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Abstract 

Hybrid systems are systems that exhibit a combination of discrete and continu­
ous behavior. Typical hybrid systems include computer components, which operate 
in discrete program steps, and real-world components, whose behavior over time 
intervals evolves according to physical constraints. Important examples of hybrid 
systems include automated transportation systems, robotics systems, process con­
trol systems, systems of embedded devices, and mobile computing systems. Such 
systems can be very complex, and very difficult to describe and analyze. 

This paper presents the Hybrid Input/Output Automaton (HIOA) modeling frame­
work, a basic mathematical framework to support description and analysis of hybrid 
systems. An important feature of this model is its support for decomposing hybrid 
system descriptions. In particular, the framework includes a notion of external be­
havior for a hybrid I/O automaton, which captures its discrete and continuous 
interactions with its environment. The framework also defines what it means for 
one HIOA to implement another, based on an inclusion relationship between their 
external behavior sets, and defines a notion of simulation, which provides a suf­
ficient condition for demonstrating implementation relationships. The framework 
also includes a composition operation for HIOAs, which respects the implementa­
tion relation and a notion of receptiveness, which implies that an HIOA does not 
block the passage of time. The framework is intended to support analysis methods 
from both computer science and control theory. 

This work is a simplification of our earlier HIOA model. The main simplification 
in the new model is a clearer separation between the mechanisms used to model dis­
crete and continuous interaction between components. In particular, the new model 
removes the dual use of external variables for discrete and continuous interaction. 
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1 Introduction 

1.1 Overview 

Recent years have seen a rapid growth of interest in hybrid systems-systems 
that intermix discrete and continuous behavior [28,70,12,9,62,10,34,73,80,51,20]. 
Typical hybrid systems include computer components, which operate in dis­
crete program steps, and real-world components, whose behavior over time 
intervals evolves according to physical constraints. Such systems are used in 
many application domains, including automated transportation, avionics, au­
tomotive control, robotics, process control, embedded devices, consumer elec­
tronics, and mobile computing. 

Hybrid systems can be very complex, and therefore very difficult to describe 
and reason about. At the same time, because they involve real-world activity, 
they often have stringent safety requirements. This combination of factors 
leads to a need for rigorous mathematical models for describing hybrid systems 
and their properties, and for practical analysis methods based on these models. 

In this paper, we present a basic mathematical framework to support de­
scription and analysis of hybrid systems: the Hybrid Input/Output Automaton 
modeling framework. A Hybrid I/O Automaton (HIOA) is a kind of nonde­
terministic, possibly infinite-state, state machine. The state of an HIOA is 
divided into state variables, and it may also have additional input variables 
and output variables. The state can change in two ways: instantaneously by 
the occurrence of a discrete transition, or according to some trajectory when 
time passes. Formally, a discrete transition is a triple consisting of a source 
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state, an action (for synchronization with other automata), and a target state. 
Trajectories are functions that describe the evolution of the state variables, 
along with the input and output variables, over intervals of time. Trajectories 
may be continuous or discontinuous functions. 

HIOAs are intended to be used to model all components of hybrid systems, 
including physical components, controllers, sensors, actuators, computer soft­
ware, communication services, and humans that interact with the rest of the 
system. The framework is very general: for example, we do not require that 
trajectories be expressible using systems of equations of a particular form, 
and we do not require that discrete transitions be expressible using a partic­
ular logical language. Particular kinds of systems of equations and particular 
logical languages can be used to define special cases of the general model. 

The most important feature of the hybrid I/0 automaton framework is its sup­
port for decomposing hybrid system description and analysis; this is important 
because many hybrid systems are too complex to understand all at once. A 
key to this decomposition is that the framework includes a rigorously-defined 
notion of external behavior for hybrid I/0 automata, which captures their 
discrete and continuous interactions with their environment. The external be­
havior of each HIOA is defined by a simple mathematical object called a trace. 
The framework also includes notions of abstraction and parallel composition. 

For abstraction, the framework includes notions of implementation and simu­
lation, which can be used to view hybrid systems at multiple levels of abstrac­
tion, starting from a high-level version that describes required properties, and 
ending with a low-level version that describes a detailed design or implementa­
tion. In particular, the HIOA framework defines what it means for one HIOA, 
A, to implement another HIOA, B, namely, any trace that can be exhibited 
by A is also allowed by B. In this case, A might be more deterministic than B, 
in terms of either discrete transitions or trajectories. For instance, B might be 
allowed to perform an output action at an arbitrary time before noon, whereas 
A produces the same output sometime between 10 and 11Ar,.1. Or B might 
allow an output variable y to evolve with Ii E [O, 2], whereas A might ensure 
that Ii = l. 

The notion of a simulation relation from A to B provides a sufficient condition 
for demonstrating that A implements B. A simulation relation is defined to 
satisfy three conditions, one relating start states, one relating discrete transi­
tions, and one relating trajectories of A and B. 

For parallel composition, the framework provides a composition operation, by 
which HIOAs modeling individual hybrid system components can be combined 
to produce a model for a larger hybrid system. The model for the composed 
system can describe interactions among the components, including joint par-



ticipation in discrete transitions and trajectories. Composition requires certain 
"compatibility" conditions, namely, that each output variable and output ac­
tion be controlled by at most one automaton, and that internal variables and 
actions of one automaton cannot be shared by any other automaton. The 
composition operation respects the implementation relation, for example, if 
A1 implements A2 then the composition of A1 and B implements the compo­
sition of A2 and B. Composition also satisfies projection results saying that 
a trace of a composition of HIOAs projects to give traces of the individual 
HIOAs, and pasting results saying that compatible behaviors of components 
are "pastable" to give behaviors of the composition. Such results are essential 
if the models are to be used for compositional design and verification of sys­
tems. In addition, the framework includes hiding operations for output actions 
and variables, which respect the implementation relationship. 

An interesting complication that arises in the hybrid setting is the possibil­
ity that a state machine could "prevent time from passing", for example, by 
blocking it entirely, or by scheduling infinitely many discrete actions to happen 
in a finite amount of time-so-called Zeno behavior. The HIOA framework in­
cludes a notion of receptiveness, which says that an HIOA does not contribute 
to producing Zeno behavior, and which ( under suitable compatibility condi­
tions) is preserved by composition. \Ye also give simple sufficient conditions 
for these compatibility conditions to hold. 

The generality of the HIOA framework means that a large collection of analy­
sis methods, derived from both discrete and continuous analysis methods, can 
be applied to systems modeled as HIOAs. For example, inductive methods 
for proving invariant assertions and simulation relationships (see, e.g, [58,72]), 
which are commonly used in computer science for reasoning about discrete sys­
tems, can be extended to the hybrid setting and expressed by theorems about 
HIOAs. Other discrete analysis methods that should be extendible include 
proving progress using well-founded sets (see, e.g., [26]), assume-guarantee 
compositional reasoning ( e.g., [36,16]), and deducing properties within tem­
poral logic and other logical formalisms. All of these methods could be sup­
ported by interactive theorem proving software. Automatic methods based on 
state-space searching and based on decision procedures for automata on infi­
nite paths (see, e.g., [16]), should also be extendible; however, these methods 
will apply only to special cases of the general model. 

Likewise, key methods used in control theory for reasoning about continuous 
systems, such as stability analysis using Lyapunov functions (e.g., [79]) and 
robust control techniques (e.g., [23]), should be extendible to hybrid systems 
using HIOAs. 
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1.2 Evolution of the HIOA Framework: 

The HIOA framework has evolved from two earlier input/output automaton 
models: the basic I/O automaton model of Lynch and Tuttle [55,56] and the 
timed I/O automaton model of Lynch, Vaandrager et al. [60,74]. Basic I/O 
automata consist essentially of states, start states, and discrete transitions. 
They have been used fairly extensively to describe and analyze asynchronous 
distributed algorithms-see, for example, [48]. 

Timed I/O automata add explicit time-passage steps, which allow time to pass 
in discrete jumps. In the simplest cases, time-passage steps involve just the 
passage of time, with no other changes to the state. However, in general, they 
are allowed to change the state in more elaborate ways, including changing 
variables that represent physical quantities. Timed I/O automata have been 
used mainly to describe timing-based distributed algorithms and communi­
cation protocols (e.g., [78,45,75,76,19,77,25]). Timed I/O automata have also 
been used in a few cases to model simple hybrid system "challenge problems", 
including the Generalized Railroad Crossing problem [30,31]. In these exam­
ples, the time-passage steps include changes to physical quantities such as 
train position and water level. 

An early version of the HIOA modeling framework appeared in [53,54]. It 
augmented timed I/O automata by adding input and output variables and 
explicit trajectories; the trajectories describe the evolution of the state and 
external variables over intervals of time, rather than just their cumulative 
changes. This version of the HIOA framework was used to describe and analyze 
many hybrid systems examples, including automated transportation systems 
[61,49,83,81,82,50,42,44], intelligent vehicle highway systems [22,47], aircraft 
control systems [46,43], automotive control systems [24], and consumer elec­
tronics systems [11]. 

\Ye summarize the results of these modeling efforts briefly. In these exam­
ples, HIOAs were used to model system components of many different kinds, 
including real-world components, computer programs, communication chan­
nels, sensors, actuators, and humans (for example, pilots interacting with air­
craft control systems). Individual component automata were generally highly 
nondeterministic, and often allowed for bounded uncertainty in the values of 
quantities represented in the state. Component states often included timing in­
formation, for example, the current time and deadlines for the performance of 
certain actions. Composition was used to combine the component HIOAs into 
models of the complete systems. Levels of abstraction were used to describe 
several kinds of relationships between HIOAs, for example: the relationship 
between a detailed view of a system and a more abstract view; the relation­
ship between a description of a system in terms of higher derivatives (e.g., 
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acceleration) and a description in terms of lower derivatives (e.g., velocity or 
position); and the relationship between a version of a system that includes 
periodic sampling and correction and a version in which adjustment is contin­
uous, but within an envelope of uncertainty. 

The examples were analyzed using a variety of methods including invariant as­
sertions, simulation relations, compositional reasoning, differential equations 
and integration. r,.1any of the invariants and simulation relations involved tim­
ing data and data representing real-world quantities. Invariants and simulation 
relations were proved using inductive arguments on the length of executions, as 
is usual in the purely discrete setting. However, unlike in the discrete setting, 
the proofs in the hybrid setting included two different kinds of inductive steps: 
for discrete steps and trajectories. Arguments about discrete steps involved the 
sort of algebraic deduction that is typical in the discrete setting, whereas argu­
ments about trajectories involved manipulation of differential equations and 
integrals. For example, a technique involving "positive invariant sets", derived 
from control theory, was used in [15] for showing that certain properties of the 
state are preserved during trajectories. 

In general, the formal HIOA framework proved to be adequate for these exam­
ples. However, it was not ideal, because it introduced some complications that 
proved to be distracting. The main source of complication seemed to be the 
fact that the model has two mechanisms for modeling discrete communication: 
shared actions and shared variables. Also, it uses the same mechanism-shared 
variables-to model both discrete and continuous interaction between compo­
nents. This intertwining of mechanisms led to some technicalities, for example, 
each automaton had to include a special environment action e, which is asso­
ciated with discrete changes to input variables. To simplify matters, we were 
led to develop the new version of the HIOA model presented in this paper. The 
new version has a clearer separation between the mechanisms used to model 
discrete and continuous activity, and has only one mechanism for discrete 
communication: shared actions. 

In the literature on discrete state machine models, both shared actions and 
shared variables are popular mechanisms for modeling interactions between 
system components. The shared action approach is used, for example, in the 
extensive research literature on process algebras (e.g., [35,66,67]), and in the 
work on I/0 automata ( e.g., [55,49]). The shared variable approach is used, 
for example, in the temporal logic and model-checking communities (e.g., 
[64,40,7]). The expressive power of shared action and shared variable commu­
nication is similar, and translations between special cases of these two types 
of models have been developed [39,18]. Choosing between these two forms of 
communication seems to be generally a matter of custom and convenience. 
One advantage of the shared-action approach is that it leads to simple math­
ematical notions of external behavior of state machines, based on sequences 
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of actions ( which are usually called "traces"). 

The new HIOA framework presented in this paper uses (only) shared actions 
for discrete communication, and uses shared variables for continuous commu­
nication. Discrete events are not allowed to make changes to shared variables, 
and the special environment action e is eliminated. Because the new model 
maintains a clearer separation between mechanisms for describing discrete and 
continuous activity, it is simpler overall-in its definitions, result statements, 
and proofs-than the earlier HIOA model of [53,54]. 

Another simplification in the new framework appears in the definitions and 
results involving receptiveness. In the original HIOA model of [53,54], and in 
other work that dealt with receptiveness [21,1,74] for discrete systems, recep­
tiveness was defined in terms of two-player games between the system and its 
environment. In such a game, the goal of the system is to construct an infinite, 
non-Zeno execution, and the goal of the environment is to prevent this from 
happening. The simplification in this material in the new model is a result of 
our modeling of the game itself as an HIOA. 

1. 8 Other Related Wark 

Besides the models already discussed above, other precursors to the new HIOA 
model include the phase transition system models of [63,3,38] and Branicky's 
hybrid control systems [13,14]. Phase transition systems are similar to HIOAs 
in their combined treatment of discrete and continuous activity, for example, 
they have notions similar to our trajectories and hybrid sequences. However, 
work on phase transition system models does not address system decomposi­
tion issues such as external behavior, implementation relationships, and com­
position, which are emphasized in our paper. Branicky's hybrid control systems 
are also similar to ours in their modeling of discrete and continuous activity. 
This work has a control theory flavor, focusing on standard configurations in­
cluding plant, controller, sensor and actuator, and focusing on stability results. 
Again, system decomposition issues are not addressed. 

System decomposition issues, including levels of abstraction, compositionality, 
and receptiveness have been addressed by Alur and Henzinger [8] in their work 
on hybrid reactive modules. A major difference between this work and ours is 
that reactive modules communicate via shared variables and not via shared ac­
tions. Another difference is that hybrid reactive modules include an additional 
layer of structure tailored to modeling synchronous systems-structure that 
is not present in the HIOA model. In [8], a definition of receptiveness based 
on two-player games, similar to the definition in [53,54], is proposed, and is 
shown to be preserved by parallel composition. However, in [8], no circular 
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dependencies ( "feedback loops") are allowed among the continuous variables 
of different components, a restriction that greatly simplifies the analysis. 

In [6,33], compositional trace-based semantics are presented for Statecharts­
like languages that support hierarchical design of hybrid systems. These lan­
guages, called Charon and r,.rasaccio, respectively, allow one to describe hierar­
chical state machines that communicate with their environment using shared 
variables. Communication via shared actions is not supported. Besides parallel 
composition and variable hiding, the languages also contain other operations 
required for the construction of hierarchical state machines, such as variable 
renaming and serial composition. The trace semantics presented in [6,33] for 
Charon and Masaccio is more concrete than the one that we present here: 
discrete events that do not change the observable part of the state are not 
eliminated from traces. As a consequence, a system that just lets time pass 
and performs a discrete "tick" step once every time unit is not an implemen­
tation of the same system without any discrete steps. The two systems are 
equivalent according to the trace semantics of this paper. \Ye believe that our 
semantics are more intuitively appealing; the price we pay is that the proofs of 
our compositionality results are more complicated. [33] also contains some in­
teresting proof rules for assume-guarantee reasoning. In [6,33], Zeno behavior 
and the issue of receptiveness are not considered. 

1.4 Paper Organization 

The rest of this paper is organized as follows. Section 2 contains mathemati­
cal preliminaries. Next, Section 3 defines notions that are useful for describing 
the behavior of hybrid systems, most importantly, trajectories and hybrid 
sequences. Section 4 defines Hybrid Automata (HAs), which contain all of 
the structure of HIOAs except for the classification of external actions and 
variables as inputs or outputs. It also defines external behavior for HAs and 
implementation and simulation relationships between HAs. Section 5 presents 
composition and hiding operations for HAs. Section 6 defines Hybrid I/0 Au­
tomata (HIOAs) by adding an input/output classification to HAs, and extends 
the theory of HAs to HIOAs. It also introduces a "strong compatibility" con­
dition that ensures that HIOAs are composable, and describes situations in 
which strong compatibility is guaranteed to hold. Section 7 presents the the­
ory of receptiveness, including a main theorem stating that receptiveness is 
preserved by composition ( assuming strong com pati bili ty). Finally, Section 8 
presents some conclusions. Examples derived from earlier work on hybrid sys­
tem modeling are included throughout. Appendix A lists some notational con­
ventions used in the paper. 
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2 Mathematical Preliminaries 

In this section, we give basic mathematical definitions that will be used as a 
foundation for our definitions of hybrid automata and hybrid I/O automata. 
These definitions involve functions, sequences, partial orders, and time. The 
automata definitions appear later, in Sections 4 and 6. Since most of the 
definitions here are reasonably standard, we encourage the reader to skip ahead 
to Section 3 and return to this section as needed. 

