we show that UT is a lub for T. It follows immediately from the con­
struction of UT that UT is an upper bound for T. Suppose that T

1 is also

15

an upper bound for T. \Ye prove that UT :::; T
1

• Since each T E T satis­
fies dom(T) <:;;;; dom(T'), also UTET dom(T) <:;;;; dom(T'). By definition of UT,
dam (UT) = UTET dam (T). Hence dam (UT) <:;;;; dam (T1

). Let t be an element
of dam (UT). Then t is in the domain of some T E T. Since T is a prefix of both
UT and T1

, (UT)(t) = T'(t). Thus, T1 i dom(UT) = UT, that is, UT:::; T1
• It

follows that trajs(V) is a cpo.

\Ye leave it to the reader to check that the closed trajectories are the compact
elements in this cpo, and that the cpo is algebraic. ■

8. 2. 8 Concatenation

The concatenation of two trajectories is obtained by taking the union of the
first trajectory and the function obtained by shifting the domain of the second
trajectory until the start time agrees with the limit time of the first trajectory;
the last valuation of the first trajectory, which may not be the same as the first
valuation of the second trajectory, is the one that appears in the concatenation.
Formally, suppose T and T1 are trajectories for V, with T closed. Then the
concatenation T ~ T1 is the function given by

T ~ T1 ~TU (T' 1(0, oo) + T.ltime).

Because dynamic types are closed under time shift and pasting, it follows that
T ~ T1 is a trajectory for V. Observe that T ~ T1 is finite (resp., closed, full) if
and only if T 1 is finite (resp., closed, full). Observe also that concatenation is
associative.

The following lemma, which is easy to prove, shows the close connection be­
tween concatenation and the prefix ordering.

Lemma 3.5 Let T and v be trajectories for V with T closed. Then

Note that if T:::; v, then the trajectory T1 such that v = T~ T1 is unique except
that it has an arbitrary value for T

1.jval. Note also that the "-{::::" implication in
Lemma 3.5 would not hold if the first valuation of the second argument, rather
than the last valuation of the first argument, were used in the concatenation.

\Ye extend the definition of concatenation to any (finite or countably infinite)
number of arguments. Let To, T1 , T2 , ... be a (finite or infinite) sequence of
trajectories such that Ti is closed for each nonfinal index i. Define trajectories
Tl, T{, T~, ... inductively by

16

Lemma 3.5 implies that for each nonfinal i, T[:::; T[+l. \Ye define the concate­
nation To ~ T1 ~ T2 • • • to be the limit of the chain Tl, T{, T&, .. . ; existence of
this limit follows from Lemma 3.4.

8.8 Hybrid Sequences

In this subsection, we introduce the notion of a hybrid sequence, which is used
to model a combination of changes that occur instantaneously and changes
that occur over intervals of time. Our definition is parameterized by a set A
of actions, which are used to model instantaneous changes and instantaneous
synchronizations with the environment, and a set V of variables, which are
used to model changes over intervals of time and continuous interaction with
the environment. \Ye also define some special kinds of hybrid sequences and
some operations on hybrid sequences, and give basic properties.

8. 8.1 Basic Definitions

Fix a set A of actions and a set V of variables. An (A, V)-sequence is a finite
or infinite alternating sequence o: = To a1 T1 a2 T2 .. . , where

(1) each Ti is a trajectory in trajs (V),
(2) each ai is an action in A,
(3) if o: is a finite sequence then it ends with a trajectory, and
(4) if Ti is not the last trajectory in o: then dom(Ti) is closed.

A hybrid sequence is an (A, V)-sequence for some A and V.

Since the trajectories in a hybrid sequence can be point trajectories, our no­
tion of hybrid sequence allows a sequence of discrete actions to occur at the
same real time, with corresponding changes of variable values. An alternative
approach is described in [69], where state changes at a single real time are
modeled using a notion of "superdense time". Specifically, hybrid behavior is
modeled in [69] using functions from an extended time domain, which includes
countably many elements for each real time, to states.

If o: is a hybrid sequence, with notation as above, then we define the limit
time of o:, o:.ltime, to be I:i Ti.ltime. A hybrid sequence o: is defined to be:

• time-bounded if o:.ltime is finite.
• admissible if o:.ltime = oo.

17

• closed if o: is a finite sequence and the domain of its final trajectory is a
closed interval.

• Zeno if o: is neither closed nor admissible, that is, if o: is time-bounded
and is either an infinite sequence, or else a finite sequence ending with a
trajectory whose domain is right-open.

A more standard definition of "Zeno" would be simply "a time-bounded infi­
nite sequence". \Ye add the second option to the definition in order to guar­
antee a simple property of the hiding/restriction operator, see Lemma 4.9(2).
Except for Lemma 4.9(2), all results of this paper hold also for the more stan­
dard definition. \Ye say that a hybrid sequence is "non-Zeno" if it is not Zeno,
that is, if it is closed or admissible."

For any hybrid sequence o:, we define the first valuation of o:, o:.fval, to be
To.fval. Also, if o: is closed, we define the last valuation of o:, o:.lval, to be
last(o:).lval, that is, the last valuation in the final trajectory of o:.

8. 8. 2 Prefix Ordering

\Ye say that (A, V)-sequence o: = To a 1 T1 ... is a prefix of (A, V)-sequence
B = v 0 b1 v1 ... , denoted by o: :::; B, provided that (at least) one of the following
holds:

(1) o:=B.
(2) o: is a finite sequence ending in some Tk; Ti = Vi and ai+1 = bi+1 for every

i, 0 :::; i < k; and Tk :::; vk.

Like the set of trajectories over V, the set of (A, V)-sequences is a cpo:

Lemma 3.6 Let V be a set of variables and A a set of actions. The set of
(A, V)-sequences, together with the prefix ordering :::;, is an algebraic cpo. Its
compact elements are the closed (A, V)-sequences.

Proof: \Ye leave to the reader the routine check that:::; is a partial order. Note
that this uses the fact that :::; is a partial order on trajectories (Lemma 3.4).

In order to prove that we have a cpo, let S be a directed subset of (A, V)­
sequences. \Ye prove that S has a least upper bound. It is easy to check that
S is totally ordered by the prefix ordering :::;. \Ye distinguish two cases.

(1) There is no finite upper bound on the number of trajectories that occur
in the sequences in S. In this case, we can construct an infinite sequence
o:0 , o:1 , o:2 ... of elements of S such that, for each i, o:i contains at least i
actions and i + l trajectories, and o:i :::; o:i+l· For each i E N, let Ti be the
i + 1-st trajectory (the one indexed by i) in O:i+1, and for i 2:: 1, let ai be

18

the i-th action in o:i. Let o: = To a 1 T1 a 2 T2 It is easy to verify that o:
is an upper bound of the set { o:i I i E N} and in fact, is the only upper
bound of this set. It follows that o: is the lub of S, as needed.

(2) There is a finite upper bound k on the number of trajectories that occur
in the (A, V)-sequences in S. In this case, let S' be the set obtained by
removing all sequences with fewer than k trajectories from S. Since S'
is totally ordered, init (o:) = init (o:') for any o:, o:' E S'. (Recall that init
is an ordinary sequence operation-it yields all but the last element of
the sequence.) Choose any o: E S' and let a = init (o:). Let T be the set
of final trajectories of sequences in S'. Again using the fact that S' is
totally ordered, we obtain that T is totally ordered by the prefix ordering
on trajectories. Let T be the least upper bound of T (this upper bound
exists by Lemma 3.4). It is routine to check that a T is a least upper
bound of S', and thus of S.

\Ye leave it to the reader to check that the closed (A, V)-sequences are the
compact elements in this cpo, and that the cpo is algebraic. ■

8. 8. 8 Concatenation

Suppose o: and o:' are (A, V)-sequences with o: closed. Then the concatenation
o: ~ o:' is the (A, V)-sequence given by

o: ~ o:' ~ init (o:) (last (o:) ~ head (o:')) tail (o:').

(Here, init, last, head and tail are ordinary sequence operations.)

Lemma 3.7 Leto: and B be (A, V)-sequences with o: closed. Then

Note that if o: :::; B, then the (A, V)-sequence o:' such that B = o: ~ o:' is unique
except that it has an arbitrary value in val(V) for o:'.fval.

As we did for trajectories, we extend the concatenation definition for (A, V)­
sequences to any finite or infinite number of arguments. Let o:0 , o:1 , ... be a
finite or infinite sequence of (A, V)-sequences such that o:i is closed for each
nonfinal index i. Define (A, V)-sequences o:~, o:~, ... inductively by

19

Lemma 3. 7 implies that for each nonfinal i, o:~ :::; o:~+1. \Ye define the concate­
nation o:0 ~ o:1 ···to be the limit of the chain o:~, o:~, ... ; existence of this limit
is ensured by Lemma 3.6.

8. 8.4 Restriction

Let A and A' be sets of actions and let V and V' be sets of variables. The
(A', V')-restriction of an (A, V)-sequence o:, denoted by o: 1(A', V'), is obtained
by first projecting all trajectories of o: on the variables in V', then removing the
actions not in A', and finally concatenating all adjacent trajectories. Formally,
we define the (A', V')-restriction first for closed (A, V)-sequences and then
extend the definition to arbitrary (A, V)-sequences using a limit construction.
The definition for closed (A, V)-sequences is by induction on the length of
those sequences:

T 1(A', V') = T -.J,. V' if T is a single trajectory,

, ,, {(o:1(A',V'))a(T-.J,.V') ifaEA',
o:aT1(A,V)=

(o: I (A', V')) ~ (T -.J,. V') otherwise.

Note that in the case where, due to removal of some action, we concatenate
two adjacent trajectories, we lose the first state of the second trajectory (by
letting the last state of the first trajectory dominate). It is easy to see that the
restriction operator is monotone on the set of closed (A, V)-sequences. Hence,
if we apply this operation to a directed set, the result is again a directed set.
Together with Lemma 3.6, this allows us to extend the definition of restriction
to arbitrary (A, V)-sequences by:

o: 1(A', V') = LJ{B 1(A', V') I Bis a closed prefix of o:}.

Lemma 3.8 (A', V')-restriction is a continuous operation.

Proof: This follows by general domain-theoretic arguments. For convenience,
in this proof we write f(o:) as an abbreviation for o: 1(A', V').

First we establish that (A', V')-restriction is monotone for arbitrary (A, V)­
sequences. Let o:, o:' be (A, V)-sequences with o: :::; o:'; we show that f(o:) :::;
f (o:'). Let P and P' denote the set of closed prefixes of o: and o:', respec­
tively. By transitivity of the prefix ordering, it follows that P' dominates
P, that is, P ~ P'. Since the restriction operation is monotone on closed
(A, V)-sequences, it follows that f(P) ~ f(P'). Then Lemma 2.1 implies that
LJJ(P) :::; LJJ(P'). By the definition of the restriction operation, this implies
that f(o:) :::; f(o:'), which shows monotonicity.

20

Now we complete the proof that (A, V)-restriction is continuous by assuming
that P is any directed set of (A, V)-sequences and showing that f (UP) =
Uf(P). By the definition of the restriction operation, f(UP) = U{f(B) I

B is a closed prefix of U P}. By Lemma 3.6 and the definition of compact
elements, any closed prefix B of UP is also a prefix of some o: E P. Therefore,
f(UP) = U{f (B) I B is closed and =lo: E P: B is a prefix of o: }.

Now we apply Lemma 2.2 to the right hand side of this last equation. To do
this, we must show:

(1) Q ~ {f (B) I B is closed and =lo: E P : B is a prefix of o:} is a directed set.
To see this, consider any nonempty finite subset R <:;;;; Q. Each element
of R is a prefix of some o: E P. Therefore, since P is a directed set,
there is some single o:' E P such that each element of R is a prefix of o:'.
Therefore, R is a directed set; since R is finite, it has a lub in R, and
hence in Q, as needed.

(2) For each o: E P, {f(B) I B is closed and B is a prefix of o:} is a directed
set with lub f(o:). The first part follows because the set of closed prefixes
of o: is a directed set and f is monotone. The second part follows from
the definition of restriction.

(3) The set f(P) is directed. This follows because P is a directed set and f
is monotone.

Then Lemma 2.2 implies that

U{f (B) I B is closed and =lo: E P : B is a prefix of o:} =

= u{f(o:) I 0: E P} = uf(P).

Thus, f(UP) = Uf (P), as needed.

The proofs of the following three lemmas are left to the reader.

Lemma 3.10 (o: 1(A, V)) 1(A', V') = o: 1(A n A', V n V').

Lemma 3.11

(1) o: is time-bounded if and only if o: 1(A, V) is time-bounded.
(2) o: is admissible if and only if o: 1(A, V) is admissible.
(8) If o: is closed then o: 1(A, V) is closed.
(4) If o: is non-Zeno then o: 1(A, V) is non-Zeno.

21

■

4 Hybrid Automata

In this section, as a preliminary step toward defining hybrid I/O automata, we
define a slightly more general hybrid automaton model. In hybrid automata,
actions and variables are classified as external or internal. External actions
and variables are not further classified as input or output; the input/output
distinction is added later, in Section 6. \Ye define how hybrid automata execute
and define implementation and simulation relations between hybrid automata.

4.1 Definition of Hybrid Automata

A hybrid automaton is a state machine whose states are valuations of vari­
ables, and that uses other variables for communication with its environment.
It also has a set of actions, some of which may be internal and some exter­
nal. The state of a hybrid automaton may change in two ways: by discrete
transitions, which change the state atomically and instantaneously, and by
trajectories, which describe the evolution of the state over intervals of time.
The discrete transitions are labeled with actions; this will allow us to synchro­
nize the transitions of different hybrid automata when we compose them in
parallel. The evolution described by a trajectory may be described by contin­
uous or discontinuous functions.

Definition 4.1 A hybrid automaton (HA) A= (fV, X, Q, (-:), E, H, D, T) con­
sists of:

• A set H1 of external variables and a set X of internal variables, disjoint
from each other. We write V ~ Hf U X.

• A set Q <:;;;; val(X) of states.
• A nonempty set (-:) <:;;;; Q of start states.
• A set E of external actions and a set H of internal actions, disjoint from

each other. We write A ~ E U H.
• A set D <:;;;; Q x Ax Q of discrete transitions. We use x ~Ax' as shorthand

for (x, a, x') ED. We sometimes drop the subscript and write x ~ x', when
we think A should be clear from the context. We say that a is enabled in x
if there exists an x' such that x ~ x'.