2.1 Functions 

If f is a function, then we denote the domain and range off by dam(!) and 
range(!), respectively. If also S is a set, then we write f IS for the restriction of 
f to S, that is, the function g with dom(g) = dam(!) nS such that g(c) = f(c) 
for each c E dom(g). 

\Ye say that two functions f and g are compatible if f I dam (g) = g I dam(!). If 
f and g are compatible functions then we write f U g for the unique function h 
with dom(h) = dom(f)Udom(g) satisfying the condition: for each c E dom(h), 
if c E dam(!) then h(c) = f(c) and if c E dom(g) then h(c) = g(c). l\fore 
generally, if F is a set of pairwise compatible functions then we write U F 
for the unique function h with dom(h) = U{ dam(!) I f E F} satisfying the 
condition: for each f E F and c E dam(!), h(c) = f(c). 

If f is a function whose range is a set of functions and Sis a set, then we write 
f -J,. S for the function g with dom(g) = dam(!) such that g(c) = f(c) IS for 
each c E dam (g). The restriction operation -J,. is extended to sets of functions 
by pointwise extension. Also, if f is a function whose range is a set of functions, 
all of which have a particular element d in their domain, then we write f -J,. d 
for the function g with dom(g) = dam(!) such that g(c) = f(c)(d) for each 
c E dom(g ). 

\Ye say that two functions f and g whose ranges are sets of functions are point­
wise compatible if for each c E dom(f)ndom(g), f(c) and g(c) are compatible. 
If f and g have the same domain and are pointwise compatible, then we denote 
by f lJ g the function h with dom(h) = dam(!) such that h(c) = f(c) U g(c) 
for each c E dom(h). 
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2.2 Sequences 

Let S be any set. A sequence over S is a function from a downward closed 
subset of the natural numbers to S. Thus, the domain of a sequence is either 
the set of all natural numbers, or is of the form {O, ... , k }, for some natural 
number k. In the first case we say that the sequence is infinite, and in the 
second case finite. The sets of finite and infinite sequences over S are denoted 
by S* and sw, respectively. Concatenation of a finite sequence with a finite or 
infinite sequence is denoted by juxtaposition. \Ye use ,\ to denote the empty 
sequence, that is, the sequence with the empty domain. The sequence contain­
ing one element c E S is abbreviated as c. \Ye say that a sequence a is a prefix 
of a sequence p, denoted by a :::; p, if a = p I dom(a). Thus, a :::; p if either 
a = p, or a is finite and p = aa' for some sequence a'. If a is a nonempty 
sequence then head (a) denotes the first element of a and tail (a) denotes a 
with its first element removed. r,.1oreover, if a is finite, then last(a) denotes 
the last element of a and init(a) denotes a with its last element removed. 

2. 8 Partial Orders 

\Ye recall some basic definitions and results regarding partial orders (posets), 
and in particular, complete partial orders (cpos) from [29,32]. A partial order 
(poset) is a set S together with a binary relation ~ that is reflexive, antisym­
metric, and transitive. In the sequel, we usually denote posets by the set S 
without explicit mention to the binary relation ~-

A subset P <:;;;; S is bounded ( above) if there is a c E S such that d ~ c for each 
d E P; in this case, c is an upper bound for P. A least upper bound (lub) for 
a subset P <:;;;; S is an upper bound c for P such that c ~ e for every upper 
bound e for P. If P has a lub, then it is necessarily unique, and we denote it 
by LJ P. A subset P <:;;;; S is directed if every finite subset Q of P has an upper 
bound in P. A poset Sis complete, and hence is a complete partial order (cpo) 
if every directed subset P of S has a lub in S. 

\Ye say that P' <:;;;; S dominates P <:;;;; S, denoted by P ~ P', if for every c E P 
there is some c' E P' such that c ~ c'. \Ye use the following two simple lemmas, 
adapted from [32] [Lemmas 3.1.1 and 3.1.2]. 

Lemma 2.1 If P, P' are directed subsets of a cpo S and P ~ P' then LJ P ~ 
LJP'. 

Lemma 2.2 Let P = { ci.i I i E J, j E J} be a doubly indexed subset of a cpo 
S. Let Pi denote the set { ci.i I j E J} for each i E J. Suppose 
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(1) P is directed, 
(2) each Pi is directed with lub ci, and 
(8) the set { ci I i E I} is directed. 

Then UP= LJ{ci Ii EI}. 

A finite or infinite sequence of elements, c0 , c1 , c2 , ... , of a poset S is called a 
chain if Ci ~ ci+l for each non-final index i. \Ye define the limit of the chain, 
limi--+oo Ci, to be the lub of the set { c0 , c1 , c2 , ... } if S contains such a bound; 
otherwise, the limit is undefined. Since a chain is a special case of a directed 
set, each chain of a cpo has a limit. 

A function f : S ----+ S' between posets S and S' is monotone if f ( c) ~ f ( d) 
whenever c ~ d. If f is monotone and Pis a directed set, then the set f (P) = 
{f(c) I c E P} is directed as well. If f is monotone and f(LJ P) = LJ f(P) for 
every directed set P, then f is said to be continuous. 

An element c of a cpo S is compact if, for every directed set P such that 
c ~ LJ P, there is some d E P such that c ~ d. \Ye define K( S) to be the set 
of compact elements of S. A cpo S is algebraic if every c E S is the lub of the 
set { d E K( S) I d ~ c}. A simple example of an algebraic cpo is the set of 
finite or infinite sequences over some given domain, equipped with the prefix 
ordering. Here the compact elements are the finite sequences. 

2.4 Time 

Throughout this paper, we fix a time axis T, which is a subgroup of (R, + ), 
the real numbers with addition. \Ye assume that every infinite, monotone, 
bounded sequence of elements of T has a limit in T. The reader may find it 
convenient to think of T as the set R of real numbers, but the set Z of integers 
and the singleton set {O} are also examples of allowed time axes. \Ye define 
T:2: 0 ~ { t E T I t 2 O}. 

An interval J is a nonempty, convex subset of T. \Ye denote intervals as usual: 
[t1 , t 2] = { t E T I t 1 :::; t :::; t2}, etc. An interval is left-closed (right-closed) 
if it has a minimum (resp., maximum) element, and left-open (right-open) 
otherwise. An interval is closed if it is both left-closed and right-closed, and 
open if it is both left-open and right-open. \Ye write min(J) and max(J) for 
the minimum and maximum elements, respectively, of an interval J (if they 
exist), and inf(J) and sup(J) for the infimum and supremum, respectively, of 
Jin TU{-00,00}. For K <:;;;; T and t ET, we define K +t ~ {t' +t It' EK}. 
Similarly, for a function f with domain K, we define f + t to be the function 
with domain I{+ t satisfying, for each t' E K + t, (f + t) (t') = f (t' - t). 
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3 Describing Hybrid Behavior 

In this section, we give basic definitions that are useful for describing discrete 
and continuous behavior of a system or system component, including discrete 
and continuous changes to the system's state, and discrete and continuous 
flow of information into and out of the system. The key notions are static and 
dynamic types for variables, trajectories, and hybrid sequences. 

8.1 Static and Dynamic Types 

\Ye assume a universal set V of variables. A variable represents either a location 
within the state of a system or a location where information flows from one 
system component to another. For each variable v, we assume both a (static) 
type, which gives the set of values it may take on, and a dynamic type, which 
gives the set of trajectories it may follow. Formally, for each variable v we 
assume the following: 

• type( v ), the (static) type of v. This is a nonempty set of values. 
• dtype ( v), the dynamic type of v. This is a set of functions from left-closed 

intervals of T to type( v) that satisfies the following properties: 
(1) (Closure under time shift) 

For each J E dtype( v) and t E T, J + t E dtype( v ). 
(2) (Closure under subinterval) 

For each J E dtype ( v) and each left-closed interval J <:;;;; dam(!), J I J E 

dtype( v ). 
(3) (Closure under pasting) 

Let Jo, Ji, h, ... be a sequence of functions in dtype(v) such that, for each 
index i such that Ji is not the final function in the sequence, dom(fi) 
is right-closed and max( dom(fi)) = min( dom(JH1 ) ). Then the function J 
defined by J(t) ~ fi(t), where i is the smallest index such that t E dom(fi), 
is in dtype ( v). 

The pasting-closure property is useful for modeling "discontinuities" in the 
evolution of variables caused by discrete transitions. Dynamic types provide a 
convenient way of describing restrictions on system behavior over time inter­
vals, for example, restrictions on the behavior of system input variables. 

Example 3.1 (Discrete variables) Let v be any variable and let C be 
the set of constant functions from a left-closed interval to type ( v). Then C is 
closed under time shift and subinterval. If the dynamic type of v is obtained 
by closing C under the pasting operation, then v is called a discrete variable. 
This is essentially the same as the definition of a discrete variable in [63]. ■ 

12 



Example 3.2 (Standard real-valued function classes) If we take T = R 
and type( v) = R, then other examples of dynamic types can be obtained by 
taking the pasting closure of standard function classes from real analysis, such 
as the set of continuous functions, the set of differentiable functions, the set 
of functions that are differentiable k times (for any k ), the set of smooth 
functions, the set of integrable functions, the set of LP functions ( for any p), 
the set of measurable locally essentially bounded functions [79] , or the set of 
all functions. ■ 

Standard function classes are closed under time shift and subinterval, but not 
under pasting. A natural way of defining a dynamic type is as the pasting 
closure of a class of functions that is closed under time shift and subinterval. 
In such a case, it follows that the new class is closed under all three operations. 

0 4 

Fig. 1. Example of a function in a dynamic type based on continuous functions. 

Example 3.3 (Pasting closure of the continuous functions) Figure 1 
shows an example of an element f in a dynamic type based on (more pre­
cisely, equal to the pasting closure of) a subclass of the continuous functions. 
Function f is defined on the interval [O , 4) and is obtained by pasting together 
four pieces. At the boundary points between these pieces, f takes the value 
specified by the leftmost piece, which makes f continuous from the left. Note 
that f is undefined at time 4. ■ 

In practice, most interesting dynamic types are pasting closures of subclasses 
of the continuous functions. Note that functions in such dynamic types are 
continuous from the left. Elsewhere in the literature on hybrid systems (e.g., 
[37]) , functions that are continuous from the right are considered. To some ex­
tent , the choice of how to define function values at discontinuities is arbitrary. 
An advantage of our choice is a nice correspondence between concatenation 
and prefix ordering of trajectories and hybrid sequences (see Lemmas 3.5 and 
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3.7). 

In this paper, we will occasionally be slightly sloppy and say that the dynamic 
type of a variable v is the function class F, even though Fin not closed under 
the three required operations. In such a case, we mean that the dynamic type 
of v is the function class that results from closing Funder the three operations. 

8. 2 Trajectories 

In this subsection, we define the notion of a trajectory, define operations on 
trajectories, and prove simple properties of trajectories and their operations. 
A trajectory is used to model the evolution of a collection of variables over an 
interval of time. 

8. 2.1 Basic Definitions 

Let V C V be a set of variables. A valuation v for V is a function that 
associates with each variable v E V a value in type( v ). \Ye write val(V) for 
the set of valuations for V. Let J be a left-closed interval of T with left endpoint 
equal to 0. Then a J-trajectory for Vis a function T: J---+ val(V), such that 
for each v E V, T -.J,. v E dtype ( v). A trajectory for V is a J- trajectory for V, 
for any J. \Ye write trajs( V) for the set of all trajectories for V. 

A trajectory for V with domain [O, O] is called a point trajectory for V. If vis 
a valuation for V then fJ(v) denotes the point trajectory for V that maps Oto 
v. \Ye say that a J-trajectory is finite if J is a finite interval, closed if J is a 
(finite) closed interval, open if J is a right-open interval, and full if J = T:2'. 0

. 

If T is a trajectory then T. ltime, the limit time of T, is the sup rem um of dam ( T). 
Also, we define T.jval, the first valuation of T, to be T(O), and if T is closed, 
we define T.lval, the last valuation of T, to be T(T.ltime). For Ta trajectory 
and t E T:2:0

, we define 

T ~ t ~ T 1[0, t], 
T<Jt~Ti[O,t), 

T ~ t ~ ( T 1[t, 00)) - t. 

Note that, since dynamic types are closed under time shift and subintervals, 
the result of applying the above operations is always a trajectory, except when 
the result is a function with an empty domain. By convention, we also write 

6. 6. 
T ~ oo = T and T <J oo = T. 
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8. 2. 2 Prefix Ordering 

Trajectory T is a prefix of trajectory T1
, denoted by T :::; T1

, if T can be obtained 
by restricting T1 to a subset of its domain. Formally, if T and T1 are trajectories 
for V, then T :::; T1 iff T = T1 I dom(T). Alternatively, T :::; T1 iff there exists 
a t E T:2: 0 U { oo} such that T = T1 :SJ t or T = T1 <J t. If T :::; T1 then clearly 
dom(T) <:;;;; dom(T'). If Tis a set of trajectories for V, then pref(T) denotes 
the prefix closure of T, defined by: 

pref (T) ~ {TE trajs( V) I =lT' ET : T :::; T1
}. 

\Ye say that Tis prefix closed if T = pref (T). 

The following lemma gives a simple domain-theoretic characterization of the 
set of trajectories over a given set V of variables: 

Lemma 3.4 Let V be a set of variables. The set trajs ( V) of trajectories for V, 
together with the prefix ordering :::;, is an algebraic cpo. Its compact elements 
are the closed trajectories. 

Proof: It is trivial to check that ( trajs ( V), :::; ) is a partial order. In order to 
prove that it is a cpo, assume that Tis a directed subset of trajs( V). \Ye prove 
that T has a least upper bound. It is routine to check that a set of trajectories 
is directed iff it is totally ordered by prefix. So T is totally ordered. Using 
this, it follows that the trajectories in T are pairwise compatible functions. 
Therefore, function UT is defined. 

\Ye now prove that UT is a trajectory for V. If UT E T then this is imme­
diate. Otherwise, let t E T U { oo} be the supremum of the limit times of all 
trajectories in T. There exists an infinite ascending chain t0 , t 1 , t 2 , ... of limit 
times of trajectories in T such that t = limi--+oo ti and all the ti's are different. 
For each i, let Ti be a trajectory in T with ti = Ti.ltime. Next define, for each 
. ' <J t Th 1 . h . . ' ' ' 1 d 'l, Ti = Ti+l _ i· en, :iy construct10n, t e traJectones To, T1 , T2 , ... are c ose 
and pairwise compatible, and Ui T[ = UT. Let Tl', T{', T&', ... be the sequence 
of functions defined by 

if i > 0. 

By construction, the T["s are closed, pairwise compatible, and ui T[' = ui T[. 
Using the assumption that dynamic types are closed under pasting, it follows 
that ui T[' ( and hence u T) is a trajectory. 

Now we show that UT is a lub for T. It follows immediately from the con­
struction of UT that UT is an upper bound for T. Suppose that T

1 is also 
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an upper bound for T. \Ye prove that UT :::; T
1

• Since each T E T satis­
fies dom(T) <:;;;; dom(T'), also UTET dom(T) <:;;;; dom(T'). By definition of UT, 
dam (UT) = UTET dam ( T). Hence dam (UT) <:;;;; dam ( T1

). Let t be an element 
of dam (UT). Then t is in the domain of some T E T. Since T is a prefix of both 
UT and T1

, (UT)(t) = T'(t). Thus, T1 i dom(UT) = UT, that is, UT:::; T1
• It 

follows that trajs( V) is a cpo. 

\Ye leave it to the reader to check that the closed trajectories are the compact 
elements in this cpo, and that the cpo is algebraic. ■ 

8. 2. 8 Concatenation 

The concatenation of two trajectories is obtained by taking the union of the 
first trajectory and the function obtained by shifting the domain of the second 
trajectory until the start time agrees with the limit time of the first trajectory; 
the last valuation of the first trajectory, which may not be the same as the first 
valuation of the second trajectory, is the one that appears in the concatenation. 
Formally, suppose T and T1 are trajectories for V, with T closed. Then the 
concatenation T ~ T1 is the function given by 

T ~ T1 ~TU (T' 1(0, oo) + T.ltime). 

Because dynamic types are closed under time shift and pasting, it follows that 
T ~ T1 is a trajectory for V. Observe that T ~ T1 is finite (resp., closed, full) if 
and only if T 1 is finite (resp., closed, full). Observe also that concatenation is 
associative. 

The following lemma, which is easy to prove, shows the close connection be­
tween concatenation and the prefix ordering. 

Lemma 3.5 Let T and v be trajectories for V with T closed. Then 

Note that if T:::; v, then the trajectory T1 such that v = T~ T1 is unique except 
that it has an arbitrary value for T

1.jval. Note also that the "-{::::" implication in 
Lemma 3.5 would not hold if the first valuation of the second argument, rather 
than the last valuation of the first argument, were used in the concatenation. 

\Ye extend the definition of concatenation to any (finite or countably infinite) 
number of arguments. Let To, T1 , T2 , ... be a (finite or infinite) sequence of 
trajectories such that Ti is closed for each nonfinal index i. Define trajectories 
Tl, T{, T~, ... inductively by 
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Lemma 3.5 implies that for each nonfinal i, T[ :::; T[+l. \Ye define the concate­
nation To ~ T1 ~ T2 • • • to be the limit of the chain Tl, T{, T&, .. . ; existence of 
this limit follows from Lemma 3.4. 