• A set T of trajectories for V such that T(t) IX E Q for every T E T and
t E dam (T). Given a trajectory T E T we denote T.jval IX by T.jstate and,
if T is closed, we denote T.lval IX by T.lstate. We require that the following
axioms hold:
T 1 (Prefix closure)

For every T E T and every T1
:::; T, T1 E T.

T2 (Suffix closure)

22

For every TE T and every t E dom(T), T ~ t ET.

T3 (Concatenation closure)
Let To, T1, T2 , ... be a sequence of trajectories in T such that, for each
nonfinal index i, Ti is closed and Tdstate = Ti+1.fstate. Then To ~ T1 ~

T2 .. ·ET.

Axioms Tl-3 express some natural conditions on the set of trajectories that we
need to construct our theory. A key part of this theory is a parallel composition
operation for hybrid automata. In a composed system, any trajectory of any
component automaton may be interrupted at any time by a discrete transition
of another (possibly independent) component automaton. Axiom Tl ensures
that the part of the trajectory up to the discrete transition is a trajectory, and
axiom T2 ensures that the remainder is a trajectory. Axiom T3 is required
because the environment of a hybrid automaton, as a result of its own internal
discrete transitions, may change its continuous dynamics repeatedly, and the
automaton must be able to follow this behavior.

The earlier definition of hybrid automata in [53,54] used a special stuttering
action e instead of axiom T3. Another key difference between the new defini­
tion of hybrid automaton and the earlier one is that in [53,54], the external
variables were considered to be part of the state. This meant, for example, that
discrete transitions could depend on the values of these variables, a situation
that introduced technical complications. A local transition of one automaton
could change an output variable, which could cause a discrete change in a
second automaton, which in turn could change an input variable in the first
automaton. To avoid cyclic constraints during the interaction of systems, we
had to add several axioms, which complicated the use of our automaton defi­
nitions in applications.

In the new definition, we explicitly identify the set Q of states as a subset of
val(X). In the earlier definition of [53,54] any valuation in val(X) was called
a state. The reason for introducing Q is that in Section 6, we will require that
in each state each input trajectory is accepted. In actual system descriptions,
we often encounter valuations which are not reachable from the initial state,
which in fact we do not want to view as states, and from which no behavior
is enabled. 4 By excluding these "ghost" valuations from Q, we save ourselves
the trouble of having to think about them.

Hybrid automata that have no external variables are very similar to the timed
automata defined in [60, 7 4]. The main difference is that hybrid automata have
trajectories as a primitive rather than a derived notion. Also, the state of a
timed automaton need not be organized using variables with particular types
and dynamic types.

4 Typical examples are the valuations that do not satisfy the "location invariants"
of Alur-Dill style timed automata [2].

23

Notation: \Ye often denote the components of an HA A by }V.4, X.4, Q.4,
(-:).4, E.4, etc., and the components of an HA /4 by fVi, Xi, Qi (-:)i, Ei, etc. \Ye
sometimes omit these subscripts, where no confusion seems likely.

Notation: In examples we typically specify sets of trajectories using differen­
tial and algebraic equations and inclusions. Below we explain a few notational
conventions that help us in doing this. Suppose the time domain T is R, T

is a (fixed) trajectory over some set of variables V, and v E V. \Yith some
abuse of notation, we use the variable name v to denote the function T -.J,. v in
dam(T) ----+ type(v), which gives the value of v at all times during trajectory T.
Similarly, we view any expression e containing variables from V as a function
with domain dom(T). Using these conventions we can say, for example, that
T satisfies the algebraic equation

v=e,

which means that, for every t E dom(T), v(t) = e(t), that is, the constraint on
the variables expressed by equation v = e holds for each state on trajectory
T. Suppose that v is a variable and e is a real-valued expression containing
variables from V. Suppose also that e, when viewed as a function, is integrable.
Then we say that T satisfies

v=e

if, for every t E dom(T), v(t) = v(O) + Ji e(t')dt'. Note that this interpretation
of the differential equation makes sense even at points where v is not differen­
tiable. A similar interpretation of differential equations is used by Polderman
and \Yillems [71], who call these "weak solutions".

In the remainder of this subsection, we give two simple examples of hybrid
automata.

Example 4.2 (Vehicle HA) \Ye describe an HA Vehicle, displayed 5 in
Figure 2, which models a vehicle that follows a suggested acceleration ap­
proximately, to within an error of t 2:: 0. The time domain T is R. The state
of the Vehicle automaton includes two real-valued internal variables vel and
ace, which represent the actual velocity and acceleration of the vehicle, re­
spectively. In addition, the automaton has two real-valued external variables,
vel-out and ace-in, representing reported velocity and suggested acceleration.

G We use an arrow notation because later on in this paper, in Section 6, we will view
ace-in as an input variable and vel-out as an output variable. Within the context
of the present chapter the arrow notation has no meaning.

24

ace-in

Vehicle

ace

vel

Fig. 2. The hybrid automaton Vehicle.

The dynamic type of the variables vel, vel-out, and ace-in is the (pasting clo­
sure of the) set of continuous functions. The dynamic type of ace is the set of
integrable functions.

Vehicle is defined to be the HA such that H1 = { ace-in, vel-out}, X =
{ vel, ace}, Q is the set of all valuations of the variables vel and ace, and
(-:) consists of the single valuation that assigns O to both state variables. The
set of actions is empty, and (therefore) D, the set of discrete transitions, 1s
empty. Set T consists of all trajectories that satisfy:

vel = ace

acc(t) E [acc-in(t) - t, acc-in(t) + t] fort> 0

vel-O'ut = vel

(1)
(2)
(3)

Equation (1) says that the velocity is obtained by integrating the acceleration.
Inclusion (2) asserts that, except possibly for the left endpoint, the actual ac­
celeration is within t of the suggested acceleration. Equation (3) says that the
velocity is reported accurately. \Ye leave the reader to show that the trajectory
axioms Tl-T3 are satisfied; the form of the equations and inclusions used to
define the trajectories should make this clear. \Ye restrict to the case t > 0 in
equation (2) because we do not want to impose constraints on input variables
for the initial state of trajectories. The reason for this restriction is technical
(it ensures that Vehicle can be viewed as a proper HIOA that satisfies the
input trajectory enabling property) and should become clearer in Section 6.

■

Example 4.3 (Controller HA) Now we describe an HA Controller, dis­
played in Figure 3, which models a controller that suggests accelerations for
a vehicle, with the intention of ensuring that the vehicle's velocity does not
exceed a pre-specified velocity vmax. The controller monitors the vehicle's ve­
locity, and every time d, for some fixed d > 0, it produces a new suggested

25

Controller

vet-sensed

ace-suggested:

clock

~suggest

ace-in

Fig. 3. The hybrid automaton Controller.

acceleration to be followed for the next time d. The acceleration is chosen in
such a way that, if it is followed to within an error oft, the velocity will remain
below vmax (provided the vehicle is not going too fast in the first place). \Ye
assume that vmax > t d.

The components of the Controller HA are as follows: H1 = { vel-out, ace-in}
and X = { vel-sensed, ace-suggested, clock}. All variables are of type R. The
dynamic types of vel-out, vel-sensed, ace-in, and clock are the (pasting closure
of the) set of continuous functions, and ace-suggested is a discrete variable. Q
is the set of valuations of X in which clock :::; d. (-:) consists of one valuation,
which assigns O to all state variables. E = (/J and H contains the single action
suggest. Set D consists of the suggest steps specified by G:

clock= d
vel-sensed + (acc-s,uggested' + t)d :::; vmax

clock'= 0

vel-sensed' = vel-sensed

(4)
(5)
(6)
(7)

Equation (4) says that the clock indicates that it is time for the suggested
acceleration to be computed. Inequality (5) says that the new suggested ac­
celeration is chosen so that, if the vehicle follows it for the next time d, even
with an error oft, the velocity will still remain at most vmax. Equation (6)
says that the clock is reset after the discrete transition. Equation (7) says that
the transition does not change the value of vel-sensed. Set T consists of all
trajectories that satisfy:

acc-s,uggested = 0

clock= l

(8)

(9)

G Here we use the standard convention that v denotes the value of a variable in the
start state of a discrete transition, and v' denotes the value in the end state.

26

vel-sensed(t) = vel-O'ut(t)

ace-in= acc-s,uggested

fort> 0 (10)

(11)

Since ace-suggested is a discrete variable, the reader might think that adding
constraint (8) makes no difference. However, if we expand this constraint using
our definition of solutions for differential equations, we obtain

t

acc-suggested(t) = acc-suggested(O) + j O dt' = acc-suggested(O),
0

which means that ace-suggested remains constant throughout the full trajec­
tory. So the effect of adding differential equation (8) is that it rules out the
jumps that are allowed by the dynamic type of ace-suggested. Equation (9)
states that clock has rate 1, and is therefore a clock variable in the sense of
the timed automaton model of [5].

Equation (10) says that the velocity sensed by the controller is the same as the
velocity reported to the controller by its environment. Equation (11) asserts
that the acceleration that the controller provides to its environment is the
same as the acceleration that it has most recently computed. Again, we leave
the reader to show that the trajectory axioms Tl-T3 are satisfied. ■

4- 2 Executions and Traces

\Ye now define execution fragments, executions, trace fragments, and traces,
which are used to describe automaton behavior. An execution fragment of a
hybrid automaton A is an (A, V)-sequence o: = To a1 T1 a2 T2 .. . , where (1)
each Ti is a trajectory in T, and (2) if Ti is not the last trajectory in o: then

Ti.lstate a~i Ti+1.fstate. An execution fragment records what happens during
a particular run of a system, including all the instantaneous, discrete state
changes and all the changes to the state and external variables that occur
while time advances. \Ye write frags.,4, for the set of all execution fragments of
A.

If o: is an execution fragment, with notation as above, then we define the first
state of o:, o:.fstate, to be To.fstate. \Ye say that o: is an execution fragment
from a state x if o:.fstate = x. An execution fragment o: is defined to be an
execution if o:.fstate is a start state, that is, o:.fstate E (-:). \Ye write execs.,4, for
the set of all executions of A. If o: is a closed (A, V)-sequence then we define
the last state of o:, o:.lstate, to be last(o:).lstate. A state of A is reachable if it
is the last state of some closed execution of A.

27

Example 4.4 (Vehicle execution) Since the Vehicle HA of Example 4.2 has
no discrete steps, each of its executions is a one-element sequence consisting
of a single trajectory over all the variables of Vehicle. An example of such

4

3

2

= ace-in

= ace

= vel = ve/-out

-·-·-·-·-·-·
2 3

Fig. 4. An execution of the Vehicle (lower two lines after 3 are supposed to coincide).

an execution, depicted graphically in Figure 4, is the one consisting of the
trajectory T with T.ltime = oo, and such that:

acc-in(t) =

acc(t) =

0

2

0

E

if t::; 1,

if 1 < t ::; 3,

if t > 3.

if t ::; 1,

if 1 < t ::; 3,

if t > 3.

vel(t) = vel-out(t) = Et if t::; 1,

(2 + c)t - 2 if 1 < t::; 3,

4 + 3c if t > 3.

Any finite prefix of T would also yield an execution of Vehicle. The trace of T

is the one-element sequence obtained by projecting Ton { ace-in, vel-out}. ■

Example 4.5 (Controller execution) In the Controller HA of Exam-

28

ple 4.3, suppose d = 1, so the suggested acceleration is recalculated at times
1, 2, etc. Also suppose that vmax 2:: 4 + 4t. Then an example execution of
Controller is the infinite sequence o: = To suggest T1 suggest T2 .. . , where, for
every i and for every t E dam (Ti)

(1) Ti.ltime = l.
(2) Ti(t)(clock) = t.
(3) If i = 0 then Ti(t)(v) is equal to O for v E {ace-suggested, ace-in} and Et

for v E { vel-out, vel-sensed}.
(4) If 1 :::; i :::; 2 then Ti (t) (v) is equal to 2 for v E {ace-suggested, ace-in} and

(2 + t) (i + t) - 2 for v E { vel-out, vel-sensed}.
(5) If i 2:: 3 then Ti (t) (v) is equal to O for v E {ace-suggested, ace-in} and

4 + 3t for v E { vel-out, vel-sensed}.

The assumed bound on vmax implies that the suggested accelerations in this
execution are actually possible suggestions according to the rule given in the
Controller automaton definition. The trace of execution o: consists of a sin­
gle trajectory because Controller has no external actions. This trajectory is
defined by:

acc-in(t) = 0 if t :::; 1,

2 if 1 < t:::; 3,

0 if t > 3.

vel-O'ut(t) = Et if t:::; 1,

(2+t)t-2ifl<t:c:;3,

4 + 3t if t > 3.

■

Like trajectories also execution fragments are closed under countable concate­
nation.

Lemma 4.6 Let o:0 , o:1 , ... be a finite or infinite sequence of execution frag­
ments of A such that, for each nonfinal index i, o:i is closed and o:dstate =
O:i+1.fstate. Then o:0 ~ 0:1 ~ · · · is an execution fragment of A.

Proof: Follows easily from the definitions, using axiom T3. ■

Lemma 4. 7 Let o: and B be execution fragments of A with o: closed. Then

o::::; B {:} =lo:' E frags.4 : B = o: ~ o:'.

29

Proof: Implication "-{::::" follows directly from the corresponding implication
in Lemma 3. 7. Implication "⇒" follows from the definitions and T2. ■

The external behavior of a hybrid automaton is captured by the set of "traces"
of its execution fragments, which record external actions and the trajectories
that describe the evolution of external variables. Formally, if o: is an execution
fragment, then the trace of o:, denoted by trace(o:), is the (E, fV)-restriction of
o:. (Recall that E denotes the external actions and H1 the external variables.)
A trace fragment of a hybrid automaton A from a state x of A is the trace
of an execution fragment of A from x. \Ye write tracefrags.4(x) for the set
of trace fragments of A from x. Also, we define a trace of A to be a trace
fragment from a start state, that is, the trace of an execution of A, and write
traces .4 for the set of traces of A.

The following lemma follows trivially from Lemma 3.11:

Lemma 4.8 If o: is an execution fragment of A then

(1) o: is time-bounded if and only if trace (o:) is time-bounded.
(2) o: is admissible if and only if trace(o:) is admissible.
(8) If o: is closed then trace(o:) is closed.
(4) If o: is non-Zeno then trace(o:) is non-Zeno.

In parts (3) and (4) of the above lemma, the converse implications do not
hold. Counterexamples can be obtained by taking an execution fragment o:
that ends with an infinite sequence of internal actions without any delay in
between. However, a slight weakening of the converse implications does hold:

Lemma 4.9 If B is a trace fragment of A from state x then

(1) If B is closed then there exists an execution fragment o: of A from x such
that trace (o:) = B and o: is closed.

(2) If B is non-Zeno then there exists an execution fragment o: of A from x
such that trace(o:) = B and o: is non-Zeno.

If the definition of non-Zeno were broadened to include the case of a right­
open final trajectory, then part 2 of the above lemma can fail. It might be that
the only execution that leads to such a trace is a Zeno execution, one with
infinitely many internal events, and delays which get smaller and smaller.

The next definition defines an implementation relation between hybrid au­
tomata in terms of inclusion of traces: a low-level specification A implements
a high-level specification B if any behavior (trace) of A is also an allowed
behavior of B. \Yithout additional assumptions, our implementation relation
only preserves safety properties. However, in Section 7 we will see that if the
low-level specification automaton is required to be receptive, our implementa-

30

tion relation also preserves bounded liveness properties.

Definition 4.10 Hybrid automata A1 and A2 are comparable if they have the
same external interface, that is, if fVi = fV2 and E 1 = E 2 . If A1 and A2 are
comparable then we say that A1 implements A 2 , denoted by A1 :::; A 2 , if the
traces of A1 are included among those of A2 , that is, if traces.4 1 <:;;;; traces.42 •

7

4.8 Simulation Relations

In this subsection, we define simulation relations between hybrid automata.
Simulation relations may be used to show that one HA implements another,
in the sense of inclusion of sets of traces.

Let A and B be comparable HAs. A simulation from A to B is a relation
R <:;;;; Q.4 x Qa satisfying the following conditions, for all states x.4 and xa of
A and B, respectively:

(1) If x.4 E (-:).4 then there exists a state xa E C➔a such that x.4 R xa.
(2) If x.4 R xa and o: is an execution fragment of A consisting of one action

surrounded by two point trajectories, with o:.fstate = x.4, then B has a
closed execution fragment B with B.Jstate = xa, trace(B) = trace(o:), and
o:.lstate R B.lstate.

(3) If x.4 R xa and o: is an execution fragment of A consisting of a single
closed trajectory, with o:.fstate = x.4, then B has a closed execution
fragment B with B.Jstate = xa, trace(B) = trace(o:), and o:.lstate R
B.lstate.

The definition of a simulation from A to B yields a correspondence for open
trajectories:

Lemma 4.11 Let A and B be comparable HAs and let R be a simulation
from A to B. Let x.4 and xa be states of A and B, respectively, such that
x.4 R xa. Leto: be an execution fragment of A from state x.4 consisting of a
single open trajectory. Then B has an execution fragment B with B .fstate = xa
and trace(B) = trace(o:).

Proof: Let T be the single open trajectory in o:. Using axioms Tl and T2, we

7 In [60,27,53,54], definitions of the set of traces of an automaton and of one au­
tomaton implementing another are based on closed and admissible executions only.
The results we obtain in this paper using the newer, more inclusive definition imply
corresponding results for the earlier definition. For example, we have the following
property: If A1 ~ A2 then the set of traces that arise from closed or admissible
executions of A1 is a subset of the set of traces that arise from closed or admissible
executions of A2.

31

construct an infinite sequence To, T1, ... of closed trajectories of A such that
T = To~ T1 ~ · · ·. Then, working inductively, we construct a sequence Bo, B1 , ...

of closed execution fragments of B such that B0 .fstate = xa and, for each i,
Tdstate R Bdstate, Bi. lstate = Bi+ 1.fstate, and trace (Ti) = trace (Bi). This
construction uses induction on i, using Property 3 of the definition of a simu­
lation relation in the induction step. Now let B = Bo~ B1 ~ · · ·. By Lemma 4.6,
Bis an execution fragment of B. Clearly, B.Jstate = xa. By Lemma 3.9 applied
to both o: and B, trace(B) = trace(o:). Thus B has the required properties. ■

Theorem 4.12 Let A and B be comparable HAs and let R be a simulation
from A to B. Let x.4 and xa be states of A and B, respectively, such that
x.4 R xa. Then tracefrags .A (x.4) <:;;;; tracefrags B (xa).

Proof: Suppose that o is the trace of an execution fragment of A that starts
from x.4; we prove that o is also a trace of an execution fragment of B that
starts from xa. Let o: = To a 1 T1 a2 T2 ... be an execution fragment of A such
that o:.fstate = x.4 and o = trace(o:). \Ye consider cases:

(1) o: is an infinite sequence.
Using axioms Tl and T2, we can write o: as an infinite concatenation

o:0 ~ o:1 ~ o:2 · · ·, in which the execution fragments o:i with i even consist
of a trajectory only, and the execution fragments o:i with i odd consist of
a single discrete step surrounded by two point trajectories.

\Ye define inductively a sequence Bo, B1 , ... of closed execution frag­
ments of B, such that B0 .fstate = xa and, for all i, Bdstate = Bi+1.fstate,
o:i.lstate R Bdstate, and trace(Bi) = trace(o:i)- \Ye use Property 3 of the
definition of a simulation relation for the construction of the Bi's with
i even, and Property 2 for the construction of the Bi's with i odd. Let
B = Bo~ B1 ~ B2 · · ·. By Lemma 4.6, B is an execution fragment of B.
Clearly, B.Jstate = xa. By Lemma 3.9, trace(B) = trace(o:). Thus B has
the required properties.

(2) o: is a finite sequence ending with a closed trajectory.
Similar to the first case.

(3) o: is a finite sequence ending with an open trajectory.
Similar to the first case, using Lemma 4.11. ■

Corollary 4.13 Let A and B be comparable HAs and let R be a simulation
from A to B. Then traces.A <:;;;; tracesa.

Proof: Suppose BE traces.4. Then BE tracefrags.4(x.4) for some start state
x.4 of A. Property 1 of the definition of simulation relation implies the exis­
tence of a start state xa of B such that x.4 R xa. Then Theorem 4.12 implies
that B E tracefragsa(xa)- Since xa is a start state of B, this implies that
B E tracesa, as needed. ■

32

Example 4.14 (Vehicle implementation) Now denote the Vehicle HA of
Example 4.2 by Vehicle(t), making the uncertainty parameter explicit. Assume
that O :::; t 1 :::; t 2 . Let A = Vehicle(t 1) and B = Vehicle(t2). \Ye claim that
A :::; B. \Ye can show this by demonstrating that the identity mapping is
a simulation relation from A to B. Since these HAs have no discrete steps,
we need only show Properties 1 and 3 of the definition of simulation relation.
Property 1 is obvious because the two HAs have the same (unique) start state,
which assigns O to both state variables. For Property 3, assume that x.4 R xa
and o: consists of a closed trajectory T of A with o:.fstate = x.4. Let B = o:.
Clearly, Bis a closed hybrid sequence, B.Jstate = xa, trace(B) = trace(o:), and
o:.lstate R B.lstate. It remains to show that B is an execution fragment of B,
that is, that T is a trajectory of B. This follows immediately from the definition
of trajectories for Vehicle(t 1) and Vehicle(t2); the only interesting point is
that, for every t E dom(T), t > 0, we have: [acc-in(t) - t 1 , acc-in(t) + t 1] <:;;;;

[acc-in(t) - t 2 , acc-in(t) + t 2]. ■

Example 4.15 (Controller implementation) Denote the Controller HA of
Example 4.3 by Controller(vmax), making the maximum velocity parameter
explicit. Assume that O:::; vmax1 :::; vmax2 . \Ye claim that Controller(vmax1) :::;

Controller(vmax2); again, we show this by demonstrating that the identity
mapping is a simulation relation. This requires showing all three properties of
the definition of simulation relation. Properties 1 and 3 are immediate, because
vmax does not appear in the definitions of the start states and the trajectories.
For Property 2, the key is that, if vel-sensed + (ace-suggested' + t)d :::; vmax1 ,

then also vel-sensed + (ace-suggested)'+ t)d :::; vmax2 . ■

5 Operations on Hybrid Automata

In this section, we present two kinds of operations on hybrid automata: parallel
composition and hiding.

5.1 Composition

\Ye now introduce the operation of parallel composition for hybrid automata,
which allows an automaton representing a complex system to be constructed
by composing automata representing individual system components. Our com­
position operation identifies external actions with the same name in different
component automata, and likewise for external variables. \Yhen any compo­
nent automaton performs a discrete step involving an action a, so do all com po-

')')
dd

nent automata that have a in their signatures. Likewise, when any component
automaton performs a trajectory involving a particular evolution of values for
an external variable v, then so do all component automata that have v in their
signatures. \Ye prove several results that say that the composition operation
respects our notions of external behavior and implementation.

\Ye define composition as a partial, binary operation on hybrid automata.
Since internal actions of an automaton A1 are intended to be unobservable
by any other automaton A2 , we allow A1 to be composed with A2 only if the
internal actions of A1 are disjoint from the actions of A 2 . Similarly, we require
disjointness of the internal variables of A1 and the variables of A 2 .

Definition 5.1 We say that hybrid automata A1 and A 2 are compatible if
H1 n A2 = H2 n A1 = (/J and X1 n Vi = X2 n Vi = (/J. If A1 and A2 are
compatible then their composition A1IIA2 is defined to be the structure A=
(fV, X, Q, C➔, E, H, D, T) where

• H1 = fVi U fV2 and X = X 1 U X 2.

• Q = {x E val(X) Ix I X1 E Qi/\ x I X2 E Q2}.
• (-:) = {x E Q Ix I X1 E (-:)1 /\ x I X2 E (-:)2}.

• E = E 1 U E 2 and H = H1 U H2.
• For each x, x' E Q and each a E A, x -{,4 x' iff for i = l, 2, either (1)

a EA and XI xi 4i x' I xi, or (2) a(/:_ A and XI xi= x' I Xi.
• T ~ trajs(V) is given by T E T {=} T-!- Vi E Ti /\ T-!- Vi E T;_.

Whenever we write A1 IIA2, we implicitly assume that A1 and A2 are compat­
ible.

Theorem 5.2 If A1 and A2 are hybrid automata then A1IIA2 zs a hybrid
automaton.

Proof: Let A denote A1IIA2 as above. \Ye show that A satisfies the properties
of a hybrid automaton (cf. Section 4.1). Disjointness of H1 and X follows
from disjointness of fVi and X 1 , disjointness of fV2 and X 2 , and compatibility.
Similarly, disjointness of E and H follows from disjointness of E 1 and H 1 ,

disjointness of E 2 and H 2 , and compatibility. Nonemptiness of(-:) follows from
nonemptiness of (-:) 1 and (-:) 2 and disjointness of X 1 and X 2 . \Ye verify the T
properties:

Tl Let T E T, let T
1 be a trajectory such that T

1
:::; T, and let i E {1, 2}.

By the definition of composition, T -J,. Vi E]j. By the definition of prefix,
T

1 -J,. Vi :::; T -J,. Vi- By Tl applied to Ai, T
1 -J,. Vi E]j. Then by definition of

composition, T
1 E T, as needed.

T2 Let T E T, t E dam(T), T
1 = T ~ t, and i E {1, 2}. By the definition of

composition, T -J,. Vi E]j. Then by T2 applied to Ai, (T -J,. Vi) ~ t E]j.
Observe that (T -J,. Vi) ~ t = T

1 -J,. Vi; therefore, T
1 -J,. Vi E]j. Then by the

34

definition of composition, T
1 E T, as needed.

T3 Let To, T1 , T2, ... be a sequence of trajectories in T such that, for each
nonfinal index j, Tj is closed and Tj. lstate = Tj+1.fstate. Let T denote To ~
T1 ~ T2 · · ·, and let i E {1, 2}. By the definition of composition, operation,
for each index j, Tj -.J,. Vi E Ti, and for each nonfinal index j, Tj -.J,. Vi is closed
and (Tj -.J,. Vi).lstate = (Tj+l -.J,. Vi).fstate. By T3 applied to Ai, To -.J,. Vi~ T1 +
Vi~ T2 -!- Vi··· E T;. Observe that T -!- Vi = To -!- Vi~ T1 -!- Vi~ T2 -!- Vi···;
therefore, T -.J,. Vi E T;. Then by the definition of composition, T E T, as
nood~. ■

The following "projection lemma" says that executions of a composition of
HAs project to give executions of the component automata. r,.1oreover, certain
properties of the executions of the composition imply, or are implied by, similar
properties for the component executions.

Lemma 5.3 Let A= A1 IIA2 and let o: be an execution fragment of A. Then
o: 1(A1, Vi) and o: 1(A2, Vi) are execution fragments of A1 and A2 , respectively.
Furthermore,

(1) o: is time-bounded iff both o: 1(A1, Vi) and o: 1(A2, Vi) are time-bounded.
(2) o: is admissible iff both o: 1(A1, Vi) and o: 1(A2, Vi) are admissible.
(8) o: is closed iff both o: 1(A1, Vi) and o: 1(A2, Vi) are closed.
(4) o: is Zeno iff at least one of o: 1(A1, Vi) and o: 1(A2, Vi) is Zeno.
(5) o: is an execution iff both o: 1(A1, Vi) and o: 1(A2, Vi) are executions.

Proof: Simple application of the definitions. ■

Example 5.4 (Composition and Zeno executions) Consider a composi­
tion A= A1 IIA2 in which the two components have no actions or variables in
common. \Ye describe a Zeno execution fragment o: of A in which only one of
the projected execution fragments is Zeno. Namely, let o: = To a1 T1 a2 T2 .. . ,
where T0 .ltime = 1 and for all i 2:: 1, Ti is a point trajectory. Also, all the a/s
are actions of A1 but not of A2 . Then o: 1(A1 , Vi), which includes all the a/s,
is a Zeno execution fragment, whereas o: 1(A2 , Vi), which consists of the single
right-closed trajectory To -.J,. Vi, is a closed execution fragment. ■

Example 5.5 (Execution of vehicle and controller) Consider the Vehicle
and Controller automata of Examples 4.2 and 4.3 (for the same t). These two
HAs are compatible. Their composition is displayed in Figure 5. An example
execution of the composition is the infinite sequence o: = T0 suggestT1 suggestT2 .. . ,
where, for every i and for every t E dam(Ti):

(1) Tdtime = l.

35

Controller

vet-sensed

ace-suggested:

clock

~suggest

ace-in
Vehicle

ace

vel

Fig. 5. Composition of hybrid automata Vehicle and Controller.