8.8 Hybrid Sequences 

In this subsection, we introduce the notion of a hybrid sequence, which is used 
to model a combination of changes that occur instantaneously and changes 
that occur over intervals of time. Our definition is parameterized by a set A 
of actions, which are used to model instantaneous changes and instantaneous 
synchronizations with the environment, and a set V of variables, which are 
used to model changes over intervals of time and continuous interaction with 
the environment. \Ye also define some special kinds of hybrid sequences and 
some operations on hybrid sequences, and give basic properties. 

8. 8.1 Basic Definitions 

Fix a set A of actions and a set V of variables. An (A, V)-sequence is a finite 
or infinite alternating sequence o: = To a1 T1 a2 T2 .. . , where 

( 1) each Ti is a trajectory in trajs ( V), 
(2) each ai is an action in A, 
(3) if o: is a finite sequence then it ends with a trajectory, and 
(4) if Ti is not the last trajectory in o: then dom(Ti) is closed. 

A hybrid sequence is an (A, V)-sequence for some A and V. 

Since the trajectories in a hybrid sequence can be point trajectories, our no­
tion of hybrid sequence allows a sequence of discrete actions to occur at the 
same real time, with corresponding changes of variable values. An alternative 
approach is described in [69], where state changes at a single real time are 
modeled using a notion of "superdense time". Specifically, hybrid behavior is 
modeled in [69] using functions from an extended time domain, which includes 
countably many elements for each real time, to states. 

If o: is a hybrid sequence, with notation as above, then we define the limit 
time of o:, o:.ltime, to be I:i Ti.ltime. A hybrid sequence o: is defined to be: 

• time-bounded if o:.ltime is finite. 
• admissible if o:.ltime = oo. 
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• closed if o: is a finite sequence and the domain of its final trajectory is a 
closed interval. 

• Zeno if o: is neither closed nor admissible, that is, if o: is time-bounded 
and is either an infinite sequence, or else a finite sequence ending with a 
trajectory whose domain is right-open. 

A more standard definition of "Zeno" would be simply "a time-bounded infi­
nite sequence". \Ye add the second option to the definition in order to guar­
antee a simple property of the hiding/restriction operator, see Lemma 4.9(2). 
Except for Lemma 4.9(2), all results of this paper hold also for the more stan­
dard definition. \Ye say that a hybrid sequence is "non-Zeno" if it is not Zeno, 
that is, if it is closed or admissible." 

For any hybrid sequence o:, we define the first valuation of o:, o:.fval, to be 
To.fval. Also, if o: is closed, we define the last valuation of o:, o:.lval, to be 
last(o:).lval, that is, the last valuation in the final trajectory of o:. 

8. 8. 2 Prefix Ordering 

\Ye say that ( A, V)-sequence o: = To a 1 T1 ... is a prefix of ( A, V)-sequence 
B = v 0 b1 v1 ... , denoted by o: :::; B, provided that ( at least) one of the following 
holds: 

(1) o:=B. 
(2) o: is a finite sequence ending in some Tk; Ti = Vi and ai+1 = bi+1 for every 

i, 0 :::; i < k; and Tk :::; vk. 

Like the set of trajectories over V, the set of ( A, V)-sequences is a cpo: 

Lemma 3.6 Let V be a set of variables and A a set of actions. The set of 
(A, V)-sequences, together with the prefix ordering :::;, is an algebraic cpo. Its 
compact elements are the closed (A, V)-sequences. 

Proof: \Ye leave to the reader the routine check that:::; is a partial order. Note 
that this uses the fact that :::; is a partial order on trajectories (Lemma 3.4). 

In order to prove that we have a cpo, let S be a directed subset of (A, V)­
sequences. \Ye prove that S has a least upper bound. It is easy to check that 
S is totally ordered by the prefix ordering :::;. \Ye distinguish two cases. 

(1) There is no finite upper bound on the number of trajectories that occur 
in the sequences in S. In this case, we can construct an infinite sequence 
o:0 , o:1 , o:2 ... of elements of S such that, for each i, o:i contains at least i 
actions and i + l trajectories, and o:i :::; o:i+l· For each i E N, let Ti be the 
i + 1-st trajectory ( the one indexed by i) in O:i+1, and for i 2:: 1, let ai be 
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the i-th action in o:i. Let o: = To a 1 T1 a 2 T2 .. .. It is easy to verify that o: 
is an upper bound of the set { o:i I i E N} and in fact, is the only upper 
bound of this set. It follows that o: is the lub of S, as needed. 

(2) There is a finite upper bound k on the number of trajectories that occur 
in the (A, V)-sequences in S. In this case, let S' be the set obtained by 
removing all sequences with fewer than k trajectories from S. Since S' 
is totally ordered, init ( o:) = init ( o:') for any o:, o:' E S'. (Recall that init 
is an ordinary sequence operation-it yields all but the last element of 
the sequence.) Choose any o: E S' and let a = init ( o:). Let T be the set 
of final trajectories of sequences in S'. Again using the fact that S' is 
totally ordered, we obtain that T is totally ordered by the prefix ordering 
on trajectories. Let T be the least upper bound of T ( this upper bound 
exists by Lemma 3.4). It is routine to check that a T is a least upper 
bound of S', and thus of S. 

\Ye leave it to the reader to check that the closed (A, V)-sequences are the 
compact elements in this cpo, and that the cpo is algebraic. ■ 

8. 8. 8 Concatenation 

Suppose o: and o:' are (A, V)-sequences with o: closed. Then the concatenation 
o: ~ o:' is the ( A, V)-sequence given by 

o: ~ o:' ~ init ( o:) ( last ( o:) ~ head ( o:')) tail ( o:'). 

(Here, init, last, head and tail are ordinary sequence operations.) 

Lemma 3.7 Leto: and B be (A, V)-sequences with o: closed. Then 

Note that if o: :::; B, then the ( A, V)-sequence o:' such that B = o: ~ o:' is unique 
except that it has an arbitrary value in val(V) for o:'.fval. 

As we did for trajectories, we extend the concatenation definition for (A, V)­
sequences to any finite or infinite number of arguments. Let o:0 , o:1 , ... be a 
finite or infinite sequence of ( A, V)-sequences such that o:i is closed for each 
nonfinal index i. Define ( A, V)-sequences o:~, o:~, ... inductively by 
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Lemma 3. 7 implies that for each nonfinal i, o:~ :::; o:~+1. \Ye define the concate­
nation o:0 ~ o:1 ···to be the limit of the chain o:~, o:~, ... ; existence of this limit 
is ensured by Lemma 3.6. 

8. 8.4 Restriction 

Let A and A' be sets of actions and let V and V' be sets of variables. The 
(A', V')-restriction of an (A, V)-sequence o:, denoted by o: 1(A', V'), is obtained 
by first projecting all trajectories of o: on the variables in V', then removing the 
actions not in A', and finally concatenating all adjacent trajectories. Formally, 
we define the (A', V')-restriction first for closed ( A, V)-sequences and then 
extend the definition to arbitrary ( A, V)-sequences using a limit construction. 
The definition for closed (A, V)-sequences is by induction on the length of 
those sequences: 

T 1(A', V') = T -.J,. V' if T is a single trajectory, 

, ,, {(o:1(A',V'))a(T-.J,.V') ifaEA', 
o:aT1(A,V )= 

( o: I (A', V')) ~ ( T -.J,. V') otherwise. 

Note that in the case where, due to removal of some action, we concatenate 
two adjacent trajectories, we lose the first state of the second trajectory (by 
letting the last state of the first trajectory dominate). It is easy to see that the 
restriction operator is monotone on the set of closed ( A, V)-sequences. Hence, 
if we apply this operation to a directed set, the result is again a directed set. 
Together with Lemma 3.6, this allows us to extend the definition of restriction 
to arbitrary (A, V)-sequences by: 

o: 1(A', V') = LJ{B 1(A', V') I Bis a closed prefix of o:}. 

Lemma 3.8 (A', V')-restriction is a continuous operation. 

Proof: This follows by general domain-theoretic arguments. For convenience, 
in this proof we write f(o:) as an abbreviation for o: 1(A', V'). 

First we establish that (A', V')-restriction is monotone for arbitrary ( A, V)­
sequences. Let o:, o:' be (A, V)-sequences with o: :::; o:'; we show that f(o:) :::; 
f ( o:'). Let P and P' denote the set of closed prefixes of o: and o:', respec­
tively. By transitivity of the prefix ordering, it follows that P' dominates 
P, that is, P ~ P'. Since the restriction operation is monotone on closed 
(A, V)-sequences, it follows that f(P) ~ f(P'). Then Lemma 2.1 implies that 
LJJ(P) :::; LJJ(P'). By the definition of the restriction operation, this implies 
that f(o:) :::; f(o:'), which shows monotonicity. 
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Now we complete the proof that (A, V)-restriction is continuous by assuming 
that P is any directed set of (A, V)-sequences and showing that f (UP) = 
Uf(P). By the definition of the restriction operation, f(UP) = U{f(B) I 

B is a closed prefix of U P}. By Lemma 3.6 and the definition of compact 
elements, any closed prefix B of UP is also a prefix of some o: E P. Therefore, 
f(UP) = U{f (B) I B is closed and =lo: E P: B is a prefix of o: }. 

Now we apply Lemma 2.2 to the right hand side of this last equation. To do 
this, we must show: 

(1) Q ~ {f (B) I B is closed and =lo: E P : B is a prefix of o:} is a directed set. 
To see this, consider any nonempty finite subset R <:;;;; Q. Each element 
of R is a prefix of some o: E P. Therefore, since P is a directed set, 
there is some single o:' E P such that each element of R is a prefix of o:'. 
Therefore, R is a directed set; since R is finite, it has a lub in R, and 
hence in Q, as needed. 

(2) For each o: E P, {f(B) I B is closed and B is a prefix of o:} is a directed 
set with lub f(o:). The first part follows because the set of closed prefixes 
of o: is a directed set and f is monotone. The second part follows from 
the definition of restriction. 

(3) The set f(P) is directed. This follows because P is a directed set and f 
is monotone. 

Then Lemma 2.2 implies that 

U{f (B) I B is closed and =lo: E P : B is a prefix of o:} = 

= u{f(o:) I 0: E P} = uf(P). 

Thus, f(UP) = Uf (P), as needed. 

The proofs of the following three lemmas are left to the reader. 

Lemma 3.10 (o: 1(A, V)) 1(A', V') = o: 1(A n A', V n V'). 

Lemma 3.11 

(1) o: is time-bounded if and only if o: 1(A, V) is time-bounded. 
(2) o: is admissible if and only if o: 1(A, V) is admissible. 
(8) If o: is closed then o: 1(A, V) is closed. 
(4) If o: is non-Zeno then o: 1(A, V) is non-Zeno. 
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4 Hybrid Automata 

In this section, as a preliminary step toward defining hybrid I/O automata, we 
define a slightly more general hybrid automaton model. In hybrid automata, 
actions and variables are classified as external or internal. External actions 
and variables are not further classified as input or output; the input/output 
distinction is added later, in Section 6. \Ye define how hybrid automata execute 
and define implementation and simulation relations between hybrid automata. 

4.1 Definition of Hybrid Automata 

A hybrid automaton is a state machine whose states are valuations of vari­
ables, and that uses other variables for communication with its environment. 
It also has a set of actions, some of which may be internal and some exter­
nal. The state of a hybrid automaton may change in two ways: by discrete 
transitions, which change the state atomically and instantaneously, and by 
trajectories, which describe the evolution of the state over intervals of time. 
The discrete transitions are labeled with actions; this will allow us to synchro­
nize the transitions of different hybrid automata when we compose them in 
parallel. The evolution described by a trajectory may be described by contin­
uous or discontinuous functions. 

Definition 4.1 A hybrid automaton (HA) A= (fV, X, Q, (-:), E, H, D, T) con­
sists of: 

• A set H1 of external variables and a set X of internal variables, disjoint 
from each other. We write V ~ Hf U X. 

• A set Q <:;;;; val(X) of states. 
• A nonempty set (-:) <:;;;; Q of start states. 
• A set E of external actions and a set H of internal actions, disjoint from 

each other. We write A ~ E U H. 
• A set D <:;;;; Q x Ax Q of discrete transitions. We use x ~Ax' as shorthand 

for (x, a, x') ED. We sometimes drop the subscript and write x ~ x', when 
we think A should be clear from the context. We say that a is enabled in x 
if there exists an x' such that x ~ x'. 

• A set T of trajectories for V such that T(t) IX E Q for every T E T and 
t E dam ( T). Given a trajectory T E T we denote T.jval IX by T.jstate and, 
if T is closed, we denote T.lval IX by T.lstate. We require that the following 
axioms hold: 
T 1 (Prefix closure) 

For every T E T and every T1 
:::; T, T1 E T. 

T2 (Suffix closure) 
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For every TE T and every t E dom(T), T ~ t ET. 

T3 ( Concatenation closure) 
Let To, T1, T2 , ... be a sequence of trajectories in T such that, for each 
nonfinal index i, Ti is closed and Tdstate = Ti+1.fstate. Then To ~ T1 ~ 

T2 .. ·ET. 

Axioms Tl-3 express some natural conditions on the set of trajectories that we 
need to construct our theory. A key part of this theory is a parallel composition 
operation for hybrid automata. In a composed system, any trajectory of any 
component automaton may be interrupted at any time by a discrete transition 
of another (possibly independent) component automaton. Axiom Tl ensures 
that the part of the trajectory up to the discrete transition is a trajectory, and 
axiom T2 ensures that the remainder is a trajectory. Axiom T3 is required 
because the environment of a hybrid automaton, as a result of its own internal 
discrete transitions, may change its continuous dynamics repeatedly, and the 
automaton must be able to follow this behavior. 

The earlier definition of hybrid automata in [53,54] used a special stuttering 
action e instead of axiom T3. Another key difference between the new defini­
tion of hybrid automaton and the earlier one is that in [53,54], the external 
variables were considered to be part of the state. This meant, for example, that 
discrete transitions could depend on the values of these variables, a situation 
that introduced technical complications. A local transition of one automaton 
could change an output variable, which could cause a discrete change in a 
second automaton, which in turn could change an input variable in the first 
automaton. To avoid cyclic constraints during the interaction of systems, we 
had to add several axioms, which complicated the use of our automaton defi­
nitions in applications. 

In the new definition, we explicitly identify the set Q of states as a subset of 
val(X). In the earlier definition of [53,54] any valuation in val(X) was called 
a state. The reason for introducing Q is that in Section 6, we will require that 
in each state each input trajectory is accepted. In actual system descriptions, 
we often encounter valuations which are not reachable from the initial state, 
which in fact we do not want to view as states, and from which no behavior 
is enabled. 4 By excluding these "ghost" valuations from Q, we save ourselves 
the trouble of having to think about them. 

Hybrid automata that have no external variables are very similar to the timed 
automata defined in [ 60, 7 4]. The main difference is that hybrid automata have 
trajectories as a primitive rather than a derived notion. Also, the state of a 
timed automaton need not be organized using variables with particular types 
and dynamic types. 

4 Typical examples are the valuations that do not satisfy the "location invariants" 
of Alur-Dill style timed automata [2]. 
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Notation: \Ye often denote the components of an HA A by }V.4, X.4, Q.4, 
(-:).4, E.4, etc., and the components of an HA /4 by fVi, Xi, Qi (-:)i, Ei, etc. \Ye 
sometimes omit these subscripts, where no confusion seems likely. 

Notation: In examples we typically specify sets of trajectories using differen­
tial and algebraic equations and inclusions. Below we explain a few notational 
conventions that help us in doing this. Suppose the time domain T is R, T 

is a (fixed) trajectory over some set of variables V, and v E V. \Yith some 
abuse of notation, we use the variable name v to denote the function T -.J,. v in 
dam( T) ----+ type( v), which gives the value of v at all times during trajectory T. 
Similarly, we view any expression e containing variables from V as a function 
with domain dom(T). Using these conventions we can say, for example, that 
T satisfies the algebraic equation 

v=e, 

which means that, for every t E dom(T), v(t) = e(t), that is, the constraint on 
the variables expressed by equation v = e holds for each state on trajectory 
T. Suppose that v is a variable and e is a real-valued expression containing 
variables from V. Suppose also that e, when viewed as a function, is integrable. 
Then we say that T satisfies 

v=e 

if, for every t E dom(T), v(t) = v(O) + Ji e(t')dt'. Note that this interpretation 
of the differential equation makes sense even at points where v is not differen­
tiable. A similar interpretation of differential equations is used by Polderman 
and \Yillems [71], who call these "weak solutions". 

In the remainder of this subsection, we give two simple examples of hybrid 
automata. 