(2) Ti(t)(clock) = t.
(3) If i = 0 then Ti(t)(v) is equal to O for v E {ace-suggested, ace-in}, t for

v = ace, and Et for v E { vel, vel-out, vel-sensed}.
(4) If 1 :::; i:::; 2 then Ti(t)(v) is equal to 2 for v E {ace-suggested, ace-in},

2 + t for v = ace, and (2 + t)(i + t) - 2 for v E { vel, vel-out, vel-sensed}.
(5) If i 2:: 3 then Ti(t)(v) is equal to O for v E {ace-suggested, ace-in, ace} and

4 + 3t for v E { vel, vel-out, vel-sensed}.

This execution is admissible. Its projections on the Vehicle and Controller
automata are given by the admissible executions in Examples 4.4 and 4.5,
respectively. ■

The following lemma says that we obtain the same result for an execution
fragment o: of a composition if we first extract the trace and then restrict to
one of the components, or if we first restrict to the component and then take
the trace.

Lemma 5.6 Let A= A1IIA2, and let o: be an execution fragment of A. Then,
for i = l, 2, trace(o:) 1(Ei, fVi) = trace(o: 1(Ai, Vi)).

Proof: Recall that trace(o:) = o: 1(E, fV). The result follows straightforwardly
by Lemma 3.10 and the observation that H1 n fVi = fVi = Vi n fVi and
E n Ei = Ei = A n Ei. ■

The following fundamental theorem relates the set of traces of a composed
automaton to the sets of traces of the component automata. It is expressed
in terms of equality between two sets of traces. Set inclusion in one direction
expresses the idea that a trace of a composition "projects" to yield traces of the
components. Set inclusion in the other direction expresses the idea that traces
of components can be "pasted together" to yield a trace of the composition.

Theorem 5.7 Let A = A1IIA2. Then traces.4 is exactly the set of (E, fV)-

36

sequences whose restrictions to A1 and A2 are traces of A1 and A2 , respec­
tively. That is,

traces.4 ={BI B is (E, fV)-sequence and B 1(Ei, fVi) E traces.4i, i = l, 2}.

Proof: For one direction, suppose that B is a trace of A. Then by definition,
Bis an (E, fV)-sequence. Leto: be an execution of A such that B = trace(o:).
Let i E {1, 2}. Then Lemma 5.6 implies that B 1(Ei, fVi) = trace(o: 1(A, Vi)).
Since, by Lemma 5.3, o: 1(Ai, Vi) is an execution of Ai, B 1(Ei, fVi) is a trace
of Ai.

Conversely, let B be an (E, fV)-sequence such that B 1(Ei, fVi) is a trace of Ai,
i = l, 2. Then there are executions o:1 and o:2 of A1 and A 2 , respectively, such
that, for i = l, 2, trace(o:i) = B 1(Ei, fVi). Decompose 0:1 into o:~~o:}~o:i~. · ·,
decompose o:2 into o:8 ~ o:~ ~ o:~ ~ · · ·, and decompose B into B0 ~ B1 ~ B2 ~ • • •
in such a way that for each j, (1) trace(o:I) = Hi 1(Ei, fVi) for i E {1, 2},
(2) o:J is either a trajectory or an action surrounded by point trajectories,
i E {1, 2}, and (3) if both o:{ and O:i consist of actions surrounded by point
trajectories then these actions are identical. Axioms Tl and T2 imply that
such decompositions exist. 8

Now we define a sequence of execution fragments of A, o:0
, o:1, ... , such that:

(1) o:0 .jstate E (➔ .4,

(2) For every nonfinal j, o:.i. lstate = o:H 1 .fstate, and
(3) For every j, trace(o:.i) = Hi.

By Lemma 4.6, the concatenation o:0 ~ o:1 ~ • • • is an execution of A. r,.1oreover,
by Lemma 3. 9, the trace of this execution is B. To define each o:.i, we distinguish
the following cases:

(1) Each of o:{ and O:i is a trajectory. .
Then suppose that o:{ = T1 and O:i = T2 . Define o:.i to be the function T

with domain dam(T1) such that T(t) = T1 (t) U T2 (t) for every t. (Compat­
ibility of T1 and T2 follows here, and in the remaining three cases, from
the facts that o:{ = Hi 1(E1, fVi) and o:i = Hi 1(E2, fF2).)

(2) o:{ is a trajectory and O:i is an action surrounded by point trajectories.
Then o:{ must be a point trajectory as well. Let o:{ = fJ(v1) and O:i =

fJ(v2)atJ(v;). Then define o:.i to be fJ(v1 U v2) a fJ(v1 U v;).
(3) o:{ is an action surrounded by point trajectories and O:i is a trajectory.

This is symmetric with the previous case.
(4) Each of o:{ and O:i is an action (the same in both cases) surrounded by

point trajectories.

8 See [59] for a detailed existence proof for similar decompositions.

37

Let o:{ = fJ(v 1)atJ(vD and o:~ = fJ(v2)atJ(v;). Define o:.i to be fJ(v 1 U
v2) a fJ(v~ U v;).

It is straightforward to verify that the o:.i fragments satisfy the required prop­
erties. ■

The following theorem describes a basic substitutivity property:

Theorem 5.8 Suppose A1 and A2 are comparable HAs with A1 :::; A2 . Sup­
pose B is an HA that is compatible with each of A1 and A 2 . Then A1IIB and
A2IIB are comparable and A1IIB:::; A2IIB.

Proof: The fact that Ail!B and A2IIB are comparable follows from the fact
that A1 and A2 are comparable and the definition of composition.

Let BE traces.4 1 IIB· By Theorem 5.7, B 1(E1, fVi) E traces.4 1 and B 1(Ea, fVa) E
traces B · Since A1 :::; A 2 , B I (E 1, fVi) E traces .42 • Since A1 and A2 have the
same external interface, (E1, fVi) = (E2, fV2). Thus, B 1(E2, fV2) E traces.42 •

It follows from Theorem 5.7 that BE traces.42 11a- ■

Example 5.9 (Invariant for combined vehicle and controller) Consider
again the composition of the Vehicle and Controller automata of Examples 4.2
and 4.3 (for the same t). In the composed automaton, it turns out that the
velocity is always less than or equal to vmax, that is, in all reachable states,

vel< vmax (12)

This statement may be proved by induction on the length of closed execution
fragments. In the proof, we use the fact that clock :::; d, which follows from the
definition of Q. \Ye also use assertions (3) and (11). In addition, we require
the following auxiliary invariants:

vel + (acc-s,uggested + t) (d - clock) :::; vmax

clock > 0 =} ace:::; acc-s,uggested + t
vel-sensed = vel

0 < clock

(13)

(14)
(15)
(16)

Here the interesting assertion is (13), which says, essentially, that the velocity
will stay less than or equal to vmax if the vehicle accelerates at the currently
suggested acceleration plus t until the next recalculation. The main invariant
(12) and the auxiliary invariants (13)-(16) can all be proved together. All are
easily seen to be true in the initial state. There are two kinds of inductive
steps, for discrete suggest transitions and for trajectories. Discrete transitions

38

are easily seen to preserve all the assertions; the most interesting property
to show is invariant (13), which holds because of the constraints on the new
suggested acceleration, the fact that vel-sensed = vel, and the fact that, in
the new state, clock = 0.

Trajectories also preserve all the assertions; now the interesting thing to show
is the conjunction of (12) and (13). Depending on whether or not ace-suggested+
t 2:: 0, it suffices to show only (12) or only (13). For example, suppose
ace-suggested+ t 2:: 0; we show the auxiliary invariant (13). The trajectory
guarantees that vel' :::; vel + (ace-suggested+ t)t and clock' = clock+ t, where
tis the limit time of the trajectory and unprimed and primed instances of the
variables are used (as usual) to indicate their values at the beginning and end
of the trajectory, respectively. The inequality is based on the integral defini­
tion of vel in terms of ace and the relationship between ace and ace-suggested.
Then

vel' + (acc-s,uggested' + t) (d - clock')

= vel' + (acc-s,uggested + t) (d - clock - t)

= vel' - (acc-s,uggested + t)t + (acc-s,uggested + t) (d - clock)
:::; vel + (acc-s,uggested + t) (d - clock)
< vmax (by inductive hypothesis)

Note that, because of the two kinds of inductive steps, the inductive proof
divides cleanly into separate parts that involve discrete and continuous rea­
sonmg. ■

5.2 Hiding

\Ye define two hiding operations for hybrid automata, which hide external ac­
tions and external variables, respectively, and we prove that these operations
respect the implementation relationship. The hiding operations reclassify ex­
ternal actions or external variables as internal actions or variables.

• If E <:;;;; E.4, then ActHide(E, A) is the HA B that is equal to A except that
Ea = E.4 - E and Ha = H.4 U E.

• If H1 <:;;;; }V.4, then VarHide(fV, A) is the HA B that is equal to A except that
fVa = fV.4 - H1 and Tu= TA-!- (V4 - fV).

Lemma 5.10 Let E <:;;;; E.4 and H1 <:;;;; fV.4. Then ActHide(E, A) and VarHide(fV, A)
are HAs.

Proof: This is a straightforward application of the definitions. ■

39

The following lemma characterizes the traces of the automata that result from
applying the hiding operations:

Lemma 5.11 Let A be an HA.

(1) If E <:;;;; E.4 then trncesActHide(E,.4) = {B 1(E.4 - E, V4) I BE traces.4}.
(2) If H1 <:;;;; }V.4 then trncesvarHide(iV,.4) = {B 1(A.4, }V.4 - fV) I BE traces.4}.

Proof: For (1), first observe that ActHide(E, A) has the same set of executions
as A. Then apply Lemma 3.10. The proof of (2) is straightforward. ■

Theorem 5.12 Suppose A and B are HAs with A:::; B, and suppose E <:;;;; E.4
and H1 <:;;;; fV.4.
Then ActHide(E, A) :::; ActHide(E, B) and VarHide(fV, A) :::; VarHide(fV, B).

Proof: Straightforward, using Lemma 5.11. ■

Example 5.13 (Implementing a velocity specification) In the composi­
tion of the Vehicle and Controller automata defined in Example 5.5, we may
hide the ace-in variable used for communication between the two components.
Thus, we define

A= VarHide({ ace-in}, Vehicle II Controller).

In the resulting automaton A, the only external variable is vel-out.

\Ye may express the correctness of A by showing that it implements an abstract
specification automaton VSpec, displayed in Figure 6, that simply represents
the constraint that the vehicle's velocity is at most vmax. VSpec has one

VSpec

vel

Fig. 6. Specification automaton VSpec.

external variable vel-out, one state variable vel, and its state set consists of
all valuations for vel. Both variables have type R and dynamic type equal to

40

the (pasting closure of the) continuous functions. Initially, vel :::; vmax. VSpec
has no actions. The trajectories of VSpec are those that satisfy:

vel(t):::; vmax fort> 0

vel-O'ut = vel

(17)
(18)

\Ye may argue that A implements VSpec using a simulation relation R. r,.1ost of
the work has already been done by proving invariants, in Example 5.9. Relation
R relates states x.4 of A and xa of B ~ VSpec exactly if x.4 is a reachable
state of A and xa(vel) = x.4(vel). It is easy to see that R satisfies the start
condition of the simulation relation definition. The discrete step condition
follows because discrete actions of A do not change vel. For the trajectory
condition, assume x.4 R xa and T is a trajectory of A with first state x.4.
The definition of R implies that x.4 is a reachable state of A. Therefore all
states in trajectory T are also reachable states of A. Therefore, the invariant
vel :::; vmax, which was proved for A in Example 5.9, is also true of all states
in T. Now define the corresponding execution fragment of B to consist of the
single trajectory T

1 such that T
1

-.J,. vel = T
1

-.J,. vel-out = T -.J,. vel. This satisfies
all the required properties. ■

Example 5.14 (Sensor and discrete controller) \Ye describe how to im­
plement the Controller of Example 4.3, which receives continuous informa­
tion about the vehicle's velocity through vel-out and suggests accelerations,
using two other components: a Sensor, which periodically samples the con­
tinuous velocity information and produces discrete velocity reports, and a
DiscreteController, which uses the discrete velocity reports and immediately
suggests accelerations. These two components are displayed in Figure 7.

vel-out

Sensor

vel-sensed

clock

report(v)

DiscreteController

stable

vet-reported

ace-suggested

(>.suggest

Fig. 7. The hybrid automata Sensor and Discrete Controller.

ace-in

The Sensor automaton has state variables clock and vel-sensed, both initially
0, and external variable vel-out. All variables have type R and dynamic type
equal to the (pasting closure of the) continuous functions. The set Q of states
consists of all valuations in which clock < d. Sensor also has external actions
report (v), v E R. D consists of report (v) steps specified by:

41

clock= d

clock'= 0

v = vel-sensed

(19)
(20)
(21)

That is, when the clock reaches d, the Sensor may reset the clock to 0 and
report the current velocity. Set T consists of trajectories that satisfy:

clock= l

vel-sensed(t) = vel-O'ut(t) for t > 0

(22)
(23)

That is, the clock increases at rate 1 and the velocity sensed is exactly what
is seen in vel-out.

The DiscreteController HA has state variables vel-reported and ace-suggested,
both discrete variables of type R, initially 0, a discrete Boolean state variable
stable, initially true, and one external variable ace-in, of type R and dynamic
type equal to (the pasting closure of) the continuous functions. The state con­
sists of all valuations of the internal variables. The DiscreteController also has
external actions report(v), v E R, and an internal action suggest. D includes
report (v) steps that satisfy:

vel-reported' = v

stable'= false

and suggest steps that satisfy:

stable= false

stable'= true

vel-reported + (acc-s,uggested' + t)d :::; vmax

(24)

(25)

(26)
(27)
(28)

That is, a new velocity report sets the flag that triggers the DiscreteController
to recalculate the suggested acceleration. Trajectories satisfy:

stable(t) = stable(0)

stable(t) = true fort > 0
acc-s,uggested(t) = acc-s,uggested(0)

ace-in= acc-s,uggested

(29)
(30)
(31)
(32)

That is, the DiscreteController does not allow time to pass if stable = false; it
must perform a suggest action after receiving a report input and before time
can pass. The DiscreteController does not change the suggested acceleration
during a trajectory, and submits it accurately to its environment. Now define

42

A= ActHide({report(v) Iv E R}, SensorllDiscreteController).

\Ye claim that A implements B ~ Controller. \Ye may argue this using the
simulation relation R that relates states x.4 of A and xa of Controller pro­
vided that x.4 is a reachable state of A, xa(vel-sensed) = x.4(vel-sensed),
xa (ace-suggested) = XA (ace-suggested) and xa (clock) = XA (clock) if XA (stable) =
true, else d. A key to the argument is that a suggest step occurs in B when
suggest occurs in A, rather than when a report occurs.

Since A :::; Controller, Theorem 5.8 implies All Vehicle :::; Controllerll Vehicle.
Then Theorem 5.12 implies

VarHide({ ace-in}, All Vehicle):::; VarHide({ ace-in}, Controller II Vehicle).

Since, by Example 5.13, VarHide({acc-in}, Controllerll Vehicle):::; VSpec, tran­
sitivity of implementation implies that VarHide({ ace-in}, All Vehicle) imple­
ments VSpec. ■

6 Hybrid I/0 Automata

In this section we refine the hybrid automaton model of Section 4 by dis­
tinguishing between input and output actions and between input and output
variables. The results on simulation relations and operations for hybrid au­
tomata presented in Sections 4.3 and 5 can be extended to this new setting.

6.1 Definition of Hybrid I/O Automata

Definition 6.1 A hybrid I/O automaton (HIOA) A is a tuple (H, U, Y, I, 0)
where

• 1{ = (fV, X, Q, (-:), E, H, D, T) is a hybrid automaton.
• U and Y partition H1 into input and output variables, respectively.

Variables in Z ~ X U Y are called locally controlled; as before, we write
v ~ ivux.

• I and O partition E into input and output actions, respectively.
Actions in L ~ H U O are called locally controlled; as before we write

A~ EUH.
• The following additional axioms are satisfied:

E1 (Input action enabling)
For every x E Q and every a E J, there exists x' E Q such that x ~ x'.

43

E2 (Input trajectory enabling)
For every x E Q and every v E trajs (U), there exists T E T such that
T.jstate = x, T -.J,. U:::; v, and either
(1) T -.J,. U = v, or
(2) T is closed and some l E L is enabled in T.lstate.

Input action enabling is the input enabling condition of ordinary I/O au­
tomata. Input trajectory enabling is a new, corresponding condition for in­
teraction over time intervals. It says that an HIOA should be able to accept
any input trajectory, that is, any trajectory for the input variables, either by
letting time advance for the entire duration of the input trajectory, or by re­
acting with a locally controlled action after some part of the input trajectory
has occurred. In Section 7, we will see that by repeated application of axiom
E2 a HIOA is able to fully accept any input trajectory, possibly interleaved
with locally controlled actions, provided the HIOA does not exhibit unwanted
Zeno behavior.

Note the role of dynamic types in axiom E2. Input trajectory enabling means
that an automaton cannot restrict the inputs. The problem we hit is that with
absolutely no way of restricting the inputs, the inputs were just too ill-behaved.
In examples, we typically want to be able to integrate the input to get the
value of internal variables, but we cannot do this unless the input is integrable.
Axiom E2 states that a HIOA needs to be able to accept any input trajectory
in trajs(U). By definition, the trajectories in trajs(U), when projected on an
individual variable 'U E U, must be in agreement with the dynamic type of
'U. For instance, by taking as the dynamic type of variables in U the set of
piecewise smooth functions, we impose some rather minimal constraints on
the input trajectories that allow us to give meaningful automaton definitions
involving integrals, differential equations, etc.

In control theory it is customary to require causality, that is, the output at
time t depends only upon the input trajectory up to, and possibly including,
time t [71]. In our setting, there is no need to enforce causality explicitly since
it is implied already by the closure of the set of trajectories under prefix and
concatenation. Assume that in a trajectory T the output at time t "depends"
on the input trajectory after t. By prefix closure of trajectories (axiom Tl),
T :SJ t is also a trajectory. Let x be the state of T at time t, and let v be any
input trajectory. By axiom E2 there exists a trajectory T 1 with first state x that
agrees with v (at least up to a certain point). By axiom T3 the concatenation
of T :SJ t and T

1 is again a trajectory. The output of this trajectory at time
t agrees with the output of T at time t, even though the subsequent inputs
will in general be different. It follows that in T the output at time t does not
depend on the input after t, a contradiction. Also note that our definition
does not enforce functional dependence of outputs from inputs: HIOAs may
be nondeterministic, allowing for several possible outputs for any given input

44

trajectory.

It will sometimes be convenient for us to consider automata in which inputs
and outputs are distinguished, but that do not necessarily satisfy the proper­
ties El or E2. \Ye call such an automaton a pre-HIOA.

Notation: As we did for HAs, we denote the components of a (pre-)HIOA
A by 1{.4, U.4, 1'~4, ... , H1.4, X.4, QA, (-:).4, etc., and those of a (pre-)HIOA Ai by
Hi, Ui, l"i, ... , fVi, Xi, Qi, (-:)i, etc. \Ye sometimes omit these subscripts, where
no confusion is likely. \Ye abuse notation slightly by referring to a (pre-)HIOA
A as an HA when we intend to refer to HA.

Example 6.2 (Vehicle and controller HIOAs) The Vehicle HA of Ex­
ample 4.2 can be converted into an HIOA by classifying ace-in as an input
variable and vel-out as an output variable. Property El, input action enabling,
holds vacuously. It is also easy to see that E2 holds, in fact, the first alter­
native always holds-from any state the Vehicle automaton can accept any
input trajectory. Note that, in order for E2 to hold, it is essential that we do
not require inclusion (2) to hold for initial states of trajectories.

Similarly, the Controller HA of Example 4.3 can be converted into an HIOA by
classifying vel-out as an input variable and ace-in as an output variable. Again,
El holds vacuously. To see E2, consider a state x, and an input trajectory
v. The definition of Q implies that x(clock) :::; d. Then the definition of the
Controller trajectories implies that there is some trajectory T starting from
x that is consistent with v and that either spans all of v or stops short, at a
valuation v in which clock = d. Then the definition of the suggest transitions
implies that this locally controlled action is enabled in v IX, as needed. ■

Example 6.3 (Sensor and discrete controller HIOAs) The Sensor au­
tomaton from Example 5.14 can be converted into an HIOA by classifying
vel-out as an input variable and the report actions as output actions. The
argument that Sensor is actually an HIOA is similar to the argument for the
Controller in Example 6.2.

Similarly, the DiscreteController automaton from Example 5.14 can be con­
verted into an HIOA by classifying the report actions as input actions and
the ace-in variable as an output variable. It is straightforward to verify El.
E2 is not completely trivial, even though the automaton has no input vari­
ables: from any state x we must consider "null" input trajectories, which map
a time interval to the empty valuation (the valuation for no variables). If
x(stable) = true, then the Discrete Controller can accept the entire input tra­
jectory, and if x(stable) = false, then suggest is enabled in x. This implies E2.

■

45

6.2 Executions, Traces, and Simulation Relations

An execution of a pre-HI0A A is defined to be an execution of 1{.4, a trace of
A is a trace of 1{.4, and similarly for execution fragments and trace fragments.
\Ye extend the notation execs.4, etc. to pre-HI0As in the obvious way. Two
pre-HI0As A1 and A2 are comparable if their inputs and outputs coincide, that
is, if 11 = h, 0 1 = 0 2, U1 = U2 , and Yt = Y2. If A1 and A2 are comparable,
then A1 :::; A2 is defined to mean that the traces of A1 are included among
those of A2: A1 :::; A2 ~ traces .41 <:;;;; traces .42 •

Lemma 6.4 Let A1 and A2 be two comparable pre-HIOAs. Then 1{1 and 1{2

are comparable and A1:::; A2 iff 1i1:::; H2.

Proof: Immediate from the definitions. ■

The definition of simulation for pre-HI0As is the same as for HAs. Formally,
if A1 and A 2 are comparable pre-HI0As, then a simulation from A1 to A2 is
a simulation from H1 to 1i2 .

Theorem 6.5 If A1 and A2 are comparable pre-HIOAs and there is a simu­
lation from A1 to A2, then A1 :::; A2.

Proof: Immediate from the definition of simulation, Theorem 4.12, and
Lemma 6.4. ■

6. 8 Composition

The definition of composition for HI0As is based on the corresponding defini­
tion for HAs, but also takes the input/output structure into account. Just as
for HAs, we allow an HI0A A1 to be composed with an HI0A A2 only if the
sets of internal actions and variables of A1 are disjoint from the sets of actions
and variables, respectively, of A2 . In addition, in order that the composition
operation might satisfy certain desirable properties (see, for example, the re­
sults in Section 6.5), we require that at most one component should "control"
any given action or variable; that is, we allow A1 and A 2 to be composed only
if the sets of output actions of A1 and A2 are disjoint and the sets of output
variables of A1 and A2 are disjoint.

Formally, we say that pre-HI0As A1 and A2 are compatible if 1{1 and 1{2 are
compatible and

46

Lemma 6.6 If A1 and A2 are compatible pre-HIOAs, then 1{1 and 1{2 are
compatible HAs.

Proof: Immediate from the definitions. ■

If A1 and A2 are compatible pre-HI0As then their composition A1 IIA2 is
defined to be the tuple A= (H, U, Y, I, 0) where

• 1{ = H1IIH2,
• Y = Y1 U Y2,
• U = (U1 u T.h) - Y,
• 0 = 0 1 U 0 2 , and
• I= (11 U 12) - 0.

Thus, an external action or variable of the composition is classified as an
output if it is an output of one of the component automata, and otherwise it
is classified as an input.

The composition of two HI0As (or pre-HI0As) is guaranteed to be a pre­
HI0A:

Theorem 6.7 If A1 and A2 are pre-HIOAs then A1IIA2 is a pre-HIOA.

Proof: Let A denote A1IIA2. Lemma 5.2 implies that 1{ = Hil!H2 is an HA.
By construction, U and Y form a partition of H1 and I and 0 form a partition
of E. This suffices. ■

Example 6.8 (Interfaces for compositions of HIOAs) \Yhen the Vehicle
and Controller HI0As from Example 6.2 are composed, the external interface
of the resulting pre-HI0A consists of U =I= 0 = (/J and Y = { ace-in, vel-out}.
\Yhen the Sensor and DiscreteController from Example 6.3 are composed,
the external interface of the resulting pre-HI0A consists of U = { vel-out},
Y = {ace-in}, I= (/J, and 0 = {report(v) Iv ER}. ■

Composition of pre-HI0As satisfies the following substitutivity result:

Theorem 6.9 Suppose A1 and A2 are comparable pre-HIOAs with A1 :::; A2 .

Suppose B is a pre-HIOA that is compatible with each of A1 and A 2 . Then
A1IIB and A2IIB are comparable and Ail!B:::; A2IIB.

Proof: The fact that A1 and A2 are comparable and the definition of com­
position for pre-HI0As implies that Ail!B and A2IIB are comparable.

Since A1 and A2 are comparable and A1 :::; A2 , Lemma 6.4 implies that 1{.41

47

and H.42 are comparable and H.41 :::; H.42 • Lemma 6.6 implies that H.41 and
Ha are compatible HAs and HA 2 and Ha are compatible HAs. Theorem 5.8
then implies that H.41 IIHa :::; H.42 IIHa. By the definition of composition, it
follows that H.41 IIa :::; H.42 IIa- Then the definition of implementation for pre­
HIOAs implies that A1IIB:::; A2IIB. ■

\Ye would like to show that the composition of two HIOAs is an HIOA; how­
ever, this is not true in general. Property El is preserved by composition:

Lemma 6.10 If A1 and A2 are pre-HIOAs that satisflJ El, then the compo­
sition A1IIA2 also satisfies El.

Proof: Let A= A1IIA2. Assume that A1 and A2 satisfy El. \Ye verify that
A satisfies El. Consider x E Q and a E J. \Ye distinguish three cases.

(1) a E Ii n h. By definition of composition, x I Xi E Qi for i E {1, 2}. Then
by El applied to Ai, there exists a state x~ of Ai such that (x I Xi) ~ix~.
Let x' ~ x~ U x;. \Ye know that x' is well defined since, by compatibility,
X 1 n X 2 = (/J. Then by definition of composition, x' E Q and x ~ x'.

(2) a E Ii - 12 . By definition of composition, x I X 1 E Q1 . By El applied
to A1, there exists a state x~ of A1 such that (x I X 1) ~ 1 x~. Let x' ~
x~ U (x I X 2). \Ye know that x' is well defined since, by compatibility,
X 1 n X 2 = (/J. Then by definition of parallel composition, x' E Q and
x~x'.

(3) a E 12 - Ii. Symmetric to the previous case.
■

However, E2 is not necessarily preserved by composition:

Example 6.11 (Two HIOAs whose composition does not satisfy
E2) Suppose that A1 has no discrete actions, no state variables, one output
variable v1 and one input variable v 2 . All variables are of type R and dynamic
type the (pasting closure of the) continuous functions. The sets Q1 and (-:) 1

of states and start states consist of the unique valuation of the empty set of
variables. The trajectories are all those functions that satisfy v1 (t) = v 2 (t) + 1
for t > 0. It is easy to check that A1 is an HIOA. Define A 2 symmetrically,
with output variable v2 and input variable v1 ; A2 's trajectories are those that
satisfy v2 (t) = v1 (t) + 1 fort> 0.

The composition pre-HIOA, A1IIA2, does not satisfy E2. Satisfying E2 would
require (since the composition has no discrete actions) that the composition
include at least one trajectory with limit time oo starting from the initial
state. However, no such trajectory exists, because the combined constraints
are inconsistent for every t > 0. ■

48

As a way out of the difficulties noted in Example 6.11, we might consider
introducing a static dependency relation -<.A between the external variables
of a hybrid automaton. If :r -<.A y then the value of y is allowed to depend
without delay on the value of :r. As an additional condition for compatibility
of A and B, we would then require that A and B do not share variables :r
and y such that :r -< Ay and y -<a :r. This approach, which is followed, for
example, in the r,.1asaccio language of [33], would rule out the above example.
However, it would also rule out any form of dynamic feedback as studied in
control theory (for instance, PID control) [79]. \Ye therefore think that this
static approach is overly restrictive. \Yithin control theory there is no generally
applicable syntactic criterion to test whether combinations of differential and
algebraic equations are well-defined; consequently, we have no simple criterion
to test whether the composition of two HIOAs satisfies E2.

As a technical way out of the difficulty, we define a stronger notion of com­
patibility. Namely, we say that compatible pre-HIOAs A1 and A2 are strongly
compatible if A1 IIA2 satisfies axiom E2. Strong compatibility says that any
input trajectory v of the composition must be acceptable by the composition:
the two component automata are able to evolve together, following the input
trajectory v, in such a way that either they accept all of v or else they ac­
cept part of v, up to a point where one of them can interrupt with a locally
controlled action.

Theorem 6.12 If A1 and A2 are strongly compatible HIOAs, then A1 IIA2 zs
an HIOA.