Example 4.2 (Vehicle HA) \Ye describe an HA Vehicle, displayed 5 in 
Figure 2, which models a vehicle that follows a suggested acceleration ap­
proximately, to within an error of t 2:: 0. The time domain T is R. The state 
of the Vehicle automaton includes two real-valued internal variables vel and 
ace, which represent the actual velocity and acceleration of the vehicle, re­
spectively. In addition, the automaton has two real-valued external variables, 
vel-out and ace-in, representing reported velocity and suggested acceleration. 

G We use an arrow notation because later on in this paper, in Section 6, we will view 
ace-in as an input variable and vel-out as an output variable. Within the context 
of the present chapter the arrow notation has no meaning. 
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ace-in 

Vehicle 

ace 

vel 

Fig. 2. The hybrid automaton Vehicle. 

The dynamic type of the variables vel, vel-out, and ace-in is the (pasting clo­
sure of the) set of continuous functions. The dynamic type of ace is the set of 
integrable functions. 

Vehicle is defined to be the HA such that H1 = { ace-in, vel-out}, X = 
{ vel, ace}, Q is the set of all valuations of the variables vel and ace, and 
(-:) consists of the single valuation that assigns O to both state variables. The 
set of actions is empty, and (therefore) D, the set of discrete transitions, 1s 
empty. Set T consists of all trajectories that satisfy: 

vel = ace 

acc(t) E [acc-in(t) - t, acc-in(t) + t] fort> 0 

vel-O'ut = vel 

(1) 
(2) 
(3) 

Equation (1) says that the velocity is obtained by integrating the acceleration. 
Inclusion (2) asserts that, except possibly for the left endpoint, the actual ac­
celeration is within t of the suggested acceleration. Equation (3) says that the 
velocity is reported accurately. \Ye leave the reader to show that the trajectory 
axioms Tl-T3 are satisfied; the form of the equations and inclusions used to 
define the trajectories should make this clear. \Ye restrict to the case t > 0 in 
equation (2) because we do not want to impose constraints on input variables 
for the initial state of trajectories. The reason for this restriction is technical 
(it ensures that Vehicle can be viewed as a proper HIOA that satisfies the 
input trajectory enabling property) and should become clearer in Section 6. 

■ 

Example 4.3 (Controller HA) Now we describe an HA Controller, dis­
played in Figure 3, which models a controller that suggests accelerations for 
a vehicle, with the intention of ensuring that the vehicle's velocity does not 
exceed a pre-specified velocity vmax. The controller monitors the vehicle's ve­
locity, and every time d, for some fixed d > 0, it produces a new suggested 
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Controller 

vet-sensed 

ace-suggested: 

clock 

~suggest 

ace-in 

Fig. 3. The hybrid automaton Controller. 

acceleration to be followed for the next time d. The acceleration is chosen in 
such a way that, if it is followed to within an error oft, the velocity will remain 
below vmax (provided the vehicle is not going too fast in the first place). \Ye 
assume that vmax > t d. 

The components of the Controller HA are as follows: H1 = { vel-out, ace-in} 
and X = { vel-sensed, ace-suggested, clock}. All variables are of type R. The 
dynamic types of vel-out, vel-sensed, ace-in, and clock are the (pasting closure 
of the) set of continuous functions, and ace-suggested is a discrete variable. Q 
is the set of valuations of X in which clock :::; d. (-:) consists of one valuation, 
which assigns O to all state variables. E = (/J and H contains the single action 
suggest. Set D consists of the suggest steps specified by G: 

clock= d 
vel-sensed + ( acc-s,uggested' + t )d :::; vmax 

clock'= 0 

vel-sensed' = vel-sensed 

(4) 
(5) 
(6) 
(7) 

Equation ( 4) says that the clock indicates that it is time for the suggested 
acceleration to be computed. Inequality (5) says that the new suggested ac­
celeration is chosen so that, if the vehicle follows it for the next time d, even 
with an error oft, the velocity will still remain at most vmax. Equation (6) 
says that the clock is reset after the discrete transition. Equation (7) says that 
the transition does not change the value of vel-sensed. Set T consists of all 
trajectories that satisfy: 

acc-s,uggested = 0 

clock= l 

(8) 

(9) 

G Here we use the standard convention that v denotes the value of a variable in the 
start state of a discrete transition, and v' denotes the value in the end state. 
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vel-sensed(t) = vel-O'ut(t) 

ace-in= acc-s,uggested 

fort> 0 (10) 

(11) 

Since ace-suggested is a discrete variable, the reader might think that adding 
constraint (8) makes no difference. However, if we expand this constraint using 
our definition of solutions for differential equations, we obtain 

t 

acc-suggested(t) = acc-suggested(O) + j O dt' = acc-suggested(O), 
0 

which means that ace-suggested remains constant throughout the full trajec­
tory. So the effect of adding differential equation (8) is that it rules out the 
jumps that are allowed by the dynamic type of ace-suggested. Equation (9) 
states that clock has rate 1, and is therefore a clock variable in the sense of 
the timed automaton model of [5]. 

Equation (10) says that the velocity sensed by the controller is the same as the 
velocity reported to the controller by its environment. Equation (11) asserts 
that the acceleration that the controller provides to its environment is the 
same as the acceleration that it has most recently computed. Again, we leave 
the reader to show that the trajectory axioms Tl-T3 are satisfied. ■ 

4- 2 Executions and Traces 

\Ye now define execution fragments, executions, trace fragments, and traces, 
which are used to describe automaton behavior. An execution fragment of a 
hybrid automaton A is an (A, V)-sequence o: = To a1 T1 a2 T2 .. . , where (1) 
each Ti is a trajectory in T, and (2) if Ti is not the last trajectory in o: then 

Ti.lstate a~i Ti+1.fstate. An execution fragment records what happens during 
a particular run of a system, including all the instantaneous, discrete state 
changes and all the changes to the state and external variables that occur 
while time advances. \Ye write frags.,4, for the set of all execution fragments of 
A. 

If o: is an execution fragment, with notation as above, then we define the first 
state of o:, o:.fstate, to be To.fstate. \Ye say that o: is an execution fragment 
from a state x if o:.fstate = x. An execution fragment o: is defined to be an 
execution if o:.fstate is a start state, that is, o:.fstate E (-:). \Ye write execs.,4, for 
the set of all executions of A. If o: is a closed (A, V)-sequence then we define 
the last state of o:, o:.lstate, to be last(o:).lstate. A state of A is reachable if it 
is the last state of some closed execution of A. 
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Example 4.4 (Vehicle execution) Since the Vehicle HA of Example 4.2 has 
no discrete steps, each of its executions is a one-element sequence consisting 
of a single trajectory over all the variables of Vehicle. An example of such 

4 

3 

2 

= ace-in 

= ace 

= vel = ve/-out 

-------

-·-·-·-·-·-· 
2 3 

Fig. 4. An execution of the Vehicle (lower two lines after 3 are supposed to coincide). 

an execution, depicted graphically in Figure 4, is the one consisting of the 
trajectory T with T.ltime = oo, and such that: 

acc-in(t) = 

acc(t) = 

0 

2 

0 

E 

if t::; 1, 

if 1 < t ::; 3, 

if t > 3. 

if t ::; 1, 

if 1 < t ::; 3, 

if t > 3. 

vel(t) = vel-out(t) = Et if t::; 1, 

(2 + c)t - 2 if 1 < t::; 3, 

4 + 3c if t > 3. 

Any finite prefix of T would also yield an execution of Vehicle. The trace of T 

is the one-element sequence obtained by projecting Ton { ace-in, vel-out}. ■ 

Example 4.5 (Controller execution) In the Controller HA of Exam-
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ple 4.3, suppose d = 1, so the suggested acceleration is recalculated at times 
1, 2, etc. Also suppose that vmax 2:: 4 + 4t. Then an example execution of 
Controller is the infinite sequence o: = To suggest T1 suggest T2 .. . , where, for 
every i and for every t E dam (Ti) 

(1) Ti.ltime = l. 
(2) Ti(t)(clock) = t. 
(3) If i = 0 then Ti(t)(v) is equal to O for v E {ace-suggested, ace-in} and Et 

for v E { vel-out, vel-sensed}. 
( 4) If 1 :::; i :::; 2 then Ti ( t) (v) is equal to 2 for v E {ace-suggested, ace-in} and 

(2 + t) (i + t) - 2 for v E { vel-out, vel-sensed}. 
( 5) If i 2:: 3 then Ti ( t) (v) is equal to O for v E {ace-suggested, ace-in} and 

4 + 3t for v E { vel-out, vel-sensed}. 

The assumed bound on vmax implies that the suggested accelerations in this 
execution are actually possible suggestions according to the rule given in the 
Controller automaton definition. The trace of execution o: consists of a sin­
gle trajectory because Controller has no external actions. This trajectory is 
defined by: 

acc-in(t) = 0 if t :::; 1, 

2 if 1 < t:::; 3, 

0 if t > 3. 

vel-O'ut(t) = Et if t:::; 1, 

(2+t)t-2ifl<t:c:;3, 

4 + 3t if t > 3. 

■ 

Like trajectories also execution fragments are closed under countable concate­
nation. 

Lemma 4.6 Let o:0 , o:1 , ... be a finite or infinite sequence of execution frag­
ments of A such that, for each nonfinal index i, o:i is closed and o:dstate = 
O:i+1.fstate. Then o:0 ~ 0:1 ~ · · · is an execution fragment of A. 

Proof: Follows easily from the definitions, using axiom T3. ■ 

Lemma 4. 7 Let o: and B be execution fragments of A with o: closed. Then 

o::::; B {:} =lo:' E frags.4 : B = o: ~ o:'. 

29 



Proof: Implication "-{::::" follows directly from the corresponding implication 
in Lemma 3. 7. Implication "⇒" follows from the definitions and T2. ■ 

The external behavior of a hybrid automaton is captured by the set of "traces" 
of its execution fragments, which record external actions and the trajectories 
that describe the evolution of external variables. Formally, if o: is an execution 
fragment, then the trace of o:, denoted by trace(o:), is the (E, fV)-restriction of 
o:. (Recall that E denotes the external actions and H1 the external variables.) 
A trace fragment of a hybrid automaton A from a state x of A is the trace 
of an execution fragment of A from x. \Ye write tracefrags.4(x) for the set 
of trace fragments of A from x. Also, we define a trace of A to be a trace 
fragment from a start state, that is, the trace of an execution of A, and write 
traces .4 for the set of traces of A. 

The following lemma follows trivially from Lemma 3.11: 

Lemma 4.8 If o: is an execution fragment of A then 

( 1) o: is time-bounded if and only if trace ( o:) is time-bounded. 
(2) o: is admissible if and only if trace(o:) is admissible. 
(8) If o: is closed then trace(o:) is closed. 
(4) If o: is non-Zeno then trace(o:) is non-Zeno. 

In parts (3) and ( 4) of the above lemma, the converse implications do not 
hold. Counterexamples can be obtained by taking an execution fragment o: 
that ends with an infinite sequence of internal actions without any delay in 
between. However, a slight weakening of the converse implications does hold: 

Lemma 4.9 If B is a trace fragment of A from state x then 

(1) If B is closed then there exists an execution fragment o: of A from x such 
that trace ( o:) = B and o: is closed. 

(2) If B is non-Zeno then there exists an execution fragment o: of A from x 
such that trace( o:) = B and o: is non-Zeno. 

If the definition of non-Zeno were broadened to include the case of a right­
open final trajectory, then part 2 of the above lemma can fail. It might be that 
the only execution that leads to such a trace is a Zeno execution, one with 
infinitely many internal events, and delays which get smaller and smaller. 

The next definition defines an implementation relation between hybrid au­
tomata in terms of inclusion of traces: a low-level specification A implements 
a high-level specification B if any behavior (trace) of A is also an allowed 
behavior of B. \Yithout additional assumptions, our implementation relation 
only preserves safety properties. However, in Section 7 we will see that if the 
low-level specification automaton is required to be receptive, our implementa-
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tion relation also preserves bounded liveness properties. 

Definition 4.10 Hybrid automata A1 and A2 are comparable if they have the 
same external interface, that is, if fVi = fV2 and E 1 = E 2 . If A1 and A2 are 
comparable then we say that A1 implements A 2 , denoted by A1 :::; A 2 , if the 
traces of A1 are included among those of A2 , that is, if traces.4 1 <:;;;; traces.42 • 

7 

4.8 Simulation Relations 

In this subsection, we define simulation relations between hybrid automata. 
Simulation relations may be used to show that one HA implements another, 
in the sense of inclusion of sets of traces. 

Let A and B be comparable HAs. A simulation from A to B is a relation 
R <:;;;; Q.4 x Qa satisfying the following conditions, for all states x.4 and xa of 
A and B, respectively: 

(1) If x.4 E (-:).4 then there exists a state xa E C➔a such that x.4 R xa. 
(2) If x.4 R xa and o: is an execution fragment of A consisting of one action 

surrounded by two point trajectories, with o:.fstate = x.4, then B has a 
closed execution fragment B with B.Jstate = xa, trace(B) = trace(o:), and 
o:.lstate R B.lstate. 

(3) If x.4 R xa and o: is an execution fragment of A consisting of a single 
closed trajectory, with o:.fstate = x.4, then B has a closed execution 
fragment B with B.Jstate = xa, trace(B) = trace(o:), and o:.lstate R 
B.lstate. 

The definition of a simulation from A to B yields a correspondence for open 
trajectories: 

Lemma 4.11 Let A and B be comparable HAs and let R be a simulation 
from A to B. Let x.4 and xa be states of A and B, respectively, such that 
x.4 R xa. Leto: be an execution fragment of A from state x.4 consisting of a 
single open trajectory. Then B has an execution fragment B with B .fstate = xa 
and trace(B) = trace(o:). 

Proof: Let T be the single open trajectory in o:. Using axioms Tl and T2, we 

7 In [60,27,53,54], definitions of the set of traces of an automaton and of one au­
tomaton implementing another are based on closed and admissible executions only. 
The results we obtain in this paper using the newer, more inclusive definition imply 
corresponding results for the earlier definition. For example, we have the following 
property: If A1 ~ A2 then the set of traces that arise from closed or admissible 
executions of A1 is a subset of the set of traces that arise from closed or admissible 
executions of A2. 
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construct an infinite sequence To, T1, ... of closed trajectories of A such that 
T = To~ T1 ~ · · ·. Then, working inductively, we construct a sequence Bo, B1 , ... 

of closed execution fragments of B such that B0 .fstate = xa and, for each i, 
Tdstate R Bdstate, Bi. lstate = Bi+ 1.fstate, and trace (Ti) = trace (Bi). This 
construction uses induction on i, using Property 3 of the definition of a simu­
lation relation in the induction step. Now let B = Bo~ B1 ~ · · ·. By Lemma 4.6, 
Bis an execution fragment of B. Clearly, B.Jstate = xa. By Lemma 3.9 applied 
to both o: and B, trace(B) = trace(o:). Thus B has the required properties. ■ 

Theorem 4.12 Let A and B be comparable HAs and let R be a simulation 
from A to B. Let x.4 and xa be states of A and B, respectively, such that 
x.4 R xa. Then tracefrags .A ( x.4) <:;;;; tracefrags B ( xa). 

Proof: Suppose that o is the trace of an execution fragment of A that starts 
from x.4; we prove that o is also a trace of an execution fragment of B that 
starts from xa. Let o: = To a 1 T1 a2 T2 ... be an execution fragment of A such 
that o:.fstate = x.4 and o = trace(o:). \Ye consider cases: 

(1) o: is an infinite sequence. 
Using axioms Tl and T2, we can write o: as an infinite concatenation 

o:0 ~ o:1 ~ o:2 · · ·, in which the execution fragments o:i with i even consist 
of a trajectory only, and the execution fragments o:i with i odd consist of 
a single discrete step surrounded by two point trajectories. 

\Ye define inductively a sequence Bo, B1 , ... of closed execution frag­
ments of B, such that B0 .fstate = xa and, for all i, Bdstate = Bi+1.fstate, 
o:i.lstate R Bdstate, and trace(Bi) = trace(o:i)- \Ye use Property 3 of the 
definition of a simulation relation for the construction of the Bi's with 
i even, and Property 2 for the construction of the Bi's with i odd. Let 
B = Bo~ B1 ~ B2 · · ·. By Lemma 4.6, B is an execution fragment of B. 
Clearly, B.Jstate = xa. By Lemma 3.9, trace(B) = trace(o:). Thus B has 
the required properties. 

(2) o: is a finite sequence ending with a closed trajectory. 
Similar to the first case. 

(3) o: is a finite sequence ending with an open trajectory. 
Similar to the first case, using Lemma 4.11. ■ 

Corollary 4.13 Let A and B be comparable HAs and let R be a simulation 
from A to B. Then traces.A <:;;;; tracesa. 