Proof: Lemma 6. 7 implies that the composition is a pre-HIOA. Lemma 6.10
implies that the composition satisfies El. Property E2 follows immediately
from strong compatibility. ■

Strong compatibility is a technical notion. By itself, it does not seem to be
very useful, because checking it involves verifying compatibility between the
continuous dynamics of two systems. In Section 6.5, we give some sufficient
conditions for strong compatibility that are easier to check.

6.4 Hiding

The definitions of variable and action hiding extend to any pre-HIOA A. For
input/output automata, we allow hiding outputs only (but not inputs):

(1) If O <:;;;; O.4, then ActHide(O, A) is the pre-HIOA B that is equal to A
except that Oa = O.4 - 0 and Ha= H.4 U 0.

49

(2) If Y <:;;;; l'A then VarHide(Y, A) is the pre-HIOA B given by:
• Ha = VarHide(Y, 1-i.4) .
• Yt, = }A - Y.
• Ua = U.4, Ia = I.4, and Oa = 0 A·

Lemma 6.13 Suppose A is a pre-HIOA, 0 <:;;;; 0.4 and Y <:;;;; l'A. Then:

(1) ActHide(O, A) and VarHide(Y, A) are pre-HIOAs.
(2) If A satisfies El then so do ActHide(O, A) and VarHide(Y, A).
(8) If A satisfies E2 then so do ActHide(O, A) and VarHide(Y, A).

Lemma 6.14 Let A be a pre-HIOA.

(1) If O <:;;;; 0.4 then tracesActHide(O,A) = {B 1(E.4 - 0, 1<4) I BE traces.4}.
(2) If Y <:;;;; l'A then trncesvarHide(Y,.4) = {B 1(A.4, }V.4 - Y) I BE traces.4}.

Proof: Straightforward, see also the proof of Lemma 5.11. ■

Theorem 6.15 Suppose A and B are pre-HIOAs with A :::; B, and suppose
0 <:;;;; 0 A and Y <:;;;; l'A.
Then ActHide(O, A) :::; ActHide(O, B) and VarHide(Y, A) :::; VarHide(Y, B).

Proof: Straightforward, using Lemma 6.14. ■

Example 6.16 (Interfaces for automata with hiding) In Example 5.14,
we defined the HA B ~ VarHide({ ace-in}, All Vehicle), where

A~ ActHide({report(v) Iv E R}, SensorllDiscreteController).

This models the three-way composition of the sensor, discrete controller, and
vehicle, with the internal report actions and acceleration suggestions hidden.
If we interpret the three automata as HIOAs, then these definitions still make
sense because the actions and variables that are hidden are outputs. The
external interface for A is given by U.4 = {vel-out}, }A= {ace-in}, and
I.4 = 0.4 = (/J, and the external interface for Bis given by Ua =Ia= Oa = (/J

and Yi, = { vel-out}. ■

6. 5 Sufficient Conditions for Strong Compatibility

Checking strong compatibility of two HIOAs can be difficult because it requires
checking compatibility between the continuous dynamics of two systems. How-

50

ever, for certain restricted classes of HIOAs, strong compatibility is implied
by compatibility, which is easy to check.

Example 6.17 (HIOAs for which compatibility implies strong com­
patibility) It is routine to verify that two HIOAs without input variables are
strongly compatible if and only if they are compatible. In the classical con­
trol theory setting, a system without input variables is uninteresting because
it cannot be controlled. However, in the hybrid setting, such a system can
still interact with its environment via discrete input actions. Linear hybrid
automata as described in [4,3], for instance, have no input variables.

Symmetrically, two HIOAs without output variables are strongly compatible
if and only if they are compatible. The same equivalence holds if one of the
HIOAs has no input variables and the other has no output variables, or if one
has no external variables at all. ■

The following theorem generalizes all the claims in Example 6.17. It applies
to pairs of HIOAs that cannot mutually affect each other because the output
variables of one are disjoint from the input variables of the other.

Theorem 6.18 Let A1 and A2 be two compatible HIOAs such that U1 n Y2 =
(/J. Then A1 and A2 are strongly compatible.

Proof: Let A denote A1 IIA2 . \Ye need to show that A satisfies E2. Let x
be a state of A and let v be a trajectory in trajs(U). Since U1 n Y2 = (/J, the
definition of composition implies that U1 <:;;;; U. By E2 applied to A1 , there
exists a trajectory T1 E Ti, with T1 .jstate = x I X 1 that is pointwise compatible
with v and such that either dom(T1) = dom(v), or else dom(T1) C dom(v), T1

is closed, and a locally controlled action of A1 is enabled in T1 . lstate.

Let v 2 be ((v I dom(T1)) lJ T1) -.J,. U2 . That is, v 2 is an input trajectory for
A2 . Each input variable of A2 is either an input variable of A or an output
variable of A1 ; the valuations in v 2 for those that are inputs of A are obtained
from v, whereas the valuations for those that are output variables of A1 are
obtained from T1 . By E2 applied to A2 , there exists a trajectory T2 E T;_, with
T2 .jstate = x I X 2 , that is pointwise compatible with v 2 and such that either
dam(T2) = dom(v2), or else dam(T2) C dom(v2), T 2 is closed, and a locally
controlled action of A2 is enabled in T2 .lstate.

In the second case, (T1 I dam(T2)) lJ T2 is a trajectory of T that starts from
x, is pointwise compatible with v, is closed, and enables a locally controlled
action of A (in particular, of A2) in its last state. In the first case, T1 lJ T2

is a trajectory of T that starts from x, is pointwise compatible with v, and
either spans all of v or is closed and enables a locally controlled action of A

51

(in particular, of A1) in its last state. This shows that A satisfies E2. ■

\Ye can also consider HIOAs that do not exhibit any dependencies between
inputs and outputs during a trajectory. In particular, the values of the in­
put variables should affect neither the values of the output variables nor the
amount of time that elapses until a locally controlled action is enabled. For­
mally, we say that an HIOA A is oblivious if it satisfies the following axiom:

OBL For all TE T and v E trajs(U) with dom(T) = dom(v), there exists
T

1 E T such that:
(1) T

1
_J,. U = V.

(2) T
1 -J,. Y = T -J,. Y.

(3) If T is closed and some locally controlled action is enabled in T. lstate
then some locally controlled action is enabled in T1

• lstate.

Theorem 6.19 Let A1 and A2 be two compatible HIOAs and suppose that
A1 is oblivious. Then A1 and A2 are strongly compatible.

Proof: Let A denote A1 IIA2 . \Ye need to show that A satisfies E2. Let x
be a state of A and let v be a trajectory in trajs(U). Let v1 be any trajectory
of trajs(U1) that is pointwise compatible with v and such that dom(v1) =
dom(v). By E2 applied to A1 , there exists a trajectory T1 E Ti, with T1 .jstate =
x I X 1 , that is pointwise compatible with v 1 and such that either dom(T1) =
dom(v1), or else dom(T1) C dom(v1), T1 is closed, and a locally controlled
action of A1 is enabled in T1 .lstate.

Let v2 be ((v I dam (T1)) lJ T1) -!- U2. By E2 applied to A2, there exists a
trajectory T2 E T;_, with T2.jstate = x I X 2 , that is pointwise compatible with
v2 and such that either dam(T2) = dom(v2), or else dam(T2) C dom(v2), T2 is
closed, and a locally controlled action of A2 is enabled in T2.lstate.

Let v~ be ((v I dom(T2)) lJ T2) -!- U1 . By OBL applied to A1 , there exists a
trajectory T{ E Ti such that T{ -!- U1 = v~, T{ -!- Yt = (T1 I dam (T2)) -!- Yt, and
if T1 I dam(T2) is closed and some locally controlled action of A1 is enabled in
its last state, then some locally controlled action is also enabled in T{. lstate. It
follows that T{ and T2 are pointwise compatible, and that T{ lJ T2 is a trajectory
in T that starts from x and is pointwise compatible with v. \Ye claim that
T{ lJ T2 satisfies the requirements for E2. \Ye consider cases:

(1) dom(T2) C dom(v2).
Then T{ lJ T2 is closed and enables a locally controlled action (of A2)

in its last state, which satisfies the requirements for E2.
(2) dom(T2) = dom(v2)(= dom(T1)).

\Ye consider two subcases. First, if dom(T1) C dom(v), then T1 is closed
and enables some locally controlled action (of A1) in its last state. By

52

axiom OBL, some locally controlled action is also enabled in T{ l.JT2.lstate,
which suffices for E2. In the other subcase, if dom(T1) = dom(v), then
T{ lJ T2 spans all of v, which again suffices for E2.

■

Example 6.20 (Oblivious controller) The Controller HIOA of Exam­
ple 4.3 and 6.2 satisfies OBL. During any trajectory T of Controller, velocity
information arrives in vel-out but does not affect the Controller's output; the
output is only changed when a (locally controlled) suggest transition occurs.
Enabling of the suggest action is not affected by changes in vel-out, but only
by the value of clock.

Because Controller is oblivious and compatible with the Vehicle HIOA, The­
orem 6.19 implies that Vehicle and Controller are strongly compatible. It
follows that their composition, Vehicle II Controller, is an HIOA. ■

Example 6.21 (Plant and controller) Figure 8 displays a standard scenario
studied in control theory involving a plant P controlled by a digital controller
C. The interface from the controller to the plant is given by a digital/analog

Input symbol Output symbol

C

A D

p

r,.reasurement Control

Fig. 8. Hybrid Control System.

converter D, while the interface from the plant to the controller is given by
an analog/digital converter A. The controller C monitors the input variables
and changes its output variables only at the clock ticks via some discrete
transitions. Thus, C satisfies OBL. The output variables of A are disjoint
from the input variables of both P and D, and the output variables of P

53

are disjoint from the input variables of D. Thus, if P, C, A, D are pairwise
compatible, then P and A are strongly compatible (by Theorem 6.18), PIIA
and Dare strongly compatible (by Theorem 6.18), and ((PIIA)IID) and Care
strongly compatible (by Theorem 6.19). Hence, ((PIIA)IID)IIC is an HIOA. ■

Example 6.22 (Lipschitz HIOAs) \Ye may define a subclass of HIOAs
called Lipschitz HIOAs, in which some of the state variables are discrete
"mode" variables, and in which, for each mode, the rest of the variables evolve
according to a system of differential equations based on globally Lipschitz func­
tions. \Ye may restrict this class further by imposing a bound on the range of
the input variables (by restricting their dynamic types), thus obtaining the set
of input-bounded Lipschitz HIOAs. Then it is possible to show that two com­
patible input-bounded Lipschitz HIOAs are strongly compatible, which implies
that the composition of two compatible input-bounded Lipschitz HIOAs is a
(Lipschitz) HIOA. A careful development will be reserved for another paper.

■

7 Receptive Hybrid I/0 Automata

In this section, we define the notion of receptiveness for HIOAs. An HIOA
will be defined to be receptive provided that it admits a strategy for resolv­
ing its nondeterministic choices that never generates infinitely many locally
controlled actions in finite time. This notion has two important consequences:
First, a receptive HIOA provides some response from any state, for any se­
quence of discrete input actions and input trajectories. This implies that the
automaton has a nontrivial set of execution fragments, in fact, it has execution
fragments that accommodate any inputs from the environment. The automa­
ton cannot simply stop at some point and refuse to allow time to elapse; it must
allow time to pass to infinity if the environment does so. Second, receptive­
ness is closed under composition. Previous studies of receptiveness properties
include [21,1,74,54].

If HIOA A implements HIOA B and if A is receptive, then besides preserva­
tion of "may" properties (any trace of A is also a trace of B) we also have
preservation of "must" properties. For instance, if in B an input action a al­
ways must be followed by an output b within 10 time units, then this property
will also hold for A: (1) since A is input enabled it will always accept input
a, (2) since A is receptive it will never end up in a time deadlock or a Zeno
execution; time can always advance, (3) A must always perform ab before or
at time 10 since otherwise a trace is generated that is not allowed by B.

54

\Ye formally define receptiveness by first defining what it means for an HIOA
to be progressive. A progressive HIOA never generates infinitely many locally
controlled actions in finite time. Thus, in all of its execution fragments, it
allows time to pass to infinity provided that its environment also does so.
\Ye then define a strategy for resolving nondeterministic choices, and define
receptiveness in terms of the existence of a progressive strategy.

The treatment of receptiveness in this paper is much simpler than that in pre­
vious papers. One reason is that we address only the generation of admissible
executions here, rather than general liveness properties. Also, we formulate
strategies as restricted automata, rather than introducing separate definitions
based on two-player games.

7.1 Progressive HIOAs

\Ye say that an execution fragment of a pre-HIOA is locally-Zeno if it is Zeno
and contains infinitely many locally controlled actions, or equivalently, if it
has finite limit time and contains infinitely many locally controlled actions. A
pre-HIOA A is progressive if it has no locally-Zeno execution fragments.

The following lemma says that any progressive pre-HIOA that satisfies E2,
and therefore any HIOA, is capable of following any input trajectory.

Lemma 7.1 Let A be a progressive pre-HIOA that satisfies property E2, let x
be a state of A, and let v E trajs (U). Then there exists an execution fragment
o: of A such that o:.fstate = x and o: 1(J, U) = v. (Here v denotes the hybrid
sequence consisting of the single trajectory v. Recall that we write a for a
sequence consisting of just a.)

Proof: \Ye construct a finite or infinite sequence o:0 , o:1 , ... of execution frag­
ments of A such that:

(1) o:0 .fstate = x.
(2) For every nonfinal index i, o:i. lstate = o:i+ 1 .jstate.
(3) For every i 2:: 0, (o:o ~ 0:1 ~ · · · ~ o:i) 1(J, U) :::; v.
(4) For every i 2:: 0, either (o:o ~ 0:1 ~ · · · ~ o:i) 1(J, U) = v or o:i includes a

locally controlled action.

The construction is carried out recursively. To define o:0 , we begin with state
x and use E2 either to span all of v, or to span a prefix of v and then perform
a locally controlled action. For i > 0 (assuming that we have not already
spanned all of v), we define o:i by beginning with o:i_ 1.lstate and using E2
either to span the entire suffix of v starting from o:0 ~ · · · ~ o:i_1 . ltime, or to
span a prefix of that suffix and then perform a locally controlled action.

Now we consider two cases:

(1) The construction ends after a finite number of stages, having spanned all
of v, say with Gk as the last execution fragment in the sequence.

In this case, the concatenation Go~ G 1 ~ · · ·~Gk satisfies the conditions
of the lemma.