Proof: Suppose BE traces.4. Then BE tracefrags.4(x.4) for some start state 
x.4 of A. Property 1 of the definition of simulation relation implies the exis­
tence of a start state xa of B such that x.4 R xa. Then Theorem 4.12 implies 
that B E tracefragsa(xa)- Since xa is a start state of B, this implies that 
B E tracesa, as needed. ■ 
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Example 4.14 (Vehicle implementation) Now denote the Vehicle HA of 
Example 4.2 by Vehicle(t), making the uncertainty parameter explicit. Assume 
that O :::; t 1 :::; t 2 . Let A = Vehicle(t 1 ) and B = Vehicle(t2 ). \Ye claim that 
A :::; B. \Ye can show this by demonstrating that the identity mapping is 
a simulation relation from A to B. Since these HAs have no discrete steps, 
we need only show Properties 1 and 3 of the definition of simulation relation. 
Property 1 is obvious because the two HAs have the same (unique) start state, 
which assigns O to both state variables. For Property 3, assume that x.4 R xa 
and o: consists of a closed trajectory T of A with o:.fstate = x.4. Let B = o:. 
Clearly, Bis a closed hybrid sequence, B.Jstate = xa, trace(B) = trace(o:), and 
o:.lstate R B.lstate. It remains to show that B is an execution fragment of B, 
that is, that T is a trajectory of B. This follows immediately from the definition 
of trajectories for Vehicle(t 1 ) and Vehicle(t2 ); the only interesting point is 
that, for every t E dom(T), t > 0, we have: [acc-in(t) - t 1 , acc-in(t) + t 1] <:;;;; 

[acc-in(t) - t 2 , acc-in(t) + t 2]. ■ 

Example 4.15 (Controller implementation) Denote the Controller HA of 
Example 4.3 by Controller(vmax), making the maximum velocity parameter 
explicit. Assume that O:::; vmax1 :::; vmax2 . \Ye claim that Controller(vmax1 ) :::; 

Controller(vmax2 ); again, we show this by demonstrating that the identity 
mapping is a simulation relation. This requires showing all three properties of 
the definition of simulation relation. Properties 1 and 3 are immediate, because 
vmax does not appear in the definitions of the start states and the trajectories. 
For Property 2, the key is that, if vel-sensed + ( ace-suggested' + t )d :::; vmax1 , 

then also vel-sensed + (ace-suggested)'+ t )d :::; vmax2 . ■ 

5 Operations on Hybrid Automata 

In this section, we present two kinds of operations on hybrid automata: parallel 
composition and hiding. 

5.1 Composition 

\Ye now introduce the operation of parallel composition for hybrid automata, 
which allows an automaton representing a complex system to be constructed 
by composing automata representing individual system components. Our com­
position operation identifies external actions with the same name in different 
component automata, and likewise for external variables. \Yhen any compo­
nent automaton performs a discrete step involving an action a, so do all com po-
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nent automata that have a in their signatures. Likewise, when any component 
automaton performs a trajectory involving a particular evolution of values for 
an external variable v, then so do all component automata that have v in their 
signatures. \Ye prove several results that say that the composition operation 
respects our notions of external behavior and implementation. 

\Ye define composition as a partial, binary operation on hybrid automata. 
Since internal actions of an automaton A1 are intended to be unobservable 
by any other automaton A2 , we allow A1 to be composed with A2 only if the 
internal actions of A1 are disjoint from the actions of A 2 . Similarly, we require 
disjointness of the internal variables of A1 and the variables of A 2 . 

Definition 5.1 We say that hybrid automata A1 and A 2 are compatible if 
H1 n A2 = H2 n A1 = (/J and X1 n Vi = X2 n Vi = (/J. If A1 and A2 are 
compatible then their composition A1IIA2 is defined to be the structure A= 
(fV, X, Q, C➔, E, H, D, T) where 

• H1 = fVi U fV2 and X = X 1 U X 2. 

• Q = {x E val(X) Ix I X1 E Qi/\ x I X2 E Q2}. 
• (-:) = {x E Q Ix I X1 E (-:)1 /\ x I X2 E (-:)2}. 

• E = E 1 U E 2 and H = H1 U H2. 
• For each x, x' E Q and each a E A, x -{,4 x' iff for i = l, 2, either (1) 

a EA and XI xi 4i x' I xi, or (2) a(/:_ A and XI xi= x' I Xi. 
• T ~ trajs( V) is given by T E T {=} T-!- Vi E Ti /\ T-!- Vi E T;_. 

Whenever we write A1 IIA2, we implicitly assume that A1 and A2 are compat­
ible. 

Theorem 5.2 If A1 and A2 are hybrid automata then A1IIA2 zs a hybrid 
automaton. 

Proof: Let A denote A1IIA2 as above. \Ye show that A satisfies the properties 
of a hybrid automaton ( cf. Section 4.1). Disjointness of H1 and X follows 
from disjointness of fVi and X 1 , disjointness of fV2 and X 2 , and compatibility. 
Similarly, disjointness of E and H follows from disjointness of E 1 and H 1 , 

disjointness of E 2 and H 2 , and compatibility. Nonemptiness of(-:) follows from 
nonemptiness of (-:) 1 and (-:) 2 and disjointness of X 1 and X 2 . \Ye verify the T 
properties: 

Tl Let T E T, let T
1 be a trajectory such that T

1 
:::; T, and let i E {1, 2}. 

By the definition of composition, T -J,. Vi E ]j. By the definition of prefix, 
T

1 -J,. Vi :::; T -J,. Vi- By Tl applied to Ai, T
1 -J,. Vi E ]j. Then by definition of 

composition, T
1 E T, as needed. 

T2 Let T E T, t E dam( T), T
1 = T ~ t, and i E {1, 2}. By the definition of 

composition, T -J,. Vi E ]j. Then by T2 applied to Ai, ( T -J,. Vi) ~ t E ]j. 
Observe that ( T -J,. Vi) ~ t = T

1 -J,. Vi; therefore, T
1 -J,. Vi E ]j. Then by the 
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definition of composition, T
1 E T, as needed. 

T3 Let To, T1 , T2, ... be a sequence of trajectories in T such that, for each 
nonfinal index j, Tj is closed and Tj. lstate = Tj+1.fstate. Let T denote To ~ 
T1 ~ T2 · · ·, and let i E {1, 2}. By the definition of composition, operation, 
for each index j, Tj -.J,. Vi E Ti, and for each nonfinal index j, Tj -.J,. Vi is closed 
and ( Tj -.J,. Vi).lstate = ( Tj+l -.J,. Vi).fstate. By T3 applied to Ai, To -.J,. Vi~ T1 + 
Vi~ T2 -!- Vi··· E T;. Observe that T -!- Vi = To -!- Vi~ T1 -!- Vi~ T2 -!- Vi···; 
therefore, T -.J,. Vi E T;. Then by the definition of composition, T E T, as 
nood~. ■ 

The following "projection lemma" says that executions of a composition of 
HAs project to give executions of the component automata. r,.1oreover, certain 
properties of the executions of the composition imply, or are implied by, similar 
properties for the component executions. 

Lemma 5.3 Let A= A1 IIA2 and let o: be an execution fragment of A. Then 
o: 1(A1, Vi) and o: 1(A2, Vi) are execution fragments of A1 and A2 , respectively. 
Furthermore, 

(1) o: is time-bounded iff both o: 1(A1, Vi) and o: 1(A2, Vi) are time-bounded. 
(2) o: is admissible iff both o: 1(A1, Vi) and o: 1(A2, Vi) are admissible. 
(8) o: is closed iff both o: 1(A1, Vi) and o: 1(A2, Vi) are closed. 
(4) o: is Zeno iff at least one of o: 1(A1, Vi) and o: 1(A2, Vi) is Zeno. 
(5) o: is an execution iff both o: 1(A1, Vi) and o: 1(A2, Vi) are executions. 

Proof: Simple application of the definitions. ■ 

Example 5.4 (Composition and Zeno executions) Consider a composi­
tion A= A1 IIA2 in which the two components have no actions or variables in 
common. \Ye describe a Zeno execution fragment o: of A in which only one of 
the projected execution fragments is Zeno. Namely, let o: = To a1 T1 a2 T2 .. . , 
where T0 .ltime = 1 and for all i 2:: 1, Ti is a point trajectory. Also, all the a/s 
are actions of A1 but not of A2 . Then o: 1(A1 , Vi), which includes all the a/s, 
is a Zeno execution fragment, whereas o: 1(A2 , Vi), which consists of the single 
right-closed trajectory To -.J,. Vi, is a closed execution fragment. ■ 

Example 5.5 (Execution of vehicle and controller) Consider the Vehicle 
and Controller automata of Examples 4.2 and 4.3 (for the same t). These two 
HAs are compatible. Their composition is displayed in Figure 5. An example 
execution of the composition is the infinite sequence o: = T0 suggestT1 suggestT2 .. . , 
where, for every i and for every t E dam( Ti): 

(1) Tdtime = l. 
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Controller 
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Fig. 5. Composition of hybrid automata Vehicle and Controller. 

(2) Ti(t)(clock) = t. 
(3) If i = 0 then Ti(t)(v) is equal to O for v E {ace-suggested, ace-in}, t for 

v = ace, and Et for v E { vel, vel-out, vel-sensed}. 
(4) If 1 :::; i:::; 2 then Ti(t)(v) is equal to 2 for v E {ace-suggested, ace-in}, 

2 + t for v = ace, and (2 + t)(i + t) - 2 for v E { vel, vel-out, vel-sensed}. 
(5) If i 2:: 3 then Ti(t)(v) is equal to O for v E {ace-suggested, ace-in, ace} and 

4 + 3t for v E { vel, vel-out, vel-sensed}. 

This execution is admissible. Its projections on the Vehicle and Controller 
automata are given by the admissible executions in Examples 4.4 and 4.5, 
respectively. ■ 

The following lemma says that we obtain the same result for an execution 
fragment o: of a composition if we first extract the trace and then restrict to 
one of the components, or if we first restrict to the component and then take 
the trace. 

Lemma 5.6 Let A= A1IIA2, and let o: be an execution fragment of A. Then, 
for i = l, 2, trace(o:) 1(Ei, fVi) = trace(o: 1(Ai, Vi)). 

Proof: Recall that trace(o:) = o: 1(E, fV). The result follows straightforwardly 
by Lemma 3.10 and the observation that H1 n fVi = fVi = Vi n fVi and 
E n Ei = Ei = A n Ei. ■ 

The following fundamental theorem relates the set of traces of a composed 
automaton to the sets of traces of the component automata. It is expressed 
in terms of equality between two sets of traces. Set inclusion in one direction 
expresses the idea that a trace of a composition "projects" to yield traces of the 
components. Set inclusion in the other direction expresses the idea that traces 
of components can be "pasted together" to yield a trace of the composition. 

Theorem 5.7 Let A = A1IIA2. Then traces.4 is exactly the set of (E, fV)-
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sequences whose restrictions to A1 and A2 are traces of A1 and A2 , respec­
tively. That is, 

traces.4 ={BI B is (E, fV)-sequence and B 1(Ei, fVi) E traces.4i, i = l, 2}. 

Proof: For one direction, suppose that B is a trace of A. Then by definition, 
Bis an (E, fV)-sequence. Leto: be an execution of A such that B = trace(o:). 
Let i E {1, 2}. Then Lemma 5.6 implies that B 1(Ei, fVi) = trace(o: 1(A, Vi)). 
Since, by Lemma 5.3, o: 1(Ai, Vi) is an execution of Ai, B 1(Ei, fVi) is a trace 
of Ai. 

Conversely, let B be an (E, fV)-sequence such that B 1(Ei, fVi) is a trace of Ai, 
i = l, 2. Then there are executions o:1 and o:2 of A1 and A 2 , respectively, such 
that, for i = l, 2, trace(o:i) = B 1(Ei, fVi). Decompose 0:1 into o:~~o:}~o:i~. · ·, 
decompose o:2 into o:8 ~ o:~ ~ o:~ ~ · · ·, and decompose B into B0 ~ B1 ~ B2 ~ • • • 
in such a way that for each j, (1) trace(o:I) = Hi 1(Ei, fVi) for i E {1, 2}, 
(2) o:J is either a trajectory or an action surrounded by point trajectories, 
i E {1, 2}, and (3) if both o:{ and O:i consist of actions surrounded by point 
trajectories then these actions are identical. Axioms Tl and T2 imply that 
such decompositions exist. 8 

Now we define a sequence of execution fragments of A, o:0
, o:1, ... , such that: 

( 1) o:0 .jstate E (➔ .4, 

( 2) For every nonfinal j, o:.i. lstate = o:H 1 .fstate, and 
(3) For every j, trace( o:.i) = Hi. 

By Lemma 4.6, the concatenation o:0 ~ o:1 ~ • • • is an execution of A. r,.1oreover, 
by Lemma 3. 9, the trace of this execution is B. To define each o:.i, we distinguish 
the following cases: 

(1) Each of o:{ and O:i is a trajectory. . 
Then suppose that o:{ = T1 and O:i = T2 . Define o:.i to be the function T 

with domain dam( T1) such that T(t) = T1 (t) U T2 (t) for every t. (Compat­
ibility of T1 and T2 follows here, and in the remaining three cases, from 
the facts that o:{ = Hi 1(E1, fVi) and o:i = Hi 1(E2, fF2).) 

(2) o:{ is a trajectory and O:i is an action surrounded by point trajectories. 
Then o:{ must be a point trajectory as well. Let o:{ = fJ(v1) and O:i = 

fJ(v2)atJ(v;). Then define o:.i to be fJ(v1 U v2 ) a fJ(v1 U v;). 
(3) o:{ is an action surrounded by point trajectories and O:i is a trajectory. 

This is symmetric with the previous case. 
( 4) Each of o:{ and O:i is an action ( the same in both cases) surrounded by 

point trajectories. 

8 See [59] for a detailed existence proof for similar decompositions. 

37 



Let o:{ = fJ(v 1)atJ(vD and o:~ = fJ(v2)atJ(v;). Define o:.i to be fJ(v 1 U 
v2) a fJ(v~ U v;). 

It is straightforward to verify that the o:.i fragments satisfy the required prop­
erties. ■ 

The following theorem describes a basic substitutivity property: 

Theorem 5.8 Suppose A1 and A2 are comparable HAs with A1 :::; A2 . Sup­
pose B is an HA that is compatible with each of A1 and A 2 . Then A1IIB and 
A2IIB are comparable and A1IIB:::; A2IIB. 

Proof: The fact that Ail!B and A2IIB are comparable follows from the fact 
that A1 and A2 are comparable and the definition of composition. 

Let BE traces.4 1 IIB· By Theorem 5.7, B 1(E1, fVi) E traces.4 1 and B 1(Ea, fVa) E 
traces B · Since A1 :::; A 2 , B I ( E 1, fVi) E traces .42 • Since A1 and A2 have the 
same external interface, (E1, fVi) = (E2, fV2). Thus, B 1(E2, fV2) E traces.42 • 

It follows from Theorem 5.7 that BE traces.42 11a- ■ 

Example 5.9 (Invariant for combined vehicle and controller) Consider 
again the composition of the Vehicle and Controller automata of Examples 4.2 
and 4.3 (for the same t). In the composed automaton, it turns out that the 
velocity is always less than or equal to vmax, that is, in all reachable states, 

vel< vmax (12) 

This statement may be proved by induction on the length of closed execution 
fragments. In the proof, we use the fact that clock :::; d, which follows from the 
definition of Q. \Ye also use assertions (3) and (11). In addition, we require 
the following auxiliary invariants: 

vel + ( acc-s,uggested + t) ( d - clock) :::; vmax 

clock > 0 =} ace:::; acc-s,uggested + t 
vel-sensed = vel 

0 < clock 

(13) 

(14) 
(15) 
(16) 

Here the interesting assertion is (13), which says, essentially, that the velocity 
will stay less than or equal to vmax if the vehicle accelerates at the currently 
suggested acceleration plus t until the next recalculation. The main invariant 
(12) and the auxiliary invariants (13)-(16) can all be proved together. All are 
easily seen to be true in the initial state. There are two kinds of inductive 
steps, for discrete suggest transitions and for trajectories. Discrete transitions 
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are easily seen to preserve all the assertions; the most interesting property 
to show is invariant (13), which holds because of the constraints on the new 
suggested acceleration, the fact that vel-sensed = vel, and the fact that, in 
the new state, clock = 0. 

Trajectories also preserve all the assertions; now the interesting thing to show 
is the conjunction of (12) and (13). Depending on whether or not ace-suggested+ 
t 2:: 0, it suffices to show only (12) or only (13). For example, suppose 
ace-suggested+ t 2:: 0; we show the auxiliary invariant (13). The trajectory 
guarantees that vel' :::; vel + (ace-suggested+ t)t and clock' = clock+ t, where 
tis the limit time of the trajectory and unprimed and primed instances of the 
variables are used ( as usual) to indicate their values at the beginning and end 
of the trajectory, respectively. The inequality is based on the integral defini­
tion of vel in terms of ace and the relationship between ace and ace-suggested. 
Then 

vel' + ( acc-s,uggested' + t) ( d - clock') 

= vel' + ( acc-s,uggested + t) ( d - clock - t) 

= vel' - ( acc-s,uggested + t )t + ( acc-s,uggested + t) ( d - clock) 
:::; vel + ( acc-s,uggested + t) ( d - clock) 
< vmax (by inductive hypothesis) 

Note that, because of the two kinds of inductive steps, the inductive proof 
divides cleanly into separate parts that involve discrete and continuous rea­
sonmg. ■ 

5.2 Hiding 

\Ye define two hiding operations for hybrid automata, which hide external ac­
tions and external variables, respectively, and we prove that these operations 
respect the implementation relationship. The hiding operations reclassify ex­
ternal actions or external variables as internal actions or variables. 