(2) The construction proceeds through infinitely many stages.
In this case, the execution fragment G ~ Go~ G 1 ~ · · · contains infinitely

many locally controlled actions. Since A is progressive, it must be the
case that G.ltime = oo, and therefore G 1(1, U).ltime = oo. Since the set
of trajectories for U is a cpo, G 1(1, U) :::; v. Since G 1(1, U) < v, and
G 1(1, U).ltime = oo, it follows that G 1(1, U) = v, as needed.

■

The following theorem says that a progressive HIOA is capable of following
not just individual input trajectories, but entire input hybrid sequences.

Theorem 7.2 Let A be a progressive HlOA with state x, and let B be an
(l, U)-sequence. Then there exists an execution fragment G of A such that
G.jstate = x and G 1(1,[I) = B.

Proof: Let B = Toa 1 T1 a 2 T2 \Ye define a finite or infinite sequence Go, G 1 , ...

of execution fragments of A such that:

(1) G0 .jstate = x.
(2) For every nonfinal index i, Gi. lstate = Gi+ 1 .jstate.
(3) For every i, (Go~ G1 ~ · · · ~ Gi) 1(1, U) = To a1 T1 a2 T2 ... Ti-

The construction is carried out recursively. To define Go, we begin with x and
use Lemma 7.1 to span To- For i > 0, we define Gi by starting with Gi_ 1 .lstate,
using property El to perform action ai and move to a new state, and then
using Lemma 7.1 to span Ti-

Let G = Go G1

needed.
By Lemma 3.8 we conclude that G 1(1, U) B, as

■

The property asserted in Theorem 7.2 has been called 1/0 feasibility elsewhere
in the literature [59]. Thus, we define a pre-HIOA to be 1/0 feasible provided
that, for each state x and each (l, U)-sequence B, there is some execution
fragment G such that G.jstate = x and G 1(1, U) = B. Theorem 7.2 may then
be restated as:

Corollary 7.3 Every progressive HlOA is 1/0 feasible.

56

I/0 feasibility implies that any finite execution fragment can be extended to
an admissible execution in response to any admissible input from the envi­
ronment. A related, weaker property that has also been studied is feasibility
[57]. In terms of our model, we may say that a pre-HIOA is feasible provided
that, for each state x, there is some admissible execution fragment o: such that
o:.fstate = x.

Feasibility implies that any finite execution fragment can be extended to some
admissible execution fragment-no constraints are imposed on the inputs. Ob­
serve that any I/0 feasible HIOA must be feasible, as long as the dynamic
type of each input variable includes at least one admissible trajectory. Feasibil­
ity should be regarded as a minimal liveness requirement that any reasonable
HIOA should satisfy. I/0 feasibility is a strengthened version of feasibility
that takes inputs into account.

Closure under composition is easy to show:

Theorem 7.4 If A1 and A2 are compatible progressive pre-HIOAs, then their
composition is also progressive.

Proof: Let A be AJA2 . Suppose for the sake of contradiction that A is
not progressive. Then, by definition, A has a locally-Zeno execution frag­
ment o:, that is, o: contains infinitely many locally controlled actions of A.
Therefore, o: contains either infinitely many locally controlled actions of A1 or
infinitely many locally controlled actions of A2 . Suppose without loss of gen­
erality that o: contains infinitely many locally controlled actions of A1 . Then,
by Lemma 5.3 and the definition of restriction, o: 1(A1 , Vi) is a time-bounded
execution fragment of A1 with infinitely many locally controlled actions, that
is, a locally-Zeno execution fragment of A1 . This contradicts the assumption
that A1 is progressive. ■

Example 7.5 (Progressive and non-progressive pre-HIOAs) The Vehicle
HIOA is obviously progressive because it has no discrete actions. The Controller
and Sensor HIOAs are progressive because their locally controlled actions are
separated in time. The DiscreteController HIOA is not progressive, because
if report inputs arrive in a Zeno fashion, the DiscreteController may respond
by performing suggest internal actions in a Zeno fashion. However, the com­
position SensorllDiscreteController is progressive.

Consider a more nondeterministic version of Sensor, NSensor, that is allowed
to perform report actions for any value of clock (:S: d), rather than just for
clock = d. Formally, NSensor is identical to Sensor except that condition
(19) is dropped. NSensor is not progressive, because it may perform infinitely
many report actions in finite time. Also, the composition of NSensor with

57

DiscreteController is not progressive. ■

7.2 Strategies

In this subsection, we define the notion of a strategy, which provides a way
to resolve some of the nondeterministic choices in a pre-HIOA. \Ye will use
strategies in the next subsection to define receptiveness.

\Ye define a strategy for a pre-HIOA A to be an HIOA A' that differs from A
only in that D' <:;;;; D and T' <:;;;; T. That is, we require:

• D'CD.
• T'<:;;;;T.
• H1 = fV', X = X', Q = Q', (-:) = C➔', E = E', H = H', U = U', Y = Y',

I= I', and O = 0'.

Our strategies are nondeterministic and memoryless. They serve to choose
some of the evolutions that are possible from each state x of A. The fact that
the state set Q' of A' is the same as the state set Q of A implies that A'
chooses evolutions from every state of A.

Strategy notions have been used elsewhere in defining receptiveness, for ex­
ample, in [21,1,74]. In this earlier work, strategies have been formalized using
two-player games rather than restricted automata. Defining strategies using
automata instead of two-player games allows us to avoid introducing extra
mathematical machinery. A drawback of our approach is that it is not appli­
cable in a setting with general liveness properties.

Lemma 7.6 If A' is a strategy for A, then every execution fragment of A' is
also an execution fragment of A.

Theorem 7. 7 Let A1 and A2 be two compatible pre-HIOAs with strongly com­
patible strategies A~ and A;, respectively. Then A~ IIA; is a strategy for A1 IIA2 .

Proof: Let A denote A1 IIA2 and let A' denote A~ IIA;. Since A~ and A;
are strongly compatible, Theorem 6.12 implies that A' is an HIOA. From the
definitions of composition and strategy, A' differs from A only in that D' <:;;;; D
and T' <:;;;; T. Then the definition of strategy implies that A' is a strategy for
A. ■

Lemma 7.8 Let A1 and A2 be two compatible pre-HIOAs with strongly com­
patible strategies A~ and A;, respectively. Then A1 and A2 are strongly com­
patible.

58

Proof: Let A denote A1 IIA2 and let A' denote A~IIA;. Theorem 7.7 implies
that A' is a strategy for A. Since A~ and A; are strongly compatible, their
composition A' satisfies E2. \Ye show that also A satisfies E2.

Let x E Q and let v E trajs (U). Then since A' is a strategy for A, we have
Q' = Q and U' = U, Y' = Y, and so x E Q' and v E trajs(U'). Since A'
satisfies E2, there exists T E T' such that T.jstate = x, T -.J,. U' :::; v, and either
T -.J,. U' = v, or else T is closed and some l E L' is enabled (in A') in T.lstate.

Since A' is a strategy for A, it follows that also T E T, T -.J,. U :::; v, and either
T -.J,. U = v, or else T is closed and some l E L is enabled (in A) in T.lstate.
Therefore, A satisfies E2, that is, A1 and A2 are strongly compatible. ■

Example 7.9 (Strategy for nondeterministic sensor) The Sensor HIOA
defined in Example 5.14 is a strategy for the NSensor HIOA defined in Ex­
ample 7.5. ■

7. 8 Receptive HIOAs

Finally, we define a pre-HIOA to be receptive if it has a progressive strategy.

Example 7.10 (Receptive and non-receptive HIOAs) The NSensor
HIOA of Example 7.5 is not progressive, but it is receptive. That is because the
original Sensor HIOA, as defined in Example 5.14, is a progressive strategy
for NSensor.

The DiscreteController HIOA is not receptive: because any strategy for it
must satisfy El and E2, such a strategy must be able to perform discrete
steps in response to any report input, and so must be capable of performing
infinitely many suggest actions in finite time.

Consider a variant NDController of DiscreteController that has its own clock
and may wait any amount of time, up to a fixed d' (> 0), to respond to each
report input with a new suggest. (Several reports may occur in succession; a
single suggest may be used to handle all of them, as long as it occurs within
time d' of the first of these reports.) ND Controller is not progressive, because
it has the option of responding immediately to reports, and thus may gener­
ate infinitely many suggestions in finite time. It is receptive, however, using
a progressive strategy that always waits the maximum allowed time before
generating a suggestion. ■

59

The two most important general properties of receptive HIOAs are expressed
by the following two theorems. The first expresses nontriviality-that any re­
ceptive HIOA (or pre-HIOA) can respond to any inputs from the environment.
The second theorem shows that receptiveness is preserved by composition.

Theorem 7.11 Every receptive pre-HIOA is I/O feasible.

Proof: Let A be a receptive pre-HIOA. By definition of receptive, there exists
a progressive strategy A' for A. Since A' is a progressive HIOA, Corollary 7.3
implies that A' is I/O feasible. \Ye show that also A is I/O feasible.

Let x E Q and let B be an (I, U)-sequence. Then since A' is a strategy for
A, we have Q' = Q, I' = I, and U' = U, and so x E Q' and B is an
(I', U')-sequence. Since A' is I/O feasible, there is some execution fragment
o: of A' such that o:.fstate = x and o: 1(1', U') = B. By Lemma 7.6, o: is
also an execution fragment of A. Since A' is a strategy for A, it follows that
o: 1(J, U) = B. Therefore, A is I/O feasible. ■

The question of whether the converse of Theorem 7.11 holds is still open.
Finally, we have our theorem about composability of receptive HIOAs:

Theorem 7.12 Let A1 and A2 be two compatible receptive HIOAs with strongly
compatible progressive strategies A~ and A;, respectively. Then A1 IIA2 is a re­
ceptive HIOA with progressive strategy A~ IIA;.

Proof: Let A and A' denote AillA2 and A~IIA;, respectively. The fact that A
is an HIOA follows from Lemma 7.8 and Theorem 6.12. Theorem 7.7 implies
that A' is a strategy for A. Theorem 7.4 and the fact that A~ and A; are
progressive implies that A' is progressive. Thus, A is a receptive HIOA and
A' is a progressive strategy for A. ■

Example 7.13 (Composition of receptive sensor and receptive dis­
crete controller) As noted in Example 7.10, both NS ens or and ND Controller
are receptive, using progressive strategies that always wait the maximum al­
lowed amount of time. These two strategies are strongly compatible, by Theo­
rem 6.18. Therefore, by Theorem 7.12, the composition NSensorllNDController
is a receptive HIOA with a progressive strategy that is the composition of the
two progressive strategies for the two pieces. ■

60

8 Conclusions

In this paper, we have defined a new hybrid I/0 automaton (HIOA) modeling
framework for describing and reasoning about the behavior of hybrid systems.
r,.rany future research directions remain.

First, the expressive and analytical power of the new model should be tested
further by using it to describe and analyze many more examples. These should
include many of the examples that have been used as illustrations elsewhere in
the hybrid systems literature. The automated transportation examples studied
using the previous version of the HIOA model should be revisited using the
new model to see what changes arise, and new and more ambitious case studies
should be attempted.

It would be interesting to define and prove formal relationships between the
HA and HIOA models of this paper and other models of hybrid systems, in­
cluding those of [63,3,13,8,14,38]. Also, one can define a timed input/output
automaton model by simply restricting the HIOA model of this paper so that
it does not include any external variables. It remains to consider the formal
relationship between this model and other timed automaton models, for ex­
ample, those of [1,5,60,74,65].

It would also be useful to incorporate additional analysis methods, including
assume-guarantee reasoning [16,36] and a variety of methods from control
theory, into the HIOA framework. Control theory methods to consider should
include Lyapunov stability analysis methods [79] and robust control methods
[23]. Results about these methods should be formulated in terms of HIOAs,
and the methods should be extended where necessary in order to accommodate
a combination of discrete and continuous behavior.

Other extensions of the HIOA framework are also desirable. In some prior work
(e.g., [21,1,74]), strategies are used to describe how a system interacts with its
environment to guarantee that the outcome of the interaction satisfies a target
liveness property. In this paper, we do not consider general liveness properties,
but only the special case of admissibility. It remains to extend the theory to
more general liveness properties. Another important extension would be the
addition of probabilities, which would make it possible to model and analyze
probabilistic hybrid systems. Such an extension could be used, for example, to
prove bounds on the probability of errors in safety-critical real-time systems.
This extension appears to be a very challenging problem.

Future work will include tool support for modeling and analysis as described in
this paper. This will include a formal modeling language based on HIOA, with
constructs similar to those used in the examples of this paper, and connections
to a theorem prover. A preliminary language proposal appears in [68].

61

Acknowledgments: \Ye thank Ekaterina Dolginova, Carl Livadas, John Lygeros,
Sayan r,.1itra, and Natasha Neogi for working with versions of our HIOA model
while it was evolving; their questions and observations have helped us greatly
in completing the development of the model. \Ye also thank Paul Attie for
reading and commenting on an earlier version of the paper, and finding a bug
in a definition. Finally, we thank the referees for their insightful reports.

References

[1] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on
Programming Languages and Systems, 1(15):73-132, 1993.

[2] R. Alur. Timed automata. In NATO-AS! Summer School on Veriffration of
Digital and Hybrid Systems. Springer-Verlag, 1998.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Benzinger, P.-H. Ho, X. Nicollin,
A. Olivero, .J.Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3-34, 1995.

[4] R. Alur, C. Courcoubetis, T.A. Benzinger, and P.-H. Ho. Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In
Grossman et al. [28], pages 209-229.

[5] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183-235, 1994.

[6] R. Alur, R. Grosu, I. Lee, and 0. Sokolsky. Compositional refinement of
hierarchical hybrid systems. In Di Benedetto and Sangiovanni-Vincentelli [20],
pages 33-48.

[7] R. Alur and T.A. Benzinger. Reactive modules. In Proceedings of the 11th
IEEE Syposium on Logic in Computer Science, pages 207-218, 1996.

[8] R. Alur and T.A. Benzinger. Modularity for timed and hybrid systems. In
Proceedings of the Ninth International Conference on Concurrency Theory,
volume 1243 of Lecture Notes in Computer Science, pages 74-88. Springer­
Verlag, 1997.

[9] R. Alur, T.A. Benzinger, and E.D. Sontag, editors. Hybrid Systems III, volume
1066 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[10] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems
IV (Fourth International Conference on Hybrid Systems, Ithaca, NY, October
1.9.96), volume 1273 of Lecture Notes in Computer Science. Springer-Verlag,
1997.

[11] D . .J.B. Bosscher, I. Polak, and F.W. Vaandrager. Verification of an audio control
protocol. In Langmaack et al. [41], pages 170-192.

62

[12] A. Bouajjani and 0. Maler, editors. Proceedings Second European Workshop
on Real-Time and Hybrid Systems, Grenoble, France, June 1995.