• If E <:;;;; E.4, then ActHide(E, A) is the HA B that is equal to A except that 
Ea = E.4 - E and Ha = H.4 U E. 

• If H1 <:;;;; }V.4, then VarHide(fV, A) is the HA B that is equal to A except that 
fVa = fV.4 - H1 and Tu= TA-!- (V4 - fV). 

Lemma 5.10 Let E <:;;;; E.4 and H1 <:;;;; fV.4. Then ActHide(E, A) and VarHide(fV, A) 
are HAs. 

Proof: This is a straightforward application of the definitions. ■ 
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The following lemma characterizes the traces of the automata that result from 
applying the hiding operations: 

Lemma 5.11 Let A be an HA. 

(1) If E <:;;;; E.4 then trncesActHide(E,.4) = {B 1(E.4 - E, V4) I BE traces.4}. 
(2) If H1 <:;;;; }V.4 then trncesvarHide(iV,.4) = {B 1(A.4, }V.4 - fV) I BE traces.4}. 

Proof: For (1), first observe that ActHide( E, A) has the same set of executions 
as A. Then apply Lemma 3.10. The proof of (2) is straightforward. ■ 

Theorem 5.12 Suppose A and B are HAs with A:::; B, and suppose E <:;;;; E.4 
and H1 <:;;;; fV.4. 
Then ActHide(E, A) :::; ActHide(E, B) and VarHide(fV, A) :::; VarHide(fV, B). 

Proof: Straightforward, using Lemma 5.11. ■ 

Example 5.13 (Implementing a velocity specification) In the composi­
tion of the Vehicle and Controller automata defined in Example 5.5, we may 
hide the ace-in variable used for communication between the two components. 
Thus, we define 

A= VarHide({ ace-in}, Vehicle II Controller). 

In the resulting automaton A, the only external variable is vel-out. 

\Ye may express the correctness of A by showing that it implements an abstract 
specification automaton VSpec, displayed in Figure 6, that simply represents 
the constraint that the vehicle's velocity is at most vmax. VSpec has one 

VSpec 

vel 

Fig. 6. Specification automaton VSpec. 

external variable vel-out, one state variable vel, and its state set consists of 
all valuations for vel. Both variables have type R and dynamic type equal to 
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the (pasting closure of the) continuous functions. Initially, vel :::; vmax. VSpec 
has no actions. The trajectories of VSpec are those that satisfy: 

vel(t):::; vmax fort> 0 

vel-O'ut = vel 

(17) 
(18) 

\Ye may argue that A implements VSpec using a simulation relation R. r,.1ost of 
the work has already been done by proving invariants, in Example 5.9. Relation 
R relates states x.4 of A and xa of B ~ VSpec exactly if x.4 is a reachable 
state of A and xa( vel) = x.4( vel). It is easy to see that R satisfies the start 
condition of the simulation relation definition. The discrete step condition 
follows because discrete actions of A do not change vel. For the trajectory 
condition, assume x.4 R xa and T is a trajectory of A with first state x.4. 
The definition of R implies that x.4 is a reachable state of A. Therefore all 
states in trajectory T are also reachable states of A. Therefore, the invariant 
vel :::; vmax, which was proved for A in Example 5.9, is also true of all states 
in T. Now define the corresponding execution fragment of B to consist of the 
single trajectory T

1 such that T
1 

-.J,. vel = T
1 

-.J,. vel-out = T -.J,. vel. This satisfies 
all the required properties. ■ 

Example 5.14 (Sensor and discrete controller) \Ye describe how to im­
plement the Controller of Example 4.3, which receives continuous informa­
tion about the vehicle's velocity through vel-out and suggests accelerations, 
using two other components: a Sensor, which periodically samples the con­
tinuous velocity information and produces discrete velocity reports, and a 
DiscreteController, which uses the discrete velocity reports and immediately 
suggests accelerations. These two components are displayed in Figure 7. 

vel-out 

Sensor 

vel-sensed 

clock 

report(v) 

DiscreteController 

stable 

vet-reported 

ace-suggested 

(>.suggest 

Fig. 7. The hybrid automata Sensor and Discrete Controller. 

ace-in 

The Sensor automaton has state variables clock and vel-sensed, both initially 
0, and external variable vel-out. All variables have type R and dynamic type 
equal to the (pasting closure of the) continuous functions. The set Q of states 
consists of all valuations in which clock < d. Sensor also has external actions 
report (v), v E R. D consists of report (v) steps specified by: 
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clock= d 

clock'= 0 

v = vel-sensed 

(19) 
(20) 
(21) 

That is, when the clock reaches d, the Sensor may reset the clock to 0 and 
report the current velocity. Set T consists of trajectories that satisfy: 

clock= l 

vel-sensed( t) = vel-O'ut( t) for t > 0 

(22) 
(23) 

That is, the clock increases at rate 1 and the velocity sensed is exactly what 
is seen in vel-out. 

The DiscreteController HA has state variables vel-reported and ace-suggested, 
both discrete variables of type R, initially 0, a discrete Boolean state variable 
stable, initially true, and one external variable ace-in, of type R and dynamic 
type equal to ( the pasting closure of) the continuous functions. The state con­
sists of all valuations of the internal variables. The DiscreteController also has 
external actions report(v), v E R, and an internal action suggest. D includes 
report (v) steps that satisfy: 

vel-reported' = v 

stable'= false 

and suggest steps that satisfy: 

stable= false 

stable'= true 

vel-reported + ( acc-s,uggested' + t )d :::; vmax 

(24) 

(25) 

(26) 
(27) 
(28) 

That is, a new velocity report sets the flag that triggers the DiscreteController 
to recalculate the suggested acceleration. Trajectories satisfy: 

stable(t) = stable(0) 

stable(t) = true fort > 0 
acc-s,uggested( t) = acc-s,uggested( 0) 

ace-in= acc-s,uggested 

(29) 
(30) 
(31) 
(32) 

That is, the DiscreteController does not allow time to pass if stable = false; it 
must perform a suggest action after receiving a report input and before time 
can pass. The DiscreteController does not change the suggested acceleration 
during a trajectory, and submits it accurately to its environment. Now define 
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A= ActHide({report(v) Iv E R}, SensorllDiscreteController). 

\Ye claim that A implements B ~ Controller. \Ye may argue this using the 
simulation relation R that relates states x.4 of A and xa of Controller pro­
vided that x.4 is a reachable state of A, xa( vel-sensed) = x.4( vel-sensed), 
xa ( ace-suggested) = XA ( ace-suggested) and xa (clock) = XA (clock) if XA (stable) = 
true, else d. A key to the argument is that a suggest step occurs in B when 
suggest occurs in A, rather than when a report occurs. 

Since A :::; Controller, Theorem 5.8 implies All Vehicle :::; Controllerll Vehicle. 
Then Theorem 5.12 implies 

VarHide({ ace-in}, All Vehicle):::; VarHide({ ace-in}, Controller II Vehicle). 

Since, by Example 5.13, VarHide({acc-in}, Controllerll Vehicle):::; VSpec, tran­
sitivity of implementation implies that VarHide({ ace-in}, All Vehicle) imple­
ments VSpec. ■ 

6 Hybrid I/0 Automata 

In this section we refine the hybrid automaton model of Section 4 by dis­
tinguishing between input and output actions and between input and output 
variables. The results on simulation relations and operations for hybrid au­
tomata presented in Sections 4.3 and 5 can be extended to this new setting. 

6.1 Definition of Hybrid I/O Automata 

Definition 6.1 A hybrid I/O automaton (HIOA) A is a tuple (H, U, Y, I, 0) 
where 

• 1{ = (fV, X, Q, (-:), E, H, D, T) is a hybrid automaton. 
• U and Y partition H1 into input and output variables, respectively. 

Variables in Z ~ X U Y are called locally controlled; as before, we write 
v ~ ivux. 

• I and O partition E into input and output actions, respectively. 
Actions in L ~ H U O are called locally controlled; as before we write 

A~ EUH. 
• The following additional axioms are satisfied: 

E1 (Input action enabling) 
For every x E Q and every a E J, there exists x' E Q such that x ~ x'. 
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E2 (Input trajectory enabling) 
For every x E Q and every v E trajs ( U), there exists T E T such that 
T.jstate = x, T -.J,. U:::; v, and either 
(1) T -.J,. U = v, or 
(2) T is closed and some l E L is enabled in T.lstate. 

Input action enabling is the input enabling condition of ordinary I/O au­
tomata. Input trajectory enabling is a new, corresponding condition for in­
teraction over time intervals. It says that an HIOA should be able to accept 
any input trajectory, that is, any trajectory for the input variables, either by 
letting time advance for the entire duration of the input trajectory, or by re­
acting with a locally controlled action after some part of the input trajectory 
has occurred. In Section 7, we will see that by repeated application of axiom 
E2 a HIOA is able to fully accept any input trajectory, possibly interleaved 
with locally controlled actions, provided the HIOA does not exhibit unwanted 
Zeno behavior. 

Note the role of dynamic types in axiom E2. Input trajectory enabling means 
that an automaton cannot restrict the inputs. The problem we hit is that with 
absolutely no way of restricting the inputs, the inputs were just too ill-behaved. 
In examples, we typically want to be able to integrate the input to get the 
value of internal variables, but we cannot do this unless the input is integrable. 
Axiom E2 states that a HIOA needs to be able to accept any input trajectory 
in trajs( U). By definition, the trajectories in trajs( U), when projected on an 
individual variable 'U E U, must be in agreement with the dynamic type of 
'U. For instance, by taking as the dynamic type of variables in U the set of 
piecewise smooth functions, we impose some rather minimal constraints on 
the input trajectories that allow us to give meaningful automaton definitions 
involving integrals, differential equations, etc. 

In control theory it is customary to require causality, that is, the output at 
time t depends only upon the input trajectory up to, and possibly including, 
time t [71]. In our setting, there is no need to enforce causality explicitly since 
it is implied already by the closure of the set of trajectories under prefix and 
concatenation. Assume that in a trajectory T the output at time t "depends" 
on the input trajectory after t. By prefix closure of trajectories (axiom Tl), 
T :SJ t is also a trajectory. Let x be the state of T at time t, and let v be any 
input trajectory. By axiom E2 there exists a trajectory T 1 with first state x that 
agrees with v (at least up to a certain point). By axiom T3 the concatenation 
of T :SJ t and T

1 is again a trajectory. The output of this trajectory at time 
t agrees with the output of T at time t, even though the subsequent inputs 
will in general be different. It follows that in T the output at time t does not 
depend on the input after t, a contradiction. Also note that our definition 
does not enforce functional dependence of outputs from inputs: HIOAs may 
be nondeterministic, allowing for several possible outputs for any given input 

44 



trajectory. 

It will sometimes be convenient for us to consider automata in which inputs 
and outputs are distinguished, but that do not necessarily satisfy the proper­
ties El or E2. \Ye call such an automaton a pre-HIOA. 

Notation: As we did for HAs, we denote the components of a (pre-)HIOA 
A by 1{.4, U.4, 1'~4, ... , H1.4, X.4, QA, (-:).4, etc., and those of a (pre-)HIOA Ai by 
Hi, Ui, l"i, ... , fVi, Xi, Qi, (-:)i, etc. \Ye sometimes omit these subscripts, where 
no confusion is likely. \Ye abuse notation slightly by referring to a (pre-)HIOA 
A as an HA when we intend to refer to HA. 

Example 6.2 (Vehicle and controller HIOAs) The Vehicle HA of Ex­
ample 4.2 can be converted into an HIOA by classifying ace-in as an input 
variable and vel-out as an output variable. Property El, input action enabling, 
holds vacuously. It is also easy to see that E2 holds, in fact, the first alter­
native always holds-from any state the Vehicle automaton can accept any 
input trajectory. Note that, in order for E2 to hold, it is essential that we do 
not require inclusion (2) to hold for initial states of trajectories. 

Similarly, the Controller HA of Example 4.3 can be converted into an HIOA by 
classifying vel-out as an input variable and ace-in as an output variable. Again, 
El holds vacuously. To see E2, consider a state x, and an input trajectory 
v. The definition of Q implies that x( clock) :::; d. Then the definition of the 
Controller trajectories implies that there is some trajectory T starting from 
x that is consistent with v and that either spans all of v or stops short, at a 
valuation v in which clock = d. Then the definition of the suggest transitions 
implies that this locally controlled action is enabled in v IX, as needed. ■ 

Example 6.3 (Sensor and discrete controller HIOAs) The Sensor au­
tomaton from Example 5.14 can be converted into an HIOA by classifying 
vel-out as an input variable and the report actions as output actions. The 
argument that Sensor is actually an HIOA is similar to the argument for the 
Controller in Example 6.2. 

Similarly, the DiscreteController automaton from Example 5.14 can be con­
verted into an HIOA by classifying the report actions as input actions and 
the ace-in variable as an output variable. It is straightforward to verify El. 
E2 is not completely trivial, even though the automaton has no input vari­
ables: from any state x we must consider "null" input trajectories, which map 
a time interval to the empty valuation (the valuation for no variables). If 
x( stable) = true, then the Discrete Controller can accept the entire input tra­
jectory, and if x( stable) = false, then suggest is enabled in x. This implies E2. 

■ 
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6.2 Executions, Traces, and Simulation Relations 

An execution of a pre-HI0A A is defined to be an execution of 1{.4, a trace of 
A is a trace of 1{.4, and similarly for execution fragments and trace fragments. 
\Ye extend the notation execs.4, etc. to pre-HI0As in the obvious way. Two 
pre-HI0As A1 and A2 are comparable if their inputs and outputs coincide, that 
is, if 11 = h, 0 1 = 0 2, U1 = U2 , and Yt = Y2. If A1 and A2 are comparable, 
then A1 :::; A2 is defined to mean that the traces of A1 are included among 
those of A2: A1 :::; A2 ~ traces .41 <:;;;; traces .42 • 

Lemma 6.4 Let A1 and A2 be two comparable pre-HIOAs. Then 1{1 and 1{2 

are comparable and A1:::; A2 iff 1i1:::; H2. 

Proof: Immediate from the definitions. ■ 

The definition of simulation for pre-HI0As is the same as for HAs. Formally, 
if A1 and A 2 are comparable pre-HI0As, then a simulation from A1 to A2 is 
a simulation from H1 to 1i2 . 

Theorem 6.5 If A1 and A2 are comparable pre-HIOAs and there is a simu­
lation from A1 to A2, then A1 :::; A2. 

Proof: Immediate from the definition of simulation, Theorem 4.12, and 
Lemma 6.4. ■ 

6. 8 Composition 

The definition of composition for HI0As is based on the corresponding defini­
tion for HAs, but also takes the input/output structure into account. Just as 
for HAs, we allow an HI0A A1 to be composed with an HI0A A2 only if the 
sets of internal actions and variables of A1 are disjoint from the sets of actions 
and variables, respectively, of A2 . In addition, in order that the composition 
operation might satisfy certain desirable properties (see, for example, the re­
sults in Section 6.5), we require that at most one component should "control" 
any given action or variable; that is, we allow A1 and A 2 to be composed only 
if the sets of output actions of A1 and A2 are disjoint and the sets of output 
variables of A1 and A2 are disjoint. 

Formally, we say that pre-HI0As A1 and A2 are compatible if 1{1 and 1{2 are 
compatible and 
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Lemma 6.6 If A1 and A2 are compatible pre-HIOAs, then 1{1 and 1{2 are 
compatible HAs. 

Proof: Immediate from the definitions. ■ 

If A1 and A2 are compatible pre-HI0As then their composition A1 IIA2 is 
defined to be the tuple A= (H, U, Y, I, 0) where 

• 1{ = H1IIH2, 
• Y = Y1 U Y2, 
• U = (U1 u T.h) - Y, 
• 0 = 0 1 U 0 2 , and 
• I= (11 U 12 ) - 0. 

Thus, an external action or variable of the composition is classified as an 
output if it is an output of one of the component automata, and otherwise it 
is classified as an input. 

The composition of two HI0As (or pre-HI0As) is guaranteed to be a pre­
HI0A: 

Theorem 6.7 If A1 and A2 are pre-HIOAs then A1IIA2 is a pre-HIOA. 

Proof: Let A denote A1IIA2. Lemma 5.2 implies that 1{ = Hil!H2 is an HA. 
By construction, U and Y form a partition of H1 and I and 0 form a partition 
of E. This suffices. ■ 

Example 6.8 (Interfaces for compositions of HIOAs) \Yhen the Vehicle 
and Controller HI0As from Example 6.2 are composed, the external interface 
of the resulting pre-HI0A consists of U =I= 0 = (/J and Y = { ace-in, vel-out}. 
\Yhen the Sensor and DiscreteController from Example 6.3 are composed, 
the external interface of the resulting pre-HI0A consists of U = { vel-out}, 
Y = {ace-in}, I= (/J, and 0 = {report(v) Iv ER}. ■ 

Composition of pre-HI0As satisfies the following substitutivity result: 

Theorem 6.9 Suppose A1 and A2 are comparable pre-HIOAs with A1 :::; A2 . 