[13] M.S. Branicky. Studies in Hybrid Systems: Modeling, Analysis, and Control.
PhD thesis, Laboratory for Information and Decision Systems, Massachusetts
Institute of Technology, Cambridge, MA, USA, June 1995.

[14] M.S. Branicky. Analyzing and synthesizing hybrid control systems. In
Rozenberg and Vaandrager [73], pages 74-113.

[15] M.S. Branicky, E. Dolginova, and N.A. Lynch. A toolbox for proving and
maintaining hybrid specifications. In Antsaklis et al. [10], pages 18-30.

[16] E.M. Clarke, 0. Grumberg, and D. Peled. Model Checking. MIT Press,
Cambridge, Massachusetts, 1999.

[17] J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors.
Proceedings REX Workshop on Real-Time: Theory in Practice, Mook, The
Netherlands, June 1991, volume 600 of Lecture Notes in Computer Science.
Springer-Verlag, 1992.

[18] R. De Nicola and F.W. Vaandrager. Action versus state based logics for
transition systems. In I. Guessarian, editor, Semantics of Systems of Concurrent
Processes, Proceedings LITP Spring School on Theoretical Computer Science,
La Roche Posay, France, volume 469 of Lecture Notes in Computer Science,
pages 407-419. Springer-Verlag, 1990.

[19] Roberto DePrisco, Butler Lampson, and Nancy Lynch. Revisiting the Paxos
algorithm. In Marios Mavronicolas and Philippas Tsigas, editors, Distributed
Algorithms 11th International Workshop, WDAG'97, Saarbriicken, Germany,
September 1997 Proceedings, volume 1320 of Lecture Notes in Computer
Science, pages 111-125, Berlin-Heidelberg, 1997. Springer-Verlag.

[20] M.D. Di Benedetto and A.L. Sangiovanni-Vincentelli, editors. Proceedings
Fourth International Workshop on Hybrid Systems: Computation and Control
(HSCC'01), Rome, Italy, volume 2034 of Lecture Notes in Computer Science.
Springer-Verlag, March 2001.

[21] D. Dill. Trace Theory for Automatic Hierarchical Verifi,cation of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1988.

[22] E. Dolginova and N.A. Lynch. Safety verification for automated platoon
maneuvers: A case study. In Maler [62], pages 154-170.

[23] P. Dorato, editor. Robust Control. IEEE Press, New York, 1987.

[24] A. Fehnker. Automotive control revisited- linear inequalities as approximation
of reachable sets. In Benzinger and Sastry [34], pages 110-125.

[25] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using a
partitionable group communication service. A CNI Transactions on Computer
Systems, 19(2):171-216, May 2001.

6')
.J

[26] R. W. Floyd. Assigning meanings to programs. Mathematical Aspects of
Computer Science, pages 19-32, 1967. From Proceedings of Symp. Appl. Math.
1.9.

[27] R. Gawlick, R. Segala, .J.F. S0gaard-Andersen, and N.A. Lynch. Liveness in
timed and untimed systems. In S. Abiteboul and E. Shamir, editors, Proceedings
21 th IC ALP, .Jerusalem, volume 820 of Lecture Notes in Computer Science.
Springer-Verlag, 1994. A full version appears as MIT Technical Report number
MIT /LCS/TR-587.

[28] R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors. Hybrid Systems,
volume 736 of Lecture Notes in Computer Science. Springer-Verlag, 1993.

[29] C.A. Gunter. Semantics of Programming Languages: Structures and Techniques.
MIT Press, Cambridge, Massachusetts, 1992.

[30] Constance Heitmeyer and Nancy Lynch. The generalized railroad crossing: A
case study in formal verification of real-time systems. In Proceedings of the Real­
Time Systems Symposium, pages 120-131, San Juan, Puerto Rico, December
1994. IEEE.

[31] Constance Heitmeyer and Nancy Lynch. Formal verification of real-time
systems using timed automata. In Constance Heitmeyer and Dino Mandrioli,
editors, Formal Nlethods for Real-Time Computing, Trends m Software,
chapter 4, pages 83-106. John Wiley & Sons Ltd, April 1996.

[32] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge,
Massachusetts, 1988.

[33] T.A. Benzinger, M. Minea, and V. Prabhu. Assume-guarantee reasoning for
hierarchical hybrid systems. In Di Benedetto and Sangiovanni-Vincentelli [20],
pages 275-290.

[34] T.A. Benzinger and S. Sastry, editors. Proceedings First International Workshop
on Hybrid Systems: Computation and Control (HSCC'.98), Berkeley, California,
volume 1386 of Lecture Notes in Computer Science. Springer-Verlag, April 1998.

[35] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall
International, Englewood Cliffs, 1985.

[36] C. B. Jones. Development Methods for Computer Programs including a Notion
of Interference. PhD thesis, Oxford University, June 1981. Printed as
Programming Research Group, Technical Monograph 25.

[37] A. Kapur, T.A. Benzinger, Z. Manna, and A. Pnueli. Proving safety properties
of hybrid systems. In Langmaack et al. [41], pages 431-454.

[38] Y. Kesten, Z. Manna, and A. Pnueli. Verification of clocked and hybrid systems.
In Rozenberg and Vaandrager [73], pages 4-73.

[39] L. Lamport. What good is temporal logic? In R.E. Mason, editor, Information
Processing 83, pages 657-668. North-Holland, 1983.

64

[40] L. Lamport. The temporal logic of actions. A CM Transactions on Programming
Languages and Systems, 16(3):872-923, May 1994.

[41] H. Langmaack, W.-P. de Roever, and .J. Vytopil, editors. Proceedings of the
Third International School and Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems (FTRTFT'.94), Lubeck, Germany, September 1994,
volume 863 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

[42] C. Livadas. Formal verifi,cation of safety-critical hybrid systems. Master's thesis,
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, September 1997. Also, MIT /LCS /TR-730.

[43] C. Livadas, .J. Lygeros, and N.A. Lynch. High-level modelling and analysis of
teas. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS'.9.9).
IEEE Computer Society Press, 1999.

[44] C. Livadas and N.A. Lynch. Formal verification of safety-critical hybrid systems.
In Benzinger and Sastry [34], pages 253-272.

[45] Victor Luchangco, Ekrem Soylemez, Stephen Garland, and Nancy Lynch.
Verifying timing properties of concurrent algorithms. In Dieter Hogrefe and
Stefan Leue, editors, Formal Description Techniques VII: Proceedings of the
7th IFIP WG6.1 International Conference on Formal Description Techniques
(FORTE'94, Berne, Switzerland, October 1994), pages 259-273. Chapman and
Hall, 1995.

[46] .J. Lygeros and N.A. Lynch. On the formal verification of the TCAS conflict
resolution algorithms. In Proceedings 36th IEEE Conference on Decision and
Control, San Diego, CA, pages 1829-1834, December 1997. Extended abstract.

[4 7] .J. Lygeros and N .A. Lynch. Strings of vehicles: Modeling and safety conditions.
In Benzinger and Sastry [34], pages 273-288.

[48] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San
Fransisco, California, 1996.

[49] N.A. Lynch. Modelling and verification of automated transit systems, using
timed automata, invariants and simulations. In Alur et al. [9], pages 449-463.

[50] N.A. Lynch. A three-level analysis of a simple acceleration maneuver, with
uncertainties. In Proceedings of the Third AMAST Workshop on Real-Time
Systems, Salt Lake City, Utah, pages 1-22, March 1996.

[51] N.A. Lynch and B.H. Krogh, editors. Proceedings Third International Workshop
on Hybrid Systems: Computation and Control (HSCC 2000), Pittsburgh, PA,
USA, volume 1790 of Lecture Notes in Computer Science. Springer-Verlag,
March 2000.

[52] N.A. Lynch, R. Segala, and F.W. Vaandrager. Hybrid I/O automata revisited.
In Di Benedetto and Sangiovanni-Vincentelli [20], pages 403-417.

[53] N.A. Lynch, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid I/O
automata. In Alur et al. [9], pages 496-510.

65

[54] N.A. Lynch, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid I/O
automata. Report CSI-R9907, Computing Science Institute, University of
Nijmegen, April 1999.

[55] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing, pages 137-151, August 1987. A full version is available
as MIT Technical Report MIT/LCS/TR-387.

[56] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2(3):219-246, September 1989.

[57] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for
timing-based systems. In de Bakker et al. [17], pages 397-446.

[58] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations, I:
Untimed systems. Information and Computation, 121(2):214-233, September
1995.

[59] N.A. Lynch and F.W. Vaandrager. Action transducers and timed automata.
Formal Aspects of Computing, 8(5):499-538, 1996.

[60] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations, II:
Timing-based systems. Information and Computation, 128(1):1-25, July 1996.

[61] N.A. Lynch and H.B. Weinberg. Proving correctness of a vehicle maneuver:
Deceleration. In Bouajjani and Maler [12].

[62] 0. Maler, editor. Proceedings International Workshop on Hybrid and Real­
Time Systems (HART'.97), Grenoble, France, volume 1201 of Lecture Notes in
Computer Science. Springer-Verlag, March 1997.

[63] 0. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In de Bakker
et al. [17], pages 447-484.

[64] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specifi,cation. Springer-Verlag, 1992.

[65] Michael Merritt, Francemary Modugno, and Mark R. Tuttle. Time constrained
automata. In .J. C. M. Baeten and .J. F. Goote, editors, CONCUR '.91:
2nd International Conference on Concurrency Theory (Amsterdam, The
Netherlands, August 1991), volume 527 of Lecture Notes in Computer Science,
pages 408-423. Springer-Verlag, 1991.

[66] R. Milner. Communication and Concurrency. Prentice-Hall International,
Englewood Cliffs, 1989.

[67] R. Milner, .J. Parrow, and D. Walker. A calculus of mobile processes, Part I +
II. Information and Computation, 100(1):1-77, 1992.

[68] Sayan Mitra, Yong Wang, Nancy Lynch, and Eric Feron. Safety verification
of model helicopter controller using hybrid input/output automata. In Hybrid
Systems: Computation and Control (HSCC'0.1), Prague, the Czech Republic,
pages 259-273. LNCS, Springer Verlag, 2003.

66

[69] A. Pnueli. Development of hybrid systems. In Langmaack et al. [41], pages
77-85.

[70] A. Pnueli and J. Sifakis, editors. Special Issue on Hybrid Systems of Theoretical
Computer Science, 138(1). Elsevier Science Publishers, February 1995.

[71] J.W. Polderman and J.C. Willems. Introduction to Mathematical Systems
Theory: A Behavioural Approach, volume 26 of Texts in Applied Mathematics.
Springer-Verlag, 1998.

[72] W.P. de Roever and K. Engelhardt. Data Refi,nement: Model-Oriented Proof
Methods and their Comparison. Cambridge Tracts in Theoretical Computer
Science 47. Cambridge University Press, 1998.

[73] G. Rozenberg and F.W. Vaandrager, editors. Lectures on Embedded Systems,
volume 1494 of Lecture Notes in Computer Science. Springer-Verlag, October
1998.

[74] R. Segala, R. Gawlick, J.F. S0gaard-Andersen, and N.A. Lynch. Liveness in
timed and untimed systems. Information and Computation, 141(2):119-171,
March 1998.

[75] Mark Smith. Formal verification of communication protocols. In
Reinhard Gotzhein and Jan Bredereke, editors, Formal Description Techniques
IX: Theory, Applications, and Tools FORTE/PSTV'96: Joint International
Conference on Formal Description Techniques for Distributed Systems
and Communication Protocols, and Protocol Specification, Testing, and
Verification, Kaiserslautern, Germany, October 1996, pages 129-144. Chapman
& Hall, 1996.

[76] Mark Smith. Formal verification of TCP.
Technical Conference on Telecommunications
279-299, Lowell, MA, March 1996.

In Proceedings of The Second
RfHD in Nlassachusetts, pages

[77] Mark Smith. Reliable message delivery and conditionally-fast transactions are
not possible without accurate clocks. In Proceedings of the 17th Annual ACM
Symposium on the Principles of Distributed Computing, pages 163-171, June
1998.

[78] J. S0gaard-Andersen, S. Garland, J. Guttag, N.A. Lynch, and A. Pogosyants.
Computer-assisted simulation proofs. In C. Courcoubetis, editor, Proceedings
of the 5th International Conference on Computer Aided Verifi,cation, Elounda,
Greece, volume 697 of Lecture Notes in Computer Science, pages 305-319.
Springer-Verlag, 1993.

[79] E.D. Sontag. Mathematical Control Theory - Deterministic Finite
Dimensional Systems, volume 6 of Texts in Applied Mathematics. Springer­
Verlag, 1990.

[80] F.W. Vaandrager and J.H. van Schuppen, editors. Proceedings Second
International Workshop on Hybrid Systems: Computation and Control
(HSCC'.9.9), Berg en Dal, The Netherlands, volume 1569 of Lecture Notes in
Computer Science. Springer-Verlag, March 1999.

67

[81] H.B. Weinberg. Correctness of vehicle control systems: A case study.
Master's thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, February 1996. Also,
MIT /LCS/TR-685.

[82] H.B. Weinberg and N.A. Lynch. Correctness of vehicle control systems: A
case study. In Proceedings of the 17th IEEE Real-Time Systems Symposium
(RTSS'.96), Washington, D.C., pages 62-72. IEEE Computer Society Press,
December 1996.

[83] H.B. Weinberg, N.A. Lynch, and N. Delisle. Verification of automated vehicle
protection systems. In Alur et al. [9], pages 101-113.

68

A Notational Conventions

a, b action

c, d element of some set

J, g, h function

'l, J index

k natural number

l locally controlled action

t time point

'U input variable

v variable

w external variable

:r internal variable

y output variable

z local variable

A set of actions

D set of discrete transitions

E set of external actions

F set of functions

H set of internal (hidden) actions

I set of input actions or index set

J interval or index set

I{ set of time points

L set of locally controlled actions

0 set of output actions

P set of elements in cpo

Q set of automaton states

R (simulation) relation

S set

69

T

u
V

H1

X

y

z
X

V

A, B, C

1{

T

N

R

T

z
V

o:,B,o

7f

p,a

T, V

set of trajectories

set of input variables

set of variables

set of external (Dutch: waarneembare) variables

set of internal variables

set of output variables

set of local variables

state

valuation

hybrid (I/O) automaton

hybrid automaton

set of trajectories

the natural numbers

the real numbers

the time axis

the integers

the universe of variables

hybrid sequence

sequence

the empty sequence

projection function

sequence

trajectory

set of start states

70