Suppose B is a pre-HIOA that is compatible with each of A1 and A 2 . Then 
A1IIB and A2IIB are comparable and Ail!B:::; A2IIB. 

Proof: The fact that A1 and A2 are comparable and the definition of com­
position for pre-HI0As implies that Ail!B and A2IIB are comparable. 

Since A1 and A2 are comparable and A1 :::; A2 , Lemma 6.4 implies that 1{.41 

47 



and H.42 are comparable and H.41 :::; H.42 • Lemma 6.6 implies that H.41 and 
Ha are compatible HAs and HA 2 and Ha are compatible HAs. Theorem 5.8 
then implies that H.41 IIHa :::; H.42 IIHa. By the definition of composition, it 
follows that H.41 IIa :::; H.42 IIa- Then the definition of implementation for pre­
HIOAs implies that A1IIB:::; A2IIB. ■ 

\Ye would like to show that the composition of two HIOAs is an HIOA; how­
ever, this is not true in general. Property El is preserved by composition: 

Lemma 6.10 If A1 and A2 are pre-HIOAs that satisflJ El, then the compo­
sition A1IIA2 also satisfies El. 

Proof: Let A= A1IIA2. Assume that A1 and A2 satisfy El. \Ye verify that 
A satisfies El. Consider x E Q and a E J. \Ye distinguish three cases. 

(1) a E Ii n h. By definition of composition, x I Xi E Qi for i E {1, 2}. Then 
by El applied to Ai, there exists a state x~ of Ai such that (x I Xi) ~ix~. 
Let x' ~ x~ U x;. \Ye know that x' is well defined since, by compatibility, 
X 1 n X 2 = (/J. Then by definition of composition, x' E Q and x ~ x'. 

(2) a E Ii - 12 . By definition of composition, x I X 1 E Q1 . By El applied 
to A1, there exists a state x~ of A1 such that (x I X 1) ~ 1 x~. Let x' ~ 
x~ U (x I X 2 ). \Ye know that x' is well defined since, by compatibility, 
X 1 n X 2 = (/J. Then by definition of parallel composition, x' E Q and 
x~x'. 

(3) a E 12 - Ii. Symmetric to the previous case. 
■ 

However, E2 is not necessarily preserved by composition: 

Example 6.11 (Two HIOAs whose composition does not satisfy 
E2) Suppose that A1 has no discrete actions, no state variables, one output 
variable v1 and one input variable v 2 . All variables are of type R and dynamic 
type the (pasting closure of the) continuous functions. The sets Q1 and (-:) 1 

of states and start states consist of the unique valuation of the empty set of 
variables. The trajectories are all those functions that satisfy v1 (t) = v 2 (t) + 1 
for t > 0. It is easy to check that A1 is an HIOA. Define A 2 symmetrically, 
with output variable v2 and input variable v1 ; A2 's trajectories are those that 
satisfy v2 (t) = v1 (t) + 1 fort> 0. 

The composition pre-HIOA, A1IIA2, does not satisfy E2. Satisfying E2 would 
require (since the composition has no discrete actions) that the composition 
include at least one trajectory with limit time oo starting from the initial 
state. However, no such trajectory exists, because the combined constraints 
are inconsistent for every t > 0. ■ 
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As a way out of the difficulties noted in Example 6.11, we might consider 
introducing a static dependency relation -<.A between the external variables 
of a hybrid automaton. If :r -<.A y then the value of y is allowed to depend 
without delay on the value of :r. As an additional condition for compatibility 
of A and B, we would then require that A and B do not share variables :r 
and y such that :r -< Ay and y -<a :r. This approach, which is followed, for 
example, in the r,.1asaccio language of [33], would rule out the above example. 
However, it would also rule out any form of dynamic feedback as studied in 
control theory (for instance, PID control) [79]. \Ye therefore think that this 
static approach is overly restrictive. \Yithin control theory there is no generally 
applicable syntactic criterion to test whether combinations of differential and 
algebraic equations are well-defined; consequently, we have no simple criterion 
to test whether the composition of two HIOAs satisfies E2. 

As a technical way out of the difficulty, we define a stronger notion of com­
patibility. Namely, we say that compatible pre-HIOAs A1 and A2 are strongly 
compatible if A1 IIA2 satisfies axiom E2. Strong compatibility says that any 
input trajectory v of the composition must be acceptable by the composition: 
the two component automata are able to evolve together, following the input 
trajectory v, in such a way that either they accept all of v or else they ac­
cept part of v, up to a point where one of them can interrupt with a locally 
controlled action. 

Theorem 6.12 If A1 and A2 are strongly compatible HIOAs, then A1 IIA2 zs 
an HIOA. 

Proof: Lemma 6. 7 implies that the composition is a pre-HIOA. Lemma 6.10 
implies that the composition satisfies El. Property E2 follows immediately 
from strong compatibility. ■ 

Strong compatibility is a technical notion. By itself, it does not seem to be 
very useful, because checking it involves verifying compatibility between the 
continuous dynamics of two systems. In Section 6.5, we give some sufficient 
conditions for strong compatibility that are easier to check. 

6.4 Hiding 

The definitions of variable and action hiding extend to any pre-HIOA A. For 
input/output automata, we allow hiding outputs only (but not inputs): 

(1) If O <:;;;; O.4, then ActHide(O, A) is the pre-HIOA B that is equal to A 
except that Oa = O.4 - 0 and Ha= H.4 U 0. 
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(2) If Y <:;;;; l'A then VarHide(Y, A) is the pre-HIOA B given by: 
• Ha = VarHide(Y, 1-i.4) . 
• Yt, = }A - Y. 
• Ua = U.4, Ia = I.4, and Oa = 0 A· 

Lemma 6.13 Suppose A is a pre-HIOA, 0 <:;;;; 0.4 and Y <:;;;; l'A. Then: 

(1) ActHide(O, A) and VarHide(Y, A) are pre-HIOAs. 
(2) If A satisfies El then so do ActHide(O, A) and VarHide(Y, A). 
(8) If A satisfies E2 then so do ActHide(O, A) and VarHide(Y, A). 

Lemma 6.14 Let A be a pre-HIOA. 

(1) If O <:;;;; 0.4 then tracesActHide(O,A) = {B 1(E.4 - 0, 1<4) I BE traces.4}. 
(2) If Y <:;;;; l'A then trncesvarHide(Y,.4) = {B 1(A.4, }V.4 - Y) I BE traces.4}. 

Proof: Straightforward, see also the proof of Lemma 5.11. ■ 

Theorem 6.15 Suppose A and B are pre-HIOAs with A :::; B, and suppose 
0 <:;;;; 0 A and Y <:;;;; l'A. 
Then ActHide(O, A) :::; ActHide(O, B) and VarHide(Y, A) :::; VarHide(Y, B). 

Proof: Straightforward, using Lemma 6.14. ■ 

Example 6.16 (Interfaces for automata with hiding) In Example 5.14, 
we defined the HA B ~ VarHide({ ace-in}, All Vehicle), where 

A~ ActHide({report(v) Iv E R}, SensorllDiscreteController). 

This models the three-way composition of the sensor, discrete controller, and 
vehicle, with the internal report actions and acceleration suggestions hidden. 
If we interpret the three automata as HIOAs, then these definitions still make 
sense because the actions and variables that are hidden are outputs. The 
external interface for A is given by U.4 = {vel-out}, }A= {ace-in}, and 
I.4 = 0.4 = (/J, and the external interface for Bis given by Ua =Ia= Oa = (/J 

and Yi, = { vel-out}. ■ 

6. 5 Sufficient Conditions for Strong Compatibility 

Checking strong compatibility of two HIOAs can be difficult because it requires 
checking compatibility between the continuous dynamics of two systems. How-
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ever, for certain restricted classes of HIOAs, strong compatibility is implied 
by compatibility, which is easy to check. 

Example 6.17 (HIOAs for which compatibility implies strong com­
patibility) It is routine to verify that two HIOAs without input variables are 
strongly compatible if and only if they are compatible. In the classical con­
trol theory setting, a system without input variables is uninteresting because 
it cannot be controlled. However, in the hybrid setting, such a system can 
still interact with its environment via discrete input actions. Linear hybrid 
automata as described in [4,3], for instance, have no input variables. 

Symmetrically, two HIOAs without output variables are strongly compatible 
if and only if they are compatible. The same equivalence holds if one of the 
HIOAs has no input variables and the other has no output variables, or if one 
has no external variables at all. ■ 

The following theorem generalizes all the claims in Example 6.17. It applies 
to pairs of HIOAs that cannot mutually affect each other because the output 
variables of one are disjoint from the input variables of the other. 

Theorem 6.18 Let A1 and A2 be two compatible HIOAs such that U1 n Y2 = 
(/J. Then A1 and A2 are strongly compatible. 

Proof: Let A denote A1 IIA2 . \Ye need to show that A satisfies E2. Let x 
be a state of A and let v be a trajectory in trajs( U). Since U1 n Y2 = (/J, the 
definition of composition implies that U1 <:;;;; U. By E2 applied to A1 , there 
exists a trajectory T1 E Ti, with T1 .jstate = x I X 1 that is pointwise compatible 
with v and such that either dom(T1 ) = dom(v), or else dom(T1 ) C dom(v), T1 

is closed, and a locally controlled action of A1 is enabled in T1 . lstate. 

Let v 2 be ((v I dom(T1)) lJ T1 ) -.J,. U2 . That is, v 2 is an input trajectory for 
A2 . Each input variable of A2 is either an input variable of A or an output 
variable of A1 ; the valuations in v 2 for those that are inputs of A are obtained 
from v, whereas the valuations for those that are output variables of A1 are 
obtained from T1 . By E2 applied to A2 , there exists a trajectory T2 E T;_, with 
T2 .jstate = x I X 2 , that is pointwise compatible with v 2 and such that either 
dam( T2 ) = dom(v2 ), or else dam( T2 ) C dom(v2 ), T 2 is closed, and a locally 
controlled action of A2 is enabled in T2 .lstate. 

In the second case, ( T1 I dam( T2 )) lJ T2 is a trajectory of T that starts from 
x, is pointwise compatible with v, is closed, and enables a locally controlled 
action of A (in particular, of A2 ) in its last state. In the first case, T1 lJ T2 

is a trajectory of T that starts from x, is pointwise compatible with v, and 
either spans all of v or is closed and enables a locally controlled action of A 
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(in particular, of A1 ) in its last state. This shows that A satisfies E2. ■ 

\Ye can also consider HIOAs that do not exhibit any dependencies between 
inputs and outputs during a trajectory. In particular, the values of the in­
put variables should affect neither the values of the output variables nor the 
amount of time that elapses until a locally controlled action is enabled. For­
mally, we say that an HIOA A is oblivious if it satisfies the following axiom: 

OBL For all TE T and v E trajs(U) with dom(T) = dom(v), there exists 
T

1 E T such that: 
(1) T

1 
_J,. U = V. 

(2) T
1 -J,. Y = T -J,. Y. 

( 3) If T is closed and some locally controlled action is enabled in T. lstate 
then some locally controlled action is enabled in T1

• lstate. 

Theorem 6.19 Let A1 and A2 be two compatible HIOAs and suppose that 
A1 is oblivious. Then A1 and A2 are strongly compatible. 

Proof: Let A denote A1 IIA2 . \Ye need to show that A satisfies E2. Let x 
be a state of A and let v be a trajectory in trajs( U). Let v1 be any trajectory 
of trajs( U1 ) that is pointwise compatible with v and such that dom(v1 ) = 
dom(v ). By E2 applied to A1 , there exists a trajectory T1 E Ti, with T1 .jstate = 
x I X 1 , that is pointwise compatible with v 1 and such that either dom(T1 ) = 
dom(v1), or else dom(T1 ) C dom(v1), T1 is closed, and a locally controlled 
action of A1 is enabled in T1 .lstate. 

Let v2 be ( (v I dam ( T1)) lJ T1) -!- U2. By E2 applied to A2, there exists a 
trajectory T2 E T;_, with T2.jstate = x I X 2 , that is pointwise compatible with 
v2 and such that either dam( T2 ) = dom(v2), or else dam( T2 ) C dom(v2), T2 is 
closed, and a locally controlled action of A2 is enabled in T2.lstate. 

Let v~ be ((v I dom(T2 )) lJ T2 ) -!- U1 . By OBL applied to A1 , there exists a 
trajectory T{ E Ti such that T{ -!- U1 = v~, T{ -!- Yt = ( T1 I dam ( T2)) -!- Yt, and 
if T1 I dam( T2 ) is closed and some locally controlled action of A1 is enabled in 
its last state, then some locally controlled action is also enabled in T{. lstate. It 
follows that T{ and T2 are pointwise compatible, and that T{ lJ T2 is a trajectory 
in T that starts from x and is pointwise compatible with v. \Ye claim that 
T{ lJ T2 satisfies the requirements for E2. \Ye consider cases: 

(1) dom(T2) C dom(v2). 
Then T{ lJ T2 is closed and enables a locally controlled action ( of A2 ) 

in its last state, which satisfies the requirements for E2. 
(2) dom(T2) = dom(v2)(= dom(T1 )). 

\Ye consider two subcases. First, if dom(T1 ) C dom(v), then T1 is closed 
and enables some locally controlled action ( of A1 ) in its last state. By 
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axiom OBL, some locally controlled action is also enabled in T{ l.JT2.lstate, 
which suffices for E2. In the other subcase, if dom(T1 ) = dom(v), then 
T{ lJ T2 spans all of v, which again suffices for E2. 

■ 

Example 6.20 (Oblivious controller) The Controller HIOA of Exam­
ple 4.3 and 6.2 satisfies OBL. During any trajectory T of Controller, velocity 
information arrives in vel-out but does not affect the Controller's output; the 
output is only changed when a (locally controlled) suggest transition occurs. 
Enabling of the suggest action is not affected by changes in vel-out, but only 
by the value of clock. 

Because Controller is oblivious and compatible with the Vehicle HIOA, The­
orem 6.19 implies that Vehicle and Controller are strongly compatible. It 
follows that their composition, Vehicle II Controller, is an HIOA. ■ 

Example 6.21 (Plant and controller) Figure 8 displays a standard scenario 
studied in control theory involving a plant P controlled by a digital controller 
C. The interface from the controller to the plant is given by a digital/analog 

Input symbol Output symbol 

C 

A D 

p 

r,.reasurement Control 

Fig. 8. Hybrid Control System. 

converter D, while the interface from the plant to the controller is given by 
an analog/digital converter A. The controller C monitors the input variables 
and changes its output variables only at the clock ticks via some discrete 
transitions. Thus, C satisfies OBL. The output variables of A are disjoint 
from the input variables of both P and D, and the output variables of P 
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are disjoint from the input variables of D. Thus, if P, C, A, D are pairwise 
compatible, then P and A are strongly compatible (by Theorem 6.18), PIIA 
and Dare strongly compatible (by Theorem 6.18), and ((PIIA)IID) and Care 
strongly compatible (by Theorem 6.19). Hence, ((PIIA)IID)IIC is an HIOA. ■ 

Example 6.22 (Lipschitz HIOAs) \Ye may define a subclass of HIOAs 
called Lipschitz HIOAs, in which some of the state variables are discrete 
"mode" variables, and in which, for each mode, the rest of the variables evolve 
according to a system of differential equations based on globally Lipschitz func­
tions. \Ye may restrict this class further by imposing a bound on the range of 
the input variables (by restricting their dynamic types), thus obtaining the set 
of input-bounded Lipschitz HIOAs. Then it is possible to show that two com­
patible input-bounded Lipschitz HIOAs are strongly compatible, which implies 
that the composition of two compatible input-bounded Lipschitz HIOAs is a 
(Lipschitz) HIOA. A careful development will be reserved for another paper. 

■ 

7 Receptive Hybrid I/0 Automata 

In this section, we define the notion of receptiveness for HIOAs. An HIOA 
will be defined to be receptive provided that it admits a strategy for resolv­
ing its nondeterministic choices that never generates infinitely many locally 
controlled actions in finite time. This notion has two important consequences: 
First, a receptive HIOA provides some response from any state, for any se­
quence of discrete input actions and input trajectories. This implies that the 
automaton has a nontrivial set of execution fragments, in fact, it has execution 
fragments that accommodate any inputs from the environment. The automa­
ton cannot simply stop at some point and refuse to allow time to elapse; it must 
allow time to pass to infinity if the environment does so. Second, receptive­
ness is closed under composition. Previous studies of receptiveness properties 
include [21,1,74,54]. 

If HIOA A implements HIOA B and if A is receptive, then besides preserva­
tion of "may" properties ( any trace of A is also a trace of B) we also have 
preservation of "must" properties. For instance, if in B an input action a al­
ways must be followed by an output b within 10 time units, then this property 
will also hold for A: (1) since A is input enabled it will always accept input 
a, (2) since A is receptive it will never end up in a time deadlock or a Zeno 
execution; time can always advance, (3) A must always perform ab before or 
at time 10 since otherwise a trace is generated that is not allowed by B. 
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\Ye formally define receptiveness by first defining what it means for an HIOA 
to be progressive. A progressive HIOA never generates infinitely many locally 
controlled actions in finite time. Thus, in all of its execution fragments, it 
allows time to pass to infinity provided that its environment also does so. 
\Ye then define a strategy for resolving nondeterministic choices, and define 
receptiveness in terms of the existence of a progressive strategy. 

The treatment of receptiveness in this paper is much simpler than that in pre­
vious papers. One reason is that we address only the generation of admissible 
executions here, rather than general liveness properties. Also, we formulate 
strategies as restricted automata, rather than introducing separate definitions 
based on two-player games. 

7.1 Progressive HIOAs 

\Ye say that an execution fragment of a pre-HIOA is locally-Zeno if it is Zeno 
and contains infinitely many locally controlled actions, or equivalently, if it 
has finite limit time and contains infinitely many locally controlled actions. A 
pre-HIOA A is progressive if it has no locally-Zeno execution fragments. 

The following lemma says that any progressive pre-HIOA that satisfies E2, 
and therefore any HIOA, is capable of following any input trajectory. 

Lemma 7.1 Let A be a progressive pre-HIOA that satisfies property E2, let x 
be a state of A, and let v E trajs ( U). Then there exists an execution fragment 
o: of A such that o:.fstate = x and o: 1(J, U) = v. (Here v denotes the hybrid 
sequence consisting of the single trajectory v. Recall that we write a for a 
sequence consisting of just a.) 

Proof: \Ye construct a finite or infinite sequence o:0 , o:1 , ... of execution frag­
ments of A such that: 

(1) o:0 .fstate = x. 
( 2) For every nonfinal index i, o:i. lstate = o:i+ 1 .jstate. 
(3) For every i 2:: 0, (o:o ~ 0:1 ~ · · · ~ o:i) 1(J, U) :::; v. 
(4) For every i 2:: 0, either (o:o ~ 0:1 ~ · · · ~ o:i) 1(J, U) = v or o:i includes a 

locally controlled action. 

The construction is carried out recursively. To define o:0 , we begin with state 
x and use E2 either to span all of v, or to span a prefix of v and then perform 
a locally controlled action. For i > 0 ( assuming that we have not already 
spanned all of v), we define o:i by beginning with o:i_ 1.lstate and using E2 
either to span the entire suffix of v starting from o:0 ~ · · · ~ o:i_1 . ltime, or to 
span a prefix of that suffix and then perform a locally controlled action. 



Now we consider two cases: 

(1) The construction ends after a finite number of stages, having spanned all 
of v, say with Gk as the last execution fragment in the sequence. 

In this case, the concatenation Go~ G 1 ~ · · ·~Gk satisfies the conditions 
of the lemma. 

(2) The construction proceeds through infinitely many stages. 
In this case, the execution fragment G ~ Go~ G 1 ~ · · · contains infinitely 

many locally controlled actions. Since A is progressive, it must be the 
case that G.ltime = oo, and therefore G 1(1, U).ltime = oo. Since the set 
of trajectories for U is a cpo, G 1(1, U) :::; v. Since G 1(1, U) < v, and 
G 1(1, U).ltime = oo, it follows that G 1(1, U) = v, as needed. 

■ 

The following theorem says that a progressive HIOA is capable of following 
not just individual input trajectories, but entire input hybrid sequences. 

Theorem 7.2 Let A be a progressive HlOA with state x, and let B be an 
(l, U)-sequence. Then there exists an execution fragment G of A such that 
G.jstate = x and G 1(1,[I) = B. 

Proof: Let B = Toa 1 T1 a 2 T2 .... \Ye define a finite or infinite sequence Go, G 1 , ... 

of execution fragments of A such that: 

(1) G0 .jstate = x. 
( 2) For every nonfinal index i, Gi. lstate = Gi+ 1 .jstate. 
(3) For every i, (Go~ G1 ~ · · · ~ Gi) 1(1, U) = To a1 T1 a2 T2 ... Ti-

The construction is carried out recursively. To define Go, we begin with x and 
use Lemma 7.1 to span To- For i > 0, we define Gi by starting with Gi_ 1 .lstate, 
using property El to perform action ai and move to a new state, and then 
using Lemma 7.1 to span Ti-

Let G = Go G1 

needed. 
By Lemma 3.8 we conclude that G 1(1, U) B, as 

■ 

The property asserted in Theorem 7.2 has been called 1/0 feasibility elsewhere 
in the literature [59]. Thus, we define a pre-HIOA to be 1/0 feasible provided 
that, for each state x and each (l, U)-sequence B, there is some execution 
fragment G such that G.jstate = x and G 1(1, U) = B. Theorem 7.2 may then 
be restated as: 

Corollary 7.3 Every progressive HlOA is 1/0 feasible. 
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I/0 feasibility implies that any finite execution fragment can be extended to 
an admissible execution in response to any admissible input from the envi­
ronment. A related, weaker property that has also been studied is feasibility 
[57]. In terms of our model, we may say that a pre-HIOA is feasible provided 
that, for each state x, there is some admissible execution fragment o: such that 
o:.fstate = x. 

Feasibility implies that any finite execution fragment can be extended to some 
admissible execution fragment-no constraints are imposed on the inputs. Ob­
serve that any I/0 feasible HIOA must be feasible, as long as the dynamic 
type of each input variable includes at least one admissible trajectory. Feasibil­
ity should be regarded as a minimal liveness requirement that any reasonable 
HIOA should satisfy. I/0 feasibility is a strengthened version of feasibility 
that takes inputs into account. 

Closure under composition is easy to show: 

Theorem 7.4 If A1 and A2 are compatible progressive pre-HIOAs, then their 
composition is also progressive. 

Proof: Let A be AJA2 . Suppose for the sake of contradiction that A is 
not progressive. Then, by definition, A has a locally-Zeno execution frag­
ment o:, that is, o: contains infinitely many locally controlled actions of A. 
Therefore, o: contains either infinitely many locally controlled actions of A1 or 
infinitely many locally controlled actions of A2 . Suppose without loss of gen­
erality that o: contains infinitely many locally controlled actions of A1 . Then, 
by Lemma 5.3 and the definition of restriction, o: 1(A1 , Vi) is a time-bounded 
execution fragment of A1 with infinitely many locally controlled actions, that 
is, a locally-Zeno execution fragment of A1 . This contradicts the assumption 
that A1 is progressive. ■ 

Example 7.5 (Progressive and non-progressive pre-HIOAs) The Vehicle 
HIOA is obviously progressive because it has no discrete actions. The Controller 
and Sensor HIOAs are progressive because their locally controlled actions are 
separated in time. The DiscreteController HIOA is not progressive, because 
if report inputs arrive in a Zeno fashion, the DiscreteController may respond 
by performing suggest internal actions in a Zeno fashion. However, the com­
position SensorllDiscreteController is progressive. 

Consider a more nondeterministic version of Sensor, NSensor, that is allowed 
to perform report actions for any value of clock (:S: d), rather than just for 
clock = d. Formally, NSensor is identical to Sensor except that condition 
(19) is dropped. NSensor is not progressive, because it may perform infinitely 
many report actions in finite time. Also, the composition of NSensor with 
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DiscreteController is not progressive. ■ 

7.2 Strategies 

In this subsection, we define the notion of a strategy, which provides a way 
to resolve some of the nondeterministic choices in a pre-HIOA. \Ye will use 
strategies in the next subsection to define receptiveness. 

\Ye define a strategy for a pre-HIOA A to be an HIOA A' that differs from A 
only in that D' <:;;;; D and T' <:;;;; T. That is, we require: 

• D'CD. 
• T'<:;;;;T. 
• H1 = fV', X = X', Q = Q', (-:) = C➔', E = E', H = H', U = U', Y = Y', 

I= I', and O = 0'. 

Our strategies are nondeterministic and memoryless. They serve to choose 
some of the evolutions that are possible from each state x of A. The fact that 
the state set Q' of A' is the same as the state set Q of A implies that A' 
chooses evolutions from every state of A. 

Strategy notions have been used elsewhere in defining receptiveness, for ex­
ample, in [21,1,74]. In this earlier work, strategies have been formalized using 
two-player games rather than restricted automata. Defining strategies using 
automata instead of two-player games allows us to avoid introducing extra 
mathematical machinery. A drawback of our approach is that it is not appli­
cable in a setting with general liveness properties. 

Lemma 7.6 If A' is a strategy for A, then every execution fragment of A' is 
also an execution fragment of A. 

Theorem 7. 7 Let A1 and A2 be two compatible pre-HIOAs with strongly com­
patible strategies A~ and A;, respectively. Then A~ IIA; is a strategy for A1 IIA2 . 

Proof: Let A denote A1 IIA2 and let A' denote A~ IIA;. Since A~ and A; 
are strongly compatible, Theorem 6.12 implies that A' is an HIOA. From the 
definitions of composition and strategy, A' differs from A only in that D' <:;;;; D 
and T' <:;;;; T. Then the definition of strategy implies that A' is a strategy for 
A. ■ 

Lemma 7.8 Let A1 and A2 be two compatible pre-HIOAs with strongly com­
patible strategies A~ and A;, respectively. Then A1 and A2 are strongly com­
patible. 
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Proof: Let A denote A1 IIA2 and let A' denote A~IIA;. Theorem 7.7 implies 
that A' is a strategy for A. Since A~ and A; are strongly compatible, their 
composition A' satisfies E2. \Ye show that also A satisfies E2. 

Let x E Q and let v E trajs ( U). Then since A' is a strategy for A, we have 
Q' = Q and U' = U, Y' = Y, and so x E Q' and v E trajs( U'). Since A' 
satisfies E2, there exists T E T' such that T.jstate = x, T -.J,. U' :::; v, and either 
T -.J,. U' = v, or else T is closed and some l E L' is enabled (in A') in T.lstate. 

Since A' is a strategy for A, it follows that also T E T, T -.J,. U :::; v, and either 
T -.J,. U = v, or else T is closed and some l E L is enabled (in A) in T.lstate. 
Therefore, A satisfies E2, that is, A1 and A2 are strongly compatible. ■ 

Example 7.9 (Strategy for nondeterministic sensor) The Sensor HIOA 
defined in Example 5.14 is a strategy for the NSensor HIOA defined in Ex­
ample 7.5. ■ 

7. 8 Receptive HIOAs 

Finally, we define a pre-HIOA to be receptive if it has a progressive strategy. 

Example 7.10 (Receptive and non-receptive HIOAs) The NSensor 
HIOA of Example 7.5 is not progressive, but it is receptive. That is because the 
original Sensor HIOA, as defined in Example 5.14, is a progressive strategy 
for NSensor. 

The DiscreteController HIOA is not receptive: because any strategy for it 
must satisfy El and E2, such a strategy must be able to perform discrete 
steps in response to any report input, and so must be capable of performing 
infinitely many suggest actions in finite time. 

Consider a variant NDController of DiscreteController that has its own clock 
and may wait any amount of time, up to a fixed d' (> 0), to respond to each 
report input with a new suggest. (Several reports may occur in succession; a 
single suggest may be used to handle all of them, as long as it occurs within 
time d' of the first of these reports.) ND Controller is not progressive, because 
it has the option of responding immediately to reports, and thus may gener­
ate infinitely many suggestions in finite time. It is receptive, however, using 
a progressive strategy that always waits the maximum allowed time before 
generating a suggestion. ■ 
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The two most important general properties of receptive HIOAs are expressed 
by the following two theorems. The first expresses nontriviality-that any re­
ceptive HIOA ( or pre-HIOA) can respond to any inputs from the environment. 
The second theorem shows that receptiveness is preserved by composition. 

Theorem 7.11 Every receptive pre-HIOA is I/O feasible. 

Proof: Let A be a receptive pre-HIOA. By definition of receptive, there exists 
a progressive strategy A' for A. Since A' is a progressive HIOA, Corollary 7.3 
implies that A' is I/O feasible. \Ye show that also A is I/O feasible. 

Let x E Q and let B be an (I, U)-sequence. Then since A' is a strategy for 
A, we have Q' = Q, I' = I, and U' = U, and so x E Q' and B is an 
(I', U')-sequence. Since A' is I/O feasible, there is some execution fragment 
o: of A' such that o:.fstate = x and o: 1(1', U') = B. By Lemma 7.6, o: is 
also an execution fragment of A. Since A' is a strategy for A, it follows that 
o: 1(J, U) = B. Therefore, A is I/O feasible. ■ 

The question of whether the converse of Theorem 7.11 holds is still open. 
Finally, we have our theorem about composability of receptive HIOAs: 

Theorem 7.12 Let A1 and A2 be two compatible receptive HIOAs with strongly 
compatible progressive strategies A~ and A;, respectively. Then A1 IIA2 is a re­
ceptive HIOA with progressive strategy A~ IIA;. 

Proof: Let A and A' denote AillA2 and A~IIA;, respectively. The fact that A 
is an HIOA follows from Lemma 7.8 and Theorem 6.12. Theorem 7.7 implies 
that A' is a strategy for A. Theorem 7.4 and the fact that A~ and A; are 
progressive implies that A' is progressive. Thus, A is a receptive HIOA and 
A' is a progressive strategy for A. ■ 

Example 7.13 (Composition of receptive sensor and receptive dis­
crete controller) As noted in Example 7.10, both NS ens or and ND Controller 
are receptive, using progressive strategies that always wait the maximum al­
lowed amount of time. These two strategies are strongly compatible, by Theo­
rem 6.18. Therefore, by Theorem 7.12, the composition NSensorllNDController 
is a receptive HIOA with a progressive strategy that is the composition of the 
two progressive strategies for the two pieces. ■ 
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8 Conclusions 

In this paper, we have defined a new hybrid I/0 automaton (HIOA) modeling 
framework for describing and reasoning about the behavior of hybrid systems. 
r,.rany future research directions remain. 

First, the expressive and analytical power of the new model should be tested 
further by using it to describe and analyze many more examples. These should 
include many of the examples that have been used as illustrations elsewhere in 
the hybrid systems literature. The automated transportation examples studied 
using the previous version of the HIOA model should be revisited using the 
new model to see what changes arise, and new and more ambitious case studies 
should be attempted. 

It would be interesting to define and prove formal relationships between the 
HA and HIOA models of this paper and other models of hybrid systems, in­
cluding those of [63,3,13,8,14,38]. Also, one can define a timed input/output 
automaton model by simply restricting the HIOA model of this paper so that 
it does not include any external variables. It remains to consider the formal 
relationship between this model and other timed automaton models, for ex­
ample, those of [1,5,60,74,65]. 

It would also be useful to incorporate additional analysis methods, including 
assume-guarantee reasoning [16,36] and a variety of methods from control 
theory, into the HIOA framework. Control theory methods to consider should 
include Lyapunov stability analysis methods [79] and robust control methods 
[23]. Results about these methods should be formulated in terms of HIOAs, 
and the methods should be extended where necessary in order to accommodate 
a combination of discrete and continuous behavior. 

Other extensions of the HIOA framework are also desirable. In some prior work 
(e.g., [21,1,74]), strategies are used to describe how a system interacts with its 
environment to guarantee that the outcome of the interaction satisfies a target 
liveness property. In this paper, we do not consider general liveness properties, 
but only the special case of admissibility. It remains to extend the theory to 
more general liveness properties. Another important extension would be the 
addition of probabilities, which would make it possible to model and analyze 
probabilistic hybrid systems. Such an extension could be used, for example, to 
prove bounds on the probability of errors in safety-critical real-time systems. 
This extension appears to be a very challenging problem. 

Future work will include tool support for modeling and analysis as described in 
this paper. This will include a formal modeling language based on HIOA, with 
constructs similar to those used in the examples of this paper, and connections 
to a theorem prover. A preliminary language proposal appears in [68]. 
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A Notational Conventions 

a, b action 

c, d element of some set 

J, g, h function 

'l, J index 

k natural number 

l locally controlled action 

t time point 

'U input variable 

v variable 

w external variable 

:r internal variable 

y output variable 

z local variable 

A set of actions 

D set of discrete transitions 

E set of external actions 

F set of functions 

H set of internal (hidden) actions 

I set of input actions or index set 

J interval or index set 

I{ set of time points 

L set of locally controlled actions 

0 set of output actions 

P set of elements in cpo 

Q set of automaton states 

R (simulation) relation 

S set 
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T 

u 
V 

H1 

X 

y 

z 
X 

V 

A, B, C 

1{ 

T 

N 

R 

T 

z 
V 

o:,B,o 

7f 

p,a 

T, V 

set of trajectories 

set of input variables 

set of variables 

set of external (Dutch: waarneembare) variables 

set of internal variables 

set of output variables 

set of local variables 

state 

valuation 

hybrid (I/O) automaton 

hybrid automaton 

set of trajectories 

the natural numbers 

the real numbers 

the time axis 

the integers 

the universe of variables 

hybrid sequence 

sequence 

the empty sequence 

projection function 

sequence 

trajectory 

set of start states 
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